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Einfluss niedriger Metallizität auf die anfängliche stel-
lare Massenfunktion – Eine fundamentale Frage im Zusammenhang mit
Strukturentstehung beschäftigt sich mit dem Übergang von massereichen pri-
mordialen Sternen zu Sternen der Population I/II mit typischen Massen von
weniger als 1 M� und insbesondere mit dem physikalischen Mechanismus,
welcher diesen Übergang einleitet.

Thema dieser Arbeit ist es die physikalischen Mechanismen zu unter-
suchen, die einen solchen Übergang zur Folge haben und die stellare IMF
in den frühen Stadien des Universums formen. Mit diesem Ziel führen wir
eine Reihe hydrodynamischer Simulationen durch, welche sogenannte Sink-
Teilchen enthalten, die kontrahierende Protosterne repräsentieren.

Insgesamt werden acht Simulationen durchgeführt. In allen Fällen finden
wir Hinweise auf Fragmentierung, weshalb wir schlussfolgern, dass es keine
kritische Metallizität gibt, unterhalb welcher Fragmentierung unmöglich ist.
Dennoch gibt es eine deutliche Veränderung der charakteristischen Masse der
Wolken bei Z = 10−4Z�.

Ausgehend von der Entwicklung der simulierten Cluster entwickeln wir
ein Modell für die stellare IMF. Damit können wir Ergebnisse von Simula-
tionen sowie Beobachtungen des Orion Nebel Clusters erklären. Abschließend
finden wir, dass die resultierende stellare Massenverteilung stark von der
charakteristischen Masse des Clusters und von der Art der Massenakkretion
abhängt.

On the physics of the low metallicity IMF – A fundamental
question in the context of structure formation concerns the transition from
massive primordial stars to Population I/II stars with typical masses of less
than 1 M�, and in particular the physical mechanisms inducing this transi-
tion.

The purpose of this work is to study the physical mechanisms that shape
the stellar IMF at the early stages of the Universe. With this aim, we per-
form a set of eight hydrodynamic simulations that include sink particles
representing contracting protostars. Evidence for fragmentation was found
in all cases, and hence we conclude that there is no critical metallicity below
which fragmentation is impossible. Nevertheless, there is a clear change in
the characteristic mass of the clouds at Z = 10−4Z�.

Moreover, we develop a model for the stellar IMF, which accounts for
the evolution of simulated clusters. With that, we can recover results from
hydrodynamic simulations, and also observations of the Orion Nebulae Clus-
ter. Finally, we find that the resultant stellar mass distribution is highly
dependent on the characteristic mass of the cluster, and the mode of mass
accretion.
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Chapter 1

Introduction

The synthesis of the first elements in the Universe started just after the Big
Bang, with the formation of hydrogen, helium and small traces of lithium and
beryllium. This material fell onto dark matter haloes to form the first stars,
the so called Population III (Pop. III). Such stellar population categories are
divided in three, with the youngest and most metal rich being Pop. I, and
the oldest and metal-free stars being called Pop. III. Moreover, metallicity
in astrophysics is represented by the letter Z, and refers to the fraction of
elements heavier than helium, which is not the same definition for metals as
in chemistry. Also, in the end of their lives, the stars explode as supernovae,
event which releases metals in the interstellar medium. The future generation
inherit these metals, and over time, the Universe experience an increase in
the fraction of heavy elements. Pop. II, for instance, come from the clouds
that were enriched by the Pop. III supernovae, and are the oldest generation
of stars observed in our galaxy. After the death of those, they also expel
metals in the media and the new stars which form are the youngest and most
metal rich, the Pop. I.

The first burst of star formation in the Universe is thought to give rise
to massive stars, with current theory predicting characteristic masses consid-
erably above the solar value (Abel et al. 2002; Bromm et al. 2002; Yoshida
et al. 2008; Clark et al. 2011b; Greif et al. 2011a). In addition to that, obser-
vational data require a stellar mass distribution dominated by massive stars
to explain the characteristics of some Galactic globular clusters (Marks et al.
2012; Kroupa et al. 2011), and also the high fraction of extremely metal-poor
stars that are C-rich (Suda et al. 2012). Massive stars evolve quickly, and
thus have short life. In addition to that, when these stars die, they explode
as supernovae and free heavy elements (Heger & Woosley 2002) to the inter-
stellar medium (ISM), which enrich the material that future generations of

1



2 CHAPTER 1. INTRODUCTION

stars will form. Since most of Pop. III are massive, therefore have short-life,
few Pop. III should have survived to be observed now. Moreover, the later
accretion of metal-enriched gas may alter the surface of the Pop. III born
stars, making them undistinguishable from Pop. II/I. Such effect however,
is easily prevented if the stars are ejected from the center of the cloud where
they originated (Johnson & Khochfar 2011). Likewise, the object forming in
the center of the cloud could end its life in a black hole (Heger et al. 2003),
before forming low-mass (thus long-lived) stars. If this happens, such object
would form jets which pollute the media. Finally, even the oldest observed
stars still have few heavy elements and thus the existence of a metal-free star
remains a puzzle.

As for the site of their formation, one has to look at the first structures
that could reach sufficient density to trigger star formation. The current
theory for the present appearance of the Universe predicts that gravitational
amplification of matter density fluctuations lead to the formation of clumpy
structures. Moreover, the standard model based on cold dark matter (CDM)
shows that structures form hierarchically, with smaller amplitudes of mass
forming first. In this picture, the first objects were formed in low-mass
haloes (∼ 106M�), in the deep of their potential well, and at redshift around
30. In such conditions, gas can cool via hydrogen cooling enhancing the
gravitational collapse (Bromm & Larson 2004). These objects will be the
population which terminate with the dark ages by emitting the first light
(Reed et al. 2005).

Once the life of the fist stars end, their explosion will pollute the environ-
ment, with simulations showing that enrichment of 100 kpc to the level of
10−4 times the solar value could be achieved within ∼ 300 Myr (Greif et al.
2010). Thus, the further generations of stars in this enriched gas form from
redshift 30 to 10. The site for the formation of the low metallicity stars will
be then newly enriched haloes, few million years after the explosion of the
first supernovae.

The metals contained in these gas clouds can deplete into the form of
dust (Schneider et al. 2012), which is an efficient coolant (Dopcke et al.
2011, 2012; Omukai et al. 2005) and can lead to the formation of low-mass
(thus long-lived) stars. Nevertheless, the present-day star formation tends
to yield stars with masses less than 1 M� (Kroupa 2002; Chabrier 2003),
and so at some point in the evolution of the Universe there must have been
a transition from primordial star formation to the mode of star formation
we see today (Pop. II/I). This transition and the overall stellar population
is important in particular for the process of reionization (Barkana & Loeb
2001; Schleicher et al. 2008).

Variations in the mode of star formation will have strong influence in
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the mass distribution of stars. In the seminal work by Salpeter (Salpeter
1955), he raised the hipotesys of an initial mass function (IMF), which refers
to the stellar mass distribution at the birth time. Such hypothesis enabled
astrophysicists to make enormous advances in their research. The proba-
bility density function for high-mass stars could be fitted with a power-law
distribution with a slope of -2.35. Miller & Scalo (1979) extended the work
to low-mass objects and at this range, the IMF could be fitted with a half
log-normal distribution.

After the IMF hypothesis was stablished observationally, a model that
explained the physical mechanism behind it. One successful attempt made
by Zinnecker (1984), where they showed it was possible to explain the log-
normal shape in the low-mass range. The process was by a hierarchical
fragmentation, based on successive stages. After each stage, the fragment
would have a fraction of the total mass. Mathematically, each star has a mass
correspondent to a successive multiplication of the cloud mass. By taking
the logarithm of both stellar mass and product operator, the last becomes a
summation. Finally, by applying the Central Limit Theorem (Cramér 1946),
the distribution is a Gaussian in log-mass.

Moreover, Bonnell et al. (2001a) extended Zinnecker (1984) version of
the model for the high-mass part of the IMF. They found that clusters could
have a mass spectrum with the slope for high-mass objects −2.5 < γ <
−2.0, when the potential is stellar-dominated and accretion is proportional
to the square of the stellar mass. However before being consistent with mass
segregated clusters, the competitive accretion picture needs to assume an
initial segregation in order to develop a γ steeper than -2.

A fundamental question in the context of structure formation concerns
the transition from massive primordial to Pop. I/II stars and in particular
the physical mechanism inducing this transition. The discovery of extremely
metal-poor stars like SDSS J102915+172927 suggests that it is cooling by
dust, rather than via fine-structure metal lines, which enhances fragmenta-
tion even at metallicities of ∼ 10−4 Z�, thus changing the IMF already at
early stages.

Dust then plays an important role in the puzzle of the never-observed
metal-free Pop. III stars. Namely, it can determine the minimal metallicity
(Zcrit), at which the mode of star formation changes.

Therefore, new studies are required to address the question. The main
questions concern exploring the low-metallicity ISM with particular emphasis
on the implications of dust on star formation and the initial mass function
(IMF). The results from such studies would thus shed light onto the earliest
phases of galaxy and star formation. In light of upcoming large spectroscopic
surveys, such as HERMES, Gaia-ESO, Pan-Starrs, it is timely and important
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to explore low-metallicity star formation in much further detail.

1.1 Star formation at very low metallicities -

thermal processes

When gas collapses to form stars, gravitational energy is transformed into
thermal energy and unless this thermal energy can be dissipated in some
fashion – such as via atomic fine-structure line emission, molecular rota-
tional or vibrational line emission, or the heating of dust grains – it will
eventually halt the collapse. In an adiabatic collapse, the further evolution
can be approximated by a linear theory, and the number of fragments will
be proportional to the number of Jeans masses in the cloud (Jeans 1902).
In cases where these cooling processes are efficient, they can promote grav-
itational fragmentation (Bonnell et al. 2007), such that instead of forming
one very massive clump or a number of clumps corresponding to the initial
number of Jeans masses in the cloud, the cloud can instead form even more
fragments. Therefore, if one aims to study the fragmentation of gas clouds,
it is necessary to account for thermal processes.

If the gas is cooled only by molecular hydrogen emission, numerical simu-
lations show that the stars should be very massive (Abel et al. 2002; Bromm
et al. 2002; O’Shea & Norman 2007; Yoshida et al. 2008; Jappsen et al.
2009a). This happens because the H2 cooling becomes inefficient for tem-
peratures below 200 K and densities above 104 cm−3. At this temperature
and density, the Bonnor-Ebert mass is 1,000 times larger than in present-day
molecular clouds, as can be seen from Eq. 1.1:

MBE ≈ 500M�

(
T

200K

)3/2 ( n

104cm−3

)−1/2

(1.1)

for an atomic gas with temperature T and number density n.
Also, the adequate primordial chemical network can have strong influence

in the local Jeans mass. For instance, Glover & Abel (2008) showed that the
minimum Jeans mass can increase by a factor of 2, when the chemical network
includes cooling from H2-H+ collisions.

For metallicities higher than zero, other thermal effects start to play a
role. The main coolants beyond H2 in the case of non-zero metallicity that
have been studied in the literature are CII and OI fine-structure and dust
emission (Bromm et al. 2001; Bromm & Loeb 2003; Santoro & Shull 2006;
Frebel et al. 2007; Jappsen et al. 2009a,b; Smith & Sigurdsson 2007; Smith
et al. 2009a). By equating the CII or OI fine-structure cooling rate to the
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compressional heating rate due to free-fall collapse, one can define critical
abundances [C/H] = −3.5 and [O/H] = −3.01 for efficient metal-line cooling
(Bromm & Loeb 2003).

If OI and CII are responsible for the change in the stellar initial mass
function (IMF), then the Pop. II stars should have a combination of O and
C abundances above the so-called “transition discriminant” Dtrans, where
Dtrans = log(10[C/H] + 0.3 · 10[O/H]) = −3.5 (Frebel et al. 2007). The Jeans
mass at densities where OI and CII can efficiently cool the gas is ≈ 10M�, and
none of the metal-poor stars observed to date can thus be explained by these
cooling processes. Although most metal-poor stars lie above Dtrans, at least
one star has been observed to lie below it (SDSS J102915+172927; Caffau
et al. (2011)), and there are other objects that might also have abundances
below Dtrans: CS30336-049 (Lai et al. 2008) and Scl07-50 (Tafelmeyer et al.
2010). Since SDSS J102915+172927 violates the transition discriminant, the
scenario where OI and CII are responsible for the change in the IMF is not
sustained, and there must be another mechanism that can cool the gas and
lead to fragmentation and the formation of low mass stars. In fact, Schneider
et al. (2012) proposed that dust has played a major role during the formation
of this star by inducing fragmentation. Dust cooling models (e.g. Omukai
et al. 2005, 2010; Dopcke et al. 2011; Schneider et al. 2006, 2012) predict
a much lower critical metallicity (Zcrit ≈ 10−4 − 10−6Z�), with most of
the uncertainty coming from the nature of the dust in high-redshift galaxies.
Therefore, dust cooling is the most likely mechanism that can explain the
existence of low mass stars with metallicities lower than 10−4Z�, such as the
SDSS J102915+172927 case.

A more complete study of the main heating and cooling mechanisms for
various metallicities was done by Omukai et al. (2010). For the metal free
case, the main coolants are H2 and HD, and compressional PdV is the main
heating process. H2 counterbalance the PdV heating for number densities
n > 105 cm−3, and it efficiently cool the gas for 1010 < n/cm−3 < 1013.
For metallicities Z > 10−5Z�, the metal content begins to be important.
Specially, H2O becomes slightly efficient at n ≈ 1010 cm−3 and dust at n >
1011 cm−3. Under those circumstances, if one wants to study star formation
at very low metallicities, a model that includes effects from H2 and dust
cooling is necessary.

At densities n & 1010 cm−3, dust cooling becomes efficient (Dopcke et al.
2011, 2012; Omukai et al. 2010), because inelastic gas-grain collisions are

1[X/Y] = log10(NX/NY)? − log10(NX/NY)�, for elements X and Y, where ? denotes
the gas in question, and where NX and NY are the mass fractions of the elements X and
Y.
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more frequent (Hollenbach & McKee 1979). Such cooling enhances fragmen-
tation, and since it occurs at high densities, the distances between fragments
can be very small (Dopcke et al. 2011, 2012; Omukai 2000; Omukai et al.
2005; Schneider et al. 2002, 2006; Schneider & Omukai 2010). In this regime,
interactions between fragments will be common, and analytic models of frag-
mentation are thus unable to predict the mass distribution of the fragments.
A full 3D numerical treatment, following the fragments, is needed.

Initial attempts at modeling fragmentation in low-metallicity gas were
made by Tsuribe & Omukai (2006, 2008) and Clark et al. (2008). These
studies described the thermal evolution of the gas using effective equations
of state derived from the one-zone calculations of Omukai et al. (2005), and
showed that the cooling provided by dust does indeed lead to fragmentation.
This treatment assumes, however, that the gas temperature adjusts instanta-
neously to a new equilibrium whenever the density changes and hence ignores
thermal inertia effects. This may thus overestimate the amount of fragmen-
tation.

In Dopcke et al. (2011), we improved upon these previous treatments by
solving the full thermal energy equation, and calculating the dust temper-
ature through the energy equilibrium equation. We assumed that the only
significant external heat source is the cosmic microwave background (CMB),
and included its effects in the calculation of the dust temperature. We showed
that model clouds with metallicities as low as 10−4Z� or 10−5Z� show indeed
evidence for dust cooling and fragmentation, supporting the predictions by
Tsuribe & Omukai (2006, 2008) and Clark et al. (2008). Even on larger scales,
the presence of dust can significantly alter the chemistry by stimulating H2

formation on dust grains (Cazaux & Spaans 2009; Latif et al. 2012). While
dust thus generally enhances the cooling and decreases the Jeans mass, even
moderate radiation backgrounds may efficiently rise the gas temperature at
densities of up to ∼ 104 cm−3 (e.g. Schleicher et al. 2010b). The interplay of
these processes is thus particularly relevant for the initial conditions of star
formation in the ISM.

1.2 Modeling the physical mechanisms that

shape the IMF

The physical mechanism driving the shape of the IMF has been of intense
debate during the last years. The supposed mechanisms include competi-
tive accretion (Bonnell et al. 2011), supersonic turbulence (Chabrier & Hen-
nebelle 2011), and radiation (Krumholz 2011). Exploring these processes
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with numerically simulations requires codes that can incorporate the three
mechanisms self-consistently.

Modeling competitive accretion requires an appropriate hydrodynamics
code that can follow the accretion onto protostars. The Gadget-2 code
(Springel 2005) has been widely used for this purpose, it is a smoothed
particle hydrodynamics (SPH) implementation including a network for the
chemistry at very low metallicities (Glover & Jappsen 2007). In this code,
self-gravity is calculated via tree-structures, calculating contributions from
nearby objects at high accuracy but combining more distant objects into
groups, taking only their average contribution into account. In order to
model the formation and accretion of protostars, the code includes a sink
particle implementation (Bate et al. 1995a; Jappsen et al. 2005), replacing
high-density SPH particles with sink particles. This procedure is necessary
to continue the simulation with large enough time steps to follow the subse-
quent evolution, but also provides a natural way of following the accretion
onto individual protostars.

In recent studies, it has been demonstrated that the method employed in
Gadget-2 is capable of modeling supersonic turbulence, and reproduces the
turbulent spectra that are typically found in grid codes (Price & Federrath
2010; Bauer & Springel 2011). Such supersonic turbulence is indeed the
type of turbulence expected to prevail in the first galaxies (Wise & Abel
2007; Greif et al. 2008). To further improve on controlling the amount of
artificial viscosity, the implementation for SPH codes of Cullen & Dehnen
(2010) provides a suitable treatment both in the supersonic and the subsonic
regime. Therefore, it enables to study turbulence and competitive accretion
in various astrophysical problems.

1.3 Future surveys

Many large spectroscopic surveys are being planned for the following years,
such as HERMES, Gaia-ESO, and Pan-Starrs. Although many of these are
not specifically designed to look for EMP, their sheer size is expected to lead
to the finding of at least some of them.

In addition to that, the fact that SDSS J1029151 +172927 was found out
of a sample of only six candidates suggests that these stars may not be as
rare as previously thought. Indeed, the inferred metallicity distribution in
the SDSS catalogue shows a low-metallicity tail that seems to extend down
to zero metallicity, hinting at the existence of a population of truly metal-free
low mass stars in the Milky Way. Clearly, this needs to be confirmed by high-
resolution follow-up spectroscopy. This is the goal of the ESO large program
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ToPoS2, to find and characterize hundreds of the most metal-poor stars in
the SDSS catalogue. This unique database will provide valuable information
about the oldest and most primitive stellar population in the Galaxy.

2ESO VLT: 120h x-shooter and 30h UVES time, PI: Elisabetta Caffau, proposal 189.D-
0165



Chapter 2

What can low-resolution
simulations teach us?

Low resolution simulations help to get a quick insight on the most important
physical mechanisms that govern your calculations. For the present study, we
were able to estimate the effects of including turbulence and rotation. Such
mechanisms can be studied just by making use of 3D simulations, which is
already an innovation on the field.

Besides being able to address new problems, we could also implement a
self-consistent code for dust cooling. In order to do it self-consistently, we
assumed thermal equilibrium, therefore the cooling time has to be shorter
than the dynamical time. By making such assumption, the total thermal
energy exchange on the gas-dust interaction was set to zero. With that, dust
temperature and all other necessary rates can be calculated.

With our computational machinery well set, it was time to access the
problem of fragmentation. For that, high-resolution simulations were needed,
since the optic thick regime is reach for low Jeans masses (MJeans < 10−2M�).
The correspondent Jeans mass for the point where the gas becomes optically
thick can be better seen in the Omukai plot (Omukai et al. 2005), which is
show in Figure 2.1. The important feature to be noted here is the point in the
gas evolution, where it becomes optically thick (τ > 1). If we consider that
no further fragmentation will happen after the gas enter such regime, the
required resolution on the calculations has to be approximately Mresolution <
10−2M�.

9
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Figure 2.1: Figure taken from Omukai et al. (2005), where it shows
temperature-density diagram for the evolution of pre-stellar clouds with dif-
ferent metallicities. The metallicities shown are Z = 0, 10−5, 10−3, and
10−1Z� by solid lines, and Z = 10−6, 10−4, 10−2, and 1Z� are shown by
dashed lines. Lines of constant Jeans mass are shown in thin dotted lines.
Finally, the positions at which the gas becomes optically thick is shown by
the red solid line.

2.1 Resolution in SPH simulations

The resolution in SPH calculations is proportional to the mass (rather than
the volume as in Eulerian grid codes) of each particle. In order to resolve
self-gravitating SPH calculations, Bate & Burkert (1997) showed that the
minimum Jeans mass reached in the simulations must be greater than twice
the mass in an SPH kernel. An SPH kernel is made by the particle neigh-
bors, which in our calculations correspond to approximately 50 particles on
average. Therefore, the required criterion for resolving a self-gravitating SPH
calculation is that the Jeans mass has to be greater than 100 SPH particles
mass (MJeans > 100×MSPH).

2.2 Simulations

Hereafter we present the simulations carried on the work that culminated in
the first paper of the PhD period (Dopcke et al. 2011)
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2.2.1 Numerical method

We model the collapse of a low-metallicity gas cloud using a modified version
of the Gadget 2 (Springel 2005) smoothed particle hydrodynamics (SPH)
code. To enable us to continue our simulation beyond the formation of the
first very high density protostellar core, we use a sink particle approach
(Bate et al. 1995b), based on the implementation of Jappsen et al. (2005).
Sink particles are created once the SPH particles are bound, collapsing, and
within an accretion radius, hacc, which is taken to be 1.0 AU. The threshold
number density for sink particle creation is 5.0× 1013cm−3. At the threshold
density, the Jeans length at the minimum temperature reached by the gas is
approximately one AU, while at higher densities the gas becomes optically
thick and begins to heat up. Further fragmentation on scales smaller than
the sink particle scale is therefore unlikely to occur. For further discussion
see Clark et al. (2011a).
To treat the chemistry and thermal balance of the gas, we use the same
approach as in Clark et al. (2011a), with two additions: the inclusion of
the effects of dust cooling, as described below, and formation of H2 on the
surface of dust grains (see Hollenbach & McKee 1979). The Clark et al.
(2011a) chemical network and cooling function were designed for treating
primordial gas and do not include the chemistry of metals such as carbon or
oxygen, or the effects of cooling from these atoms, or molecules containing
them such as CO or H2O. We justify this approximation by noting that
previous studies of very low-metallicity gas (e.g. Omukai et al. 2005, 2010)
find that gas-phase metals have little influence on the thermal state of the
gas. Omukai et al. (2010) showed that H2O and OH are efficient coolants
at 108 < n < 1010cm−3 for their one-zone model. In their hydrodynamical
calculations, however, the collapse is faster, and the effect of H2O and OH
is not perceptible. Therefore we do not expect oxygen-bearing molecules to
have a big effect on the thermal evolution of the gas. For the metallicities and
dust-to-gas ratios considered in this study, the dominant sources of cooling
are the standard primordial coolants (H2 bound-bound emission and collision-
induced emission) and energy transfer from the gas to the dust.

Dust cooling

Collisions between gas particles and dust grains can transfer energy from the
gas to the dust (if the gas temperature T is greater than the dust temperature
Tgr), or from the dust to the gas (if Tgr > T ). The rate at which energy is
transferred from gas to dust is given by (Hollenbach & McKee 1979)

Λgr = ngrnσ̄grvpf(2kT − 2kTgr) erg s−1 cm−3, (2.1)
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Figure 2.2: Results of our low-resolution simulations, showing the depen-
dence of gas and dust temperatures on gas density for metallicities 10−4 and
10−5 times the solar value. In red, we show the gas temperature, and in blue
the dust temperature for the turbulent and rotating cloud. The simple core
collapse is overploted in dark red and green. The points with thinner features
are from the simulations without rotation or turbulence, while those showing
more scatter come from the simulations with rotation and turbulence. The
dashed lines show constant Jeans mass values.



2.2. SIMULATIONS 13

where ngr is the number density of dust grains, n is the number density of
hydrogen nuclei, σ̄gr is the mean dust grain cross-section, vp is the thermal
speed of the proton, and f is a factor accounting for the ontribution of
species other than protons, as well as for charge and accommodation effects.
We assume that σ̄gr is the same as for Milky Way dust, and that the number
density of dust grains is a factor Z/Z� smaller than the Milky Way value.
To compute the rate at which the dust grains radiate away energy, we use
the approximation (Stamatellos et al. 2007)

Λrad = 4σsbngr

(T 4
gr − T 4

cmb)

Σ2κR + κ−1
P

, (2.2)

where Tcmb is the CMB temperature, σsb is the Stefan-Boltzmann constant,
κP and κR are the Planck and Rosseland mean opacities and Σ is the column
density of gas measured along a radial ray from the particle to the edge of
the cloud.
As explained by Stamatellos et al. (2007), this expression has the correct
behaviour in the optically thin and optically thick limits, and interpolates
between these two limits in a smooth fashion. In practice, we approximate
further by assuming that the Planck and Rosseland mean opacities are equa-
land by using the fact that Σ ∼ ρLJ for a gravitationally collapsing gas,
where ρ is the mass density of the gas, and LJ is the Jeans length, given by
LJ = (πc2

s/Gρ)1/2, where cs is the speed of sound in the gas. By approximat-
ing Σ in this fashion, we avoid the computational difficulties involved with
measuring column densities directly in the simulation, while still following
the behaviour of the gas reasonably accurately in the optically thick regime.
In any case, most of the interesting behaviour that we find in our simulations
occurs while dust cooling remains in the optically thin regime. To compute
the temperature of the dust grains, we assume that the dust is in thermal
equilibrium, and hence solve the equilibrium equation

Λgr − Λrad = 0. (2.3)

This equation is transcendental, so we solve it numerically.

Dust opacity

We follow the dust opacity model of Goldsmith (2001), and we calculate the
opacity as a function of the dust temperature in the same fashion as in Baner-
jee et al. (2006). To convert from the frequency-dependent opacity given in
Goldsmith (2001) to our desired temperature-dependent mean opacity, we
assume that for dust with temperature Tgr, the dominant contribution to the



14CHAPTER 2. WHAT CAN LOW-RESOLUTION SIMULATIONS TEACH US?

mean opacity comes from frequencies close to a frequency ν̄ that is given by
hν̄ = αkTgr, where α = 2.70. At a reference temperature T0 = 6.75 K, this
procedure yields an opacity

κ(T0) = 3.3× 10−26α(n/2ρgas)
= 2.664× 10−2/(1 + 4[He])

(2.4)

where [He] is the helium abundance, and n is the number density of hydrogen
nuclei. At other temperatures, κ ∝ T 2

gr, so long as Tgr < 200 K. For grain
temperatures larger than 200 K, it is necessary to account for the effects of
ice-mantle evaporation, while at much higher grain temperatures, the opacity
falls off extremely rapidly due to the melting of the grains. We account for
these effects (see Semenov et al. 2003) and so our opacity varies with dust
temperature following the relationship

κ = κ(T0)×


T 2 T < 200K
T 0 200K < T < 1500K
T−12 T > 1500K

(2.5)

2.2.2 Setup and Initial conditions

Resolution Number of Particle Turbulence Angular
Level Particles Mass Momentum

(×106) (10−5M�) (Eturb/|Egrav|) (Erot/|Egrav|)
High 40 2.5 0.1 0.02
Low 4 25.0 0.1 0.02

0.0 0.00

Table 2.1: Simulation properties.

We performed three sets of simulations, two at low resolution and one at
high resolution. The details are shown in Table 2.1. Our low resolution sim-
ulations were performed to explore the thermal evolution of the gas during
the collapse, and had 4 million SPH particles which was insufficient to fully
resolve fragmentation. We used these simulations to model the collapse of an
initially uniform gas cloud with an initial number density of 105 cm−3 and an
initial temperature of 300K. We modelled two different metallicities (10−4Z�
and 10−5Z�). The initial cloud mass was 1000 M�, and the mass resolution
was 25 × 10−3 M�. In one set of low-resolution simulations the gas was ini-
tially at rest, while in the other, we included small amounts of turbulent
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and rotational energy, with Eturb/|Egrav| = 0.1 and β = Erot/|Egrav| = 0.02,
where Egrav is the gravitational potential energy, Eturb is the turbulent kinetic
energy and Erot is the rotational energy. For our high resolution simulations,
which were designed to investigate whether the gas would fragment, we em-
ployed 40 million SPH particles. We adopted initial conditions similar to
those in the low-resolution run with turbulence and rotation. Again, we sim-
ulated two metallicities, 10−4Z� and 10−5Z�. The mass resolution (taken to
be 100 times the SPH particle mass) was 2.5× 10−3M�.

2.3 3D, turbulence, rotation, and self-consistent

dust cooling

The calculations performed here were the first ones to address the problem
of fragmentation at low-metallicities, and make use of self-consistent dust
cooling calculations. When this problem is studied using 1-zone models, it is
possible to solve for more chemical species. In 3D however, the calculations
can become forbiddingly expensive and hard to implement, and those are
reasons why previous works did not combine 3D calculations and a self-
consistent chemical model.

Other important effects can be studied when the calculations are done
in 3D, such as turbulence and rotation. Their effects become clear when
we compare simulations with and without such feature in Figure 2.2. The
thinner lines represent the simulations without additional velocities. The
gas which is subjected to such velocities takes longer to collapse, therefore
the PdV heating is decreased. The net effect is that the gas is on average
cooler. This effect is stronger for higher densities, when the gas should have
experienced more heating, in the non-turbulent gas.

Moreover, colder the gas, lower the Jeans mass. This changes the charac-
teristic fragment mass to lower values. Simulations that include turbulence
and rotation are expected to create clusters with a mass spectrum favoring
low-mass objects.

2.4 Numerical solutions for the temperature

calculation during the collapse

In order to get a good estimation of the gas temperature during the collapse,
we also needed to have accurate dust temperatures, and dust cooling rates.
The most influential factor on that is the dust opacity. This opacity will
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Figure 2.3: Comparison of dust opacities dependence with temperature for
three different models (Bell & Lin 1994; Goldsmith 2001; Semenov et al.
2003).

be included in the thermal balance calculation (Equation 2.3), and different
models can result in different thermal evolutions. The effect of changing the
opacity model for dust was studied, and three models were used (Figure 2.3).

Bell & Lin (1994) models the opacity dependance with density and tem-
perature in the form:

κ = κiρ
aT b, (2.6)

where κ is the dust opacity, ρ is the gas density, and T is the dust temper-
ature. κi, a, and b are tabulated values for various dust components. These
values were based on works from Lin & Papaloizou (1985) and Alexander
et al. (1989).

Goldsmith (2001) used values for three GMCs studies by Goldsmith et al.
(1997). The values were given as dependents on frequency, and our approach
transformed them into temperature dependence as described in Section 2.2.1.

Finally, Semenov et al. (2003) model is based in a 5-layered spheres with
different dust compounds. The values were calculated following dust compo-
sition model for accretion discs by Pollack et al. (1994).

For the high-resolution simulations, we used Goldsmith (2001) opacities
for being more consistent with our study. We did however, the calculations
using other dust opacity models. The results for a spherical collapse is shown
in Figure 2.4.

Important to notice that there are few ”jumps” in the dust temperature
for the models from Bell & Lin (1994) and Semenov et al. (2003). Such
jumps come from the fact that the equation for energy balance (Equation
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Figure 2.4: Comparison of gas and dust temperatures dependence on number
density, for different dust opacity models. The panels from the top to the
bottom refer to Bell & Lin (1994), Goldsmith (2001), and Semenov et al.
(2003), respectively. The lines in the lower part refer to dust temperature
(colder for n < 1011 cm−3), while the lines in the upper part refer to the gas
temperature. The values for Z = 10−4, 10−5, and 10−6Z� are in red, green
and blue, respectively.
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Figure 2.5: Number density maps for a slice through the high density region.
The image shows a sequence of zooms in the density structure in the gas
immediately before the formation of the first protostar.

2.3) has three solutions at those points. These refer to points in the collapse
where some dust compounds sublimate. Now the dust is hotter, but after
the sublimation, the opacity is reduced and dust becomes colder. What is
happening in reality is that just part of the dust is sublimated. That is why
in this picture there are more than on solution for the dust temperature.
Thus the solution would be to reduce the dust density in Equation 2.1 until
a single solution is recovered.

2.5 The effect of dust cooling on the IMF at

low metallicity star forming clouds

2.5.1 Thermodynamical evolution of gas and dust

In Figure 2.2, we compare the evolution of the dust and gas temperatures
in the low-resolution simulations. The dust temperature, shown in the lower
part of the panels, varies from the CMB temperature in the low density
region to the gas temperature at much higher densities.

At densities higher than 1011–1012 cm−3, dust cooling starts to be effective
and begins to cool the gas. The gas temperature decreases to roughly 600 K
in the 10−5 Z� simulations, and 300 K in the Z = 10−4Z� case.

This temperature decrease significantly increases the number of Jeans
masses present in the collapsing region, making the gas unstable to fragmen-
tation. The dust and the gas temperatures couple for densities higher then
1013cm−3, when the compressional heating starts to dominate again over the
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dust cooling.
The subsequent evolution of the gas is close to adiabatic. If we compare

the results of the runs with and without rotation and turbulence, then the
most obvious difference is the much greater scatter in the n−T diagram in the
former case. Variations in the infall velocity lead to different fluid elements
undergoing different amounts of compressional heating. The overall effect is
to reduce both the infall velocity and the average compressional heating rate.
This allows dust cooling to dominate at a density that is up to five times
smaller than in the case without rotation or turbulence. The gas also reaches
a lower temperature, cooling down to ≈ 200K (instead of 300K) for the Z
= 10−4Z� case, and to ≈ 400K (instead of 600K) for the Z = 10−5Z� case.
This behavior shows that it is essential to use 3D simulations to follow the
evolution of the collapsing gas. A similar effect can be seen in Clark et al.
(2011a).

If we compare our results to the calculations of Omukai et al. (2010),
we find that dust cooling is considerably less effective than predicted by the
one-zone models, but the agreement is better with their 1D hydrodynamical
models.

We find that a metallicity of 10−4Z� is required to cool the gas down to
300 K, while for the same metallicity, Omukai et al. (2010) find that the gas
cools down to 200 K.

2.5.2 Fragmentation

We follow the thermodynamical evolution of the gas up to very high densities
of order 1017cm−3, where the Jeans mass is ≈ 10−2M�, and so we need
a high resolution simulation to study the fragmentation behaviour. The
transport of angular momentum to smaller scales during the collapse leads
to the formation of a dense disk-like structure, supported by rotation which
then fragments into several objects.

Figure 3.4 shows the density structure in the gas immediately before the
formation of the first protostar. The top-left panel shows a density slice on
a scale comparable to the size of the initial gas distribution. The structure
is very filamentary and there are two main overdense clumps in the center.
If we zoom in on one of the clumps, we see that its internal structure is also
filamentary. We can follow the collapse down to scales of the order of an
AU, but at this point we reach the limit of our computational approach: as
the gas collapses further, the Courant timestep becomes very small, making
it difficult to follow the further evolution of the cloud. In order to avoid
this difficulty, we replace very dense, gravitationally bound, and collapsing
regions by sink particles.
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Figure 2.6: Number density map showing a slice in the densest clump, and
the sink formation time evolution, for the 40 million particles simulation, and
Z = 10−4Z�. The box is 100AU x 100AU and the time is measured from the
formation of the first sink particle.

Once the conditions for sink particle creation are met, they start to form
in the highest density regions (Figure 3.6). Due to interactions with other
sink particles that result in an increase in velocity, some sink particles can be
ejected from the high-density region, but most of the particles still remain
within the dense gas. Within 137 years of the formation of the first sink
particle, 45 sink particles have formed. At this time, approximately 4.6M�
of gas has been accreted by the sink particles.

2.5.3 Properties of the fragments

Figure 3.7 shows the mass distribution of sink particles when we stop the cal-
culation. We typically find masses below 1M�, with somewhat smaller values
in the 10−4Z� case compared to the 10−5Z� case. Both histograms have the
lowest sink particle mass well above the resolution limit of 0.0025M�. Note
that in both cases, we are still looking at the very early stages of star cluster
evolution. As a consequence, the sink particle masses in Figure 3.7 are not
the same as the final protostellar masses – there are many mechanisms that
will affect the mass function, such as continuing accretion, mergers between
the newly formed protostars, feedback from winds, jets and luminosity ac-
cretion, etc. Nevertheless, we can speculate that the typical stellar mass is
similar to what is observed for Pop II stars in the Milky Way. This suggests
that the transition from high-mass primordial stars to Population II stars
with mass function similar to that at the present day occurs early in the
metal evolution history of the universe, at metallicities Zcrit < 10−5Z�. The
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Figure 2.7: Sink particle mass function at the end of the simulations. High
and low resolution results and corresponding resolution limits are shown. To
resolve the fragmentation, the mass resolution should be smaller than the
Jeans mass at the point in the temperature-density diagram where dust and
gas couple and the compressional heating starts to dominate over the dust
cooling. At the time shown, around 5 M� of gas had been accreted by the
sink particles in each simulation.

number of protostars formed by the end of the simulation, for both 10−4Z�
(45) and 10−5Z� (19) cases, is much larger than the initial number of Jeans
masses (3) in the cloud.

2.6 Final considerations on this study

In this study we have addressed the question of whether dust cooling can
lead to the fragmentation of low-metallicity star-forming clouds. For this
purpose we performed numerical simulations to follow the thermodynamical
and chemical evolution of collapsing clouds. The chemical model included a
primordial chemical network together with a description of dust evolution,
where the dust temperature was calculated by solving self-consistently the
thermal energy equilibrium equation (Equation 2.3).

We performed three sets of simulations, two at low resolution and one at
high resolution (Table 2.1). All simulations had an initial cloud mass of 1000
M�, number density of 105 cm−3, and temperature of 300K. We tested two
different metallicities (10−4Z� and 10−5Z�), and also the inclusion of small
amounts of turbulent and rotational energies.
We found in all simulations that dust can effectively cool the gas, for number
densities higher than 1011cm−3. An increase in metallicity implies a higher
dust-to-gas ratio, and consequently stronger cooling by dust. This is reflected
in a lower temperature of the dense gas in the higher metallicity simulation.

For the low resolution case, we tested the effect of adding turbulence and
rotation. These diminish the infall velocity, leading to different fluid elements
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undergoing different amounts of compressional heating. This lack of heating
allows the gas to reach a lower temperature.
We found that the transport of angular momentum to smaller scales lead to
the formation of a disk-like structure, which then fragmented into a number
of low mass objects.

We conclude that the dust is already an efficient coolant even at metallici-
ties as low as 10−5 or 10−4Z�, in agreement with previous works (Clark et al.
2008; Omukai et al. 2010; Schneider et al. 2002, 2006; Tsuribe & Omukai
2006, 2008). Our results support the idea that dust cooling can play an im-
portant role in the fragmentation of molecular clouds and the evolution of
the stellar IMF.

2.7 What about metal free clouds?

So far, we could observe that clouds with very low metallicity can fragment
and form low mass stars. At this point in our study, metal-free clouds were
believed to form only very massive stars and the questions was in which point
in metallicity, clouds would start to fragment and form low-mass objects. An
striking work changed the picture however. Clark et al. (2011a) showed that
even at zero metallicity, clouds can fragment.

Now the idea of a transition from no fragmentation at zero metallicity, and
some fragmentation for a small amount of metals has faded. The question
now is whether the fragmentation behavior varies at such low metallicities.
Thus, the follow up of this work will be to carry simulations of metal free
clouds as well as Z = 10−6Z�, and study the differences in the fragmentation
behavior.



Chapter 3

On the physics of the low
metallicity IMF

At this point of our research, new studies were done suggesting that there
could be low mass Pop. III stars (Clark et al. 2011a,b; Greif et al. 2011b,
2012). This changes the picture in the sense that the change in the mode
of star formation is from forming an IMF dominated by massive stars in the
Pop. III case, to a IMF that tends to yield stars with masses less than the
solar value. In addition to that, observational data have shown to require
a “top heavy” IMF to explain the characteristics of some Galactic globular
clusters (Marks et al. 2012; Kroupa et al. 2011), and also the high fraction
of extremely metal-poor stars that are C-rich (Suda et al. 2012).

Furthermore, Tsuribe & Omukai (2006, 2008) and Clark et al. (2008)
modeled fragmentation in very low metallicity clouds. By describing the
thermal evolution of the gas using effective equations of state derived from
the one-zone calculations, of Omukai et al. (2005), they showed that dust
cooling can indeed foster fragmentation. Such works ignore, however, thermal
inertia effects, which can yield too much fragmentation.

In Dopcke et al. (2011), we further improved upon previous treatments,
by calculation dust temperature self-consistently, and thus solving the full
thermal energy equation. There, we also included the effect of microwave
background (CMB) heating. We found that model clouds with metallicities
as low as 10−4 Z� or 10−5 Z� do indeed show evidence for dust cooling and
fragmentation, supporting the predictions of Tsuribe & Omukai (2006, 2008)
and Clark et al. (2008).

23
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3.1 Extending previous calculations to an wider

range of metallicities

In this part of our study, we simulate the evolution of star-forming clouds
for a wider range of metallicities (10−4, 10−5, 10−6 Z�, and 0), and study the
effect that this has on the mass function of the fragments that form. We also
investigate how properties such as cooling and heating rates, and number of
Bonnor-Ebert masses (Bonnor 1956; Ebert 1955) of the fragmenting clouds
vary with metallicity and whether there is any systematic change in behavior
with increasing metallicity.

3.2 Simulations

3.2.1 Numerical method

The calculations shown in this work are aimed to model the collapse of very
low-metallicity clouds. For that, we make use of a modified version of the
Gadget 2 (Springel 2005) smoothed particle hydrodynamics (SPH) code. In
order to advance the calculations later in the collapse, when densities become
very high, we make use of the sink particle approach (Bate et al. 1995b;
Jappsen et al. 2005). This enables us to go beyond the formation of the first
contracting protostar.

This sink particles are created when a minimum of 100 sink particles are
bound, collapsing, and within an accretion radius, hacc, which we take to be
1.0 AU. We set the threshold number density for sink particle creation is
5.0 × 1015cm−3, which is reached when the gas becomes optically thick and
further fragmentation is unlikely. For further discussion of the details of our
sink particle treatment, we refer the reader to Clark et al. (2011b).

As discussed e.g. by Omukai et al. (2005, 2010), the gas becomes optically
thick at densities around 1015 cm−3. Beyond this value, further fragmentation
is strongly suppressed and our choice of sink particle formation threshold
ensures that single sink particles represent individual protostars rather then
groups of objects (see also the discussion by Greif et al. 2012).

Furthermore, SPH with the smoothing we employ (i.e. the standard
SPH cubic spline smoothing) prevents fragmentation below the resolution
limit. As shown by many works (Bate & Burkert 1997; Whitworth 1998;
Hubber et al. 2006), SPH does not suffer from artificial fragmentation, at
the resolution limit if gravitational forces and pressure gradients are resolved
equally well.

We assume that the mean dust grain cross section is the same as for
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Milky Way dust and that the number density of dust grains is a factor Z/
Z� smaller than the Milky Way value (see Dopcke et al. 2011). To treat the
chemistry and thermal balance of the gas, we use the same approach as in
Clark et al. (2011b), with the inclusion of dust cooling. The Clark et al.
(2011b) chemical network and cooling function were designed for treating
primordial gas and do not include the chemistry of metals such as carbon or
oxygen, or the effects of cooling from these atoms, or molecules containing
them such as CO or H2O. We justify this approximation by noting that
previous studies of very low-metallicity gas (e.g. Omukai et al. 2005, 2010)
find that gas-phase metals have little influence on the thermal state of the
gas. Omukai et al. (2010) showed that H2O and OH are efficient coolants
at 108 < n < 1010cm−3 for their one-zone model. In their hydrodynamical
calculations, however, the collapse is faster, and the effect of H2O and OH
is not perceptible. Therefore we do not expect oxygen-bearing molecules to
have a noticeable effect on the thermal evolution of the gas.

For the metallicities and dust-to-gas ratios considered in this study, the
dominant sources of cooling are the standard primordial coolants (H2 bound-
bound emission and collision-induced emission) and energy transfer from the
gas to the dust.

Collisions between gas particles and dust grains can transfer energy from
the gas to the dust (if the gas temperature T is greater than the dust tem-
perature Tgr), or from the dust to the gas (if Tgr > T ). Full details of the
dust cooling treatment can be found in Dopcke et al. (2011).

3.2.2 Setup and Initial conditions

We performed a set of four simulations, with metallicities Z/Z� = 10−4, 10−5,
10−6, and the metal-free case. Each simulation used 40 million SPH particles,
and the total mass of the cloud was 1000M�. The initial number density was
taken to be 105 cm−3 and an initial temperature of 300 K. We also included
small amounts of rotational and turbulent energy, which were taken to be
2% for rotation and 10% for turbulence, when compared to the gravitational
potential energy.

The mass resolution is 2.5 × 10−3M�, which corresponds to 100 times
the SPH particle mass (see e.g. Bate & Burkert 1997). The redshift chosen
was z = 15, when the cosmic microwave background temperature was 43.6K.
The dust properties were taken from Goldsmith (2001), and the dust grain
opacities were calculated in the same fashion as in Banerjee et al. (2006). In
the calculations, the opacities vary linearly with Z, which means for instance
that for the Z/Z� = 10−4 calculations, the opacities were 10−4 times the
original values.
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3.3 Details of the thermal physics during the

collapse

Dust cooling is a consequence of inelastic gas-grain collisions, and thus the
energy transfer from gas to dust vanishes when they have the same tempera-
ture. We therefore expect the cooling to cease when the dust reaches the gas
temperature. In order to evaluate the effect of dust on the thermodynamic
evolution of the gas and verify this assumption, we plot in Figure 3.2, the
temperature and density for the various metallicities tested. We compare the
evolution of the dust and gas temperatures in the simulations, at the point
of time just before the formation of the first sink particle (see Table 3.1).
The dust temperature (shown in blue) varies from the CMB temperature in
the low density region to the gas temperature (shown in red) at much higher
densities.

After the gas reaches very high densities (n > 1015 g cm−3), the collapse
is hold by thermal and rotational energies. In order to predict the fragmenta-
tion behavior, we compare thermal and rotational energies with gravitational
energy in Figure 3.1.

We show the fraction of thermal energy compared to gravitational energy
(α ≡ Ethermal/Egrav) in the bottom panel of Figure 3.1. This fraction is
closely related to the evolution shown in Figure 3.3, which indicates that T
is higher for lower Z at the point where the gas fragments. The amount of
enclosed mass at the point where Ethermal balances Egrav (α = 1.0) varies with
Z. The highest value is ∼ 0.035M� for Z = 0, and the lowest is ∼ 0.0065M�
for Z = 10−4 Z�.

When we compare rotational with gravitational energy (β ≡ Erot/Egrav),
we observe that the balance is reached at Menc ≈ 0.015M� for Z = 10−6 Z�,
and one third of this value for the other Z.

The more interesting value for the enclosed mass is found when we take
into account both Erot and Ethermal to balance Egrav. The enclosed mass
when α + β = 1 represents the smallest value for a fragment in this type of
analysis. A comparison with the sink particles that formed later is shown in
Table 3.1.

Changes in metallicity influence the density at which dust cooling be-
comes efficient. For the Z = 10−4 Z� case, dust cooling begins to be efficient
at n ≈ 1011cm−3, while for Z = 10−5 Z�, the density where dust cooling
becomes efficient increases to n ≈ 1013cm−3. For the Z = 10−6 Z� case,
dust cooling becomes important for n & 3 × 1013 cm−3, preventing the gas
temperature from exceeding 1500 K. For comparison, in the metal-free case
the gas reaches temperatures of approximately 2000 K.
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Figure 3.1: Comparison between thermal, rotational and gravitational ener-
gies versus enclosed gas mass, for different Z. The values were calculated just
before the first sink was formed. The horizontal lines in the center of each
panel indicate when rotational, thermal, or both balance the gravitational
energy.
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The efficiency of the cooling is also expressed in the temperature drop at
high densities. The gas temperature decreases to roughly 400 K in the 10−5

Z� simulation, and 200 K in the Z = 10−4 Z� case. This temperature drop
significantly increases the number of Jeans masses present in the collapsing
region, making the gas unstable to fragmentation. The dust and the gas
temperatures couple for high densities, when the compressional heating starts
to dominate again over the dust cooling. The subsequent evolution of the
gas is close to adiabatic.

When we compare our results to the calculations of Omukai et al. (2010),
we find good agreement with their 1D hydrodynamical models, although we
expect some small difference due to effects of the turbulence and rotation
(see Dopcke et al. 2011) and also due to the use of different dust opacity
models.

3.4 Endless physical mechanisms that affects

star formation

3.4.1 Temperature

The thermal evolution of the gas during the collapse takes different paths
depending on the metallicity, as shown in the density-temperature diagram
(Figure 3.2). In order to explain this behavior, we take a closer look at the
cooling and heating processes involved. In Figure 3.3 we show the main cool-
ing and heating rates divided into four panels for the different metallicities.
These rates were calculated by averaging values of individual SPH particles
in one density bin, where the total density range was divided in 500 bins in
log space.

At densities below n ≈ 1010cm−3, dust cooling is unimportant in all of
the runs. At these densities, the dominant coolant is H2 line emission, while
the heating is dominated by compressional (pdV ) heating at n . 108cm−3,
and by three body H2 formation heating at higher densities.

At higher densities, dust cooling starts to play a more important role.
In the Z = 10−4Z� simulation, dust cooling exceeds pdV heating at n ≈
1010cm−3, although it does not exceed the H2 formation heating rate until n ≈
1011cm−3. Once this occurs, and dust cooling dominates, the gas temperature
drops sharply. In the Z = 10−5Z� simulation, on the other hand, dust
becomes the dominant coolant only at n ≈ 1013cm−3, and so the temperature
decrease happens later and is smaller. Finally, in the Z = 10−6Z� case, dust
cooling becomes competitive with pdV heating only at the very end of the
simulation, and so the effect on temperature evolution is less evident.
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Figure 3.2: Dependence of gas and dust temperatures on gas density for
metallicities 10−4, 10−5, and 10−6 and zero times the solar value, calculated
just before the first sink particle was formed (see Table 3.1). In red, we show
the gas temperature, and in blue the dust temperature. The dashed lines are
lines of constant Jeans mass.
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The other thermal processes play a minor role during the collapse. For
example, H2 dissociation cooling only becomes important in the runs with
Z = 10−6Z� and 0, and only for n > 1013cm−3. At very high densities
(n > 1014cm−3), H2 collision-induced emission (CIE) cooling also begins to
be important. For more details on H2 heating and cooling processes in this
very high density regime, we refer to Clark et al. (2011b).

3.4.2 Morphology

The transport of angular momentum to smaller scales during the collapse
leads to the formation of a dense disk-like structure, supported by rotation.
This disk then fragments into multiple objects.

Figure 3.4 shows the density structure of the gas immediately before the
formation of the first protostar. The top-left panel shows a density slice on
a scale comparable to the size of the initial gas distribution. The structure
is very filamentary and there are two main over-dense clumps in the center.
If we zoom in on one of the clumps, we see that its internal structure is also
filamentary. Observe that at large scales the gas cloud properties are the same
for all metallicities. Differences in the thermodynamic evolution appear only
at n & 1011 cm−3 (see Figure 3.2). As a consequence, we observe variations
in the cloud structure only in the high-density regions.

Once the conditions for sink particle creation are met (see Section 3.2.1),
they start to form in the highest density regions (Figure 3.6). Then, a disk
is built up in these regions, where fragmentation also occurs (Tohline 1980).
During further collapse, this dense region creates spiral structures. For Z
= 10−5 Z� and 10−4 Z�, density waves build up spiral structures, which
become locally gravitationally unstable and go into collapse. The formation
of binary systems by triple encounters (Binney & Tremaine 2008) transfers
kinetic energy to some sink particles, causing them to be ejected from the
high density region. For Z = 10−5 Z�, when the star formation efficiency
(SFE) is 0.5%, fragmentation has already occurred in a secondary dense
center, at a distance of ∼ 20 AU from the first dense region.

For Z = 10−6 Z� and 0, the formation of spiral structures is not observed.
In these two runs, star formation occurs mainly in the central clump.

3.4.3 Instability to gravitational collapse

One way to study the effect of dust cooling on the fragmentation behavior and
the final stellar IMF is to look at the changes in the number of Bonnor-Ebert
(MBE) masses contained in this central dense region. Using the definition
from Bromm et al. (2009),
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Figure 3.3: Cooling and heating rates versus number density for Z = 10−4,
10−5, 10−6 Z�, and zero. The values are calculated just before the first
sink formed. The lines labeled as ”C” indicate cooling, and ”H” is heating.
”Dust C”, ”H2 Line C”, ”H2 CIE” , and ”H2 Diss.” indicate dust grain
cooling, H2 line emission, collision-induced emission, and dissociation cooling,
respectively. ”H2 Form. H” and ”pdV H” are the H2 formation heating rate,
and compressive (pdV ) heating rate.
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Figure 3.4: Number density maps for a slice through the high density region
for Z = 10−4 Z� (top), 10−5 Z�, 10−6 Z�, and 0 (bottom). The image shows
a sequence of zooms in on the density structure in the gas immediately before
the formation of the first protostar.
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Figure 3.5: Enclosed gas mass divided by Bonnor-Ebert mass versus radius
for different metallicities. The values were calculated at the time just before
the first sink was formed and the center is taken to be the position of the
densest SPH particle.
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[Z/Z�] ST FT SFR Menc(αβ1) Mean Median N
(103yr) (yr) (M�/yr) (M�) (M�) (M�)

0 171.6 73 0.064 0.09 0.24 0.12 19
10−6 171.2 72 0.065 0.06 0.29 0.06 16
10−5 170.8 88 0.053 0.06 0.24 0.11 19
10−4 169.2 138 0.034 0.02 0.10 0.05 45

Table 3.1: Sink particle properties for the different Z at the point where
4.7 M� are accreted in the sinks. ”ST” (start time) is the time when sink
particles start to form. ”FT” (formation time), is the time taken to accrete
4.7 M� in the sinks. ”SFR” is the mean star formation rate. Menc(αβ1) is
the enclosed mass for α+ β = 1 (before sinks start to form, see section 3.4.4
and Figure 3.5). Mean and median are the final mean and median sink mass.
And ”N” is the number of sink particles.

MBE = 500M�

(
T

200K

)3/2 ( n

104cm−3

)−1/2

, (3.1)

for an atomic gas with temperature T and number density n, we have com-
puted the number of Bonnor-Ebert masses contained within a series of con-
centric radial spheres centered on the densest point in each of our four sim-
ulations. The results are shown in Figure 3.5.

At the beginning of the simulation, the cloud had ∼ 3 MBE. During
the collapse, the gas cools and reaches ∼ 6 MBE in all cases. Cooling and
heating are different depending on the metallicity, and this difference is seen
for distances smaller than ∼ 400 AU. The Z = 10−4 Z� case, for instance,
has twice the number of MBE for distances smaller than ∼ 10 AU, when
compared to the other cases. This will have direct consequences for the
fragment mass function as we will see in the next section.

3.4.4 Fragmentation

The simulations were stopped at a point in time when 4.7 M� of gas has
been accreted into the sink particles. This is sufficient to identify the two
fundamental modes of fragmentation discussed in Section 3.5.

Figure 3.7 shows the mass distribution of sink particles at that time. We
typically find sink masses below 1 M�, with somewhat smaller values in the
10−4 Z� case compared to the other cases. No sharp transition in fragmen-
tation behavior was found, but rather a smooth and complex interaction
between kinematic and thermodynamic properties of the cloud.
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Figure 3.6: Number density map showing a slice through the densest clump,
and the star formation efficiency (SFE) for Z = 10−4 Z� (bottom), 10−5

Z�, 10−6 Z�, and 0 (top). The box is 100AU x 100AU and the percentage
indicates the star formation efficiency, i.e. the total mass in the sinks divided
by the cloud mass (1000M�).



36CHAPTER 3. ON THE PHYSICS OF THE LOW METALLICITY IMF

Table 3.1 lists the main sink particle properties. It shows that the time
taken to form the first sink particle is slightly shorter for higher metallicities.
This shorter time is a consequence of the more efficient cooling by dust, which
decreases the thermal energy that was delaying the gravitational collapse. In
Table 3.1 we also observe that the star formation rate is lower for Z = 10−4

Z�. This is because star formation started at an earlier stage of the collapse,
when the mean density of the cloud was lower and there was less dense gas
available to form stars.

3.4.5 Star formation rates

3.4.6 The stellar mass distribution

To better understand whether the resulting protostellar cluster was affected
by varying the metallicity, we plot the final sink mass distribution in Figure
3.7. It shows that for the simulations with Z ≤ 10−5 Z�, the resulting sink
particle mass function is relatively flat. There are roughly equal numbers of
low-mass and high-mass stars, implying that most of the mass is to be found
in the high-mass objects. This mass function is consistent with those found
in other recent studies of fragmentation in metal-free gas (Greif et al. 2011b;
Smith et al. 2011). If the sink particle mass function provides a reliable guide
to the form of the final stellar IMF, it suggests that at these metallicities,
the IMF will be dominated by high-mass stars.

All of the histograms in Figure 3.7 have the lowest sink particle mass well
above the resolution limit of 0.0025M�. Note that in all cases, we are still
looking at the very early stages of star cluster evolution. As a consequence,
the sink particle masses in Figure 3.7 are not the same as the final protostellar
masses – there are many mechanisms that will affect the mass function,
such as continuing accretion, mergers between the newly formed protostars,
feedback from winds, jets and luminosity accretion.

3.5 Timescales

One way to explain the final mass distribution of the fragments is to look
at the timescales for mass accretion and fragmentation. The degree of grav-
itational instability inside a volume can be represented by the number of
Bonnor-Ebert masses contained in this volume. We can therefore estimate
the fragmentation timescale by computing the time taken for the central
dense region to accrete one Bonnor-Ebert mass. In other words, we have
tfrag ≡ MBE/Ṁ, where Ṁ is the accretion rate. This value is shown as a func-
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Figure 3.7: Sink particle mass function at the point when 4.7 M� of gas had
been accreted by the sink particles. The mass resolution of the simulations is
indicated by the vertical line. We also plot the sink mass function considering
the sink particles that could have merged due to collisions (see Section 3.5.3).



38CHAPTER 3. ON THE PHYSICS OF THE LOW METALLICITY IMF

tion of the enclosed gas mass in Figure 3.8, where the values are calculated
for particles in spherical shells, and the center is taken to be the densest
SPH particle. Ṁ is obtained by summing up the mass of the particles (mp)

inside a shell times their radial velocity (vr), Ṁ ≡
∑
shell

mpvr. This way of

estimating the expected mass accretion in the sink particles is motivated by
the results in Clark et al. (2011a, see Figure 3b). They demonstrate that the
mass accretion rate based on the radial mass infall profile is a good estimate
of that actually measured by the sink particles.

For comparison, we also plot the accretion timescale, here defined as the
time taken by the gas to accrete the mass enclosed by that radius, tacc ≡
Menc/Ṁ. When the fraction tfrag/tacc > 1, one expects that the gas enclosed
by this shell is going to be accreted faster than it can fragment, favoring high-
mass objects. Conversely, for tfrag/tacc < 1, the gas will fragment faster than
it can be accreted by the existing fragments, and the final mass distribution
is expected to have more low-mass objects. Note that as defined here, the
timescale on which new fragments form tfrag/tacc is the inverse of the quantity
Mgas/MBE plotted in Figure 3.5.

In Figure 3.8, the simulation with Z = 10−4 Z� has the lowest values
for tfrag/tacc, over a wide range of Menc. This indicates that more low-mass
fragments are expected to form in this case, leading to a steeper fragment
mass function.

Now we can compare the predicted values before sink formation started
with the final accretion and fragmentation timescales. These values are de-
signed to represent the characteristic timescales on which the mass histogram
changes: the fragmentation timescale (τfrag) is the time on which the number
of fragments change by a significant amount, while the accretion timescale
(τacc) represents the time on which the existing fragments grow in mass. We
therefore define τfrag ≡ n/ṅ, and τacc ≡M/Ṁ , where n is the number of sink
particles, and M is the total mass incorporated into sink particles.

Both timescales should increase over time, since the number of sink par-
ticles and the total mass also increase. This reflects the fact that it takes
longer to change the shape of the mass histogram in frequency when the
number of elements is higher, and in mass when the total mass is high. The
key point is that these timescales are related to the shape of the histogram.
If the timescale for accretion is shorter than the timescale for fragmentation,
the histogram will tend to be dominated by high-mass objects. Conversely,
if the fragmentation timescale is shorter than the accretion timescale, the
low-mass part will be populated before the objects can grow and occupy
higher mass bins. Therefore, a comparison between τacc and τfrag helps us to
understand the shape of the mass histogram.
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Figure 3.8: Timescales for fragmentation (top panel) and accretion (middle
panel), and also their ratio (bottom panel) according to the radius for the
metallicities tested. The values were calculated just before the first sink
particle was formed.
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Figure 3.9: Timescales for fragmentation and accretion for different metal-
licities calculated for the sink particles following Equations 3.2 and 3.3.
τfrag,merged refers to the values considering that sink particles can merge due
to collisions (see Section 3.5.3).

We calculate the average τacc and τfrag at each point in time. The value
for the mean τfrag and τacc is calculated by the time-weighed individual times
as in equations 3.2 and 3.3:

τfrag ≡
1

t

∑ 1

ṅi
∆t =

1

t

∑ ti
ni

∆t, (3.2)

τacc ≡
1

t

∑ 〈M〉
Ṁi

∆t =
1

t

∑ ti 〈M〉
Mi

∆t, (3.3)

where i refers to each snapshot of the simulation, and it varies from 2 to the
total number of snapshots. ni, Mi, ti, and t are the number of sink particles,
the total mass in sinks, the time at the snapshot i, and the total time of
sink particle formation in each simulation, respectively. 〈M〉 is the average
mass of a sink particle in the simulations including all metallicities. This
average mass (〈M〉) is used to make τacc in units of time, and comparable to
the accretion time. Other values were tried, such as the total average mass
for each metallicity. However, the accretion time was not affected consider-
ably. Thus, the comparison between accretion and fragmentation leads to
qualitatively equal results, independent of the value used to get the correct
dimension for τacc.
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Important to notice that τfrag,merging is calculated in the same way as τfrag,
with the difference that the number of sink particles (ni) is always lower or
equal to the non-merging case. That is why τfrag,merging has higher values
when compared to τfrag.

Figure 3.9 shows the average timescales for fragmentation and accretion
for different metallicities. We also plot the values considering the sink par-
ticles that could have merged due to collisions (see Section 3.5.3). These
results explain the difference in the sink particle mass distribution in Figure
3.7. For Z ≤ 10−5 Z�, the fragmentation time is always larger than the ac-
cretion time, indicating that the sink particles will accrete faster than they
can be generated, resulting in a flatter mass distribution. On the other hand,
when the fragmentation time is longer than the accretion time (for Z = 10−4

Z�), the gas fragments, rather than moving to the center and being accreted.
As a consequence, the low-mass end of the protostellar mass function grows
faster than the high-mass end, and the slope of the mass function steepens.
This behavior agrees well with the predictions from before fragmentation
started, shown in Figure 3.8.

Note that the values in Figure 3.8 were calculated before the formation of
the first sink particle, while the values in Figure 3.9 were calculated using the
sink particle properties. A comparison between them is useful to evaluate
whether the gas cloud properties from before star formation started could be
used to predict its star formation behavior. The trend in both figures is that
the fragmentation timescale is normally shorter than the accretion timescales
for Z = 10−4 Z�. From these results we conclude that the mass distribution
in Figure 3.7 can be explained by the timescales in Figure 3.9, in particular
the fact that the Z ≤ 10−5 Z� simulations have more high-mass objects. The
last finding is that the transition from Pop. III to Pop. II star formation
mode is not abrupt, in the sense that there is no metallicity bellow which
the gas cannot fragment. The transition is rather in the stellar initial mass
function, and gas clouds with Z . 10−5 Z� form a more flat IMF, while gas
clouds with Z & 10−4 Z� produce a cluster with more low-mass objects (see
also Clark et al. 2008).

3.5.1 The gravitational potential - sinks and gas

Another property of the star-forming cloud that we observed to vary in our
calculations is the spatial mass distribution. The dependence of the enclosed
gas and sink mass on the distance from the center of mass is shown in Figure
3.10. The Z = 0 case has almost all of the sink particle mass concentrated
within r < 8AU. The gas density for this case is also higher in this region,
when compared to the other metallicities, showing that the gas and sink
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Figure 3.10: Dependence of the enclosed gas and sink mass on the distance
from the center of mass, for the four simulations. The values were calculated
at a point when 4.7 M� of gas had been accreted.

particle mass densities follow each other. The mass in sink particles exceeds
the gas mass for small radii, being the most important component in the
gravitational potential. For r > 150 AU, the gas becomes the most massive
component, for all Z. Girichidis et al. (2012) also reported this behavior,
but in their case the sink particles already started to dominate the potential
below r ≈ 103 AU.

This higher concentration of gas and sinks at the center occurs because
for the Z = 0 case, the gas had higher temperatures in the central region. For
high temperatures, the criterion for gravitational instability requires higher
densities, which are achieved only very close to the center. As a consequence,
the sink particle formation criteria are met just for short distances from the
center.

Consequently, the dominance of sink particles mass in the gravitational
potential over the gas mass, for radii smaller than 150 AU, shows the im-
portance of treating gas and stars together in this sort of problem. It also
suggests that N-body effects, such as ejections and close encounters, should
play an important role in the formation of these dense star clusters, even in
the very earliest stages of their evolution (see Smith et al. 2011; Greif et al.
2012).
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3.5.2 Accretion

The mass accreted by the sink particles varies with the different metallici-
ties, and affects the final sink particle mass function. It also influences the
expected accretion luminosity. We did not take this process into account
during our calculations, but we can estimate its importance relative to other
thermal processes.

Figure 3.11: Time evolution of the mass, mass accretion rate, and accretion
luminosity for the four metallicities, for all sink particles combined.

In Figure 3.11 we present the accretion properties for the newborn stellar
systems. The top panel shows how the total mass in sinks evolve with time,
for different metallicities. The accretion rate varies from 0.02 to 0.17 M�
yr−1, and it is on average lower for the Z = 10−4 Z� case.
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In the bottom panel of Figure 3.11, we show the accretion luminosity
calculated by adding up all sink particle contributions, with the standard
equation,

Lacc =
GM∗Ṁ

R∗
, (3.4)

where Ṁ is the mass accretion rate by a protostar with mass M∗, and stellar
radius R∗. We calculate R∗ following Stahler et al. (1986) using

R∗ = 66.8

(
M∗
M�

)0.27
(

Ṁ

10−2M�yr−1

)0.41

R�. (3.5)

The accretion luminosity varies from few times 103 L� to around 50×103

L�, depending on metallicity. For Z ≤ 10−5 Z�, the accretion luminosity is
always over 104 L�. The Z = 10−4 Z� case has the lowest estimated accretion
luminosity, around four times lower than the other cases. The values found
for the accretion luminosity are similar to the ones found by Smith et al.
(2011) for Z = 0, where they argue that accretion luminosity could delay the
fragmentation, but not prevent it.

We can now compare this expected luminosity, and its consequent heat-
ing, to the heating processes in Figure 3.3. We make the assumption that
gas and dust are absorbing the radiation in the optically thin regime. This
overestimates the effects, and we obtain an upper limit for the accretion
luminosity heating,

Γacc = κP

(
Lacc
4πr2

)
erg s−1g−1 (3.6)

where ρg is the gas density, κP is the Planck mean opacity, and r is the
distance from the source. We also assume that heating occurs at ρ ≈
10−9g cm−3. With this assumption we can calculate the mean gas tem-
perature, and use the Planck mean opacity for the gas from Mayer & Duschl
(2005), for their fiducial Pop. III chemical composition. The Planck mean
opacity for the dust is calculated in the same way as in Dopcke et al. (2011).
Finally, the combined Planck mean opacity is the sum of gas and dust con-
tributions, κP ≡ κgas + κdust.

By considering the maximum accretion luminosity for each case, we get
that Γacc = 4.9, 0.9, 1.7, and 0.7 × 103(20AU/r)2erg s−1g−1, for Z = 10−4,
10−5, 10−6, and 0 Z�.

As these values are comparable to the other thermal processes at high
densities (see Figure 3.3), it would seem that accretion luminosity heating
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from the young protostars may have some effect on the way in the which the
gas behaves. However without doing the radiative transfer explicitly, it is
difficult to estimate how big this effect will be.

Although the amount of heating seems high, the dust cooling is a strong
function of temperature in this regime, and so it could be that dust tem-
peratures remain quite similar. One must also remember that the above
estimates do not take into account the extinction and reprocessing of the
radiation field that will occur in the optically thick region that surrounds
the protostar. However even a factor of 2 change in the dust temperature
will remove the dip in the ρ − T phase diagrams that we show in Figure
3.2, and thus remove the ability of the dust to set a new length-scale for
fragmentation.

3.5.3 Merging

Another effect that could change our results is the possibility of inelastic en-
counters between the protostars. Star formation in our simulation occurs at
very high densities, where inelastic encounters between the new born proto-
stars could occur. In similar conditions to the ones tested here, Smith et al.
(2011, 2012) show that the estimated stellar radius could be as large as ∼ 1
AU, a value comparable to the distances between the sink particles shown in
Figure 3.6. By not accounting for merging of such objects, we could be over-
estimating the final number of fragments, although we expect new protostars
to continue to form.

Since collisions may result in merging, we estimated this effect by com-
paring the sink particles distances and estimated radii. The stellar radii
were calculated following Equation 3.5. By considering that every collision
resulted in merging, we concluded that the number of merged objects is rela-
tively the same for all simulations (see Table 3.2). Also when we compare the
mode of star formation, the discrepancy on the mode of star formation for
the Z = 10−4Z� only becomes more evident. The particles that collided have
most often masses higher than 0.1M�, therefore the low-mass part of Figure
3.7 had not changed considerably. This means that the conclusions about
the mode of star formation in Section 3.5 are not strongly affected by merg-
ing. The simulation with Z = 10−4Z� remains with a more present-day-like
stellar mass distribution, even when merging is considered.

Also in Figure 3.9 we show the fragmentation time, when merging is con-
sidered. The important fact that the fragmentation time is shorter than
accretion timescale for Z = 10−4Z� is not affected by merging. The notice-
able change is that the ratio τfrag/τacc becomes shorter for the simulation
with Z = 0. This means that for this case, the overall fragmentation is
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Z/Z� Nam Nmerged Mean Coll. Mean
(M�/yr) (M�/yr)

0 14 5 0.34 0.65
10−6 11 5 0.43 0.81
10−5 12 7 0.39 0.53
10−4 38 7 0.13 0.38

Table 3.2: Sink particle properties considering that all collisions resulted on
merging. “Nam” is the remaining number of sink particles after merging,
“Nmerged is the number of those that could have merged. Note that Nam +
Nmerged recovers the number of sink particles (N) in Table 3.1. “Mean” refers
to the new mean sink particle mass, and “Coll. Mean” refers to the mean
mass of the particles that collided.

inhibited, and more high-mass objects will form.

3.6 Which physical mechanisms could be ig-

nored?

Our aim with these calculations is to study the importance of dust cooling for
fragmentation in high-redshift halos. To better understand star formation in
this environment, additional physical processes should be considered as well.

Particularly, the low number of sink particles (≈ 20) and the small SFE
(0.5%) do not permit to constrain the stellar IMF adequately. By running the
calculations until the SFE goes towards higher values, uncertainties involving
the fragments that formed during the simulations can be diminished. How-
ever, this does not appear to be computationally feasible with our current
approach.

Sufficiently far enough away from the strongest sources, the effect will
obviously drop to the point at which the physics in our current calculations
are applicable. However if we look to Figure 3.6, we see that most of the
fragmentation that we report is confined to a few tens of AU around the
central protostar, and as such, the effects of the accretion luminosity are
likely to change the picture that we present in this paper to some extent. We
hope to explore this effect in a future study.

Another aspect of our model that could be improved upon are the dust
opacities. The thermal evolution can be calculated more accurately if we
use dust opacities that better represent the values expected for very low
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metallicity environments. The dust opacity in our simulations correspond to
values calculated for the Milky Way and then scaled with metallicity. This
means that the opacity values for the Z = 10−4Z� case are 10−4 times the
dust opacity in the Milky Way. This approximation is probably not fully
correct, and the use of a more accurate model (e.g. Todini & Ferrara 2001;
Bianchi & Schneider 2007; Schneider et al. 2012; Nozawa et al. 2003, 2006)
can change the value of the cooling in the region where fragmentation occurs.
This change affects the local Jeans mass, and consequently the star formation
behavior.

Furthermore, the available models give the dust composition for different
scenarios in the early Universe, e.g. different supernovae progenitor masses
(Schneider et al. 2012), and the use of such models would add another variable
to the problem - the stellar population for the supernovae progenitors. One
reasonable approach is to test different scenarios and see how they would
affect the properties of the cluster of stars that forms. In this sense, the dust
composition is a problem in itself that should be addressed. Since cooling
affects the fragmentation behavior and mass accretion, a more realistic dust
model improves the accuracy with which we can model star formation at low
metallicities. We intend to address this issue in a future paper.

Finally, the inclusion of magnetic fields in the calculations could alter
the fragmentation picture as it is presented in this study. They can be
amplified during gravitational collapse (Schleicher et al. 2010a), generating
values strong enough to delay the collapse (Schleicher et al. 2009; Sur et al.
2010; Federrath et al. 2011b,a; Turk et al. 2012). Analytic amplification
values are calculated by Schober et al. (2012). From modeling present-day
star formation, we know that the presence of magnetic fields can decrease
the level of fragmentation, but cannot prevent it, for the expected saturation
levels of a few percent (Peters et al. 2011; Hennebelle et al. 2011).
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Chapter 4

A novel model for the stellar
IMF

Since the seminal work by Salpeter (Salpeter 1955), raising the hypothesis
of an initial mass function (IMF) enables astrophysicists to make enormous
advances in their research. The first conclusion was that the total mass of the
present stars is of the same order of magnitude as the total mass which was
once in the form of main-sequence stars. In other words, it enabled Salpeter
to infer the matter cycle in the ISM, and the role of the last stages of stellar
evolution. Also, with a law for the stellar mass distribution of stars one can
determine properties for the entire galaxy. Moreover, the IMF provides hints
on the chemical content of stellar clusters and galaxies, and the link between
the light from stars and the baryonic mass.

Observations have shown that the IMF is relatively constant over extreme
changes in the environment. Even for environments with variation in density,
pressure, metallicity by orders of magnitude, the median stellar mass remains
somehow constant (Bastian et al. 2010).

By assuming it to be time-independent, Miller & Scalo (1979) were able
to infer the IMF from the present-day mass function (PDMF). This was
constructed from the luminosity function, and involved several assumptions
(e.g. mass-luminosity relation, the distribution of stars perpendicular to the
galactic plane, non-main-sequence correction, and main-sequence brightening
correction). In this work, they extended the stellar mass distribution to an
wider range of masses, where it could be fitted with a half log-normal function
(in the low-mass part) plus a power-law (for the high-mass range).

With the model by Zinnecker (1984), it was possible to explain the log-
normal shape in the low-mass range. The physical description for building up
such a distribution required a hierarchical fragmentation, based on successive
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stages. After each stage, the fragment would have a fraction of the total
mass. Mathematically, each star has a mass corresponding to a successive
multiplication of the cloud mass:

M∗ = Mcl

n∏
i=1

(fi/2), (4.1)

where M∗ is the final stellar mass, Mcl is the initial cloud mass, fi denotes
the mass conversion factor, and n is the number of steps in the hierarchy.
For a cloud with Mcl = 104M�, the number of steps is approximately 5
(Bodenheimer 1978), this value is fixed for simplicity.

Then, such relation is divided in both sides by the average stellar mass:

〈M∗〉 = Mcl

5∏
i=1

(〈fi〉 /2), (4.2)

and the stellar mass in terms of the average stellar mass becomes:

M∗
〈M∗〉

=
5∏
i=1

fi
〈fi〉

. (4.3)

By taking the logarithm of both stellar mass and product operator, the
last becomes a summation:

ln
M∗
〈M∗〉

=
5∑
i=1

fi
〈fi〉

. (4.4)

Finally, by applying the Central Limit Theorem (Cramér 1946), the dis-
tribution is a Gaussian in log-mass.

ξ

[
ln

M∗
〈M∗〉

]
∝ exp

[
ln2(M∗/ 〈M∗〉)

2σ2

]
, (4.5)

with

σ =
1

N

N∑
j=1

5∑
i=1

ln2 f ji
〈fi〉

, (4.6)

where N is the total number of stars, and j refers to a particular star.
The model above accounts just for the low-mass part of the IMF. For

the high-mass part, Bonnell et al. (2001a) investigated whether accretion
in clusters could result in a power-law spectrum of stellar masses. They
assumed that the mass accretion rate for each star (Ṁ∗) depends on the
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local gas density (ρ), its velocity relative to the gas (Vrel) and the square of
the accretion radius (Racc):

Ṁ∗ = πρVrelR
2
acc. (4.7)

There are two regimes inside the cluster which dominate the gravitational
potential. When the gas component dominates, the accretion radius is given
by the tidal-lobe radius (Rtidal),

Rtidal ≈ 0.5

(
M∗
Menc

)1/3

R, (4.8)

where M∗ is the stellar mass, and Menc is the enclosed mass in the stellar
position R in the cluster.

When stars dominate the potential, the accretion radius is better de-
scribed by the Bondi-Hoyle formalism (Bondi & Hoyle 1944):

RBH =
2GM∗
V 2

rel + c2
s

, (4.9)

where RBH is the Bondi-Hoyle accretion radius, M∗ is the stellar mass, Vrel

refers to the relative velocity between the gas and the star, and cs is the local
sound speed.

This leads to clusters with a slope for the mass spectrum (γ) for the
low-mass stars, and a steeper value for the high mass stars:

dN ∝Mγ
∗ dM∗

{
γ = −1.5 if M∗ . 0.5M�

−2.5 > γ > −2.0 otherwise,
(4.10)

where N is the number of stars, and the Salpeter value for γ is −2.35.
Although the competitive accretion picture is consistent with mass segre-
gated clusters, it needs to assume an initial segregation in order to develop
a γ ≤ −2.

In Section 3.5 we showed that the characteristic time for fragmentation
and accretion vary with metallicity. This will most certainly have effects on
the stellar IMF: does a faster fragmentation affect the slope on the IMF high
mass range? Does it change the characteristic fragment mass? How similar
to the canonical IMF would be the cluster described in the previous chapter?

With the aim to answer such question, we developed a model that took
into account fragmentation and accretion. The share of the accreted mass be-
tween the stars was done based on the competitive accretion picture, however
the assumptions here were simpler. We did not assume any initial cluster,
nor mass segregation. The assumptions were just that a gas cloud fragments,
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and the new formed objects accrete mass. In this was, the ad hoc hypothesis
inconvenience was transferred to the free parameters in the model.

Hereafter, we will present a theoretical background, and also describe how
the model works. The aim is to examine how the IMF develops in a cluster
that is still growing, and understanding the parameters described in the next
sections will help on this task.

4.1 A simple view of the IMF

In this chapter we address such problem, with the goal of constructing a
consistent model of the IMF. Hereafter we will describe how the model works,
and how its parameters are related to physical quantities.

4.1.1 Jeans instability

In order to build a model for the distribution of stellar masses, one has to
consider what is the characteristic mass for the fragments. If one considers an
isothermal homogenous sphere, both the sound crossing time and the free-fall
time can be calculated.

tsound =
R

cs
(4.11)

tff =
1√
Gρ

, (4.12)

where tsound is the sound crossing time, tff is the free-fall time, R is the radius
of the sphere, cs is the local sound speed, and ρ refers to the gas density.

By making both to be equal, the time for the gas to respond to the
contraction, which would represent an increase in temperature, is the same
as the time for contraction. Instability occurs when the time for collapse
is shorter than the sound speed. With that, one can derive characteristic
length-scales (λJ) and masses (MJ) for the fragments:

λJ =
cs√
Gρ

(4.13)

MJ =
π

6

c3
s

G3/2ρ1/2
(4.14)

In reality, the situation is often more complicated. Normally the gas is
not isothermal during the collapse, nor is thermal energy the only energy that
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acts to prevent the collapse. For simplicity, we ignore here effects that change
the Jeans instability picture. Moreover, when the gas reaches the optically
thick regime (see Figure 2.1), radiation cannot scape. The further evolution
of the gas is adiabatic, and in this regime, fragmentation is unlikely. Thus, by
assuming that the characteristic mass of the collapsing fragments is a good
approximation for the stellar value, MJ represents for the characteristic mass
of the stars.

4.1.2 Mass accretion

In the competitive accretion picture (Bonnell et al. 2001b), the mode of
accretion plays a crucial role in determining the final stellar mass distribution.
For gas-dominated potentials, the accretion radius is given by the tidal-lobe
radius (Bonnell et al. 2001b), since the gravitational potential from de star
dominates gas inside the tidal lobe. This leads to a stellar mass accretion
rate (Ṁ∗) proportional to the stellar mass to the power 2/3:

Ṁ∗ ∝M2/3
∗ . (4.15)

Finally, the mass spectrum has the form dN ∝ M
−3/a
∗ dM∗, where a de-

pends on the gas density profile in the form ρ ∝ R−a. For stellar-dominated
potentials, however the accretion radius is given by the Bondi-Hoyle radius.
Once the gravitational potential from stars is dominant, the stars virialize
and their velocities become large. At this point, RBH becomes small when
compared to Rtidal, and it is a better description of the accretion radius Bon-
nell et al. (2001a). In this regime, the mass accretion rate is proportional to
the stellar mass to the power 2:

Ṁ∗ ∝M2
∗ . (4.16)

This leads to a mass spectrum of the form dN ∝M−γ
∗ dM∗, with γ between

-2 and -2.5. This shows that the mode of accretion by the stars plays an
important role in determining the mass spectrum. Moreover, the general
formula for mass accretion can be rewritten as Ṁ∗ ∝ Mα

∗ . This formalism
will be important to build up the model presented here.

Overall, the competitive accretion picture helps to understand how the
IMF is built up. The problems, however are that it requires an initial mass
segregation to develop a slope γ < −2 and that the low-mass range (M∗ <
0.3M�) is described just by a power-law of a single slope, while observational
studies show that this is not the case (see e.g. Chabrier 2003; Kroupa 2002).
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4.1.3 Fragmentation rates

The mode of fragmentation for gas clouds has been investigated in many
studies (e.g. Hoyle 1953; Ferrini et al. 1990; Stamatellos & Whitworth 2009;
Smith et al. 2009b; Clark et al. 2011a,b). Also, understanding the interplay
of fragmentation and accretion rates has shown to be essential in order to
model non-standard IMFs (Dopcke et al. 2012). The physical mechanism
behind variations in the fragmentation rates resides on the Jeans mass at
the point where the gas becomes optically thick (τ > 1), and no further
fragmentation is expected (Rees 1976; Silk 1977). Since the Jeans mass
depends on temperature and density,

ṀJ ∝ ρ−1/2T 3/2, (4.17)

it is important to have a self-consistent description of the thermal evolution
of the gas during the collapse. Furthermore, the ability of the gas to cool
depends on its chemical composition, thus with a model that includes the
most important chemical reactions, one can predict the level of fragmentation
of the gas.

4.1.4 Characteristic masses

Closely related to the fragmentation rate is the initial mass of the fragments.
By having a lower initial mass for the fragments, the fragmentation rate can
be enhanced when the mass of infalling gas is kept constant. In Jappsen et al.
(2005), the authors showed that the peak in the mass spectrum was related
to the position of an inflection point in the effective polytropic exponent (γeff

- not to be mistaken with the γ for the slope in the IMF). They found that
the density at which γeff changes from below unity to above unity selects a
characteristic mass scale.

Spherical collapse can occur for values of γeff < 4/3, but this kind of
collapse is not likely to lead to fragmentation, and the collapsing parts of
the gas tend to fall into the center of the gravitational potential well. High
fragmentation is more likely when many centers of collapse are formed, and
this is enhanced in thin filaments. In order to form thin filaments γeff < 1
is required (Larson 2005). It was also show by Peters et al. (2012) that
for γeff < 1, the formation of central virialized cores is suppressed. Also, the
flow develops strong shocks, which create extended filaments, thus increasing
fragmentation.

This way of thinking tells us that once the equation of state (EOS) for the
gas is determined, the most likely value for the stellar mass is also defined.
The remaining questions would be then just regarding the shape of the IMF.
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4.2 Model

In this section we discuss the main ingredients for the model. Our analysis
will rely on four main quantities: initial stellar mass (Mi), total cluster mass
accretion (Ṁ), fragmentation rate (ṅ), and the accretion power α, for Ṁ∗ ∝
Mα
∗ . Note that M refers to the total cluster mass, while M∗ refers to an

individual star. With these four properties, we can model the stellar mass
distribution in time. In this section, we describe the algorithm for building
the IMF.

A new-born object (o1) has an initial mass Mi. After a time

tfrag ≡
1

ṅ
, (4.18)

a new fragment is formed (o2). Note that the time-step in this model is
simply tfrag. At this point the mass accreted by o1 is related to Ṁ by

Macc,1 =
Ṁ

ṅ
−Mi, (4.19)

where Macc,1 is the mass accreted by o1. In this way, the mass accreted by
the cluster is

∆M = Ṁtfrag =
Ṁ

ṅ
= Macc,1 +Mi. (4.20)

When the third object is formed (o3), it is necessary to share the total
accreted mass between the previous objects. To do this, we make use of the
α parameter. The accretion by a general object oi (Macc,i) is defined as

Macc,i =

(
Ṁ

ṅ
−Mi

)
Mα

i∑n
j=1M

α
j

. (4.21)

where n is the number o stars in the cluster.

4.2.1 Building up a stellar cluster

Suppose that we have a cluster with N stars, with masses M1, M2, ..., MN .
At time t = 0, we have:

M1 = M2 = ... = MN = 0

After the clock starts to run, the stars start to form. Here, time is in units
of fragmentation time (tfrag), thus at t = 0, there is no fragment, at t = 1
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there is one fragment, and so on. In this simple model, we assume that the
fragmentation time remains constant as the cluster builds up. At time t = 1,
we therefore have

M1 = Mi

M2 = ... = MN = 0,

where Mi is the initial mass for all the stars, while at t = 2 we have

M2 = Mi

M1 = M1 +Macc

Macc = Ṁ∆t−Mi

M1 = M1 + Ṁ∆t−Mi

M3 = ... = MN = 0

Note that in order to make the total mass increase equal to Ṁ∆t, the ac-
cretion by M1 has to be subtracted by Mi, which is the initial mass for M2.
Also, M1 = M1 +Macc indicates that M1 is accreting Macc.

At time t = 3, we have

M3 = Mi

M4 = ... = MN = 0

Macc = Ṁ∆t−Mi

M2 = M2+?

M1 = M1+?

At this point, we have pre-existing stars, and we need to make a decision
about how they are going to accrete. One possibility is that they accrete
equal amounts of mass:

M1 = M1 +Macc/2

M2 = M2 +Macc/2

Another possibility is that they accrete proportionally to their masses:
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M1 = M1 +
MaccM1

M1 +M2

M2 = M2 +
MaccM2

M1 +M2

In our model, accretion is slightly more general then this. We assume
that they accrete proportionally to their masses to the power α.

M1 = M1 +
MaccM

α
1

Mα
1 +Mα

2

M2 = M2 +
MaccM

α
2

Mα
1 +Mα

2

Now we can generalize for a given star k at the time t = j. The masses
for the stars depends on their previous state at t = j − 1. Thus for a star
k with mass Mk,t=j−1 at t = j − 1, the new mass of the star Mk,t=j at time
t = j:

Mk,t=j =


Mk,t=j−1 +Macc,k for k < j

Mi for k = j
0 for k > j

(4.22)

Macc,k =
Macc(Mk,t=j−1)α∑j−1
q=1(Mq,t=j−1)α

(4.23)

Macc = Ṁ∆t−Mi (4.24)

Note that the summation in Equation 4.23 takes into account all the stars
with masses higher than zero at t = j − 1. Also, when α = 0, the stars
accrete equal amounts of mass, while for α = 1, they accrete proportionally
to their masses.

4.3 Comparison with previous models

In this section, we defend why this model improves upon previous descrip-
tions for the IMF. The search for the leading mechanisms that shape the
IMF has been the goal of many previous studies (e.g. Bonnell et al. 2001b;
Hennebelle & Chabrier 2008; Krumholz 2011). Typically, these works invoke
dominant physical processes, that determines the shape of the IMF.

For Bonnell et al. (2001b), the dominant process is the mode of accretion
by the stars. They use an adapted tidal-lobe accretion which includes the
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effect of companion stars. Such process leads to two power-laws for the stellar
mass distribution, with slopes described in Equation 4.10.

Invoking a different process, but using a similar sequence of thoughts, the
Hennebelle & Chabrier (2008) model assumes that the first structures in the
cluster are built due to supersonic turbulence. This will lead to the formation
of structures following a Press-Schechter theory of structure formation (Press
& Schechter 1974). Thermal and non-thermal processes lead finally to a
logarithmic dependance of the masses. All things considered, the final shape
of the IMF is log-normal, with the power-low for high masses dependent on
the Mach number.

The Krumholz (2011) model describes the characteristic mass of stars
from fundamental constants, with small contribution from environmental
conditions. It relies on the process of radiative feedback from stars, which
regulates the fragmentation of the gas.

The overall trend of such models is the attempt to explain the stellar IMF
by relying on no more than a couple of physical processes. This method is
tempting because it reduces the complexity of the problem. However, when
there are many theories that can explain the same observable, which one do
you choose? The uncertainties related to the observables are large enough
that it makes it hard to exclude any of the models.

The special feature of the model described here is that it does not as-
sume any main physical driving mechanism to shape the IMF. Accretion is
described in a mathematical fashion with two limits, one where all fragments
accrete evenly, and the other where the most massive accrete at a higher
rate. This is done by using a free parameter (α) which can be modified in
accordance to the physics of the problem. The other main free parameter is
the average stellar mass (〈M∗〉), which is also dependent on the physics of
the model. This model is more adequate to an expected variability of the
IMF with the environmental conditions.

In particular, in order to explain the results of hydrodynamical models
for star formation in the early Universe, which typically produce a higher
characteristic mass (e.g. Hosokawa et al. 2011; Clark et al. 2011a; Greif et al.
2011b), a model that accommodate such variability is more robust. In ad-
dition to that, observational data require a top-heavy IMF to explain the
characteristics of some Galactic globular clusters (Marks et al. 2012; Kroupa
et al. 2011), and also the high fraction of extremely metal-poor stars that are
C-rich (Suda et al. 2012). Thus making necessary for the models to describe
not just the formation of the present day IMF, but also other shapes that it
might develop.

Nevertheless, models should not only explain simulations and observa-
tions, but should also have predictive power.
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The model presented in this work aims to explain simulations and obser-
vations, and can also constrain cluster formation parameters, such as age,
number of stars, and the total cluster mass. The model is also able to make
predictions on the future of star forming regions, and speculate on the IMF
for different modes of star formation. In the next sections we present exam-
ples of that.

4.4 Comparison with simulations

One possible application for this model is to simplify the analysis of simula-
tions. In simulations, many time dependent physical parameters are treated.
In this model, there are just five free parameters (Ṁ , ṅ, Mi, α, and time),
which will later be reduced to three (〈M〉, α, and time, see Section 4.5).

Likewise, the outcome of simulations for star formation can produce such
values. Sink particles are widely used, and they have all properties that could
be translated to mass, mass accretion, initial mass, etc. This means that
numerical studies could use this model as a tool to simplify their analysis.
The simulations in Dopcke et al. (2012) are described in Chapter 4. In
Girichidis et al. (2012), they test the influence of initial conditions for star
formation. More specifically, how star formation is affected by different:
density profile, mode of turbulence, and random seeds for the turbulence.
The advantage of using their results is the fact that the number of sink
particles is typically more than five times the one we achieved in Dopcke
et al. (2012). Thus, the statistical properties for the calculated parameters
are better stablished. We sill now apply our model to simulations from
Dopcke et al. (2012) and Girichidis et al. (2012).

4.4.1 Simulations of star formation at low metallicity

We used the results of the simulations of low metallicity star formation pre-
sented in Dopcke et al. (2012) and in Chapter 4 to derive values for α, ṅ, Ṁ
and Mi as follows:

α – Alpha is the slope for the linear regression of equation:

log Ṁ = β + α logM (4.25)

where M and Ṁ refer to the sink particle mass and mass accretion, respec-
tively, at a given snapshot.

Each snapshot thus gives a value for the slope α and the intercept β. The
regression was calculated for each snapshot (≈ 1/year).
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Figure 4.1: Gaussian fit for α and its 66% highest probability density interval
(HDI), for Z = 10−4, 10−5, 10−6Z�, and zero. The values presented here are
based on the simulations in Dopcke et al. (2012)

The values for α fluctuate over time, and in order to apply the model to
the simulations, we will use the most likely value, as well as values slightly
below and above. With that, we can understand which are the values and
their variations that affect most the IMF calculated with the model. The
gaussian fits for the distribution of values of α for various metallicities is
presented in Figure 4.1. There we show a 66% highest probability density
interval (HDI). The extremes of this interval and the most likely value will
be used later to calculate modeled IMFs and compared these with the IMF
from the simulations (see Figure 4.9).

ṅ – ṅ is the fragmentation rate, which is calculated by taking the number
of fragments and dividing by the time since the first fragment formed. A
gaussian fit for the distribution of values calculated in various snapshots is
shown in Figure 4.2
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Figure 4.2: Gaussian fit for the fragmentations rate and its 66% highest
probability density interval (HDI), for Z = 10−4, 10−5, 10−6Z�, and zero.
The values presented here are based on the simulations in Dopcke et al.
(2012).
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Figure 4.3: Gaussian fit for the mass accretion rate and its 66% highest
probability density interval (HDI), for Z = 10−4, 10−5, 10−6Z�, and zero.
The values presented here are based on the simulations in Dopcke et al.
(2012).

Ṁ – Ṁ is the mass accretion rate, which is calculated as the change in
the total mass in sink particles divided by the time since the first fragment
formed. This value was calculated for various snapshots, and fits for their
distributions are shown in Figure 4.3.

Mi – Mi is the initial mass for the stars in the model and to obtain such
value from the simulations, we use the initial sink particle mass. Note that
this value is affected by resolution, since the minimum mass for the sink
particles is 100 SPH particles, which is solar values gives 2.5 × 10−3M�.
After forming, the sink particles accretes the gas around its Jeans radius,
thus setting Mi ≈ MJ at the point in density where the sink particles form.
That explains why Mi is lower for Z = 10−4Z� than the value for the other
metallicities (see Figure 4.4). For Z = 10−4Z�, the temperature (and thus
MJ) is considerably lower at the point in density where the sink particles
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Figure 4.4: Gaussian fit for the initial sink mass and its 66% highest prob-
ability density interval (HDI), for Z = 10−4, 10−5, 10−6Z�, and zero. The
values presented here are based on the simulations in Dopcke et al. (2012).

form. Moreover, the sink particles do not accrete the gas in their Jeans radius
instantaneously, and the value that we obtain for Mi will also depend on the
point in time where it is calculated. Although Mi is considerably biased by
these effects, variations in Mi have shown not to affect the high-mass part of
the modeled IMF (see Figures 4.9 and 4.13).

4.4.2 Correlations

Here we present a graph showing the correlation between the various prop-
erties studied above (Figure 4.5).

It is important to notice here that there are correlations that simply
result from the input data and the ones relevant to the model. The good
correlation between time (t) and total mass (M) just indicates that over
time the total mass in sink particles increases. A perfect correlation (full
circle) would indicate constant mass accretion. More interesting, however,
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Figure 4.5: Correlations between the sink particles properties. Blue indicates
correlation and red anti-correlation. The filling of the circles indicate the
level of correlation, which is also emphasized the the darkness of the colors.
The dark blue in the total mass (M) and time (t) indicates high correlation.
The squares in the lower part of the plot also represent graphically those
correlations. Positive correlations have stripes from bottom-left to top-right
and are shown in blue, while negative correlations have stripes from top-left
to bottom-right and are shown in red. The color scheme is the same for the
stripes and the circles.
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are the correlations that might indicate that some parameters in the model
are correlated. A high degree of correlation between one or more parameters
would allow the total number of parameters to be reduced, thus making the
model simpler. A “perfect model” would have the lowest number of totally
independent (incorrelated) parameters.

The first feature to notice is the lack of correlation between α and any
other parameter. Second, the fragmentation rate has two noticeable corre-
lated properties. The mass accretion rate responds naturally to the frag-
mentation, since every time fragmentation happens, the total mass in sink
particles increases. The counterintuitive feature is that the total mass is anti-
correlated with the fragmentation rates. As we have seen in Chapter 3, over
time the central regions of our simulated systems become dominated by sink
particles, leaving little gas available for fragmentation. Also, it is important
to notice that the fragmentation rate increases with metallicity. This is the
mechanism that explains the difference in the sink mass distribution favoring
lower mass objects for higher metallicities (see also Chapter 3, Section 3.4).

Third, the mass accretion rate is anti-correlated with time, which means
that it decreases over time. This means that inflow of gas mass towards the
center of the potential well is not yet self-regulated. At the end of the sim-
ulations examined here, just 0.5% of the gas has been accreted onto sinks,
and it is very unlikely that the accretion has ceased. Also the mass accretion
rate is anti-correlated to the metallicity. For higher metallicities two phe-
nomena are fundamental to shape the IMF, the higher fragmentation, and
lower accretion.

Fourth, the initial mass is highly anti-correlated with time, which means
that over time the initial mass decreases. This happens because there are
objects in the central of the potential well that are accreting. This prevents
fragmentation from occurring in the densest gas, meaning that most of the
later fragmentation occurs in the accreting disk around the central cluster.
Less gas is available here, and hence the masses of the new-born fragments are
smaller. A weaker correlation is related to the total mass in sinks, which is
another way to see the relation to time, since the total mass in sinks increases
with time in the accreting cluster. Finally, the initial mass is smaller for
higher metallicities, which shows that the Jeans mass is smaller for higher
metallicities.

From this analysis, we see that Ṁ and ṅ are not independent. We can
therefore further improve the model in this case by merging both parameters
in one. Namely, by dividing Ṁ by ṅ, we obtain the average mass 〈M〉,
Ṁ/ṅ ≡ 〈M〉. This is a good substitute, because it can also be obtained
in both simulations and observations. Moreover, 〈M〉 can be related to the
Jeans mass the the point of fragmentation. By reducing the number of free
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parameters, it will be easier to understand the most important features of
the model and the science it aims to reproduce (i.e. the IMF).

4.4.3 Analysis of simulations using this model

In order to get a better understanding of the simulations, we analyze them
by running models for the IMF. The parameters for the model are acquired
from the simulations, where we use the most frequent value and the borders
of the 66% HDI (see Section 4.4). First, we set the total mass in the cluster
to be the same as in the simulation. This will later be changed, however
allowing us to predict what would happen if the cluster continue to evolve
with the same parameters, but for a longer time.

By running the model with the parameters taken from the simulation,
we can calculate a modeled IMF. This can be compared with the one from
the simulation (see Figures 4.6 to 4.9). There, it can be seen that the model
recovers qualitatively the mass distribution. Moreover, it is also possible to
evaluate the effects of changing some parameters. For instance, varying Mi

(lowest panel) only influences the MF for objects with M < 10−2M�, but
leaves the majority of it unaltered. This is easy to understand, as most of
the objects in the mass function have masses M �Mi.

The analysis of the simulated cluster using this model is an interesting
test of the model, but due to the low number of objects (n < 45), further
conclusions could not be derived. However, the adaptability of the model
enables us to predict the future development of the cluster, by assuming
that the key parameters remain constant. Here, we wuppose that the cluster
reached 1000M�. With this assumption, we are neglecting feedback effects
from the assembling cluster on the infalling gas. The result of such model is
shown in Figure 4.10.

The IMF that results from evolving the cluster in this fashion shows
that the expected slope for the high-mass end of the IMF is very close to
the Salpeter (1955) one. More interesting however, is that the slope for the
higher metallicity is steeper than the others. Important to notice here is that
the cut-off in mass might play an important role in the stellar distribution.
Equally important is the average stellar mass, which is a parameter more
essential to the distribution of masses than the slope for the high-mass part.

Furthermore, this model introduces a new capability, which is to compare
individual mass accretion rates. The distribution of stars predicted by the
model can be compared with the distribution measured in the simulations.
We performed such a comparison and the result is shown in Figure 4.11.

From this comparison, we can learn a few things from the model. Since
it uses a constant accretion rate, some differences between model and simu-
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Figure 4.6: Comparison of the model IMF with that found in the Z = 0
simulation from Dopcke et al. (2012). The lines marked as “mean” refer to
the model that used the mean value for the variables α, ṅ, Ṁ , and Mi. The
lines marked with +/− refer to models that used the mean values of the other
variable, but for that specific variable, the value used was the upper/lower
value of the 66% HDI (see Section 4.4).
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Figure 4.7: Same as figure 4.6, but for Z = 10−6Z�.
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Figure 4.8: Same as figure 4.6, but for Z = 10−5Z�.
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Figure 4.9: Same as figure 4.6, but for Z = 10−4Z�.
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Figure 4.10: Predicted IMF at the point where the total cluster mass is 1000
M�. The parameters for the models are α = 0.7 and Mi = 0.01M�. For ṅ
and Ṁ , we used the average values from simulations. Note that by assuming
that the parameters do not vary from their initial values, we are assuming
that stellar feedback does not have a strong effect on the cluster assembly.
We opted for a constant value for α to make the comparison easier. This can
be justified from the wide variance in α (see Figure 4.1. Also, the parameter
Mi was set constant because the shape of the IMF showed to be insensitive
to this parameter.
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Figure 4.11: Comparison between model and simulations for the simulation
with Z = 10−4Z�. In the top panel, we show the total mass accretion rate.
In the middle panes, we plot individual and total (for the cluster) mass for
the sink particles in the simulation. For the bottom panel, the same is done,
but for the model.
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lation are expected. Firstly, the most massive object has considerable more
mass (three times) in the model. Also, the formation of sink particles is
more episodic, in the sense that they do not form in a constant rate, as in
the model, but rather a few sink particles are formed in a short period of
time, and there are long periods without sink particle formation (e.g. from
year 65 to 98).

Figure 4.11 shows considerable differences in individual accretions be-
tween model and simulations. This can also explain the differences in the
mass distributions (Figures 4.6 to 4.9). Further improvements in the model,
such as inclusion episodic accretion, and possible starvation of some objets,
might be required to better recover results from simulations.

4.4.4 Simulations of present-day star formation

We also tested our model using the simulations of present-day star formation
performed by Girichidis et al. (2012). Our procedure here was the same as in
the section 4.4.1, with the exception of the parameter α, that was set to be
[α−, 〈α〉 , α+] = [0.1, 0.3, 0.5]. These values were chosen because they fitted
better the final sink particle mass distribution. We just show one plot (ṅ) of
the parameters for simplicity (Figure 4.12).

With the values from the median and the extremes from the 66% HDI,
the cluster was reproduced using this model. The results were compared
with those from the simulations in figure 4.13. These simulations work bet-
ter for testing the model, because they achieved a higher number of sink
particles. Here the model fitted better the distribution from the simulations.
For α = 0.5, the object with mass of approximately one solar mass could
also be recovered, but the gap between ∼ 0.3M� and ∼ 1.0M� could not be
reproduced. Overall, the model could reproduce well the distribution from
the simulation.

4.5 IMF in young stellar clusters

In this section, we will apply the model to observations of the Orion Nebula
Cluster (ONC) by Da Rio et al. (2012). They observed the ONC over a large
field of view (& 30′× 30′), using colors from deep photometry in the I band,
and also two filters at λ ∼ 753 and 770 nm. These observations were obtained
with the Wide Field Imager (WFI) on the 2.2 m MPG/ESO telescope at La
Silla. The observation provide us with the number of stars (1600), the total
mass of the cluster (103M�), and the approximate age (2 × 106 yr). The
parameters that remain free in the model are the initial fragment mass and
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Figure 4.12: Gaussian fit for the fragmentations rate and its 66% highest
probability density interval (HDI), for different mixtures of turbulent modes,
random seeds, and density profile. The meaning for the acronyms of the runs
are described in Girichidis et al. (2012), where the first part of the name
indicates the density profile (BE for Bonnor-Ebert, and PL15 for ρ ∝ r−1.5),
the letter in the middle refers to the turbulent mode (“c” for compressive,
“s” for solenoidal and “m” for a natural mix of both), and the number at the
end is the random seed for the turbulence.
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Figure 4.13: As figure 4.9, but for simulations of present-day star formation,
from Girichidis et al. (2012). The particular example shown here is for their
BE-mix-1, where the density distribution was that of a Bonnor-Ebert sphere,
a mix of solenoidal and compressive modes was used for the turbulent forcing,
and random seed number 1 was used to initiate the turbulence.
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the accretion index α.
Firstly we address the influence of the initial mass in recovering the ob-

served IMF. For that, we test whether varying the initial mass influences the
predicted shape of the IMF. Many values were tested, but no strong influence
was found. This can be seen in bottom panel of Figure 4.14.

Nevertheless, when we vary the accretion power α, the IMF shape changes
more considerably (see middle panel in Figure 4.14). For a constant α (0.6),
it was not possible to recover the peak in the distribution. Also, in this
case the distribution is more spread, and values from 10−1.8M� to 1M� have
similar numbers.

When we allow α to vary in time, however, we can find very different
results. For the case that α varies from 0 (on the beginning t = 0) to 1(on
the end t = 2× 106 yr), the IMF assumes an interesting shape, with a peak
in very low-masses and another at masses higher than 1M�. Conversely, for
the case that α varies from 1(at t = 0) to 0(at t = 2 × 106 yr), we get the
distribution that better agree with the observation. For α = 0, all stars
accrete at the same rate, independent of their masses. On the other hand,
for α = 1, they will accrete proportional to their masses.

The model does not explain, however, why it is needed that α varies from 1
to 0 in order to recover the observations. In the competitive accretion picture,
both stellar and gas dominated potentials have α > 1. One possibility would
be to assume that the objects accrete in a gas dominated potential with a
density profile ρ ∝ R−a, with a a < 4/3 (see Bonnell et al. 2001b, equation
15).

Finally, the top panel shows the effect of varying the average stellar mass.
For that, we keep the total mass constant at MT = 103M�, and vary the
number of stars, accordingly. This was done more as an exercise, since we
know the true value from the observations. The results however could be
used to predict an IMF that fits in the picture of a top/bottom-heavy IMF
to explain observations (Marks et al. 2012; Kroupa et al. 2011; Suda et al.
2012, see Section 4.3).

From this analysis we conclude that the model can indeed reproduce the
IMF of young stellar clusters. However the necessity to vary α could not be
explained in physical therms, and more studies to address the variability of
α are required.
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Figure 4.14: Comparison between this model and the stellar IMF calculated
from observations for the ONC. The bottom panel shows the effect of varying
the initial mass. The middle panes shows the influence of varying the accre-
tion power α, and the top for the average stellar mass. The assumed age is age
= 2×10−6 yr, the total mass is MT = 103M�, the number of stars is the same
as in the observations N∗ = 1600 stars. For the top panel, we vary the average
mass, and therefore the number of stars accordingly. For the bottom panel,
α is set to 0, and the initial mass varies in Mi = 10−[[4.5,1.7],[1.7,4.5],[1.7,1.7]]M�,
from t = 0 to t = 106 yr. The three solid lines indicate the IMF calculated
assuming Baraffe et al. (1998) black and blue, where the last includes stars
located above the 1 Myr isochrone. The orange solid line denotes D’Antona
& Mazzitelli (1998) models.
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Chapter 5

Conclusion and outlook

In this thesis we have addressed the question of what are the physical mech-
anisms that shape the stellar initial mass function at very low metallicities.
For this purpose we performed numerical simulations to follow the thermo-
dynamical and chemical evolution of collapsing clouds. Also, we developed
a new semi-analytical model that recovers the stellar mass distributions for
simulations and observations.

The simulations were done with an extended version of the Gadget 2 SPH
code, with a chemical model that included a primordial chemical network
together with a description of dust evolution, where the dust temperature
was calculated by solving self-consistently the thermal energy equilibrium
equation (Equation 2.3).

Moreover, we performed a set of eight simulations, two at low resolution
and four at high resolution (Table 2.1). All simulations had an initial cloud
mass of 1000 M�, number density of 105 cm−3, and temperature of 300K.
We tested four different metallicities (10−4, 10−5, 10−6Z�, and metal-free),
and also the inclusion of small amounts of turbulent and rotational energies.

Also, we found that dust can cool the gas, for number densities higher
than 1011, 1012, and 3 × 1013cm−3 for Z = 10−4, 10−5, and 10−6 Z�, re-
spectively. Higher metallicity implies larger dust-to-gas fraction, and conse-
quently stronger cooling. Therefore, the fragmentation behavior of the gas
depends on the metallicity, and higher metallicities lead to a faster collapse.

For example, the characteristic fragment mass was lower for Z = 10−4

Z�, since a lower temperature reduces the Bonnor-Ebert masses at the point
where the gas undergoes fragmentation. This also implies a lower ratio of
fragmentation and accretion time, tfrag/tacc, which will lead to a mass function
dominated by low-mass objects. For Z ≤ 10−5 Z�, fragmentation and accre-
tion timescales are comparable, and the resulting mass spectrum is rather
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flat, with roughly equal numbers of stars in each mass bin.
For the low resolution case, we tested the effect of adding turbulence and

rotation. These diminish the infall velocity, leading to different fluid elements
undergoing different amounts of compressional heating. This lack of heating
allows the gas to reach a lower temperature. We found that the transport
of angular momentum to smaller scales lead to the formation of a disk-like
structure, which then fragmented into a number of low mass objects.

In addition to that, dust cooling appears to be insufficient to change the
stellar mass distribution for the Z = 10−5 and 10−6 Z� cases, when compared
with the metal-free case. This can be seen in the sink particle mass function
(Figure 3.7), which shows that the Z ≤ 10−5 Z� cases do not appear to be
fundamentally different.

Therefore, we conclude that the dust is not an efficient coolant at metal-
licities below or equal to Zcrit = 10−5Z�, in the sense that it cannot change
the fragmentation behavior for these metallicities. Our results support the
idea that low-mass fragments can form in the absence of metals, and clouds
with Z . Zcrit will form a cluster with a flat IMF.

As for the new model for the stellar IMF, we have shown that it can
recover results from simulations and observations. The model included a
simple prescription to build up the IMF. We started by making use of five
free parameters, but after the analysis, it became clear that two of those
could be lost. On the end, the model required only three free parameters
(〈M〉, α, and time). Moreover, we did not have to make any assumption on
the dominant physical mechanism which shape the IMF, making the model
suitable to many environments, where the IMF could possibly change. This
represents an improvement upon previous models, since they were restricted
to the canonical IMF.

With such model, we were able to improve upon the analysis in our pre-
vious works, by making predictions on the future of the stellar mass distri-
bution in simulations. Results from simulations could be simply recovered
by assuming the average values for the model parameters, which were calcu-
lated from the simulations. With this model, it was also possible to compare
individual and total mass accretion for the simulations.

Pursuing this further, to recover the observed IMF for the Orion Nebulae
Cluster, it was necessary to vary the parameter α from 1 (in the beginning
of star formation) to 0 (at the end). This means that, if one assumes that
the cluster formation could be represented by the model, the accretion must
have varied from a mode where the most massive stars accrete more, to a
mode where all stars accrete evenly. Finally, we found that the resultant
stellar mass distribution is highly dependent on the characteristic mass of
the cluster, and the mode of accretion. This means that not all values for
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parameters on the model would lead to a canonical (log-normal plus power-
law) shaped IMF.

In conclusion, the physical mechanisms that shape the stellar IMF at very
low metallicity are the ones that determine the characteristic mass and the
mode of star formation. With the simulations, we were able to determine
that the thermodynamical evolution of the gas during the collapse can set the
characteristic mass of stars. In particular, dust cooling can change such value,
thus also changing the IMF. Nevertheless, the mode of accretion, represented
by the parameter α in the model, was not affected by the parameters in the
simulation (see Figure 4.1), and more studies are required.
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Hennebelle, P., Commerçon, B., Joos, M., et al. 2011, A&A, 528, A72

Hollenbach, D. & McKee, C. F. 1979, ApJS, 41, 555

Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H. W. 2011, Science, 334,
1250

Hoyle, F. 1953, ApJ, 118, 513

Hubber, D. A., Goodwin, S. P., & Whitworth, A. P. 2006, A&A, 450, 881

Jappsen, A.-K., Klessen, R. S., Glover, S. C. O., & Mac Low, M.-M. 2009a,
ApJ, 696, 1065

Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., & Mac Low, M.-M.
2005, A&A, 435, 611

Jappsen, A.-K., Mac Low, M.-M., Glover, S. C. O., Klessen, R. S., & Kit-
sionas, S. 2009b, ApJ, 694, 1161

Jeans, J. H. 1902, Royal Society of London Philosophical Transactions Series
A, 199, 1

Johnson, J. L. & Khochfar, S. 2011, MNRAS, 413, 1184

Kroupa, P. 2002, Science, 295, 82

Kroupa, P., Weidner, C., Pflamm-Altenburg, J., et al. 2011, ArXiv e-prints

Krumholz, M. R. 2011, ApJ, 743, 110

Lai, D. K., Bolte, M., Johnson, J. A., et al. 2008, ApJ, 681, 1524

Larson, R. B. 2005, MNRAS, 359, 211

Latif, M. A., Schleicher, D. R. G., & Spaans, M. 2012, A&A, 540, A101

Lin, D. N. C. & Papaloizou, J. 1985, in Protostars and Planets II, ed. D. C.
Black & M. S. Matthews, 981–1072

Marks, M., Kroupa, P., Dabringhausen, J., & Pawlowski, M. S. 2012, MN-
RAS, 422, 2246

Mayer, M. & Duschl, W. J. 2005, MNRAS, 358, 614



BIBLIOGRAPHY 87

Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513

Nozawa, T., Kozasa, T., & Habe, A. 2006, ApJ, 648, 435

Nozawa, T., Kozasa, T., Umeda, H., Maeda, K., & Nomoto, K. 2003, ApJ,
598, 785

Omukai, K. 2000, ApJ, 534, 809

Omukai, K., Hosokawa, T., & Yoshida, N. 2010, ApJ, 722, 1793

Omukai, K., Tsuribe, T., Schneider, R., & Ferrara, A. 2005, ApJ, 626, 627

O’Shea, B. W. & Norman, M. L. 2007, ApJ, 654, 66

Peters, T., Banerjee, R., Klessen, R. S., & Mac Low, M.-M. 2011, ApJ, 729,
72

Peters, T., Schleicher, D. R. G., Klessen, R. S., et al. 2012, ApJ, 760, L28

Pollack, J. B., Hollenbach, D., Beckwith, S., et al. 1994, ApJ, 421, 615

Press, W. H. & Schechter, P. 1974, ApJ, 187, 425

Price, D. J. & Federrath, C. 2010, MNRAS, 406, 1659

Reed, D. S., Bower, R., Frenk, C. S., et al. 2005, MNRAS, 363, 393

Rees, M. J. 1976, MNRAS, 176, 483

Salpeter, E. E. 1955, ApJ, 121, 161

Santoro, F. & Shull, J. M. 2006, ApJ, 643, 26

Schleicher, D. R. G., Banerjee, R., & Klessen, R. S. 2008, Phys. Rev. D, 78,
083005

Schleicher, D. R. G., Banerjee, R., Sur, S., et al. 2010a, A&A, 522, A115

Schleicher, D. R. G., Galli, D., Glover, S. C. O., et al. 2009, ApJ, 703, 1096

Schleicher, D. R. G., Spaans, M., & Glover, S. C. O. 2010b, ApJ, 712, L69

Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. 2002, ApJ, 571, 30

Schneider, R. & Omukai, K. 2010, MNRAS, 402, 429



88 BIBLIOGRAPHY

Schneider, R., Omukai, K., Bianchi, S., & Valiante, R. 2012, MNRAS, 419,
1566

Schneider, R., Omukai, K., Inoue, A. K., & Ferrara, A. 2006, MNRAS, 369,
1437

Schober, J., Schleicher, D., Federrath, C., Klessen, R., & Banerjee, R. 2012,
Phys. Rev. E, 85, 026303

Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003,
A&A, 410, 611

Silk, J. 1977, ApJ, 214, 152

Smith, B. D. & Sigurdsson, S. 2007, ApJ, 661, L5

Smith, B. D., Turk, M. J., Sigurdsson, S., O’Shea, B. W., & Norman, M. L.
2009a, ApJ, 691, 441

Smith, R. J., Clark, P. C., & Bonnell, I. A. 2009b, MNRAS, 396, 830

Smith, R. J., Glover, S. C. O., Clark, P. C., Greif, T., & Klessen, R. S. 2011,
MNRAS, 414, 3633

Smith, R. J., Hosokawa, T., Omukai, K., Glover, S. C. O., & Klessen, R. S.
2012, MNRAS, 424, 457

Springel, V. 2005, MNRAS, 364, 1105

Stahler, S. W., Palla, F., & Salpeter, E. E. 1986, ApJ, 302, 590

Stamatellos, D. & Whitworth, A. P. 2009, MNRAS, 392, 413

Stamatellos, D., Whitworth, A. P., Bisbas, T., & Goodwin, S. 2007, A&A,
475, 37

Suda, T., Komiya, Y., Aoki, W., et al. 2012, in Astronomical Society of
the Pacific Conference Series, Vol. 458, Galactic Archaeology: Near-Field
Cosmology and the Formation of the Milky Way, ed. W. Aoki, M. Ishigaki,
T. Suda, T. Tsujimoto, & N. Arimoto, 65

Sur, S., Schleicher, D. R. G., Banerjee, R., Federrath, C., & Klessen, R. S.
2010, ApJ, 721, L134

Tafelmeyer, M., Jablonka, P., Hill, V., et al. 2010, A&A, 524, A58



Todini, P. & Ferrara, A. 2001, MNRAS, 325, 726

Tohline, J. E. 1980, ApJ, 239, 417

Tsuribe, T. & Omukai, K. 2006, ApJ, 642, L61

Tsuribe, T. & Omukai, K. 2008, ApJ, 676, L45

Turk, M. J., Oishi, J. S., Abel, T., & Bryan, G. L. 2012, ApJ, 745, 154

Whitworth, A. P. 1998, MNRAS, 296, 442

Wise, J. H. & Abel, T. 2007, ApJ, 665, 899

Yoshida, N., Omukai, K., & Hernquist, L. 2008, Science, 321, 669

Zinnecker, H. 1984, MNRAS, 210, 43

89



90



Acknowledgments

First and foremost I would like to express my sincere gratitude for the guid-
ance of my supervisor Prof. Ralf Klessen. It is with immense gratitude that I
acknowledge the support and help of my co-advisors Simon Glover and Paul
Clark. I should also extend my gratitude to Prof. Cornelis Petrus Dullemond,
who participated in my thesis committee and contributed with important ad-
vices. For their most valuable contribution in refereeing this thesis, I would
like to thank Prof. Matthias Bartelmann, Prof. Eva K. Grebel, and Prof.
Andrea V. Macciò.

This thesis would not have been possible without the help of several
individuals who in one way or another contributed in the preparation and
completion of this study. For his advises as a friend and colleague, I would like
to express my gratitude to Rahul Shetty. Milica Micic, for her friendship. I
am indebted to my many friends who supported me, specially Faviola Molina,
Lukas Konstandin, and Paola Pinilla. I would like to extend this thanks
to all my colleagues at ITA, specially Philipp Girichidis, Daniel Seifried,
Robi Banerjee, Richard Allison, Christian Baczynski, Jayanta Dutta, Mei
Sasaki, Jennifer Schober, Rowan Smith, Laszlo Szucs, and Ana Valente. Prof.
Dominik Schleicher, for his support in the latest stages of the PhD. Secretary
Anna Zacheus, for her support on understanding German bureaucracy. I
would like to acknowledge the teaching from all professors at Heidelberg
University.

I owe my deepest gratitude to Pilar, to whom I dedicate this thesis, for
her love. This thesis would not have been possible without the unconditional
support and love of my parents Edgar and Helena. My brother Jonas, for
his support and friendship. My friends Denise Rocha Gonçalves, Fernando
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