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On the Evolution and Observational Signatures of Cosmic Ray Electrons in
Magnetohydrodynamical Simulations

Cosmic ray (CR) electrons are ubiquitous in the universe and reveal key insights into the
non-thermal physics. Their synchrotron radiation, bremsstrahlung, and inverse Compton
emission shed light on the interstellar medium, on galaxies and galactic outflows, on
galaxy clusters, and on active galactic nuclei. Models of these emission processes can
be tested against observations with magnetohydrodynamical (MHD) simulations. While
dynamically important CR protons are often included in MHD simulations, CR electrons
are rarely treated because their treatment requires a detailed numerical modeling of their
spectra due to complex hysteresis effects. Within the scope of this work, I have developed
the efficient post-processing code crest that evolves spatially and temporally resolved CR
electron spectra. This code allows a comparison of CR electron emission signatures to
observations bymeans of multi-frequency spectra andmorphology. Further, crest enables
to validate models of CR electron acceleration and to explore whether observations can be
explained by leptonic or hadronic interactions. Hence, this work opens up a new capability
for MHD simulations of dynamical systems that can be compared to radio, X-ray, and γ-
ray observations. I apply crest to three-dimensional MHD simulations of the supernova
remnant of SN 1006. These show that a mixed leptonic-hadronic model explains best the
observed γ-ray emission and that CR electrons, similar to CR protons, are preferentially
accelerated in environments where the shock direction is quasi-parallel to the upstream
magnetic field. In addition, the simulations show that a magnetic field amplification
by a volume-filling turbulent dynamo is required and that the Bell amplification needs
to be spatially confined to the shock. Both findings are necessary in order to match
simultaneously radio, X-ray, and γ-ray observations.
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Über die Entwicklung und die beobachtbaren Charakteristiken von Elektronen der
kosmischen Strahlung in magnetohydrodynamischen Simulationen

Elektronen der kosmischen Strahlung (CR Elektronen) sind allgegenwärtig im Universum
und liefern Schlüsselerkenntnisse über die nicht-thermische Physik. Ihre Synchrotron-,
Brems- und inverse Compton-Strahlung geben Aufschluss über das interstellare Me-
dium, über Galaxien und galaktische Ausflüsse, über Galaxienhaufen und über aktive
galaktische Kerne. Modelle dieser Emissionsprozesse können mithilfe von magnetohy-
drodynamischen (MHD) Simulationen gegen Beobachtungen geprüft werden. Während
die dynamisch wichtigen CR Protonen häufig einbezogen werden, werden CR Elektronen
selten betrachtet, da deren Behandlung eine detaillierte spektrale Modellierung aufgrund
komplexer Hystereseeffekten benötigt. Im Rahmen dieser Arbeit habe ich den effizienten
Nachbearbeitungscode crest entwickelt, der Elektronenspektren zeitlich und räumlich
aufgelöst entwickelt. Dies erlaubt einen Vergleich der Emissionscharakteristiken von CR
Elektronen mit Beobachtungen anhand von Multi-Frequenzspektren und der Morpholo-
gie. Ferner ermöglicht crest, Beschleunigungsmodelle der CR Elektronen zu überprüfen,
und zu untersuchen, ob Beobachtungen mit leptonischen oder hadronischen Wechselwir-
kungen erklärt werden können. Diese Arbeit eröffnet somit eine neue Möglichkeit für
MHD Simulationen von dynamischen Systemen, die gleichzeitig mit Radio-, Röntgen-
und γ-Strahlungsbeobachtungen verglichen werden können. Ich wende crest auf drei-
dimensionale MHD Simulationen des Supernovaüberrests von SN 1006 an. Diese Si-
mulationen zeigen, dass ein gemischtes leptonisch-hadronisches Modell die beobachtete
γ-Strahlung am besten erklärt und dass CR Elektronen, ähnlich wie CR Protonen, bevor-
zugt in Umgebungen beschleunigt werden, in denen die Stoßrichtung quasi-parallel zum
Magnetfeld stromaufwärts ist. Die Simulationen zeigen zudem, dass eine Magnetfeld-
verstärkung durch einen volumenfüllenden, turbulenten Dynamo benötigt wird und dass
die sogenannte Bellsche Verstärkung räumlich eng an die Stoßfront gebunden sein muss.
Beides ist notwendig, um einen gleichzeitigen Angleich an Radio-, Röntgenstrahlungs-
und γ-Strahlungsbeobachtungen zu erzielen.
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1 Introduction
The research on cosmic rays (CRs), which started with Victor Hess’ balloon flights in
1912, has developed into an important branch of astrophysics because it provides insights
into the non-thermal physics of many environments such as the interstellar medium (ISM),
galaxies, galaxy clusters, and active galactic nuclei (AGN). CRs are charged particles that
emerge from the thermal pool and move with relativistic velocities around magnetic fields.
CRs are composed of about 90 per cent protons, 9 per cent alpha particles, 1 per cent
electrons, and the rest are heavier nuclei and antiparticles. Their kinetic energies span
several orders of magnitude from below their rest mass up to almost 1020 eV for heavy
nuclei.

CRs can be observed at earth with a plethora of experiments, that are earth-bound (air
shower arrays, imaging atmospheric Cherenkov telescopes, neutrino detectors), space-
based particle spectrometers, or balloon-borne detectors. Information about CRs in remote
environments can be obtained through their non-thermal emission which are synchrotron
radiation, inverse Compton emission and bremsstrahlung of CR electrons and γ-rays from
hadronic interactions of CR protons. The resulting radiation can be observed with radio
telescopes and interferometer arrays, X-ray satellites, and γ-ray telescopes and satellites.

Despite the enormous amount of collected data, the origin of CRs remains unclear.
The ultra high energetic range of CRs must be of extragalactic origin and CRs with up to
1015 eV are believed to originate from supernova remnants (SNRs) in our Galaxy. In this
thesis, I will focus on the latter and the leptonic CR component.

The hadronic component of CRs to which we refer as CR protons plays an important
dynamical role. CR protons are in energy equipartitionwith turbulent andmagnetic energy
in the midplane of the Galaxy (Boulares and Cox, 1990) and are therefore important for
the dynamics of the ISM. Although CRs can interact in principle with the thermal gas via
particle collisions in principle, CRs with a few GeV which carry the bulk of the total CR
energy are collisionlessly coupled to the gas via efficient scattering off MHD waves. An
important mechanism is the scattering off self-excited Alfvén waves by streaming of CRs
down their own pressure gradient. The energy of CRs can be transferred to thermal energy
via the damping of these resonantly excited Alfvén waves. This CR heating source could
be a key to solve the "cooling flow problem" in galaxy clusters (McNamara and Nulsen,
2007; Guo andOh, 2008; Pfrommer, 2013; Jacob and Pfrommer, 2017a,b). As CRs stream
and diffuse along open field lines into the Galactic halo, a CR pressure gradient is build up
which can become dominant over gravitational attraction thereby accelerating the gas and
driving a strong Galactic outflow (Zweibel, 2017; Naab and Ostriker, 2017). CR protons
become visible through γ-ray emission due to hadronic interaction with the gas.
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CHAPTER 1. INTRODUCTION

The leptonic component of CRs to which we refer as CR electrons are not dynamically
important as their energy content is smaller in comparison to CR protons by a factor of
around 50 to 100 at the solar radius in the Milky Way (Zweibel, 2013). CR electrons cool
quickly via Coulomb interaction and bremsstrahlung as they move through the ambient
gas, synchrotron radiation as they spiral around magnetic fields, and via inverse-Compton
interactions with ambient photon fields. These radiation mechanisms link CR physics
with observations and give us insights into remote astrophysical systems, e.g. SNRs in our
Galaxy, radio relics and mini halos in galaxy clusters, and the Fermi bubbles as a likely
prominent example of a galactic outflow. SNRs are of central importance as their shock
fronts accelerate CR protons and electrons.

In the last two decades, magnetohydrodynamical (MHD) simulations have become
an important tool to study the dynamical influence of CRs because they allow to self-
consistently model the interplay between gas, magnetic fields, and CRs. CR protons
are included as a relativistic fluid whose energy evolves on a separate equation and can
exchange energy with the thermal gas. This treatment is sufficient to study the dynamical
impact of CRs. However, it is inevitable to track the evolution of the CR electron
spectrum as it determines the synchrotron, bremsstrahlung, and inverse Compton spectra.
In addition, theCRelectron spectrum is shaped by acceleration, cooling, and reacceleration
such that the exact history of these events is important.

This thesis covers the evolution of the CR electron spectrum alongside MHD simula-
tions. I have developed an efficient numerical code called crest which stands for Cosmic
Ray Electron Spectra evolved in Time. First, I introduce the theoretical background of CR
physics and MHD simulations together with a discussion about SNRs. Then in Chapter 3,
I present the scope of this code by discussing possible implementation strategies and how
it is coupled to the moving-mesh MHD code arepo. In addition, I layout the general
structure of the code and how numerical solutions to the Fokker–Planck equation, i.e. the
governing transport equation of CR electrons, are obtained. In Chapter 4, I proceed with
an in-depth presentation of crest and show a variety of tests ranging from idealized one
zone models to hydrodynamical simulations. These validate that this work together with
the documentation of crest enables future studies on CR electrons in the ISM, galaxies,
galaxy clusters and AGNs. Finally in Chapter 5, I apply crest to MHD simulations of
the supernova remnant SN 1006 which links microscopic plasma insights obtained from
kinetic particle-in-cell (PIC) simulations to global MHD scales. The analysis enables to
test our understanding of plasma physics in a novel way by detailed comparison to non-
thermal observations from radio to X-rays to γ-rays. I conclude this thesis in Chapter 6
by summarizing my results and presenting future applications of this work.
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2 Theoretical Background
This chapter presents the essential theoretical background of CR physics and transport. We
first introduce the physics of CRs in section 2.1. Secondly, we describe MHD simulations,
the arepo code, and the CR code module in section 2.2. Thirdly, we review the evolution
of SNR that are an important source of CR acceleration in our Galaxy in section 2.3.

2.1 Cosmic Rays
The existence of cosmic rays has been well established for more than 100 years. In the
year 1912, balloon experiments by Victor Hess showed that ionizing radiation increases
with altitude suggesting a cosmic origin (Hess, 1912). Ground-based experiments (e.g.
KASCADE, Auger, Telescope Array), balloon-borne experiments (e.g. ATIC, CREAM,
BESS), and space-based experiments (PAMELA, AMS-02) have shown that the total
energy per nucleon of CRs spans approximately 11 orders of magnitude from 109 eV to
1020 eV (e.g. Gaisser et al., 2016). The spectrum is described by piecewise power laws
N(E) ∝ E−α from 1010 eV to 1015 eV with the spectral index α ≈ 2.7, from 1016 eV to
1018 eV with the softer index α ≈ 3.1, and above 1 × 1019 with a harder index α ≈ 2.6. It
is modified below 1010 eV by solar modulation. The spectrum shows two distinct features
that are the so-called knee at ∼ 3 × 1015 eV and ankle at ∼ 3 × 1015 eV where the spectral
index of the spectrum changes.

This work focuses on the spectrum up energies of a few tens of TeV which contains the
bulk of the total CR energy and which are responsible for emission from radio, X-rays to
γ-rays. This section presents an overview of the fundamental physics of CRs and contains
adapted text from section 2.1 of our publication in Winner et al. (2019).

2.1.1 Transport
The distribution of CRs consist of protons and electrons can be characterized by their phase
space coordinates, position x and momentum p. We use the dimensionless momentum
pp = Pp/(mpc) for CR protons and pe = Pe/(mec) for CR electrons, where mp and me are
the proton and electron rest mass, respectively, and c is the speed of light. The distribution
function fi(x, p, t) for each specie is described by the relativistic Vlasov equation

∂ fi
∂t
+ Ûxi · ∇ fi + Ûpi · ∇pi fi =

∂ fi
∂pi

����
c

i ∈ {p, e} (2.1)

3



CHAPTER 2. THEORETICAL BACKGROUND

where the collisional term ∂ f /∂p|c represents sources and sinks of particles and Ûpi is the
Lorentz force

Ûpi =
Ze
mic

[
E(x, t) + 3 × B(x, t)

c

]
(2.2)

with electric field E, magnetic field B, and charge Ze. The large scale electric field can
be neglected due to high electrical conductivity of astrophysical plasmas. In a uniform
magnetic field, the particles gyrate around the field lines with a gyrofrequency of

Ωi =
e|B|
γimic

(2.3)

where γi =

√
1 + p2

i is the Lorentz factor. In the following, we drop the index i for protons
and electrons and only mention it if we refer to a specific species.

However, the distribution function as well as the particle motions are influenced by
randomly fluctuating magnetic fields. By frequent scattering off the ubiquituous MHD
waves, the pitch angle, i.e. the angle between the momentum and magnetic field, is
isotropized. The Fokker–Planck equation can be derived by a perturbation method with
a quasi-linear approximation (Skilling, 1975; Schlickeiser, 1989a; Zank, 2014). The
distribution function f is generally influenced by the Lorentz force of fluctuating MHD
fields. As individual fluctuations are of minor importance, the distribution function is
ensemble averaged over these fluctuations. It is further assumed that theMHDfluctuations
are small in amplitude such that particles move approximately on their undisturbed gyro
orbits on a particle correlation time and such that the distribution function is gyrotropic
(isotropic in gryophase). In addition, the timescale of MHD fluctuations which lead to
pitch-angle scattering has to be much larger than the correlation time and much shorter
than the time on which the ensemble average can react. The distribution function is then
split into an unperturbed and a perturbed component on which the influence of MHD
fluctuations are worked out. We include continues losses plus a source term (Kirk et al.,
1988; Schlickeiser, 1989b) such that the transport equation for the 3D CR distribution
takes the form

∂ f
∂t
+ (3 + 3st) · ∇ f = ∇ · [K · ∇ f ] + p

3
∂ f
∂p
∇ · (3 + 3st) + 1

p2
∂

∂p

[
p2Dpp

∂ f
∂p

]
+ S(p)

(2.4)

where p = |p | is the absolute value of the normalized momentum. In addition, 3 is the
velocity of the background plasma and 3st = −3A sgn(B · ∇ f ) is the streaming velocity
of CRs with the Alfvén velocity 3A = B/

√
4πρ in the plasma with mass density ρ.

Furthermore, K and Dpp are the spatial and momentum diffusion, respectively. The source
and sink term S is given by

S(p) = Q(p) − 1
p2

∂

∂p

(
p2 Ûp f

)
− f
τc

(2.5)
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2.1. COSMIC RAYS

whereQ(p) is an injection source, Ûp is a cooling term, and τc is the timescale of catastrophic
losses, e.g. spallation reactions of CR protons. In the case of CR electrons, Q(p) describes
injection of secondary electrons that result from hadronic interactions of CR protons.
We note that Equation (2.4) gives the evolution of the distribution function f 3D in 3D
momentum space with number and kinetic energy density

n =
∫

f 3D(p)4πp2dp, (2.6)

ε =

∫
Ekin(p) f 3D(p)4πp2dp, (2.7)

respectively, where Ekin(p) = (
√

1 + p2 − 1)mc2 is the kinetic energy. It is convenient to
transform the transport equation into 1Dmomentum space via the relation f 1D = 4πp2 f 3D

which is often used in the literature and will be used in following chapters.

2.1.2 Fermi-I Acceleration
CRs are accelerated from particles of the thermal pool at astrophysical shocks, e.g. at the
expanding shock front of SNRs, at the shocks of AGNs, at cluster and merger shocks.
These shocks can additionally reaccelerate a previously existing CR population. In the
original idea proposed by Fermi (1949), particles frequently scatter offmovingmagnetized
clouds in the ISM with velocity 3. The particles are reflected due to magnetic mirroring
at magnetic irregularities in these clouds which are produced by turbulent motions from
winds, shocks, and energetic particles traveling through the clouds. As head-on collisions
are more probable than tail-on collisions, frequent scattering results in mean energy
increase of the order β2 = (3/c)2 per scattering event. It is a slow acceleration process
due to the second order in β with β � 1. Therefore, particles need sufficient energy to
gain more energy than they lose through ionization and Coulomb losses at the same time
which makes this acceleration inefficient for heavy ions of the CRs.

Diffusive shock acceleration (DSA) is a more efficient first-order acceleratation process
modifying Fermi’s original idea which takes place in converging flows of astrophysical
shocks (Krymskii, 1977; Axford et al., 1977; Bell, 1978b; Blandford and Ostriker, 1978).
Particles gain energy by crossing multiple times back and forth the shock front while
being scattered at magnetic irregularities due to wave-particle interaction. The dissipated
thermal energy is partially (up to 10 to 15 per cent) converted into the acceleration of CRs.
These accelerated particles can themselves drive MHD waves off which they scatter. The
maximum attainable energy depends on the size and the magnetic field strength of the
acceleration site as the magnetic field-dependent Larmor radius of the accelerated particle
rg = pc/(qB) has to be smaller than the confinement radius (Hillas, 1984). The maximum
energy of electrons is limited by simultaneous cooling losses (Zirakashvili and Aharonian,
2007).

We first discuss a macroscopic picture of Fermi-I acceleration and secondly, present
result from kinetic simulations of CR proton and electron acceleration.
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CHAPTER 2. THEORETICAL BACKGROUND

Macroscopic Picture of Fermi-I Acceleration

We follow the approach by Drury (1983) and consider a plane-parallel shock moving
(non-relativistically) along the x-direction with a sharp shock transition layer which is
much smaller than the CR diffusion length D/3. In the shock rest frame, the shock is
located at x = 0 and lies in the y-z plane. The fluid flows along the positive x-direction
and the velocity is

3(x) =
{
31 for x < 0,
32 for x > 0,

(2.8)

where the indices 1 and 2 denote upstream and downstream quantities, respectively. The
shock compression ratio, i.e. the ratio of downstream to upstream density, is r = ρ2/ρ1.
Using the Rankine–Hugoniot (see Section 2.2.3), it can be expressed as

r =
ρ2
ρ1
=
31
32
=

γ + 1
γ − 1 + 2/M2 (2.9)

with adiabatic index γ (assuming γ = γ1 = γ2) and (upstream) Mach numberM = 31/cs,1
which is the ratio of velocity to sound speed in the upstream. For an ideal mono-atomic
gas where no internal degrees of freedom are excited by the shock and for a strong shock
withM � 1, the compression ratio approaches the value r = 4.
We assume the system to be stationary and further neglect streaming, Fermi-II acceler-

ation, and cooling such that the transport equation (2.4) reduces to a diffusion-advection
equation

3
∂ f
∂x
=

∂

∂x

[
K
∂ f
∂x

]
+

p
3
∂ f
∂p

∂3

∂x
+ 31q(p)δ(x) (2.10)

where we included a source term located at the shock front x = 0 (Pfrommer, 2005). We
take the general solution of the form

f (x, p) = g1(p) + g2(p) exp
(∫ x

0

3(x′)
K

dx′
)

(2.11)

and impose that the far upstream spectrum has a distribution function limx→−∞ f (x, p) =
f1(p) and that the downstream spectrum f2 is finite. The second term in Equation (2.11)
is the diffusion term which balances the incoming flux in the upstream region (x < 0) and
yields a steady state spectrum. As it yields a growing infinite solution in the downstream
region (x > 0), the diffusion term has to be zero and the spectrum is spatially constant.
We further impose that the solution has to be continuous at the shock transition layer such
that the solution is given by

f (x, p) =



f1(p) + [ f2(p) − f1(p)] exp
(
−

∫ 0

x

31
K

dx′
)

for x < 0,

f2(p) for x ≥ 0.
(2.12)
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2.1. COSMIC RAYS

In order to obtain the solution for the downstream spectrum, Equation (2.10) has to be
integrated across the shock from −ε and ε and evaluated in the limit ε → 0. We obtain
the following differential equation

p
∂ f
∂p
=

3r
r − 1

[ f1(p) + q(p) − f2(p)] (2.13)

where we have taken the shock compression ratio of Equation (2.9). The solution for f2(p)
is given by

f2(p) = αp−α
∫ p

0
dp′ [ f1(p′) + q(p′)] p′α−1 (2.14)

with the spectral index α = 3r/(r − 1). This can be interpreted as reacceleration of the
previously existing upstream spectrum and new acceleration of particles from the thermal
pool. It is independent of the spatial diffusion coefficient and depends only on the shock
compression ratio. If we consider the source function to have the form q(p) = q0δ(p− pinj)
with an injection momentum pinj and neglect a far upstream spectrum f1, the downstream
spectrum due to particles accelerated at the shock becomes

f2(p) = q0α

pinj

(
p

pinj

)−α
. (2.15)

In a strong shock in a fluid with γth = 5/3, the shock compression ratio is r = 4 and
the spectral index is α3D = 4 for a 3D momentum space distribution function. For a
1D momentum space distribution function with f 1D = 4πp2 f 3D, the spectral index is
α1D = 2.

Kinetic Simulations of Fermi-I Acceleration

As mentioned before, the acceleration of particles from the thermal pool to typical CR
energies is achieved by frequent scattering of particles at magnetic irregularities at shocks.
Their dynamics can be studied in kinetic particle-in-cells (PIC) simulations which cover
all relevant microphysical processes necessary for CRs. These type of simulations evolve
the equations of motions for individual macroparticles of electrons and protons in electric
and magnetic fields (Charles K. Birdsall, 1985). These fields are evaluated according
to Maxwells equations on a grid and are generated by the charge distributions and their
currents themselves. As the evolution of all these processes is computationally expensive,
current PIC simulations cover physical time-scales on the order of seconds to a fewminutes
for number densities of the order of n ≈ 1 cm−3.

In contrast to full PIC simulations, hybrid simulations treat electrons as a massless
neutralizing fluid (Lipatov, 2002) while self-consistently capturing shock evolution and
plasma instabilities in MHD approximation, i.e. neglecting displacement currents. Hybrid
simulations are successful at modeling ion acceleration at non-relativistic shocks (Caprioli
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and Spitkovsky, 2014a,b,c, for a review see Caprioli, 2015). They find that more than 10
per cent of the shock ram kinetic energy can be converted into the acceleration of CRs
with a power-law tail for quasi-parallel shocks. Quasi-parallel shocks are characterized
by θ . 45◦ where θ is the obliquity angle between the shock normal and the far upstream
magnetic field. For quasi-perpendicular shocks with θ & 45◦, the acceleration efficiency
of ions is strongly reduced. The acceleration of ions from the thermal pool involves three
stages (Caprioli et al., 2015). First, the ions incoming from upstream get reflected by the
shock electrostatic potential barrier and gyrate back into the upstream medium leading
to the formation of a new barrier. Secondly, the ions experience shock drift acceleration
(SDA) in convective electric fields and the probability of an ion to participate in N cycles
of SDA is ∼ 0.25N . A fraction of ions which is about one per cent at quasi-parallel shocks
reaches the injection energy of Einj ∼ m32

sh for diffusive shock acceleration where 3sh is
the shock speed. Thirdly, ions experience DSA while crossing the shock multiple times
and being scattered on self-generated magnetic fluctuations. These fluctuations originate
from the non-resonant hybrid instability (Bell, 2004), also known as the Bell instability.

So far, there is no comprehensive theory of electron injection into DSA (Caprioli, 2015;
Xu et al., 2019). There are two problems with the injection of electrons. First, they
have significantly smaller Larmor radii than the shock transition width such that they
cannot cross the shock in order to participate in DSA. Secondly, the electrostatic shock
potential barrier with an upstream-directed electric field hinders electron reflection. The
preacceleration and injection of electrons into DSA is studied with full PIC simulations
where the electrons are not treated as a fluid. Full PIC simulations are computationally
more expensive than hybrid simulations due to the large proton to electron mass ratio of
mp/me ≈ 1836. They must resolve timescales from the inverse of the electron plasma-
frequency ω−1

pl,e = (4πe2ne/me)−1/2 to the inverse of the proton cyclotron frequency ω−1
c,p =

(eB/[mpc])−1 which leads to the relation (Riquelme and Spitkovsky, 2011)

ωpl,e

ωc,p
=
3A
c

√
mp

me
. (2.16)

Simulations can bemade feasible if a reducedmass ratio ofmp/me = 100 – 400 is assumed.
Often the dimensionality is reduced to 1D or 2D and the magnetic field has an out-of-plane
configuration. Acceleration at high Mach number quasi-parallel shock has been found in
1D, full PIC simulations (Kato, 2015; Park et al., 2015). In the simulations of Park et al.
(2015), the electrons are preheated via SDA, gain further energy via SDA and Fermi-like
acceleration, and finally get injected into DSA. Electrons as well as protons scatter off
waves that are excited via the non-resonant hybrid instability.

PIC simulations of quasi-perpendicular shocks with low Mach numbers find electron
acceleration that is driven by the oblique firehose instability. (Guo et al., 2014a,b). Non-
relativistic quasi-perpendicular shocks are able to preaccelerate electrons (Riquelme and
Spitkovsky, 2011; Bohdan et al., 2017) and inject electrons into DSA with a power-law
spectrum in the downstream (Xu et al., 2019). In the latter, it is found that electrons
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2.1. COSMIC RAYS

drive non-resonant waves in the upstream after reflection at the shock front. Thereby,
they enable trapping of electrons between the shock and self-excited waves such that they
undergo multiple cycles of SDA before injection into DSA.

2.1.3 Leptonic Losses
CR electrons lose their energy via multiple processes, i.e. Coulomb, bremsstrahlung,
synchrotron and inverse Compton losses. These processes act on much smaller timescales
than that of CR protons. They lead to observable radiation which is important to study CR
physics in remote astrophysical environments. Formulae are adopted fromBlumenthal and
Gould (1970), Rybicki and Lightman (1986), and Longair (2012) if not stated otherwise.

Coulomb Losses

CR electrons that move through an ionized plasma lose energy by scattering off electrons
of the plasma. Thereby, CR electrons transfer kinetic energy to the plasma and act as a
heating source of the plasma. The Coulomb loss rate of CR electrons (Gould, 1975) is
given by

Ûpc(p) = −3σTnec
2β2

[
ln

(
mec2β

√
γ − 1

~ωpl

)
+ ln(2)

(
β2

2
+

1
γ

)
+

1
2
+

(
γ − 1

4γ

)2
]
, (2.17)

where σT = 8πe4(mec2)−2/3 is the Thomson cross-section, ~ is the reduced Planck
constant, me the electron mass, β = p(1 + p2)−1/2 is the dimensionless CR electron
velocity, and γ = (1 + p2)1/2 is the Lorentz factor of CR electrons. The electron density
is ne = ngasXHxe where XH is the hydrogen mass fraction and xe = ne/nH is the ionization
fraction, the ratio of electron density-to-hydrogen density, which is denoted by nH. The
plasma frequency is ωpl =

√
4πe2ne/me and e denotes the elementary charge. The

Coulomb loss rate has only a weak dependency on the electron momentum for p > 1 due
to the slowly varying logarithm in the loss rate.

Relativistic Bremsstrahlung

Another loss process is bremsstrahlung of CR electrons moving through the electrostatic
potential of a nucleus and thereby emitting radiation. This process is also known as free-
free emission which corresponds to the transition between two unbound states of an atom.
In the rest frame of the electron, an electromagnetic pulse is emitted by the approaching
nucleus and the virtual photons scatter off the electron. The momentum loss rate of CR
electrons due to bremsstrahlung is given by

Ûpb(p) = −16
3
α

(
e2

m2
e c3

)2

γ χ [E(p)] , (2.18)
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whereα ≈ 1/137 is the fine-structure constant. The loss rate also depends on the total cross
section χ [E(p)] which is given in Koch and Motz (1959). Relativistic bremsstrahlung
becomes important for high density environments and is negligible below n . 1 cm−3.

Synchrotron Radiation

Electrons move in magnetic fields on circular orbits around the magnetic field lines due
their Lorentz force (see Equation (2.2)). This permanent acceleration leads to synchrotron
radiation that is responsible for radio emission, e.g. in our Galaxy or at SNRs (Rybicki and
Lightman, 1986; Longair, 2012). It is also responsible for non-thermal X-ray emission.
The loss term due to synchrotron radiation is given by

Ûps = −4σTp2

3mecβ
B2

8π
(2.19)

where we have assumed an isotropic distribution of pitch angles θ. The Thompson
cross-section is given by σT = 8πr2

e /3 with the classical electron radius re = e2/(mec2).
While non-relativistic charged particles emit radiation at the non-relativistic gyrofrequency
νg = eB/(2πme), relativistic particles emit synchrotron radiation that can be decomposed
into harmonics of the relativistic gyrofrequency νr = νg/γ. The total emitted synchrotron
power per unit volume and unit frequency at an angular frequency ω is

Ps(ω) = d3E
dVdωdt

=

√
3e3B

2πmec2 sin θ
∫ ∞

0
dp

p√
1 + p2

f (p)F
(
ω

ωc

)
(2.20)

with a 1Delectron spectrum f (p), the critical frequencyωc = 3(1+p2)eB sin θ/(3mec), and
the synchrotron Kernel F(x) = x

∫ ∞
x K5/3(y)dy where K5/3 is the modified Bessel function

of second kind of order 5/3. For a power law electron spectrum of the form f (p) ∝ p−αe

with spectral index αe, the emitted synchrotron power obeys the proportionality Ptot(ω) ∝
ω−αs with the synchrotron spectral index of αs = (αe − 1)/2. Hence, the synchrotron
spectrum gives insights into the shape of the electron spectrum and the magnetic field
distributions.

Inverse Compton

In contrast to Compton scattering, low energetic photons gain energy by scattering off CR
electrons during the inverse Compton scattering process (Rybicki and Lightman, 1986;
Longair, 2012). Together with hadronic γ-ray emission and non-thermal bremsstrahlung,
inverse Compton emission is the source of high energy γ radiation. The loss term of a CR
electron with Lorentz factor γ can be worked out in the rest frame of the electron. As long
as the photon energy with frequency ω in the electron rest frame is much smaller than
the electron rest energy γ~ω � mec2, inverse Compton scattering is simply Thompson
scattering it this frame of reference. Working out the incident energy density of the

10



2.1. COSMIC RAYS

photon field in the electron rest frame and transforming back to the laboratory frame, the
momentum loss rate of inverse Compton scattering is found to be

Ûpic = −4σTp2

3mecβ
εph (2.21)

where εph is the energy density of the photon field. The loss term is similar to that of
synchrotron emission in Equation (2.20) which can be interpreted as electrons scattering
of virtual photons from the magnetic field for synchrotron emission. Alternatively, the
photon field of IC emission can be expressed by an equivalent magnetic field, which is
BCMB =

√
8πεCMB(1 + z)2 ≈ 3.24 µG(1 + z)2 for the CMB photon field with εCMB ≈

4.17 × 10−13 eVcm−3 at redshift z = 0.
We note that the loss rate contains the Thompson cross sectionσT which is only valid for

γ~ω � mec2, which corresponds to γ � 5 × 108 for CMB photons with ~ω ≈ 10−3 eV.
For larger electron or photon energies the Klein–Nishina cross-section

σKN = πr2
e

1
x

{[
1 − 2(x + 1)

x2

]
ln(2x + 1) + 1

2
+

4
x
− 1

2(2x + 1)2
}

(2.22)

with x = ~ω/(mec2) has to be applied which approaches the Thompson cross-section for
x � 1. It is interesting to note that the average energy of scattered photons for an isotropic
distribution of CR electrons

~ω̄ =
4
3
γ2β2~ω0 ≈ 4

3
p2~ω0 (2.23)

can be derived via dividing Equation (2.21) by the incident photon flux σT cεph/(~ω0). It
shows that CMB photons with E ≈ 1 × 10−3 eV can be scattered to GeV energies by CR
electrons with p ≈ 106. The total emitted inverse Compton power per unit volume and
frequency ν is

Pic =
d3Eic

dtdVdν
= 2πhEicrec2

∫
dp f (p) p(

1 + p2)3/2

∫
dE
E

n(E)F(q(E, Eic, p)) (2.24)

where f (p) is the electron spectrum and n(E) is the number density of the incident photon
field. The auxiliary functions F(x) and q(E, Eic, p) are

F(x) = 2x ln x + x + 1 − 2x2, (2.25)

q(E, Eic, p) = Eic

(
4E

(
1 + p2

) [
1 − Eic√

1 + p2mec2

])−1

. (2.26)

2.1.4 Hadronic Losses
CR protons lose their energy due to Coulumb losses via scattering with plasma particles
and hadronic interactions. Bremsstrahlung and synchrotron radiation are negligible for
CR protons with energies Ep . 1018 eV due the large proton to electron mass ratio which
leads to large cooling time scales.

11



CHAPTER 2. THEORETICAL BACKGROUND

Coulomb Losses

Similar to CR electrons, CR protons lose energy by traversing a plasma and scattering off
electrons. The CR proton momentum loss term (Gould, 1972b) is given by

Ûpc =
4πe4

mempβ2c3

[
ln

(
2meβp
~ωpl

)
− β

2

2

]
. (2.27)

The time-scales τ = p/ Ûpc become small and important for small proton momenta p < 1.
At larger momenta hadronic interactions become important.

Hadronic Interactions

Hadronic interactions are an important momentum loss term of CR protons and lead
to observational signature via γ-rays, production of secondary electrons and neutrinos
(Longair, 2012; Gaisser et al., 2016). CR protons scatter inelastically on protons and
nuclei of a plasma thereby producing neutral or charged pions if their momentum is larger
than the pion production threshold of pthr ≈ 0.83. Due to baryon number conservation
two protons or one proton and a neutron are remaining where the neutron decays quickly
with a mean lifetime of τn ≈ 882 s. The produced pions decay again via

π0 → 2γ (2.28)
π± → µ± + νµ/µ̄µ → e± + νe/ν̄e + νµ + ν̄µ. (2.29)

The two photons from neutral pion decay are the origin of high-energy γ-rays from
astrophysical objects, e.g. AGN jets and SNRs, and are responsible for Galactic γ-ray
emission. Electrons and positrons from charged pion decay are often referred to as
secondary electronswhich are subject to the same emission processes as primary electrons.
Independent of the branching ratios of the decay channels, the total loss rate of CR protons
due to hadronic interactions (Mannheim and Schlickeiser, 1994) is

Ûp = npσ
π
ppKp

γ − 1
β

θ(p − pthr) (2.30)

where nN is the target nucleon density, σπ
pp is the total pion production cross section

(Dermer, 1986), and Kp = 0.65 is the inelasticity (Mannheim and Schlickeiser, 1994).

2.2 Magnetohydrodynamical Simulations
Magnetohydrodynamical (MHD) simulations are an essential tool for understanding the
physical processes of astrophysical systems. Classically, the plasma is treated as a fluid of
an ideal gas. The fluid approximation requires frequent scattering of the particles in the
fluid and that the mean free path between collisions λmfp = (σn)−1, with collision cross
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section σ and number density n, is much smaller than the macrosopic system length scale.
To order of magnitude, the cross section of charged particles is σ ∼ (kT)2/e2 (Shu, 1992)
which yields λmfp ≈ 10−5 pc (T/104 K)2 (n/1 cm−3)−1. The ideal gas assumption is valid
due to low number densities and high temperatures in many astrophysical environments,
except for the interior of stars or gaseous planets. CRs can be incorporated into MHD
simulations treating them as an additional, relativistic fluid if they are efficiently coupled
to the plasma via frequent wave-particle scatterings on spatial scales much smaller than
the macroscopic system length.

2.2.1 Ideal MHD
We present the standard derivations for the equations of ideal MHD (e.g. Shu, 1992;
Pringle et al., 2007; Regev et al., 2016). The underlying assumptions are that the plasma
is perfectly conducting and behaves like a perfect fluid with the equation of state

Pth = (γth − 1) εth (2.31)

that relates thermal pressure Pth to the thermal energy density εth via the adiabatic index
γth = 5/3 of ideal gas. The equations derived below rely on the conservation of mass,
momentum, and energy.

We consider an arbitrary volume V in which the gas has a mass density ρ. The total
mass inside the volume is given by the volume integral and it can only change by inflowing
or outflowing material through the surface ∂V of the volume in absence of any sources or
sinks

∂

∂t

∫
ρ dV = −

∫
∂V
ρ3 · dA (2.32)

where 3 is the velocity of the flowing material. The minus sign on the right-hand side is
due to the outwards pointing normal vector S of a surface element of the volume. We
apply Gauss’s theorem

∫
∂V a · dA =

∫
V ∇ · a dV and consider that Equation (2.32) holds

for any volume V such that we obtain the continuity equation
∂ρ

∂t
+ ∇ · (ρ3) = 0. (2.33)

The momentum equation is obtained with the same approach. We start with the total
momentum

∫
V ρ3 dV inside a volume V that can change via momentum flux through the

surface
∂

∂t

∫
V
ρ3 dV = −

∫
∂V
ρ33T · dA . (2.34)

if there are no external forces acting on the fluid (e.g. gravity) and if there is no viscosity.
Applying Gauss’s theorem we obtain the equation

∂

∂t
(ρ3) + ∇ ·

(
ρ33T

)
= 0 (2.35)
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which is Newton’s second law in absence of exterior forces for a fluid element. We
add the gradient force FP = −∇Pth with thermal pressure Pth and the Lorentz force
FL = ( j × B)/c with current density j and magnetic field B to the right-hand side of the
equation above. We neglect the electric field E which is zero under the assumption of
ideal MHD, i.e. infinite conductivity. The Lorentz force can be rewritten with Ampère’s
law such that

FL = (B · ∇) B − 1
2
∇B2 (2.36)

where the first and second term on the right-hand side are the magnetic tension and
pressure, respectively. We finally obtain the momentum equation

∂

∂t
(ρ3) + ∇ · [ρ33T + P1 − B(3 · B)] = 0 (2.37)

where P = Pth + B2/2 is the total pressure and 1 is a rank two unit tensor. It is useful to
define the plasma beta parameter βpl = Pth/PB that is the ratio of plasma thermal pressure
to magnetic pressure.

The evolution of the energy density equation can be obtained similarly to the continuity
and momentum equation. We first look at the evolution of thermal and kinetic energy
density and include the magnetic energy later on. The volume V contains thermal energy
density εth and kinetic energy density ρ32/2 which can change through inflow/outflow of
energy and by pressure Pth acting on the system according to first law of thermodynamics
at constant entropy

∂

∂t

∫
V

(
εth +

1
2
ρ32

)
dV = −

∫
∂V

(
εth +

1
2
ρ32 + Pth

)
3 · dA . (2.38)

We note that viscosity, thermal conduction, and non-adiabatic energy gains and losses are
neglected. As before, the equation above is converted via Gauss’s theorem to

∂

∂t

(
εth +

1
2
ρ32

)
+ ∇ ·

[(
εth +

1
2
ρ32 + Pth

)
3

]
= 0. (2.39)

We add the equation for the evolution of magnetic energy density

∂

∂t

(
1
2
B2

)
+ ∇ ·

[
B23 − B (3 · B)] = 0. (2.40)

which is obtained by combining Faraday’s law

∇ × E +
1
c
∂B

∂t
= 0 (2.41)

and ideal Ohm’s law

E +
1
c
(3 × B) = 0. (2.42)
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The energy conservation equation is then given by

∂ε

∂t
+ ∇ · [(ε + P) 3 − B (3 · B)] = 0. (2.43)

where ε = εth + ρ3
2/2 + B2 is the total energy density and P = Pth + B2/2 is the total

pressure. The equation for the evolution of the magnetic field can be obtained from
Faraday’s and ideal Ohm’s law and is called induction equation

∂B

∂t
= ∇ ·

(
B3T − 3BT

)
. (2.44)

Finally, the equations (2.33), (2.36), (2.43), and (2.44) can be combined to the elegant
form as hyperbolic conservation law

∂U

∂t
+ ∇ · F(U) = S (2.45)

where U , F(U), and S denote the state vector of conserved quantities, the flux vector, and
the source vector, respectively. In ideal MHD, these vectors are given by

U =
©«

ρ
ρ3
ε
B

ª®®®¬
, F(U) =

©«

ρ3
ρ33T + P1 − BBT

(ε + P)3 − B(3 · B)
B3T − 3BT

ª®®®¬
, S =

©«

0
0
0
0

ª®®®¬
. (2.46)

In addition, the source vector S that accounts for additional heating and cooling terms for
the energy equation can be added to the right-hand side of Equation (2.45). If the magnetic
field is zero and viscosity with the viscous stress tensor Π is included into the momentum
and energy equations, the Navier-Stokes equations are obtained.

2.2.2 MHD with Cosmic Rays
In contrast to PIC simulations, MHD simulations treat CRs as a relativistic gas with
adiabatic index γcr = 4/3 that interacts with the thermal gas via momentum and energy
exchange. This treatment assumes that CRs are spatially confined to the magnetic field
which is flux frozen into the plasma due to its high electrical conductivity. It is valid as
long as the gyro radius is smaller than the coherence scale of the magnetic field which is
a few parsecs in the ISM up to few kiloparsecs in the Milky Way (Beck and Wielebinski,
2013). The bulk of CR energy is carried by CR protons with energies of around the proton
rest mass (Enßlin et al., 2007) which corresponds to gyroradii

rg =
Ep

eB
≈ 10−6 pc

(
Ep

1 GeV

) (
B

1 µG

)−1
(2.47)
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where Ep is the kinetic energy of an individual proton. Hence, it is a valid assumption to
treat CR as relativistic gas within MHD simulations which only breaks down for ultra high
energetic CRs. The equations of idealMHD (2.45) and (2.46) are extended by a CR energy
component and a source vector that accounts for energy exchange between thermal and CR
fluid via CR pressure (for a treatment without CR streaming see, e.g. Hanasz and Lesch,
2003). In addition, loss (cooling) termsΛ and gain (heating) terms Γ are included for both
fluids. The CR energy component is obtained by integrating the transport equation (2.4)
according to the kinetic energy moment integral in Equation (2.7). The conservation law
of ideal MHD including CRs is given by

∂U

∂t
+ ∇ · F(U) = S. (2.48)

The state vector U , flux vector F(U), and source vector S are given by (Pfrommer et al.,
2017a)

U =

©«

ρ
ρ3
ε
εcr
B

ª®®®®®¬
, F(U) =

©«

ρ3
ρ33T + P1 − BBT

(ε + P)3 − B(3 · B)
εcr3 + (εcr + Pcr)3st − κεb(b · ∇εcr)

B3T − 3BT

ª®®®®®¬
,

S =

©«

0
0

Pcr∇ · 3 − 3st · ∇Pcr + Λth + Γth
−Pcr∇ · 3 + 3st · ∇Pcr + Λcr + Γcr

0

ª®®®®®¬
(2.49)

where εcr, Pcr, 3st, and κε are energy density, pressure, streaming velocity, and kinetic
energy weighted spatial diffusion coefficient of the CRs, respectively, and b = B/|B| is
the magnetic field unit vector. The total pressure is given by

P = Pth + Pcr +
B2

2
(2.50)

where Pcr is the CR pressure. The total energy density excluding CRs is

ε = εth +
ρ32

2
+
B2

2
(2.51)

with the thermal energy density εth. The system of equations in (2.49) is closed by relating
energy density and pressure

Pth = (γth − 1)εth, (2.52)
Pcr = (γcr − 1)εcr (2.53)
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2.2. MAGNETOHYDRODYNAMICAL SIMULATIONS

with adiabatic index γth = 5/3 and γcr = 4/3 for thermal gas and relativistic cosmic rays,
respectively. The streaming velocity of CRs given by

3cr = −3A sgn(B · ∇Pcr) (2.54)

which implies that CRs stream along the magnetic fields in direction of their negative
pressure gradient. Although individual CR particles travel with approximately the speed
of light, the bulkmotion is limited to theAlfvén velocity due to theCR streaming instability
(Kulsrud and Pearce, 1969; Wiener et al., 2013). The streaming of CRs excites Alfvén
waves in the magnetic field, that scatter and nearly isotropize the CR distribution in the
wave frame. This limits the bulk streaming motion to approximately the Alfvén velocity.

In summary, MHD simulations capture all import transport processes of CRs that are
advection with the gas, streaming along magnetic field lines down the CR pressure gradi-
ent, spatial diffusion, and cooling. It is important to note that the equations above neglect
the momentum spectrum of CRs and use a one-moment formulation of CR transport,
i.e. only the CR energy density is evolved. A treatment of spectrally resolved CR hydro-
dynamics is presented in Girichidis et al. (2020) which enables to correctly connect to
CR proton observables that are chemical changes by interaction of low-energy CRs, γ-ray
emission and production of secondary electrons by hadronic interactions of high-energy
CRs. In order to account for self-regulated CR transport with streaming and diffusion, the
formalism needs to be extended to a two-moment formulation of CRs, i.e. the evolution of
CR energy density and momentum density, including the energy density of Alfvén waves
(Thomas and Pfrommer, 2019). In order to understand the details of microscopic particle
acceleration at the shock front, higher-order moments of the transport equation need to be
taken into account (e.g. Reville and Bell, 2013).

2.2.3 Shocks
Shocks appear in many astrophysical environments and are an important source of CR
acceleration. A shock happens if a gas reaches velocities that are larger than the sound
speed cs of the medium or than the fast magnetosonic waves in high βpl environments and
is characterized by a discontinuous change of fluid properties and an increase of entropy.
For simplicity, we ignore magnetic fields and cosmic rays in this discussion and refer for
detailed treatment of shocks involving CRs to Pfrommer et al. (2017a). It is useful to
discuss the shock properties in the shock rest frame. We denote upstream and downstream
quantities with indices 1 and 2, respectively. The conservation laws for mass, momentum,
and energy lead to the Rankine-Hugoniot jump conditions

ρ131 = ρ232, (2.55)
P1 + ρ13

2
1 = P2 + ρ23

2
2, (2.56)

ε1 + P1
ρ1

+
v2

1
2
=
ε2 + P2
ρ2

+
v2

2
2
. (2.57)
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Figure 2.1: Shock tube test for a strong shock with M = 10. Initial states of density
(orange) and pressure (blue) are shown by the dotted lines and states at time
t = 35 by solid lines. Dashed lines separate undisturbed left state (5), rarefac-
tion wave (4), decompressed left fluid (3), shock-compressed right fluid (2),
and undisturbed right state (1).

It is important to note that Equation (2.55) allows for two solutions 31 = 32 = 0 and
31, 32 , 0. The former is called a tangential discontinuity where no mass is flowing
through the interface and the latter is a shock. For a polytropic gas, the jump conditions
can be expressed by the shock upstream Mach number

M = 31/cs =

√
m32

1
γkT1

(2.58)

that is the ratio of the shock speed to the upstream sound speed. Hence, the jump conditions
can be expressed as functions of the Mach number

ρ2
ρ1
=
31
32
=

γ + 1
γ − 1 + 2/M2 , (2.59)

P2
P1
=

2γM2 − (γ − 1)
γ + 1

, (2.60)

T2
T1
=

[(γ − 1)M2] [
2γM2 − (γ − 1)]

(γ + 1)2M2
, (2.61)

where the latter is a combination of the former two relations. These relations show the
discontinuous change of density, pressure, and temperature across the shock. The shock
dissipates kinetic energy into heat thereby increasing the specific entropy of the gas by

∆s = cV

[
ln

(
P2
ρ2

)
− ln

(
P1
ρ1

)]
. (2.62)
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Figure 2.1 shows an example of a shock tube test problem for a strong shock withM = 10.
The dotted lines represent the initial densities ρ5 = 1 and ρ1 = 0.125 and initial pressures
P5 = 63.5 and P1 = 0.1. The velocities are initially zero. Due to the high pressure
on the left-hand side a shock wave propagates into the medium on the right-hand side.
The medium has five characteristic regions that are the undisturbed left state (5), the
rarefaction wave (4), the expanded left fluid (3), the shock-compressed right fluid / shock
piston (2), and the undisturbed right state (1). The shock front is between regions (1) and
(2) and is characterized by density and pressure jumps according to Equations (2.59) and
(2.60). Regions (2) and (3) are separated by a contact discontinuity which has a jump in
density but not in pressure. In a medium additionally containing a relativistic CR fluid,
the same description holds for the the total pressure. However, thermal and CR pressure
behave differently due to different adiabatic indices and additional CR pressure due to CR
injection at the shock has to be taken into account (Pfrommer et al., 2017a).

2.3 Supernova Remnants
The stellar evolution of white dwarfs which are pushed above the Chandrasekhar mass
limit and of massive stars with M∗ & 8M� is terminated by a supernova (SN) which is a
luminous and powerful explosion (e.g. Alsabti and Murdin, 2017). The name supernova
refers to very luminous new star that is only temporally visible. Approximately 1051 erg
is converted into kinetic energy by release of gravitational binding energy. The explosion
drives an expanding shock wave into the ambient medium, thereby heating the gas and
accelerating CRs. The expanding shell of the SN is visible via thermal X-rays and non-
thermal radio, X-ray, and γ-ray emission. The remnants can be visible from hundreds to
a few thousand years. SNe are able to produces isotopes with atomic number Z > 28 by
rapid neutron capture during the r-process and can be also detected via neutrino emission
(e.g. Hirata et al., 1987).

2.3.1 Classification
The classification of SNe is based on spectroscopic properties rather than the physical
mechanism leading to the explosion. If a SN shows no hydrogen lines it is referred to as
type I and if hydrogen lines are visible then it is of type II.

Type Ia SNe are driven by thermonuclear explosion and show silicon absorption lines
but no hydrogen lines. There are two mechanisms that lead to a type Ia SN. In the single
degenerate scenario (Nomoto, 1982), a white dwarf accretes mass from a companion star
via stellar wind or through Roche-lobe overflow through the inner Lagrangian point of the
binary system. The explosion is triggered when the carbon-oxygen white dwarf reaches
the Chandrasehkar mass of Mch = 1.4M�. However, this model requires a fine-tuned
mass flow such that accretion is possible in a stable configuration (Maguire, 2017). In
the double degenerate scenario (Iben and Tutukov, 1984), the binary system is composed
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of two white dwarfs which merge and explode. The fraction of single versus double
degenerate scenarios is a matter of active debate. The current paradigm suggests that
double degenerate scenarios are more likely (see Pakmor et al., 2010, for an example of
violent mergers).

Type Ib/c and II SNe mark the end of massive stars which undergo a core collapse when
the gravity of outer layers exceed the thermal pressure in the nuclear-burning core. The
explosion is preceded by stellar winds and significant mass ejection into the surrounding
medium.

2.3.2 Evolution of Supernova Remnants
The expansion of the supernova remnant (SNR) into the surrounding circum stellarmedium
(CSM) or ISM has three characteristic stages (e.g. Gaisser et al., 2016; Alsabti andMurdin,
2017; Reynolds, 2017). The explosion energy and the density profiles of the CSM and of
the ejected mass determine the duration of these evolutionary stages.

Free Expansion Phase

The majority of the explosion energy is converted into the kinetic energy Eej of the ejected
material which expands into the surrounding medium. The expansion is dominated by the
ejecta with mass Mej which expands with typical velocities of

3s =

√
2Eej

Mej
≈ 104 km s−1

(
Eej

1051 erg

)1/2 (
Mej

M�

)−1/2
(2.63)

that are much larger than the typical speed of sound in the ISM. Hence, the ejecta drive
a shock wave with constant velocity as long as the swept up mass is much smaller than
the ejected mass. The radius of the shell increases linearly in time. However, the star
which ends as a SN can drive stellar winds that change the density profile of the CSM to
ρCSM ∝ r−s and the ejected mass can have a density profile of ρej ∝ r−n with r being the
radius from the star. The shocked ejecta and the shocked swept up medium are separated
by a contact discontinuity which can be described by a self-similar solution (Chevalier,
1982). The radial evolution in time t of the contact discontinuity is given by

rcd ∝ t(n−3)/(n−s). (2.64)

For type Ia SNe, the white dwarf barely changes the surrounding medium. Valid assump-
tions for the density profiles are s = 0 and n = 7, such that rcd ∝ t4/7. In the case of core
collapse SNe, the density profiles typically have the parameters s = 2 due to stellar winds
which represents the steady state of a wind moving with constant velocity into a sphere
and n = 9-12 which gives rcd ∝ t6/7...9/10 (Reynolds, 2008).

As soon as the swept up mass becomes comparable to the ejected mass the expanding
shell is slowed down andmoves to the Sedov–Taylor phase. In themodel of a homogeneous
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surrounding medium and linearly growing radius, the characteristic transition time from
free expansion to the Sedov–Taylor phase is

tst =
©«

3M5/2
ej

4πµmpn(2E)3/2
ª®¬

1/3

≈ 210 yr
(

Mej

M�

)5/6 (
Eej

1051 erg

)−1/2 (
µn

1 cm−3

)−1
. (2.65)

Sedov–Taylor Phase

The Sedov–Taylor phase (Sedov, 1959; Taylor, 1950) is characterized by an energy-driven
shock wave with

rst(t) = α
(

Et2

ρ

)1/5
, (2.66)

3st(t) = 2α
5

(
E
ρt3

)1/5
, (2.67)

where E is the total energy of the explosion and α is dimensionless factor of order unity.
The scaling relation in Equation (2.66) can be easily obtained by dimensional analysis and
the factor α can be derived form the Euler equations while exploiting the self-similarity
of the solution. The blast wave is slowed down due to the pressure of the ambient medium
which leads to a reverse shock. While the forward shock continues expanding with
rst(t) ∝ t2/5, the reverse shock will eventually slow down and move backwards towards the
center.

Radiative Phase

When the temperature of the shocked gas cools down due to the adiabatic expansion
in the Sedov–Taylor phase, cooling of the gas via radiation becomes important after
approximately 3 × 104 yr (Blondin et al., 1998; Reynolds, 2008). The ionized gas starts to
recombine and the energy is radiated away via line emission. The remnant consists now
of a hot, low density interior surrounded by a thin dense shell. The shell which contains
most of the mass moves pressure-driven like a snowplow into the ambient medium with
rpd ∝ t2/7. As soon as the pressure becomes negligible for the dynamics, the shell moves
as a momentum-conserving snowplow with rmc ∝ t1/4. The velocity of the shell decreases
further until it becomes slower than the sound speed of the ambient medium and the shock
transforms to a normal wave. This marks the end of the remnant.
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3 The CREST Code

Many MHD codes which include CR protons and ions, e.g. ramses (Booth et al., 2013),
piernik (Hanasz et al., 2010, 2013) arepo (Pakmor et al., 2016a; Pfrommer et al., 2017a),
flash (Girichidis et al., 2016, 2018), treat CR protons as relativistic fluid and thereby
evolve only their energy density. A notable exception is the spectrally resolved cosmic ray
hydrodynamics in Girichidis et al. (2020). In order to calculate hadronic γ-ray emission,
the CR proton spectrum can be calculated with a steady state assumption. The CR proton
spectral index depends only on the acceleration as hadronic losses leave it unchanged.

In contrast to CR protons, CR electrons suffer fast cooling losses which change the
slope of their spectrum at small and large momenta (e.g. Sarazin, 1999; Winner et al.,
2019) and limit themaximum accelerationmomentum for shock acceleration (Zirakashvili
and Aharonian, 2007). Adiabatic changes further influence the spectrum by shifting the
spectrum in momentum space and thereby moving characteristic spectral features of non-
adiabatic cooling to different momenta, which limits the applicability of a steady state
assumption. As the spectral shape of CR electrons is imprinted into the synchrotron and
inverse-Compton spectrum, the evolution of the CR electron spectrum rather than only
their energy density has to be followed. Hence, a different simulation approach is required
for CR electrons which is obtained with the crest code. This chapter presents crest
which is a code for Cosmic Ray Electron Spectra evolved in Time.

3.1 Implementation Strategy
There are several possibilities to calculate the evolution of the CR electron spectrum along
MHD simulations. We discuss these possibilities and present the strategy that is followed
by crest.
First, the spectrum can be calculated on the fly within the MHD simulation or in post-

processing due to the fact that the back reaction of CR electrons on the gas is negligible
due to their low energy content in comparison to CR protons (e.g. Zweibel, 2013). While
the on-the-fly calculation is more efficient in terms of disk usage, post-processing is more
flexible and computation-time efficient for model and parameter testing at the cost of disk
usage because all necessary information to calculate the spectral evolution has to be stored
on disk. The post-processing approach allows to extensively test models of CR electrons
without running the same MHD simulation multiple times. We highlight that this is
only possible for CR electrons because they do not influence the dynamics of the MHD
system. We exploit this possibility in order to test different models of CR electron shock
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acceleration, magnetic field amplification, radiation fields, and turbulent reacceleration.
Secondly, the spectrum can be spatially sampled on cells of the MHD simulation

or on Lagrangian tracer particles. The first approach avoids spatial coarse graining and
guarantees that the spatial sampling of CR electronsmatches that of the gas. However, CRs
are advected with the gas which flows across the cells such that the spectral information has
to be communicated from cells to their neighbours in every MHD time step. Because the
spectrum is sampled with many bins, the cell-based spatial sampling requires a high load
of additional communication between the cells and eventually across computing threads.
The cell-based sampling is not flexible to allow for coarser sampling of CR electrons in
less important regions of a simulation, e.g. high density regions with very short electron
cooling time scales such that GeV γ-ray emission is mostly due to hadronic interactions
of CR protons. An example would be a galaxy simulation with outflows similar to Fermi
bubbles in the Milky Way. The GeV γ-ray emission from the disc of the Milky Way can
be accounted for hadronic γ-rays and the low density outflow regions are important for
leptonic γ-ray emission (Selig et al., 2015). These problems can be overcome with tracer
particles that passively follow the gas flow. If the spectrum is evolved on tracer particles,
the Fokker–Planck equation can be solved in a Lagrangian frame where no information has
to be exchanged among tracer particles if spatial diffusion and streaming can be neglected.
They also allow for coarser/finer sampling in certain areas of interest. One disadvantage
of tracer particles is that they tend to concentrate more closely than the gas in converging
flows as there are no repulsive forces between them (Genel et al., 2013). This issue could
be solved by resampling the tracer particles on larger time intervals.

Thirdly, a discretization of the spectrum in momentum has to be chosen. The spectrum
can be sampled on piecewise constant bins or with higher order functions such as piecewise
power laws (Jun and Jones, 1999; Miniati, 2001; Girichidis et al., 2020). A sampling with
piecewise power laws is useful as the CR spectrum has a (piecewise) power-law shape
(see Equation 2.15) and allows to calculate the spectral evolution with fewer bins than
a sampling with piecewise constant bins would require. However, the reduced number
of bins comes at cost of storing two variables per bin which are amplitude and spectral
slope. Further, the piecewise power-law approach requires to calculatemoments of number
and energy density (see Equations 2.6 and 2.7) in every time step in order to calculate
shifts across bin boundaries due to cooling and adiabatic changes (see derivations in
Miniati, 2001; Girichidis et al., 2020). A sampling of the spectrum with piecewise
constant bins allows a straightforward implementation using standard numerical recipes
of hydrodynamics such as slope limiters. It is useful to solve the Fokker–Planck equation
in 1Dmomentum space with f 1D = 4πp2 f 3D in order to reduce the ratio of the spectrum in
each bin, e.g. the accelerated spectrum at strong shocks with a compression ratio of r = 4
follows f 1D ∝ p−2 in 1Dmomentum space contrary to f 3D ∝ p−4 in 3Dmomentum space.
In principle, any scaling pβ f (p) can be chosen but the complexity of the transport equation
is retained. The piecewise constant approach requires a larger number of bins which is
on the one hand more computationally expensive but on the other hand more robust to
numerical instabilities and enables to track small scale spectral features accurately.
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Table 3.1: Example of the header file of a tracer particle output. Ntp is the number of
tracer particles. Data is stored in code units.

data type amount comment
int32 1 the size of the header block in bytes (without leading/trailing

integer)
int32 1 version number of output format
float64 1 the code unit length in cm
float64 1 the code unit mass in g
float64 1 the code unit velocity in cm/s
int32 1 number of tracer particles Ntp
int32 1 flag for cosmic ray shock acceleration and 3D magnetic field
int32 1 flag for magnetic obliquity
int32 1 flag for cosmic ray injection
uint32 Ntp IDs of the tracer particle
float32 Ntp associated masses of the tracer particles
int32 1 size in bytes of one output time step for tracer particles
int32 1 the size of the header block in bytes (without leading/trailing

integer)

crest is designed to work as a post-processing code on Lagrangian tracer particle data
from the MHD code arepo. Another advantage of this implementation is that it can work
with any MHD code that provides Lagrangian tracer particles. The calculation of the
spectrum is done in 1D momentum space and with piecewise constant bins.

3.2 MHD Simulations with CR Electrons
We use the massively parallel code arepo (Springel, 2010) which evolves the equations of
ideal MHD (Pakmor and Springel, 2013) on a moving Voronoi mesh with a second-order
accurate hydrodynamic scheme (Pakmor et al., 2016c). Shocks are localized on cell-
based criteria (Schaal and Springel, 2015) and CR protons are included as an additional
relativistic fluid (Pfrommer et al., 2017a). We use the velocity tracer particles which are
massless particles and move passively with the gas without affecting its dynamics (Genel
et al., 2013). Tracer particles have their own coordinates and velocities which enable them
to move independently of the cells.

Although the tracer particles are massless, they represent a finite volume Vtp of the gas
with mass density ρgas. Hence a mass mtp can be assigned to the tracer particles such that
they represent a volume

Vtp =
mtp

ρgas
. (3.1)
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Table 3.2: Example of a data block in a tracer particle data file. This block is written to a
data file for every tracer particle (output) time step. Ntp is the number of tracer
particles and data is stored in code units.

data type amount comment
int32 1 size of the data block in bytes (without leading/trailing integer)
float64 1 current time of the output time step
float32 Ntp x positions
float32 Ntp y positions
float32 Ntp z positions
float32 Ntp mass densities of parent cells ρ
float32 Ntp internal energies of parent cells uth
float32 Ntp energy densities of photon fields εph
float32 Ntp |B | or Bx with or without CR shock acceleration, respectively

subblock for CR shock acceleration
float32 Ntp By

float32 Ntp Bz
int32 Ntp shock flags (0 no shock, 1 shock-zone, 2 shock-surface, 3 post-

shock)
float32 Ntp shock dissipated thermal energy densities εdiss
float32 Ntp pre-shock gas densities ρpre
float32 Ntp post-shock gas densities ρpost
float32 Ntp shock velocities 3shock
float32 Ntp shock surface cell crossing times tsc
float32 Ntp x-components of shock normal ns
float32 Ntp y-components of shock normal ns
float32 Ntp z-components of shock normal ns

subblock for magnetic obliquity at CR shock acceleration
float32 Ntp magnetic obliquity angles θ

subblock for injection at SNR (subresolution treatment)
float32 Ntp energy densities of injected CR protons at SNRs
int32 1 size of the data block in bytes (without leading/trailing integer)
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The velocity of a tracer particle is obtained from the velocity of its parent cell and the
linearly interpolated velocity field gradient at its position. Tracer particles are drifted with
their velocities on their individual time steps when they are marked as active, i.e. if their
parent cells are tagged as active (see Section 7.2 in Springel, 2010).

In order to calculate the evolution of the CR electron spectrum, additional information
is required, e.g. the gas density and magnetic field. These quantities are inherited from the
parent cells of the tracer particles. The parent cell is obtained by exploiting the convexity
of Voronoi cells. It is the cell whose mesh-generating point is closest to the position of
the tracer particle. The data of all tracer particles are stored to disk on desired output
intervals which are the tracer particle (output) time steps. We note that the most accurate
treatment is storing information in each MHD time step as electrons cool quickly and
the temporal history of CR electron acceleration and injection is important. However,
tracer particle data output is possible on larger time intervals with smaller disk usage at
the cost of coarse graining in time. The acceleration of CR electrons at shocks or the
injection at SNRs in a subresolution treatment depends on the modeling of CR proton
physics in the MHD simulation. This information is either inherited directly from the
parent cells or accumulated and stored in separate variables if the tracer particle output
takes place on larger time intervals than the MHD time step. The MHD simulation tracks
and accumulates the total energy ECR,tp which is deposited into the associated volume Vtp
of the tracer particle

ECR,tp = ECR,cell
Vtp

Vcell
(3.2)

where ECR,cell is the energy of accelerated CR protons or injected CR energy at SNRs
in a cell and Vcell is the cell volume at the current MHD time step. For each tracer
particle output, we chose to write the density of deposited CR energy εCR,tp = ECR,tp/Vtp
with the current associated tracer particle volume Vtp to disk instead of the conserved
quantity ECR,tp because εCR,tp is independent of spatial sampling of the tracer particles.
Furthermore, we model the injection and acceleration of CR electrons via the source
function Q(p) in Equation (2.5) which is given in units of inverse volume. After writing
tracer particle data to disk, the accumulated energy ECR,tp is internally reset. We note
that if CR energy deposition happens only in a few spatially confined cells, it is necessary
to have a sufficient number of tracer particles in those regions, i.e. at least one tracer
particle per cell, in order to account for correct energy deposition into CR electrons. In
principle, this spatial sampling problem due to low number of tracer particles could be
overcome by finding a cloud of neighbouring tracer particles for every cell where CR
energy deposition takes place. However, the large shock fronts in our simulations allow
for sufficient sampling with our parent-cell approach.

The tracer particle output is stored to disk in a header file with basic information about
the simulation and in data files containing a number of tracer particle time steps. An
example of the layout of the header file is given in Table 3.1 and an example of the data
block for one output step of tracer particle data is given in Table 3.2.

27



CHAPTER 3. THE CREST CODE

start

read parameter file

read tracer particle
header file

setup arrays
& MPI environment

loop over tracer
particle data files

write spectrum 
output if necessary

end

read and distribute
data from file

 
loop over tracer

particle time steps

write spectrum
output if necessary

loop over
tracer particles

define ranges for
numerical/analytical

solutions

calculate
source terms

calculate number
of time steps

loop over 
spectrum time steps

half time step
diffusion solver

full time step
advection solver

half time step
diffusion solver

Figure 3.1: CREST flowchart. Coloured boxes represent loops. Tracer particle time steps
are defined by the output from the MHD simulation and spectrum time steps
are calculated for the numerical solvers. The loop over tracer particles (blue
box) is parallelized with MPI.

3.3 CREST - Cosmic Ray Electron Spectra Evolution in
Time

The crest code evolves the CR electron spectrum in post-processing based on stored
tracer particle data from the MHD simulation. We first present the general structure of the
code and continue with the presentation of the numerical implementation of the solvers
which are the core of the code.

3.3.1 Structure of the Code

The crest code can be executed after theMHD simulation has finished and produced tracer
particle header and data files. It can be run in parallel with the message passing interface
(MPI). Alternatively, a parallelizationwith theOpenMP (OpenMulti-Processing) standard
can be used1.

The tracer particle files contain all relevant information at time steps that correspond to
the MHD time steps or to steps of the desired output time intervals. We refer to these time
steps as tracer particle time steps. The data in the tracer particle files is stored in code
units of the MHD simulation and is converted to Gaussian-cgs units in the crest code.

During code execution, outputs of the CR electron spectrum together with additional
quantities are written to the disk on intervals which are defined in the parameter file. An
example of the structure of these files is given in Table 3.3.

The flowchart of crest is present in Figure 3.1. At the beginning, the code reads basic
information from parameter file and tracer header file and sets up internal data arrays and
1The OpenMP parallelization is useful for debugging purposes with one or a few tracer particles.
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Table 3.3: An example of the crest spectrum output. Data is stored in Gaussian-cgs units.
data type amount value & comment
uint32 1 the size of the header block in bytes (without leading/trailing

integer)
int32 1 version number of output format
float64 1 time of the current snapshot
int32 1 number of tracer particles Ntp
int32 1 number of momentum bins Nbin
int32 1 flag for CR shock acceleration ( and 3D B-field)
uint32 1 the size of the header block(without leading/trailing integer)
int32 1 the size of momentum block in bytes (without leading/trailing

integer)
float32 Nbin momentum bin centre (normalized momentum)
int32 1 the size of momentum block in bytes (without leading/trailing

integer)
uint32 1 the size of data block in bytes (without leading/trailing integer)
uint32 Ntp IDs of tracer particles in crest
float32 Ntp associated masses of tracer particles
float64 Ntp mass density of parent cell
float64 Ntp internal energy of parent cell
float64 Ntp energy density of photon field
float64 Ntp absolute magnetic field |B | or Bx

subblock for 3D magnetic fields (only if CR shock acceleration
is active)

float32 Ntp By

float32 Ntp Bz
float64 Ntp x position of tracer particle
float64 Ntp y position of tracer particle
float64 Ntp z position of tracer particle
float64 Ntp × Nbin Spectra for Ntp particles with Nbin bins each
uint32 1 the size of the data block in bytes (without leading/trailing

integer)
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the environment of the message passing interface (MPI). The first loop over the tracer
particle data files (orange box) is executed which contains reading of the data2, data
distribution routines and another loop. The second loop iterates over the tracer particle
time steps of the tracer particle files (red box). It calls the routines to write the electron
spectra to files and starts a loop over the tracer particles.

The third loop over tracer particles (blue box) is parallelized with MPI, i.e. each com-
puting thread only calculates the spectra of the tracer particles which it got assigned to
at code startup. Within the tracer particle loop, all necessary information to calculate the
spectrum is preprocessed. The first routine calculates the ranges where numerical and
analytical solutions of the spectrum can be applied based on the current cooling time scales
(see Section 4.2.3 for details). After the source terms have been calculated, the number
of spectrum time steps are calculated to evolve the spectrum by one tracer particle time
step, i.e. within one step in the second loop (red box). The spectrum time steps depend on
the time scales of cooling and Fermi-II reacceleration, the speed of adiabatic changes, and
the discretization of the momentum space. Finally, a loop over the time steps is executed.
The fourth loop (green box) contains the call of the numerical solvers for the diffusion and
advection which are parallelized with OpenMP.

3.3.2 Numerical Solution to the Fokker–Planck Equation

Here, we present details of our numerical discretisation and how numerical solutions to
the Fokker–Planck equation for the evolution of the CR electron spectrum are obtained.
The Fokker–Planck equation (2.4) is converted to 1D momentum space via the relation
f 1D = 4πp2 f 3D such that spectrum evolves without streaming according to

d f (p, t)
dt

=
∂

∂p

[
f (p, t)p

3
(∇ · 3)

]
− (∇ · 3) f (p, t)

− ∂

∂p
[ f (p, t) Ûp(p, t)] +Q(p, t)

− ∂

∂p

[
f (p, t)

p2
∂

∂p

(
p2Dpp

)]
+

∂2

∂p2

[
Dpp f (p, t)]

+ ∇ · [K · ∇ f (p, t)] ,

(3.3)

where d f /dt = ∂ f /∂t + 3 · ∇ f is the Lagrangian time derivative. The last term on the
right-hand side represents spatial diffusion which is responsible for Fermi-I acceleration
on microscopic scales (see Section 2.1.2) and the Galactic transport of CR electrons. It
appears indirectly in our treatment of Fermi-I acceleration via the 1D source term3 Q as
we focus on macroscopic scales and neglect spatial diffusion.

2File reading can be splitted into multiple reading routines in order to limit the number of tracer time steps
that are stored at once in memory.

3The 1D source term is related to the 3D source term in Equation (2.5) via Q1D = 4πp2Q3D .
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Figure 3.2: Advection test for adiabatic expansion of the density. The left-hand panel
shows an initial power-law spectrum (black dashed)with spectral indexα = 2.5
that cools due to adiabatic expansion (black dotted). Coloured lines show the
solution that is obtained with different numerical advection methods for 20
bins per momentum decade. The right-hand panel shows the energy-weighted
L1 error in different momentum ranges for the same methods as shown in the
left-hand panel.

We use an operator split approach in order to evolve the CR electron spectrum numeri-
cally because the Fokker–Planck Equation (3.3) can be written as an advection-diffusion
equation in momentum space. The diffusive (parabolic) part of the transport equation is
solved with a finite-difference Crank–Nicolson method (Crank and Nicolson, 1947). The
advective (hyperbolic) part of the transport equation is solved with a MUSCL scheme
(Monotonic Upstream-centered Scheme for Conservation Laws by van Leer, 1979) to-
gether with a van Leer flux limiter (van Leer, 1977) in order prevent oscillations at cutoffs
or induced by fast cooling. It is a second-order, finite-volume scheme that uses a piecewise
linear reconstruction of the spectrum in each bin. The spectrum is evolved in time from t
to t + ∆t according to

f (p, t + ∆t) = Adiff

(
∆t
2

)
Aadv (∆t) Adiff

(
∆t
2

)
f (p, t). (3.4)

The numerical implementation of the advection operatorAadv and diffusion operatorAdiff
is discussed below. We note that the we closely follow our presentation of those operators
in Winner et al. (2019), see also Chapter .

Comparison of Advective Methods

Figure 3.2 shows results and errors for an advection test for three different numerical advec-
tion methods that are the first-order finite-volume donor-cell method, the finite-difference
Lax-Wendroffmethod (Lax andWendroff, 1960), and a second-order finite-volumemethod
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with the van Leer slope limiter. The left-hand panel shows the theoretical and numerical
solutions obtained with the three methods. Initially, the CR electron spectrum in 1D mo-
mentum space has the form f (p) = Cp−αΘ(p − pcut) with normalization C = 1, spectral
index α = 2.5, and low momentum cutoff pcut = 1. Due to adiabatic expansion of the
gas density from an initial density n0 to a final density of n = 10−2n0, the spectrum cools
adiabatically. The final spectrum has the form f (p) = Cx(α+2)/3p−αΘ(p − x1/3q) with
the density ratio x = n/n0 which can be interpreted as a shift in momentum space and
rescaling of the spectrum. The donor-cell method (blue line) is a flux-conserving scheme
that is stable but fails to reproduce the analytical solution accurately due to piecewise con-
stant reconstruction of the spectrum within each bin. The Lax-Wendroff method (orange
line) is a second-order finite difference method that follows the evolution of the spectrum
accurately in absence of sharp features such as cutoffs. However, it produces spurious
oscillations at the low momentum cutoff that propagate into the remaining spectrum. Sim-
ilar problems arise when this method is applied to calculation of the non-thermal cooling
of the CR electron spectrum. The piecewise-linear scheme with a non-linear van Leer
slope limiter (green line) combines advantages of the two other methods. It uses a piece-
wise linear reconstruction of the spectrum within each bin and is second-order accurate.
In regions close to the cutoff, it falls back to the first-order donor-cell method thereby
preventing spurious oscillations. The right-hand panel shows the scaling of the kinetic
energy weighted L1 error for all three methods

δL1 =

∫
| fsim − fana | T(p)dp∫
| fana | T(p)dp

(3.5)

where fsim is the simulated spectrum, fana is the analytical solution, and T(p) is the kinetic
particle energywithT(p) = (

√
1 + p2−1)mec2. It shows that the van Leermethod produces

the smallest errors in this test.
Tests on a freely cooling spectrum or combination of non-thermal cooling and contin-

uous injection lead to similar results. The Lax-Wendroff method introduces very strong
oscillations due to fast cooling rates at low and high electronmomenta, such that it becomes
inappropriate to track the evolution of the CR electron spectrum.

Advection Operator

Our advection operator accounts for cooling (i.e. Coulomb, bremsstrahlung, inverse Comp-
ton, and synchrotron cooling), adiabatic changes, and particle acceleration. In our code,
we treat Fermi-I acceleration and reacceleration as continuous injection via the termQ(p, t)
in the Fokker–Planck equation as long as the tracer particle resides in shock surface and
post-shock cells, i.e. we treat CR electron acceleration identically to the model for CR
proton acceleration described by Pfrommer et al. (2017a). The generalized advection
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problem obeys the reduced equation

d f (p, t)
dt

����
adv
− ∂

∂p

{
f (p, t)

[ p
3
(∇ · 3) − Ûp(p, t)

]}
= − (∇ · 3) f (p, t) +Q(p, t). (3.6)

We discretise this equation with a flux-conserving finite volume scheme using a second-
order piecewise linear reconstruction of the spectrum (LeVeque et al., 1998). In addition,
we use the non-linear van Leer flux limiter (van Leer, 1977) and treat the terms on the
right-hand side as an inhomogeneity.

All following equations have in principle to be carried out for all N momentum bins,
i.e. i ∈ [0, N−1]. However, the spectrum significantly decreases due to rapid cooling
at low and high momenta. We thus cut the spectrum at fcut below which we treat
numerical values of the spectrum as zero. Hence, the spectrum has to be evolved only
on bins between the associated indices ilcut and ihcut indicating the lower and higher cut,
respectively. The number of bins on which the spectrum has to be evaluated numerically
can be further reduced by using analytic solutions in the low and high momentum regime.
The corresponding indices are ilow and ihigh for the numerical/analytical transition at low
and high momentum momenta, respectively. Details are presented below in chapter 4. We
define two limiting indices of the advection operator

iladv = max(ilcut, ilow) and (3.7)
ihadv = min

(
ihcut, ihigh

)
(3.8)

for which 0 ≤ iladv and ihadv ≤ N hold. In the case of a fully numerical simulation, the
limiting indices of the advection operator are iladv = ilcut and ihadv = ihcut.
Because the total cooling time-scale [ Ûp(p)/p]−1 is a convex function of momentum,

the shortest cooling time-scale is determined by the smallest or largest momentum of
the momentum range which is treated by the advection operator. The advection operator
works on a time step

∆tadv = CCFL

[
max

( | Ûp(p)|
∆p

)
+
|∆n/∆t |

n

]−1
(3.9)

where CCFL is the Courant–Friedrichs–Lewy number and the maximum function over the
cooling rates is evaluated on the outermost bin edges

max
( | Ûp(p)|
∆p

)
= max

( Ûp(
piladv+3/2

)
piladv+2 − piladv+1

,
Ûp(

pihadv−5/2
)

pihadv−1 − pihadv−2

)
(3.10)

as the numerical scheme calculates fluxes between bins on bin edges.
The advection operator has a symmetric stencil of five bins which needs in total four

ghost bins, with indices iladv, iladv+1, ihadv−2, and ihadv−1, necessary. The function values
in these bins are determined by power-law extrapolation.
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The advection operator works as follows. First, we explicitly evolve the spectrum under
the influence of (re)acceleration and injection by a half time step

f n+1/2
i = f n

i +
∆t
2

Qn
i (3.11)

where Qn
i = Q(pi, tn) denotes the discretised (re)acceleration and injection rate at momen-

tum pi and time tn. We define the advection velocity in momentum space of momentum
bin pi at time tn due to adiabatic and cooling processes by

un
i =

pi

3
(∇ · 3) − Ûp(pi) at time tn. (3.12)

The advection velocity of the bin edges ui−1/2 is similarly defined. We use the advection
velocities and the partly evolved function values f n+1/2

i from equation (3.11) to calculate
fluxes F through the bin edges at intermediate time tn+1/2. Depending on the sign of the
advection velocity ui−1/2 at the bin edge, the flux is given by

Fn+1/2
i−1/2 = ui−1 f n+1/2

i−1 + φ(ri−1)σi−1/2

(
pi−1/2 − pi−1 + ui−1/2

∆t
2

)
(3.13)

for negative advection velocities ui−1/2 < 0 and by

Fn+1/2
i−1/2 = ui f n+1/2

i − φ(ri)σi−1/2

(
pi − pi−1/2 − ui−1/2

∆t
2

)
(3.14)

for positive advection velocities ui−1/2 ≥ 0. The variable σi is the slope of the function
values between two bins weighted with their advection velocities

σi−1/2 =
ui f n+1/2

i − ui−1 f n+1/2
i−1

pi − pi−1
. (3.15)

The function φ(r) is the slope limiter function, for which we use the van-Leer slope limiter

φ(r) = r + |r |
1 + |r | . (3.16)

The variable r is ratio of slope at the left bin edge to the slope at the right bin edge, whose
definition depends on the sign of the advection velocity. For negative advection velocities
ui−1/2 < 0, we use

ri−1 =
ui−1 f n+1/2

i−1 − ui−2 f n+1/2
i−2

pi−1 − pi−2

pi − pi−1

ui f n+1/2
i − ui−1 f n+1/2

i−1

(3.17)
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and for positive advection velocities ui−1/2 ≥ 0, we adopt

ri =
ui+1 f n+1/2

i+1 − ui f n+1/2
i

pi−1 − pi−2

pi − pi−1

ui f n+1/2
i − ui−1 f n+1/2

i−1

. (3.18)

We use the fluxes Fn+1/2 at intermediate time step tn+1/2 with the half time step estimate
of the spectrum f n+1/2 to calculate the spectrum at time tn+1

f n+1
i = f n+1/2

i (1 − ∆t (∇ · 3)) + ∆t
2

Qi + ∆t
Fi+1/2 − Fi−1/2
pi+1/2 − pi−1/2

(
1 − ∆t

2
(∇ · 3)

)
, (3.19)

where we included an additional factor (1 − ∆t/2 (∇ · 3)) that results from the influence
of adiabatic changes on the fluxes with a second-order prediction step.

Diffusion Operator

The diffusion solver is based on the Crank–Nicolson method (Crank and Nicolson, 1947)
and solves the diffusive part of the CR electron Fokker–Planck equation,

d f (p, t)
dt

����
diff
+

∂

∂p

[
f (p, t)

p2
∂

∂p

(
p2Dpp

)]
− ∂2

∂p2

[
Dpp f (p, t)] = 0. (3.20)

The combination of an explicit solution

f n+1
i = αi f n

i−1 + (1 − βi) f n
i + γi f n

i+1 (3.21)

and an implicit solution

f n
i = −αi f n+1

i−1 + (1 + βi) f n+1
i − γi f n+1

i+1 (3.22)

yields the semi-implicit Crank–Nicolson scheme by addition of both equations

−αi

2
f n+1
i−1 +

(
1 +

βi

2

)
f n+1
i − γi

2
f n+1
i+1 =

αi

2
f n
i−1 +

(
1 − βi

2

)
f n
i +

γi

2
f n
i+1. (3.23)

The coefficients αi, βi, and γi are derived by discretising the momentum diffusion term,

αi =

[
Di

pi+1/2 − pi−1/2
+

2Di−1
pi−1

]
∆t

pi − pi−1
,

βi =

[
Di

pi(pi − pi−1) +
Di+1 − Di

(pi+1 − pi)2
+

Di

pi+1/2 − pi−1/2

(
1

pi+1 − pi
+

1
pi − pi−1

) ]
∆t,

γi =

[
Di

(pi+1 − pi)(pi+1/2 − pi−1/2)
+

Di+1 − Di

(pi+1 − pi)2
]
∆t,

(3.24)
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where we have used the abbreviation Di = Dpp(pi) and the time step ∆t. The diffusion
time step is

∆tdiff = CCFL

[
max

(
Dpp(p)

p2

)]−1
(3.25)

which reduces to ∆t = CCFL/D0 for momentum diffusion with Dpp(p) = D0p2. Equa-
tion (3.23) can be written as a matrix equation

A · f n+1 = B · f n, (3.26)

where A, B are (N × N) matrices

A =

©«

b0 0
a1 b1 c1

a2 b2 c2
. . .

. . .
. . .

aN−2 bN−2 cN−2
0 0 bN−1

ª®®®®®®®®¬
, B =

©«

1 0
ã1 b̃1 c̃1

ã2 b̃2 c̃2
. . .

. . .
. . .

ãN−2 b̃N−2 c̃N−2
0 1

ª®®®®®®®®¬
(3.27)

and f n and f n+1 are N-dimensional vectors containing the values of the CR electron
spectrum in every momentum bin at time tn and tn+1 respectively, i.e. f n = ( f n

i ) and
f n+1 = ( f n+1

i ). The coefficients of the matrices A and B are

ai = −αi2 , bi = 1 + βi
2 , ci = −γi2 ,

ãi =
αi
2 , b̃i = 1 − βi

2 , c̃i =
γi
2 ,

(3.28)

for i ∈ [1, N−2], whereas the coefficients b0 = f n
0 / f n+1

0 and bN−1 = f n
N−1/ f n+1

N−1 are
chosen in order to fulfill the boundary conditions. In order to solve equation (3.26), the
tridiagonal matrixA is inverted with the Thomas algorithm (Press et al., 2007), also known
as tridiagonal matrix algorithm, which is a a simplified form of Gaussian elimination. If
we write d = B · f n, the matrix equation (3.26) takes the from

©«

b0 0
a1 b1 c1

a2 b2 c2
. . .

. . .
. . .

aN−2 bN−2 cN−2
0 bN−1

ª®®®®®®®®¬

©«

f n+1
0

f n+1
1

f n+1
2
...

f n+1
N−2

f n+1
N−1

ª®®®®®®®®¬
=

©«

d0
d1
d2
...

dN−2
dN−1

ª®®®®®®®®¬
(3.29)
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and its solution is numerically obtained by the application of the forward calculations

c′i =

{
ci
bi

for i = 0,
ci

bi−aic′i−1
for i = 1, . . . , N−1, (3.30)

d′i =

{ di
bi

for i = 0,
di−aid ′i−1
bi−aic′i−1

for i = 1, . . . , N−1,
(3.31)

and of the backward calculation

f n+1
i =

{
d′i for i = N−1,
d′i − c′i f n+1

i+1 for i = N−2, . . . , 0. (3.32)

We note that the amount of calculations can be reduced if we take only bins into
account where the spectrum is larger than a given low cut fcut. In this case, equa-
tion (3.26) reduces to an M-dimensional matrix equation with M = ihcut − ilcut and the
matrix inversion has to be applied for a submatrix, which is characterised by the indices
ilcut, ilcut+1, ilcut+2, . . . , ihcut−2, ihcut−1.
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4 Evolution of Cosmic Ray Electron
Spectra in Magnetohydrodynamical
Simulations

This chapter presents our work publicated in Winner et al. (2019).
Cosmic ray (CR) electrons reveal key insights into the non-thermal physics of the in-

terstellar medium (ISM), galaxies, galaxy clusters, and active galactic nuclei by means of
their inverse Compton γ-ray emission and synchrotron emission in magnetic fields. While
magnetohydrodynamical (MHD) simulations with CR protons capture their dynamical im-
pact on these systems, only few computational studies include CR electron physics because
of the short cooling time-scales and complex hysteresis effects, which require a numeri-
cally expensive, high-resolution spectral treatment. Since CR electrons produce important
non-thermal observational signatures, such a spectral CR electron treatment is important
to link MHD simulations to observations. We present an efficient post-processing code
for Cosmic Ray Electron Spectra that are evolved in Time (crest) on Lagrangian tracer
particles. The CR electron spectra are very accurately evolved on comparably large MHD
time steps owing to an innovative hybrid numerical-analytical scheme. crest is coupled
to the cosmological MHD code arepo and treats all important aspects of spectral CR elec-
tron evolution such as adiabatic expansion and compression, Coulomb losses, radiative
losses in form of inverse Compton, bremsstrahlung and synchrotron processes, diffusive
shock acceleration and reacceleration, Fermi-II reacceleration, and secondary electron
injection. After showing various code validations of idealized one-zone simulations, we
study the coupling of crest to MHD simulations. We demonstrate that the CR electron
spectra are efficiently and accurately evolved in shock-tube and Sedov–Taylor blast wave
simulations. This opens up the possibility to produce self-consistent synthetic observables
of non-thermal emission processes in various astrophysical environments.

4.1 Introduction
CRs are ubiquitous in many astrophysical environments, such as the ISM, galaxies, galaxy
clusters and active galactic nuclei (AGN). CRs are non-thermal, charged particles con-
sisting of a hadronic component (mainly protons and alpha particles) as well as leptons
(mainly electrons and positrons). The leptonic component (henceforth referred to as CR
electrons) suffers fast radiative losses via synchrotron interactions with magnetic fields
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and inverse Compton (IC) interactions with ambient photon fields. Hence they are directly
linked to observations of the non-thermal emission from radio to gamma-ray wavelengths.
Hadronic CRs (henceforth referred to as CR protons) are interesting since they play an
important dynamical role in the ISM due to their energy equipartition with turbulent and
magnetic energy in the midplane of the Milky Way (Boulares and Cox, 1990). As CR
protons stream and diffuse vertically from their sources in the galactic midplane, their
emerging CR proton pressure gradient can dominate the force balance and accelerate the
gas, thus driving a galactic outflow as shown in one-dimensional (1D) magnetic flux-tube
models (Breitschwerdt et al., 1991; Zirakashvili et al., 1996; Ptuskin et al., 1997; Everett
et al., 2008; Samui et al., 2018) and three-dimensional (3D) simulations (Uhlig et al.,
2012; Booth et al., 2013; Salem and Bryan, 2014; Pakmor et al., 2016b; Simpson et al.,
2016; Girichidis et al., 2016; Pfrommer et al., 2017b; Ruszkowski et al., 2017b; Jacob
et al., 2018).

Fast-streaming CR protons resonantly excite Alfvén waves through the “streaming
instability” (Kulsrud and Pearce, 1969). Damping of these waves effectively transfers CR
to thermal energy. This process is thought to provide the physical heating mechanism
underlying the “cooling flow problem” in galaxy clusters where the cooling gas and
nuclear activity appear to be tightly coupled to a self-regulated feedback loop (McNamara
and Nulsen, 2007). As CR protons stream out of AGN lobes they can stably heat the
surrounding cooling intracluster medium (Loewenstein et al., 1991; Guo and Oh, 2008;
Enßlin et al., 2011; Fujita andOhira, 2012; Pfrommer, 2013; Jacob andPfrommer, 2017a,b;
Ruszkowski et al., 2017a; Ehlert et al., 2018).

Early studies of CRprotons in computational cosmologywere performed by the Eulerian
meshcosmocr code (Miniati, 2001) and at cosmological shocks byN-body/hydrodynamical
simulations (Ryu et al., 2003). The first MHD simulations with active CR proton transport
were performed with the zeus-3d code (Hanasz and Lesch, 2003). Modeling CR proton
physics in the smoothed particle hydrodynamics code gadget-2 enabled adaptive spa-
tial resolution in high-density environments and to explore the impact of CR protons on
the formation of galaxies and galaxy clusters (Pfrommer et al., 2006; Enßlin et al., 2007;
Jubelgas et al., 2008). Further numerical CR proton studies were performed with the Eule-
rian mesh code piernik (Hanasz et al., 2010), the adaptive mesh refinement codes ramses
(Booth et al., 2013; Dubois and Commerçon, 2016), enzo (Salem and Bryan, 2014), flash
(Girichidis et al., 2016, 2018), and pluto (Mignone et al., 2018), the moving-mesh code
arepo (Pakmor et al., 2016a; Pfrommer et al., 2017a).

In comparison to CR protons, the energy of CR electrons falls short by a factor of about
100 at the solar radius in the Milky Way (Zweibel, 2013); hence CR electrons are not
dynamically important. The cooling time-scale of relativistic CR electrons with Lorentz
factors γ & 103 is much shorter than that of relativistic CR protons at the same energy per
particle. While CR protons can only effectively cool via rare hadronic interactions (thereby
lowering the resulting luminosity), CR electrons cool efficiently via synchrotron and IC
interactions. This means that much of the non-thermal physics is only observationally
accessible through the leptonic emission channel. Thus, it is very important to model the

40



4.1. INTRODUCTION

momentum spectrum of CR electrons alongside (magneto)hydrodynamical simulations
in order to produce realistic synthetic non-thermal observables. Comparing those to
observational data enables scrutinising our simulated physics and our understanding of
galaxy formation, evolution of galaxy clusters or AGN jet physics.

Supernova remnants (SNRs) provide us with important insights into the physics of
particle acceleration and have been observed from radio to γ-ray energies (Helder et al.,
2012; Blasi, 2013; Bykov et al., 2018). This radiation is produced by hadronic and
leptonic processes, and the ambient density and the magnetic field strength of the SNR
determine which of these processes dominates. In low-density environments of SNR, such
as RX J1713.7-3946, IC emission by CR electrons likely dominates the γ-ray emission
(Ellison et al. 2012, but see Celli et al. 2019, for an interpretation in terms of hadronic
emission). Stellar bow shocks of massive runaway stars are also a site of particle acceler-
ation, e.g. the radio emission observed in the bow shock of the runaway star BD +43◦3654
might be produced by synchrotron radiation of CR electrons (Benaglia et al., 2010).

Many galaxies exhibit galactic outflows that shine in radio, X-rays, and γ-rays. Un-
derstanding the physics of galactic outflows is the holy grail of galaxy formation. The
most prominent example of these outflows are the Fermi bubbles, which extend to about
8 kpc north and south from the central region of our Milky Way. They are observed as
hard-spectrum gamma-ray structures (Su et al., 2010; Dobler et al., 2010) which coincide
with radio lobes (Carretti et al., 2013). The origin of the Fermi bubbles remains elusive
and it is not clear whether hadronic CR proton interactions or leptonic IC emission sce-
narios are dominant for the observed γ-ray emission. Models generally rely on AGN or
starburst events. There are several attempts to simulate the evolution of the Fermi bubbles
(Yang and Ruszkowski, 2017; Mertsch and Petrosian, 2019) or more generally, to under-
stand radio signatures of outflows in external galaxies (Heesen et al., 2016). However,
self-consistent (magneto)hydrodynamical simulations of the Milky Way with CR proton
and electron physics are still missing.

Galaxy clusters shine in radio due to synchrotron emission of CR electrons in turbulent
cluster magnetic fields. There are three important classes of radio sources in galaxy
clusters: radio relics, giant haloes and radio mini haloes (Bykov et al., 2019). Giant
radio haloes are characterised by spatially extended regions of diffuse, unpolarised radio
emission with an irregular morphology that is centred on the cluster. In contrast, radio
relics are often located at the periphery of clusters and show a high degree of polarization
with an irregular, elongated morphology. There are several simulation studies of CR
electron acceleration and diffuse radio synchrotron emission in the context of galaxy
clusters (e.g. Miniati et al., 2001; Miniati, 2003; Pfrommer et al., 2008; Battaglia et al.,
2009; Pinzke et al., 2013, 2017; Vazza et al., 2012; Donnert et al., 2013; Donnert and
Brunetti, 2014; Guo et al., 2014a,b; Kang et al., 2019).

The plethora of astrophysical systems that shine through leptonic non-thermal radiation
makes it inevitable to evolve theCRproton and electron physics on top ofMHDsimulations
in order to distinguish hadronic and leptonic scenarios. Despite the importance of CR
electrons, there are only few numerical codes that can evolve the spectra of CR electrons
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in MHD simulations, e.g. the pluto code with CR electrons on Lagrangian particles
(Vaidya et al., 2018). We aim at further closing this gap by presenting a numerical
post-processing code for Cosmic Ray Electron Spectra that are evolved in Time (crest)1,
which works together with (magneto)hydrodynamical codes that have Lagrangian tracer
particles. In this work, we present the algorithm and test its implementation in one-zone
problems. To evolve the CR electron spectrum spatially and temporally resolved alongside
MHD simulations, we couple crest to the massively-parallel hydrodynamical code arepo
(Springel, 2010), that can also follow CR proton physics (Pfrommer et al., 2017a). In
evolving the CR electron spectrum, crest includes adiabatic effects, all important energy
loss processes of CR electron as well as energy gain processes such as diffusive shock
acceleration (via the Fermi-I process) and reacceleration, Fermi-II reacceleration via
particle interactions with compressible turbulence, and secondary electron injection.

We present the physical and numerical foundations of our algorithm in section 4.2. We
proceed with numerical tests of our code, including idealized one-zone tests in section 4.3
and simulations with arepo in section 4.4. We conclude in section 4.5 and provide an
outlook of future astrophysical applications of our work. We use the cgs system of units
throughout this work.

4.2 Methodology
Here, we introduce the theoretical background before we explain our discretisation scheme
and numerical algorithms to describe our subgrid scalemodel for Fermi-I acceleration. We
then present analytical solutions of limiting cases and our hybrid algorithm that combines
analytical and numerical solutions to the transport equation of CR electrons.

4.2.1 Theoretical Background
Transport Equation

The CR electron distribution is completely described by the phase space density f (x, p, t)
whose evolution is given by the relativistic Vlasov equation. Throughout this paper, we use
the dimensionless electron momentum, p = P/(mec). CR electrons gyrate around mag-
netic field lines which are subject to random fluctuations. The application of quasi-linear
theory by ensemble averaging over fluctuations, and the use of the diffusion approximation,
i.e. the assumption of near-isotropic equilibrium as a consequence of frequent pitch-angle
scattering on MHD turbulence leads to the Fokker–Planck equation (Schlickeiser, 1989a;
Zank, 2014).

We follow the transport of CR electrons on Lagrangian tracer particles and include
continuous losses plus a source term (Schlickeiser, 1989b). Here, we assume that CR
1The name crest also refers to the physical phenomenon of CR electrons being accelerated and swept up
by a shock wave while shining on its crest via synchrotron and IC radiation.
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electrons are transported with the gas as they are confined to their gyration orbits around
turbulent magnetic fields, which are frozen into the moving plasma. The Fokker–Planck
equation for the 1D distribution in momentum space is related to the 3D distribution via
f (p) = 4πp2 f 3D(p) and obeys the Fokker–Planck equation without CR streaming (e.g.
Pinzke et al., 2017)

d f (p, t)
dt

=
∂

∂p

[
f (p, t)p

3
(∇ · 3)

]
− (∇ · 3) f (p, t)

− ∂

∂p
[ f (p, t) Ûp(p, t)] +Q(p, t)

− ∂

∂p

[
f (p, t)

p2
∂

∂p

(
p2Dpp

)]
+

∂2

∂p2

[
Dpp f (p, t)]

+ ∇ · [K · ∇ f (p, t)] ,

(4.1)

where d/dt = ∂/∂t + 3 · ∇ is the Lagrangian time derivative and p = |p | is the absolute
value of the momentum. The first line on the right-hand side describes adiabatic changes
resulting from changes in the gas velocity 3 and Fermi-I acceleration and reacceleration
(in combination with spatial diffusion, see Blandford and Eichler, 1987).

The second line describes energy losses (i.e. Coulomb and radiative losses) Ûp(p, t) and
injection with source function Q(p, t) for unresolved subgrid acceleration processes and
secondary electron injection that are produced in hadronic interactions of CR protons with
the ambient gas. The latter process is described by Qinj = ÛCinjp−αinj with injection slope
αinj that is identical to that of the CR proton distribution, an injection rate ÛCinj = Cinj/τpp,
where Cinj ∝ ncrp and τpp = 1/(cσppntar) (Mannheim and Schlickeiser, 1994). Here, c is
the speed of light, σpp is the proton-proton cross-section, ntar is the target proton density,
and ncrp is the number density of CR protons, which we dynamically evolve with the CR
proton module of arepo (Pfrommer et al., 2017a).
The third line represents the momentum diffusion (Fermi-II reacceleration) with a

momentum-dependent diffusion Dpp(p) while the last line describes spatial CR diffusion
with the diffusion tensor K. Because we do not resolve the necessary scales and plasma
processes to directly follow diffusive shock acceleration via the adiabatic and diffusive
terms, we have to treat Fermi-I acceleration and reacceleration in form of an analytic
subgrid model via the source term Q(p, t) in our code. We defer the explicit treatment of
spatial CR diffusion, as well as CR streaming, to future studies.

Loss Processes

We note that energy losses are in general time dependent as photon fields, magnetic
fields and electron number densities change in time. We will suppress the explicit time
dependence in the following formulae for simplicity. Coulomb losses (Gould, 1972a) are
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described by

Ûpc(p) = −3σTnec
2β2

[
ln

(
mec2β

√
γ − 1

~ωpl

)
+ ln(2)

(
β2

2
+

1
γ

)
+

1
2
+

(
γ − 1

4γ

)2
]
, (4.2)

where σT = 8πe4(mec2)−2/3 is the Thomson cross-section, ~ is the reduced Planck
constant, me the electron mass, β = p(1 + p2)−1/2 is the dimensionless CR electron
velocity, and γ = (1 + p2)1/2 is the Lorentz factor of CR electrons. The electron density
is ne = ngasXHxe where XH is the hydrogen mass fraction and xe = ne/nH is the ionization
fraction, the ratio of electron density-to-hydrogen density, which is denoted by nH. The
plasma frequency is ωpl =

√
4πe2ne/me and e denotes the elementary charge.

Charged particles experience synchrotron losses in magnetic fields and experience in-
verse Compton scattering off of photon fields (Rybicki and Lightman, 1986). Synchrotron
losses are given by

Ûps(p) = −4σTp2

3mecβ
B2

8π
, (4.3)

and inverse Compton processes by

Ûpic(p) = −4σTp2

3mecβ
εph, (4.4)

where the total radiation field is a sum over the cosmic microwave background (CMB)
radiation and star light, εph = εstar + εcmb. The momentum loss rate of the bremsstrahlung
loss process is given by

Ûpb(p) = −16
3
α

(
e2

m2
e c3

)2

γ χ [E(p)] , (4.5)

where α is the fine-structure constant and the function χ [E(p)] is provided by Koch and
Motz (1959). The total energy loss rate is given by the sum of all losses:

Ûp(p, t) = Ûpc(p) + Ûps(p) + Ûpic(p) + Ûpb(p). (4.6)

Fermi-I Acceleration and Reacceleration

Diffusive shock acceleration also known as Fermi-I acceleration is an important energy
gain process for CR electrons. It is a combination of direct acceleration of electrons from
the thermal pool and of reacceleration of a fossil electron distribution fpre in the pre-shock
region, if present.

The total spectrum in the post-shock region is obtained by evaluating adiabatic changes
and spatial diffusion of equation (4.1) at the shock. The analytic solution of the total
post-shock spectrum is (Bell, 1978b; Drury, 1983; Blandford and Eichler, 1987)

fpost(p) = freac(p) + facc(p), (4.7)
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where the reaccelerated and accelerated spectrum are

freac(p) = (αacc + 2)p−αacc

∫ p

pinj

p′αacc−1 fpre(p′) dp′ and (4.8)

facc(p) = Caccp−αaccΘ(p − pinj), (4.9)

respectively, where Cacc is the normalization and pinj is the injection momentum of the
accelerated spectrum. The spectral index αacc is calculated by

αacc =
r + 2
r − 1

, (4.10)

where r = ρpost/ρpre denotes the shock compression ratio, i.e. the ratio of post-shock to pre-
shock gas density. We also take cooling processes into account, which lead to a modified
spectrum with a momentum cutoff (Enßlin et al., 1998; Zirakashvili and Aharonian, 2007;
Pinzke and Pfrommer, 2010) of the form

f̃post(p) = fpost(p)
[
1 + a

(
p

pacc

)b
] c

exp

[
−

(
p

pacc

)2
]
, (4.11)

where we adopt the parameters a = 0.66, b = 2.5, and c = 1.8 and pacc is the cutoff
momentum of the (re)accelerated spectrum

pacc =
3post

c

√
3e(r − 1)

4σT
×

[
B2

pre/(8π) + εph

rBpre
+

B2
post/(8π) + εph

Bpost

]−1/2
, (4.12)

where 3post is the post-shock velocity in the shock rest frame and Bpre and Bpost are the
pre- and post-shock magnetic fields. Here, we assume a parallel shock geometry so that
the magnetic field strength is constant across the shock. We postpone a modelling of
the dependencies of the maximum electron energy on magnetic obliquity and amplified
magnetic fields via plasma effects such as the non-resonant hybrid instability driven by
the CR proton current propagating upstream of the shock (Bell, 2004).

Fermi-II Reacceleration

Stochastic acceleration, originally proposed by Fermi (1949), describes the energy gains of
CRs through randomcollisionswith plasmawaves and turbulence. As the gain per collision
process is of second order in the velocity ratio of collision counterpart to particle, it is
also referred to as Fermi-II reacceleration (Petrosian, 2012). However, Coulomb cooling
is too fast for stochastic acceleration from the thermal pool to be efficient in cluster and
galactic environments (Petrosian, 2001). Therefore, the Fermi-II process is only efficient
in reaccelerating a fossil non-thermal electron distribution.

Fermi-II reacceleration by turbulent magnetic fields was investigated in galaxy clusters
as primary energy source for diffusive radio emission from CR electrons in the Coma
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cluster (Jaffe, 1977; Schlickeiser et al., 1987). There are different energy transfer channels
of turbulent energy injection into CR, e.g. via magnetosonic waves (Ptuskin, 1988) or
via transit time damping (TTD) of compressible fast magnetosonic modes (Brunetti and
Lazarian, 2007, 2011).

CRs gain energy in turbulent reacceleration through transit time damping. The momen-
tum diffusion in equation (4.1) is given by

Dpp = D0p2 (4.13)

where the physics of turbulent reacceleration is encapsulated in the constant D0 (Pinzke
et al., 2017). The momentum diffusion time is τpp = p2/(4Dpp) which is τpp = 1/(4D0)
according to equation (4.13).

4.2.2 Numerical Discretisation
General Setup

In order to solve equation (4.1) numerically, we apply three discretisations to the CR
electron phase space density f = f (x, p, t). (i) We discretise f in configuration space
with Lagrangian tracer particles, (ii) we discretise the momentum spectrum of every tracer
particle with piecewise constant values per momentum bin, and (iii) f is discretised in
time. The momentum grid is equally spaced in logarithmic space and we use N bins
between the lowest momentum pmin and highest momentum pmax. The bin centres are
located at

pi = pmin exp
[(

i +
1
2

)
∆ ln p

]
for i = 0, 1, . . . , N − 1, (4.14)

and the bin edges are given by

pi− 1
2
= pmin exp(i ∆ ln p) for i = 0, 1, . . . , N, (4.15)

where ∆ ln p = ln(pmax/pmin)/N is the grid spacing. The spectrum is defined on all bin
centers and is evolved in time from t by a time step ∆t with an operator split approach,

f (x, p, t + ∆t) = Adiff

(
∆t
2

)
Aadv (∆t) Adiff

(
∆t
2

)
f (x, p, t). (4.16)

Adiabatic changes, Fermi-I (re)acceleration, cooling, and injection are calculated with an
advection operator Aadv and diffusion in momentum space is calculated with a diffusion
operator Adiff that both advance the solution for the time step of their arguments.
The advection operator is based on a flux-conserving finite volume scheme with

a second-order piecewise linear reconstruction of the spectrum. The terms
∂/∂p { f (p)[p(∇ · 3)/3 − Ûp]}, which include cooling and partially adiabatic changes, are
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interpreted as advection in momentum space in order to calculate fluxes across the bin
edges given in equation (4.15). In addition, we use the non-linear van Leer flux limiter (van
Leer, 1977). The remaining terms for injection, Fermi-I (re)acceleration and adiabatic
changes, are treated as an inhomogeneity of the partial differential equation (for details,
see appendix 3.3.2). Our implementation is second-order accurate in time and momentum
space.

The diffusion operator is based on a finite difference scheme with a semi-implicit
Crank–Nicolson algorithm, which is accurate to second order in time and to first order in
momentum space (for details, see appendix 3.3.2).

Time Steps and Characteristic Momenta

The overall time step ∆t in equation (4.16) is determined by

∆t = min(∆tadv,∆tdiff) , (4.17)

the minimum of the time step for advection and diffusion,

∆tadv = CCFL

[
max

( | Ûp(p)|
∆p

)
+
|∆n/∆t |

n

]−1
and (4.18)

∆tdiff = CCFL

[
max

(
Dpp(p)

p2

)]−1
, (4.19)

respectively, where ∆n/∆t is the density change of the background gas and the parameter
CCFL is the Courant–Friedrichs–Lewy number for which we use CCFL = 0.7 in our
simulations. In principle, the maxima in equations (4.18) and (4.19) have to be evaluated
for all momentum bins, i.e. for i ∈ [0, N−1]. However, in the absence of Fermi-I
(re)acceleration, the momentum range of the advection and diffusion operator decreases
due to rapidly cooling of the spectrum at low and high momenta. We therefore cut the
spectrum at fcut below which we treat numerical values of the spectrum as zero. Hence,
there is a low- and a high-momentum cutoff

plcut = min({p : f (p) ≥ fcut}) and (4.20)
phcut = max({p : f (p) ≥ fcut}) , (4.21)

respectively, and the related indices of the momentum bins

ilcut = max[0,min({i : pi < plcut}) − 2] and (4.22)
ihcut = min[N,max({i : pi > plcut}) + 3] (4.23)

in between which the maxima in equations (4.18) and (4.19) have to be evaluated, i.e. for
i ∈ [ilcut, ihcut−1]. We consider two extra bins in equations (4.22) and (4.23) due to the
ghost cells of the advection operator. The cutoff momenta and the related indices are
calculated after every time step.

For clarity, we provide a synopsis of all important momenta and related bin indices:
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• pmin and pmax are the minimum and maximum momenta of our momentum grid,
respectively. The corresponding indices are imin = 0 and imax = N−1.

• plcut (phcut) describes the momentum below (above) which the spectrum is treated
as zero. The corresponding indices ilcut and ihcut account for the ghost cells of the
advection operator and are given in equations (4.22) and (4.23).

• plow and phigh denote the transition momenta between the numerical and the analyt-
ical solution for the low- and high-momentum regime, respectively. The definition
is given in section 4.2.3.

• pcool is the momentum related to inverse Compton and synchrotron cooling in
the analytical solution. In the case of freely cooling it coincides with the high-
momentum cooling cutoff. In the case of Fermi-I (re)acceleration and injection it is
the transition momentum from a source dominated to a steady-state spectrum (see
section 4.2.3).

• pacc is the maximum momentum of Fermi-I (re)acceleration where spatial diffusion
and cooling balance each other.

• pinj is the injection momentum of Fermi-I (re)acceleration where the non-thermal
spectrum is transitions to the non-thermal spectrum.

Modelling Fermi-I (Re)Acceleration

We develop an algorithm to account for the Fermi-I process on our tracer particles and aim
at reconstructing the discontinuous Rankine–Hugoniot jump conditions on the Lagrangian
particle trajectories with the aid of a shock finder in a hydrodynamical scheme. To this
end, we use the adaptive moving-mesh code arepo (Springel, 2010) with CR protons
(Pfrommer et al., 2017a) and employ the shock finder by Schaal and Springel (2015),
which detects cells in the pre-shock region, the shock surface, and the post-shock zone.
The shock direction is determined by the normalized negative gradient

ns = − ∇T̃��∇T̃
�� (4.24)

of the pseudo temperature which is given by

kT̃ =
µmp(Pth + Pcrp)

ρ
, (4.25)

where µ is the meanmolecular weight, mp is the protonmass, ρ is the gas mass density, and
Pth and Pcrp denote the thermal and CR proton pressure, respectively. Cells of the shock
zone are identified by (i) converging flows, i.e. they have a negative velocity divergence,
while (ii) spurious shocks are filtered out and (iii) the algorithm applies a safeguard in
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the form of a lower limit to the temperature and density jump (from pre- to post-shock
quantities) to prevent false-positive detections of numerical noise. The shock surface cell
is identified with the cell in the shock zone that shows a maximally converging flow along
the shock direction. Pre- and post-shock quantities are obtained from the first cells outside
the shock zone in the direction of shock propagation and opposite to it, respectively. The
algorithm determines the Mach numberM by the pressure jump and calculates a fraction
ζe(θ) of the shock-dissipated energy Ediss that is converted into the acceleration of CR
electrons,

∆Ecre = ζe(θ)Ediss. (4.26)

Here, θ is the upstream magnetic obliquity, which is the angle between the direction
of shock propagation and the magnetic field. In this paper, we assume an acceleration
efficiency of ζe = 10−3. This corresponds to a ratio of accelerated CR electron to proton
energies of ∆Ecre/∆Ecrp = 10−2 for efficient CR proton acceleration (Pfrommer et al.,
2017a). We defer a discussion of the obliquity dependent acceleration of CR electrons to
future studies. We point out that our description is flexible and can be easily adapted to
include new particle-in-cell simulation results on the shock acceleration of CR electrons
(e.g. Guo et al., 2014a,b; Park et al., 2015).

As soon as the tracer particle reaches a shock zone cell, we keep the background density
fixed in order to prevent adiabatic heating before encountering the shock. When the tracer
particle transitions from the shock zone to the shock surface cell, we first calculate the
reaccelerated spectrum if there is any fossil spectrum and secondly, the directly accelerated
spectrum.2 The ambient density of the tracer particles is then set to the post-shock gas
density. In order to model reacceleration and direct acceleration, we assume continuous
injection as a subgrid model and adopt the source functions3

Qreac(p) = freac(p)
∆t

and (4.27)

Qacc(p) = Cacc
∆t

p−αaccΘ(p − pinj), (4.28)

where ∆t is the the time difference between two MHD time steps.
As described above, the efficiency of direct Fermi-I acceleration depends on the total

dissipated energy at the shock, which is numerically broadened to a few cells in finite-
volume codes such as arepo. By contrast, Fermi-I reacceleration only depends on the
amplitude of the fossil electron distribution in the pre-shock region (see equation 4.8),
which is known at the shock surface cell. In both cases, the slope is solely determined by
the Mach number.
2We store only one spectrum in memory per tracer particle. Therefore, we first need to evaluate the integral
in equation (4.8) before computing the primary electron spectrum due to diffusive shock acceleration.

3We use the terminology acceleration to describe the production of CR electrons via diffusive shock
acceleration and injection to describe the generation of secondaries through hadronic interactions.
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Tomodel direct acceleration, we calculate and apply the source function for acceleration
of equation (4.28) for every time step during which the tracer particle resides in a shock
surface or in the post-shock cells for the numerical reasons given above. By contract, the
source function for reacceleration (equation 4.27) is only applied during one MHD time
step after the tracer particle has encountered the shock surface cell.

We calculate αacc from the density jump at the shock, r = ρpost/ρpre, where the
pre-shock density communicated to the shock cell via the arepo shock finder, and the
post-shock density is obtained via

ρpost = ρpre
(γeff + 1)M2

(γeff − 1)M2 + 2
, (4.29)

where the effective adiabatic index is given by

γeff =
γcrpPcrp + γthPth

Pcrp + Pth
(4.30)

with γth = 5/3 for gas and γcrp = 4/3 for CR protons.
In order to determine the energy of the freshly accelerated CR electrons, we demand its

energy density to be a fixed fraction of the freshly accelerated CR proton energy density
at the shock. In practice, we attach the accelerated spectrum to the thermal Maxwellian,

fth(p) = 4πne,th

(
mec2

2πkBT

)3/2
p2 exp

(
−mec2p2

2kBT

)
(4.31)

at the injection momentum pinj which determines the normalization
Cacc = fth(pinj)pαacc

inj . (4.32)
We use this normalization and the energy of accelerated CR electrons ∆Ecre, see equa-
tion (4.26), to determine the injection momentum by the condition∫ ∞

0
fth(pinj)pαacc

inj p−αaccΘ(p − pinj)Ee,kin(p)dp =
∆Ecre
Vcell

, (4.33)

where Ee,kin(p) =
[√

1 + p2 − 1
]

mec2 is the kinetic energy and Vcell is the volume of the
arepo cell, in which the particle resides.

4.2.3 Analytical Solutions
The time-scale of all electron cooling processes decreases for low and for high momenta
as can be seen in Figure 4.1, where we show the cooling times as a function of momentum.
Hence, for very low momenta and very high the cooling time-scales become smaller than
the typical time step of an MHD simulation. In order to have an efficient calculation of the
CR electron spectrum, which advances on time steps similar to the MHD time step, we use
analytical solutions for low and high momenta together with the fully numerical treatment
for intermediate momenta. We call the combination of both treatments semi-analytical
solution.
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Figure 4.1: Characteristic time-scales for electron cooling (ngas = 10−3 cm−3, B = 5 µG,
εph = 6εcmb, z = 0) and typical hydrodynamical time steps adopted in simula-
tions of the ISM and galaxy formation (blue band). The grey area shows the
ranges where either Coulomb or inverse Compton plus synchrotron cooling
dominate and where analytical solutions can be used. Transition momenta of
numerical and analytical solutions are plow = 3 × 101 and phigh = 4 × 102.

General Solutions

We follow the derivations described by Sarazin (1999) which we summarise here. The
starting point for the analytical solution of the cooling term in equation (4.1) is the
momentum loss of an individual electron. Its momentum is shifted from the initial
momentum pini to the momentum p during a time interval of ∆t∫ p

pini

1
Ûp(p′) dp′ = ∆t. (4.34)

Equation (4.34) is solved for the initialmomentum pini(p,∆t), which is used in the analytical
solution of the cooled spectrum

f (p, t0 + ∆t) = f (pini(p,∆t), t0) Ûp(pini(p,∆t), t0 + ∆t)
Ûp(p, t0) . (4.35)

The cooled spectrum can be interpreted as a momentum shift of the initial spectrum at time
t0 multiplied with a momentum-dependent cooling factor. If there is no initial spectrum at
t0 and if the source function Q(p, t) is constant and continuous in time, the spectrum after
time t is self-similar:

fself(p, t) = fsteady(p) − fsteady(pini(p, t)) Ûp(pini(p, t))
Ûp(p) , (4.36)

where we use the steady-state solution

fsteady(p) = 1
| Ûp(p)|

∫ ∞

p
Q(p) dp . (4.37)
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Figure 4.2: Comparison between exact and approximate formulae for Coulomb losses
(equations (4.2) and (4.38)). The top panel shows the loss rates for a gas of
density 1 × 10−3 cm−3 and the bottom panel shows the relative error of the
approximate formula for two different gas densities.

This means that the self-similar solution is derived by subtracting the cooled steady-state
solution from the original steady-state solution. The self-similar spectrum consists of
three characteristic momentum ranges, i.e. low, intermediate, and high momenta. For low
and high momenta, where the cooling times are smaller than the current time step, the
spectrum is already in steady state. In the intermediate momentum range, the spectrum is
dominated by the source spectrum as we show later.

The analytical solutions of the cooled spectrum in equation (4.35) and of the self-similar
spectrum in equation (4.36) need a functional representation of the spectrum at time t0 for
the entire momentum range. As the spectrum is calculated on a discrete momentum grid
with piecewise constant values, we calculate an interpolation function at every time with
the Steffen’s method (Steffen, 1990), which is cubic and monotonic between neighbouring
discrete momenta. This interpolation function is used to calculate the analytic solution
after a time step ∆t.

In the following, we present the analytical solutions for both low and high momenta.
We use a source function Q(p) = ÛCacc p−αacc for the self-similar solution of acceleration
and cooling. We note that we have ÛCacc = Cacc/∆t for our discretisation and that a source
function for injection by hadronic processes with Q(p) = ÛCinj p−αinj gives similar results
for the self-similar solution. Note that the self-similar solution is not used in our code (see
also section 4.2.3) but in order to compare simulation results to their analytic solutions.

Solution for Low Momenta

Coulomb losses are dominating at small momenta. The analytical solution requires
calculating the integral in equation (4.34) and solving for the initial momentum pini(p,∆t).
In general, this cannot be done in closed analytic form for the exact Coulomb loss rate
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given in equation (4.2). We therefore use an approximation (Pinzke et al., 2013)

Ûpc(p) = bc

(
1 + p−2

)
with bc =

−3σTnec
2

ln
(
mec2

~ωpl

)
, (4.38)

which is accurate to < 30% for momenta 10−2 ≤ p ≤ 102 as can be seen in Figure 4.2.
The integral for the momentum shift in equation (4.34) evaluated with the approximate
form of the Coulomb loss rate is∫

1
Ûpc(p) dp =

1
−bc
[p − arctan(p)] ≈ 1

−bc

(
p3

3 + p2

)
, (4.39)

where we used a Padé approximation (Brezinski, 1996) in the last step. The momentum
shift due to Coulomb cooling is then given by

pini(p,∆t) = 1
3

[
a +

(
a3 +

9
2

√
4a4 + 81a2 +

81a
2

)1/3

+a2
(
a3 +

9
2

√
4a4 + 81a2 +

81a
2

)−1/3]
,

(4.40)

with a = p3
/ (

3 + p2) − bc∆t. The analytical solution for the cooled spectrum (see
equation (4.35)) is given by

f (p,∆t) = f [pini(p,∆t), 0]1 + [pini(p,∆t)]−2

1 + p−2 . (4.41)

The self-similar spectrum is given by

fself(p,∆t) =
ÛCacc

(1 − αacc)

{
p−αacc+1

Ûpc(p)
− [pini(p,∆t)]−αacc+1

Ûpc[pini(p,∆t)]
1 + [pini(p,∆t)]−2

1 + p−2

}
(4.42)

where we use the exact Coulomb loss rate for the first term in the bracket in order to satisfy
fself → fsteady for ∆t →∞.

Solution for High Momenta

For large momenta, inverse Compton and synchrotron cooling are dominating and both
loss rates have the same momentum scaling. We define for convenience the sum of both
as

Ûpic+s(p) = Ûpic(p) + Ûps(p) = p2bic+s (4.43)
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where bic+s = −4σT
(
B2/8π + εph

) /(3mecβ) denotes themomentum independent factor of
both loss rates. Themomentum shift during a time interval∆t according to equation (4.34)
is

pini(p,∆t) = p
1 − p/pcool(∆t) (4.44)

where pcool(∆t) = (−bic+s∆t)−1 is the cooling cutoff of IC and synchrotron losses. In the
following, we omit the explicit time dependence of pcool(∆t). The analytical solution of
the cooled spectrum (see equation (4.35)) is given by

f (p,∆t) =



f
(

p
1 − p/pcool

, 0
) (

1 − p
pcool

)−2
, p < pcool

0, p ≥ pcool

(4.45)

and the solution of the self-similar spectrum (see equation (4.36)) is

fself(p,∆t) =
ÛCaccp−(αacc+1)

bic+s(1 − αacc)




(
1 − p

pcool

)αacc−1
, p < pcool,

1, p ≥ pcool.

(4.46)

Adiabatic Changes and Cooling

Pure adiabatic changes due to expansion or compression of the background gas leave the
phase space density of the CR electrons invariant (Enßlin et al., 2007). An initial spectrum
of the form

fini(p) = Cp−αΘ(p − q) (4.47)

with normalisation C, slope α and low-momentum cutoff q transforms into

f (p) = Cx(α+2)/3p−αΘ
(
p − x1/3q

)
(4.48)

due to an adiabatic change of the background density from nini to n and x = n/nini denotes
the the ratio of final-to-initial density. Similar to the analytical description for cooling
processes, this evolution can be interpreted as a shift in momentum space from an initial
momentum pini to momentum p by pini(p, x) = px−1/3 and an overall scaling with the
factor x2/3

f (p, x) = x2/3 fini

(
px−1/3

)
. (4.49)

Our code adopts this equation in combination with the analytical description of radiation
and Coulomb cooling processes. The evolution of the CR electron spectrum during small
time intervals ∆t and for small density ratios x = n(t + ∆t)/n(t) is described by

f (p, t + ∆t) = x2/3 f
[
pini

(
p

x1/3 ,∆t
)
, t

] Ûp[
pini

(
px−1/3,∆t

)]
Ûp(

px−1/3) , (4.50)
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where pini(p,∆t) denotes the momentum shift due to cooling as given in equation (4.40)
for low momenta and in equation (4.44) for high momenta.

Injection, Fermi-I (Re)Acceleration and Cooling

The analytic solution for the case of cooling and CR electron injection, by hadronic
interactions or by our subgrid model of Fermi-I acceleration and reacceleration, is in
principle given by the self-similar solution in equation (4.36) at time t. However, we cannot
use the self-similar solution because (i) injection and (re)acceleration source function and
cooling rates are generally time-dependent, (ii) we need to evolve the previously existing
spectrum, and (iii) we evolve the spectrum on differential time steps ∆t from time tn to
tn+1. For large momenta with p/ Ûpic+s(p) < ∆t, we use the analytic steady-state solution.
For the remaining momentum range, we use an operator-split method. First, we calculate
injection and Fermi-I (re)acceleration during a half time step

f
(
p, tn +

∆t
2

)
= f (p, tn) + ∆t

2
Q(p). (4.51)

We then calculate the effect of cooling and adiabatic changes on f (p, tn + ∆t/2) during a
full time step. Finally, we account for injection and (re)acceleration during another half
time step to obtain the spectrum at time tn+1,

f (p, tn+1) = f
[
pini

(
p

x1/3 ,∆t
)
, t +

∆t
2

] Ûp[
pini

(
px−1/3,∆t

)]
x−2/3 Ûp(

px−1/3) +
∆t
2

Q(p). (4.52)

Combining Analytical and Numerical Solutions

In general, the momentum loss rate Ûp(p) is the sum of all loss processes which complicates
the integral in equation (4.34) and the analytical solution for pini(p,∆t). As we have seen
in the preceding subsections, analytical solutions are possible for both low momenta
where Coulomb losses are dominating and for high momenta where inverse Compton and
synchrotron losses are dominating. Our code determines the transition momenta of the
numerical and analytical solutions,

plow = max
({p : τc(p) < ετb+ic+s(p) ∧ τc(p) ≤ τhyd}

)
and (4.53)

phigh = min
({p : τic+s(p) < ετb+c(p) ∧ τic+s(p) ≤ τhyd}

)
(4.54)

for low and high momenta, respectively. We also take the constraints due to the hy-
drodynamical time-scale τhyd into account. The characteristic cooling time-scales are
τc = p/ Ûpc(p) for Coulomb losses, τb = p/ Ûpb(p) for bremsstrahlung, and τic+s = p/ Ûpic+s(p)
for IC and synchrotron cooling. The transition momentum is determined by a free param-
eter, which we set to ε = 0.1. The characteristic cooling time-scales and the transition
momenta are displayed in Figure 4.1.
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We determine corresponding indices of the transition momentum bins as

ilow = max[0,max({i : pi < plow}) − 2] and (4.55)
ihigh = min

[
N,min

({i : pi > phigh}
)
+ 3

]
. (4.56)

between which the numerical solution is applied, i.e. for the momentum bins pi with
i ∈ [

ilow, ihigh
]
. Analytical solutions are calculated for low-momentum bins pi with

i ∈ [0, ilow+2] and high-momentum bins with i ∈ [
ihigh−3, N−1

]
. At the indices ilow+2

and ihigh−3, we calculate the ratio of numerical to analytical solution in the low- and
high-momentum regime

Clow =
Anum

adv (∆t) f (pilow+2, t)
Aana

adv(∆t) f (pilow+2, t) and (4.57)

Chigh =
Anum

adv (∆t) f (pihigh−3, t)
Aana

adv(∆t) f (pihigh−3, t) , (4.58)

respectively, where Anum
adv is the numerical advection operator and Aana

adv the analytical
advection operator for low and high momenta.

The analytical solutions in the low- and high-momentum regime are multiplied with
these ratios in order to guarantee a continuous spectrum. Hence, the evolved spectrum at
momentum bin pi is given by

f (pi, t + ∆t) =



ClowAana
adv(∆t) f (pi, t) for i ∈ [0, ilow+1]

Anum
adv (∆t) f (pi, t) for i ∈ [

ilow+2, ihigh−3
]

ChighAana
adv(∆t) f (pi, t) for i ∈ [

ihigh−2, N−1
]
.

(4.59)

4.3 Idealised One-Zone Tests

In order to demonstrate the validity of crest, we first conduct idealised one-zone tests.
These setups evolve the CR electron spectrum without an MHD simulation, hence neces-
sary parameters for the spectral evolution are defined by hand. These tests demonstrate that
our code is able to accurately and correctly simulate adiabatic processes, non-adiabatic
cooling, acceleration and diffusion in momentum space.

4.3.1 Adiabatic Changes

Adiabatic changes are mediated through the velocity divergence terms in equation (4.1).
Due to phase space conservation upon adiabatic changes, a decreasing (increasing) gas
density leads to decreasing (increasing) normalisation and a shift of the CR electron
spectrum towards smaller (larger) momenta. In Figure 4.3, we follow the evolution of the
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Figure 4.3: Adiabatic expansion of an initial power-law spectrum with α = 2.5. Left:
coloured dashed and solid lines represent the simulations with 10 and 160 bins
per decade, respectively. The analytical solutions are shown as black dotted
lines. Right: the energy-weighted relative L1 error for the entire momentum
range and for momenta much larger than the cutoff of the analytical solution
pcut = 10−2/3.

spectrum during an adiabatic expansion over an expansion factor of 10−2. The energy-
weighted L1 error between the simulated spectrum fsim and the analytical spectrum fana
is calculated according to the formula

δ =

∫
| fsim(p) − fana(p)| T(p) dp∫

fana(p)T(p) dp
, (4.60)

and decreases for increasing number of momentum bins N . The error scaling for the entire
momentum range shows the effect of the slope limiter, which uses a second order accurate
scheme for smooth parts of the spectrum and resorts to a first order scheme near jumps or
strong gradients to prevent numerical oscillations. However, in the range above the cutoff
the error scales as δ ∝ N−2 as expected for a second-order accurate numerical scheme. We
note that cooling and momentum diffusion normally lead to a smooth spectrum without
sharp features. Hence, adiabatic changes are calculated with second-order accuracy.

4.3.2 Freely Cooling Spectrum
ACR electron spectrummay experience cooling due to Coulomb, bremsstrahlung, inverse
Compton and synchrotron losses. Figure 4.4 shows the cooling of an initial power-law
spectrum with spectral index of α = 2.5 for a setup with 10 bins per decade. We
compare the fully numerical solution to the semi-analytical solution, which uses the
analytical solution in the shaded momentum ranges and the fully numerical solution in
the range in between, where all cooling processes modify the initial power law. The fully
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Figure 4.4: Freely cooling power-law spectrum with α = 2.5. We compare the fully nu-
merical and semi-analytical solutions, for which we adopt analytical solutions
in the shaded momentum range. The simulations use 10 bins per decade and
the relevant parameters are ngas = 10−3 cm−3, B = 5 µG and εph = 6 εcmb.
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Figure 4.6: Build up of a steady-state spectrum due to continuous injection and cooling.
The solid line and the dotted lines show the semi-analytical and the fully
numerical simulations, respectively. The analytical steady-state solution is
shown with a dashed line. The simulations use 10 bins per decade and a
power-law source function with α = 2.1. The relevant parameters are ngas =
10−3 cm−3, B = 5 µG and εph = 6 εcmb.

numerical solution matches the semi-analytical solution except for the high-momentum
cutoff which displays a larger diffusivity for the fully numerical scheme. The error of the
fully numerical solution with N bins is calculated according to equation (4.60) where we
take the simulation with double resolution as fana ≈ f2N . The error scaling is shown in
Figure 4.5 and is second-order accurate, i.e. δ ∝ N−2.

4.3.3 Steady-State Spectrum

The combination of cooling and continuous source function Q(p, t), e.g. acceleration
or injection, in equation (4.1) leads to the build up of a self-similar spectrum. The
self-similar spectrum agrees with the steady-state spectrum for momenta that have smaller
cooling time-scales in comparison to the simulation time. Hence, the self-similar spectrum
completely approaches the steady-state spectrum for very long times. We show this
evolution in Figure 4.6 where we compare the results of the fully numerical and the
semi-analytical simulations as well. Both simulations agree relatively well and approach
the steady-state solution. However, there is a small deviation of the semi-analytical
simulation visible in the Coulomb regime at around p = 1. This is a consequence
of the approximations adopted that enable an analytical solution for Coulomb cooling.
Nevertheless, we prefer the semi-analytical simulation as it generally outperforms in
efficiency in comparison to the fully numerical simulation (it is faster by a factor of ∼ 104

for this specific setup). The error of the fully numerical solution compared to the analytical
steady-state solution (see equations (4.37) and (4.60)) is shown in Figure 4.5 and scales
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Figure 4.7: Fermi-II reaccelerationwith andwithout cooling of a relic spectrum in compar-
ison to a reference study (Brunetti and Lazarian, 2007). The semi-analytical
and fully numerical simulations that include cooling are indistinguishable.
The relevant parameters are ngas = 10−3 cm−3, B = 1 µG, εph = εcmb and
τpp = 0.2 Gyr. The time steps given in multiples of τpp are 0, 127, 254, and
381 Myr.

with δ ∝ N−2.

4.3.4 Fermi-II Reacceleration

In addition to adiabatic changes, cooling, Fermi-I (re)acceleration, and injection, the
CR electron spectrum may experience Fermi-II reacceleration, which is described by
the momentum diffusion terms in equation (4.1) and which increases the energy of the
spectrum. We adopt a typical value for the diffusion time of τpp = 0.2 Gyr in our tests. In
Figure 4.7, we show two simulations with and without cooling for a high resolution of 160
bins per decade for Fermi-II reacceleration. Both simulations start with the same initial
spectrum, which we have taken from a study on Fermi-II reacceleration of CR electrons
by Brunetti and Lazarian (2007). The simulation with cooling approaches a limit for
high momenta where cooling dominates over the reacceleration by the Fermi-II process.
The result of the simulation with cooling matches the reference simulation by Brunetti
and Lazarian (2007) very well. The simulation without cooling shows the main effect
of Fermi-II reacceleration, i.e. diffusion in momentum space and a shift towards higher
particle energies.

Figure 4.5 shows the error scaling of the different simulations with number of bins
per momentum decade. The error is calculated with equation (4.60). However, for the
simulations of freely cooling and momentum diffusion, we compare the result at given
resolution fN to the double resolution, i.e. fana ≈ f2N . The implemented Crank–Nicolson
scheme is only accurate to first order in momentum space as can be seen by the δ ∝ N−1
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Figure 4.8: 1D shock-tube test of a strong shock (M = 8.43, αacc = 2.0) with 200 cells and
100 tracer particles. The left-hand panel shows the gas density profiles together
with the tracer particles on which we evolve the CR electron spectra at different
times. The right-hand panel shows the different total volume integrated thermal
and CR electron spectra and the theoretically expected steady-state spectrum
(dashed), for which we adopt αacc = 2.02 instead of the theoretical value
2.0 to account for the numerical scatter of the shock compression ratio (see
Figure 4.9). We adopt the parameters B = 1 µG and εph = 6 εcmb.

scaling. We consider this result for the Fermi-II reacceleration as a proof of concept.
The improvement of the diffusion operator is straightforward but beyond the scope of this
paper. The simulation of freely cooling and steady state show an error scaling of δ ∝ N−2

which reflects our second-order accurate scheme for advection with a slope limiter.

4.4 Hydrodynamical Simulations

In addition to idealised one-zone tests, we demonstrate that crest works in tandem with
a hydrodynamical code. To this end, we use the second-order accurate, adaptive moving-
mesh code arepo (Springel, 2010; Pakmor et al., 2016c) for simulations with ideal MHD
(Pakmor and Springel, 2013). CR protons are modelled as a relativistic fluid with a
constant adiabatic index of γcrp = 4/3 in a two-fluid approximation (Pfrommer et al.,
2017a). We include Lagrangian tracer particles, which are velocity field tracers (Genel
et al., 2013) and are passively advected with the gas and on which we solve the CR electron
transport equation in post processing on every MHD time step.

To assess the validity of our setup, we investigate two different hydrodynamical scenar-
ios, shock-tube simulations and 3D Sedov–Taylor blast-wave simulations. This enables us
to probe Fermi-I acceleration and reacceleration, cooling and adiabatic processes in more
realistic setups. The CR electron spectrum is calculated in post-processing separately for
every tracer particle and the relevant parameters for the spectral evolution are taken from
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Figure 4.9: Histograms of the compression ratio (left-hand panel) and spectral index (right-
hand panel), which are both normalised to their expected values for three
different 1D shock-tube tests, which use the parameters given in table 4.1.
The histograms account for all tracer particles at all time steps provided they
experience an acceleration event.

Table 4.1: Initial values of our shock-tube setups. The parameters nL = 1 × 10−2 cm−3,
Pth,L = 2.62 × 10−11 erg cm−3 and Pcrp,L/Pth,L = 2 for the left initial state and
nR = 0.125 × 10−2 cm−3 and Pcrp,R/Pth,R = 1 for the right initial state are the
same for all simulations.

Pth,R (erg cm−3) Pth,L/Pth,R M r αacc

1.06 × 10−13 247.0 8.43 4.0 2.0
3.14 × 10−13 23.4 2.74 3.0 2.5
1.89 × 10−12 13.9 2.19 2.58 2.9

the gas cells which contain the tracer particles.

4.4.1 Shock Tubes

First, we perform a series of shock-tube tests (Sod, 1978) in arepo with various shock
strengths. The fluid is composed of gas and CR protons and we take CR acceleration at the
shock in account (Pfrommer et al., 2017a) with CR proton shock acceleration efficiency
of ζcrp = 0.1. In our 1D setups, we use a box with 250 kpc side length and 200 cells. In
addition 100 tracer particles are located in the initial state on the right-hand side. For the
3D simulations, we use a box of dimension 250× 25× 25 kpc with 200× 20× 20 cells and
100×10×10 tracer particles in the initial state on the right-hand side. The tracer particles
initially only contain a thermal electron spectrum. The initial states of the Sod shock-tube
problem are laid down in table 4.1. We vary the thermal pressure Pth,R in order to obtain
a desired Mach numberM and 1D acceleration spectral index αacc, which is a function of
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Figure 4.10: Tracer particle resolution study for 1D shock tubes of a strong shock (left-
hand panel) and a weak shock (right-hand panel). The solid lines display the
simulation with 100 tracer particles, which is for the strong shock identical to
the right-hand panel in Figure 4.8, and the dotted line displays the simulation
with 25 tracer particles. Low-resolution runs show temporary dips, but
generally match the high-resolution runs well.

the shock compression ratio r , i.e. αacc = (r + 2)/(r − 1).
Figure 4.8 shows a 1D shock-tube test of a strong shock (M = 8.43, αacc = 2.0).

The left-hand panel shows the gas density together with the tracer particles for different
snapshots. The right-hand panel shows the thermal and CR electron spectra as a volume
integrated sum of the tracer particle spectra, which have thermal spectra in the initial state.
Except for the initial state at t = 0, we sum up only spectra from those particles that have
already encountered the shock front. Due to the initial inhomogeneity, a shock develops
and propagates into the state on the right-hand side where the first tracer particle crosses
the shock after ∼ 5 Myr. As soon as a tracer particle encounters the shock front, CR
electron acceleration is triggered, i.e. we use a source term of the form Qe(p) ∝ p−αacc in
the transport equation (see equations (4.1) and (4.9)). The CR electron spectra experience
losses due to Coulomb, bremsstrahlung, inverse Compton, and synchrotron interactions
at the same time. Hence, the total spectrum has the form of a self-similar spectrum (see
equation (4.36)).

The spectrum in Figure 4.8 approaches a steady state in the momentum regime, which
has a shorter cooling time in comparison to the time since the first shock encounter. The
total spectrum is similar to our idealised one-zone test, which simulates only one spectrum
that experiences continuous cooling and injection. However, the simulation with arepo
uses many tracer particles which experience acceleration only for limited amount of time
when the particle resides in a shock surface or post shock cell of the hydrodynamical
simulation. This clearly demonstrates that the combination of numerical and analytical
solutions produces an effective, stable and accurate algorithm.

As pointed out before, the spectral index αacc of the accelerated spectrum depends on
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Figure 4.11: Total thermal and CR electron spectra at 100 Myr (black solid lines) and
partial spectra of 100 time intervals since first shock encounter (coloured thin
solid lines) for 1D and 3D shock-tube simulations (top and bottom, respec-
tively) of strong and weak shocks (left- and right-hand panels, respectively).
The theoretically expected steady-state spectrum (dashed) matches the total
spectrum very well. Inverse Compton and synchrotron cooling lead to steeper
spectra for large momenta. Note that Coulomb and bremsstrahlung cooling
is neglected here.

64



4.4. HYDRODYNAMICAL SIMULATIONS

10−2 100 102 104 106 108

normalized momentum p = P/(mec)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

p2
∑ t

V t
f t
(p
)

strong shock, αacc = 2.0

10−2 100 102 104 106 108

normalized momentum p = P/(mec)

10−14

10−12

10−10

10−8

10−6

10−4

10−2

p2
∑ t

V t
f t
(p
)

100 Myr, weak shock, αacc = 2.9

ftot

freac

facc

fini × n1/n2

freac, ana

Figure 4.12: Comparison of direct acceleration (green dotted) and reacceleration (red
dashed) without cooling in 1D shock-tube simulations for a strong and a weak
shock (left- and right-hand panels, respectively). We show the initial relic
spectrum (blue) and the total spectrum after the acceleration event (orange).
The theoretically expected reacceleration spectrum matches the simulation
very well.

the shock compression ratio which is subject to numerical inaccuracies. In Figure 4.9, we
show histograms for ratios of the numerically obtained value of shock compression to its
expected value r/rexp and ratios of the numerically obtained value of spectral index to its
expected value α/αexp for three different shock strengths (or equivalently Mach numbers).
Here, we calculate the shock compression ratio with equation (4.29), which depends on the
Mach number and which is formally only accurate for a single polytropic fluid. However,
this calculation yields better results in comparison to the shock compression ratio directly
calculated by the arepo shock finder. The resulting numerical error for the Mach number
is typically better than one per cent (and deteriorates up to two per cent for weak shocks).

A resolution test of the number of tracer particles is shown in Figure 4.10, which
displays the total spectra for 25 and 100 tracer particles for strong and weak shocks.
The low-resolution spectra can show temporary dips due to poor sampling of the tracer
particles in space, in particular at high momenta. However, low-resolution runs are stable
and reproduce the general result of high-resolution runs. This demonstrates that our code
produces stable and accurate results (only limited by the sampling rate) with respect to a
coarser sampling of the tracer particles than the gas cells.

The total spectrum is a sum of all tracer particle spectra as we show in Figure 4.11.
There, we plot the results of 1D and 3D simulations for strong and weak shocks. Note
that we only consider inverse Compton and synchrotron cooling for clarity. Each panel
shows the total spectrum, the theoretically expected self-similar spectrum, and partial
sums of spectra of 100 equally spaced time intervals since the first shock encounter. Those
particles that have most recently crossed the shock (red lines) experience simultaneously
acceleration and cooling and show a self-similar spectrum. The spectra of those particles
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that have encountered the shock some time ago (orange to purple lines) show an exponential
high-momentum cutoff resulting from the freely cooling CR electron population. The total
spectrum has the slope of the acceleration spectrum for those momenta which have cooling
times longer than 100 Myr, i.e. p . 104 for these setups. At larger momenta, p & 104

, the slope of the total spectrum steepens to αacc + 1 as expected from equation (4.46).
The total spectra for all setups match the theoretically expected self-similar spectra very
well, although slight deviations are visible. These follow from the numerical scatter of
the shock compression ratio in arepo. We note that the computation of the CR electron
spectrum with crest is faster than the hydrodynamical simulation by a factor of about 20
in the 3D shock-tube simulations.

In addition to direct acceleration of primary CR electrons at the shock, a previously
existing non-thermal CR electron population can be reaccelerated at the shock. We show
the resulting spectra for a strong and a weak shock after 100 Myr in Figure 4.12. The
setups are similar to the simulations presented above except for the previously existing
non-thermal relic spectrum and except for the fact that we deactivated CR electron cooling
for clarity here. As soon as a tracer particle encounters the shock, it experiences both,
reacceleration of the initial relic spectrum and direct acceleration of a primary power-law
spectrum. Each panel shows the initial relic spectrum (blue), the total spectrum after the
acceleration event (orange), the directly accelerated spectrum (green dashed line), and
the reaccelerated spectrum (red dashed line). The theoretically expected reaccelerated
spectrum is also shown (black dashed line) and matches the simulated reacceleration
spectrum. The slope of the reaccelerated spectrum in the weak-shock case deviates slightly
from its theoretical expectation because of numerical scatter of the shock compression
ratio (see Figure 4.9).

In the case of a strong shock, the primary accelerated spectrum dominates over the
reaccelerated spectrum, hence the total spectrum is only weaklymodified by reacceleration
(see Figure 4.12). In contrast, the reaccelerated spectrum dominates the total spectrum
for large momenta at weak shocks. This is important for observable signatures such
as, e.g. the flux of radio emission. We note that the relative strength between direct
acceleration and reacceleration depends on the details of shock acceleration, which we
do not resolve with our hydrodynamical simulations. In our setup, we convert a fixed
fraction of the accelerated CR proton energy into CR electrons at the shock which leads to
a larger normalisation for steeper spectra. Other shock acceleration models, e.g. thermal
leakage models (Kang and Ryu, 2011), predict different relative strengths of reacceleration
to direct acceleration.

4.4.2 Sedov–Taylor Blast Wave
In addition to the shock-tube tests we perform simulations of spherical shocks in order to
test acceleration and cooling in tandem with adiabatic CR electron expansion. We setup
a 3D Sedov–Taylor problem with an energy-driven spherical shock which expands into a
mediumwith negligible pressure. We use a symmetric 3D box with 2003 cells, 100 pc side
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length and the following parameters for the initial conditions: The gas number density
of the ambient medium is ngas = 1 cm−3, has a temperature of T = 104 K and a thermal
adiabatic index of γth = 5/3. We inject an initial thermal energy of E0 = 1051 erg into
the central cell. The tracer particles are initially located on a regular Cartesian mesh with
303 grid points of which we excise a small spherical region around the centre. The tracer
particles initially only contain a thermal electron spectrum.

The left-hand panel of Figure 4.13 shows the simulated gas density profile for different
snapshots together with the theoretical solution and the spherically-averaged density of
the tracer particles within concentric shells. As expected for a single polytropic fluid, the
shock radius of the 3D explosion evolves as

rshock(t) =
(

E0
αρ0

)1/5
t2/5, (4.61)

where ρ0 is the ambient mass density and α the self-similarity parameter of the Sedov
(1959) solution. In our simulation, we adopt a CR shock acceleration efficiency of
ζCR = 0.1, which yields an effective adiabatic index γeff = 1.58 and a self-similarity
parameter α = 0.57 (Pais et al., 2018a). We note that the tracer particles experience a
slightly smaller density jump of r ≈ 4 in comparison to the theoretically expected value
of r = 4.45 in this setup due to the narrow density jump of the theoretical solution and the
limited spatial resolution of the hydrodynamical simulation.

The right-hand panel of Figure 4.13 shows the total electron spectrum, where we only
take the spectrum of those particles into account which have already crossed the shock
front except for the initial spectrum with all tracer particles. It is apparent that the total
spectrum is approximately constant for all snapshots at momenta 101 . p . 106 where
the time-scales of Coulomb, inverse Compton, and synchrotron cooling are longer than
our simulation time. This is a consequence of constant kinetic and total energy of the
shock of a Sedov–Taylor blast wave. In the thin-shell approximation, all mass is contained
in a shell of radius rshock that expands with velocity 3post = 23shock/(γeff + 1), which yields
a constant kinetic energy of Ekin = 32πE0/

[
75α(γeff + 1)2] ≈ 0.35E0. A fraction of this

energy goes into CR electrons, and particles that have recently crossed the shock dominate
the spectrum. We note that we obtain robust results for the CR electron spectrum although
the tracer particles are more coarsely sampled than the gas cells by a factor of ∼ 63.
The contribution to the total spectrum of tracer particles at different radii is shown in

Figure 4.14. Red lines represent the radial bin at which only a fraction of tracer particles
experience shock acceleration. Hence, their spectra are subdominant to the total spectrum.
The total spectrum is dominated by particles whose distance to the centre is close the
maximum of the radial gas density profile as they all experience shock acceleration and
have not yet lost energy due to adiabatic expansion. Yellow to purple lines represent
particles which are located towards inner radii and which are effected by cooling due to
adiabatic expansion and non-adiabatic processes. These tests demonstrate that our code
also handles adiabatic expansion together with acceleration and cooling of CR electrons.
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We note that the CR electron spectrum is efficiently calculated with crest, which is faster
than the hydrodynamical simulation by a factor of about 460.

4.5 Conclusions
We have presented our stand-alone post-processing code crest that evolves the spectra
of CR electrons on Lagrangian trajectories spatially and temporally resolved. So far, we
model the spatial CR electron transport as advection with the gas and defer modelling CR
electron streaming and (spatial) diffusion to future work. All important physical cooling
processes of CR electrons are included, i.e. adiabatic expansion, Coulomb cooling, and
radiative processes such as inverse Compton, synchrotron and bremsstrahlung cooling. In
addition to adiabatic compression, we account for non-adiabatic energy gain processes
such as diffusive shock acceleration and reacceleration as well as Fermi-II reacceleration
via particle interactions with compressible turbulence.

The CR electron cooling times at very low and very high momenta are much smaller
than typical time steps in simulations of galaxy formation or the ISM. Hence, we develop
a hybrid algorithm that combines numerical and analytical solutions to the Fokker–Planck
equations such that the resulting code works efficiently and accurately on the MHD time
step. We demonstrate in a number of code validation simulations that the result of our
hybrid algorithm is as good as the fully numerical solution, which is however computa-
tionally considerably more expensive. This hybrid treatment decreases the computational
cost of evolving the CR electron spectrum and renders cosmological simulations with CR
electrons feasible.

crest has been extensively tested in idealized one-zone models and alongside hydro-
dynamical simulations of the arepo code. Idealized one-zone tests demonstrate that
isolated terms of the Fokker–Planck equation are accurately captured with our code. The
arepo simulations show (i) that crest works very well and efficiently together with a
hydrodynamical code at almost negligibly additional computational cost, (ii) that the total
spectrum, which is the sum of singular spectra on tracer particles, evolves as expected,
and (iii) that the spatial sampling of the tracer particles quickly converges with increasing
number of tracer particles. In particular, our results are robust to a coarser sampling of the
tracer particles in comparison to the resolution of our unstructured mesh. Future studies
will show how the spectral properties depend on the spatial sampling rate in more complex
simulations of realistic environments. We note that our algorithm (and code) can in prin-
ciple be combined with every (magneto)hydrodynamical code that has Lagrangian tracer
particles on which the comoving Fokker–Planck equations for the CR electron spectrum
is solved.

The presented method allows studying the evolution of the CR electron spectrum in the
ISM, in galaxies and galaxy clusters as well as for AGN jets in great detail. It enables to
link the non-thermal physics to observables such as γ-ray and radio measurements and to
distinguish leptonic and hadronic emission scenarios. These include SNRs where we can
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gain insight which environmental parameter (mean density, density fluctuations, magnetic
field strength) determines the dominating emission scenario. It will further allow us to
perform self-consistent studies on the evolution of the Fermi bubbles or galactic outflows
in MHD simulations and to test models that rely on star formation or on AGN activity.
This insight will be key for a more profound understanding of the most important feedback
processes during the formation of galaxies. Finally, our code crest will enable us to
self-consistently follow the CR electron spectrum during the evolution of galaxy clusters,
it can possibly help to understand the enigmatic formation scenarios of radio relics and
radio haloes and how they relate to the dynamical state of clusters.
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5 Evolution and Observational
Signatures of the Cosmic Ray
Electron Spectrum in SN 1006

This chapter presents our work publicated in Winner et al. (2020). Supernova remnants
(SNRs) are believed to be the source of Galactic cosmic rays (CRs). SNR shocks accel-
erate CR protons and electrons which reveal key insights into the non-thermal physics
by means of their synchrotron and γ-ray emission. The remnant SN 1006 is an ideal
particle acceleration laboratory because it is observed across all electromagnetic wave-
lengths from radio to γ-rays. We perform three-dimensional (3D) magnetohydrodynamics
(MHD) simulations where we include CR protons and follow the CR electron spectrum.
By matching the observed morphology and non-thermal spectrum of SN 1006 in radio,
X-rays and γ-rays, we gain new insight into CR electron acceleration and magnetic field
amplification. 1. We show that a mixed leptonic-hadronic model is responsible for the
γ-ray radiation: while leptonic inverse-Compton emission and hadronic pion-decay emis-
sion contribute equally at GeV energies observed by Fermi, TeV energies observed by
imaging air Cherenkov telescopes are hadronically dominated. 2. We show that quasi-
parallel acceleration (i.e. when the shock propagates at a narrow angle to the upstream
magnetic field) is preferred for CR electrons and that the electron acceleration efficiency
of radio-emitting GeV electrons at quasi-perpendicular shocks is suppressed at least by a
factor ten. This precludes extrapolation of current one-dimensional plasma particle-in-
cell simulations of shock acceleration to realistic SNR conditions. 3. To match the radial
emission profiles and the γ-ray spectrum, we require a volume-filling, turbulently ampli-
fied magnetic field and that the Bell-amplified magnetic field is damped in the immediate
post-shock region. Our work connects micro-scale plasma physics simulations to the scale
of SNRs.

5.1 Introduction
Supernova remnants (SNR) accelerate particles to TeV energies at their shock fronts via
diffusive shock acceleration (DSA, Krymskii, 1977; Axford et al., 1977; Blandford and
Ostriker, 1978; Bell, 1978a,b) and are believed to be the source of cosmic rays (CR) in our
Galaxy (Reynolds, 2008). The remnant of the type Ia supernova SN 1006, also known as
the Chinese supernova, is an ideal laboratory to study CR acceleration.
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The shell-type remnant has been observed at various wavebands, e.g. in the radio
(Gardner and Milne, 1965; Dyer et al., 2009), infrared (Winkler et al., 2013), optical
(Winkler et al., 2003), X-ray (Winkler and Long, 1997; Bamba et al., 2003; Cassam-
Chenaï et al., 2008; Li et al., 2018) and γ-ray regime (Acero et al., 2010; Abdo et al.,
2010; Condon et al., 2017). It is located approximately 400 pc above the galactic plane
within a distance of 1.45 to 2.2 kpc (Winkler et al., 2003; Katsuda, 2017). SN 1006 shows
a bilateral symmetry (also called bipolar), i.e. it has radio bright limbs in the northeast
(NE) and southwest (SW) which are separated by a dim centre. The location of these
spatially coincide with those in non-thermal X- and γ-rays.

Observationsmadewith theROSATandASCAsatellites showed that theX-ray emission
at the edges of SN 1006 is due to CR electrons which are accelerated at the shock front
and emit synchrotron radiation (Koyama et al., 1995; Willingale et al., 1996). The same
population of CR electrons is responsible for the radio emission. However, the γ-ray
emission could be a result of CR protons inelastically interacting with the ambient gas
(hadronic model) and/or CR electrons scattering off of ambient photons via the inverse
Compton (IC) effect (leptonic model). It has been discussed whether the γ-ray emission
of SN 1006 is predominantly of hadronic (Berezhko et al., 2012; Miceli et al., 2014) or
of leptonic origin (Petruk et al., 2011; Araya and Frutos, 2012; Acero et al., 2015; Xing
et al., 2019).

The observed morphology in radio and X-rays has been discussed in context of the
orientation of the magnetic field and the acceleration mechanism of CR electrons. In the
equatorial-belt model, the magnetic field direction is aligned along the southeast (SE) to
northwest (NW) direction and the CR electron acceleration is isotropic or preferentially
quasi-perpendicular (Fulbright and Reynolds, 1990; Reynolds, 1996; Petruk et al., 2009;
Schneiter et al., 2010). However, this equatorial-belt model of the magnetic field is in
contradiction to the inferred magnetic orientation in radio polarization observations which
suggest a magnetic field aligned along the NE-SW direction (Reynoso et al., 2013). This
problem is resolved by the polar cap model which relies on a magnetic field oriented
along the NE to SW direction and preferentially quasi-parallel acceleration (Völk et al.,
2003). Azimuthal variations of X-ray cutoff frequencies (Rothenflug et al., 2004; Katsuda
et al., 2010) and of the ratio of radii between the forward shock and contact discontinuity
(Cassam-Chenaï et al., 2008) favour the polar cap model. The polar cap model is further
supported by 3D MHD simulations (Bocchino et al., 2011; Schneiter et al., 2015).

The observed synchrotron radiation is an indicator of strong magnetic fields. Analysis
of the thin X-ray synchrotron rims at SN 1006 suggests post-shock magnetic fields of 70
to 200 µG (Ressler et al., 2014). Analysis of the multi-frequency spectrum including the
γ-ray data finds effective (one-zone) magnetic fields of 30 µG in the case of a leptonic
model and 120 µG in the case of a hadronic model for the γ-ray emission (Acero et al.,
2010).

As the remnant SN 1006 evolves in a homogeneous environment high above the galactic
plane, the remnant is surrounded by interstellar magnetic fields of the order of 1 µG.
Therefore, other mechanisms than adiabatic compression of the magnetic fields must be
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responsible for generating effective magnetic fields with B � 10 µG in the downstream of
the shock. First, the non-resonant hybrid instability which is driven by CR protons at the
shock amplifies magnetic fields (Bell, 2004). Studies of amplified fields at SNRs (Pohl
et al., 2005) and at relativistic pair plasma shocks (Chang et al., 2008; Keshet et al., 2009)
show that these fields are quickly damped. Secondly, the interaction of the shock with
small scale density inhomogeneities of the surrounding interstellar medium can drive a
small-scale dynamo which can strongly amplify the magnetic field (Giacalone and Jokipii,
2007; Ji et al., 2016).

The amplification ofmagnetic fields is supported by observations of other SNRs, e.g. the
variability of X-ray hot spots of the SNR RXJ1713.7-3946 is an indicator of magnetic field
amplification up to values larger than 1 mG (Uchiyama et al., 2007). Another example of
highly amplified magnetic fields is the SNRVela Jr (RXJ0582.0-4622). The analysis of X-
ray filaments suggests highly amplified downstream magnetic fields of B & 100 µG which
favors a hadronic model for the observed γ-ray emission (Bamba et al., 2005; Berezhko
et al., 2009). However, a leptonic model with weaker magnetic fields cannot be ruled out
(Tanaka et al., 2011) or is favored if magnetic fields are strongly damped to ∼10 µG in the
downstream of the shock (Sushch et al., 2018).

Here, we study these topics with 3DMHD simulations of the remnant SN 1006 together
with magnetic-obliquity dependent acceleration of CR protons and electrons. We follow
the spectrum of CR electrons spatially and temporally resolved in order to compare
simulations with the observed multi-frequency spectrum and morphology at different
wavebands.

Our work has the following structure. We present our simulation setup in Section 5.2.
Then we present our best-fit model and discuss whether the high energy γ-ray emission is
due to leptonic or hadronic processes in Section 5.3. We continue with the discussion on
obliquity dependent acceleration of CR electrons in Section 5.4 and damping of amplified
magnetic fields in Section 5.5. After that, we discuss the influence of various parameters
onto the spectrum in Section 5.6. We conclude with a discussion of our results in
Section 5.7. Throughout this work, we denote photon energies by E , electron energies
and normalized (dimensionless) momenta by Ee and pe = Pe/(mec), and proton energies
and normalized momenta by Ep and pp = Pp/(mpc). Here, Pe and Pp are the physical
electron and proton momenta in units of g cm s−1, respectively, me and mp are the electron
and proton masses, respectively, and c is the speed of light.

5.2 Simulation Setup

5.2.1 Simulation Codes

We perform 3D MHD simulations with the second-order accurate, adaptive moving-
mesh code arepo (Springel, 2010; Pakmor et al., 2016c) which employs an unstructured
mesh that is defined as the Voronoi tessellation of a set of mesh-generating points. We
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Figure 5.1: Obliquity-dependent electron acceleration efficiency for three base accelera-
tion models. Best fits are produced with the preferred quasi-parallel accelera-
tion efficiency (blue).

account for the transport of CR protons which are treated as a relativistic fluid with an
effective adiabatic index of 4/3 (Pfrommer et al., 2017a). We employ the shock finder
(Schaal and Springel, 2015) which localises and characterises shocks according to the
Rankine–Hugoniot jump conditions and inject CR energy into the Voronoi cells of the
shock and immediate post-shock regime (Pfrommer et al., 2017a). We account for the
dominant advective transport of CR protons and neglect CR streaming and diffusion.
While a combination of adiabatic gains due to the converging flow at the shock and spatial
diffusion (close to the Bohm limit) gives rise to diffusive shock acceleration (Blandford
and Eichler, 1987), we do not resolve the growth of non-resonant Bell (2004) modes of
the hybrid instability in our simulations. In consequence, we describe diffusive shock
acceleration as well as Bell amplification in form of subgrid models detailed below in
Sections 5.2.2 and 5.2.3.

In addition, we follow the evolution of the CR electron spectrum spatially and temporally
resolved in post-processing with the crest code (Winner et al., 2019). CR electrons are
evolved according to the Fokker–Planck equation on Lagrangian tracer particles while
taking adiabatic changes and cooling via Coulomb losses, synchrotron emission, and IC
processes into account. If tracer particles encounter the shock front, we model Fermi-I
acceleration via injecting a fraction of the dissipated thermal energy into a momentum
power-law spectrum with logarithmic slope αe. As a result, we obtain the CR proton
energy density and the CR electron momentum spectrum at every time and at every point
in our 3D simulation domain.
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5.2.2 Magnetic Obliquity-Dependent Acceleration
The efficiency of proton acceleration, for quasi-parallel shocks (withmagnetic field aligned
close to the shock normal) can be up to 10 to 20 per cent of the initial shock kinetic energy,
and the efficiency drops to zero for quasi-perpendicular shocks (Caprioli and Spitkovsky,
2014a), which is a consequence of the effective excitation of the non-resonant hybrid
instability at quasi-parallel shocks that enables efficient CR proton acceleration (Caprioli
and Spitkovsky, 2014b; Caprioli et al., 2015). We thus adopt an acceleration efficiency
for CR protons that depends on the upstream magnetic obliquity θ, the angle between the
shock normal and the upstream magnetic field according to (Pais et al., 2018a)

ζp(θ) =
ζp,max

2

[
tanh

(
θcrit − θ

δ

)
+ 1

]
(5.1)

where ζp,max = 0.15 is the efficiency in quasi-parallel configurations, θcrit = π/4 the
critical obliquity, and δ = π/18 the shape parameter. We define the acceleration efficiency
as the ratio of accelerated CR energy density to the total shock-dissipated energy density,
ζp,e = εCRp,e/εdiss.
Following the algorithm described in Winner et al. (2019), we inject a CR electron

spectrum once a Lagrangian tracer particle crosses the shock and use the parametrized
form of the 1D CR electron momentum spectrum (in units of particles per unit volume)

fe(pe, θ) = Ce(θ)p−αe
e Θ(pe − pinj)

×
[
1 + a

(
pe

pcut

)b
] c

exp

[
−

(
pe

pcut

)2
]
, (5.2)

where we adopt the parameters a = 0.66, b = 2.5, and c = 1.8 and treat the electron
spectral index αe and the (normalized) cutoff momentum pcut as free parameters that we
vary in this work.

The normalisation Ce and injection momentum pinj are calculated for every Lagrangian
particle by attaching the non-thermal power-law spectrum to a thermal Maxwellian. We
require that the energy moment of the distribution function equals the CR electron energy
density,

εCRe = mec2
∫ ∞

0
fe(pe)

[√
1 + p2

e − 1
]

dpe, (5.3)

which we compare to the dissipated energy density at the shock according to our specific
model of obliquity dependent shock acceleration that we describe now.

The acceleration efficiency of CR electrons ζe depends on themagnetic obliquity angle θ

ζe(θ) =
ζe,‖ − ζe,⊥

2

[
tanh

(
θcrit − θ

δ

)
+ 1

]
+ ζe,⊥ (5.4)
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where ζe,‖ is the quasi-parallel acceleration efficiency for θ = 0 and ζe,⊥ is the quasi-
perpendicular efficiency for θ = π/2 (i.e. for 90◦). Ab initio, the functional form of
equation (5.4) is not known. Thus we explore three different models that are motivated by
different lines of physics arguments and confront them to observational data.

One-dimensional (1D) particle-in-cell simulations of non-relativistic, high Mach num-
ber, quasi-parallel shocks (Park et al., 2015) find the onset of acceleration of non-thermal
electrons and protons, in agreement with the predictions of the theory of diffusive shock
acceleration. On the other hand, full particle-in-cell simulations show indications that
electrons may be possibly even more efficiently accelerated at quasi-perpendicular, high-
Mach number shocks (Riquelme and Spitkovsky, 2011; Bohdan et al., 2017; Xu et al.,
2019). The electron acceleration efficiency is 0.1 by energy relative to the downstream
thermal electrons (Xu et al., 2019), which have a fraction of 0.1 of the energy of the
downstream thermal protons (Spitkovsky, private comm.). Combining this, we obtain an
overall acceleration efficiency relative to the dissipated energy of about εCRe/εdiss ≈ 10−2

for quasi-perpendicular strong shocks. By contrast, the electron acceleration efficiency
of quasi-parallel strong shocks is εCRe/εdiss . 10−3 (Park et al., 2015; Xu et al., 2019).
Thismotivates our quasi-perpendicular accelerationmodel, for whichwe assume ζe,⊥ =

10ζe,‖ . This would be the correct model provided we can extrapolate the short simulation
time of physical seconds to the SNR live time of more than 1000 years and provided
there are no multi-dimensional effects that interfere with the extrapolations of these 1D
particle-in-cell simulations. We contrast this model with two alternative models: in our
quasi-parallel acceleration model, we assume ζe,‖ = 10ζe,⊥ and in a third model we adopt
a constant acceleration efficiency, ζe(θ) = ζe,max.
The maximum acceleration efficiency of CR electrons ζe,max = max(ζe,‖, ζe,⊥) is a free

parameter which is set such that a spectral fit to radio data is obtained. We obtain values
of ζe,max < 10−3 which reflect that the ratio of electron-to-proton acceleration efficiency
is ζe,max/ζp,max < 10−2 (Schlickeiser, 2002; Zweibel, 2013). The obliquity dependency
of quasi-parallel, constant, and quasi-perpendicular acceleration models are shown in
Figure 5.1.

5.2.3 Initial Conditions
In order to model the remnant of the Type Ia SN 1006, we inject 1051 erg of thermal
energy into the central cell of a periodic 3D box with 22 pc length. We use two setups, the
first with a resolution of 106 cells for parameter space studies and the second with a high
resolution of 5×106 cells for morphological studies. The cells are distributed in five shells
around the centre and the average cell density per box length decreases from the first to the
last shell as shown in Table 5.1. The centres of the cells are then perturbed by 10 per cent
of the local average cell length before we relax the mesh via Lloyd’s algorithm (Lloyd,
1982) in order to obtain glass-like configurations. We chose a higher cell density in the
centre of our simulation box because of the fast initial adiabatic expansion of this central
region. Tracer particles are initially sampled on positions of the cell centres except for a
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Table 5.1: Resolution per box length (22 pc) in shells from the centre. The low resolution
contains 106 cells and the high resolution 5 × 106 cells.

radius r (pc) low resolution high resolution
3.1 300 300
6.2 200 250
9.3 100 200

12.4 75 150
15.6 50 100

Figure 5.2: Magnetic field morphology in a slice through the centre of our simulated
remnant. The left-hand panel shows the magnetic field strength for turbulent
amplification only, the central panel shows the effect of Bell amplification only,
and the right-hand panel shows the magnetic field strength as result of both,
turbulent and Bell amplification. The maps have a side length of 21 pc or 42.5′
at a distance of 1660 pc.

small exclusion region within a radius 0.55 pc around the centre due to high numerical
noise before the shock has developed numerically over a few cells.

As initial conditions, we adopt a gas number density of n = 0.12 cm−3, ameanmolecular
weight of µ = 1.25, and temperature of T = 5.1 × 103 K. The initial magnetic field is
oriented along the diagonal of the plane of the sky and has an absolute value of B = 1 µG.
This setup leads to an energy driven, spherical shock wave driving into a homogeneous
medium. We ignore the free expansion phase of the remnant as it’s influence onto the final
radius is smaller than 10 per cent (Pais et al., 2018b).

5.2.4 Magnetic Modelling

The magnetic field in the simulation is affected by three physical processes. First, the
adiabatic compression at the shock enhances the magnetic field. However, only the
component perpendicular to the shock normal is amplified by a factor npost/npre where npre
and npost are the pre- and post-shock gas densities, respectively.
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Secondly, we model the effect of a turbulent dynamo that is generated as a result of
the interaction between pre-shock turbulence, clumping and the shock (Ji et al., 2016)
which leads to high post-shock fields. Throughout our work, we multiply the magnetic
field of our MHD solution inside the SNR and behind the shock front by an amplification
factor and refer to an equivalent magnetic field strength instead of the amplified field
(which differs for quasi-parallel and -perpendicular shock morphologies). Hence, a field
of B = 35 µG is equivalent to a turbulent amplification of the post-shock fields by a factor
of 35 for the parallel shock configuration and reaches a field strength of 140 µG for the
perpendicular shock configuration in the equatorial region.

Thirdly, we employ the amplification of magnetic fields via the non-resonant hybrid
instability which is driven by the CR proton current in the pre-shock region (Bell, 2004).
This so called Bell amplification drives strong perpendicular magnetic fields that are
responsible for the efficient acceleration of CR protons (and possibly also CR electrons)
in the quasi-parallel regime. We compute a cell-averaged value of the amplified field with

��Bamp
�� = |B | ( fBell − 1

2

[
tanh

(
θcrit − θ

δ

)
+ 1

]
+ 1

)
(5.5)

which follows the obliquity dependency of CR proton acceleration. We parametrize the
Bell amplification by an amplification factor fBell which can reach values of about 30 (Bell,
2004).

We note that both amplification processes hardly overlap as the Bell amplified fields are
quickly damped in the post-shock region whereas the turbulently amplified magnetic field
starts to build up in the post-shock region as the small-scale dynamo emerges but saturates
only after a finite time and distance from the shock.

Figure 5.2 shows the resulting magnetic morphology in a slice through the centre of
our simulated remnant. In the left-hand panel, the magnetic field is only amplified by
the turbulent dynamo (and by adiabatic compression) to values of B = 35 to 140 µG for
quasi-parallel and -perpendicular geometries, respectively. The shock front encounters
small-scale density inhomogeneities which inject vorticity according to Crocco’s theorem
(1937) that leads to a turbulent cascade and a small-scale dynamo, which amplifies the
post-shock magnetic field. This process saturates if the magnetic energy density reaches
about 10 per cent of the kinetic energy density in the post shock medium (Schekochihin
et al., 2004; Cho et al., 2009; Kim and Ostriker, 2015; Federrath, 2016). In the post-shock
rest frame, the velocity of the post-shock medium is 3 = 3/43s with a shock velocity of
3s ≈ 3000 km/s at 1000 years. Hence the maximum possible value of the turbulently
amplified magnetic field (neglecting adiabatic cooling) is given by

Bmax,turb ≈
√

0.1 × 8π
4µmpn

2

(
3
4
3s

)2
≈ 250 µG, (5.6)

where n = 0.12 cm−3 is the pre-shock density. This is larger than the 140 µG field that our
best-fit model requires in the quasi-perpendicular regions. In the quasi-parallel regions,
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a lower magnetic field of 35 µG is realised as the turbulent dynamo acts on magnetic
seed values that are four times smaller due to the absence of adiabatic compression for
the parallel field geometry, but saturates at the same time as for the quasi-perpendicular
regions. Thus, our magnetic field strengths in the remnant are overall in agreement with
values of 90 µG inferred from the analysis of X-ray filaments in the NE of SN 1006
(Morlino et al., 2010).

In the central panel of Figure 5.2, we show the magnetic morphology for Bell amplifica-
tion only. Bell amplification scales with the magnetic obliquity due to obliquity dependent
acceleration of CR protons as shown in Equation (5.6) such that it steeply declines towards
quasi-perpendicular regions. Due to its small spatial extend at the shock front, the Bell
amplified magnetic field barely influences the cooling of the CR electron spectrum. Note
that the field strengths of approximately 4 µG in the quasi-perpendicular regions are solely
due to adiabatic compression.

The right-hand panel of Figure 5.2 shows the magnetic field as a result of both ampli-
fication processes. As explained before, the magnetic field is dominated by the turbulent
amplification and the Bell-amplified field plays a minor role for the overall magnetic
morphology.

5.2.5 Non-Thermal Radiative Transfer
Non-thermal synchrotron and IC emission is calculated from the simulated CR electron
spectra. We assume an isotropic distribution of pitch angles for synchrotron emission and
follow the analytic approximation by Aharonian et al. (2010). For the IC emission, we
include the Klein-Nishina cross section (Blumenthal and Gould, 1970). In contrast to CR
electrons, the simulations evolve only the energy density of CR protons εCRp. In order to
calculate hadronic γ-ray emission, we calculate a 1D CR proton spectrum of the form

fp(pp) = Cp−αp
p Θ(pp − q) exp

[
−

(
pp

pmax

)2
]
, (5.7)

where αp is the logarithmic momentum slope, q = 0.5 is the minimum momentum, and
pmax = 2.1 × 105 is the (normalized) maximum momentum. The normalisation C is
calculated for every cell such that the energy moment of the distribution function equals
the proton energy density, εCRp = mpc2

∫
fp(pp)[(1 + p2

p)1/2 − 1] dpp. Hadronic gamma
ray emission is then obtained with parametrizations of the cross-section of neutral pion
production at low (Ep,kin < 10 GeV) and high proton energies (Yang et al. 2018; Kafexhiu
et al. 2014, Werhahn et al. in prep.).

The synthetic noise map is based on the noise power spectrum of the excess map of
SN 1006. To detect the noise, we exclude the emission from the NE and SW lobes masking
the original excess map from Acero et al. (2010) with a sharp cutoff calculated taking the
absolute value of the minimum of the excess counts. The power spectrum of SN 1006 is
obtained via a 2D Fourier transform of the masked dataset. We fit the power spectrum
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Figure 5.3: Best-fit multi-frequency spectrum of SN 1006. The CR spectra have spectral
indices of αe = 2.1 for electrons and αp = 1.9 for protons. Important param-
eters are gas density of n = 0.12 cm−3, distance of D = 1660 pc, equivalent
magnetic field of B = 35 µG (as a result of a turbulent dynamo), and Bell
amplification by a factor of 20. The simulated spectrum is compared with
observational data in radio (Reynolds, 1996), X-rays (Bamba et al., 2008), and
in γ-rays from Fermi (Abdo et al., 2010) and HESS (Acero et al., 2010) (sum
of two regions).

with the following function in k-space

P(k) = A exp
(
− k2

2σ2

)
+ Bk−2 (5.8)

where σk is the standard deviation in k-space and the variables A and B determine the
relative strength of the Gaussian and the power-law tail. The fitted power spectrum is con-
verted into a real noise map via 2D inverse Fourier transform and added in postprocessing
to the previously PSF-convolved simulation map.

5.3 Leptonic versus Hadronic Model
In this section, we present our best-fit simulation together with its multi-frequency spec-
trum and maps of radio, X-ray, and γ-ray surface brightness. We compare these to
observations and discuss whether leptonic or hadronic emission is dominating in the high
energy γ-ray regime.

5.3.1 Multi-Frequency Spectrum
In Figure 5.3, we present the multi-frequency spectrum of our best-fit simulation. The
simulation uses a homogeneous gas density of n = 0.12 cm−3, an equivalent magnetic
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Figure 5.4: Morphological comparison of our best-fit simulation with preferred quasi-
parallel acceleration to 1.4 GHz radio data (Dyer et al., 2009) (left column),
to 2 keV to 4.5 keV X-ray data (Cassam-Chenaï et al., 2008) (middle column),
and to HESS γ-ray data above 500 GeV (Acero et al., 2010) (right column).
The top row shows our simulated maps and in the middle row observations
are presented. In the bottom row, we show radial profiles for data in sectors
with opening angle of π/3 aligned parallel and perpendicular to the magnetic
field. Our simulated γ-ray map is convolved with a 2D Gaussian profile with
σ = 0.042◦ similar to the HESS PSF and contains Gaussian noise with the
observed amplitude and correlation structure (as quantified through the power
spectrum where we cut the signal regions). The maps have a side length of
21 pc or 42.5′ at a distance of 1660 pc.
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Figure 5.6: γ-ray maps (E > 500 GeV) of our best-fit quasi-parallel acceleration model.
We compare the leptonic IC emission (left), the hadronic pion-decay emission
(middle) and the total γ-ray emission (right), which is dominated by the
hadronic component. The maps have a side length of 21 pc or 42.5′ at a
distance of 1660 pc.
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5.3. LEPTONIC VERSUS HADRONIC MODEL

field of B = 35 µG, a Bell amplification by the factor 20 at the shock front, a CR electron
spectral index of αe = 2.1, and a maximum CR electron acceleration momentum of
pcut = 3.5 × 107. In our best-fit model, CR electron acceleration is most efficient in quasi-
parallel configurations. We discuss how variations of these parameters or prescriptions
impact the spectrum or the emission morphologies in Sections 5.4 to 5.6.

The radius of our simulated remnant and the observed angular size of 0.5′ yields a
distance to the remnant of D = 1660 pc. We leave the electron acceleration efficiency
ζe,max as a free parameter in order to fit the observed radio data. The spectrum fits the data
very well with an acceleration efficiency of ζe,max = 5 × 10−4. The synchrotron spectrum
has a spectral index of αs = (αe − 1)/2 = 0.55 up to photon energies of E ≈ 10 eV. At
larger photon energies the synchrotron spectrum is sensible to the cooling of the underlying
CR electron spectrum and its cutoff. The dominant electron momentum1 for emission at
synchrotron frequency νs is

pe ≈ 5 × 103
( νs
1 GHz

)1/2 (
B

5 µG

)−1/2
. (5.9)

Hence, the dominant momentum for 1 keV X-rays at 35 µG is pe ≈ 3 × 107 which is close
to the maximal electron acceleration momentum. This explains the synchrotron cutoff at
X-ray energies.

At even larger photon energies, in the GeV to TeV γ-ray range, the photon spectrum
is a combination of leptonic emission from IC and hadronic γ-ray emission from CR
protons interacting with the ambient gas. We assume that the IC emission results from
CRe interactions with three black-body photon fields: the cosmic microwave background
(CMB), an infrared field with TIR = 30 K, and a star light photon field Tstar = 4100 K (see
Section 5.6 for details of the adopted radiation fields). Leptonic emission is dominating
over hadronic emission at Fermi γ-ray energies from 1 to 100 GeV. For photon energies
larger than 100 GeV, the IC spectrum falls off as it is influenced by themaximalmomentum
of the underlying CR electrons. Hadronic γ-ray emission is therefore dominating at very-
high γ-ray energies observed by the High Energy Stereoscopic System (HESS).

5.3.2 Non-Thermal Emission Morphologies
In Figure 5.4, we compare simulated and observed morphology of SN 1006. We present
three simulated surface brightness maps of radio, X-ray, and γ-ray emission (top row)
together with the corresponding images from observations (middle row). Observational
images are rescaled such that the integrated surface brightness corresponds to the spectral
data. In addition, we show radial profiles for regions quasi-parallel and quasi-perpendicular
to the magnetic field (bottom row). Radial profiles are created by selecting sectors of size
1We obtain this formula by replacing the kernel F(E/Ec) in the synchrotron emissivity by Dirac’s δ
distribution at its expectation value E/Ec = 4πmecν/(3eB) ≈ 2.13, e.g. see equation (D1) in Aharonian
et al. (2010).
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π/3 around the magnetic field vector (NE to SW direction) and around the perpendicular
vector to the magnetic field in the plane of the sky (SE to NW direction).

Our simulated radio map (top left panel of Figure 5.4) matches well the observed map
of SN 1006 (mid left panel). It is a combination of single dish observations with the Green
Bank Telescope and interferometric observations with the Very Large Array at 1.4 GHz
(Dyer et al., 2009). The map shows bright polar caps in the NE and SW direction and
regions of low surface brightness in the centre, the NW and SE direction.2 The polar
caps are bright due the efficient acceleration of CR electrons in these regions with quasi-
parallel shock acceleration. Regions with low surface brightness are characterised by an
acceleration efficiency of CR electrons that is smaller by a factor of 10 (see Figure 5.1)
due to the quasi-perpendicular shock morphology.

This comparison is quantified through the radial profiles for the quasi-parallel and quasi-
perpendicular regions (bottom left panel), demonstrating a very good agreement except
for the central regions which show a slightly elevated emission in the observations. After
acceleration at the shock, the CR electrons are advected downstream, cool adiabatically
and suffer radiation losses so that the central region of the remnant experiences low radio
synchrotron surface brightness. Our simulations do not explicitly account for a turbulent
dynamo and may thus underestimate the level of magnetic fluctuations inside the SNR.
There may even be reacceleration of CR electrons at magnetic reconnection sites or by
interacting with the MHD turbulence that counteracts some of the CR electron cooling
processes.

Each polar cap shows two bright spots at an angle of θ ≈ 35◦ that exceed the emission
at the parallel orientation of θ ≈ 0◦. The reason for this is a competition of two effects that
have different azimuthal dependencies. At quasi-perpendicular shock morphologies, the
ambient magnetic field is adiabatically compressed by a factor of four at the shock front and
remains unaltered at quasi-parallel shock morphologies. Our quasi-parallel acceleration
efficiency (see equation 5.4) shows the opposite behaviour and peaks at quasi-parallel
morphologies. It turns out that the adiabatic magnetic field amplification increases faster
with the increasing obliquity angle than the acceleration efficiency decreases, which
results in the particular azimuthal behaviour of the radio surface brightness that is shown
in Figure 5.5.

We draw similar conclusions from the comparison between observation and simulation
of the X-ray surface brightness map (central column of Figure 5.4) for 0.8 keV to 2 keV
photons. The simulated X-ray map (top central panel) has a similar morphology in
comparison to the simulated radio map. Polar caps are visible which are a consequence
of the efficient acceleration of CR electrons in quasi-parallel regions where the magnetic
field is parallel to the shock normal. The emission in the polar caps also peaks at around
an angle of θ ≈ 35◦ away from the magnetic field axis. Regions where the magnetic field
is perpendicular to the shock normal have a lower surface brightness.

The simulated X-ray map shows rims contrary to the simulated radio map where the

2The bright elongated source in the eastern rim is a background radio galaxy (Cassam-Chenaï et al., 2008).
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emitting regions shows a larger extend towards the centre. This is because the CR
electron momentum that emits X-ray synchrotron emission (see equation 5.9) is close to
the maximum acceleration momentum pcut = 3.5 × 107. These CR electrons cool fast by
means of synchrotron emission in strong magnetic fields and by adiabatic expansion as the
SNR expands. Therefore, the spectrum at electron momenta relevant for X-ray emission
plummets towards the centre. Strong non-thermal X-ray emission is therefore only present
at the shock front where CR electrons are freshly accelerated to the X-ray synchrotron
emitting momentum. The simulated X-ray map matches the observed X-ray map (middle
centre panel of Figure 5.4)which is processed fromChandra observations (Cassam-Chenaï
et al., 2008). The radial profiles (bottom centre panel) show again excellent agreement
between simulation and observation in quasi-parallel and quasi-perpendicular regions.

In the right column, we compare simulation and observation in the γ-ray band above
Eγ > 500 GeV. The simulated γ-ray map (top right panel of Figure 5.4) is a sum of
leptonic and hadronic γ-ray emission. The map is convolved with a 2D Gaussian profile
with σ = 0.042◦ similar to the HESS point spread function (PSF).3 In addition, we
add Gaussian noise with the observed amplitude and correlation structure (as quantified
through the power spectrum where we cut the signal regions). The map shows two bright,
elongated emission regions tracing out a quasi-parallel shock morphology. These regions
spatially coincide with those in the radio and X-ray. However, no emission is visible in
the centre and in the quasi-perpendicular regions in contrast to the radio and X-ray maps.
The morphology of the simulated γ-ray map matches that of the observed map (middle
right panel of Figure 5.4). Observations were made with HESS and analysed by Acero
et al. (2010). The radial profiles (bottom right panel) show very good agreement between
our simulation and the observation.

In Figure 5.6, we show the γ-ray maps of leptonic and hadronic emission as well as the
sum of both processes. Leptonic emission (left panel) results from IC interactions with
three photon fields, of which the IC emission fromCMB photons is dominant. IC emission
produces thin rims in the quasi-parallel regions where the CR electron efficiency is at its
maximum. There are tails of IC emission parallel to the magnetic field towards the centre
because the CR electron spectrum is less affected by synchrotron cooling in comparison to
the regions of larger obliquity angles where the magnetic field is compressed adiabatically.
In our model, quasi-perpendicular regions do not shine via IC emission as the CR electron
acceleration efficiency there is lower by a factor of 0.1 in comparison to the quasi-parallel
region.

Hadronic emission (centre panel of Figure 5.6) is calculated from the decay of neutral
pions resulting from the interaction of CR protons with the protons of the gas. CR protons
are accelerated efficiently in quasi-parallel regions whereas the efficiency drops to zero
for quasi-perpendicular regions. Therefore, hadronic processes produce extended, bright
polar caps in γ-rays. There is no hadronic γ-ray emission towards the centre as CR protons

3The HESS PSF has a 68 per cent containment radius of R68 = 0.064◦ (Acero et al., 2010). This
corresponds to σ ≈ R68/1.515 for a 2D Gaussian profile (Stycz, 2016).
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cool adiabatically and the target gas density is decreasing as a power law in radius.

5.4 Obliquity-Dependent Acceleration
In the previous section, we have presented a simulation with preferred quasi-parallel
electron acceleration which matches the multi-frequency spectrum and the morphology
of SN 1006. Because there is still an ongoing debate whether CR electrons can be
efficiently accelerated in quasi-perpendicular or quasi-parallel configurations, we show
that alternative acceleration scenarios are not able to reproduce the observed morphology.
In the following, we critically compare our quasi-parallel accelerationmodel to simulations
with constant, i.e. obliquity independent, and preferred quasi-perpendicular acceleration
of CR electrons. However, in all cases, CR protons are accelerated in quasi-parallel
configurations (Caprioli and Spitkovsky, 2014a). For reference, the obliquity dependent
acceleration efficiencies are presented in Figure 5.1.

5.4.1 Quasi-Parallel Acceleration Efficiency
As explained in Section 5.3, Figures 5.3 and 5.4 show the total multi-frequency spectrum
and the emission maps of SN 1006 and demonstrate that overall this model provides a very
good quantitativematch to the observations while there are differences in detail. We expect
that the inclusion of more realism in the simulations will also model these small-scale
feature. In particular, including density fluctuations and small-scale interstellar turbulence
so that the interaction with the shock produces a turbulent dynamo and magnetic field
fluctuations may produce the observed patchy radio morphology and ripples in the shock
surface. This could then explain the appearance of several shocks in projection in the
X-ray surface brightness map. The same effect may then also slightly reduce the IC flux
and improve the fit in the Fermi band. Finally the asymmetry of the elongated γ-ray
emitting regions being brighter in the North and dimmer in the South could originate from
a large-scale gradient that boosts the hadronic pion-decay flux relative to the Southern
counterpart (Pais & Pfrommer in prep.).

5.4.2 Constant Acceleration Efficiency
Figure 5.7 shows the non-thermal emission maps of the simulation with constant accel-
eration efficiency (top row), observations (mid row), and radial profiles (bottom row) in
the radio (1.4 GHz), X-ray (0.8 keV to 2 keV), and γ-ray band (E > 500 GeV). The sim-
ulation with constant acceleration efficiency uses the same parameters as before with one
exception: to fit the multi-frequency spectrum to the radio data points, we need to adopt
an electron acceleration efficiency of ζe,max = 2 × 10−4. It is apparent that the simulated
radio and X-ray surface brightness maps have bright regions in the SE and NW which
do not match those of the observations. Radial profiles illustrate this mismatch. On the
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Figure 5.7: Morphological comparison of our simulation with a constant, i.e. obliquity
independent, acceleration; details as in Figure 5.4. The leptonic synchrotron
emission in the radio andX-rays does not match the observations in these bands
(Dyer et al., 2009; Cassam-Chenaï et al., 2008). The simulated γ-ray map is
dominated by the hadronic emission and in agreement with HESS observations
(Acero et al., 2010). The maps have a side length of 21 pc or 42.5′ at a distance
of 1660 pc.
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Figure 5.8: Morphology of the simulations with preferred quasi-perpendicular acceler-
ation efficiency of CR electrons; details as in Figure 5.4. The leptonic syn-
chrotron emission in the radio and X-rays does not match the observations in
these bands (Dyer et al., 2009; Cassam-Chenaï et al., 2008). The simulated
γ-ray map is dominated by the hadronic emission and in agreement with HESS
observations (Acero et al., 2010). The maps have a side length of 21 pc or
42.5′ at a distance of 1660 pc.
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contrary, the simulated γ-ray surface brightness map is in agreement with observation as
the emission is dominated by CR protons which are accelerated at quasi-parallel config-
urations. A rotation of the magnetic field by 90◦ in the plane of sky cannot resolve the
mismatch in radio and X-ray as it would lead to a mismatch in the γ-ray maps.

5.4.3 Quasi-Perpendicular Acceleration Efficiency
Figure 5.8 shows the non-thermal emissionmaps of the simulationwith quasi-perpendicular
acceleration (top row), observations (mid row) and radial profiles (bottom row). The simu-
lation with quasi-perpendicular acceleration efficiency uses the same parameters as before
with one exception: to fit the multi-frequency spectrum to the radio data points, we need to
adopt an electron acceleration efficiency of ζe,max = 2 × 10−4. This acceleration scenario
again leads to bright radio and X-ray regions in the SE and NWwhich are in disagreement
with observations. However, there is an agreement for the γ-raymaps which are dominated
by hadronic emission.

These two alternative obliquity dependencies for CR electron acceleration, i.e. constant
and quasi-perpendicular, cannot reproduce the observed morphologies of SN 1006. This
favours the preferred quasi-parallel acceleration of CR electrons.

5.5 Amplification and Damping of Magnetic Fields
In this section, we demonstrate the case for volume-filling strong magnetic fields, poten-
tially amplified by a turbulent dynamo, in order not to overproduce the γ-ray data points.
In addition to these volume-filling magnetic fields in the post shock region, we model
the amplification of magnetic fields via the non-resonant hybrid instability driven by CR
protons in the upstream region close to the shock. These amplified magnetic fields decay
due to strong ion-neutral collisional damping. In this section, we explain the influence of
these fields and draw phenomenological conclusions on their damping length scale.

5.5.1 Turbulent Magnetic Amplification
As shown in Section 5.3, we obtain good agreement of the simulated multi-frequency
spectrumwith observations if there is a volume-filling amplifiedmagnetic field (turbulently
amplified fields) with an equivalent strength of B = 35 µG and if the field is additionally
amplified on a short range by a factor of 20 directly at the shock via the non-resonant
hybrid instability (Bell-amplified fields). In order to distinguish between the observational
signatures of the different amplification processes, we first show simulations without any
(volume-filling) turbulently amplified magnetic fields and present simulations in which
the Bell-amplified magnetic fields persist on a long range, i.e. they decay adiabatically
with B = (n/ns)Bamp because the amplified Alfvén wave field is purely transverse to
background magnetic field (and as such to the shock normal for parallel shocks). Here,
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Figure 5.9: Multi-frequency spectra of models with short-range (sr) and long-range (lr)
Bell-amplified magnetic fields. The spectrum in the γ-ray regime is a sum of
IC emission (dotted) and hadronic γ-rays (not shown). The blue lines represent
our best-fit model with volume-filling field (as result of a turbulent dynamo)
and short range Bell-amplified fields. Orange and green lines represent models
with typical ISM magnetic fields with long-range Bell-amplified magnetic
fields but without a volume-filling amplification by a turbulent dynamo.

n denotes the current number density, ns is the number density at the shock front, Bamp
denotes the Bell-amplified magnetic field at the shock.

Figure 5.9 compares the multi-frequency spectra of our best-fit (blue lines) to models
with long-range Bell-amplified magnetic fields (orange and green lines). The models
with long-range magnetic fields include typical values of the large-scale ISM magnetic
field. A long-range Bell amplification by a factor fBell = 40 together with an ISM
field of 1 µG (orange lines) leads to an overproduction of γ-ray emission as a large CR
electron acceleration efficiency of ζe,max = 2.2 × 10−3 is required in order to reproduce
observational radio data. A larger ISM field of 3 µG together with long-range Bell-
amplified fields by a factor a factor fBell = 25 has a lower γ-ray emission that is close to
observational γ-ray data (ζe,max = 8 × 10−4).

Although this model with long-range Bell-amplified magnetic fields reproduces the
observed multi-frequency spectrum fairly well it clearly fails to reproduce the observed
morphology which is shown in Figure 5.10. As before, we show simulations (top row),
observations (middle row), and radial profiles (bottom row) for the radio (left column),
X-ray (central column), and γ-ray band (right column).
The simulated radio map (top left panel of Fig. 5.10) has two polar caps which are

brighter and more confined in comparison to our best-fit simulation with short-range Bell-
amplified magnetic fields in Figure 5.4. This is due to the sustained amplified magnetic
fields which dramatically increase the synchrotron luminosity at radio frequencies. Al-
though we chose an CR electron maximal acceleration efficiency to be ζe,max = 8 × 10−4

90



5.5. AMPLIFICATION AND DAMPING OF MAGNETIC FIELDS
si

m
u

la
ti

o
n

radio (1.4 GHz) X-ray (0.8− 2.0 keV) γ-ray (E > 500 GeV)

ob
se

rv
at

io
n

0 5 10 15 20

radius (arcmin)

0.00

0.02

0.04

0.06

0.08

0.10

J
y

a
rc

m
in
−

2

ra
d

ia
l

p
ro

fi
le

0 5 10 15 20

radius (arcmin)

0

1

2

3

p
h
.

cm
−

2
s−

1
a
rc

m
in
−

2

×10−4

obs. ‖
sim. ‖
obs. ⊥
sim. ⊥

0 5 10 15 20

radius (arcmin)

0

1

2

3

p
h

.
s−

1
cm
−

2
a
rc

m
in
−

2

×10−15

0

1

2

3

4

J
y

a
rc

m
in
−

2

×10−2

0

1

2

3

4

J
y

a
rc

m
in
−

2

×10−2

0.0

0.5

1.0

1.5

2.0

2.5

p
h
.

cm
−

2
s−

1
a
rc

m
in
−

2

×10−4

0.0

0.5

1.0

1.5

2.0

2.5

p
h
.

cm
−

2
s−

1
a
rc

m
in
−

2

×10−4

0

1

2

3

p
h

.
s−

1
cm
−

2
a
rc

m
in
−

2

×10−15

0

1

2

3

p
h

.
s−

1
cm
−

2
a
rc

m
in
−

2

×10−15

Figure 5.10: Morphology of simulations with a long-range Bell-amplified magnetic
field that decays in proportion to the adiabatic expansion of the gas,
B = Bampn/nshock (because of its transverse polarization). The radio, X-
ray, and γ-ray morphologies are in disagreement with observations. The
maps have a side length of 21 pc or 42.5′ at a distance of 1660 pc.
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maps (right) for different decay models of the Bell-amplified magnetic field
via plasma effects. The model of instantaneous damping (orange solid) is our
best-fit model and is in agreement with observations. Other models assume
B = (n/nshock)δBamp.

such that the simulated spectrum fits the radio data, the radial profile (bottom left of
Fig. 5.10) shows a clear mismatch to the radio observations. This is a consequence of the
fast synchrotron cooling of CR electrons in the strong magnetic fields so that the central
regions of the simulated remnant are devoid of radio emission.

The simulated X-ray map (top centre panel of Fig. 5.10) has a similar morphology in
comparison to the simulated radio map. It shows bright polar caps that are significantly
wider than the observed X-ray rims (mid centre panel). In addition, the simulated γ-ray
map (right column) is in disagreement with observations and fill in the central parts of
SN 1006 unlike the HESS observations. Leptonic γ-rays are contributing significantly
to the emission at E ≈ 500 GeV because the small volume of the radio-emitting regions
require a larger CR electron acceleration efficiency in comparison to our best-fit model
with short-range Bell-amplified fields.

We therefore conclude that a volume-filling magnetic field, potentially amplified by
a turbulent dynamo, is necessary in order to reproduce the observed multi-frequency
spectrum and morphology.

5.5.2 Magnetic Amplification via the Bell Instability

As shown before, we obtain good agreement of the simulated multi-frequency spectrum
with observations if magnetic fields are amplified by a factor of 20 directly at the shock
and decay immediately behind it. To determine the sensitivity of the non-thermal emission
maps on the phenomenological model of the magnetic field decay, we present simulations
in which the amplified magnetic fields decay significantly slower and adopt a scaling with
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the gas density according to

B =
(

n
ns

)δ
Bamp, (5.10)

where δ is the damping parameter.
Figure 5.11 shows multi-frequency spectra (left) and radial profiles of the radio maps

(right) for our best-fit model with instantaneous damping and three models with different
decay parameters δ. It is evident, that only the simulation with instantaneous damping
of amplified magnetic fields shows good agreement with the observed multi-frequency
spectrum and the radial profile. Larger decay parameters lead to an increasing X-ray and
γ-ray emissivity because CR electrons suffer strong cooling losses on shorter timescales.
However, these simulations significantly deviate from observed profiles.

We therefore conclude that amplified magnetic fields driven by CR proton current at the
shock have to decay on a very short length scale close to our discretized Voronoi cell size
at the shock (corresponding to 100 gyroradii for TeV particles) and cannot be sustained
for a long time in the post shock region.

5.6 Parameter Dependencies
The multi-frequency spectrum is influenced by several parameters. We first study the
dependence of the spectra on different CR proton and electron spectral indices. Secondly,
we present spectra for varying equivalent magnetic field strengths (possibly as a result of
turbulent amplification), Bell amplification factors, maximum acceleration momentum.
Finally, we study the influence of ambient photon fields and gas densities.

5.6.1 Spectral Index of CRs
Figure 5.12 shows the total (solid lines) and hadronic (dashed lines) high energy γ-ray
spectra for CR proton spectral indices of αp = 1.9, 2.0, and 2.1. We use a maximum CR
proton momentum of pmax = 2.1 × 105 for αp = 1.9 and pmax = 4.2 × 105 for the latter
two indices (see equation 5.7). We adopt our best-fit leptonic spectrum with a CR electron
spectral index of αe = 1.9 (see Figure 5.3) to calculate the total spectrum. The hadronic
spectrum for αp = 1.9 agrees best with the observed data, which is especially visible for
the first Fermi data point (at ≈ 3 GeV) and for the HESS data points above 1 TeV. A
steeper proton spectral index leads to an overestimate of the γ-ray flux at GeV energies
and at the same time to an underestimate at TeV energies. Hence, we use the best fitting
value of αp = 1.9 for further analysis of the spectrum.

We show the influence of the CR electron spectral index αe in Figure 5.13. Other
parameters such as the equivalent magnetic field of B = 35 µG, the amplification factor
of 20, and the maximum acceleration momentum of pcut = 3.5 × 107 remain fixed. The
left-hand panel of Figure 5.13 shows the multi-frequency spectrum. For clarity, we show
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Figure 5.12: Total γ-ray spectra (solid lines) and hadronic γ-ray spectra (dashed lines)
with different CR proton spectral indices αp are compared to Fermi and
HESS data. A best-fit to observational data is given for a CR proton spectral
index of αp = 1.9.

Figure 5.13: Multi-frequency spectra (left) and CR electron spectra (right) for different
CR electron spectral indices αe. The multi-frequency spectra show only the
leptonic emission and use only CMB photons for the IC calculation. Semi-
transparent lines show the results using a maximal electron acceleration
efficiency of ζe,max = 10−3 and opaque lines show spectra where ζe,max is
chosen such that they are in agreement with observational radio data.
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only the IC spectrum on CMB photons in the γ-ray range. The panel on the right hand
side shows the total volume-weighted CR electron spectrum. Semi-transparent lines
show the result for a fixed CR electron acceleration efficiency of ζe,max = 10−3 in both
panels. Opaque lines show the same model, however with a renormalised CR electron
acceleration efficiency such that the spectral radio data is fit. Acceleration efficiencies
ζe,max of renormalised spectra are 5.1 × 10−3 for αe = 2.0, 5.4 × 10−3 for αe = 2.1, and
7.0 × 10−3 for αe = 2.2.

In the following discussion, we refer to opaque lines with floating acceleration efficiency
thus ensuring a match to radio data. A CR electron spectral index of αe = 2.0, which is
the test-particle limit of DSA theory, leads to an overestimate of the γ-ray flux at energies
of 10 to 100 GeV. Therefore a larger spectral index αe > 2.0 is necessary in order to
produce an agreement with γ-ray data. However, a spectral index of αe = 2.2 leads to an
underestimate of X-ray data which cannot be compensated by having a larger acceleration
momentum pcut because of the different spectral shape. Hence, a spectral index of αe = 2.1
is our best fit which produces results compatible with X-ray and γ-ray data.
We have shown the influence of the CR electron and proton spectral index on the

spectrum and that a good agreement with observations is obtained with the spectral
indices αe = 2.1 for electrons and αp = 1.9 for protons. We use these two best-fit values
throughout the rest of our parameter study.

There are several mechanismswhich potentially lead to spectral indices that are different
from the canonical value of α = 2 in the test-particle limit of diffusive shock acceleration
(DSA) and to slight deviations of the electron and proton spectral indices. First, accelerated
CRs provide a pressure component in addition to thermal pressure that changes the shock
structure which is referred to as non-linear DSA (e.g. Eichler, 1979; Bell, 1987; Amato and
Blasi, 2005; Reynolds, 2008). The incoming flow is gradually decelerated in a dynamical
precursor that is generated by CRs diffusing ahead of the shock. A thermal subshock
remains but the overall compression ratio from far upstream to downstream is increased.
Low energetic particles, i.e. CR electrons and CR protons with small momenta, obtain
a softer spectral index by experiencing a weaker shock. Particles with greater particle
energies have a longer mean free path between scattering events and are able to experience
the larger compression ratio. Second, the spectral index of accelerated particles in DSA
depends on the escape probability (Bell, 1978a) which can be estimated with the diffusive
spatial transport (Kirk et al., 1996; Lazarian and Yan, 2014). It is found that the spectral
index follows the relation α = 3r/(r − 1) × [1 + (1 − β)/r] − 2 where r is the shock
compression ratio and β determines the diffusive transport via the relation 〈∆x2〉 ∝ tβ.
Standard diffusionwith β = 1 givesα = 2 but anomalous transport in turbulent fields yields
different diffusion schemes and different spectral indices (Duffy et al., 1995; Lazarian and
Yan, 2014). Third, the spectrum of accelerated particles at SNRs can be steepened by
geometric and time-dependent processes (Malkov and Aharonian, 2019) or non-local
processes associated with changes of the magnetic field orientation along the shock front
(Hanusch et al., 2019). Fourth, accelerated CRs self generate electric and magnetic fields
which lowers the energy of the CRs and thereby modifies the spectrum (Zirakashvili and
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Figure 5.14: Multi-frequency spectra (left) and CR electron spectra (right) for different
equivalent magnetic fields and Bell amplification factors (top row) and for
different maximal acceleration momenta pcut of CR electrons (bottom row).
The acceleration efficiency is chosen such that the spectra fit observed radio
data.

Ptuskin, 2015; Osipov et al., 2019; Bell et al., 2019), potentially in a way that is different for
electrons and protons (Bell et al., 2019). Fifth, the inclusion of higher-order anisotropies
of the CR spectrum near to shock shows that the spectral index changes as a function of
magnetic obliquity and shock velocity (Bell et al., 2011; Takamoto and Kirk, 2015).

5.6.2 Magnetic Amplification and Maximum Momentum

We move on to study the influence of magnetic amplification and maximum CR electron
momentum on the spectrum. In the following, we always refer to spectra that are obtained
with a free floating CR electron acceleration efficiency ζe,max such that a fit to spectral
radio data is obtained.

The top row of Figure 5.14 shows how different equivalent magnetic fields and Bell
amplification factors fBell shape themulti-frequency spectrum (left) andwhichCR electron
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Figure 5.15: Best fit multi-frequency spectra (left) and parameter space (right) that is
spanned by an equivalent magnetic field (x-axis), Bell amplification factor
(y-axis), and maximum CR electron momentum (insets). The colour bar on
the right hand side indicates the quality of fit to X-ray data in terms of the
residual sum of squares (RSS). The RSS values are calculated in logarithmic
space. Hatched parameter combinations indicate that simulations produce
high γ-ray emission exceeding 2.5σ uncertainties of observational data. This
motivates our choice of 35 µG and a Bell amplification factor 10 for our
best-fit model.

spectrum (right) is necessary to fit the radio data. For clarity, themulti-frequency spectrum
only contains the leptonic spectra together with the IC emission onCMBphotons. A strong
magnetic field leads to fast cooling CR electrons such that the synchrotron spectrum is
reduced at photon energies E & 10 eV while extending its tail to a slightly larger energy
as can be seen in the left-hand panel. The orange lines representing simulations with a
40 µG field deviate at lower energies from the synchrotron power law in comparison to the
blue lines representing simulations with a 20 µG field. The Bell amplification factor has
only a minor influence on the synchrotron spectrum because these Bell-amplified fields
are constrained to a small volume at the shock front. The acceleration efficiencies ζe,max
are 1.3 × 10−2 for the 20 µG equivalent field and 4.3 × 10−3 for 40 µG.
The top right panel of Figure 5.14 shows that the CR electron spectrum of the 40 µG

simulation (orange line) is lower than that of the 20 µG (blue line) because a largermagnetic
field requires a lower CR electron acceleration efficiency in order to fit observed radio
data. This results in a lower CR electron spectrum which implies a lower IC emissivity
as can be seen in the left-hand panel. Consequently, low magnetic fields with larger CR
electron acceleration efficiencies are excluded because they overestimate the high-energy
γ-ray spectrum.
The bottom row of Figure 5.14 shows the influence of the maximum acceleration

momentum pcut of CR electrons. The panel on the left-hand side shows the multi-
frequency spectrum while the right-hand side shows the CR electron spectrum. Note that
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while we fix pcut for a given simulation, the effective spectral cutoff of our Lagrangian
particles is dynamically evolving due to adiabatic processes and cooling losses so that the
final cutoff of the total spectrum is a superposition of all individually transported spectral
cutoffs. It is apparent that themaximum accelerationmomentum is important for obtaining
an agreement with spectral X-ray data. A too small maximum acceleration momentum
underestimates the synchrotron spectrum at X-ray energies whereas a too large value leads
to an overestimate. The cooling of the CR electron spectrum due to synchrotron and IC
losses cannot compensate a too large maximum acceleration momentum because it leads
to flattening of the synchrotron spectrum rather than a cutoff as suggest by the data.

We have shown, that the value of the turbulently amplified magnetic field, the Bell
amplification factor, and the maximum acceleration momentum are essential for obtaining
a multi-frequency spectrum that is in agreement with observations. We now extend our
study to a larger parameter space of these values considering now hadronic γ-rays as well.
Figure 5.15 shows the result of this study for the best-fit values of the spectral indices
αp = 1.9 for CR protons and αe = 2.1 for electrons. The panel on the left-hand side shows
the three best model which are in agreement with observations. Solid lines represent
the total spectrum while dotted and dashed lines show the leptonic and hadronic γ-ray
spectrum, respectively. The right-hand panel of Figure 5.15 shows the residual sum of
squares (RSS) at X-ray energies in the parameter space of magnetic field and amplification
factor indicated by the colours from yellow (good fit) to purple (bad fit). The RSS values
are calculated with the logarithmic spectral values as they span an order of magnitude.
For each combination of equivalent magnetic field and Bell amplification factor, we report
the best-fit value of the maximum acceleration momentum of CR electrons. Hatched cells
represent parameter combinations that overproduce the spectrum at γ-ray energies, i.e. a
total spectrum exceeding 2.5σ of at least one Fermi or HESS data point.

The parameter combination of an equivalent magnetic field of B = 35 µG, a Bell
amplification factor of 20, and a maximum acceleration momentum of pcut = 3.5 × 107

produces the best agreement with X-ray data while being compatible with γ-ray data. By
construction, they also fit radio data. We note that there is some degeneracy between
these values as well as other parameters, e.g. density, explosion energy and CR spectral
index. Hence, slightly different combinations might result in similar agreement with
observational data. However, certain ranges of magnetic fields strengths can be excluded
because they either overestimate γ-ray data, e.g. combinations of a low magnetic fields
and a large acceleration efficiency (see Figure 5.14), or they underestimate X-ray data due
to fast cooling of CR electrons in strong magnetic fields. We conclude that volume-filling
magnetic fields of B ≈ 35 µG (possibly amplified through a turbulent small-scale dynamo)
produce a good agreement with observations.

5.6.3 Ambient Photon Field and Density
We have discussed how the magnetic field indirectly influences the IC spectrum via the
CR electron acceleration efficiency. We now discuss the direct influence of radiation fields
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on the IC spectrum. Figure 5.16 shows the high energy γ-ray spectrum in the left-hand
panel for three different photons fields which are shown in the right-panel together with the
interstellar radiation field models at different locations in the Milky Way. The blue lines
represent the spectrum that is obtained by fitting three black body spectra to the radiation
field at the solar radius. Orange and green lines represent variations where nIR is given by
0.3 nIR,� and 0.1 × nIR,�, respectively. It is apparent that an infrared field similar to that
of the solar radius leads to large total γ-ray spectrum (blue lines, left) exceeding γ-ray
data from Fermi and HESS. The contribution of the IC spectrum produced by interaction
of CR electrons with starlight photons is negligible as it is suppressed due to the Klein-
Nishina effect. Lower infrared fields with nIR . 0.3× nIR,� (orange, green) lead to a good
agreement of the the total γ-ray spectrum with observations.

Finally, we explain the influence of ambient gas density onto the gamma-ray spectrum.
Figure 5.17 shows the total γ-ray spectrum (solid lines) together with the hadronic γ-ray
spectrum (dashed lines) for a fixed distance of 1660 pc to the remnant (left) and for a
fixed angular size of 0.5◦ (right). The panel on the left-hand side shows the direct effect
of a reduced target proton density for hadronic γ-ray production because it is directly
proportional to the ambient gas density. Hence, the simulation with a low number density
of n = 0.05 cm−3 (blue lines) underestimates the γ-ray flux for E & 1 TeV whereas
the simulation with a high number density of n = 0.2 cm−3 (green lines) leads to an
overestimate.

However, we cannot choose the density as a free parameter and must also take into
account the size of the remnant which is larger for lower densities. The radius of the
remnant in the adiabatic phase evolves with

R ∝
(

ESNt2

n

)1/5
(5.11)

according to the Sedov–Taylor solution where ESN is the SNR explosion energy. If we
fix the angular size of the SNR to the observed solid angle, the distance D has to scale in
proportion with the radius. Consequently, the spectrum is influenced and scales according
to

dΦ
dE
∝ D−2 ∝ n2/5. (5.12)

This is shown in the right-hand panel of Figure 5.17, where a low (high) density leads to an
even stronger underestimate (overestimate) of the γ-ray spectrum. The resulting distances
are given in the plot.

Our best fit value n = 0.12 cm−3 for the ambient density is well within the statistical and
systematic uncertainties of the observations. Analysis of the SE rim with XMM-Newton
yields post-shock densities from npost = 1.44+0.10

−0.11 to 1.99+0.4
−0.17 cm−3 with the larger values

arising due to CR shock modification and a pre-shock density of npre ≈ 0.04 cm−3 (Miceli
et al., 2012) which is in agreement with npre = 0.05 cm−3 obtained by Acero et al. (2007).
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Comparable results are inferred from Chandra data which show that the pre-shock density
is npre = 0.045+0.049

−0.020 cm−3 (Winkler et al., 2014). Higher densities are found in the western
part of the SN 1006 where the remnant interacts with an atomic cloud in the SW and an
Hα-bright cloud in the NW. In the NW, analysis of Spitzer data gives a post-shock density
of npost = 1.4 ± 0.5 cm−3 which yields a pre-shock density of npre = 0.35 ± 0.125 cm−3

using a standard shock compression ratio of four (Winkler et al., 2013). In the SW, analysis
of of X-ray data yields 0.3 cm−3 to 0.5 cm−3 for the pre-shock density (Miceli et al., 2014;
Miceli et al., 2016).

5.7 Discussion and Conclusion
We have performed 3D MHD simulations of the remnant of SN 1006 with CR proton
and electron physics which includes the spatial and temporal evolution of the CR electron
spectrum. We account for leptonic emission processes, i.e. synchrotron and IC emission,
and hadronic γ-ray emission, and present multi-frequency spectra and non-thermal emis-
sion maps in the radio, X-ray, and γ rays. We model the magnetic obliquity dependent
CR proton acceleration following results of hybrid particle-in-cell simulations of Caprioli
and Spitkovsky 2014a). In addition, we study different models of obliquity dependent CR
electron acceleration (some of which are also inspired by recent particle-in-cell simula-
tions) and explore the influence of various model parameters on the maps and non-thermal
emission spectra.

Our main conclusions are summarised here.

• Because our simulations lack the dynamic rage to fully resolve a turbulent dynamo
caused by small-scale density fluctuations in the interstellar medium, and our model
of the CR physics precludes the excitation and growth of the non-resonant hybrid
instability (Bell, 2004), we model these processes in form of a subgrid model. To
this end, we evoke a turbulent dynamo (or a similar plasma process) behind the
shock to generate a volume-filling magnetic field inside the SNR with values of
B = 35 µG (B = 140 µG) in the quasi-parallel (quasi-perpendicular) regions. In this
best-fit model, we additionally account for the amplification of magnetic fields by
a factor of about 20 due to Bell’s instability (with the same obliquity dependence
as we adopt for the CR proton acceleration efficiency) and assume that the SNR
expands into a homogeneous medium on large scales with an average gas number
density of n = 0.12 cm−3.

• Leptonic and hadronic γ-ray emission are both important for explaining the observed
γ-ray spectrum. In ourmodel, hadronic pion-decay and leptonic emission (primarily
from Compton-upscattering of CMB photons) are contributing to the emission at
GeV γ-ray energies accessible to the Fermi γ-ray space telescope approximately by
equal parts. Within our adopted large parameter space, we find no solution with
a smaller IC γ-ray component that simultaneously matches the multi-frequency
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spectrum and the non-thermal emission maps. However, hadronic emission is
dominating at TeV energies that are observable by imaging air Cherenkov telescopes.
Wefind, that theHESS γ-raymap at photon energies E > 500 GeV is thus dominated
by hadronic pion-decay emission.

• The model of preferentially quasi-parallel shock acceleration of CR electrons pro-
duces non-thermal emission maps and a multi-frequency spectrum that are in very
good agreement with all observations. In this model, the electron acceleration effi-
ciency of radio-emitting GeV electrons at quasi-perpendicular shocks is suppressed
at least by a factor ten. The models of obliquity independent and preferentially
quasi-perpendicular shock acceleration produce radio and X-ray maps that are in
disagreement with observations. Because the simulated γ-ray map, which is domi-
nated by hadronic emission, agrees with the observation, a rotation of the large-scale
magnetic field by 90◦ in the plane of sky cannot resolve this disagreement. Hence,
this precludes extrapolation of 1D plasma particle-in-cell simulations of particle
acceleration at SNR shock conditions that favour preferentially quasi-perpendicular
electron acceleration at shocks.

• The low level of observed γ-ray flux requires a volume-filling strong magnetic
field so that most of the electron energy is emitted via synchrotron emission. The
preference of quasi-parallel acceleration of protons and electrons argues for efficient
amplification of magnetic fields via Bell’s instability (or a similar plasma process).
We demonstrate that these Bell-amplified magnetic fields have to decay on short
length scales of order 100 gyroradii for TeV particles. Otherwise, CR electrons are
subject to strong synchrotron losses which would lead to extended radial profiles
of the radio and X-ray synchrotron emission at the shock that are in disagreement
with observations. However, the exact value of the Bell amplification factor is only
weakly constrained by the total spectrum because those amplified fields are confined
to a small emission volume around the shock front.

Our work opens up a new avenue to study the physics of electron acceleration at shocks
and connects plasma physics at collisionless shocks to astrophysical scales of SNRs in a
novel and innovative manner.
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6.1 Conclusions

In this work, I have successfully developed and presented the new stand-alone code crest
that follows spatially and temporally resolved the evolution of CR electron spectra on
Lagrangian tracer particles. It works as a post-processing code of MHD simulations with
the arepo code but adopting it to other MHD codes is possible.

The code evolves CR electron spectra according to the Fokker–Planck equation and
models spatial transport of CR electrons by advection with the ambient gas. It includes all
relevant cooling and gain processes of CR electrons. First, the code covers losses and gains
of the spectrum by adiabatic expansion or compression of the ambient gas, respectively.
Secondly, the code includes Coulomb cooling and radiative losses such as synchrotron
radiation, bremsstrahlung, and inverse Compton emission. Thirdly, Fermi-I acceleration
and reacceleration at shocks and Fermi-II acceleration by transit time damping is handled.
The spectrum is evolved with an innovative hybrid numerical and analytical treatment that
prevents short time steps due to fast cooling processes and enables the numerical evolution
on time steps comparable to theMHD time step. This approach allows to track the spectrum
accurately with high resolution and makes simulations of large astrophysical systems such
as galaxies and galaxy clusters with CR electrons feasible. It enables to connect MHD
simulations and CR physics to observations by means of non-thermal emission signatures
that are multi-frequency spectra and spatially resolved maps of (non-thermal) radio, X-ray,
and γ-ray emission.
I have thoroughly tested the code in idealized one-zone tests which allow for a direct

comparison of the numerical results to analytical solutions or to the literature. In addition,
the code has been tested on 1D and 3D MHD simulations of shock-tubes and 3D Sedov–
Taylor blast wave simulations.

So far, the main application of this code has been the study of the remnant of SN 1006
which is an ideal laboratory for CR acceleration. I have addressed the issue whether the
γ-ray emission is dominated by leptonic or hadronic emission. Both, CR protons and
electrons, are necessary to explain the spectrum but the very high energy (TeV) γ-ray
surface brightness map is dominated by hadronic emission due to sensitivity range of the
HESS telescope. Furthermore, the obliquity-dependent acceleration mechanism of CR
electrons has been discussed and compared to findings of PIC simulations. Although there
are 1D PIC simulations suggesting preferentially quasi-perpendicular acceleration of CR
electrons, the best agreement to the observed morphology is obtained with the model of
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quasi-parallel acceleration. The acceleration ofCRs is closely linked to the amplification of
magnetic fields. CR protons which are preferentially accelerated in quasi-parallel regions
drive the Bell instability which produces strong perpendicular magnetic fields which in
turn possibly provide the quasi-perpendicular environment necessary for efficient CR
electron acceleration. I find that the overall magnetic field is tightly constrained by the
combination of the multi-frequency spectrum and observed morphology in different wave
bands. I have shown that the Bell amplified magnetic fields are an important ingredient but
that the morphology can only be explained by volume-filling amplified fields potentially
driven by a turbulent dynamo.

6.2 Outlook
The current implementation of crest treats advection with the gas as dominant CR
transport process. However, other transport processes such as streaming or spatial diffusion
can become important if the advection length within a timescale of interest becomes
comparable or smaller than the streaming or diffusion length, respectively. The inclusion
of additional transport processes requires an enhanced numerical treatment detached from
the tracer particle approach which is possible but beyond the scope of this work. However,
advection is the dominating spatial transport in environments of SNRs or fast galactic
outflows and thus renders the current implementation sufficient.

A further application of the crest code is the simulation of other SNRs such as
RXJ1713.4-3946 or Vela Jr (RXJ0582.0-4622) as they most-likely originate from core
collapse SNe. Their different environment with dense molecular clumps also shows
strongly amplified magnetic fields which could favor hadronic TeV γ-ray emission. It
would be interesting to apply the results of this study on SN 1006 to these environments
and test whether similar conclusions can be drawn.

The next level of interesting applications is the study of galactic outflows that are
observed in many different wavebands and their understanding is considered to be the
holy grail of galaxy formation. A first study could be to test whether the often applied
steady state assumption of the CR spectrum in galactic outflows holds and under which
conditions a detailed modeling of the spectrum is required. The next step is a self-
consistent numerical simulation of the Milky Way with a Galactic outflow in order to
shed light on the origin of the Fermi bubbles. Simulating the CR electron spectrum can
distinguish between hadronic and leptonic models for the γ-ray emission of the outflowing
regions. The driving mechanism of the Fermi bubbles is a crucial point, as models relying
on AGN or starburst events imply different outflow velocities. In slow outflows driven
by starburst events the CR electron spectrum cools away before it reaches the top of the
bubbles which makes reacceleration by shocks or Fermi-II processes inevitable. All these
points can be studied in the framework provided by the crest code.

On even larger scales, galaxy clusters and their radio sources offer another field of
interesting applications of the crest code. Radio halos that appear in one third of
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X-ray luminous clusters can be explained by a hadronic model or a leptonic model.
As CR electrons quickly cool away they require sufficient reacceleration to explain the
radio emission. The Fermi-II mechanism via turbulent reacceleration is an essential
ingredient for the leptonic model. It is included into crest which allows modeling of
radio halos. Radio relics which are often located at the cluster outskirts are characterized
by elongated and polarized radio emission. Weak shocks can reaccelerate CR electrons to
radio synchrotron emitting momenta which is also modeled by crest. Another application
field is offered by active galactic nuclei (AGN)whose jets drive outflows and inflate bubbles
which are filled by radio synchrotron emitting CR electrons.

The plethora of astrophysical systems which are characterized by non-thermal radio, X-
ray, and γ-ray emission of CR electrons provides a great amount of research applications.
The crest code together with MHD simulations makes the self-consistent modeling of
theses systems possible and links them to observations.
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A Appendix

Convergence study
We briefly discuss the numerical convergence of our simulations. As described in sec-
tion 5.2.3, we use two setups, that only differ in their number of resolution elements (cells
and tracer particles). Figure A.1 shows the multi-frequency spectrum (top panel) that
is calculated for the low resolution of 1 × 106 cells (blue lines) and the high resolution
of 5 × 106 cells (orange lines). Both spectra are calculated with our best-fit parameters
which are spectral indices αe = 2.1 for electrons and αp = 1.9 for protons, gas density of
n = 0.12 cm−3, distance of D = 1660 pc, equivalent magnetic field of B = 35 µG (as a
result of a turbulent dynamo), and Bell amplification by a factor of 20. The bottom panel
of Figure A.1 shows the relative error

δ =

����1 − dΦlow/dE
dΦhigh/dE

���� (A.1)

of the low to high resolution simulation spectrum. The relative error becomes largest in
the cutoff regions of the synchrotron and IC spectra. However, the relative error is below
15 per cent at the X-ray and γ-ray data points. This is accurate enough to enable our
parameter space study presented in Section 5.6 at a feasible computational costs.
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Figure A.1: Multi frequency spectra (top) and relative error (bottom) for a simulation at low
resolution with 1 × 106 cells (blue) and at high resolution with 5 × 106 cells
(orange). The spectrum is calculated with our best-fit parameters: spectral
indices αe = 2.1 for electrons and αp = 1.9 for protons, gas density of n =
0.12 cm−3, distance of D = 1660 pc, equivalent magnetic field of B = 35 µG
(as a result of a turbulent dynamo), and Bell amplification by a factor of 20.
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