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A B S T R A C T

When the protostellar nebula collapses to form a star, some of the gas and
dust is left in the form of a protoplanetary disk. Exactly how the subse-
quent formation of planetesimals proceeds is still not fully understood,
but the coagulation of the dust is believed to play a vital role. One of the
main problems with this picture is that a number of barriers have been
identified, at which bouncing, fragmentation and radial drift prevent the
formation of large bodies.

We have investigated via theoretical models how large dust grains can
grow in the presence of these barriers. This was done by examining some
of the many assumptions that are generally used in the dust evolution
modeling. We implemented a realistic model for the outcome of dust col-
lisions, and we also studied the effect of velocity distributions and parti-
cle clumping, as well as the fate of large dust grains that drift inwards
towards the star. In this process, we identified a new channel for planetes-
imal formation, and describe the initial steps towards an inside-out forma-
tion model where we give a prediction of the size and spatial distribution
of the first generation of planetesimals.
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Z U S A M M E N FA S S U N G

Beim Kollaps eines protostellaren Nebels zu einem Stern verbleibt ein Teil
des Gases und Staubs in Form einer protoplanetaren Scheibe. Wie die an-
schließende Entstehung von Planetesimalen genau verläuft ist noch nicht
vollständig verstanden, aber es wird angenommen, dass Koagulation von
Staubteilchen eine wichtige Rolle spielt. Eines der Hauptprobleme hier-
bei ist jedoch, dass viele Wachstumsbarrieren identifiziert worden sind,
weil radialer Drift, Fragmentierung und das voneinander Abprallen der
Staubkörner die Bildung von großen Körpern verhindern.

Wir haben mit Hilfe theoretischer Modelle untersucht, zu welcher Größe
Staubkörner in der Anwesenheit dieser Barrieren heranwachsen können.
Dies wurde durch Untersuchung einiger der vielen Annahmen durchge-
führt, die standardmäßig in der Modellierung der Staubentwicklung ver-
wendet werden. Wir implementierten ein realistisches Modell für den Aus-
gang von Staubkollisionen, und studierten die Wirkung der Geschwin-
digkeitsverteilung und Partikelverklumpung, sowie, was mit den in Rich-
tung des Sterns driftenden großen Staubkörnern geschieht. Dabei haben
wir einen neuen Weg für Enstehung der Planetesimale entwickelt und be-
schreiben die ersten Schritte eines Modells in dem Planetesimale in den
inneren Scheibenregionen zuerst gebildet werden. Wir geben eine erste
Vorhersage zur Größe und räumlichen Verteilung der ersten Planetesimal-
generation an.
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1
I N T R O D U C T I O N

It is today clear that our Solar System is not the only one to harbor plan-
ets. In fact, the exoplanet observations of the last years have even shown
planets to be ubiquitous in our Galaxy, and their properties display a re-
markable diversity. There are now planets discovered that are smaller than
Mercury and many times larger than Jupiter, and the distances between
them and their host stars range from only a few times the radius of the
star and up to thousands of AU (1 AU = the mean distance between the
Sun and the Earth), and some are even free-floating. Planets can be rocky
or gaseous, and systems can be either neatly ordered like the Solar System,
or made up of planets with highly eccentric or inclined orbits. It seems like
the planet formation process is capable of occurring anywhere in connec-
tion to star formation. This is an amazing discovery, but also surprising,
as theoretical studies on the contrary seem to identify more and more bar-
riers against planet formation. At the moment, it is still uncertain how
planets can form at all given these barriers.

The basis of the planet formation theories is the protoplanetary disk,
which is the gaseous, circumstellar disk around a young star. Tiny dust
grains made out of silicates, metals, organics or ices, make up a small frac-
tion of such a disk, and it is these grains that are the building blocks of
planet formation. As the grains interact with the surrounding gas, they
start to collide with each other and stick together to form successively
larger aggregates in what is called incremental growth or dust coagula-
tion. However, as the grains get more and more decoupled from the gas,
they collide at increasing collision velocities, and at some point, they start
to bounce or fragment during collisions. Grains that anyway manage to
grow instead drift rapidly inwards towards the star and are lost. These
effects give rise to barriers that efficiently prevent any further growth, and
because this in the first models occurred for meter-sizes at 1 AU, they are
often collectively referred to as the meter-size barrier1. The later stages,
where the gravity kicks in, are generally better understood than the co-
agulation stage. However, the outcome is highly dependent on the initial
planetesimal size-distribution, which due to the growth barriers is still
largely unknown.

In this thesis, I have investigated the planetesimal formation stage, and
probed how large dust aggregates can grow through coagulation by inves-
tigating the robustness of the growth barriers. This stage is uncertain for
numerical reasons, but there are also microscopic uncertainties; e. g. what

1 This is a popular historical term which is inaccurate, both because the barrier can occur
anywhere between sizes of millimeters to several meters depending on the local disk con-
ditions, and because the barriers have different physical origins. We will from now on
instead refer to the collective term as "growth barriers".
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2 introduction

happens when two grains collide, or how does the turbulence affect the
velocities of individual grains; and macroscopic uncertainties, e. g. what
is the real structure of the protoplanetary disk and how does its features
affect the dust motion. An important part of my work has been to answer
parts of these questions and bring the microscopic and macroscopic dust
evolution closer together.

Through this thesis, we will follow the story of the dust evolution from
micrometer-sized grains to kilometer-sized planetesimals, but we will first
need to know more about the background. For the remainder of this in-
troduction, I will therefore describe the important concepts of planet for-
mation, and give an overview centered around the aspects of dust growth
and planetesimal formation.

1.1 a brief overview of planet formation

It is first necessary to give a rough overview of the star formation process.
The first step is taken in the environment of a giant molecular cloud. Com-
pared to the interstellar medium (ISM) average, these clouds are cool and
relatively dense, which allows for star formation to initiate. The stability
of the cloud substructure can in an idealized form be described by the
balance between the outward gas pressure and the inward gravitational
force. The critical Jean’s mass is the mass required for the gas pressure to
be overcome for a subset of the cloud in the form of a sphere of radius
equal to the Jean’s length, RJ, and is roughly equal to

MJ ' 2M�
( cs

0.2 km s−1

)3 ( n
103 cm−3

)−1/2
, (1.1)

where cs ∼ 0.2− 0.5 km s−1 is the sound speed and n ∼ 104 − 106 cm−3

is the gas number density. If the Jean’s mass is exceeded, the substructure
starts to collapse into a protostellar core. From the Jean’s mass approxima-
tion, we find that the typical mass of such a collapsing core is on the order
of a few M�, which can be compared to the total giant molecular cloud
mass that can be as high as 107 M� spread over .100 pc. This means
that stars rarely form alone, but that the environment instead is rather
crowded, and full of interactions even during the subsequent planet for-
mation stage. Most such clusters only disperse after 0.1− 1 Gyrs due to
gravitational interactions and tidal forces. Except for a few studies (Adams
2010), the effects of intra-cluster interactions are however largely ignored
in the context of planet formation, and we will from now on focus on the
isolated evolution of a stellar core.

It is very difficult to spatially resolve even the nearest cloud cores or
circumstellar disks in the Solar neighborhood. It can therefore be useful
to characterize the young stellar objects (YSOs) by their spectral energy
distribution (SED), which describes the flux distribution from an object as
a function of frequency or wavelength. Lada (1987) and Andre et al. (1993)
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Class 0
t ~ 0 yrs
r ~ 10 000 AU

Class I
t ~ 104 - 105 yrs
r ~ 1 000 AU

Class III
t ~ 106 - 107 yrs
r ~ 50 AU

Class II
t ~ 105 - 106 yrs
r ~ 100 AU

Giant Molecular Cloud

Figure 1.1: Illustration of the star formation process and the evolution of the pre-
main sequence star and its disk. The observational classes are defined
by the degree of IR excess, but correspond well to the physical pro-
cesses of gravitational collapse, the accretion of the stellar envelope
and formation and dissipation of the circumstellar disk.

developed a classification system based on the slope in the near- to mid-IR
(corresponding to wavelengths between 2-20 µm):

αIR =
∆ log(λFλ)

∆ log(λ)
. (1.2)

This is an especially interesting spectral region for the YSOs, because they
all show an IR excess above the stellar blackbody radiation. This is caused
by the opacity of the hot dust in the stellar envelope or disk, which causes
the stellar radiation to get re-emitted at longer wavelengths. In the case
of a blackbody or star, αIR < −1.6, but when the emission is dominated
by the non-central source, the slope changes. Below, we briefly discuss the
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Figure 1.2: By measuring the IR-excess of the stars in different young stellar clus-
ters, it is possible to determine the fraction of sun-like stars with disks
as a function of the cluster age, and from that, the mean disk lifetime.
Figure reproduced from Wyatt (2008).

general properties of the YSO classes and the evolution of their inferred
physical properties, which are also shown in the sketch of Fig. 1.1.

Class 0 (no measurable excess below 20 µm): During the gravitational
collapse phase, the emission originates from an embedded central lumi-
nosity source that until the advent of the Spitzer telescope could only be
indirectly observed through the properties of the envelope. All of the radi-
ation is re-emitted at long wavelengths, and the SED peaks in the far-IR or
at mm wavelengths, indicating warm (but not hot) envelope temperatures
of T < 70 K.

Class I (αIR > 0.3): Because the infalling material possesses angular mo-
mentum that must be conserved, most of the mass will not fall directly
into the stellar core, but will instead form a circumstellar accretion disk.
During the collapse, lasting∼ 104− 105 years, the density and temperature
of the core increases, which raises the outward pressure. At temperatures
of T ∼ 2000 K, the pressure finally balances the inward gravitational force,
and the protostar is formed. During the contraction, the envelope becomes
hot enough (>70 K) to become visible in the mid-IR. As the disk matter is
accreted onto the protostar, viscosity and gravitational torques causes an-
gular momentum transport to the outer regions. The result is the moving
inward of the majority of the disk matter, while some mass moves out-
wards to conserve angular momentum, creating a disk with a size up to
1000 AU (Hartmann et al. 1998).

Class II (-0.3 < αIR < 0.3): As matter is accreted and dust grains grow,
the strength of the IR excess decreases, and the object can be identified
through its emission as a composite from both the star and disk. The low-
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mass (< 2 M�) sources are also called T Tauri sources, after the archetypical
T Tauri star. Because the properties of these stars are similar to those of
the Sun, and because they are the most numerous, the T Tauri stars are
the main objects of the planet formation studies. More massive YSOs are
referred to as Herbig Ae/Be stars.

Class III (αIR < −1.6): The IR excess disappears after 1-10 Myrs, which
indicates that the disk has finally dispersed. As pioneered by Haisch et al.
(2001), the characteristic disk dispersal time can be obtained by observing
individual stellar clusters and determining the fraction of stars with IR ex-
cess. If the cluster age can be determined by e. g. main sequence fitting, it
is then possible to make a plot as shown in Fig. 1.2, which indicates a mean
disk lifetime of ∼3 Myrs. Exactly how the disk disappears is still a matter
of debate, but likely candidates are due to photoevaporation as the star ini-
tiates its hydrogen-burning at the main sequence, or due to the formation
of massive planets that sweep or stir up the gas, or a combination thereof
(Alexander et al. 2006; Rosotti et al. 2013). The disk lifetime sets a time
constraint on the process of planet formation, as the gaseous Jupiter-like
planets must be formed before the gas has dissipated. The wealth of ob-
served massive planets therefore indicates that the giant planet formation
must occur on timescales faster than ∼ 1 Myr.

We now turn the focus to the planet formation aspect, which is summa-
rized schematically in Fig. 1.3. The first steps of planet formation is the
dust coagulation, which is vital for almost all formation scenarios. Most
of what we know about the initial dust properties come from interstel-
lar extinction studies. One of the fundamental properties of dust is its
capability of attenuating light (shorter wavelengths more efficiently than
longer), which is the main cause of interstellar extinction and reddening.
By comparing a reddened star to a similar, unreddened star, it is there-
fore possible to examine the dust content along the line of sight. Using
wavelength-dependent dust opacities, Mathis et al. (1977) modeled the ef-
fects of various dust size-distributions and compositions and compared to
the observed extinction curves. Their findings are known as the MRN dis-
tribution, which has a shape n(a) ∝ a−3.5, where the largest particles are
∼1 µm in size. From these fittings, and also utilizing absorption lines, we
also know the dust grains to be composed of silicates, hydrocarbons and
mixtures of frozen-out H2O and CO.

Because of the interaction between the solids and the surrounding gas,
relative velocities ∆v are induced between the grains, and because the dust
density in the disk (ρd & 10−15 g cm−3) is significantly increased compared
to the ISM (ρd . 10−20 g cm−3), collisions between the grains are frequent.
If we consider the collisions between two particle species with number
densities nd,i and nd,j, and a collisional cross section σ = π(ai + aj)

2, the
collision rate becomes

fcoll = ndσ∆v . (1.3)

Due to intermolecular forces, primarily van der Waals forces for silicates
and dipole forces for ices, small grains tend to stick together as they collide.
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Dust coagulation
0.1 μm - 1 cm

Planetesimal formation
1 cm - 1 km

Core formation
1 km - 5,000 km

Giant planet formation
5,000 km - 100,000 km

Incremental growth

Fluffy ice growth

Sweep-up growth

Turbulent concentration + 
Gravitational Instability

Gravitational focusing

Pebble accretion

Incremental growth

Gas accretion

Runaway growth

Figure 1.3: Illustration of the primary mechanisms involved in the canonical
planet formation process. The initial building blocks are the 0.1− 1 µm
monomers that stick together via intermolecular forces, and 1− 100
Myrs later, the results are gas giants and rocky planets. The planetes-
imal formation stage occurring in between is still poorly understood,
although a number of possible formation channels exist. Once at km-
sizes, gravity helps the planetesimals to both survive the high-velocity
collisions and to enhance the accretion efficiency of the other planetes-
imals and surrounding dust pebbles.

If we assume a monodisperse growth scenario where the particle popula-
tion can be described by a delta-function of mass m and size a, the growth
rate becomes

dm
dt

= m fcoll = ρdσ∆v , (1.4)

where ρd = m · nd denotes the dust mass density. To translate this to size,
we take dm = 4πa2ξda and σ = 4πa2 to obtain

da
dt

=
ρd

ξ
∆v , (1.5)

which gives a growth timescale

tgrowth = a
(

da
dt

)−1

=
aξ

ρd∆v
. (1.6)
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We now consider a typical disk at 1 AU, which would have a midplane
mass density of ρd ∼ 10−11 g cm−3 or larger. Assuming dust grains of solid
density ξ = 1 g cm−3, grains of size a = 10−4 cm have relative velocities of
∆v ∼ 1 mm s−1, which gives a growth timescale of tgrowth ∼ 3 yrs, which
is significantly shorter than the disk lifetime. When the grains grow larger,
they start to decouple from the gas an increase their relative velocities
further. 1 cm grains have relative velocities of ∆v ∼ 1 m s−1, which gives
tgrowth ∼ 30 yrs. It is from this little experiment clear that grain growth will
be significant in the protoplanetary disk, and that kilometer-sized bodies
have the capability of forming on very short timescales.

As noted above, as the grains grow, their relative velocities increase
rapidly in the presence of turbulence and drift. At meter-sizes at 1 AU, the
boulders are predicted to collide at the highest velocities of 10− 100 m s−1

(Brauer et al. 2008). At these high collision velocities, the particles tend
to bounce or fragment rather than stick together. Simultaneously, because
the grains do not experience the pressure support that the gas does, they
naturally try to orbit at slightly faster velocities. The result is a constant
headwind which causes a loss of angular momentum and inward drift on
short timescales. Meter-sized boulders at 1 AU are predicted to drift into
the star on timescales of 100 yrs. All of these effects have turned out to
efficiently prevent any growth to larger sizes (Weidenschilling 1977a, 1980;
Nakagawa et al. 1986). A number of scenarios have been suggested for how
these growth barriers might be overcome (some of which are discussed in
Sect. 1.4.6), but a fully self-consistent scenario has yet to be produced.

Ignoring for now the problem of how the planetesimals are formed,
the next step in the formation process is when the kilometer-sized plan-
etesimals continue their growth aided by self-gravity in what is called
embryo formation. Gravity aids the growth in two major ways. Firstly,
it makes the bodies more resilient towards fragmentation, as mass loss
now requires both disrupting the body and ejecting the fragments out of
the gravitational potential well. Such collisions can be modeled numeri-
cally by e. g. the SPH method (Benz & Asphaug 1999; Leinhardt & Stewart
2009). A likely outcome of high-velocity collisions is that planetesimals
would survive in the form of rubble piles, held together primarily by their
self-gravity.

Collisions between similar-sized planetesimals might however still be
problematic if the impact velocities are too high. It is believed that turbu-
lent stirring, the random pull that the turbulent gas exerts on the bodies,
will lead to velocity excitation to relative velocities of several 100 m s−1.
This would be enough for destructive collisions (Nelson 2005; Nelson &
Gressel 2010), and is known as the kilometer-size barrier. One way to cir-
cumvent this problem could be to very quickly form planetesimals that
are massive enough to be resilient enough to the destructive collisions.
Another possibility is for the primary mode of planetesimal growth to be
due to accretion of smaller dust grains (Ormel & Okuzumi 2013).

It can however be noted that all planetesimal collision models assume
the bodies to be rocky, which is far away from the aggregate structures of
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the initial dust grains. The primary effect believed to cause the thermal pro-
cessing required for the rocky bodies to form is by the decay of short-lived
radioactive nuclides (primarily 26Al and 60Fe). This process is effective, but
works on timescales of several Myrs (Henke et al. 2012). However, as we
noted earlier, planetesimals might form on timescales much faster than
that, and so what happens to the first generation of much weaker dusty
planetesimals still remains to be explored.

The second effect of gravity is the increase of the collisional cross section
beyond the geometrical. The gravitational focusing leads to an augmented
cross-section which for two equal-sized bodies can be given by

σgf = πa2
(

1 +
v2

esc
v2

∞

)
∼ m4/3 for v2

esc > v2
∞ (1.7)

where v2
esc = 4Gm/a is the escape velocity and v∞ is the relative velocity

between the bodies at infinite distance to each other. This means that for a
massive body in a quiescent disk, the enhanced cross-section can lead to a
many-fold increase in accretion rate. The gravitational focusing gives rise
to an interesting effect known as runaway growth, which occurs because
the augmented cross-section starts to scale with the mass to a power of 4/3
compared to 2/3 for the geometrical cross section. We showed in Eq. 1.4
that assuming a constant ρd and ∆v, the mass growth rate is proportional
to σ. The result is that the most massive body in a group will grow to
double its mass at a faster rate than the second most massive body in the
group. This runaway growth process proceeds for as long as v2

esc > v2
∞.

When the body has reached a certain mass, called the isolation mass,
typically 0.01-1 M⊕, it will assert its gravitational forces on the remain-
ing population which is stirred up enough for the gravitational focusing
to lose in efficiency. The smaller bodies then have time to catch up, and
an oligarchic growth regime proceeds where a number of large oligarchs
grow in tandem in separate feeding zones (Ida & Makino 1993; Kokubo &
Ida 2000). Oligarchic growth ends when the oligarch mass is comparable
to the total mass of the small bodies, in which mutual resonances between
the oligarchs excite the motions of the smaller bodies. This leads to a brief
period of chaos, where the oligarchic feeding zones are emptied of the last
material. The result is planetary cores with masses of ∼1 M⊕ in the inner
disk, and ∼10 M⊕ in the outer, with little possibility of growing further.

The existence of gas giants in the outer disk means that we have a con-
straint on the timescale on which these planets must form. Because the
majority of the mass of these giants is made up of their gaseous envelopes,
it means that the cores must form on timescales shorter than the disk dis-
sipation timescale. The timescales on which core accretion (Mizuno 1980;
Pollack et al. 1996) occurs is relatively fast in the inner part of the disk, but
at larger stellar distances, growth by planetesimal accretion alone becomes
problematic. A way around this might be by pebble accretion, where the
gas flow around a growing core enhances the accretion rate of cm-sized
dust grains (Lambrechts & Johansen 2012; Ormel 2013).
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This core accretion phase is simultaneously affected by the gravitational
interaction between the core and the surrounding disk, which is the cause
for rapid radial migration. If the planet has a mass of ∼1 M⊕, the in-
teraction drives spiral density waves, exerting so-called Lindblad torques
which generally results in inward migration. At the same time, however,
the interaction between the planet and the gas on the same orbit gives
rise to a co-orbital torque which can result in migration in either direc-
tion. These processes combine into Type I migration, with a final effect
that is still largely unknown (Kley & Nelson 2012). As the planets grow
to ∼10 M⊕, they become massive enough to open a gap, and the planet
starts to migrate inward by Type II migration, which occurs on the disk
accretion timescale.

From this brief summary of planetary formation and migration, we can
conclude that there are a number of effects that are very strong, but still
poorly understood. Although tempting, it is therefore very challenging
to infer anything about the primordial disk conditions based upon the
present-day locations of planets.

1.2 observations of planetary systems

We will now discuss some of the constrains on the planet formation pro-
cess that can be obtained from the observations of planetary systems. We
divide this into three parts; what can be learned from the planets and as-
teroids in our Solar System, from the meteorites impacting on Earth and
from the exoplanetary systems.

1.2.1 The Solar System

In the Solar System, we distinguish between two distinct populations of
planets: the four inner rocky terrestrial planets, and the four outer gas
giants. This points towards a significant change in the primordial disk
environment somewhere between the orbits of Mars and Jupiter. One such
important change is called the snow-line, which describes the critical point
where H2O transitions from only being able to exist in the form of gas,
to outside, where it can freeze out into solids. The existence of ices in the
outer regions is interesting for planet formation for several reasons: it leads
to an increase in the total solid mass by a factor of about four, and ices are
believed to have widely different collisional properties from silicates.

It is also possible to use the mass distribution of the Solar System bodies
to derive a minimum primordial disk mass that is required for the planets
to have formed. The concept is called the minimum mass Solar Nebula
(MMSN), and was introduced and developed by Weidenschilling (1977b)
and Hayashi (1981). The initial dust and gas mass of the protoplanetary
disk is a vital property that remains difficult to measure by direct means
in other systems, and the MMSN is therefore an important first step to-
wards understanding the initial conditions. To obtain the MMSN, we 1)
take the masses of the metals of each body (including the asteroid belt)
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and enhance it with a combination of hydrogen and helium to obtain So-
lar composition, 2) divide the Solar System into annuli centered on each
body, and 3) spread the enhanced mass of each body over its annulus. The
result is a radial gas surface density profile that can be described by

Σg,MMSN(r) = 1700 ·
( r

1 AU

)−3/2
g cm−2 . (1.8)

It is important to note that the MMSN only describes the distribution of the
current-day Solar System. Because both the gas and the disk evolves with
time, and migration and scattering is believed to strongly influence the
dust, planetesimals, cores and planets, the MMSN marks only the absolute
minimum of mass that the Solar nebula must have contained. The derived
present-day distribution might therefore be very different from the initial
conditions of planet formation. To date, however, it remains a commonly
used benchmark for comparison between different dust evolution models.
Desch (2007) took the later evolutionary stages into account by considering
the migration and redistribution from the core formation stage and found

Σg,Desch(r) = 51000 ·
( r

1 AU

)−2.2
g cm−2 . (1.9)

The result is an enhancement by more than order of magnitude in the
inner disk compared to the MMSN, but with a steeper profile, and this
model does still not take the mass loss from the planetesimal formation
stage into account. The conclusion we can draw from this is that the initial
disk conditions remain highly uncertain, and a disk parameter study is
vital to fully gauge the capability of any planetesimal formation scenario.

The asteroid belt located between Mars and Jupiter is generally consid-
ered a region of failed planet formation, and the present day asteroid belt
is thought to be a steady-state population of fragments produced by col-
lisional and dynamical evolution, mostly kept safe from the gravitational
perturbations of the planets. The smaller bodies are produced by either col-
lisions or fragmentation from spin-up by solar radiation via the Yarkovsky-
O’Keefe-Radzievskii-Paddack (YORP) effect, and bodies are lost through
collisions and drift due to interaction with the solar radiation via the
Yarkovsky effect (as summarized by Bottke et al. 2006).

Under the assumption that the planetesimal formation proceeded in the
same way in the asteroid belt as for the planets, it is an ideal population to
study for constraining the size distribution of the initial planetesimals in
the Solar System. By considering the collisional evolution from its initial
formation to the present day asteroid belt, Morbidelli et al. (2009) claimed
that the planetesimals were born big, but Weidenschilling (2011) found
that the same result could be obtained with initially small planetesimals.
The focus of both of these studies was to reproduce the bump in aster-
oid size distribution at ∼100 km, as shown in Fig. 1.4. Recently, the an-
alytical study of Lithwick (2013) found that the 100 km bump could be
reproduced using small planetesimals by considering the transition from
runaway growth to so-called trans-hill growth.
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Figure 1.4: The observed size distribution of the present-day asteroid belt. Figure
from Cuzzi et al. (2010).

Some asteroids, like Vesta, also show some properties that makes it pos-
sible to charactere the size-distribution of the smallest bodies in the aster-
oid belt. Although Vesta is believed to belong to the first generation of
planetesimals, as inferred from its widespread differentiation, parts of its
surface are still unsaturated. This means that close to all impact craters can
be distinguished, and because Vesta is also massive enough to not experi-
ence global seismic shaking due to large impacts, it is possible to constrain
the sizes of the impactor population that formed the craters (Marchi et al.
2013). This is however challenging, as it relies on assumptions of impact
probabilities and the physics behind the actual crater formation to connect
a given impact to a certain impactor size.

1.2.2 Meteorites

Another great source of information comes from the structure and com-
position of meteorites, which are fragments from asteroid disruptions that
have been ejected or drifted from the asteroid belt into the Earth’s orbit.
The low level of detail that dust coagulation and planetesimal formation
studies are limited to has however prevented any direct comparisons to
the wealth of information that the meteorites can provide. In this section,
we aim to discuss some of the meteoritic constraints that are starting to
become relevant for further constraining the dust coagulation studies.

Most of the meteorites fall into one of the two major classes; chondrites
and achondrites. The chondrites are primitive meteorites that were never
differentiated, and as such appear relatively unaltered since their forma-
tion. The chondrites are the most common class of meteorites by far, and
they are classified as such because they contain chondrules, which are mm-
sized molten or partially molten droplets that in some cases make up as
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much as 80% of the volume. They are surrounded by a matrix of fine dust,
and mm-cm-sized calcium-aluminium-rich inclusions (CAIs) are also com-
mon. The achondrites, on the other hand, have been differentiated and do
not contain any chondrules. They likely originated from the either first
generation of planetesimals that formed simultaneously with the CAIs,
or from the surfaces of the planets or largest asteroids (Markowski et al.
2007).

The main application for meteorites is arguably the ability to perform
radioactive dating to determine their time of formation. Any method to de-
termine the ages of observed stars or exoplanetary systems remains highly
uncertain, but radioactive dating is capable of putting extremely accurate
time constraints of the formation of our Solar System. The dating is per-
formed by considering the abundance ratio of a radioactive element and its
decay product. By accurately knowing the decay channels and the decay
half-times, and by making assumptions regarding the abundance of the ini-
tial decay product, it is possible to determine the time at which the initial
radioactive material was first solidified from gaseous or liquid form. The
most accurate substances can be found in the CAIs (primarily Pb-Pb and
Al-Mg). This dating puts the CAIs as the first know solids to have formed
in the Solar System, and their time of formation is put to 4567.30± 0.16
Myrs ago, roughly 1− 3 Myrs before the formation of chondrules found
in the same meteorites (Russell et al. 2006). There are also indications that
chondrules within the same body formed ∼0.5 Myrs apart (Kita et al. 2000,
2005; Villeneuve et al. 2009).

Chondrules also have many interesting properties themselves, and the
question of how they were formed has spawned an entire field by itself.
They show evidence of being molten once or multiple times before they
were included in their parent body, and they contain volatile elements like
S and Na that would have rapidly disappeared if the melting and resolidi-
fication had taken place over an extended period of time. This means that
the chondrule formation must occur from a process capable of heating the
material to its melting temperatures at 1900 K (from an ambient temper-
ature of ∼200 K), and then rapidly cool it down again to temperatures
below 650 K (above which S volatilizes) on timescales of hours. Exactly
how this occurs is still a topic of discussion, but there are formation sce-
narios with heating near the Sun followed by outwards transporation, in
shock waves, or by impact melting, disk lightning or magnetic flares (Con-
nolly et al. 2006). All of these scenarios have their own problems in either
producing the required rapid cooling, occurring in the first place, or being
able to reproduce the vast amount of chondrules that are observed.

All these things can tell us a lot about the initial stages of dust coagu-
lation. The presence of CAIs from the very first stages of star formation
means that coagulation must at some point have been able to reach cm-
sizes. The extended chondrule formation time also puts an interesting
constraint on their formation, as some chondrules must have formed to-
gether with the CAIs, yet some others several Myrs later. This means that
the coagulation phase must have been fast, but also inefficient. The growth
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timescales that we calculated with Eq. 1.5 speaks for much faster growth
than 1 Myr, which means that there must have been a mechanism that
kept most or all of the dust grains small. It is also interesting to note that
there exists no structure in the chondrites larger than 1 cm, but they rather
seem to be mostly composed of building blocks of 1 mm and smaller. This
might be due to aerodynamic or thermodynamic effects related to their
formation, but it can also mean that coagulation was unable to proceed to
larger sizes.

A major caveat is that the exact significance of chondrites and chon-
drules for the planet formation is still unclear. Because the meteorites that
reach the Earth are produced by fragmentation from asteroid collisions, it
is possible that the meteorites only originate from the asteroid surfaces,
and thus say little about the asteroid cores or their global densities in the
Solar nebula. This makes it possible that meteorites are only a small popu-
lation of bodies that had little to do with the actual planetesimal formation,
and were accreted by them only afterwards with little real impact on the
global evolution. However, in order for this to be cleared up, deep samples
would need to be obtained in-situ from the asteroids, which has so far not
been possible.

1.2.3 Exoplanets

We now leave the Solar System, and look for constraints in other plane-
tary systems. This has been possible only for the last two decades, and
was initiated by the first definite exoplanet discovery, 51 Peg b, by Mayor
& Queloz (1995). This discovery was however merely the end of a long
hunt for the exoplanets that had started with the construction of a new
generation of accurate radial velocity spectrographs in the 1970’s. The ra-
dial velocity technique was the first successful, and until recently the by
far most productive method for discovering exoplanets. It relies on the
fact that a planetary companion causes a small but non-negligble shift in
the center-of-mass of its host system, which creates a periodic variation
in the stellar radial velocity on the order of 1-30 m s−1 depending on the
planetary mass and distance to the host star.

With a mass of half of Jupiter’s but with a semi-major axis of only a few
percent of Mercury’s orbit, 51 Peg b turned out to be a very odd type of
planet, and in the following years, many more like it has been observed.
This was a highly surprising discovery, as the consensus before their time
of discovery was that all planetary systems were formed and ordered in
the same way as the Solar System. These Hot Jupiters are also much too
massive to have been formed in situ, simply because the inner disk cannot
contain so much mass. This put the spotlight on a previously ignored
effect, namely the migration of planets, caused by gravitational torques
being exerted by the gaseous disk on the planet (as summarized by Kley
& Nelson 2012).

Thanks to recent years large-scale surveys like the Kepler mission (Bo-
rucki et al. 2010), we today know of over 900 exoplanets, and over 3 000
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Figure 1.5: Distribution of exoplanet masses and stellar distances (black) and the
Solar System planets (red). Data taken from exoplanet.eu.

candidates. Besides the radial velocity method, there are today a number
of successful methods for exoplanet observations. The transit method uses
the change in the stellar light curve as the planets eclipses their host star;
direct imaging requires the light from the star to be filtered away; astrom-
etry uses the change in center-of-mass in the apparent position on the sky;
and microlensing, which uses the brief gravitational lensing effect by a star
and planetary system passing the line of sight.

If the Solar System predicts ordered planetary growth, the wealth of
exoplanetary systems indicates the opposite. In Fig. 1.5, we show the dis-
tribution of planetary masses versus semi-major axes, which shows the
substantial fraction of Hot Jupiters, and also another class of Hot Nep-
tunes, but a significant (and real) lack of intermediate-sized planets. We
also note massive planets at extremely large stellar distances, at which the
growth timescale through coagulation would well exceed the disk lifetime.
These planets indicate either another type of formation by gravitational
instabilities, or significant planet-planet scattering events in the inner disk.
Exoplanetary systems also tend to be rather eccentric compared to the al-
most circular orbits of the Solar System. As any orbits would be rapidly
circularized inside a gaseous disk, this indicates the importance of late
time planetary dynamics. The cause for the lack of Solar System-like bod-
ies is likely due to observational bias, as all the counted methods most
sensitive to massive planets at either small or large distances from their
host stars. Given time and increased sensitivity, it will be possible to deter-
mine how common our own Solar System is.

An important connection between the planet formation processes and
the observed exoplanets can be made by the use of planet population
synthesis models (Ida & Lin 2004; Mordasini et al. 2009). These models
rely on simplified prescriptions for all the growth processes from plan-

exoplanet.eu
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etesimals to the finished terrestrial and giant planets, and can be used
to compare the current theoretical understanding of the planet formation
process to the observed properties of the currently known exoplanetary
systems. Because so many uncertainties remain in the planet formation
process, and they by design sacrifice accuracy for computational speed,
their results remain highly speculative but still very interesting. A strong
limitation to the current generation of synthesis models lies in the huge
uncertainties involved in the planetesimal formation processes. Currently,
the initial size and spatial distribution of planetesimals remain largely un-
constrained, which makes the initial conditions for the synthesis models
more or less a free parameter. If we could better understand the planetes-
imal formation process, these models could then make direct predictions
for the rest of the planet formation process.

1.3 the protoplanetary disk

We finally focus on the protoplanetary disk, and consider the structure and
evolution of the gas and the dust components. First, we discuss the obser-
vational constraints, and then continue with an overview of the theoretical
understanding.

1.3.1 Observational constraints

We have previously discussed the major properties of the YSOs and how
the IR-excess behaves as they evolve, but observations can tell us a lot
more about the disk structure, temperature and composition. Although
the gas completely dominates the total disk mass, this component is the
one that is most difficult to observe, as the gas is highly transparent to the
stellar radiation. The most important gas feature is the Hα excess, caused
by the accretion flow onto the star. During the gravitational collapse, the
accretion rate in the disk is on the order of 10−7 − 10−8M� yr−1, but it
drops rapidly to 10−7− 10−9M� yr−1 during the T Tauri phase (Nakamoto
& Nakagawa 1994). In the later stages, the accretion rate stops completely.
This transition from accreting to non-accreting appears to be very abrupt,
in contradiction to what would happen for a purely viscously accreting
disk, where the rate would instead decrease slowly when more mass is
gradually accreted.

The dust is easier to detect than the gas, as it is highly opaque in the
IR, and its re-radiation of the stellar radiation results in an IR excess com-
pared to the blackbody emission of the star alone, with the majority of the
energy re-emitted at wavelengths between 1-100 µm. As excess in different
wavelengths corresponds to different emission temperatures, it is possible
to use the SED to map the structure of the protoplanetary disk, as shown in
Fig. 1.6. The most energetic disk emission comes from the inner rim, with
emission temperatures of ∼1500 K, and its significant contribution of up to
half the total IR flux means that it is likely that this region is puffed up to
a larger surface (Dullemond et al. 2001). Because the near-IR bump always
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Figure 1.6: A schematic view of the SED, showing the blackbody of the star and
the infrared excess from the circumstellar disk. Because the emission
strength depends on the temperature, it is possible to use the SED to
map the different component of the disk. Figure from Dullemond et al.
(2007).

occurs at these temperatures, it is believed that the inner rim is formed
due to an evaporation front of the silicate grains. The mid-IR excess likely
originates from the disk surface, which would need to exhibit some flar-
ing (i.e. the ratio of the disk height to stellar distance increases with the
stellar distance) to be heated enough by the star. Finally, the far-IR likely
corresponds to the cooler disk midplane, which is shielded from the direct
stellar radiation by the surface layers, and is instead heated indirectly by
the re-emission from dust grains in the upper layers.

The observations at millimeter wavelengths probe the cold outer regions.
In this region, assuming an optically thin disk and that the emission comes
from an isothermal region, the flux can be described by the Rayleigh-Jeans
law

νFν ≈ νκνBν(T)Md/d2 , (1.10)

where ν denotes the frequency, κν is the opacity per dust mass, Bν(T) is
the Planck function at a temperature T, Md is the total dust mass and d is
the source distance. This is useful, because it gives a relation between the
millimeter-observations and the total dust mass, assuming that the dust
opacity can be approximated. Using this technique, Andrews et al. (2009)
estimated the disk masses to lie in the range of 0.005− 0.14 M�.

Another important emission feature occurs at 10 µm, which is also vis-
ible in Fig. 1.6, arises from resonance features of the crystalline structure,
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and specifically by the stretching of the Si-O bonds. There is also a similar,
slightly less strong 18 µm feature due to the bending of the O-Si-O bonds.
These features disappear with grain growth, and are therefore excellent
tools for mapping the presence of small dust in the upper layers of the
disks (van Boekel et al. 2003).

By understanding the dust absorption properties from the laboratory,
it is also possible to construct models for comparison to the dust size
distribution. If we take an opacity law like

κν ∝ νβ , (1.11)

where β depends on the dust size distribution, the dust flux becomes Fν ∝
νβ+2. This means that Eq. 1.10 can be used at mm-wavelengths to calculate
the spectral index of the opacity law, which makes it possible to do direct
predictions of the dust size distribution. This type of modeling has been
performed by e.g. Testi et al. (2003) and Ricci et al. (2010b), and indicate
the presence of mm- to cm-sized grains in the observed disks.

Because of their low opacities, it is however difficult to detect grains
that are larger than this, which means that a potentially significant dust
mass fraction are invisible to the observations. In debris disks, it is how-
ever possible to infer the presence of large bodies by the detection of
warm dust. If warm dust is detected, it must must be continuously re-
supplied by larger bodies, as the small dust undergoes rapid migration
due to Poynting-Robertson drag (Martin & Livio 2013).

1.3.2 Theoretical disk structure

To further understand the structure of the protoplanetary disk, we con-
sider an axisymmetric disk in hydrostatic vertical equilibrium. This arises
from a balance between the vertical gravitational force component and the
gas pressure. A simplification can here be made as the disk mass is only a
small fraction of the stellar mass, at Md ∼ 0.01M∗, which means that we
can disregard the self-gravitational component from the disk. We also as-
sume the disk to be vertically isothermal (T(z) = const) and geometrically
thin (Hg/r � 1). The vertical gravitational acceleration is then given by

∂Φ
∂z

=
GM∗

r2
z
r
= Ω2

kz , (1.12)

where G is the gravitational constant, r is the stellar distance, z the vertical
distance and Ωk =

√
GM∗/r3 is the Keplerian frequency. This is balanced

by the vertical pressure gradient

∂P
∂z

1
ρg

=
∂ρ

∂z
c2

s
ρg

, (1.13)

where the pressure is given by P = ρgc2
s and where ρg is the gas density.

The sound speed can be calculated from

cs =

√
kBT
µmp

, (1.14)
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where kB is the Boltzmann constant, T is the temperature, µ = 2.34 is
the mean molecular weight (assuming 75% molecular hydrogen and 25%
helium) and mp is the proton mass. Solving for the hydrostatic equilibrium
gives

ρg(r, z) = ρg,0(r) exp

(
−
(

z
2Hg

)2
)

, (1.15)

where the midplane density is given by

ρg,0(r) =
Σg(r)√
2πHg

, (1.16)

and where we have taken Hg = cs/Ωk to be the pressure scale-height and
Σg(r) =

∫ ∞
−∞ ρg(r, z)dz to be the gas surface density.

We can now continue to the disk density in the radial direction. Assum-
ing a viscosity ν acting in the disk, the gas will experience a continuous
friction due to the differential rotation. If we consider the gas to consist
of thin sheets, the interaction between two adjacent sheets will cause the
outer to get accelerated and the inner to be decelerated. The result is an
outwards angular momentum transport, and an inwards flow of matter.
From this, it is possible to calculate the radial velocity of the gas, as first
derived by Lynden-Bell & Pringle (1974):

vg(r) = −
3

Σg
√

r
∂

∂r
(
Σgν
√

r
)

. (1.17)

The surface density evolution can then be found from the vertically inte-
grated mass conservation equation:

∂Σg

∂t
=

3
r

∂

∂r

(√
r

∂

∂r
(
Σgν
√

r
))

. (1.18)

It is clear that viscosity is an important parameter for the disk evolution.
The molecular viscosity is however much too low to alone drive the ob-
served accretion rates, and a second source is necessary. What that source
is is still not certain, but a common solution is to use the parametrized
α-viscosity by Shakura & Sunyaev (1973):

ν = αcsHg , (1.19)

where the dimensionless α-parameter specifies the degree of turbulence,
and for protoplanetary disks usually takes values between 10−5 to 10−2.

One of the best candidates for the source of turbulence is the magneto-
rotational instability (MRI; Balbus & Hawley 1998). This is caused by the
coupling between the gas and the magnetic field, where the differential ro-
tation between the dust layers in the radial direction causes a shear which
induces turbulence. In the Kolmogorov turbulence model, the energy is
then assumed to be put into unstable large-scale eddies (with lifetimes
τL ∼ Ω−1

k ), that quickly decay into smaller eddies in a cascade that pro-
ceeds down to the dissipation scale, where the remaining kinetic energy
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is converted into heat. Recent work by e. g. Okuzumi & Hirose (2011) and
Dzyurkevich et al. (2013) have also begun to explore the vertical structure
of the MRI, and the concept of dead zones, where the gas ionization is low
enough for the MRI to get attenuated. This, along with non-ideal effects
like ohmic dissipation and ambipolar diffusion will be critical to under-
stand the extent and transport efficiency of the MRI active regions.

1.4 dust evolution

As we have discussed before, the dust evolution is highly important factor
for planet formation, and it also affects the disk structure through its opac-
ity to the stellar radiation. As we briefly showed in Eq. 1.5, the dust growth
naturally depends on the density of the dust grains along with their rel-
ative velocity, and also what happens when two dust grains collide. To
model the evolution of the dust, it is therefore important to determine the
spatial distribution of the dust and how it reacts to the gas around it.

1.4.1 The dust spatial distribution

Dust particles in protoplanetary disks are subject to gravity and centrifu-
gal forces, but they are also affected by the aerodynamic drag from the
disk gas. A fundamental concept for the aerodynamics is the concept of
stopping time, which describes on what timescale a change in the gas flow
is reflected on the inertial particles suspended in the flow (Whipple 1972b).
More precisely, it can be defined as the time it takes for the gas drag to
cause an order of unity change in the particle momentum

ts =
mv
|FD|

. (1.20)

m is here the particle mass and v its velocity and FD is the drag force. The
drag force for a spherical particle of radius a moving in a gas of density
ρg is

FD =
1
2

CDπa2ρgv2 , (1.21)

where CD is the drag coefficient, which depends on the interaction between
the gas and the particle. If the particle size is smaller than the mean free
path of the gas λ (or exactly 9/4 · λ), the drag can be considered as the
collective result of individual collisions with gas molecules. This is called
Epstein drag, and has a drag coefficient

CD =
8
3

vth

v
. (1.22)

vth = (8/π)1/2cs is the mean thermal velocity of the gas molecules. If the
particles are larger, the particle is in the Stokes regime, and the gas instead
needs to be treated as a fluid. The strength of the drag force in this regime



20 introduction

depends on the particle Reynolds number, which is defined as the ratio
between the inertial force and the viscous force

Re =
2av
νmol

. (1.23)

Where νmol = 1/2 · vthλmfp is the gas molecular viscosity. The drag force
in the Stokes regime behaves in a non-linear fashion and can only be an-
alytically calculated in the limit of small and large Re, and have to be
empirically determined in the intermediate case. The drag coefficients in-
troduced by Whipple (1972a) are still most commonly used, and are given
by

CD =


24 Re−1, Re > 1

24 Re−0.6, 1 < Re < 800

0.44, Re > 800 .

(1.24)

The stopping times then become

ts =



t(Ep)
s = aξ

ρgvth
, a < 9

4 λmfp

t(St1)
s = 4a

9λmfp
· t(Ep)

s = 2
9

ξa2

νmol
, Re < 1

t(St2)
s = 20.6

9
ξ

ρ1.4
g

a1.6

ν0.6
molv

0.4
th

, 1 < Re < 800

t(St3)
s = 6ξa

ξvth
, Re > 800 .

(1.25)

In protoplanetary disks, most of the dust grains are sufficiently small to
always have Re < 1, so that they only experience the first Stokes regimes.
Because of the uncertainty in the larger Stokes regime, for the rest of this
work, we will ignore the latter regimes, and approximate even the largest
dust grains to be in Stokes regime 1. At these sizes, because the particles
are anyway so decoupled from the gas, the exact drag regime is much less
important than in the case of small particles that are strongly affected by
the turbulence and drift.

The gas mean free path can be calculated from

λmfp =
1

nσH2

, (1.26)

where n = ρg/µmp is the gas midplane number density and σH2 = 2 · 10−15

cm2 is the molecular cross section.
As we shall see later, when calculating the dust aerodynamics, it is often

instructive to use the dimensionless Stokes number (unrelated to the drag
regimes discussed above), which we define as the ratio of the stopping
time and the turnover time of the largest eddies. This gives

St =
ts

τL
= tsΩk . (1.27)

For the Epstein and Stokes 1 drag regimes, we then get

St =

 St(Ep) = π
2 ·

aξ
Σg

, a < 9
4 λmfp

St(St1) = 2π
9 ·

a2ξ
λmfpΣg

, a > 9
4 λmfp .

(1.28)
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We now have sufficient understanding of how the dust couples to the gas
to turn to its spatial distribution, and first focus on the vertical structure. A
particle suspended in gas at a height z above the midplane is going to feel
the vertical component of the stellar gravity, Fgrav = −mzΩ2

k. As it starts to
fall towards the midplane, it feels the frictional force described in Eq. 1.21,
and the equilibrium settling velocity can thus be obtained by equating the
two forces (Dullemond & Dominik 2005). Following Birnstiel et al. (2010a),
we solve for z and limit the settling speed to velocities lower than half the
vertically projected Kepler velocity, which yields

vz
d = −zΩk min (0.5, St) , (1.29)

with the settling timescale

τsett =
z

vz
d
=

1
Ωk min (0.5, St)

. (1.30)

Combined with coagulation but in the absence of any other physics, all
dust grains would grow and settle towards the disk midplane to form a
razor thin disk on a timescale of a few hundred years. As observations can
detect dust grains also suspended at high altitudes above the midplane,
it is clear that there must be some other effect in action. It turns out that
this effect is turbulence. One of the effects of turbulence besides adding
viscosity is to smear out any density distribution, as particles are being
thrown around by the transient turbulent eddies. This leads to turbulent
diffusion, and if we consider a point distribution in 1D, it would after a
time t be smeared out and assume a Gaussian distribution of half-width

L(t) =
√

2Ddt , (1.31)

where Dd is the dust turbulent diffusion coefficient

Dd =
Dg

Sc
=

Dg

1 + St2 . (1.32)

Sc is here the Schmidt number, defined as the ratio between the gas and
particle diffusivity, as estimated by Youdin & Johansen (2007). The gas
diffusion coefficient due to turbulent viscosity can be obtained from the
α-parametrization as

Dg = αcsHg , (1.33)

and the turbulent diffusion timescale can then be given by

τdiff =
L2

Dd
. (1.34)

We can now calculate the dust scale-height by equating Eqs. 1.30 and 1.34

and taking L = hd. Limiting the dust scale-height to never be larger than
the gas scale-height, we get

hd = Hg min

(
1,

√
α

min(0.5, St)(1 + St2)

)
. (1.35)
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This means that small particles that are well coupled to the gas will take
the same scale-height as the gas, but the more decoupled they get, or the
weaker the turbulence, the more they settle towards the midplane.

When we now have a feeling for how particles move and behave in
the vertical direction, we can turn to their radial velocities. The important
thing to note is that although the gaseous disk is pressure supported in the
radial direction, the solid particles do not feel this pressure. This causes a
differential motion between the dust and the gas, causing a gas drag even
on relatively small bodies. The equation of motion for the gas in a thin
disk is

vϕ,g

r
=

GM∗
r2 +

1
ρg

dP
dr

, (1.36)

where vϕ,g is the azimuthal gas velocity and P is the gas pressure. If
we disregard the pressure, the gas would orbit at the Keplerian speed
vk = (GM∗/r)1/2. However, as both the gas density and sound speed tend
to increase with decreasing R, this gives rise to a non-negligible outward
pressure force that causes the gas to move at slightly sub-Keplerian veloci-
ties. If we assume the gas density and temperature profiles to be given by
Σg ∼ r−p and T ∼ r−q, the gas pressure would become

P = ρgc2
s ∼ r−k , (1.37)

where k = −3/2− p− q/2. The pressure gradient can then be written

1
ρg

dP
dr

= −k
c2

s
r

, (1.38)

and Eq. 1.36 then becomes

v2
ϕ,g = v2

k(1− 2η) , (1.39)

where

2η = − r
v2

k

1
ρg

dP
dr

= k
c2

s

v2
k

(1.40)

describes the degree of sub-Keplerianity. If we assume an MMSN disk
with p = 3/2 and q = 1/2, we get k = 13/4. Assuming a typical cs/vk =

Hg/r = 0.03, we get vϕ/vk = (1 − 2η)1/2 = 0.9985, a deviation from
the Keplerian velocity by only a fraction of a percent. Although a small
number, with a Keplerian velocity of 30 km s−1 at 1 AU, the gas would
still be sub-Keplerian by 40 m s−1. Because a solid particle does not feel
the pressure, this is the kind of headwind velocity that it faces if it is
sufficiently decoupled from the gas.

We will skip ahead a couple of steps, but the radial velocity of a particle
in the end depends on two terms (see Adachi et al. 1976 and Weiden-
schilling 1977a for a detailed description):

vr =
vg

1 + St2 −
2ηvk

St + St−1 . (1.41)
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The first term comes from the fact that the gas is being slowly accreted, and
drags the particle along with it, with vg ∼ 1 cm s−1 calculated in Eq. 1.17.
This effect is strongest for the very smallest particles, but decreases rapidly
as the particles start to decouple from the gas flow. The second term comes
from the differential motion between the particle and the gas described
above. For small particles in the limiting case of St � 1, the differential
rotation gives rise to a continuous drag force that decelerates the particle,
and for large particles with St� 1, the particle is sufficiently decoupled to
never adjust itself to the gas velocity, but instead experiences a headwind
that continuously removes angular momentum from the particle. The in-
termediate case, where St = 1 experiences the combination of these two
effects, gives rise to the maximum drift velocity.

By calculating the drift timescale vdrift = r/vr, it is easy to realize that
particle drift is problematic. Continuing with the example above, a maxi-
mum drift velocity of vr = 2ηvk ∼ 40 m s−1 would at 1 AU mean that a
particle would drift inwards and get lost in the star in tdrift = r(dr/dt)−1 ∼
100 yrs. This is highly problematic, and even if the particles are small
enough to only experience a fraction of the maximum drift velocity, tdrift
is still � tdisk, which means that the disk should get emptied of most of
its dust on timescales much less than what is observed. The drift barrier
and possible solutions to it is discussed in more detail in Sect. 1.4.5.

1.4.2 Relative velocities

To calculate the dust collision rates and collision outcomes, it is vital to
know the relative velocities between the particles. Relative velocities can
be caused by the drift and settling velocities described above, but the in-
teraction between the dust and the gas also induces other velocity effects,
causing the dust to collide at velocities ranging from less than mm s−1 and
up to 100 m s−1. The velocity sources are described below.

Brownian motion

Brownian motion arises from particle’s thermal movement, i. e. the inter-
action between the particle and individual gas particle. Because this is a
basic question of momentum transfer, it is an effect which is strongest for
the smallest particles:

∆vbm =

√
8kbT(mt + mp)

π ·mtmp
, (1.42)

where kb is Boltzmann’s constant, and T is the temperature. Between two
µm-particles, this yields relative velocities of ∼1 mm s−1, but already for
10 µm-particles, the relative velocities has dropped by an order of magni-
tude. Even so, because of the strong gas coupling for the smallest particles
efficiently attenuates the other velocity sources, Brownian motion is the
dominating source in the very first coagulation regime.
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Turbulence

Turbulent motion arises from the MRI described earlier, and its effect on
the dust motion can roughly be divided into three different regimes, de-
pending on how well coupled the particle is to the gas compared to the
eddy lifetime. The smallest particles are so well coupled to the gas that
they will stay in the same eddy throughout its lifetime. This means that
their relative velocities are small, as they very quickly adjust to the same
local gas flow. For intermediate-sized particles, the stopping times start to
become so long that they can be ejected from the smallest, Kolmogorov-
scale eddies. At this point, they become ballistically flung between eddies,
which causes a rapid boost in relative velocities. As the particles grow, they
start to couple to larger and more energetic eddies, and therefore receive
larger kicks and higher relative velocities. When the particles have grown
too large, however, their stopping times become larger than the lifetime
of the largest eddies, and their coupling to the turbulence start to weaken,
lowering the relative velocities.

Because the sizes between the largest and the smallest eddies in a pro-
toplanetary disk is very large, from ∼0.1 AU to ∼1 km at a 1 AU distance
to the star, numerically simulating the exact effect of turbulence on the
dust motion is very challenging. One parametrization of the effect of tur-
bulence was derived analytically by Ormel & Cuzzi (2007), drawing upon
the work by Voelk et al. (1980) by using a set of limiting cases for particles
of different stopping times compared to the eddy lifetimes. For equal-sized
particles, this yields

∆vt =

{
cs
√

2α · St, St� 1

cs
√

2α/St, St� 1
. (1.43)

where the maximum velocity is achieved for St = 1, corresponding to
when the particle couple of the largest eddies. As we can see, the relative
velocity depends strongly on the turbulent strength. For α = 10−2, the
highest relative velocities can reach almost 100 m s−1 at 1 AU, whereas
α = 10−4 leads to relative velocities of 10 m s−1. Even for low turbulence,
these velocities are still likely to be destructive for the dust grains.

Radial drift

The radial drift causes relative velocities between particles if they couple
differently to the surrounding gas (Whipple 1972a; Weidenschilling 1977a).
The relative velocity is then simply the difference between the determinis-
tic drift velocities of the two particles:

∆vr = |vr,1 − vr,2| , (1.44)

where vr is obtained from Eq. 1.41.
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Figure 1.7: The relative velocity for each particle pair calculated separately for
the five velocity sources and combined in the last panel. We take an
α = 10−3 and a distance of 1 AU from the central star. The particle
size that corresponds to Stokes number unity is equal to a = 70 cm,
which is where many of the velocity sources peak.

Azimuthal drift

The azimuthal relative velocities occur for the same reasons as the radial
drift, and arise from the azimuthal gas drag. The relative velocity between
two particles is determined by the difference in drift velocity:

∆vϕ =
∣∣vϕ,1 − vϕ,2

∣∣ . (1.45)

where the azimuthal drift of a particle is calculated from

vϕ =
ηvk

1 + St2 (1.46)
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Vertical settling

As particles settle towards the midplane at different velocities, this gives
rise to relative velocities between different-sized particles. In this thesis,
we utilize a dust code which does not resolve the vertical structure, but
instead uses a vertically integrated approach to track the dust settling. We
therefore calculate the average settling velocity at one scale-height, result-
ing in

∆vsett =Ωk · |hd,1 ·min(St1, 0.5)− hd,2 ·min(St2, 0.5)| (1.47)

where hd is the dust scale-height as described in Eq. 1.35.

In Fig. 1.7, we finally give the resulting relative velocity field for the five
relative velocity sources individually, and also the total relative velocity,
calculated from

∆v =
√

∆v2
bm + ∆v2

t + ∆v2
r + ∆v2

ϕ + ∆v2
sett . (1.48)

From the figure, we note the importance of Brownian motion for the small-
est of the particles, and it is also clear that all particles below St < 1,
even moderate turbulence dominates over the drift sources. This is partic-
ularly true for particles of similar sizes. It is also interesting to note that
as the particles grow to St� 1 but still sub-kilometer sizes, the relative
velocities drop below 1 m s−1. Even the turbulent stirring introduced by
Nelson (2005) is believed to be low for these particles, so that this region
becomes a temporary calm zone for the smaller planetesimals. This is how-
ever not true if we consider the relative velocities between a large particle
and a smaller, which would lead to an increased importance of the type of
sweep-up growth that is the main focus of this thesis.

1.4.3 Dust collision physics

Though the collisional outcome may initially seem like a simple problem,
it depends on a huge number of parameters, such as the grain size, mass,
porosity, structure and composition, and the impact velocity, impact pa-
rameter and angle (Blum & Wurm 2008). Only in the problem of planetes-
imal formation, the grain masses span over 30 orders of magnitude, and
the impact velocities over 6 orders of magnitude. Analytically calculating
the outcome for anything more than two compact spheres is very difficult,
and studying the outcome experimentally or numerically is also extremely
challenging.

The first type of collision outcome that the smallest grains will experi-
ence is so-called hit-and-stick growth, at which the two dust grains stick
together by virtue of the weak van der Waals force for silicates. This is a
short-range force between two adjacent surfaces, which arises due to in-
duced electrical dipoles in the adjacent layers of contact. In the case of ices,
the particles instead stick due to the stronger dipole force. The definition of
hit-and-stick-growth is that there is little restructuring of the body, which
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requires the collision energy to be small, less than approximately 5 times
the rolling energy (Güttler et al. 2010). This is the energy dissipated when
a monomer, the smallest dust building block, rolls over another monomer
with an angle of π/2, and is given by

Eroll =
π

2
a0Froll , (1.49)

where a0 ∼ 10−4 − 10−5 cm is the monomer radius and Froll ∼ 10−4 dyn
is the rolling force for silicates, which can be measured experimentally
(Heim et al. 1999). The criterium for a hit-and-stick collision is then:

1
2

mµ∆v2 ≤ 5Eroll , (1.50)

where mµ is the reduced mass. In terms of velocity, this becomes

∆v ≤
√

5πa0Froll

mµ
. (1.51)

During this type of growth, fractal aggregates form that become succes-
sively larger and more porous with each collision. For silicates, this growth
can continue to roughly ∼100 µm sizes before restructuring becomes im-
portant.

At higher collision energies, the collision becomes an argument of en-
ergy dissipation. During a collision, energy can be dissipated by monomer-
monomer rolling, sliding, twisting and breaking (Dominik & Tielens 1997).
In order for a sticking event to occur, enough energy has to be dissipated
for the weak van der Waals forces to become sufficiently adhesive. If an
aggregate is porous, restructuring is easy, and sticking can occur at rel-
atively high velocities. However, with restructuring follows compaction,
which limits the capability for restructuring in the following collision (Wei-
dling et al. 2009). If all of the energy can not be dissipated, but is also
not strong enough to break (many) monomer bonds, bouncing may oc-
cur, where both particles rebound off each other with very little mass gain
or mass loss. This is highly dependent on the grain and collision proper-
ties, but the transition from sticking to bouncing occurs at velocities in the
∆v = 1− 10 cm s−1 range for silicates Kothe et al. (2013a), though it is
uncertain whether it happens at all for ices (Wada et al. 2011).

At yet higher collision energies, monomer bonds start to break. If the
mass ratio is large between the two aggregates, the collision energy will
only be deposited locally, leading to erosion in the form of cratering around
the region of impact. The more similar the aggregates are in size, however,
the more globally can the energy be distributed, and the more global the
fragmentation becomes as a result. If the fragmentation occurs over the
whole aggregates, it is often called catastrophic fragmentation. Benz & As-
phaug (1999) showed that for rocky bodies, the critical energy needed to
cause fragmentation decreases with size, because the larger a particle is,
the higher likelihood it has to suffer from cracks and faults. Similar results
have also been found in the laboratory for silicate aggregates, where the



28 introduction

fragmentation threshold velocity has been found to be vf = 100 cm s−1

for mm-sized particles (Blum & Münch 1993) and vf = 40 cm s−1 for 5

cm-particles Schräpler et al. (2012). No laboratory experiments have so far
been possible for ices, but numerical simulations using molecular dynam-
ics (where the interactions between all adjacent monomers are evolved
during a collision) find the fragmentation velocity for ∼100 µm-sized ag-
gregates to be as high as vf = 1000− 5000 cm s−1 (Wada et al. 2009).

Numerical simulations are useful, because they allow for the probing of
collision properties for the grain growth from monomer sizes and up to
aggregates containing up to ∼105 monomers, a region which the labora-
tory has difficulties investigating. At too large monomer numbers, how-
ever, the computational time becomes too long for the simulations to be
feasible. The laboratory, on the other hand, is mostly restricted to colli-
sions between ∼0.5 mm and upwards. This is a problem, because there is
at the moment a big discrepancy between the numerical and laboratory
work with no current possibilities for direct comparison.

The problem is that the molecular dynamics (Wada et al. 2011; Seizinger
& Kley 2013a) has issues reproducing the bouncing collisions that are
frequently observed in the laboratory Weidling et al. (2012); Kothe et al.
(2013a). Cases can be made for both methods. The molecular dynamics
simulations are highly reliant on the microphysics of the interactions be-
tween monomers, which have to be measured in the laboratory or deter-
mined theoretically. This is problematic, because the collisional outcome
does not only depend on the absolute values for the interactive forces,
but also on the ratios between each other. If sliding would turn out to
be incorrect, this will also change the amount of rolling, twisting and
breaking in a collision. The laboratory is on the other hand not capable
of self-consistently forming their first aggregates, but need to construct
them artificially. This means that the initial properties of the dust grains
that are being investigated might not coincide with what we would have
as a result of the first stages of coagulation.

There is also a second type of numerical simulations using the SPH
method, which considers the macroscopic energy dissipation via expres-
sions for the compressive strength and the bulk modulus (Geretshauser
et al. 2010, 2011; Meru et al. 2013), where the macroscopic properties are
determined from laboratory experiments. This method is in principle very
useful for determining the collision properties of dust grains with sizes
of dm and above, a region which both molecular dynamics and the labo-
ratory experiments have difficulties exploring. It does however still have
some issues with reproducing the outcome from the laboratory experi-
ments, and is going to need further calibrations.

1.4.4 Dust coagulation

The simple monodisperse growth scenario described in Eq. 1.5 is a useful
method to understand the general behavior of the dust, but is not sufficient
if we want to accurately determine how the dust evolves with time. How-



1.4 dust evolution 29

ever, as the dust growth from monomers to planetesimals spans over such
an extreme range in mass and size, and the dust population initially con-
sists of ∼1040 bodies, simulating the evolution of a full size-distribution is
non-trivial. In this thesis, we have primarily used the dust evolution code
developed by Brauer et al. (2008) and Birnstiel et al. (2010a), and we will
here give a brief overview of how it works.

To solve the the dust evolution problem for so many particles, some sort
of statistical approach is necessary. One method is to use a Monte Carlo
approach, in which a small number of particles are chosen to represent
larger swarms of particles with identical properties (Ormel & Spaans 2008;
Zsom & Dullemond 2008). Another, more common method is to solve
the Smoluchowski equation. This is a very general continuum approach
that has had numerous applications outside of astronomy since its devel-
opment by Smoluchowski (1916). In a planet formation context, it also
has a long history (Weidenschilling 1980; Wetherill & Stewart 1989; Lee
2001; Dullemond & Dominik 2005; Tanaka et al. 2005). In this statistical
approach, we let the dust-grain number density n(m, r, z) be a function
of the grain mass m, the distance to the star r, and the height above the
mid-plane z, and we give it in number of particles per unit volume per
unit mass. The total dust density can therefore at a point (r, z) be written
as

ρ(r, z) =
∫ ∞

0
m · n(m, r, z)dm , (1.52)

and the change in number density with respect to time can then be given
by the Smoluchowski equation as

∂

∂t
n(m, r, z) =

1
2

∫ m

0
n(m−m′)n(m′)K(m−m′, m′)dm′

− n(m)
∫ ∞

0
n(m′)K(m, m′)dm′

+
1
2

∫∫ ∞

0
n(m′)n(m′′)L(m′, m′′)S(m, m′, m′′)dm′dm′′

− n(m)
∫ ∞

0
n(m′)L(m, m′)dm′ , (1.53)

where we for ease of reading have dropped the dependency of r and z.
The coagulation and fragmentation kernels are given by

K(m, m′, r, z) = σ∆vpc , (1.54)

L(m, m′, r, z) = σ∆vpf , (1.55)

where σ is the collisional cross section, ∆v is the relative velocity, and pc

and pf are the coagulation and fragmentation probabilities.
The first two terms are due to coagulation. The first term describes how

particles enter the mass range m+dm due to coagulation between two par-
ticles whose total mass sum up to m. The 1/2 is to avoid double counting
the particle pairs. The second term describes how particles leave the mass
range by having a particle of mass m coagulate with any other particle.
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The last two terms are due to fragmentation. The third term describes
how particles enter the mass range as fragments due to a collision between
any two particles. S(m, m′, m′′) is here the fragmentation matrix, and de-
scribes the fragment distribution as a result of the fragmenting collision
between m′ and m′′. The fourth term describes how particles leave the
mass range due to a fragmenting collision between a particle of mass m
and any other particle.

Determining the collision kernels and particularly the coagulation and
fragmentation probabilities, as well as the fragmentation matrix, is non-
trivial, and relies on both dust dynamics and collisional physics. This is
a major part of this thesis, and will be discussed at length in following
chapters.

Unless the problem is very simplified (i.e. the idealized analytical ker-
nels discussed by Ohtsuki et al. 1990; Wetherill 1990; Lee 2000), the Smolu-
chowski equation has to be solved numerically, and it is necessary to dis-
cretize Eq. 1.53. This however leads to a problem, as having a finite num-
ber of bins means that particle collisions do not give a resulting particle
mass mp that corresponds to one of the existing logarithmically spaced
mass bins. To solve this, the code uses the Podolak algorithm, where the
mass of the resulting particle is distributed into the two adjacent mass bins
mj < mp < mj+1 according to

ε =
mp −mj

mj+1 −mj
, (1.56)

where ε ·mp is put into mass bin mj+1, and (1− ε) ·mp is put into mass bin
mj. This approach is however susceptible to numerical diffusion, which al-
ways occurs, as mj+1 > mp means that mass is put into a bin that is more
massive than the physical particle created in the collision. If the spacing be-
tween the mass bins is too coarse, this can lead to a significant, artificially
sped up growth rate. To avoid this, a sufficiently high mass resolution of
7-40 bins per mass decade is required (Lee 2001; Okuzumi et al. 2009).

The code that we use is capable of tracking the dust evolution either
locally, or in the radial direction. It is in principle possible to use a code
which can track both the radial and vertical direction, but this is very costly
in terms of computational time. An important innovation introduced by
Brauer et al. (2008) was therefore the vertically integrated dust evolution.
Because of settling, particles of different stopping times tend to be dis-
tributed with different scale-heights, but because the coagulation process
is local, two grains at different heights would not be able to collide with
each other. By vertical integration of the dust distribution, it is possible to
modify the collision kernel to take this into account, a trick that saves us
from having to calculate the dust in the vertical direction.

1.4.5 Barriers to growth

Throughout the introduction, it has been clear that the dust growth is
subject to a number of barriers that are problematic for the growth to plan-
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Figure 1.8: The drift timescale in an MMSN disk at 1 AU for different grain sizes.
Also included is the transition grain size from the Epstein to the Stokes
drag regime, and the size corresponding to St = 1.

etesimal sizes. In this section, we aim to summarize and further describe
these different growth barriers.

The radial drift barrier has been known for a long time (Whipple 1972b;
Weidenschilling 1977a). Due to gas drag, the particles constantly lose an-
gular momentum and drift inward. The drift timescale can be very fast, as
shown in Fig. 1.8 and calculated from Eq. 1.41. However, if the particles
are sufficiently large (>104 cm), the drift becomes slow enough to keep the
particles in the disk for the entire disk lifetime. This is a difficulty for the
planetesimal formation, because there either needs to exist a mechanism
to keep the dust in place for longer periods of time, or the formation mech-
anism needs to be able to grow the particles from cm- to several meters in
size on timescales shorter than 100 years.

The drift barrier in the inner part of the disk is the focus of Chapter 6,
where we will show that the particle growth might indeed be fast enough
to avoid the drift. The radial drift is also a big problem for explaining
the presence of dust in the observed protoplanetary disks. A solution to
this could be pressure bumps, which was suggested by Barge & Somme-
ria (1995) and Klahr & Henning (1997). Pinilla et al. (2012b) studied this
with a coagulation code, where artificial pressure bumps were distributed
periodically over the disk. In the pressure bumps, the pressure gradient
changes sign, which causes particles to gather at the bump. The bumps
however need to sufficiently long-lived and also strong enough to counter
the turbulent diffusion. Exactly how such pressure bumps would form is
however up to debate, and most suggestions so far can only create tran-
sient bumps that would decay within a few 100 orbits (Uribe et al. 2011;
Dittrich et al. 2013). In Chapter 5, we instead discuss the effects of the
pressure bump formed at the snowline.

The bouncing and fragmentation barriers are both related to how the
collision energy in a body is dissipated. If the collision energy is too high
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Figure 1.9: The resulting steady state size distribution due to the collisional
growth barriers. The simulations were run at 1 AU for an MMSN disk
with α = 10−4, with the bouncing threshold at vb = 5 cm s−1, and the
fragmentation threshold at vf = 100 cm s−1.

for sticking but too low for fragmentation, they will simply bounce as a
result, compacting each other in the process. When the dust grains can
neither gain nor lose mass, their growth halts (Güttler et al. 2010; Zsom
et al. 2010). If the grains are even larger, they start to experience fragmen-
tation or erosion, which has been known for a long time (Weidenschilling
1980; Blum & Münch 1993; Brauer et al. 2008). Because either outcome is
negative for growth, the absolute strength of the fragmentation does not
directly matter, as grow either way is impossible.

In Fig. 1.9, we show the resulting distributions for both of the collision
barriers using the local code of Birnstiel et al. (2010a). In the case of the
fragmentation barrier, whenever a particle becomes too large, it fragments,
and the individual fragments can again grow up towards the fragmenta-
tion barrier, creating a growth/fragmentation cycle and a final steady state.
In the case of the bouncing barrier, the largest particles are incapable of
both growth and erosion, and will instead result in a pile-up right at the
barrier. The smallest sizes will slowly get depleted, but the timescale for
this increases with the decreasing number densities. Although the bounc-
ing collisions still needs to be understood and investigated further, the
fragmentation between similar sizes seems unavoidable. In Chapter 2, we
instead explore the possibility of growth between grains of very different
sizes.

The charge barrier was introduced by Okuzumi (2009) and further de-
veloped by Okuzumi et al. (2011a,b). Because the disk gas is heated and
partly ionized, a fraction of it exists in the form of free ions and electrons.
Because the electrons have lower masses than the ions, they move around
at higher velocities, and therefore interact more often with the dust. As
a result, this causes the dust grains to be negatively charged on average.
For two dust grains to collide, they therefore first have to overcome the
Coulomb barrier. If the dust grains are small, they move with low relative
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velocities and might therefore have too low kinetic energies to overcome
the static repulsion. This could cause a total growth halt already at sizes
of a few µm. On the other hand, if only a few particles manage to grow
large in a region where the grain charging is lower and then introduced by
radial mixing or settling, they would be able to easily overcome the elec-
trostatic forces. This problem remains to be investigated in more detail,
however.

1.4.6 Alternative planetesimal formation scenarios

As we discussed in the previous section, the scenario with incremental
growth (between similar-sized particles) is frustrated by the existence of
a number of barriers. Because of this, some alternative planetesimal for-
mation scenarios have been suggested in recent years that have gained a
lot of ground. To put our work on dust coagulation into context, we here
summarize the principle ideas of some of them.

The very first suggestion for the planetesimal formation involves grav-
itational instability by the dust as it settles towards the disk midplane
(Safronov & Zvjagina 1969; Goldreich & Ward 1973). If the disk is non-
turbulent, the dust would settle into a progressively thinner layer until
gravitational instability kicks in, resulting in the collapse and formation of
planetesimals. This picture is however problematic, as first realized by Wei-
denschilling (1980). As a result of the dust settling, turbulence is generated
due to the Kelvin-Helmholtz instability, which efficiently prevents the dust
from ever forming the densities required for the gravitational instability to
occur.

One scenario that has gained a lot of popularity in recent years is plan-
etesimal formation by streaming instabilities with subsequent gravitational
collapse, first introduced by (Johansen et al. 2007). So far, we have only dis-
cussed the impact that the gas has on the dust, but if the relative densities
between the two are similar, there will also be a significant feedback from
the dust to the gas (Youdin & Goodman 2005). The resulting streaming
instability has been shown to lead to very strong concentrations of the
solids, with concentration factors of up to 1000. As a result of the clump-
ing, the Roche density can be exceeded, leading to gravitational collapse by
clumps of hundreds of kilometers in size, although the final planetesimal
size has yet to be determined due to resolution issues and uncertainties in
secondary physical effects. A limitation to this scenario is that it requires
very high densities of particles that are sufficiently decoupled from the
gas with St ∼ 0.1− 1 (Bai & Stone 2010). Although this is a promising sce-
nario which is capable of forming planetesimals even far out in the disk,
creating the necessary conditions is not necessarily trivial. Dust evolution
models have shown that the collisional barriers are likely to limit the dust
population to sizes much smaller than this, and for streaming instabilities
to occur in the first place, the dust-to-gas ratio also needs to be above the
canonical value.
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A scenario related to the above was suggested by Cuzzi et al. (2008) and
further discussed by Cuzzi et al. (2010). This also relies on the interplay
between the dust and the gas. If cm-sized particles (in their models corre-
sponding to chondrules) are suspended in a turbulent gas flow, they will
become ejected from the turbulent eddies and gather in the high-strain
regions. This effect is called turbulent concentration, and can cause tran-
sient dust concentration factors that mostly amount to 10− 100, but every
now and then, by pure chance, these enhancement factors can reach as
high as 104. When this happens, the grains might become self-gravitating,
and slowly sink into a rubble pile which becomes a planetesimal. For such
strong clumping to occur, however, the particles need to have very similar
aerodynamic properties, which requires them to be confined within a very
limited size-range, and also for the particle stopping times to correspond
roughly to the lifetimes of the smallest-scale eddies (Pan et al. 2011). One
could argue that the bouncing barrier might create exactly these condi-
tions, but this has yet to be studied. In Chapter 4, we discuss the coagula-
tion in such clumps, which is highly relevant for this scenario.

A recent study by Okuzumi et al. (2012) suggests that icy planetesimals
can form with such extremely high porosities that both the fragmentation
and the drift barrier can be avoided. Based on molecular dynamics simu-
lations by Suyama et al. (2012), they argue that the compaction caused
by collisions is so inefficient that the coagulation will lead to internal
dust densities as low as 10−5 g cm−3. They argue that such aggregates
are highly resilient against fragmentation, and also find that it will even
lead to growth timescales significantly shorter than the drift. According
to this suggestion, compaction would only occur once the planetesimals
have formed, due to self-gravity or ram pressure (Kataoka et al. 2013). It
should however be noted that the molecular dynamics simulations that
the collision model in the study is based on are limited to aggregate sizes
of ∼100 µm, which might not necessarily be accurate for km-sized bodies.

1.5 the aim of this thesis

This thesis focuses on the first stages of planet formation, and aims to
probe how far dust coagulation can reach in the presence of the dust
growth barriers. The core result of the thesis is the discovery and devel-
opment of a new planetesimal formation scenario by sweep-up, and a ma-
jority of the work is dedicated to discussing various aspects of this mode
of growth. Apart from the sweep-up, we discuss various aspects that are
also relevant for the general dust evolution and for some of the other plan-
etesimal formation scenarios discussed in the previous section.

Chapter 2 focuses on the creation and implementation of a realistic col-
lision model. By taking into account the latest results from the laboratory
and numerical simulations, we implement a model that includes sticking,
bouncing, fragmentation, erosion, mass transfer and smooth transitions
between them. In line with previous work on dust evolution with complex
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collision physics, we find that such a collision model indeed matters, and
courtesy of the capabilities of the Smoluchowski dust evolution approach,
we also identify a new growth channel for planetesimal formation.

Chapter 3 studies the effect of velocity distributions on the dust collision
rates and impact outcomes. We find that the existence of a velocity distri-
bution smears out the collisional barriers, by allowing a few low-velocity
sticking collisions to occur between particles that on average only frag-
ment. This can allow for a few lucky particles to break through the barriers
and initiate sweep-up growth towards planetesimal sizes.

Chapter 4 extends the work of the previous section to also take into ac-
count clustering between the particles. We consider a few of the clustering
effects, and find that they are ideal for the creation of larger grains, as the
clusters lead to higher collision rates between the sticking, low-velocity
collisions. We also speculate the clustering might lead to collision rates
that are high enough to overcome the radial drift barrier in the outer disk.

Chapter 5 explores the outcome of coagulation at the pressure bump cre-
ated at the snowline. We find that by allowing the larger "privileged" par-
ticles that can form in dead zones to radially mix with smaller particles in
the active regions, growth breakthrough can occur and sweep-up be initi-
ated at the location of the pressure bump.

Chapter 6 investigates the formation and drift of planetesimals in the in-
ner region of the disk. Due to a switch between the gas drag regimes and
the increased solid densities, we find that proto-planetesimals formed by
the sweep-up mechanism can grow fast enough to avoid the radial drift
barrier in the inner few AU of the disk. In this way, planetesimals can form
on timescales of only a few thousand years. We speculate that this might
explain the mass distribution of the terrestrial planets in the Solar System
and the recently discovered compact exoplanetary systems.





2
P L A N E T E S I M A L F O R M AT I O N B Y S W E E P - U P
C O A G U L AT I O N

Adapted from Windmark, Birnstiel, Güttler, Blum, Dullemond, Henning, A&A
(2012), vol 540, A731

abstract

The formation of planetesimals is often accredited to the collisional stick-
ing of dust grains. The exact process is unknown, as collisions between
larger aggregates tend to lead to fragmentation or bouncing rather than
sticking. Recent laboratory experiments have however made great progress
in the understanding and mapping of the complex physics involved in
dust collisions. In this chapter, we study the possibility of planetesimal for-
mation using the results of the latest laboratory experiments, particularly
by including the fragmentation with mass transfer effect, which can lead to
growth even at high impact velocities. We present a new experimentally
and physically motivated dust collision model capable of predicting the
outcome of a collision between two particles of arbitrary mass and veloc-
ity. The new model includes a natural description of cratering and mass
transfer, and provides a smooth transition from equal- to different-sized
collisions. It is used together with a continuum dust-size evolution code,
which is both fast in terms of execution time and able to resolve the dust
at all sizes, allowing for all types of interactions to be studied without
biases. For the general dust population, we find that bouncing collisions
prevent any growth above millimeter-sizes. However, if a small number
of cm-sized particles are introduced, for example by either radial mixing
or created by velocity distributions, they can act as a catalyst and start
to sweep up the smaller particles. In an MMSN disk at a distance of 3

AU, 100-meter-sized bodies are formed on a timescale of 1 Myr, but in a
denser disk environment, we find that 10-km-sized planetesimals can form
within 0.1 Myrs. Direct growth of planetesimals is a possibility thanks to
a combination of the bouncing barrier and the fragmentation with mass
transfer effect. The bouncing barrier is here even beneficial, as it prevents
the growth of too many large particles that would otherwise only frag-
ment among each other, and it creates a reservoir of small particles that
can be swept up by larger bodies. However, for this process to work, a few
seeds of cm-size or larger have to be introduced artificially.

1 See page ix for details on authorship.
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2.1 introduction

One of the oldest and most popular planetesimal formation scenarios is
based on incremental growth, in which the formation of planets starts in
the protoplanetary disk with micron-sized dust particles that collide and
stick together by surface forces, forming successively larger aggregates
(Weidenschilling 1980). The next stage in the formation process is the
gravity-aided regime where planetesimals have formed that are so mas-
sive that the gravity starts to affect the accretion and the strength of the
body.

However, to reach this regime, kilometer-sized bodies are required, some-
thing that has proven difficult to produce owing to a number of effects
such as fragmentation and bouncing (Blum & Münch 1993), rapid inward
migration (Whipple 1972a), and electrostatic repulsion (Okuzumi et al.
2011a,b). A new planetesimal formation channel was introduced by Jo-
hansen et al. (2007, 2011), in which mutual gravity plays a role between
meter-sized boulders in turbulent and locally overdense regions, resulting
in the rapid formation of kilometer-sized bodies. However, even the meter
regime is difficult to reach only by the coagulation of dust aggregates.

The micron-sized dust particles are coupled tightly to the surrounding
gas, and their relative velocities are driven primarily by Brownian motion.
Since the resulting relative velocities are small, on the order of mm s−1, the
particles stick together by means of van der Waals forces. However, as the
particles increase in size, they become less coupled to the gas, and a num-
ber of effects increase the relative velocities between them. For cm-sized
particles, the predicted relative velocity is already 1 m s−1, and m-sized
boulders collide at velocities of ∼ 10 m s−1. At these high collision ener-
gies, the particles tend to fragment rather than stick (Blum & Wurm 2008),
which effectively prevents further growth (Brauer et al. 2008; Birnstiel et al.
2010a).

In the protoplanetary disk, gas pressure supports the gas against the
radial component of the stellar gravity, causing it to move at slightly sub-
Keplerian velocities. Solid bodies do not however experience the support-
ing gas pressure, and instead drift inward. As the particles grow larger,
their relative velocities with respect to the gas increase, causing a signifi-
cant headwind and a steady loss of angular momentum. At a distance of
1 AU, radial drift can cause meter-sized bodies to spiral inwards and get
lost in the star on a timescale of a few hundred orbits (Weidenschilling
1977a; Nakagawa et al. 1986). The fragmentation and drift barriers have
been shown to efficiently prevent growth above 1-100 cm, but to reach the
gravitational regime, bodies that are roughly nine orders of magnitude
more massive are needed.

The study of the dust evolution has until recently primarily been done
using simplified dust collision models in which colliding dust grains either
stick together or fragment (Brauer et al. 2008; Birnstiel et al. 2010a). The
simplicity of the models has been a necessity because of large uncertainties
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and the small parameter space covered in terms of mass, porosity, and
collision velocity in the laboratory experiments and numerical simulations.

Recent years have however seen good progress in the laboratory exper-
iments, as summarized by Blum & Wurm (2008). To provide a more com-
plete and realistic collision model, Güttler et al. (2010) reviewed a total
of 19 different experiments with aggregates of varying masses, porosities,
and collision velocities. In these experiments, the complex outcome was
classified into nine different types. Zsom et al. (2010) implemented this
collision model in a Monte Carlo dust-size evolution code. The results
showed clear differences from the previous collision models, and allowed
for the identification of the most important of the different collision types.
They also found the important effect of dust grain bouncing at millimeter
sizes that halts the grain growth even before it reaches the fragmentation
barrier. With the inclusion of a vertical structure, Zsom et al. (2011) still
found bouncing to be prominent, but the vertical settling also allowed for
a number of other collision effects to occur.

Progress has also been made with numerical simulations of dust (sil-
ica and ice) aggregate collisions using molecular dynamics codes with
up to 10,000 monomers corresponding to aggregate sizes of around 100

µm (Wada et al. 2009, 2011). On the basis of these simulations, Okuzumi
et al. (2012) argued that growth was possible for ices up to velocities of
70 m s−1, and silicates up to 7 m s−1. With this model, they were able to
form extremely porous icy planetesimals. Geretshauser et al. (2010, 2011)
also developed a dust collision code using SPH for particle sizes of cm
and upwards. There is currently a discrepancy between the simulations
and the laboratory experiments, where the simulations have difficulties
reproducing the bouncing events and generally observe much higher frag-
mentation threshold velocities. In this chapter, we analyze primarily the
(more pessimistic) laboratory data, but there is a great need to get the two
fields to agree.

One possible way to grow past the fragmentation barrier is so-called
fragmentation with mass transfer, which was observed by Wurm et al.
(2005) and can happen in a collision between a small projectile and a large
target. The projectile is fragmented during the collision and a part of it is
added as a dust cone to the surface of the larger particle, provided that
the mass ratio of the two particles is large enough to avoid fragmentation
of the larger body. The mass transfer efficiency was studied by Kothe et al.
(2010), who also showed that multiple impacts over the same area still lead
to growth. Teiser & Wurm (2009a,b) showed that growth of the target is
possible even for collision velocities higher than 50 m s−1, and Teiser et al.
(2011) proved that the target could still gain mass even at large impact
angles. These experiments have all shown that dust growth may proceed
for large bodies at high velocities, and indicate that this effect might even
be able to produce planetesimals via collisional accretion.

For the study of the dust-size evolution, the Monte Carlo approach of
Ormel & Spaans (2008) and Zsom & Dullemond (2008) has the distinct
advantage that it permits the simulation of a large number of particle
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properties and collision outcomes. A representative particle approach is
used where a few particles correspond to larger swarms of particles with
the same properties. Each particle is given a set of properties, and each in-
dividual collision of the representative particles is followed. This approach
uses very little computer memory, and adding extra properties costs very
little in terms of execution time. If we wish to study the effect of mass
transfer, however, the Zsom et al. approach has some problems, as it only
tracks the grain sizes where the most mass can be found in the system.
It therefore has difficulties in resolving wide size distributions, which is
required for the type of bimodal growth that the fragmentation with mass
transfer effect would produce.

Another method is the continuum approach, in which the dust popula-
tion is described by a size distribution (Weidenschilling 1980; Nakagawa
et al. 1981). The conventional continuum approach is the Smoluchowski
method, where the interactions between particles of all sizes are consid-
ered and updated simultaneously. This leads to very fast codes for a one-
dimensional parameter-space (i.e. mass) compared to the Monte Carlo
approach. Adding additional properties such as porosity and charge is
however very computationally expensive in terms of memory usage and
execution time if one does not include steps such as the average-porosity
scheme of Okuzumi et al. (2009). With the continuum approach, however,
the dust is resolved at all sizes, allowing for all types of dust interactions
without any biases. This approach is also fast enough to follow the global
dust evolution in the whole disk.

The aim of this chapter is to describe the creation of a new collision
model describing the outcome of collisions between dust aggregates of
various sizes and velocities, that is fast enough to be used with continuum
codes. In this new model, we take into account recent progress in lab-
oratory experiments, especially the mass transfer effect described above,
and take a physical approach to transition regions from growth to erosion
where the experiments are sparse. We then use this model in size evolution
simulations using the local version of the code developed by Birnstiel et al.
(2010a) to study its implications for the formation of the first generation
of planetesimals.

The background of the new model and all the experimental work that it
is based on is discussed in Sect. 2.2, and its implementation is described
in Sect. 2.3. In Sect. 2.4, we discuss the properties of the disk in our local
dust evolution simulations, as well as the implicit Smoluchowski solver
that we have used. Finally, in Sects. 2.5 and 2.6, we discuss the results of
the new model and show how the existence of a bouncing barrier may
even be beneficial to the growth of planetesimals.

2.2 motivation behind the development of a new collision

model

Models to describe the growth of dust aggregates can generally be divided
into two parts: A collision model describes the result of a collision between
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two dust particles of arbitrary properties (i.e. mass, porosity) and veloci-
ties. A dust evolution model uses the collision model to describe the evolu-
tion of the particle properties of an entire population of dust particles as
they collide and interact with each other. In this section, we describe the
latest laboratory experiments and our effort to produce a collision model
that can take these results into account while still streamlining it to work
well with continuum dust evolution codes. This means that the collision
model cannot be as complex as the one developed by Güttler et al. (2010),
but needs to focus on the most important collision types and aggregate
properties. Nevertheless, we were able to include results that were not
well-established or even known when the model of Güttler et al. was de-
veloped.

2.2.1 Overview of recent experiments and simulations

Numerous laboratory experiments have been performed to probe the col-
lision parameter space of silicate dust grains, as summarized by Blum &
Wurm (2008). This is a daunting task, as planet formation spans more than
40 orders of magnitude in mass and 6 orders of magnitude in collisional ve-
locity and collisional outcomes are affected by for example porosity, com-
position, structure and impact angle. The classical growth mechanism of
dust grains is the hit-and-stick mechanism, which has been well-studied in
both laboratory experiments (Blum & Wurm 2000, BW00) and numerical
simulations (Dominik & Tielens 1997; Wada et al. 2009). Sticking collisions
are also possible via plastic deformation at the contact zone (Weidling et al.
2012, WGB12) and geometrically by penetration (Langkowski et al. 2008,
LTB08).

Owing to limited data, previous collision models have with few excep-
tions only included sticking, cratering, and fragmentation with simplistic
thresholds (Nakagawa et al. 1986; Weidenschilling 1997; Dullemond & Do-
minik 2005; Tanaka et al. 2005; Brauer et al. 2008). To study the effect of
the progress in laboratory experiments, Güttler et al. (2010) and Zsom et al.
(2010) presented a collision model containing nine different collisional out-
comes and used this in the Monte Carlo dust evolution code developed by
Zsom & Dullemond (2008). Their model contained three types of sticking
collisions in addition to the normal hit-and-stick, and they identified two
growth-neutral bouncing effects and three different fragmentation effects
in which the largest particle is eroded. They found that several of the new
collision types played a role in the dust-size evolution, which proved the
necessity for a more complex dust collision approach than previously used.
Before even reaching the fragmentation barrier, at which fragmentation
events between similar-sized particles prevent further growth, they iden-
tified the so-called bouncing barrier. Bouncing collisions between smaller
particles of intermediate velocities proved to be an efficient barrier for
growth even for grains as small as a millimeter. It should be clarified that
bouncing is, in principle, not bad for growth. The bouncing barrier is a
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Figure 2.1: The size-size parameter space of the dust collision experiments (blue
boxes) providing the basis for the new collision model. All marked ex-
periments are discussed in more detail in Sect. 2.2.1. The contours and
gray labels mark the collision velocities in cm s−1 expected from the
disk model described in Sect. 2.4, and do not always coincide exactly
with the velocities studied in the experiments.

problem because of the lack of sticking over such a large range of masses
and velocities, which prevents the particles from growing any further.

Bouncing between dust aggregates remains a hotly discussed topic. It
has been reported from a large number of laboratory experiments with dif-
ferent setups and material properties (Blum & Münch 1993; Heißelmann
et al. 2007; Langkowski et al. 2008; Kelling & Wurm 2009; Güttler et al.
2010; Weidling et al. 2012), but molecular dynamics simulations contain
significantly less or no bouncing (Wada et al. 2007, 2008, 2009, 2011; Paszun
& Dominik 2009; Seizinger & Kley 2013a). These rebounding events hap-
pen in collisions where the impact energy is so high that not all can be
dissipated by the restructuring of the aggregates. Wada et al. (2011) argue
that this would happen only for very compact aggregates where the coor-
dination number is high, which contradicts what is seen in the laboratory.
In the present study, we base our model on laboratory experiments, but
bouncing is clearly a very important matter for the dust growth and will
need to be investigated in future studies.

In our new model, we implement the most important collision types
identified by Zsom et al. (2010), and also take into account the results of a
number of recent experimental studies. Many new experiments have been
performed that have increased our understanding of the collision physics
of dust aggregates. In Fig. 2.1, we plot the parameter space of a selection
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of important laboratory experiments that provide the basis for the new
collision model.

Provided that the mass ratio is large enough between the two parti-
cles (from now on called the projectile and the target for the smallest and
largest particle), the projectile can fragment and parts of it stick by van
der Waal forces to the surface of the target. This was studied by Wurm
et al. (2005) and Teiser & Wurm (2009b, TW09b) for mm- to cm-sized pro-
jectiles shot onto a mounted dm-sized dust target at velocities of up to
56.5 m s−1. It was found that the accretion efficiency even increased with
velocity, and could be as high as 50% of the mass of the fragmented pro-
jectile, where Güttler et al. (2010) only assumed a constant 2%. This effect
was also observed by Paraskov et al. (2007, PWK07) in drop tower exper-
iments where the target also was free-floating without a supported back.
The mass transfer efficiency at slightly smaller velocities (1.5 - 6 m s−1) and
for millimeter-sized projectiles was studied in more detail by Kothe et al.
(2010, KGB10), who confirmed the velocity-positive trend. Teiser & Wurm
(2009a) and Kothe et al. also studied multiple impacts over the same area,
and could conclude that growth was possible even then, without the newly
accreted material being eroded. It was also found that growth was possi-
ble even at very steep impact angles. Beitz et al. (2011, B+11) performed
experiments between cm-sized particles at even smaller velocities (8 mm
s−1 to 2 m s−1) and detected mass transfer even at velocities as small as 20

cm s−1, right at the onset of fragmentation.
This mode of growth, where small projectiles impact large targets, is re-

lated to the work of Sekiya & Takeda (2003, 2005), who performed numer-
ical studies to determine whether small fragments formed in an erosive
collision could be reaccreted back onto the target by gas drag. The conclu-
sion was that if the fragments were µm-sized, and the target is sufficiently
large, the gas flow would actually compel the fragments to move around
the target, thereby preventing reaccretion. For the mass transfer effect, it
is important to verify whether this effect could prevent 100-1000 µm-sized
projectiles from impacting on the target in the first place. The importance
of this effect can be estimated with a simple comparison of timescales us-
ing reasonable parameters for the disk model (discussed in more detail in
Sect. 2.4). The stopping time of a small particle is given by

τs =
ξap

ρg · ū
∼ 2500 s, (2.1)

where ξ ∼ 1 g cm−3 is the solid density of the projectile, ap ∼ 100 µm is its
radius, ρg ∼ 10−10 g cm−3 is the expected midplane gas density at 3 AU,
and ū ∼ 4 · 104 cm s−1 is the mean thermal velocity of the gas. The time it
would take for the projectile to pass the target is given by

τpass =
at

∆v
∼ 0.2 s, (2.2)

where at ∼ 100 cm is a typical target size and ∆v ∼ 5000 cm s−1 the
relative velocity between the particles. Since τs � τpass, it would take too
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long for the projectile to adjust to the gas flow around the target, and the
two particles would collide. If the projectiles were instead only 1 µm in
size, the timescales would not differ so much, and the gas flow might play
a role.

Another recent experimental result is the refinement of the threshold
velocity for destructive fragmentation, where the target is completely dis-
rupted. Beitz et al. (2011) performed experiments to determine the onset
of global fragmentation of the particles, and found that cm-sized particles
fragmented at 20 cm s−1, much below the 1 m s−1 threshold found for
mm-sized particles by Blum & Münch (1993). This points towards a mate-
rial strength that decreases with mass, as predicted for rocky materials by
Benz & Asphaug (1999) among others. This result can be explained by a
probability of faults and cracks in the material that increases with particle
size, and that it is along these cracks that both global breaking and frag-
mentation takes place. No experiments have as of yet been performed to
study the fragmentation threshold of differently sized dust aggregates, but
one can generally assume that the velocities needed increase with the size
ratio, as seen in both experiments and simulations of collisions between
rocky materials (Stewart & Leinhardt 2011; Leinhardt & Stewart 2012).

To provide more data in the transition region between sticking and
bouncing, Weidling et al. (2012) studied collisions between particles 0.5− 2
mm in size and at velocities of 0.1 − 100 cm s−1. In these experiments,
sticking collisions were found (in coexistence with bouncing events) for
higher velocities than previously expected (Blum & Wurm 2000; Güttler
et al. 2010), and enough data now exists to define a transition regime be-
tween only sticking and bouncing. Similar experiments with smaller parti-
cles roughly 100 µm in size were performed by Kothe et al. (unpublished),
and are consistent with the threshold of Weidling et al.

Schräpler & Blum (2011, SB11) also performed erosion experiments be-
tween µm-sized monomer projectiles and mounted high-porosity aggre-
gates for velocities of up to 60 m s−1, to determine the erosion efficiency as
a function of the collision velocity and the surface structure. They discov-
ered that the initial stages of the monomer bombardment are very efficient
even at small velocities, but after the most loosely bound monomer chains
had been knocked off and the surface had been compacted, the erosion
was found to have greatly decreased.

2.2.2 Individual treatment of collisions

In the collision model of Güttler et al. (2010), a binary approach was used
for the particle mass ratios and porosities. Below a certain set critical mass
ratio, rc = mt/mp = 10, 100, 1000, the collision was treated as being be-
tween equal-sized particles, leading for example to global fragmentation
if two large particles collided at high velocities. If the mass ratio was above
the critical ratio, the particles were assumed to have different sizes, and a
high-velocity collision would instead lead only to cratering. The same ap-
proach was taken for the porosity. Below a critical porosity φc = 0.4, a
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particle was considered to be porous for the purpose of determining the
collision outcome, and above it, the particle was assumed compact. Com-
bining these two binary properties gave eight different collision scenar-
ios, where the collision outcome was determined by the particle masses,
porosities, and relative velocities.

In the new model, we instead used the current laboratory data to inter-
polate between the two extreme mass-ratios. This provides a continuous
transition from equal-sized to differently sized collisions, and allows us to
distinguish between the collisions of particles of different sizes at interme-
diate mass-ratios, and provides a natural and smooth transition between
the two extremes. We can therefore determine the velocity needed to cause
global fragmentation for a specific mass-ratio, which gives us a more pre-
cise tool to assess when global fragmentation becomes local cratering.

It is however necessary for us to make a simplification regarding the
porosity of the dust grains. Adding additional properties to the dust grains
is very computationally expensive for continuum codes such as the Smolu-
chowski solver that we use for the dust-size evolution, compared to Monte
Carlo codes. In the Monte Carlo approach, each timestep consists only of
one collision between a representative particle and a swarm of identical
particles. After the collision, the properties (i.e. mass, porosity, charge) of
the representative particle is updated, and a new timestep is initiated. This
means that for a simulation with n representative particles, each new prop-
erty adds only an additional time O(n) to the execution time.

In the Smoluchowski method, one has to numerically solve a number
of differential equations to update the number density of all mass bins.
For each grain size, n2 interaction terms need to be considered, where n
is the number of mass bins. This is because a mass bin can collide with
all bins including itself, but fragmentation can also cause mass to be put
into it by a collision between two other bins. If an additional property
such as porosity were included, m = n porosity bins would need to be
included, and for each n ·m bin, (n ·m)2 interactions need to be considered,
and the code would be slower by a factor of O(m3). To include porosity
in the Smoluchowski solver, we would therefore require some analytical
trick such as an average porosity for each mass bin described in Okuzumi
et al. (2009). This is however outside the scope of this chapter, and we
instead assume that all particles are compact at all times. This is likely a
good approximation for larger particles outside the hit-and-stick region, as
bouncing collisions quickly lead to compaction of the particles. This finally
gives us one single collision scenario, where we can for a collision between
any two given particles determine the outcome based on their masses and
relative velocities.

2.3 implementation of the model

We now describe how the new collision model was created and imple-
mented into the code. We choose to include only the collision types that
proved to be the most important in the simulations of Zsom et al. (2010).
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Figure 2.2: Sketch of the five possible outcomes described in Sect. 2.3 sorted in
rough order of collision velocity. Mass transfer and erosion act simul-
taneously in a collision, and we define a mass transfer collision as
leading to net growth for the target, and an erosive collision leading
to net mass loss.

The collision types considered here are sticking and bouncing as well as
the transition between them, mass transfer combined with erosion, and de-
structive fragmentation. These types are shown schematically in Fig. 2.2,
and discussed in detail in Sects. 2.3.1-2.3.3. In Table 2.1, we provide a sum-
mary of all the symbols used in this section.

2.3.1 Sticking and bouncing thresholds

We consider two dust grains colliding with a relative velocity ∆v. The
projectile has a mass mp and the target a mass mt ≥ mp. Weidling et al.
(2012) found that the mass-dependent sticking and bouncing threshold
velocities can be written as

∆vstick =

(
mp

ms

)−5/18

[cm s−1] (2.3)

and

∆vbounce =

(
mp

mb

)−5/18

[cm s−1] , (2.4)

where ms = 3.0 · 10−12 g and mb = 3.3 · 10−3 g are two normalizing con-
stants calibrated by laboratory experiments, and the ∆v ∝ m−5/18 pro-
portionality is consistent with the theoretical models of Thornton & Ning
(1998). The above two thresholds mean that collisions with ∆v < ∆vstick
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result in 100% sticking, and ∆v > ∆vbounce result in 100% bouncing (pro-
vided that neither of the particles involved are fragmented). Inbetween
these two thresholds, we have a region where both outcomes are possible,
as described in more detail in Sect. 2.3.5.

2.3.2 An energy division scheme for fragmentation

From the fragmentation with mass transfer experiments described in the
previous section, we assume that mass transfer with a range of efficiencies
occurs in all cases where the projectile fragments. If the target also frag-
ments, the mass transfer is negligible compared to the huge mass loss, and
we can safely ignore it. We therefore need to determine for each collision
whether one, both, or neither of the particles fragment.

The majority of the dust collision experiments have however been per-
formed between either equal-sized or very different-sized particles. To in-
terpolate between these two extremes, we need to consider the collision
energy of the event, and determine how this energy is distributed between
the two particles. Not only the collision energy of an event matters when
determining the degree of fragmentation, but also the mass-ratio between

Table 2.1: Symbols used in the collision model

Symbol Meaning

ap/t radius of the projectile/target

mp/t mass of the projectile/target

∆v relative velocity between the particles

∆vstick sticking threshold velocity

ms sticking threshold normalizing constant

∆vbounce bouncing threshold velocity

mb bouncing threshold normalizing constant

vp/t center-of-mass velocity of the projectile/target

µ relative mass of the largest remnant

mrem mass of the largest remnant

mmt mass transferred from the projectile to the target

εac accretion efficiency during mass transfer

mer mass eroded from the target due to cratering

∆mt net mass change from mass transfer and erosion

εnet net accretion efficiency from mass transfer and erosion

vµ velocity needed to fragment with largest remnant µ

mµ fragmentation threshold normalizing constant

m0 mass of a monomer (= 3.5 · 10−12 g)

mfrag total mass of the fragments
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the two particles. In two collisions with equal collision energy but different
mass-ratios, we expect the higher mass-ratio collision to be less efficient in
completely disrupting the target, as the energy will be more locally dis-
tributed around the contact point. To take this into account, we choose to
look at the particles in the center-of-mass frame. In this frame, the massive
particle moves more slowly than the small one, and during the moment
of collision, the kinetic energy of the particles is reduced to zero. Physi-
cally, this corresponds to a fully plastic collision where all the energy is
consumed by deformation and fragmentation.

In this approach, we assume that the kinetic energy of each particle
in the center-of-mass frame will be used to try to fragment itself. The
velocities of the two particles in the center-of-mass frame are given by

vp =
∆v

1 + mp/mt
, (2.5)

vt =
∆v

1 + mt/mp
. (2.6)

All velocities in the center-of-mass frame will from now on be denoted
as v and then mean either vp or vt. The above equations imply that the
largest particle has the lowest velocity in the center-of-mass frame. In the
case of an extreme mass ratio, mp/mt → 0, the center-of-mass velocity of
the projectile and target is given by vp = ∆v and vt = 0, respectively.

During a fragmenting collision, the relative size of the largest remnant
can be described by

µp/t =
mrem

mp/t
, (2.7)

where mrem is the mass of the largest remnant and mp/t the original parti-
cle mass. Depending on their sizes and material strengths, the two original
particles can be fragmented to different degrees. In this model, each col-
lision partner is treated individually with a µt and µp for the remnant
of the target and the projectile, respectively. We define the center-of-mass
velocity required for the largest remnant to have a relative mass µ as vµ.

Blum & Münch (1993) and Lammel (2008) studied the threshold veloci-
ties needed for two mm-sized particles to fragment with largest remnants
of relative masses µ = 1.0 and µ = 0.5, where the former corresponds to
the onset of fragmentation and the latter to a largest remnant equal to half
of the original particle. Beitz et al. (2011) studied the threshold velocities
for cm-sized particles. Interpolating between the results for the two sizes,
the center-of-mass frame threshold velocity can be written as

vµ = (m/mµ)
−γ [cm s−1] , (2.8)

where mµ is a normalizing constant calibrated by the laboratory experi-
ments and γ = 0.16. The fragmentation threshold velocity is given by v1.0,
where m1.0 = 3.67 · 107 g. The velocity required for the largest fragment to
have half the size of the original particle is v0.5, where m0.5 = 9.49 · 1011
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g. The relative mass of the largest fragment is fitted by a power law that
depends on velocity and mass

µ(m, v) = C ·
(

m
1 g

)α

·
( v

1 cm s−1

)β
. (2.9)

The above equation is valid for all velocities v > v1.0. By fitting the µ(m, v)
plane to the two parallel threshold velocities given by Eq. (2.8), we get

α = log(2)/ log(m1.0/m0.5) = −0.068 , (2.10)

β = α/γ = −0.43 , (2.11)

C = m−α
1.0 = 3.27 [g−α] . (2.12)

This means that at a larger collision velocity, the particle will fragment
more considerably and the size of the largest fragment will decrease. More
mass is therefore put into the lower part of the mass spectrum.

We can from Eq. 2.9 determine the largest fragment for each of the par-
ticles in the collision, and also use it to identify fragmenting collisions. If
µp < 1 and µt ≥ 1, only the projectile fragments and mass transfer oc-
curs. If both µp < 1 and µt < 1, both particles fragment globally. Since
the center-of-mass velocity v is inversely proportional to the mass of the
particle, we never have a case where only the target fragments and the
projectile is left intact, even if vµ decreases with mass.

2.3.3 A new mass transfer and cratering model

We use a new realistic approach to distinguishing between collisions where
the target experiences either net mass gain due to mass transfer, or a net
mass loss due to cratering. During each collision, we assume that there is
simultaneously:

• mass added to the target from the projectile via mass transfer;

• mass eroded from the target due to cratering.

We also assume that these two effects act independently of each other.
This is illustrated in Fig. 2.3, and can also be seen in the high-velocity
experiments of Teiser & Wurm (2009b). The mass change of the largest
particle can be described by

∆mt = mmt −mer , (2.13)

where mmt = εac ·mp is the mass added by mass transfer with the accretion
efficiency 0 ≤ εac ≤ 1 and mer = εer ·mp is the mass lost due to cratering
with the efficiency εer ≥ 0. An increase in the velocity not only leads to in-
creased mass transfer, but also increased cratering. This makes it possible
to naturally determine when growth becomes erosion.

The mass transfer efficiency is obtained from Beitz et al. (2011) and
Kothe et al. (2010), and depends on both the particle porosity and velocity.
Since we are unable to track the porosity of the particles, we assume a
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mpBefore After

mt

mp - mmt

mmt

mer

mt - mer

Figure 2.3: Sketch of the combined cratering and mass transfer process that occurs
during a high-enough velocity collision between a projectile with mass
mp and a target with mass mt. During the collision, an amount mmt is
added from the projectile to the target, and the rest of the projectile is
converted into small fragments with a total mass mp,frag. An amount
mer is simultaneously eroded from the target, and the final mass of the
target is given by m′t = mt + mmt −mer.

constant porosity difference of ∆φ = 0.1 between the two dust aggregates,
where the target is always the more compact one. This is likely a rea-
sonable approximation for larger particles that have left the hit-and-stick
phase and have had time to compact during bouncing collisions, which is
the region where mass transfer can be expected. In our prescription, we
also include a fragmentation threshold velocity dependence, so that the ef-
ficiency is always the same for the same degree of projectile fragmentation.
This results in

εac = −6.8 · 10−3 + 2.8 · 10−4 · v1.0,beitz

v1.0
· ∆v

1 cm s−1 , (2.14)

where v1.0,beitz = 13 cm s−1 is the onset of the fragmentation for the 4.1 g
particles used by Beitz et al. (2011), and v1.0 is the fragmentation threshold
calculated for the mass of the projectile, both calculated using Eq. 2.8. We
also enforce a minimum efficiency of 0, and a maximum efficiency of 0.5,
as indicated by Wurm et al. (2005). Owing to the process of fragmentation
and mass transfer considered here, a higher value would not be reason-
able as it would be indicative of complete sticking, which has never been
observed at these velocities.

If the collision energy is not high enough to fragment the particles glob-
ally, some of the energy is still used to break up local bonds between
monomers around the contact point, resulting in cratering. The cratering
efficiency has however only been studied in a couple of laboratory experi-
ments. For monomer projectiles, Schräpler & Blum (2011) found an erosion
efficiency given by

εer =
mer

mp
= 1.55 · 10−4 · ∆v

1 cm s−1 − 0.4 , (2.15)

where mer is the amount of eroded mass and mp = m0 is the projectile
mass, and m0 = 3.5 · 10−12 g is the monomer mass. Paraskov et al. (2007)
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Figure 2.4: The threshold between growth and erosion from the model compared
to the mass-transfer experiments performed by Teiser & Wurm (2009b).
Filled circles show experiments where the target gained mass, and
open circles where it lost mass. The white dotted line shows the thresh-
old for the highly uncertain erosion prescription from cratering exper-
iments (collisions above the line result in erosion, and collisions below
result in growth). The contours are in intervals of 4% net accretion ef-
ficiency and mark the region with net growth in the final prescription
calibrated using the Teiser & Wurm data.

studied the erosion of porous targets with both solid and porous projec-
tiles, and found widely results depending on the porosities of the projectile
and target. Their results are therefore highly uncertain, but roughly agree
with an erosion efficiency of

εer =
3

400
· ∆v

1 cm s−1 , (2.16)

We however note that for the more compact dust aggregates expected af-
ter the compression by the bouncing phase, the erosion efficiency should
be far lower, as generally seen by Teiser & Wurm (2009b). To interpolate
between the two experiments where the degree of erosion has been mea-
sured, we assume a mass power-law dependence of

εer = a ·
(

mp

m0

)k

· ∆v
1 cm s−1 + b , (2.17)

where a, b, and k are fitting parameters. The above two erosion experi-
ments indicate the efficiency of the two different physical effects. In mono-
mer impacts, the projectile hits single surface monomers and sometimes
manages to break the bonds between a couple of them in a process resem-
bling the collisions between billiard balls. For larger projectiles, restructur-
ing of the target absorbs a lot of the collision energy, and a crater is formed
both because of surface compaction and the breaking of monomer bonds.
Direct comparisons and interpolations between the efficiencies of the two
effects can not be done without huge uncertainties. A direct interpolation
between the two effects yields a = 1.55 · 10−4, b = −0.4, and k = 0.14, but
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we present below another way of obtaining a reasonable erosion prescrip-
tion.

As previously discussed, during a collision, erosion and mass transfer
usually occur simultaneously, and the net mass change of the target is
given by Eq. 2.13. For ∆mt > 0, the target experiences net growth, and
for ∆mt < 0, the target experiences net erosion. With this prescription, the
transition region is extremely sensitive to the efficiency of the erosion.

In Fig. 2.4, we plot the results of the mass transfer experiments per-
formed by Teiser & Wurm (2009b). We compare this to the threshold be-
tween growth and erosion (∆mt = 0) obtained from the mass transfer pre-
scription of Eq. 2.14 and the erosion prescription of Eq. 2.17. The threshold
derived using the experiment erosion interpolation is given by the white
dashed line, and is very pessimistic compared to the mass-transfer experi-
ments.

Since the experimental erosion prescription is obtained from a very dif-
ferent parameter space than we are interested in, it is highly uncertain,
and much more so than the mass transfer experiments discussed below.
We therefore choose to calibrate the three parameters a, b, and k of Eq. 2.17

using the experimentally obtained threshold between growth of erosion of
Teiser & Wurm (2009b). This results in

a = 9.3 · 10−6 ,

b = −0.4 , (2.18)

k = 0.15 .

Comparing the net growth efficiency of this fit marked by the contours in
Fig. 2.4 to the mass transfer experiments of Kothe et al. (2010) (with 1 mm
projectiles at velocities of 1-6 m s−1) and Wurm et al. (2005) (with 1-10 mm
projectiles up to 25 m s−1) results in a rough agreement, even though our
model is slightly pessimistic compared to their results, with net efficiencies
that are roughly half of theirs. Regardless of this discrepancy, we take this
conservative estimate of the experiments and use it for our model.

2.3.4 Fragmentation distribution

During cratering, mass transfer, and destructive fragmentation events, the
mass of each fragmented particle is divided into two parts: the power-
law distribution and the largest fragment. The fragment power-law was
determined experimentally by Blum & Münch (1993), used in the model
of Güttler et al. (2010), and is written

n(m)dm ∝ m−κ dm , (2.19)

where n(m)dm is the number density of fragments in the mass interval
[m, m + dm], and κ = 9/8.

If the mass of the largest remnant is given by µ ·m, where µ is the relative
size of the largest remnant described by Eq. 2.9, the total mass that is put
into the power-law distribution is equal to (1− µ) ·m. We define the upper
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Figure 2.5: The fragment mass distribution for a 1 cm-sized particle after destruc-
tive fragmentation events of varying degrees. The largest remnant is
equal to in a) µ = 1, b) µ = 0.9, c) µ = 0.5, and d) µ = 0 in units of the
original particle mass.

limit to the fragmentation distribution to be min[(1− µ), µ] ·m. This means
that as long as µ < 0.5, we have a single distribution up to the largest
remnant. For µ > 0.5, on the other hand, more than half of the mass is
put into the largest remnant, which is then detached from the power-law
distribution.

This fragmentation recipe is similar to the four-population model of
Geretshauser et al. (2011), with the difference that we treat the fragmenta-
tion of both particles individually. It is able to describe all different degrees
of fragmentation, and in Fig. 2.5, we present the fragment distribution for
four different values of µ. In a), we are at the onset of the fragmentation,
and all of the mass is returned to the remnant, leading to no erosion. In
b), more than half of the mass is put into the remnant, which is therefore
detached from the size distrubution, and in c), the erosion is so strong
that the remnant becomes part of the power-law distribution. Finally, in
d), the particle is completely pulverized, and all of the mass is converted
into monomers.

2.3.5 Implementation of the model

We now summarize the conditions and outcome of each individual colli-
sion type as they have been implemented into the code. The different types
are, in order, sticking, transition from sticking to bouncing, bouncing, mass
transfer combined with erosion, and destructive fragmentation, and they
are all shown schematically in Fig. 2.2. The conditions for sticking and
bouncing are given in Eqs. 2.3 and 2.4, and we use Eq. 2.9 to determine
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which, if any, of the particles get fragmented during a collision, resulting
in fragmentation with mass transfer or destructive fragmentation.

Sticking: (∆v < ∆vstick)
The two particles stick together and form a bigger particle of size mbig =

mt + mp.

Sticking/bouncing transition: (∆v < ∆vbounce)
Transition from 100% sticking to 100% bouncing. We assume a logarithmic
probability distribution between ∆vstick < ∆v < ∆vbounce given by

pc = 1− k1 · log10(∆v)− k2 (2.20)

where pc is the coagulation probability. At the sticking threshold (Eq. 2.3),
we know that the sticking probability is pc = 1, and at the bouncing thresh-
old (Eq. 2.4), the coagulation probability is pc = 0. The constants are then

k1 =
18/5

log10(mb/ms)
= 0.40 (2.21)

k2 =
log10(mp/ms)

log10(mb/ms)
(2.22)

Bouncing: (∆v > ∆vbounce), (µp > 1) and (µt > 1), (∆v < ver)
If the collision energy is too high to result in a sticking collision but too
low to fragment or erode any of the particles, the collision results in a
growth-neutral bouncing event. The two masses involved in the collision
are left unchanged. This type of collision results in the compaction of both
particles, although we ignore any porosity changes in this model.

Mass transfer/erosion: (µp < 1) and (µt > 1) or (mer > 0)
If the collision velocity is high enough, erosion of the target will occur
(Eq. 2.17). Simultaneously, if only the projectile fragments, we have a frag-
mentation with mass transfer event (Eq. 2.14). The resulting mass change
of the target is given by Eq. 2.13.

The fragmented mass from the projectile is divided into two parts, a
power-law and the largest remnant, with a total mass of m = (1− εac)mp.
The power-law distribution has a total mass of mfrag = (1− εac)(1− µp)mp

and the largest fragment a mass mrem = (1 − εac)µpmp. The fragments
excavated from the target by the cratering are distributed according to
a power-law distribution as described in Sect. 2.3.4, with an upper limit
equal to mer.

Fragmentation: (µp < 1) and (µt < 1)
Finally, if the collision velocity is high enough and the mass ratio not too
large, we get a destructive fragmentation event where both particles are
fragmented. We treat the fragmentation of each particle individually, and
get two separate fragment distributions, one for the projectile and one for
the target. Each distribution is divided into two parts; the fragmentation
power-law distribution with a total mass of mfrag = (1− µp/t)mp/t and the
largest fragmentation remnant with a mass of mrem = µp/tmp/t.
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Figure 2.6: The relative velocity field at 3 AU in an MMSN disk, calculated from
the velocity sources described in Sect. 1.4.2 and using the parameters
given in Table 2.2.

2.4 the dust-size evolution model

With the collision model described in the previous section, it is possible to
determine the outcome of the collision between any two particles. In this
work, we use the local version of the dust evolution code developed by
Birnstiel et al. (2010a), which has been used together with the new collision
model to study the dust-size evolution. A summary of the parameters used
for the disk model is given in Table 2.2.

We follow the dust-size evolution locally at a distance of 3 AU from the
star. To describe the gas distribution over the disk, we use the minimum-
mass solar nebula (MMSN) model (Weidenschilling 1977b; Hayashi et al.
1985). This model is based on the current Solar System, where the mass of
all the planets is used to predict the minimum total mass that would have
been needed to form them. In Eq. 1.8, we gave the expression as

Σg(r) = 1700
( r

1 AU

)−1.5
[g cm−2] , (2.23)

where r is the distance to the central star. At 3 AU, this results in a gas
surface density of 330 g cm−2, and if we assume an initial dust-to-gas
ratio of 0.01, a dust surface density of 3.3 g cm−2. For the relative velocities,
we take into account all the sources described in Sect. 1.4.2, and the total
velocity field at 3 AU is shown in Fig. 2.6.

2.5 results

We performed local simulations of the dust-size evolution using the colli-
sion model described in Sect. 2.3 and the evolution code briefly described
in Sect. 2.4. In this section, we discuss the outcome of the new collision
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Table 2.2: Disk model parameters used in the simulations.

Parameter Symbol Value Unit

distance to star r 3 AU

gas surface density Σg 330 g cm−2

dust surface density Σd 3.3 g cm−2

gas temperature T 115 K

turbulence parameter α 10−3 -

maximum drift velocity vn 3.9 · 103 cm s−1

sound speed cs 6.4 · 104 cm s−1

solid density of dust grains ξ 1.6 g cm−3

model and compare it to those of previous models. We also show the re-
sults of the simulations and compare the growth of the large particles to a
simple analytical model.

2.5.1 The collision outcome space

With the new collision model, we can determine the outcome of a collision
between two particles of arbitrary masses and velocities. In the upper pan-
els of Fig. 2.7, we plot the collision outcome as a function of projectile size
and collision velocity for two different mass ratios. This can be compared
to the outcome of Güttler et al. (2010) for compact particles shown in the
bottom panels. It can here be noted that our model naturally describes the
transition between the two extreme cases of equal-sized and differently
sized particle collisions, while Güttler et al. defined a critical mass ratio to
distinguish between the two regimes. The upper right panel in the figure
thus only gives a single snapshot in this transition.

In the left panels, the two particles are of equal size, and the models
produce comparable results. In the new model, the sticking region has
been enlarged by the inclusion of a transition region where both sticking
and bouncing is possible. In the fragmentation region, the mass-dependent
fragmentation threshold has decreased the velocity needed to fragment
larger particles, and increased the velocity needed for the smallest parti-
cles. The net outcome is that the width of the bouncing region has de-
creased significantly.

In the right panels, the target has a mass that is 1000 times the mass of
the projectile. Some important differences can be seen in the fragmentation
regime. We can first of all note the new natural transition from growth to
erosion that is produced by the balance between growth from fragmenta-
tion with mass transfer and erosion from cratering (Eq. 2.13). At this mass
ratio, erosion quickly becomes complete fragmentation. When the mass
ratio is increased yet further, the fragmentation region decreases and is
replaced by erosion.
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Figure 2.7: Comparison between the new collision model (top) and the model of
Güttler et al. (2010) (bottom). The left and right panels show the out-
come for equal- and differently sized collisions, respectively. Green
regions mark collisions that are growth-positive for the target, yellow
marks growth-neutral, and red marks growth-negative. ’S’ marks stick-
ing, ’SB’ the sticking to bouncing transition, ’B’ bouncing, ’MT’ net
mass transfer, ’E’ net erosion, and ’F’, fragmentation. In the transition
region, the green parallel lines each mark a decrease in sticking prob-
ability by 20%.

As long as the projectile is fragmenting, velocities below the erosion
threshold always cause to growth, and a cm-sized projectile can initiate
mass transfer at velocities as small as about 20 cm s−1 (which is exactly
the result of Beitz et al. 2011). At ∆v = 10 m s−1, projectiles smaller than
around 1 cm are required for growth. The maximum projectile size de-
creases with velocity as the erosion grows stronger, and at ∆v = 50 m s−1,
growth is only possible for projectiles smaller than 100 µm.

We predict overall more fragmentation and cratering than in the previ-
ous model of Güttler et al. (2010). However, one very important change is
that growth via fragmentation with mass transfer is now possible at higher
velocities than the 20 m s−1 that was the previously predicted threshold,
and provided that the projectile is small enough, even a collision at 50 m
s−1 as predicted in the disk model can lead to growth of the target (which
was a direct conclusion of Teiser & Wurm 2009b).

Sticking collisions are also possible at larger sizes, and growth-positive
mass transfer works at much lower velocities than the previously assumed
1 m s−1. Even if the bouncing region shrinks in size, we demonstrate be-
low that this is insufficient to remove the bouncing barrier. If we insert a
particle above the bouncing barrier, however, the relative velocity required
for it to interact beneficially with the particles below the bouncing barrier
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Figure 2.8: The collision outcome for all pairs of particles with the relative velocity
field calculated in Fig. 2.6 and with the same labels and color code as
in Fig. 2.7. Also included is the net mass transfer efficiency, given in
intervals of 4%.

has been decreased. These two results turn out to be quite important, as
discussed in more detail in Sect. 2.5.2.

The collision outcome for the new model depends on the mass of both
the projectile and the target, and in the current disk model, we use only
the average relative velocity between each particle pair. This means that a
collision between a given pair in the evolution model always results in the
same outcome, and it would therefore be instructive for us to plot the out-
come in the particle size-size space. In Fig. 2.8, we have used the relative
velocity field calculated in Sect. 2.4 at a distance of 3 AU to determine the
outcome for each collision pair.

In this figure, the bouncing barrier is clearly visible. Owing to the too
high collision velocities, dust grains of sizes 100 − 800 µm that interact
with smaller particles will bounce if the particle is not smaller than 10 µm.
In this case, a small number of collisions will lead to sticking, but in order
to pass the wide bouncing region, a grain would need to experience 109

such sticking collisions. The small particles however themselves coagulate
to 100 µm, making growth through the bouncing barrier very difficult.

Collisions between two equal-sized particles larger than 1 mm will result
in destructive fragmentation, but depending on what it collides with, a 1

mm-sized particle can also be involved in sticking, bouncing, mass trans-
fer and erosive collisions. Owing to the fragmentation with mass-transfer
effect, a meter-sized boulder can grow in collisions if its collision partner is
of the right size, in this case smaller than 200 µm. As we can see in this plot,
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Figure 2.9: A zoomed-in sketch of the collision outcome space shown in Fig. 2.8.
The dashed horizontal line shows the interaction path that the seed
will experience during its growth. The h parameter illustrates the min-
imum distance between the interaction path and the erosive region. A
positive h means that the boulder/small particle interactions will al-
ways be growth-positive, and a negative h means that the growth will
at some point be stopped by erosion.

the key to growing large bodies is therefore to sweep up smaller particles
faster than they get eroded or fragmented by similar-sized collisions.

From Fig. 2.8, we can already see without performing any simulations
that a cm-sized particle would be capable of growing to large sizes if it
collides with the right projectiles. The important parameter needed to de-
termine this is illustrated in Fig. 2.9, which contains a sketch of a part of
the collision outcome plot. Because of the bouncing region, most of the par-
ticles will be found in the region marked in the figure. A boulder needs to
interact beneficially with these bouncing particles in order to grow, so the
horizontal interaction path needs to at all times be in the growth-positive
mass-transfer region. This can be illustrated with the h parameter, which
gives the minimum difference between the interaction path and the erosive
region. If h is positive, the boulder will always interact beneficially with
the bouncing particles, but if h for some reason was to become negative,
the growth of the boulder would stop.

We can now highlight the interesting effect that turbulence has on the
collision outcome. For particles of sizes between 10 µm and 10 cm, tur-
bulence is the dominant velocity source. If the relative velocity is higher
in this regime, the bouncing barrier will be pushed to smaller sizes. The
larger particles are however not as much affected by a stronger turbulence,
as these sizes are also affected by both radial and azimuthal drift. This
means that the h parameter will remain constant or possibly even increase
with stronger turbulence. Strong turbulence might therefore even be ben-
eficial for this mode of growth, as the larger particles will now interact
with generally smaller particles, which we from Fig. 2.4 know promotes
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Figure 2.10: The surface density evolution of the dust population for three dif-
ferent simulations at a local simulation at 3 AU. The gray diagonal
lines correspond to the required surface densities for a total num-
ber of particles of 1, 103 and 106 in an annulus of thickness 0.1 AU.
In the upper panel, all particles initially have a size of 10−4 cm, and
snapshots are taken between 2 and 106 years. In the middle panel, we
have run the same simulation, but after 10,800 years, a small num-
ber of 1 cm-particles have artificially been inserted. In the lower panel,
the bouncing barrier has been replaced with sticking, allowing the
particles to freely coagulate to larger sizes.

the mass transfer effect. Because of this, even if the boulders due to strong
turbulence have relative velocities of ∼100 m s−1, they can grow in in-
teractions with the small particles at the bouncing barrier, as these have
correspondingly decreased in size.

2.5.2 The dust-size evolution

We performed simulations using the new collision model together with the
local version of the Birnstiel et al. (2010a) continuum dust-size evolution
code. In Fig. 2.10, the mass distribution of the particle sizes is given at
different timesteps for the three different experiments discussed in detail
below.
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2.5.2.1 Growth up to the bouncing barrier

In the fiducial case presented in the top panel, the simulations are initiated
using all dust made up of µm-sized monomers. At these small sizes, the
relative velocity is driven by Brownian motion, and as the particles collide
with each other, they stick together and form larger aggregates. This leads
to a rapid coagulation phase where the aggregates grow to 100 µm in
around 1000 years. At this point, the particles have grown large enough
to become affected by the turbulence, which quickly increases the relative
velocities. As we predicted in Fig. 2.8, the bouncing region is too wide to
be surpassed, and the growth halts at the bouncing barrier.

At this stage, the only particles that can grow are the smaller ones, and
as time proceeds, more and more particles get trapped at the bouncing
barrier. This causes the number of small particles to continue decrease,
leading to a continuously narrowing size-distribution. After 105 years, vir-
tually all particles can be found to have sizes of 100 µm, with very steep
distribution tails between 60 and 300 µm. If nothing else is done, this is
how the dust evolution ends. The bouncing barrier efficiently prevents any
further growth, and all particles remain small.

2.5.2.2 A seeding experiment

To investigate the potential of the mass transfer effect, we performed an ex-
periment where a very small number (i.e. 10−18 of the total mass) of 1 cm-
particles are artificially inserted as "seeds". As can be seen in Fig. 2.8, the
interaction between the 1 cm and 100 µm-particles results in mass transfer
and growth of the larger particle, and we expect the inserted particles to
be able to grow. The seeds are inserted at a single time t = 10, 800 years,
when the particles have reached the semi-stable state at the bouncing bar-
rier, and the result can be seen in the middle panel of Fig. 2.10. Exactly how
the seeds are formed will not be discussed in this chapter, but given the
small number of seeds required, stochastic effects, small variations in local
disk conditions or grain composition and/or properties might suffice to
produce them. Some other possibilities are briefly discussed in Sect. 2.5.4.

To better understand the complex interaction between all the particles in
this experiment that now follows, we introduce the collision frequency plot
given in Fig. 2.11. This shows the collision frequency between each particle
pair plotted on top of the collision outcome map of Fig. 2.8, making it
possible for any given time to identify the dominating collision type for a
given particle size.

The first two snapshots in the collision frequency plot are taken after
2 and 5900 years, and are identical to the fiducial case discussed earlier.
At the bouncing barrier, we can see some interaction between the 200

µm particles and the smallest particles that do lead to growth, but the
frequency is much too small to have any significant effect.

After 10, 800 years, the 1 cm seeds are inserted, and they grow to larger
boulders by sweeping up the small particles trapped at the bouncing bar-
rier. As the boulders grow, one can after ∼200,000 years see a tail of parti-
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Figure 2.11: The collision frequency map for the scenario where 1 cm-particles
are artificially inserted at t = 10, 800 years. The interaction frequency
is plotted for each particle pair at six different timesteps plotted on
top of the collision outcome space of Fig. 2.8. This makes it possible
to identify the dominating interaction for each particle size. Note
the persistently high peak of interactions with particles stuck below
the bouncing barrier at 1 mm in size. As the large particles grow,
they also sometimes collide among themselves, producing a tail of
particles capable of also sweeping up the bouncing particles. This
causes an increase in both mass and number for the large particles,
and a continuous widening of the size-distribution.

cles with intermediate sizes appear behind them. These are formed by the
rare collisions between the large boulders, and from a single event, two
large bodies have been multiplied to a myriad of fragments also capable
of sweeping up the particles at the bouncing barrier. This effect causes the
population of boulders to not only grow in total mass, but also in number,
which causes a steady and significant increase in similar-sized fragmenta-
tion.

It can also be noted how the vertical distribution of dust around the
midplane affects this stage of the evolution. Even if there is a huge amount
of particles trapped at the bouncing barrier, they are so small that many
of them are pushed out from the midplane due to turbulent mixing. The
boulders are however so large that they have decoupled significantly from
the gas, and are therefore mostly trapped in the midplane. This causes the
sweep-up rate of the mm-sized particles by the boulders to be distinctly
lower than without a vertical structure, and also the internal collisions
between the boulders to be relatively more common.

The smallest particles that are produced by global fragmentation and
erosion mainly experience two different interactions. In the early stages,
the smallest fragments are generally being swept up by the 100 µm-sized
particles stuck at the bouncing barrier, since these particles dominate com-
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pletely both in number and mass. They have therefore never any time to
coagulate to larger sizes themselves, but instead aid in the growth of the
bouncing particles, which are in turn swept up by the boulders. At later
stages, as the boulders become more numerous, it is also possible that the
smallest fragments are swept up directly by the boulders. If this growth
continues even longer, the two effects become equally efficient, and even
later, the boulders will start dominating in the sweep-up. Regardless of
what sizes the small fragments interact with, in the end, they are still ben-
eficial for the growth of the boulders.

In the end, a number of 10-70 m boulders have managed to form, and
the total amount of mass in the large particles has increased by the huge
factor of 1012 from what was initially inserted into the system, even though
the total boulder mass is still very small compared to the total dust mass.
We find that the limiting case for the growth at this point is not so much
erosion or fragmentation as it is the growth timescale (see also Johansen
et al. 2008). If the simulation runs for longer than 106 years, the boulders
can keep on growing and several hundred-meter boulders can form. In
other places in the disk with higher dust densities and relative velocities,
larger boulders will be able to form on the same timescale.

Growth by sweep-up gives us an explanation of how the collision part of
the growth barrier can be circumvented, but we have in these simulations
disregarded the effect of the orbital decay from gas drag. The growth ti-
mescales in Fig. 2.10 exceed by several orders of magnitude the lifetime of
meter-sized bodies subject to radial migration. To survive, the bodies need
to either form on a timescale very much shorter than observed in our simu-
lations, which we find unlikely, or some effect needs to exist that prevents
the orbital decay over an extended period of time (Barge & Sommeria 1995;
Klahr & Henning 1997; Brauer et al. 2007; Pinilla et al. 2012b).

2.5.2.3 Removing the bouncing barrier

To illustrate the importance of the bouncing barrier, we devised an exper-
iment in which all the bouncing collisions are removed and replaced by
sticking. There is therefore nothing that prevents the coagulation phase
from continuing to larger sizes. The results of this simulation are shown
in the lower panel of Fig. 2.10.

The particles can now grow unhindered until they reach about 1 mm in
size. At this point, they begin to fragment among themselves, as we can
see in Fig. 2.8. Since most of the dust can be found at this size, heavy frag-
mentation occurs, and a cascade of smaller particles are produced. These
small particles again grow up to larger sizes, where most of them again
fragment. From the collision outcome plot, we can however see that some
particles can be lucky, and instead sweep up only smaller particles via
mass transfer. They therefore avoid fragmentation, and keep on growing,
and form the distribution tail extending from 1 mm and upwards.

At a size of roughly 1 meter, the only way to grow is by colliding with
100 µm or smaller particles. However, in the absence of a bouncing barrier,
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Figure 2.12: The surface density evolution of the dust population for three differ-
ent turbulence strengths (α = 10−4, 10−3, 10−2) at 3 AU, with seeds
inserted artificially after t = 10, 800 years.

most of the mass is found instead in 1 mm particles. This means that
almost all of the interactions become erosive, and the growth halts.

In the above example, we saw that increasing the stickiness of particles
in the end actually prevented the growth of large boulders. From this result,
we can draw the conclusion that the bouncing barrier might even be bene-
ficial for the formation of planetesimals. By hindering the growth of most
particles, growth might be possible for the lucky few.

2.5.2.4 The effect of turbulence

We have so far studied only one single turbulence parameter of α = 10−3.
This value is however uncertain for nebular models, and to investigate
the dust evolution in different velocity fields, we also study the cases of
α = 10−4 and α = 10−2. The latter represents a strong turbulence that
completely dominates over the azimuthal and radial drifts and results in
relative velocities up to 100 m s−1. In the former case, the turbulence is
weak, and contributes very little to the velocities of the larger particles.
In Fig. 2.12, we plot the resulting size evolutions for the three turbulence
parameters but otherwise identical initial conditions. The middle panel is
here the same as the middle panel of Fig. 2.10 and is included for reference.
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It can first of all be noted that growth to larger sizes is possible even in
the case of very high turbulence, as we predicted using Fig. 2.9. This is due
to the decrease in size of the bouncing particles as the turbulence increases.
The smaller impacting projectiles can therefore cause the boulder to grow
also at higher velocities, as seen in Fig. 2.4.

The growth timescale is affected by the turbulence in several different
ways. Firstly, it increases the relative velocities between the particles, lead-
ing to higher collision frequencies and therefore to more rapid growth.
Higher impact velocities also lead to a higher net mass transfer efficiency,
which in Fig. 2.4 is seen to be particularly low for velocities below 10 m s−1.
A higher turbulence also mixes small particles further away from the mid-
plane, which decreases their midplane densities where the largest boul-
ders gather, lowering the growth rate. From Fig. 2.12, it is clear that the
growth-positive effects predominate, leading to enhanced growth at higher
turbulence. In the low turbulence case, the growth is especially slow for
particles of sizes between 1 cm and 100 cm. In this regime, the relative ve-
locities are very low since the contributions from the azimuthal and radial
drift are small, causing very low net mass accretion efficiencies during the
sweep-up growth.

In the α = 10−2 case, we can see in the final snapshot that a separate
peak has appeared for the largest boulders. This peak occurs when the
boulders have fragmented so much between themselves that the large
intermediate-sized fragments are at number densities roughly equal to
the boulders, which in this case happens after ∼ 600, 000 years. At this
point, the boulders are significantly eroded and fragmented, which cre-
ates even more intermediate-sized particles capable of yet more fragmen-
tation. This results in a fragmentation cascade, and a rapid flattening of
the size-distribution. This does not however cause all the large particle to
be destroyed, and those that survive can continue to grow by sweeping up
the small bouncing particles that still dominate both in terms of number
and total mass. This effect also occurs for the cases of weaker turbulence
if the simulations run long enough, but is never severe enough to cause a
complete halt of the growth.

We have demonstrated that growth can also proceed in regions of high
turbulence. An MRI turbulent disk might however also create an addi-
tional velocity source, where local gas density fluctuations can excite the
orbital eccentricities of the planetesimals. Ida et al. (2008) found that this
can lead to velocities beyond break-up even for small planetesimals, al-
though they studied only collisions between equal-sized bodies. In our
model where only the material strength of the body is included, a colli-
sion between two large and similarly sized bodies will be destructive even
in regions of very low turbulence, such that in this regime, it has little ef-
fect on our conclusions. Excited planetesimal orbits however also increase
the impact velocities of the small particles, which could pose a problem. In
previous cases, growth had been possible in regions of high turbulence be-
cause the sizes of the bouncing particles were simultaneously suppressed
by the turbulence, but this is not necessarily the case in the scenario stud-
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ied by Ida et al. This might cause greater erosion of the growing planetes-
imals, but investigating this further is beyond the scope of this chapter.

2.5.3 A growth toy-model

The concept of sweep-up growth has also been studied previously by Xie
et al. (2010), in what they called snowball growth. Their approach was to
disregard most of the collision physics and first stages of sweep-up, and
they developed a more idealized, bidisperse model, in which one popula-
tion of artificially inserted km-sized planetesimals grows by sweeping up
the smaller population. They also identified the potential for these plan-
etesimals to grow to as large as 100 km before the destructive collisions
between the planetesimals themselves starts to limit the growth.

To verify our results from the simulations, we here consider a somewhat
simplified version of the work of Xie et al. (2010) and Johansen et al. (2008).
We assume a bidisperse scenario where a single lucky seed of mass m
grows in a sea of smaller particles of mass ms. We are here only interested
in the growth rate of the seeds, and assume that the seeds are always few
enough so that the collisions between themselves can be neglected. The
growth of the large body can then be described by

dm
dt

= σ∆v · εnetnsms , (2.24)

where σ = π (as + a)2 ∼ πa2 is the collisional cross-section, ∆v the relative
velocity, ns the number density of the small particles, and εnet the average
net mass-gain efficiency of a collision. The change in size a with respect
to mass can be written as dm = 4πξa2 da, where ξ = 1.6 g cm−3 is the
internal density of the large body. We can now write

da
dt

=
1
4

ρs

ξ
εnet∆v , (2.25)

where ρs = nsms is the mass density of the small particles. As a first
assumption, we assume that the relative velocity is only caused by tur-
bulence, and for small particles can therefore be estimated by (Weiden-
schilling & Cuzzi 1993; Cuzzi et al. 2001)

∆v =
√

3αSt · cs , (2.26)

where α = 10−3 is the turbulence parameter, St is the Stokes number of
the seed, and cs the sound speed in the gas given by

cs =

√
kbT
µmp

, (2.27)

where kb is Boltzmann’s constant, T is the temperature of the gas, µ = 2.3
is the mean molecular weight, and mp the proton mass. We assume ρs to
be constant and unaffected by the sweeping-up of the large boulder, and
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Figure 2.13: The growth of a boulder in the simulations (black) compared to two
growth estimates (red). The dotted line corresponds to the simple
estimate with a crude turbulent relative velocity expression and a
constant mass accretion efficiency, and the dashed line also considers
the exact velocity and accretion efficiency terms as those used in the
simulations.

that the vast majority of the dust mass is found in the small bodies (which
is clearly always the case in Fig. 2.10).

When the seed has grown large, it is very little affected by the vertical
mixing due to the turbulence, and is mostly found near the midplane. It is
clear that the differential settling between the seed and the small particles
is important here, as the seed can only interact with the small subset of
all the particles that can be found around the midplane. To calculate the
midplane density of the small particles, ρs, we can therefore use Eq. 1.35.
Under these assumptions, Eq. 2.25 can be solved analytically:

a(t) =

(
1
8

εnet
ρs

ξ

√
3
2

ξ

Σg
πα · cs (t− t0) +

√
a0

)2

. (2.28)

As a first comparison, we solve the seed size evolution above and compare
it to the growth rate of the large particle peak in the middle panel of
Fig. 2.10. The result is given in Fig. 2.13, assuming a constant εnet = 0.1,
and we can note that although the final size corresponds roughy to that of
the simulations, it is clear that a lot of physics is missing. This is mainly
due to two reasons. Assuming a constant accretion efficiency reflects badly
the situation where the real efficiency ranges between 0 − 0.15, and the
simple relative velocity prescription of Eq. 2.26 only takes into account the
turbulence, and is also not valid for large particles.

We therefore make a slightly more advanced model, in which we take
into account both the full accretion efficiency from Eq. 2.13, and all four
velocity sources discussed in Sect. 2.4. Eq. 2.25 is then solved numerically,
and the resulting solution give in Fig. 2.13 is now clearly able to track the
complicated evolution process from the simulations.

We can now use the understanding we gained from the exercise to in-
vestigate the capabilities of the sweep-up growth. We will here investigate
the effect of three different factors on the seed growth; the density of the
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Figure 2.14: The seed size evolution for variations in three different parameters.
The solid line marks the default parameters which take an MMSN
disk at 1 AU, with α = 10−4, an accretion efficiency ε = 0.5, and a
small particle size = 0.1 cm.

midplane gas and dust, which is determined by both the radial density
profiles, as well as the size of the small particle population, and we also
study the effect of the accretion efficiency. Because the collision model that
we have developed in this work is highly complicated and not very trans-
parent, we instead assume a constant accretion efficiency. The results and
parameters used are given in Fig. 2.14, and they are discussed separately
below.

In the simulations, we assumed an MMSN disk, which is by its defi-
nition the very minimum mass needed to describe the present-day Solar
System. As such, it is likely to be a poor description of the initial disk
conditions at the onset of the planetesimal formation. Desch (2007) took
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some of the late-stage evolution processes into account by considering the
planet formation from an initial planetesimal distribution and including
planet migration, and found a radial distribution that we described in
Eq. 1.9. Even though the predicted densities are significantly higher, it still
neglects the mass loss and redistribution in the planetesimal formation
stage, and the initial densities are likely to have been even higher. The
increase in solid density leads to significantly higher collision rates and
faster growth.

Also related to the solid density is the size of the small particle popu-
lation. As we alluded to in Sect. 2.5.2.4, the settling of the small particle
population also plays a vital role. The larger and more decoupled these
particles are, the more they settle towards the midplane, which increases
the collision rates with the seeds. As we can see, this can have a big effect.
However, if the particles (in this case) are smaller than 0.1 cm, their size
does not matter, as they will all follow the gas scale-height.

Finally, we also investigate the effect of the accretion efficiency, which
will obviously also affect the growth rate. We can however note that even
though the accretion efficiency is poorly constrained from the laboratory,
it will at most change less than an order of magnitude, which has less
impact than a change in for example the radial density profile.

Finally, we note that this growth toy model is obviously a simplification
that does not take into account the destructive similar-sized impacts, but
it does show the potential for sweep-up to form planetesimals at relevant
timescales. In the innermost disk, we find that 10-km-sized planetesimals
are capable of forming in 105 years or less.

2.5.4 Forming the first seeds

As previously discussed, the existence of a bouncing barrier might be ben-
eficial for the planetesimal formation, as it prevents too many large bodies
from forming, keeping the lucky ones that do form from fragmenting and
eroding among themselves. It is however necessary for at least some cm-
sized seeds to form and initiate the sweep-up process. In this chapter, we
have not investigated in detail how this might happen, but there are many
possibilities, of which a few will be investigated in detail in later chapters.

Firstly, it is possible for some lucky particles to grow through the bounc-
ing barrier simply by interacting with a sufficient number of smaller par-
ticles, as can be seen in the collision outcome plot in Fig. 2.8. For this to
happen, however, it is necessary to have a wide enough size-distribution
for there to be enough small particles for the lucky particles to interact
with. This, it turns out, is difficult, as we have in these simulations found
that the particle size-distribution will quickly narrow as all the small dust
coagulate up to the bouncing barrier. If extra mass is continuously intro-
duced into the system during the first 10,000 years or so, for example
by the nebular infall of the collapsing protostellar cloud, the particle size-
distribution could be wide enough for some seeds to be formed.
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A possibility which is related to the above is the introduction of a ve-
locity distribution for each particle-size, which was first introduced by
Okuzumi (2009) as a mechanism to break through the charge barrier. Most
studies of the dust-size evolution have however considered only the aver-
age relative velocity between two particles, but in reality, some particles
will also collide at both much higher and lower velocities. If some parti-
cles are lucky enough to only collide with others at low velocities, they
might stick together when they would otherwise only bounce, and then
grow large enough to initiate sweep-up. This is the main focus of Chap-
ter 3, and the method is further developed in Chapter 4.

Beitz et al. (2012) also found in laboratory experiments that chondrules
and dust aggregates tend to stick at higher velocities than collisions be-
tween two dust aggregates, so that early chondrules could grow where
dust could not. Similarly, calcium- and alumunium-rich inclusions (CAIs)
are cm-sized particles that are believed to have been formed early near the
Sun and transported outwards within the disk (Ciesla 2009), proving that
at least some particles managed to grow this large. These could constitute
the first generation of seeds.

Finally, larger particles may form outside the snow-line mixed with ices,
or inside a quiescent dead zone, and drift inwards to a region where
sweep-up becomes possible. This is the fundamental idea that we inves-
tigate in Chapter 5.

2.6 discussion and conclusions

To explore the possibility of growth of dust particles into planetesimal
sizes by collisions, we have implemented a new collision model that is
motivated both physically and experimentally. It has been streamlined to
work with continuum codes, while still being able to take into account all
important collision types identified in previous work. In combination with
continuum dust evolution codes, all dust grains can be resolved indepen-
dently of their numbers, something that we have found essential for the
study of growth of dust grains to greater than cm-sizes.

Even though collisions between large similarly sized dust grains gener-
ally lead to fragmentation, this is not necessarily true for larger mass ratios
if the projectile is small enough. As shown in laboratory experiments, if
the projectile is smaller than 0.1-1 mm in size, fragmentation with mass
transfer can cause growth of the target for impact velocities as high as
60 m s−1. For dust grains to grow larger than cm-sizes via collisions, the
number of large particles has therefore to be very small to avoid destruc-
tive fragmentation among themselves, and most of the dust mass remains
at small sizes.

In our simulations, we have found that direct growth of planetesimals
via dust collisions is a strong possibility. In addition, the bouncing barrier
introduced by Zsom et al. (2010) might be beneficial or even vital for the
planetesimal formation, as it provides a natural way of ensuring that most
of the dust population remains small. These small dust particles are ideal
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for the sweep-up process if larger bodies manage to form. By artificially
inserting a few 1 cm-sized seeds into our simulations, we have discov-
ered that they can sweep up the small dust via fragmentation with mass
transfer and grow to ∼100 meters in size on a timescale of 1 Myr. This
leads to exciting new possibilities that need to be taken into account when
studying dust growth in protoplanetary disks.

An interesting aspect of the sweep-up scenario is its capability to pro-
duce planetesimals while simultaneously retaining a significant amount
of sub-mm dust grains in the disk. These small grains are necessary to ex-
plain the high dust opacities at mm-wavelengths observed around T Tauri
stars even after several Myrs (Birnstiel et al. 2010b; Ricci et al. 2010a; Pérez
et al. 2012). Without any growth barriers, or if the planetesimals form too
fast, the population of small grains are likely to get depleted quickly. In
this scenario, however, the planetesimal growth could proceed unseen for
at least 0.1− 1 Myrs before they are numerous enough to affect the the
small dust. Sweep-up growth could also be an explanation to the struc-
ture of the chondrites (Cuzzi et al. 2010). As most of the chondrules are
mm-sized or smaller, they would correspond well to the population of
small grains that are being accreted by the growing planetesimals in the
sweep-up scenario. Because of the uncertainties involved in the formation
of chondrules, however, this remains speculative (Connolly et al. 2006).

The growth rate observed in the simulations is relatively slow, mainly
due to a low mass transfer-efficiency, the high turbulence that kicks the
small particles away from the midplane where the boulders are concen-
trated, and the low dust densities even at radii as small as 3 AU. This
means that it might be necessary to form planetesimals in regions with
enhanced densities such as in pressure bumps, or sufficiently close to the
star, where it can be accelerated, and also that there is a need for the ra-
dial drift to be prevented over long timescales. We have however found
that this growth mechanism has the potential to be a lot faster, and that
10-km-sized bodies can form in 105 years. This is in rough agreement with
the results of Xie et al. (2010), who on the other hand started with initial
planetesimal sizes of 1 km.

A benefit of this mode of growth is its capability to function in regions of
high turbulence with relative velocities reaching 100 m s−1. This is because
the turbulence affects not only the size at which projectiles start to erode
larger particles, but also simultaneously the size of the particles at the
bouncing barrier. Another important effect we have found is that a very
small number of seeds are necessary to initiate sweep-up. As the large
particles collide with each other, they will create a number of intermediate-
sized particles that are also able to sweep-up the small particles, causing
the population of large particles to increase not only in total mass, but also
number.

Exactly how these seeds would be introduced into the system is some-
thing that is discussed in great detail throughout Chapters 3-5. We have
shown that thanks to a combination of more efficient sticking found in
recent laboratory experiments and our ability to numerically resolve very
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small numbers of particles, the bouncing barrier can be either overcome or
circumvented. If the dust size-distribution is wide enough, a small num-
ber of lucky particles might grow over the barrier via hit-and-stick colli-
sions with much smaller particles. This shows that the initial conditions
of planet formation might be very important to how the dust growth pro-
ceeds.

Our present study has helped to illustrate where the focus of future labo-
ratory experiments should lie. It is clear that for collisional growth of larger
particles to be possible, it has to occur between particles of very different
sizes. However, very few experiments have been performed to quantify
the amount of erosion or mass transfer that occurs for various projectile
sizes, porosities, velocities, and impact angles, and the understanding of
the physical process remains unclear. The maximum size a projectile can
reach while aiding the growth of the target by mass transfer determines
whether the small bouncing particles cause erosion or growth of the large
boulders. It is also necessary in the lab to determine the smallest projectile
size that still leads to growth. Laboratory experiments show that monomer
impacts lead to erosion, but whether erosion still occurs at 10 or 100 µm
is unknown. To determine in which parameter space fragmentation with
mass transfer occurs, more experiments need to be performed.

With an implicit scheme, this code runs fast in terms of execution time,
and should be suitable for global disk simulations. This is something that
we explore further in Chapter 6, where we consider both the growth and
drift in the inner few AU of the protoplanetary disk, and find that sweep-
up growth is capable of breaking through not only fragmentation barrier,
but also the drift barrier. Generally, it will also be possible to investigate
how this more sophisticated collision model affects the dust sizes further
out in the disk at 50-100 AU where comparison with observations is pos-
sible.
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V E L O C I T Y D I S T R I B U T I O N E F F E C T S O N T H E G R O W T H
B A R R I E R S

Adapted from Windmark, Birnstiel, Ormel, A&A (2012), vol 544, L161

abstract

It is unknown how far dust growth can proceed by coagulation. Bouncing
and fragmenting collisions make up a collective collisional barrier that pre-
vents further growth. However, in almost all previous dust-size evolution
studies, only the mean collision velocity has been considered, neglecting
that a significant fraction of the collisions will occur at both much lower
and higher velocities. In this chapter, we study the effect of the probabil-
ity distribution of impact velocities on the collisional dust growth barri-
ers. We assume a Maxwellian velocity distribution for colliding particles
to determine the fraction of sticking, bouncing, and fragmentation, and
implement this into a dust-size evolution code. We also calculate the prob-
ability of growing through the barriers and the growth timescale in these
regimes. The result is that the collisional growth barriers are not as sharp
as previously thought. With the existence of low-velocity collisions, a small
but important fraction of the particles manage to grow to masses orders
of magnitudes above the main population. A particle velocity distribu-
tion softens the fragmentation barrier and removes the bouncing barrier.
It broadens the size distribution in a natural way, allowing the largest
particles to become the first seeds that initiate sweep-up growth towards
planetesimal sizes.

3.1 introduction

As particles in protoplanetary disks grow by coagulation, they decouple
more and more from the surrounding gas, which increases their relative ve-
locities. At the fragmentation barrier, collision energies are high enough to
cause particle destruction, halting the dust growth at centimeter to meter
sizes (Brauer et al. 2008). Zsom et al. (2010) also introduced the bouncing
barrier, which stops the growth at even smaller sizes. In this case, the col-
lision energies are too low to cause any particle destruction, but also too
high for sticking, with growth-neutral bouncing events as the result.

In the previous chapter, we suggested a sweep-up scenario where the
fragmentation barrier can be circumvented. We found that even though
collisions between equal-sized particles generally lead to fragmentation, if
the mass-ratio is large enough, growth of the larger particle can occur even

1 See page ix for details on authorship.
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at very high velocities. In this scenario, the growth initially stalls at the
bouncing barrier, but if a small number of slightly larger "seed" particles
are introduced, they rapidly sweep up the smaller particles and grow to
very large sizes. The growth barriers in this case limit the number of large
particles and therefore reduce the number of destructive collisions among
them. Exactly how the first seeds are formed is however still not clear.

All prior dust coagulation models have until now relied on the mean
value to describe the velocity at which a collision occurs. In reality, the
relative velocities between the particles that arises because of Brownian
motion and turbulence does not take a single value, but is better repre-
sented by a probability distribution, owing to geometrical and stochastic
effects. Here, we focus on turbulence since it is the dominating source of
relative velocity between the small grains below the fragmentation barrier.
There are relative velocity sources that can be described as deterministic,
e.g. radial and azimuthal drift, but these are of little importance at the
point of the collisional barriers (see Sect. 3.A for more details).

A general formula for the probability distribution function (PDF) of par-
ticle relative velocities is however unavailable, despite the efforts of many
numerical and experimental works. There is tentative evidence that the
PDF for particles with large Stokes numbers (St ∼ 1, those that couple to
the driving scales of the turbulence) is Maxwellian or close to it (Carballido
et al. 2010; Dittrich et al. 2013). However, at smaller sizes (where particles
couple to the Kolmogorov scale) the PDF may be better characterized by
wide, exponential tails (Wang et al. 2000; Pan & Padoan 2010; Hubbard
2012). Future numerical and analytical modeling is desired to refine and
interpret these data. In this work, as a first step, we assume that turbulent
velocities are Maxwellian distributed.

A velocity distribution allows some collisions to result in sticking where
the average outcome would produce a bouncing or fragmentation event.
This causes the barriers to blur out, and might allow for some lucky parti-
cles to just by sheer chance repeatedly experience only low-velocity colli-
sions and grow to larger sizes than the main population.

In this chapter, we show the effect of such a velocity distribution in a
local dust-size evolution code, not only as a method for creating lucky
larger particles, but also to see how it affects the general dust population.
In Sect. 3.2, we describe the collision model and velocity distribution im-
plementation, and in Sects 3.3 and 3.4, we discuss the simulation results.

3.2 method

We implement a Maxwellian velocity distribution together with three sim-
ple collisions models into a local version of the dust-size evolution code of
Birnstiel et al. (2010a). We consider relative velocities arising only from
Brownian motion and turbulence, which are the dominant sources for
small or similar-sized particles, and for the disk properties, we take the
minimum mass solar nebula (Weidenschilling 1977b). We refer to Table 3.1
for all the parameters used in this work.
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Table 3.1: Disk model parameters used in the local simulations.

Parameter Symbol Value Unit

Distance to star r 1 AU

Gas surface density Σg 1700 g cm−2

Dust surface density Σd 17 g cm−2

Gas temperature T 280 K

Sound speed cs 1.0 · 105 cm s−1

Turbulence parameter α 10−4 -

Solid density of dust grains ξ 1 g cm−3

3.2.1 Collision models

In this work, we take simplified versions of the collision model developed
in the previous chapter. We present three different models, where the pos-
sible outcome of a collision is one of the three collision types of sticking,
fragmentation, and bouncing, so that ps + pf + pb = 1, where p is the
probability of each collision outcome. In the first model, SF (sticking +
fragmentation), we study the effect on the fragmentation barrier, in the
second, SBF (sticking + bouncing + fragmentation), we study the bounc-
ing barrier, and in the third, SBF+MT (sticking + bouncing + fragmentation
+ mass transfer), we show a scenario where growth breakthrough occurs.

For the fragmentation, we assume that destruction of both particles al-
ways occurs above a given collision velocity

pf =

{
0 if ∆v < vf

1 if ∆v > vf ,
(3.1)

where we take vf = 100 cm/s as the fragmentation threshold velocity as
found by Blum & Münch (1993). The fragments are put in a size-distribution
described by n(m)dm ∝ m−1.83dm.

With bouncing included (where both particles involved are kept un-
changed), the sticking efficiency is written as

ps =

{
1 if ∆v < vb

0 if ∆v > vb ,
(3.2)

where we take a bouncing threshold velocity vb = 5 cm/s, which is the
upper limit to the bouncing threshold velocity found by Weidling et al.
(2012).

In the collision model SF, we only include sticking and fragmentation,
and take ps = 1− pf. In the collision model SBF, we account for all three
effects, and write the bouncing probability as pb = 1− ps − pf.

Finally, in the collision model SBF+MT, we include a simple prescription
for the mass transfer events discussed in detail in Chapter 2. These occur
when the particle mass ratio is so high that the largest particle can avoid
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Figure 3.1: Example of the Maxwellian velocity probability distribution for
∆vrms = 100 cm s−1. The differently shaded areas show the resulting
outcome for collision model SF.

destruction, and only the smaller particle is fragmented with a fraction of
its mass being added to the surface of the larger. To mimic this effect, we
assume that all fragmenting collisions above a critical mass ratio m1/m2 >

30 result instead in sticking where 10% of the mass of the smaller particle
is deposited onto the larger one. This is an arbitrary threshold which is
poorly constrained by laboratory experiments, and it might be lower or
much higher.

3.2.2 The velocity distribution

The collision rate between two particle species i and j for a certain collision
outcome is classically calculated from

fij = ninj Kij , (3.3)

where n is the number density and Kij is called the kernel, given by

Kij(∆vrms) = σij ∆vrms Ps/b/f(∆vrms) , (3.4)

However, if a velocity probability distribution, P(∆v | ∆vrms), is included,
the low-velocity collisions are going to collide at different rates than the
high-velocity collisions, and the kernel needs to be calculated by integrat-
ing over the whole ∆v-space:

K̂ij(∆vrms) = σij

∫ ∞

0
∆v Pv(∆v|∆vrms) Ps/b/f(∆v) d∆v . (3.5)

In this work, we assume that the particles follow a Maxwellian velocity
distribution, which when characterized by the root-mean-square velocity
∆vrms has the form

P(∆v | ∆vrms) =

√
54
π

∆v2

∆v3
rms

exp
(
−3

2
∆v2

∆v2
rms

)
. (3.6)

An example of the velocity PDF is given in Fig. 3.1. We can note that even
though the rms-velocity leads to fragmentation, a significant number of
collisions will still lead to sticking.
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For the turbulent relative velocity, we use the full closed-form expres-
sions derived by Ormel & Cuzzi (2007), which for small particles (St < 1,
here corresponding to m . 106 g) can be approximately written as ∆vrms =√

2α · St cs, where St is the Stokes number and the rest of the parameters
are given in Table. 3.1.

In the simulations, the kernel is calculated using Eq. 3.5, but in the anal-
ysis section of this work, we make one approximation. In the full picture,
it is clear that the low-velocity sticking collisions will be weighted less
than the high-velocity fragmenting collisions when determining the total
collision rate for sticking and fragmentation (see Chapter 4 for a more de-
tailed analysis along this line). However, because the Maxwellian velocity
PDF is relatively narrow in velocity space, we can approximate the colli-
sion rate between the (dominating) sticking collisions and the fragmenting
collisions to be equal. As we can see in Fig. 3.1, this is roughly true, as the
PDF drops roughly an order of magnitude even a factor 2 away from the
mean velocity. Because of this, we can for any collision approximate the
total sticking and fragmentation probabilities as

〈ps〉(∆vrms) ≈
∫ vb

0
P(v) d∆v (3.7)

〈pf〉(∆vrms) ≈
∫ ∞

vf

P(v) d∆v . (3.8)

In Fig. 3.2, we plot for the three collision models the integrated sticking,
bouncing, and fragmentation probabilities as a function of particle mass,
calculated from the underlying rms-velocity from Brownian motion and
turbulence. In the SF model, fragmentation occurs much earlier if a ve-
locity distribution is included, but sticking is also a possibility at much
higher masses. In the SBF model, sticking is a possible outcome even or-
ders of magnitude above the bouncing threshold, but decreases to very
low probabilities. At a mass of m = 1 g, the sticking probability is 10−3,
but fragmentation is also rare, so that the relative ratio of the two is of the
same order of magnitude. This means that growth can still proceed, albeit
on longer timescales. Finally, in the SBF+MT model, the situation is iden-
tical to the SBF panel, except that the added effect of mass transfer means
that collisions above the fragmentation threshold can still lead to growth,
provided that the mass ratio between the particles is large enough.

3.3 results

In Fig. 3.3, the dust size distributions of the simulations with a resolution
of 17 bins per mass decade (see Sect. 3.B for a resolution study) are given at
t = 5 · 104 years for the three collision models, with and without a velocity
distribution. The different cases are discussed individually below.
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Figure 3.2: The probabilities of sticking (green), bouncing (yellow), and fragmen-
tation (red) for the three collision models as a function of mass. The
red-green dashed line in the SBF+MT panel represents mass transfer,
where fragmentation can turn into mass gain for large mass ratios. The
dotted lines represent the threshold masses without a velocity distri-
bution included.

3.3.1 The fragmentation barrier

In the SF model, dust growth stops in both cases. When there is no velocity
distribution, this point occurs abruptly, with no way of growing larger
particles, after they have reached a size corresponding to vrms = vf.

If a probability distribution is considered, growth is both positively and
negatively affected. The main peak of the distribution shifts to lower sizes
(see Fig. 3.3 inset), because collisions from the high-speed tail of the distri-
bution already start the fragmentation even before the particles reach the
nominal barrier. However, there are also lucky particles that successively
experience low-velocity collisions, even beyond the barrier. This leads to
the tail in the size distribution beyond the barrier seen in Fig. 3.3.

The probability of a particle reaching a mass m before being destroyed
can be approximated by assuming that the particles with masses around
the peak mass, mpeak, dominate the interactions with the larger particles.
A particle therefore has to undergo k consecutive sticking collisions in
order to grow to a mass of m = k ·mpeak. The survival chance for particles
growing from mpeak to k ·mpeak can be written as a product of the sequence

psurvival =
k

∏
i=1

ps(mi) . (3.9)
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Figure 3.3: Snapshot of the size-distributions for SF (upper), SBF (middle), and
SBF+MT (lower) collision models taken after t = 5 · 104 years, with
(red) and without (black) a velocity distribution. The gray diagonal
lines correspond to a total of 1 and 106 particles within a 0.1 AU an-
nulus.

In Fig. 3.4, we plot the cumulative survival probability under different
assumptions. The dashed and solid lines were calculated assuming con-
stant sticking probabilities, and the solid line assumed a velocity/mass-
dependent ps. At a mass of m = 50mpeak, the relative velocity had in-
creased by a factor of 2, and the sticking probability had decreased from
0.5 to 0.1 compared to the peak population.

These numbers compare well to the large-particle tail in Fig. 3.3. The
largest particles of masses m = 60mpeak have a density decrease of roughly
25 orders of magnitude relative to the peak mass, which is roughly the
survival probability that we calculated in the toy-model. Growing to these
masses is extremely unlikely, but the sheer number of particles ensures
that some lucky particles make it.

3.3.2 The bouncing barrier

In the SBF model, we note two differences between the two cases. One is
the discrepancy in the number of small particles. Without a velocity distri-
bution, the small particles are depleted as there is no mechanism that can
create them once the main population has grown to the bouncing barrier.
This depletion is rapid at first, but gets less effective when the number of
small particles drops and the frequency of sticking collisions decreases. If
a velocity distribution is included, collisions in the high-velocity tail cause
fragmentation and replenish the population of small particles.
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Figure 3.4: The cumulative survival probability of a particle crossing through
the fragmentation barrier. The dotted and dashed lines are calculated
by constant ps regardless of particle mass, the solid line by a mass-
dependent ps from Eq. 3.7.

The peak of the distribution shifts significantly towards larger sizes. The
reason for this can be seen in Fig. 3.2, where the low-velocity collisions
lead to sticking, but even the highest collision velocities are too low to
cause any fragmentation. At around m = 1 g, the growth halts when the
fragmentation probability increases rapidly, while the sticking collisions
are rare. This causes a steeper tail of large particles compared to the case
of the pure fragmentation barrier.

We find that bouncing collisions never completely halt the dust growth,
as there will always be a small chance of sticking. However, the growth
timescale may become so large that the growth is effectively halted. If we
follow an individual dust grain, we can write its growth timescale as

τgrowth =
m

dm/dt
=

m
σ vrms ρp ps

, (3.10)

where σ = π(a + ap)2 is the collisional cross-section and ρp = 1.4 · 10−11 g
cm−3 is the midplane mass density of particles that it can collide with. The
growth will therefore slow down by a factor proportional to the decrease
in ps relative to unhindered coagulation. In the bouncing barrier, this will
cause an increase in the growth timescale by a factor of 103. Taking ps

from Eq. 3.7 and the relative velocity prescription of the previous section,
we find that it takes ∼ 10, 000 years for particles to grow to m = 1 g. If ps

was to decrease further, for example owing to a lower bouncing-velocity
threshold, this timescale would increase correspondingly.

3.3.3 Breaking through the barriers

In the SBF+MT model, we finally implemented the physics that makes it
possible for growth also at high velocities. This relies on a mass difference
between the particles in the disk, but without a velocity distribution, such
a mass difference never occurs.
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With the velocity distribution included, the bouncing barrier can be over-
come (see model SBF), and the fragmentation barrier is smoothed out (see
model SF), which means that a very small (106 particles in an 0.1 AU an-
nulus) but important fraction of particles manage to grow large enough
purely by chance. This triggers the growth of these few lucky particles by
sweeping up the smaller grains trapped below the fragmentation barrier.

Even a single fragmenting collision between two lucky particles will cre-
ate a myriad of fragments that will also be able to sweep up the particles
trapped below the barrier. This means that the rare fragmenting collisions
will effectively multiply the number of large particles, and with time, even
a handful of lucky particles can by themselves create a significant popula-
tion of planetesimals.

For sweep-up to occur in the simulations, a very high dynamical range
is required. Though the break-through occurs for such a tiny fraction of
the population, the sweep-up growth causes a rapid increase in both the
number and total mass of the larger grains.

3.4 discussion and conclusions

We have found that the collisional growth barriers for dust grains are
smoothed out and can even be overcome by virtue of a probability dis-
tribution of relative velocities among dust grains. Although improbable,
sticky, low-velocity collisions can occur at sizes where the mean collisional
velocity would lead to only bouncing or fragmentation.

To grow through the fragmentation barrier, a particle needs to be lucky
and experience low-velocity collisions many times in a row, which causes a
tail of larger particles to extend from the peak of the mass distribution. The
exact shape of the large particle tail depends on the velocity distribution
and collision model, but in our case, the luckiest particles can grow to
around 30-100 times more massive than the average particle trapped below
the barrier.

The bouncing barrier is even more affected by the existence of a velocity
distribution, and particles can grow to more than three orders of magni-
tude higher in mass, with the peak being shifted by two orders of mag-
nitude. This occurs because low-velocity collisions lead to sticking, but
even the higher velocities are low enough to only cause bouncing. This
means that the growth can continue unimpededly until the average rela-
tive velocities have increased enough for the fragmentation barrier to start
to become important. The bouncing barrier is therefore not a solid barrier
at all, unless the growth timescale becomes too long because of the low
sticking probability.

We can from this conclude that the low-velocity tail allows some lucky
particles to grow beyond the bouncing and fragmentation barriers. This
is a promising mechanism to produce the first seeds in the sweep-up sce-
nario introduced in Chapter 2. When the effect of mass transfer is included,
these seeds can sweep up the smaller particles trapped by the growth bar-
riers, and start their growth towards planetesimal sizes. The exact shape of
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the steady-state size distribution is however highly dependent on the colli-
sion model and velocity distribution parameters. In the following chapter,
we study the effect of different models and distributions, and also study
the effect of particle clumping on the particles’ ability to break through the
barriers.

3.a stochastic and deterministic relative velocity sources

Velocity distributions arise due to the stochastic effects such as Brownian
motion and turbulence, as opposed to the deterministic relative velocity
sources such as vertical settling and radial and azimuthal drift that in-
stead lead to clearly defined relative velocities. In this work, we assume
the stochastic particle motion to dominate over the deterministic sources,
which is strictly speaking not valid everywhere, but it is true at the parti-
cle sizes of the collisional growth barriers. For a more complete approach
that takes both effects into account during the calculation of the PDF, see
Garaud et al. (2013).

Describing the turbulent velocity field is complicated and is based on
dividing the particle pairs into different regimes based on their coupling
to the gas compared to the turnover time of the turbulent eddies (Voelk
et al. 1980; Markiewicz et al. 1991; Ormel & Cuzzi 2007). The relative ve-
locities of intermediate-sized particles (that couple to eddies somewhere
in the turbulent cascade) which are the sizes where the collisional growth
barriers occur are described by Ormel & Cuzzi (2007) as

∆vt ≈ cs
√

KαSt , (3.11)

where 2 < K < 3 is a numerical prefactor that depends on the size-ratio
of the particles, α is the turbulent strength, cs is the sound speed and St is
the Stokes number of the largest particle.

In this section, we will focus on the radial drift, which is stronger for the
intermediate-sized particles than the azimuthal drift. Radial drift occurs
because the dust particles face a constant headwind from the surrounding
gas, as the gas is supported by a radial pressure gradient therefore orbits
at slightly sub-keplerian velocities (see Sect. 1.4.2 for more details). The
equilibrium radial drift velocity for intermediate-sized particles is given
by Weidenschilling (1977a) as

vr = −
2ηvk

St + St−1 , (3.12)

and the relative velocity between two particles is ∆vr = |vr,1 − vr,2|. The
maximum particle drift velocity is given by 2ηvK, but the relative drift
velocity quickly decreases for particles that are far away from St= 1, or for
similar-sized particles.

We also need to know at roughly what particle sizes the collisional
growth barriers occur. By equating the approximate turbulent velocity to
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Figure 3.5: Comparison between the relative velocity contribution from turbu-
lence (left panel) and the radial drift (middle) between particles at 1

AU in an MMSN disk. The right panels compare the two sources, and
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relative velocities dominates, respectively. The comparison is given as
a ratio between the dominating source and the weaker source. The ap-
proximate bouncing barrier locations are acoll ≈ 1, 0.1, and 0.01 cm for
turbulent strengths of α = 10−4, 10−3, and 10−2.

the bouncing/fragmentation velocity, Birnstiel et al. (2009) gave the frag-
mentation size as

acoll '
2Σg

παξ
·

v2
f

c2
s

, (3.13)

where Σg is the gas surface density, α is the turbulent strength, ξ is the
dust solid density, vb/f is the bouncing or fragmentation velocity and cs is
the sound speed.

In Fig. 3.5, we have plotted the relative velocity contribution from the
turbulent relative velocities from the full closed-form expressions given
by Ormel & Cuzzi (2007) for three different turbulent strengths, and com-
pared it to the relative velocities from the radial drift, with everything
calculated for an MMSN disk at 1 AU. In the third panel, we have calcu-
lated the ratio of the two sources and the size-size space where each effect
dominates. In the figures, we also give the approximate size of the colli-
sional barriers obtained from Eq. 3.13, which are equal to acoll ≈ 1, 0.1, and
0.01 cm for turbulent strengths of α = 10−4, 10−3, and 10−2, respectively.

As the radial drift depends on the difference of the aerodynamical prop-
erties of the two particles, turbulence will always dominate for similar-
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sized particles. This is also true for small particles where the drift is very
low, and as the turbulent strength increases, the radial drift contribution
becomes less and less important. We can conclude that in the size regime
of the collisional growth barriers, the stochastic sources will dominate even
for the case of weak turbulence.

It has also been shown that pressure inhomogeneities or bumps, arising
from e.g. MHD effects or planets, is an effective way to keep disks dust-
rich over millions of years as observed in the outer regions, where the
radial drift would normally deplete the disk from dust on timescales of
1 Myr or less (Pinilla et al. 2012b; Ricci et al. 2010b). In these regions,
turbulence will always be the dominating velocity source regardless of the
turbulent strength.

3.b a resolution study

In the dust evolution code by Birnstiel et al. (2010a) that we have utilized
in this chapter, the Smoluchowski equation has been discretized into a
set of logarithmically spaced mass bins. When a sticking or fragmenting
event occurs, the mass of the resulting particle(s) will never fit exactly into
the existing mass bins. To solve this, the code follows Brauer et al. (2008)
and uses the Podolak algorithm, where the resulting mass is distributed
between the two nearest mass bins. For normal coagulation studies, the
numerical diffusion caused by the Podolak algorithm results in a signifi-
cantly sped up growth rate unless a sufficiently high mass resolution of
10-40 bins per mass decade is used. This is discussed in more detail in
Sect. 1.4.4.

In this study, the Podolak algorithm also gives rise to a second artificial
effect that needs to be considered. Because particles that are more massive
than the grain at the peak must be lucky and has to grow by only interact-
ing with other particles in low-velocity collisions, it becomes necessary to
accurately resolve the high-mass tail of the distribution. Otherwise, if not
all sticking events are resolved, the slope of the tail will be incorrect, caus-
ing artificially large mass ratios between the luckiest grains and those in
the peak. As an example of this, we can consider the extreme case where
the lucky particles are represented by a single mass bin mi. If two grains
in the peak undergo a single sticking event, forming a particle of mass
m� mi, some mass will still be put into mass bin i, even though in reality,
the particles would need to undergo several consecutive sticking events to
reach a mass mi. Such a badly resolved large-particle tail could cause an
artificial growth breakthrough if we are not careful.

To find a resolution that is sufficiently high for this work, we have per-
formed a resolution study using the SF and SBF collision models and a
Maxwellian velocity distribution, and varied the resolution between 5 and
50 bins per decade of mass. The result is shown in Fig. 3.6, and we plot a
huge density range of 30 orders of magnitude which roughly corresponds
to 1 real particle in an 0.1 AU annulus at 1 AU. As can be seen, the SF case
is extremely sensitive to the mass resolution. For the case of the lowest res-
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Figure 3.6: The effect of mass resolution on the steady state for the two fiducial
collision models with a Maxwellian velocity distribution. The resolu-
tions included are 5, 10, 20, 30 and 50 mass bins per decade.

olution, the largest particles have managed to grow more than two orders
of magnitude more massive than in the case where the convergence has
been reached, at roughly 30 bins per decade. When including bouncing,
however, the results converge much faster and converge already at a mass
resolution of 10 bins per decade.

The resolution sensitivity depends on the natural slope of the high-mass
tail, which is the result of how quickly the ratio between the sticking and
fragmentation probabilities changes with increasing mass or velocity (see
Fig. 3.2. If the slope is naturally steep, you need fewer mass bins to accu-
rately represent it, leading to a lower resolution dependency.

From this resolution study, we find that a mass resolution of 30 bins per
decade should suffice, although this also depends on the parameters of the
collision model. However, because we here only study the growth break-
through for model SBFMT, where the less resolution-dependent bouncing
is included, we settle for an intermediate resolution of 17 bins per decade.





4
PA RT I C L E G R O W T H I N C L U S T E R I N G : H O W FA R C A N
D U S T C O A G U L AT I O N P R O C E E D ?

Adapted from Windmark, Birnstiel, Ormel, A&A (in prep.)1

abstract

The collisional growth barriers have long been problematic for the under-
standing of how large dust particles can form in the protoplanetary disk.
However, recent studies have shown that the mean-velocity representa-
tion and homogeneous particle distribution commonly used in coagula-
tion models do not always accurately represent the actual disk conditions.
In this chapter, we therefore study the robustness of the dust growth barri-
ers in the context of velocity distributions and particle clustering. We give
an introduction to coagulation in particle clumps, and implement mod-
els for different velocity probability distributions and particle clustering
models to a local coagulation code. We then apply and interpret both the
conditions as expected from numerical turbulent flow simulations as well
as from a more general parameter study meant to represent the potential
also of other clustering effects. We find that the peak of the particle size
is rather insensitive to the shape of the velocity distribution. However, the
tail of large particles is more easily affected, leading to the possibility of
particle breakthrough. We also find that clustering is a powerful effect that
has the potential to majorly change the dust evolution by preferentially in-
creasing the rate of the low-velocity sticking collisions or by increasing the
growth rate to make it comparable or faster than the radial drift. On the
other hand, even though the turbulent concentration is capable of increas-
ing growth rates by as much as 104, it is limited by the fact that it clusters
at sizes that do not necessarily correspond to where the growth barriers
are. This study supports the theory that the fragmentation barrier is solid
enough to keep most particles in the disk small. However, our parame-
ter study shows that a common outcome is that a few lucky particles can
grow large enough to initiate sweep-up coagulation, leading to a bimodal
growth scenario. The expected strengths obtained from the turbulent clus-
tering effects are however still uncertain, and future studies will be needed
to more accurately model the particle clustering.

4.1 introduction

A longstanding problem in understanding the early stages of planet for-
mation is how the initially micrometer-sized dust grains in the protoplan-

1 See page ix for details on authorship.
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etary disk can grow to kilometer-sized planetesimals. In the classical incre-
mental growth scenario, sticking events result in successively larger dust
agglomerates. However, as the particles grow, they decouple from the sur-
rounding gas and collide at increasing collision velocities. At some point,
the collision energies are so high that the particles instead start to bounce
(Zsom et al. 2010) or fragment (Weidenschilling 1980). This is problem-
atic, as the bouncing and fragmentation barriers occur for sizes smaller
than decimeters, while modeling of the later stages require bodies of at
least 100 meters in size to successfully form planets (Fortier et al. 2013;
Okuzumi & Ormel 2013).

The collisional growth barriers have however also been found to be
the best explanation to the presence of sub-mm dust in the protoplane-
tary disk. As dust grains are the main cause of opacity of disks at mm-
wavelengths, coagulation studies are necessary to explain observational
findings in protoplanetary disks (Birnstiel et al. 2010b; Ricci et al. 2010a;
Pérez et al. 2012), where the maximum grain size and size-distribution
are key components. Without any growth barriers, the dust would simply
keep on growing, and the small sizes would be depleted (Dullemond &
Dominik 2005; Tanaka et al. 2005). A major question is therefore: How can
planetesimals be formed while the growth barriers are still there?

A number of alternative formation scenarios have therefore been put
forward to explain the formation of planetesimals. These include highly
sticky chondrules (Beitz et al. 2012), extremely porous ice agglomerates
(Okuzumi et al. 2012), and variants of gravitational instabilities (Goldre-
ich & Ward 1973) with clumping and gravitational collapse via streaming
instabilities (Johansen et al. 2007) or turbulent clumping of chondrules
(Cuzzi et al. 2008). In all of these cases, the dust size-distribution is still a
highly important quantity. In the case of streaming instabilities, particles
need to be sufficiently decoupled from the gas and numerous enough to
cause feedback to the gas, and the chondrule clumping requires a very nar-
row dust size-distribution. However, because of the nature of collisional
growth barriers, current numerical coagulation models predict that these
requirements are not always fulfilled.

In Chapter 2, we introduced the concept of sweep-up coagulation. In this
scenario, most of the dust population is kept small by collisional growth
barriers, while a few larger "seed" particles can grow by interacting with
the surrounding small grains in high-velocity mass transfer collisions. In
Chapter 3, and also in Garaud et al. (2013), it was found that these large
particles might be created by including impact velocity distributions in the
coagulation codes. Two particle populations are then formed, where most
of the dust is kept below the barriers, but some grains are lucky enough
to grow larger by subsequent low-velocity sticking collisions. These lucky
particles become the first seeds in the sweep-up coagulation phase.

But there are still many questions remaining for this scenario. One con-
clusion was that even though the formation of lucky seeds is possible, it
is very improbable, and only a very small number, if any, are going to
break through the growth barriers. This is highly dependent on the col-
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lision model and shape of the velocity distribution, as well as other disk
properties such as gas density and turbulent strength. It is expected that
turbulence will be the dominant velocity source in most parts of the disk
for the small dust grains, and numerical work on dust particles suspended
in turbulent gaseous environment have shown that, depending on the par-
ticle properties, the distribution can range between Maxwellian and ex-
ponential (Carballido et al. 2010; Wang et al. 2010; Pan & Padoan 2010;
Hubbard 2012; Pan & Padoan 2013).

It has also been found both numerically and experimentally that parti-
cles of similar aerodynamic properties have a tendency to concentrate into
dense, local clusters, which has been studied both outside astronomy (Sun-
daram & Collins 1997; Shaw 2003; Gustavsson & Mehlig 2011; Gustavsson
et al. 2012) and for protoplanetary disk environments (Cuzzi et al. 2008;
Pan et al. 2011). Depending on the primary clumping effect, these clusters
can reach local solid density enhancement factors up to 104 (Bai & Stone
2010; Pan et al. 2011; Hubbard 2012). As clumping occurs primarily for
particles of low relative velocity, this could have a potentially large effect
on dust coagulation, as local regions with enhanced sticking collisions will
affect the equilibrium between sticking and fragmenting collisions.

In this work, we discuss and model coagulation with particle velocity
distributions and clustering, primarily in the context of growth break-
through towards larger sizes and the general effect on the final steady-
state distribution, but also its effect on growth timescales. We use both
clustering models based on numerical turbulent clustering results, as well
as perform a more general parameter study. In Sects. 4.2 and 4.3, we dis-
cuss previous results on clumping and give a tutorial on clumping and its
implementation into coagulation codes. In Sect. 4.4, we discuss the colli-
sion models and velocity distributions used, and the results are described
and discussed in Sects. 4.5 and 4.6.

4.2 particle clustering in turbulence

The existence of turbulence in protoplanetary disks is by now evident,
as it is required both to explain the observed gas accretion rates (Pa-
paloizou & Lin 1995) and the observed abundances of small particles
at high altitudes above the disk midplane (Dullemond & Dominik 2005;
Tanaka et al. 2005). The widely accepted theory behind the driver of turbu-
lence is magnetorotational instability (Stone et al. 2000), and the turbulent
strength is often described by the nondimenstional parameter introduced
by Shakura & Sunyaev (1973), which for protoplanetary disks is assumed
to be α ∼ 10−5 − 10−2. In turbulent gas, energy is assumed to be put
into large-scale eddies of size-scales L ∼ Hgα1/2 ∼ 10−3 AU (in the inner
disk), where Hg is the gas scale-height. These eddies are unstable, and a
cascade follows down to the dissipation (Kolmogorov) scale eddies, with
sizes LK = LRe−3/4 ∼ 1 km, where Re = αcsH/νm ∼ 107 is the gas
Reynolds number. The small scale eddy lifetime is given by tK = Re−1/2tL,
where tL ∼ Ωk is the lifetime of the largest eddies (Ormel & Cuzzi 2007).
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In coagulation studies, turbulence is important for several reasons, but
is mainly considered for its diffusive properties and as a main cause of the
high relative velocities that cause the destructive collisions between dust
grains. Another interesting aspect of turbulence that has yet to be looked
at in a context of dust coagulation is its clustering capability. Because the
dust grains are not perfectly coupled to the gas, dissipative trajectories
caused by centrifugal forces in turbulent eddies can cause the ejection of
the particles from the eddies, and the formation of transient but dense
clusters of particles in regions of low vorticity (Cuzzi et al. 2008; Pan et al.
2011).

This turbulent clustering is optimal for particles with stopping times τ

equal to the turn-over time of the smallest eddies, tK. Clustering of larger
particles occurs on larger size scales corresponding to the eddy size that
they are most well coupled to (Pan et al. 2011), and smaller particles are too
well coupled to the gas to cluster considerably. This size scale for maximal
clustering is also where the turbulent velocity starts to cause fragmenta-
tion. From the method of Birnstiel et al. (2009), we can put the turbulent
velocity for equal-sized particles equal to the fragmentation velocity, and
get

afrag '
Σg

παξ
·

v2
f

c2
s

, (4.1)

where Σg is the gas surface density, ξ is the solid density, vf is the fragmen-
tation velocity and cs is the sound speed. Assuming the particles to be in
the Epstein drag regime, the particle size coupled to the Kolmogorov scale
can be written as

aK =
√

8/π · cstK
ρg

ξ
. (4.2)

Comparing these two sizes, we get

aK

afrag
= 2αRe−1/2 · c2

s

v2
f

, (4.3)

which is ∼ 0.01− 0.3 in the inner disk depending on disk conditions and
fragmentation strength. If we also include the bouncing barrier that occurs
at smaller relative velocities, we find that clustering might indeed be an
important factor in the collisional barrier regime. At larger radii where
ices cause the fragmentation velocity to increase, this ratio will decrease.

To quantify the degree of clustering, one can define a concentration fac-
tor C = ρ/ρ̄ (discussed in detail in Sect. 4.3). Numerical simulations by
Cuzzi et al. (2008) find that on larger scales, concentrations of the order of
10− 100 are to be expected, but Pan et al. (2011) show that on the smallest
size-scales relevant for coagulation, the concentrations can reach as high as
C ∼ 104. Directly studying such small scale concentrations is however im-
possible due to wide spatial range of the turbulent cascade and the large
difference between dust particle sizes and the Kolmogorov scale, and all
studies therefore require significant extrapolation.
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Hubbard (2012, 2013) studied the collision frequency of particles of both
equal and different τ using artificial turbulent cascade models (shell mod-
els) to better resolve the Kolmogorov scale. In this way, both the distri-
bution of relative velocities and the degree of clustering could be stud-
ied. Clustering also means that the particles are trapped in the same gas
streams, which tends to suppress their relative velocities. It was found that
although particles of equal sizes tend to cluster together to C > 100, and
that the relative velocities of the clustered particles had . 1 m s−1, already
particles with stopping time ratios of 1.5 have the maximum clumping re-
duced to C ∼ 2. This occurs because particles of different stopping times
tend to cluster at different locations in the flow (Pan et al. 2011).

Due to other effects, clustering also occurs for larger particle sizes than
for the turbulent clustering discussed above. Zonal flows are the prod-
ucts of large-scale variations in the magnetic field, which cause a differen-
tial momentum transport to occur, creating regions of slightly faster and
slightly slower orbiting gas. This causes transient pressure bumps to form
with lifetimes of 10-50 orbits, causing dust particles to get trapped and
forming overdensities Johansen et al. (2009). The strength of these over-
densities varies. Dittrich et al. (2013) found C ∼ 103 for equal-sized St = 1
particles decreasing to ∼100 for St = 20, and < 10 for St < 0.01.

Another type of turbulent clustering can occur if the dust to gas ra-
tio is sufficiently high, and the dust is sufficiently decoupled from the
gas (St & 10−2). This will cause a significant momentum feedback from
the dust to the gas, and result in streaming instabilities (Youdin & Good-
man 2005). This, in turn, lead to even higher concentrations that could be
enough to surpass the Roche density (ρp & 103ρgas), above which the parti-
cles in the clump would be gravitationally bound, and lead to subsequent
gravitational instabilities (Johansen et al. 2007; Bai & Stone 2010). However,
if the amount of available dust is too small, streaming instabilities might
well occur without the subsequent gravitational instabilities, which would
be optimal conditions for efficient coagulation.

Particle concentrations will in general act to speed up the overall growth,
but if all particle collisions were boosted equally, this would do little for
changing the particle size at the fragmentation barrier, which is (somewhat
simplified) given by the ratio between the rates of sticking and fragmenta-
tion. A key concept in this study will therefore be to take into account that
clustering preferentially boosts the low-velocity sticking collisions, which
has the potential to majorly affect the maximum particle size.

4.3 coagulation in clumps explained

In this section, we intend to give a basic overview of clustered particle dis-
tributions, and how this can be modeled in the context of coagulation. This
has been discussed in fields outside of planet formation (for a summary
from the atmospheric science field, see e.g. Kostinski & Jameson (2000);
Shaw et al. (2002); Shaw (2003), which this review is based on). We will
discuss both the quantification of clustering, and how it relates to the colli-
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sion rate between particles. In Sect. 4.3.1, we will describe an intuitive but
limited approach, and in Sects. 4.3.2 and 4.3.3, we will discuss the more
general pair correlation function and its result on the collision rate.

First of all, let us give the collision rate for a given collision type between
two particle species i and j, assuming only a mean-velocity without any
particle clumping:

fij = n̄in̄j Kij , (4.4)

where n̄ is the mean number density and Kij is called the kernel, given by

Kij(∆vrms) = σij ∆vrms , (4.5)

where ∆vrms is the mean relative velocity and σij = π(ai + aj)
2 is the geo-

metrical collisional cross section. In a clumpy medium, the mean number
density is not sufficient to describe the particle distribution, and we need
another formulation to determine the collision rate.

4.3.1 Intuitive way of looking at clumping

We will begin with an intuitive approach to particle clumping, by assum-
ing a box of volume Vb filled with N particles of a single species. The
particles are clumped together so that they can be described with a uni-
form probability distribution over a smaller volume Vc, so that Vc < Vb.

The number density of the particles within the clump is n = N/Vc,
and averaged over the entire box, the number density is n̄ = N/Vb. We
can relate these two densities by n = Vb/Vc · n̄ = C · n̄, where C is the
clumping factor.

In this way, the average collision rate (per velocity per cross-section) over
the whole box is

f
σ∆v
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1

Vb

∫ Vb

0
n2 dV =
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Vc
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(
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)2

n̄2 = C · n̄2 . (4.6)

We can from this conclude that the collision rate scales linearly with the
clumping factor of particles. This approach is however not so well suited
for dealing with clumping of particles of different particle properties and
masses, and describes a more realistic clustering case rather poorly. In
order to get further, we will have to employ the pair correlation function.

4.3.2 The pair correlation function

Let us now take a step back, and define what we really mean with a clus-
tered distribution. We first assume that the position in a certain region
of the disk is given by a random variable. This randomness comes from
the interaction with the stochastic Brownian motion and turbulent flow,
making it impossible to use initial conditions (with any realistic accuracy)
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to predict the spatial evolution of a particle. An important assumption of
most dust coagulation studies is to assume that the spatial properties of
particles are homogeneous and Poisson-distributed over each sub-domain.
With homogeneous, we here mean that the statistical spatial properties of
the particles do not change with their position. Poisson-distributed parti-
cles must have their spatial statistics characterized by the Poisson process
on all scales, i.e. the number of particles N in any volume V have their
probability distribution given by

p(N) =
N̄N exp (−N̄)

N!
, (4.7)

where N̄ is the mean particle number in V. It is important to note that the
Poisson distribution must be valid on all scales, as positive and negative
deviations on smaller scales can cancel each other out and result in Poisson
statistics on larger scales.

Now, we can assume that particles are distributed randomly and homo-
geneously, but they are not necessarily uncorrelated. In fact, as discussed
in the previous section, the properties of a turbulent flow will result in
the formation of temporary clusters and voids, which means that the rel-
ative position between particles are correlated. This can be understood
by considering two particles A and B. We pick the position of particle A
completely at random (from a uniform probability distribution over the
volume). In a clustered medium, particle B then has a conditional proba-
bility for position, described and biased by the pair correlation function
with particle A.

If we consider a volume element dV so small that it contains at most a
single particle, the probability of finding a particle in that volume is n̄dV.
If particle positions are uncorrelated, the probability of finding particles
in each of two volume elements dV1 and dV2 separated by a distance r is
P1,2 = n̄dV1 · n̄dV2. However, if a correlation exists between particles, we
can write the probability as

P1,2 = n̄dV1 · n̄dV2 · [1 + η(r)] , (4.8)

where η(r) is the pair correlation function and can be thought of as an
enhanced (for η(r) > 0) or reduced (for −1 ≤ η(r) < 0) likelihood of
encountering a particle at a distance of r away from another particle. The
former would correspond to a distribution with some form of clustering,
and the latter implies a distribution which is distributed even more uni-
formly than a perfectly random distribution.

From Eq. 4.8, we can write the pair correlation function as the enhanced
likelihood of finding a second particle in a volume element dV given the
presence of a first one as:

η(r) =
P1,2

(n̄dV)2 − 1 . (4.9)
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Figure 4.1: Illustration of 1000 particles distributed according to a uniform Pois-
son distribution (left column) and a clustered distribution (right column).
In the middle panels, the radial distribution functions are given for the
two cases, and the probability distributions are given in the lower pan-
els for a volume with 10 particles on average, where the deviation
from the theoretical Poisson distribution (red dashed line) is clear in
the case with clustering. Figure adapted from Kostinski & Jameson
(2000).

We can also write P1,2 = 〈(n(r)dV)(n(r + dr)dV)〉, where we let 〈...〉 de-
note the ensemble average. With n̄dV = N̄, we get

η(r) =
1

N̄2 〈N(r)N(r + dr)〉 − 1

=
1
n̄2 〈(n(r)− n̄)(n(r + dr)− n̄)〉 , (4.10)

where we assume isotropy, so that the direction dependence can be inte-
grated out by

η(r) =
1

4π

∮
η(~r) dΩ . (4.11)

In statistical mechanics, another common way of measuring spatial correla-
tions is by the use of the radial distribution function (RDF). This is defined
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as the average number of particles at a distance between r and r + dr from
a reference particle normalizing by the mean particle density, or

g(r) =
dN/Nb

dV/Vb
=

dN
dV
· Vb

Nb
, (4.12)

where Nb and Vb represent the total number of particles and the volume
of the entire box, respectively. The expression for the RDF is equivalent to
g(r) = 1+ η(r), and from now on, we will for convenience use the RDF to
describe particle clustering.

In Fig. 4.1, we give an example of a 2D Poisson distribution and a clus-
tered distribution with voids and elongated clumps. In the middle panels,
the resulting RDF has been calculated using Eq. 4.12. For the Poisson distri-
bution, g(r) oscillates around unity, corresponding to perfect randomness,
but in the clustering case, g(r) is clearly above unity for all investigated
radial distances, showing evidence of a spatial correlation between parti-
cles. Finally, in the bottom panels, we show the probability distribution for
the volume corresponding to a mean of N = 10 particles. In the case of
clustering, the distribution differs significantly from the Poisson distribu-
tion, showing both a peak at lower particle numbers and an extended tail
towards larger numbers.

Though the radial distribution function is interesting for describing gen-
eral clustering, ideally, collisions between particles occur only for r = 0
(though realistically, this occurs when r is the sum of the particle radii).
This means that in order to calculate the enhanced collision probability,
we need to calculate the RDF for the limiting case r → 0. From Eq. 4.10,
we get

lim
r→0

g(r) = lim
r→0

η(r) + 1 =

〈
n2〉
n̄2 =

Vb

Vc
= C , (4.13)

where we used the notation from the previous section that n = n̄ · Vb/Vc,
and that the density-squared averaged over the entire volume is equal to
n̄2 = n2Vc/Vb = n̄2Vb/Vc. It should here be noted that directly measur-
ing the clustering for r → 0 is impossible due to the limited resolution.
All clustering values therefore need to be extrapolated over a huge spa-
tial range and are therefore very uncertain, which should be taken into
consideration when performing the parameter study.

From this, we find that the collision rate can be given by f /(σ∆v) =

g(r → 0) · n̄2 = C · n̄2, same as in the intuitive picture of the previous
section. However, we have still assumed identical particle properties, and
no correlation for the relative velocities between particles. We add this in
the following section.

4.3.3 Full implementation of the radial distribution function

We now extend the RDF to also contain information about the particle
properties, to account for the fact that particles of different aerodynamic
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properties cluster differently, and that this clustering also affects their rel-
ative velocities and collision rates. To obtain the new RDF, we consider a
reference particle of stopping time τ1, and calculate its correlation-function
with particles of stopping time τ2 and velocities ∆v relative to the reference
particle, giving g(r, τ1, τ2, ∆v). If we take τ1 = τ2 = τ, we can recover the
original radial distribution function by integrating over all relative veloci-
ties:

g(r, τ) =
∫

g(r, τ, ∆v) d∆v . (4.14)

As we are interested in particle collisions (that occur for r → 0), we
will from now on drop the r dependence in the RDF, and write it as
g(τ1, τ2, ∆v).

To correctly gauge the impact of the RDF on the coagulation rate, the
kernel needs to be modified to take into account that clustering does not
boost the collision rate for all relative velocities equally, but only over a
limited ∆v-range. The modified kernel should therefore be calculated by
integrating over the entire ∆v-space for each particle pair, so that the colli-
sion rate for each collision outcome can be written:

K̂ij(∆vrms) = σij

∫ ∞

0
g(τi, τj, ∆v) ∆v Pv(∆v|∆vrms) Ps/b/f(∆v) d∆v , (4.15)

where the modeling of g(τi, τj, ∆v), the velocity distribution Pv(∆v|∆vrms)

and the collision outcome probability Ps/b/f(∆v) are subject to the follow-
ing section. With this approach, we can then correctly calculate the colli-
sion rate of each individual collision outcome (sticking, bouncing or frag-
mentation).

A fundamental assumption in this model is that the velocity probability
distribution (PDF) and the clustering factor are uncorrelated. In reality, it
is difficult to make a distinction between the two, and the clustering will
rather directly affect the local velocity PDF. Because the physics is still not
fully understood, however, this phenomenological approach makes it easy
to quantify the effects of clustering.

4.4 numerical implementation and cluster modeling

Before we can derive explicit integrations for the RDF, we first set the stage
with the coagulation model and the velocity distribution model. We return
to the modeling of the clustering in Sect. 4.4.3.

We use the local version of the Smoluchowski dust evolution model de-
veloped by Brauer et al. (2008) and Birnstiel et al. (2010a). In the code,
we implement velocity distribution and clustering models, and investi-
gate them together with collisions models with variable parameters for
the sticking, bouncing and fragmentation, as well as disk parameters such
as stellar distance and gas density.
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4.4.1 Collision models

There is a lot of physics behind the collision outcome probability Ps/b/f,
which depends on for example the impact velocity and angle as well as
particle mass, porosity, structure and composition. There has been a lot of
recent progress on the mapping of dust grain collisions, both in the lab-
oratory (Güttler et al. 2010; Schräpler et al. 2012) and numerically (Wada
et al. 2007; Seizinger & Kley 2013b; Meru et al. 2013). Even now, the condi-
tions for the different collisional outcomes remain a hotly discussed topic,
and the laboratory and numerical work predict very different results in for
example the efficiency (or even existence) of bouncing for protoplanetary
dust (Wada et al. 2011; Kothe et al. 2013b).

In this work, we take a simple, parametrized collision prescription us-
ing sticking, bouncing, fragmentation as the three possible outcomes. For
simplicity, we take the outcome to be only velocity dependent, and denote
the the probability of a certain outcome as Ps/b/f(∆v). At any given ∆v, we
always have Ps + Pb + Pf = 1. We describe the probability distribution by
a step function:

Ps(∆v) =

{
1 if ∆v < vb

0 if ∆v > vb

, (4.16)

Pf(∆v) =

{
0 if ∆v < vf

1 if ∆v > vf

, (4.17)

where vb and vf are the bouncing and fragmentation threshold velocities.
From laboratory experiments, we know bouncing to occur at velocities
between 1− 10 cm s−1, and silicate fragmentation to occur at velocities in
the wide range between 10− 700 cm s−1.

For sticking collisions, the resulting particle gets the mass of both the
particles involved, and we assume bouncing collisions to be completely
neutral, with both colliding bodies totally unaffected. During a fragment-
ing event, two different outcomes are possible depending on the mass
ratio of the particles involved, where we let mp ≤ mt be the projectile
and target mass, respectively. For particles of similar mass, both parti-
cles fragment, and the mass is put into a size distribution described by
n(m)dm ∝ m−1.83dm (Blum & Münch 1993), between the monomer mass
m0 = 6.7 · 10−12 and mt. Fragmenting collisions above a certain mass ratio
Mer = 10 − 1000 instead only crater, where only the projectile is frag-
mented and excavates an amount of mass from the target equal to mp.

Throughout this work, we will refer to two standard collision models
that we denote as model SF (sticking + fragmentation, with vf = 100 cm
s−1), and model SBF (sticking + bouncing + fragmentation, with vb = 5
cm s−1 and vf = 100 cm s−1).
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Figure 4.2: Comparison of the two velocity probability distributions for vrms =
50, 100 and 200 cm s−1

4.4.2 Velocity distributions

Due to stochastic and geometrical effects, two particles of some given aero-
dynamic properties have a wide range of possible velocities at which they
can collide. Classically, only the mean relative velocity has been used for
determining the collision rate and collision outcome between dust parti-
cles, but velocity PDFs were included and studied in Chapter 3 and by Ga-
raud et al. (2013). It was found that this effect has the potential to widely
change the resulting dust size distributions by allowing for collisions to
lead to sticking at sizes where they would ordinarily only bounce or frag-
ment.

Numerical turbulence studies indicate that the velocity PDF can vary
between Maxwellian and an exponential depending on the aerodynamic
properties of the particles. In this work, we will therefore extend the previ-
ous studies by including both of these distributions. Maxwellian velocity
distributions are generally expected for particles of large Stokes numbers
(St = τ/τL = τΩk ∼ 1, where τ is the particle stopping time, τed is the
turnover time of the largest eddies and Ωk is the Keplerian frequency)
(Carballido et al. 2010; Dittrich et al. in prep). In this case, the relative
velocities depend on the particles’ memory of prior eddies, and will not
get correlated in the local environment where they collide. The resulting
distribution is given as a function of the root-mean-square velocity, ∆vrms,
as:

Pmax(∆v | ∆vrms) =

√
54
π

∆v2

∆v3
rms

exp
(
−3

2
∆v2

∆v2
rms

)
. (4.18)
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where we in this work take ∆vrms to come from Brownian motion and
turbulence Ormel & Cuzzi (2007). For particles of lower Stokes numbers,
where particles couple to the Kolmogorov scale turbulence, their velocities
have time to get correlated with the local eddy, and the distribution of rel-
ative velocities is then better characterized by an exponential distribution
(Wang et al. 2000; Pan & Padoan 2010; Hubbard 2012). The distribution is
given by

Pexp(∆v | ∆vrms) =

√
2

∆vrms
exp

(
−
√

2
∆v

∆vrms

)
. (4.19)

Examples of these two distributions are given for different mean velocities
in Fig. 4.2. Compared to the Maxwellian distribution, the exponential is
wider, with a significantly stronger low-velocity population, but also a
stronger high-velocity tail. Another important property of the exponential
distribution in this context is that the population of low-velocity collisions
only decreases slightly with increased mean-velocity, which means that
there are always some sticking collisions occurring particle pairs of any
mean velocoty.

In this study, we have chosen to look at the effects of the two velocity
distributions separately, where realistically, we would expect a transition
from exponential to Maxwellian to occur in the regime St ∼ 1.

4.4.3 Modeling the clustering factor

As discussed in Sects. 4.2 and 4.3, the clustering of particles is a highly
complex phenomenon and can be caused by many different underlying
effects. The primary factors of turbulence are the aerodynamic proper-
ties and the relative velocity, and so we want to write the clustering as
g(∆v, τi, τj), while still keeping the function as simple as possible. We
firstly present a model and make fits to previous numerical turbulent stud-
ies, and in the next section introduce a simplified and more transparent
model suitable for a parameter study.

As discussed by (Pan et al. 2011, PP11), one of the issues of under-
standing particle clustering on a coagulation aspect is the extrapolation
from large scales (their best resolution is 0.09LK), down to the coagulation
scale at ∼ 1 mm. For the large-scale concentrations, PP11 found a Stokes-
number dependent clustering factor for equal-sized particles (monodis-
perse clustering) that we have reproduced from their Fig. 7 into Fig. 4.3,
panel a). As a fit, we take an exponential of the form

g11(StK, LK) = kA exp(−kB log(StK/StLK,0)
2) , (4.20)

where StK = τ/tK is the Kolmogorov Stokes number (this way of normal-
izing to the smallest instead of the largest eddies is common practice when
studying turbulence, and we will for ease of comparison with the simula-
tions of PP11 stick to it for this section). This can reproduce the data fairly
well for the parameters kA = 18, kB = 0.4 and StLK,0 = 0.8. The aim of the
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Figure 4.3: Fits for the clustering parameters (black solid lines) to the numerical
data (red dashed lines), using Pan et al. (2011) and Hubbard (2012,
2013). Panel a) shows the large-scale RDF and is calculated from
Eq. 4.20. Panel b) shows the slope of the extrapolation factor (see
Eq. 4.22), and panel c) is the resulting small-scale RDF from Eq. 4.21.
Panel d) shows the normalized clumping factor for particles of differ-
ent sizes, given in Eq. 4.23, and we have in the plot assumed that the
Hubbard (2013) data was calculated for g11 = 10.

fitting was here to reproduce the large-particle tail as well as possible, as
this is where we expect the fragmentation barrier to be found.

Secondly, to extrapolate to the smaller scales, PP11 introduced a power-
law:

g11(StK, r̃) = g(StK, LK) · r̃−µ(StK) , (4.21)

where, r̃ = r/LK is the particle separation normalized to the Kolmogorov
scale, where we take r = 1 mm and LK = 1 km in our disk model. To
find a description for µ, we take their data (see also their Fig. 6) and fit an
exponential of the same form as Eq. 4.20, resulting in

µ(StK) = kC exp(−kD log(StK/StK,0)
2) , (4.22)

where we find that kC = 0.65, kD = 0.5 and StK,0 = 0.6 provide a good fit,
as seen in panel b).
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The dashed line shows the mean-velocity fragmentation barrier (see
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mum clustering (see Eq. 4.2), at which g ∼ 104.

Using Eq. 4.21, it is now possible to construct the small-scale concentra-
tion factor, which is given in panel c). We can here note that the concen-
tration at its peak reaches a remarkable 104, but falls off quickly within an
order of magnitude in St on both sides.

The clustering between particles of different sizes is very poorly under-
stood, but a first step was taken by Hubbard (2013). They fitted a power-
law decrease of the shape ε−0.77, where ε = τ1/τ2 − 1 >= 0. This fit di-
verges for equal-sized particles, mostly due to modeling reasons because
the focus in that study was to investigate the clustering between different-
sized particles. This divergence, where the slope is independent on g11

might however also have physical reasons. An interpretation of this could
be that regardless of how well particles with the same aerodynamic prop-
erties cluster, because the clusters of particles of other properties occur at
completely different locations, the clustering between different-sized par-
ticles would quickly become negligible.

With this interpretation, we take the Hubbard (2013) fit to be the follow-
ing:

g12

g11
=

min(g11, 1 + 0.29ε−0.77)

g11
= min

(
1,

1 + 0.29ε−0.77

g11

)
, (4.23)

The result is seen in panel d), which we have normalized to an assumed
maximum clustering factor of g11 = 10, which means that g12/g11 goes
towards 1/g11 for large ε.
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Putting these together, we can calculate the clustering strength on the
particle size-scale for each particle pair from

g(StK1, StK2, 1 mm) =g11(StK1, LK, 1 mm)

×min
(

1,
1 + 0.29ε−0.77

g11(StK1, LK, 1 mm)

)
, (4.24)

where g11(StK1, LK, 1 mm) is the monodisperse clustering for the particle
of the strongest clustering, given by Eq. 4.21. To illustrate just what a nar-
row regime that clustering occurs, we plot the resulting clustering factor
for each particle pair in Fig. 4.4. We note that although the maximum clus-
tering strength is extremely high (g = 104) at its maximum, the clustering
is limited both due to that clustering is mostly efficient at St = StK, and be-
cause different-sized particles tend to cluster at different spatial locations.

Because of the combination of these two effects, it is in Fig. 4.4 clear
that the clustering modeled here will have a limited effect on the dust
coagulation and fragmentation barrier position (compare the the predicted
fragmentation barrier (dashed line) to where the clustering occurs). Any
Smoluchowski simulations using this model would therefore result in the
exact same end result as without any clustering.

In the following section, we therefore take a slightly simpler clustering
model that can be used with the full numerical simulations to study for
what parameters clustering would become important.

4.4.4 A simplified clustering model

Using the lessons we learned from the previous fitting, we will now take a
slightly simplified and more transparent model for the particle clustering
that we can easily integrate and that we can use for our numerical simu-
lations, with parameters that can use to model any type of turbulence. In
this way, we can study what degree of clustering that would be needed for
the clustering to play an important role, and we can also use it to study
other types of clustering.

We choose to describe the clustering behavior by an exponential function
of the form:

g(∆v, τi, τj) = 1 + k1 · exp(−k2∆v− k3ε− k4γ) , (4.25)

where ε = τi/τj − 1 ≥ 0 and γ = log(τ/τmax)2. k1 describes the maximum
clustering strength, k2 determines at what relative velocities clustering oc-
curs, k3 determine how well particles of different stopping times clusters,
and k4 describes how well particles cluster at stopping times different from
the point of maximum clustering, τmax. In the last term, we let τ be the
stopping time of the particle farthest away from τmax. Putting k1 = 0 cor-
responds to a case without clustering, and k2 = 0, k3 = 0, or k4 = 0 would
mean that the clustering is independent of the corresponding property.

We choose to investigate a wide set of parameters where not all are
likely results of turbulent concentration, both to account for uncertainties
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Figure 4.5: Our model for the clustering factor and its dependence on relative
velocity, stopping time ratio and absolute Stokes number. Here given
for k1 = 100.

in the previous model fit and other accomodate other clustering effects. In
Fig. 4.5, we show examples of the different parameters that we have inves-
tigated. The outcome is discussed in the next section. To finally calculate
the total collision rates and outcome between each particle pair, Eq. 4.15

then needs to be integrated over the full relative velocity space.

4.5 dust evolution models with clustering

We have performed a numerical coagulation parameter study using the
Maxwellian and exponential velocity PDFs. The results are presented in
Sect. 4.5.1, where we discuss and further quantify the effect that the in-
clusion of a velocity distribution as an extension to what was shown in
Chapter 3.

In Sect. 4.5.2, we discuss the results of the cluster parameter study that
we have performed with the simplified clustering prescription. For the
clustering parameters, we take values that roughly correspond to the de-
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Table 4.1: Parameters used in the local simulations.

Parameter Sym Value Unit

Distance to star r 1, 10, 50 AU

Temperature T 280 · r−1/2 K

Gas density profile Σg MMSN, Desch g cm−2

Dust-to-gas ratio - 0.01 -

Turbulent strength α 10−4, 10−3, 10−2 -

Velocity distribution - Mean, Maxw., Exp., -

Clustering strength k1 0, 101, 102, 103, 104, 105 -

Clustering width k2 0.01, 0.05, 0.25 -

Clustering width k3 10−3, 10−2, 10−1, 100, 101 -

Clustering width k4 0, 10−2, 10−1, 100, 101 -

Dust solid density ξ 1 g cm−3

Bouncing threshold vb 5, 50, 100 cm s−1

Fragmentation threshold vf 5, 50, 100 cm s−1

Erosion mass ratio mcrit 101, 102, 103 -

tailed turbulent concentration model, but we also consider parameters that
can be expected for e. g. zonal flows and streaming instabilities. The clus-
tering effect is studied using the exponential velocity PDF, as this is what
we expect for the smaller particles (St � 1) where the collisional barriers
are expected.

A list of the investigated parameters is given in Table 4.1. We vary
the disk parameters, i.e. the stellar distance, radial density profile and
turbulent strength; the collision model parameters, i.e. the bouncing and
fragmentation threshold velocities, and the critical erosion mass ratio (see
Sect. 4.4.1), the velocity distribution type (see Sect. 4.4.2) and clustering
parameters (see Sect. 4.4.3).

Finally, in Sect. 4.5.3, we also briefly show how the inclusion of a velocity
distribution and clustering can cause shorter growth timescales for small
dust grains.

4.5.1 The effect of a velocity PDF on the steady state

The results from the pure velocity PDF parameter study are given in
Fig. 4.6. To understand the outcome of the inclusion of a velocity distri-
bution, we can go back to Fig. 4.2. We now consider collision model SF,
where all collisions occurring above vfrag = 100 cm s−1 lead to fragmenta-
tion, and all below lead to sticking. If only the mean velocity is considered,
particle-pairs colliding at a mean velocity below or above will either result
in always sticking or always fragmentation. This transition is clearly visi-
ble in the leftmost panels of Fig. 4.6, and is characterized by a very steep
density drop at the place of the fragmentation (or bouncing) barrier.

However, if we now consider particle collisions occurring with a velocity
PDF, the barriers are not as clearly defined. In Fig. 4.2, it is clear that even if
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the mean-velocity is well above the fragmentation threshold, some sticking
will occur by the population of low-velocity particles. If we on the other
hand consider a low mean-velocity, fragmentation can still occur because
of the high-velocity tail. This means that the particles will safely reach a
slightly smaller size than before they start to fragment. Summing these
two effects up, the fragmentation barrier is smoothened out. Due to the
high-velocity population, the peak is generally shifted to slightly smaller
sizes, but some particles can also be lucky and only collide in low-velocity
sticking collisions, causing them to grow larger than the average size.

A velocity distribution also strongly affects the bouncing barrier. If we
consider a particle-pair with a mean-velocity ∆v = vb without a velocity
PDF, particles are neither going to grow nor fragment, and a bump will
form where all particles get stuck. When a PDF is considered, even though
the majority of the collisions still lead to growth-neutral bouncing events,
a significant number will also collide in the low-velocity sticking regime,
and a few will collide in the high-velocity fragmenting regime. This means
that the collisions that affect the growth will be predominantly sticking
ones, and the growth can continue, albeit at reduced growth rates, until
the sticking and fragmentation reach an equilibrium.

The position and shape of the smoothened collision barriers are more
difficult to predict than in the case without a PDF. To understand the out-
come better, we can calculate the velocity-integrated collision kernel (see
Eq. 4.15) over a range of mean-velocities, as plotted in Fig. 4.7 for the
case of collision models SF and SBF for both Maxwellian and exponential
PDFs. The shapes of the sticking and fragmentation rates depend on two
factors: Higher mean-velocities lead to generally higher collision rates, but
also that more and more of the collisions result in fragmenting collisions
instead of sticking.

This means that the sticking rate first increases with mean-velocity, un-
til the decreasing number of low-velocity events counteract the generally
higher collision rates. Comparing the two PDFs, we can note that the dif-
ferences for low mean-velocities are relatively small. In the exponential
case, because the low-velocity collisions contribute very little to the total
collision rate, the sticking rate at lower mean-velocities is not significantly
enhanced. At higher mean-velocities, however, the Maxwellian PDF results
in very few sticking collisions compared to the exponential, leading to dis-
crepancies of several orders of magnitude in the collision rate. The expo-
nential PDF also causes fragmentation to occur earlier, as the high-velocity
tail is stronger. The exponential distribution is therefore both beneficial
and detrimental for growth, as its width promotes both more sticking and
fragmentation.

Generally, the fragmentation barrier occurs roughly when the two colli-
sion rates intersect (this is however not entirely true due to the non-zero
growth timescale, meaning that replenishing large particles is a slower
process than fragmenting them). For collision model SF, this intersection
occurs at almost the same mean-velocity for the two PDFs, which is also
close to the classical fragmentation threshold.
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Figure 4.7: The integrated collision kernels for sticking for collision models SF
(green) and SBF (brown) and fragmentation (red), which is valid for
both models, plotted for the two velocity distributions without (solid)
and with (dashed) clustering. The clustering parameters are k1 = 103,
k2 = 0.05, k3 = 0 and k4 = 0, and we assume collisions between
equal-sized particles (see Eq. 4.25).

One important property of a velocity distribution that was identified
by Windmark et al. (2012b) and Garaud et al. (2013) was its capability to
naturally produce large size ratios between the largest grains and the peak
population. This could be important, as larger grains are generally more re-
silient against collisions with smaller grains than with other similar-sized
grains, something which can reduce the fragmentation and even result in
growth of the largest grains through mass transfer. Creating very large
size ratios is however not trivial, as a single fragmenting collision could be
enough to completely pulverize the grain, and it is currently unclear from
the laboratory at which critical mass ratio the fragmentation stops (and
could be anywhere in the range 10-1000 or even higher). In this work, we
ignore the effect of mass transfer, but quantify how much more massive
the luckiest particles can get compared to the average grain by introducing
the lucky mass fraction

Mlucky =
mlucky

mpeak
, (4.26)

where mpeak is the particle mass at the peak of the distribution (in terms
of total mass density), and mlucky is the mass of the largest particles in the
mass bin with enough mass corresponding to at least 1 physical particle.
These values are given in Fig. 4.6 for each simulation. We can here note
that for both distribution types, the bouncing barrier is detrimental to the
formation of large, lucky particles.

The exponential distribution is more capable of creating large mass ra-
tios than the Maxwellian distribution, and low turbulence is more bene-
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ficial than high turbulence. These come from the same effect, which can
again be explained by the collision rates shown in Fig. 4.7, and specifi-
cally how they depend on ∆vrms. Generally, the larger a particle grows,
the higher relative velocities it is going to experience. Since the fragmen-
tation rate increases and the sticking rate decreases with mean velocity, it
gets successively harder for a particle to be involved in many subsequent
low-velocity collisions. If these rates change fast, the sticking probability
decreases quickly, and vice versa. If bouncing is introduced, the growth
growth rate starts to decrease at lower ∆vrms, and the rates intersect earlier,
where the fragmentation rate increases very rapidly, which then affects
Mlucky. Similarly, if the turbulence is stronger, ∆vrms scale more rapidly
with m.

To conclude, we find that the inclusion of a velocity distribution is un-
likely to change the peak mass noticeably. In the case of bouncing, the
velocity distribution will act to overcome the bouncing barrier, but bounc-
ing will still be efficient in preventing large mass ratios from being formed.
Work like Birnstiel et al. (2010b) and Pinilla et al. (2012b) should therefore
not be much affected by the inclusion of a PDF. We also find that large
mass ratios, which are important in a sweep-up scenario, are most likely
to form in icy regions where bouncing is less likely, and they also benefit
from quiescent regions such as dead zones.

4.5.2 The effect of clustering on the steady state

In Fig. 4.8, we show the results of the extensive cluster parameter study us-
ing the exponential velocity distribution. We note that parameter k4 (which
describes the strength of the monodisperse clustering away from the max-
imum stopping time τmax), which we found in Sect. 4.4.3 to be a limiting
factor for the effect of turbulent concentration, is here set to 0 by default, as
this allows us to better disentangle and analyze the other parameters. This
can be imagined as if the clustering was caused by a collection of effects
such as turbulent concentration, zonal flows and streaming instabilities
that span over a wider size-range than turbulent concentration alone.

The general effect of clustering on the steady state can be understood
by considering the collision. Because clustered particles tend to have more
correlated velocity vectors, their relative velocities are generally lower. This
means that the sticking and fragmentation rates are not enhanced equally
by the clustering, but it rather favors the sticking rate, as can be seen in
Fig. 4.7. This causes a shift in the intersection between the sticking and
fragmentation curves, which means that the clustering causes a shift of
the fragmentation barrier towards larger sizes. Because a single fragmen-
tation event can undo a large number of sticking events, and because the
particle growth depends on the full size-distribution of particles, the point
of intersection does not give the complete picture, but is still reasonable
hint of how much the fragmentation barrier gets shifted. Below, we discuss
the effect of each of the parameters individually:
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Figure 4.8: Overview of the steady-state distributions for the exponential PDF,
with a variation of the parameters k1, k2, k3, k4, and Mer. The fiducial
model for each PDF is represented by the solid line, and the vertical
lines in panels k4 represent the point of maximum clustering. For each
distribution, we also give the lucky mass fraction (defined in Eq. 4.26).

• k1 describes the maximal clustering strength, which directly trans-
lates into how much the growth rate is shifted upwards in Fig. 4.7.
Clustering values below 10 affect the steady state relatively little, but
values above that all give rise to noticeable changes. We can here
note that the inclusion of bouncing significantly decreases the effect
of clustering. This occurs because growth-neutral bouncing events
replace sticking at the intermediate velocities, so that the dominant
part of the enhancement from clustering is lost.

• k2 governs which velocities get boosted by the clustering. In this
study, we present three different general cases. For k2 = 0.05, the ben-
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eficial effect of the rate enhancement is the strongest, as clustering
occurs for essentially all velocities in the sticking regime, with very
limited boosting in the fragmentation regime (see Fig. 4.5). When
the range of boosted velocities is more narrow, as with the case of
k2 = 0.25, only the lowest velocities are affected, which also limits the
capability of the clustering. If the clustering is instead wider, as for
k2 = 0.01, the fragmentation rate is also enhanced, which works to
counteract the sticking rate enhancement. We can note that the kink
for the case of SF and k2 = 0.01 occurs due to the shift from complete
fragmentation to erosion, which by default is set to Mer = 100.

• k3 determines how much particles of different stopping times will
cluster. If the distribution is wide, clustering can enhance the rates of
particles of very different stopping times. The beneficial effect of this
decreases the more the width grows, as it is the particles around the
mass peak that dominate the growth (note that the surface density
is given by a very wide log-scale, so the peak is more prominent
than it appears in the plots). We can note that even for a very narrow
clustering width (in the case of k3 = 10, only particles of mass ratios
. 5 are boosted notably), the enhanced growth is significant. This
shows how extremely important the collisions between equal-sized
particles are for particle growth in general.

• k4 determines at what particle stopping times that clustering occurs.
For large values of k4, only particles exactly around τmax will clus-
ter, and small values allows clustering everywhere. We can here see
one of the limiting factors of turbulent concentration, as the numer-
ical simulations of Pan et al. (2011) point towards a relatively nar-
row regime of clustering. In the case of different radial distances or
bouncing/fragmentation thresholds, the clustering can take place in
a region entirely away from where non-sticking collisions are impor-
tant, and will then only work to speed up the growth rate.

• We have also investigated the effect of Mer, the critical mass ratio
above which fragmentation turns into erosion. This is a very impor-
tant property, as it affects the balance between growth and fragmen-
tation by limiting the detrimental effects of a fragmenting collision.
For large values, fragmenting collisions will always be severe, which
further works to prohibit the particles from growing large. For small
values of Mer, the largest particles can escape from being totally de-
stroyed by the particles of the peak population, which allows them
to continue their growth at less risk of being completely destroyed.

Finally, we can note that the inclusion of clustering has caused Mlucky to
shift to much larger values compared to the case without clustering, and it
is here possible to reach mass ratios of 100− 1000 even when bouncing is
included, as long as the high-velocity collisions are not too much enhanced.
This is because the clustering shifts the point of intersection in Fig. 4.7 to
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Figure 4.9: The top panel shows the integrated collision kernel for a pure sticking
scenario with parameters k1 = 0, 102, 104, k2 = 0.01, 0.05, 0.25, k3,4 = 0.
The middle panel gives the peak size for parameters k1 = 0, 101, 102, 103,
k2,3,4 = 0 at R = 10 AU. The bottom panel gives the drift timescale (red)
compared to the numerical (solid) and semi-analytical monodisperse
(dashed) growth timescales.

larger relative velocities, where the increase of the fragmentation rate with
∆vrms is lowered.

4.5.3 Growth timescale

Besides the effect that clustering has on the collisional barriers, it also
affects the growth rate. This is interesting, as the enhanced growth rates
could potentially become shorter than the drift timescale, so that the radial
drift could be avoided. Clustering would here have the same role as the
suggested role of porosity by Okuzumi et al. (2012). As clustering occurs
primarily for particles of similar sizes, these enhanced growth rates would
be relevant mostly for normal incremental growth between equal-sizes,
and not sweep-up, so we here consider a case with pure coagulation to test
our theories. This could correspond to growth in the outer regions where
ices might push the fragmentation barrier to sufficiently high velocities so
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that fragmentation can be avoided completely, as proposed by Wada et al.
(2009). As radial drift is the strongest around St = 1, and turbulent con-
centration appears mostly for St << 1, the clustering of importance here
would have to come primarily from zonal flows or streaming instabilities.

Implementing the clustering in a 1D code is beyond the scope of this
work, and in this section, we focus on the comparison of the growth and
drift timescales. The radial drift velocity of particles is given by

∂R
∂t

= − 2
St + St−1 ηrvk (4.27)

where vk = rΩ is the Kepler velocity and

2ηr = −
1

rΩ2ρg

∂P
∂r

(4.28)

is the ratio of the pressure gradient force to the radial stellar gravity, ρg is
the gas density and P is the pressure (Adachi et al. 1976; Weidenschilling
1977a; Nakagawa et al. 1986). The drift timescale can then be calculated
from tdrift = R (∂R/∂t)−1.

The growth timescale can be approximated by considering monodis-
perse growth, where the particle distribution is represented by a delta-
function. The growth rate is then given by

dm
dt

= g · ρdσ∆v , (4.29)

where m is the particle mass, ρd = Σd/(
√

2πhd) is the dust density, σ =

4πa2 the collisional cross section and ∆v the relative velocity. We here
take g to be the clustering factor assuming that all velocities are boosted
equally by the clustering, meaning that g = 1 + k1. Taking into account
that dm = 4πa2ξda, we get

da
dt

=
Σd√
2πhd

∆v
ξ

, (4.30)

where ξ is the solid density and, following Birnstiel et al. (2010a), we take
the dust scale-height to be

hd = Hg ·min

(
1,

√
α

min(St, 0.5)(1 + St2)

)
, (4.31)

which is valid for the dust near the midplane, which is the region we
are interested in. The fact that hd decreases with St also means that the
growth timescale does not increase as much with size, causing even very
large particles to grow relatively quickly. The growth timescale can then
finally be calculated from tgrowth = a (da/dt)−1.

In Fig. 4.9, we have investigated the growth and drift of particles at
R = 10 AU for α = 10−3. Like Okuzumi et al. (2012), we consider a pure
sticking scenario equivalent to a fragmentation velocity vf & 50 m s−1
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considering that the highest relative velocity mean in this simulation is
∆vrms = 30 m s−1.

In the top panel, we plot the ratio between the integrated collision ker-
nel and the kernel for the mean-velocity without clumping for a number
of different models. We can note that contrary to the steady state scenario
of the previous sections, in a pure sticking scenario, the growth rate ben-
efits significantly from the enhancement of the higher velocities. At large
mean-velocities, the low-velocity population contributes very little to the
integrated kernel, and if there is no enhancement of the higher velocities,
the kernel enhancement decreases or vanishes completely. In the middle
panel, we plot the evolution of the peak position for four models of vary-
ing clustering strength during 105 yrs, assuming k2,3,4 = 0 to clearly show
the effect of the clumping.

In the bottom panel, we plot the radial drift timescale versus the growth
timescales, both measured numerically in the simulations and from the
simple monodisperse model presented in this section. For the homoge-
neous case, the two timescales are very similar, and any type of growth
will therefore be accompanied with a significant drift. However, since the
timescale changes linearly with the clustering, even a modest clustering
of 100 will lead to a greatly enhanced growth timescale that could well be
enough to cause growth through the drift barrier. This scenario is however
also so highly dependent on the velocities and size-scale that clustering
occur, and will need to be studied further.

4.6 discussion and conclusions

We have performed numerical coagulation simulations to further under-
stand the role of velocity distributions and particle clustering for the evo-
lution of dust in protoplanetary disks. We have studied the role of clus-
tering both for its effects on the collisional growth barriers and how it
affects the steady state size distribution, as well as for its effects on the
growth timescale, which is important for the understanding of the radial
drift barrier. Clustering is caused by a number of effects such as turbulent
concentration, zonal flows and streaming instabilities, but we have here fo-
cused mostly on the former. Due to numerical limitations, hydrodynamic
studies of turbulent concentration have yet to resolve the scales that are
relevant for coagulation, and the clustering between particles of different
aerodynamic properties are just now starting to get mapped (Hubbard
2013). Because of these uncertainties, we have made both a case study and
a more general parameter study.

For the role of velocity distributions, we find results that agree with the
previous work of Windmark et al. (2012b) and Garaud et al. (2013). Be-
cause the relative velocities between particles are no longer represented by
only a mean, a given particle pair now has the possibility to experience
all types of collisional outcomes like sticking, bouncing or fragmentation,
which tends to smooth out the collisional barriers. Because bouncing col-
lisions lead to neither mass loss or gain, a velocity distribution will allow
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the bouncing barrier introduced by Zsom et al. (2010) to be overcome, by
making it possible for particles to be involved in many subsequent low-
velocity collisions. In this study, we also investigated the effect of both a
Maxwellian and an exponential velocity distribution, and found that the
broader velocity distribution of the latter allows for even more extended
tails in the steady state size distribution.

We have found that in the inner disk, turbulent clustering is the most
efficient at just the sizes where the growth-hindering bouncing and frag-
mentation barriers occur. Clustering is important for the steady state, as
it causes the clumped particle to have low relative velocities (in our code
modeled as the clumping occurring mainly at these low velocities), which
changes the balance between sticking and fragmentation. There are many
factors that are important for the clustering effect on coagulation, and we
have modeled it as an exponential that decreases with relative velocity,
particle size ratio and distance from the point of maximum clustering. If
the clumping is significant, above ∼ 100, the fragmentation threshold can
be pushed to one or two orders of magnitude of larger sizes. This type
of shift could be relevant for the formation of boulders large enough to
initiate streaming instabilities. We have also found that clustering leads to
generally wider tails of the size distribution towards larger particle sizes.
These large size ratios between the largest and the mean particles could
result in sweep-up growth and planetesimal formation, as introduced by
Windmark et al. (2012a).

Clustering also enhances the particle growth rate. Through a simple ar-
gument of timescales, we have found that even a low amount of clustering
could work to overcome the radial drift barrier, much in the same was as
the role of porosity studied by Okuzumi et al. (2012). We have yet to study
the exact effects of this, but it will be the subject of later work.

On its own, velocity distributions would have little effect on previous
coagulation studies that have predicted opacities and been the basis for
comparison with observations. With clustering, however, we predict that
both its effect on the steady state and on the radial drift could have signif-
icant effects on the predictions.
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G R O W T H B R E A K T H R O U G H AT T H E I N N E R E D G E O F
D E A D Z O N E S

Adapted from Dra̧żkowska, Windmark, Dullemond, A&A (2013), vol 556, A371

abstract

During the dust coagulation phase in the protoplanetary disk, the interac-
tion between the dust and the gas gives rise to both collision barriers and
rapid inward drift. Turbulence is a double-edged sword, as it is required
to explain the observed gas accretion rates, but it also promotes fragmen-
tation by being the strongest contributor to relative velocities between the
dust particles. One solution to this problem might be the concept of dead
zones, where the magnetorotational instability (MRI) turbulence is locally
suppressed. In this chapter, we use a Monte Carlo code capable of mod-
eling dust growth in both the radial and vertical directions, and study
the effect of the dead zone that is thought to form outside of the snow
line. Due to the sharp radial variation in the turbulent strength, a pressure
bump is also formed, and we find that the combination of the two benefits
planetesimal formation in multiple ways. Firstly, the dead zone is a quies-
cent region where the dust grains grow larger than they normally would
before they start to bounce or fragment. Secondly, these "privileged" grains
can drift into regions where they are so much more massive than the local
grains that they become resilient towards the destructive impacts, and may
instead grow large by sweep-up coagulation.

5.1 introduction

The collisional growth barriers are caused by the grains colliding with im-
pact energies sufficiently high to cause bouncing or fragmentation (Blum
& Münch 1993; Güttler et al. 2010). In Chapter 2, we investigated the col-
lision physics aspect of the barrier, and showed the capability for growth
to occur via mass transfer provided that the mass ratio between the grains
to occur. Even the updated collision model does little to shift the fragmen-
tation barrier for similar-sized particles, however, but it is still possible for
the barrier to be affected by a change in the local disk conditions.

An often quoted possible region for grain growth is the dead zone. MRI
is believed to be the main source of turbulence in the disk, but it requires
a sufficiently high ionization degree to function. If the ionization degree
would be reduced, the coupling between the gas and the magnetic field is
also weakened, and the MRI gets suppressed. Because small dust grains

1 See page ix for details on authorship.
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are efficient in capturing ionized gas, the evolution of the dust size dis-
tribution is therefore consequently linked to the turbulent strength (Sano
et al. 2000; Ilgner & Nelson 2006). The gas ionization degree is also driven
primarily by cosmic rays and X-rays, which means that the disk midplane
might be shielded from most of the ionization in the first place. This might
allow for dead zones to form near the midplane, so that only the upper
disk layers are active (Okuzumi & Hirose 2011; Dzyurkevich et al. 2013).

Another possible mechanism for MRI dampening relies on the existence
of the snow line, outside of which the solid density is believed to increase
drastically due to the freeze-out of water (Hayashi 1981; Kretke & Lin
2007). Because the total available dust surface area increases, the gas ion-
ization degree decreases. In such a dead zone, because the turbulence is
not capable of strongly exciting the dust velocities, the dust grains are
likely to grow much larger before fragmentation kicks in.

However, even if dead zones allowed for the collisional barriers to be
overcome, the radial drift barrier introduced by Whipple (1972b) and Wei-
denschilling (1977a) would still be problematic. The drift is caused by the
fact that the pressure supported gas rotates at slightly sub-Keplerian veloc-
ities, which gives rise to a constant gas drag on the dust grains that results
in a rapid inward drift. If the grains are sufficiently large and decoupled
from the gas (St� 1), the drift would however be sufficiently slow for the
particle to survive. In its essence, the drift barrier is therefore an argument
on timescales. In most of the disk, the drift timescale is so much shorter
than the growth timescale for St ∼ 1 that all proto-planetesimals would be
lost in the star. If the relative velocities are lower inside a dead zone, the
problem of the drift barrier would only worsen.

A possible way around the drift barrier could be for the drift to be
halted long enough for the particles to grow to sizes St � 1. One such
promising mechanism is locally positive pressure gradients, or pressure
bumps (Whipple 1972a; Barge & Sommeria 1995; Klahr & Henning 1997).
If the bumps are strong enough to counteract the turbulent diffusion, they
would stop the drift for as long as they existed. By artificially including
a large number of static pressure bumps in a dust evolution code, Pinilla
et al. (2012b) showed that such bumps are an efficient way of keeping
the global dust densities high for prolonged periods of time, provided
that they are sufficiently long-lived. It does however seem to be clear that
pressure bumps are capable of forming, at least in the azimuthal direction,
as shown by van der Marel et al. (2013) in a recent observational study of
the transition disk around Oph IRS 48.

It is however still not known exactly how these pressure bumps, radial
or azimuthal, would form. One suggestion is as a result of MHD effects
(Johansen et al. 2009; Dzyurkevich et al. 2010), but it is uncertain whether
these bumps would be sufficiently long-lived. Another possibility could
be gap clearing due to one or several giant planets, which could explain
the shape of the observed transition disks (Pinilla et al. 2012a), but does
little to explain how the planet was formed in the first place. Kretke & Lin
(2007) suggested that the dead zone at the snow line could also give rise to
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a pressure bump at the inner edge. Because turbulence is the main source
of viscosity in the disk, a rapid change due to a dead zone will cause a
reduction in the accretion efficiency, and the creation of a pressure bump.

In this chapter, we investigate the effect that the combination of a dead
zone and a pressure bump has on the dust growth, particularly with
respect to the sweep-up growth and the formation of the first planetesi-
mal seeds. In the two previous chapters, we discussed the mechanism of
seed formation where velocity distributions allow for the formation of a
few lucky large particles. However, due to the scarcity of laboratory data,
there are still no experiments that can directly confirm the the structure
of lucky grains, or the critical mass ratio for when erosive collisions turn
into growth-positive mass transfer events. If the critical mass ratio turned
out to be too high (> 100− 1000), the lucky particle scenario would have
trouble forming large enough seeds.

We therefore introduce a new possible seed forming mechanism by ra-
dial mixing of "privileged" grains from the dead zone and into the active
regions. The key to this scenario is considering a non-local coagulation sce-
nario, and in this chapter, we utilize a Monte Carlo code which is capable
of following both the radial and vertical dimensions. In Sect. 5.2, we briefly
discuss the Monte Carlo code that was used for the simulations. Sect. 5.3
discusses dead zones and pressure bumps in more detail, and Sect. 5.5
shows results from the simulations and explains how the two effects can
result in growth breakthrough. Finally, in Sect 5.6, we discuss some caveats
and future prospects.

5.2 a brief overview of monte carlo dust evolution

We begin with a brief overview of the fundamental concept of dust evolu-
tion with the Monte Carlo method, in order to understand the results ob-
tained from code developed by Joanna Dra̧żkowska. For a more complete
description, see Zsom & Dullemond (2008) or Ormel & Spaans (2008).

The principle idea of the Monte Carlo approach is to follow the evolu-
tion of a small subset of the total dust population, and to use these few
particles to understand what happens to the total population. A small
number of representative particles are chosen, where each such particle
is taken to represent a swarm of particles with identical properties. If the
number of representative particles is much smaller than the number of
non-representative particles, only the collisions between the representa-
tive and the particles in the swarms have to be considered. In this ap-
proach, each representative particle i represents a swarm of Ni identical
particles. We assume that each swarm has a certain total mass Mswarm that
remains constant with time, thus allowing the number of physical particles
to change.

At each time step, two collision partners are selected by random num-
bers. For each collision, a representative particle i and a non-representative
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particle k are selected as collision partners (allowing also for i = k). The
probability for a collision in a cell of volume V is given by

rik =
NkKik

V
, (5.1)

where Kik is the collision kernel, defined as

Kik = ∆vikσik , (5.2)

where ∆vik is the relative velocity and σik is the collisional cross-section.
The collision rate for particle i is then

ri = ∑
k

rik , (5.3)

and the total collision rate among all particle pairs is

r = ∑
i

ri . (5.4)

Firstly, it is decided which representative particle that is involved in the
collision. The probability for particle i to be involved in the collision is

Pi =
ri

r
. (5.5)

The probability for particle i to collide with the non-representative particle
k then becomes

Pk‖i =
rik

ri
. (5.6)

If t0 is the current time, the collision will occur at a time t0 + τ, where
Gillespie (1975) determined the time step by sampling from an exponential
distribution:

τ = −1
r

log(rand) , (5.7)

where rand is a random number drawn from a uniform distribution be-
tween 0 and 1.

The outcome of the collision is determined by a collision model in a
similar fashion to the Smoluchowski case. In the case of e. g. a fragment-
ing collision, the representative particle is broken up into a power-law
of fragments. The new representative particle i is picked randomly from
the mass-weighted fragment distribution, and the properties of the swarm
corresponding to particle i are also updated. Because the collision always
occurs with a non-representative particle k, its new properties are not re-
flected in the swarm.

To ensure that the resulting dust distribution is not artificially acceler-
ated or slowed down, a sufficient number of representative particles is
needed for each box to resolve the size distribution, usually between a few
100-1000. In the code developed by Drazkowska et al. (2013), the vertical
and radial dimensions were included by stacking a number of boxes on
top of each other in both directions, allowing the particles to move be-
tween the boxes. In order to accurately reproduce the analytical kernels
in all boxes, an adaptive grid scheme was also included to make sure for
each time step that a sufficient number of particles were included in each
individual box.
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Figure 5.1: The radial variation in a number of different parameters according to
the snow line model by Kretke & Lin (2007). The panels show the: a)
α-parameter, b) gas surface density, c) gas pressure and the Taylor ex-
pansion around the location of the pressure bump, d) the gas pressure
gradient. The highlighted region corresponds to the region described
and investigated in Sect. 5.5.

5.3 dead zone and pressure bump formation at the snow

line

In this chapter, we utilize an analytical prediction of a single pressure
bump occurring at the snow line, based on the work of Kretke & Lin (2007).
In this model, the freeze-out of water outside of the snow line causes a
damping of the MRI turbulence. Because the gas ionization fraction de-
creases due to an increased total surface density of solids, the coupling
between the gas and the magnetic field is weakened, and consequentially
also the strength of the MRI. Because the MRI is the main driver of the
viscosity, the accretion rate changes suddenly across the snow line, which
causes a pileup of gas. In the model of Kretke & Lin (2007), the change
is made directly to the α parameter, which affects the gas surface density
steady and pressure gradient as shown in Fig. 5.1.

In this model the degree of ionization is calculated under the assump-
tion that all particles are µm-sized, meaning that the gas ionization rate
is simply proportional to the dust-to-gas ratio. However, because of co-
agulation, the available dust surface area would not be constant, and the
ionization rate and MRI strength would increase as the particles grow. Be-
cause of bouncing and fragmentation, there will always be a significant
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fraction of small particles present in the disk, and we can consider the
model to be a good approximation for this study.

In Eq. 1.41, we found that the radial drift of a dust grain depends on the
pressure gradient through

vr = −
1

St + St−1 ·
r

v2
k

1
ρg

dP
dr

, (5.8)

where r is the stellar distance, vk is the Keplerian velocity, ρg is the gas den-
sity and P = ρgc2

s is the pressure. If a pressure bump forms, it means that
there will be a region in the disk where the pressure gradient is positive,
so that particles in that region drift outwards until the pressure gradient
switches sign again. The result is that the pressure bump region will col-
lect more and more dust as it comes drifting inwards. The only way for
the grain to escape the bump is if it is small enough for the turbulence to
diffuse it through, or if the pressure bump disappears.

The significant decrease of α in the dead zone also has a significant ef-
fect on the local dust evolution. As we saw in Sect. 1.4.2, turbulence is
normally the dominant source of high relative velocities between similar-
sized particles, and it is significant also for different-sized particles. We
have previously seen that ∆v ∝ cs

√
α, which means that if α decreases by

three orders of magnitude, the relative velocity contribution from turbu-
lence would decrease by a factor of 30. In the absence of turbulence, the
growth can therefore proceed further (but slower) before fragmentation
finally sets in. As we shall see, even if dead zones can not form planetesi-
mals directly due to the still present collisional barriers and the drift bar-
riers, this effect will still turn out to be relevant for the onset of sweep-up
growth.

5.4 the disk and collision models

We consider a disk with a steady state surface density profile derived by
Kretke & Lin (2007)

Σg =
Ṁ

3πα0csh
− ΣA

αMRI

α0
(5.9)

where Ṁ = 10−9 M� yr−1 is the mass accretion rate, α0 = 10−6 is the
turbulent strength in the absence of MRI, αMRI is the contribution from the
MRI turbulence, and ΣA is the surface density of the active surface-layer.
The total disk mass between 0.1 and 100 AU is then 0.01M�. We focus this
study on the region around the pressure bump, between r = 3− 5.5 AU,
as highlighted in Fig. 5.1. At 3 AU, the disk has a gas surface density
Σg = 65 g cm−3 and a temperature T = 140 K. We assume a stationary
gas disk, because we due to the computational expense of the simulations
are limited to the first 3× 104 yrs, which is much shorter than the typical
disk evolution timescale.

We assume an initial dust to gas ratio of 0.01, and distribute the dust
mass into monomers of size a0 = 1 µm. The internal density of the par-
ticles is set to ρp = 1.6 g cm−3. For the simulations presented in this
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study, we use over a half a million (exactly 2
19) representative particles

and an adaptive grid resolution of 64 radial and 32 vertical zones. This
gives 256 representative particles per cell. Each swarm represents a total
mass of ∼1022 g, corresponding to a maximum representative particle size
of roughly 1010 cm that is obtainable without breaking the requirement
of having the the representative particle number much smaller than the
number of physical particles in the corresponding swarm.

For the collision model prescription, we use two simplified versions of
the collision scheme discussed in Chapter 2. In both models, we determine
the sticking probability as a function of relative velocity:

ps(∆v) =


1 ∆v < vs

0 if ∆v > vb

1− k otherwise ,

(5.10)

where k = log(1 + ∆v − vs)/ log(1 + vb − vs) describes the sticking to
bouncing transition region described by Weidling et al. (2012). The frag-
mentation probability is determined by a step function:

pf(∆v) =

{
0 if ∆v < vf

1 ∆v ≥ vf ,
(5.11)

and we let vs = 3 cm s−1, vb = 60 cm s−1, and vf = 80 cm s−1 be the stick-
ing, bouncing and fragmentation threshold velocities. In model A, during
a fragmenting event, the mass of both particles is distributed after the
power-law n(m) ∝ m−9/8 (Blum & Münch 1993).

In model B, we also include the mass transfer effect, which occurs when
the particle mass ratio is sufficiently large so that only the smaller of the
particles is fragmented. We take mcrit = 1000, where mcrit = m1/m2 ≥ 1.
We take a mass transfer efficiency of 0.8 ·m2, meaning that the more mas-
sive particle gains 80% of the mass of the smaller particle. It can here be
noted that although we in Chapter 2 found the threshold between ero-
sion and mass transfer to be very important for the growth to planetesi-
mal sizes, we are here mostly concerned at the point where sweep-up is
initiated. We can can therefore safely ignore the erosion, which is more
relevant for the later sweep-up stages.

5.5 sweep-up growth at the inner edge of dead zones

In previous chapters, we have shown that the presence of a collisional
growth barrier such as the bouncing or fragmentation barrier can be bene-
ficial for the growth of planetesimals. If only a few seed particles manage
to form and break through the barriers, they can initiate sweep-up via
mass transfer collisions and continue to grow to kilometer-sizes. We have
previously shown that velocity distributions can create size ratios of a few
100 between the luckiest particles and the particles in the peak, but the
exact critical mass ratio has yet to be determined in the laboratory. In this
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Figure 5.2: Sketch of the proposed growth breakthrough mechanism at the inner
edge of a dead zone. The different collision regimes are shifted in size
due to the change in α with radius. Large particles can form in the
dead zone, and as they drift inwards, they can initiate their sweep-up
growth.

Figure 5.3: The collision outcome field at the location of the pressure bump and
inside the dead zone. Green marks where the largest particle will grow
in a collision, yellow is where the outcome is neutral, and red marks
particle fragmentation, "S" stands for sticking, "B" bouncing, "F" frag-
mentation, and "MT" mass transfer.

section, we will show that large size ratios of >1000 can also be obtained by
considering radial mixing of the "privileged" particles in the dead zones.

Fig. 5.2 shows a sketch of the principle idea of our model. In the MRI
active region in the inner disk, the turbulence is stronger than in the dead
zone in the outer disk, causing the growth to halt at significantly smaller
particle sizes. The radial drift, which increases with particle growth, trans-
ports the largest privileged particles to the MRI active region. In doing
so, it also transfers them into another collisional regime, where they be-
come seeds that can continue to grow by the sweep-up of the small grains
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trapped below the bouncing barrier. At the same time, the pressure bump
also prevents the seeds from becoming lost in the star due to drift.

In Fig. 5.3, we give a map of the collision outcomes for collision model B
in the midplane at both the location of the pressure bump at 3.23 AU and
in the dead zone at 3.6 AU. We can here note the actual differences that we
sketched out in the previous figure. The significantly lower turbulence in
the dead zone compared to the pressure bump (α = 10−6 and α = 10−3),
means that the particle growth can continue to more than one order of
magnitude larger sizes before it is halted by the bouncing barrier. If we
ignored radial drift and allowed the growth to proceed locally, the parti-
cles would grow to ∼0.01 cm and ∼0.5 cm. However, the situation changes
drastically when drift is included and particles from different growth re-
gions are allowed to mix.

The result of the dust evolution simulation using collision model B is
shown in Fig. 5.4, where we plot the vertically integrated dust density at
six snapshots between 500 and 30, 000 yrs (the simulation times are more
limited compared to the Smoluchowski simulations due to the increased
computational expense of the Monte Carlo approach). The dust growth
proceeds the fastest in the inner disk, where the relative velocity and the
dust density are the highest. After around 1, 000 yrs, the particles in the in-
ner disk reach the bouncing barrier and stop growing. As time progresses,
particles further out also reach the bouncing barrier, and after roughly
20, 000 yrs, the majority of the dust is kept small by the bouncing barrier,
and only evolve by slowly drifting inwards.

In Fig. 5.4, we also plot the positions of three selected swarms. All three
swarms have identical initial locations and masses, and two of them be-
come seeds for sweep-up, while the third, representing the average parti-
cle, does not. As shown in Fig. 5.3, the dead zone allows for the formation
of the largest particles, because it is there that the relative velocities are the
lowest. Because of the transition regime between sticking and bouncing,
however, only a small number of particles manage to grow to the largest
sizes before they drift too far inwards. The few particles that do man-
age, however, find themselves in a region with a higher turbulence, and
consequently also higher relative velocities. At this stage, some particles
fragment due to similar-sized collisions, but some manage to avoid being
disrupted. In the end, the survivors find themselves in a region where
most of the particles are significantly smaller, which allows them to grow
larger via sweep-up. The selected swarms reach the pressure bump after
27, 500 yrs, and their drift halts. After 30, 000 years, the two successful
seeds have managed to grow to meter-sizes.

A limiting factor of sweep-up growth is when the total number of large
particles becomes too high, as this leads to too many fragmenting colli-
sions that counteract the sweep-up. If the number of large particles is lim-
ited, however, mass transfer collisions will dominate, and the growth can
continue. In our simulations, we find that the inclusion of a smooth stick-
ing/bouncing transition regime is a natural way to create such a limited
number of seed particles.
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Figure 5.4: The radial variation in the vertically integrated dust density at dif-
ferent time steps using collision model B. The solid line shows the
particle size corresponding to St = 1, and the dashed line shows the
approximate position of the bouncing barrier. The vertical dotted line
shows the location of the pressure bump. The symbols mark a few
selected representative particles that we include to illustrate the dust
evolution.

In Fig. 5.5, we present the evolution of the spatially integrated size-
distribution for model B, and Fig. 5.6 shows the evolution of the median
and maximum radius of the dust particles for both collision models. Ini-
tially, both of the models evolve exactly the same, and the median and
maximum particle sizes increase gradually from µm- to mm-sizes. After
about 23, 000 yrs, the largest particles in model A halt their growth at a
size of 0.7 cm when they reach bouncing barrier. The median size contin-
ues to grow, because all particles have yet to reach the bouncing regime.
In model B, however, the first seeds form and drift inward and initiate
the sweep-up, causing a sudden increase in the largest particle sizes up to
meter-sizes.

It is also interesting to note the two spikes appearing in the maximum
grain size after 23, 000 yrs. These represent the formation of the first seed
particles that are unlucky enough to fragment with similar-sized parti-
cles before they have grown to large-enough sizes to safely continue their
sweep-up. It is also clear from Fig. 5.6 that the sweep-up process is so
far only local and represent a small fraction of the total dust mass, as the
median particle size remains unchanged between models A and B.
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Figure 5.5: The vertically and radially integrated surface density evolution for
collision model B.
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Figure 5.6: The size evolution of the largest (solid) and the median (dashed) sizes
for collision models A and B.

5.6 discussion and conclusions

We have found that a sharp change in the radial structure of a protoplan-
etary disk can trigger the sweep-up scenario suggested in Chapter 2. We
studied the dust growth in the region around the snow line in a low-mass
protoplanetary disk, and modeled the disk following the prescription of
Kretke & Lin (2007). In this model, the turbulent viscosity changes around
the snow line due to a drop in the gas ionization fraction, leading to the
formation of a low turbulence region as well as a pressure bump. Due to
radial mixing, the privileged particles in the dead zone become seeds that
halt their growth at the pressure bump, where they experienced increased
growth rates towards planetesimal sizes due to the local enhancement of
solids.

Our model includes a number of simplifications. We did not include the
gas disk evolution, which is not consistent with the snow line model we
implemented, as the gas ionization rate and thus the turbulence strength
is dependent on the gas and dust properties. When the dust growth is
included, the total dust surface area changes, which would change the
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turbulent strength. We focused this study on the disk region around the
snow line, where the temperature allows for existence of solid water ice.
However, due to the lack of laboratory data both for the ice collision prop-
erties and its evaporation, condensation or sintering behavior (Kuroiwa &
Sirono 2011; Sirono 2011), we only considered the silicate grain properties.
If ices, which are capable of growing larger than silicates, are included, the
region could be even more favorable for seed production provided that the
ices can survive the sintering and evaporation.

The planetesimal formation model we propose relies on the existence of
a growth barrier, such as the bouncing barrier introduced by Zsom et al.
(2010). The robustness of the barrier has recently been put into question as
the sticking and bouncing efficiency have been shown to exhibit a strong
dependence on the internal structure of colliding aggregates as well as
the impact parameter (Wada et al. 2011; Kothe et al. 2013a). Even though
the results on the bouncing behavior is inconclusive, we argue that frag-
mentation could also work in a similar fashion for the sweep-up scenario.
In a case where fragmentation acts as the main growth barrier, the main
dust population would be able to grow a bit further, but might still be
swept up by the drifting seeds. As the mass transfer experiments have so
far been performed over a limited parameter space only, this possibility
would need to be verified experimentally.

The snow line region has been shown to be favorable for planetesimal
formation also in previous studies (Schlaufman et al. 2009). Recent work
by Martin & Livio (2013) also argue that the snow line region is likely to
be the location of asteroid belts also in debris disks, based on the corre-
lation between the snow line location and the observed warm dust belts.
It is however worth noting that the planetesimal formation mechanism in-
troduced in this work can take place also at locations other than the snow
line. It was also found by Dzyurkevich et al. (2013) that the steep variation
in the turbulence strength and pressure bump formation discussed in this
work can occur also beyond the metal freeze-out line, meaning the location
beyond where gas phase metal atoms thermally adsorb on dust particles.
The mechanism discussed in this work also has the potential to result in
a narrow planetesimal ring similar to the one suggested by Hansen (2009)
to explain the formation and mass distribution of the terrestrial planets in
the Solar System.

We find that the thresholds and structure of the protoplanetary disk,
such as the snow line and dead zones, could have a great impact on the
emergence and evolution of planetary systems. Even outside of a best-case
scenario, in a low-mass protoplanetary disk composed of silicates prone
to bouncing and fragmentation, some particular locations could allow for
their formation even if the global planetesimal formation is difficult.
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P I L E - U P O F P L A N E T E S I M A L S I N T H E I N N E R
P R O T O P L A N E TA RY D I S K

Adapted from Windmark, Okuzumi, Drazkowska, A&A (in prep.)1

abstract

In the Solar System, the terrestrial planets have a peculiar mass-distribution
that hints towards a primordial ring of planetesimals between 0.7 and 1

AU. There are also indications that many exoplanetary systems with plan-
ets at tight orbits, for example the Kepler-11 system, were formed in-situ
rather than being a result of planetary migration. In this chapter, we ar-
gue that the observed planetary system properties could be a result of the
very first stages of formation, when dust coagulates into planetesimals. To
investigate this possibility, we implement a collision model that includes
the possibility of sweep-up and utilizes impact velocity distributions into
a 1D dust-evolution code, and study the dust growth in the first 100,000

years. Because of rapid coagulation and sweep-up in the inner protoplan-
etary disk, and the increasing decoupling of the planetesimal seeds from
the gas as they drift towards the star, we find that planetesimals can form
and tend to preferentially pile up in the region between 0.1-3 AU. We find
that a sizable population of planetesimals can form in only a few thousand
years, and that this population will increase in size and number as more
dust drifts inwards from the outer parts of the disk. Outside of the critical
pile-up region, however, we find that the strong drift prevents planetesi-
mals from ever forming. It might be that the collisional growth barriers
and the radial drift barrier pose such strong limitations on the planetes-
imal formation that it might have to be considered a local rather than a
global feature in the protoplanetary disk.

6.1 introduction

Due to the existence of the dust growth barriers, such as the radial drift
barrier (Whipple 1972b; Weidenschilling 1977a; Nakagawa et al. 1986), the
collisional barriers due to fragmentation and/or bouncing (Blum & Münch
1993; Zsom et al. 2010), and the charge barrier (Okuzumi et al. 2011a,b),
it is currently unknown how growth proceeds to the kilometer-sized plan-
etesimals where gravity can start to aid in the accretion. Due to these
uncertainties, planet population synthesis models (e.g Ida & Lin 2004 and
Mordasini et al. 2009) usually take the initial planetesimal distribution as
a free parameter, only weakly constrained by observations from the Solar

1 See page ix for details on authorship.
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System. One such constraint can be obtained from the size-distribution of
the present day asteroid belt and its collision history (Bottke et al. 2005).
Another hint can be seen in the mass distribution of the terrestrial planets,
where Mercury and Mars are significantly less massive than the Earth and
Venus. Because the masses of Mercury and Mars (∼ 0.1ME) are compara-
ble to the theoretically predicted isolation mass, they have been suggested
to be surviving protoplanets (Kokubo & Ida 2000; Kokubo et al. 2006), and
radioactive dating supports this scenario for Mars (Dauphas & Pourmand
2011).

The protoplanetary growth is believed to come from giant impacts from
planetesimals and protoplanets after the dispersal of the gas disk, which
is the common explanation for the formation of Earth and Venus. So, as-
suming that Mercury and Mars are surviving protoplanets, why did they
not experience these giant impacts? One plausible explanation is that the
planetesimals/protoplanets were initially confined within a narrow ring
between 0.7 and 1.0 AU (Hansen 2009). In this scenario, Mercury and
Mars were protoplanets initially located at the inner/outer edges of the
ring, which were scattered away gravitationally, and hence survived.

The remaining problem is how to make such a narrow planetesimal
ring. Walsh et al. (2011) suggested in the so-called Grand Tack model that
Jupiter shepherded the planetesimals inwards to 1 AU during its own
migration from 3.5 to 1.5 AU, before it again migrated outwards due to
a 3:2 mean motion resonance with Saturn. How the inner truncation at
0.7 AU was formed is however unclear.

Another interesting recent discovery are the close-in, tightly packed ex-
oplanetary systems like Kepler-11 (Lissauer et al. 2011; Borucki et al. 2011)
and Kepler-33 (Lissauer et al. 2012). They consist of a number of planets
with sizes between Earth’s and Neptune’s, all with orbits within a few
times that of Mercury. These systems, and the general existence of hot
super-Earths, Neptunes and Jupiters, have previously been explained by
migration or planet-planet scattering followed by tidal circularization (Na-
gasawa & Ida 2011). However, these mechanisms fail to explain the low
dispersion of inclinations.

It would perhaps be most natural to think of the planetesimal ring for-
mation or close-in planets as a direct consequence of planetesimal forma-
tion rather than as a result of external perturbation. A lot of progress has
been made on the simulation and understanding of dust coagulation in
recent years. There are now suggested scenarios for overcoming the col-
lisional growth barriers, either by stickier, highly porous ices (Okuzumi
et al. 2012; Kataoka et al. 2013) or sweep-up (Windmark et al. 2012a,b; Ga-
raud et al. 2013; Drazkowska et al. 2013). There are also suggestions for
how the radial drift barrier can be overcome; either by rapid coagulation
(Okuzumi et al. 2012), pressure bumps (Pinilla et al. 2012b) or by pile-up
(Youdin & Shu 2002; Laibe et al. 2012).

Because we already know that planetesimal formation is subject to many
barriers, it would not be surprising if planetesimals formed and survived
in only a limited region of the solar nebula. In this chapter, we investigate
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the formation of planetesimals through sweep-up, and find that planetes-
imals tend to pile up in the inner region as a direct result of the shape of
the protoplanetary disk. In Sect. 6.2, we compare the analytical timescales
for radial drift and dust growth and implement this in a simple toy-model,
and in Sects. 6.3-6.4, we discuss the implementation and results of a col-
lision model capable to handling sweep-up into a 1D coagulation code.
Finally, in Sect. 6.5, we discuss the consequences and limitations of these
findings.

6.2 drift and growth timescales

We first consider the radial drift and dust growth from an analytical per-
spective. In Sects. 6.2.1 and 6.2.2, we calculate the drift and growth time-
scales and how they vary with heliocentric distance. A similar derivation
and its consequences without growth has previously been discussed by
Laibe et al. (2012), but we aim to make the process a bit more transparent.
In Sect. 6.2.3, we put the previous results together and follow the growth
and drift of particles in a monodisperse toy model.

We assume a protoplanetary disk with surface gas density and temper-
ature profiles given by two power-laws

Σg(r) = FdiskΣg,0

( r
1 AU

)−p
g cm−2 (6.1)

T(r) = T0

( r
1 AU

)−q
K , (6.2)

where r is the radial distance from the star. We will in this work consider
two different disks. The minimum mass solar nebula (MMSN) is derived
from the present-day Solar System, and has Σ0,g = 1700 g cm−2 with
p = 3/2 (Weidenschilling 1977b; Hayashi 1981). The minimum mass ex-
trasolar nebula (MMEN) is derived from the properties of the observed
exoplanetary systems, and has Σ0,g = 9900 g cm−2 with p = 1.6. Un-
less otherwise stated, we take a temperature profile with T0 = 280 K and
q = 1/2. We will in this work assume Fdisk = 3 to describe how much
more massive the primordial disk was compared to the present-day prop-
erties, which in the case of the MMEN corresponds to a disk which is on
the verge of gravitational instability.

6.2.1 Radial drift

Solids normally orbit with Keplerian velocities, but the gas is supported
by a radial pressure gradient, and thus orbit at slightly sub-Keplerian ve-
locities. As shown in Eq. 1.41, the result is a constant headwind which
gives rise to a drag force and inward radial drift with a velocity given by

vr =
St

1 + St2 · 2ηvK , (6.3)
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where

2η = − r
v2

k

1
ρg

dP
dr
∼ r1−q , (6.4)

is the ratio of the pressure gradient force to the stellar gravity in the radial
direction, vK = rΩ = (GM

r )1/2 is the Kepler velocity and cs is the sound
speed (Weidenschilling 1977a). St is the Stokes number, describing how
well the particle is coupled to the surrounding gas, and is given by St =
tsΩ, where

ts =

 t(Ep)
s = aξ

ρgvth
if a < 9

4 λ

t(St)
s = 4a

9λ · t
(Ep)
s if a > 9

4 λ ,
(6.5)

where ξ is the dust internal density, ρg is the gas density, vth = (8/π)1/2cs

is the mean thermal velocity. The mean free path of the gas particles is

λ =
1

ngσg
=
√

2π ·
mg

σg

Hg

Σg
∼ cs

Ωk · Σ
∼ r

3
2+p− q

2 , (6.6)

where σg = 2 · 10−15 cm2 is the collisional cross section o the gas molecules,
Hg = cs/Ωk is the gas scale-height, and the gas midplane number density
is ng = Σg/(

√
2πHgmg), where mg is the mass of the gas particles.

The fate of a drifting particle depends on the drag regime it is in, and
in the following sections, we look at the drift timescale in the two regimes
individually. In both cases, we are interested in how the drift timescale
changes as the particle drifts inwards, assuming for now that its size re-
mains constant.

Drift in the Epstein regime

If the particle is small (a < 9λ/4), the gas drag can be understood as a
result of the momentum transfer between the dust particle and the indi-
vidual gas molecules. The Stokes number is in this regime given by

St =
π

2
ξa
Σ
∼ rp , (6.7)

and assuming small particles (St� 1), the drift can be written

∂r
∂t
∼ ηvKSt ∼ r1−q · r− 1

2 · rp ∼ r
1
2−q+p . (6.8)

The drift timescale is then

tdrift ∼ r
(

∂r
∂t

)−1

∼ r
1
2+q−p . (6.9)

This means that as long as 1
2 + q − p < 0 is satisfied, the drift timescale

increases as a small particle drift inwards towards the star. This means that
particles in the Epstein regime will at some r get a drift timescale that ex-
ceeds the disk lifetime, which is the fundamental mechanism of the small
particle pile-up with subsequent gravitational instability as suggested by
Youdin & Shu (2002).
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Figure 6.1: The radial-dependent drift timescales for a particle of size a = 100 cm
in an MMSN disk with four different temperature slopes.

Drift in the Stokes regime

If the dust particle is large (a > 9λ/4), the gas drag instead arises from
an aerodynamic flow around the particle by the gas molecules. This is
called the Stokes regime (unrelated to the Stokes number), and assuming
a particle Reynolds number < 1, the Stokes number can be written

St =
π

2
ξa
Σ
· 4a

9λ
∼ r−

3
2+

q
2 . (6.10)

For large particles (St� 1), the drift velocity is given by

∂r
∂t
∼ ηvKSt−1 ∼ r1−q · r− 1

2 · r−
q
2+

3
2 ∼ r2− 3q

2 . (6.11)

And the drift timescale is finally

tdrift ∼ r
(

∂r
∂t

)−1

∼ r−1+ 3q
2 , (6.12)

which means that for q < 2
3 , the drift timescale will increase as the large

particles drift inwards. In the MMSN disk, this is valid, which means that a
drifting planetesimal or protoplanetesimal will stop its drift at some finite
heliocentric distance. This mechanism was suggested by Laibe et al. (2012)
as a means to overcome the drift barrier and cause a particle pile-up in the
inner disk. However, if the pile-up occurs too close to the star, the particles
would be evaporated due to the high temperatures, which generally occurs
between 0.01− 0.1 AU.

In Fig. 6.1, we plot the drift timescale for a particle of constant size 100

cm for an MMSN disk with four different temperature slopes between
q = 0 and 2/3. At distances larger than 1 AU, the particle is in the Epstein
regime and the drift timescale decreases as it moves closer to the star,
but as it enters the Stokes regime, the drift timescale suddenly starts to
increase.

We can note that for any realistic temperature slope, even though the
drift timescale increases the closer in the particle gets, the increase is never
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steep enough to completely halt the drift at any reasonable r. In the case
of q = 1/2, the particle would drift from 1 to 0.01 AU in 1100 yrs, and
for q = 1/3, the total time increases to 2300 yrs, which is much shorter
than the disk lifetime. We can therefore conclude that the increasing drift
timescale alone is not sufficient to cause a large particle pile-up. We will
however see that when particle growth is included, the picture changes
considerably.

6.2.2 Particle growth

For the purpose of the analytical approach, we consider a simplified ver-
sion of the sweep-up scenario introduced by Windmark et al. (2012a),
where one or a few large bodies, or protoplanetesimals, of mass m drift
and move around in a sea of small particles of mass ms, while being few
enough to never collide between themselves. The mass growth of the pro-
toplanetesimals can be described by

dm
dt

= σ∆vερs , (6.13)

where σ = π(a + as)2 ∼ πa2 is the collisional cross section, ∆v is the
relative velocity between the large and small particles, ε is the sweep-up
efficiency, which we for simplicity put to 0.5 (Wurm et al. 2005). As the
protoplanetesimals grow, they settle towards the midplane, and we let ρs =

Σs/(
√

2πhd) be the midplane mass density of small particles.
We assume that the small particles dominate the total dust mass, and

that they are small enough to be well coupled to gas, so that the particle
scale-height hd = Hg. We also assume the mass of the small particles to be
independent on r. For simplicity we consider turbulence as the main rela-
tive velocity source. For collisions between a large particle and a smaller,
Ormel & Cuzzi (2007) find that ∆v = cs

√
3α/St, where α is the turbulent

strength. Taking into account that dm = 4πa2ξda, we get

da
dt

=
σ

4πa2
Σs√

2πHg
∆vε =

Σs√
32πHg

∆vε ∼ r3/4−p−q/4 , (6.14)

The growth timescale can finally be written as

tgrowth = a
(

da
dt

)−1

= a

√
2πHg

Σsε∆v
∼ r−3/4+p+q/4 , (6.15)

meaning that as long as p + q/4 > 3/4, which is true for all normal disks,
the growth timescale of a particle of a given size decreases with decreasing
radial distance.

For comparison, we also consider a monodisperse pure coagulation case,
where the particles are represented by one single species, and always stick
during collisions. This has previously been derived by e.g. Birnstiel et al.
(2010a), and the growth rate can be written

da
dt

=
Σd√
2πhd

∆v
ξ
∼ r−3/4+p+q/4 , (6.16)
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Figure 6.2: The evolution of seed particles in an MMSN disk assuming pure co-
agulation (left panel) and sweep-up (right panel). Note the different x-
range! The seeds have initial particles sizes a = 1 cm, and starting
locations between 0.2− 100 AU. The solid line marks St = 1, where
the radial drift is the fastest, and the filled gray region marks where
tdrift < tgrowth.
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Figure 6.3: The evolution of seed particles in an MMEN disk assuming pure co-
agulation (left panel) and sweep-up (right panel). Note the different x-
range! See Fig. 6.2 for more details.

with the same radial behavior as the sweep-up scenario, but with a shorter
timescale (due to the decreasing scale-height of large particles and a higher
sticking efficiency).

6.2.3 A drift and growth toy model

We now combine the results of the previous section, and follow the evolu-
tion using a simple toy model, where we numerically integrate the radial
drift (Eq. 6.3) and the particle growth (Eqs. 6.14 and 6.16). We consider
both coagulation by pure sticking and by sweep-up, and take the MMSN
and MMEN disk densities with the same temperature profile, and a dust-
to-gas ratio of 200. We assume a turbulent strength α = 10−3, a dust solid
density ξ = 1 g cm−3, and we include the full relative velocity calculations
from brownian motion, turbulence using the closed-form expressions of
Ormel & Cuzzi (2007), and radial and azimuthal drift (see Birnstiel et al.
2010a for a thorough description of the different sources).

In the sweep-up case, we assume the small particles to have a constant
size as = 0.1 cm, which could be explained by bouncing or fragmentation.
As long as the particles are smaller than ∼0.5 cm, their exact size does not
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matter much, as they are all fully coupled to the gas and experience little
vertical settling. If the particles are larger than this, however, the vertical
settling would lead to increased midplane densities, and therefore faster
growth rates. The evolving particles are initiated with a size of 1 cm, and
they are inserted at distances between r = 2− 100 AU for the case of pure
coagulation, and r = 0.2− 10 AU in the sweep-up case.

In Fig. 6.2, we show the resulting evolution for the MMSN disk, and in
Fig. 6.3, we show the results for the MMEN disk. In both cases, we can
distinguish between two separate regimes; the grey-marked drift regime
where tdrift � tgrowth, where the particles evolve horizontally, and a growth
regime where tgrowth � tgrowth, and the particles evolve vertically. In the
borderline region, both effects are significant, and particle evolution is di-
agonal.

From the figures, it is clear that regardless of coagulation mode, the drift
barrier can be overcome. In the case of pure sticking, the growth rate domi-
nates for all sizes in the inner few AU, and for the slower sweep-up growth,
the drift barrier can be overcome inside 1 AU. For drift breakthrough to
occur, the particles need to sufficiently fast traverse the region of rapid
drift that occurs for St ∼ 1. Okuzumi et al. (2012) quantified this as the
ratio between the growth and drift timescales for St = 1, and found that a
ratio of ∼30 was needed for particles to break through without any signif-
icant drift. They argued that drift could be overcome for extremely porous
ice aggregates as far out as ∼20 AU. However, because tgrowth(St = 1) de-
creases very rapidly with decreasing r, compared to a more shallow slope
for tdrift(St = 1), we find that the same will also occur for compact sili-
cates at distances <5 AU. In contrast, the growth rate for particles in the
Epstein drag regime is a lot slower, and the particle breakthrough might
never occur.

As a result, all seeds that are initiated at large radii will halt their drift
at the same location, which results in a successive pile-up of solids in
a narrowly defined region as time progresses. If the growth mode is by
pure sticking, we predict that this pile-up will occur at distances between
3− 6 AU, and if it is by sweep-up, the pile-up would instead occur between
0.2− 0.8 AU, depending on the disk properties.

6.3 numerical model

To accurately determine the evolution of the dust, we need to take the full
size distribution into account. For this, we use the 1D Smoluchowski code
developed by Birnstiel et al. (2010a).

A major difference from similar previous studies is the implementation
of a collision model capable of mass transfer collisions (as the mechanism
responsible for sweep-up growth), and the inclusion of impact velocity
distributions. The simple collision model presented here is similar to the
one presented in Chapter 3, and we will describe it only briefly.

The collision rate between two particle species i and j is given by f j =

ninjK, where K is commonly called the collision kernel. If a velocity distri-
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bution is considered, the kernel has to be integrated over the whole range
of possible ∆v for each particle pair:

K(∆vrms) = σij

∫ ∞

0
∆vPv(∆v|∆vrms)Ps/f(∆v)d∆v , (6.17)

where σ is the collisional cross section and ∆v is the relative velocity.
Pv(∆v|∆vrms) is the velocity probability distribution (PDF), and Ps/f(∆v)
is the sticking/fragmentation probability as determined by the collision
model discussed below.

Velocity distributions arise due to the stochastic nature of turbulence,
and in this method, we assume all particles to interact with a Maxwellian
velocity PDF, as believed to describe the behavior of large particles sus-
pended in turbulence (see e.g. Carballido et al. 2010). An assumption is
therefore that the turbulent velocities dominate over the deterministic drift
velocities, which is true for particles of similar sizes or if the particles are
sufficiently far away from St ∼ 1 to not drift significantly. Because we
are interested in the aspect of collision barrier breakthrough, where the
interactions between relatively small, similar-sized particles are the most
important, we consider this a valid approximation. A velocity PDF also
has a very limited effect if the mean relative velocity is far above or below
the fragmentation threshold velocity. For a more thorough approach that
separates the stochastic and deterministic velocity effects, see Garaud et al.
(2013).

For the collision models in this work, the possible outcome of a colli-
sion is either sticking or fragmentation, so that ps + pf = 1, where p is
the probability of each collision type. In the model with pure coagulation,
we always take ps = 1. When fragmentation is included, we assume that
destruction of both particles always occurs above a given collision velocity

pf =

{
0 if v < vf

1 if v > vf ,
(6.18)

where we take vf = 100 cm/s as the fragmentation threshold velocity as
found by Blum & Münch (1993). The fragments are put in a size distribu-
tion described by n(m) ∝ m−9/8. In this work, we are mostly concerned
with the drift barrier, and consider a very idealized form of sweep-up and
therefore neglect the effects of bouncing.

Mass transfer is a complicated process which is not yet fully understood
or mapped out by laboratory experiments. Generally, mass transfer occurs
when only the smaller of the particles fragments and the larger one is left
intact, and parts of the fragmented particle sticks onto the surface of the
target (Wurm et al. 2005; Teiser & Wurm 2009b; Kothe et al. 2010). This
occurs when the particle mass ratio is so large that the collision energy is
deposited only locally into the large one. To mimic this effect, we take mass
transfer collisions to always occur for all fragmenting collisions above a
critical mass ratio m1/m2 > 1000, and we assume that 50% of the mass of
the fragmented particle is added to the larger. This is a major assumption,
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as the collision outcome between two very large (> 10 cm) dust grains has
never been investigated either in the laboratory or numerically.

6.4 results

We perform simulations with both the growth modes discussed in the
previous sections. The simulations are done using the disk properties as
in the toy-model, with an MMEN disk with an initial dust-to-gas ratio =
0.005 and α = 10−3, and for the relative velocities, we consider Brownian
motion, turbulence, and radial and azimuthal drift.

We are here mostly concerned with the point of pile-up, and perform
the simulations over a sufficiently wide range of radial distances to allow
for the point of pile-up to be continuously supplied by drifting particles
for the 105 yrs of simulation time. Although a part of the domain is outside
the snowline, we only include the silicate collision properties discussed in
the previous section. We represent the radial direction by 61 radial bins
between 0.2 and 20 AU and use a resolution of 7 bins per mass decade2

between 4 · 10−6 and 4 · 1018 g for a total of 168 mass bins. Particles that
reach the largest mass bin are allowed to collide and fragment, but any
coagulation is artificially turned off.

6.4.1 Pure coagulation

In Fig. 6.4, we show the evolution of the vertically integrated dust density
distribution for the case of pure coagulation. As predicted from the toy-
model approach, the growth across St = 1 in the inner disk is so fast
that the drift barrier is overcome. Because of the higher dust densities, the
growth proceeds the fastest at the inner radii. Even at 4 AU, however, the
drift barrier is overcome after only 103 yrs. Later, particles at 9 AU grow
through the St = 1 region. These particles however continue drifting for
another few AU before they finally halt. At the end of the simulations,
as significant fraction of 1-10 km-sized planetesimals have formed in the
inner 4 AU.

After 104 yrs, the growth and drift has caused the smaller particle sizes
to become so depleted that their growth rate slows down significantly. This
causes a continuous inward shift of the point of drift breakthrough, and
a clearing of particles in the St = 1 region. The low number densities are
also the reason why a part of the population remains at smaller sizes even
until the end of the simulation.

Because the outer particles at r > 10 AU are unable to growth past the
drift barrier and decouple, they drift inwards into regions where they can
either break through the barriers themselves or be accreted by the already
existing planetesimal population. In either case, this causes a pile-up that
increases as time progresses. In Fig. 6.5, we plot the radial depletion and

2 This resolution is on the low end, but was a necessity due to the lack of time. High resolu-
tion simulations are in progress.
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Figure 6.4: The dust density distribution for a pure coagulation scenario in an
MMEN disk. The orange dashed line corresponds to St = 1 where the
radial drift is the fastest.
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pileup of dust, and give both the total dust mass and the mass of only the
km-sized planetesimals and larger. We can here see a significant enhance-
ment of the dust population in the inner 4 AU. In terms of total dust mass,
the simulation with this extremely massive disk was initiated with 126 M⊕
of µm-sized dust within the inner 5 AU and ends with 232 M⊕ of km-sized
or larger planetesimals, which is an increase in dust mass corresponding
to the entire dust population between 5 and 20 AU.

In this case, when the radial drift barrier can so easily be overcome, we
find a mass loss of less than 1% of the total dust mass within the first
105 yrs. In the beginning, the smallest grains in the inner disk coagulate
so quickly that the drift can be overcome, and even if the growth time-
scales are too long for breakthrough in the outer disk, the mass is simply
collected farther in disk where the breakthrough can continue. Some of
the mass is also swept up directly by the population of already formed
planetesimals. These are so well decoupled from the gas that their drift
velocities are less than 1 cm s−1, corresponding to a drift timescale signifi-
cantly longer than the disk lifetime.

6.4.2 Sweep-up growth

We now consider the sweep-up growth case, with the resulting size evolu-
tion given in Fig. 6.6. When fragmentation is a possibility, the dust popula-
tion is at first halted below the barrier, which can be estimated by relating
the turbulent relative velocity to the Stokes number (for details, see Birn-
stiel et al. 2009):

afrag ≈
Σg

παξ

(
vf

cs

)2

(6.19)

Although the majority of the dust is halted by the fragmenting events
between similar-sized particles, the impact velocity distribution and the
mass transfer collisions both act to smear out the fragmentation barrier,
by allowing a few lucky particles to avoid collisions and only be involved
in either large mass-ratio mass transfer collisions or low-velocity sticking
collisions, as we found in Chapter 3. After only a year, the first lucky par-
ticles manage to break through the fragmentation barrier in the innermost
disk, and their number continue to increase both by newly formed lucky
particles and by fragmenting events between themselves.

Even though the sweep-up growth rate is lower than the pure coagula-
tion growth rate, it is still sufficient to also break through the radial drift
barrier. Compared to the toy-model, the outermost point of breakthrough
has increased from 0.8 AU to 2.5 AU. This discrepancy has several reasons.
One is likely the artificial growth speed-up in this low-resolution simula-
tion. With higher mass resolution, the point of breakthrough is likely to be
moved inwards. But there are also physical reasons. In the outer disk, the
particles are allowed to grow to 1 cm before they reach the fragmentation
barrier, whereas we assumed a global 0.1 cm size for the small particles in
the toy-model. This allows for the particles to settle towards the midplane,
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Figure 6.6: The dust density distribution for the full sweep-up collision model in
an MMEN disk. The orange dashed line corresponds to St = 1, and
the red dashed line corresponds to the fragmentation barrier.
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which increases the densities for the lucky grains to sweep up. The size-
distribution is also so wide that assuming a single particle size becomes
insufficient to accurately describe the collisional growth.

The growth of the newly formed planetesimals proceeds by the sweep
up of the smaller grains, and the collisions between the planetesimals work
to constantly replenish the smallest sizes. Compared to the case of pure
coagulation, even at the end of the simulation, a significant fraction of dust
still resides below the fragmentation barrier. Because the sweep-up is less
efficient than coagulation, the total mass loss in this case corresponds to
7% of the total dust mass.

After only about 1, 000 years, however, the larger particles start to domi-
nate over the smaller ones in terms of mass in the innermost disk. However,
the planetesimals are then so decoupled from the gas that their relative
velocities are low (ignoring the possible mechanism of turbulent stirring
quantified by Okuzumi & Ormel 2013), which limits the number of large
particle fragmentation. The growth of the planetesimals is at this stage
dominated by sweep-up of particles that are roughly 1 order of magni-
tude smaller in size. At yet larger sizes, the planetesimals are almost non-
collisional between themselves, but retain high relative velocities to the
smaller particles because these can still be excited by the turbulence. This
limits the destructive fragmentation but still allows for further sweep-up
growth.

In the outer disk, the particle growth is always limited by the fragmenta-
tion barrier. This limits their drift velocities, and slows down the depletion
rate compared to the case of pure coagulation, as shown in Fig. 6.7. We
start with a total of 50 M⊕ of dust in the form of µm-sized dust grains
inside 1 AU. At the end of the simulation, this has increased to 90 M⊕,
predominantly in the form of planetesimals with sizes of > 1 km. As we
can see in the figure, the overdensity is at most a factor of a few, and it is
spread out between 0.1− 0.9 AU, with the peak at 0.35 AU.

6.5 discussion and conclusions

We have studied the growth and drift of dust grains in the context of
planetesimal formation in the inner part of the protoplanetary disk. This
was done using both a toy-model approach and by the implementation of
a collision model including mass transfer collisions and impact velocity
distributions into a radial Smoluchowski code. We find that some grains
are able to overcome both the collisional barriers and the drift barriers,
and that planetesimals can form on timescales of only a few thousand
years. Because the drift barrier can only be overcome locally in the inner
region of the disk, this leads to a process where drifting particles pile up
in a narrow annulus at distances depending on the collision model and
the disk properties.

The effect of dust pile-up in the inner region of protoplanetary disks
has been studied before. Youdin & Shu (2002) and Youdin & Chiang (2004)
found that the surface density of dust in the form of mm-cm-sized chon-
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drules can be sufficiently enhanced for gravitational instability to occur at
roughly 1 AU. Hughes & Armitage (2012) studied a similar scenario but in-
cluded an evolving protoplanetary disk. They did not find any significant
pile-up of small particles, due to the inward motion of the gas, which is
sufficiently fast to continuously remove the small particles. However, their
dust growth mechanism is very simplified. For the large-particle growth
and on the timescales that we study, gas accretion should only have a small
impact.

Laibe et al. (2012) also argued that radial drift of large particles in the
Stokes regime decreases with the radial distance, to the point where the
radial drift would be completely halted, even for particles of constant size.
Drift and pure coagulation was included by Stepinski & Valageas (1997)
and Laibe et al. (2008), and they noticed dust pile-up as well as fast growth
at ∼20 AU. We find in this work that drift alone is not sufficient to cause
any pile-up outside of the dust evaporation radius, and in order for all the
growth barriers to be overcome, a more sophisticated collision scheme is
required. The drift barrier can then be overcome thanks to the fact that the
growth timescale decreases while the particles are drifting inwards.

Based on the observed exoplanets distribution, Chiang & Laughlin (2013)
constructed a Minimum-Mass-Extrasolar-Nebula, which is more sloped
and ∼10 times more massive than the MMSN in the inner region. Though
we use it as initial conditions, such a density distribution might also be
a result of the pile-up mechanism. Hansen & Murray (2012) showed that
when starting models with 50-100 M⊕ in Earth-sized embryos inside 1 AU,
it is possible to reproduce the observed distribution of hot-Neptunes and
hot-super Earths. Utilizing the MMEN, we started with 50 M⊕ of small
dust and ended with 90 M⊕ of planetesimals, with the bulk of the mass
centered at 0.4 AU, which corresponds well to the required values. A re-
cent study by Ida et al. (2013) also showed that newly formed gas giants in
the inner disk are capable of scattering cores to the outer regions, where
the gas accretion can proceed in-situ. This could be a way of forming the
observed distant gas giants at ∼30 AU with nearly circular orbits.

For the Solar System, Hansen (2009) showed that the distribution of the
terrestrial planets can be reproduced when a total of 2 M⊕ of mass is ini-
tially confined in planetary embryos of 0.005 M⊕ within a narrow annulus
between 0.7 and 1.0 AU. In the extremely heavy disk that we studied in
this work, we end with a lot more mass but significantly further in. Con-
ceptually, however, we find that pile-up would be capable of producing a
local inner overdensity of planetesimals, but a disk parameter study will
be required to determine whether an annulus of reasonable total mass can
be be produced at the necessary distance.

Future work will also require the transition regime from planetesimals
to embryos to be studied further, which requires the inclusion of gravita-
tional dynamics. The effect of turbulent stirring of planetesimals will also
need to be considered (Okuzumi & Ormel 2013; Ormel & Okuzumi 2013).
Their prediction is that the excited relative velocity only starts for parti-
cle sizes >100 m, which is already past the drift barrier, and the onset of
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runaway growth can be initiated for bodies in the 10-100 km size range. A
possible way around the destructive kilometer-size barrier might be that
the first 10 km-sized bodies forms so fast, even before the planetesimal
population is numerous enough for similar-sized collisions to be impor-
tant. Because the pebble accretion mechanism studied by Ormel (2013)
only becomes important for bodies of sizes >100 km, it is unlikely to be of
help the sweep-up growth to circumvent the kilometer-sized barrier. Both
of these points will be interesting aspects for future work.

The in-situ formation of the tightly-packed close-in exoplanets is in
agreement with the fact that such systems observed by Kepler (although
influenced by observational bias) are nearly co-planar (Fang & Margot
2012). It is possible that the idea of a local planetesimal formation region,
be it in the innermost disk or centered on a long-lived pressure bump,
needs to be considered as a means of forming the whole zoo of observed
exoplanetary systems.



7
S U M M A RY A N D O U T L O O K

The aim of this thesis has been to improve the understanding of the physics
and mechanisms involved in the growth barriers of the planetesimal for-
mation process. By probing the robustness of the barriers to previously
overlooked or too simplified physics, the goal was to investigate the possi-
bility for dust to grow large.

The sweep-up growth mode discussed in Chapter 2 was a result of an
extensive collaboration with the dust laboratory groups. By allowing dust
grains to interact in ways that had not been accounted for in most previous
dust evolution codes, we found growth to planetesimal sizes to be possible
even at impact velocities well above the well-established fragmentation
barrier. Although the principle idea of sweep-up has now been confirmed
in several laboratory and dust evolution studies, the final outcome still
depends on the exact calibration of the collision model.

Based on Teiser & Wurm (2009a), there are indications that high-velocity
impacts with projectiles larger than ∼1 mm are erosive regardless of the
mass ratio between the projectile and target. This puts a limit to how large
the average grain can be allowed to grow before the sweep-up process is
inhibited. If mass transfer can instead occur as long as the mass ratio is
large, the sweep-up scenario becomes a lot more flexible. Future collab-
oration between theory and laboratory is therefore crucial to verify (or
modify) this formation channel. A major step also needs to be taken to
consolidate the results from the laboratory and the numerical molecular
dynamics simulations, and collision models with ices are just now start-
ing to become possible from the laboratory. Meanwhile, the study of the
collisional barriers will benefit from both advanced and idealized collision
models.

There are now several suggestions for how the first seed particles can
break through the fragmentation barrier to initiate sweep-up growth. In
Chapter 2, we introduced the idea of "lucky" particle growth, by discussing
the virtues of impact velocity distributions caused by the stochastic proper-
ties of turbulence. The stochasticity causes the collisional growth barriers
to smear out, by allowing for a whole spectrum of collision outcomes even
for a single pair of particles. If particles have a non-zero probability of
sticking, even when the average collision is destructive, the sheer number
of particles in the disk is likely to create a few lucky ones that can grow
large enough to initiate sweep-up.

This is a promising scenario that could explain seed formation anywhere
in the disk, but it is important to further understand the structure of the
grains formed this way. If the lucky particles are formed by too low ve-
locities, the outcome might be similar to hit-and-stick growth, where they
will become almost fractal, and thus might not be strong enough to sur-
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vive high-velocity collisions regardless of the mass ratio. Some laboratory
experiments hint that these fractal-like structures are slightly stickier than
usual, but that they are also easy to destroy once they have been formed
(Kothe et al. 2013a). Another uncertainty lies in the shape of the veloc-
ity distribution. Due to the extreme spatial resolutions and high particle
numbers required for direct numerical studies of the turbulent velocity dis-
tribution, extrapolation to the smallest scales is necessary. This makes the
extracted distributions uncertain. If the velocity distribution is too wide,
it might allow for too many large particles to form, and consequently too
much large particle fragmentation to allow for sweep-up growth. If the
velocity distributions are too narrow, on the other hand, no seeds might
form at all.

Another scenario for seed formation might be due to the growth and
radial mixing of "privileged" particles, discussed in Chapter 5. The dead
zones that arise from a change in the gas ionization rate allows larger
particles to form than in an active region, and if they are introduced to
other parts of the disk by radial mixing, they can initiate sweep-up. The
second effect of dead zones is the possible formation of pressure bumps
at their edges. These regions halt the drift of the particles, and even if
they are short-lived, it might be enough for some of the particles to grow
sufficiently large to break through the drift barrier. The pressure bumps
however need to be explored further, as their properties are still highly
uncertain. In the case of the snowline dead zone and pressure bump that
we utilized, the underlying assumption is that the total dust surface area
is constant. Due to coagulation, we know that this will not be the case, and
so the dead zone strength should decrease with time.

A third possibility of seed formation could be as a direct consequence
of the porosity evolution. Because porous grains are stickier than compact
grains, it is possible that the first generation of dust grains manage to grow
larger before compaction and fragmentation sets in. If a few particles man-
age to avoid compaction, or compact without losing too much mass, they
could become the first generation of seeds. We know from radioactive dat-
ing that cm-sized CAIs formed at the very first stages of the formation of
the Sun, so at least some large grains must have been able to form early.
It is therefore important to study the porosity evolution, something that
has been largely neglected in this thesis. However, even if the capability is
there to implement porosity also in Smoluchowski codes (Okuzumi et al.
2009), there is still too little laboratory data available to construct a com-
plete model.

In Chapter 4, we expanded upon the work with velocity distributions,
and also allowed for particles of similar aerodynamic properties to clus-
ter together. This is a venue of grain growth that has never been probed
before in a planet formation context, and with it follows several interest-
ing aspects. Firstly, the particle clumping should result in higher collision
rates, which could be important for the observable quantities in the outer
disks. If the growth is fast enough, it might even lead to breakthrough
of the radial drift barrier. Secondly, because clumping leads to primar-
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ily low-velocity collisions, it will affect the balance between sticking and
fragmenting collisions. If the sticking rate is boosted, the fragmentation
barrier could occur at 1-2 orders of magnitude larger sizes than the nomi-
nal fragmentation barrier. This could be interesting for the initiation of the
streaming instability in the outer regions of the disk.

In Chapter 6, we studied sweep-up growth in the innermost disk using
a global disk code. The impact of the radial drift is highly dependent on
the balance between the growth and drift. We discovered that for both
growth by pure coagulation and for sweep-up, the growth can even be
fast enough to overcome the drift in the inner few AU. This is both due to
the inclusion of the Stokes drag regime as well as the rapidly increasing
dust densities in the innermost disk. The result is a rapid formation and
pileup of planetesimals within the first thousands of years. This could be
a possible mechanism for the formation of the compact Kepler systems
or the narrow planetesimal ring needed to explain the formation of the
terrestrial planets in the Solar System.

An important next step will be to tie the planetesimal formation by
sweep-up to the later evolutionary stages. The kilometer-size barrier in-
troduced by Nelson (2005) and further discussed by Ormel & Okuzumi
(2013), where the relative velocities are excited by the turbulent fluctua-
tions, poses another difficulty for the further growth of the planetesimals.
Sweep-up might once again be a solution to this problem, as the initially
low number of growing planetesimals might result in low enough colli-
sion rates for the growth to go relatively unhindered even through the
kilometer-size barrier.

The connection to the even later stages can be investigated by the use
of planet population synthesis, where the coagulation models are just now
starting to reach results that can be used as initial conditions (see Chap-
ter 6 and Okuzumi et al. 2012). A great difficulty for growth via coagu-
lation is to explain the presence of planets in the outer parts of the disk
(>10 − 20 AU) due to the long growth timescales involved. However, a
recent study by Ida et al. (2013) shows that newly formed gas giants in
the inner disk are capable of scattering cores to the outer regions, where
the gas accretion can proceed in-situ. This could be a way to form the ob-
served distant gas giants at ∼30 AU with nearly circular orbits. Maybe the
idea of a local planetesimal formation region, be it in the innermost disk
or centered on a long-lived pressure bump, needs to be considered as a
means of forming the whole zoo of observed exoplanetary systems.

To conclude, the field of planetesimal formation has in recent years be-
gun to spawn a number of interesting and viable mechanisms for the crit-
ical first growth stages. There are now a number of scenarios suggested
that are capable of overcoming the growth barriers, both via coagulation
and turbulent instabilities. The key to understanding the capabilities and
limitations of the different scenarios will not only be to further develop
the physics and numerics, but also to connect to the later formation stages
by providing initial spatial and size distributions of the first generation of
planetesimals.
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