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Zusammenfassung

Die folgende Arbeit befasst sich mit dem Einfluss der Anfangsbedingun-
gen auf die Sternentstehung im heutigen Universum. Mit Hilfe numerischer
Simulationen wird der gravitative Kollaps dichter Molekülwolken und die
resultierende Entstehung von protostellaren Objekten untersucht. Es wird
analysiert, wie sich Variationen der anfänglichen Turbulenz sowie der Dichte-
verteilung des Gases während der Kontraktion auf wesentliche Kenndaten der
Sternentstehung auswirken. Dazu gehören die Morphologie der kollabieren-
den Wolke, die Entstehungszeit sowie der -ort der Sterne, die energetische
Entwicklung der Wolke, die Bildung von Sternhaufen sowie deren interne
Struktur, das Akkretionsverhalten und die Massenverteilung der Sterne. Die
Morphologie der Wolke sowie die Anzahl der Sterne zeigen eine besondere
Empfindlichkeit gegenüber dem anfänglichen Dichteprofil und der Art der
Turbulenz. Die Ergebnisse reichen von unveränderten Dichtestrukturen und
einem einzigen Stern bis hin zu stark deformierten Wolken mit hunderten
von Sternen und lokal entkoppelten Sternhaufen. Einen leichten systemati-
schen Einfluss der Anfangskonfiguration findet sich in der internen Struktur
der Sternhaufen. Bei der Akkretionsrate im Inneren dieser Sternhaufen zeigt
sich hingegen ein sehr universelles Bild, nahezu unabhängig von den Anfangs-
bedingungen. Ähnliches lässt sich in Bezug auf die dynamische Entwicklung
der Sternhaufen sagen. Die hier vorgestellten Rechnungen wurden mit Hilfe
des gitterbasierten Codes Flash der Universität Chicago durchgeführt.

Abstract

This thesis investigates the impact of the initial conditions on present-day
star formation. Using numerical simulations, we follow the gravitational col-
lapse of dense molecular clouds under different initial turbulent motions and
initial density distributions. Our analysis focuses on the morphology of the
cloud, the time and location of the formation of stars, the energetics during
the collapse, the formation of clusters including their internal structure, their
accretion behaviour as well as their mass distribution. The morphology of
the cloud and the total number of stars are strongly influenced by the initial
type of turbulence and the initial density profile. The results range from al-
most unperturbed cores with a single star to strongly filamentary cores with
hundreds of stars in disconnected clusters. The internal structure of proto-
stellar clusters is systematically but not significantly influenced by the initial
conditions. Concerning the accretion rates as well as the dynamical inter-
actions of stars within the clusters, we observe a fairly uniform behaviour,
not reflecting the large variations in the initial conditions. The simulations



presented in this thesis were performed using the grid-based code Flash,
developed mainly at the University of Chicago.
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Chapter 1

Introduction

1.1 Motivation

Stars play an important role in astrophysics. On the one hand, they are
used as tracers to investigate the dynamics and infer masses and other prop-
erties in distant galaxies. On the other hand, they actively influence their
local environment with mechanical and radiative feedback as well as the
long-term chemical evolution of the universe by fusing hydrogen to heav-
ier elements and redistributing them into the evolutionary cycle via winds
and supernovae. Most effects from stars like winds, radiation, and chemi-
cal enrichment strongly depend on the stellar mass, which emphasises the
importance of the distribution function of stellar masses on different scales
and over time. Observationally, there is clear evidence for a universal mass
distribution in the local universe, which seems to break only for very extreme
conditions, e.g., close to the Galactic centre. Theoretically, this universality
is not fully understood. The question, to what extend the stars form with a
particular mass in the first place or gain their mass via accretion processes
can not be answered conclusively. In particular, the formation of high-mass
stars comprises major uncertainties.

In order to understand and quantify the impact of stars on their imme-
diate and remote environment via different individual processes, we need to
strongly improve the understanding of the formation mode of stars under
certain circumstances. We need to pin down, what physical processes abet
or retard the formation of stars, change the mass distribution within a stel-
lar cluster, determine the feedback from stars, and trigger or suppress the
formation of subsequent stars in the neighbourhood of star-forming regions.
The formation process of stars is strongly influenced by the temperature of
the gas in the cloud, the dynamical state, the chemical composition, and
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2 CHAPTER 1. INTRODUCTION

many other parameters, i.e., star formation strongly depends on the initial
conditions provided by the environment. Unfortunately, the early stages of
star formation that could betray the initial conditions of the cloud immedi-
ately before the collapse are difficult to observe. The gas is very dense and
opaque to visible light, so many details of the initial conditions are hidden.

1.2 The formation of stars

The formation of stars viewed from a large-scale perspective like the entire
galaxy with billions of stars seems to be a relatively simple problem and
can indeed be described empirically by relatively few key parameters like
the stellar initial mass function. In contrast, a closer look at the actual
formation process involves a huge variety of different physical processes acting
on different spatial and dynamical ranges. The formation of stars covers more
than 10 order of magnitude in size from giant molecular clouds (100 pc)
down to the stellar radius (106 km), 13 orders of magnitude in time from
the dynamical time of a giant molecular cloud (106 yr) down to minutes or
seconds for chemical reactions and radiative processes, roughly 20 orders of
magnitude in density from the diffuse gas with ρ ∼ 102 − 103 cm−3 up to
ρ ∼ 1022 cm−3, and similar ranges for various kinds of energies. These ranges
are extremely challenging to cover at once. Therefore, the investigation of
star formation processes is split into several parts and reduced to the most
relevant physical interactions for the scale under consideration.

1.2.1 From dissipative to collisionless systems

In a galactic context, the formation of stars is a by-product of dynamical
interactions of diffuse gas in the interstellar medium and the resulting grav-
itational instability that leads to a collapse on different scales. The complex
interplay between various mechanical, thermal, and chemical processes can
be abstracted by the transition from highly dissipative interactions to a col-
lisionless system. Initially the gas in the interstellar medium is diffuse with
very small mean free paths of the atoms and molecules relative to the spa-
tial extend of the gas cloud. Consequently, collisions and large scale relative
motions between clouds result in collisions of the atoms and a conversion of
ordered kinetic motions into random thermal motions and the gas heats up.
If the cloud is optically thin, this thermal energy can be radiated away which
allows the cloud to cool. Due to the highly inelastic and dissipative process,
the initial bulk kinetic energy of the cloud is converted into entropy and is
therefore irreversibly lost.
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The onset of gravitational instabilities lead to the formation of local con-
densations and locally collapsing regions, in which the gas is compressed into
small cores. The details of this collapse depend on the properties of the
area in question as well as on many individual physical processes during the
different stages of the collapse. Overall, the collapse of a cloud changes the
system from a volume filling one to a very sparse ensemble of relatively com-
pact objects whose collisions get less and less frequent. Eventually, the final
ensemble of stars has mean free paths that exceed its spatial extent by far,
which turns it into a collisionless system.

This transition between opposite global properties is independent of the
detailed properties of the collapsed objects. The newly formed system of
compact objects will be collisionless regardless of, e.g., the mass distribution
or the radiative feedback properties. Of course, the contraction from gas to
stars, which ignite nuclear fusion and make a separate contribution to the
thermodynamics and the heat balance, changes the details of the collapse
and the formation time scale. But it can not maintain the overall dissipative
character of the system.

1.2.2 The dynamics of star forming regions

The collapse of a cloud and the change from a gaseous structure to a conglom-
eration of compact objects generally happens far from quiescence. Collisions
of clouds, shear flows, and various kinds of thermal and dynamical instabili-
ties result in an environment with turbulent motions and a complex structure.
First collapsing condensations constitute the seeds for the formation of stars.
During the strong gravitational interactions, these initial seeds significantly
gain mass via accretion of the surrounding gas. The mass of the object is the
main parameter that controls the further evolution of the star itself as well
as the impact on the surroundings. Understanding the accretion behaviour
and the resulting distribution of masses in an ensemble of stars is therefore
crucial to understand the long term evolution of the system. In order to
emphasise the importance of the stellar mass, the following sections present
important physical processes that strongly depend on the stellar mass.

1.2.3 Stellar interiors and nuclear fusion

Although stars with different masses have significantly different evolutionary
tracks, all stars start their life as a star by igniting nuclear fusion of hydrogen
(1H) into helium (4He) in their core, once gravitational contraction and the
resulting compression lead to sufficiently dense and hot conditions (tempera-
ture T & a few million degrees, density ρ of order of 1−100 g cm−3). The two
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main ways how to convert hydrogen into helium are the proton-proton (pp)
chains and the carbon-nitrogen-oxygen (CNO) cycles. For the most part,
the first process is a simple sequence starting with single protons and fusing
them gradually to a helium nucleus. The second process uses C, N, and O as
catalysts to convert 1H to 4He. Depending on which process is the dominant
one, the released energy

ε = ε0 ρ
λ T ν (1.1)

differs significantly for the pp chain (λ = 1, ν ≈ 4) and the CNO cycle
(λ = 1, ν ≈ 15). This strongly influences the fusion rate and finally the
total time scale over which the star can maintain the fusion process before
the fuel is exhausted. For stars up to roughly a solar mass, the pp chain is
dominant, more massive stars burn their fuel via the CNO cycle. Overall,
this means that the mass of the star that leads to the compressional heating
in the first place is the most important parameter for the energy conversion
and the total nuclear fusion time scale.

1.2.4 Stellar feedback

Once stars form, they influence their surroundings thermally and dynami-
cally in almost all evolutionary stages. During their formation, magnetically
driven jets and outflows collimate accreted material and feed it back into the
interstellar medium with high velocities, inducing turbulent motions in the
directions of the flow. Having entered the main sequence phase, the radiation
emitted from the atmosphere heats the surrounding gas in a mostly spher-
ically symmetric manner. Similarly, winds that are expelled from the star
via radiation dynamically interact with the environment and, in addition,
reduce the stellar mass over its life time, strongly dependent on the initial
stellar mass. At the end of a star’s life, massive stars undergo a supernova
explosion, which both thermally and dynamically alter the environmental
conditions.

Jets and outflows

During the formation of stars, rotating cores collapse while conserving an-
gular momentum. This leads to the formation of a centrifugally supported
disc with sizes of a few hundred AU (Andrews and Williams, 2007; Kitamura
et al., 2002). The contraction of the system, coupled with angular momen-
tum transport and mass accretion drives powerful winds and jet-like outflows
with observed velocities of v & 100 km s−1 (Shepherd and Churchwell, 1996;
Arnett, 1996; Beuther et al., 2002; Wu et al., 2004). These outflows are
likely to be driven by magnetic fields (Blandford and Payne, 1982; Pudritz
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and Norman, 1983; Spruit, 1996; Pudritz, 2004) rather than by radiation
(Lada, 1985).

Radiation

An important feedback mechanism from protostars and stars is radiative
feedback that heats or even ionises the surrounding medium (see, e.g., review
by McKee and Ostriker, 2007). During the early phases of star formation, the
majority of radiation originates from the conversion of potential to thermal
energy during the accretion phase. Once a star starts to burn and reaches
a mass of ∼ 8M�, the radiation that diffuses from the burning core to the
envelop starts to dominate over accretion effects.

During the star formation process in large and dense clouds with complex
interior structure, the first stars can heat the immediate surrounding gas
and may prevent it from undergoing gravitational collapse (For details, see
chapter 2.1.3). This means that the first stars in a cluster influence the
subsequent formation of other stars in their neighbourhood, in particular in
the case of high-mass stars (see, e.g., Yorke and Sonnhalter, 2002; Krumholz
et al., 2007; Peters et al., 2010a). The amount of radiated energy from the
stellar surface depends on the energy conversion via accretion in the early
phases of star formation and via nuclear fusion in the core of a star at a later
stage. For both processes, the mass of the star is a crucial parameter.

In addition to the heating effect on the surrounding gas, the radiation
pressure from high-mass stars may be high enough to prevent gas from being
accreted onto the star (see review by, e.g., Zinnecker and Yorke, 2007). The
luminosity in this case exceeds the Eddington limit, which corresponds to
the balance of gravitational attraction and radiative expulsion. A spheri-
cally symmetric analysis therefore sets upper limits on the mass of an accret-
ing star. However, in dynamical models and simulations the limits can be
bypassed by radiation shielding and funneled accretion flows onto the star.

Winds

During their entire life stars expel electrons and atoms from their surface,
known as stellar winds. For small stars like our sun, the ejected particles
are mostly electrons and protons and almost no heavy elements. The low
radiation pressure and low surface temperature of low-mass stars do not allow
heavy elements to escape. In contrast, O-B stars have a significantly higher
surface temperature and radiation pressure and can eject heavier elements
like nitrogen and oxygen (Castor et al., 1975). Whereas the total mass of low-
mass stars is not significantly affected by stellar winds, high-mass stars can
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lose a remarkable fraction of their initial mass (see, e.g., Chiosi and Maeder,
1986; Meynet et al., 1994). Apart from the consequences for the further
stellar evolution, the large amount of ejected material provides mechanical
energy to blow bubbles into the interstellar medium and sweep up material
for potential subsequent star formation as well as chemical enrichment that
alters the chemical processes in the surrounding area. In particular carbon
and oxygen undergo important chemical reactions for star formation.

Supernovae

Depending on the initial mass of the star, the stellar fate also differs remark-
ably (e.g., Iben, 1967; Hansen et al., 2004). Whereas most low-mass stars
end their lives quietly, the more massive stars (M & 8M�) eventually un-
dergo a core collapse and explode in a gigantic supernova explosion (see, e.g.,
Heger et al., 2003). During the burning of nuclear fuel, the numerous hydro-
gen atoms are fused to large nuclei – mostly iron nuclei in a stable nuclear
burning. The total number of nuclei reduces during this phase significantly
which leads to a loss in stabilising pressure against gravitational forces in the
centre of a star. This goes along with a further contraction of the central
region of the star until the core can not supply enough stabilising pressure
and collapses. The remaining material can then ignite an unstable thermonu-
clear ignition of outer layers which disrupts the star and ejects thermal as
well as mechanical feedback into the surrounding medium. This in turn has
a strong impact on the subsequent formation of stars in the immediate sur-
rounding. Whereas regions close to the supernova are likely to be disrupted
entirely, the expanding shock wave may also sweep up enough material for
a new cycle of star formation. Perhaps the most important contributions
of supernovae are the injected turbulence, determining the dynamics of new
star-forming regions, and the chemical enrichment, influencing the thermal
properties of the gas. As turbulence is an important aspect of star formation
it is discussed in detail in chapter 3. In contrast to stellar winds that mostly
eject light nuclei into the interstellar medium, supernovae supply their envi-
ronment with all heavy elements. These elements cover both the ones that
form during the stellar phase in thermonuclear fusion, i.e., elements up to
iron, as well as heavier elements that form via pyconuclear reactions during
the explosion. Consequently, star formation in the immediate proximity to
a supernova proceeds differently than in an low-metallicity environment.
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1.2.5 Stellar masses

All together, an equally simple but significant key property of a star is its
mass. A complex combination of differently massive collapsing areas and
further accretion processes onto the first forming cores finally shapes the
distribution function of stellar masses. The mass function obtained from ob-
servations shows an astonishingly uniform shape in the present-day universe.
For most regions, the so-called initial mass function (IMF), φ, of stars can
be described by a piece-wise defined power-law distribution. The first person
to derive an IMF was Salpeter (1955). He fitted the observational data for
stars with masses ranging from 0.4− 10M� with a power-law function

φ(M) dM ∝M−2.35 dM. (1.2)

Today, stars with lower masses than 0.4M� can be observed, which show a
significant departure from the Salpeter equation. The IMF is usually fitted
with different power-laws for three main mass ranges,

φ(M) dM ∝M−2.3 dM : M & 0.5M� (1.3)

φ(M) dM ∝M−1.3 dM : 0.5M� &M & 0.08M� (1.4)

φ(M) dM ∝M−0.3 dM : 0.08M� &M & 0.01M�, (1.5)

where the Salpeter slope still holds for high masses. The above fits for the
IMF are only one popular possibility. Many models have been developed
to explain the details of the distribution in different mass regimes. For a
discussion on the shape of the IMF, see the review by Bastian et al. (2010).

Although the IMF shows universality in many regions of the present-day
universe, its shape is expected to differ perceptibly in the early universe. The
lack of heavy elements and the resulting less efficient cooling possibilities of
the interstellar medium is likely to affect the IMF in favour of more massive
stars. As this epoch of star formation is inaccessible observationally, there
are only theoretical models for the IMF in the early universe. Due to large
uncertainties in the thermal and dynamical processes of low-metallicity gas,
no conclusive shape for the IMF of the first stars has been established so far.

1.3 The sites of contemporary star formation

Stars form in the densest parts of molecular clouds. These clouds are con-
centrated in the disc of galaxies, in particular in the spiral arms. Examples
of star-forming regions in the Milky Way are Taurus, Orion, W3, and W49.
Most stars if not all form in a clustered environment rather than in isolation
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(e.g., Lada and Lada, 2003). Even among observed field stars there is a de-
cisive fraction that is likely to originate from a cluster. However, the term
cluster in this context is hard to define. Some stars form in small ensembles
of only 10, other clusters count as many as 107 members. An additional
complication arises from the complex substructure in clusters. Nonetheless,
in both observations and simulations of star-forming regions, only very few
stars form in complete isolation.

One special type of star-forming regions are OB associations, named after
the significant number of O and B stars they contain. They are unbound,
which allows them to grow in size over time, contain 103 − 105 stars, and
have sizes of 10− 200 pc. Their formation is linked to star formation in large
molecular cloud complexes like Orion, Upper Scorpius and Upper Centaurus-
Lupus. After the most massive stars in an OB association have burned out,
the area is largely dispersed due to the strong impact of the massive stars
on their environment and hard to discern. Most OB associations can be
subdivided into smaller groups, of which the youngest star-forming regions
are the most embedded areas, surrounded by a dense, opaque cloud of gas.
For electromagnetic waves up to wave lengths in near and mid infrared, the
clouds are opaque, which justifies their name infrared dark clouds (see, e.g.,
review by Bergin and Tafalla, 2007).

1.3.1 Properties of molecular clouds

Molecular clouds have size of a few tens of parsecs and contain up to 105

solar masses of gas. Observations reveal that their structure is filamentary
and that the medium in the cloud is turbulent with supersonic velocities (rms
Mach numbers ofM = 5− 20, Zuckerman and Evans (1974)). These clouds
are cold with temperatures of the order of 10 K. With an average num-
ber density of 100 cm−3 and a low temperature, the gas is mainly molecular
rather than in an atomic phase. This leads to a difficulty in the visibility
of the processes in the cloud. The H2 molecule, which is by far the most
abundant one, does not have a dipole moment and the rotational and vi-
brational modes of H2 are too energetic to be excited by collisions in this
cold environment. Therefore, the clouds are dark. Observations of the inte-
rior structure are only possible via other tracer molecules like CO, NH3 or
HCN. As the abundances of these molecules are sensitive to the environment
and the dynamics of the cloud, and the opacity can vary strongly within the
cloud, observations of the interior of molecular clouds are challenging. A
more robust tracer for observations is dust because the gas-to-dust ratio of
about 100 seems to be roughly constant throughout the cloud (Lilley, 1955;
Predehl and Schmitt, 1995). As dust extinction measurements are indepen-
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Table 1.1: Key properties of dark clouds, clumps, and cores

Clouds Clumps Cores
Mass (M�) 103 − 104 50− 500 0.5− 5
Size (pc) 2− 15 0.3− 3 0.03− 0.2
Mean density (cm−3) 103 − 104 104 − 105 50− 500
Velocity extent (km s−1) 2− 5 0.3− 3 0.1− 0.3
Crossing time (Myr) 2− 4 ≈ 1 0.5− 1
Gas temperature (K) ≈ 10 10− 20 8− 12
Examples Taurus, L1709, L1544,

Oph, Musca B213 L1498, B68

dent of the dust temperature and directly proportional to the optical depth
and thus the column density, dust can be used to estimate the gas content of
the cloud (Lada et al., 1994; Alves et al., 1998; Lombardi and Alves, 2001).

With increasing density the size of the structures shrinks going from
clouds to clumps and cores, whose central density reaches 104 − 105 cm−3.
Typical values for the structures are shown in table 1.1, taken from Bergin
and Tafalla (2007). The dynamical state changes from the overall highly su-
personic molecular cloud to transsonic dense cores. Although a classification
of the individual structures is difficult, cores with a diameter of d . 0.2 pc
are assumed to be the actual sites of star formation.

1.3.2 Turbulence

There is observational evidence for complex gas motions within a molecu-
lar cloud, which can not be explained by unordered thermal motions and
is associated with turbulence. Turbulent motions are characterised by lo-
cally ordered motions following eddies of different sizes. A key number that
distinguishes between laminar and turbulent flow is the Reynolds number

Re =
ρvl

µ
, (1.6)

where ρ is the density, v the velocity, l the lengths of the area in question,
and µ the viscosity of the gas or fluid. This ratio can also be expressed as
the ratio of inertia force over viscous force or total momentum transfer over
molecular momentum transfer. Above a critical Reynolds number, small per-
turbations in the ordered laminar flow can grow, the flow becomes unstable,
and turbulent eddies develop. Averaged over several eddies in a turbulent
flow again yields an isotropic pattern, which appears like an additional tur-
bulent pressure term. Observations of molecular lines in star-forming regions
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show line widths that are too broad to be explained by thermal motions with
the inferred temperature. Thus, this additional line broadening is associated
with turbulent contributions. Empirically, the size of a gaseous structure and
its dynamical state are linked via a simple functional relation. Larson (1981)
found the velocity dispersion and the size to be connected by a power-law
function

σ

σ0

=

(
L

L0

)n
, (1.7)

the so-called Larson’s law, where n ≈ 0.5 and σ0 ≈ 1 km s−1 for L0 = 1 pc.

The thermal line broadening can be estimated with the velocity dispersion
σT = (kT/m)1/2, where k is the Boltzmann constant, T the temperature,
and m the mean molecular weight of the atoms and molecules. The total
effect of line broadening is given by σ2

0 = σ2
T + σ2

NT , where σ2
NT is the non-

thermal contribution. How dominant the non-thermal broadening is, depends
on the kinematics of the region, which is empirically connected to its size.
Observationally, one finds that for cores above a size of 0.01 − 0.1 pc, σ2

NT

is the dominant term. However, as the dynamics on small scales is inherited
from the dynamical cascade of motions from large to small scales during the
collapse of a region, the structure of the turbulent motions still plays an
important role in regions where the thermal line broadening is comparable
to or even larger than the turbulent contribution. A detailed discussion of
the effects of turbulence is presented in chapter 3.

1.4 Objectives of star-formation theory

Many aspects of star formation are still a matter of debate, in particular
because many stages can not be observed directly. During the formation pro-
cess, the young stellar object is deeply embedded into a dense environment
that obscures the interior processes. In addition, the individual star-forming
regions that we are able to observe with current methods differ remarkably so
that a direct comparison is impossible. Therefore, many aspects of present-
day star formation can only be answered in a statistical manner, if averaged
over a large ensemble of objects. Some of the main objectives of theoretical
investigations are listed below (adapted from Ward-Thompson and Whit-
worth, 2011).

1. Is there a threshold surface density or volume density for star
formation to occur?
A disc tends to be stable against fragmentation unless the Toomre
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parameter (Toomre, 1964)

Q ≡ csκ

πGΣ
< 1, (1.8)

where cs is the speed of sound, κ is the epicyclic frequency in the disc,
G is the Gravitational constant, and Σ is the surface density of the
disc. This threshold criterion has been applied primarily in the Galac-
tic disc. On small scales there are idealised theoretical thresholds like
the Jeans criterion (Jeans, 1902) for a thermal instability or the criti-
cal mass-to-flux ratio in magnetised environments (Mestel and Spitzer,
1956; Mestel, 1965; Mouschovias and Spitzer, 1976). However, these
estimates only use global quantities like the total energy of the region
under consideration and might not precisely describe the real processes.

2. What determines the efficiency of star formation?
Once star formation sets in, what are the processes and conditions that
eventually stop it. In a simple gravitational picture of an unstable cloud
without any stellar feedback, the star formation efficiency will eventu-
ally reach 100 percent because all gas in the cloud can either collapse
to form numerous individual stars or is accreted onto the existing ones.
Observations, however, reveal that the formation of stars is rather in-
efficient with a fraction of only a few percent of gas that is converted
into stars. Radiative feedback is certainly one important aspect in
terminating further fragmentation of the surrounding gas, but current
theoretical and numerical work suggests that radiation feedback does
not prevent ongoing accretion.

3. What causes the IMF?
If measured a large ensemble of stars, the stellar mass distribution
shows evidence for universality. However, there is no conclusive theo-
retical theory describing the shape of the IMF. Is there a precise inter-
play between turbulence, gravitational collapse and dynamical accre-
tion that shapes the IMF? Is this complex interplay a self-regulating
process? Do specific scale-dependent processes set the pivotal key prop-
erties? How important are local processes before the immediate forma-
tion of a stars in comparison to the initial conditions on large scales,
i.e., at what point during the star formation process is the structure of
the IMF determined.

4. What fraction of stars is born in clusters/in isolation?
It is fairly established that most stars form in a clustered environment.
But how large is that fraction precisely? Are there only a few individual
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stars that are accidentally born in isolation or is there a different star
formation mode that produces isolated stars? Are there perhaps more
stars that form in isolation that quickly merge with a clustered stellar
structure? What type of star is mostly born in isolation? Does an IMF
for isolated stars look the same as the universal IMF?

5. What determines the cluster structure?
Stellar ensembles form with very different masses, number of members,
and energetic states. What determines the number of stars that form
in a group and how bound the system is. Is there a universal principle
behind the substructure of these ensembles?

6. What is the binary statistics?
Many stars form binary systems with very different binary properties
like ratio of masses, orbital period, and eccentricity. The observed
values for these binary parameters cannot be explained by theoretical
models. In particular it is still unclear when and how these binary
systems form.

7. How do these aspects depend on environmental factors?
This aspect focuses on the impact of large scale phenomena. How
do galaxy mergers change the star formation process. What is the
influence of UV radiation or cosmic rays? How important are chemical
abundances and the temperature of the surrounding gas, i.e., to what
extent does star formation differ in the early universe?



Chapter 2

Star formation theory

This chapter covers some important physical aspects that need to be taken
into account for present-day star formation theory. We discuss self-gravity
and gravitational instability as the main driver for star formation, the hy-
drodynamic limit and resulting conservation laws, and the relevant thermo-
dynamics for the investigated clouds. We also review the individual phases
of the gravitational collapse and the accretion processes that control the dy-
namical mass growth during the collapse. The aspects of turbulent motions
that play an important role on almost all scales are not described in this
chapter but are presented in detail in chapter 3.

2.1 Gravity

Although gravity is only one force for all sort of objects, there is a significant
difference between external forces acting on a collapsing subsystem and the
effects resulting from self-gravity of the subsystem. External fields lead to
global acceleration, large scale rotation and tidal effects. Self-gravity sup-
ports a subsystem to collapse to the local centre of mass. In this work, We
concentrate on the effects of tidal fields onto small overdensities and the ef-
fects of self-gravity in the investigated clouds. Within the complex interplay
between thermal, kinetic, and gravitational energy, the onset of gravitational
instabilities play a major role in the formation of individual stars and nascent
clusters.

2.1.1 Self-gravity

For the given mass and density ranges of star formation, the Newtonian
description (Newton, 1687) of gravity is sufficient for our calculations. In

13
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this limit, gravity can be described as a conservative scalar potential Φ.
A self-consistent description of the gravitational potential with the mass
distribution is given by the Poisson equation,

∆Φ = 4πGρ. (2.1)

Taken into account the boundary condition that the potential Φ needs to
vanish at infinity, one can solve this elliptical partial differential equation.

2.1.2 Virial theorem

In general, the virial theorem states that the temporal average of the kinetic,
Ekin, and the potential energy, U , are related as (see, e.g., Scheck, 1990)

2〈Ekin〉 −
〈∑

ri · ∇iU

〉
= 0. (2.2)

If the potential is a homogeneous function of order k in the arguments ri the
above equation simplifies to

2〈Ekin〉 − k〈U〉 = 0. (2.3)

For the Newtonian description of gravity, k = −1, yielding a virialised system
for the condition

α =
〈Ekin〉
〈U〉 =

1

2
, (2.4)

where α is called the virial parameter. Note that this is a necessary, but not
sufficient criterion for equilibrium.

During the formation process of stars, starting from the earliest phase in
overdense regions of molecular clouds to the main sequence star, the virial
parameter, α, changes. Molecular clouds with sizes of the order of parsecs
tend to be super-virial, i.e., α > 0.5. In contrast, local overdense regions
within the cloud may be in a sub-virial state, which may cause the region to
collapse.

As the virial parameter only relates the total kinetic energy to the to-
tal potential energy, it does not necessarily indicate whether the region un-
der consideration is gravitationally stable or collapsing. Further information
about the thermal properties of the gas and the direction of the gas motions
is needed in order to determine whether a cloud is going to collapse.

Associated with the virial analysis, there is the virial mass and a virial
velocity, which are both direct consequences of the virial theorem. Given the
total kinetic energy as

Ekin =
Mv2

2
(2.5)
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and a total potential energy of a spherically symmetric mass distribution

U = −GM
2

R
, (2.6)

the virial theorem states

Mv2 =
GM2

R
, (2.7)

which can be solved for the mass and the velocity, respectively, yielding

Mvir =
Rv2

G
(2.8)

for the virial mass and

vvir =

√
GM

R
(2.9)

for the virial velocity.

2.1.3 Gravitational instability

For a basic investigation of the fragmentation behaviour we need to discuss
the occurrence of gravitational instabilities and the main parameter associ-
ated with them. A simple estimate of the collapse condition can be done by
equating the stabilising accelerations due to thermal pressure and the con-
tracting acceleration due to self-gravity. This analysis is known as the Jeans
instability (Jeans, 1902). Consider uniform density in three-dimensional
space with small density fluctuations. For symmetry reasons, an infinite
uniform medium does not develop expanding or collapsing regions, because
the internal pressure and the gravitational potential are uniform. In the pres-
ence of fluctuations, in contrast, the question is whether these fluctuations
can grow and contract or disperse due to internal pressure.

The pressure term is ∇P/ρ, which can be approximated in an isothermal
case with ∇P ∼ P/r and P = c2

sρ, yielding

∇P
ρ
∼ c2

s

r
. (2.10)

The contribution due to gravity is given by −GM/r2 and reduces to

− GM

r2
∼ −Gρ0

r
, (2.11)

using M = ρ0r
3. Adding both effects, the net acceleration is given by

r̈ ≈ c2
s

r
− Gρ0

r
. (2.12)
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For a contraction, r̈ needs to be negative, yielding the threshold condition,
r̈(r = λJ) = 0,

λJ =
cs

(Gρ)1/2
. (2.13)

Here, λJ is called the Jeans length, which marks the minimum initial radius
for a spherically symmetric cloud of uniform gas with density ρ0 and isother-
mal sound speed cs to collapse under its own weight. A different derivation of

the Jeans length can be done via perturbation theory, leading to λJ =
√

πc2s
Gρ

with a slightly different numerical prefactor. Both formulas are used in the
literature.

The Jeans length and the given density yield a corresponding mass, the
Jeans mass,

MJ =
4π

3

(
λJ

2

)3

ρ (2.14)

=
πc3

s

6
√
G3ρ0

, (2.15)

defined as a sphere with a diameter of a Jeans length. This definition of the
volume is not universally used in the literature. One other commonly found
definition of the Jeans mass is based on a box, where the length of the edge
is set to the Jeans length. Using the isothermal sound speed of an ideal gas,
cs =

√
kT/(µm), gives

MJ ∝
T 3/2

ρ1/2
, (2.16)

indicating a strong dependence of the Jeans mass on the temperature. Fig-
ure 2.1 shows the Jeans mass as a function of density for different tempera-
tures.

2.1.4 Core life time

If a core is not in hydrostatic equilibrium its life time depends on the energy
content and the exact dynamical processes. For an order of magnitude es-
timate, one can distinguish between a cloud that is strongly dominated by
kinetic motions and one that is entirely dominated by gravity. In the first
case, the dispersion time scale is given by

tdisp =
R

σ
, (2.17)
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Figure 2.1: Jeans mass as a function of density for different temperatures.

where R is the radius of the cloud and σ is the velocity dispersion. In the
opposite case, the collapsing time scale can be approximated by gas in free-
fall yielding

tff =

(
3π

32Gρ

)1/2

, (2.18)

only depending on the density of the cloud, ρ, see figure 2.2.

2.2 Conservation laws

Conservation laws are perhaps the most powerful tools in physics. The con-
servation of a certain quantity sets major constraints on the available phase
space for a physical system. For calculations in star formation, we use the
first three moments of the Boltzmann transport equation to describe the con-
servation of mass, momentum, and energy in the hydrodynamic limit.

2.2.1 Hydrodynamic limit

The conservation of physical quantities like mass, momentum, and energy can
be done in many different ways, depending on the framework, in which the
equations are formulated. The evolution of a large number of gas particles
can be done using collisional invariants of the Boltzmann transport equation,
which predicts an irreversible increase of the entropy of a thermally isolated
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Figure 2.2: Free-fall time as a function of density.

gas

S ≡ −k
∫
f ln fd3x d3p, (2.19)

with k being Boltzmann’s constant and f being the particles’ distribution
function. The integral is taken over the entire 6N -dimensional phase space
of the system. As in this approach it is difficult to obtain evolutionary equa-
tions for mass, momentum, and energy, the system is analysed with moment
equations. Using the zeroth, first and second moment of f of the Boltz-
mann equation, we arrive at the following equation for mass, momentum,
and energy 


ρ
ρu
ρE


 ≡

∫ 


m
mv

m|v − u|2/2


 f(x,v, t)d3v, (2.20)

where ρ is the density, m the total mass of the set of particles, u the net
motion of the set of particles, v the motion of the individual particles, and
E the kinetic energy about the mean motion.

One common way is to use the fluid approximation to follow the gas
dynamics of a star-forming region. In order for the fluid approach to be
valid, the mean free path of a gas molecule, l, needs to be much less than
the size of a defined fluid element, L,

l� L. (2.21)

In this limit, the gas molecules can collisionally exchange kinetic and thermal
energy. This condition is therefore equivalent to local thermal equilibrium.
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Figure 2.3: Mean free path for a gas molecule as a function of density.

The mean free path is given by l = (nσ)−1, where n is the number density
of typical collision partners and σ is the scattering cross section. Assuming
a typical value of σ ∼ 10−15 cm2 gives the mean free path for gas molecules
shown in figure 2.3. For the density ranges we are investigating in this work,
the mean free path is significantly smaller than the size of a computational
fluid element. The approach of a fluid is therefore justified.

In optically thin regions, the mean free path of photons is usually much
larger than the computational cells. The fluid approach then breaks down
and radiation generally needs to be treated differently. Only in very dense
regions, where the gas is opaque, the mean free path of photons deceases
perceptibly below the size of a computational cell and the fluid approach is
also applicable for radiation fields.

2.2.2 Conservation of mass

From equation (2.20) we get the equation for the conservation of mass, also
called continuity equation, which reads

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0. (2.22)

Apart from the pure information of mass conservation, this equation also
contains the information that the density within a given volume changes in
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a continuous fashion. A change in density within this volume is related to
the mass flow through the surface of the of the volume. The equation can be
written in vector notation like

∂ρ

∂t
+∇ · (ρu) = 0. (2.23)

2.2.3 Conservation of momentum

The momentum equation takes the form

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + Pδik − πik) = −ρ ∂Φ

∂xi
. (2.24)

Here, the i-th component of the momentum density is denoted ρui. The
momentum flux of the i-th component in the k-th direction consists of a
mean part, ρuiuk, and a random part, which is split into an isotropic com-
ponent, Pδik, and a non-isotropic and therefore traceless component, πik.
The isotropic component is associated with the pressure of the gas, the non-
isotropic one with viscous properties of the gas. The source term on the right
hand side is the momentum density contribution due to the gravitational ac-
celeration.

In astrophysical computations the viscous stresses πik are generally unim-
portant. The ratio of kinetic over viscous contributions to the momentum
reads

∂(ρuiuk)/∂xk
∂πi,k/∂xk

∼ ρU2/L

µU/L2
=
UL

ν
=: Re, (2.25)

with the typical flow speed U , the shear viscosity µ, the kinematic viscosity
ν = µ/ρ, and the Reynolds number Re. The shear viscosity can be estimated
with the Chapman-Enskog procedure (see, e.g., Shu, 1992)

µ ∼ mvT
σ

, (2.26)

where vT is the thermal speed (kT/m)1/2 and σ is the collision cross section.
This simplifies the kinematic velocity to vT l, where l is the mean free path.
The Reynolds number is then

Re ∼ UL

vT l
� 1, for U ∼ vT . (2.27)

For astrophysical flows in the transsonic or supersonic regime, the Reynolds
number are therefore usually large and viscous stresses can be neglected in
numerical computations, which we also do in this work.
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2.2.4 Conservation of energy

The second moment of the Boltzmann equation finally leads to the energy
equation

∂

∂t

(ρ
2
|u2|+ ρε

)
+

∂

∂xk

[ρ
2
|u2|uk + ui (Pδik − πik) + ρεuk + Fk

]

= −ρuk
∂Φ

∂xk
. (2.28)

The total energy density ρE is the sum due to bulk motion, ρ|u2|, and random
motion, i.e., internal energy, ρε: E = ε+ |u|2/2. The energy flux in direction
k is given by the translation of the bulk kinetic energy, (ρ|u2|/2)uk, plus the
flux of enthalpy, (ρε+ P )uk, plus a viscous contribution, −uiπik, plus the
conductive flux, Fk. The source term on the right-hand side, ρuk∂Φ/∂xk,
is the condtribution due to gravitational acceleration. The conductive term,
Fk, is, like πik, also not considered here because the ratio of the advection of
heat over the conduction of heat (see, e.g., Shu, 1992),

∂[(ρε+ P )uk]/∂xk
∂Fk/∂xk

∼ Re, (2.29)

is of the order of the Reynolds number and generally high in the considered
environments.

The energy equation can be rewritten as a function of total energy density
as follows,

∂

∂t
(ρE) +

∂

∂xk
[(ρE + P )uk] = −∂Fk

∂xk
+ πik

∂ui
∂uk
− ρuk

∂Φ

∂xk
. (2.30)

2.2.5 Closure relations

The three equations shown above describe the conservation of mass, momen-
tum, and energy with various terms that describe the properties of the gas.
However, the three equations do not form a closed system just by themselves.
The total number of variables is larger than the number of equations: There
are thirteen variables, density (1), velocity (3), pressure (1), viscous stress
tensor (5 for a symmetric traceless tensor), and conductive flux (3). In con-
trast, the number of equations is only five. Therefore, for a self-consistent
combination of them, we need closure relations that connect the thirteen
variables. Depending on the environment, in which we want to use the equa-
tions, the dominating physical processes and the resulting closure relations
will differ.
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Relating the density to the pressure via an equation of state yields the
so called Navier-Stokes equations, the limit of negligible viscous stresses and
conductive heat reduces the Navier-Stokes equation to the Euler equations.

2.2.6 Overview of the equation

As we neglect viscous stresses as well as heat conduction, we only solve the
Euler equations in this work. With an ideal equation of state, we arrive at
the following set of equations:

∂ρ

∂t
+∇ · (ρu) = 0, (2.31)

∂ρu

∂t
+∇ · (ρuu) +∇P = ρg, (2.32)

∂ρE

∂t
+∇ · [(ρE + P ) u] = ρu · g (2.33)

with the equation of state

E = ε+
1

2
|u|2, (2.34)

P = (γ − 1)ρε (2.35)

that is described in more detail in the following section. A description of the
numerical solution of the equations is given in section 4.4.

2.3 Thermo- & chemodynamic processes

The conditions, when and where stars start to form strongly depends on the
behaviour of the material that stars form from. The major constituent by
mass for all stars and all star-forming environments is hydrogen gas. How-
ever, the dynamical, chemical, and thermal behaviour can be strongly influ-
enced by catalysts of various kinds that trigger chemical reactions or radiative
transitions and change the properties of the gas. Some important elements
with a significant impact are various oxygen and carbon species and dust
particles. In this section we describe the main processes that heat or cool
the gas in star-forming regions and eventually determine its thermal state in
the investigated environment.
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2.3.1 Equation of state

The simplest assumption for a gaseous medium is an ideal gas, obeying the
relation

PV = NkT, (2.36)

with the pressure, P , the volume, V , the total number of gas particles, N ,
the Boltzmann constant, k, and the temperature, T . As the total volume
and total number of particles are less convenient, we can relate them to the
density, ρ,

ρ =
Nµmp

V
, (2.37)

where µ is the molecular weight and mp is the mass of a proton. Then the
equation of an ideal gas finally reads

P =
ρkT

µmp

. (2.38)

The temperature of the gas can be related to the internal energy, ε, yielding
for the pressure

P = (γ − 1)ρε, (2.39)

whit γ being the ratio of the specific heats. In the limit of an isothermal
temperature, the ratio P/ρ is a constant

P

ρ
=

kT

µmp

= c2
s , (2.40)

which is the square of the isothermal sound speed. In contrast, the adiabatic
equation of state relates the pressure to the density like

P = Kργ, (2.41)

with K being a constant and γ being the ratio of the specific heats at constant
pressure, cp, and constant volume, cV .

Despite the simplicity, these two approaches hold for a remarkably large
range in density, not reflecting the complex physical processes and interac-
tions that occur during the dynamical interactions of the gas.

2.3.2 Dust

Dust in the interstellar medium mostly consists of carbon and silicon com-
pounds with a total mass fraction of roughly one percent. The grains usually
have sizes of sub-micron scale. Although small, dust grains are compounds
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with a relatively large number of atoms, so that their interactions are not
observable in single emission and absorption lines like energy transitions in
atoms, but rather in a large range of wave lengths with a well defined tem-
perature. In order to describe the radiative processes of dust, it is therefore
appropriate to use blackbody continuum radiation.

Calculating radiative transfer processes can be simplified by introducing
the optical depth, τν , along a path, l,

τν(l) =

∫ s=l

s=0

κν(s) ds, (2.42)

where κν is the frequency dependent opacity of the grains. From observations,
the empirical relation

τν =

(
ν

νc

)β
(2.43)

relates the frequency ν to the critical frequency νc, defined where the optical
depth is unity, τν = 1. The measured power-law index is in the range of
1 ≤ β ≤ 2 (e.g., Draine and Lee, 1984; Mathis, 1990). Hence, the longer the
wave length the lower the optical depth. As a result, radiation with higher
frequencies is trapped within a dense dusty cloud. Consequently, the dust
properties and the abundance of dust particles have a significant impact on
the cooling efficiency via radiation.

2.3.3 Chemistry

The presence of various chemical species and their transitions between differ-
ent phases and energetic states influence the thermal and dynamical evolu-
tion of a gas cloud. The most important effect of chemistry in the ISM is the
modification of the cooling ability of the gas. Although dominated in mass
by hydrogen, the present-day interstellar medium contains other elements
like carbon and oxygen and various combinations of which CO is the most
abundant today. One has to distinguish between the gas phase chemistry
on the one hand, and grain surface chemistry on the other hand. The latter
provides a heat sink for the excess energy and a momentum buffer during
a collision and thus accelerates chemical reactions. In contrast the chemical
reactions in the gas phase are much more difficult because of the smaller
cross section and encounters with other single atoms and small molecules. In
most atomic collisions in the gas phase, the atoms simply bounce off instead
of undergoing a chemical reaction.

Chemical reactions have a direct influence on the star formation process
in various ways:
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• Chemistry influences the ionisation levels of atoms. The resulting net
charge of the atoms changes their ability to couple to magnetic fields
via the Lorentz force. As magnetic fields tend to retard the collapse of
the cloud, the coupling of the gas to the field has a significant impact
on the star formation time scale.

• Elements and molecules change the optical properties of dust grains. If
covered with water or CO ice, the grains have a significantly different
optical behaviour. The assumed optical properties in the analysis of
observations and the inferred physical properties of the observed region,
therefore rely on the chemical processes.

• Chemical species serve as observational aids. As H2 lines are difficult
to observe, the transition lines of different molecules and metals are
used to trace the gas in different regimes. Consequently, the formation
and destruction of molecules as a function of density and temperature
is crucial to properly interpret observations.

• Chemistry affects the micro-physics and thus the ability of the gas
concerning to response to the changes in density and temperature. A
change in the equation of state directly leads to changes in the hydro-
dynamic evolution.

2.3.4 Cosmic rays

Cosmic rays mainly consist of relativistic protons and light nuclei. They
originate from mainly extraglactic sources and cover a large range in energy
from 10− 1014 MeV (see, e.g., review by Beatty and Westerhoff, 2009). The
energy spectrum is nearly a power-law distribution Φ ∝ E−q, with q =
2.7−2.8, depending on the energy (Nagano et al., 1992; Abraham et al., 2008;
Abbasi et al., 2008). Few astrophysical objects are capable of accelerating
particles up to∼ 1020 eV. One scenario predicts the acceleration via magnetic
fields in active galactic nuclei (AGN), radio galaxy lobes and hot spots, highly
magnetised neutron stars, and accretion shocks within clusters of galaxies
(see, e.g., Hillas, 1984). In another scenario cosmic rays are produced by the
decay of long-lived supermassive relic particles from the big bang (Hill et al.,
1987; Bhattacharjee et al., 1992). Cosmic rays interact with the interstellar
medium via the ionisation of atomic and molecular hydrogen,

p+ + H2 → H+
2 + e− + p+, (2.44)

p+ + H→ H+ + e− + p+, (2.45)
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which heats up the gas and couples the charged current to the ambient mag-
netic field. Additional heating comes from the collision of cosmic rays with
protons and a subsequent formation of a π0 meson that decays into two
photons.

2.3.5 Heating and cooling

During the contraction of a cloud the temperature mainly determines the
evolution, in particular the ability of the cloud to fragment and form stars.
Contracting gas naturally heats up and reduces the possibility for gravita-
tional fragmentation. Due to collisional excitations and subsequent emission,
the gas can cool and radiate away the increasing thermal energy due to the
gravitational compression. The principal mechanism is the excitation of oxy-
gen and carbon fine structure lines in collisions with dust particles. Thanks
to cosmic rays and background UV radiation, carbon atoms are singly ionised
(CII). With τCR being the optical depth for cosmic rays and hard radiation,
the rates for molecular cloud cooling can be combined to (Larson, 1973;
Goldsmith and Langer, 1978; Bisnovatyi-Kogan, 2011)

ΛCII = 9.0× 1019 exp(−τCR) ρ exp(−92/T ) erg g−1 s−1 (2.46)

ΛOI = 2.5× 1020 ρ T 0.33 exp(−228/T ) erg g−1 s−1 (2.47)

Λd = 1.1× 1014 ρ T 1/2(T − Td) erg g−1 s−1 (2.48)

where ΛCII, ΛOI, and Λd are the cooling rates of CII, OI and dust, and Td is
the dust temperature. Here, the temperatures are measured in K, 1/10th of
the carbon is assumed to be in the gas phase, and the opacity of cosmic rays
is taken to be κCR = 300 cm2 g−1. The dust temperature Td is calculated
as equilibrium between dust heating by gas (Λd) and thermal cooling by the
radiation flux

j = 2.3× 10−4kpT
4
d erg m−2 s−1 (2.49)

from their surface. The dust grains are assumed to have a radius of rd =
2 × 10−5 cm and the number density of dust grains per gram of gas is nd =
2× 1011. The mean Planck opacity is

kP = 3× 10−5T 3
d cm2 g−1. (2.50)

In contrast the heating due to cosmic rays and adiabatic contraction in free-
fall are

ΓCR = 2.0× 10−3 exp(−τCR) erg g−1 s−1 (2.51)

Γff = 3.8× 104 ρ1/2 T erg g−1 s−1. (2.52)
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Figure 2.4: Equilibrium temperature for an optically thin gas cloud, see
equation (2.53).

The equilibrium temperature can be found by solving the balance equation

ΓCR + Γff = ΛCII + ΛOI + Λd, Λd = j. (2.53)

The resulting temperature (Kolesnik, 1973) for two different cloud masses of
M = 1M� and M = 1000M� is shown as a function of density in figure 2.4.
For the density from ρ ∼ 10−20 g cm−3 up to 10−12 g cm−3, the temperature
shows perceptibly little variation. The contraction of a cloud within this
density regime can thus be assumed isothermal.

Whereas regions of low-mass star formation have a temperature of roughly
10 K, observations of high-mass star-forming regions reveal a slightly higher
equilibrium temperature of roughly 20 K (see, e.g., Beuther et al., 2007).
Nonetheless, the temperature variations are still very small for increasing
densities, and high-mass star-forming regions are also roughly isothermal
within this density regime.

2.3.6 Jeans mass

In section 2.1.3 we have seen that the Jeans mass strongly depends on the
temperature, MJ ∝ T 3/2, which emphasises the importance of the equilib-
rium temperature for gravitational collapse. The Jeans mass for the calcu-
lated equilibrium temperature as a function of density is shown in figure 2.5.
Below a density of roughly 10−18 g cm−3 the Jeans mass decreases due to the
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Figure 2.5: Jeans mass (equation (2.14)) for the calculated equilibrium tem-
perature (equation (2.53)) as a function of gas density.

decrease in temperature, scaling with ρ−0.9. Above 10−18 g cm−3 the almost
isothermal conditions lead to a scaling with ρ−0.4.

2.4 The formation process

Viewed from large scales, protostars are just a source of gravity and a sink of
mass that accretes the surrounding gas. In the central region of the nascent
star, different physical processes determine the first collapse, the formation
of the first core, the subsequent contraction and the formation of the second
core. The initially molecular gas dissociates and becomes ionised during
the formation process before the stars enters the main sequence and starts
nuclear fusion. The surrounding gas and the impact of accretion determine
to what extend the thermodynamics of the young protostar can influence the
surrounding region via radiative and mechanical feedback. In addition, the
formation of gaseous discs provide a reservoir of gas for further accretion and
marks the birthplace of planetary systems.

2.4.1 The formation of the first core

The first phase of the protostellar collapse proceeds in an isothermal manner.
Once the cold cloud of gas (T ∼ 10 K) becomes Jeans unstable, the still
diffuse matter contracts in nearly free fall. As the optical depth of the cloud is
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very low, the gained internal energy due to compression can be radiated away
very efficiently, keeping the gas at the cold background temperature. This
phase continues until the gas reaches densities of the order of 10−13 g cm−3, at
which the increasing optical depth prevents the internal energy to be radiated
away (e.g., Larson, 1969). The central temperature increases and provides
additional thermal pressure that acts against the gravitational pressure. The
central contraction therefore slows down significantly and slowly reaches a
state of nearly hydrostatic balance. This hydrostatic objects is called the
first core.

2.4.2 Kelvin-Helmholtz contraction

The further contraction of the hydrostatic core is also called Kelvin-Helmholtz
contraction and proceeds slowly. The energy balance of the core is close to
virial equilibrium, which allows a temperature estimate of the centre of the
core,

T ≈ µ

3R
GM

R
(2.54)

≈ 850 K

(
M

5× 10−2M�

) (
R

4 AU

)−1

, (2.55)

where µ is the mean molecular weight, which is roughly 2.4 for interstellar
gas, R is the gas constant, G is Newton’s constant, and M and R are the
protostellar mass and radius. Continuous accretion of gas from the envelope
causes the core to further contract and the core density gradually increases.
Once the protostar reaches a density of 10−10 g cm−3, the central tempera-
ture has risen to roughly 2000 K. Due to the increasing frequency of thermal
collisions, the H2 molecules dissociate. This endothermal transition causes
the temperature to increase slower than in the previous contraction phase. A
temperature of 2000 K corresponds to a thermal energy of 0.74 eV, the disso-
ciation temperature of H2 is 4.48 eV, which is significantly higher. All excess
energy from the compression of the system can thus be efficiently converted
into internal energy without a significant increase in temperature. The ongo-
ing increase in mass due to accretion and continuous contraction eventually
pushes the core above the critical density for a second Jeans instability. The
core then collapses again to form the so-called second core.

2.4.3 Collapse and contraction time scale

During the first phase of gravitational collapse, the gas collapses in nearly
free-fall which is solely determined by the average density of the collapsing
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region

tff =

√
3π

32Gρ
. (2.56)

Inserting typical densities in star-forming regions, this time scale ranges from
roughly 1 Myr for a density of the order of 10−20 g cm−3 down to 1 kyr for the
density of 10−13 g cm−3 at the opacity limit.

After the formation of the first core, the protostellar condensation is close
to hydrostatic equilibrium. Further contraction results in a rise in temper-
ature, which increases the inner thermal pressure support. The contraction
of the core is therefore related to the ability of the core to radiate away the
converted potential energy via radiation. The Kelvin-Helmholtz time esti-
mates the contraction time of the core by equating the luminosity L with the
change in potential energy −dW/dt.

L =
−dW
dt
≈ GM2

R

(
dR/dt

R

)
. (2.57)

Assuming a constant luminosity over time defines a characteristic e-folding
time for the decrease in radius, the Kelvin-Helmholtz time,

tKH ≈
GM2

R
. (2.58)

Expressed in solar units, the equation reads

tKH ≈ 107

(
M

M�

)2( L
L�

)−1(
R

R�

)−1

yr, (2.59)

which varies significantly for different masses of the contracting core.
Overall, the contraction time scale tends to be significantly longer than

the free-fall time. Consequently, the important distribution process of masses
is the first fragmentation phase and mass accretion phase during the collapse
of the cloud. In particular the accretion process in the nascent protostellar
cluster and the resulting protostellar mass distribution determines the further
evolution of the stars. For high-mass stars with ∼ 10M�, the contraction
time reduces significantly and the stars are likely to start nuclear fusion
and enter the main sequence phase while still accreting gas from the outer
envelopes of a cloud. In contrast, low-mass objects might remain in the
protostellar stage throughout the active collapse and accretion process.

2.5 Accretion processes

Between the onset of the gravitational collapse and the ignition of hydrogen
burning in the centre of the star, the mass of the collapsing condensation is
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primarily determined by the surrounding medium and the amount of mass
that the condensation can accrete during that period. In particular in dense
environments, where many protostars form, the distribution of available mass
onto the nascent stars is a difficult and highly non-linear process. Besides
three simplified analytical models that describe the accretion onto single
objects, two dynamical processes are presented, which describe the accretion
dynamics in a cluster environment with many protostars.

2.5.1 Monolithic collapse

The apparent similarity in the distribution function of dense cores and stars,
i.e., the similar shape of the core mass function (CMF) and the initial stellar
mass function (IMF) (Testi and Sargent, 1998), suggests a simple collapse
and accretion model, in which every dense core collapses to one or at most
a few objects. In this monolithic collapse model (McKee and Tan, 2002,
2003), the mass of a dense core and the mass of the final star are directly
related without the need of complex accretion processes, in which multiple
protostars compete with one another for the available gas. The core mass
function, which is shifted to higher masses by a factor of a few, only needs
to be rescaled by an efficiency factor in order to match the stellar initial
mass function. However, there are several weak points in this simple collapse
modes. First of all, the simple collapse of individual cores with different
masses and average densities leads to a time scale problem (Clark et al.,
2007). In addition, observations and numerical simulations suggest, that
the collapse of a core into one of two objects only occurs in very few cases.
Observations by Bontemps et al. (2010), for instance, show high resolution
observations of massive dense star-forming cores with sizes of only about
2000 − 5000 AU that may still hide further fragmentation in their central
region. Similarly, most collapse simulations show a complex collapse and
fragmentation structure, which suggests that cores form clusters rather than
single objects or binary stars.

2.5.2 Bondi-Hoyle accretion

A powerful analytic accretion model was developed by Bondi (1952). The
model assumes a star with a mass much smaller than the Jeans mass,

M∗ �MJ ∼
c3

s√
G3 ρ0

, (2.60)

placed in an infinitely extended stationary background with density ρ0, tem-
perature T0, and isothermal sound speed cs. Furthermore, the gas is assumed
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to be non-self-gravitating and reacts isothermally while being accreted. The
star is at rest with respect to the surrounding gas, so the accretion is spher-
ically symmetric. The accretion flow is then dominated by the central point
mass and one can derive a steady state solution for the accretion flow that
only depends on position, but not on time, i.e., the accretion flow is constant
if the mass of the star is growing sufficiently slow, so that the increase in
mass does not change the dynamics of the flow. The physically meaningful
solution of the mathematical formulation yields for the accretion rate

Ṁ∗ =
ρ0G

2M2
∗

c3
s

(2.61)

and a characteristic accretion radius of

RB =
2GM∗
c2

s

. (2.62)

This model was extended by Bondi and Hoyle (Bondi and Hoyle, 1944)
to also cover stars that are moving with respect to the surrounding gas. The
modified Bondi-Hoyle radius for a relative velocity of v is given by

RB =
2GM∗
c2

s + v2
(2.63)

and decreases for increasing relative velocities. This behaviour is expected
as the effective gravitational cross section for the moving star decreases.

2.5.3 Free-fall accretion

In contrast to Bondi-Hoyle accretion, where the accreting star is not the
dominant mass in the system, one can derive analytical accretion rates for
systems, in which the accreting objects gravitationally dominates the sys-
tem (Whitworth and Ward-Thompson, 2001). In this case the gravitational
attraction of the star is much stronger than the pressure forces within the
gas,

∇P � −ρ∇Φ. (2.64)

Assume a sphere of material with the total mass

M(R) = 4π

∫ R

0

r2ρ(r)dr (2.65)

at time t = t0 that collapses in free-fall without mixing the material from
inner to outer parts. Then the mass inside that free-falling sphere with radius
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R will be constant during the collapse. The outer boundary of the sphere R
will be a function of time R(t) where R and t are connected via the free-fall
time

tff =
πR3/2

√
8GM(R, t = t0)

. (2.66)

The total mass that is accreted onto the star as a function of time can
therefore be expressed as the total mass inside R as a function of the time-
dependent radius R(t) with the density distribution at t = t0 (ρ(r, t = 0) =
ρ0(r))

M(t) = M(R(t)) = 4π

∫ R(t)

0

r2ρ0(r)dr. (2.67)

In order to find the radius at t, one has to solve the equation for the free-
fall time of R, which cannot be done in general in a closed form, because
the mass M(R) also depends on the radius and does not necessarily take a
simple analytic form. That means one has to search for the radius and the
corresponding mass, which yield the desired time t as free-fall time. Analytic
solutions for simple density profiles are shown below.

The accretion rate can be approximated by the mass difference between
t0 and t1

Ṁ(tx) =
∆M

∆t
=

M(t1)−M(t0)

t1 − t0
(2.68)

=
4π

t1 − t0

[∫ R(t1)

0

r2ρ0(r)dr −
∫ R(t0)

0

r2ρ0(r)dr

]
(2.69)

=
4π

t1 − t0

∫ R(t1)

R(t0)

r2ρ0(r)dr, (2.70)

which reduces the computation to the search for the two radii R(t0) and
R(t1).

Ideal and realistic cases

If the objects that accretes material is already a star, its radius is generally
much smaller than the extension of the cloud that supplies the gas. Therefore
in many cases it is appropriate to neglect the radius of the star and follow
the accretion onto the centre at R = 0. However, this assumption faces some
problems, in particular with density profiles that have a flat core region
around the central object. Assuming a constant density ρc, the mass of the
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sphere reads M(R) = 4/3 πρcR
3 and the free-fall time is a constant

tff =

(
3 π

32Gρc

)1/2

. (2.71)

In this approach, the entire mass hits the centre at once and the mass of
the central accreting object is described by a step function at tff with infinite
accretion rate. If one allows the central object to have finite size, the radius
in the equation for the free-fall time has to be reduced by the radius of the
central object, as the free-falling distance is shorter

tff =
π(R−R∗)3/2

√
8GM(R)

. (2.72)

If one initially allows for an empty hole inside of R∗ the mass has to be
modified as well yielding again equation 2.71. If the centre is initially filled
with gas at the same uniform density the mass does not change. In this case,
the equations for the total accreted mass and the accretion rate as a function
of time read

M(t) =
4

3
πρcR

3
∗

(
1−

(
32Gρct

2

3 π

)1/3
)−3

(2.73)

and

Ṁ(t) = −8

3
πρcR

3
∗

(
32Gρc

3 π

)(
1−

(
32Gρct

2

3π

)1/3
)−4

t−1/3 (2.74)

Special functions for power-law density distributions

For a general mass distribution it is not possible to give closed functions
for the accreted mass. However, if closed functions for the total mass as a
functions of radius are available, the above equations can be solved without
numerically solving for the free-fall time.

Let the density be described by a power-law profile of the form

ρ(r) = ρc

(
Rc

r

)p
, (2.75)

where ρc, Rc and p are fixed parameters. The density ρc and Rc can be
combined in one parameter, but it is more convenient to keep them into two
parameters with simple physical meaning. With this profile the mass can be
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computed explicitly,

M(R) = 4π

∫ R

0

r2ρc

(
Rc

r

)p
dr (2.76)

= 4π ρcR
p
c

∫ R

0

r2−pdr (2.77)

= 4π ρcR
p
c

[
r3−p

3− p

]R

0

(2.78)

=
4π ρcR

p
c

3− p R3−p (2.79)

for p 6= 3. This equation for the mass can now be inserted in the equation
for the free-fall time yielding

tff =
πR3/2

√
8G

(
3− p

4π ρcR
p
cR3−p

)1/2

(2.80)

=

√
π(3− p)
32Gρc

(
R

Rc

)p/2
(2.81)

and solved for the radius

R =

(
32Gρc

π(3− p)

)1/p

Rc t
2/p. (2.82)

Combining the radius and the total mass equation finally gives for the total
accreted mass as a function of time

M(t) =
4π ρcR

p
c

3− p

(
32Gρc

π(3− p)

)(3−p)/p
R3−p

c t2(3−p)/p. (2.83)

The accretion rate can now be easily computed by differentiating

Ṁ =
∂M

∂t
(2.84)

=
2(3− p)

p

4π ρcR
p
c

3− p

(
32Gρc

π(3− p)

)(3−p)/p
R3−p

c t3(2−p)/p. (2.85)

For the self-similar collapse of an isothermal sphere with an initial power-law
density profile with p = 2 the accretion rate is constant (Shu, 1977), which
can be seen in the vanishing exponent of the time.
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Figure 2.6: Comparison of the accretion rate for a numerical simulation and
the theoretical model for the Plummer-like profile, equation (2.86).

Comparison to numerical simulations

The important question is whether the influence of the pressure term in
the Euler equations can really be neglected. Figure 2.6 shows the accretion
rate for a star in a three-dimensional hydrodynamical simulation and the
reduced one-dimensional free-fall model. The density profile that is used is
a Plummer-like density profile of the form

ρ = ρc

(
Rc

(R2
c + r2)1/2

)η

(2.86)

with the following parameters: ρc = 2.79207 × 10−14 g cm−3, Rc = 2.992 ×
1014 cm and η = 1.5, see also chapter 7 for a detailed description of the
density profile. Taking into account that the numerical simulation also has
turbulent motion that may disturb the radial symmetry of the collapsing
cloud, the free-fall model gives comparable results.

For power-law profiles with slope p = 1.5 and p = 2 the results are shown
in figure 2.7, see also chapter 5 for a detailed description of the setup. In
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Figure 2.7: Comparison of the accretion rate for the numerical simulation
and the theoretical model for power-law profiles with p = 1.5 and p = 2.

both cases the free-fall results are acceptable. The calculated value from the
model is 1.95×10−3M� yr−1, the results by Shu (1977) differ by roughly 5%.

2.5.4 Dynamical models

In stellar clusters the accretion processes are much more complicated than
the analytical estimates shown above. Gas and nascent stars form a complex
dynamical system, in which the stars compete for the available gas. A simple
analytic description of the accretion rates for individual stars is therefore not
possible because the accretion rates depend on too many parameters: the
mass of the star, the distance to the nearest competing neighbour, the posi-
tion within the cluster, the distance to the largest accretion flow that might
be determined by the global cluster position within the ISM, and whether
the gas is bound to the star in question. Dynamical models are therefore only
accessible through statistical averages or numerical simulations. Concerning
the accretion in clusters, there are two extreme models, namely Competitive
accretion and Fragmentation-induced starvation or Accretion shielding.

Competitive accretion

The competitive accretion model (Bonnell et al., 2001a,b; Bonnell and Bate,
2002; Bate and Bonnell, 2005) is based on the position of the stars within the
cluster. The closer the stars are located to the centre of the cluster, the more
they can profit from the deep gravitational potential, which helps the stars
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to accrete more material at a higher rate. The gas is funneled from larger
distances into the central region of the cluster, passing the stars that are
located in the outskirts of the cluster. The central stars therefore have the
highest accretion rate. This model implies that the stars at larger radii do
not have enough gravitational attraction to stop the gas from being passed
by and transported to the centre.

Accretion shielding

Fragmentation-induced starvation (Peters et al. 2010b, see chapter 6) de-
scribes the opposite effect to the competitive accretion model. The gas flow
is still dominated by the global potential of the cluster. In contrast to com-
petitive accretion as described above, the material cannot be funneled to the
central regions, because it is accreted by the stars in the outskirts of the
cluster. The stars that surround the cluster therefore shield the accretion
flow to the centre. In the case of subsequent star formation, the first star
can accrete gas at a high rate up to the point, when further stars form at
larger distances from the centre and start to shield the innermost area of the
cluster.

2.5.5 Remark on the dynamical models

Both dynamical models describe opposite accretion effects. However, they do
not exclude each other. Depending on the key properties of the cluster like
the density distribution, the total mass of the cluster, the amount of available
gas for accretion and the number of stars, either one or the other effect can
be more prominent. During the evolution phase of the cluster it might also
possible for a cluster to go through both accretion phases. However, so far,
there is no conclusive theory that can predict the accretion mode within a
cluster. A detailed discussion of the models is given in chapter 6.

2.6 Magnetic fields

Observations reveal that magnetic fields are ubiquitous in the interstellar
medium. Their strengths differ significantly between large scale fields in the
Galaxy and small scale fields in the star-forming regions, so does their spatial
structure. It is unclear where these magnetic fields originate from. Cosmo-
logical seed fields might serve as a possible source, however, the initial source
fields are relatively weak (see, e.g., Grasso and Rubinstein, 2001; Widrow,
2002). The exact strength is still a matter of debate, but cosmological fields
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do not seem to be stronger than 10−6 G. In galaxies, the field is observed
to follow a large scale structure with a strength of the order of 10µG (see,
e.g., Beck, 2009), which is assumed to be generated by the mean field dy-
namo. On smaller scales like clouds and star forming cores, the magnetic
field is significantly stronger, but varies strongly between low-mass and high-
mass prestellar cores. In a highly conducting medium like the interstellar
medium the magnetic field moves together with the gas. This so-called flux
freezing connects the field strength with the density. Compressing a vol-
ume orthogonal to the magnetic field lines increases the field strength with
B ∝ 1/volume. Hence, the magnetic field scales as B ∝ ρ. This relation
qualitatively explains the difference between the field strength in low-mass
regions (∼ 1M�, ∼ 0.05 pc) with B ∼ 10 − 30µG (see, e.g., Kirk et al.,
2006) and massive cores (∼ 100− 1000M�, ∼ 0.2 pc) with B ∼ 10 mG (see,
e.g., Beuther et al., 2010). Apart from the field amplification due to grav-
itational compression, the interplay between small scale turbulent motions
and a tangled field can lead to a very efficient magnetic field amplification
via the small scale dynamo (see review by Brandenburg and Subramanian,
2005). The importance of this process for present-day star formation has not
been investigated yet.

Besides the strength of the field, the detailed spatial structure is rather
unclear. Whereas many early observations suggest a field on rather large
scales, i.e., comparable to the size of the observed core (Goodman et al.,
1990; Ward-Thompson et al., 2000; Crutcher et al., 2004), more recent ob-
servations with better resolution show evidence for a tangled structure. The
structural difference in the field and its impact on the dynamics of the cloud
is theoretically rather unexplored. In particular, the impact of the magnetic
field structure on outflows and jets, which are magnetically supported, is
likely to be relevant.

Generally, magnetic fields act against gravity and delay or even suppress a
gravitational collapse. The critical quantity to determine the impact of mag-
netic fields is the ratio of the mass to the magnetic critical mass, MΦ, given
by equating magnetic and gravitational energy. In magnetostatic equilibrium
MΦ can be written in the form

MΦ = cΦ
Φ

G1/2
, (2.87)

with Φ being the magnetic flux threading the cloud and cΦ being a numerical
constant, discussed below. In supercritial clouds (M > MΦ), the magnetic
field can not prevent gravitational collapse, whereas in the subcritial case
M < MΦ gravity can not overcome the stabilising magnetic pressure. The
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critical mass-to-flux ratio (Mestel and Spitzer, 1956; Mestel, 1965)

(
M

Φ

)

cr

≡ MΦ

Φ
= cΦG

−1/2 (2.88)

is a pivotal quantity in this context. The numerical constant cΦ depends on
the density distribution in the cloud and on the structure of the magnetic
field and takes values of cΦ ≈ 0.16 − 0.18 (Nakano and Nakamura, 1978;
Tomisaka et al., 1988). The magnetic critical mass can also be written in
terms of the mean density and the magnetic field in the cloud (Mouschovias
and Spitzer, 1976)

MB

M
=

(
MΦ

M

)3

, (2.89)

where MB is the equivalent to MΦ when Φ is replaced by πR2〈B2〉1/2 and R
marks the radius of the cloud.

Observations by Heiles and Troland (2005) reveal that the magnetic field
in the interstellar medium is strong enough to prevent the gas from grav-
itational collapse (M/MΦ < 0.16), assuming sheet-like geometries for the
gas structures. One central problem of star formation in magnetised en-
vironments is how this ratio can increases to values M/MΦ & 2 so that
gravitational collapse readily occurs. In fact, the geometry of the region
in question can significantly alter the result. The observational techniques
require thorough assumptions of the real structure of the clouds and the mag-
netic field structure that are obscured by projection effects. Crutcher et al.
(1999) and Heiles and Crutcher (2005) observed dense cores with structures
that probably differ significantly from a sheet-like geometry, measuring su-
percritical values of M/MΦ = 1.65 ± 0.02. Thus, a detailed inclusion of
density structures and structure-forming turbulent motions is necessary for
a well-grounded analysis of the effects of magnetic fields, so are the contri-
butions of turbulent magnetic effects. Li et al. (2006) found that the energy
of the magnetic field is comparable to the turbulent kinetic energy. On large
scales, the turbulent magnetic energy is likely comparable to or larger than
the mean magnetic energy, and the kinetic energy is at least as large as the
magnetic energy. In virial equilibrium, this leads to M & 2MΦ (McKee and
Ostriker, 2007). On smaller scales, Nakano (1998) also found the cores to be
magnetically supercritical and thus collapsing. Numerical simulations sug-
gest that magnetic fields have little impact on the global star formation rate
if the cloud is supercritical (Ostriker et al., 1999; Heitsch et al., 2001; Li et al.,
2004; Vázquez-Semadeni et al., 2005a,b; Nakamura and Li, 2005). However,
the details of the collapse of a magnetised cloud down small scales of the
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actual star-formation process might significantly depend on the strength and
structure of the magnetic field.

Although magnetic fields are an important ingredient in star formation
theory, we do not explore their effects in this work. The inclusion of magnetic
fields will be a follow-up project, where a focus on different strengths and
magnetic field structures will shed light on how strongly the magnetic fields
will influence the star-forming regions considered in this work.
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Chapter 3

Turbulence

3.1 Introduction

Turbulent motions appear in a large variety in daily life, nature, engineering,
and also astrophysical processes. Although the systems, in which turbulence
appears, are very different, the statistical key properties of turbulent flows
have strong similarities. The way how turbulence occurs, how energy is trans-
ported, and how turbulent systems evolve is very complicated if followed in
detail in local areas of the medium. However, in a statistical description using
global structure and energy parameter, turbulence seems to be a universal
process.

In a turbulent medium it is not possible to predict individual motions
and the behaviour of a local region for a long period of time. This is due
to the non-linear evolution of the flow. Nevertheless, the system itself is
deterministic. A turbulent medium thus shows deterministic chaotic motions.

The main equation to describe the onset and effects of turbulence is the
Navier-Stokes equation. As the mathematical description of turbulence is
very complicated, a comprehensive theory only exists for incompressible fluid,
but not for compressible media like gas (see, e.g., book by Frisch, 1995).
Therefore, the incompressible model of turbulence also serves as a starting
point in investigations of compressible systems with remarkable success con-
sidering the fundamentally different fluid properties.

3.1.1 Reynolds number

The turbulent flow can be described efficiently by the Reynolds number as
the main control parameter,

Re =
ρvl

µ
, (3.1)

43
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where ρ is the density, v the velocity, l the lengths of the area in question,
and µ the viscosity of the gas or fluid. Expanding the equations shows
that the Reynolds number is equivalent to the ratio of inertia force over
viscous force or total momentum transfer over molecular momentum transfer.
This already suggests that the viscosity and therefore molecular properties
determine characteristic properties of the flow. Small Reynolds numbers
indicate laminar flow, above a critical value of a few hundred, the flow starts
being turbulent. This chapter shows how the dissipation scale enters the
description of turbulence and what that means for numerical simulations of
turbulence.

3.1.2 From laminar to turbulent flows

Consider a laminar flow along the x axis around an infinite cylinder with the
symmetry axis pointing into the z-direction like in figure 3.1. For very slow
motions of the fluid, the system shows two symmetries in the x − y plane
(upper part, A). The flow pattern shows mirror symmetry with respect to
y = 1.5 as well as to x = 0. This is due to the fact that the non-linear term
in the Navier-Stokes equation can be neglected. If the flow velocity increases
and the non-linear term becomes non-negligible, the flow becomes slightly
asymmetric and the x = 0 symmetry breaks (lower part, B). Apart from
the spatial symmetries, the flow pattern is constant over time, which gives a
temporal symmetry.

Further increase of the Reynolds number leads to a change in topology.
The area behind the cylinder starts developing recirculating eddies, which
still preserve the mirror symmetry with respect to y. Even larger Reynolds
numbers finally result in a true loss of symmetry. Bifurcations appear in the
flow as well as time variations and oscillations in the formation of eddies, the
so-called Karman vortex street (see figure 3.2).

Increasing the Reynolds number further results in complicated transition
from connected existing spatial and temporal symmetries to unstable bifur-
cations that lead to chaotic advection. This happens around a Reynolds
number of a few hundreds and is not precisely known. Within the chaotic
regime, the flow patterns turn into a homogeneous and isotropic dynamical
structure in a statistical sense. That means that locally the flow does not
follow symmetries, but the structure of the overall chaotic flow does not seem
to change under translations and rotations. A closer look at the structure of
the eddies also shows a statistical scale-invariance, i.e., a fractal picture of
self-similar patterns.
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Figure 3.1: Laminar flow around a cylinder. The upper part (A) shows the
flow for very low fluid velocities. The non-linear term in the Navier-Stokes
equation can therefore be neglected and the flow pattern preserves mirror
symmetry with respect to the x = 0 and y = 1.5. The upper part shows
the flow pattern for faster flow. In this case the symmetry with respect to
y = −1.5 still holds whereas the symmetry with respect to x = 0 is broken.
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Figure 3.2: Appearance of alternating and growing eddies. The flow pattern
is called the Karman vortex street (courtesy to Professor Changhong Hu,
Kyushu University).
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3.2 Mathematical concept

3.2.1 Symmetries and conservation laws

The main equation to investigate the evolution of turbulent flows is the
Navier-Stokes equation

∂tvi + vj∂jvi = −∂ip+ ν∂jjvi, (3.2)

where p and ν denote the pressure and viscosity. The derivatives are abbre-
viated with

∂t =
∂

∂t
, ∂i =

∂

∂xi
, ∂ij =

∂2

∂xi∂xj
. (3.3)

The ideal configuration for the theoretical model is to assume an infinitely
large box. However, this is not practical, therefore one chooses periodic
boundary conditions

v(x+ nLx, y +mLy, z + qLz) = v(x, y, z), (3.4)

∀n,m, q ∈ Z. Lx,y,z is the period in direction x, y, z, which in most practical
calculations is set to the same value. Using periodic boundaries allows to fully
describe the turbulent motions within the area 0 ≤ x < Lx, 0 ≤ y < Ly,
0 ≤ z < Lz.

Symmetries and conservation laws are linked via Noether’s theorem (Noether,
1918) stating that there is a conservation law for each symmetry in a conser-
vative system describable with a Lagrangian function. In order to find the
conserved quantities for a turbulent flow, the symmetries of the Navier-Stokes
equation are listed:

space-translations gs : t, ~r, ~v → t, ~r + ~s,~v ~s ∈ R3 (3.5)

time-translations gτ : t, ~r, ~v → t+ τ, ~r, ~v τ ∈ R (3.6)

Galilean transf. g~U : t, ~r, ~v → t, ~r + ~Ut,~v + ~U ~U ∈ R3 (3.7)

Parity P : t, ~r, ~v → t,−~r,−~v (3.8)

Rotations gA : t, ~r, ~v → t, A~r, A~v A ∈ SO(R3) (3.9)

Scaling gλ : t, ~r, ~v → λ1−ht, λ~r, λh~v λ ∈ R+, h ∈ R (3.10)

From these symmetries the following conservation laws can be derived.

• Conservation of momentum

d

dt
〈~v〉 = 0 (3.11)
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• Conservation of energy

d

dt

〈
1

2
v2

〉
= −1

2
ν

〈∑

ij

(∂ivj + ∂jvi)
2

〉
= −ν〈|~ω|2〉, (3.12)

where ~ω = ∇× ~v.

• Conservation of helicity

d

dt

〈
1

2
~v · ~ω

〉
= −ν

〈
~ω · ∇ × ~ω

〉
(3.13)

Defining the mean energy density,

E =

〈
1

2
|~v|2
〉
, (3.14)

allows to define the energy dissipation rate

ε ≡ −dE
dt
. (3.15)

The energy equation above does not contain non-linear terms. It can be
shown that the non-linearities redistribute energies among different scales
while preserving the global energy budget. The different scales can be inves-
tigated with a Fourier transform of the real domain. The discrete transform
of a periodic box is given by

f̃(~k) =
∑

r

f(~r) exp(−i~k · ~r), ~k ∈ 2π

L
Z3, (3.16)

where f̃(~k) describes the power of the field f(~r) at scale ~k. Assuming isotropy

in the turbulent motions, the vector ~k simplifies to its norm, k, and reduces
the function f̃(~k) to a function with a scalar argument f̃(k). After a lengthy
derivation one arrives at a scale-by-scale energy equation

∂tEK = FK − ΠK − 2νΩK . (3.17)

This shows that the rate of change down to l = K−1 is given by the in-
jected energy (FK) minus the contributions due to dissipation (2νΩK) and
the energy flux to different scales due to non-linear effects (ΠK). At high
Reynolds numbers, the energy is typically injected at large scales (injection
scale) and cascades down to small scales (inertial range). At the smallest
scales, where dissipative effects convert the turbulent motions into heat via



3.2. MATHEMATICAL CONCEPT 49

10−5

10−4

10−3

10−2

10−1

100

100 101 102 103 104 105 106

E
(k
)

k

E(k) ∝ k−n

injection

inertial range

dissipation

Figure 3.3: Schematic figure of the energy spectrum. The energy is injected
at large scales (small k, injection scale), cascades down with a power-law
shape (inertial range) and dissipates at small scales (dissipation scale).

friction processes, the cascade stops and no further energy is transported
to smaller scales (dissipation scale). Over a large range the spatial energy
spectrum,

E(k) ≡ dEK
dk

, (3.18)

can be approximated by a power-law function

E(k) ∝ k−n. (3.19)

An overview of the relevant parts of the energy spectrum is shown schemat-
ically in figure 3.3.

3.2.2 Kolomorov and Burgers turbulence

The Kolmogorov theory of turbulence (Kolmogorov, 1941) describes the en-
ergy cascade in incompressible media with a power spectrum E(k) ∝ k−5/3

in the inertial range for an isotropic formulation of the power spectrum.
This index, −5/3, is derived under the assumption of negligible fluid veloci-
ties compared to the thermal speed in the fluid. In isothermal systems this
thermal speed is the sound speed cs. In star-forming regions, however, this
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condition is usually not fulfilled, i.e., the velocities of the gas or fluid exceed
the sound speed and the Kolmogorov theory of the energy cascade does not
need to be applicable. Instead of a conservative cascade of the energy, i.e.,
starting from large scale and consecutively passing all scales down to the
dissipation scale, energy is dissipated directly via the interactions of strong
shocks. In the limit of zero pressure (cs → 0), the turbulent system consists
of an ensemble of overlapping shocks, which referred to Burgers turbulence
(Frisch and Bec, 2001) with a power spectrum E(k) ∝ k−2. Most astrophysi-
cal systems can not exactly be categorised in one or the other extreme but lie
in between them. Depending on the scale and the major physical processes
involved, the energy might not even be decaying on all scales with a constant
spectral index for the entire inertial range. Instead the turbulence might be
driven on a particular scale, reshaping the inertial range of the system as a
whole.

3.2.3 Compressible and incompressible modes

The theory described so far is based on incompressible fluids and thus does
not show any density fluctuations. The velocity field is purely divergence-
free, ∂ivi = 0, also called solenoidal. This condition is pretty obvious as
long as the fluid has incompressible character. However, in many turbu-
lent environments, in particular if considering turbulent gas, the medium
can be compressed strongly, making the problem much more complex. The
characteristic behaviour of the gas concerning compressions is described by
the equation of state, which does not need to be scale free within the con-
sidered dynamical range and may depend on several parameters. Not only
do convergent and divergent regions appear, the ratio of compressible and
solenoidal motions can in addition change over time. In a statistical average
with random forcing of the turbulence, one expects 1/3 of the modes being
compressible, corresponding to longitudinal modes, and 2/3 of the modes be-
ing solenoidal, corresponding to transversal modes, respectively. In order to
analyse turbulence effects due to one or the other type of modes separately,
one uses a decomposition of the modes, to achieve purely longitudinal or
transversal modes. The Helmholtz theorem states that any vector field F(r)
can be decomposed into to fields F||(r) and F⊥(r) such that

F(r) = F||(r) + F⊥(r), with ∇× F||(r) = 0, ∇ · F⊥(r) = 0. (3.20)

Transforming this identity into Fourier space translates the differential oper-
ators into multiplications by k, yielding

F̃(k) = F̃||(k) + F̃⊥(k), with k× F̃||(k) = 0, k · F̃⊥(k) = 0. (3.21)
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The projection of the longitudinal field F̃|| can be obtained with

1

k2
k
(
k · F̃(k)

)
, (3.22)

the perpendicular field F̃⊥ is computed via the difference

F̃⊥(k) = F̃(k)− F̃||(k). (3.23)

3.3 Astrophysical turbulence

In an astrophysical environment, the description and investigation of turbu-
lence faces many more difficulties than turbulent motions in an ideal incom-
pressible fluid. The medium is highly compressible, changes the chemical
composition depending on the density and temperature, is stirred on differ-
ent scales by various mechanisms and experiences various forces that differ
on different scales.

3.3.1 Historical note

The first turbulent description of the interstellar medium was formulated by
von Weizsäcker (1951) and has not changed fundamentally since then. The
energy is deposited on large scales and cascades down to small scales via a hi-
erarchy of structures. The energy dissipates by atomic viscosity. von Hoerner
(1951) analysed the velocities of the Orion nebula and found a power-law de-
pendence on spatial scales similar to the Kolmogorov energy cascade. The
first statistical model for continuous and correlated gas distributions was de-
veloped by Chandrasekhar and Münch (1952). The discovery of power-law
correlations between the size of molecular clouds and their velocity dispersion
by Larson (1981) was an important confirmative step towards the acceptance
of the turbulent structure of the ISM. The found slope of the power spectrum
was consistent with the Kolmogorov model, which was supported by addi-
tional observations (Myers, 1983; Dame et al., 1986; Solomon et al., 1987).
Remaining doubts concerning the turbulent nature were reduced by the on-
set of infrared observations of dark clouds that also revealed a filamentary
structure following a comprehensive picture of a turbulent cascade.

The theoretical and observational description of the turbulent ISM were
later supported by numerical simulations of various kinds of driven and de-
caying turbulent models (see e.g., reviews by Vázquez-Semadeni et al. (2000);
Mac Low (2003); Mac Low and Klessen (2004).
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3.3.2 Power spectrum

The diagnostics of turbulent motions covers a wide range of different tech-
niques like correlation functions, power spectra, and delta variance, just to
name a few. The power spectrum of an observable Q is given by

P (~k) = Q̂(~k)Q̂∗(~k) (3.24)

for the Fourier transform Q̂ and its complex conjugate Q̂∗. The one-dimensional
energy spectrum of an isotropic observable Q is then

E(k) = P (k) dkD, (3.25)

where for the three-dimensional volume dk3 = 4πk2dk. The Kolmogorov
spectra are then P (k) ∝ −11/3 and E(k) ∝ −5/3, repsectively.

3.3.3 Power sources for interstellar turbulence

Observations of the ISM and comparisons with simulations suggest that tur-
bulence in the ISM is driven on large scales. However, the origin of the
driving force is still not well understood. The main sources for large scale
motions are stars, galactic rotation, self-gravity, fluid instabilities, and galac-
tic gravity (see, e.g. review by Elmegreen and Scalo, 2004; Mac Low and
Klessen, 2004). Stars may contribute in the form of protostellar winds, ex-
panding HII regions, O star and Wolf-Rayet winds, supernovae, and through
dynamics of superbubbles. Among these contributions, the impact of main-
sequence winds can be neglected (Mac Low and Klessen, 2004), supernovae
and resulting winds and superbubble clearly dominate on scales of the order
of a few hundred parsecs. Galactic rotation results in shocks in the spiral
arms or bars, leads to Balbus-Hawley instability Balbus and Hawley (1991)
and causes gravitational scattering of cloud complexes. The total amount
of available energy in galactic rotation is basically unlimited if compared
to the turbulent energy in the ISM (Fleck, 1981). Self-gravity may lead to
global contraction and causes accretion flows within the ISM. Baumgardt
and Klessen (2011) investigated how much turbulent energy can be supplied
due to accretion streams on different scales and concluded that overall ac-
cretion is capable of supporting the observed amount of turbulence. Gravity
on Galactic scales deposits energy into the ISM by disk-halo interactions and
galaxy-galaxy interaction.



3.4. NUMERICAL REALISATION OF TURBULENCE 53

3.4 Numerical realisation of turbulence

Many aspects in theoretical star formation can only be investigated using
large scale numerical simulations. In many cases, three-dimensional hydro-
dynamic simulations are used to investigate the interplay between physical
processes. It is therefore crucial to model turbulent motions in hydrodynamic
simulations reasonably well. One major problem of astrophysical simulations
is the restriction to a relatively small dynamic range. For instance, it is im-
possible to model the entire star formation process from the formation of gi-
ant molecular clouds where turbulent gas dynamics might begin down to solar
radii where sufficiently large densities, the corresponding equations of state,
and possible phase transitions mark the regime of dissipation. Therefore, the
turbulence must be created at some scale that lies within the dynamic range
of the simulation. There are two popular ways how to generate turbulence in
a simulation. The first approach is to apply a random, time varying forcing
on large scales, which mark the injection scale. The dissipative effects in
the simulation, represented either by explicitly following dissipative effects
in the gas or by dissipation in the numerical code (numerical viscosity), then
populate energy levels on smaller spatial scales by the onset of the turbulent
cascade. The turbulence thus forms self-consistently within the simulation
from the given initial forcing. The second approach for creating turbulence
uses empirically known characteristic energy spectra to directly generate a
turbulent field. Whereas the first approach yields a naturally created shape
of the energy spectrum, the second one uses an assumed spectrum as an ini-
tial condition. As each way of creating turbulence is controlled by different
parameters and creates fields that are not identical, individual numerical se-
tups are easier to combine with one or the other method. In the following,
both ways are described.

3.4.1 Self-consistent turbulence driving

Creating a self-consistent turbulent velocity field invokes driving forces on
the injection scales that last long enough for the cascade to fully populate
the dynamical range. Although physically a proper forcing might be advan-
tageous, in most simulations it is very impractical because of the resulting
time scale problem in under-dense regions. A forcing field results in large
accelerations in areas of low density and leads to very high velocities in dy-
namically unimportant regions of the computational domain. Therefore, one
uses acceleration fields, assuring that the acceleration of a local area does
not depend on the mass contained. One way of creating a time varying large
scale field is using the Ornstein-Uhlenbeck process, which is described by the
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stochastic differential equation

dqt = θ(µ− qt) + σdWt, (3.26)

where θ > 0, µ, and σ > 0 are parameters and Wt denotes a Wiener process
with a normal distribution of the fluctuations. This technique has been
slightly reformulated with physical quantities by, e.g., Eswaran and Pope
(1988) and Schmidt et al. (2006, 2009).

A major advantage of this method of creating turbulent motions is that
the power spectrum builds up naturally. In case of compressible fluids like
interstellar gas the density fluctuations that arise with the motions are also
self-consistently created. However, as the power spectrum is an intrinsic
property of the setup and can not be regulated, this method is disadvan-
tageous if one is interested in the effects of different shapes of the power
spectrum.

3.4.2 Fourier transformed turbulence fields

Instead of allowing the turbulence to develop self-consistently using a forcing
or acceleration field, one can directly create turbulent motions with a Fourier
transform. The most convenient way is to set up a random velocity field in k
space, as the power spectrum can be set explicitly. If desired, non-isotropic
effects can also be set directly. Having set the appropriate amplitude of
the velocity at a given scale |k|, the random character of the field can be
achieved by adding random phases in the complex k cube. Applying a Fourier
transform as the third step finally yields the velocity field with the desired
power spectrum.

The realisation of compressive or solenoidal turbulence can be done easily
by applying the projections described in section 3.2.3 between the applied
random phases and the Fourier transform back to real space.

A major advantage of this method is the ability to precisely control at
the same time the structure of the modes as well as the scale at which most
of the energy is deposited.

3.4.3 Spatial and dynamical ranges

Turbulent processes in nature allow for a large inertial range, meaning that
the scale of energy injection is many orders of magnitude larger than the dis-
sipation scale. In particular in astrophysical processes the inertial range can
easily span 10 orders of magnitude in space. With spectral indices of roughly
−2, the energy range spans 20 orders of magnitude. These large ranges can
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not be completely covered by current computing facilities. Adaptive tech-
niques can span a couple orders of magnitude, but in particular the very small
dissipation scales, which are set by molecular properties are way too small
to be covered within a global astrophysical simulation. This means that the
small scale limit in the energy cascade is determined by the numerical reso-
lution. Once the energy cascaded down to the smallest resolution element,
the numerical viscosity dissipates the energy. Depending on the numerical
technique, the effects on the dissipation are different. Smoothed particle hy-
drodynamics does not have an intrinsic viscosity, which means that it has to
be put into the equations artificially. Without artificial viscosity, the SPH
particles can move around at arbitrarily small distances without dissipating
energy. In contrast, grid-based codes have an intrinsic numerical viscosity.
Once a turbulent eddy approaches the resolution limit, the rotating struc-
ture disappears within a computational cell and dissipates the energy of the
eddy. The critical question of how much resolution is needed in order to fully
follow the turbulent cascade is difficult to answer. Whereas in nature the dis-
sipation scale is always the same (assuming the same gas properties within
the region under consideration), the numerical diffusion scale depends on the
local resolution. Even worse is the situation in adaptive mesh refinement
codes, where the local cell size varies and with it the minimum resolution of
the smallest resolvable eddy.

Depending on the type of numerical simulation, the problems concern-
ing the resolution elements in grid-based codes are more or less severe. In
simulations, where the gas crosses the box several times, it is numerically
too expensive to refine the grid locally with very high resolution. The vol-
ume filling eddies would require a large percentage of the simulation box to
be refined. Therefore, simulations of turbulent boxes are usually done on
a uniform grid without adaptive refinement, which reduces the spatial and
dynamical range. In contrast, simulations of collapsing regions often cover a
much smaller dynamical evolution time scale. In star formation simulations,
the simulation time is in most cases of the order of a free-fall time rather
than several crossing times. This means that the cloud collapses to a very
dense region in a small spatial range and only a small percentage of the total
box needs to be refined in order to follow the dynamically dominant region,
e.g., the central stellar cluster. Therefore, adaptive meshes with very high
refinement levels, covering spatial ranges of 4 − 5 orders of magnitude, are
achievable.
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Chapter 4

Topic of the thesis

4.1 Overview

In this thesis, we investigate the impact of different initial conditions on the
collapse of gravitationally unstable clouds, the formation of density structures
in the cloud like filaments and central clumps, as well as the early formation
history of protostellar clusters. This analysis is divided into four main parts:

• the collapse of the cloud and the morphology,

• the accretion processes in protostellar clusters,

• the impact of turbulent modes and the importance of tidal forces, and

• the energetics and dynamical state of embedded protostellar clusters.

4.2 Considered scales and processes

We simulate the collapse of dense, massive cores with densities of the order of
106 cm−3 (Bontemps et al., 2010; Beuther et al., 2007) and sizes of ∼ 0.2 pc.
These cores contain many tens of Jeans masses and collapse in nearly free-
fall with rapid star formation activity. Because of the high average densities,
the collapse scenario is particularly interesting concerning the formation of
massive stars. Although observations allow for rough estimates of the density
distribution within the cores, the details of the mass distribution, which can
easily predetermine the fragmentation of the core and thus the spatial dis-
tribution of stars, show significant uncertainties. Depending on the observed
wave length, the cores show more or less fragmented structure. The question

57



58 CHAPTER 4. TOPIC OF THE THESIS

of how massive these fragments are and how well they are dynamically con-
nected to each other is unknown but crucial to understand the formation of
massive objects.

After the formation of the first fragments, the accretion processes may
significantly alter the initial masses of the protostars. Therefore, it is im-
portant not to exclusively follow the first collapse of the unstable regions,
but also simulate the formation of multiple stars and the resulting accretion
flows within the star-forming region.

A further complication is the dynamics of the cores. The gas motions
in the cores are supersonic and shape the gas distribution according to con-
verging and diverging flows. The complexity of motions lead to strong local
concentrations of angular momentum, which may form discs and influence
the accretion processes.

4.2.1 Global simulation parameters

We simulate the collapse of an initially spherical molecular cloud with a
radius of R0 = 3 × 1017 cm ≈ 0.097 pc, centred in a cubic computational
domain of length Lbox = 8×1017 cm. The gas with a mean molecular weight of
µ = 2.3 is assumed to be isothermal at a temperature of 20 K. The isothermal
sound speed is given by

cs =

√
kBT

µmp

= 0.268 km s−1 (4.1)

with the Boltzmann constant kB, the temperature T , the molecular weight
µ, and the proton mass mp. For all runs the total mass enclosed within this
sphere is 100 M�. The resulting average density is 〈ρ〉 = 1.76× 10−18 g cm−3

or 〈n〉 = 4.60× 105 cm−3, leading to a free-fall time

tff =

√
3π

32G 〈ρ〉 (4.2)

of 1.58× 1012 s or 50.2 kyr. However, this global average time is not a good
measure for the strongly concentrated density profiles, where star formation
and gravitational collapse occurs on much shorter time scales. All of the
initial spheres are gravitationally highly unstable. With the Jeans length

λJ =

√
πc2

s

G〈ρ〉 = 9264 AU = 0.46 R0 (4.3)
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Table 4.1: Physical parameters of all setups

Parameter Value
cloud radius R0 3× 1017 cm ≈ 0.097 pc
total cloud mass Mtot 100 M�
mean mass density 〈ρ〉 1.76× 10−18 g cm−3

mean number density 〈n〉 4.60× 105 cm−3

mean molecular weight µ 2.3
temperature T 20 K
sound speed cs 0.27 km s−1

rms Mach number M 3.28− 3.64
mean free-fall time tff 5.02× 104 yr
sound crossing time tsc 7.10× 105 yr
turbulent crossing time ttc 1.95− 2.16× 105 yr
Jeans length λJ 9.26× 103 AU ≈ 0.23 R0

Jeans volume VJ 1.39× 1051 cm3

Jeans mass MJ 1.23 M�

the Jeans volume, given as a sphere with diameter λJ, reads VJ = πλ3
J/6 and

the Jeans mass of this sphere is MJ = VJ 〈ρ〉 = 1.23 M�. An overview of the
physical parameters is given in table 4.1,

The simulated density range justifies an isothermal equation of state.
However, the missing heating effect due to radiation leads to more collaps-
ing regions than in non-isothermal simulations. We therefore over-estimate
the number of formed protostars, and the presented stellar statistics should
more be understood as a comparison between the runs rather than an exact
measurement of the IMF.

4.3 Initial turbulence

4.3.1 Power spectrum of the turbulence

The turbulence is modelled with an initial random velocity field, originally
created in Fourier space, and transformed back into real space. The power
spectrum of the modes is given by a power-law function in wave number
space (k space) with Ek ∝ k−2, corresponding to Burgers turbulence (the
value for incompressible, Kolmogorov turbulence would be Ek ∝ k−5/3 in
this notation), which is consistent with the observed spectrum of interstellar
turbulence (e.g., Larson, 1981; Heyer and Brunt, 2004). The velocity field is
dominated by large-scale modes due to the steep power-law exponent, −2,
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with the largest mode having the size of the simulation box. Thus, changing
the slope of the power spectrum is not expected to affect the results sig-
nificantly (see, Bate, 2009b). However, the random seed and the mixture
of modes of the initial turbulence can potentially change the results more
strongly, which we investigate in this study. Concerning the nature of the k
modes, compressive (curl-free) are distinguished from solenoidal (divergence-
free) ones. The simulation uses three types of initial fields: pure compressive
fields (c), pure solenoidal (s), and a natural (random) mixture (m) of both.
These choices were motivated by the strong differences found in driven tur-
bulence simulations using purely solenoidal and purely compressive driving
of the turbulence (Federrath et al. 2008, 2009, 2010b). Note however that
only decaying turbulence with compressive, mixed, and solenoidal modes are
considered here. For each of these three types, two different random veloc-
ity seeds are created, leading to six different initial velocity fields in total
(c-1, c-2, m-1, m-2, s-1, s-2), which are combined with the different density
profiles.

No overall global rotation is imposed on the cloud. Due to the random
nature of the turbulence, the net rotation, and the net angular momentum
are not strictly zero. The ratio of rotational to gravitational energy is of the
order of a few times 10−3.

4.3.2 Mach numbers

All setups have supersonic velocities. Due to different density concentrations
and the resulting different refinement structure of the AMR grid, the rms
velocities and their Mach number

M =
vrms

cs

(4.4)

differ slightly among the different density profiles. Table 5.2 shows the Mach
numbers for all the setups which vary fromM = 3.28−3.64 with an average
of 〈M〉 = 3.44.

4.3.3 Sound crossing time and turbulence crossing time

The sound crossing time through the entire sphere is

tsc(R0) = 7.10× 105 yr, (4.5)

about one order of magnitude higher than the global free-fall time. For the
supersonic turbulence with an average gas velocity ofM = 3.44, the average
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turbulence crossing time is

ttc(R0) = 2.06× 105 yr. (4.6)

The crossing times for the core region are tcore
sc = tsc(λJ) = 1.64× 105 yr and

tcore
tc = ttc(λJ) = 4.77× 104 yr, which is close to the global free-fall time.

4.4 Numerical methods

4.4.1 Equations to solve

We solve Eulers equations for compressible gas dynamics in three spatial
dimensions, neglecting the effects of viscosity. The equations then take the
form (Fryxell et al. 2000, FLASH user guide, section 2.2)

∂ρ

∂t
+∇ · (ρu) = 0 (4.7)

∂ρu

∂t
+∇ · (ρuu) +∇P = ρg (4.8)

∂ρu

∂E
+∇ · [(ρE + P )u] +∇P = ρu · g (4.9)

with the fluid density, ρ, the velocity, u, the pressure, P , the total energy
per unit mass, E, (sum of kinetic and internal energy),

E = ε+
1

2
|u2|, (4.10)

the gravitational acceleration due to self-gravity, g, and the simulation time,
t. The pressure is obtained from the energy density via

P = (γ − 1)ρε (4.11)

with γ being the ratio of the specific heats. The gravitational acceleration is
computed by solving the Poisson equation

∇2Φ = 4πGρ. (4.12)

4.4.2 Operator splitting

Solving the above equations for the entire domain in a high-resolution simu-
lation is challenging. In principle, there are explicit and implicit numerical
schemes that can compute solutions for the Euler’s equations. However, for
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state-of-the-art resolutions, the implicit methods are too time consuming be-
cause they involve the inversion of a matrix containing the entire domain.
Therefore, explicit schemes are used to advance the equations with given
initial conditions. Depending on how many processes interact in the simula-
tion, the coupling of the quantities in the equations further complicates the
computation. An example is the gas density. The density field influences the
evolution of equations via the gravitational source terms in equations (4.8)
and (4.9). At the same time, the density changes with a change of u in
equation (4.7). Ideally, the Euler’s equations are solved simultaneously with
the Poisson equation (4.12), which is computationally not practical. Similar
complications arise from additional physics like complicated thermodynam-
ics. Practically, the time evolution of the equations is solved using operator
splitting. Euler’s equations are solved for half of the desired time step ∆t,
then the gravitational potential is updated with the solution of the Poisson
equation, and after that the equations are advanced for the second half of the
time step with the same sequence of computation. Additional physics can be
added to the sequence analogously. The following pseude-code demonstrates
this recipe.

main time loop

{

# first half of time step dt

call hydro_euler_equations(dt/2, ...)

call poisson_solver(dt/2, ...)

call ...

# second half of time step dt

call hydro_euler_equations(dt/2, ...)

call poisson_solver(dt/2, ...)

call ...

}

4.4.3 Grid-based numerical scheme

The equations are solved on a cartesian grid, organised in blocks of 83 cells
per block (see figure 4.1). As the total computational domain is distributed
among multiple CPUs, a block is surrounded by so-called guard cells or ghost
cells, shown in grey. They are used to communicate the information at the
border of the block to the neighbouring CPU. Within one block, the cells have
equal sizes in all three dimensions. In order to follow the interesting parts in a
simulation with more accuracy and more spatial resolution, the grid, on which
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Figure 4.1: Computational block, consisting of 83 cells (white cells). A copy
of the cells of the neighbouring block is stored in the ghost cells, shown in
grey.

we compute the hydrodynamic equations needs to be refined locally. This
so-called adaptive mesh refinement (AMR) is done in the simplest manner
by splitting the cell in two equal parts in each dimension of the simulation,
see figure 4.2. In a grid-based code the criteria for refinement can be defined
and changed easily. Whenever a desired quantity exceeds a threshold value,
the local grid cell can be split. The most common refinement criterion in a
collapsing core is the density. In addition, the resolution of shocks can be
increased locally by refining on a basis of the derivative of the density or the
velocity, just to name two.

Two important aspects limit the applicability of hierarchical refinement,
i.e., memory limits and time step limits, respectively. The former one is a
simple result of the increasing number of computational elements that have to
be stored in the memory of the computer. Obviously, the more computational
cells a simulation contains, the more CPU time is needed to process them.
The latter limit is connected to the stability of explicit numerical schemes.
In order to assure numerical stability, the maximum evolutionary time step
scales as ∆t ∝ ∆x, which decreases with decreasing cell size, a pure result
of the changing geometry. In addition the physical processes are likely to
further reduce the time step for reasons of numerical stability. In most cases
a local refinement follows dynamically active regions with high velocities
and/or high temperatures, leading to significantly smaller time steps.
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Figure 4.2: Illustration of the adaptive mesh refinement (AMR) in two di-
mensions. Local cells are split in half in each dimension of the domain.

4.4.4 Numerical diffusion

Although not explicitly computed in the equations, the numerical scheme
based on the grid is diffusive. Once motions on the smallest level of the
refinement structure can not be resolved any more, the individual motions
wash out and diffuse within one cell. This numerical diffusion dissipates en-
ergy not only on scales of the local minimum cell size, but already on larger
scales, when the region is resolved with several cells. For turbulent motions
the minimum resolution that is needed without being influenced by the nu-
merical diffusion is roughly 30 cells (Federrath et al., 2011). One particular
problem of an AMR grid is the varying diffusion scale in the domain and
thus a varying energy range. Once a region is refined with more resolution,
the kinetic motions can be followed to smaller scales, generally increasing
the total kinetic energy in comparison to low-resolution regions. There are
solutions to adequately compute the kinetic energy at the resolution limit via
subgrid models of turbulent motions (Braun and Schmidt, 2012). But these
methods have been developed fairly recently and are very difficult to include
in a numerical scheme. They are therefore not implemented in this work.

4.4.5 Numerical code

We investigate the collapse of the cores with three-dimensional hydrodynamic
simulations using the grid based parallelised FLASH code in version 2.5
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(Fryxell et al., 2000), which integrates the hydrodynamic equations with
a piecewise-parabolic method (PPM) (Colella and Woodward, 1984). The
code is parallelised using MPI. The computational domain is subdivided into
blocks containing a fixed number of cells with an adaptive mesh refinement
(AMR) technique based on the PARAMESH library (Olson et al., 1999). In
order to accurately follow the physical processes in dynamically dominating
high-density regions, the initial grid of blocks can be refined locally, controlled
by different refinement criteria like the density, the velocity or derivatives of
various quantities. In our setups we choose two refinement criteria, one based
on the resolution of the Jeans length and one based on the second derivative
of the velocity field.

4.5 Resolution limits

In order to avoid artificial fragmentation of the cloud, the Jeans length need
to be resolved with at least 4 grid cells (Truelove et al., 1997). This implies
higher refinement level and more cells in high-density regions. A side effect of
the spatial refinement is the dropping incremental time step for the numerical
integration scheme. As the solver for the hydrodynamic equations is an
explicit scheme, the time step that the solution is advanced needs to be
limited, in order to assure numerical stability. An important parameter in
this context is the Courant-Friedrichs-Lewy number that can be regarded
as the as the ratio of two speeds, namely the wave propagation speed a in
the partial differential equation and the grid speed ∆x/∆t defined by the
discretisation of the domain (see, e.g. Toro, 2009),

CFL =
a

∆x/∆t
=
a∆t

∆x
, (4.13)

which needs to be less than unity for numerical stability. Depending on the
solver and the simulated physical system the CFL number varies. In our
computations we used numbers in the range of 0.2− 0.5.

Overall, further refinement decreases the numerical integration time steps
and eventually stalls the simulation because of individual dense regions in
the computational domain. Therefore the refinement of the domain needs to
stop at a given maximum level to advance the computation with reasonable
time steps. The resulting conflicts in dense regions at the highest level of
refinement need to be solved with a sub-grid model that avoids artificial
results.

One of the most popular sub-grid models in star formation simulations are
sink particles (see e.g., Bate et al. 1995, Krumholz et al. 2004, Federrath et al.
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2010a), that follow collapsing regions. If the Jeans length can not be resolved
any more without further refinement, the gas in the cell is investigated for
collapse criteria. The gas of the collapsing region is then removed from the
grid cells and put into a Lagrangian particle, representing the collapsed point
mass that does not interact hydrodynamically but only gravitationally.

The simulations were run with a maximum effective resolution of 40963

grid cells, corresponding to a smallest cell size of ∆x ≈ 13 AU. In order to
avoid artificial fragmentation, the Jeans length

λJ =

√
πc2

s

Gρmax

(4.14)

has to be resolved with at least 4 grid cells (Truelove et al., 1997). To resolve
turbulence on the Jeans scale, however, a significantly higher number of cells
is required. Federrath et al. (2011) find a minimum resolution of about 30
cells per Jeans length. Due to the high computational demand, we only use 8
cells in the current runs, so we likely miss some turbulent energy in our cores,
which provides additional support against gravitational collapse. We might
thus slightly overestimate the amount of fragmentation and underestimate
the formation times of protostars. It must be noted, however, that this is a
general limitation of all present star cluster formation calculations because
resolving the Jeans length with more than 10−20 cells can be computationally
prohibitive. Additionally, we use sink particles in the simulations. They are
introduced at the highest level of the AMR hierarchy. A necessary but not
sufficient criterion for the formation of sink particles is that the gas density
needs to be higher than the threshold value

ρmax =
πc2

s

4G (3 ∆x)2
= 2.46× 10−14g cm−3. (4.15)

If a cell exceeds this density, a spherical control volume with a radius of 3∆x
is investigated for gravitational collapse indicators. If the collapse criteria
(Federrath et al., 2010a) are fulfilled, an accreting Lagrangian sink particle is
formed. This sink particle is then identified as an individual protostar (Bate
et al., 1995; Wuchterl and Klessen, 2001). Table 4.2 lists the simulation and
resolution parameters.
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Table 4.2: Numerical simulation parameters

Parameter Value
simulation box size Lbox 0.26 pc
smallest cell size ∆x 13.06 AU
Jeans length resolution ≥ 8 (6∗) cells
max. gas density ρmax 2.46× 10−14 g cm−3

max. number density nmax 6.45× 109 cm−3

sink particle accretion radius raccr 39.17 AU

∗ at highest level of refinement
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Chapter 5

Cloud structure and
morphology

This chapter is published in parts in Girichidis et al. 2011, MNRAS 413,
2741.

5.1 Introduction

The current paradigm of present-day star formation suggests that stars are
born in molecular clouds, permeated by supersonic turbulence (Elmegreen
and Scalo 2004, Mac Low and Klessen 2004, Ballesteros-Paredes et al. 2007).
The cores have sizes of a few tenths of a parsec, are very dense with 〈n〉 ∼
106 cm−3 (Beuther et al., 2007), and in many cases they show large line
widths, indicating supersonic, turbulent motions with a power-law spectral
velocity distribution consistent with P (k)∝k−2 (Zuckerman and Evans, 1974;
Larson, 1981; Heyer and Brunt, 2004), and thus steeper than the Kolmogorov
spectrum of turbulence, P (k)∝k−5/3. The steeper power-law exponent is a
result of the compressible cascade of interstellar turbulence (Federrath et al.,
2010b), in contrast to the incompressible cascade in Kolmogorov turbulence.
The star-forming regions are observed to be fragmented with a filamentary,
fractal-like structure (Scalo, 1990; Men’shchikov et al., 2010, and reference
therein). Very dense cores that are supposed to form massive stars have
higher temperatures (T ∼ 20 K) in contrast to less dense clouds with 10 K
(Beuther et al. 2007, Ward-Thompson et al. 2007).

Despite different fragmentation structures and different local environ-
ments, the overall interplay of physical processes that contribute to the for-
mation of stars seems to be very robust in producing prestellar cores and
finally stars with a mass distribution that does not show significant differ-
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ences in most observed regions of our local universe. This mass distribution
can be described by a universal initial mass function (IMF) (Scalo, 1986,
1998; Kroupa, 2001; Chabrier, 2003). Only under extreme circumstances,
i.e. close to the Galactic Centre, may the initial mass function differ from
the universal one. Whereas Löckmann et al. (2010) find that even there
star formation is consistent with the canonical IMF, Bartko et al. (2010)
clearly exclude a standard IMF in favour of a top-heavy mass function in the
Galactic Centre stellar disks.

We know from observations that star formation is a complex interplay
between a number of physical processes and ingredients: gravity, turbulence,
rotation, radiation, thermodynamics, and magnetic fields. However, to what
extent the various processes have a dominant impact on the evolution in
comparison to the initial conditions of the molecular cloud is still unclear.
Especially the impact of the initial conditions on the formation of massive
stars, the spatial distribution of stars, and the mass evolution is unknown.
Observations reveal that massive stars form early and with a tendency to
be located at the centre of the cloud, whereas stars with lower masses form
further out and at later times (Hillenbrand 1997; Hillenbrand and Hartmann
1998; Fischer et al. 1998; de Grijs et al. 2002; Sirianni et al. 2002; Gouliermis
et al. 2004; Stolte et al. 2006; Sabbi et al. 2008).

Theoretical approaches reproduce consistent star formation key data with
a variety of different numerical methods, initial setups, and physical pro-
cesses (see review by Klessen et al., 2009). However, a systematic study of
how the initial conditions influence the fragmentation process, the collapse
of the gas into stars, the number of stars, and their accretion history is still
missing. Especially how the formation of massive protostars depends on
the interplay between initial density profile, turbulence, and accretion model
needs to be studied systematically. The large variety of existing numerical
simulations all with different initial conditions does not allow for a useful
comparison. Bate et al. (2003), Bate and Bonnell (2005), Bate (2009a,b,c),
Clark et al. (2008a), Bonnell et al. (2003, 2004), and Bonnell and Bate (2005)
used uniform density distributions with solenoidal (divergence-free), decay-
ing turbulent motions on different cloud scales. They use a turbulent power
spectrum, P (k) ∝ k−2, consistent with supersonic turbulence, however, the
influence of different mixtures of initial modes of the turbulence were never
investigated. In particular, Bate (2009b) concluded from the similarity of
their results with two different initial turbulence spectra, P (k)∝k−2 versus
P (k)∝ k−3, that different turbulence in general has no major influence on
star formation. However, both of the investigated spectra in Bate (2009b)
are steep, such that the turbulence is dominated by the few large-scale modes
(low k) anyway. Different mixtures of solenoidal and compressive modes of
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the initial turbulence are expected to have a much stronger influence on star
formation, which we show here. Krumholz et al. (2007, 2010) favour con-
centrated density profiles with ρ ∝ r−1.5, referring to observations of dense
cores. Their decaying turbulent velocities are based on a power spectrum
of the form P (k) ∝ k−2, but not specifying the nature of the modes. In
contrast, Klessen (2001) used driven turbulence on different scales to cre-
ate dense cores self-consistently with a ρ ∝ r−2 density profile in the outer
region. Offner et al. (2008) compared driven and undriven turbulence with
an initial flat power spectrum for the wave numbers 3 ≤ k ≤ 4. Federrath
et al. (2008, 2009, 2010b) investigated purely driven turbulence with the
two limiting mixtures of turbulent modes: 1) fully solenoidal (divergence-
free) and 2) fully compressive (curl-free), and found significantly different
density distributions, with three times larger standard deviations of the den-
sity probability distribution function in the case of compressive compared
to solenoidal driving (see also the follow-up studies by Schmidt et al., 2009,
2010; Seifried et al., 2011b; Price et al., 2011). Since such strongly different
density fields are expected to lead to very different modes of star formation,
we also investigate here three mixtures of the initial turbulence (compressive,
mixed, and solenoidal). Here, however, we only apply the different turbulent
modes as an initial condition, not continuously replenishing them by driving.

In this chapter, we investigate the fragmentation, the time scales, and
the stellar distributions with a focus on how different initial conditions lead
to different morphology and statistics of prestellar cores and stellar clusters.
The chapter is structured as follows: section 5.2 describes the initial density
profiles and the applied turbulent velocity fields for the simulations, as well
as the numerical key parameters, and the usage of sink particles. In addition,
a theoretical estimate of the accretion rate for the ρ∝r−2 density profiles is
calculated. In section 5.3 we present the results of the simulations, followed
by a discussion in section 5.4. Here we concentrate on the cloud evolution
and the global stellar properties. A detailed investigation of the spatial
stellar distribution will be presented in chapter 8. Finally, in section 5.5
we summarise our results and conclusions.

5.2 Initial conditions

5.2.1 Initial density profiles

In the simulations the following four frequently used initial density profiles
are applied:

1. Uniform density profile (Top-hat, TH)
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2. Rescaled Bonnor-Ebert sphere (BE)

3. Power-law profile ρ ∝ r−1.5 (PL15)

4. Power-law profile ρ ∝ r−2.0 (PL20).

The profiles are motivated by the following reasonings. The TH just
reflects the initial conditions in a uniform density environment with finite
size. Neither initial density perturbations have been established nor does
the sphere have a developed over-density. The BE profile is motivated by
the theoretical calculation of an isothermal sphere in hydrostatic equilib-
rium confined by external pressure (Ebert 1955, Bonnor 1956). The PL20
profile is the limit of the collapsing BE sphere at the end of the evolution
process. This density configuration of a singular isothermal sphere is widely
applied because its collapse can be described by a self-similar solution with
predictable in-fall and evolution properties (Shu (1977), section 5.2.1). So
far studies with a singular isothermal sphere have only been done without
turbulent velocity. Finally the PL15 profile, which is an intermediate evo-
lutionary stage of the BE sphere before reaching the PL20 configuration, is
motivated by observations. The outer region of collapsing clouds is observed
to follow a density distribution of the form ρ ∝ r−1.6 (Pirogov, 2009).

A comparison of the radial shape for all density profiles is shown in fig-
ure 5.1. λJ marks the Jeans length for the average density 〈ρ〉. These four
profiles are extreme setups that allow us to follow the influence on the central
collapse and the fragmentation.

No initial density fluctuations were applied. The density of the surround-
ing gas in the cubic box around the spherical molecular cloud is set to 10−2

times the gas density at the edge of the cloud at r = R0. The initial tempera-
ture distribution is a step function with the temperature in the cloud envelope
100 times larger than in the inner isothermal collapsing cloud, which results
in a continuous pressure at the boundary r = R0.

Top-hat

This density implementation is the simplest profile, describing the gas density
as a step function

ρ =

{
〈ρ〉 for r ≤ R0,

0.01 〈ρ〉 for r > R0

(5.1)

with

〈ρ〉 =
Mtot

V
=

3Mtot

4πR3
0

. (5.2)
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Figure 5.1: Comparison of the four initial density profiles adjusted to a total
mass of 100 M� within a radius of 0.1 pc. λJ marks the Jeans length for the
average density 〈ρ〉.

Rescaled Bonnor-Ebert sphere

In hydrostatic equilibrium the critical density profile is described by a Bonnor-
Ebert sphere with normalised radius ξ = 6.41 (Ebert 1955, Bonnor 1956).
The only free parameter for this configuration is the central density ρ0. In
order to better compare this sphere with the other clouds, the central density
was first chosen such that the outer radius of the sphere yielded the given
size of 0.1 pc. Then the density at every point was rescaled to fit the total
cloud mass of Mtot = 100 M�.

Power-law profiles

As the power-law profiles ρ ∝ r−p diverge in the centre of the cloud, an inner
radius has to be defined below which the density follows a finite function. In
these setups this part of the profile is described by a quadratic function:

ρ =




ar2 + c for 0 ≤ r < r1,

B
(

r
R0

)−p
for r1 ≤ r ≤ R0.

(5.3)

The reason for this transition instead of a simple cut-off at the inner radius is
to avoid artificial numerical effects at the boundary r1. The value for r1 was
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set to 3 (5) times the cell size at the highest level of refinement for p = 1.5 (p =
2.0). The choice for the values of a and c allow for a continuous transition for
the density function value as well as for the derivative dρ/dr. For p = 1.5 the
two values read a = 2.227× 10−44 g cm−5 and c = 1.784× 10−14 g cm−3, the
values for p = 2.0 are a = 5.804×10−44 g cm−5 and c = 1.107×10−13 g cm−3.
The outer radius R0 was set to the radius of the cloud, the constant B
scales the density profile to a total enclosed mass of Mtot = 100 M�. Its
value depends on the inner radius r1. However, for small radii r1, which is
roughly three orders of magnitude smaller than R0 in the numerical setup,
B converges to

lim
r1→0

B =
Mtot(3− p)

4π

1

R3
0

. (5.4)

Depending on the effective resolution and therefore the parameter r1, the
maximum density changes significantly.

Power-law profile ρ ∝ r−2 and self-similarity

Based on the analytic treatment of the collapse of a singular isothermal
sphere by Shu (1977), the evolution of a density profile with the general form

ρ(r, t > 0) =
c2

s

2πG
r−2, c2

s =
kBT

µmp

(5.5)

can be described using the dimensionless similarity variable

x =
r

cst
, (5.6)

where G is the gravitational constant. The density distribution, the mass
accretion rate, and the in-fall velocity can be transformed to

ρ(r, t) =
α(x)

4πGt2
(5.7)

ṀSIS(r, t) =
c3

s

G
m(x) (5.8)

u(r, t) = cs v(x) (5.9)

with α(x) = x−2 dm/dx such that the collapse proceeds in a self-similar way.
The two basic differential equations that have to be solved in order to find
the values for α and v read

[
(x− v)2 − 1

] dv

dx
=

[
α (x− v)− 2

x

]
(x− v) (5.10)

[
(x− v)2 − 1

] 1

α

dα

dx
=

[
α− 2

x
(x− v)

]
(x− v) .



5.2. INITIAL CONDITIONS 75

The initial density profile must have the form

ρ(r, t = 0) =
c2

s A

4πG
r−2 (5.11)

with A > 2. This equation can be rewritten for the PL20 density setup as

ρ(r, t = 0) = q r−2 with q = 5.30× 1016 g cm−1 (5.12)

for a total enclosed mass of 100 M�. The constant A in this setup has the
value

A =
4πGq

c2
s

≈ 61.9. (5.13)

Comparing the factor A to the number of Jeans masses in the cloud

MJ =
π5/2

6

c3
s

G3/2ρ1/2
, (5.14)

NJ =
Mtot

MJ

(5.15)

it can be rewritten as follows to

A =
4π8/3q

62/3

N
2/3
J

ρ1/3M
2/3
tot

∝ N
2/3
J . (5.16)

In order to find the theoretical value for the accretion factor m0 = m(r =
0, t = 0) equations (5.10) have to be integrated from a large x to a value
close to zero. For a critical sphere with A = 2 this factor is m0 = 0.95, for
A = 61.9 it reaches a very high value of m0 ≈ 421 (see figure 5.2). This
finally gives a theoretical accretion rate of

ṀSIS = m0
c3

s

G
≈ 1.89× 10−3 M� yr−1. (5.17)

The accretion factor m0 can be fitted with a power-law dependence

m0 ∝ A1.52 (5.18)

(see right plot in figure 5.2) which in turn gives a theoretical accretion rate
close to a linear dependence on the number of Jeans masses

m0 ∝ N1.01
J . (5.19)
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Figure 5.2: Accretion rates as a function of A from equations (5.10) and
(5.11). In the left plot the values for small A are compared with the Shu
values. The right plot shows the high-A regime relevant for the simulation
with the PL20 density profile.

Properties of the central region

All of the initial spheres are gravitationally highly unstable. With the Jeans
length

λJ =

√
πc2

s

G〈ρ〉 = 9264 AU = 0.46 R0 (5.20)

the Jeans volume, given as a sphere with diameter λJ, reads VJ = πλ3
J/6 and

the Jeans mass of this sphere is MJ = VJ 〈ρ〉 = 1.23 M�. The central region
inside the Jeans volume is called the ‘core’ in the following. Accounting
for the different masses inside the Jeans core due to different central mass
concentrations M(r = λJ/2) = M core, it is useful to define the new average
density (ρcore) and free-fall time (tcore

ff ) for the core region VJ . The core values
for the different density profiles can be seen in table 5.1.

5.2.2 Runs

In order to systematically investigate the influence of the initial conditions,
we follow a variety of combinations of turbulence and density profiles. Ta-
ble 5.2 gives an overview of the combinations. The BE profiles as well as
the PL15 profiles are combined with all turbulent fields. As the TH runs are
computationally very expensive, only the turbulent fields with mixed modes
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Table 5.1: Core properties of the different density distributions

setup M core [M�] ρcore [g cm−3] ncore [cm−3] tcore
ff [kyr] tcore

tc /tcore
ff

TH 1.25 1.76× 10−18 4.60× 105 49.858 1.64
BE 5.84 8.33× 10−18 2.18× 106 23.061 2.12
PL15 11.12 1.59× 10−17 4.16× 106 16.707 2.92
PL20 23.02 3.29× 10−17 8.61× 106 11.615 4.20

Core masses, densities, and free-fall times inside a sphere with diameter of
a Jeans length (rcore = λJ/2 = 7 × 1016 cm). The free-fall time for the top-
hat differs slightly from the theoretical value calculated by equation (4.2),
because the data from this table are the numerical values taken from the
simulation.

are applied. The PL20 density distribution has a very short central free-fall
time and is expected to collapse and form a massive sink particle before the
turbulent motions have an important impact on the cloud structure. There-
fore 3 additional setups with compressive velocity field c-1 but higher rms
Mach numbers (PL20-c-1b, PL20-c-1c & PL20-c-1d) were simulated. The
velocities in PL20-c-1b are twice as high as the ones in PL20-c-1; runs PL20-
c-1c and PL20-c-1d have velocities 4 and 6 times as high as PL20-c-1. The
rms Mach numbers are: Mc-1b = 6.57, Mc-1c = 13.1, Mc-1d = 19.7 (see
tab. 5.2).

5.3 Cloud structure and morphology – re-

sults

We followed the collapse to a star formation efficiency of 20%, i.e., until 20%
of the initial cloud mass was captured in sink particles. The concentrated
profile PL20 reached that stage quite quickly (∼ 11 kyr). The PL15 runs
show large differences in the simulation time, ranging from 25−36 kyr, which
is similar to the time needed for the BE density setups (27 − 35 kyr). The
longest time was needed for the TH setup with 45− 48 kyr. Table 5.3 gives
an overview of the total simulated time for all setups. Related to the core
free-fall time, the TH and PL20 profiles just need roughly one tcore

ff to capture
20 M� in sink particles, whereas the BE runs need 1.2−1.5 tcore

ff . The longest
time was needed by the PL15 profiles with 1.4 − 2.1 tcore

ff . A comparison of
the captured mass in sink particles can be seen in figure 5.3 for all runs.
The setups with the same density profile are plotted in the same line style in
order to keep the plot readable.
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Table 5.3: Overview of the simulation time and the sink particle properties

Run tsim tsim/t
core
ff tsim/tff Nsinks Mmax

[kyr]
TH-m-1 48.01 0.96 0.96 311 0.86
TH-m-2 45.46 0.91 0.91 429 0.74
BE-c-1 27.52 1.19 0.55 305 0.94
BE-c-2 27.49 1.19 0.55 331 0.97
BE-m-1 30.05 1.30 0.60 195 1.42
BE-m-2 31.94 1.39 0.64 302 0.54
BE-s-1 30.93 1.34 0.62 234 1.14
BE-s-2 35.86 1.55 0.72 325 0.51
PL15-c-1 25.67 1.54 0.51 194 8.89
PL15-c-2 25.82 1.55 0.52 161 12.3
PL15-m-1 23.77 1.42 0.48 1 20.0
PL15-m-2 31.10 1.86 0.62 308 6.88
PL15-s-1 24.85 1.49 0.50 1 20.0
PL15-s-2 35.96 2.10 0.72 422 4.50
PL20-c-1 10.67 0.92 0.21 1 20.0
PL20-c-1b 10.34 0.89 0.21 2 20.0
PL20-c-1c 9.63 0.83 0.19 12 17.9
PL20-c-1d 11.77 1.01 0.24 34 13.3

The time of each simulation is given as the absolute time tsim, the time in core
free-fall times tsim/t

core
ff , and the time in average free-fall times tsim/tff. Nsink

shows the number of sink particles at the end of the run, 〈M〉 = 20 M�/Nsink

gives the average mass.
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Figure 5.3: Comparison of the total mass in sink particles M for all simu-
lations. All velocity realisations for one density profile are combined in one
line style. A detailed discussion of each velocity field is given in the analysis
section of each of the density profiles.

During the collapse of the cloud two different gravitational processes com-
pete with each other. Firstly, the collapse toward the centre of mass and
secondly the collapse of dense regions into filaments, induced by the tur-
bulence. The different density profiles and turbulent fields lead to different
cloud evolutions, fragmentation properties, and sink particle accretion rates.
A column density plot at the end of each simulation is shown in figure 5.4
and 5.5. Figure 5.4 shows the column density plots for the density pro-
files TH, BE, and PL15 with the velocity field c-1, c-2, m-1, and m-2, as
well as PL20-c-1. Each picture row shows simulations with the same initial
turbulent velocity field, each column belongs to one density distribution. In
the upper part of figure 5.5 we show the final column density for the BE
and PL15 profile with the solenoidal fields. The lower part shows the PL20
profile with compressive turbulent modes for realisation 1. The four different
plots belong to different initial kinetic energy variations (see table 5.2). All
simulations show the formation of filamentary structures and sink particles.
Depending on the initial density profile, the turbulent field, and the result-
ing total simulation time, the position of the filaments as well as the number
of sink particles and their spatial distribution vary significantly. The TH
profiles in figure 5.4 show locally disconnected filaments and subclusters of
sink particles. The BE profiles also form many sink particles in extended
filaments, but much more centrally concentrated and in stronger connected
filaments. The initial mass concentration and the resulting faster central
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Figure 5.4: Column density plots for the TH, BE, and PL15 setups with
velocity profiles c-1, c-2, m-1, and m-2 at the end of the simulation. The
box in all cases spans 0.13 pc in both x and y direction. Each picture row
corresponds to one velocity field, each column to a density profile. All setups
show filamentary structures but differently spread in the box. Only the TH
density runs form distinct subclusters.



82 CHAPTER 5. CLOUD STRUCTURE AND MORPHOLOGY

BE-s-1 t = 31 kyr

Nsink = 234

PL15-s-1 t = 25 kyr

Nsink = 1

BE-s-2 t = 36 kyr

Nsink = 325

PL15-s-2 t = 36 kyr

Nsink = 422

PL20-c-1 t = 11 kyr

Nsink = 1

PL20-c-1b t = 10 kyr

Nsink = 2

PL20-c-1c t = 10 kyr

Nsink = 12

PL20-c-1d t = 12 kyr

Nsink = 34

10−1 100 101 102

column density [g cm−2]

Figure 5.5: Column density plots for the BE and PL15 setups with velocity
profiles s-1 and s-2 (upper part) as well as for the PL20 setup with turbulent
field c-1, c-1b, c-1c, and c-1d (lower part). The box in all cases spans 0.13 pc
in both x and y direction.
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collapse suppress the formation of completely disconnected subclusters. The
PL15 density profile shows in many cases a similar cloud evolution as the
BE setups. However, the total number of sink particles varies strongly with
different velocity realisations and the sink particles are located closer to the
centre of mass. The influence of different initial kinetic energies of the turbu-
lent motions can be seen in the PL20 setups. Higher velocities lead to much
stronger substructures within the same simulated time.

A time evolution for turbulent field m-2 and the density profiles TH, BE,
and PL15 is shown in figure 5.6. Each row shows the column density at the
same simulation time. The columns correspond to the different density pro-
files. The much slower central collapse in the TH case allows the formation
of two distinct over-dense regions, shown at t = 22 kyr. At that time the BE
profile has formed a few stars along the long main filament. The PL15 profile
has already formed more than 50 sink particles very close to each other that
interact very strongly and disturb the central filamentary structure. 3 kyr
later the BE sphere formed more stars mainly along the outer arms of the
main filament. Although the number of sink particles is larger than in the
PL15 case at the previous time snapshot and the total mass captured in sink
particles is roughly comparable, the cluster is not dominated by the gravita-
tional attraction and N -body dynamics of the stars. The initial gas structure
remains unperturbed. Another 3 kyr later the TH profile eventually devel-
oped collapsing regions in completely disconnected areas. By that time the
BE cluster begins to show dynamical interactions. In the last time snapshot
the overall cloud structure as well as SFE and the number of sink particles
is comparable for the BE and the PL15 case.

Concerning the formation of sink particles, a clear distinction between
the power-law profiles and the profiles with a flat core has to be made. The
power-law profiles with their high density core form a sink particle very early
due to the fast collapse of the central region. In the PL20 profile and in two of
the PL15 profiles, this particle remains the only particle formed in the entire
simulation time. PL15 runs with more than one sink particle form them with
a large time gap after filamentary structures have formed and collapse. In
the BE and TH profiles this central particle does not exist, and all particles
form in filaments. This different behaviour can be seen in the mass evolution
(figure 5.3). The runs with PL15 profile form a sink in the centre right after
the start. The mass therefore evolves similarly at the beginning. For the
BE sphere and the uniform density distribution, the different realisations of
the turbulence lead to different filamentary structures and thus influence the
point in time when sink particles are created. Therefore, the mass evolution
of the different simulations show large offsets (figure 5.3).

In general, all setups result in high total accretion rates onto the sink
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Figure 5.6: Column density plots for the TH, BE, and PL15 profile with the
velocity field m-2 in a box of 0.13 pc in x and y direction. The TH-m-2
clearly develops two subclusters by the end of the simulation. The BE and
PL15 runs show a similar general cloud structure that is dominated by central
collapse. In the BE case the flatter initial density forms sink particles far
away from the centre, whereas in the PL15 run the cluster is more compact.
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particles of Ṁ ∼ 1 − 2 × 10−3 M� yr−1. Only PL15-m-2 and PL15-s-2 (see
detailed discussion below) show somewhat smaller values of the accretion
rate. The fluctuations around the mean value strongly depend on the number
of particles, their positions, and the resulting particle-particle interactions as
well as accretion shielding effects. The PL20 as well as two PL15 runs only
form one sink particle and show a very smooth accretion rate with small
fluctuations. The accretion rates in the TH and BE profiles are influenced
by the particle movements but as the clusters are not that compact the
interactions are less intense. The overall similarity of the accretion rates can
also be seen in the similar slope of the mass function in the upper panel of
figure 5.3.

5.3.1 Analysis of the TH profile

The uniform density distribution has much less mass within the core region
compared to the concentrated profiles (see table 5.1), and its core free-fall
time is longer. The initial supersonic velocity field has time to develop signif-
icant over-densities before the global collapse becomes dominant. Therefore
the evolution of the cloud at the beginning of the simulation is dominated
by the turbulent motion rather than the central collapse. The turbulence
crossing time and the free-fall time of the core are similar (tcore

tc /tcore
ff =1.64)

which leads to the formation of over-dense regions all over the simulation
box. These over-dense regions are very massive and evolve to locally collaps-
ing filaments in which the first sink particles form. Filaments that are close
to each other merge into sub-cores in which subclusters build up, before the
central collapse sets in. After roughly one free-fall time, 20% of the mass is
collapsed into sink particles.

The accretion rate for every single sink particle is a strongly varying
function with time. However, the global rate for the sum of all sink particles
quickly reaches a saturated value of Ṁ ∼ 10−3 M� yr−1 (figure 5.7), which
can also be seen in the comparable slope of the total sink particle mass as
a function of time. The number of sink particles is noticeably higher for
TH-m-2.

The mass distribution of the sink particles follows an overall shape similar
to the universal IMF (e.g. Kroupa, 2001; Chabrier, 2003), but shifted to
lower masses by a factor of about 10 (see figure 5.8). A comparison with
analytic models of the IMF (e.g., Padoan and Nordlund, 2002; Hennebelle
and Chabrier, 2008) is planned in a future contribution. Here the main
conclusion is that the formation of massive stars is very unlikely in a cloud
with 100 M� and a uniform density distribution.

Since refinement is initiated in a very space-filling fashion for the uniform
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Figure 5.7: Sink particle evolution for the TH runs. Once sink particles have
started to form the total accretion rate (lower plot) quickly reaches a value
around Ṁ ∼ 10−3 M� yr−1, fluctuating by a factor of roughly 2. Therefore
the evolution of the mass captured in sink particles as a function of time
looks very similar for both runs (upper plot), just shifted by 3− 4 kyr.
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Figure 5.8: The mass distribution of the sink particles for the TH setup has
an overall shape similar to the uniform IMF (Kroupa, 2001; Chabrier, 2003),
but shifted to lower masses.

density distribution of the TH runs and thus computational cost became
prohibitive, we only ran mixed turbulence runs with two different seeds.
It should be noted, however, that the influence of the different mixtures
(compressive versus solenoidal) of the turbulence has the biggest influence
on the evolution and structure of the forming clusters and subclusters in the
TH profiles, because TH profiles provide the most time for the turbulence to
influence the cloud structure before the global collapse sets in..

5.3.2 Analysis of the BE profile

Here the cloud evolution at the beginning is similar to the collapse of the
TH core. The turbulence can form strong filaments spread over large re-
gions of the domain. However, the different radial mass distribution leads
to low-mass filaments in the outer regions. This results in a stronger central
acceleration, which causes the filaments to merge near the centre of mass.
The formation of large subclusters is suppressed compared to the case of the
uniform density distribution. By far, most of the sink particles, which are
roughly as numerous as in the TH simulations, are formed in the core region.
The time evolution of the cloud for different turbulent modes with the same
random velocities can be seen in figure 5.9. The compressive modes lead
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to sink particle formation about 25% earlier than the mixed and solenoidal
modes.

The time evolution of the global sink particle properties are shown in
figure 5.10. Although the random seed strongly determines the location and
orientation of the filaments, the particle formation between BE-c-1 and BE-
c-2 is almost indistinguishable. In the case of mixed and solenoidal modes
the choice of the random seed significantly changes the time at which sink
particles form. However, after the creation of sink particles has set in, the
particle production rate with time as well as the total mass accretion rate is
quite similar for all runs, not reflecting the structure of the initial turbulence
at all. Only the BE-s-2 setup needs some more time until it reaches the
asymptotic value of Ṁ ∼ 2 × 10−3 M� y−1. However, the accretion rate of
individual sink particles varies strongly with time.

The mass distribution of the sink particles (figure 5.11) also shows a
typical IMF structure like the TH runs, also shifted to much lower masses.
This leads to the conclusion that the stronger central density concentration
and the resulting stronger in-fall properties are still way too inefficient in
forming massive stars.

5.3.3 Analysis of the PL15 profile

From the very beginning of the simulation, the PL15 profiles show a con-
siderably different evolution compared to the TH and BE profiles. Due to
the strong mass concentration, the first sink particle forms close to the cen-
tre very early, after roughly 1 kyr ≈ 0.06 tcore

ff . The formation of this sink
particle is not influenced by extended filaments, because the formation time
of filaments is much larger than the time for central collapse. The central
particle has a high and smooth accretion rate in all PL15 runs, which allows
it to grow to the most massive sink particle in the simulation, while filaments
in the outer regions start to form later (figure 5.12). Whether secondary sink
particles form strongly depends on the random seed of the turbulence, as well
as on the nature of the modes. All simulations with compressive modes lead
to the formation of many sink particles in the filaments. On the other hand,
mixed and solenoidal modes lead to either one (PL15-m-1 & PL15-s-1) or a
few hundred particles (PL15-m-2 & PL15-s-2). A possible explanation for
this dichotomy could be the influence of tidal forces, which can suppress the
growth of the initial perturbations induced by the turbulence. In a density
profile steeper than r−1 (see appendix A.2), tidal forces start to shear radial
density fluctuations apart, thus reducing the chance of initial perturbations
to grow by self-gravity. For the BE profile the central region of the cloud
has a shallower density profile than r−1, the PL15 profile a slightly steeper
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Figure 5.9: BE column density plots for the BE density profile and three
different turbulent fields. The columns show snapshots with c-1, m-1, and
s-1 velocities (from left to right) for the same physical time. The box shown
spans 0.13 pc in x and y direction.
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Figure 5.10: Sink particle evolution in the BE runs. The upper plot shows
the total mass captured in sink particles. The compressive fields form sink
particles first, the mixed and solenoidal velocity fields a few kyr later. After
the formation of the first sink particle the accretion rate (lower plot) ap-
proaches a value of ∼ 2× 10−3 M� y−1, independent of the initial turbulent
field. The number of sink particles also shows a similar evolution for all
setups (central plot).
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Figure 5.11: IMF for the BE setups. For all turbulent setups the IMF looks
very similar. The distribution function mainly follows the general shape of a
uniform IMF, but with lower average masses.

one. Over-dense regions that can marginally grow in the BE profile may be
sheared apart in the corresponding PL15 profile with the same velocity field.
However, the turbulence is supersonic and the density power-law exponent is
not far from the critical one. This is why different locations and strengths of
converging and diverging regions of the velocity field may easily overcome the
shearing effect and cause the big differences between PL15-m-1/PL15-s-1 and
PL15-m-2/PL15-s-2. Indeed, an analysis of the density-weighted divergence
of the initial velocity fields shows that seed 2 produces stronger compres-
sions in regions of high density than seed 1. Taken together with the fact
that fragmentation into multiple objects always occurs for the purely com-
pressive fields, this shows the importance of compressive modes for triggering
the formation of dense fragments.

In the first 10 kyr, the evolution of all PL15 simulations is quite similar.
During that time all simulations have only formed one central sink particle.
As soon as other sink particles form, the situation changes significantly. In
the case of multiple sink particles, their particle-particle interactions in the
stellar cluster disturb the central in-fall and redirect the central gas velocities.

Although the total number of sink particles as a function of time is similar
for PL15-c-1, PL15-c-2, PL15-m-2, and PL15-s-2, their spatial distribution
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differs between the runs with compressive velocity field (PL15-c-1, PL15-c-
2) and the runs PL15-m-2 and PL15-s-2 with mixed and solenoidal fields.
In the former, the sink particles are located in filaments much farther away
from the centre, resulting in weaker particle-particle interactions and allowing
the particles to remain located in their dense parental filament. The runs
PL15-m-2 and PL15-s-2 are dominated by the in-fall of less centrally located
and hence less massive filaments. The local gravitational collapse inside
these filaments is therefore delayed until the filament approaches the dense
core. Sink particles show much lower mean separations which increases the
strength and impact of particle-particle interactions. The induced cluster
dynamics reduces the total mass accretion rate because individual sinks stop
accreting if they are kicked out of the dense gas regions. This effect can also
be seen in the IMF (figure 5.13). PL15-m-2 and PL15-s-2 have many more
sink particles, but the final mass of the central one is lower than in the runs
with compressive fields (see table 5.3). Hence, the accretion onto the central
object is starved by the fragmentation around it (Peters et al., 2010a).

5.3.4 Analysis of the PL20 profile

For the PL20 density profile with the compressive turbulent field, only one
sink particle was created already after 0.13 kyr which is only 0.012 tcore

ff . As
this velocity field is the most likely one to form more than one sink particle,
the other turbulence realisations are not simulated entirely. This density
profile is gravitationally too unstable for the turbulence to have an impact
on the density evolution and the fragmentation of the gas sphere within a core
free-fall time. As the turbulence crossing time is about 20 times longer than
the core free-fall time, the small influence of the turbulence is expected. The
accretion rates for all realisations of this setup are very similar (figure 5.14).
Therefore only the setup with compressive mode 1 (PL20-c-1) was simulated
up to a star formation efficiency of 20%. In conclusion, a ρ(r) ∝ r−2 density
profile does not reproduce a realistic IMF but helps to form massive stars.

In order to investigate the threshold turbulent energy that is needed to
cause other regions to fragment and collapse besides the central region, three
additional PL20 profiles with higher velocities were investigated (see tab. 5.2).
The turbulence in PL20-c-1b, with twice as high velocities than our standard
PL20 run, is still not strong enough to significantly alter the result. There is
still only one sink particle created, accreting mass at a very high rate. For
PL20-c-1c with velocities four times as high as in PL20-c-1 (M = 13.1), the
situation changes. The stronger turbulence leads to the formation of other
sink particles apart from the central one. However, the central particle in
this run still contains 90% of the mass (M = 18 M�) at the end of the
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Figure 5.12: PL15 particle evolution. The upper plot shows the total mass
captured in sink particles. Apart from the m-2 and s-2 velocity field, the mass
evolution is very similar. This can also be seen in the lower plot, showing the
accretion rate. In case of more sink particles, the accretion rate varies much
more strongly with time. This is due to strong particle-particle interactions in
the compact stellar cluster. If the cloud fragments and collapses in different
regions the number of stars follows similar curves (central plot). However,
the total number of particles differs much more than in other density setups.
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simulation, and the second most massive particle is more than one order of
magnitude less massive. Similar results are obtained from PL20-c-1d with a
Mach number of M = 19.7. More sink particles form, but still the central
star is the most massive one with M = 13 M�.

5.4 Cloud structure and morphology – dis-

cussion

Our results clearly show that diverse initial conditions lead to completely
different cloud structures and collapse scenarios. However, the strong depen-
dence of the simulation outcome on the initial conditions may be moderated
by different input physics like radiation or magnetic fields and the effects due
to rotation.

Our simulations indicate that massive stars can form without the aid
of radiation and magnetic fields just from choosing centrally concentrated
density profiles. In contrast, our isothermal cloud setups with flat density
distributions fail to produce massive stars. We note that this result could
change significantly if more massive clouds with more Jeans masses are used.
We find in our simulations of isothermal gas that clouds with an initially uni-
form density distribution tend to overproduce low-mass proto-stars and have
difficulty forming sufficient numbers of high-mass objects. This is in quali-
tative agreement with the simulations done by Bate et al. (2003) and Bate
and Bonnell (2005). They used a uniform density distribution and solenoidal
velocity fields, which seems to represent the conditions that inevitably lead
to a large number of low-mass objects. This is also consistent with the cal-
culations by Offner et al. (2008), Klessen et al. (1998), Klessen and Burkert
(2000), Klessen et al. (2000), Klessen (2001), and Heitsch et al. (2001), who
tested the influence of driven and decaying turbulence in a uniform density
box. In order to suppress fragmentation and/or enhance the formation of
massive stars in flat density profiles, more physics may help, which is ad-
dressed in three different approaches, namely radiation feedback, magnetic
fields and stellar collisions. Concerning the first process, Kratter and Matzner
(2006) derived an analytical model to address the fragmentation process in
massive discs. Indeed, Bate (2009b), Krumholz et al. (2009), Peters et al.
(2010a,c,b) found reduced fragmentation in simulations. However, radiative
feedback does not suppress fragmentation entirely. Alternatively, magnetic
fields tend to reduce fragmentation. Hennebelle and Teyssier (2008), Ziegler
(2005), and Bürzle et al. (2011) investigated the influence of magnetic fields in
low-mass cores, Banerjee et al. (2009), Peters et al. (2011), and Hennebelle
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et al. (2011) noted reduced fragmentation in high mass cores. But again,
the fragmentation is not fully suppressed. The formation of massive stars
by stellar collisions was proposed by Zinnecker and Yorke (2007). However,
Baumgardt and Klessen (2011) showed that under realistic cloud conditions
the contribution of stellar collisions can be neglected.

In earlier studies, the discussion about cloud fragmentation and the for-
mation of massive stars is strongly focused on the physical processes, not
taking heed of the importance of initial conditions. As the time scale for star
formation is of the order of a few dynamical times (Ballesteros-Paredes et al.,
1999; Elmegreen, 2000; Hartmann et al., 2001; Mac Low and Klessen, 2004;
Elmegreen, 2007), the star-forming core has only little time to interact with
the surrounding medium. The boundary and initial conditions are there-
fore decisive key properties for the collapse scenario and the star formation
outcome. To fully understand the formation of a star cluster therefore re-
quires knowledge of both the initial conditions for the cluster-forming cloud
core (density profile, temperature, turbulent velocity content) as well as the
time-dependent boundary conditions (as the core is connected to the overall
turbulent cloud environment and may grow in mass by accumulation of gas
at the stagnation points of larger-scale convergent flows).

Given the sensitivity of the dynamical evolution on the choice of the initial
density profile, it is of pivotal importance to seek guidance from observations.
On small scales (� 1 pc) the observed cores clearly deviate from a uniform
density (e.g., Pirogov, 2009; Könyves et al., 2010; Bontemps et al., 2010).
The outer regions of molecular cloud cores can be described by a power-
law with ρ ∝ r−1.5. In the centre of a dense core, however, the approach
of a power-law function seems to be inconsistent with observations, which
identify the central region of the core to be flat (Motte et al., 1998; Ward-
Thompson et al., 1999). Starless cores may often be fitted with a critical
Bonnor-Ebert sphere, cores with stars are often better fitted with super-
critical ones (Teixeira et al., 2005; Kandori et al., 2005; Kirk et al., 2005).
Krumholz et al. (2007, 2010) use very similar setups to our PL15 density
profile, emphasising the importance of radiative feedback for the formation of
massive stars. In this density profile the central region inevitably determines
the collapse time scale and the formation of the first proto-stellar object. Our
current analysis indicates that following a power-law profile to very small
radii (< 103 AU) introduces a bias towards forming a massive central object
without much fragmentation around it. Adding radiative feedback does not
change the outcome significantly in view of the very short central collapse
time scales.

We can also look at the way ISM turbulence is treated in other numer-
ical studies. Bate et al. (2003), Bate and Bonnell (2005), Bate (2009a,b,c),
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Bonnell et al. (2003, 2004), and Bonnell and Bate (2005), for example, al-
ways used divergence-free, decaying turbulent fields. Clark et al. (2008b),
Clark et al. (2008a), Offner et al. (2008), and Krumholz et al. (2007) do
not specify the nature of the modes they select for their turbulence. As our
results show that compressive, decaying modes lead to significantly earlier
collapse and more elongated, shocked structures in the flat density profiles
(TH and BE) than purely solenoidal turbulence, this is an important aspect
of the star formation process that deserves further consideration. A system-
atic study of different modes of the turbulence was done by Federrath et al.
(2008, 2009, 2010b) and Seifried et al. (2011b), but in a periodic box with
driven turbulence and without gravity. These studies find the expected trend
that compressive modes initiate faster collapse and higher accretion rates
than purely solenoidal turbulence. However, the influence of the different
modes is stronger in driven turbulence with self-gravity than in the decay-
ing turbulence runs analysed here. Since dense cores are typically embedded
in large-scale, turbulent molecular clouds, an effective driving of the internal
turbulence from outside the core is expected (e.g., Klessen and Burkert, 2000;
Federrath et al., 2010b).

5.5 Cloud structure and morphology – sum-

mary and conclusions

We performed a parameter study of the fragmentation properties of collapsing
isothermal gas cores with different initial conditions. We combined four
different density profiles (uniform, Bonnor-Ebert type, ρ ∝ r−1.5, and ρ ∝
r−2) and six different turbulent, decaying velocity fields (compressive, mixed,
and solenoidal, each with two different random seeds). For these simulations
we neglected radiation, magnetic fields, and initial rotation, in order to study
the direct influence of the initial density profile and the character of the
turbulence. The cloud evolution as well as the star formation and their
properties were examined. Here we list our main conclusions:

The density profile strongly determines the number of formed stars, the
onset of star formation, the stellar mass distribution (IMF), and the spatial
stellar distribution.

• Flat profiles (uniform density and Bonnor-Ebert profiles) produce many
sink particles in elongated filaments. The formation of sink particles
starts after slightly more than half of a core free-fall time for the uniform
cloud and after roughly one core free-fall time for the Bonnor-Ebert se-
tups. The runs with initially uniform density produce subclusters in
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merging filaments in outer regions of the cloud. Even the relatively
weak mass concentration in the centre of the Bonnor-Ebert setups sup-
presses the formation of subclusters. Both density profiles show an ini-
tial mass function with the high-mass end consistent with the Salpeter
slope. In the case of initial compressive velocity fields, star formation
sets in 25% earlier than in the solenoidal case. The mixed turbulent
fields are in between the two extreme cases.

• The ρ ∝ r−1.5 profiles always form one sink particle in the centre of
the cloud at an early stage. This sink particle accretes gas at rate of
∼ 10−3 M� y−1 and grows to the most massive particle by far. The
formation of unstable filaments depends sensitively on the initial turbu-
lent field. The formation of additional sink particles only occurs after
a time delay of ∼ 0.3 tff. The mass distribution of these sink particles
shows a high-mass slope consistent with the Salpeter slope, but has a
wide gap between this mass continuum and the central massive star of
almost an order of magnitude in mass. The spatial distribution shows
a compact structure around the centre of the cloud and no subcluster-
ing. The column density of the filamentary structure looks extremely
similar for a ρ ∝ r−1.5 run and the corresponding Bonnor-Ebert run
with the same turbulent field, not reflecting the significantly different
stellar properties.

• The ρ ∝ r−2 density profile quickly leads to the formation of one single,
central sink particle. The formation of other stars is strongly inhibited
due to the rapid collapse compared to the time scale for filament for-
mation. In this scenario further star formation can only be triggered
by higher Mach numbers of the turbulence, if the ratio of turbulent
energy to gravitational energy is increased to about unity.

The realisation of the turbulent velocity field has a major impact in
the different morphology of the filamentary structure, their orientation, and
shape.

• In the uniform density profile the random seed of the velocity deter-
mines the position of filaments from which stars form, and thus the
location of the stellar subclusters. In addition, the number of sink par-
ticles generally depends on the random seed of the turbulence. Similar
results are obtained for the BE profile.

• The ρ ∝ r−1.5 profile, which marks the transition between one central
massive sink particle and many low mass ones, is very sensitive to the
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random seed. Different realisations may switch between one single star
and several hundred. The formation time and location of the central,
first sink particle, however, is not influenced by the random seed.

• The ρ ∝ r−2 setups are not noticeably influenced by the turbulence.
The short collapse time of the core compared to the turbulence crossing
time does not allow for turbulence to strongly influence the evolution.

Our results suggest that massive stars predominantly form out of highly
unstable cloud cores which are either strongly centrally concentrated or much
more massive than modelled here, allowing stars to accrete form a larger mass
reservoir. The density configuration with ρ ∝ r−1.5 seems to be the most
sensitive one concerning the number of collapsing fragments for different
turbulent velocities.

Overall we conclude that the choice of the initial density profile is an ex-
tremely important, perhaps even the most important parameter determining
the fragmentation behaviour of high-mass proto-stellar cores. Choosing an
ideal simplified density profile strongly preordains the subsequent star clus-
ter properties. This implies that the effects of different physical processes
can only be reliably compared if the initial density profile is the same. In
realistic star formation simulations, the formation of these cores needs to be
taken into account and cores need to be formed self-consistently from larger
clouds.



Chapter 6

Accretion behaviour

This chapter is published in parts in Girichidis et al. 2012, MNRAS 420,
613.

6.1 Introduction

The current paradigm of star formation suggests that most stars form in
groups rather than in isolation (Lada et al., 2003). However, the fraction of
stars that form in a bound clustered environment is still a matter of debate
and varies between different models (Bressert et al., 2010). Whereas massive
stars only seem to form in a dense environment, low-mass stars form in all
observed star-forming regions. Numerical simulations suggest the formation
of massive stars simultaneously with the formation of a cluster (Smith et al.,
2009; Peters et al., 2010a,c,b). The spatial distribution of stars in the form-
ing cluster shows a dependence on the stellar mass: more massive stars are
located closer to the centre of the group, low-mass stars tend to populate
the outer regions. Whether this mass segregation is primordial and therefore
determined by the formation scenario or due to a dynamical relaxation pro-
cess is still a matter of debate and might differ significantly among different
clusters (see, e.g., the reviews by Mac Low and Klessen, 2004; McKee and
Ostriker, 2007; Zinnecker and Yorke, 2007). Commonly found in observa-
tions as well as in numerical simulations is a universal distribution of masses
(initial mass function, IMF, Scalo 1986, Scalo 1998, Kroupa 2001, Chabrier
2003, Bastian et al. 2010). Yet it is unclear, what is the influence of various
physical processes and initial conditions on the initial mass distribution in
star forming regions. Different physical processes like radiative feedback and
magnetic fields are likely to have an impact on the collapse of gas clouds
and the subsequent formation of a stellar cluster. Radiative feedback from

101
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protostars can have two opposite effects. On the one hand, it heats the sur-
rounding gas and thus contributes to stabilising the gas against collapse by
increasing the Jeans mass. In case of massive protostars, the strong contribu-
tion in UV ionises the gas, forming Hii regions. Hydrodynamic simulations
of forming clusters show that radiative feedback tends to reduce the degree
of fragmentation, but does not suppress it entirely (Krumholz et al., 2007;
Bate, 2009a; Peters et al., 2010a,c,b). On the other hand, radiation pres-
sure may indirectly enhance the formation of dense cores and the subsequent
condensation into protostars. There are two different scenarios for this trig-
gered star formation process. The first, ”collect and collapse” (Elmegreen
and Lada, 1977; Whitworth et al., 1994), appears where an expanding Hii re-
gion pushes ambient gas into a shell, followed by fragmentation and collapse
of the swept-up material. The other one is called ”radiation driven implo-
sion” (Bertoldi, 1989; Bertoldi and McKee, 1990) and depicts the UV-driven
compression of a cloud core that is embedded into an Hii region. Apart
from radiation, magnetic fields have a noticeable impact on the evolution of
a collapsing core. Magnetic pressure and tension forces counter the gravita-
tional collapse and diminish fragmentation without completely inhibiting it
(Ziegler, 2005; Banerjee and Pudritz, 2006; Price and Bate, 2007; Hennebelle
and Teyssier, 2008; Hennebelle and Fromang, 2008; Hennebelle and Ciardi,
2009; Commerçon et al., 2010; Bürzle et al., 2011; Seifried et al., 2011a).
Likewise, different initial conditions of the gas cloud strongly influence the
star formation process, see chapter 5.

However, a clear universal formation picture of stellar systems in dense
environments is still missing. Several formation and gas accretion processes
have been proposed with different distribution scenarios of the gas onto the
protostellar objects and different predictions concerning the more massive
stars and the resulting IMF. The apparent similarity between the stellar
mass function and the mass function of bound cores (Testi and Sargent, 1998)
lead to the monolithic collapse model as a possible star formation scenario,
in which every dense protostellar core collapses to a single star (McKee and
Tan, 2002, 2003). However, this scenario lead to a time-scale problem, that
can effectively destroy the similarity between IMF and the core mass function
(Clark et al., 2007). Similar Problems hold for the proposal that massive stars
form by collisions of low-mass stars (Zinnecker and Yorke, 2007), because the
observed stellar densities are too low for this process to be important (Baum-
gardt and Klessen, 2011). As the formation process of a cluster in a dense
environment is highly turbulent and dynamic, analytic estimates only give a
vague idea of how accretion in this surroundings may work. With the help of
simulations, two different cases have been proposed. In one scenario, which is
called competitive accretion, the formation of the most massive stars is due
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to a privileged position close to the centre of the stellar cluster, where the
accretion rates are predicted to be highest throughout the simulation (Bon-
nell et al., 2001a,b). The other scenario is fragmentation induced starvation
(Peters et al., 2010b), in which initially the central accretion rates are highest
as well. However, subsequent fragmentation shows an increasing impact of
the nascent protostars on the accretion behaviour of the central region, that
gets starved of material by the surrounding companions.

In this study we investigate the accretion process in different initial den-
sity profiles and different turbulent velocity fields. Chapter 5 focused on the
cloud structure and morphology. In this chapter we investigate the accretion
processes in the formed clusters in detail.

6.2 Accretion behaviour – results

6.2.1 Overview

We follow the cloud collapse until 20% of the mass is accreted by sink par-
ticles. The simulation time, the number of formed protostars, and the mass
of the most massive protostar are listed in table 6.1. A column density plot
at the end of each simulation is shown in chapter 5 (figures 5.4 and 5.5).

The TH profile needs the longest time to form collapsing over-densities
and confine 20M� in sink particles. During this time of about 45 kyr, the
turbulent motions can compress the gas in locally disconnected areas, lead-
ing to distinct subclusters of sink particles. The stronger mass concentration
in the centre of the BE setups and the resulting shorter collapse and sink
particle formation time suppresses the formation of disconnected subclusters
in favour of one main central cluster. The corresponding PL15 profiles show
very similar cloud structure to the BE runs, but significantly different stellar
properties. Due to the much stronger gas concentration in the centre of the
cloud, all PL15 setups form one sink particle very early in the simulation.
This central sink particle accretes the surrounding gas at a high rate and can
grow to a massive protostar before the turbulent motions eventually trigger
the formation of collapsing filaments, which produce subsequent sink parti-
cles. Due to the stronger mass concentration, the clusters in the PL15 runs
are more compact. In both cases (PL15 and BE), star formation can proceed
from inside out. The central region, which is much denser in the PL15 case,
forms collapsing filaments earlier. As time proceeds, the turbulence can con-
tinuously compress material in outer regions, and thus form sink particles at
larger distances from the centre. The PL20 profile only forms one single sink
particle due to the very strong mass concentration. It forms very early in
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Table 6.1: List of the runs and their main simulation properties

ρ mode name Ekin/|Epot| tsim tsim/tff Nsink Mmm

and seed [kyr] [M�]
TH mix-1 TH-m-1 0.075 48.01 0.96 311 0.86
TH mix-2 TH-m-2 0.090 45.46 0.91 429 0.74
BE com-1 BE-c-1 0.058 27.52 0.55 305 0.94
BE com-2 BE-c-2 0.073 27.49 0.55 331 0.97
BE mix-1 BE-m-1 0.053 30.05 0.60 195 1.42
BE mix-2 BE-m-2 0.074 31.94 0.64 302 0.54
BE sol-1 BE-s-1 0.055 30.93 0.62 234 1.14
BE sol-2 BE-s-2 0.074 35.86 0.72 325 0.51
PL15 com-1 PL15-c-1 0.056 25.67 0.51 194 8.89
PL15 com-2 PL15-c-2 0.068 25.82 0.52 161 12.3
PL15 mix-1 PL15-m-1 0.050 23.77 0.48 1 20.0
PL15 mix-2 PL15-m-2 0.071 31.10 0.62 308 6.88
PL15 sol-1 PL15-s-1 0.053 24.85 0.50 1 20.0
PL15 sol-2 PL15-s-2 0.069 35.96 0.72 422 4.50
PL20 com-1 PL20-c-1 0.042 10.67 0.21 1 20.0

The table shows the setups with their turbulent modes, the random seed for
the velocity field and their acronym used in further discussions. The ratio of
kinetic to potential energy results from the applied scaling of the turbulent
velocity and varies due to the random position of high- and low-velocity
regions. The simulation time is given as total time in kyr and in units of the
global free-fall time, tsim/tff. The last two columns show the total number of
sink particles Nsink and most massive particle Mmm, respectively.
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the simulation and accretes gas at a constant rate of about 2×10−3M� yr−1,
extremely close to the analytical value of a highly unstable singular isother-
mal sphere (chapter 5). This results in a total simulation time of only 11 kyr,
which is not enough for turbulent motions to form other filaments and further
sink particles.

For the analysis of the accretion behaviour in a dense cluster environ-
ment, we only consider the setups with multiple sink particles. In oder to
understand the accretion process, especially during the early phases of a clus-
ter, one has to distinguish between different star formation scenarios and the
resulting cloud morphology around the accreting protostars. Here we discuss
two extreme cases, an early disc-like structure around a central protostellar
object and an initially filamentary structure that is not dominated by angu-
lar momentum. The first case is more pronounced in centrally concentrated
density profiles where a net angular momentum with respect to the centre
of mass is concentrated in a smaller and denser region. In contrast, initially
flatter density structures allow the formation of very massive filaments and
subsequently collapsing regions within these filaments out to larger distances
from the centre of mass. The angular momentum with respect to the centre
of mass may be of the same order as in the former case. However, due to the
overall shallower density profile in the centre, the mass infall is slower and
the timescale for the formation of a disc in the central region is larger than
the timescale for turbulence to form filaments.

6.2.2 Limiting accretion effects

Before we discuss the two extreme cluster formation modes and their result-
ing accretion behaviour, we want to mention two effects that may limit the
accretion in a cluster, namely the angular momentum barrier and accretion
shielding by companion stars. In order to be accreted onto the surface of a
protostar the gas needs to have a specific angular momentum that is lower
than the Keplerian angular momentum with respect to the centre of the po-
tential, given by jKepler =

√
2GMencr , where G is Newton’s constant and

Menc is the enclosed mass within radius r. In a cluster and especially in
disc-like environments, angular momentum can quickly be redistributed due
to local instabilities, turbulent motions, and strong accretion streams. We
analyse the angular momentum of the cloud with respect to the centre of the
cluster and calculate the magnitude of the average angular momentum over
thin spherical shells.

For the effects of accretion shielding by surrounding companion stars, we
estimate how much of the infalling gas can be accreted by secondary cluster
members before reaching the centre of the cluster and becoming accreted
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by the primary cluster stars. Assuming a virialised cluster, one can derive
the shielded fraction S using Bondi-Hoyle accretion (Bondi and Hoyle, 1944;
Bondi, 1952). The Bondi-Hoyle radius can be written as

RBH =
2GM

c2
s + v2

, (6.1)

where M is the mass of the accreting star, cs is the speed of sound, and
v is the relative velocity between the star and the immediate surrounding
gas. In our analysis we investigate the gas within a radius rsurr = 100 AU
around each protostar. An application of the Bondi-Hoyle analysis to the
accretion in clusters and the cluster dynamics can also be found in Bonnell
et al. (2001a). The total shielded fraction of the gas falling onto a cluster
with N stars, an average stellar mass M , and a cluster radius RCl can be
estimated by the fraction of the shielded surface area

S =
4π N R2

BH

4πR2
Cl

=
N

R2
Cl

(
2GM

c2
s + v2

)2

. (6.2)

In the case of high relative velocities between the stars and the gas, the c2
s

term can be neglected. Replacing v with the global virial velocity vglob of the
cluster,

vglob =

(
GMCl

RCl

)1/2

=

(
GN M

RCl

)1/2

, (6.3)

with MCl = NM being the cluster mass (assuming equal-mass stars for
simplicity), yields

S ∝ 1

N
. (6.4)

In that case, the shielding is less efficient the more stellar objects there are
in the cluster. Although this might sound counterintuitive, the assumption
of virial velocities for the stars explains the strongly reduced Bondi-Hoyle
radius with increasing number N . In the other extreme case of no relative
velocity of the star to the surrounding gas, the shielding becomes

S =
NR2

BH

R2
Cl

∝ NM2

c2
sRCl

, (6.5)

linearly increasing with N . In our simulations we observe stars forming inside
filaments with initially no or very small relative velocity between them and
the surrounding gas. The closer to the centre the stars form or migrate during
the collapse of the cloud, the more they decouple dynamically from the gas
forming a strongly interacting N -body system with a gaseous background.
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We therefore expect the first case (S ∝ 1/N) to be more important in the
central region of the cluster, whereas the latter effect (S ∝ N) is expected to
be dominant in the outskirts of the cluster and in the filaments. An analysis
of the simulation is shown below, separately for the two extreme formation
modes.

6.2.3 Disc-like accretion mode

In the first case we discuss the accretion scenario in a disc-like structure,
concentrating on simulation PL15-m-2 as an example. A global accretion
history for all protostars is shown in figure 6.1, where we plot the total
number of sink particles as well as the accretion rate and the total mass
confined in sink particles. The middle panel shows the total accretion rate
onto all sink particles Ṁtot, the average accretion rate per protostar ˙〈M〉 =
Ṁtot(t)/Nsink(t), as well as the accretion rate of the most massive protostar
Ṁmm, which happens to be the protostar located close to the centre of mass
of the gas cloud and the cluster.

During the first 7 kyr, the turbulent motions do not have enough time
to significantly disturb the cloud. The anisotropies formed so far can be ne-
glected and the assumption of a spherically symmetric collapse holds. The
first sink particle forms in the centre of the cloud and accretes material in
nearly free-fall. The initial density profile results in a linearly increasing
accretion rate (see also Klessen and Burkert, 2000; Schmeja and Klessen,
2004). At around t ∼ 7 kyr, the turbulent motions form a central filament
whose colliding arms concentrate angular momentum in the gas around the
central protostar and form a disc-like object. Thus, the spherically symmet-
ric free-fall approximation does not hold any longer. For the time between
7 kyr . t . 14 kyr the disc is stable and grows in mass and size by accretion
from the filamentary arms. During that time, the angular momentum barrier
prevents the accretion rate to increase further, resulting in a constant value
of Ṁ ≈ 5 × 10−4M� yr−1. At t & 14 kyr, the disc becomes unstable, forms
spiral arms and fragments into multiple objects. The column density plots
in figure 6.2 show a time sequence of this short period. After the formation
of other protostars, the accretion rate onto the central sink particle drops
dramatically, while the total accretion rate onto all sink particles increases.
The gravitational interactions between the protostars in combination with
further infalling gas from the filament disturb the initially disc-like structure
and quickly destroy the disc. As a result, a more or less spherically symmet-
ric cluster builds up. The average accretion rate ˙〈M〉 decreases by more than
an order of magnitude after the formation of secondary stars. The fact that
Ṁmm is on average several orders of magnitude lower than ˙〈M〉 indicates that
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Figure 6.1: Mass evolution of the most massive, central sink particle in setup
PL15-m-2. The upper panel shows the number of sink particles in the setup,
the middle panel plots the accretion rate onto the most massive sink particle
(Ṁmm) and onto all sink particles (Ṁtot). The bottom panel shows the mass.
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Figure 6.2: Column density plots of the central region with the disc around
the most massive sink particle (subscript mm) in run PL15-m-2. The for-
mation of secondary sink particles indicates the fragmentation into several
objects, which quickly leads to the dissolution of the disc. Spiral arms de-
velop and redirect the gas away from the central protostar, which gets starved
of material. The images span roughly 4000× 2000 AU.
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the available gas is not equally shared among the protostars but efficiently
shielded from reaching the central region. This indicates that the process of
fragmentation induced starvation , first described by Peters et al. (2010b) for
disc-like structures, also works for more complex geometries. Small amounts
of gas that can penetrate through the entire cluster and reach the centre can
be seen as episodic accretion spikes.

We emphasise the influence of different geometrical shapes of the cluster.
Whereas in Peters et al. (2010b) the angular momentum vector was well de-
fined and the starvation effect was complete, the turbulent motions in our
simulation allow for some accretion channels. The starvation effect can be un-
derstood by plotting the gas density around the central protostar (figure 6.3)
and the accretion rate onto spherical shells around the central protostar (fig-
ure 6.4), including the net accretion onto gas shells as well as the accretion
onto other sink particles. The gas density within a radius of r ∼ 300 AU
around the central protostar first increases due to the global infall, forming
a dense disc. Once other companions have formed, it decreases continuously,
which starves the central object. The accretion rate as a function of radius
supports this starvation picture. Before subsequent sink particles form, the
accretion rate is roughly constant (Ṁ ≈ 5 × 10−4M� yr−1). Immediately
after the disc fragments, the accretion front moves outwards to larger radii,
resulting in significantly smaller values around the central protostar. As the
protostars in the cluster as well as the gas undergo strong dynamical inter-
actions, the net accretion rate exhibits local fluctuations. The curves for
t ≥ 15.4 kyr are therefore averaged over several thousand years. Phases that
include an accretion spike (see second panel in figure 6.2) lead to positive
values at rsink, at other times the net accretion is negative, because some gas
that is not bound to a protostar can enter and exit a spherical shell without
being accreted onto any protostar. During the entire simulation time, but
in particular after the formation of subsequent protostars, the specific angu-
lar momentum in the disc-like object (see figure 6.2) as well as in the later
formed spherically symmetric cluster is lower than the Keplerian value for
all radii (figure 6.5). Initially the ratio is close to unity indicating that gas
motion in the disc-like object is affected by the angular momentum. This
also leads to a deviation from the free-fall accretion rate for the simulation
time t ∈ (7− 14) kyr, which would further increase in case of no angular mo-
mentum. After the disc becomes unstable and further protostars form, the
angular momentum is transfered efficiently resulting in a decreasing ratio.
The low central accretion rates can therefore not be explained by an angular
momentum barrier that inhibits the gas flow to smaller radii. A plot of the
angular momentum of the gas as a function of enclosed mass for different
times is shown in the appendix (figure B.1).
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Figure 6.3: Radial density profile around the central protostar in run PL15-
m-2. The gas density first increases in the immediate proximity of the pro-
tostar due to the global infall. At later times, the surrounding companions
branch off most of the gas, leading to a continuous decrease of the central
gas density.

In addition we analyse which accretion shielding is dominant in different
regions of the cloud. In figure 6.6 we plot the relative velocity of the pro-
tostars to the surrounding gas within a radius of rsurr = 100 AU = 2.5 raccr

around the protostar. For all times the velocities range from super-virial
velocities in the centre of the cloud down to small relative velocities of the
order of the speed of sound in the outskirts, indicating that the accretion
shielding in the centre follows equation (6.4), whereas in the outskirts, it is
better described by equation (6.5). As expected, both cases of the accretion
shielding effects apply. In the central region, the shielding therefore becomes
less efficient with an increasing number of protostars. In contrast, the pro-
tostars in the outskirts of the cluster are much more efficient in shielding
the accretion flow. In addition to the larger shielded fraction, the shielding
at larger distances from the centre becomes even more efficient, because the
protostars form along the dense filaments that channel the accretion streams.
The area of the strongest accretion flow then coincides with the position of
the protostars that move with the gas flow. As a result, the total gas mass
in the centre of the cluster is very small. Figure 6.7 shows the total enclosed
mass (gas and protostars) as well as the enclosed gas mass as a function of
radius. The gas mass is only a small fraction of the total mass and decreases
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Figure 6.4: Accretion rate onto spherical shells around the central protostar
in the cluster of setup PL15-m-2. The sink particle’s accretion radius is indi-
cated by rsink. The plot shows several curves for t ≤ 14.3 kyr, where there is
only one sink particle (N = 1). Before the formation of secondary protostars,
the accretion rate in the centre is roughly constant. Immediately after sur-
rounding companions have formed, the accretion front moves to larger radii
and starves the central object. At later simulation times (t ≥ 15.4 kyr) the
accretion rate varies, but stays very small for all curves.
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Figure 6.5: Ratio of specific angular momentum of the gas to the Keplerian
value with respect to the centre of the cluster. For all times and all radii
the ratio is smaller than unity, indicating that the gas is not prevented from
moving inwards by angular momentum. After the formation of subsequent
protostars the efficient angular momentum transport even lowers the ratio
close to the centre.

strongly in the centre after the formation of multiple objects. Therefore the
central accretion rate is low in spite of a less efficient accretion shielding. The
gas is already accreted further out before it reaches the less shielded region.

Depending on the definition of the centre of the cluster (position of the
most massive protostar, centre of mass of the protostars, centre of mass
including protostars and gas), the most massive protostar is not located
exactly at the centre of the cluster. In addition, the interaction with other
protostars leads to small displacements during the simulation. Neglecting
the fact, that only little mass is left in the centre of the cluster, it could be
possible that the low accretion rates onto the protostars in the central region
arise from these displacements, if the protostar escapes form a collimated
accretion stream. In order to verify, that the central stars are really shielded,
we need to analyse the motions of the central stars relative to the surrounding
gas. We calculate the relative velocity dispersion of the gas with respect to
the most massive protostar within a radius of 1000 AU around it, covering
the vast majority of the entire cluster. We find velocity dispersions ranging
from σ/cs = 5.4 − 10.6, resulting in a total time for the gas to reach the
central star of 1.7− 3.3 kyr after entering the sphere of 1000 AU. This time
is only 5− 10% of the simulated time. Given the low angular momentum in
the centre of the cluster (figure 6.5), the available gas has enough time to



114 CHAPTER 6. ACCRETION BEHAVIOUR

0.1

1

10

100

0.01 0.1 1 10

v r
el
/c

s

r [103 AU]

protostars
vvirial

Figure 6.6: Relative velocity between the protostars and the surrounding gas
within a radius of rsurr = 100 AU around every protostar as a function of
distance from the centre of the cluster r for one snapshot at t = 25 kyr. The
plots for different times look very similar. The relative velocity decreases for
larger radii ranging from super-virial velocities in the centre down to sub-
virial velocities of the order of the sound speed at large distances from the
centre.

reach the most massive star regardless of displacements.

6.2.4 Filamentary accretion mode

If the formation of a cluster is not dominated by a disc-like structure but by
filaments, the formation scenario of protostars is different (see, e.g., Banerjee
and Pudritz, 2006). The initial density profiles with a flat core need more
time to form Jeans-unstable regions. During this time, the turbulence can
form filaments in which protostellar condensations form next to each other
along the densest part of the filament. The column density plots in figure 6.8
show a time evolution of the filamentary collapse. During their formation, the
protostars inherit the motion of the parental filament and move with the gas
flow. With increasing proximity to other protostars, their attraction as an
N -body system becomes stronger than the force between protostars and gas.
The protostars then dynamically decouple from the filaments and accumulate
in the central region in a more spherically-symmetric configuration rather
than in a flat or string-like structure. The initial filaments get dispersed
in the central region, because the N -body system efficiently stirs the gas.
The formation of the first protostars is shown in the column density plots in
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Figure 6.7: Enclosed masses as a function of radius for the total mass (gas
and protostars) and the gas mass. The gas is only a small fraction of the
total mass in the centre and decreases strongly after the formation of multiple
protostars.

figure 6.8. The mass accretion in this formation mode is plotted in figure 6.9.
Note that figure 6.8 only covers a small time range at the beginning of the
cluster formation, whereas figure 6.9 covers the entire simulation time after
the formation of sink particles.

During the first ∼ 6 kyr after the first protostar has formed, the accretion
rate onto the most massive protostar stays roughly constant. About 100 sink
particles form along the main filaments within this time. Initially, most pro-
tostars can accrete gas from both sides of the filamentary arm, resulting in
a high accretion rate. Despite the fact that the total accretion rate increases
by a factor of ∼ 10, the average accretion rate gradually drops by about one
order of magnitude, because this mass flow is distributed between ∼ 100 pro-
tostars. This is in contrast to the setup PL15-m-2, where the global accretion
rate suddenly drops. As the setup is less concentrated, the Keplerian specific
angular momentum of the gas with respect to the centre of the nascent clus-
ter is significantly lower than in the PL15-m-2 case. Nonetheless, the ratio
jgas/jKepler (figure 6.5) is even smaller than in the disc-like accretion mode
(figure 6.10), indicating that the gas motion is not restricted by the angular
momentum barrier. A plot of the angular momentum of the gas as a function
of enclosed mass for different times is shown in the appendix (figure B.2).

The lower central mass concentration allows for extended filaments and
the formation of protostars at larger distances from the centre of the clus-
ter. The relative velocity between the protostars and the surrounding gas
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(figure 6.11) drops significantly for larger radii, but is closer to the virial
velocity for this setup in comparison to the disc-like structure. The global
cluster dynamics should therefore correspond to the shielding relation in
equation (6.4). However, the relative velocities in the outskirts of the cluster
are of the order of the speed of sound which marks the transition between
the two extreme shielding cases. In addition, the gas distribution in the
filamentary structure strongly deviates from spherical symmetry. The pro-
tostars in the outskirts of the nascent cluster move along the densest part
of the filament and can therefore efficiently accrete a significant fraction of
the filament mass before they dynamically decouple from the filament. As
a consequence, the accretion shielding is more efficient, the more protostars
form along the filaments. Similar to the disc-like case, the gas content in
comparison to the total mass is very low in the central region of the cluster
(figure 6.12). Overall, the more protostars accumulate in the central region
forming a cluster, the more efficient is the accretion shielding effect. In the
case of the most massive sink particle in BE-m-2, accretion is entirely shut
off for t & 27 kyr.

6.2.5 Mass evolution of all runs

In general, the formation scenario of protostars in dense clusters will be a
mixture of star formation in a disc and filaments, where the above examples
are extremes. However, in all simulated cases, the formation of multiple pro-
tostars finally leads to a shielding effect in the formed cluster. Figure 6.13
shows the mass evolution of the most massive protostars of all clusters com-
bined, figures 6.14–6.16 show the mass evolution of the 20 most massive sink
particles for each simulations. In the case of an initially uniform density (TH,
figure 6.14), the two main subclusters for each run (TH-m-1 and TH-m-2)
were evaluated separately. The corresponding accretion plots for the most
massive sink particle are very similar to the ones shown in figures 6.1 and 6.9.
Despite different formation scenarios, all setups show very similar structures
and emphasise the starvation effect on the most massive protostars, which
are located preferentially closer to the centre of the cluster than low-mass
companions.

Depending on the formation time, the formation location and the accre-
tion rate over time, the mass of the most massive protostar in relation to the
mass of the other objects or the entire ensemble of protostars in the cluster
might differ for different setups and initial conditions. Figure 6.17 shows the
mass of the most massive sink particle, Mmm, in relation to the total mass
confined in sink particles, Mtot. The setups with strong initial mass concen-
trations (PL15) form an early protostar that stays the only sink particle for
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Figure 6.8: Column density plots of the central filament in BE-m-2. The sink
particles form in the filament and remain there while converging to the centre
of the cluster. The closer the protostars approach each other, the stronger
decoupled is their motion from the motion of the filament. The images span
roughly 4000× 2000 AU.
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Figure 6.9: Same as figure 6.1 but for the simulation BE-m-2 (filamentary
accretion).
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Figure 6.11: Same as figure 6.6 but for setup BE-m-2 (filamentary accretion)
at t = 28 kyr.
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Figure 6.12: Same as figure 6.7 but for BE-m-2 (filamentary accretion).
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Figure 6.13: Mass evolution of the most massive protostar for all simulated
clusters. In all cases the mass curves flatten significantly at the late-time
evolution of the simulation. For a detailed mass analysis of each setup, see
figures 6.14–6.16.
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Figure 6.14: Mass evolution of each sink particle for the four main subclusters
in the TH setups. The upper two plots correspond to the biggest subclus-
ters (SC1, SC2) in run TH-m-1. The lower plots (SC3, SC4) are the main
subclusters in TH-m-2, respectively. The most massive particles are located
closer to the centre of mass and thus experience an efficient starvation effect,
which can be seen in the low increase in mass.
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Figure 6.15: Same as figure 6.14 but for the BE setups.
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Figure 6.16: Same as figure 6.14 but for the PL15 setups. Note that the
masses are plotted in linear scale in order to better see the starvation effect,
which starts after the formation of the second sink particle (vertical lines).
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Figure 6.17: Relation of the most massive star in the cluster to the total
cluster mass. Note that in the PL15 case, secondary sink particles form very
late in the simulation (indicated by the arrows), which explains the large
range in mass with a slope of unity.

a significant part of the total simulation. After the formation of subsequent
protostars, the mass of the central massive one stays almost constant due to
the starvation effect. The mass relations of all PL15 setups therefore bend
upwards. In the setups with initially flat density distribution, the mass of
the most massive protostar roughly follows a relation Mmm ∝M

2/3
tot , but with

remarkable scatter. The fact that the difference in mass between the most
massive and the other stars is much less, leads to a stronger impact of N -
body interactions on the location of the most massive protostar within the
cluster. While the very massive central stars in the PL15 runs remain within
the accretion shielded area of the cluster, the most massive stars in the BE
runs and in the subclusters of the TH setups follow larger orbits where they
leave and reenter the shielded area alternately. Whenever the most massive
sink particle gains further mass, either by leaving the accretion shielded area
or experiencing episodic accretion, the curve flattens. Entering the accretion
shielded volume of the cluster, the most massive object gets starved of ma-
terial and its accretion stops. As the whole cluster continues to grow, the
curves bend up.
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6.3 Accretion behaviour – discussion

Two accretion models are widely discussed in the literature: 1) the monolithic
collapse and 2) competitive accretion and fragmentation induced starvation,
where mutual dynamical interactions of accreting protostars play a key role
in shaping the final mass distribution. The monolithic collapse model is
based on the apparent similarity of the core mass function (Motte et al.,
1998; Johnstone et al., 2000, 2006; Lada et al., 2008) and the stellar initial
mass function (Kroupa, 2002; Chabrier, 2003). It relies on a direct mapping
of cores to stars with a constant efficiency factor for the collapse of a sin-
gle core into a single stars or at most a binary system. A major caveat in
this model is the collapse of very massive cores. The amount of turbulent
energy deposited in these cores is likely to cause the core to fragment into
many objects. This chapter and especially chapter 5 demonstrate that only
strongly concentrated density profiles may prevent further fragmentation in
an isothermal environment. Radiation feedback tends to reduce the degree
of fragmentation, but still can not prevent the collapsing core from fragment-
ing into many protostars (Krumholz et al., 2007; Bate, 2009a; Peters et al.,
2010a). Likewise magnetic fields support the agglomeration of larger masses.
However, even magnetised cores fragment into smaller objects (Ziegler, 2005;
Hennebelle and Teyssier, 2008; Banerjee et al., 2009; Bürzle et al., 2011; Pe-
ters et al., 2011; Hennebelle et al., 2011; Seifried et al., 2011a). The degree of
fragmentation and the resulting dynamical accretion in our simulated dense
clusters significantly differ from the monolithic collapse model. The fragmen-
tation is suppressed only for highly concentrated density profiles and weak
initial turbulent motions (chapter 5). Apart from the fragmentation of the
gas, the assumption of a monolithic collapse leads to a time-scale problem
that is likely to destroy the apparent similarity of the IMF and the core mass
function (Clark et al., 2007; Smith et al., 2008).

In competitive accretion (Bonnell et al., 2001a,b; Bonnell and Bate, 2002;
Bate and Bonnell, 2005), the cloud first fragments down to objects with
masses close to the opacity limit, which then start to accrete and build up
the initial mass function. The accretion rates are mainly determined by the
position of the protostar in the cluster. The gravitational potential funnels
gas to the centre of the cluster, leading to higher accretion rates onto the
most central objects, located close to the centre of the potential well. Thus,
central protostars can grow to the most massive ones. The more massive a
star, the faster it can dynamically migrate to the centre of mass, continuously
ensuring a gravitationally privileged position. Assuming a negligible impact
of the surrounding protostars on the global mass accretion, the most massive
stars continue to accrete at a higher accretion rate. As soon as the impact
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of further fragmentation influences the global accretion process, the central
accretion rates may vary significantly, as it is described in the fragmentation
induced starvation model. In competitive accretion, the mass of the most
massive star is related to the total stellar mass as Mmm ∝ M

2/3
tot (Bonnell

et al., 2004). This relation was assumed to be an indicator for this accretion
model (Krumholz and Bonnell, 2009) and is in agreement with observations
(Weidner and Kroupa, 2006; Weidner et al., 2010). However, as we discuss
below, fragmentation induced starvation can lead to the same behaviour.
This relation is therefore not a unique signpost of competitive accretion.

Intermediate scenarios between the two extreme models are also reported
(e.g. Peretto et al., 2006; Wang et al., 2010), in which the formation model
depends on the mass of the star. Low-mass objects form via local collapse,
while massive protostars and their dense proximity accumulate gas from the
global environment.

Recent numerical models of star cluster formation indicate that the com-
petitive accretion model in its original flavour (Klessen and Burkert, 2000,
2001; Bonnell et al., 2001a,b; Bonnell and Bate, 2002; Bate and Bonnell,
2005) needs reinterpretation. The suggestion of higher central accretion rates
due to the gravitationally privileged position changes once the formed frag-
ments around the centre of the collapsing area have a significant impact on
the global gas accretion process. The infalling gas may be branched off and
either be accreted onto these objects or dynamically redirected before reach-
ing the centre of the cluster. Peters et al. (2010b) found a strong impact of
subsequent fragmentation on the accretion flow in a 1000M� rotating core
including radiative feedback, but without initial turbulence. The accretion
rate onto the central object drops significantly. Instead of growing further,
the central protostar is starved of material. Despite this significantly differ-
ent accretion behaviour, they also found masses in the simulation in good
agreement with the relation Mmm ∝ M

2/3
tot , ruling out this relation as evi-

dence for competitive accretion. As they do not apply turbulent motions,
but only solid body rotation to the initial cloud, they focus on the starva-
tion effect in disc-like conditions rather than in filamentary structures. Due
to the missing turbulence, their disc-like structure does not evolve into a
volume-filling cluster, but remains a flattened structure. A disc provides a
smaller effective area through which gas can flow towards the centre. In a
cluster with random protostellar trajectories, the effective accretion area is
much larger. Therefore, from simple geometrical arguments, it is much more
difficult to shield the central area from accretion flows.

However, we find that protostars in the outer region of the cluster form
along the densest part of extended filaments, which allows them to accrete
much more mass than in an idealised spherically symmetric setup. In ad-
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dition to that, we observe significantly smaller relative velocities between
the protostars and the immediate surrounding gas for protostars at larger
distances from the centre of the cluster. This increases their geometrical
accretion cross section, expressed by the Bondi-Hoyle accretion radius. Al-
together, the accretion in the central region of the cluster is influenced by
efficiently shielding protostars located at the position of the accretion flow.
As a result, even a relatively small number of surrounding stars is sufficient to
provide an efficient starvation effect in a volume-filling cluster environment.

One caveat of the presented simulations is the missing feedback from the
stars that are formed first in the clusters. The gas stays isothermal and
therefore tends to fragment much more quickly than with heating of the gas.
Including this effect, the number of protostars is expected to be smaller. The
starvation effect on the central objects in the protostellar cluster might thus
be overestimated, especially in a turbulent volume-filling cluster, where gas
can fall into the central region from all directions. However, Peters et al.
(2010b) found that the number of protostars in simulations including radia-
tive feedback is roughly half of the number of protostars in an isothermal
calculation. As the total number of sink particles in our simulations is much
larger than 100, and additionally, the starvation effect can already be seen
with a relatively small number of competing protostars, we do not expect
the shielding effect to completely vanish in the non-isothermal case. As long
as there is some fragmentation, the fragments are likely to shield the cen-
tral massive star from accretion, irrespective of whether radiation feedback is
included or not. Likewise do magnetic fields tend to reduce the degree of frag-
mentation, but still do not prevent the cloud from fragmenting (Hennebelle
et al., 2011; Peters et al., 2011).

Finally, we want to point to recent studies by Kruijssen et al. (2012).
They analysed the substructure within clusters as well as the dynamical
state of the stellar cluster when gas expulsion becomes important, i.e., at
a slightly later stage of the evolution of the cluster. Analysing the simula-
tions of Bonnell et al. (2003, 2008), they find that the stellar system quickly
reaches a globally virialised state if the gas potential is excluded and the
stellar system is followed with pure N -body dynamics. Their results support
the evolutionary picture of the formation of protostars that we see in our
simulations. New protostars that form at larger radii from the centre of the
cluster in gas-dominated regions have sub-virial velocities. As soon as they
decouple from the gas motion and move to the central gas-poor environment,
they quickly virialise.
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6.4 Accretion behaviour – summary and con-

clusions

We performed simulations of collapsing molecular gas clouds with a total
mass of 100M� and a diameter of 0.2 pc. We varied the initial density pro-
file as well as the turbulent supersonic velocity field and analysed the frag-
mentation process and the accretion onto nascent protostars. Most clouds,
especially the ones with initially less centrally concentrated density profiles
undergo fragmentation and form compact stellar clusters. We studied the
accretion process in these clusters with the following conclusions:

• All clusters show strong and fast dynamical interactions between the
protostars. During the formation time of the cluster, the protostars
complete several orbits in the parental cluster. The mass accretion
process can thus not be described by a monolithic collapse model.

• Fragmentation and formation of multiple protostars strongly influence
the subsequent accretion flow in the entire cluster. Gas that falls to-
wards the centre of the cluster is efficiently accreted onto protostars
that are located at larger radii from the cluster centre. As a conse-
quence, the central region is effectively shielded from further accretion
and none of the central objects can sustain its initially high accretion
rate. In all cases the observed decrease of the central accretion rate
is due to the efficient shielding by secondary protostars. A significant
starvation effect due to angular momentum and a resulting radial bar-
rier can be excluded.

• In setups with initial flat density distributions, the mass of the most
massive protostar, Mmm, scales with the total cluster mass, Mtot, like
Mmm ∝ M

2/3
tot , as originally proposed as a probe for competitive ac-

cretion. This relation is a common feature to both dynamical accre-
tion models and cannot be used to distinguish between competitive
accretion and fragmentation induced starvation, a conclusion that was
already reached by Peters et al. (2010c).

• The accretion process does not differ between density profiles that form
only one main cluster (power-law profiles, Bonnor-Ebert density distri-
bution) and setups that form multiple subclusters (uniform density
profile). In both, the central clusters as well as the disconnected sub-
clusters, we find fragmentation induced starvation to work in the central
region of the cluster.



Chapter 7

Tidal effects

7.1 Introduction

In the present-day universe, stars tend to form in strongly clustered envi-
ronments (Lada and Lada 2003, Mac Low and Klessen 2004, McKee and
Ostriker 2007, Bressert et al. 2010) with complex filamentary structures
(Men’shchikov et al. 2010, Miville-Deschênes et al. 2010, Arzoumanian et al.
2011, Hill et al. 2011, Pineda et al. 2011). When averaged over a large number
of stars, the stellar initial mass function shows evidence for a certain degree of
universality (Salpeter 1955, Miller and Scalo 1979, Scalo 1986, 1998, Kroupa
2001, Chabrier 2003, Bastian et al. 2010). In particular, the high mass slope
of the mass distribution for stars above ∼ 1M� shows similar slopes in many
different star-forming regions throughout the Galaxy. Exceptions may be
found close to the Galactic centre (Nayakshin and Sunyaev 2005, Maness
et al. 2007, Bartko et al. 2010), where clouds form more massive stars than
in other regions. Overall the initial mass function seems to be relatively
insensitive to the individual filamentary structure of collapsing clouds.

However, the formation of individual stars and small stellar clusters shows
a strong dependence on the local conditions like the gas density distribution,
the nature of turbulent motions, the thermal conditions in the gas (e.g.,
Peters et al., 2010a), and the structure and strength of magnetic fields (e.g.,
Seifried et al., 2011a), i.e., the local star formation process is strongly affected
by the initial conditions.

During the collapse process two different time scales play an important
role: the global time scale that the cloud needs to collapse, i.e., the free-fall
time, and the time that filaments need to form and condense to form stars,
i.e., the compressive impact of turbulence. In addition to that, the mass dis-
tribution in the cloud influences the speed at which filaments can form and
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accrete enough mass to become Jeans-unstable. Initially flat density distri-
butions lead to the formation of turbulence-induced filaments spanning the
entire cloud. These filaments collapse to form distinct subclusters which are
populated by preferentially low-mass stars. Central density enhancements
and the accelerated central collapse coalesce the gas in the centre, suppress-
ing the formation of multiple clusters in favour of a central single cluster.
Strong central mass concentrations lead to the formation of a central star
that accretes gas at high accretion rates before filaments and subsequent
stars can form. The formation of filaments and the subsequent evolution are
strongly influenced by the details of the turbulent motions like the nature of
the modes, the local distribution of angular momentum and the positions of
converging and diverging regions within the cloud.

In dense cores of high-mass star-forming regions the density profile and
the turbulent motions lie within the regime where numerical work expects a
strong sensitivity of the star formation rate, the number of formed stars, and
the formation time scale on the local initial conditions. Apart from the initial
density profile and the nature of turbulent modes, the realisation of turbu-
lent motions with a slightly different spatial pattern of converging/diverging
and rotating regions seems to significantly alter the outcome. In this chap-
ter we want to further investigate the impact of slight changes in the initial
conditions with a focus on tidal forces, the formation time and collapse of fil-
aments, the positions of converging regions, and the concentration of angular
momentum during the collapse of the cloud.

Beside these results for extreme initial conditions some questions concern-
ing the collapse and the formation of central objects are still open. What ini-
tial configuration marks the threshold between a collapse that is dominated
by central in-fall with a central star and a collapse that is dominated by
turbulence induced fragmentation and the subsequent collapse of filaments?
Does the central collapse support or suppress the formation of filaments close
to the centre? Do tidal effects play a role? How does the mass concentration
influence the time scale at which the filaments collapse? In the present study
we address these questions with a two parameter study of different initial
density profiles and different turbulence realisations.

7.2 Initial conditions

7.2.1 Initial density profiles

In chapter 5 we showed that the initial density profile has a strong impact
on the formation time and formation mode of protostars. Centrally con-
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centrated profiles lead to a massive central protostar whereas centrally flat
density distributions tend to form low-mass objects in extended filaments. In
particular, they found the transition between a dominant central protostar
and numerous low-mass protostars between a rescaled Bonnor-Ebert sphere
and a Power-law profile with ρ ∝ r−1.5 as initial density profile. The simula-
tions with these two extreme profiles are not described here, the radial density
profiles are shown in the upper plot in figure 7.1, marked with BE for the
Bonnor-Ebert sphere and PL15 for the power-law profile, respectively. The
initial density profiles used in this calculation to investigate the transition
between these two extreme cases are Plummer-like spheres of the form

ρ(r) = ρc

(
Rc

(R2
c + r2)1/2

)3/2

(7.1)

with 9 different values for a combination of Rc and ρc. The parameter ρc

was adjusted such that the total mass inside the sphere is 100M� for all
simulations. Figure 7.1 shows the profiles with the parameters of table 7.1.
The value M(Rc) denotes the mass inside the core radius Rc.

The density of the surrounding gas in the cubic box around the spherical
molecular cloud is set to 10−2 times the gas density at the outer edge of the
cloud. The pressure at the boundary is continuous, resulting in a temperature
step function with a temperature 100 times that of the isothermal collapsing
cloud.

In preparation for further analytical analysis, we want to stress some
properties of the applied density profiles. In the limiting case of a vanishing
core radius Rc the Plummer-like distribution simplifies to a power-law ρ(r) =
q r−3/2. The average density inside r takes the simple form 〈ρ(r)〉 = 2q r−3/2,
which results in a ratio of the density at radius r to the average density inside
a sphere with radius r of

ρ(r)

〈ρ(r)〉 =
1

2
. (7.2)

In the flat core regions of the Plummer-like profiles the density ratio is close
to 1, yielding a range for the density ratio ρ(r)/〈ρ(r)〉 = (0.5; 1) as shown in
figure 7.2, where the curves from left to right correspond to the radii R1 to
R9 (table 7.1). Note that the choice of the exponent of 3/2 does not mark
a special case concerning the density contrast. A distribution ρ(r) ∝ r−p

generally has a constant density contrast of ρ(r)/〈ρ(r)〉 = 1− p/3, for p < 3.
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Figure 7.1: Comparison of the initial density profiles. Plot (a) shows all the
profiles including the power-law profile (PL15) and the Bonnor-Ebert sphere
(BE) profile from chapter 5. Plot (b) shows the outer wings for the density
profiles R6 − R9 in order to better distinguish between them and the BE
profile. Details of the profile parameters are shown in table 7.1.
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Figure 7.2: Density contrast for the Plummer density setups as a function of
distance from the centre. The curves correspond to the different radii R1 to
R9 from left to right (table 7.1).

Table 7.1: Plummer parameters

Profile Rc ρc tff(ρc) M(Rc)
[AU] [g cm−3] [kyr] [MJ]

PLU-R1 20 2.79× 10−14 0.40 0.000918
PLU-R2 40 9.87× 10−15 0.67 0.00260
PLU-R3 80 3.49× 10−15 1.13 0.00734
PLU-R4 160 1.24× 10−15 1.89 0.0208
PLU-R5 320 4.38× 10−16 3.18 0.0590
PLU-R6 640 1.56× 10−16 5.33 0.168
PLU-R7 1280 5.64× 10−17 8.87 0.486
PLU-R8 2560 2.10× 10−17 14.5 1.45
PLU-R9 3840 1.22× 10−17 19.1 2.83

Key parameters for the initial density profiles. The first column shows the
name of the setup, the second and third column show the core parameters
Rc and ρc, see equation 7.1. The last two columns show the free-fall time of
the central density, tff(ρc) and the mass contained within the core radius Rc.



134 CHAPTER 7. TIDAL EFFECTS

7.2.2 Mach numbers and turbulence crossing time

The gas motions are supersonic in all simulations. The volume weighted
Mach number

M =
vrms

cs

(7.3)

differs slightly between the two random turbulent seeds. Table 7.2.2 gives
an overview of the Mach numbers of the individual setups. The initial rms
Mach numbers areM = 3.32 for seed 1 andM = 3.63 for seed 2, respectively.
The runs indicated with suffix S1b have rescaled velocities to match the Mach
number of the corresponding run with seed 2. The sound crossing time reads
tsc(2R0) = 710 kyr ≈ 14 tff. The time needed for the gas to cross the entire
cloud of 2R0 is ttc;1,2 (2R0) = 214, 196 kyr, respectively, about four times as
large as the global free-fall time.

7.2.3 Runs

For every density profile we apply two different random velocity seeds, yield-
ing 18 runs. In addition we perform three runs with turbulent seed 1 but
rescaled velocities in order to match the Mach numbers of the corresponding
runs with random turbulent seed 2. Table 7.2.2 gives an overview of the
simulations, the initial kinetic properties and the main key properties at the
end of the simulation. The density parameters are listed in table 7.1.

7.3 Analytical estimates

7.3.1 Free-fall analysis

Before investigating the details of the collapse, a simple analysis of the time
scales for a collapse helps to appraise what effects to expect. The condition
for free-fall to be a good approximation needs the pressure term in the force
equation to be much smaller than the gravitational source term, ∂p/∂r �
−ρg, which can be rewritten in the isothermal case (p = c2

sρ) as

c2
s

ρ
∂rρ� −

GM(r)

r2
. (7.4)

For the applied Plummer-like spheres the free-fall approximation gets better
for larger radii: if we exclude radii r < 40 AU the gravitational term on the
right hand side is 1.31− 10.4 times as large as the pressure term on the left
hand side at the beginning of the simulation, showing strong variations for
the different density profiles. Considering radii larger than 100 AU from the
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Table 7.2: Main parameters of the simulations

Name Ekin/|Epot| M tend tend Nsink Mmm t1 ∆t1,2
[kyr] [tff] [M�] [kyr] [kyr]

PLU-R1-S1 0.050 3.32 17.3 0.34 1 10.0 1.2 −
PLU-R2-S1 0.050 3.32 16.7 0.33 1 10.0 1.4 −
PLU-R3-S1 0.050 3.32 16.7 0.33 1 10.0 1.9 −
PLU-R4-S1 0.050 3.32 16.9 0.34 1 10.0 2.7 −
PLU-R5-S1 0.050 3.32 17.2 0.34 1 10.0 4.0 −
PLU-R6-S1 0.051 3.32 18.2 0.36 1 10.0 6.2 −
PLU-R7-S1 0.053 3.32 20.3 0.40 1 10.0 9.5 −
PLU-R8-S1 0.055 3.32 25.3 0.50 82 4.3 14.4 5.2
PLU-R9-S1 0.058 3.32 28.4 0.57 105 2.4 18.7 2.7
PLU-R3-S1b 0.079 3.63 16.8 0.33 1 10.0 1.9 −
PLU-R5-S1b 0.073 3.63 17.3 0.34 1 10.0 4.0 −
PLU-R7-S1b 0.073 3.63 21.6 0.43 19 9.3 9.3 10.3
PLU-R1-S2* 0.070 3.63 17.1 0.34 18 6.2 1.1 12.2
PLU-R2-S2 0.070 3.63 18.1 0.36 34 6.5 1.4 10.2
PLU-R3-S2** 0.071 3.63 17.1 0.34 25 7.0 1.8 12.8
PLU-R4-S2 0.071 3.63 18.2 0.36 28 6.7 2.7 11.6
PLU-R5-S2 0.071 3.63 20.8 0.41 34 6.7 4.0 11.6
PLU-R6-S2 0.072 3.63 25.0 0.50 126 5.3 6.1 8.7
PLU-R7-S2 0.073 3.63 25.6 0.51 124 4.3 9.2 7.6
PLU-R8-S2 0.075 3.63 28.0 0.56 152 1.6 14.5 4.3
PLU-R9-S2 0.078 3.63 30.8 0.61 176 0.9 19.5 2.9

Key properties of the runs. The name is composed of the radius (Rx) and
the seed (Sx). The ratio of kinetic over potential energy as well as the Mach
numbers are initial values. The Mach numbers are volume-weighted and
therefore do not show differences for different density concentrations. The
kinetic and potential energy depend on the mass concentration and vary.
The simulation time is shown in kyr and in units of the global free-fall time.
The sink particle data comprise the total number Nsink, the mass of the most
massive sink particle Mmm, the formation time of the first sink particle t1,
and the time gap between the formation of the first and the second one ∆t1,2.
(* up to a SFE of 7%; ** up to a SFE of 8%)
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centre of the cloud, gravity is 2.10 − 10.4 times as strong as pressure and
for radii larger 300 AU the factor is 3.62 − 10.4 for the different Plummer-
like spheres. At a radius of r = 1/3R0 the gravitational term is at least
20 times larger than the pressure term for all setups. The free-fall approxi-
mation is therefore applicable, however, the estimates for the central region
may be critical. Note that these numbers are taken from the initial profile.
During the evolution of the cloud, in particular after the formation of the
first protostars, gravity gets more an more dominant because the protostars
contribute to the total mass and therefore the gravitational attraction but
not to the pressure term. Applying the free-fall approximation leads to two
different free-fall times for the spherical cloud: (1) the average free-fall time,
tff(〈ρ(r)〉), i.e. the time that an object at radius r needs to fall to the centre
and (2) the local free-fall time at radius r, tff(ρ(r)), which is the time that an
object with the local density ρ(r) needs to collapse itself. The ratio of these
two free-fall times depends on the density profile and reads

tff(ρ(r))

tff(〈ρ(r)〉) ∈ (1;
√

2), (7.5)

where unity corresponds to the flat region in the centre and
√

2 describes
the ratio at the outskirts of the cloud (r � Rc). The ratio shows that
the time scale for a local collapse at r is slightly larger than the time scale
needed to fall to the centre. Whether small gravitationally unstable regions
collapse and form stars apart from the central one may sensitively depend
on how good the free-fall approximation is throughout the cloud evolution
and how the turbulent velocity disturbs the free-fall motions. A critical
property of the velocity field is the converging or diverging character with
respect to the centre. Converging flows towards the centre push the gas to
the centre and thus decrease the average free-fall time by increasing the radial
velocity towards the centre. Therefore, they do not leave enough time for
outer regions to collapse themselves before reaching the central region and
forming a central star or getting accreted onto an already existing central
object. In contrast, diverging flows may easily increase the average free-fall
time to a value larger than the local free-fall time at radius r which allows
the region to collapse before reaching the centre. Therefore we expect large
differences in the total number of condensations and stars between different
turbulent velocity fields. As the two free-fall times have very similar values,
we also expect the protostars to form close to the centre. A collapse of self-
gravitating objects far from the central region requires either initially high
densities at large radii or strong density enhancements due to the turbulent
motions plus enough swept-up material. The first condition is not fulfilled
by the applied density profiles. The latter condition needs either strong
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turbulence or a sufficiently large total simulation time in order to allow for
collapsing condensations at large radii. The complex interplay between the
initial density profile, the resulting global collapse time and the formation of
single or multiple subclusters has been investigated in detail in chapters 5,
6 and 8 for comparable setups. From these results we do not expect many
protostars to form far away from the centre in distinct subclusters.

7.3.2 Tidal forces

Tidal forces are based on the different acceleration due to different distances
from the attracting object. Assuming spherical symmetry, the tidal force at
radius r from the centre with enclosed mass M is given by the difference
between the acceleration at r ±∆r,

atidal = GM

(
1

(r + ∆r)2
− 1

(r −∆r)2

)
, (7.6)

where G is the gravitational constant and ∆r � r is sufficiently small so that
the enclosed mass M can be assumed constant for r ± ∆r. With a simple
density function of the form ρ(r) ∝ r−p the mass as a function of r is given
by M(r) ∝ r3−p and the tidal acceleration scales as

atidal(r) ∝ r1−p. (7.7)

The derivative with respect to r,

∂atidal

∂r
(r) ∝ (1− p) r−p, (7.8)

changes sign at p = 1. For p < 1, atidal increases with radius (∂atidal/∂r > 0)
and therefore compresses material at radius r. For p > 1, ∂atidal/∂r < 0
and shears condensations apart. In regions with flat density profile, e.g.
the flat core of the Plummer-like cloud, tidal effects lead to a compression of
overdensities, whereas in the wings of the density distribution, where p = 1.5,
condensations are more likely to be sheared apart.

The collapse of filaments in presence of a global collapse can be approx-
imated by extending the tidal estimate to a simple model of two connected
spheres. Assume a central spherical mass concentration M1 and an attached
part of a filament M2 as shown in figure 7.3. In a simple approach without
dynamic motions, the tidal forces can disrupt sphere 2 if the difference of the
central acceleration ∆ac is larger than the acceleration of the local collapse
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M1, ρ1

r2

r1

M2, ρ2

Figure 7.3: Simple model of the central mass M1 with average density ρ1

and an attached part of a filament with total mass M2 and a density ρ2.
Both masses are embedded in an environment with density ρ0 and a mass
M0 between r1 and r2. The size of the central mass depends on the position
of M2, the volume of M2 is determined by the resolution and the Jeans length
at the given density.

of M2, named afil. The first quantity is given by

∆ac = a(r1)− a(r2) (7.9)

=
GM1

r2
1

− G(M1 +M2)

r2
2

. (7.10)

The collapsing accelerations for mass M2 is given by

afil = GM2

(
2

r2 − r1

)2

. (7.11)

Solving the inequality afil > ∆ac gives

M2

M1

>

(
1

r2
1

− 1

r2
2

)(
4

(r2 − r1)2
+

1

r2
2

)−1

, (7.12)

further conversion of the ratio of masses Mi to the ratio of densities ρi yields

ρ2

ρ1

>
8r3

1

(r2 − r1)3

(
1

r2
1

− 1

r2
2

)(
4

(r2 − r1)2
+

1

r2
2

)−1

, (7.13)

which indicates the density contrast, at which a local collapse of a filamen-
tary region is not impossible in presence of tidal forces. In the simulations
presented here, the collapse radius of sphere 2 rcoll is set to 3 times the cell
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Figure 7.4: Density contrast for different sizes of collapsing regions as a
function of distance from the centre. The collapse radius in this study is set
to rcoll = (r2 − r1)/2 = 40 AU.

size at the highest level of the AMR grid, which is equal to the accretion
radius of a sink particle. Hence, equation (7.13) can be parameterised by
only one radius r1 as we are tracing the formation of protostars at that fixed
spatial scale. The resulting density contrast needed to prevent tidal disrup-
tion is plotted in figure 7.4, where rcoll = (r2 − r1)/2. In this simple model
the density contrast needs to be less than 4 for all radii and sizes of the
collapsing region.

In this model we do not take into account that both spheres may be
embedded in a surrounding medium with ρ > 0. However, a detailed analysis
shows that a surrounding medium decreases the density contrast. The simple
model therefore marks an upper limit and realistic environments will be even
less affected by tidal effects.

Combining the density contrast ρ(r)/〈ρ(r)〉 of the initial cloud (figure 7.2)
with the highest density contrast needed to avoid tidal disruption (equa-
tion 7.13, figure 7.4) yields a total density contrast relative to the initial
setup ranging from 0.2 to 8 as shown in figure 7.5.

7.4 Tidal effects – results

7.4.1 Overview and cloud evolution

We run most of the simulations until the total mass accreted onto protostars
reaches 10M� =̂ 10% star formation efficiency (SFE). Some simulations have
such compact clusters with highly dynamical interactions that the computa-
tional time step in the simulation decreased dramatically. These simulations
are run only up to a SFE of 8%, which does not affect the final result of
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Figure 7.5: Density contrast for the initial Plummer spheres according to
equation (7.13) that is needed for a collapse at radius r. The collapse radius
is set to rcoll = 40 AU. The curves correspond to the different radii R1 to R9
from left to right.

our conclusions. The most centrally concentrated density profiles (R1, R2)
collapse in the centre forming a protostar after just ∼ 1 kyr ∼ 0.02 tff(〈ρ〉).
During this short period the turbulent velocities can not influence the cloud
visibly. The turbulence with rms Mach numbers M ≈ 3 needs roughly
∼ 50 kyr to cross the distance of a Jeans length, comparable to the global
free-fall time. The larger the central flat region of the initial density profile,
the longer it takes to accumulate enough mass and form Jeans-unstable re-
gions. The runs with the lowest initial central density need roughly 19 kyr
before the first protostar forms. During this time the turbulence can produce
overdensities of various shapes and in extended regions of the cloud core. Fig-
ure 7.6 and 7.7 show column density plots of the central region during the
early phase of the collapse for the density profiles R7, R8, and R9. These
filaments can accumulate mass themselves and form subsequent gravitation-
ally bound objects. The formation of protostars close to the centre is delayed
with decreasing initial central density. If the time scales for the formation of
a central protostar and the formation of protostars in filaments are compara-
ble, the cloud and the resulting star cluster are not dominated by the central
star, but by the substructures developed by turbulent motion. An overview
of the key properties of the runs is shown in table 7.2.2. The total simulation
time ranges from 17−31 kyr, the number of protostars from 1 to almost 200.
The time between the formation of the first protostar and the formation of
subsequent stars in filaments decreases for flatter initial density profiles. As
the evolution of the cloud is a complex interplay between the global collapse
of the cloud and the collapse of dense regions enhanced by turbulence, we
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also numerically investigate the impact of the turbulence without the global
collapse.

7.4.2 Turbulence without central collapse

Before we are able to answer how strongly the collapse of filaments is influ-
enced by a central overdensity and the global collapse we have to investigate
the evolution of turbulent gas without the side effects of non-uniform den-
sity profiles and central collapse. In order to do so, two separate runs were
performed, in which the central collapse is switched of. This is realised by
using a uniform density distribution and periodic boundary conditions for
the calculation of the gravitational potential. The density in the box was set
to the same average value as in the other setups, 〈ρ〉 = 1.76 × 10−18. We
then applied the same two turbulent random velocity fields (S1, S2).

Figure 7.8 shows column density plots for the two runs with turbulent
random seed S1 and S2. The filaments form throughout the entire simu-
lation box with similar strength everywhere. The second run with seed S2
forms distinct elongated overdensities earlier than the run with S1. The fila-
ments start to form protostars after roughly 26− 28 kyr, which is a bit more
than half a free-fall time. The first protostars mostly form in the centre of
a filament or at the intersections of filaments. Long dense filaments form
multiple protostars along them yielding a line of objects.

A very important difference between the two setups are the positions of
converging regions and voids. The turbulent field S1 shows a converging
region in the centre whereas field S2 creates a void in the centre. Whereas
the positions of knots and voids is unimportant in a periodic box with ini-
tially uniform density, they have a major impact of the evolution in a setup
with concentrated density profile. The converging central region of field 1
accelerates the global collapse enough to prevent further fragmentation in
the stronger concentrated density profiles PLU-R1–PLU-R7. Only the se-
tups with the largest core radii can undergo additional fragmentation. On
contrary, all setups with turbulent field S2 show multiple fragments because
the diverging character of the field in the central region sufficiently retards
the global collapse. The time scale for an overdensity to fall to the central
region is pushed above the time scale needed for local collapse.

Figure 7.9 shows the key properties of the protostars. Plot (a), (b) and (c)
show the number of protostars, the total mass of all protostars, and the global
accretion rate onto all protostars as a function of time. The formation rate of
objects in plot (a) increases slowly at the beginning when the first protostars
form in the local centres of overdense regions. After t ∼ 36 kyr ≈ 0.7 tff the
formation rate increases significantly when the extended arms of the filaments
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Figure 7.6: Column density plots for the runs PLU-R7-S1, PLU-R8-S1 and
PLU-R9-S1. Each rows shows the evolution at the same time. In all cases
the box spans 2× 1017 cm in x and y direction.
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Figure 7.7: Column density plots for the runs PLU-R7-S2, PLU-R8-S2 and
PLU-R9-S2. Each rows shows the evolution at the same time. In all cases
the box spans 2× 1017 cm in x and y direction.
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start to collapse as well. The mass evolution in plot (b) follows exactly
the number of collapsed objects, which indicates that the star formation
rate can directly be transformed to the global accretion rate. This is not
necessarily the case for a dense cluster environment where the formation
rate of stars might drop while the total accretion rate onto the existing stars
remains high. Plot (c) shows the accretion rate as a function of time, which
reaches a high value of ∼ 2 × 10−3M� yr−1 at the end of the simulation.
Finally, plot (e) shows the mass evolution of the individual protostars for
the run with random seed S1. It is easy to see that the formation time is
not necessarily related to the final mass of the protostar. Some particles
accrete gas at high rates during the simulation independent of the formation
time, for other objects the accretion is completely cut off or occurs in jumps.
These differences can be explained by the different surroundings in which
the protostars evolve. Objects that form in isolation can accrete material
at a smooth and high accretion rate, where the evolution of the accretion
rate only depends on the surrounding density profile. Protostars that form
next to already existing neighbours in an elongated filament need to compete
with them for the available gas. The special geometry of a string-like gaseous
structure only allows the stars inside it to accrete material from two opposite
channels along the filament. If other protostars form along this channel
the accretion onto the central protostars is almost entirely shielded. This
results in protostars with nearly constant masses for long periods of the
simulation. Particle-particle interactions influence the position inside the
filament which leads to accretion jumps every now and then. The influence of
close neighbours can be seen in plot (d), where we show the average accretion
rate, 〈Ṁ〉, as a function of distance to the nearest neighbour d. All particles
with a large distance to their nearest neighbour have high average accretion
rates. If particles are close to neighbours their accretion rate strongly depends
on the exact position and the accretion flow.

7.4.3 Turbulence with central collapse

In the simulations with central collapse we apply the described initial density
profile and choose isolated boundary conditions for the gravitational potential
and outflow boundary conditions for the hydrodynamics.

Tidal forces and the evolution of overdensities

As shown in section 7.3.2, equation (7.13), the necessary over-density at r
in comparison to the average density inside r needs to be up to 8 to resist
tidal disruption. We measure the fraction of total mass that is in tidally
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Figure 7.8: Column density plots for the simulations with initially uniform
density. The upper panel shows the time evolution for the run with seed 1,
the lower for the run with seed 2. The large circle indicates the cloud size of
the corresponding runs with density profiles R1-R9 (R = 0.1 pc), the inner
circle has diameter of a Jeans length. In all cases the box spans 8× 1017 cm
in x and y direction.
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Figure 7.9: Protostellar properties and evolution for the uniform density runs.
Plot (a) shows the number of protostars, plot (b) the total mass captured
in particles. Both simulations show a systematically similar evolution. How-
ever, the box with velocity seed 2 forms protostars earlier. Plot (c) shows
the accretion rate onto all particles, (d) the relation between the distance
to the nearest neighbour and the average accretion rate and (e) the mass
evolution of every single protostar for the uniform profile with seed 1. The
corresponding plot (e) for seed 2 does not show systematic differences.
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stable regions with a density contrast of more than 10 as a function of radius
from the centre of the cloud. Figure 7.10 shows that fraction for different
times for the simulations R5 to R9. The runs with smaller core radii are very
similar to the setups with R5 and are omitted to keep the plots readable.
The left hand plot corresponds to runs with random seed 1, the right hand
panel shows runs with random seed 2. Overall the runs with seed 1 evolve
faster. Therefore, the left panel shows snapshots at smaller times than the
right panel. In the last snapshot the simulations with strong central mass
concentrations have already reached a SFE of 10% and are therefore not
plotted. For both random seeds a large amount of the total mass is located
in regions with ρ(r) > 10 〈ρ(r)〉. These regions extend to larger radii as
the simulation advances. As a result the total amount of tidally stable gas
increases for all simulations. In the first panel for seed S1 (t = 8 kyr), only the
simulations up to core radius R6 have developed tidally stable over-densities.
The setups with initially lower central density need more time to collapse
and to form overdensities. Once overdensities have formed, all simulations
show very similar fractions of tidally stable mass. The longer the simulation
evolves, the larger is the radius up to which a significant fraction of mass is
tidally stable. A generally similar behaviour can be seen with random seed
S2 in the right panel. In contrast to the setups with random seed S1, the
turbulence causes a strong second peak at 2000 AU from the centre of the
cloud. Hence, the fraction of total mass located in stable regions is higher
by a factor of a few for the entire cloud. At t = 20 kyr a gap at r ∼ 500 AU
develops which is due to the numerous protostars that form close to the
centre. In all cases the overall amount of mass located in regions that are
dense enough to prevent tidal disruption is fairly large and does not strongly
depend on the initial mass concentration, taken the different collapse times
into account. Therefore, we conclude that (a) the effects of tidal disruption
are generally rather small and (b) do not significantly depend on the initial
density distribution. A different random velocity seed, however, may change
the effect of tidal forces noticeably. Note that the existence of tidally stable
regions is just a necessary but not a sufficient criterion for the formation of
protostars.

Evolution of angular momentum

For both random seeds, the cloud as a whole does not have any net rotation.
The initial ratio of rotational over gravitational energy is of the order of 10−3.
Nevertheless, the turbulent motions cause local regions to have higher angu-
lar momenta. In case of uniform initial density and without global central
collapse, local angular momenta play a minor role. In contrast, a dense core
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Figure 7.10: Fraction of mass that is located in overdense regions to the total
mass at radius r for different times.
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that collapses globally is more influenced by the turbulence-induced angular
momentum with respect to the centre of the collapse. Different turbulent
patterns in the velocity field are therefore expected to influence the local an-
gular momentum with respect to the centre of the collapse. Given a turbulent
velocity field, the different initial density profiles do not show a significant
evolution of the angular momentum. Figure 7.11 shows the specific angular
momentum with respect to the centre of the collapse for density profile R5
and both seeds. Each plot shows the radial distribution for different times in
the simulation. In both cases, the distribution varies during the collapse with
a different evolution for the two seeds. In the run with seed S1, the specific
angular momentum first increases in the centre and decreases in the region
of a few times 103 AU, i.e., within a sphere with a radius of a Jeans length.
Then the values gradually increase until the end of the simulation. The single
central star in this simulation does not disturb the evolution of the angular
momentum visibly. The setup with random seed S2 shows slightly stronger
variations and a strong enhancement between t = 12 kyr and t = 16 kyr at
a radius of . 103 AU. This is the time and the radial distance at which the
setup with random seed 2 starts to form secondary protostars. The impact
of their formation induces further fluctuations in the subsequent evolution.
Figure 7.12 shows the ratio of the specific angular momentum at two different
times to the distribution at the beginning of the simulation as a function of
radius. The reference distribution is taken at t = 2 kyr rather than the actual
initial configuration because initially the adaptive mesh in the centre is not
yet refined down to the smallest scales. For random seed 2, the growth of
specific angular momentum at scales around 103 AU is larger than for seed 1.
Although the angular momentum is smaller than the Keplerian values in all
cases, the redistribution of angular momentum closer to the centre, i.e., a
net amplification of the angular momentum, retards the the collapse leaving
more time for the gas to form collapsing overdensities.

Only the very concentrated profiles (R1–R3) with random seed S2 form
a transient disc-like structure that quickly fragments and forms stars. How-
ever, the disc-like accumulation of gas around the first protostar is strongly
disturbed by the dense filament, in which it forms and constantly reshaped
by strong accretion flows. The structure therefore does not deserve to be
called disc and a proper analysis with disc-specific quantities fails or gives
misleading results.

Whether the first central star remains the only one in the simulation is
mainly determined by the initial density profile and the nature of the turbu-
lent velocity field. Once subsequent stars form, their formation rate also de-
pends on the density profile. Stronger mass concentrations lead to a slightly
earlier collapse of filaments but lower stellar formation rates within these fila-
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Figure 7.11: Specific angular momentum for the density profile R5 for both
random seeds with respect to the centre of the collapse. The total values are
higher for random seed 2 than for random seed 1.
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Figure 7.12: Specific angular momentum for the density profile R5 for both
random seeds with respect to the centre of the collapse. The total values are
higher for random seed 2 than for random seed 1.

ments ranging from ∼ 5 (kyr 100M�)−1 for R2-S2 up to ∼ 20 (kyr 100M�)−1

for R9-S2. The comparison run with uniform density and random seed 2
forms ∼ 10 (kyr 100M�)−1. The extended filamentary structures in the se-
tups with large core radii abet the formation of filamentary stars. In contrast,
the very strong mass concentrations in setups with small core radii lowers
the formation rate of subsequent stars. This is consistent with the effects
of tidal forces on the cloud. The strong mass concentrations maintain a
density profile with a slope p & 1.5, which tends to shear condensations
apart. The initially large flat cores favour the tidally-induced formation of
condensations. As the turbulence is the dominant driver in the formation
of overdensities, the tidal effects are only of second-order and may change
the formation rate of stars by only a factor of a few. The comparison runs
with uniform density lie between the formation rates of the extreme cases,
consistent with the additional tidal effects.

Formation time of protostars

The central collapse and the resulting formation of a protostar in the centre
of mass is mainly determined by the initial central density. Figure 7.13
shows the formation time of the first protostar for all density profiles and
both random seeds. As expected, the time needed to form the first protostar
decreases with increasing central density (crosses and circles). The influence
of the random seed of the turbulent motion is relatively small. Both runs
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Figure 7.13: Overview of various times as a function of the initial central
density ρc. The plot shows the formation time for the first protostar (crosses
for runs with S1, circles for S2), the free-fall time, and the time delay between
the first and second protostar (∆t12), and the formation of the second one
(t2). The free-fall time of the initial central density serves as a useful estimate
for the formation of the first protostar.

(S1, S2) only show small differences for the same central density, indicating
that the collapse is dominated by gravitational central infall rather than
turbulent flows. The comparison with the free-fall time, tff , reveals that
cores with larger core radii form the central protostar very close to the free-
fall time evaluated at the initial central density. For the very dense cores,
the formation time is delayed compared to the local free-fall time. This is
not surprising because the strongly concentrated core covers only a small
volume and contains a mass significantly smaller than the Jeans mass (see
table 7.1). The central region therefore needs to accrete some gas before
becoming unstable. Nevertheless, the initial central density serves as a rough
estimate for the formation time of the first protostar.

How dominant the first protostar is in comparison to subsequent pro-
tostars depends on its mass evolution and therefore primarily on the time
difference between its formation and the formation of further objects as well
as on the accretion processes after the formation of subsequent protostars.
The larger the time gap, the more gas can be accreted on to the first proto-
star and the stronger is its gravitational impact. After the formation of other
protostars the evolution of the accretion rate will be important. Figure 7.14
shows the time difference between the formation of protostars (see also ta-
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Figure 7.14: Time gap between the formation times of the first 20 protostars.
The plotted time is the difference between the formation of protostar n and
the previous one n− 1. The lower the initial density the smaller is the time
gap to the formation of the second protostar. As soon as more objects form,
they form in very short time intervals.

ble 7.2.2). The formation of the second protostar indicates the beginning
of the filamentary collapse. Therefore, the second and all further protostars
form shortly one after another, showing the uniform collapse of the filaments.
However, the speed at which filaments form and collapse is significantly in-
fluenced by the density profile and the central collapse. In figure 7.15 we
plot the absolute formation time of the protostar and the distance of their
location of formation to the point where the first protostar was formed. This
first object of course forms with a distance of 0 to itself, which is marked
with an arrow. There is a clear correlation between the formation of the
first protostar and the subsequent collapse of filamentary condensations. A
simulation with an early formation of the first protostar also shows an early
collapse of filaments. The distances however do not seem to show systematic
behaviour. Note that in this figure only the first 20 protostars of each setup
are shown in order to keep the plot readable. The appearance of filamentary
protostars shows that a strong central mass concentration and a resulting
fast collapse do not delay the condensation of filaments but accelerate it.
The density enhancements and the resulting increase in gravitational attrac-
tion is stronger than disrupting tidal effects, especially in the dense region
at small distances from the centre.
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Figure 7.15: Formation time and distance to the location where the first
protostar was formed. The first protostars are indicated with arrows. The
earlier the first object is created the earlier filaments collapse forming nu-
merous stars.

Accretion rates and dominant central protostar

In order to determine the transition between a cloud collapse with dominant
central protostar and one with many protostars formed in filaments, the mass
evolution of the first protostar is important. If the accretion rate onto the
first collapsed object is very high, it may grow to the most massive star
before other protostars form in its neighbourhood. After the formation of
neighbours, the further accretion process strongly depends on how efficient
the accretion flow can reach the central star.

Figure 7.16 shows the time evolution of protostars for selected setups. We
show the simulations with a core radius R5 or larger and multiple protostars.
Setups with smaller core radius have very large time gaps between the forma-
tion of the first and the subsequent protostars. Because of the high accretion
rates, the first collapsing object can grow to a massive protostar before other
neighbours form. Hence, up to the end of the simulation, they are always the
dominant protostar. Plot (a) in figure 7.16 shows the total mass of all formed
protostars, in part (b) we plot the total accretion rate onto all stars. The
mass evolution of the first protostar can be seen in panel (c) and the lower
part presents the number of stars in the setup. The time axis is shifted to the
formation time of the first protostar in each run. The total mass enclosed in
all objects increases rapidly during the entire simulation time, which reflects
the high total accretion rate (b). Although the accretion strongly varies with
time, the values are above 10−4M� yr−1 during the entire simulation. The
mass of the first protostar increases rapidly at the beginning and at roughly
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constant accretion rate until other companions form (d). In all cases the
mass accretion onto the first protostar decreases significantly at this point in
the evolution, while the total accretion rate onto all protostars remains high.
Hence, we can conclude that the accretion onto the central object is shielded
very efficiently and that its final mass is mainly determined by the time gap
between its formation and the formation of subsequent stars.

7.5 Tidal effects – summary and conclusions

We performed three-dimension simulations of a dense turbulent molecular
cloud core with a diameter of 0.2 pc containing a total mass of 100M�. The
gas is assumed to be isothermal at a temperature of 20 K. All clouds have
supersonic turbulent velocity fields with an average rms Mach numberM =
3.3. We varied the initial density profile of the cloud with different Plummer-
like distributions as well as the random seed of the turbulent motion. In total
9 different density realisations with 2 random velocity fields each were set
up.

With this study we aim to answer under what condition the evolution of
the cloud is dominated by an early formed central protostar that grows to
the most massive one in the cluster and dominates the dynamical evolution
of the nascent cluster rather than many protostars that form along collapsing
filaments induced by the turbulence. In addition, we analysed the impact
of tidal forces on the fragmentation of the cloud. We can summarise our
conclusion as follows:

• A strong central density concentration accelerates the star formation
process. This applies to both the first star that forms in the centre of
a highly concentrated cloud as well as stars that form subsequently in
collapsing filaments.

• The collapse of filaments proceeds uniformly, even in extreme density
concentrations. Once filamentary stars start to form, they form one by
one with short time gaps in between.

• Overall, tidal effects do not play an important role in the presence
of the applied supersonic turbulence. The formation of overdense re-
gions that can resist tidal disruption is fairly independent of the initial
density profile. In all cases there are large radial ranges where (far)
more than 20% of the total mass is located in tidally stable regions.
However, tidal forces may have a second-order effect on the formation
rate of protostellar objects, which shows a consistent dependency of the
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Figure 7.16: Protostellar evolution of the setups. From the top to the bottom
the panels show the total mass captured in all protostars (a), the total accre-
tion rate (b), the mass of the first protostar (c) and the number of collapsed
objects (d). As soon as filamentary protostars formed the accretion onto the
first one is shielded efficiently.
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tidal effects on the density profile. For flat density distributions, tidal
forces can amplify local overdensities leading to a higher protostellar
formation rate for the filamentary condensations. Steeper density pro-
files, i.e., profiles with a small flat inner core, result in tidal forces that
attenuate overdensities and reduce the formation rate.

The random realisation of the turbulent motions has a noticeable im-
pact on the individual locations of tidally stable gas and thus may abet
or retard the effect of tidal disruption perceptibly.

• The transition between initial density profiles that form one dominant
central protostar and an initial setup that forms a cluster of stars from
subsequently collapsing filaments is indicated by two quantities: (a) a
vanishing time gap between the formation of the first and other stars,
i.e., a sufficiently flat central core in the density distribution and (b)
equal time scales for the free-fall time of the flat core and the turbulence
crossing time for the core radius. Case (a) is an important condition,
because accretion onto the first central star is efficiently shielded after
the formation of other stars in our setups.

• In case of a dominant central star, the later formation of further stars
strongly depend on the impact of the turbulent velocity field on the
gas flow towards the centre of the cloud. Centrally converging flows
push the material into the central region where it is efficiently accreted
onto the central star, retarding the formation of filaments and inhibit-
ing collapsing condensations within them. Diverging central flows act
against the gravitational central collapse, and delay the infall of the
gas. As a result, the gas in the central region has more time to form
dense filaments and protostars. This delay is additionally supported
by a larger specific angular momentum, which is likely to arise from
the slightly longer collapse time and the accumulated angular momen-
tum from a larger amount of gas. However, the angular momentum is
always significantly smaller than the Keplerian value.
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Chapter 8

Cluster properties

This chapter is published in parts in Girichidis et al. 2012, MNRAS 420,
3264.

8.1 Introduction

In the current paradigm of star formation, most of the stars form in a clus-
tered environment (Lada et al., 2003). Concerning massive stars, studies by
de Wit et al. (2004, 2005) show that only ∼ 20% of the their selected O-stars
are field stars. Of these, about half can be traced back to a cluster or asso-
ciation origin, and only about 5 − 10% of them can not be assigned to any
grouped formation manner and are thus true field stars.

Over a huge spatial range of astrophysical objects and thus also during
the collapse of a molecular cloud and the formation of a stellar cluster, the
observed kinetic energy shows a robust scaling with the size of the object
(Larson, 1981; Solomon et al., 1987; Ossenkopf and Mac Low, 2002; Heyer and
Brunt, 2004; Hily-Blant et al., 2008; Roman-Duval et al., 2011). This global
analysis, however, does not take into account the spatial and dynamical
substructure of small-scale collapsing regions with sizes below 0.1 pc. The
energy balance and virial state of the star-forming region may vary during
the formation of the cluster and for different degrees of substructure in a
cloud. Local changes in the dynamics may lead to different formation modes
of the cluster and alter the stellar distribution and the accretion process in
a nascent cluster.

Within a cluster, the distribution of stars is generally not uniform, but
shows signatures of mass segregation with a tendency of more massive stars
to be located closer to the centre of the cluster. This phenomenon is observed
in many young clusters (Hillenbrand and Hartmann, 1998; Stolte et al., 2005,
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2006; Kim et al., 2006; Harayama et al., 2008; Espinoza et al., 2009; Bon-
temps et al., 2010; Gennaro et al., 2011). However, the detailed definitions
of mass segregation and the regions where they apply lead to controversies.
Kirk and Myers (2011) find mass segregation in small groups in Taurus,
Parker et al. (2011) find more massive stars to be inversely mass segregated,
concentrating on the complex as a whole. In addition, there is a strong de-
bate, whether the observed mass segregation in young clusters is primordial
or due to dynamical interactions via two-body relaxation. One fundamental
problem of that debate lies within the definition of mass segregation and the
methods and tools to determine the segregation state. Allison et al. (2009)
define mass segregation as massive stars located close to other massive stars.
Kirk and Myers (2011) base their mass segregation on the distance of the
more massive stars to the centre of the local association. Maschberger and
Clarke (2011) investigated mass segregation of a collection of smaller cores
and modified the model by Allison et al. (2009) to be more robust in case of
outlier stars. In addition, they also used local surface density as a measure
of mass segregation. Generally, the substructure of the region in question
plays a significant role in the explanation of the origin of mass segregation.
Whereas the global system might not have enough time to dynamically relax,
the small individual subclusters might well be able to reach a relaxed segre-
gated state. In addition, the final mass segregation may crucially depend on
how much degree of mass segregation is preserved during the merger of small
subclusters, i.e. how much mass segregation the merged structure can inherit
from its constituents. Consequently, a combined investigation of the degree
of substructure as a function of time, the energetic state of the cloud, the
formation mode of stars within the cluster, and the formation of the clusters
themselves is absolutely crucial to understand the mass segregation process.

In this study we analyse the dynamical evolution of collapsing cloud cores
and their virial state before and during the formation of protostars. In ad-
dition, we investigate the resulting substructure during the collapse and the
possible degree of dynamical mass segregation for dense collapsing cloud
cores in numerical simulations. We vary the initial density profile as well
as the initially imposed turbulent motions and analyse their impact on the
later cluster structure. The simulations follow the collapse of the core and
the formation of protostars. We find that the initial conditions have a large
impact on the degree of substructure in a cluster and that the clusters show
strong dynamical interactions between the protostars. As a result, the indi-
vidual subclusters are very likely to have enough time for dynamical mass
segregation. In contrast, for the global cloud, the time scales for dynamical
relaxation are too long in comparison to the time scale at which stars form
in these dense cores. Due to the strong dynamical interactions in the cen-
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tral region of the (sub)clusters from their formation onwards, it is basically
impossible to define primordial mass segregation in the simulated cores.

The chapter is organised as follows. In section 8.2 we introduce the meth-
ods that we use to analyse the energy state, the degree of substructure, and
the mass segregation. Section 8.3 presents our results, separately for the
global cloud and the central or main subclusters. Section 8.4 and 8.5 com-
prise the discussion of the obtained results and the conclusions, respectively.

8.2 Cloud and cluster analysis

In this section we briefly motivate and summarise the methods we used to
analyse our simulation data.

8.2.1 Energy analysis

The global energy partitioning of a gas cloud can be quantified by the ratio of
kinetic to the potential energy Ekin/|Epot|, where a value of 0.5 corresponds
to a virialised cloud. During the collapse of the cloud and the collapse of
fragments into protostars, potential energy is converted into kinetic energy
and transfered from the smooth gas to relatively compact protostars. In
order to investigate the energy evolution of the collapse, we analyse the
energy budget for the gas and the protostars separately.

The total kinetic energy of the gas is calculated by simply summing over
all cells in the cloud

Ekin,gas =
1

2

∑

i

mi (v
2
i,x + v2

i,y + v2
i,z). (8.1)

The kinetic energy of the protostars, Ekin,sink, is found analogously. For the
potential energy of the gas we integrate numerically over radial bins around
the centre of mass, yielding

Epot,gas(r) = −
∫
GM(r)dm(r)

r
, (8.2)

where G is Newton’s constant, M(r) the enclosed mass inside radius r, and
dm(r) the mass in the radial shell with thickness dr. The potential energy
of the protostars can be calculated by summing over the point masses

Epot,sink = −
∑

i 6=j
G

mimj

|ri − rj|
. (8.3)
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However, in order to avoid the formation of hard binary systems and resulting
very small time steps, we apply a softening term in the computation of the
gravitational force between the protostars. For the softening we use the
energy-conserving formalism described in Price and Monaghan (2007) which
yields a potential energy of

Epot,sink =
∑

i 6=j
Gmimj φ(ri − rj, h), (8.4)

with a kernel function φ (see Appendix C.1).
The internal motions of the gas and the protostars are quantified using

the mass-weighted velocity dispersion

σ2
k =

∑
imi(uk,i − 〈uk〉)2

∑
imi

(8.5)

where k ∈ {x, y, z} and 〈uk〉 is the mean velocity in dimension k,

〈uk〉 =

∑
imi uk,i∑
imi

. (8.6)

The three-dimensional velocity dispersion is then given by

σ3D =

√∑

k

σ2
k. (8.7)

In the simulations we calculate σ3D using each component of the velocity.
For the one-dimensional velocity dispersion we assume the same value for
all three components and thus use σ1D = σ3D/

√
3. So far we have only

considered the turbulent contribution to the velocity dispersion. Including
the thermal contribution, the total dispersion along the line of sight is

σtot =
√
σ2

1D + c2
s . (8.8)

8.2.2 Subclustering

Depending on the interplay between turbulent motions and the central col-
lapse of a cloud, the spatial distribution of protostars may vary significantly
(see chapter 5). In order to analyse the clustering properties of our proto-
stars, we use the Q value (Cartwright and Whitworth, 2004)

Q =
〈s〉n
〈m〉n

(8.9)
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of the clusters. Here, 〈s〉n is the normalised mean separation of the protostars
and 〈m〉n is the normalised mean length of the edges of the minimal spanning
tree (MST), where the edge is the distance between two protostars. For a
detailed discussion of the motivation for this definition of Q see Cartwright
and Whitworth (2004).

The distribution function p(s) describes the probability of two protostars
to be separated by the distance, s. We discretise p(s) with Nbin bins for the
entire cluster, leading to an equal-sized bin width of ∆s = 2RC/Nbin, where
RC is the cluster radius. The normalised number of pairs in bin i can thus
be expressed with

p(i) =
2Ni

NC(NC − 1)∆s
. (8.10)

Here Ni denotes the number of pairs with a distance in the range [i∆s, (i +
1)∆s) and NC(NC − 1)/2 is the total number of separations for NC cluster
members. Multiple peaks in the distribution function are related to subclus-
ter structure, which gives higher counts at low distances due to the small
separations within each subcluster and higher counts at a larger separation
due to the large distance between the subclusters. In case of no distance
degeneracy between subclusters, the number of peaks equals the number of
subclusters. The mean value 〈s〉 of all NC(NC − 1) particle separations sj,

〈s〉 =
2

NC(NC − 1)

∑

j

sj, (8.11)

gives a measure for the mean distance between particles in the set.
The MST is calculated using the Gower and Ross (1969) description of

Prim’s algorithm (Prim, 1957). The more particles are confined in an ob-
served area, the smaller is the mean edge of the tree. The resulting decrease
of the mean edge due to the increasing number of nodes in the tree has
to be corrected by a dimensionality factor. The correction factor for the
three-dimensional cluster model with cluster volume V was set to

(V N2
C)1/3

NC − 1
, (8.12)

taken from Schmeja and Klessen (2006).
For stellar clusters with a smooth radial density gradient, Q ranges from

0.8− 1.5, corresponding to a radial density distribution of particles n ∝ r−η

with η = 0 to 2.9. Clusters with substructure have Q = 0.8−0.45, decreasing
with increasing degree of subclustering. A detailed relation between Q, η
and the degree of subclustering can be found in Cartwright and Whitworth
(2004).
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8.2.3 Mass segregation

A set of stars or protostellar objects may show a mass-dependent spatial
distribution within a cluster. In a mass-segregated cluster, massive objects
tend to be located closer to the centre of the cluster, whilst low-mass objects
occupy regions of larger radii. We quantify the degree of mass segregation
using the MST as described in Allison et al. (2009) with the mass segregation
ratio (MSR)

ΛMSR =
〈lnorm〉
lmassive

± σnorm

lmassive

. (8.13)

The ratio describes, how large the spatial spread of the most massive stars
is, compared to the spatial spread of a random choice of stars. How many
most massive stars are counted and compared to an equal amount of random
stars should not be fixed, but rather treated as a free parameter, which we
name NMST. In order for the MST of the random set of stars to be a good
measure for the average spread, we need to pick many sets of random stars
and average over the individual lengths of the MST. We set the number of sets
to 500 as suggested by Allison et al. (2009). With the average length 〈lnorm〉
of these 500 sets and the length of the NMST most massive stars, lmassive, we
then determine the degree of mass segregation. The error is computed with
the standard deviation σnorm of 〈lnorm〉. If ΛMSR takes values significantly
larger than unity, the NMST most massive stars are located much closer to
one another than the same amount of randomly picked stars. Hence the
system shows mass segregation. In the opposite case (ΛMSR � 1) the most
massive stars have much larger distances between one another than a set of
random stars in the cluster and the system shows inverse mass segregation.
NMST is basically a free parameter that we loop over starting from 2 up to
half of the total number of sink particles, in order to determine the number
NMST up to which the system is mass segregated, i.e., ΛMSR > 1.

Mass segregation can either originate from dynamical N -body relaxation
or is primordial in nature, where the latter case means the more massive stars
form closer to the centre. In order to analyse whether mass segregation is
primordial or due to dynamical processes, we use the mass segregation time
(Spitzer, 1969),

tseg(M) ≈ 〈m〉
M

trelax, (8.14)

with 〈m〉 being the average mass of all stars in the cluster and M the mass
of the star in question. The relaxation time trelax can be expressed in terms
of the number of stars N , the radius of the cluster RC, and the stellar ve-
locity dispersion σ, yielding for the mass segregation time (e.g. Binney and
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Tremaine, 1987),

tseg(M) ≈ 〈m〉
M

N

8 lnN

RC

σ
. (8.15)

By setting the time according to different stages in the simulation, one can
obtain the minimum mass down to which stars had enough time to dynami-
cally mass segregate. Care must be taken when applying the mass segregation
time to hydrodynamic collapse simulations. In contrast to old stellar clus-
ters, where there is no or very little interstellar gas left and consequently N ,
〈m〉 and M do not vary with time, hydrodynamic collapse simulations follow
the formation of protostars from the beginning of the collapse. Not only do
protostars form at different times, they also accrete further gas from the sur-
rounding dense medium in which they were born and are subject to gas drag
forces. The number of protostellar objects N , their individual masses M ,
their mean mass 〈m〉, and the cluster radius R are therefore strongly varying
with time. Consequently, the mass segregation and the minimum segregated
mass for a given time can not be calculated for the total set of objects as a
whole. Instead, the possibility of being segregated within the cluster has to
be estimated for each star individually by taking into account the formation
time and the growing mass of the star due to accretion.

8.3 Cluster properties – results

8.3.1 Overview

We follow the cloud collapse until 20% of the mass is accreted by sink par-
ticles. The simulation time, the number of formed protostars, the mass of
the most massive protostar and the key parameters of the substructure of
the cluster are listed in table 8.1. A column density plot at the end of each
simulation is shown in chapter 5, figures 5.4 and 5.5.

The TH profile takes the longest time to form gravitationally collapsing
regions and to capture 20 M� in sink particles. During this time, approxi-
mately 45 − 50 kyr, the turbulent motions can compress the gas in locally
disconnected areas, leading to distinct subclusters of sink particles. The
stronger mass concentration in the centre of the BE setups and the resulting
shorter collapse and sink particle formation time suppresses the formation
of disconnected subclusters in favour of one main central cluster. The corre-
sponding PL15 profiles show a very similar overall cloud structure to the BE
runs, but significantly different stellar properties. Due to the much stronger
gas concentration in the centre of the cloud, all PL15 setups form a proto-
star very early in the simulation. This initial central protostar accretes the
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surrounding gas at a high rate and can grow to a massive protostar before
the turbulent motions eventually form collapsing filaments and trigger frag-
mentation. The PL15 setups with turbulent fields m-1 and s-1 (PL15-m-1,
PL15-s-1) do form dense filaments, but no further sink particles until the
first protostar reaches a mass of 20 M�. In case of multiple sink particles,
the clusters are more compact than in the corresponding BE case. The PL20
profile only forms one single sink particle due to the very strong mass con-
centration. The central protostar forms very early and accretes gas at an
almost constant rate of ≈ 2×10−3 M� yr−1, close to the analytical value of a
highly unstable singular isothermal sphere (Shu 1977). This results in a total
simulation time of only 11 kyr, which is not enough for turbulent motions to
form filaments and further sink particles.

The following discussion of the cluster properties therefore abstains from
a detailed description of the setups PL15-m-1, PL15-s-1 and PL20-c-1.

8.3.2 Energy evolution of the global cloud

In order to better understand the energy evolution, we separately analyse
the gas and sink particle contributions to the total energy.

All setups are gravitationally very unstable and start to collapse imme-
diately. As a result, the initial random velocities of the gas are reoriented
towards the direction of the central acceleration. The total kinetic energy
strongly increases with time due to the infall motion. Figure 8.1 shows a
representative example of the kinetic over the potential energy of the gas as
a function of radius for different times in the simulation. The cloud starts
in a strongly sub-virial state and exceeds a ratio of kinetic to gravitational
energy of 0.5 for the entire cloud after roughly 20 kyr. Within a radius of
104 AU the ratio reaches values greater than unity and diverges in the very
central region. This behaviour can be explained by a simple estimate using
a singular isothermal sphere, which is characterised by an initial density pro-
file ρ ∝ r−2 and approaches a free-fall density profile ρ ∝ r−3/2 inside the
head of the rarefaction wave (Shu, 1977; Whitworth and Summers, 1985).
The corresponding velocity field scales as v ∝ r−1/2. The resulting poten-
tial energy scales as Epot ∝ r2, while the kinetic energy follows a relation
Ekin ∝ r1/2. Consequently, the ratio Ekin/|Epot| scales as r−3/2 and diverges
for small radii, indicating that the innermost part of the cloud is dominated
by kinetic energy.

The different initial density profiles as well as the different formation
modes of protostars lead to different radial distributions during the collapse.
A comparison of Ekin,gas/|Epot,gas| for all setups at the end of the simulation is
shown in figure 8.2. A significant difference is found between the simulations
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Figure 8.1: Ratio of kinetic over potential energy of the gas for the BE-
m-1 setup as a function of radius for different times. The cloud evolves
from a strongly gravitationally dominated state to an energy state with
Ekin,gas/|Epot,gas| > 0.5 at the end of the simulation.

with only one protostar (dotted lines) and the ones that form many protostars
(solid lines). The three setups with only one protostar show much higher
values for most of the cloud and a steeper slope. This is not surprising because
the gas in the central region can fall towards the central particle without
being disturbed by other sink particles and their N -body interactions. In
case of multiple protostars the ratio Ekin,gas/|Epot,gas| shows a large scatter
close to the central region (R . 4× 103 AU), which can be explained by the
local variations in the sink particle positions and motions, and the resulting
impact on the gas. The scatter in the energy ratio is significantly lower in
the outskirts of the cluster.

The average value as well as the spread of Ekin,tot/|Epot,tot| increase when
the sink particles’ mass is included in the virial analysis (see figure 8.3). There
is no systematic correlation between the various initial conditions and the
ratio of the energies. The fact that including the protostars leads to higher
values, shows that the cluster contributes more to the kinetic rather than the
potential energy. A comparison of the kinetic energy of the sink particles and
the gas (Ekin,sink/Ekin,gas) is plotted in figure 8.4. The ratio is above unity for
all simulations with many protostars (solid lines). Although the protostars
account for only 20% of the total mass at the end of the simulation, their
kinetic energy dominates the total kinetic energy budget of the cloud. Again,
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Figure 8.2: Ratio of kinetic over potential energy of the gas for all profiles
at the end of the simulation at 20% star formation efficiency. The dotted
lines indicate the runs with only one protostar, the runs with multiple proto-
stars are shown with solid lines. Note that the physical times differ strongly
between 11 and 48 kyr for the different setups, see table 6.1.

the setups with only one protostar constitute an exception (dotted lines). In
these cases, the kinetic energy of the protostar is significantly lower, which
can be explained by accretion flows from opposite directions that result in an
almost vanishing net momentum transfer onto the protostar (see figure 8.4).
The dashed-dotted line shows Ekin,sink/Ekin,gas for the TH-m-2 setup. As the
cloud in this run forms two distinct subclusters with a central void between
them (see right part of figure 8.9) the total kinetic energy of the few protostars
between the subclusters is relatively low.

As a link to observable properties of star-forming regions we calculate
the velocity dispersion for the entire cloud as a function of time. Here we
assume isotropy of the motions of the gas and restrict our analysis to the
one-dimensional velocity dispersion σ1D. Because of the initial random tur-
bulence, the velocity dispersion of the gas shows anisotropies, which tend
to reduce during the simulation. Initially, the deviation from isotropy is of
the order of 10 − 20%. During the simulation the value shows variations
but decreases to about half of the initial value (∆σ/σ ∼ 5− 10%), averaged
over all simulations. There is no clear trend with the varied initial condi-
tions and the number of protostars. Figure 8.5 shows the turbulent velocity
dispersion σ1D for the gas for all runs. Initially, σ just reflects the initial
turbulent velocity, the increasing values correspond to the additional infall
motion. The significantly lower values for the TH profiles are simply due
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Figure 8.5: Velocity dispersion for the gas for all runs. The values increase
over time due to the increasing infall motion.

to the delayed dominant central collapse. The formation of disconnected
subclusters reduces the global infall speed in comparison to the other setups
with one central cluster. The combined velocity dispersion for gas and sink
particles can be seen for the TH profiles in figure 8.6. The plots for the
other setups look similar. As shown in figure 8.4, the protostars contain a
significant fraction of the kinetic energy. Therefore, the total value including
sink particles is remarkably higher. None of the curves saturates during the
simulated time, which can be explained by a simple free-fall approximation.
The maximum speed that can be reached by free-falling gas is of the order
of R0/tff ≈ 2 km s−1, where R0 is the cloud radius and tff the global free-fall
time. None of the setups needs more than a free-fall time to convert 20% of
the gas mass into stars when we stop the simulation, so no setup had enough
time to reach the limiting free-fall velocity dispersion of 2 km s−1.

With a focus on the nascent cluster as an N -body system, we also analyse
the virial state of the sink particles without including the contributions of
the surrounding gas. To do so, we treat the protostars as point masses and
we calculate the gravitational potential via direct summation (equation 8.4).
The corresponding ratio of kinetic to potential energy for the sink particles
is shown in figure 8.7, excluding the runs with only one protostar. The time
axis in the plot is adjusted to the time when the first condensation was cre-
ated. In the case of all PL15 profiles with multiple sink particles, the second
and further sink particles formed with a large delay after the first sink parti-
cle. Therefore, the curves for the PL15 profiles start at times t− t0 > 10 kyr
(see ∆t12 in table 8.2). The first protostars form with the velocity that the
collapsing condensation inherits from the gas motion. The positions at which
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Figure 8.6: Velocity dispersion for the TH setups. The lower curves corre-
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they form is determined by the structure of the filaments or the fragment-
ing disc. As they form independent from one another, sometimes even in
separate subclusters, their kinetic and potential energies are uncorrelated.
As the protostars form with the velocity of the parental gas cloud and be-
cause they are usually separated by a large distance, the initial values of
Ekin,sink/|Epot,sink| are very high. Soon after their formation, the protostars
dynamically decouple from the gas and move towards the central region of
the nascent cluster. The system begins to virialise, leading to decreasing val-
ues of Ekin,sink/|Epot,sink|. Without the formation of subsequent protostars,
the system would quickly reach a virialised state. However, as this process
continues, the energy ratio of the total cluster is influenced by the virial state
of the newly formed objects. If they form at time ti at position ri with veloc-
ities vi smaller than the virial velocity vvirial(ri, ti), they lead to a decreasing
energy ratio. A quick analytical estimate illustrates, why this behaviour is
expected. The virial velocity is given by

vvirial =

(
GMCl

RCl

)1/2

, (8.16)

with the mass and radius of the cluster MCl and RCl. As a lower limit, we can
assume a constant stellar density in the cluster over time, ρ∗, which relates
the cluster radius to the cluster mass like RCl(t) = (3MCl(t)/(4πρ∗))

1/3 and

thus the virial velocity in this lower limit follows vvirial,low ∝M
1/3
Cl , increasing

with time as the total mass of the cluster increases. Of course, the velocity of
the gas is also increasing over time due to the collapse of the cloud. However,
as shown in figure 8.5, the velocity dispersion of the gas increases over time by
a factor of only 3 at most. In addition, figure 8.6 illustrates that the kinetic
contribution of the protostars is remarkably larger than that of the gas. In
order for the lower limit virial velocity, vvirial,low, to be higher than the average
gas velocity, the cluster mass must grow by a factor of 27 during the entire
simulation, which can be achieved. Considering the fact, that the stellar
density also increases, the virial velocity will be even higher. Consequently,
the newly formed stars, which inherit the low gas velocity, tend to decrease
the energy ratio.

The larger the cluster, the lower is the available mass in the central re-
gion of the cluster (see chapter 6). Therefore, new protostars must form at
increasingly larger radii. In order to show that these new stars are the ones
that push the ratio Ekin,sink/|Epot,sink| to lower than virialised values, we cal-
culate the ratio as a function of the fraction of total protostars. Figure 8.8
shows the energy ratio with the protostars sorted by their distance from the
centre of the cluster. In all cases, only the innermost ∼ 10 − 30% have a
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virial or super-virial energy balance. The majority of the nascent cluster has
an overall sub-virial energy partition (see, e.g., Offner et al., 2009). But we
expect that the ensemble virialises on a dynamical time scale as soon as star
formation stops in the cluster region.

From our simulations we conclude that a detailed energy analysis can
only be performed properly, if both protostars and gas are included in a self-
consistent way. In turn, the remaining gas is essential to the virial state of
the nascent cluster.

8.3.3 Global cluster properties

In this section we discuss the spatial distribution of the protostars in the
simulated cloud. We begin with an analysis of all protostars in the simula-
tions in order to measure the cluster properties of the cloud as a whole. A
detailed investigation of individual subclusters without outlier protostars is
presented in section 8.3.4 and below.

TH runs

Both setups with initially uniform density distribution show distinct subclus-
ters as illustrated in figure 8.9. We selected the four biggest subclusters for
further analysis and named them SC1-SC4. The other subclusters have too
few protostars for a statistical analysis. Note that subcluster SC1 is not very
compact in the centre. Therefore, our reduction algorithm does not exclude
the outliers, which yields the relatively large radius.

The distribution function of the separations between the particles as well
as the Q-value (equation 8.9) of the entire cloud is shown in figure 8.10.
TH-m-1 shows three different peaks in the distribution function: the one at
9,000 AU corresponds to the distance of SC2 to SC1, the peak at 13,000 AU
to the degenerate distance of SC2 to SC5 and SC6, and the last peak de-
scribes the distance from the upper subcluster SC1 to SC5 and SC6, which
is also degenerate within the width of the distance bin. TH-m-2 shows two
main subclusters corresponding to the peak at 15,000 AU in the plot. The
degenerate distance between SC3 and SC7 as well as SC4 and SC7 can be
seen as small peak in the distribution at 13,000 AU. The Q value of the entire
cloud shows strong variations at the beginning of stellar formation due to the
different regions of the cloud where the sink particles are created. Having
established the subclusters, Q shows roughly constant behaviour at a value
of Q ∼ 0.2 for both runs.

The key properties for the subclusters SC1–SC4 are listed in table 8.3.
The protostars in SC1 have significantly larger mean separations between
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Figure 8.9: Subclusters in the TH runs. The left picture shows TH-m-1 with
the subclusters SC1 and SC2. The two largest subclusters in TH-m-2 on
the right are labelled SC3 and SC4. The circles indicating the subclusters’
diameter are to scale. The total size of the plot is 0.13 pc in both x and y
direction.
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Figure 8.10: Global cluster values for the TH runs. Left plot: TH-m-1 shows
three different peaks in the distribution function: the one at 9,000 AU corre-
sponds to the distance of SC2 to SC1 (see figure 8.9), the peak at 13,000 AU
to the degenerate distance of SC2 to the lower and left one and the last
peak describes the distance from the upper to the lower and left subcluster,
which is also degenerate within the width of the distance bin. TH-m-2 shows
two main subclusters, whose distance corresponds to the peak at 15,000 AU.
Right plot: After roughly 100 sink particles have formed, the Q value ap-
proaches a constant value which is similar for both of the runs, indicating a
high degree of substructure in both clouds.

one another and a Q value of ∼ 0.7, slightly lower than the threshold value
to sub-structure of 0.8. The other three subclusters have very similar Q,
indicating a smooth stellar distribution.

BE runs

The effects of the much more dominant central infall during the collapse of
the BE setups can be seen in the average distance between the sink particles
and the Q-value in figure 8.11. The separation distribution shows only one
significant maximum for all simulations. However, the peak for the BE-c-2
run is at a much larger distance. There, the sink particles form along large
elongated filaments and lead to larger mean separations than in the other
BE setups. Here, the strong effects of the compressive turbulent motions
have a major impact. The mean separation for both runs with compressive
turbulence is significantly larger than for the other runs (see 〈s〉 in table 6.1).
The Q values and the resulting degree of substructure are very different
and strongly change with time (and consequently Nsink) depending on where
the sink particles form. BE-c-2 shows strong substructure from the very
beginning, BE-c-1 forms protostars at larger radii at a later stage in the
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Table 8.3: Subcluster properties from the TH setups

subcluster Nsink 〈s〉 [103 AU] 〈m〉 [103 AU] Q
SC1 67 1.13 0.31 0.69
SC2 182 0.49 0.19 1.36
SC3 232 0.51 0.16 1.19
SC4 100 0.23 0.10 1.27

For each subcluster the number of sink particles Nsink, the mean separation
〈s〉, the mean MST length 〈m〉 and the Q value are shown. SC1 shows signs
of sub-structure indicated by a Q value slightly below the critical transition
value of 0.8. SC2, SC3 and SC4 have values of Q & 1.2 which indicates a
smooth internal structure.

simulation, leading to a decrease of Q at around Nsink ∼ 170. The two runs
with the lower number of sink particles (BE-s-1 and BE-m-1) have the highest
values, revealing a rather smooth cluster without much substructure.

PL15 runs

The even stronger mass concentration in the PL15 profiles shows a systematic
influence on the mean distance between the sink particles. The mean particle
separation for the PL15-c-1, PL15-m-2 and PL15-s-2 runs is roughly 15−35%
smaller than in the corresponding BE runs (see table 6.1). The fact that the
mean separation in PL15-c-2 is larger than in BE-c-2 is just due to the fact
that the former one forms fewer sink particles; the positions of the distant sink
particles at large radii are similar. Figure 8.12 shows the separation function
and the Q values. The distribution function on the left shows one main peak
for all setups. The peak for PL15-c-2 is much wider, reflecting the larger
central cluster. In addition, the setup forms more protostars further out than
other setups. In combination with the lower total number of particles than in
the BE-c-2 case, this yields the large value of 〈s〉 and result in the lowest Q
value for PL15-c-2. PL15-c-1 and PL15-m-2 are around the threshold value
to substructure (Q = 0.8), PL15-s-2 is smooth over almost all the simulated
time.

Comparison

There are some general trends of the subclustering properties. The flatter
the initial density profile is, the more impact has the turbulent velocity field.
This causes collapsing regions to form at larger separations from each other.
The observed relation 〈QTH〉 . 〈QBE〉 . 〈QPL15〉 supports this intuitive
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Figure 8.11: Cluster properties for the protostars in the BE runs. The plot
of the separations (left figure) clearly shows the formation of only one main
cluster for all runs, indicated by only one main peak in the distribution of
protostellar separations. However, the cluster structure varies significantly
(right figure). The Q value differs by a factor of more than 5 for the individual
runs and shows a correlation with the turbulent modes. Compressive modes
show more substructure than mixed and solenoidal modes.
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Figure 8.12: Cluster properties for the protostars in the PL15 runs. The plot
of the separations (left figure) clearly shows the formation of only one main
cluster for all runs. However, the cluster structure varies significantly (right
figure).
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picture. In a similar manner, compressive turbulent modes lead to collapsing
filaments more quickly, not allowing the gas to assemble as close to the centre
as in solenoidal turbulent cases. Therefore, within one density profile, the
impact of turbulent modes shows 〈Qcomp〉 . 〈Qmix〉 . 〈Qsol〉.

8.3.4 Properties of the reduced clusters

Having analysed the total set of protostars in the entire cloud, we now focus
on the central regions of the main clusters in each setup, ignoring the outliers
that do not belong to the main cluster. In order to find the individual
compact clusters, we iteratively exclude outlier protostars until we reach a
converged cluster configuration. We first select the main region by eye. In
the two TH runs we select the already mentioned subclusters (see figure 8.9),
in all other setups with many sink particles we chose the central cluster. The
particle reduction method works as follows. We find the centre of mass of
the set of particles. Then we compute the average separation 〈s〉 between
protostars and remove all objects that are located at radii larger than three
times the mean separation from the centre of mass. We then recalculate the
centre of mass and repeat the exclusion until no further particle is excluded
from the set of objects. The radius of the cluster RC is set to 3〈s〉, ensuring
that all selected particles are within the cluster radius. The factor three is
somewhat arbitrary, but after some tests it turned out to be a useful distance
factor that does exclude all very distant particles, but no or very few particles
that could be dynamically important for the cluster within the simulated
time. The key values for the reduced clusters are listed in table 8.2, their
velocity dispersion as a function of stellar density is shown in figure 8.13. For
the following discussion we focus on the reduced clusters.

As the motions in the forming cluster are highly chaotic and the number
of protostars is constantly growing, the time evolution of the reduced cluster
properties fluctuates, i.e., every time step, the reduction algorithm chooses
different protostars to belong to the reduced cluster. It is therefore impossible
to follow single protostars within the reduced clusters. In the further analysis
we thus concentrate on the clusters at the end of the simulation.

8.3.5 Mass segregation

We address the mass segregation problem in two ways. Firstly, we investigate
the time that each protostar had for dynamical mass segregation after its
formation, and secondly, we analyse the reduced cluster at the end of the
simulation with the minimal spanning tree, neither taking into account the
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Figure 8.13: Velocity dispersion of the selected main (sub)clusters as a func-
tion of stellar density. The data points represent the clusters at the end of the
simulation. The clusters show a weak correlation with a significant scatter.

different formation times of the particles nor the change in mass during the
accretion process.

Although the degree of mass segregation can not be calculated for a sin-
gle particle but has to be seen as a global cluster property, we analyse the
possibility to dynamically mass segregate via two-body relaxation for every
single protostar. According to equation (8.15) we set the time tseg to the
time that the sink particle had for mass segregation, i.e., the difference be-
tween the end of the simulation and the creation time of the protostar in
question. From that we infer the threshold mass Mseg with the given final
values of RC and σ. If the mass of this particular protostar is larger than the
threshold mass, we count it for possible mass segregation. The quantity Nseg

in table 8.2 refers to the total number of possibly mass-segregated objects;
fseg denotes the fraction Nseg/NC. The strong dynamical effects during the
formation of the cluster result in significantly varying values for RC, NC,
and σ. However, the combined quantity in equation (8.15) differs much less
and serves as a remarkably stable estimate. With a roughly constant forma-
tion rate of protostars, a strong correlation between the protostellar number
density (NC/R

3
C) and fseg as found in the simulated clusters is not surpris-

ing (see figure 8.14). The segregation fraction fseg covers a very large range
(0.03 − 0.85), indicating that in some setups almost all objects had enough
time to dynamically mass segregate, while in others hardly any protostar can
relax in the cluster.

For the second approach, we analyse the mass segregation at the end of the
simulation according to equation (8.13). The values for ΛMST as a function
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Figure 8.14: Possible fraction of dynamically mass-segregated stars as a func-
tion of protostellar number density of the cluster. The data points represent
the reduced clusters at the end of the simulation and show a strong correla-
tion with only little scatter.

of NMST for all clusters are plotted in figure 8.15. In order to keep the
plots readable, most of the curves are shown without errorbars; we included
errorbars for the lowest curves that still differ from unity within a 1-σ error in
order to give some indication of the uncertainties involved. In order for mass
segregation to be eminent, ΛMST needs to be significantly above unity for
mass segregation and significantly below unity for inverse mass segregation.
The upper panel shows ΛMST for the TH runs. All subclusters except for
SC1 show mass segregation up to at least NMST ∼ 30, i.e., the 30 most
massive protostars form a compact subset of the cluster members around the
centre of the cluster. Including more than the 30 most massive objects to the
subset enlarges the spatial extent such that the position of the chosen subset
is hardly distinguishable from a random subset of the same number of cluster
members. SC3 and SC4 show a significantly higher degree of mass segregation
below NMST ∼ 20 and NMST ∼ 12, respectively. This corresponds to a
minimum segregated sink mass of 0.074 M� in SC3 and 0.11 M� in SC4 and
contains roughly 40% and 37% of the total cluster mass. Even higher values
for ΛMST can be found in the BE setups (middle panel). Here the central
clusters in BE-m-1 and BE-s-1 show ΛMST > 1.5 below NMST ∼ 35 − 45
and NMST ∼ 20, respectively. The minimum segregated mass in BE-m-1 is
Mseg ≈ 0.1 M�, the total confined mass down to this mass is about 75%, in
the latter case Mseg = 0.17 M�, containing around 40% of the cluster mass.
If one includes the second bump of ΛMST between 20 < NMST < 40 in BE-s-
1, the measured contained mass that is segregated is roughly 58%. Among
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the PL15 density profile only one cluster shows significant mass segregation,
PL15-c-1. ΛMST is greater than 1.5 for NMST . 19. This gives a minimum
segregated mass of Mseg = 0.11 M� and corresponds to a fraction of about
72% of the cluster mass.

There is a weak correlation between the actual measured mass segregation
and the theoretically possible fraction of segregated protostars (fseg). The
actual number of segregated stars NMST,max with ΛMST(N ≤ NMST,max) &
1.5 is lower in almost all cases, but follows a consistent trend with Nseg.
Taking into account that the protostars form at different positions and need
some time to dynamically relax within the cluster, the relation NMST,max <
Nseg seems reasonable in comparison to an initially spherical cluster with a
constant number of members.

The actual mass segregation can also be compared to the total time that
the cluster as a whole has for mass segregation. As the number of proto-
stars changes with time, we count the available time starting at the point
where two sink particles are formed until the end of the simulation. The
ratio tavail/trelax in table 8.2 indicates how many mass segregation times the
cluster evolved, again assuming that trelax at the end of the simulation is rep-
resentative for the entire cluster evolution. There is again a weak correlation
between this ratio and the degree of mass segregation.

8.4 Cluster properties – discussion

In all simulations we set up cores with a very low ratio of kinetic to gravita-
tional energy, i.e., the clouds are strongly bound. As the cores are isolated,
they are disconnected from any potential dynamical impact from the sur-
rounding environment. The initially imposed supersonic turbulent motions
result in a global velocity dispersion for the gas of ∼ 0.5 km s−1. Given the
diameter of the core, 0.2 pc, this is close to the velocity dispersion we expect
from Larson’s relation (Larson, 1981; Solomon et al., 1987; Ossenkopf and
Mac Low, 2002; Heyer and Brunt, 2004; Roman-Duval et al., 2011). However,
it is lower than the observed turbulent velocity component of the massive
dense cores in Cygnus X (Bontemps et al., 2010; Csengeri et al., 2011). The
observed cores with very similar key properties to our cores, i.e., mass, size,
and temperature, show velocity dispersions from ∼ 0.5 − 3.5 km s−1, higher
than the turbulent velocity dispersions in our numerical setups. Observa-
tions of massive, dense filaments show supersonic infall motions (Schneider
et al., 2010), which may easily lead to a much more dynamical formation of
the cores. We do not impose an initial net rotation to the core, however,
the random turbulent pattern of high and low-velocity regions in different
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density environments results in a net rotation of the cores with a ratio of ro-
tational to gravitational energy ranging from 10−10−10−3, in agreement with
the values for the dense cores in Cygnus X (Bontemps et al., 2010; Csengeri
et al., 2011). During the simulation, the velocity dispersion increases sig-
nificantly due to the strong global infall and reaches values that are more
consistent with the observed ones. After some ∼ 10 − 40 kyr, depending on
the initial density profile, the cores as a whole reach or exceed a virialised
energy budget Ekin/|Epot| ≥ 0.5. The final energy balance is in agreement
with the theoretical virial analysis in Shetty et al. (2010). They investigated
the scaling relations between mass, size, and virial state of clumps of differ-
ent sizes that formed self-consistently in turbulent flows. The virial state of
their clumps with similar sizes and masses to our setups is consistent with
our energy analysis. Also the measured line widths of our cores is consistent
with the analysis in Shetty et al. (2010). The increasing values for σ1D are
dominated by the gas motions in the dense central region, which is also ob-
served. Csengeri et al. (2011) notice small-scale turbulent motions with high
velocities (a few km s−1) in high-resolution studies of the central region of
the cores.

As soon as protostars form, the question of early substructure and mass
segregation arises. These two properties of young stellar clusters can not
be disentangled and analysed separately. In particular, the determination
whether a cluster shows primordial or dynamical mass segregation sensitively
depends on the definition of mass segregation and spatial demarcation of the
region in question.

The theoretical analysis of a self-gravitating N -body system predicts dy-
namical mass segregation via two-body relaxation and dynamical friction
that an object experiences while moving through a sea of other objects. For
different properties of the cluster, the dynamical friction and the resulting
dynamical relaxation time of the total cluster differs (Chandrasekhar, 1943;
McMillan and Portegies Zwart, 2003; Spinnato et al., 2003; Fellhauer and
Lin, 2007). The global relaxation time, defined as a statistical quantity with
only global cluster properties and thus not reflecting any substructure, there-
fore only serves as a rough estimate. Depending on how well these global
quantities fit the observed or simulated system, the relaxation time might
differ significantly from the time scale of local dynamical interactions.

The question whether dynamical mass segregation can be excluded based
on a time-scale argument, can therefore only be answered for a specific defi-
nition of mass segregation and for a well-defined cluster or subcluster region.
Traditionally, numerical work started without initial mass segregation and
investigated the purely dynamical aspect of the N -body system, without
taking into account the dynamical changes of the individual N -body objects,
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like mass accretion in the early phase of cluster formation and the mass loss
due to winds. Recently, several prescriptions of initial mass segregation have
been developed (Baumgardt et al. 2008, Šubr et al. 2008, Vesperini et al.
2009), still investigating the cluster as a whole without local substructure.

One basic problem with the analysis of mass segregation is the definition
of what mass segregation actually means. Allison et al. (2009) use the mini-
mal spanning tree (MST) of the most massive stars in comparison to the MST
of random stars and thus define mass segregation as the most massive stars
being located closer to each other than the same number of randomly picked
stars. As long as a single cluster or a conglomeration of several individual
clusters does not show massive outliers, this methods works stably. In case of
massive outliers, this method needs to be slightly modified (Maschberger and
Clarke, 2011; Olczak et al., 2011). In observational studies, mass segregation
is mostly defined as more massive stars being located closer to the centre of
the cluster (e.g. Hillenbrand 1997, Hillenbrand and Hartmann 1998, Fischer
et al. 1998, de Grijs et al. 2002, Sirianni et al. 2002, Gouliermis et al. 2004,
Huff and Stahler 2006, Stolte et al. 2006, Sabbi et al. 2008, Gennaro et al.
2011, Kirk and Myers 2011). However, the definition of the centre of a young
star forming region with a large degree of substructure is not obvious.

One possibility to study mass segregation in resolved clusters is to investi-
gate radial variations of the IMF. In unresolved clusters the different inferred
radii in different wavelengths may indicate mass segregation. However, in
both cases, mass segregation is difficult to identify given the observational
difficulties (e.g., Ascenso et al., 2009; Portegies Zwart et al., 2010).

Even more difficult is the answer to the question about primordial ver-
sus dynamical mass segregation. In order for global mass segregation to be
primordial in nature, it is required that stars with a given mass m must be
more centrally concentrated than stars with the average stellar mass 〈m〉
and that the cluster must be younger than the dynamical friction time scale
for that given mass m, i.e., the more massive stars must have formed closer
to the centre. This global picture is consistent with numerical simulations
(e.g., Klessen and Burkert, 2000; Bonnell and Bate, 2006). However, this
time scale argument only holds for spherical clusters in virial equilibrium. If
clusters form through mergers of smaller subclusters, these subclusters might
have enough time to dynamically relax and mass segregate because of the
much smaller size and the higher number of stellar encounters. The degree of
mass segregation in merged clusters is significantly higher than would be ex-
pected from a global time scale analysis (McMillan et al., 2007; Moeckel and
Bonnell, 2009). In addition Allison et al. (2010) show that dynamical mass
segregation is very fast even without mergers of partially mass segregated
substructures. Therefore, a detailed analysis of the formation of substruc-
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ture and the collapse of stars within them is crucial to fully understand the
mass segregation process. The analysis of our reduced clusters and subclus-
ters with their own dynamical and orbital centre shows that there is a weak
correlation between the possible degree of segregation fseg and the actual
mass segregation. Given the fact that we follow the evolution of our clusters
for only a very short time, it seems very likely that dynamical mass segrega-
tion can provide a significant contribution to the mass segregation within the
subclusters. If, in addition, the bigger stellar cluster that formed by mergers
of smaller subsystems, can inherit a reasonable degree of mass segregation
of the progenitors, it becomes very difficult to exclude dynamical effects on
different spatial and dynamical levels to be responsible for mass segregation
of a cluster.

The total cluster including all protostars shows a sub-virial energy budget,
indicating that the relaxation time is larger and thus the dynamical mass
segregation process of the total cloud is slower than in a virialised case.
However, the central regions, where the crossing times are much smaller
and stellar encounters more frequent, the N -body system is virialised. The
central region therefore does not suffer from a dynamical delay concerning
the mass segregation process. In addition, the simple analysis of dynamical
mass segregation does not include the effects of gas, but only the dynamical
friction due to the other stellar objects in the sample. In addition, the gas
also provides dynamical friction (Dokuchaev, 1964; Ruderman and Spiegel,
1971; Rephaeli and Salpeter, 1980; Ostriker, 1999; Lee and Stahler, 2011).
Due to the turbulent motions, an analytic estimate is difficult to apply in our
collapsing core. Nevertheless, this additional friction helps to increase the
dynamical cross sections and thus makes stellar encounters more frequent,
resulting in an acceleration of the dynamical mass segregation.

An interesting aspect that weakens the effect of dynamical mass segrega-
tion is presented in recent work by Converse and Stahler (2011), where they
argue that low-N systems with an even higher number of objects than in
our clusters do not relax dynamically. If this also applies to accreting stellar
systems with gaseous background, a large degree of mass segregation might
not be possible in the smallest subclusters but only later after some merger
events. We nevertheless do not expect dynamical relaxation to become com-
pletely irrelevant because of the low number of protostars in our clusters and
subclusters.

As a remark, we want to point to recent studies by Kruijssen et al. (2012).
They analysed the substructure within clusters as well as the dynamical state
of the stellar cluster when gas expulsion becomes important, i.e., at a slightly
later stage of the evolution of the cluster. Analysing the simulations of Bon-
nell et al. (2003, 2008), they find that the stellar system quickly reaches a
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globally virialised state if the gas potential is excluded and the stellar system
is followed with pure N -body dynamics. Their results support the evolu-
tionary picture of the formation of protostars that we see in our simulations.
New protostars that form at larger radii from the centre of the cluster in gas
dominated regions have sub-virial velocities. As soon as they decouple from
the gas motion and move to the central gas-poor environment, they quickly
virialise.

Note that the number density of protostars in the central region of the
clusters is high enough for protostellar collisions to become important (Baum-
gardt and Klessen, 2011). This could indeed lead to changes in the stellar
initial mass function.

8.5 Cluster properties – summary and con-

clusions

We analysed the simulations with the focus on the properties of the embedded
young stellar clusters. We analysed the energy evolution of the gas and the
nascent cluster, computed the degree of subclustering, and quantified the
mass segregation in the continuously growing clusters. Our main conclusions
can be summarised as follows.

In all setups, the collapsing cloud virialises within the simulated time,
which corresponds to a star formation efficiency of 20%. Just considering the
gas, all clouds have a virial or super-virial energy budget Ekin & 0.5|Epot|,
the runs with only one protostar have significantly higher ratios of kinetic to
gravitational energy. Although the total mass of all protostars is only 20%
of the total cloud mass, their total kinetic energy is larger than that of the
gas in the cases with multiple protostars. In contrast, the three runs with
only one protostar show a smaller ratio of kinetic energy of the protostar to
kinetic energy of the gas, which can be explained by the vanishing momen-
tum impact of opposite accretion flows. Analysing the entire stellar clusters
as pure N -body systems, we find an overall sub-virial energy balance with
Ekin ∼ 0.2|Epot|, independent of the varied initial conditions. If we concen-
trate on the central regions of the clusters (innermost ∼ 10 − 30% of the
protostars), we find virialised conditions. This difference can be explained
by the formation history of the cluster. New protostars continue forming at
increasing radii from the centre of the cloud due to the lack of available gas
in the central region. These protostars inherit the kinetic energy from their
parental gas region, which is relatively low in comparison to their gravita-
tional contribution, i.e., new stars form at sub-virial velocities. Soon after
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their formation, the protostars decouple from the gas and agglomerate in the
central region, where they virialise.

The degree of subclustering strongly depends on the initial density pro-
file. Initially uniform density allows for turbulent motions to form distinct
subclusters before the global collapse can confine the gas in one cluster in
the central region. With a Q value of ∼ 0.2, these clouds show considerable
substructure with distinct conglomeration of protostars. The stronger the
initial mass concentration around the centre of the cloud, the less subclus-
tering is found. Bonnor-Ebert-like spheres show mainly one dominant central
cluster with some substructure. The considered power-law density distribu-
tions form more compact protostellar clusters with less internal structure,
if they form clusters at all. In three strongly condensed setups the cloud
does not fragment and forms only one protostar. In general, we find that
the Q parameter, used to quantify subclustering, shows the following trend:
〈QTH〉 . 〈QBE〉 . 〈QPL15〉, where lower Q means more substructure. We
also note different subclustering trends with different turbulent modes. For
a given density profile, compressive modes lead to a higher degree of sub-
structure than mixed modes, which in turn lead to more substructure than
solenoidal modes, i.e., 〈Qcomp〉 . 〈Qmix〉 . 〈Qsol〉.

Focusing on the central region of the clusters, where outliers are removed
from the set of protostars, roughly half of the clusters show mass segregation.
The degree of mass segregation varies strongly between the clusters, however,
no cluster with significant inverse mass segregation is found. Except for one
cluster (PL15-m-2), the mass segregation ratio does not drop below 0.5. The
mass segregation is consistent with the time for dynamical mass segregation,
so all the clusters had enough time for dynamical relaxation of the most mas-
sive objects in the cluster. In the simulated collapsing cores, primordial mass
segregation is not necessarily required to achieve a significant mass segrega-
tion at the end of the simulation. However, due to the ongoing formation of
protostars and the increase in protostellar mass due to accretion, the cluster
is exposed to continuous momentum and energy impact from the surrounding
gas, which may modify the actual mass segregation behaviour in comparison
to the idealised process of dynamical mass segregation via two-body relax-
ation. A contribution that may have a significant influence is the episodic
accretion of gas as well as the fact that the protostars follow the global flow
pattern of the gas they form from, before they dynamically decouple from
the gas. Overall, there is no clear correlation between the initial conditions
and the mass segregation in our simulated clusters.

We conclude that the kinetics of young stellar clusters do not strongly de-
pend on the initial density profile, nor on the initial structure of the turbulent
modes. This is because the nascent protostars quickly decouple dynamically
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from the parental filament in which they were formed. The interactions as
an N -body system dominate the cluster motions. Continuous formation of
subsequent protostars with initially sub-virial velocities lead to a globally
sub-virial (Ekin/|Epot| < 0.5) state for the majority of the protostars. Taken
into account the dynamics of small subclusters with dynamical times much
smaller than the dynamical time of the entire cloud, the measured degree of
mass segregation is fully consistent with dynamical mass segregation, there
is no need for primordial mass segregation in our simulations.
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Chapter 9

Conclusion and outlook

9.1 Summary

In this thesis we analysed the influence of the initial conditions for star for-
mation in the case of massive dense prestellar cores. With three-dimensional
numerical simulations, the impact of different density distributions and vary-
ing turbulent motions on the fragmentation and energetics of the cloud, the
formation of stars as well as the dynamical processes and the statistical prop-
erties within young stellar clusters were investigated. All simulated systems
contain a total mass of 100M� within a radius of 0.2 pc and are kept isother-
mal at a temperature of 20 K. The initial turbulent motions are supersonic
with Mach numbers of the order of M ≈ 3.5. We distinguished between
compressive, solenoidal and mixed turbulence modes.

9.2 Main conclusions

To what extent initial conditions matter strongly depends on the quantity in
question. Some properties of the collapsing cloud are solely determined by
the initial conditions, others are only marginally influenced, if at all.

Cloud morphology The morphology of the cloud shows significant devi-
ations for different initial conditions, among which the density profile seems
to be the most important parameter. Flat density profiles collapse on time
scales that turbulence motions need to compress material above the thresh-
old density for star formation. These clouds are therefore shaped by the
turbulent motions and form disconnected protostellar clusters according to
the random pattern of the turbulence. The stronger the initial central mass
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concentration in the cloud, the more is the collapse determined by the free-
fall conditions of the central regions. High central densities result in free-fall
times of the region under consideration that is significantly smaller than the
turbulent crossing time for that part of the cloud. The impact of turbulent
motions is therefore drastically reduced in these setups. In the case of one
central overdensity, the cloud only forms one central cluster.

Accretion mode in clusters Almost independent of the initial conditions
is the accretion mode in the formed clusters. All clusters from the fluffy dis-
connected clusters to the compact central clusters show an efficient accretion
shielding, starving the central region of the cluster of gas. This is in contrast
to the competitive accretion picture, in which the central stars can profit
from the deep gravitational potential and accrete more gas than the stars in
the outskirts of the cluster. Interestingly, an apparent measure for the com-
petitive accretion model that relates the mass of the most massive star to the
total mass in stars is also found in the accretion shielding model presented
in this work. Whether the accretion behaviour in this thesis is result of the
global parameters, which are the same for all setups, e.g., the total number
of Jeans masses, can not be determined without further studies.

Number of protostars Apart from the extreme density profiles like a
uniform density distribution or a steep power-law profile, the number of
formed stars is significantly influenced by the realisation of the turbulent
velocities. Slightly converging flows towards the centre may efficiently push
the gas onto already existing objects, which accrete the gas. Less converging
flows, in contrast, can delay the gravitational collapse sufficiently, so that
the individual overdensities can collapse themselves before being accreted by
the central protostar. One caveat of the simulations shown in this thesis
is definitely the artificially created turbulence, which may cause extreme
cases of converging and diverging flows that are not created self-consistently
with the density structures. However, in unstable cores like the ones in our
setups, small differences in the turbulent motions can already be enough to
completely alter the result, showing the sensitivity of the collapsing cores to
turbulent motions.

Tidal effects Overall, a significant fraction of the total mass is located
in tidally stable regions of the cloud, so star formation is not delayed or
suppressed by tidal forces. The supersonic turbulence quickly creates regions
that are dense enough to resist tidal disruption.



9.3. EXTENSIONS AND OUTLOOK 195

Properties of protostellar clusters In all protostellar clusters the total
kinetic energy of the protostars is larger than that of the gas, although the
total mass in protostars is only 20% at the end of the simulation. The
protostellar clusters as a whole show a sub-virial energy budget (Ekin <
0.5|Epot|) quickly after the formation of the first protostars. Subsequent
stars form in filaments, inheriting the motions of the gas, which is sub-virial.
In all cases the innermost 10 − 30% of the stars form a cluster in virial
equilibrium and above. Overall, the energy balance does not systematically
depend on the initial conditions. In contrast, the degree of subclustering
shows a trend with the modes of the turbulence. Compressive motions lead
to a higher degree of subclustering than solenoidal motions. Roughly half
of the simulated clusters show mass segregation with the more massive stars
located closer to the centre than low-mass stars. There is no systematical
trend of the mass segregation with the initial conditions. In all cases of
mass segregation, the protostars have enough time, i.e., enough two-body
encounters, to mass segregate dynamically via two-body relaxation. Tthere
is no need for primordial mass segregation in the presented simulations.

9.3 Extensions and outlook

The studies on the prestellar in this thesis should be extended in two different
branches, which mark the main caveats of the present work. One aspect is the
impact of magnetic fields, the other covers feedback from the young stellar
objects, in particular radiative feedback and outflows.

9.3.1 Magnetic fields

Focusing on the early phases of the collapse, magnetic fields are likely to
play a role by shaping the filamentary structures that form and therefore
the formation mode of stars, including the degree of subclustering and mass
segregation as well as the accretion mode within a cluster. Overall, magnetic
fields tend to reduce the degree of fragmentation and retard the collapse of
the cloud. On the one hand, that gives turbulent motions more time to
shape the structures of the gas, which might allow star formation at larger
separations than in the non-magnetised case. On the other hand, the longer
it takes to form individual stars, the more impact might the global collapse
of the cloud have, which would allow stars to form closer to the centre. The
closer to each other stars form, the shorter is their dynamical time scale for
relaxation. As a result, the ensemble of stars is very likely to show signs
of dynamical mass segregation. In the case of compact clusters the total
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number of stars in a cluster and their mean separation might significantly
alter the accretion mode in clusters. Less stars might allow the central stars
to accrete much more gas than surrounding companions because the gas flow
might not be shielded efficiently.

Including magnetic fields of course includes the additional parameter of
the field strength, which will have an impact on the effects. Additionally,
the spatial structure of the magnetic field might be very important. So
far, mostly homogeneous magnetic fields were used as initial conditions for
simulations. However, considering the fact, that the interstellar medium
is turbulent, the assumption of homogeneous magnetic fields might not be
justified. Instead one should also consider tangled magnetic fields, similar
to the turbulent velocities of the gas. One focus of the analysis including
magnetic fields should be the relative importance of the field strength to the
structure of the field.

9.3.2 Stellar feedback

The second important aspect of additional physics that is missing the current
simulations are feedback processes. Including outflows from young stellar ob-
jects might change the morphology of the innermost part of the protostellar
cluster and thereby alter the accretion processes within the cluster. Expelled
gas from the outflows might starve more regions in the cluster, thereby reduc-
ing the number of unstable fragments that lead to a smaller number of total
stars in the cluster. On the contrary, the additional turbulence induced by
the outflows might trigger more marginally unstable regions to collapse and
thus form more stars. Depending on the range of influence of the outflows,
they may significantly alter the dynamical state of the cluster and the relax-
ation processes as well as the mass segregation within the cluster. Ideally, one
would like to include magnetic fields and follow the resulting self-consistent
launch of magnetically driven outflows. However, numerically this task is
extremely challenging. In order to launch outflows self-consistently, one need
significantly higher resolution than in the work presented here. A higher
resolution itself results in significantly smaller computational time steps. In
addition, the fast outflow velocities again reduce the time step in the simu-
lation, which easily stalls the run as soon as the first outflow begins to form.
The evolution of a cluster with many protostars forming at different times is
impossible to follow self-consistently. Therefore, semi-analytical solutions of
outflows need to be included in the numerical model of sink particles with
parameterised outflow descriptions.

At later times stellar radiation is likely to heat the central region of the
cluster, thereby inhibiting further fragmentation and subsequent star forma-
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tion. The total amount of stars might be reduced significantly. At the same
time, the formation radius of stars might increase out to regions that are
thermally less influenced and thus fragment and collapse quicker. In this
case, the accretion rate onto the central stars is might be significantly higher
than in the case without radiative feedback.



198 CHAPTER 9. CONCLUSION AND OUTLOOK



Appendix A

Resolution Study

A.1 Resolution study

We test the influence of the numerical effective resolution of the code on the
collapse by simulating the different cloud setups with different resolutions.
The order of the numerical resolution was chosen such that the isothermal
approximation for the equation of state is appropriate and the computational
effort is acceptable. The different resolutions have acronyms corresponding
to the maximum refinement level (RL) in the code: lmax = 7 (RL07), lmax = 8
(RL08), lmax = 10 (RL10) and lmax = 12 (RL12). Due to the different sizes
of the smallest cell, the maximum gas density before creating sink particles,
as well as the accretion radius vary. A comparison of the parameters can be
seen in table A.1.

As the computational time for the BE and the TH profile are very large
(i.e., more than an order of magnitude larger than for the PL20 profile,
because of the quite space-filling refinement in the evolution of these profiles),
these setups have only been compared in an early evolutionary stage. The
highly concentrated PL20 cloud has been investigated in more detail: for a
longer evolution time, for more different resolutions and analytically.

A.1.1 BE profile

Due to the flat inner core of this profile, refinement is initiated in a rather
large volume of the core, which makes the computational effort for this profile
much larger than for the other profiles, and thus the resolution test was
done only for a short simulation time. In figure A.1 we compare the total
accretion rate, Ṁ , and the number of sink particles N of the Bonnor-Ebert
profiles BE-c-1 and BE-s-1 for resolutions RL10 and RL12. The accretion
rates are comparable and give roughly the same star formation efficiency with
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Table A.1: Main simulation parameters for different resolutions

refinement eff. res. ∆x [AU] raccr [AU] ρmax [g cm−3] nmax [cm−3]
RL07 5123 104.4 313.3 3.85× 10−16 1.01× 108

RL08 10243 52.2 156.7 1.54× 10−15 4.03× 109

RL10 40963 13.1 39.2 2.46× 10−14 6.45× 109

RL12 163843 3.3 9.8 3.94× 10−13 1.03× 1011

Main simulation parameters for different effective resolutions. The accretion
radius of the sink particles raccr is set to 3 times the minimum cell size ∆x.
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Figure A.1: Comparison of the Bonnor-Ebert profiles BE-c-1 and BE-s-1 for
resolutions RL10 and RL12. The mass accretion as a function of time (left
plot) shows only small differences between the two resolutions. The number
of sink particles, however, differs strongly (right plot).

time. However, the number of particles varies significantly with resolution.
This is expected, since we use an isothermal equation of state, which does not
introduce a physical length scale or density threshold to the problem, i.e., the
problem remains scale-free. Changes in the equation of state, in particular
if the gas becomes optically thick, will break the scale-free collapse (e.g.,
Jappsen et al., 2005; Krumholz et al., 2007; Bate, 2009c).

A.1.2 PL20 profile

For the concentrated density profile with ρ ∝ r−2 and the turbulence profile c-
1, detailed simulations were run for four different maximum refinement levels:
RL07, RL08, RL10, RL12. In all cases only one sink particle was created in
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Figure A.2: Resolution comparison for the PL20 runs with turbulence field
c-1. After an initial evolution time the accretion rates approach the same
value for all setups. The differences at the beginning of the simulation are
due to different maximum central resolutions. The flattened density function
at the centre of the box is much shallower for lower resolutions resulting in
larger times for a central collapse.

the centre of the cloud after a few steps of hydrodynamical evolution.

The results for the PL20 runs can be seen in figure A.2. The accretion rate
onto the protostar Ṁ does not differ significantly, resulting in the same slope
of the mass M as a function of time. The different evolution of the accretion
rate at the very beginning of the simulation is due to the different geometrical
setup conditions (see sec. 5.2.1). The larger size of the smallest cell for lower
refinement levels results in a much coarser density distribution in the centre of
the cloud and needs more evolution time in order to develop a sink particle
with constant accretion rate. The theoretical value for the accretion rate
fits the simulated values very well (see sec. 5.2.1). The comparison with a
simulation without turbulent velocities only shows minor differences.

A.2 Tidal forces

The tidal acceleration in a spherically symmetric setup at distance r from
the centre with an enclosed mass M is given by

atidal(r) = GM

(
1

(r + ∆r)2
− 1

(r −∆r)2

)
, (A.1)
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where G is the gravitational constant and ∆r � r. The enclosed mass can
then considered to be constant within the variation ∆r. Given a density
profile of the form ρ(r) ∝ r−p yields a mass function M(r) ∝ r3−p, and the
tidal acceleration scales as

atidal(r) ∝ r1−p. (A.2)

The derivative with respect to r,

∂atidal

∂r
(r) ∝ (1− p) r−p, (A.3)

changes sign at p = 1. For p < 1, atidal increases with radius (∂atidal/∂r > 0)
and therefore compresses material at radius r. For p > 1, ∂atidal/∂r < 0 and
shears condensations apart.



Appendix B

Angular Momentum

B.1 Angular momentum

In order to see the time evolution of the angular momentum, we show the
specific angular momentum as a function of enclosed mass for the setups
PL15-m-2 and BE-m-2 (figures B.1 and B.2). In both cases the angular
momentum distribution is exposed to variations of the order of a few up to
almost an order of magnitude due to the turbulent interactions and the gas
accretion onto protostars. Due to the unstructured motions of the protostars
and the random character of the turbulence, the variations do not show sys-
tematic changes over time, i.e., the gas in the cluster can quickly gain angular
momentum due to accretion streams or lose it via shocks and dissipation.
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Figure B.1: Specific angular momentum of the gas as a function of enclosed
mass for PL15-m-2. The plot shows temporal changes of the angular mo-
mentum of the gas during the formation of the cluster.
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Appendix C

Gravitational Softening

C.1 Gravitational force softening

We used the gravitational softening for the sink particles as described in Price
and Monaghan (2007). The potential energy can be written as

Epot =
∑

i 6=j
Gmimj φ(ri − rj, h), (C.1)

where h is the smoothing length, which is set to the accretion radius of the
sink particles h = raccr/2, and φ(r, h) is given by (q = r/h)

φ(r, h) =





h−1
(

2
3
q2 − 3

10
q4 + 1

10
q5 − 7

5

)
, 0 ≤ q < 1

h−1
(

4
3
q2 − q3 + 3

10
q4 − 1

30
q5 − 8

5
+ 1

15q

)
, 1 ≤ q < 2

−1/r, 2 ≤ q.

(C.2)

Note that the function φ is defined such that the potential energy is negative.
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und möchte ich mir nicht vorstellen.

Zudem danke ich meinen Betreuern Robi Banerjee und Ralf Klessen für
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Weiterhin gilt mein Dank meinen Bürokollegen in Heidelberg und Cardiff.
Ich danke Daniel Seifried für ein angenehmes Arbeitsklima in unserem Büro
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Zeit beschert. Mein letztes Jahr in Heidelberg verbrachte ich zusammen mit
Jennifer Schober, Christoph Federrath sowie Erik Bertram in einem Büro,
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