
Dissertation
submitted to the

Combined Faculties of the Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

Put forward by

Dipl.-Phys. Christian Angrick
born in Northeim

Oral examination: July 6th, 2011

mailto:cangrick@ita.uni-heidelberg.de


ii



On the derivation of an X-ray temperature function without
reference to mass and the prediction of weak-lensing

number counts from the statistics of Gaussian random fields

Referees: Prof. Dr. Matthias Bartelmann
Prof. Dr. Luca Amendola

iii

mailto:mbartelmann@ita.uni-heidelberg.de
mailto:l.amendola@thphys.uni-heidelberg.de


iv



“Logic is the beginning of wisdom; not the end.”
– Spock

v



vi



Über die Ableitung einer Röntgentemperaturfunktion ohne Massenbezug und die
Vorhersage der Anzahl von Detektionen beim schwachen Gravitationslinseneffekt

mithilfe der Statistik von Gauß’schen Zufallsfeldern

Zusammenfassung: Wir präsentieren einen neuen Ansatz für die Ableitung der Röntgentemperatur-
funktion von Galaxienhaufen, der auf der Statistik von Gauß’schen Zufallsfeldern basiert, wobei letz-
tere auf das kosmische Gravitationspotential angewendet wird. Er beruht nur auf lokal definierten
Größen, sodass kein Bezug zur Masse eines Haufens hergestellt werden muss. Um das lineare und das
nicht-lineare Potential ins Verhältnis zu setzen und um nur bereits kollabierte Strukturen zu zählen,
berücksichtigen wir entweder sphärischen oder ellipsoiden Kollaps und vergleichen beide daraus re-
sultierenden Modelle mit Temperaturfunktionen, die aus einer numerischen Simulation gewonnen
wurden. Da in der Simulation für hohe Rotverschiebungen Abweichungen von der theoretischen
Vorhersage gefunden werden, entwickeln wir ein analytisches Modell zur Berücksichtigung von Effek-
ten, die durch das Verschmelzen von Galaxienhaufen zustande kommen. Wir bestimmen gemeinsam
die kosmologischen Parameter Ωm0 und σ8 mit Hilfe von zwei verschiedenen Haufenkatalogen für un-
terschiedliche Temperaturdefinitionen und finden eine gute Übereinstimmung mit Beschränkungen,
die von WMAP5 abgeleitet wurden. Indem wir, basierend auf dem upcrossing Kriterium, definie-
ren, was wir theoretisch unter einer Detektion verstehen, fassen wir unseren analytischen Ansatz in
zwei Dimensionen neu und benutzen ihn, um die Anzahldichte von unechten Detektionen, die von
großskaliger Struktur und Schrotrauschen verursacht werden, in gefilterten Karten der Konvergenz
des schwachen Gravitationslinseneffekts vorherzusagen. Übereinstimmungen mit einer numerischen
Simulation entsprechen dem erwarteten Niveau.

On the derivation of an X-ray temperature function without reference to mass and the
prediction of weak-lensing number counts from the statistics of Gaussian random fields

Abstract: We present a novel approach for the derivation of the X-ray temperature function for galaxy
clusters, which is based on the statistics of Gaussian random fields applied to the cosmic gravitational
potential. It invokes only locally defined quantities so that no reference to the cluster’s mass is made.
To relate linear and non-linear potential and to take into account only structures that have collapsed,
we include either spherical- or ellipsoidal-collapse dynamics and compare both resulting models to
temperature functions derived from a numerical simulation. Since deviations from the theoretical
prediction are found in the simulation for high redshifts, we develop an analytic model to include
the effects of mergers in our formalism. We jointly determine the cosmological parameters Ωm0 and
σ8 from two different cluster samples for different temperature definitions and find good agreement
with constraints from WMAP5. Introducing theoretically a refined detection definition based on the
upcrossing criterion, we reformulate our analytic approach for 2D and use it to predict the number
density of spurious detections caused by large-scale structure and shot noise in filtered weak-lensing
convergence maps. Agreement with a numerical simulation is found at the expected level.
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Introduction

Over the past decade, measurements of various cosmological probes have merged consistently to a
picture of our Universe that is often called the standard model of cosmology. It is capable of explain-
ing with only few parameters the overall evolution of the Universe which, according to that model,
originated from an initial singularity, the Big Bang, approximately 13.7 billion years ago. Due to its
main constituents, the cosmological constant Λ, originally introduced by Einstein into his General
Theory of Relativity to allow for static world models, and a non-relativistic and non-interacting (or
possibly mildly weakly interacting) unknown form of matter dubbed cold dark matter, it is called the
ΛCDM model.

Despite its enormous success in understanding the expansion history of the Universe and the growth
of structures from small initial perturbations to large objects like galaxies or galaxy clusters, the latter
with a size of order 1 Mpc, the model also clearly states that the baryonic matter that we know from the
standard model of particle physics, only contributes 4–5% to the total energy density of the Universe,
whereas the rest is not fundamentally understood. Additionally, an epoch of accelerated expansion,
called inflation, is needed in order to explain why the Universe that we observe today seems to be very
close to spatially flat, and why the cosmic microwave background is almost perfectly isotropic with
deviations of order 10−5. The easiest explanation is a scalar field slowly rolling down its potential.
Yet, also the physical nature of this scalar field is unknown.

This implies several questions: What is the nature of the dark matter responsible for flat rotation
curves measured in the outskirts of galaxies and needed to give galaxy clusters a mass large enough
to explain lensing phenomena observed in the sky? What is the physical origin of the cosmological
constant in the field equations of General Relativity, and why is it so small compared to estimates for
the vacuum energy that arises from quantum field theory? Is it really the cosmological constant, or
does a symmetry, which is still unknown to us, lead to the cancellation of the vacuum term so that
Λ = 0? Then, another source must be found to be responsible for the observed accelerated expansion
of the Universe, dubbed dark energy. It follows the notion of “dark matter”, where again the word
“dark” should express our ignorance of the deeper physical understanding. Various suggestions are
discussed in the astronomical community, e.g. quintessence, k-essence, and chameleon fields. Most
of them also involve a scalar field and most importantly, do vary with time, whereas a cosmological
constant has always the same value. Could there be a relation to the field that led to the inflationary
period or even to dark matter? Or do we simply rely on the wrong theory of gravity, and there are
deviations from General Relativity on large cosmological scales?

The preceding list is surely not complete. In order to find deviations from the simple ΛCDM model,
one has to compare theoretical predictions to observations carefully and to understand systematics well
enough so that results are not biased towards wrong parameter values and deviations from the model
predictions are not due to an incomplete or erroneous analysis of observational data. The even better
alternative is to avoid systematics from the start. Although it is sometimes relatively easy to make
theoretical predictions for some quantity, it turns out, however, that it is difficult or even impossible
to compare these predictions to observational data since this quantity is in practice either difficult
to measure observationally or even worse, it is even not an observable. In these two cases, it is
then necessary to find a relation between the quantity used in the theoretical framework and another
quantity that can be measured without any greater problems. If it is not possible to establish a relation
theoretically, e.g. due to complex physics, one often has to rely on empirical relations introducing a
large scatter in the relation and finally also in cosmological conclusions drawn from them.

Using the halo mass function of galaxy clusters in this context exactly reflects the aforementioned
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INTRODUCTION

issue. Although it can be relatively easily derived from the theory of structure formation, it requires
the mass of a galaxy cluster to be measured, a quantity to which hardly any precise meaning can be
given since it is a global quantity, requiring an integral over a volume. A galaxy cluster, however, does
not have a sharp boundary and consequently, its mass is not an observable. Several definitions exist in
the literature, based on spheres that include on average a certain multiple of the cosmic background
density. If the overdensity is chosen too large, however, the resulting masses are core masses rather
than cluster masses, if it is chosen too low, one needs to measure the halo’s density profile in its
outskirts, where it is only hardly measurable if not at all. A second problem is to fix the cluster’s
centre. Also here, different choices are possible, e.g. the minimum of the local gravitational potential
or the maximum of the density. Both possibilities, however, do generally not coincide.

Determining a cluster’s mass from numerical simulations reflects this problem in a different way.
There, haloes are often defined by particles which are separated by a distance smaller than a certain
linking length. This procedure is called the friend-of-friend algorithm. The choice of the linking
length, however, is again only empirically motivated without any defendable physical motivation be-
hind. The results are often highly irregularly shaped objects contradicting the usual assumptions of
hydrostatical and thermal equilibrium. Two recent works deal with the discrepancies of halo mass
definitions and underline the aforementioned problems. While More et al. (2011) find that the over-
density which can be associated with the value for the linking length wildly used in the literature is
much lower than any of the overdensity thresholds typically chosen in the theoretical prescriptions,
Anderhalden & Diemand (2011) argue that a non-negligible amount of particles participating in the
gravitational collapse of a halo are usually not taken into account by the friend-of-friend algorithm so
that the masses of haloes inferred from numerical simulations should be significantly higher.

In the present work, we propose a different approach. Instead of making the detour via the mass, we
suggest to work directly with the cosmic gravitational potential, which is a local quantity. Assuming
that the main contribution to the X-ray luminosity is due to thermal bremsstrahlung, and presuming
virial equilibrium, the X-ray temperature in the centre of a galaxy cluster can be directly related to a
minimum in the potential without invoking the cluster’s mass. The statistics of Gaussian random field
based on the formalism by Bardeen et al. (1986) are used to derive the number density of potential
minima. In order to count small haloes correctly and to give satisfying results, a proper high-pass filter
has to be introduced, removing perturbing large potential modes and large-scale potential gradients,
so that first, the potential depth of a cluster is defined with respect to its direct vicinity and second, the
constraint that the potential’s gradient vanish is fulfilled also for smaller haloes.

The formalism used in the derivation of the X-ray temperature function is based on the spherical-
collapse model to relate the linear and the non-linear evolution of potential depths. Inspired by the
Sheth-Tormen mass function, which is built on ellipsoidal-collapse dynamics and in better agreement
with numerical simulations than the classical Press-Schechter mass function, based on spherical col-
lapse, we refine the ellipsoidal-collapse model of Bond & Myers (1996) by physically better motivated
initial conditions for the ellipticity and prolaticity, an improved model for the contribution of the ex-
ternal gravitational shear, and by adding proper virialisation conditions for the individual axes. The
results are then included in our derivation of the cluster temperature function. A comparison to a
numerical simulation reveals that the latter version is in good agreement with a temperature function
based on the so-called mass-based temperature definition at low redshift, while the spherical-collapse
version is in good agreement with a temperature function based on the emission-weighted temperature,
which is in better agreement with observationally inferred temperatures.

For high redshifts, however, the numerical temperature function starts deviating from our theoretical
prediction based on the statistics of Gaussian random fields. We argue that the observed increase of
objects for a given temperature with respect to our original theoretical prediction based on virial equi-
librium is due to the influence of merger events and develop a simple analytic model that quantifies
successfully the temperature boost caused by infalling clumps. Including merger effects in the theo-
retical prescription, we then find good agreement between our model and the results of the numerical
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INTRODUCTION

simulation. We quantify the influence of mergers on the joint determination of the two cosmological
parameters Ωm0 and σ8 from two different cluster samples and conclude that their presence introduces
a non-negligible bias, which is in qualitative agreement with a study by Randall et al. (2002), based on
a numerical simulation. Thus, our analytic model of the temperature function including merger effects
is a competitive alternative to computationally costly N-body studies.

A similar situation can be found in weak-lensing studies. Also here, numerical simulations are often
necessary to make theoretical predictions that can then be compared to observations, e.g. to quantify
the influence of by-chance projections of the large-scale structure and shot noise on halo number
counts from filtered weak-lensing convergence maps. Using a refined definition of the so-called up-
crossing criterion, originally proposed by Bardeen et al. (1986), we are able to predict analytically
the number of contours at a given signal-to-noise ratio as a function of cosmological and survey pa-
rameters, again based on the statistics of Gaussian random fields, but now in two instead of three
dimensions in contrast to the derivation of the temperature function. A comparison to results from a
numerical simulation is in good agreement for different filters and scales typically used in the litera-
ture. Additionally, we are able to show that a filter proposed by Maturi et al. (2005) yields the smallest
amount of contaminations from large-scale structure and shot noise.

This thesis is structured as follows. First, we introduce the basics of the ΛCDM model and non-
relativistic structure formation in Chaps. 1 and 2, respectively, to provide the background knowledge
needed for the derivation of the X-ray temperature function from the statistics of Gaussian random
fields in Chap. 3. In Chap. 4, we present our refined ellipsoidal-collapse model and embed it into the
theoretical description of the X-ray temperature function in Chap. 5, where we also present our model
for the influence of mergers on the cluster temperature function and the joint analysis of Ωm0 and σ8.
Chapter 6 is dedicated to the basics of weak gravitational lensing that are required for deriving the
analytic model of weak-lensing number counts, which is then described in Chap. 7. Appendices A
to C include supplementary material for the work presented in the chapters before, and App. D lists
astronomical units and physical constants that are needed for the calculations presented in this thesis.

We write three- and higher-dimensional vectors with an arrow (e.g. ~x, ~r) while two-dimensional
vectors, as needed for gravitational lensing, are written in boldface (e.g. θ, ξ).

For a further introduction to the standard model of cosmology as well as a list of cosmological
probes which led to our picture of the Universe and its enormous success, we refer to Bartelmann
(2010a).

Parts of this work were published in the following papers:

• Angrick, C. & Bartelmann, M. (2009): Statistics of gravitational potential perturbations: A
novel approach to deriving the X-ray temperature function. A&A, 494, 461.

• Angrick, C. & Bartelmann, M. (2010): Triaxial collapse and virialisation of dark-matter
haloes. A&A, 518, A38+.

• Maturi, M., Angrick, C., Pace, F., & Bartelmann, M. (2010): An analytic approach to number
counts of weak-lensing peak detections. A&A, 519, A23+.

• Angrick, C. & Bartelmann, M. (2011): The influence of mergers on the cluster temperature
function and cosmological parameters derived from it. A&A, submitted, arXiv:1102.0458.
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1 Chapter 1

Cosmological background evolution

In the following chapter, we want to present the basic principles of the cosmological standard model
based on Einstein’s Theory of General Relativity and discuss relevant quantities that are necessary to
better understand the following work and to put it into an overall context.

1.1 The Friedmann-Lemaı̂tre-Robertson-Walker model

On large cosmological scales, gravity is the most important force dictating the dynamical behaviour
and the ultimate fate of the Universe. Since deviations from classical Newtonian dynamics on such
large distances are non-negligible, a world model has to rely naturally on General Relativity (Einstein,
1915, 1916), the only model of gravity that has passed successfully all solar-system tests. Like in
Special Relativity (Einstein, 1905), space and time are no longer separate but form a four-dimensional
manifold called space-time. Its line element is given by

ds2 = gµν dxµdxν , (1.1)

where gµν is the metric and 0 ≤ µ, ν ≤ 3. Due to the symmetry of gµν, only ten of the sixteen
components are independent.

General relativity establishes a connection between the properties of space-time with the energy
content via the field equations

Rµν −
1
2

gµνR − Λgµν =
8πG
c4 Tµν , (1.2)

where Rµν is the Ricci tensor, which is constructed from the curvature tensor Rµνκλ by contraction
Rµν ≡ Rλµλν. Here and in the following, we adopt Einstein’s summation convention so that we sum
over an index that appears twice, once in an upper and once in a lower position. The Ricci scalar R is
constructed from the Ricci tensor by R ≡ Rλλ. Λ is the cosmological constant, originally introduced
by Einstein to allow static world models, G is Newtons’s constant, c the speed of light, and Tµν the
energy-momentrum tensor. Equation (1.2) implies that matter (or more generally speaking, all forms
of energy) directly influences space-time’s geometry, which reversely dictates the motion of matter.

To simplify Eq. (1.2) and the metric gµν, we make the following two assumptions:

(1) The Universe is isotropic.

Thinking of the cosmic microwave background (CMB), which originates from the time when
radiation decoupled from matter and the Universe was ∼380,000 years old, and its temperature
fluctuations of order ∆T/T = 10−5 around T = 2.73 K and galaxy distributions at early times,
we can say that at least in early cosmic history, this assumption was almost perfectly fulfilled.
Although the galaxy distribution became more and more clumpy over the time due to gravita-
tional attraction and therefore, the assumption is clearly violated, isotropy is restored again if
averaged over scales of about 100 Mpc.

11



CHAPTER 1. COSMOLOGICAL BACKGROUND EVOLUTION

(2) The Universe is homogeneous.

This assumption is directly related to the Copernican Principle stating that we are at an average
position in the Universe1. Since then it appears isotropic to any average observer at an arbitrary
position, the Universe has to be also homogeneous, and its general properties do not depend on
the space coordinates xi with 1 ≤ i ≤ 3.

The only metric that is fully compatible with the aforementioned assumptions is the Robertson-
Walker (RW) metric. Introducing the time coordinate t and the spherical coordinates (r, θ, φ), the line
element can be written as

ds2 = c2dt2 − a2(t)
[

dr2

1 − Kr2 + r2(dθ2 + sin2 θ dφ2)
]

(1.3)

(Robertson, 1935; Walker, 1935), where a(t) is the cosmological scale factor taking into account a
possible expansion or contraction of space without violating the assumptions of homogeneity and
isotropy2. The coordinates (r, θ, φ) do not depend on time and are thus comoving with freely falling
observers (see Fig. 1.1 for an illustration).

time

a1

a1 a1 a1

a2 > a1

a3 > a2

comoving comoving comoving

physical

physical

physical

Figure 1.1: Comoving vs. physical coor-
dinates. While in comoving coordinates,
the distance between two objects with van-
ishing peculiar velocities is fixed at an ar-
bitrary scale factor and stays constant over
time, it increases in physical coordinates
due to the expansion of the Universe.

The parameter K accounts for the curvature of the
three-dimensional space. Depending on the value of K,
the following cases are possible:

(1) K < 0: open universe,

(2) K = 0: flat universe,

(3) K > 0: closed universe.

In Fig. 1.2, we show a two-dimensional illustration of
the three different curvature cases. Only in the flat case,
the angles of a triangle add up to 180◦, whereas the sum
is > 180◦ in the closed case and < 180◦ in the open case.

Using the RW metric (1.3) and assuming additionally
that the energy-momentum tensor Tµν is that of a perfect
fluid with the components T00 = ρc2, Tii = −p, and all
other entries are zero, the field equations (1.2) can be simplified a lot yielding the two Friedmann
equations for the scale factor a, ( ȧ

a

)2
=

8πG
3

ρ −
Kc2

a2 +
Λ

3
, (1.4)

ä
a

= −
4πG

3

(
ρ +

3p
c2

)
+

Λ

3
(1.5)

(Friedmann, 1922, 1924; Lemaı̂tre, 1927). Note that we have the freedom to normalise the scale factor
such that we set it to unity today, a(t0) = 1. Often, only the first equation (1.4) is called the Friedmann
equation.

A RW metric that also fulfills Eqs. (1.4) and (1.5) is called a Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) metric and the corresponding cosmological model a FLRW model.

1Strictly speaking, this is only true if one subtracts the motion of the Milky Way and hence Earth with respect to the CMB,
which acts as a rest frame. This motion imprints a large dipole signal in the temperature anisotropies due to the Doppler
effect, increasing the temperature in one direction and decreasing it in the other.

2Observational input is needed to distinguish if the Universe is expanding or contracting. This cannot be predicted in-
herently by theory. Since galaxies that are far away from us are redshifted instead of blueshifted, we can infer that the
Universe is in fact expanding.
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1.2. COSMOLOGICAL REDSHIFT

1.2 Cosmological redshift

The expansion of the Universe, parametrised by the scale factor a(t), induces a redshift z of light
that reaches us from objects far away. Its dependence on a can be derived from the FLRW metric as
follows. We reparametrise the radial coordinate r depending on the curvature,

Figure 1.2: Two-dimensional illustra-
tion of the different curvature cases.3

r(χ) =


K−1/2 sin(K1/2χ) (K > 0)
χ (K = 0)
(−K)−1/2 sinh

[
(−K)1/2χ

]
(K < 0) .

(1.6)

In this way, the metric (1.3) can be rewritten as

ds2 = c2dt2 − a2(t)
[
dχ2 + r2(χ)(dθ2 + sin2 θ dφ2)

]
. (1.7)

Since light moves on geodesics with constant θ and φ and
ds2 = 0, we have c dt = a(t) dχ or

χ =

t0∫
tem

c dt
a(t)

, (1.8)

where tem is the time of emission. Consider now two con-
secutive maxima of a light wave that moves from the source
to us,

χ =

t0∫
tem

c dt
a(t)

=

t0+∆t0∫
tem+∆tem

c dt
a(t)

=

t0∫
tem

c dt
a(t)

+
c∆t0
a(t0)

−
c∆tem

a(tem)
⇒

∆tem

a(tem)
=

∆t0
a(t0)

. (1.9)

Since the time difference between the two maxima is proportional to the wave length λ, we get

∆t0
∆tem

=
λ0

λem
= 1 +

λ0 − λem

λem
≡ 1 + z =

a(t0)
a(tem)

⇒ a(tem) =
1

1 + z
, (1.10)

where we have used that a(t0) = 1 in the last step.

1.3 Dimensionless density parameters

We can rewrite Eq. (1.4) by taking into account different matter contributions to ρ and p and rephrase
the cosmological-constant and the curvature term.

At first, we introduce the Hubble function

H(t) ≡
ȧ
a
. (1.11)

It is a time-dependent quantity, whose value today is the Hubble constant H0 ≡ H(t0). For historical
reasons, the Hubble constant is often given as h, defined as H0 in units of 100 km s−1 Mpc−1.

Introducing the equation-of-state parameter

w ≡
p
ρc2 , (1.12)

we account for two different matter contributions, namely non-relativistic matter ρm with w = 0 and
relativistic matter in form of radiation (and neutrinos) ρr with w = 1/3. The matter density itself

3http://www.talkorigins.org/faqs/astronomy/bigbang.html, slightly modified version.

13

http://www.talkorigins.org/faqs/astronomy/bigbang.html


CHAPTER 1. COSMOLOGICAL BACKGROUND EVOLUTION

consists again of two different contributions: ρm = ρbar + ρCDM, where ρbar is the contribution from
baryons and ρCDM the contribution of cold dark matter, which is an unknown form of non-luminous
matter that seems to act only gravitationally. The word cold refers to the fact that this form of matter
needs to be slow in order to be consistent with observations and is therefore non-relativistic. The
existence of dark matter is primarily inferred from observations of the CMB and rotation curves of
galaxies that flatten at large distances from their galactic centres.

In order to infer the dependence of the individual densities on the scale factor, we can combine
Eqs. (1.4) and (1.5) to the adiabatic equation

d
dt

(
a3ρc2

)
+ wρc2 d

dt

(
a3

)
= 0 . (1.13)

Inserting the equation-of-state parameter for relativistic and non-relativistic matter, respectively, we
can conclude that ρm ∝ a−3 and ρr ∝ a−4. This can be understood intuitively since the matter density
is diluted due to the expansion of the Universe and the photons, however, are redshifted additionally
to the dilution, adding another factor a−1 (see Sect. 1.2).

Using the Hubble function H(t), we can define the critical density

ρc(t) ≡
3H(t)
8πG

, (1.14)

which allows us to introduce the dimensionless density parameters

Ωm ≡
ρm

ρc
and Ωr ≡

ρr

ρc
, (1.15)

while the contributions from the cosmological constant and the curvature can be expressed by

ΩΛ ≡
Λ

3H2 and ΩK ≡ −
Kc2

H2 . (1.16)

Denoting quantities today with the additional subscript ‘0’, we can rewrite the Friedmann equation
(1.4) as

H2(a) = H2
0 E2(a) ≡ H2

0

(
Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩΛ0

)
, (1.17)

where we have also defined the expansion function of the Universe E(a). All contributions scale with
different powers of the scale factor. Dividing Eq. (1.4) by H2 and using the definition of the density
parameters, Eq. (1.15), one can easily see that the sum of all four density parameters has to fulfill
Ωm + Ωr + ΩK + ΩΛ = 1 for any a .
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Figure 1.3: The scale factor as a function of
time for various cosmological models.

Eq. (1.17) has some interesting implications:

• Since the radiation density scales with the larg-
est negative power, there was a time in the early
Universe when it was the dominant component.

• For very large a, the cosmological constant will
finally take over so that ȧ ≈ H0

√
ΩΛ0 a. This

will lead to a scale factor which behaves like
a ∝ exp(H0

√
ΩΛ0 t), i.e. the Universe will ulti-

mately expand exponentially.

• A Universe for which Ωm + Ωr + ΩΛ = 1 is
spatially Euclidian.

• If the content of the Universe was only made of
matter, the critical density would have another
illustrative meaning. For ρm < ρc, the Universe would expand forever, for ρm > ρc the Universe
would collapse in a finite time, and for ρm = ρc, the expansion would slow down continuously
but only stop in the limit a→ ∞.
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1.3. DIMENSIONLESS DENSITY PARAMETERS

parameter value comments

assuming ΩK0 = 0

h 0.704+0.013
−0.014

Ωbar0 0.0456 ± 0.0016
ΩCDM0 0.227 ± 0.014
Ωm0 0.272+0.016

−0.015
ΩΛ0 0.728+0.015

−0.016
t0 13.75 ± 0.11 Gyr

Ωr0
(
8.375+0.309

−0.333

)
× 10−5 from CMB temperature

(including neutrinos)

ΩK0 −0.0023+0.0054
−0.0056 assuming ΩK0 , 0

Ωtot0 1.0023+0.0056
−0.0054

Table 1.1: WMAP7+BAO+H0 best fit values. We also included the contribution by neutrinos, which add
a factor 1.68 to Ωr.

We illustrate these points for 4 different cosmological models in Fig. 1.3. Note also that the inferred
age of the Universe varies depending on the cosmological parameters.

In Tab. 1.1, we list the cosmological parameters introduced so far and the age of the Universe t0 as
inferred from a joint analysis of the 7-year data release of the Wilkinson microwave anisotropy probe
(WMAP7) together with data from baryonic acoustic oscillations (BAO)4 and measurements of the
Hubble constant H0 (Komatsu et al., 2011 and WMAP’s web page5). The evolution of the density
parameters for this model with scale factor a is shown in Fig. 1.4.
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Figure 1.4: Evolution of the density param-
eters as a function of the scale factor for the
cosmological model with WMAP7+BAO+

H0 best fit values.

These findings leave us with a picture of the Uni-
verse which is rather disturbing since they indicate to-
wards a spatially flat, Euclidian Universe in which the
cosmological constant Λ contributes ∼73% to the to-
tal energy, whereas normal baryons contribute only
∼4-5%, and the rest (∼23%) is dark matter. The con-
tribution from radiation is only of order 10−5 and
therefore negligible today. Although ∼95% of the
energy content of our Universe is due to unknown
dark components, the ΛCDM model, that we have
sketched so far, is in remarkable agreement with other
cosmological probes and became the standard model
of cosmology.

One of the key goals of modern cosmology is to
understand the physical nature of dark matter and the
cosmological constant. While a possible dark-matter
particle could be explained by extentions of the stan-
dard model of particle physics, like e.g. supersymmetry or axions, the origin of the Λ term is more
controversial. Basic calculations from quantum field theory suggest that the source of the cosmologi-
cal constant could be found in the vacuum energy that contributes to the energy density of the Universe
and hence acts as an additional source of gravity. But then, the term should be ∼10120 (!) times larger
than observed. This enormous discrepancy is one of the reasons to think about other possible explana-
tions of the Λ term, which is in this much more general context named dark energy. Various concepts
are discussed in the cosmological community.

4BAOs are oscillations in the primordial plasma as a result of the counter-acting forces of gravity pointing inwards and
pressure in the baryonic part of the matter which is pointed outwards.

5http://lambda.gsfc.nasa.gov/product/map/current/
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CHAPTER 1. COSMOLOGICAL BACKGROUND EVOLUTION

One suggests that the source of the dark energy is not the vacuum energy but an additional dynamical
scalar field that acts, differently from a cosmological constant, on the right-hand side of Eq. (1.2). The
most prominent representative of this class of models is the so-called quintessence. Following this
approach, the influence of the vacuum energy on the curvature of space-time would need to vanish
due to a yet unknown symmetry in quantum field theory. The only way to distinguish this scenario
from a cosmological constant is to observe differences from the expectations of a flat ΛCDM model.
Being able to make precise predictions as a function of the cosmological parameters is therefore very
important to find slight deviations from the cosmological standard model that could point towards an
explanation of the poorly understood nature of dark matter and dark energy.

1.4 Distance definitions

In an expanding and curved space-time, distance measurements are no longer uniquely defined. Care
has to be taken that, depending on the cosmological probe, the correct distance definition of the fol-
lowing four is used for its theoretical description.

(1) The proper distance Dprop.

The time that light needs to travel from one point to another defines dDprop ≡ −c dt = −c da/ȧ.
Since both a and t are decreasing away from the observer while the distance should increase, the
additional minus sign is introduced. Making use of the Friedmann equation (1.17), the proper
distance between the redshifts z1 and z2 is given by

Dprop(z1, z2) = −c

a(z2)∫
a(z1)

da′

ȧ′
=

c
H0

a(z1)∫
a(z2)

da′

a′E(a′)
. (1.18)

(2) The comoving distance Dcom.

The comoving distance measures the distance between a source and an observer relative to co-
moving instead of physical coordinates. Therefore, the expansion of the Universe, parametrised
by the scale factor a has to be divided out yielding dDcom = dDprop/a = −c da/(aȧ) so that

Dcom(z1, z2) = −c

a(z2)∫
a(z1)

da′

a′ȧ′
=

c
H0

a(z1)∫
a(z2)

da′

a′2E(a′)
. (1.19)

(3) The angular-diameter distance Dang.

Measuring the solid angle ω under which an object of radius R can be seen, the angular-diameter
distance to that object is defined as Dang =

√
πR2/ω. In expanding and curved space-times, this

expression can be written as

Dang(z1, z2) =



c
H0

a(z2)
√

ΩK0
sinh

[H0

c
√

ΩK0Dcom(z1, z2)
]

(ΩK0 > 0)

a(z2)Dcom(z1, z2) (ΩK0 = 0)
c

H0

a(z2)
√
−ΩK0

sin
[H0

c
√
−ΩK0Dcom(z1, z2)

]
(ΩK0 < 0)

(1.20)

(see Schneider, 2006, p. 157 for a derivation and cf. also Eq. 1.6).

(4) The luminosity distance Dlum.

Given the luminosity L and the flux S of source, the luminosity distance to that object is defined
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Figure 1.5: Dependence of the cosmological dis-
tances on redshift for a flat ΛCDM model with
Ωm0 = 0.272 and ΩΛ0 = 0.728.

as Dlum =
√

L/(4πS ) and can be expressed via the Etherington relation with the help of Dang
yielding

Dlum(z1, z2) =

[
a(z1)
a(z2)

]2

Dang(z1, z2) . (1.21)

We show the dependence of the distances on redshift in Fig. 1.5. For small redshifts, all four
distances yield approximately the same result. For z & 0.2, however, they start deviating from each
other. While both the proper and the comoving distance reach finite values for z→ ∞, the luminosity
distance increases monotonically, and the angular-diameter distance has a maximum at z ≈ 1.7 and
decreases again for higher redshifts. The latter behaviour implies that an object which is moved to
very high redshifts becomes larger again.

The fact that the curves for both the proper and the comoving distance flatten for large redshifts
indicates that there exists a particle horizon rhor, i.e. light could have travelled only a finite distance
between the Big Bang and any point in time. As a consequence, every particle could have been
influenced by only a finite region of space over the cosmic time.
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2 Chapter 2

Structure formation

In the previous chapter, we assumed that the matter is homogeneously distributed in the Universe,
inspired by observations of the CMB and the distribution of galaxies over large scales. In this chapter,
we allow deviations from homogeneity and isotropy to form the structures in the Universe that we can
observe today. These structures occupy over 30 orders of magnitudes in scale, starting from meters
for asteroids to Megaparsecs for galaxy clusters, superclusters, and filaments, which finally form the
cosmic web. The latter is perforated by large empty voids reaching sizes of about 100 h−1 Mpc.
We are later especially interested in galaxy clusters, the largest gravitationally bound objects in the
observable Universe, with a size of order 1 h−1 Mpc. They are mainly found at the intersections of
cosmic filaments and grow over cosmic time via continuous accretion of matter and mergers with other
galaxy clusters.

According to the theory of structure formation, all these objects originated from small initial per-
turbations in the matter distribution that collapsed under the influence of gravity and started forming
small structures which then merged to form larger objects. This growth of structure is illustrated in
Fig. 2.1, where we show different snapshots of the Millennium simulation by Springel et al. (2005).
The initial perturbations can be seen in the temperature distribution of the CMB, leading to the relative
temperature fluctuations of about 10−5 that we have already mentioned before.

It is an essential part of the cosmological standard model that these small perturbations were created
during a short period of accelerated expansion shortly after the Big Bang, called inflation. One of its
key features is that perturbations of the quantum level were enormously inflated, leading to an almost
perfect Gaussian distribution. Since the Gaussianity of the initial perturbations is essential for the
next chapters, we will mention the main ideas and results of inflation very shortly in an own section.
Additionally, we will introduce basic concepts of structure formation like the spherical-collapse model
and mass functions.

2.1 Newtonian perturbation equations

Although in principle, General Relativity is the correct framework in which the following calculations
should be carried out, it turns out that it is sufficient to use Newtonian theory to derive the perturbation
dynamics and neglect relativistic effects like the finiteness of the speed of light or curvature of space-
time since the structures that we want to study (∼1 h−1 Mpc) are small compared to the Hubble radius
rH = c/H0 (∼3,000 h−1 Mpc). The latter is a good approximation for the particle horizon rhor. In
the following, we will derive the evolution equations for perturbations in the cosmic fluid, which is
basically a mixture of baryons and dark matter. Since we will only consider perturbations on scales
that are sufficiently large enough not to be influenced in their evolution by radiation, we can neglect
its contribution here. Furthermore, the energy density due to the cosmological constant with w = −1
cannot clump and hence does not form perturbations. As in the previous chapter, the cosmic fluid is
considered to be an ideal fluid without any viscosity and friction.
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(a) z = 18.3 (b) z = 5.7

(c) z = 1.4 (d) z = 0

Figure 2.1: Snapshots of the Millennium simulation at four different redshifts. Note that the scale is
given in comoving coordinates. In the centre, a large galaxy cluster forms due to accretion of material and
mergers with smaller clumps.6

Since we deal with Newtonian gravity, the equation that relates the density ρ with the gravitational
field Φ is Poisson’s equation

∆Φ = 4πGρ , (2.1)

where ∆ is the Laplacian defined as ∆ ≡ ∂2
x + ∂2

y + ∂2
z in physical coordinates. Two other important

equations account for the conservation of mass and the conservation of momentum. The first one is
the continuity equation,

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 , (2.2)

the second one is Euler’s equation,

∂~v
∂t

+ (~v · ~∇)~v = −
~∇p
ρ

+ ~∇Φ . (2.3)

Note that from now on, all quantities depend on position ~x and time t since we allow for deviations
from homogeneity and isotropy! Consequently, the terms on the right-hand side of Eq. (2.3), which
represent forces due to gradients in the pressure and the gravitational field, respectively, do not vanish.

We decompose all relevant quantities into a part that represents the background value and therefore
only depends on time and another part that represents a small perturbation and hence depends on time

6http://www.mpa-garching.mpg.de/galform/millennium/

20

http://www.mpa-garching.mpg.de/galform/millennium/


2.2. LINEAR EVOLUTION OF THE DENSITY CONTRAST

and position,

ρ(~x, t) = ρb(t) + δρ(~x, t) , (2.4)

~v(~x, t) = ~vb(t) + δ~v(~x, t) , (2.5)

where the first term on the right-hand side denotes the background value and the second term the
perturbation. If we denote physical coordinates with ~r and comoving coordinates with ~x, we can
write the background velocity as ~vb = H0~r and identify it with the Hubble or recession velocity
originating from the expansion of the Universe, while the second term δ~v = a~̇x takes into account the
peculiar velocity of the perturbation, deviating from the mean cosmic flow. We introduce the same
decomposition for the pressure and the gravitational field accordingly,

p(~x, t) = pb(t) + δp(~x, t) , (2.6)

Φ(~x, t) = Φb(t) + δΦ(~x, t) . (2.7)

Since a spatially constant background density is only mathematically consistent with both the Euler
equation (2.3) and Poisson’s equation (2.1) if ρb = 0, we impose the ad-hoc assumption that Poisson’s
equation only relates the perturbations of the potential and the density with each other, set Φb = 0,
and call the perturbation itself Φ(~x, t).7

Inserting the former definitions into Eqs. (2.2) and (2.3), we see that the gradients act only on the
perturbation quantities since the background quantities do not depend on position. Additionally, we
introduce the comoving peculiar velocity ~u ≡ δ~v/a and the density contrast δ ≡ δρ/ρb = ρ/ρb − 1. A
completely empty void, i.e. ρ = 0, therefore has a density contrast δ = −1. The last step is to switch
from physical to comoving coordinates, where have to take into account the respective transformation
for the Laplacian and the time derivative as follows,

∆x = a2∆r , (2.8)(
∂

∂t

)
x

=

[(
∂

∂t

)
r

+ H~x · ~∇x

]
. (2.9)

Since Eqs. (2.2) and (2.3) have to be fulfilled separately for the background and the perturbation
quantities and taking into account only linear terms, the dynamics of the perturbations are described
by the following three equations,

∆Φ = 4πGρba2δ , (2.10)

δ̇ + ~∇ · ~u = 0 , (2.11)

~̇u + H~u = −
~∇(δp)
a2ρb

+
~∇Φ

a2 , (2.12)

where the first equation is based on the aforementioned assumption that only the perturbations of the
potential and the density are related by Poisson’s equation, written in comoving coordinates.

Since we have only three equations for four variables (δ, ~u, Φ, δp), we need an additional constraint
to have a closed system of equations. Introducing the sound speed cs, we can relate the pressure to the
density contrast via

δp = c2
s δρ = c2

s ρbδ . (2.13)

2.2 Linear evolution of the density contrast

Equations (2.10–2.13) can be combined to yield one single equation for the density contrast δ. First,
we can combine the divergence of Eq. (2.12) with the time derivative of Eq. (2.11), and second, we

7This represents the “Jeans swindle”, named after Sir James Jeans, cf. Binney & Tremaine (1987), pp. 287f.
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can express δp and Φ as a function of the density contrast using Eqs. (2.10) and (2.13). In this way,
we arrive at a second-order differential equation for the density contrast,

δ̈ + 2Hδ̇ − 4πGρbδ −
c2

s

a2 ∆δ = 0 . (2.14)

The density contrast cannot be treated as a function of time only since Eq. (2.14) still has a spatial
dependence via ∆δ in the last term. The trick is to go from real space to Fourier space with the Fourier
transformations

δ(~x, t) =

∞∫
−∞

d3k
(2π)3 δ̂(

~k, t) e−i~k·~x and δ̂(~k, t) =

∞∫
−∞

d3x δ(~x, t) ei~k·~x . (2.15)

Using additionally that ∆δ(~x, t)→ −~k2δ̂(~k, t) , Eq. (2.14) can be written in Fourier components as

¨̂δ + 2H ˙̂δ +

(
c2

s

a2 k2 − 4πGρb

)
δ̂ = 0 . (2.16)

Introducing ω ≡
√

c2
s k2/a2 − 4πGρb, the previous equation can be written as a damped oscillation

equation with frequency ω, which is real if c2
s k2/a2 ≥ 4πGρb and imaginary otherwise. The case

ω = 0 defines the Jeans length

λJ =
2π

kJ
≡ cs

√
π

Gρb
. (2.17)

Perturbations of size λ < λJ will experience a damped oscillation, perturbations with λ > λJ will
either grow or decay. Equation (2.16) can be further simplified for dark matter since we can treat it as
a pressure-less fluid with cs = 0 yielding

¨̂δ + 2H ˙̂δ − 4πGρbδ̂ = 0 . (2.18)

Since dark matter is the dominant matter component (cf. Tab. 1.1) providing the potential wells in
which the baryonic matter can fall, the previous equation can be used to describe the linear cosmic
structure formation on large and intermediate scales. On small scales, however, the pressure of the
baryonic component and thus the existence of the Jeans length (2.17) cannot be neglected.
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Figure 2.2: Evolution of the growth factor
D+ as a function of the scale factor for two
flat and one open cosmological model.

The solution of Eq. (2.18) includes one growing
and one decaying mode. But since the decaying mode
is not relevant for structure formation, we focus on
the growing mode. Equation (2.18) does not depend
on the wave number k and hence, the solution can be
expressed as

δ(t) = δ(t0)D+(t) , (2.19)

defining the linear growth factor D+. Thus, the time
evolution of the linear density contrast is completely
described by D+(t). Usually, it is normalised such
that D+ = 1 today and smaller in the past. But in-
stead of expressing it as a function of time, we can
also consider it as a function of the scale factor a. For
an Einstein-de Sitter (EdS) cosmology with Ωm = 1
and ΩΛ = 0, it can be easily shown that D+(a) = a so
that the linear evolution of the density contrast is simply given by the scale factor. For more general
cosmologies, D+ deviates from this evolution, and Eq. (2.18) can be solved only numerically. The
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2.3. STATISTICAL TREATMENT

solution for models involving only matter and a cosmological constant can be approximated by the
following fitting formula of Carroll et al. (1992),

D+(a) =
5a
2

Ωm(a)
{

Ω
4/7
m (a) −ΩΛ(a) +

[
1 +

1
2

Ωm(a)
] [

1 +
1
70

ΩΛ(a)
]}−1

. (2.20)

We show the dependence of D+ on the scale factor for three different cosmologies in Fig. 2.2.
We want to note again that the previous results are only valid for small perturbations since we have

neglected higher order terms in the derivation. At latest for δ ∼ 1, the linear treatment that we have
followed so far breaks down and non-linearities become important. However, the non-linear evolution
cannot be treated analytically in a simple way, one has to refer to other techniques like the Zel’dovich
approximation for mildly non-linear regimes (Sect. 2.6) or the spherical-collapse model for spherical
and homogeneous overdensities (Sect. 2.7). In order to follow in general the complete non-linear
evolution, one usually has to rely on large cosmological N-body simulations, although semi-analytic
models based on renormalised perturbation theory are currently being developed and refined (e.g.
Crocce & Scoccimarro, 2006; Pietroni, 2008; Anselmi et al., 2010).

2.3 Statistical treatment

The density field can be modelled as a random field that has to obey the two fundamental assumptions
of homogeneity and isotropy. Therefore, its statistical properties like e.g. variance and mean must not
depend on position or direction. The random field can be described by n-point correlators,

〈δ(~x1) δ(~x2) . . . δ(~xn)〉 , (2.21)

quantifying the correlation between n points in the sky. The easiest of them is the 2-point correlator
which defines the correlation function

ξ(y) ≡ 〈δ(~x) δ(~x + ~y)〉 . (2.22)

Note that it can only depend on the distance y = |~y| due to homogeneity and isotropy. Instead of
correlating the density contrast in real space, we can also correlate two Fourier modes, defining the
power spectrum P(k) by

〈δ(~k) δ(~k′)〉 ≡ (2π)3P(k) δD(~k − ~k′) , (2.23)

where δD is Dirac’s delta distribution. The correlation function and the power spectrum are related to
each other by a Fourier transformation. Also the power spectrum can only depend on the modulus of
~k due to the fundamental cosmological assumptions.

Higher order equivalents to the power spectrum exist (bispectrum, trispectrum, . . . ). However, we
focus only on the lowest order here since we will show in Sect. 2.4.2 that the linear density contrast
can be modelled by a Gaussian random field, which is fully described by the power spectrum. Its
spectral moments are defined by

σ2
j ≡

∞∫
0

dk
2π2 P(k) k2 j+2 , (2.24)

where σ2
0 ≡ σ

2 is the variance and σ the standard deviation.
One often wants to filter the density contrast field on a certain scale R, e.g. to extract some informa-

tion of objects with that size. This is done by a convolution with a window function WR of scale R in
real space or a multiplication with its Fourier transform ŴR(k) in Fourier space,

δR(~x) ≡
∫

d3y δ(~y)WR(|~x − ~y|) and δ̂R(k) = δ̂(k)ŴR(k) , (2.25)
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respectively. Combining Eqs. (2.19) and (2.23), the time-dependent variance of the filtered density
contrast is given by

σ2
R(a) =

∞∫
0

k2 dk
2π2 D2

+(a)P(k)Ŵ2
R(k) . (2.26)

In most cases, a top-hat in real space is chosen as filter function, but also other choices like Gaussian
smoothing are possible. The top-hat in real and Fourier space is given by

WR(~x) =
θH(R − |~x|)

4π
3 R3

and ŴR(k) =
3(sin kR − kR cos kR)

k3R3 , (2.27)

respectively, where θH is Heaviside’s step function. The square root of the density field’s variance on
a scale of 8 h−1 Mpc today is σ8 and contains information on the amplitude of the density fluctuations.
The WMAP7+BAO+H0 joint analysis yields σ8 = 0.809 ± 0.024 (Komatsu et al., 2011).

2.4 Initial perturbations from an inflationary phase

Originally introduced to solve two fundamental problems in cosmology, the theory of inflation pro-
vides an explanation for the origin of structures “for free”. Before we will focus on the latter, we
briefly sketch the reasons for the necessity of an inflationary epoch and its main properties.

2.4.1 Motivation and basic concepts

The standard model of cosmology presented in Chap. 1 is not complete yet. In fact, two key observa-
tions, namely the almost perfect isotropy of the CMB and the flatness of space cause severe problems
from a theoretical point of view, named the horizon problem and the flatness problem, respectively.

(1) Horizon problem.

As already mentioned in Chap. 1, the temperature of the CMB is, independent of the direction,
the same with tiny fluctuations of order 10−5. In order to achieve this enormous equality, the
plasma of electrons and atomic nuclei must have been in thermal equilibrium when they finally
combined and released the photons of the CMB at redshift z ≈ 1020. However, at the end of
Sect. 1.4, we have also argued that there exists a particle horizon, i.e. every particle can only be
influenced by events inside his horizon. Calculating the size of these causally connected regions
at the time of recombination yields patches with a diameter of ∼2◦ in the sky (Liddle, 1999).
But how can regions for which it was not possible to have communicated with each other have
(almost) identical temperatures?

(2) Flatness problem.

Dividing Friedmann’s equation (1.4) by H2 and leaving only the curvature term on the right-
hand side yields

Ωtot − 1 =
Kc2

a2H2 , (2.28)

where Ωtot = Ωm + Ωr + ΩΛ. One can show, using again Friedmann’s equation, that a ∝ t1/2

in the radiation-dominated era, and a ∝ t2/3 in the matter-dominated era. Together with the
definition of the Hubble parameter H = ȧ/a and ȧ ∝ n tn−1, where n is either 1/2 or 2/3, we
arrive at

Ωtot − 1 ∝

t (radiation domination)
t2/3 (matter domination) .

(2.29)
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2.4. INITIAL PERTURBATIONS FROM AN INFLATIONARY PHASE

Thus, any tiny deviation from unity for Ωtot shortly after the beginning of the Universe would
lead to a large deviation now and therefore to a non-negligible curvature, which is in conflict
with observations (see Tab. 1.1). This marks a fine-tuning problem, since at the electro-weak
scale with t ∼ 10−11 s after the Big Bang, the deviation must have been |Ωtot − 1| < O(10−27) to
be consistent with observations (Liddle, 1999).

In the standard picture without inflation, the comoving Hubble radius c/(aH) increases with time
since the Big Bang, until the cosmological constant finally takes over. If it was possible to find a
mechanism that lets it decrease with time,

d
dt

( c
aH

)
=

d
dt

( c
ȧ

)
< 0 ⇒ ä > 0 , (2.30)

the total energy density Ωtot would have been driven towards unity according to Eq. (2.28). The
second Friedmann equation (1.5) implies that this is the case if p < −1/3 ρc2 and thus w < −1/3. If
the inflationary period lasted long enough, the deviation of the total energy density from unity after
inflation would be small enough not to deviate significantly from unity even today and thus, the flatness
problem would be solved.

Additionally, an inflationary period would also solve the horizon problem, since a shrinking comov-
ing Hubble radius would make it possible that distinct patches of the sky had been in causal contact
before inflation started.

But how can we fulfill the condition that the pressure be negative enough (w < −1/3) to have an
accelerated expansion? Although the cosmological constant Λ has w = −1, its value is so small that
it took over only recently. In the past, however, matter and radiation density were much larger so
that another mechanism is needed. The easiest realisation can be constructed with a scalar field Ψ

rolling down its potential very slowly. This field is called the inflaton field, and from a particle-physics
perspective, a spin-0 particle can be associated with it. Its pressure and energy density are given by

p =
1
2

Ψ̇2 − V(Ψ) and ρc2 =
1
2

Ψ̇2 + V(Ψ) , (2.31)

respectively. If V(Ψ) � Ψ̇, we have w = p/(ρc2) ≈ −1, and inflation can last long enough to solve the
horizon and flatness problems. Assuming that the inflaton field dominated the energy density of the
early Universe, the right-hand side of Eq. (1.4) would be dominated by the potential term yielding

H2 ≈
8πG
3c2 V(Ψ) . (2.32)

2.4.2 Origin of structures

An inflationary period shortly after the Big Bang not only solves the flatness and the horizon problem,
but also yields an explanation for the tiny fluctuations that are imprinted on the CMB and finally led to
the formation of structures. Like any other fields, the inflaton field experiences quantum fluctuations
due to Heisenberg’s uncertainty principle. However, since it satisfies the condition V(Ψ) � Ψ̇, the
Universe expands so rapidly that these quantum fluctuations are “frozen” and cannot evolve any further
due to the sudden disruption of causality. The power spectrum of the corresponding fluctuations in the
gravitational potential times k3 is approximately constant over time since it obeys

k3PΦ =

(H
Ψ̇

)2 ( H
2π

)2
≈ const. (2.33)

(cf. Liddle & Lyth, 2000, p. 186 and also Eq. 2.32). Assuming that the inflaton field decays at the
end of inflation into other particles so that the latter inherit the perturbations from the inflaton, and
using the Fourier transform of Poisson’s equation (2.10), we can relate the Fourier modes of the
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perturbations in the gravitational potential with the ones of the density contrast by −k2Φ̂ ∝ δ̂. But
since then k4PΦ ∝ Pini, where Pini is the initial power spectrum of density fluctuations, we expect that
Pini ∝ kn with n = 1 due to Eq. (2.33).

However, as we have already mentioned, inflation has to stop at some time. Hence, V(Ψ) and Ψ̇

have to vary slowly to yield Ψ̇ ∼ V(Ψ), and the accelerated phase finally comes to an end. Since k3PΦ

therefore slightly deviates from being constant, we expect also a small deviation from n = 1. Indeed,
the WMAP7+BAO+H0 analysis yields n = 0.963 ± 0.012 (Komatsu et al., 2011).

Another import conclusion from the theory of inflation, especially for this work, is the following. A
single perturbation in the inflaton field can be understood as a linear superposition of frozen vacuum
fluctuations, each represented by a Fourier mode that is independent from the others. According to
the central limit theorem, the resulting inflaton is Gaussian distributed for any point ~x in space. Since
the density field results from the decaying inflaton field, it also obeys Gaussian statistics so that the
probability to find a density contrast between δ and δ + dδ at position ~x is given by

p[δ(~x)] dδ =
1

√
2πσ

exp
(
−
δ2(~x)
2σ2

)
dδ , (2.34)

where σ2 is the variance of the density field defined by its power spectrum. Note that a small deviation
from Gaussianity is expected due to the end of inflation after a finite time. These non-Gaussianities,
however, are so small that we neglect them in the further considerations. Their effects on structure
formation have been studied extensively, see e.g. Matarrese et al. (2000), Lo Verde et al. (2008), and
Fedeli et al. (2009).

2.5 Shape of the power spectrum

Different Fourier modes of the density contrast reenter the horizon after inflation at different times.
While for small-scale modes, this already happens at the radiation-dominated time, large-scale modes
enter much later, when the Universe was dominated by matter. This has important consequences for
the shape of the power spectrum.

log a

log δ̂(k)

aenter aeq = Ωr0
Ωm0

∝ a2

≈ const.

∝ a
≈ a2

enter
a2

eq

Figure 2.3: Growth of density modes and its
suppression during the radiation-dominated era.

While we have already seen that during mat-
ter domination, the density contrast evolves ∝ a,
Eq. (2.18) implies that for the radiation-dominated
era, δ ∝ a2. Modes that are still outside the horizon
can grow without any inhibition, while modes that
have entered the horizon feel the radiation pres-
sure, which stops their growth almost completely.
When the Universe becomes matter-dominated,
the density modes starts growing again. Density
modes, that are large enough not to enter the hori-
zon before matter-radiation equality at aeq hence
do not feel this growth suppression. However,
modes that entered before aeq are suppressed by
a factor a2

enter/a
2
eq, where aenter is the scale factor at

horizon entry (see Fig. 2.3 for an illustration). Tak-
ing into account that the Hubble radius rH = c/H
scales ∝ a2 according to Eq. (1.17) during radi-
ation domination, we can establish a relation be-
tween the wave vector k and aenter. Density modes
that enter the horizon have a physical wavelength
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that is equal to the Hubble radius per definition so that

aenter λ = aenter
2π

k
∝ a2

enter

⇒ aenter ∝ k−1 .
(2.35)

The suppression factor for a mode with wave vector k that enters the horizon during radiation domi-
nation is therefore given by

fsup ≡
a2

enter

a2
eq

=
k2

eq

k2 , (2.36)

where keq is the wave vector that enters the horizon at aeq. Since the power spectrum P(k) ∝ |δ̂|2,
the suppression factor fsup enters quadratically. In Sect. 2.4.2, we have shown that the initial power
spectrum Pini is expected to be ∝ kn with n ≈ 1. Including the suppression of modes that entered the
horizon before matter-radiation equality, the power spectrum is expected to have a shape as follows,

P(k) ∝

Pini(k)
f 2
sup Pini(k)

∝

k (k ≤ keq)
k−3 (k > keq) .

(2.37)

Since the transition from the radiation-dominated to the matter-dominated phase is not as sharp as
illustrated above, the shape of the power spectrum is a bit more complex. The conversion from an
initial state of δ̂ at aini to a later state at afin, excluding the growth expressed by the linear growth
factor D+, is given by the transfer function

T (k, a) ≡
D+(aini)
D+(afin)

δ̂(k, afin)
δ̂(k, aini)

. (2.38)

For z . 100, the transfer function is independent of the scale factor since the influence of radiation on
the growth of density perturbations becomes negligible. Taking the transfer function into account, the
power spectrum at any scale factor is given by

P(k, a) =
D2

+(a)
D2

+(aini)
T 2(k, a)Pini(k) . (2.39)

The following fitting function describes the transfer function for a universe dominated by cold dark
matter and adiabatic initial conditions fairly well,

T (k) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4 , (2.40)

where q = k
√
θ/(Ωm0 h2 Mpc−1) and θ = ρr/(1.68ρν) with the energy density of neutrinos ρν (Bardeen

et al., 1986). Hence, for three relativistic neutrinos θ = 1.
Until now we have only considered the linear power spectrum based on the linearised perturbation

equations (2.10–2.12). But with large cosmological N-body simulations, it is possible to quantify the
effect of non-linear structure formation on the power spectrum and offer fitting formulae. The main
effect is that power from large scales, i.e. small k is shuffled to smaller scales, i.e. large k. An additional
important effect of non-linear structure formation is that the probability to find a density contrast δ at
position ~x becomes non-Gaussian, whereas it stays Gaussian in the linear regime. In Fig. 2.4, we
show both the linear and the non-linear power spectrum for three different redshifts using the fitting
formula by Smith et al. (2003) to compute the latter. Both spectra are computed for the best fit values
of the WMAP7+BAO+H0 joint analysis shown in Tab. 1.1. The figure illustrates very nicely that the
non-linear region moves to smaller and smaller k, i.e. larger scales, with decreasing redshift.

An additional effect that we only want to mention here are small wiggles in the power spectrum,
especially at large k, as a result from BAOs. But since this effect is negligible for the following
chapters, we do not discuss it here and refer to Eisenstein & Hu (1998).
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Figure 2.4: Linear (solid curves) and non-linear
(dashed curves) power spectra for three different
redshifts.

2.6 Zel’dovich approximation

As we have already mentioned, at the latest when δ ∼ 1, linear perturbation theory ultimately breaks
down. However, it is possible to follow the evolution into the mildly non-linear regime with a model
by Zel’dovich (1970). It starts with the decomposition of the cosmic fluid into individual particles
whose trajectories can be written as

~r = a(t) ~x︸︷︷︸
expansion

− f (t) ~s(~x)︸   ︷︷   ︸
pec. velocity

, (2.41)

where ~x is the initial comoving coordinate of the particle, and ~s(~x) is an irrotational displacement field
with ~s = ~∇ϕ(~x). Again, a(t) is the scale factor, and f (t) is a function describing the time evolution of
the displacement field. The derivatives ∂ri/∂x j can be written according to the previous equation as

∂ri

∂x j
= a(t)δi j − f (t)

∂2ϕ

∂xi ∂x j
, (2.42)

where ∂2ϕ/(∂xi ∂x j) is the deformation tensor with eigenvalues λi and 1 ≤ i ≤ 3. If we transform to
its eigensystem, the density at the scale factor a can be written as

ρ(a) =
ρb0

(a − fλ1)(a − fλ2)(a − fλ3)
, (2.43)

where ρb0 is today’s background density. The mean density at a, however, is given by ρb(a) = ρb0a−3

so that the density contrast is

δ =
ρ

ρb
− 1 =

1(
1 −

f
a
λ1

) (
1 −

f
a
λ2

) (
1 −

f
a
λ3

) − 1 ≈
f
a

(λ1 + λ2 + λ3) =
f
a

∆ϕ , (2.44)

where we have used that (1 + ε)n ≈ 1 + n ε for small ε and dropped all non-linear term in the following
multiplication. Comparing the previous equation with Eq. (2.19) demands that f /a = D+(a) and
∆ϕ = δ0 since ∆ϕ does not depend on time. Therefore, the trajectory of a particle is finally given by

~r = a
[
~x − D+(a)~s

]
(2.45)

and its derivative with respect to a as

d~r
da

= ~x −
(
1 +

d ln D+(a)
d ln a

)
D+(a)~s . (2.46)

Once the potential ϕ ∝ Φ is given, where Φ is the gravitational potential, the displacement field ~s =
~∇ϕ and thus the trajectories of the particles can be calculated. The Zel’dovich approximation finally
breaks down when the particle trajectories start crossing each other since it neglects their gravitational
interaction.
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2.7 Spherical-collapse model

Another important analytic tool to study non-linear structure formation is the spherical-collapse model
describing the collapse of a homogeneous and isotropic overdensity under its own gravity. Addition-
ally, the structure is mathematically embedded in the expanding background, which is described by
Eq. (1.17). A test particle with mass m at the boundary of the overdensity R feels the force

mR̈ = −
GMm

R2 +
Λ

3
mR , (2.47)

where M = (4π/3)ρR3 is the total mass of the overdensity. The last term of the previous equation
is the contribution from the cosmological constant, given by the last term on the right-hand side of
Eq. (1.5). We scale all quantities at the time of turn-around (denoted by the subscript ‘ta’), i.e. when
the radius R has its largest extent before the structure starts collapsing, and introduce

x ≡
a

ata
, y ≡

R
Rta

, τ ≡ Htat , ζ ≡
ρta

ρb,ta
, (2.48)

where ρb,ta is the background density at the time of turn-around. With these variables, Eqs. (1.17) and
(2.47) can be written in a dimensionless form as

x′ =

[
Ωm,ta

x
+ ΩΛ,ta x2 + (1 −Ωm,ta −ΩΛ,ta)

]1/2

, (2.49)

y′′ = −
Ωm,ta ζ

2y2 + ΩΛ,ta y . (2.50)

Here, prime denotes derivative with respect to τ, and we have used that ΩK,ta = (1 −Ωm,ta −ΩΛ,ta). A
good choice for the boundary conditions of these differential equations is

y|x=0 = 0 and y′|x=1 = 0 , (2.51)
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Figure 2.5: Evolution of the scaled radius y
with scale factor for two overdensities with
different collapse redshifts zcol.

claiming that the sphere starts with zero radius at
a = 0 and reaches a maximal radius at turn-around.
In Fig. 2.5, we show the evolution of the scales radius
y with scale factor a for two overdensities that col-
lapse at two different times. While for the first, ζ is
chosen such that the collapse happens at zcol = 0, the
second collapses at zcol = 1. Here and in the follow-
ing, we denote quantities at the time of collapse with
the subscript ‘col’.

Most interestingly, the spherical-collapse model
yields the possibility to relate the non-linear evolution
directly to the linearised case so that the linear for-
mulation can still be used for the formation of haloes
through gravitational collapse, although the latter are
highly non-linear objects. In the following, we will
show how this can be done.

Starting from the overdensity ζ at the time of collapse, the overdensity with respect to the back-
ground, ∆(a) ≡ ρ(a)/ρb(a) can be calculated at any time using

∆ =

(
x
y

)3

ζ , (2.52)
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since ρb ∝ x−3 and ρ ∝ y−3. Mathematically, the radius of the overdensity vanishes at collapse time
and hence ρ→ ∞ for z→ zcol. But this is an unphysical behaviour which should be avoided! Indeed,
we expect that the sphere virialises at zcol instead of collapsing completely.

For bound objects, the total time-averaged kinetic and potential energies, 〈Ekin〉 and 〈Epot〉, respec-
tively, can be related to each other by the virial theorem. In the special case that the potential can be
described by a power law with V(r) ∝ rn, it states that

〈Ekin〉 =
n
2
〈Epot〉 . (2.53)

According to Eq. (2.47), the gravitational force scales like r−2, while the force induced by the cosmo-
logical constant scales like r. Consequently, the respective potentials scale like rn with n = −1 for
gravity and n = 2 for the cosmological constant. Thus, in the ΛCDM model, the virialisation condition
is

〈Ekin〉 = −
1
2
〈Egrav〉 + 〈EΛ〉 , (2.54)

where 〈Egrav〉 its average potential energy due to gravity, and 〈EΛ〉 the average effective potential en-
ergy contributed by the cosmological constant. Using 〈Egrav〉 = −3GM2/(5R) and 〈EΛ〉 = −ΛMR2/10
for the homogeneous sphere as well as energy conservation between turn-around and virialisation
(subscript ‘v’), one arrives at a cubic equation for yv = Rv/Rta,

2η y3
v − (2 + η) yv + 1 = 0 , (2.55)

with η = ΛR3
v/(3GM) (Lahav et al., 1991). While for η = 0 (no cosmological constant) yv = 0.5, it

is redshift-dependent for Λ , 0, with yv slightly smaller than 0.5. Since Eq. (2.55) has to be solved
numerically, it is faster to calculate yv with a formula derived from a lowest-order Taylor expansion
by Wang & Steinhardt (1998),

yv =
1 − 1

2ην

2 + ηt −
3
2ην

with ην =
2
ζ

ΩΛ(zcol)
Ωm(zcol)

(
1 + zcol

1 + zta

)3

and ηt =
2
ζ

ΩΛ(zta)
Ωm(zta)

. (2.56)

The overdensity at the time of virialisation can be simply determined using Eq. (2.52),

∆̃v =

(
xcol

yv

)3

ζ . (2.57)

While the former virial overdensity with the tilde is defined with respect to the background density,
it is also possible to define it with respect to the critical density as usually done in the literature.
We will denote the latter with ∆v without the tilde. Since ∆̃v ρb(zcol) = ∆v ρc(zcol) and ρb(zcol) =

Ωm(zcol) ρc(zcol), both quantities are related by

∆v = ∆̃v Ωm(zcol) . (2.58)

This non-linear overdensity that the spherical and homogeneous sphere has reached at virialisation
can be related to a critical linear overdensity δc that it would have reached in linear perturbation theory
by extrapolating ∆(x) from very early times linearly to the time of virialisation via

δc ≡ lim
x→0

{
D+(xcol)
D+(x)

[∆(x) − 1]
}
. (2.59)

Both δc and ∆v are the key parameters of the spherical-collapse model which allow to relate non-linear
and linear structure formation at least approximately.

In general, Eqs. (2.49) and (2.50) can only be solved using a numerical solver for differential equa-
tions. This, however, can introduce a non-negligible noise component to both δc and ∆v since the ra-
dius approaches zero for both x→ 0 and x→ xcol which is difficult to handle numerically. Therefore,
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Figure 2.6: δc and ∆v as a function of redshift for three cosmological models.

it is also possible to evaluate the two parameters for a given cosmological model using a combination
of the linear perturbation equation (2.18) together with the related non-linear equation that can be de-
rived if all non-linear terms in the derivation of Eqs. (2.10–2.12) are kept. This approach turns out to
be numerically less sensitive for noise. For further reading, we refer to Padmanabhan (2002) or, for a
more recent work, to Pace et al. (2010).

For the EdS universe with Ωm = 1 and ΩΛ = 0, Eqs. (2.49) and (2.50) simplify to

x′ = x−1/2 and y′′ = −
ζ

2y2 , (2.60)

which can be solved analytically in parametric form yielding

y(τ) =
1
2

(1 − cos θ) , τ =
2

3π
(θ − sin θ) , (2.61)

which lead to the redshift-independent parameters

δc =
3
5

(
3π

2

)2/3

≈ 1.686 and ∆v = 18π2 ≈ 178 . (2.62)

(compare Padmanabhan, 2002, pp. 330f). For more general cosmologies, however, both δc and ∆v vary
with redshift, which we show in Fig. 2.6 for three cosmologies: ΛCDM with the best-fit parameters
from Tab. 1.1, OCDM with the same parameters as before but ΩΛ = 0, and EdS.

Since ∆v = 178 in an EdS universe, the size of a halo is often defined by the radius that encloses
an averaged density of 178 times the critical density. The corresponding mass is then abbreviated as
M178. But also other definitions exist like M200, M500, . . . . The term “virial mass” usually denotes the
mass that is inside the redshift-dependent virial radius of a halo, written as Mv. However, care has to
be taken at this point since the overdensity and hence the mass is sometimes defined with respect to
the background density instead of the critical density in the literature!

2.8 Halo profiles

Here, we want to shortly present two halo density profiles that can often be found in the literature and
that we also need in the later chapters.

2.8.1 Singular isothermal sphere

The singular isothermal sphere is the density profile for a spherically symmetric density distribution
with T (r) = const. of an ideal gas. Although it is widely used in the literature, already the condition
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of constant temperature is unphysical since the halo would evaporate at its outskirts. For hydrostatic
equilibrium, i.e. the gravity force pointing inwards is balanced by the pressure pointing outwards, the
pressure gradient is given by

dp
dr

= −
GM(r)

r2 ρ . (2.63)

For an ideal gas, p = ρ kBT/m, where m is the mass of a particle and kB is Boltzmann’s constant.
Replacing the pressure by the density and writing the mass M(r) as an integral over the sphere, we get

1
ρ

dρ
dr

= −
Gm
kBT

r∫
0

dr′ 4π ρ(r′) r′2 . (2.64)

Differentiating the previous equation with respect to r finally yields the second-order equation for the
density,

1
r2

d
dr

(
r2 d ln ρ

dr

)
= −

4πGm
kBT

ρ , (2.65)

for which an analytic solution exists,

ρ(r) =
kBT

2πGm
1
r2 . (2.66)

This solution, however is both singular for the density in the centre, where ρ → ∞, and for the mass
since M(r) ∝ r. Due to the singularity for the density in the centre, a system with the density profile
(2.66) is called a singular isothermal sphere.

Besides Eq. (2.66), another solution for the differential equation (2.65) can be found by imposing
the boundary conditions ρ(r = 0) = ρ0 and dρ/dr (r = 0) = 0 so that the density profile is flat in the
centre and therefore non-singular at r = 0 by construction. For this case, Eq. (2.65) has to be solved
numerically. The solution behaves like ρ ∝ r−2 for large radii and therefore M(r) ∝ r in this regime as
for the singular isothermal sphere.

2.8.2 NFW profile

Navarro, Frenk, & White (1996) (NFW) found from N-body simulations that the density profiles of
dark-matter haloes can be well described by the universal form

ρ(r) =
ρs

r
rs

(
1 +

r
rs

)2 , (2.67)

where ρs and rs are two parameters that depend on the halo mass. In the inner part, where r � rs, the
density scales like ρ(r) ∝ r−1, while in the outer part for r � rs, the density scales like ρ(r) ∝ r−3.
Therefore, rs denotes a scale at which the transition between the two different power laws takes place.

Denoting r200 as the radius of the sphere whose average density is 200 times the critical density of
the Universe, the concentration parameter c is defined as

c ≡
rs

r200
(2.68)

and is a function of both the halo mass and redshift and indirectly also of the cosmological parame-
ters. Haloes that form earlier have a higher concentration parameter than haloes that form later. The
parameter ρs is related to c by the requirement that

(
4π

3
r3

200

)−1

4π

r200∫
0

dr ρ(r)r2 !
= 200ρc (2.69)
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with ρ(r) from Eq. (2.67). The integral can be calculated analytically yielding the relation

ρs =
200ρc

3
c3

ln(1 + c) −
c

1 + c

(2.70)

between ρs and c and due to Eq. (2.68) also between ρs and rs.
Consequently, the NFW profile only depends on one parameter, namely the concentration parame-

ter, and thus indirectly only on the halo mass given a cosmology and redshift. This makes the NFW
profile be a universal density profile for dark-matter haloes. Its deeper physical origin, however, is still
one of the subjects of current work.

2.9 Halo statistics

With the ingredients that we have introduced in this chapter so far, it is possible to derive the abundance
of collapsed objects as a function of their mass. Although the resulting mass function is in good
qualitative agreement with results from simulations, pronounced quantitative differences exist so that
more recent mass functions are fits to numerical simulations. In the following, we will start with the
classical approach by Press & Schechter (1974), which was then reformulated by Bond et al. (1991)
considering halo formation as a random walk process. Lacey & Cole (1993) used this new formalism
to make quantitative predictions of merger rates and occurrences. We will give a short overview over
this extended Press-Schechter formalism before we finally present mass functions that are drawn from
N-body simulations and do not rely on spherical collapse any more.

2.9.1 Classical Press-Schechter mass function

Based on Gaussian initial conditions and the spherical-collapse model, one can derive the number
density of haloes as a function of their mass M and redshift z from linear theory of structure formation.
We can assign a length scale to a halo by choosing a sphere of average background density ρb = Ωmρc
whose radius is chosen such that it contains a mass M,

M =
4π

3
ΩmρcR3 ⇒ R(M) =

(
3M

4πΩmρc

)1/3

. (2.71)

The Gaussian density field δ(~x) is smoothed on that scale with a top-hat of size R so that its variance
is described by Eq. (2.26) with the filter function (2.27). Since the linear power spectrum scales with
D2

+(z), the redshift dependence of σR(z) is simply given by σR(z) = D+(z)σR, where σR is the square
root of the linear power spectrum’s variance filtered on scale R today.

According to the spherical-collapse model, regions with δ ≥ δc can be considered as collapsed.
Thus, regions in which the scaled density contrast δR is equal or larger than the critical density should
form haloes of mass M. The probability for this to happen is

P(δR ≥ δc) =

∞∫
δc(z)

dδR p(δR) =
1

√
2πσR(z)

∞∫
δc(z)

dδR exp
− δ2

R

2σ2
R(z)

 =
1
2

erfc
(

δc(a)
√

2σR(z)

)
, (2.72)

where erfc(x) is the complementary error function with erfc(x) ≡ 1 − erf(x). Assuming that this
probability is equal to the fraction of space F filled with haloes of mass M, thus P(δR ≥ δc) = F(M),
the distribution of haloes with mass is

∂F(M)
∂M

dM =
∂P(δR ≥ δc)

∂σR

∂σR

∂R
∂R
∂M

dM . (2.73)
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Figure 2.7: Press-Schechter mass function
at three different redshifts for the concor-
dance WMAP7 cosmology.

It turns out, however, that the previous equation is
not normalised correctly. Integrating ∂F/∂M over all
masses yields 1/2 instead of 1. The reason is quite sub-
tle and called the cloud-in-cloud problem. By smooth-
ing the density on scale R, we do not account for haloes
that form inside larger haloes since we only concen-
trate on that specific scale. In the next section, we will
show that halo formation can be formulated as a ran-
dom walk process and that in this case, the missing
factor 2 is included correctly. Here, we will add the
factor 2 by hand.

Dividing Eq. (2.73) by the typical volume VM of a
halo with mass M, where VM = M/ρb, we finally ar-
rive at the Press-Schechter mass function yielding the
differential comoving number density of haloes with
mass M as a function of redshift,

n(M, z) =
∂2N
∂M ∂V

=

√
2
π

ρb

M
δc(z)

D+(z)σR

∣∣∣∣∣∂ lnσR

∂M

∣∣∣∣∣ exp
− δ2

c(z)
2D2

+(z)σ2
R

 , (2.74)

where N is the total number of haloes. We show the redshift dependence of the mass function for three
different redshifts in Fig. 2.7. The Press-Schechter mass function illustrates very well the bottom-up
scenario, i.e. small objects form first at high redshift, whereas objects of larger scale form later.

2.9.2 Extended Press-Schechter formalism

Bond et al. (1991) formulated the process of halo formation as a random-walk problem. This does
not only solve the problem of the missing factor 2 in the classical Press-Schechter mass function, but
it has also the advantage that it is possible to generalise from spherical to ellipsoidal collapse in the
derivation of the mass function (Sheth et al., 2001; Sheth & Tormen, 2002) and to calculate merger
probabilities (Lacey & Cole, 1993).

We start with a filter function WR whose smoothing radius is set to a large value and then gradually
shrunk. But instead of filtering with a top-hat in real space as in the sections before, we choose a
top-hat in Fourier-space given by

ŴR(k) = θH(kR − k) with kR =
2π

R
. (2.75)

When the density contrast at some position ~x is filtered using the previous filter function with
R → ∞, the filtered density contrast δR → 0 and also σ2

R → 0. If then R is gradually shrunk, σ2
R

increases. Since the Fourier modes contributing to the perturbations are independent in this case,
δR(σ2

R) undergoes a Brownian motion, and the whole existing formalism can be applied. The thresh-
old for collapse is included via a constant absorbing barrier at δR = δc, for which the first-upcrossing
distribution is calculated. The latter quantifies how often the barrier is hit at a given σ2

R for a large
number of random-walk realisations, normalised to unity. We denote the first-upcrossing distribution
with f (ν) dν, where ν ≡ δ2

c/σ
2
R. The relation to the mass function is given by

n(M) =
ρb

M2 ν f (ν)
d ln ν
d ln M

. (2.76)

The first-upcrossing distribution can be calculated from the probability of finding a filtered density
contrast δR. Without any barrier, this probability is simply the Gaussian distribution Eq. (2.34). But
since for every trajectory that hits the barrier at δR = δc for a certain σ2

R, there is an equal probability
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due to the Brownian nature of the random-walk process to continue above or below the barrier, the
probability distribution changes in the presence of the barrier. In other words, for every forbidden
trajectory above the barrier, there is a mirror trajectory below the barrier, and the corresponding prob-
ability has to be subtracted from Eq. (2.34) since the trajectory has hit the barrier before. The mirror
point to δR above the threshold is δc + (δc − δR) = 2δc − δR, and thus, Eq. (2.34) has to be modified to

pB(δR) =
1

√
2πσR

exp
− δ2

R

2σ2
R

 − exp
− (2δc − δR)2

2σ2
R

 . (2.77)

Since pB denotes the probability not to hit the barrier for any filter radius R,

1 −

∞∫
δc

dδR pB(δR) = erfc
(

δc
√

2σR

)
(2.78)

is the probability to have a density contrast larger than δc at any scale. Note that this is equal to
Eq. (2.72) but without the factor 1/2. Hence, the problem of the wrong normalisation can be solved by
considering halo formation as a random-walk process.

The first-upcrossing distribution for the constant barrier at δc and the resulting probability distribu-
tion Eq. (2.77) can be calculated analytically by making use of the diffusion equation

∂pB(δR)
∂S

=
1
2
∂2 pB(δR)
∂δ2

R

, (2.79)

where S ≡ σ2
R serves as “time” variable. The result is

ν f (ν) dν =

√
ν

2π
exp

(
−
ν

2

)
dν , (2.80)

see Bond et al. (1991) for a detailed derivation. Inserting the previous expression into Eq. (2.76) yields
again the Press-Schechter mass function (2.74).

2.9.3 Merger probabilities

Lacey & Cole (1993) extended the random-walk approach to make predictions of merger occurrences.
Denoting the rescaled critical density contrast with ω ≡ δc(t)/D+(t), Eq. (2.80) can be rewritten as

f (S ) dS =
ω

√
2π S 3/2

exp
(
−
ω2

2S

)
dS . (2.81)

If we already start with a halo that has a variance S 2 at time t2 with the corresponding scaled barrier
ω2, and want to know the first-upcrossing distribution for S 1 > S 2 and corresponding scaled barrier
ω1 > ω2 at time t1 < t2, we can simply replace S → S 1−S 2 and ω→ ω1−ω2, yielding the conditional
probability

f (S 1, ω1|S 2, ω2) dS 1 =
ω1 − ω2

√
2π (S 1 − S 2)3/2

exp
[
−

(ω1 − ω2)2

2(S 1 − S 2)

]
dS 1 . (2.82)

Using Bayes’ theorem f (S 1, ω1)|S 2, ω2) f (S 2, ω2) = f (S 2, ω2|S 1, ω1) f (S 1, ω1), we can infer the
conditional probability for an upcrossing between S 2 and S 2 + dS 2 with ω2 given S 1 and ω1 to be

f (S 2, ω2|S 1, ω1) dS 2 =
1
√

2π

[
S 1

S 2(S 1 − S 2)

]3/2
ω2(ω1 − ω2)

ω1
exp

[
−

(ω2S 1 − ω1S 2)2

2S 1S 2(S 1 − S 2)

]
dS 2 . (2.83)
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The previous equation can be used to calculate the probability that a halo of mass M1 at time t1 has
formed a halo with a mass between M2 and M2 + dM2 at time t2 > t1 via mergers. Taking the limit
t2 → t1 and thus ω2 → ω1 ≡ ω yields the merger rate

d2N
dS 2 dω

dS 2 dω =
1
√

2π

[
S 1

S 2(S 1 − S 2)

]3/2

exp
[
−
ω2(S 1 − S 2)

2S 1S 2

]
dS 2 dω (2.84)

since in an infinitesimal interval dω, the change dS 2 can only be caused by a single merger event.

2.9.4 Mass functions calibrated by simulations

In the following, we present mass functions that we will need later and that are commonly used in the
literature to describe the number density of dark-matter haloes as a function of mass and redshift.

Sheth-Tormen mass function The random-walk approach presented in Sect. 2.9.2 allows to study
not only constant barriers, but also moving barriers, i.e. barriers δc that are functions of S . The most
prominent one is the one associated with ellipsoidal collapse presented by Sheth & Tormen (1999)
and Sheth et al. (2001). They showed that δc becomes dependent on the mass via the variance S once
the collapse is generalised to ellipsoidal dynamics, based on the ellipsoidal-collapse model by Bond
& Myers (1996). The dependence on the mass can be well fitted by

δc,ell(S , z) = δc,sph(z)
(
1 + 0.47ν−0.615

)
, (2.85)

where δc,ell is the mass-dependent critical density contrast from the ellipsoidal-collapse model, δc,sph is
the corresponding quantity based on spherical dynamics, and again ν = δ2

c,sph/S . The first-upcrossing
distribution of a moving barrier cannot be calculated analytically in general and hence, it has to be
determined numerically via a large number of random-walk realisations. The resulting distribution
can be fitted by a generalisation of Eq. (2.80),

ν f (ν) dν = 2A
(
1 +

1
νp

) √
ν

2π
exp

(
−
ν

2

)
dν (2.86)

with p = 0.3 and A = 0.3222, where A is chosen such that f (ν) is normalised to unity. For A = 0.5
and p = 0, the distribution for the constant barrier (2.80) is recovered. The corresponding halo mass
function can then again be calculated using Eq. (2.76). But in order to be consistent with numerical
N-body simulations, the variable ν has to be rescaled by ν → ν′ = 0.707ν. We compare the first-
upcrossing distributions associated with the Sheth-Tormen and the Press-Schechter mass functions in
Fig. 2.8.
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Figure 2.8: First-upcrossing distribution for the
constant barrier (Press-Schechter) and the mov-
ing barrier (Sheth-Tormen). The transformation
ν → ν′ = 0.707ν is already included for the lat-
ter.
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Jenkins et al. mass function In contrast to the Sheth-Tormen mass function, Jenkins et al. (2001)
directly fitted a function f (σ) from data of numerical simulations without deriving the functional form
from underlying collapse considerations and hence without including the parameter δc. Their fit is

f
(
lnσ−1

)
d lnσ−1 = 0.315 exp

(
−

∣∣∣lnσ−1 + 0.61
∣∣∣3.8) d lnσ−1 , (2.87)

and the corresponding halo mass function can be calculated by

n(M) =
ρb

M2 f
(
lnσ−1

) d lnσ−1

d ln M
. (2.88)

Tinker et al. mass function While the previously presented mass functions do not depend on the
overdensity ∆ that is used for the mass definition (see the last paragraph of Sect. 2.7) and therefore
are only valid for a single definition, usually Mv or M200, this dependence was taken explicitly into
account by Tinker et al. (2008). Their fitting formula is given by

f (σ) d lnσ−1 = A
[(
σ

b

)−a
+ 1

]
exp

(
−

c
σ2

)
d lnσ−1 , (2.89)

where the fitting parameters A, a, b, and c depend on both redshift z and overdensity ∆. The redshift
dependence is given by

A(z) = A0(1 + z)−0.14 , a(z) = a0(1 + z)−0.06 , b(z) = b0(1 + z)−α , logα(∆) = −

 0.75

log
(

∆
75

) 1.2

,

(2.90)
where the subscript ‘0’ indicates the corresponding parameter at z = 0. The parameter c does not
depend on redshift.

The dependence on the overdensity is given by the fitting functions

A0 =

−0.05 + 0.1 log ∆ (∆ < 1600)
0.26 (∆ ≥ 1600) ,

a0 = 1.43 + (log ∆ − 2.3)1.5 ,

(2.91)

b0 = 1.0 + (log ∆ − 1.6)−1.5 , c0 = 1.2 + (log ∆ − 2.35)1.6 .

Note that the overdensity is defined with respect to the background density in this case. Instead of
using the previous fitting formulae, one gets more accurate results if the parameters from Tab. 2.1 are
interpolated for values of ∆ in between using a cubic spline since they are determined individually
from N-body simulations. In Chap. 5, we will choose the latter alternative.

In Fig. 2.9, we show the different mass functions presented in this section for the concordance
WMAP7 cosmology. Besides the fact that the Press-Schechter mass function predicts more haloes
of smaller mass, the overall shapes of the mass functions differ only at the high-mass end for M >

1013 h−1 M�.

∆ A0 a0 b0 c0
200 0.186 1.47 2.57 1.19
300 0.200 1.52 2.25 1.27
400 0.212 1.56 2.05 1.34
600 0.218 1.61 1.87 1.45
800 0.248 1.87 1.59 1.58
1200 0.255 2.13 1.51 1.80
1600 0.260 2.30 1.46 1.97
2400 0.260 2.53 1.44 2.24
3200 0.260 2.66 1.41 2.44

Table 2.1: Fitting parameters of the Tinker et
al. mass function for various overdensities deter-
mined individually from numerical N-body sim-
ulations.
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Figure 2.9: Mass functions presented in this sec-
tion for the concordance WMAP7 cosmology at
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3 Chapter 3

An X-ray temperature function without
reference to mass

While the halo mass function is theoretically a very sensitive measure of cosmological models, masses
of dark-matter haloes are poorly defined, global, and unobservable quantities. In the following chap-
ter, we argue that local, observable quantities such as the X-ray temperatures of galaxy clusters can be
directly compared to theoretical predictions without invoking masses. We derive the X-ray tempera-
ture function directly from the statistics of Gaussian random fluctuations in the gravitational potential
constrained by the requirement that they belong to linearly collapsed structures. We then use the
spherical-collapse model to relate linear to non-linear perturbations, and the virial theorem to con-
vert potential depths to temperatures. Applying a proper high-pass filter that removes large enough
modes from the gravitational potential, we derive an X-ray temperature function that agrees very well
with the classical Press-Schechter approach on relevant temperature scales, but avoids the necessity of
measuring masses.

The contents of this chapter is published in Angrick & Bartelmann (2009). Parts of this work were
already discussed in Angrick (2007).

3.1 Introduction

Populating the far end of the halo mass function, galaxy clusters are in principle highly sensitive
indicators of the cosmological parameters and non-linear structure growth. As shown in Sect. 2.9.1,
combining Gaussian random density fields with linear structure growth and spherical collapse, the
Press-Schechter mass function and its variants turn out to reproduce the halo mass function in fully
non-linear cosmological simulations extremely well. If measurable, the abundance of haloes in the
exponential tail of the mass function and its evolution on cosmic time scales allow precise constraints
on both the density-fluctuation amplitude σ8 today and during the second half of the cosmic age and
on the matter-density parameter Ωm0. The exponential dependence of the abundance of massive haloes
on cosmological assumptions promises tight constraints (see Chap. 5).

A direct comparison between the theoretically predicted mass function of massive haloes and the
observed distributions of galaxy clusters in various observable quantities, such as the flux and the
temperature of their X-ray emission or the velocity dispersion of their member galaxies, requires ob-
servables to be translated into mass. While this conversion appears straightforward under the idealised
assumptions of spherical symmetry, thermal, and hydrostatic equilibrium, in most cases, one has to
work with empirical relations in reality since the cluster population as a whole shows all signs of being
dynamically active. We will show the influence of mergers on the derived constraints for σ8 and Ωm0
in Chap. 5.

Even if clusters satisfied the idealising assumptions typically underlying their cosmological inter-
pretation, their mass is not an observable. In fact, the mass of a dark-matter halo is a poorly defined,

39



CHAPTER 3. AN X-RAY TEMPERATURE FUNCTION WITHOUT REFERENCE TO MASS

derived quantity to which hardly any precise meaning can be given. It is common to operationally de-
fine halo masses as enclosed by spheres containing an average fixed overdensity. However, the many
different choices of apparently appropriate overdensity values in the literature demonstrate that there
is no uniquely defendable choice (cf. the last paragraph of Sect. 2.7). If the overdensity is chosen very
high, the masses obtained are core masses rather than halo masses, and if it is chosen low, density
profiles constrained near the core need to be extrapolated into regions where they are typically poorly
measured or not at all.

Halo definitions in numerical simulations illustrate the same problem in a different way. There,
haloes are typically identified by group finders connecting particles with neighbours closer than a
certain linking length. Recipes exist for how the linking length should be chosen, but there is no
objective criterion. The dependence on the linking length may be less relevant in practice because halo
masses can again be defined as the masses of all particles in spheres containing a fixed overdensity.
However, this refers back to the largely arbitrary overdensity threshold and creates the additional
problem that several different plausible definitions of halo centres exist that often yield discrepant
results.

Three main classes of observation are used to constrain cluster masses: (1) gravitational lensing,
(2) X-ray flux and temperature, and (3) galaxy kinematics. None of them measures cluster masses.
Gravitational lensing measures the curvature of the projected gravitational potential. X-ray observ-
ables are primarily determined by the gas density and temperature, which respond to the depth of the
gravitational potential and its gradient, as do galaxy kinematics. Thus, cluster observables constrain
the gravitational potential rather than any kind of mass. The conversion of the potential into a mass is
hampered by the fact that mass is a non-local quantity, requiring an integration over potential deriva-
tives. We raise the question whether cosmological conclusions can be drawn directly from cluster
observables without the detour through problematic definitions of cluster masses.

As one step towards a possible answer, we derive here the X-ray temperature function from a locally
defined quantity, namely the aforementioned gravitational potential. To this purpose, we first derive
a function predicting the number density of potential minima having a certain depth. We include
the non-linear evolution of the potential by considering the collapse of a spherical and homogeneous
overdensity, and locally relate the non-linear potential depth to a temperature using the virial theorem.
This direct relation of the temperature to the gravitational potential allows us to avoid introducing a
global quantity such as the mass and the ambiguities in its definition.

Unless declared otherwise, we shall use the following cosmological models and parameters in this
chapter: EdS: Ωm0 = 1.0, ΩΛ0 = 0.0, Ωb0 = 0.04, h = 0.7, σ8 = 0.52. ΛCDM: Ωm0 = 0.3, ΩΛ0 = 0.7,
Ωb0 = 0.04, h = 0.7, σ8 = 0.93; OCDM: Ωm0 = 0.3, ΩΛ0 = 0.0, Ωb0 = 0.04, h = 0.7, σ8 = 0.87.
The different values for σ8 reflect the normalisation of the power spectrum to reproduce the local
abundance of galaxy clusters (Eke et al., 1996).

3.2 Gaussian random fields

As sketched in Sect. 2.4.2, simple models of inflation predict that the density contrast δ(~r) should be
a Gaussian random field right after inflation. Since the density contrast and the gravitational potential
are linearly related via Poisson’s equation (2.10), the latter is then also a Gaussian random field.

In this section, we shall follow the line of argument presented by Bardeen et al. (1986). For better
comparison to their paper, we adopt F(~r) for the random field and ~η(~r) = ~∇F(~r) and ζi j(~r) = ∂i∂ jF(~r)
for its first and second derivatives, respectively.

3.2.1 Definition

An n-dimensional random field F(~r) assigns a set of random numbers to each point in n-dimensional
space. A joint probability function can be declared for m arbitrary points ~r j as the probability that the
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field F, considered at the points ~r j, has values between F(~r j) and F(~r j) + dF(~r j) with 1 ≤ j ≤ m.
A Gaussian random field is a field whose joint probability functions are multivariate Gaussians.

Let yi with 1 ≤ i ≤ p be a set of Gaussian random variables with means 〈yi〉 and ∆yi ≡ yi − 〈yi〉.
The covariance matrix M has the elements Mi j ≡ 〈∆yi ∆y j〉, and the joint probability function of the
Gaussian random variables is

p(y1, . . . , yp) dy1 · · · dyp =
1√

(2π)p det M
e−Q dy1 · · · dyp (3.1)

with the quadratic form

Q ≡
1
2

p∑
i, j=1

∆yi
(
M−1

)
i j

∆y j . (3.2)

A homogeneous Gaussian random field with zero mean is fully characterised by its two-point correla-
tion function ξF(~r1,~r2) = ξF(|~r1 −~r2|) ≡ 〈F(~r1) F(~r2)〉 or equivalently its Fourier transform, the power
spectrum PF(k) (for the power spectrum’s definition, see Sect. 2.3).

3.2.2 The minimum constraint

An expression for the number density of field minima can be derived as follows. The joint probability
function for a Gaussian random field in three-dimensional space with zero mean including first and
second derivatives reads

p(F, ~η, ζ) dF d3η d6ζ =
1√

(2π)10 det M
e−Q dF d3η d6ζ , (3.3)

with the quadratic form Q given in Eq. (3.2) and ~y = (F, η1, η2, η3, ζ11, ζ22, ζ33, ζ12, ζ13, ζ23).
The matrix M contains all auto- and cross-correlations between these quantities, which read

〈F F〉 = σ2
0 , 〈ηi η j〉 =

σ2
1

3
δi j ,

〈F ζi j〉 = −
σ3

1

3
δi j , 〈ζi j ζkl〉 =

σ2
2

15
(δi j δkl + δik δ jl + δil δ jk) , (3.4)

〈F ηi〉 = 0 , 〈ηi ζ jk〉 = 0 ,

where the σ j, 0 ≤ j ≤ 2, are the spectral moments of the power spectrum PF(k) defined in Eq. (2.24),
and the δmn are Kronecker symbols. The Fourier transform ŴR(k) of the top-hat window function with
the filter scale R is given in Eq. (2.27).

Let ~r0 be a minimum of the field F so that ~η(~r0) = ~0. The eigenvalues (ζ̃1, ζ̃2, ζ̃3) of the tensor
ζ of second derivatives must be positive. Within an infinitesimal volume d3r around ~r = ~0, we can
approximate ηi ≈ ζi jr j and thus replace d3η = | det ζ | d3r in Eq. (3.3). We also transform the volume
element in the space of second derivatives, d6ζ, into the space of eigenvalues,

d6ζ =
π2

3

∣∣∣∣(ζ̃1 − ζ̃2
) (
ζ̃2 − ζ̃3

) (
ζ̃1 − ζ̃3

)∣∣∣∣ dζ̃1 dζ̃2 dζ̃3 (3.5)

(Bardeen et al., 1986). Using det ζ = ζ̃1 ζ̃2 ζ̃3, we arrive at the final equation for the number density of
minima,

n(F) =
π2

3

∞∫
0

dζ̃1

∞∫
0

dζ̃2

∞∫
0

dζ̃3
∣∣∣ζ̃1 ζ̃2 ζ̃3

∣∣∣ ∣∣∣∣(ζ̃1 − ζ̃2
) (
ζ̃2 − ζ̃3

) (
ζ̃1 − ζ̃3

)∣∣∣∣ p
(
F, ~η = ~0, ζ̃1, ζ̃2, ζ̃3

)
. (3.6)
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3.2.3 Number density of potential minima

We now apply this formalism to the Gaussian random field of gravitational-potential fluctuations Φ.
We continue using ~η for the first derivative of the field and ζ for its tensor of second derivatives,
but introduce new variables. Instead of the eigenvalues ζ̃i with 1 ≤ i ≤ 3, we switch to the linear
combinations

∆Φ ≡ ζ̃1 + ζ̃2 + ζ̃3 , x̃ ≡
ζ̃1 − ζ̃3

2
, ỹ ≡

ζ̃1 − 2ζ̃2 + ζ̃3

2
. (3.7)

These choices simplify the correlation matrix M, and we can later easily identify the Laplacian of the
field. In these new variables, the non-vanishing correlations from Eq. (3.4) are

〈Φ ∆Φ〉 = −σ2
1 , 〈x̃ x̃〉 =

σ2
2

15
,

〈∆Φ ∆Φ〉 = σ2
2 , 〈ỹ ỹ〉 =

σ2
2

5
.

(3.8)

The determinant of the covariance matrix then becomes

det M =
σ6

1σ
10
2 γ

6834375
with γ ≡ σ2

0σ
2
2 − σ

4
1 , (3.9)

and the quadratic form, Eq. (3.2), turns into

Q =
3~η · ~η
2σ2

1

+
15x̃2

2σ2
2

+
5ỹ2

2σ2
2

+
15(ζ2

12 + ζ2
13 + ζ2

23)

2σ2
2

+
σ2

0(∆Φ)2

2γ
+

2σ2
1Φ ∆Φ

2γ
+
σ2

2Φ2

2γ
. (3.10)

In order to find the number density of potential minima, we have to invert the relations given in
Eq. (3.7), considering that only the diagonal elements of the tensor ζ are non-zero after transforming
to principal axes. After replacing (ζ̃1, ζ̃2, ζ̃3) by (∆Φ, x̃, ỹ) and changing the integration boundaries
accordingly, we integrate only over x̃ and ỹ because the Laplacian of the potential will become crucial
in the following discussion, when another constraint on ∆Φ will be introduced. We can now rewrite
Eq. (3.6) as

ñ(Φ,∆Φ) dΦ d(∆Φ) = C(N1 + N2) dΦ d(∆Φ) , (3.11)

with the integrals

N1 =

0∫
−∆Φ/2

dx̃

∆Φ/2∫
−3x̃−∆Φ

dỹ
∣∣∣∣(x̃3 − x̃ỹ2

)
(∆Φ − 2ỹ) (∆Φ − 3x̃ + ỹ)

∣∣∣∣ |(∆Φ + 3x̃ + ỹ)| e−Q̃ , (3.12)

N2 =

∆Φ/2∫
0

dx̃

∆Φ/2∫
3x̃−∆Φ

dỹ
∣∣∣∣(x̃3 − x̃ỹ2

)
(∆Φ − 2ỹ) (∆Φ − 3x̃ + ỹ)

∣∣∣∣ |(∆Φ + 3x̃ + ỹ)| e−Q̃ , (3.13)

the normalisation constant

C =
25
√

5

16π3σ3
1σ

5
2

√
3γ

, (3.14)

and the quadratic form

Q̃ =
1
2

15x̃2

σ2
2

+
5ỹ2

σ2
2

+
σ2

0(∆Φ)2

γ
+

2σ2
1Φ∆Φ

γ
+
σ2

2Φ2

γ

 . (3.15)

Equations (3.12) and (3.13) can be integrated analytically, giving identical results. The final expres-
sion for ñ(Φ,∆Φ) is

ñ(Φ,∆Φ) =
1

240π3σ3
1

√
15γ

(F1 + F2) exp

−
(
2σ2

1∆Φ + σ2
2Φ

)
Φ

2γ

 , (3.16)
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where F1 and F2 are functions depending only on the field’s Laplacian but not on the field itself,

F1 = 2σ2
(
5∆Φ2 − 16σ2

2

)
exp

−
(
6σ2

0σ
2
2 − 5σ4

1

)
∆Φ2

2σ2
2γ

 + σ2
(
155∆Φ2 + 32σ2

2

)
× exp

−
(
9σ2

0σ
2
2 − 5σ4

1

)
∆Φ2

8σ2
2γ

 , (3.17)

F2 = 5
√

10π ∆Φ
(
∆Φ2 − 3σ2

2

)
exp

−σ2
0 ∆Φ2

2γ

 erf
 √5 ∆Φ

2
√

2σ2

 + erf
 √5 ∆Φ
√

2σ2

 . (3.18)

We point out that Eqs. (3.16–3.18) are valid in this form only for ∆Φ > 0 and Φ < 0 since the
underlying integrations over x̃ and ỹ were carried out under these restrictions. Both assumptions are
appropriate; the first because of Poisson’s equation, and the second because we are only interested in
gravitationally bound objects whose potentials must be negative.

For the further evaluation of Eqs. (3.16–3.18), we need the first three spectral moments, defined in
Eq. (2.24), of the potential power spectrum including the additional weighting function Ŵ2

R(k).

3.3 Linear and non-linear evolution of gravitational fluctuations

The potential power spectrum PΦ(k) is related to the density power spectrum P(k) through Poisson’s
equation. The power spectrum for the initially Gaussian density perturbations, however, only describes
the linear evolution of fluctuations for which δ . 1. Thus, we also need an ansatz for their non-linear
evolution having higher amplitude. We shall use the spherical-collapse model to model non-linear
effects. Along the way, we shall introduce a proper definition of a filter scale R.

3.3.1 Linear power spectrum

Poisson’s equation in comoving coordinates (2.10) can be written in Fourier space as

− k2Φ̂ = 4πGρba2δ̂ . (3.19)

By the definition of the power spectrum, Eq. (2.23), and using ρb = (3H2
0Ωm0)/(8πGa3), the potential

power spectrum is related to the density power spectrum by

PΦ(k) =
9
4

Ω2
m0

a2

H4
0

k4 P(k) . (3.20)

Since P(k) ∝ k for k � keq and P(k) ∝ k−3 for k � keq, where keq is again the comoving wave number
of the perturbation mode entering the horizon at matter-radiation equality, we have PΦ(k) ∝ k−3 for
k � keq and PΦ(k) ∝ k−7 for k � keq.

Due to the steepness of the power spectrum, we have to introduce a cut-off wave number kmin when
evaluating the spectral moments,

σ2
j =

∞∫
kmin

k2dk
2π2 PΦ(k)Ŵ2

R(k) . (3.21)

Thus, kmin defines a sharp high-pass filter in k-space. It has to be chosen properly to filter out large
potential modes and therefore also large-scale potential gradients responsible for peculiar velocities
of collapsed structures. In this way, this filter ensures that the gravitational potential of a structure is
defined with respect to the large-scale potential value in its direct vicinity and that the constraint of a
vanishing potential gradient is fulfilled for structures of all sizes. If they moved, they would not be
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counted when searching for potential minima, and the number density derived in that way would be
too small (see also App. A). We will discuss in Sect. 3.4.3 how to find the proper kmin.

The evolution of the density power spectrum between the scale factors a1 and a2 is parametrised
by the linear growth factor D+(a) and the transfer function T (k, a) (see Eq. 2.39). Since T (k, a) only
changes for redshifts z & 100, we do not need to take it into account for the evolution of the power
spectrum at z < 100. Together with the additional factor of a−2 of Eq. (3.20), the evolution of the
potential power spectrum is thus given by

PΦ(k, a2) =

[
G+(a2)
G+(a1)

]2

PΦ(k, a1) , (3.22)

where we have defined the potential growth factor G+(a) ≡ D+(a)/a.
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Figure 3.1: Potential growth factor for three
different cosmologies.

We normalise G+ such that G+(a = 1) = 1.
Since D+(a) = a in an EdS universe, the potential
growth factor stays constant and thus, the potential
power spectrum does not evolve with time in this
case. This is not true for a ΛCDM and an OCDM
model, yet the variation with time remains small.
For cosmologies with Ωm , 1, ΩΛ , 0 and negli-
gible radiation density, the potential growth factor
is accurately approximated by the right-hand side
of Eq. (2.20) divided by a.

Figure 3.1 shows the evolution of G+ with red-
shift. Obviously, the expression “growth factor” is
somehow misleading because the potential power
spectrum’s amplitude is in fact decreasing with
time.

3.3.2 Non-linear evolution

Aiming at the number density of potential minima including non-linear evolution, we have to relate
the potential from linear theory used so far, Φ = Φl, to the potential including non-linear evolution
Φnl. We shall use the spherical-collapse model to estimate the ratio Φnl/Φl.

Gravitational potential in the centre of a homogeneous overdense sphere

A spherical and homogeneous overdensity with density contrast δ and radius R has a gravitational
potential given by Poisson’s equation,

1
r2

∂

∂r

(
r2 ∂

∂r
Φ

)
= 4πGρ̄ θH(R − r) , (3.23)

where θH is again Heaviside’s step function and ρ̄ is the density inside the sphere acting as the source
of the gravitational field. This equation holds in physical coordinates, while Eq. (2.10) uses comoving
coordinates. Integrating twice with the boundary conditions (∂Φ/∂r) → 0 for r → 0 and Φ → 0 for
r → ∞ yields

Φ(r) =


−2πGρ̄R2

(
1 −

r2

3R2

)
for r ≤ R ,

−
4πG

3
ρ̄

R3

r
else ,

(3.24)

showing that the potential at the centre, Φ0 ≡ Φ(r = 0), is

Φ0 = −2πGρ̄R2 . (3.25)
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Since the potential Φ(r) ∝ 1 − r2/(3R2) inside a homogeneous sphere, it may appear appropriate to
construct the low-pass filter from the window function

WR(r) =

(
1 −

r2

3R2

) (
16
15

πR3
)−1

(3.26)

instead of a top-hat. Its Fourier transform is given by

ŴR(k) =
5
[
3 sin u − u

(
3 + u2

)
cos u

]
2u5 with u = kR . (3.27)

Since this window function is more compact in real space than the top-hat, its Fourier transform is
slightly broader in k-space and thus includes more Fourier modes.

The window function (3.27) does not (and should not) reproduce the potential outside an isolated,
homogeneous sphere, which drops ∝ r−1. This is no surprise because it drops to the potential of the
homogeneous background within a finite radius, and the presence of a background potential signals
the breakdown of Newtonian gravity in the cosmological context.

Filter radius

The preceding consideration also provides a proper definition for the filter radius of the window func-
tion ŴR used for the calculation of the spectral moments (3.21). Poisson’s equation for the perturba-
tions in physical coordinates (subscript ‘r’) reads

∆rΦ = 4πGρ̄ , (3.28)

with ρ̄ = ρbδ. Combining Eqs. (3.25) and (3.28), we see that the central potential is Φ0 = −1
2∆rΦ R2

r .
We can use this relation to define a filter radius in physical coordinates by

Rr ≡

√
−2Φ

∆rΦ
. (3.29)

This expression remains valid in comoving coordinates (subscript ‘x’) if we replace the Laplacian in
physical coordinates by the Laplacian in comoving coordinates,

Rx =
Rr

a
=

√
−2Φ

a2∆rΦ
=

√
−2Φ

∆xΦ
. (3.30)

3.3.3 Ratio of linearly and non-linearly evolved potential

We shall use the potential in the centre of a spherical and homogeneous overdensity (3.25) to relate
the linear and non-linear potential depths. During the following calculation, we will again denote
quantities at an initial scale factor aini with the subscript ‘ini’, quantities at the turn-around scale
factor with ‘ta’, and quantities at the collapse scale factor acol with the subscript ‘col’ and use the
dimensionless quantities x = a/aat and y = R/Rta that we have already defined for the spherical-
collapse model in Sect. 3.21.

The potentials at the initial time and at collapse are

Φini = −2πGρ̄iniR2
tay2

ini , Φcol = −2πGρ̄colR2
tay2

col , (3.31)

respectively. Their ratio is
Φcol

Φini
=
δ̃v

δini

(
ycol

xcol

)3 (
xini

yini

)3 yini

ycol
, (3.32)
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where δ̃v = ∆̃v − 1. We have used here that the densities at the initial time and at collapse time are
ρ̄ini = ρb0a−3

iniδini and ρ̄col = ρb0a−3
colδ̃v, respectively. Using Eq. (2.57), we can write (yc/xc)3 = ζ/∆̃v

and yini ≈ ζ
1/3xini since ∆ini ≈ 1 for early times. This yields

Φcol

Φini
=
δ̃v

∆̃v

ζ1/3

ycol

xini

δini
≈
ζ1/3

ycol

xini

δini
. (3.33)

We have neglected the difference between δ̃v and ∆̃v in the last step, which is a good approximation
since ∆̃v = O(102). The ratio δini/xini ≡ C is given by

C =
3
5

[
ζ1/3

(
1 +

ΩΛ,ta

ζ Ωm,ta

)
+

1 −Ωm,ta −ΩΛ,ta

Ωm,ta

]
(3.34)

(Bartelmann et al., 2006). Since Eqs. (3.33) and (3.34) describe the non-linear evolution between scale
factors aini and acol, the linear and non-linear potential depths are related by

Φnl

Φl
=

Φcol

Φini

Φini

Φl,col
=
ζ1/3

ycol

1
C

G+(aini)
G+(acol)

, (3.35)
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Figure 3.2: The ratio of the potential depth that is
expected at collapse redshift zcol from linear the-
ory Φl and the one inferred from the spherical-
collapse model Φnl.

where Φl,col is the potential evolved linearly from
aini to acol. For an EdS universe, we have
Φnl/Φl = 10

3 , independent of the collapse red-
shift because the potential growth factor G+(a) is
constant and ycol = 1

2 . For more general cosmo-
logical models, however, it depends on the col-
lapse redshift.

We show Φnl/Φl for three different cosmolog-
ical models in Fig. 3.2. We arbitrarily choose the
initial scale factor to be five times the scale factor
at matter-radiation equality because this is early
enough for the potential not to have begun devel-
oping since we are in the matter-dominated era,
and late enough for ignoring any evolution of the
transfer function T (k, a) with time. While the ra-
tio (3.35) reaches the constant 10

3 expected in an
EdS model relatively quickly in the ΛCDM case
as the redshift increases, its evolution is much
slower for OCDM. We point out that the difference between the linear and the non-linear potential
evolution in the centre is by far not as large as for the density contrast, where it is of order 103...4.

3.3.4 Counting only collapsed structures

Since we are only interested in collapsed structures forming haloes, we have to include this additional
constraint in our calculations. Following Press & Schechter (1974), this can be done by only taking
structures into account whose linear density contrast exceeds the critical value δc. In our case, this
translates to the criterion that the Laplacian ∆Φ exceed a certain threshold ∆Φc, which is, according
to Poisson’s equation, given by

∆Φc(a) =
3
2

H2
0Ωm0

δc(a)
a

. (3.36)

In that way, we count only structures whose gravitational potential is “curved enough” so that the
number density of potential minima belonging to collapsed structures is finally

n(Φ) =

∞∫
∆Φc

d(∆Φ) ñ(Φ,∆Φ) , (3.37)
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with ñ(Φ,∆Φ) given by Eqs. (3.16–3.18).

3.4 Construction of the X-ray temperature function

Combining the results of the previous sections, we are now able to derive a function describing the
differential number density of structures as a function of their X-ray temperature based on the statistics
of minima in the cosmic gravitational potential. In order to count them properly, a high-pass filter is
introduced that removes disturbing large-scale modes. Assuming virial equilibrium, it is possible to
relate the potential depths to X-ray temperatures using the virial theorem.

3.4.1 Virial theorem

We can relate the potential depth Φnl to the X-ray temperature of a cluster using the virial theorem
for Newtonian gravity, which relates the ensemble-averaged kinetic and potential energies, 〈Ekin〉 and
〈Egrav〉, respectively, by 〈Ekin〉 = − 1

2 〈Egrav〉. The kinetic energy is connected to a temperature T by
〈Ekin〉 = 3

2 kBT , where kB is Boltzmann’s constant. The potential energy is mΦ with a proper mass m.
Assuming that the intracluster medium has primordial composition with Helium abundance Y = 0.24,
m = µmp with µ = 0.59. Particles near the cluster core feel the potential Φ(r) ≈ Φ0, thus the virial
theorem reads8

− µmpΦ0 = 3kBT . (3.38)

Since Φ0 can be regarded as the non-linear depth of a potential minimum, we can replace Φnl by
Φ0 = −3kBT/(µmp). Given a particular X-ray temperature, we calculate the corresponding linear
potential depth by relating the temperature to the non-linear potential using Eq. (3.38), and the latter
to the linear potential using Eq. (3.35) so that

Φl = −
3ycol

ζ1/3

C
µmp

G+(z)
G+(zini)

kBT . (3.39)

3.4.2 Evaluation steps

The X-ray temperature function is implicitly determined by Eqs. (3.16–3.18). Assuming a temperature
T , the linear potential depth Φl is found from Eq. (3.39). Then, Eq. (3.16) needs to be integrated over
∆Φ from ∆Φc to infinity. Since the smoothing radius (3.30) depends on the integration variable ∆Φ,
each step in the integration requires updating the spectral moments, cf. Eq. (3.21).

In practice, the temperature interval for which the X-ray temperature function is to be calculated
is divided into a reasonable number of bins large enough that the shape of the temperature function
can be inferred from interpolating between them. At first, each X-ray temperature Ti corresponding
to one particular bin has to be related to a linear potential depth Φl,i using Eq. (3.39). We also have
to take care of the Jacobian determinant of the transformation since n(T ) dT must be replaced by
n(Φl) (dT/dΦl) dΦl. Having related both quantities, it is possible to evaluate Eqs. (3.16–3.18).

In order to calculate the spectral moments σ0, σ1, and σ2, we also have to choose a reasonable
amount of bins for the Laplacian of the potential, which we will denote with ∆Φ j, since the spectral
moments are functions of both Φl and ∆Φ through the filter radius entering via the Fourier transform
of the window function, Eq. (2.27) or (3.27). Additionally, the cut-off wave vector kmin defining a
sharp high-pass filter in k-space is also a function of both quantities. A detailed discussion how to find
the proper kmin for a given temperature and Laplacian of the gravitational potential is presented in the
next section. Thus, we have to evaluate both the filter radius and kmin for each pair (Φl,i,∆Φ j) starting
for a given Φl,i with ∆Φ0 = ∆Φc.

8Strictly speaking, this is only valid for a universe with ΩΛ = 0. Due to the presence of dark energy, an additional potential
arises whose contribution is small (see Sect. 2.7 and Fig. 4.1, where the latter shows that the virial radius only changes
about few percents) so that we neglect it in our further calculations.
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Inserting the spectral moments into Eqs. (3.16–3.18) yields the number density of minima per po-
tential interval dΦl and per interval of the Laplacian d(∆Φ) for the specific parameter pair (Φl,i,∆Φc).
Since ∆Φc = O(104 km2 s−2 h2 Mpc−2), we choose the next step to be ∆Φ1 = ∆Φc + δ(∆Φ) with
δ(∆Φ) = 102 km2 s−2 h2 Mpc−2 and calculate now R and the spectral moments for the pair (Φl,i,∆Φ1).
We continue with ∆Φ j = ∆Φ j−1 + δ(∆Φ) for a given Φl,i until we fulfill the following convergence
criterion.

We approximate the integral in Eq. (3.37) by the trapezium rule. Hence, for a specific potential
value Φl,i, the number density n(Φl,i) is evaluated numerically as

n(Φl,i) ≈
δ(∆Φ)

2

N∑
j=1

[
ñ(Φl,i,∆Φ j−1) + ñ(Φl,i,∆Φ j)

]
. (3.40)

This summation is stopped at an index N chosen as the first index for which the relative contribution
to n(Φl,i) is smaller than 10−6. This is a proper break condition since ñ(Φl,∆Φ) tends rapidly towards
zero for ∆Φ→ ∞.

Having evaluated n(Ti) for each i, we have an appropriate approximation of the X-ray temperature
function’s shape in the chosen temperature interval.

3.4.3 High-pass filtering

As mentioned before, we need a proper high-pass filter in order to remove disturbing large-scale
potential modes since we want the potential associated with a collapsed structure to be defined with
respect to the large-scale potential level in its direct vicinity, and we want the structure to have no
peculiar motion so that the constraint ~η = ~0 is applicable. The natural filter choice is a sharp cut-off in
k-space since this will effectively remove both large-scale potential modes and potential gradients.

Let again R be the filter radius of either the top-hat (2.27) or the potential-related filter Eq. (3.26),
and Rhp the filter radius related to a sharp cut-off wave number khp in k-space by khp = 2π/Rhp. We
denote the ratio of both quantities with α so that

α ≡
Rhp

R
. (3.41)

Since R and Rhp define a low- and a high-pass filter, respectively, one can expect α > 1.
It is now a legitimate question how α should be chosen for calculating the correct number density of

objects having a particular potential depth. We argue that a natural choice exists. In Fig. 3.3, we plot
ñ(T,∆Φ) as a function of α. For each pair (Ti,∆Φ j), the number density peaks at some value αmax,
which is a function of both the temperature and the Laplacian of the potential. It increases with both
increasing Laplacian and increasing temperature. For low temperatures, the maximum is rather sharp,
but broadens as the temperature increases. This is most pronounced for the EdS universe. The overall
behaviour can be understood as follows.

On the one hand, decreasing the radius of the high-pass filter starting from a value much larger
than the typical size of the object excludes more and more modes on decreasing scales. In this way,
potential gradients are removed which would cause a non-zero peculiar velocity and thus a deviation
from the constraint ~η = ~0. Since more and more objects are put to rest, the number density of objects
with vanishing potential gradient increases. Figure 3.3 shows that the increase of the number density
is less steep for large (or hot) than for small (or cool) objects. This reflects the fact that massive, hot
objects, e.g. with T = 10 keV, are more likely located at potential minima, thus removing large-scale
modes has less effect on their number counts.

On the other hand, increasing the radius of the high-pass filter starting from a value much smaller
than the typical size of the relevant object adds more and more modes. While the window between
low- and high-pass filtering is too small, modes relevant for the structures considered are filtered out
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Figure 3.3: Differential number density ñ(T,∆Φ) as function of the parameter α for three different cos-
mologies and two temperatures at z = 0. Upper row: ΛCDM. Central row: OCDM. Lower row: EdS.
Left panels: T = 1 keV. Right panels: T = 10 keV. The values for ∆Φ were chosen to be multiples of the
critical Laplacian ∆Φc and are given in the plots. For T = 10 keV, we only plot the number density for
∆Φ = ∆Φc since it is a very steep function of ∆Φ and it is too small for larger multiples of ∆Φc to be seen.

and the halo number density remains approximately zero. Once modes are included that compose the
structures, the halo number density steeply rises as α is increased.

At a certain αmax, the number density of objects reaches a maximum, where both effects are bal-
anced. Then, all modes relevant for structures of size R =

√
−2Φi/∆Φ j are included, but larger modes

are excluded which would create a non-vanishing potential gradient. Thus, αmax can be used to define
kmin for each pair (Ti,∆Φ j) individually by

kmin =
2π

αmaxR
. (3.42)

This definition of kmin has to be used when evaluating the spectral moments (3.21).
In App. A, we present an alternative way to define a physically reasonable cut-off wave vector for

the evaluation of the spectral moments. It turns out, however, that the number density of objects with
a low X-ray temperature function is highly underestimated in this way.

3.4.4 Inferring the temperature function from the Press-Schechter mass function

In order to compare the X-ray temperature function that we have derived from the statistics of gravita-
tional potential perturbations to the classical Press-Schechter theory, we need a proper, albeit idealised,
and consistent mass-temperature relation. Since we used the virial theorem (3.38) to relate the temper-
ature to the potential, we will start at the same point to relate the temperature to a mass. Note that this
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has nothing to do with an assumption on real clusters, but merely serves the purpose of a theoretical
cross-comparison between the mass-based Press-Schechter approach and our direct derivation of the
temperature function.

We saw earlier that for a spherical and homogeneous overdensity, the potential depth in the centre
is Φ0 = −2πGρ̄R2, where ρ̄ = δ̃vρb is the constant density inside the perturbation. Nonetheless, we
shall replace δ̃v by the virial overdensity ∆̃v, which is a good approximation because δ̃v = ∆̃v − 1 and
∆̃v = O(102).

The mass of the overdensity is M = 4
3πρR3, where ρ is the total density inside the sphere. It is

related to the background density by ρ = ∆̃vρb. According to the previous statements, we can identify
ρ̄ with ρ since ρ̄ ≈ ρ. Combining the equations for the potential and the mass, and using the virial
theorem yields the temperature-mass relation

kBT =

(
πρ

6

)1/3
GµmpM2/3 . (3.43)

The density ρ inside the cluster is related to the background density by ρ(z) = ρcr0Ωm0∆̃v(z)(1 + z)3.
In our further calculations, however, we will use the virial overdensity ∆v, which was defined with
respect to the critical density instead of the background density (see Eq. 2.58), yielding

ρ(z) = ρcr0
Ωm0

Ωm(z)
∆v(z)(1 + z)3 . (3.44)

Inserting the previous equation into Eq. (3.43), normalising to M = 1015M� and ∆v = 178, and
combining all other quantities including H0 = 100 h km s−1 Mpc−1 into one normalisation factor, we
find

kBT = 7.83 keV
(

Ωm0

Ωm(z)
∆v(z)
178

)1/3 (
M

1015 h−1 M�

)2/3

(1 + z) . (3.45)

This is almost the same relation as given by Eke et al. (1996). The only difference is the normalisation
factor. While we used a spherical and homogeneous overdensity for the calculation in order to be
consistent with the derivation of the potential function, they derived a mass temperature-relation for
an isothermal sphere (see Sect. 2.8.1), which results in a different normalisation.

We shall use this relation to convert the classical Press-Schechter mass function into a temperature
function. Again, we must not forget to account for the Jacobian when transforming from mass to
temperature. In contrast to the transformation of the potential to the temperature, the Jacobian of
the mass-temperature transformation depends on temperature since both quantities are related non-
linearly.

Finally, we also use Eq. (3.45) to convert the mass functions derived by Sheth & Tormen (1999) and
Jenkins et al. (2001) and introduced in Sect. 2.9.4, to X-ray temperature functions, knowing that these
are fits to numerical simulations which include effects of ellipsoidal collapse, while the derivation of
our mass-temperature relation is based on spherical collapse. Yet, it should yield qualitative informa-
tion on the importance of ellipsoidal collapse in our potential approach, having in mind that structures
in the potential field are smoother than structures in the density field.

3.5 Results

In this section, we present the X-ray temperature functions for the ΛCDM, OCDM, and EdS cosmolo-
gies calculated from the statistics of gravitational potential perturbations and compare them to tem-
perature functions derived from three well-known mass functions. The results are shown in Fig. 3.4,
where we compare the X-ray temperature function inferred from the potential using Eq. (3.39) to
the X-ray temperature function calculated from the Press-Schechter, the Sheth-Tormen and the Jenk-
ins et al. mass functions using Eq. (3.45) for our three cosmological models and three redshifts.
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Figure 3.4: Comparison of the X-ray temperature functions derived from the statistics of gravitational
potential perturbations (Φnl) and the mass functions by Press & Schechter (PS), Sheth & Tormen (ST),
and Jenkins et al. (J) for three different cosmologies and three redshifts. The filters 1 and 2 are defined
by Eqs. (2.27) and (3.27), respectively. Upper row: ΛCDM. Central row: OCDM. Lower row: EdS. Left
panels: z = 0. Central panels: z = 1. Right panels: z = 2. Note that the y-axes are not scaled equally in
order to compare the temperature functions more appropriately.

The X-ray temperature function inferred from the statistics of fluctuations in the gravitational poten-
tial matches the temperature function inferred from the Press-Schechter mass function quite well for
all three cosmological models and redshifts shown. As expected, the filter modelled after the internal
potential profile of a homogeneous sphere (filter 2) yields slightly larger number densities especially
at the high-temperature end since it is wider in k-space than the top-hat filter (filter 1). The temper-
ature function based on our novel approach is in good agreement with the classical Press-Schechter
approach with an only slightly different amplitude depending on redshift. These differences, however,
may be irrelevant because of the idealising assumptions entering both approaches.

A comparison with temperature functions inferred from mass functions including elliptical collapse
like the Sheth-Tormen mass function shows that the deviations increase substantially with redshift.
This suggests that ellipsoidal collapse should also explicitly be included in the potential approach.
However, we emphasise again that this comparison is only qualitative since the mass-temperature
relation used is based on spherical and homogeneous objects so that the actual difference between the
different approaches may be even smaller.

3.6 Conclusions

In this chapter, we have developed a novel approach to a theoretical derivation of an X-ray temperature
function that does not depend on global, unobservable cluster quantities, but merely on the depth of the
gravitational potential, which is a locally defined quantity directly related to observables. Using the
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statistical properties of a Gaussian random field, we were able to derive a distribution for the minima in
the cosmic gravitational potential. Counting only those potential minima which are “curved enough”,
in the sense that their Laplacian exceeds a critical value, it was possible to compute semi-analytically
a potential function belonging to collapsed structures. The critical Laplacian, needed to distinguish
collapsed structures from non-collapsed structures, could be related to the critical density contrast δc
of the spherical-collapse model, which also plays an important role in the Press-Schechter formalism.

We have also managed to calculate the influence of non-linear structure formation on the potential
by referring again to the spherical-collapse model, which allows the ratio of the linearly and non-
linearly evolved potential depths to be computed. Both the linear and the non-linear evolution of the
potential are much slower compared to the evolution of the matter density. The ratio between the
non-linearly and linearly evolved potential depths, for example, is ∼30 times smaller than the ratio
∆v/δc.

One crucial ingredient to our approach is a proper high-pass filter that removes large-scale potential
modes and gradients resulting from them. We have found that choosing the filter scale such as to
maximise the number density of objects yields good agreement between the Press-Schechter approach
based on an idealised mass-temperature relation, and our direct derivation of the temperature function.
This criterion thus provides the foundation for using number counts of galaxy clusters in cosmology
without invoking global quantities like cluster masses. Although we have only presented results for
ΛCDM, OCDM, and EdS, it would be generally straightforward to extend our computation of the
X-ray temperature function to more elaborate cosmological models including e.g. quintessence.

Suggested by Fig. 3.4, we should achieve a better compatibility to results from N-body simulations
if ellipsoidal-collapse dynamics are included in the derivation. This is not as obvious as for density
perturbations since potential fluctuations are much less asymmetric, and their non-linear evolution is
much less pronounced. We will examine in Sects. 5.2 and 5.3 the effect of ellipsoidal-collapse dynam-
ics on our potential-based temperature function. Therefore, we will develop a consistent ellipsoidal-
collapse model in the next chapter. As we will see in Chap. 5, the inclusion of ellipsoidal-collapse
dynamics in the derivation of the potential-based X-ray temperature function leads to a function with a
different shape compared to the temperature functions derived from the Sheth-Tormen and Jenkins et
al. mass functions, but yet is in good agreement with a temperature function inferred from a numerical
simulation.

In the following chapters, we will use the filter (3.27) when calculating the spectral moments for the
potential-based X-ray temperature function since it better reflects the profile of a halo’s gravitational
potential.
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4 Chapter 4

Triaxial collapse and virialisation of
dark-matter haloes

In this chapter, we reconsider the ellipsoidal-collapse model by Bond & Myers (1996) and extend it
in two ways: We modify the treatment of the external gravitational shear field, introducing a hybrid
model in between linear and non-linear evolution, and we present a virialisation criterion derived from
the tensor virial theorem to replace an ad-hoc criterion employed so far in the literature. We compute
the collapse parameters δc and ∆v and find that they increase with ellipticity e and decrease with
prolaticity p. We marginalise them over the appropriate distribution of e and p and show the results
as functions of halo mass and virialisation redshift. While the hybrid model for the external shear
gives results very similar to those obtained from the non-linear model, ellipsoidal collapse changes
the collapse parameters typically by (20 . . . 50)%, in a way increasing with decreasing halo mass and
decreasing virialisation redshift. We qualitatively confirm the dependence on mass and virialisation
redshift expressed by a fitting formula for δc, but find noticeable quantitative differences in particular
at low mass and high redshift. A derived mass function is in good agreement with mass functions
recently proposed in the literature.

The contents of this chapter is published in Angrick & Bartelmann (2010).

4.1 Introduction

The spherical-collapse model, introduced in Sect. 2.7, is a fundamental ingredient in the theory of cos-
mic structure formation (see e.g. Wang & Steinhardt 1998; Engineer et al. 2000 or more recent works
by Mota & van de Bruck 2004; Bartelmann et al. 2006; Schäfer & Koyama 2008). Following the
collapse of a slightly overdense, homogeneous sphere, it allows the derivation of two essential param-
eters; (1) the overdensity of a virialised halo compared to the mean (∆̃v) or the critical cosmic density
(∆v), and (2) the critical linear density contrast δc. The former is important since it allows relating sizes
to masses of virialised structures, and the latter because it establishes a link between linear structure
formation and the population statistics of collapsed haloes as for the Press-Schechter mass function
(see Sect. 2.9.1). Despite fundamental doubts as to the validity of such a simplified model for accu-
rate cosmological predictions, the parameters derived from the spherical-collapse model or variants
thereof allow surprisingly far-reaching predictions such as the halo mass function or the correlation
properties of haloes, which are confirmed by numerical simulations.

The statistics of a Gaussian random field implies that spherical collapse should not occur. In fact,
the probability distribution for the eigenvalues λi of the Zel’dovich deformation tensor (Doroshkevich,
1970, see also Sect. 2.6) shows that spherical collapse has a vanishing probability,

p(λ1, λ2, λ3) =
153

8π
√

5σ6
R

exp
−3δ2

σ2
R

+
15I
2σ2

R

 (λ1 − λ2)(λ2 − λ3)(λ1 − λ3) , (4.1)
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since it requires λ1 = λ2 = λ3. In this equation, δ ≡ λ1 + λ2 + λ3, I ≡ λ1λ2 + λ2λ3 + λ1λ3, and σ2
R

denotes again the variance of the matter power spectrum smoothed on a scale R that corresponds to a
halo mass M, (see Eqs. 2.26 and 2.71). Modifications of the original Press-Schechter mass function
motivated by ellipsoidal collapse (the Sheth-Tormen mass function, see Sect. 2.9.4) substantially im-
prove the agreement of analytic predictions on the halo population with numerical simulations (e.g.
the Millennium simulation by Springel et al., 2005).

Ellipsoidal collapse was analysed many times before (Bartelmann et al., 1993; Eisenstein & Loeb,
1995; Bond & Myers, 1996). Several authors have worked with the model by Bond & Myers (1996),
generalising it for different cosmologies and introducing the scale factor a as a time variable (Monaco,
1995, 1997, 1998; Sheth et al., 2001; Sheth & Tormen, 2002; Ohta et al., 2004). We are reconsidering
it here for two reasons.

First, we want to analyse how different assumptions on the treatment of the environment of a halo
impact on the parameters ∆v and δc. Previous assumptions have been that the principal-axis system
of the homogeneous ellipsoid is either identical with that of the external gravitational shear field, or
that the two eigensystems do not coincide, introducing rotation and a deviation from the homogeneous
mass profile. We introduce another assumption here, letting the eigensystems of the collapsing ellip-
soid and its surrounding shear field follow each other until turn-around of the major principal axis and
then decoupling both.

Second, we want to stop the collapse along any of the principal axes according to a physically
motivated virialisation condition. Virialisation must be invoked to prevent the axes from collapsing
to zero, and thus to be able to follow the entire collapse of an ellipsoid, i.e. the collapse of its three
principal axes. Conventionally, the collapse of each axis is stopped when ai(a) = 0.177 a, where ai

is the scale factor of the i-th axis and a is the background scale factor (Bond & Myers, 1996; Sheth
et al., 2001). In this way, ∆ = a3/(a1a2a3) = 178 for spherical collapse in an EdS universe at the time
when the third axis virialises. However, the value 0.177 has no fundamental physical motivation, and
there is no guarantee for it not to be different for ellipsoidal rather than spherical collapse, or when
cosmologies other than EdS are to be considered. We present a general virialisation condition based
on the tensor virial theorem that avoids introducing such an uncalibrated factor. We find substantial
changes on both ∆v and δc from both modifications and point out several discrepancies of our results
with earlier studies.

4.2 The model

In this section, we shall briefly review the ellipsoidal-collapse model of Bond & Myers (1996) for
cosmologies with a cosmological constant introducing the scale factor a as time variable. Furthermore,
we shall present a physically motivated virialisation condition to stop the collapse of each axis, and
show how to find the proper initial ellipticity and prolaticity as a function of mass and virialisation
redshift.

4.2.1 The evolution equations

Let ai = Ri/Rpk be the dimensionless principal axes of the ellipsoid, where Ri with 1 ≤ i ≤ 3 are its
dimensional semi-major axes, and Rpk the size of a spherical top-hat corresponding to a mass M via
Eq. (2.71). The evolution of the three principal axes ai with time t in a cosmology with a cosmological
constant Λ = (8πG/c2) ρΛ is given by

d2ai

dt2 =
8
3
πGρΛai − 4πGρbai

(
1
3

+
δ

3
+

bi

2
δ + λext,i

)
(4.2)

(Bond & Myers, 1996), where G is the gravitational constant and c the speed of light. The density
contrast of the ellipsoid with respect to the background density is δ = (ρ − ρb)/ρb = a3/(a1a2a3) − 1.
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The parameters bi and λext,i denote the internal and external contributions to the gravitational tidal
shear which occur due to the deviation from sphericity. Generally, the total tidal field is described by
the tidal field tensor T with the elements Ti j = ∂2ϕ/(∂xi ∂x j) = Tint,i j +Text,i j, where ϕ denotes a scaled
version of the gravitational potential (cf. Sect. 2.6), and Tint,i j and Text,i j are the internal and external
contributions to the shear, respectively. After a transformation into the ellipsoid’s eigensystem, which
is the same as the eigensystem of T in this model, the internal shear can be evaluated as

bi(t) = a1(t) a2(t) a3(t)

∞∫
0

dτ

[a2
i (t) + 1]

∏3
k=1[a2

k(t) + 1]1/2
−

2
3
, (4.3)

while the external shear can be approximated by

λext,i(t) ≡


D+(t)

D+(tini)

[
λi(tini) −

δ(tini)
3

]
(linear approx.) ,

5
4

bi(t) (non-linear approx.) ,
(4.4)

where D+ is the linear growth factor introduced in Eq. (2.19), and the λi are the eigenvalues of the
Zel’dovich deformation tensor. See the first appendix of Bond & Myers (1996) for details of the
calculation. Here and in the following, the index ‘ini’ refers to initial values.

In linear approximation, the environment into which the ellipsoid is embedded evolves completely
independently of it, whereas in the non-linear approximation, it is tightly coupled to the ellipsoid. In
Sect. 4.3.1 we shall introduce the hybrid model as a third approximation for the external shear.

We can rewrite Eq. (4.2) by using the scale factor a as time variable and Friedmann’s equation
(1.17), yielding

d2ai

da2 +

[
1
a

+
E′(a)
E(a)

]
dai

da
+

[
3Ωm0

2a5E2(a)
Ci(a) −

ΩΛ0

a2E2(a)

]
ai = 0 , (4.5)

where a prime denotes differentiation with respect to a, and Ci ≡ (1+δ)/3+bi/2+λext,i. Equation (4.5)
defines a set of three coupled second-order differential equations, for which we need six independent
initial conditions compatible with the Zel’dovich approximation, Eqs. (2.45) and (2.46), for early
times. These are provided by

ai(aini) = aini[1 − λi(aini)] , (4.6)

dai

da
(aini) = 1 −

(
1 +

d ln D+(aini)
d ln a

)
λi(aini) ≈ 1 − 2λi(aini) , (4.7)

since D+(a) ≈ a for a � 1. Choosing aini = 2 × 10−5, this is comfortably fulfilled. In App. B, we
compare Eqs. (4.5–4.7) with the results presented by Monaco (1997) and see that they differ.

In the following, we shall assume that the eigenvalues λi of the Zel’dovich tensor are ordered as
λ1 ≥ λ2 ≥ λ3, which implies that the ellipsoid collapses along the direction 1, i.e. a1 → 0, first. At
that time δ → ∞, and the collapse of the remaining two axes can no longer be followed so that we
have to add a virialisation condition for each axis preventing its collapse to zero.

4.2.2 The virialisation condition

We want to replace the unphysical virialisation condition ai(a) = 0.177 a, inspired by considerations
of the ellipsoidal-collapse model in the EdS cosmology (see Sect. 4.1), by following a different ap-
proach. We present a physically well-motivated virialisation condition to stop the collapse of each axis
individually, starting from the tensor virial theorem (see Binney & Tremaine, 1987, pp. 213, 280),

1
2

d2Ii j

dt2 = 2Ki j + Πi j + Wi j + Vi j , (4.8)
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where I is the moment of inertia tensor, K and Π are the contributions to the kinetic energy tensor
coming from ordered and random motions, respectively, W is the potential energy tensor, and V is the
external potential energy tensor. Their elements are generally defined as

Ii j ≡

∫
V

d3x ρ xix j , Wi j ≡ −

∫
V

d3x ρ xi
∂Φint

∂x j
,

Ki j ≡
1
2

∫
V

d3x ρ viv j , Πi j ≡

∫
V

d3x ρσ2
i j ,

(4.9)

and

Vi j ≡ −
1
2

∫
V

d3x ρ
(
xi
∂Φext

∂x j
+ x j

∂Φext

∂xi

)
, (4.10)

where ρ is the density of the fluid, Φint and Φext are the gravitational potentials of the ellipsoid itself
and its surroundings, respectively, V is the volume which is integrated over, σ2

i j ≡ viv j − viv j are the
velocity dispersions, and the bar indicates averaging overV.

We now specialise to the case of a homogeneous ellipsoid. For a stable mass configuration, the
left-hand side of Eq. (4.8) has to vanish for each component of the inertial tensor individually. Since
the ellipsoid is assumed to be at rest and the ellipsoid’s eigensystem is chosen as a reference frame,
vi = 0 so that Ki j = 0 and Πi j =

∫
V

d3x ρ 〈v2
i 〉 δi j with the Kronecker symbol δi j. Note again that in this

framework, the eigensystems of the overdense ellipsoid and the gravitational tidal field are identical.
For a homogeneous ellipsoid, vi(xi) = (ȧi/ai)xi, thus

Πi j =
1
5

ȧ2
i Mδi j , (4.11)

with the mass M of the ellipsoid. The sum Wi j + Vi j can be evaluated using −~∇(Φ + Φext) = ~̈x and
Eq. (4.2) to be

Wi j + Vi j =

∫
V

d3x ρ
d2ai

dt2

xi

ai
=

1
5

a2
i M

(
8πG

3
ρΛ − 4πGρbCi

)
δi j . (4.12)

Requiring that Eq. (4.8) is fulfilled for each axis separately and introducing again the scale factor a as
time variable yields the virialisation conditions for the three axes ai,(

a′i
ai

)2

=
1

a2E2(a)

(
3Ωm0

2a3 Ci −ΩΛ0

)
. (4.13)

When this condition is fulfilled for an axis together with ȧi < 0, its collapse is stopped and its size is
frozen in.

We emphasise that the former equation is consistent with the virialisation condition for spherical
collapse in the EdS universe, where Rv/Rta = 0.5 (see Sect. 2.7). In this cosmology, Eq. (4.13)
becomes

R =
GM
Ṙ2

, (4.14)

with a1 = a2 = a3 ≡ R. Using the parametric solution

R =
Rini

2δini
(1 − cos θ) , t =

3tini

4δ3/2
ini

(θ − sin θ) (4.15)

(Engineer et al., 2000, compare also Eq. 2.61) together with the relations Rini/δini = Rta and R3
ini =

9GMt2
ini/2 indeed gives the expected result that Eq. (4.14) is satisfied when R = Rta/2.

For the ΛCDM model, the additional potential from the cosmological potential has to be taken
into account leading to Eq. (2.55) for the ratio of the radii at virialisation and collapse. The relevant
solution of this equation agrees precisely with the condition derived from the tensor virial theorem,
Eq. (4.13), as Fig. 4.1 shows. The small deviation occurs since we choose the time of virialisation
rather than collapse as a reference (z = zv) when using the tensor virial theorem. If we use the collapse
time (z = zcol) instead, both conditions yield identical results.
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Figure 4.1: Comparison of the virialisation con-
ditions from the scalar and tensor virial theorems.

4.2.3 The initial ellipticity and prolaticity

Equations (4.6) and (4.7) demand choosing initial values for the Zel’dovich deformation tensor to
define the initial deviation of the principal axes and their time derivatives from the background. We
shall show how they are chosen appropriately so that they comply with the assumed Gaussian nature
of the Universe’s initial conditions and represent a statistical average of haloes with the same mass M
and virialisation redshift zv but different shapes.

Starting from the probability distribution for the eigenvalues of the Zel’dovich deformation tensor
(4.1), the conditional probability distribution for the ellipticity e ≥ 0 and the prolaticity −e ≤ p ≤ e,
defined as e ≡ (λ1 − λ3)/(2δ) and p ≡ (λ1 − 2λ2 + λ3)/(2δ), respectively, was derived by Sheth et al.
(2001) to be

g(e, p|δ) =
1125
√

10π
e (e2 − p2)

(
δ

σ

)5
exp

[
−

5
2

(
δ

σ

)2
(3e2 + p2)

]
. (4.16)

To compute a statistical average of any quantity h(e, p) for a given halo that depends on e and p, one
should marginalise over the distribution g(e, p),

〈h〉 =

∞∫
0

de

e∫
−e

dp h(e, p) g(e, p) . (4.17)

However, a Taylor expansion of 〈h〉 up to second order in e and p around their mean values 〈e〉 and
〈p〉 under the distribution g(e, p) gives

〈h〉 = h (〈e〉, 〈p〉) +
1
2
∂2h
∂e2

∣∣∣∣∣∣
〈e〉,〈p〉

σ2
e +

1
2
∂2h
∂p2

∣∣∣∣∣∣
〈e〉,〈p〉

σ2
p , (4.18)

where σ2
e and σ2

p are the variances for e and p according to the distribution g. Up to first order,
〈h〉 = h (〈e〉, 〈p〉). Deviations occur only at second order. The expectation values for e and p as well
as their variances are given by

〈e〉 =
3σ
√

10π δ
, 〈p〉 = 0 ,

σ2
e =

(19π − 54)σ2

60π δ2 , σ2
p =

σ2

20δ2 .

(4.19)

Since the variances are ∝ (σ/δ)2, and σ/δ < 1, using the approximation 〈 f 〉 ≈ f (〈e〉, 〈p〉) introduces
only a small error, which is ∼1% for δc and ∼3% for ∆v for ΛCDM and OCDM. For EdS, the error is
larger and ∼3% for δc and ∼10% for ∆v. But since the latter cosmology is scientifically only of low
relevance and usually serves as a reference model only, the usage of the former approximation is well
justified. Instead of sampling f (e, p) at several points for e and p, one only has to evaluate it once for
〈e〉 and 〈p〉 = 0.
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Figure 4.2: Evolution of the principal axes and the external shear for a 1014 h−1 M� dark-matter halo with
e = 〈e〉 and p = 0 in the reference ΛCDM model. Left panel: Linear approximation. Central panel:
Non-linear approximation. Right panel: Hybrid approximation.

Generally, the eigenvalues λi are related to e and p by

λ1 =
δ

3
(1 + 3e + p) =

δ

3
+

σ
√

10π
, (4.20)

λ2 =
δ

3
(1 − 2p) =

δ

3
, (4.21)

λ3 =
δ

3
(1 − 3e + p) =

δ

3
−

σ
√

10π
(4.22)

(see e.g. Bond & Myers, 1996; Bardeen et al., 1986), where we have set e = 〈e〉 and p = 0 in the last
step.

4.3 Results

In this section, we show the results of the ellipsoidal-collapse model for the parameters δc and ∆v
for three different cosmologies and discuss how they are affected by the choice of the external-shear
model.

4.3.1 Influence of the external shear

Figure 4.2 shows the evolution of the three principal axes and the eigenvalues of the external shear for
a reference ΛCDM model with Ωm0 = 0.3, ΩΛ0 = 0.7, and σ8 = 0.8 for three different models of the
external shear and e = 〈e〉, p = 0. The shear in the linear approximation evolves completely smoothly
over the entire collapse time. Since the evolution of each eigenvalue is given by D+(a) (see Eq. 4.4),
Eqs. (4.20–4.22) imply that λext,1 > 0, λext,2 = 0, and λext,3 = −λext,1 < 0 at all times.

This is different in the non-linear approximation: At early times, the evolution of the λext,i is
the same, but soon thereafter, they start evolving non-linearly and λext,2 becomes slightly negative.
Noticeably, there are steps in the evolution of the external shear whenever an axis virialises since
λext,i ∝ a1a2a3, and the evolution of this volume factor changes after virialisation of each axis. In the
right panel, we introduce the hybrid approximation: Initially, the evolution of λext,i is described by the
non-linear model. When one of the axes turns around, however, the corresponding eigenvalue of the
external shear continues evolving linearly, i.e. its value at turn-around is then scaled by D+(a)/D+(ata).

We believe that the hybrid model is the preferred model for the evolution of the external shear since
it takes into account that the evolution of the ellipsoid itself and its vicinity should be tightly coupled
in the beginning. At turn-around, however, they are definitely decoupled so that choosing this moment
to switch from non-linear to linear evolution seems appropriate. Hence, we will use the hybrid model
for the evolution of the external shear in the following.

The influence of the external-shear model on the parameters δc and ∆v is shown in Fig. 4.3. For
a given mass and a given virialisation redshift zv, the initial overdensity is chosen such that the third
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Figure 4.3: δc (left panels) and
∆v (right panels) for three dif-
ferent models of the external
shear. Both quantities were
calculated for a 1014 h−1 M�
dark-matter halo in the refer-
ence ΛCDM model. Top pan-
els: e = 〈e〉 as a function of
virialisation redshift zv. Bottom
panels: e = 0.2 for all zv. In
both cases, p = 0.

axis of the ellipsoid finally virialises at zv. Both parameters can then be calculated by

δc =
D+(av)
D+(aini)

3∑
i=1

λi(aini) , ∆v =
Ωm(av) a3

v

a1(av) a2(av) a3(av)
. (4.23)

In this case, ∆v is defined with respect to the critical density as it can be primarily found in the
literature. For the definition with respect to the background density, ∆̃v, one simply has to omit
Ωm(av).

Using 〈e〉 as a function of virialisation redshift and p = 0 (top panels of Fig. 4.3), the dependence of
δc and ∆v on zv is almost the same for the non-linear and the hybrid models. However, both differ from
the linear model, showing that the external shear is most important at the beginning of the ellipsoid’s
evolution. At that time, the non-linear and the hybrid models agree. While δc(zv) is always smaller in
the linear compared to the other two models, the curves for ∆v(zv) cross. This reflects the circumstance
that the initial overdensity in the linear model is different from that in the two other models, leading to
a different initial ellipticity and therefore to a completely different evolution history. This can be seen
in the bottom panels of Fig. 4.3, for which we have chosen e = 0.2 independently of zv. They also
clearly show that a varying initial ellipticity drives primarily the evolution of δc with redshift, whereas
∆v also strongly varies for fixed e. In this case, both δc and ∆v are smaller in the linear-shear model
compared to the non-linear and the hybrid models.

4.3.2 Parameters as function of mass and redshift

Before we present general results for the parameters δc and ∆v, we should comment on a subtle but
very important issue: Whenever we want to compare our results with the ordinary spherical-collapse
model, we have to keep in mind that we calculate all quantities at the time when the third axis virialises.
Thus, we also have to compare these quantities to those from the spherical-collapse model that are also
calculated at the time of virialisation and not of collapse, i.e. when R = Rta/2 and not R = 0 for EdS.
This leads to slightly lower reference values of δc and ∆v since zcol < zv. Using the parametric
solutions of Ohta et al. (2004) for the linear and the non-linear overdensity,

δl =
3
5

[
3
4

(θ − sin θ)
]2/3

, ∆nl =
9
2

(θ − sin θ)2

(1 − cos θ)3 , (4.24)

respectively, and θ = 3π/2 at virialisation, we find that δc = 1.583 and ∆v = 147 for the EdS universe
when R = Rv independent of zv. Recently, Lee & Ng (2010) also pointed out the difference between
the parameter values at the times of collapse and virialisation and arrived at the same values.
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The top panels of Fig. 4.4 show δc and ∆v for three different cosmologies for e = p = 0, i.e.
spherical systems. The OCDM cosmology is the same as our reference ΛCDM model except that
ΩΛ = 0. For the EdS model, we set Ωm = 1 and ΩΛ = 0. Indeed, for the EdS universe, the constant
values derived analytically are also reproduced by solving Eq. (4.5) numerically. This demonstrates
again that Eqs. (4.5) and (4.13) are fully consistent with the well-known spherical-collapse model.
Note that the qualitative behaviour of ∆v(zv) is the same as ∆v(zcol) (compare e.g. with Bartelmann
et al., 2006). However, there is a difference for the critical linear overdensity δc whose shape as a
function of zv differs substantially from the shape as a function of zcol. This should illustrate that the
time chosen in the model when virialisation actually occurs (zv or zcol) can already have substantial
impact on the qualitative behaviour of relevant quantities as a function of redshift, hence it is not
necessarily a consequence of ellipsoidal collapse alone.

The bottom panels of Fig. 4.4 show δc and ∆v for a triaxial halo with e = 0.2 and p = −0.1. Also
in this case, both parameters are independent of zv for the EdS universe, although δc changes from
1.583 to 2.058, while ∆v stays almost the same, 148 instead of 147. Interestingly, the most drastic
changes in the shapes of both parameters occur for the OCDM model, for which the total density is
only approximately a third of the critical density at z = 0, while for the ΛCDM model their changes
are small.

The influence of the halo mass M and the virialisation redshift zv on both δc and ∆v are illustrated
in Fig. 4.5. While for both decreasing mass and decreasing redshift, δc is a monotonically decreasing
function, approaching the reference values from the spherical-collapse model in the EdS universe for
large masses and high virialisation redshifts, the situation for ∆v is much more complicated. For all
three models, it has a minimum at redshifts 4–5 and at a mass of ∼1016 h−1 M�. For smaller values of
mass and redshift, it is a monotonically decreasing function of both M and zv for the OCDM and EdS
models. It is also monotonically decreasing as a function of M in the ΛCDM model, but reaches a
maximum at zv ∼ 1. This is a direct result of the definition of ∆v with respect to the critical density. If
it was defined with respect to the background density, the factor Ωm(av) would not appear in Eq. (4.23),
and all three curves would increase with decreasing zv.

In Fig. 4.5, one can clearly see that the intervals that are covered for both δc and ∆v are the largest
for the EdS model while the differences between their values in the framework of the ΛCDM and the
OCDM model are not as large, indicating that the dependence of the ellipsoid’s evolution on the total
amount of matter in the Universe is stronger than on the value of the cosmological constant if varying
initial ellipticities are taken into account.

For either M → ∞ or zv → ∞, both δc and ∆v must reach the reference values for spherical collapse
in the EdS universe since the initial ellipticity 〈e〉 ∝ σ/δ and σ both decrease with increasing mass,
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and δ has to be the higher the earlier the structure is required to collapse. This expected behaviour
can be clearly seen for δc, whereas for ∆v this happens finally for very large M and zv. We should
stress again in this context that a crucial portion of the dependence on mass and virialisation redshift
is driven by the change in the initial ellipticity, comparing Figs. 4.4 and 4.5.

We compare in Fig. 4.6 the results of this chapter for δc as a function of mass and redshift with
the fitting formula (2.85) of Sheth et al. (2001). The left panel shows that the dependence on mass is
similar for both. However, the fit by Sheth et al. (2001) is less steep as a function of mass resulting
from the differences of their underlying work to ours: First, they use the linear-shear model instead of
the hybrid model, leading to a smaller δc for all redshifts as shown in Fig. 4.3. Second, the collapse
of each axis is stopped using the artificial condition ai = 0.177 a, leading to δc = 1.686 as a reference
value at high mass. Thus, the fitting formula provides a larger value for large masses, while our
approach leads to a δc = 1.583 for M → ∞ due to the virialisation condition that we apply. Third, for
a given initial overdensity δ, Sheth et al. (2001) use the most probable value emp = (σ/δ)/

√
5 instead

of the expectation value 〈e〉 given by Eq. (4.19), which leads to initial ellipticities that are slightly too
low so that the asymptotic limit for high redshifts is reached earlier than in our case.

The right panel of Fig. 4.6 shows a similar behaviour for δc as a function of redshift. The differences
between the fitting formula and the result of our work again occur due to the different virialisation time
and condition, and the difference between the most probable and the expectation value of e.

For applications, fitting formulae for both δc and ∆v may be useful. We provide expressions here,
which are inspired by Eq. (2.85). For δc(M, z), we suggest

δc(M, z) = δc,sph(zv)

1 + b

σ2(M, zv)
δ2

c,sph(zv)

c , (4.25)

where b = 0.6536, c = 0.6387, and both δc,sph and σ2 are cosmology-dependent quantities. Note again
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the fitting formula (2.85) for
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Figure 4.7: Influence of the ini-
tial ellipticity e and prolaticity p
on the parameters δc (top panels)
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different cosmological models at
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dicate values for a combination of
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p ∈ [±e/4, ±e/2] (see Eq. 4.19).
For a fixed e, both δc and ∆v grow
for decreasing p.

that in our case, the redshift of virialisation zv has to be chosen as reference for z for both δc,sph and
σ2. For a spatially-flat ΛCDM model with Ωm ∈ [0.2, 0.4], M ∈ [1011, 1015] h−1 M�, and z ∈ [0, 10],
the maximal error is ∼1.8% with a mean error of ∼0.4%.

A similar functional dependence can be found for ∆v(M, z). Only a small correction term has to be
added to arrive at a satisfactory accuracy. We find

∆v(M, z) = ∆v,sph(zv)
[
a + bσ2c(M, zv) + d (1 + zv)2/5 log9/4(M)

]
(4.26)

with a = 0.3819, b = 0.5379, c = 0.7589, and d = 3.456 × 10−4. In the same range as above, the
maximal error is ∼5% with a mean error of ∼1%.

4.3.3 Influence of initial ellipticity and prolaticity

In Fig. 4.7, we plot both δc and ∆v as a function of the initial ellipticity e and prolaticity p centered
around their expectation values given by Eq. (4.19) for three different cosmologies at z = 0. For
increasing e and decreasing p, both parameters grow qualitatively in the same way as already reported
by Sheth et al. (2001) (cf. their Fig. 1). Quantitative deviations arise from the differences in the applied
algorithm as discussed in Sect. 4.3.2. For a given mass and virialisation redshift, the initial overdensity
for the EdS universe is larger compared to both ΛCDM and OCDM due to a shorter physical time
interval that corresponds to the same redshift interval, resulting in a larger 〈e〉 and σe, but also in
larger curvatures of δc and ∆v with respect to e and p. The latter are the sources of the larger error
in the approximation 〈h〉 ≈ h(〈e〉, 〈p〉) discussed in Sect. 4.2.3. Since the redshift-time relation is not
very different between ΛCDM and OCDM, the dependences of δc and ∆v on e and p are comparable.

4.3.4 Mass function

Using Eq. (4.25), we are able to construct the mass function of dark-matter haloes using the extended
Press-Schechter formalism developed by Bond et al. (1991) and Lacey & Cole (1993), as introduced
in Sect. 2.9.2, which is based on the first-upcrossing distribution of the density contrast δ as a function
of the “time” variable S = σ2(M). We shall proceed similarly to Sheth & Tormen (1999, 2002) and
Sect. 2.9.2 and use the scaled variable ν ≡ δ2

c,sph/S to derive the mass function for our standard ΛCDM
cosmology.

As Sheth & Tormen (2002) pointed out, expressing the first-upcrossing distribution f as a function
of ν has the advantage that it is only necessary to calculate f (ν) for a barrier of height B(ν, z) at one
arbitrary redshift to infer the mass function n(M) at any other redshift by a simple rescaling. For a
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given first-upcrossing distribution f (ν), the differential mass function can be calculated using relation
(2.76).

First, we want to find an accurate fit to the first-upcrossing distribution of a moving barrier which is
given by the mass-dependent linear overdensity parameter of the ellipsoidal collapse,

B(ν) = δc,sph
(
1 + 0.6536 ν−0.6387

)
(4.27)

(see Eq. 4.25). The parameter δc,sph is evaluated at zv = 0. We ran one million random walks and
recorded the first-upcrossing values for ν ∈ [0.01, 20] in 100 equidistant bins in logarithmic space.
The resulting distribution ν f (ν) is nicely expressed by the function

ν f (ν) = A
[
1 + (aν)−p] √

aν
2π

exp
(
−

aν
2

B(ν)
δc,sph

)
. (4.28)
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Figure 4.8: Comparison between the first-up-
crossing distribution of the moving barrier (4.27),
inferred from an ensemble of one million random
walks, and the fitting formula (4.28).

Thus, our suggested fitting formula is a slight
modification of the functional form (2.86) pro-
posed by Sheth & Tormen (1999, 2002) with
the additional factor B(ν)/δc,sph in the expo-
nential and the scaling variable a compared to
Eq. (2.86). The best-fit parameters are A =

0.357, p = 0.212 and a = 1.171. The result is
shown in Fig. 4.8.

Second, to find a viable mass function from
the first-upcrossing distribution, we proceed in
the same way as Sheth & Tormen (1999) and
Sheth et al. (2001), normalise f (ν) to unity and
rescale the variable a such that we are in agree-
ment with the standard Sheth-Tormen mass func-
tion and a mass function based on N-body sim-
ulations proposed by Courtin et al. (2011). The
latter is based on a first-upcrossing distribution
that has the same functional form as that pro-
posed by Sheth & Tormen (1999), but slightly different best-fit parameters,

ν f (ν) = Ã
[
1 + (ãν)− p̃

] √
ãν
2π

exp
(
−

ãν
2

)
, (4.29)

with Ã = 0.348, ã = 0.695, and p̃ = 0.1. Note that in their definition of ν, the linear density contrast
δc,sph has to be taken at collapse. Normalising the first-upcrossing distribution based on the moving
barrier of our ellipsoidal-collapse model to unity yields a rescaled parameter A→ A′ = 1.364 A.

We compare the resulting mass function with those by Sheth & Tormen (1999) and Courtin et al.
(2011) for three different redshifts in Fig. 4.9. The parameter a was rescaled by a → a′ = 0.625 a.
Deviations from the Sheth-Tormen mass function at high masses occur at high redshifts which is com-
patible with the Courtin et al. mass function. Overall, our proposed mass function lies in between
these two, suggesting that differences between N-body simulations and the Sheth-Tormen mass func-
tion might be due to an imprecise treatment of the ellipsoidal-collapse dynamics.

4.4 Conclusions

We have reconsidered the collapse of a homogeneous, triaxial ellipsoid in an expanding background
universe and extended the treatment of Bond & Myers (1996) in two ways:
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• We have introduced a physically motivated criterion for the onset of virialisation along each
principal axis of a collapsing ellipsoid. We have derived this criterion from the tensor virial the-
orem, demanding that the inertial tensor stabilises and its second time derivative vanishes. This
approach is a generalisation of the usual virialisation condition for the spherical-collapse sce-
nario and thus fully consistent with it. It replaces the conventional requirement that virialisation
of an ellipsoid’s dimensionless semi-major axis ai occurs when ai(a) = 0.177 a is fulfilled.

• We have introduced a hybrid model for the influence of the external gravitational shear field
acting on the ellipsoid, supplementing the two different models of Bond & Myers (1996). The
principal axes of the shear field evolve with those of the halo before it turns around and de-
couples from the background expansion, and then continues evolving linearly while the halo
evolves non-linearly and collapses. We have shown that the differences between the hybrid and
the non-linear model are relatively small.

For a given initial ellipticity e and prolaticity p, and for a specified virialisation redshift zv, the
ellipsoidal-collapse model then gives a unique answer for the linear density contrast δc at virialisation,
as well as for the overdensity ∆v at that time. The probability distribution for e and p, conditional on
the density contrast δ, is determined by the probability distribution of the eigenvalues of the Zel’dovich
deformation tensor, as shown by Sheth et al. (2001). It is characterised by the variance of the matter-
density fluctuations on a scale fixed by the halo mass required. We have shown that the marginalisation
over e and p can be simplified by evaluating the ellipsoidal collapse at their mean values 〈e〉 and
〈p〉 = 0.

Our main results are as follows:

• The collapse parameters δc and ∆v depend only weakly on the model for the external grav-
itational shear. The hybrid model and the non-linear model by Bond & Myers (1996) give
approximately the same results.

• When supplied with our virialisation condition derived from the tensor virial theorem, the
ellipsoidal-collapse model returns values δc and ∆v that differ substantially from those obtained
with the spherical-collapse model. Depending on halo mass and redshift, deviations of order
(20 . . . 50)% are common. After marginalisation over e and p, δc and ∆v increase with decreas-
ing halo mass and with decreasing virialisation redshift.

• Both parameters increase with increasing initial ellipticity e and decrease with increasing pro-
laticity p, as already suggested by Sheth et al. (2001).

• Our results for δc qualitatively confirm the dependence on halo mass and virialisation redshift
given by a fitting formula by Sheth et al. (2001). Deviations in particular at low mass and high
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redshift occur due to the differences in the virialisation condition, the model for the external
shear, and the marginalisation over e.

• The mass function based on our refined treatment of the ellipsoidal-collapse model is in good
agreement with those proposed by Sheth & Tormen (1999) for low redshifts and Courtin et al.
(2011) for high redshifts. This suggests that differences between the Sheth-Tormen mass func-
tion and results from N-body simulations at large redshifts may occur due to an imprecise treat-
ment of the ellipsoidal-collapse dynamics.

In the next chapter, we will incorporate the ellipsoidal-collapse model as presented here into the
approach for the X-ray temperature function without reference to mass presented in Chap. 3.
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5 Chapter 5

The influence of mergers on the cluster
temperature function and cosmological
parameters derived from it

In this chapter, we develop a parameter-free analytic model to include the effects of mergers into the
theoretical modelling of the X-ray temperature function of galaxy clusters. We include this description
into the model for the cluster population based on fluctuations of the gravitational potential introduced
in Chap. 3. Comparisons with a numerical simulation reveal that the theoretical model is in good
agreement with the simulation results. We show that building the model on the dynamics of spherical
rather than ellipsoidal collapse yields better results if emission-weighted temperatures are used, while
ellipsoidal collapse yields good agreement between model and simulation for mass-weighted temper-
atures. Analysing two different samples of X-ray clusters, we quantify the influence of mergers and
a conversion between different temperature definitions on the joint determination of Ωm0 and σ8. If
effects from mergers are included, temperature functions based on cluster masses and on the gravi-
tational potential are in good agreement with other cosmological probes, whereas the conversion to
spectroscopic-like temperatures does not seem to be necessary.

The results of this chapter are published in Angrick & Bartelmann (2011).

5.1 Introduction

Galaxy clusters are a potentially very powerful probe of non-linear cosmological structure formation
since their abundance and its evolution depends sensitively on the matter density Ωm0, the normalisa-
tion of density fluctuations σ8 and the cosmological constant term ΩΛ0.9 Conventionally, theoretical
predictions of the cluster population parameterise clusters by mass (see Sect. 2.9). As already pointed
out in Sect. 3.1, this is potentially problematic since mass is strictly not observable and an integral
quantity which, for irregularly shaped bodies without well-defined boundary, is hard to define unam-
biguously. Calibration relations are needed between the mass and observable quantities such as X-ray
temperature and luminosity, which are themselves prone to systematic and random uncertainties.

We have proposed a different approach avoiding any reference to mass in Chap. 3, where we have
shown that the X-ray temperature function of the cluster population, i.e. their number-density distri-
bution with X-ray temperature, can be theoretically predicted based on the statistics of gravitational-
potential fluctuations. This procedure has several advantages. First, it parameterises the cluster popu-
lation directly by their temperature, which is a locally defined observable tightly related to the potential

9We restrict ourselves to the ΛCDM model here, a generalisation towards more exotic forms of energy densities with
a negative equation-of-state parameter sufficiently negative to yield the observed acceleration of the Universe, e.g.
quintessence, could be easily done.

67



CHAPTER 5. THE INFLUENCE OF MERGERS ON THE TEMPERATURE FUNCTION

depth. Unambiguities caused by the integral definition of the mass are thus avoided. Second, calibra-
tion relations for the mass are circumvented, thus removing their scatter from the uncertainty of any
inferences (see also Lau, 2010). Third, the gravitational potential evolves much less than the matter
density, extending the range of validity of linear structure evolution.

We have shown in Chap. 3 under which conditions this potential-based temperature function repro-
duces the theoretical predictions based on matter density and mass. Here, we address two subsequent
questions. First, we compare the potential-based temperature function to a gas-dynamical, numerical
simulation. While we find agreement at low redshift, there is increasing disagreement towards mod-
erate and higher redshifts. This brings us to the development of an analytic model for the effect of
cluster mergers on the X-ray temperature function, which leads to a very good agreement of our the-
oretical predictions based on potential statistics with the numerical results. Our analytic model could
be considered as providing an analytic complement to the numerical study by Randall et al. (2002).

Second, we use the potential-based temperature function including the merger model to infer the
cosmological parameters Ωm0 and σ8 from two different samples of galaxy clusters. The results are
not conclusive yet, mainly because of tensions between the different samples, but we find reasonable
values for both parameters provided we use a definition of X-ray temperature that is adapted to the
comparison with the gravitational potential.

5.2 Generalising the temperature function towards ellipsoidal
collapse

In the following, we use the X-ray temperature function introduced in Chap. 3 and an extension thereof
based on the generalisation from spherical to ellipsoidal collapse. We will use the results of the
ellipsoidal-collapse model presented in Chap. 4 and implement it in our formalism for the X-ray
temperature function where results from the spherical collapse were used.

We have to modify Eq. (3.37) since in the ellipsoidal-collapse case, the critical Laplacian ∆Φc
is now a function of the variable ∆Φ, which one has to integrate over, through R =

√
−2Φl/∆Φ

(see the last paragraph of Sect. 3.3.2), where Φl is again the linearly evolved gravitational potential.
Equation (3.37) becomes

n(Φl) dΦl =

∞∫
0

d(∆Φ) ñ(Φl,∆Φ) θH[∆Φ − ∆Φc(Φl,∆Φ)] dΦl , (5.1)

with Heaviside’s step function θH. Note that it is still a good approximation to smooth the density field
with an isotropic top-hat of size R and not to introduce an anisotropic smoothing function at the initial
time, when using the ellipsoidal- instead of the spherical-collapse model, since we are well within the
linear regime, and the deviation from sphericity is of order a few times 10−5.

The potential in the centre of an ellipsoid with ai = Ri/Rpk is given by

Φ0 = −πG ρ̄ a1a2a3 R2
pk

∞∫
0

dτ√
(a2

1 + τ)(a2
2 + τ)(a2

3 + τ)
(5.2)

(Binney & Tremaine, 1987, p. 57), where ρ̄ = ρbδ is the density responsible for the gravitational
potential. For a sphere, a1 = a2 = a3 ≡ ã, and the integral can be solved analytically, yielding
2/ã, hence the result for the sphere (3.25) with R = ãRpk is reproduced. We proceed exactly in the
same way as in Sect. 3.3.3, calculating the ratio between linear and non-linear potential at the time
of collapse. Again, quantities at a small initial scale factor aini are labelled with the index ‘ini’ and
quantities at the time of collapse with ‘col’. Using the approximations a1,ini ≈ a2,ini ≈ a3,ini ≈ aini, and
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∆ini ≈ 1, we arrive at

Φnl

Φl
=

acol

2δini

D+(aini)
D+(acol)

∞∫
0

dτ√
(a2

1,col + τ)(a2
2,col + τ)(a2

3,col + τ)
, (5.3)

where we have again used the fact that for the virial overdensity, we can approximate δ̃v = ∆̃v−1 ≈ ∆̃v
since ∆̃v is of order 100. All quantities that are necessary to evaluate Eq. (5.3) can be calculated using
the ellipsoidal-collapse model presented in Chap. 4. Note that in the ellipsoidal case, the ratio of
non-linear and linear potential becomes dependent on both Φl and ∆Φ via the ai,col.

To infer an averaged linear potential for a given non-linear one, we marginalise over the dependence
on ∆Φ weighted by ñ(Φl,∆Φ) so that

〈Φl〉∆Φ(Φnl) =

∫ ∞
0 d(∆Φ) Φl ñ(Φl,∆Φ) θH[∆Φ − ∆Φc(Φl,∆Φ)]∫ ∞

0 d(∆Φ) ñ(Φl,∆Φ) θH[∆Φ − ∆Φc(Φl,∆Φ)]
, (5.4)

where Φl = Φl(Φnl,∆Φ) via Eq. (5.3).

5.3 Confronting theory with results from a simulation

We now compare the analytic results for both X-ray temperature functions, using either spherical-
or ellipsoidal-collapse dynamics, to a hydrodynamical simulation by Borgani et al. (2004) for a flat
concordance ΛCDM model with Ωm0 = 0.3, Ωbar0 = 0.04, h = 0.7, and σ8 = 0.8 in a box of side-
length 192 h−1 Mpc, starting at redshift zstart ' 46. The gas physics was implemented using G-2,
a massively parallel N-body/SPH tree code with fully adaptive time-resolution (Springel, 2005). The
density field was sampled with 4803 dark matter and an equal amount of gas particles with masses
MDM = 6.6 × 109 M� and Mgas = 9.9 × 108 M�, respectively. During the time evolution, the number
of gas particles decreases due to their conversion into star particles, which have slightly lower mass
than the gas particles.

The simulation includes radiative cooling processes following Katz et al. (1996), and a photo-
ionising background expected from quasars which ionise the Universe at z ' 6. Star formation is
modelled using the hybrid multiphase model for the interstellar medium by Springel & Hernquist
(2003). The simulation code also includes a method to follow the production of metals. However, the
effects of metals on the cooling function are not taken into account. This only affects the analysis of
simulated galaxy clusters with temperatures T . 1 keV. For the evaluation of the X-ray temperature
function, cluster catalogues at the five redshifts 0, 0.2, 0.5, 0.7, and 1 are available.

In numerical simulations, the temperature of a cluster is defined as

T ≡

∫
V

dV W Tgas∫
V

dV W
, (5.5)

where Tgas is the temperature of a gas particle and W is a weight function (Mazzotta et al., 2004). The
integral covers a specified volume V, e.g. the sphere defined by the virial radius. Depending on the
choice of the weight function, mainly three different temperatures are used in the literature:

(1) the mass-weighted temperature Tmw with W = mgas, where mgas is the mass of the gas element,

(2) the emission-weighted temperature Tew with W = Λ(Tgas) n2, where Λ(Tgas) ∝
√

Tgas is the
cooling function and n the gas density, and

(3) the spectroscopic-like temperature Tsl with W = n2/T 3/4
gas .
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Figure 5.1: Comparison of the X-ray temperature function inferred from the simulation at z = 0 using
different temperature definitions with the theoretically predicted temperature functions including either
spherical- (Φsph) or ellipsoidal-collapse (Φell) dynamics. Left panel: Temperatures evaluated inside Rvir.
Right panel: Temperatures evaluated inside R2500.

Tmw is easy to calculate, but physically not well motivated. Hence, Tew was used to relate tem-
peratures from simulations with spectroscopically derived temperatures. But since disagreements
remained, Tsl was introduced to match the spectroscopic temperatures of clusters in Chandra and
XMM-Newton surveys better. For z = 0, the catalogue includes three differently defined temperatures
averaged over various radii. The same is true for the higher redshifts, besides that Tsl is missing.

Also based on the simulation by Borgani et al. (2004), Rasia et al. (2005) provide a fitting formula
relating the spectroscopic-like to the emission-weighted temperature for clusters with Tew & 2 keV at
z = 0,

Tsl = (0.70 ± 0.01)Tew + (0.29 ± 0.05) . (5.6)

We will use that relation in Sects. 5.5 and 5.6 later.
In Fig. 5.1, we compare the differential number density of clusters inferred from the simulation for

z = 0 using all three different temperature definitions, where the theoretical prediction includes either
spherical- or ellipsoidal-collapse dynamics. The predicted temperature function based on ellipsoidal
collapse is in better agreement with the simulation for T & 1 keV if the mass-weighted temperature
within the virial radius Rvir is used (left panel), while spherical collapse suffices if emission-weighted
temperatures are used instead.

The reason for this discrepancy might be that Tew is weighted by n2 and therefore pronounces
the cluster cores, whereas Tmw is weighted by n, hence outer parts become more important instead.
Therefore, the deviation from sphericity seems important only in the outskirts of clusters, while the
number density of clusters based on the core temperatures can be well modelled using spherical-
collapse dynamics. The temperature function based on Tsl lies between the two predictions and is
hence not well-described by either of the two models.

Interestingly, when considering the temperature functions inferred within R2500 (right panel), i.e. re-
stricting the point of view to the very inner part of the halo per definition, the three functions approach
each other and are more or less well described by the theoretical description based on the spherical-
collapse model, where again the temperature function based on Tew fits the prediction best. This
behaviour seems to confirm the former statement that the inner parts of clusters are well described by
spherical-collapse dynamics. In addition, the virial theorem was used to relate the non-linear potential
to a temperature in the centre of clusters so that the prediction should be valid primarily when based
on the temperatures in the central region.

Since the mass-weighted temperature is not well motivated, we concentrate on the temperature
function based on Tew within R2500 from now on, also because the theoretical prediction invoking the
spherical-collapse dynamics is much less time-consuming. Figure 5.2 compares the result from the
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Figure 5.2: Comparison of the X-ray temperature function from the simulation based on Tew within R2500
with the theoretical prediction including the spherical-collapse model.

simulation using the spherical model also for redshifts z > 0. One can clearly see that the higher the
redshift, the more the results of the simulation disagree from the theoretical prediction. The simulation
data systematically fall above the prediction for z ≥ 0.5. In the following section, we speculate that
this effect is due to cluster mergers, which are much more numerous in the past than now, and develop
a model for taking them into account in the construction of the cluster temperature function. Since in
the definition of Tew, the temperature of each gas particle is weighted by the square of the gas density,
not only the centre of the galaxy cluster is pronounced, but also infalling subclumps due to mergers
contribute significantly.

5.4 Modelling merger effects

Randall et al. (2002) have shown with numerical simulations that mergers do have a strong impact on
the X-ray temperature and luminosity functions of haloes and thus, cosmological parameters inferred
from them without including this additional effect are biased. Since clusters that are undergoing
mergers are shifted from lower to higher temperatures and due to the exponential cut-off at the high-
temperature end, especially this part of the temperature function is enhanced. Consequently, Randall
et al. (2002) find that the inferred σ8 is biased towards higher values, whereas Ωm0 is biased towards
lower values. Both parameters change by ∼15–20%.

We choose a different approach here, trying to incorporate the essential physical effect of mergers
in a simple analytic model based on the extended Press-Schechter formalism by Lacey & Cole (1993)
introduced in Sect. 2.9.3. We see there that the conditional probability for a halo with mass M1 at time
t1 to have mass M2 + dM2 at t2 can be calculated using Eq. (2.83). Changing variables to M ≡ M1,
∆M ≡ M2 − M1 and z ≡ z(ω2), ∆z ≡ z(ω1) − z(ω2) yields

p(M,∆M, z,∆z) d(∆M) ≡ p[S (M + ∆M), ω(z)|S (M), ω(z − ∆z)]
∣∣∣∣∣dS (M + ∆M)

d(∆M)

∣∣∣∣∣ d(∆M) , (5.7)

where ω(z) is again the critical linear density contrast scaled by the growth factor, ω(z) = δc(z)/D+(z),
and S (M) = σ2(M) is the variance of the matter power spectrum (2.26) using the top-hat filter function
in real space (2.27) with the scale R as a function of mass given by Eq. (2.71).

Assume now that the temperature increase ∆T (M,∆M) due to a merger of a mass M with another
mass ∆M < M originates from the kinetic energy of the gas transported with the infalling clump,
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which is completely transformed to thermal energy. The gain of energy is therefore

∆E =
1
2

fb ∆M (∆v)2 !
=

3
2

NkB ∆T , (5.8)

where fb ∆M is the baryon fraction of the lower-mass halo, ∆v is the relative velocity of the compo-
nents, and N = fbM/(µmp) is the total number of gas particles in the halo of mass M. Note that in
this ideal case, the factor fb cancels exactly. To guess ∆v, assume that the larger component is at rest,
while the halo of mass ∆M approaches from infinity. In this case, the velocity can be easily calculated
by equating potential and kinetic energy, so that

(∆v)2 =
2GM

R
with R =

(
3M

4πρc∆v

)1/3

. (5.9)

Combining Eq. (5.8) with the first equation of (5.9) yields

kB∆T =
2
3

Gµmp ∆M
R(M)

, (5.10)

where R(M) is given by the second equation of (5.9). We assume that the time scale for the temperature
increase is set by the sound-crossing time

tsc =
R
cs

with cs =

√
5
3

kBT
µmp

(5.11)

(Randall et al., 2002), where cs is the sound speed.

Tvir,1(M)

Tvir,1(M) + ∆T (M, ∆M)

Tvir,2(M + ∆M)

virialised object

temperature boost
due to mergers

virialised object

time t

temperature
T

tsc

Figure 5.3: Illustration of a cluster’s temper-
ature curve due to a merger as assumed in our
model.

As illustrated in Fig. 5.3, we thus model the tem-
perature boost in an idealised, abrupt way: The
halo of mass M has a temperature Tvir,1(M) be-
fore the merger, which increases instantaneously to
Tvir,1(M) + ∆T (M,∆M) for the time period tsc and
then drops again instantaneously to Tvir,2(M + ∆M),
assuming that a virialised halo of mass M + ∆M has
finally formed. When inferring cosmological param-
eters in the next section, we will either use the theo-
retically motivated mass-temperature relation (3.45)
for virialised objects, derived for spherical and ho-
mogeneous objects, or an empirical relation to relate
temperatures and masses.

Starting from the number density of virialised
galaxy clusters n(T ), which can be calculated as ex-
plained in Chap. 3, we calculate two correction terms.
The first is the number density of clusters that reach
a temperature T only due to mergers,

n+(T ) ≡

∞∫
0

d(∆M)

∞∫
0

dM n[Tvir(M)] p(M,∆M, z,∆z) δD[T − Tvir(M) − ∆T (M,∆M)] θH(M − ∆M) ,

(5.12)
where we ensure via Dirac’s delta function δD and Heaviside’s step function θH that only combinations
of ∆M and M contribute to the integral for which Tvir(M)+∆T (M,∆M) = T and ∆M < M are fulfilled.
The redshift interval ∆z is set by the sound-crossing time (5.11) since in our simple model, one should
be able to see all mergers at redshift z that have happened in the redshift interval ∆z before. Starting
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from Eq. (1.17), changing variable from a to z and integrating over the time period at which the
temperature boost due to the merger occurs, leads to a relation between ∆z and tsc,

tsc =
1

H0

z+∆z∫
z

dz′

E(z′) (1 + z′)
. (5.13)

Two assumptions where implicitly made during the derivation: First, the number density n(T ) is
assumed not to change significantly during ∆z, and second, the increase by ∆M is only due to a
single merger event, ignoring multiple simultaneous merger events and smooth accretion. It turns out,
however, that ∆z is short enough for these assumptions not to result in a significant error contribution.
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Figure 5.4: Comparison of the result from the simulation with the theoretical prediction both including
(solid line) and excluding (dashed line) the effect of mergers on the temperature function. We compare
with the emission-weighted temperature Tew calculated inside R2500 (red data points) and R500 (green data
points) except the upper left plot, where we also compare with the scaled spectroscopic-like temperature
Tsl inside R500 using Eq. (5.6).
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The second correction term arises due to clusters that would have a temperature T if they were
virialised, but have a temperature higher than T due to mergers,

n−(T ) ≡

M(T )∫
0

d(∆M) n(T ) p[M(T ),∆M, z,∆z] . (5.14)

Here, we use again Eq. (3.45) to assign a mass M to the temperature T . The total number density of
clusters is then given by

nges(T ) = n(T ) + n+(T ) − n−(T ) . (5.15)

In Fig. 5.4, we compare the prediction of our X-ray temperature function both with and without the
enhancement by mergers with the results from the simulation by Borgani et al. (2004). The shape of the
temperature function influenced by mergers is in qualitative agreement with Randall et al. (2002). The
relative change of the number density increases with temperature and redshift. Using our simple model
for the effects of mergers, the temperature function based on the emission-weighted temperature within
R2500 from the simulation is now in good agreement with the theoretical prediction for T & 1 keV, the
temperature range for which the results from the simulation can be trusted (see Sect. 5.3). For R500,
however, the result from the simulation is always slightly below the theoretical prediction, especially
for low redshifts. But since we always use the central temperature in the theoretical derivation of the
temperature function, small deviations are expected in this case.

Using Eq. (5.6) to scale Tsl inside R500 and comparing the resulting temperature function to the pre-
diction including mergers in the top left plot shows a better agreement with the theoretical prediction
for z = 0. The reason is that the temperature function based on the scaled spectroscopic-like tem-
perature (blue data points) seems to lie systematically slightly above the one based on Tew (red data
points) at the high-temperature end so that Eq. (5.6) does not seem to map both temperatures onto each
other precisely. Unfortunately, the spectroscopic-like temperatures for the individual clusters from the
simulation are not available for higher redshifts so that we cannot compare the two for this regime.

5.5 Inferring cosmological parameters

In this section, we want to infer the cosmological parameters Ωm0 and σ8 from two different samples
by Ikebe et al. (2002) and Vikhlinin et al. (2009a) using our theoretical model for the X-ray tem-
perature function both with and without the effect of mergers to quantify their influence on the final
outcome. Additionally, we compare the results of our approach using the statistics of minima in the
cosmic gravitational potential to the traditional method invoking mass functions and an empirical M-T
relation to see if any of the two gives tighter constraints.

5.5.1 The samples

The first flux-limited sample by Ikebe et al. (2002) consists of 61 clusters and is based on ASCA and
ROSAT data with a median redshift of z = 0.046 in the temperature range 1.4 keV < T < 10.55 keV.
It covers 8.14 steradians, and the flux limit is 1.99 × 10−11 ergs s−1 cm−2 in the 0.1–2.4 keV band.
The maximal search volume Vmax for each cluster is calculated and listed for an open model with
Ωm0 = 0.2 and ΩΛ0 = 0.0 and for a flat model with Ωm0 = 0.2 and ΩΛ0 = 0.8. Although Vmax itself
depends on the cosmological parameters, it changes only very slightly with them. Neglecting this
effect in the following analysis therefore does not induce a significant error.

The second sample encompasses two subsamples by Vikhlinin et al. (2009a), one at high and one
at low redshift, based on ROSAT PSPC All-Sky (RASS) and 400 deg2 data. The low-redshift sample
consists of 49 clusters with flux S > 1.3 × 10−11 erg s−1 cm−2 in the 0.5–2 keV band from several
samples of RASS with a total area of 8.14 steradians. The redshift coverage is 0.025 < z < 0.25 with
〈z〉 ≈ 0.05, and temperatures are in the range 2.61 keV < T < 14.72 keV.
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The high-redshift sample consists of 36 clusters from the ROSAT 400 deg2 survey (Burenin et al.,
2007) in the redshift range 0.35 < z < 0.9 with 〈z〉 ≈ 0.5 and a redshift-dependent flux limit in the
0.5–2 keV band. For z > 0.473, the limiting flux is 1.4 × 10−13 erg s−1 cm−2, whereas for z < 0.473,
the flux limit corresponds to a minimal X-ray luminosity of LX,min = 4.8 × 1043(1 + z)1.8 erg s−1. The
cluster temperatures are in the range 2.13 keV < T < 11.08 keV.

For both subsamples, the effective differential search volume dV/dz as a function of mass M and
cosmological parameters Ωm0, ΩΛ0 and h = 0.72 for both subsamples was made available in electronic
form on a grid by A. Vikhlinin. To convert it to a function of temperature, we used the best-fit values
of the mass-temperature relation of Vikhlinin et al. (2009a),

M500 = M0

( T
5 keV

)α
E−1(z) , (5.16)

where M0 = (3.02 ± 0.11) × 1014 h−1 M�, α = 1.53 ± 0.08, and E(z) is again the expansion function
of a Friedmann model.

5.5.2 The fitting procedure

Since the errors on the cluster number counts are Poissonian, we use the C statistic of Cash (1979)
for unbinned data to find the best-fit values for Ωm0 and σ8, assuming a spatially flat universe, hence
ΩΛ0 = 1 −Ωm0. The C statistic is defined as

C ≡ 2

N −
∑

i

ln ni

 , (5.17)

where N is the total number of objects expected from the sample assuming a theoretical model and ni is
the theoretically expected differential number density of the i-th cluster in the sample with temperature
Ti and redshift zi. The sum extends over all sample members.

In total, we fit six different theoretical models to the two subsamples of Vikhlinin et al. (2009a):

(1) mass function by Tinker et al. (2008) (see Sect. 2.9.4),

(2) the same including merger effects,

(3) temperature function based on the gravitational potential (see Chap. 3) assuming that the mea-
sured temperature is equal to Tew,

(4) the same including mergers effects,

(5) temperature function based on the gravitational potential assuming that the measured tempera-
ture is equal to Tsl with rescaling according to Eq. (5.6),

(6) the same including merger effects.

In the first two cases, we assume the mass-temperature relation (5.16) whenever we have to relate a
mass to a temperature or vice versa, thus also when applying our analytical merger model. To properly
take the scatter into account, we convolve with a log-normal distribution,

pM(T |M) dT =
1

√
2πσln T T

exp

− [ln T − ln Texp(M)]2

2σ2
ln T

 dT (5.18)

where the expected temperature Texp(M) is given by Eq. (5.16) using the best-fit values. The standard
deviation is mass-dependent and set to

σln T = 0.03 + 0.04 |ln[ME(z)] − ln M0| (5.19)
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Figure 5.5: Uncertainties in the mass-temperature relation (left panel) and the Tsl-Tew relation (right
panel), modelled by varying standard deviations of a log-normal (σln T ) and a normal distribution (σT ),
respectively.

due to the uncertainty of M0 and α; see the left panel of Fig. 5.5. In the last four cases, we convolve
with a normal distribution of the form

pTsl(T |Tsl) dT =
1

√
2πσT

exp
− [T − Tew(Tsl)]2

2σ2
T

 dT , (5.20)

where Tew = (Tsl − 0.29)/0.7 (cf. Eq. 5.6). To take the scatter in the relation into account, the standard
deviation is set to σT = 0.1

√
Tsl; see the right panel of Fig. 5.5. We also use Eq. (5.20) to account for

an error contribution in cases 3 and 4 by simply setting Tew = Tsl.
Taking these uncertainties into account, the expected number of objects of each subsample is given

by

Nlow|high =

z2∫
z1

dz

T2∫
T1

dT
dVlow|high

dz
(T, z)

∫
dx n(x)px(T |x) , (5.21)

where x can be either mass M or spectroscopic-like temperature Tsl depending on the theoretical model
used to fit the data (mass function or temperature function). The integral boundaries depend on the
subsample and are given in Sect. 5.5.1 for z and T . The integration over x has to be done over the
whole valid range of px. Finally, the expected differential number density of the i-th cluster is simply
given by the convolution

nlow|high,i =
dVlow|high

dz
(Ti, zi)

∫
dx n(x)px(Ti|x) . (5.22)

To jointly fit both the low and the high-redshift cluster samples of Vikhlinin et al. (2009a), we have to
add the two contributions, finding

C = 2

Nlow −
∑

i

ln nlow,i + Nhigh −
∑

j

ln nhigh, j

 . (5.23)

For the sample by Ikebe et al. (2002), we proceed analogously, but the situation is much easier since
we only deal with one single sample that covers only a small redshift interval. The latter implies that
we do not introduce a significant error if we ignore the redshift evolution of the mass or temperature
function, respectively, in the analysis. Instead, we compute the theoretical functions at the sample’s
median redshift of z = 0.046 in the same way as Ikebe et al. (2002) did so that we only have to integrate
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over the temperature when calculating the total expected number of objects from the sample. Hence,
the C statistic is given by

C = 2

N −
∑

i

ln ni

 (5.24)

with

N =

T2∫
T1

dT Vmax(T )
∫

dx n(x)px(T |x) and ni = Vmax(Ti)
∫

dx n(x)px(Ti|x) . (5.25)

The conditional probability px(T |x) is again given by either Eq. (5.18) or Eq. (5.20), respectively, thus
assuming the same errors on the relations as for the Vikhlinin et al. (2009a) data. To better compare
with the results by Ikebe et al. (2002), we shall also use the classical Press-Schechter mass function
(2.74) instead of the one by Tinker et al. (2008) and relate mass and temperature via Eq. (3.45).

We search for minima of the C statistic as a function of the two cosmological parameters Ωm0 and
σ8, which enter both via n(x) and the volume factors dV/dz and Vmax. Only because the latter is very
insensitive to changes in these two parameters, its dependence on Ωm0 and σ8 can be neglected. Cash
(1979) showed that one can create confidence intervals for the C statistic in the same way as it can
be done for a χ2 fit using properties of the χ2 distribution. Following Lampton et al. (1976), intervals
with confidence y are implicitly given solving

y =

t∫
0

dχ2 q(χ2) (5.26)

for t, where q is the density of the χ2
p distribution with p degrees of freedom determined by the number

of parameters. For 95% confidence and p = 2, it follows that t = 5.991. Using the minimum of the
C statistic Cmin, we can simply calculate the 95% confidence contours by searching for points in the
parameter space for which C = Cmin + 5.991.

5.6 Results

In Fig. 5.6, we present the 95% confidence contours for the samples by both Ikebe et al. (2002) and
Vikhlinin et al. (2009a). Comparing the left and right panel, one can see that the results from both
data sets are compatible with each other, although pronounced differences exist. However, for the
Vikhlinin et al. (2009a) data, the confidence contours are smaller due to the additional information on
the temperature function’s redshift evolution.

The mass-based temperature functions (red contours) and the potential-based temperature functions
without conversion from Tsl to Tew (blue contours) give similar and compatible results, i.e. the con-
fidence contours are in agreement with each other and have approximately the same size. When red-
shift evolution information is added (right panel), it seems that the direction of degeneracy is slightly
changed for the potential-based temperature functions so that σ8 can be constrained more tightly com-
pared to the left panel. For the mass-based temperature function, there is no such effect. Overall, the
potential-based functions yield slightly smaller best-fit values for σ8 compared to their mass-based
counterparts.

If merger effects are taken into account, σ8 is significantly lowered while Ωm0 is increased for all
temperature functions. Consequently, the confidence contours of the results including and excluding
mergers do not overlap. This result is in good agreement with the work by Randall et al. (2002), who
also found using numerical simulations that mergers do have a drastic impact on the results for those
two parameters.
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Figure 5.6: 95% confidence contours for the various theoretical models presented in Sect. 5.5.2. The
results for the potential-based temperature function assuming that the measured temperature corresponds
to either Tsl or Tew are labeled Φ,Tsl and Φ,Tew, respectively. The crosses mark the respective best-fit
values. Parameter constraints from a joint analysis of WMAP5, BAO, and SN data inferred from Komatsu
et al. (2009) are indicated by the black solid contour. Left panel: Ikebe et al. (2002) data. Right panel:
Vikhlinin et al. (2009a) data.

Assuming that the measured temperature is equal to Tsl and thus converting it to Tew before com-
paring it to the theoretical potential-based temperature function (green contours) has a similar effect
as mergers: σ8 is decreased while Ωm0 is increased. Interestingly, equating the measured temperature
with Tew and directly using it as input for the theoretical temperature function including the effect of
mergers (blue solid contours) and transforming the measured temperature from Tsl to Tew without in-
cluding merger effects (green dashed contours) give almost identical (as for Vikhlinin et al., 2009a) or
at least similar (for Ikebe et al., 2002) confidence contours. Hence, these two described processes are
highly degenerate. Additionally, merger boosts increase the uncertainty on Ωm0 since the confidence
contours become more elongated in this direction.

All confidence contours are in agreement with a joint analysis of the five-year data release of the
Wilkinson Microwave Anisotropy Probe (WMAP5) and data from both baryonic acoustic oscillations
(BAO) and and type-Ia supernovae (SN) by Komatsu et al. (2009) (black solid contour) except one:
if both the temperature conversion from Tsl to Tew and merger effects are included in the calculation
of the X-ray temperature function (green solid contour), the resulting confidence contour no longer
overlaps with the one by Komatsu et al. (2009). This may imply that one either has to identify the
measured temperature directly with the temperature that is used in the theoretical model and to in-
clude additional merger effects, or one has to convert the measured temperature using Eq. (5.6) to a
theoretical temperature which is then used in the model. However, in the latter case it seems that one
has to exclude merger effects since including both corrections results in values for σ8 and Ωm0 that are
inconsistent with other cosmological probes.

We feel that the first approach is correct since in the theoretical derivation of the pure X-ray tem-
perature function, we explicitly assume virial equilibrium, which only relaxed clusters should have
reached. Combining the results of Randall et al. (2002), who also found that mergers do have a sig-
nificant impact on the inferred values for Ωm0 and σ8, with the results of Sect. 5.4, we believe that
correcting for merger effects should be a necessary step. Note additionally that the scaling relation
(5.6) between both temperatures was established for clusters at z = 0 and hence, it is not known how
this relation evolves with redshift.

In the preceding discussion, however, we should keep in mind that measurements of σ8 from CMB
data are degenerate with the optical depth due to reionisation. Breaking this degeneracy requires
polarisation data, e.g. the T -E cross-power spectrum. Thus, its value is sensitive to uncertainties in
particular in the reionisation parameters and has changed significantly several times with subsequent
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data releases. Additional information from BAO and SN do not directly constrain σ8 either, but rather
tighten constraints on the matter density Ωm0 h2 through information on the cosmological constant at
fixed spatial curvature. We thus hesitate to accept σ8 as derived from WMAP data as a firm reference.
Weak-lensing data, that are in principle capable of constraining σ8 more directly, still yield a fairly
broad range of results, σ8 ∼ 0.6 – 0.9; cf. the compilation in Bartelmann (2010b). Some tension
between expectations and data are also reflected in the literature. For example, while Evrard et al.
(2008) prefer a high normalisation of the power spectrum to be consistent with numerical simulations,
Reiprich (2006) concludes that data from the HIFLUCS sample prefer a low σ8.

Vikhlinin et al. (2009a) take merger effects into account by dividing the clusters of their samples into
relaxed and unrelaxed due to their respective X-ray morphology. If a cluster is classified as unrelaxed,
the mass estimate from Eq. (5.16) is multiplied by a factor of 1.17, assuming that the M-T relations
for these two classes of clusters evolve separately but similarly. This approach is inspired by results of
a numerical simulation by Kravtsov et al. (2006). We think that this rigorous classification of clusters
into relaxed and unrelaxed objects is problematic and should be avoided if possible. This can be done
using our model of merger effects from Sect. 5.4. The resulting solid red contour in the lower panel
of Fig. 5.6 is in good agreement with Vikhlinin et al. (2009b) (see their Fig. 3), where the rigorous
classification was made. This and the compatibility with other cosmological probes indicate that our
merger model can improve the determination of cosmological parameters from X-ray data without
having to decide individually if a cluster is relaxed or not, at least if mass functions and an empirical
M-T relation are used to model an X-ray temperature function.

5.7 Conclusions

In the first part of this chapter, we have refined the theoretical X-ray temperature function derived in
Chap. 3 in two different ways: First, we have used the ellipsoidal-collapse model of Chap. 4 to account
for effects of the dynamics of ellipsoidal rather than spherical collapse and second, we have developed
a simple analytic and parameter-free model that takes into account the net effect of temporary X-ray
temperature boosts of galaxy clusters that previously underwent mergers on the temperature function.
Comparing these two modifications to an N-body simulation by Borgani et al. (2004), we have found
the following results:

• Taking into account ellipsoidal-collapse dynamics is only important when comparing the theo-
retical model to temperature functions of numerical simulations that are based on mass-weighted
temperatures averaged over a large volume (e.g. inside the virial radius). Temperatures from real
observations, however, are similar to the emission-weighted or the spectroscopic-like temper-
ature, Tew or Tsl, respectively. We have shown that temperature functions based on Tew are in
good agreement with the theoretical model only for spherical-collapse dynamics.

• Especially for z & 0.5, the effects of mergers cannot be excluded since the higher the redshift, the
more clusters are unrelaxed and therefore deviate from virial equilibrium. Our simple analytic
and parameter-free model based on the merger probability derived by Lacey & Cole (1993)
can account for these effects. Including it in our theoretical modelling leads to a substantially
improved agreement with the simulation for redshifts 0 ≤ z ≤ 1.

In the second part, we have used both mass-based and potential-based X-ray temperature functions
together with samples of Ikebe et al. (2002) and Vikhlinin et al. (2009a) to constrain the cosmological
parameters Ωm0 and σ8. We have analysed the influence of merger effects on the inferred values of
both parameters by using our analytical model. In addition, we have tested whether it is necessary
to convert the measured temperatures to Tew or if it is possible to compare them to the theoretical
prediction directly. The main results are the following:
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• Our potential-based temperature function leads to confidence contours in the Ωm0-σ8 plane that
are compatible to those inferred from classical mass-based temperature functions. The best-fit
values might be shifted by a few percent. However, the formalism does not refer to cluster
masses whose relation to observables have to be calibrated.

• Different temperature definitions give different results. Identifying the measured temperature
directly with the temperature that is used in the theoretical model and additionally including
merger effects, or converting the measured temperature using Eq. (5.6) before comparing to the
model and disregarding merger effects give similar results for Ωm0 andσ8. Since the comparison
to the simulation and the results from the mass-based temperature functions indicate that merger
effects lead to biases, we believe that the direct comparison between measured and theoretical
temperatures is the correct choice when using our potential-based X-ray temperature function.

• Almost all of our results are compatible with constraints from a joint analysis by Komatsu et al.
(2009) using WMAP5+BAO+SN data. Only if both the temperature conversion from Tsl to Tew
and merger effects are taken into account, the resulting confidence contours disagree with the
latter. Since merger effects do have a significant impact on the determination of Ωm0 and σ8
(one of the main results of Randall et al., 2002), a temperature conversion does not seem to be
necessary in the context of the potential-based temperature function.

• The combination of the mass function by Tinker et al. (2008) with our simple analytic merger
model yields similar results as the technique by Vikhlinin et al. (2009a,b), i.e. rigorously classi-
fying galaxy clusters into relaxed and unrelaxed objects. However, we believe that our model is
physically better justified since we take merger effects into account statistically.

• Although the results for the samples by Ikebe et al. (2002) and Vikhlinin et al. (2009a) are
in agreement with each other, pronounced differences exist, implying that the final confidence
regions from our analysis of the data might still be biased from systematics in the X-ray analysis
and therefore, even better agreement with other cosmological probes could be achieved.
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6 Chapter 6

Basics of weak gravitational lensing

When light passes through the gravitational potential of an object (the lens), it is deflected so that
another object (the source) behind the lens appears at a position on the sky different from the location
that it would have without the lens. Additionally, the image of the source is distorted. Dependent on
the local strength of the gravitational potential, the resulting effects are different so that one basically
differentiates three regimes:

(1) Strong lensing

The most impressive features like giant arcs and luminous circles, the so-called Einstein rings,
can be seen in the strong-lensing regime, where the source lies either directly behind the lens
or very close to its centre. In the first case, an Einstein ring can be observed while in the
second case, highly distorted images of the background source form arcs. Since a very deep
gravitational potential is needed to produce these spectacular events, galaxy clusters usually
serve as lenses, while the source is often a single galaxy in the background.

(2) Weak lensing

In this regime, the effects of gravitational lensing are much less spectacular and only lead to
small image distortions since the local gravitational potential that the light ray passes is not as
deep as in the strong-lensing regime. A spherical galaxy, for example, would appear elliptical
to an observer. But since galaxies carry intrinsic ellipticities which are not known a priori, but
which should average out if averaged over a sufficiently large amount of galaxies, the weak-
lensing regime has to be treated statistically. We will present its basic formalism in this chapter.
We recommend the review by Bartelmann & Schneider (2001) for further reading.

(3) Microlensing

This regime encompasses gravitational-lensing effects that are caused by the passage of a star
or planet in front of another star inside the Milky Way resulting in a magnification of the back-
ground star’s light curve. Using this effect, 12 exoplanets have been found until now.10 Although
the exoplanet itself cannot be seen directly, it adds a second but much smaller maximum as a
characteristic fingerprint to the light curve of the background star.

We illustrate characteristic examples for the different lensing regimes in Fig. 6.1. For a detailed
discussion of gravitational lensing as a whole, we recommend the review by Bartelmann (2010b).

6.1 Lens equation

Since the distances between observer and lens as well as lens and source are much larger compared
to the extent of both the lens and the source, one usually works in the framework of the thin-lens
10http://exoplanet.eu/catalog-microlensing.php, last update on February 5th, 2011
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(a) Strong lensing (b) Weak lensing (c) Microlensing

Figure 6.1: Typical examples for the different lensing regimes. (a) Galaxy cluster Abell 2218 with numer-
ous arcs.11(b) Illustration of the weak-lensing effect for spherical and elliptical galaxies.12(c) Light curve
of the OGLE-2005-BLG-390 microlensing event. The second smaller maximum on the right is due to the
magnification caused by an exoplanet.13

approximation, thus projecting the mass and the gravitational potential of the lens along the line-of-
sight onto a plane perpendicular to it at distance Dd from the observer. This is the so-called lens
plane, where the light deflection is assumed to take place. The corresponding plane at the distance Ds
from the observer and at distance Dds from the lens plane is the source plane. For large cosmological
distances, Dds , Ds−Dd due to the non-additive behaviour of the angular-diameter distance discussed
in Sect. 1.4. A typical lens system is sketched in Fig. 6.2. Since all the following quantities are defined
on two-dimensional planes, we write them as vectors in the form x = (x1, x2).

β

θ

α̂

lens plane source plane

apparent
position

observer

Dd Dds

Ds

η

ξ

lens

object

Figure 6.2: Geometry of a typical lens system.

A light beam from a source at position η
intersects the lens plane at position ξ, where
both positions are defined perpendicular to
the line-of-sight that goes through the cen-
tre of the lens. The two points enclose the
angles β and θ with the optical axis, respec-
tively. The light is deflected by an angle
α̂ which depends on ξ due to the position-
depending gravitational potential. With the
definitions above, the angles β and θ can be
written as

β =
η

Ds
and θ =

ξ

Dd
. (6.1)

From the intercept theorem for the lens situ-
ation shown in Fig. 6.2, one can deduce that
the light ray reaching us under the angle θ
has to fulfill

η + Dds α̂ =
Ds

Dd
ξ , (6.2)

which can be expressed for the angles β and θ instead of the positions η and ξ by using Eq. (6.1). This
yields

β = θ − α(θ) , (6.3)

11http://www.spacetelescope.org/images/heic0814a/
12http://commons.wikimedia.org/wiki/File:Shapenoise.svg
13Reprinted by permission from Macmillian Publishers Ltd: Nature, Beaulieu et al. (2006), copyright 2006.
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with the reduced deflection angle α(θ) ≡ (Dds/Ds) α̂(Ddθ).

6.2 Lensing potential

For |ξ| � RS, where RS is the Schwarzschild radius of a point mass M, it can be concluded from the
linearised field equations of General Relativity that the modulus of the deflection angle is given by
|α̂| = (4GM)/(c2|ξ|), which is twice the value that is expected from Newtonian theory. Taking into
account that the deflection angle is always pointed towards the mass, it can be written in vectorial form
as

α̂ =
4GM

c2

ξ

|ξ|2
. (6.4)

Consider a three-dimensional mass distribution with density ρ(~r), where ~r = (ξ1, ξ2, r3), so that r3
is perpendicular to the lens plane. Approximating the mass distribution as a sum of point masses with
mass dM = ρ(~r) dV , we can write the total reduced deflection angle as14

α̂(ξ) =
4G
c2

∫
d3r′ ρ(~r′)

ξ − ξ′

|ξ − ξ′|2
=

4G
c2

∫
d2ξ′ Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2
, (6.5)

where we have introduced the surface mass density Σ =
∫

dr′3 ρ.
Switching from the deflection angle to the reduced deflection angle and from the distances to the

angles introduces an additional factor DdDds/Ds, which can be absorbed into the definition of the
critical mass density

Σcr ≡
c2

4πG
Ds

DdDds
. (6.6)

Thus, the surface mass density can be written in a dimensionless form, defining the convergence

κ(θ) ≡
Σ(Ddθ)

Σcr
. (6.7)

The critical mass density and thus the convergence are typical measures to distinguish between weak
and strong lenses. While in typical weak-lensing situations κ � 1, strong lenses, producing multiple
images of the source in form of arcs, usually have κ ≥ 1.

Using Eqs. (6.1) and (6.7), we can rewrite Eq. (6.5) as

α(θ) =
1
π

∫
d2θ′ κ(θ′)

θ − θ′

|θ − θ′|2
. (6.8)

Since ∇x ln |x| = x/|x|2, we can write the reduced deflection angle as the gradient of a lens potential
ψ,

α(θ) = ∇ψ with ψ ≡
1
π

∫
d2θ′κ(θ′) ln |θ − θ′| , (6.9)

which satisfies Poisson’s equation ∆ψ = 2κ in two dimensions and is a weighted projection of the
three-dimensional Newtonian potential Φ,

ψ(θ) =
2
c2

Dds

DdDs

∫
dr3 Φ(Ddθ, r3) . (6.10)

14Since the deflection angle is very small, we are in the weak-field regime, where Einstein’s field equations (1.2) can be
linearised, and the total mass can be regarded as the sum of small point masses. Furthermore, we can use the Born
approximation so that the light beam can be approximated as a straight line in the vicinity of every single infinitesimal
point mass.
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6.3 Magnification and distortion

Since a light bundle that is emitted from the source is subject to differential deflection (remember
that the deflection angle depends on the position ξ), an image of the source is distorted and either
magnified or dimmed. Let ωI be the solid angle that the lensed object covers on the sky and ωS the
solid angle that it would cover if no lens was present. The magnification µ is simply determined by
µ = ωI/ωS = S I/S S, where S I and S S are the fluxes of the lens image and the source without the
influence of the lens, respectively. Since no photons are absorbed or emitted by the lensing process,
the surface brightness is conserved and II(θ) = IS[β(θ)], where II and IS are the surface brightnesses
of the image and the source, respectively. Thus, the magnification µ is solely a geometric effect. It
depends on the two-dimensional mapping β 7→ θ, which can be locally linearised due to the smallness
of the source compared to the lens to

β = β0 + A(θ − θ0) , (6.11)

where A is the local Jacobian and β0 and θ0 are the angles between the line-of-sight and the centres of
the source and the image, respectively. They are related through the lens equation (6.3). Hence, the
magnification is given by

µ = | det A|−1 ≡

∣∣∣∣∣∣det
(
∂βi

∂θ j

)∣∣∣∣∣∣−1

. (6.12)

The Jacobian can be written in terms of the lensing potential as

A(θ) =

(
δi j −

∂2ψ

∂θi ∂θ j

)
≡

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (6.13)

where we have introduced the complex shear γ ≡ γ1 + iγ2. Its components together with the conver-
gence are given by

γ1 =
1
2

∂2ψ

∂θ2
1

−
∂2ψ

∂θ2
2

 , γ2 =
∂2ψ

∂θ1 ∂θ2
, κ =

1
2

∂2ψ

∂θ2
1

+
∂2ψ

∂θ2
2

 . (6.14)

From Eq. (6.13), the magnification can be written in terms of the convergence and shear as

µ =
1

(1 − κ)2 − |γ|2
. (6.15)

κ γ1 γ2

< 0

> 0

Figure 6.3: Influence of the individual weak-
lensing quantities on the distortion of a circular
source. The dotted circles indicate the source
without lensing effects.

We want to note that generally also higher-
order derivatives of the lensing potential ψ are in-
volved if the relation between β and θ is not lin-
earised as in Eq. (6.11), but also following non-
linear terms are included. The next order lens-
ing quantities based on third derivatives of the
lensing potential are the F- and G-flexion. See
Bartelmann (2010b) for further information.

In Fig. 6.3, we show the effects of the conver-
gence κ and the two shear components γ1 and γ2
on a circular source.

The image distortion, however, is generally
neither caused by the convergence nor the shear
alone, but by a combination of both. This can be
seen if we write the Jacobian as

A(θ) = (1 − κ)
(
1 − g1 −g2
−g2 1 + g1

)
, (6.16)
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where the gi ≡ γi/(1 − κ) are the components of the reduced shear. The term (1 − κ) induces a
homogeneous distortion and hence only changes the size of an object but does not alter its shape. The
latter is distorted by the reduced shear g, which is a combination of convergence and shear. Thus, only
the combined quantity g can be determined by measurements of galaxy ellipticities. But since in the
majority of weak-lensing situations, κ � 1 and therefore g ≈ γ, the reduced shear is a good proxy for
the “real” shear.

6.4 Relation between ellipticity and shear

The question how to determine the ellipticity of an irregularly shaped galaxy could fill a thesis on her
own since it is a non-trivial task to do, especially in the presence of noise (which is always the case in
real observations). We will only sketch the main idea here and refer to recent works on this issue by
Melchior et al. (2011) and Viola et al. (2011).

We start with the second moments of the brightness distribution defined as

Qi j ≡

∫
d2θ II(θ) W(II) (θi − θ0,i)(θ j − θ0, j)∫

d2θ II(θ) W(II)
, (6.17)

where W(II) is a proper weighting function depending on the light distribution, and θ0 is the centre of
the image, which also depends on W(II) via

θ0 ≡

∫
d2θ II(θ) W(II) θ∫
d2θ II(θ) W(II)

. (6.18)

We define the complex ellipticity as

ε ≡
Q11 − Q22 + 2iQ12

Q11 + Q12 + 2
√

Q11Q12 − Q2
12

. (6.19)

Note that also other ellipticity definitions exist in the literature, see e.g. Bonnet & Mellier (1995).
Defining the intrinsic ellipticity of the source εS analogously and using QS = A Q AT, the ellipticity of
the lensed object for |g| ≤ 1 is given by

ε =
εS + g

1 + g∗εS
(6.20)

(Seitz & Schneider, 1997), where the asterisk denotes complex conjugation. Since in typical weak-
lensing situations |g| � 1 and g ≈ γ, the previous equation becomes ε ≈ εS + γ so that to first
order, the observed ellipticity is the sum of the intrinsic ellipticity and the shear. Assuming that the
intrinsic ellipticities are randomly oriented, they average to zero for a large number of galaxies, so that
〈ε〉 ≈ 〈γ〉. Note, however, that for high-precision cosmological weak-lensing surveys, the previous
approximations induce a non-negligible error, so that the full description has to be used.

6.5 Weak-lensing power spectra

Not only single objects can deflect the light from a source, but also the large-scale density field δ (cf.
Chap. 2) in total bends the light on the way to us. Since the gravitational field caused by the large-scale
structure is much less strong than the one of collapsed objects like galaxy clusters, we can safely work
in the weak-lensing regime, and quantities like shear and convergence can be analogously defined.

So far, we have seen that the convergence is related to the lens potential, which itself is a weighted
projection of the three-dimensional Newtonian potential (see Eq. 6.10), by κ = ∆ψ/2. Combining
these two equations yields

κ(θ) =
1
c2 ∆

[∫
dr3

Dds

DdDs
Φ(Ddθ, r3)

]
with ∆ =

∂2

∂θ2
1

+
∂2

∂θ2
2

. (6.21)
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A similar expression can be found for the case of light deflection by the large-scale density field to
yield an effective convergence

κeff(θ, χ) =
1
c2

χ∫
0

dχ′
r(χ − χ′) r(χ′)

r(χ)
∆Φ[r(χ′)θ, χ′] with ∆ =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, (6.22)

where χ is the comoving distance, and r(χ) was defined in Eq. (1.6) (see Bartelmann & Schneider,
2001, for a detailed derivation). Note, however, that the Laplacian in Eq. (6.21) is defined in two di-
mensions, whereas the Laplacian in Eq. (6.22) is the three-dimensional one. Using Poisson’s equation
(2.10) with ρ = Ωm0 ρc0 a−3, we can directly relate the effective convergence to the density field δ,

κeff(θ, χ) =
3H2

0Ωm0

2c2

χ∫
0

dχ′
r(χ − χ′) r(χ′)

r(χ)
δ[r(χ′)θ, χ′]

a(χ′)
. (6.23)

We have assumed so far that the sources are distributed at a fixed comoving distance χ. If this is not
the case, κeff has to be averaged over the line-of-sight using a normalised source distribution function
G(χ) so that

κ̄eff(θ) =

χH∫
0

dχG(χ) κeff(θ, χ) , (6.24)

χ

χ′

χH

χH

χ′ = χ

Figure 6.4: Area that is inte-
grated over for the effective con-
vergence κ̄eff(θ).

where χH is the comoving distance to the horizon.
Instead of integrating over χ from 0 to χH and χ′ from 0 to χ,

we can also integrate over χ′ from 0 to χH and over χ from χ′ to
χH (see Fig. 6.4). Interchanging χ and χ′ afterwards again leads
to

κ̄eff(θ) =

∫ χH

0
dχ q(χ) δ[r(χ)θ, χ] (6.25)

with

q(χ) =
3H2

0Ωm0

2c2

r(χ)
a(χ)

∫ χH

χ
dχ′G(χ′)

r(χ′ − χ)
r(χ′)

. (6.26)

Since the relation between κ̄eff and the three-dimensional den-
sity contrast δ has the form (6.25) and δ varies on much smaller
scales than the window function q(χ), we can use Limber’s
equation (Limber, 1953) to calculate the convergence correla-
tion function from the correlation function of the density con-
trast, or, equivalently, the convergence power spectrum Pκ(l)
from the density power spectrum P(k, z) (Kaiser, 1992, 1998),

Pκ(l) =

χH∫
0

dχ
q2(χ)
r2(χ)

P
[

l
r(χ)

, z(χ)
]
, (6.27)

with q(χ) from Eq. (6.26) and P(k, z) = D2
+(z)P(k, z = 0).

According to Eq. (6.14), the Fourier components of the shear and convergence are related to the
Fourier components of the lensing spectrum by

γ̂1 = −
1
2

(l21 − l22)ψ̂ , γ̂2 = −l1l2ψ̂ , κ̂ = −
1
2

(l21 + l22)ψ̂ , (6.28)

so that

〈|γ̂|2〉 = 〈|γ̂1|
2〉 + 〈|γ̂2|

2〉 =

[
1
4

(l21 − l22)2 + l21l22

]
|ψ̂|2 =

[
1
4

(l21 + l22)2
]
|ψ̂|2 = 〈|κ̂|2〉 (6.29)

and hence Pγ(l) = Pκ(l).
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7 Chapter 7

An analytic approach to number counts
of weak-lensing peak detections

In this chapter, we develop and apply an analytic method to predict peak counts in weak-lensing
surveys. It is based on the theory of Gaussian random fields, that we have presented in Sect. 3.2, and
suitable to quantify the level of detections caused by chance projections of large-scale structures as
well as the shape and shot noise contributed by the background galaxies. A simple analytical recipe
is given to compute the signal-to-noise distribution of those detections. We compare our method to
peak counts obtained from numerical ray-tracing simulations and find good agreement at the expected
level. The number of peak detections depends substantially on the shape and size of the filter applied
to the gravitational shear field. We confirm that weak-lensing peak counts are dominated by spurious
detections up to signal-to-noise ratios of 3–5 and that most filters yield only a few detections per square
degree above this level, while a filter optimised for suppressing large-scale structure noise returns up
to an order of magnitude more. Galaxy shape noise and noise from large-scale structures cannot be
treated as two independent components since the two contributions add in a non-trivial way.

The contents of this chapter is published in Maturi et al. (2010).

7.1 Introduction

Wide-area surveys for weak gravitational lensing can be and have been used for counting peaks in the
shear signal, which are commonly interpreted as the signature of sufficiently massive dark-matter
haloes. However, such detections are clearly contaminated by spurious detections caused by the
chance superposition of large-scale structures, and also by the shape- and shot-noise contributions
from the background galaxies used to sample the foreground shear field. As a function of the peak
height, what is the contribution of genuine haloes to these detections, and how much do large-scale
structures and other sources of noise contribute? In addition, the number of peaks produced by large-
scale structures constitute a cosmological signal which can be used as a cosmological probe together
with cluster counts. Can we predict this number without expensive numerical simulations?

Given the power of lensing-peak number counts as a cosmological probe (Marian et al., 2009;
Kratochvil et al., 2010; Dietrich & Hartlap, 2010), we address this question here after applying a
suitable analytic approach based on peak counts in Gaussian random fields as laid out by Bardeen
et al. (1986). This extends van Waerbeke (2000), who studied the background galaxy noise component
alone. With respect to the latter work, we give a detection definition more suitable for comparison with
observations and include the non-negligible contribution of large-scale structures. It is reasonable to
do so even though at least the high peaks are caused by haloes in the non-Gaussian tail of the density
fluctuations since the noise and large-scale structure contributions to the filtered weak-lensing maps
remain Gaussian, and thus at least their contribution to the counts can be well described analytically.
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Peaks with the highest signal-to-noise ratios are expected to be more abundant than predicted based
on Gaussian random fields.

Weak-lensing data are filtered to derive peak counts from them. Several linear filters have been pro-
posed and used in the literature. They can all be seen as convolutions of the measured shear field with
filter functions of different shapes. Many shapes have been proposed for different purposes (Schnei-
der et al., 1998; Schirmer et al., 2004; Maturi et al., 2005). One filter function, called the optimal
filter later on, was designed specifically to suppress the contribution from large-scale structures by
maximising the signal-to-noise ratio of halo detections against the shear field caused by large-scales
structures. We study three such filters here with the optimal filter among them. Results will differ
substantially, arguing for a careful filter choice if halo detections are the main goal of the application.
We compare our analytic results to a numerical simulation and show that both agree at the expected
level.

In App. C, we show predictions of peak counts and the noise levels in them for several planned and
ongoing weak-lensing surveys.

7.2 Measuring weak gravitational lensing

Here, we present the techniques that are applied to measure the shear γ from weak gravitational lensing
in apertures using appropriate filters and derive their relation to the convergence κ.

7.2.1 Weak-lensing estimates

In absence of intrinsic alignments between background galaxies due to possible tidal interactions
(Heavens & Peacock, 1988; Schneider & Bridle, 2010), the intrinsic source ellipticities in Eq. (6.20)
average to zero in a sufficiently large source sample. An appropriate and convenient measure for
the lensing signal on circular apertures is the aperture mass, which is the weighted average over the
tangential component of the shear γt relative to the position θ on the sky,

Γ̃(θ) ≡
∫

d2θ′γt(θ′, θ) Q(|θ′ − θ|) W(θ′) . (7.1)

While the filter function Q determines the statistical properties of the quantity Γ̃, W describes the
survey geometry. We shall consider three filter functions here, which will be described in Sect. 7.2.

Introducing polar coordinates with θ′1 = |θ′| cosϕ and θ′2 = |θ′| sinϕ, the tangential shear can be
written as

γt(θ′, θ) = −[γ1(θ′, θ) cos(2ϕ) + γ2(θ′, θ) sin(2ϕ)] . (7.2)

Data on gravitational lensing due to a mass concentration can be modelled by a signal s(θ) = Γτ(θ)
described by its amplitude Γ and its radial profile τ, and a noise component n(θ) with zero mean, i.e.

γt(θ) = Γτ(θ) + n(θ) (7.3)

for the tangential shear. The variance of Γ̃ (Eq. 7.1) is

σ2
Γ̃

=

∫
l dl
2π

P̃g(l) Q̂2(l) , (7.4)

where Q̂(l) is the Fourier transform of the filter Q and P̃g(l) = Pg(l) Ŵ2(l) is the effective power
spectrum of the noise component, i.e. the intrinsic noise power spectrum convolved with a window
function representing the frequency response of the survey. Note that the contribution from cosmic
variance is not included in this definition since it is negligibly small. In our application, the latter
is a band-pass filter accounting for the finite field of view of the survey (high-pass component) and
the average galaxy separation (low-pass component). See Sect. 7.4.2 for its explicit expression. For
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complex sky coverage and especially for too small fields of view the adopted approximation would
not hold and a general treatment accounting for the full geometry Ŵ(l) must be considered (see for
e.g. Hivon et al., 2002).

Here and in the following, we make use of the flat-sky approximation, i.e. we can still use the Fourier
transform for a two-dimensional flat space instead of the one for the surface of a sphere, which would
invoke spherical harmonics, since the field of view is only a small fraction of the whole sky.

In practical applications, Γ̃ is approximated by

Γ̃(θ) =
1
n

∑
i

εt,i(θ)Q(|θi − θ|) , (7.5)

where εt,i(θ) is the tangential ellipticity with respect to θ of a galaxy located at the position θi, providing
an estimate for γt. Note that in our application, we consider linear structures only and therefore, the
weak-lensing approximation is always satisfied, i.e. g ≈ γ.

7.2.2 Weak-lensing filters

Different filter profiles have been proposed in the literature depending on their specific application in
weak lensing. We adopt three of them here, which have been used so far to identify halo candidates
through weak lensing.

(1) The polynomial filter described by Schneider et al. (1998),

Qpoly(x) ≡
6x2

πθ2
s

(
1 − x2

)
θH (1 − x) , (7.6)

where the projected angular distance from the filter centre, x ≡ θ/θs, is expressed in units of
the filter scale radius θs, and θH is Heaviside’s step function again. This filter was originally
proposed for cosmic-shear analysis, but several authors have used it also for dark-matter halo
searches (see e.g. Erben et al., 2000; Schirmer et al., 2004).

(2) A filter optimised for haloes with an NFW density profile (see Sect. 2.8.2), approximating their
shear signal with a hyperbolic tangent (Schirmer et al., 2004),

Qtanh(x) ≡
(
1 + ea−bx + ecx−d

)−1
tanh (x/xc) , (7.7)

where the two exponentials in parentheses are cut-offs imposed at small and large radii (with
a = 6, b = 150, c = 50, and d = 47), and xc is a parameter defining the filter-profile slope. A
good choice is xc = 0.1 as empirically shown by Hetterscheidt et al. (2005).

(3) The optimal linear filter introduced by Maturi et al. (2005) which, together with the optimisation
with respect to the expected halo-lensing signal, optimally suppresses the contamination due to
the line-of-sight projection of large-scale structures (LSS),

Q̂opt(l) ≡ α
τ(l)
Pf(l)

with α−1 ≡ 2π

∫
dl l
|τ̂(l)|2

Pf(l)
. (7.8)

Here, τ̂(l) is the Fourier transform of the expected shear profile of the halo and Pf(l) = Pg +Pγ(l)
is the complete noise power spectrum. It includes the linearly evolved LSS through the shear
power spectrum Pγ, which is equal to the convergence power spectrum Pκ (6.27) (see also
the last paragraph of Sect. 6.5) as well as the noise contributions from the intrinsic source
ellipticities and the shot noise by

Pg =
σ2
ε

2ng
, (7.9)
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given their angular number density ng and the intrinsic ellipticity dispersion σε . We want to
stress again that for the filter construction, we use the linear convergence power spectrum instead
of the non-linear one. This is a kind of an implicit definition of a halo since we assume that the
difference between linear and non-linear power spectrum is completely due to their formation.
The optimal filter depends on parameters determined by physical quantities such as the halo
mass and redshift, the galaxy number density and the intrinsic ellipticity dispersion and not on
an arbitrarily chosen scale which has to be determined empirically through costly numerical
simulations (e.g. Hennawi & Spergel, 2005). An application of this filter to the GaBoDS survey
(Schirmer et al., 2003) was presented in Maturi et al. (2007), while a detailed comparison of
all the three filters was performed by Pace et al. (2007) by means of numerical ray-tracing
simulations. They found that the optimal linear filter defined by Eq. (7.8) returns the halo
sample with the largest completeness (100% for masses M ≥ 3 × 1014 h−1 M� and ∼50% for
masses M ∼ 2×1014 h−1 M� for sources at zs = 1) and the lowest number of spurious detections
caused by the LSS (≤ 10% for a signal-to-noise threshold of S/N ∼ 5).

7.2.3 Weak-lensing estimates and convergence

In order to simplify comparisons with numerical simulations, we convert the quantity Γ̃ from Eq. (7.1)
to a quantity involving the convergence,

Γ̃(θ) =

∫
d2θ′κ(θ′) U(|θ′ − θ|) W(θ′) , (7.10)

where U is related to Q by

Q(θ) =
2
θ2

θ∫
0

dθ′θ′U(θ′) − U(θ) (7.11)

(Schneider, 1996) if the weight function U(θ) is defined to be compensated, i.e.

θmax∫
0

dθ θU(θ) = 0 , (7.12)

where θmax is the maximal extent of the filter, implying Q(θ) = U(θ) = 0 for θ > θmax.
Equation (7.11) has the form of a Volterra integral equation of the second kind, which can be solved

for U once Q is specified. If limx→0 Q(x)/x is finite, the solution is

U(θ) = −Q(θ) −

θ∫
0

dθ′
2
θ′

Q(θ′) , (7.13)

(Polyanin & Manzhirov, 1998), which can be solved analytically for the polynomial filter, yielding

Upoly(x) =
9

πθ2
s

(
1 − x2

) (1
3
− x2

)
θH (1 − x) , (7.14)

and numerically for the hyperbolic-tangent filter of Eq. (7.7) with an efficient recursive scheme over
the desired radii θ. If limx→0 Q(x)/x = ∞ as in the case of the optimal filter, Eq. (7.13) can be solved
by introducing an exponential cut-off at small radii to avoid the divergence. The correct solution is
obtained if the cut-off scale is close to the mean separation between the background galaxies so that
no information is lost.

Another way is to solve Eq. (7.11) iteratively with respect to Q by

U0(θ) = −Q(θ) , Un(θ) = −Q(θ) +
2
θ2

θ∫
0

dθ′θ′Un−1(θ′) . (7.15)
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Figure 7.1: Overview of different weak-lensing filters. The left panel shows the three filters adopted here
to be used on shear catalogues, while the central and right panels show the corresponding filters to be
used on convergence fields both in real and Fourier space, respectively. For illustration only, the spatial
frequencies in the right panel are rescaled such that the main filter peaks coincide.

The iterative procedure is stopped once the difference Un(θ) − Un−1(θ) is sufficiently small. After
U(θ) has been found, an appropriate constant C has to be added in order to satisfy the compensation
requirement (7.12). It is given by

C = −
2

θ2
max

θmax∫
0

dθ θU(θ) . (7.16)

We show in Fig. 7.1 the resulting filter profiles to be used on shear catalogues through Eq. (7.1) and
their corresponding variants to be used on convergence fields with Eq. (7.10), the latter both in real
and in Fourier space. In the right panel, one can clearly see that all of them are band-pass filters and
the two of them designed for halo searches (tanh, opt) have larger amplitudes at higher frequencies
compared to the polynomial filter (poly) by Schneider et al. (1998), where the halo signal is most
significant. This feature is particularly prominent for the optimal filter, which is additionally negative
at low frequencies, where the LSS signal dominates. These two features ensure the minimisation of
the LSS contamination in halo searches.

7.3 Predicting weak-lensing peak counts

Our analytic predictions for the number counts of weak-lensing detections as a function of their signal-
to-noise ratio are based on modelling the analysed and filtered lensing data, resulting from Eq. (7.10),
as an isotropic and homogeneous Gaussian random field. We refer to Sect. 3.2 for its definition and
properties. This is an extremely good approximation for the noise and the LSS components, but not
necessarily for the non-linear structures such as sufficiently massive haloes, as we shall discuss in
Sect. 7.4.3.

In our case, the relevant power spectrum that fully describes the Gaussian random field is a combi-
nation of the convergence power spectrum and the power spectrum of the observational noise caused
by the galaxies.

Since we are interested in gravitational-lensing quantities such as the convergence κ, we here con-
sider two-dimensional Gaussian random fields only with r ≡ θ. We adopt the formalism of Sect. 3.2
here and modify it according to our weak-lensing purposes so that F = κ, ηi = ∂iF and ζi j = ∂i∂ jF
denote the convergence field and its first and second derivatives, respectively.

7.3.1 Definition of detections: a new upcrossing criterion

We define as detection any contiguous area of the field κwhich exceeds a given threshold κth = S/N·σΓ̃,
determined by the required signal-to-noise ratio S/N and the varianceσΓ̃ of the quantity Γ̃ (see Eq. 7.4).
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Figure 7.2: Weak lensing detection maps. The
four plots on the left show the segmentation of
a realistic weak-lensing S/N map for increasing
thresholds: 0.1, 0.5, 1, and 2, respectively. The il-
lustration on the top sketches the three discussed
detection types together with the points identified
by the standard and the modified upcrossing cri-
teria. Red circles and blue squares correspond
to upcrossing points for which the second field
derivatives are ζ22 < 0 and ζ22 > 0, respectively.

This definition is widely used in surveys for galaxy clusters or peak counts in weak-lensing surveys
and can be easily applied both to real data and Gaussian random fields.

Each detection is delimited by its contour at the threshold level κth. If this contour is convex, it has
a single point θup, called upcrossing point, where the field is rising along the x-axis direction only,
i.e. where the field gradient has one vanishing and one positive component (see the sketch for type-0
detections in the top panel of Fig. 7.2),

κ(θup) = κth , η1(θup) > 0 , η2(θup) = 0 . (7.17)

Since we assume κ to be a homogeneous and isotropic random field, the orientation of the coor-
dinate frame is arbitrary and irrelevant. The conditions expressed by Eq. (7.17) define the so-called
upcrossing criterion which allows to identify the detections and to derive their statistical properties,
such as their number counts, by associating their definition to the Gaussian random field variables κ,
η1 and η2.

However, this criterion is prone to fail for low thresholds, where detections tend to merge and
the isocontours tend to deviate from the assumed convex shape. This causes detection numbers to
be overestimated at low cut-offs because each “peninsula” and “bay” of their contour (see type-1 in
Fig. 7.2) would be counted as one detection. We solve this problem by dividing the upcrossing points
into those with negative (red circles) and those with positive (blue squares) curvature, ζ22 < 0 and
ζ22 > 0 respectively. In fact, for each detection their difference is one (type-1), providing the correct
number count. The only exception is for those detections containing one or more “lagoons” (type-2)
since each of them decreases the detection count by one. But since this is not a frequent case and
occurs only at very low cut-off levels, we do not consider this case here.

7.3.2 The number density of detections

Once the relation between the detections and the Gaussian random variables ~y = (κ, η1, η2, ζ22) to-
gether with their constraints from Eq. (7.17) and ζ22 < 0 or ζ22 > 0 are defined, we can describe their
statistical properties through the multivariate Gaussian probability distribution (3.1) with the covari-
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ance matrix

M =


σ2

0 0 0 −σ2
1/2

0 σ2
1/2 0 0

0 0 σ2
1/2 0

−σ2
1/2 0 0 3σ2

2/8

 , (7.18)

as given by van Waerbeke (2000). Here, the σ j are the spectral moments of the power spectrum,

σ2
j =

∫
dl
2π

P̃(l) Û2(l) l2 j+1 , (7.19)

where P̃(l) is an effective power spectrum which is a combination of the non-linear power spec-
trum PLSS(l) of matter fluctuations (the non-linear counterpart to Pκ, Peacock & Dodds, 1996) com-
bined with the noise contribution by the background galaxies and the survey frequency response (see
Sect. 7.4.2 for its explicit expression). Û(l) is the Fourier transform of the filter adopted for the
weak-lensing analysis (see Sect. 7.2). We will explain in Sect. 7.4.3 why we choose the non-linear
convergence power spectrum instead of the linear one here.

The determinant of M is (3σ2
0σ

4
1σ

2
2−2σ8

1)/32, and the quadratic form (3.2) can be written explicitly
as

Q =
1
2

2η · η
σ2

1

+
8ζ2

22σ
2
0 + 8ζ22 κ σ

2
1 + 3κ2σ2

2

3σ2
0σ

2
2 − 2σ4

1

 . (7.20)

Both κ and η2 can be expanded into Taylor series around the points θup where the upcrossing conditions
are fulfilled,

κ(θ) ≈ κth +

2∑
i=1

ηi(θ − θup)i , η1(θ) ≈
2∑

i=1

ζ2i(θ − θup)i , (7.21)

so that the infinitesimal volume element dκ dη2 can be written as dκ dη2 = | det J| d2θ, where J is the
Jacobian,

J =

(
∂κ/∂x1 ∂κ/∂x2
∂η2/∂x1 ∂η2/∂x2

)
=

(
η1 η2
ζ21 ζ22

)
(7.22)

and | det J| = |η1ζ22| since η2 = 0. The number density of upcrossing points at the threshold κth with
ζ22 < 0, and ζ22 > 0, n− and n+ respectively, can thus be evaluated as

n∓(κth) = ∓

∞∫
0

dη1

±∞∫
0

dζ22 |η1ζ22| p (κ = κth, η1, η2 = 0, ζ22) , (7.23)

where p(κ, η1, η2, ζ22) is the multivariate Gaussian defined by Eq. (3.1) with p = 4, the correlation
matrix (7.18), and the quadratic form (7.20). Both expressions can be integrated analytically, and
their difference, ndet(κth) ≡ n−(κth) − n+(κth) as explained in Sect. 7.3.1, returns the number density of
detections ndet above the threshold κth,

ndet(κth) =
1

4
√

2 π3/2

(
σ1

σ0

)2
κth

σ0
exp

− κ2
th

2σ2
0

 . (7.24)

Note how the dependence on σ2 drops out of the difference n− − n+, leading to a very simple result.
This equation is much less complex than Eqs. (41) and (42) of van Waerbeke (2000). It returns the
number of detection contours rather than the number of peaks.

For completeness, we report the number density estimate also for the classical upcrossing criterion
(7.17) only, where the constraint on the second derivative of the field ζ22 is not used,

nup(κth) =
1

4
√

2 π3/2

(
σ1

σ0

)2
κth

σ0
exp

− κ2
th

2σ2
0

 erf
κthσ

2
1

σ0γ

 +
σ0γ

σ2
1
√

π κth
exp

−κ2
thσ

4
1

σ2
0γ

2

 , (7.25)
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with γ ≡
√

3σ2
0σ

2
2 − 2σ4

1. This number density converges to the correct value ndet for κth → ∞, i.e.

large thresholds, because erf(x) → 1 and exp(−x2)/x → 0 for x → ∞. This reflects the fact that for
large thresholds, the detection shapes become fully convex and any issues with more complex shapes
disappear.

7.4 Analytic predictions vs. numerical simulations

We now compare the number counts of detections predicted by our analytic approach with those result-
ing form the analysis of synthetic galaxy catalogues produced with numerical ray-tracing simulations.

7.4.1 Numerical simulations

We use the same hydrodynamical, numerical N-body simulation carried out by Borgani et al. (2004)
that we have already presented in Sect. 5.3 (see there for the simulation details). Due to the relatively
high mass resolution of both gas and dark-matter particles, haloes of mass 1013 h−1 M� are resolved
into several thousands of particles.

This simulation is used to construct backward light cones by stacking the output snapshots from
z = 1 to z = 0. Since the snapshots contain the same cosmic structures at different evolutionary
stages, they are randomly shifted and rotated to avoid repetitions of the same cosmic structures along
one line-of-sight. The light cone is then sliced into thick planes, whose particles are subsequently
projected with a triangular-shaped-cloud scheme (TSC, Hockney & Eastwood, 1988) on lens planes
perpendicular to the line-of-sight. We trace a bundle of 2048 × 2048 light rays through one light cone
which start propagating at the observer into directions on a regular grid of 4.9 degrees on each side.
The effective resolution of this ray-tracing simulation is of the order of 1′ (for further detail, see Pace
et al., 2007).

The effective convergence and shear maps obtained from the ray-tracing simulations are used to
lens a background source population according to Eq. (6.20). Galaxies are randomly distributed on
the source plane at z = 1 with a number density of ng = 30 arcmin−2 and have intrinsic random
ellipticities drawn from the distribution

p(εs) =
exp

[
(1 − ε2

s )/σ2
ε

]
πσ2

ε

[
exp(1/σ2

ε ) − 1
] , (7.26)

where σε = 0.25 (for further details, see Pace et al., 2007).
Synthetic galaxy catalogues produced in this way are finally analysed with the aperture mass,

Eq. (7.1), evaluated on a regular grid of 512 × 512 positions covering the entire field-of-view of the
light cone. All three filters presented in Sect. 7.2 were used with three different scales: the polynomial
filter with θs = 2.′75, 5.′5, and 11′, the hyperbolic-tangent filter with θs = 5′, 10′, and 20′, and the
optimal filter with scale radii of the cluster model set to θs = 1′, 2′, and 4′. These scales are chosen to
sample angular scales typically used in literature.

For a statistical analysis of the weak-lensing detections and their relation to the numerical simula-
tions structures, see Pace et al. (2007).

7.4.2 Accounting for the geometry of surveys: the window function

Our analytic predictions for the number density of detections accounts for the survey frequency re-
sponse Ŵ(l) discussed in Sect. 7.2.1. As already stated, this is a simplified approach and the adopted
full geometry Ŵ(l) should be considered (see for e.g. Hivon et al., 2002) in case of complex sky mask-
ing, especially if involving small fields of view. Thus, in our approach, we consider only an effective
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Figure 7.3: Comparison of the predicted power spectra based on the expected combined large-scale struc-
ture and noise power spectra and convolved with the weak-lensing filter and the frequency response of the
survey with the one measured from a simulation. For clarity, we only show the results for the intermediate
scales.

power spectrum P̃(l) = P(l)Ŵ2(l), where the frequency response Ŵ(l) is the product of a high-pass
filter suppressing the scales larger than the light cone’s side length Lf = 2π/lf = 4.9 deg,

Ŵ2
f (l) = exp

− l2f
l2

 (7.27)

(note that l is in the denominator here), a low-pass filter imposed by the average separation d = 2π/lg =

n−1/2
g = 0.′18 between the galaxies,

Ŵ2
g (l) = exp

− l2

l2g

 , (7.28)

and a low-pass filter related to the resolution dpix = 0.′57 used to sample the sky with the quantity Γ̃ of
Eq. (7.5),

Ŵpix(l) =
2
√

π

l dpix
J1

(
l dpix
√

π

)
, (7.29)

where J1(x) is the cylindrical Bessel function of order one. The latter function is a circular step function
covering the same area as a square-shaped pixel of size dpix. The square shapes of the field-of-view
and the pixels could be better represented by the product of two step functions in both the x- and
y-direction, but the low gain in accuracy does not justify the higher computational cost.

Finally, for the comparison with our numerical ray-tracing simulation, we have to account for its
resolution properties which act on the large-scale power spectrum only by including a low-pass filter

Ŵ2
sim(l) = exp

− l2

l2sim

 , (7.30)

where lsim = 2π/(1 arcmin) as discussed in Sect. 7.4.1.
The agreement of this simple recipe with the numerical simulation is shown in Fig. 7.3, where we

compare P̃(l) Û2(l), the expected effective power spectrum multiplied with the weak-lensing filter as
used in Eq. (7.19), with those measured from the synthetic galaxy catalogues and convolved with
the three adopted filters Û(l), respectively. For clarity, we show the results for the intermediate filter
scales only since the others are equivalent. All main features are well reproduced. Only at high
frequencies, the assumed power spectra drop slightly more steeply than measured in the numerical
simulations. This might be one reason for the small deviations between the numerical measurements
and the analytical predictions in the next section. The other one is sample variance.

Note that when relating the detection threshold to the signal-to-noise ratio S/N according to the
variance (7.4) and κth = S/N · σΓ̃, all window functions are used except Eq. (7.29), which, of course,
does not affect the variance.
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7.4.3 Comparison with numerical simulations

Our analytic approach approximates the data as Gaussian random fields, representing very well both
noise and LSS contributions to the weak-lensing signal-to-noise ratio maps. In fact, even if shear
and convergence of LSS show non-Gaussianities (Jain et al., 2000), weak-lensing data are convolved
with filters broad enough to make their signal Gaussian. On the other hand, this is not the case for
highly non-linear objects such as galaxy clusters whose non-Gaussianity remains after the filtering
process. Thus, particular care has to be taken when comparing the predicted number counts with
real or simulated data by modelling the non-linear structures, which is difficult and uncertain, or by
avoiding their contribution in the first place.

We follow the latter approach by counting the negative instead of the positive peaks found in the
filtered convergence maps derived from galaxy catalogues. In fact, massive haloes contribute only
positive detections in contrast to the LSS and other sources of noise, which equally produce positive
and negative detections with the same statistical properties. Both, negative and positive peak counts,
contain cosmologically relevant information. Apart from noise, the negative peak counts are caused
by mainly linearly evolved LSS, while the difference between positive and negative counts is due to
highly non-linear structures. The mean density of negative peak counts can also be used to statistically
correct positive peak counts by the level of spurious detections.

Since the formation of haloes, leading to an enhancement of positive with respect to negative peaks,
also slightly influences the statistics of negative peak counts, we use PLSS(l) instead of Pκ(l) and thus,
implicitly due to the definition of PLSS(l), the non-linear matter power spectrum for the negative-peak
prediction. In this way, we properly take into account non-linear effects also in the negative tail of the
probability distribution function (PDF) although its shape still remains Gaussian.

To verify these considerations, we tested if the resulting weak-lensing maps below the zero level
behave as Gaussian random fields, i.e. if the negative wing of their PDF is compatible with a Gaussian.
The result is shown in Fig. 7.4 for all adopted filters and scales. On the one hand, the left side of the
PDF is fitted by a Gaussian whose mean is compatible with zero. On the other hand, the largest
PDF values show a slightly extended tail caused by the non-linear objects present in the numerical
simulation.

A comparison of the original upcrossing criterion with the new blended upcrossing criterion pre-
sented here is shown in Fig. 7.5 together with the number counts of negative peaks obtained from
the numerical simulations. Only the result for the optimal filter with θs = 1′ is shown for clarity.
As expected, the two criteria agree very well for high signal-to-noise ratios since the detections are
mostly of type-0, i.e. with a convex contour, as shown in the top panel of Fig. 7.2, while the merging
of detections at lower signal-to-noise ratios is correctly taken into account only by our new criterion.

Our analytic predictions of the number counts for all filters and both positive and negative detection
counts resulting from the synthetic galaxy catalogue are shown in Fig. 7.6. The high signal-to-noise
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Figure 7.4: Probability distribution function (PDF) measured from the synthetic galaxy catalogue, which
covers 24.4 square degrees, analysed with all adopted filters and scales. The negative part of the PDF is
well described by a Gaussian (solid lines). The 3-σ error bars related to the Poissonian uncertainty are
shown.
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ratio tail caused by the nonlinear structures is present only in the positive detection counts, as expected.
The agreement with the negative detections is within the 1-σ error bars (representing the Poissonian
uncertainties for a one square degree survey) except for the Schirmer et al. (2004) filter (tanh) and the
Maturi et al. (2005) filter (opt), with a scale of 5′ and 4′ respectively, which are compatible only at
a 2 – 3-σ level for S/N ∼ 1. It is plausible that these deviations are caused by the small amount of
non-Gaussianities still present in the data and the small deviations between the adopted and the actual
signal power spectra (see Fig. 7.3).

We finally compare the contribution of the LSS and the noise to the total signal by treating them
separately. Their number counts are plotted with dashed and dot-dashed lines in Fig. 7.6. All filters
show an unsurprisingly large number of detections caused by the noise up to signal-to-noise ratios of 3
while the number of detections caused by the LSS increases with the filter scale except for the optimal
filter, which always suppresses their contribution to a negligible level. Thus, the LSS contaminates
halo catalogues selected by weak lensing up to signal-to-noise ratios of 4–5 if its contribution is
ignored in the filter definition. Note that the total number of detections can be obtained only by
counting the peaks from the total signal, i.e. LSS plus noise, and not by adding the peaks found in the
two components separately, because the blending of peaks is different for the two cases.

To additionally confirm the assumption that the contributions from both LSS and noise from the
background galaxies can be described by a Gaussian random field after the filtering process, the pos-
itive peak counts were modelled as a combination of the peak statistics described in this work (used
for the negative peaks) and the halo mass function for the contribution of highly non-linearly evolved
haloes that should be responsible for the high signal-to-noise part and that are not taken into account
by the Gaussian field statistics. The analytical prediction in this case also shows good agreement with
the results from the simulation. More detailed information on the method and results for a study on
non-Gaussianity can be found in Maturi et al. (2011).

7.5 Conclusions

We have applied an analytic method for predicting peak counts in weak-lensing surveys, based on the
theory of Gaussian random fields presented in Sect. 3.2. Peaks are typically detected in shear fields
after convolving them with filters of different shapes and widths. We have taken these into account by
first filtering the assumed Gaussian random field appropriately and then searching for suitably defined
peaks. On the way, we have argued for a refinement of the upcrossing criterion for peak detection
which avoids biased counts of detections with a low signal-to-noise ratio, and implemented it in the
analytic peak-count prediction. Peaks in the non-linear tail of the shear distribution are underrepre-
sented in this approach since they are highly non-Gaussian, but our method is well applicable to the
prediction of spurious counts, and therefore to the quantification of the background in attempts to
measure number densities of dark-matter haloes. We have compared our analytic prediction to peak
counts in numerically simulated, synthetic shear catalogues and found agreement at the expected level.
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Figure 7.6: Number of weak-lensing peaks, shown as a function of the signal-to-noise ratio and predicted
with our proposed analytic method for the Schneider et al. (1998) (poly), the Schirmer et al. (2004) (tanh),
and the Maturi et al. (2005) (opt) filters from top to bottom, and increasing filter radii from left to right
as labeled in each panel. The number counts generated by the intrinsic galaxy noise alone (Pg) and the
LSS alone (PLSS) are also shown. The results are compared with the number counts of positive (labeled
with +) as well as negative (labeled with -) peaks detected, based on the synthetic galaxy catalogues from
the numerical simulation. Thus, all numbers refer to a survey of one square degree with a galaxy number
density of ng = 30 arcmin−1 and an intrinsic shear dispersion of σε = 0.25. Error bars have the same
meaning as in Fig. 7.5.

Our main results can be summarised as follows:

• The shapes and sizes of the filters applied to the shear field have a large influence on the contam-
ination by spurious detections. For the optimal filter, the contribution from large-scale structures
is low on all filter scales, while they typically contribute substantially for other filters. This con-
firms previous results with a different approach (Maturi et al., 2005; Dietrich et al., 2007; Pace
et al., 2007).

• Taken together, large-scale structures and galaxy noise contribute the majority of detections up
to signal-to-noise ratios between 3 and 5. Only above this level, detections due to real dark-
matter haloes begin dominating.

• Shape and shot noise due to the background galaxies cannot be predicted separately from the
large-scale structure since both affect another in a complex way.

• The optimal filter allows the detection of ∼30–40 haloes per square degree at signal-to-noise
ratios high enough for suppressing all noise contributions. For the other filters, this number is
lower by almost an order of magnitude.
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Our conclusions are thus surprisingly drastic: peak counts in weak-lensing surveys are almost ex-
clusively caused by chance projections in the large-scale structure and by galaxy shape and shot noise
unless only peaks with high signal-to-noise ratios are counted. With typical filters, only a few detec-
tions per square degree can be expected at that level, while the optimal filter returns up to an order
of magnitude more. Nevertheless, the contamination level of the cluster number counts can be pre-
dicted and, after all, it is a quantity containing valuable cosmological information which can be used
to tighten cosmological constraints as well.

99



CHAPTER 7. NUMBER COUNTS OF WEAK-LENSING PEAK DETECTIONS

100



Summary and conclusions

In this thesis, we have presented a novel approach for the derivation of the cluster temperature func-
tion from the statistics of Gaussian random fields applied to the cosmic gravitational potential. The
Gaussian nature of the potential field arises naturally from simple theories of inflation and is con-
served during its linear evolution. No reference to mass has been made during the derivation as for
the classical approaches that can be found in the literature. We have thus avoided the inclusion of this
problematic global quantity, invoking a volume integral over the density distribution and the necessity
of introducing a sharp boundary which, in practice, cannot be chosen unambiguously. Consequently,
we could also get around empirical relations which are needed to relate the mass to observables like
the temperature or the luminosity, but which also induce an additional scatter.

Our analytic approach is based on predicting the number density of minima in the gravitational
potential, where a minimum could be easily related to the X-ray temperature in the centre of a cluster
by the virial theorem. Both the constraint that only collapsed structures be counted, and the relation
between linear and non-linear evolution of the potential could be included using the spherical-collapse
model. Another crucial ingredient to our formalism was a proper high-pass filter that filters out large
potential modes and also modes of potential gradients, where the filter radius could be defined nat-
urally by maximising the number density of objects for a given temperature and Laplacian of the
potential and hence, it is not an arbitrary parameter.

Since a comparison of our approach to different mass functions using a theoretically motivated
mass-temperature relation has shown on the one hand that the results were in good agreement with
the Press-Schechter mass function and has suggested on the other hand that including ellipsoidal col-
lapse might remove discrepancies to mass functions calibrated by numerical simulations and includ-
ing ellipsoidal-collapse dynamics like the Sheth-Tormen mass function, we have decided to include
ellipsoidal-collapse dynamics also in our approach. As a consequence, we have refined the ellipsoidal-
collapse model by Bond & Myers (1996) in different ways. First, we have introduced initial conditions
for the ellipticity and prolaticity that are consistent with a marginalisation over the distribution for the
eigenvalues of the Zel’dovich deformation tensor. Second, we have combined the linear and the non-
linear model for the external gravitational shear to the hybrid model, in which a shear component first
evolves non-linearly until the corresponding axis has its turn-around. Then, the evolution of the shear
and the axis decouple from each other, and the external-shear field continuous evolving linearly. Last,
we have derived proper virialisation conditions from the tensor virial theorem to stop the collapse of
each axis individually and hence were able to remove an ad-hoc criterion that had been used so far.
Comparably to Sheth et al. (2001), we were able to derive a mass function from the first-upcrossing
distribution of the moving barrier associated with ellipsoidal collapse, which is in good agreement
with other results from the literature.

Using the results of our ellipsoidal-collapse study, we have replaced spherical- by ellipsoidal-
collapse dynamics in the derivation of the cluster temperature function, but compared both alternatives
to temperature functions from a numerical simulation based on different temperature definitions. We
have found that for low redshifts, the theoretical temperature function including ellipsoidal collapse
is consistent with one from the simulation based on the mass-weighted temperature within the virial
radius, while the temperature function including spherical collapse is consistent with a temperature
function based on the emission-weighted temperature. On the whole, we could show that a restriction
to the inner parts of a halo leads to a good agreement with the theoretical temperature function ac-
counting for spherical collapse, whereas ellipsoidal collapse seems to become important if outer parts
of the cluster are weighted more strongly in the temperature definition.
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Since increasing discrepancies have occurred between the theoretical prediction and the results
from the numerical simulation for increasing redshift, which we have attributed to the influence of
more and more frequent merger events, we have developed an analytic model based on the merger
statistics derived by Lacey & Cole (1993) that describes the temperature boosts resulting from merger
events and thus quantifies the influence of mergers on the cluster temperature function. Including this
model in our theoretical description, we have found a good agreement between model and simulation
for all redshifts. Furthermore, we have studied the influence of mergers on the joint determination
of the cosmological parameters Ωm0 and σ8. Our study has confirmed the results of Randall et al.
(2002) that the best-fit values for both parameters are significantly shifted if mergers are not taken
into account in the analysis. Including the effects of mergers on the potential-based X-ray temperature
function, a conversion from spectroscopic-like to emission-weighted temperature, often used in the
literature, was not necessary to be compatible with classical mass-based temperature functions.

Inspired by the results for the X-ray temperature function, we have also used the statistics of Gaus-
sian random fields to develop an analytic model to predict the influence of cosmic large-scale structures
and shot noise on weak-lensing number counts. Refining the classical upcrossing criterion originally
introduced by Bardeen et al. (1986), we were able to predict the number density of spurious detections
as a function of signal-to-noise ratio for various weak-lensing filters used in the literature and have
found agreement with results from a numerical simulation at the expected level. We could further-
more show that the optimal filter developed by Maturi et al. (2005) performs best in suppressing the
unwanted contribution from large-scale structures and shot noise.

Overall, this thesis has demonstrated that in some cases, the statistics of Gaussian random fields can
be applied even in the non-linear regime when either it is possible to establish a relation between linear
and non-linear growth of a quantity, as it can be done with the spherical- or the ellipsoidal-collapse
model for the X-ray temperature function, or a field obeying non-Gaussian statistics due to non-linear
growth is properly filtered so that after the filtering procedure, its probability distribution function can
be well approximated by a Gaussian again. The latter situation was utilised for the predictions of
detections in weak-lensing convergence maps. In this way, analytic models can be developed, which
are based on rather simple physical concepts on the one hand, but on the other hand can compete with
results from current numerical simulations. This has two main advantages: The most important one is
that the deeper physical understanding, why things happen as they happen, is much better conserved
compared to complex numerical simulations. There, one has to start with a set of initial conditions and
physical assumptions. However, it is mostly not possible to simulate a large fraction of the Universe
for a whole set of them since the simulation for one single element requires large clusters of CPUs
and high-performance computing infrastructure so that the influence of individual components on the
overall result can be inferred more easily with analytic models. Additionally, the aforementioned
computational effort for large numerical simulations can be avoided in the first place.

Although we have shown how well the predictions of our simple analytic models are in agreement
with the results from numerical simulations, there are certainly a few points that could be examined
in more detail and some that could be further improved. It would be very interesting to study the viri-
alisation process of haloes in more detail. We have seen in Chap. 4 that the results from the spherical-
collapse model depend on the choice of the virialisation time, i.e. if either half of the turn-around
radius is chosen as a reference or the time when the spherical overdensity collapses mathematically to
a point. Also in our ellipsoidal model, the virialisation of each axis had to be included “by hand”. A
model that includes virialisation naturally and does not demand to include it artificially seems neces-
sary at this point. Engineer et al. (2000) already go into this direction, but their model is still dependent
on results from numerical simulations to fix a key parameter. Maybe a full derivation in the context of
General Relativity would offer more insight to the complex process of virialisation.

Similar to Eisenstein & Loeb (1995), relaxing the assumption that the ellipsoid’s eigensystem co-
incide with the one of the surrounding shear field and comparing the results to those from Chap. 4
would be an additionally possible extention of the work presented here. In this context, not only ho-
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mogeneous ellipsoids could be examined, but also more complex density profiles could be taken into
account. However, this would surely only be possible in a more numerical framework.

Regarding the virial theorem, which is used to relate the potential depth to the cluster’s X-ray
temperature, it would be interesting to quantify the deviation from virial equilibrium for clusters that
underwent mergers in order to quantify the scatter around the assumed potential-temperature relation
and to infer its influence on the joint determination of Ωm0 and σ8. So far, especially due to the
ignorance of the true scatter, we have included the scatter from the conversion from spectroscopic-
like to emission-weighted temperature in the derivation also for the case, where no conversion was
necessary, in order to have a rough estimate.

The reason why temperature functions constructed from central temperatures of clusters in numer-
ical simulations are in such a good agreement with predictions using the spherical-collapse model,
whereas the ones based on temperature definitions that use information from large radii in addition
can well be modelled accounting for ellipsoidal-collapse dynamics, is not understood. It seems that
the deviation from sphericity becomes only important for data from cluster outskirts. Further work is
therefore also needed in this respect.

Since one of the results of Chap. 5 shows that the conversion from spectroscopic-like temperature
to emission-weighted temperature is not necessary in the context of the potential-based temperature
function as long as the influence of mergers is properly taken into account, a more detailed study on
the reasons for the conversion in previous studies should clearly be done. The degeneracy between
the temperature conversion and influence of mergers in the joint determination of Ωm0 and σ8 is also
surely an interesting feature which should be examined more closely, especially since other correction
factors in the literature could maybe emerge from neglected merger effects.

Instead of predicting the spurious detections from large-scale structures and shot noise in weak-
lensing number counts only or, in other words, taking into account the negative part of the probability
distribution function, it is possible to extend the work presented in Chap. 7 to its positive part, including
even more non-linear structures like collapsed and virialised dark-matter haloes. Maturi et al. (2011)
have shown that this is possible by modelling the filtered convergence signal as a sum of Gaussian peak
statistics using the modified upcrossing criterion as presented in this thesis and a projection of the halo
mass function along the line-of-sight so that an analytic model for the full lensing signal at all signal-
to-noise ratios is available. This formalism cannot only be used for non-Gaussianity studies as done
in their work, but also for deriving cosmological parameters from weak-lensing convergence maps.
Including also data for large signal-to-noise ratios modelled by the halo mass function promises tighter
constraints than using Gaussian peak statistics alone since first, the whole available information is used
and second, signals at high-signal-to noise ratios are caused by massive haloes in the exponential tail
of the mass function, which is highly sensitive to cosmological parameters.

Although there are still some points that can be improved or should be examined more closely as
mentioned above, we can conclude that it is possible to derive analytical models from the statistics
of Gaussian random fields which provide an improved understanding of the physical mechanisms
behind structure formation and which are additionally able to compete with results from numerical
simulations, both for the cluster temperature function and for the analysis of weak-lensing convergence
maps.
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A Appendix A

An alternative way to determine the
cut-off wave number

In this appendix, we present an alternative approach to determine a physically reasonable definition
of kmin. Although it does not give the correct number density for smaller objects with a low X-ray
temperature, the definition presented here might be important for future work based on the statistics
of potential perturbations.

A.1 Definition

An alternative appropriate choice for kmin could be the redshift-dependent particle horizon rhor, taking
into account that light could have travelled only a finite comoving distance between the Big Bang and
redshift z. Consequently, we must only consider modes of the gravitational potential already inside
the horizon. Thus,

kmin(z) =
π

rhor(z)
=

πH0

c

 lim
a1→0

a(z)∫
a1

da′

a′2E(a′)


−1

, (A.1)

where E(a) is again the expansion rate of the Universe.
In principle, signal retardation should also be taken into account. Considering an arbitrary point

~x at time t, only modes lying inside its past light cone can have influenced it. However, retardation
has to be included “by hand” when using Newtonian gravity. This gives rise to an additional factor
when calculating the power spectrum’s amplitude since we must evaluate the amplitude of a mode
with wave length λ not at time t, but at the earlier time t − ∆t = t − λ/(2c).

We can compute the corresponding scale factors at t − ∆t as follows. We must have λ = 2π/k !
=

2Dcom(z, zk), where z and zk are the redshifts corresponding to times t and t − ∆t, respectively, and
Dcom(z, zk) is the comoving distance between both redshifts. Thus, we have to find a scale factor
ak = 1/(1 + zk) for each mode k such that

k =
π

Dcom(a, ak)
=

πH0

c


a(z)∫

ak(zk)

da′

a′2E(a′)


−1

(A.2)

holds. This is consistent with Eq. (A.1) because the wave number k approaches kmin for ak → 0. The
influence on the power spectrum’s amplitude results in an additional factor G2

+(ak)/G2
+(a) entering

Eq. (3.22). Since PΦ does not evolve with time in an EdS universe, it has no effect in this case.
Additionally, it turns out that its contribution is quite small for both the ΛCDM and the OCDM model,
where it only affects the power spectrum’s amplitude for a relatively small amount of wave numbers.
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Figure A.1: Comparison of the
X-ray temperature function de-
rived from the statistics of grav-
itational potential perturbations
(Φnl) using the alternative defini-
tion of kmin from Eq. (A.1) with
the classical Press-Schechter ap-
proach (PS) for three cosmolo-
gies. Upper row: ΛCDM. Cen-
tral row: OCDM. Lower row:
EdS. Left panels: z = 0. Right
panels: z = 2.

Hence, it only has a negligible effect on the computation of the spectral moments and can be usually
ignored.

A.2 Results for the X-ray temperature function

In Fig. A.1 we present the results for the X-ray temperature function from the statistics of gravitational
potential perturbations using the alternative definition of kmin and compare it to the Press-Schechter
approach for three different cosmologies and two redshifts for temperatures between 1 and 30 keV.
We can see clearly that both functions match quite well for very high temperatures, especially in the
EdS case. For all three models, the temperature function derived from the gravitational potential is
much flatter for low temperatures than the temperature function inferred from the Press-Schechter
mass function so that the number density of objects with temperatures of about 1 keV is too low by a
factor of more than 100.

This discrepancy can be explained considering that we expect many more density maxima than
potential minima for the same volume of space due to the following reason. The Gaussian random
field of potential perturbations is much smoother and has much more power on large scales than
the corresponding field for the density contrast due to the steepness of the potential power spectrum
PΦ. Only large structures that have a high density contrast also correspond to a potential minimum,
smaller structures only correspond to a maximum in the potential’s Laplacian but not to a minimum in
the potential itself. Since they are not located at a minimum of the potential, they have a non-vanishing
potential gradient which corresponds to a non-zero peculiar velocity.

The definition presented in Eq. (3.42) does not involve these problems due to the fact that large-scale
potential gradients are removed and therefore, the condition ~η = ~0 is also applicable for structures with
a low X-ray temperature.
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B Appendix B

Comparison with a previous
ellipsoidal-collapse study

Here, we compare our results for the evolution equations of the collapsing ellipsoid with those pre-
sented by Monaco (1997) for a flat ΛCDM and an OCDM model.

Starting from Eq. (4.5), we can replace E(a) and E′(a) for a flat ΛCDM model using

E(a) =
√

Ωm0a−3 + (1 −Ωm0) and E′(a) = −
3Ωm0a−4

2E(a)
(B.1)

since ΩΛ0 = 1 −Ωm0 and the curvature parameter Ωk = 0. This yields

d2ai

da2 −
1 − 2(Ω−1

m0 − 1)a3

2a
[
1 + (Ω−1

m0 − 1)a3
] dai

da
+

3Ci − 2a3(Ω−1
m0 − 1)

2a2
[
1 + (Ω−1

m0 − 1)a3
]ai = 0 . (B.2)

This equation differs from Eq. (B11) of Monaco (1997) in the second and third term: A factor a2 in
the denominator of both terms was omitted. Additionally, the vacuum term ∝ ρΛ as well as a factor 3
were not included in the nominator of the third term.

For an OCDM model, we have

E(a) =
√

Ωm0a−3 + (1 −Ωm0)a−2 and E′(a) = −
3Ωm0a−4 + 2(1 −Ωm0)a−3

2E(a)
(B.3)

since ΩΛ0 = 0 and Ωk = (1 −Ωm0)a−2. Inserting this again into Eq. (4.5) yields

d2ai

da2 −
{
2a

[
1 + (Ω−1

m0 − 1)a
]}−1 dai

da
+ 3

{
2a2

[
1 + (Ω−1

m0 − 1)a
]}−1

Ciai = 0 . (B.4)

Equation (B12) of Monaco (1997) is again slightly different: The factor 3 in the last term was omitted.
There is one last difference concerning the initial conditions: Comparing Eq. (B17) of Monaco

(1997) with Eq. (4.6) of Chap. 4, one can find an additional factor aini in front of λi(aini) which should
be dropped.
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C Appendix C

Forecast for different weak-lensing
surveys

For convenience, we evaluate here the expected number density of peak counts for signal-to-noise
ratios 1, 3, and 5 and for a collection of present and future weak-lensing surveys with different intrinsic
ellipticity dispersionσε and galaxy number density ng per arcmin2. To give typical values, we assumed
for all of them a square-shaped field of view, a uniform galaxy number density and no gaps for two
main reasons. First, their fields-of-view are typically very large and thus do not affect the frequencies
relevant for our evaluation. Second, the masking of bright objects can be done in many different ways
which cannot be considered in this paper in any detail. Finally, we fixed the sampling scale (7.29) to
be 5 times smaller than the typical filter scale in order to avoid undersampling, i.e. such that the high
frequency cut-off is imposed by the filters themselves. For each filter, we used two or three different
scales, namely

• Qpoly: scale-1 =̂ 2.′75, scale-2 =̂ 5.′5, scale-3 =̂ 11′;

• Qtanh: scale-1 =̂ 5′, scale-2 =̂ 10′, scale-3 =̂ 20′;

• Qopt: scale-1 =̂ 1014 h−1 M�, scale-2 =̂ 5 × 1014 h−1 M�,

• Qgauss (Gaussian FWHM): scale-1 =̂ 1′, scale-2 =̂ 2′, scale-3 =̂ 5′.

The results are shown in Tab. C.1 together with the number counts obtained with a simple Gaussian
filter, usually used together with the Kaiser & Squires shear inversion algorithm (Kaiser & Squires,
1993).
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Pan-STARRS Qpoly Qtanh Qopt Qgauss
σε = 0.3, ng = 5 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 207.7 8.127 0.002 252.7 8.824 0.002 186.3 6.243 0.001 3125 131.1 0.042
scale-2 51.49 2.82 0.001 61.8 3.214 0.002 62.69 3.576 0.002 989.6 38.93 0.011
scale-3 12.45 1.258 0.002 14.02 1.518 0.003 - - - 173.2 7.82 0.003

DES Qpoly Qtanh Qopt Qgauss
σε = 0.3, ng = 10 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 206.6 9.55 0.004 248.9 10.98 0.004 288.8 12.72 0.005 3593 144.5 0.043
scale-2 50.09 4.178 0.005 56.87 5.112 0.008 95.6 8.325 0.012 1047 41.67 0.012
scale-3 11.67 2.339 0.0174 11.92 2.847 0.030 - - - 169.8 9.807 0.006

CFHTLS Qpoly Qtanh Qopt Qgauss
σε = 0.3, ng = 20 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 206.6 9.907 0.004 249.6 11.48 0.004 324 14.12 0.005 3971 151.6 0.041
scale-2 49.76 4.545 0.007 55.86 5.61 0.010 104.5 9.519 0.015 1085 42.15 0.012
scale-3 11.49 2.622 0.025 11.51 3.166 0.044 - - - 169.7 10.28 0.007

Subaru Qpoly Qtanh Qopt Qgauss
σε = 0.3, ng = 30 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 198.5 16.22 0.020 219.5 21.51 0.038 603.2 42.99 0.04045 4110 160.9 0.046
scale-2 44.84 10.82 0.117 42.97 13.32 0.237 172.8 29.81 0.1642 1070 50.42 0.021
scale-3 9.406 6.321 0.528 7.857 6.457 0.807 - - - 151.6 19.14 0.057

EUCLID Qpoly Qtanh Qopt Qgauss
σε = 0.3, ng = 40 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 194.3 20.01 0.039 206.3 27.29 0.088 730.9 58.61 0.070 4189 165.5 0.048
scale-2 42.64 14.25 0.295 38.54 16.8 0.591 197.7 40.75 0.321 1062 54.99 0.027
scale-3 8.653 7.642 1.104 6.873 7.282 1.514 - - - 143.6 24.19 0.127

LSST Qpoly Qtanh Qopt Qgauss
σε = 0.22, ng = 50 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 174.8 42.42 0.463 156.8 56.13 1.333 1206 138 0.334 4169 187.7 0.070
scale-2 34.5 28.13 3.464 26.15 26.81 5.218 269.2 95.09 2.198 991.5 82 0.104
scale-3 6.403 10.32 4.964 4.519 8.139 4.889 - - - 113.5 48.96 1.688

SNAP Qpoly Qtanh Qopt Qgauss
σε = 0.3, ng = 100 1 3 5 1 3 5 1 3 5 1 3 5

scale-1 172.6 45.42 0.5824 152.5 59.33 1.664 1322 148.6 0.3481 4287 190.2 0.069
scale-2 33.73 29.39 4.133 25.22 27.43 6.009 281.6 102.2 2.494 991.3 85.32 0.117
scale-3 6.218 10.41 5.403 4.355 8.1 5.19 - - - 110.8 51.68 2.083

Table C.1: Expected number counts of peak detections per square degree for different weak-lensing sur-
veys, filters, and signal-to-noise ratios.
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D Appendix D

Units and constants

Here, we want to give the astronomical units and physical constants used in this thesis.

D.1 Astronomical units

1′′

1′′

Earth Sun1 AU

1 pc

distant star

Figure D.1: Definition of a par-
sec (not to scale!).

The astronomical unit (AU) is defined as the average distance
of the Earth to the Sun, which is

1 AU = 1.4960 × 1013 cm . (D.1)

One light-year (ly) is the distance that light travels in vacuum
within one year. It is

1 ly = 9.4607 × 1017 cm . (D.2)

At a distance of one parsec (pc), the parallax of an object on the
sky due to Earth’s motion around the Sun is 1′′ (arcsecond). See
Fig. D.1 for an illustration. The word “parsec” is an abbreviation
for “parallax of one arcsecond”. It is

1 pc = 3.2616 ly = 3.0857 × 1018 cm . (D.3)

One Megaparsec (Mpc) is therefore

1 Mpc = 3.0857 × 1024 cm . (D.4)

The mass of the sun is

M� = 1.9889 × 1033 g . (D.5)

D.2 Physical constants

The speed of light is
c = 2.9979 × 1010 cm s−1 . (D.6)

The gravitational constant is
G = 6.6720 × 10−8 cm3 g−1 s−2 . (D.7)

Assuming that the intracluster medium has primordial composition, one particle of it has on average
the mass µmp, where µ = 0.59 and mp is the proton mass given by

mp = 938.27 c−2 MeV = 1.6726 × 10−24 g . (D.8)
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The Hubble constant, quantifying today’s expansion rate of the Universe, is

H0 = 100 h km s−1 Mpc−1 = (9.7778)−1 h Gyr−1 = 3.2408 × 10−18 h s−1 . (D.9)

Together with the gravitational constant, the critical density of the Universe can be expressed as

ρc ≡
3H2

0

8πG
= 2.7754 × 1011 h2 M� Mpc−3 = 1.8788 × 10−29 h2 g cm−3 . (D.10)

The Hubble radius, describing approximately the size of the visible Universe, is given by

rH ≡
c

H0
= 2997.9 h−1 Mpc = 9.2506 × 1027 h−1 cm . (D.11)
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Raumes. Zeitung für Physik, 21, 326.

114

http://dx.doi.org/10.1111/j.1365-2966.2004.07431.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07431.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07431.x
http://dx.doi.org/10.1086/519457
http://dx.doi.org/10.1086/519457
http://dx.doi.org/10.1086/519457
http://dx.doi.org/10.1146/annurev.aa.30.090192.002435
http://dx.doi.org/10.1146/annurev.aa.30.090192.002435
http://dx.doi.org/10.1146/annurev.aa.30.090192.002435
http://dx.doi.org/10.1086/156922
http://dx.doi.org/10.1086/156922
http://dx.doi.org/10.1086/156922
http://dx.doi.org/10.1111/j.1365-2966.2010.17573.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17573.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17573.x
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1051/0004-6361:20077281
http://dx.doi.org/10.1051/0004-6361:20077281
http://dx.doi.org/10.1051/0004-6361:20077281
http://dx.doi.org/10.1111/j.1365-2966.2009.15948.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15948.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15948.x
http://dx.doi.org/10.1007/BF01001625
http://dx.doi.org/10.1007/BF01001625
http://dx.doi.org/10.1007/BF01001625
http://dx.doi.org/10.1002/andp.19053221004
http://dx.doi.org/10.1002/andp.19053221004
http://dx.doi.org/10.1002/andp.19053221004
http://nausikaa2.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.x.cgi?dir=6E3MAXK4\&step=thumb
http://nausikaa2.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.x.cgi?dir=6E3MAXK4\&step=thumb
http://nausikaa2.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.x.cgi?dir=6E3MAXK4\&step=thumb
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/175193
http://dx.doi.org/10.1086/175193
http://dx.doi.org/10.1086/175193
http://cdsads.u-strasbg.fr/abs/1996MNRAS.282..263E
http://cdsads.u-strasbg.fr/abs/1996MNRAS.282..263E
http://cdsads.u-strasbg.fr/abs/1996MNRAS.282..263E
http://dx.doi.org/10.1046/j.1365-8711.2000.03275.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03275.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03275.x
http://cdsads.u-strasbg.fr/abs/2000A%26A...355...23E
http://cdsads.u-strasbg.fr/abs/2000A%26A...355...23E
http://cdsads.u-strasbg.fr/abs/2000A%26A...355...23E
http://dx.doi.org/10.1086/521616
http://dx.doi.org/10.1086/521616
http://dx.doi.org/10.1086/521616
http://dx.doi.org/10.1111/j.1365-2966.2009.15042.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15042.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15042.x
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01328280
http://dx.doi.org/10.1007/BF01328280
http://dx.doi.org/10.1007/BF01328280


BIBLIOGRAPHY

H, A. & P, J. (1988): Tidal torques and local density maxima. MNRAS, 232, 339.

H, J. F. & S, D. N. (2005): Shear-selected Cluster Cosmology: Tomography and Optimal
Filtering. ApJ, 624, 59.

H, M., E, T., S, P.,  . (2005): Searching for galaxy clusters using the
aperture mass statistics in 50 VLT fields. A&A, 442, 43.
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