
Accretion and Ejection

in Resistive GR-MHD

Qian Qian
Max-Planck-Institut für Astronomie

Heidelberg 2017





Accretion and Ejection in Resistive GR-MHD
submitted to the

Combined Faculties of the Natural Sciences and Mathematics
of the Ruperto-Carola-University of Heidelberg, Germany,

for the degree of
Doctor of Natural Sciences

Put forward by
Qian Qian

born in Shanghai, China

Oral examination: May 10th, 2017.





Accretion and Ejection in

Resistive GR-MHD

Referees: Priv. Doz. Dr. Christian Fendt

Prof. Dr. Cornelis P. Dullemond





知人者智,自知者明。
胜人者有力,自胜者强。



Gottes Zeit, Gottes Zeit,
ist die allerbe...ste
ist die, allerbeste Zeit :-)1

1This is just a song for fun and no translation for the dedication in last page!







Abstract

In this thesis, the accretion and ejection processes from a black hole accretion system is investi-
gated by means of resistive general relativistic magnetohydrodynamic simulations. As a supple-
ment to the results from prior research with non-relativistic simulations, my results confirm that
the winds and outflows originated from thin accretion disks can also be observed in general rel-
ativistic simulations. In the first part, the execution of the implementation of resistivity, namely
magnetic diffusivity, into the existing non-resistive general relativistic magnetohydrodynamic
code HARM is illustrated. The test simulations of the new code rHARM include the comparison
with analytical solution of the diffusion equation and a classic shock tube test. rHARM shows
reliable performances in these tests. In the second part, rHARM is applied to investigate the
evolution of magnetized tori. The results show that the existence of resistivity leads to inefficient
accretions of matter from tori onto black holes by weakening the magnetorotational instability
inside the tori. An indication for a critical magnetic diffusivity in this simulation setup is found
beyond which no magnetorotational instability develops in the linear regime. In the third part,
as the main purpose of this PhD project, rHARM is used to perform simulations of magnetically
diffusive thin accretion disks that are threaded by a large-scale poloidal magnetic field around
non-rotating and rotating black holes. These long-term simulations last 3000 code time units,
which are about 195 rotation periods at the disk inner boundary, correspondingly. Their com-
putational domains extend from black hole horizon to 80 Schwarzschild radii. Outflows driven
from the accretion disk are clearly seen. These outflows have the typical radial velocity of 0.1
speed of light. In my analyses, I argue that these outflows are driven by the magnetic pressure
gradient from the toroidal magnetic field generated by the rotation of the disk. The small ratios of
the poloidal field strengths to the toroidal field strengths suggest the interpretation of the outflows
as “tower jet,” rather than centrifugally driven winds (Blandford-Payne effect). Furthermore, I
find direct evidence of the growths of magnetorotational instabilities inside the accretion disks,
which are suppressed by the increasing levels of magnetic diffusivity. This suppression leads
to inefficient accretion and ejection processes of the accretion system. Finally, the influences
of rotating black holes on the accretion systems are explored. The results show an suppression
effect on the black hole spin on the accretion and ejection processes in the system. The tangled
field lines within the ergosphere induced by the black hole rotation produce magnetic pressure
that pushes against the accreting matter from the disk. In the simulations with large spin pa-
rameters, energy extraction from the black hole (Blandford-Znajek effect) is observed, which is,
nevertheless, ∼ 102 times smaller than the energy production from the disk outflow.



Zusammenfassung

In der vorliegenden Arbeit werden resistive allgemein-relativistische magnetohydrodynamis-
che Simulationen benutzt, um die Akkretion, Winde und Jets von Akkretionsscheiben um ein
schwarzes Loch zu untersuchen. Als Weiterführung bisheriger Arbeiten in der Literatur in nicht-
relativistischer Näherung belegen meine Ergebnisse, dass von der Akkretionsscheibe erzeugte
Winde und Ausflüsse auch in allgemein-relativistischen Simulationen zu beobachten sind. Im
ersten Teil der Arbeit diskutiere ich die Implementierung der Resistivität, oder auch magnetis-
cher Diffusivität, in dem bereits existierenden, nicht-resistiven allgemein-relativistischen mag-
netohydrodynamischen Code HARM. Testsimulationen meines neuen Codes rHARM werden
mit der analytischen Lösung der Diffusionsgleichung und dem klassischen Problem einer zylin-
derförmigen Stoßfront (“Shock tube”) verglichen. Die Tests zeigen klar die Zuverlässigkeit von
rHARM. Im zweiten Teil wird mit rHARM die Entwicklung von magnetisierten Tori unter-
sucht. Die Ergebnisse zeigen, dass die Wirkung der Resistivität zu ineffizienter Massenakkre-
tion der Tori auf schwarze Löcher führt. Hier kann ein Hinweis auf einen kritischen Wert
der magnetischen Diffusivität gefunden werden, über dem keine Magnetorotationsinstabilität im
linearen Bereich stattfindet. Im dritten Teil - dem Hauptteil dieses Promotionsprojekts - wird
rHARM benutzt, um Simulationen von magnetisch diffusiven, dünnen Akkretionsscheiben um
nicht-rotierende und rotierende schwarze Löcher durchzuführen. Insbesondere wird ein glob-
ales, offenes poloidales magnetisches Feld angenommen, das die Scheibe durchläuft. Diese
Simulationen dünner Scheiben laufen 3000 Zeiteinheiten des Codes - was c.a. 195 Perioden
von der innersten Scheibenlaufbahn entspricht. Das numerische Gitter erstreckt sich vom Hor-
izont bis 80 Schwarzschildradien. Die von den Akkretionsscheiben generierten Ausflüsse sind
eindeutig zu sehen. Die Ausflüsse haben eine radiale Geschwindigkeit von typischerweise 0,1
facher der Lichtgeschwindigkeit. In meiner Analyse argumentiere ich, dass diese Ausflüsse vom
Gradienten des toroidalen magnetischen Feld getrieben werden, das von der Scheibenrotation
induziert wird. Die kleinen Verhältnisse von poloidalen Feldstärker zu toroidalen Feldstärker
in den Simulationen deuten an, die Ausflüsse als “Tower Jets” statt der zentrifugal getriebe-
nen Winde (Blandford-Payne-Effekt) zu präsentieren. Darüber hinaus finde ich einen direkten
Hinweis für das Wachstum der Magnetorotationsinstabilität innerhalb der Akkretionsscheiben.
Diese Instabilität wird bei steigender magnetischer Diffusivität untergedrückt und führt dann zu
ineffizienterer Akkretion und Windererzeugung. Schließlich wird der Einfluss der Lochrotation
auf das Akkretionsystem erforscht. Die Ergebnisse zeigen, dass die Rotation des schwarzen
Lochs die Akkretion und den Ausstoß von Winden im System unterdrückt. Das scheint daran zu
liegen, dass der magnetische Druck der innerhalb der Ergosphäre induzierten und “aufgewick-
elten” Feldlinien die Massenakkretion der Scheibe bremst. In Simulationen schnell rotieren-
der schwarzer Löcher wird die Energieentnahme aus dem Loch beobachtet (Blandford-Znajek-
Effekt). Sie ist jedoch um einen Faktor 100 kleiner als die Energieerzeugung durch die Scheiben-
ausflüsse.
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surface and the disk is 60◦. This figure is adopted from Blandford & Payne
(1982). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 The results of the “standard” solution for the cold ideal MHD flow in Keplerian
accretion disk. left: The integrated field lines projected into the poloidal plane
in self-similar coordinates (ξ, χ). The dashed line presents the surface where
the Alfvén Mach number

√
m = 1. The surfaces for certain pitch angles α =

tan−1 |Bφ/Bp| are denoted by the dotted lines. right: The dynamics along a
single outflow streamline.

√
m is the Alfvén Mach number,

√
n is the fast-

mode magnetosonic Mach number,
√

U f stands for the poloidal velocity and
g represents the toroidal velocity. The ratio of the toroidal field strength to the
poloidal field strength is also given in the plot. The parameter θ is the polar
angle as measured from the origin of the coordinate system. Credit: Blandford
& Payne (1982). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 A sketch of the electrical flow on the equipotential surfaces of the magnetic
field lines that penetrate the ergosphere of the black hole. The angular velocity
of the magnetic field lines noted by Ω, is defined so that an observer orbiting
with this angular velocity would not see any electric field. The black hole
spins with angular velocity ΩH. ΩL is the angular velocity of an external load
resistance. Here the mechanism of gamma-ray production can be treated as
the external resistance (see corresponding text). This figure is adopted from
Blandford et al. (1990), page 207. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 The mesh grid sketch for the illustration of Godunov’s scheme (see text for the
detail) adopted from the “Lecture Notes for the COMPSTAR School on Com-
putational Astrophysics,” August 10, 2010 by Olindo Zanotti & Gian Mario
Manca. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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3.2 An example of the discontinuous distribution of the conserved variable U caused
by the piece-wise constant method. This Figure is adopted from the “Lecture
Notes for the COMPSTAR School on Computational Astrophysics,” August
10, 2010 by Olindo Zanotti & Gian Mario Manca. . . . . . . . . . . . . . . . 46

3.3 Left: Control volume for the computation of the approximate HLL flux. Right:
The average of U in different regions divided by the shock wave propagation in
two directions. Both plots are adopted from the “Lecture Notes for the COMP-
STAR School on Computational Astrophysics,” August 10, 2010 by Olindo
Zanotti & Gian Mario Manca. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 A flow chart for the basic structure of rHARM as a conservative scheme. Be-
fore the start of the next time evolution over conserved variables, primitive
variables which determine the flux on the cell board mentioned in Section 3.1.2
need to be updated from the current conserved variables. Credit: Mignone et
al. (2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 The flow chart describing the numerical procedure of one time evolution in
rHARM. Boxes with a grey background denotes one or a series of routines that
achieve the function written inside those boxes. The flow chart on the left hand
side presents the procedure of one time evolution while the large box on the
right hand side is a detailed flow description for the process inside the box (3)
on the left hand side. See the text for explanations of each step in the chart. . . 56

3.6 Numerical tests of magnetic diffusivity. The radial profile of the magnetic field
Bθ(r) is plotted along the equatorial plane. We show simulation difT0 with
η = 10−10 (upper) and simulation difT2 with η = 10−2 (lower), both with a
grid resolution 256x256. Different colors represent the corresponding simula-
tion time steps t as labeled in the legend. The actual time t̃ of these steps are
t̃ = t0 + t, where t0 depends on the initial condition. Solid lines are from simu-
lation results, while dashed lines from analytic solutions. Note the difficulty in
distinguishing dashed lines from solid lines, due to the perfect match between
the analytical and numerical solutions. In simulation difT0, all 6 curves are
plotted. Yet, they look like one curve, because with η = 10−10, the magnetic
field does not diffuse at all. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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3.7 Numerical tests of magnetic diffusivity. The radial profile of the magnetic field
Bθ(r) is plotted along the equatorial plane. We show simulation difT1, where
η = 10−3 (upper) is applied with a grid resolution 256x256 and simulation
difT3, where η = 10−3 is applied with a grid resolution 128x128 (lower). Dif-
ferent colors represent the corresponding simulation time steps t, as labeled in
the legend. The actual time t̃ of these steps are t̃ = t0 + t, where t0 depends on
the initial condition. Solid lines represent simulation results, while dashed lines
represent analytic solutions. Note the difficulty in distinguishing dashed lines
from solid lines, due to the perfect match between the analytical and numerical
solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Simulation difT4 with η = 10−3 in a box of 5x5 rH located at r = 30rH and a
grid resolution 256x256. The radial profile of the magnetic field Bθ(r) is plotted
along the equatorial plane. The upper plot shows advection of magnetic flux
by the infalling corona. The lower plot shows the same simulation results, but
compensated for advection / infall with the magnetic profile maximum shifted
back to the center of the simulation box (after the simulation). In the lower
plot, solid lines represent the simulation result while dashed lines represent the
analytic solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Shock tube simulation in ideal MHD regime. Density and vertical magnetic
field at time t = 0.55tg. In this figure, we show results of simulations with
grid resolution N = 4500, where the curves of the two simulations match per-
fectly to each other. Although the actual computational domain is larger, only
the range x = [300rg, 301rg] is plotted in order to easily compare to the two
reference papers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 Shock tube simulations in diffuse MHD regime. Density and vertical magnetic
field at time t = 0.55tg. In this figure, we show the results of simulations
with N = 600. In addition, the magenta and cyan dashed lines in the lower
plots represents the simulations with resolution N = 120. Although the actual
computational domain is larger, only the range x = [300rg, 301rg] is plotted in
order to easily compare to the two reference papers. . . . . . . . . . . . . . . . 68

3.11 Measure of numerical magnetic diffusivity. The simulations shown apply a
numerical resolution of (128 × 128) and a physical magnetic diffusivity η =

10−5, 10−4 (see figure titles). Dashed curves show the analytic solution of the
diffusion equation for the physical magnetic diffusivity (as in Section 3.4).
Solid curves show the result of the numerical simulation for the same time
steps. The decay of magnetic field lines in these plots are still dominated by
physical magnetic diffusivity. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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3.12 Measure of numerical diffusivity. The simulations shown apply a numerical
resolution of (128 × 128) and a physical magnetic diffusivity η = 10−7, 10−6

(see figure titles). Dashed curves show the analytic solution of the diffusion
equation for the physical magnetic diffusivity (as in Section 3.4). Solid curves
show the result of the numerical simulation for the same time steps. The decay
of magnetic field lines in these plots are dominated by numerical magnetic
diffusivity, hence, the decreasing physical magnetic diffusivity value does not
influence the decay of field lines. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 The figure shows the comparison of simulations torT0 and torT1. Simulation
torT0 applies ideal MHD HARM, while torT1 applies rHARM with tiny mag-
netic diffusivity η = 10−12. Mass accretion rates in simulations torT0 (upper
plot) and torT1 (lower plot) are measured at r = 2.2rg close to the horizon.
The average accretion rates given in the plot title are taken from t = 240tg to
t = 400tg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Density (log(ρ)) distribution of simulation torT0 (upper plot) and torT1 (lower
plot) at t = 400tg (the computational domain covers only the right side of the
plot, the left part is just mirrored). . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Mass accretion rates of simulation torT0 (upper plot) and torT2 (lower plot)
at r = 2.2rg. The upper plot in Figure 4.1 is actually a part of the upper plot
here. The average values shown in the plot titles were taken from t = 300tg

to t = 600tg. A continuous accretion appeared in torT0 after about t = 250tg,
while no massive accretion observed in torT2 until t ∼ 400tg. The presence of
magnetic diffusivity delays the time point when disk accretion happens. . . . . 80

4.4 The figure presents log(ρ) of simulations torT0 (upper plot) and torT2 (lower
plot) at time 600tg. In simulation torT0, MRI made the torus unstable and later
the torus became turbulent with an accretion flow (Gammie et al. 2003). On the
other hand, the torus structure of simulation torT2 evolves in a less turbulent
way, where MRI is damped by the magnetic diffusivity. . . . . . . . . . . . . . 82
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4.5 Mass flux as the indicator of MRI growth in simulations mriT1-mriT6. Two
plots are shown in order to avoid confusion between the curves. In the up-
per plot, the mass accretion rates for η = 10−6 (black), η = 10−4 (cyan) and
η = 5 × 10−4 (red) are shown, while in the lower plot, the accretion rates for
η = 1 × 10−3 (blue), η = 5 × 10−3 (green) and η = 10−2 (magenta) are given.
The η = 5 × 10−4 (red dashed line) curve is plotted in the lower plot as a ref-
erence. As illustrated, the time when substantial accretion initiates is delayed
with increasing η. The similar results for η 6 10−4 indicate a numerical diffu-
sivity ∼ 10−5 (see Section 3.6). The delay in accretion can be explained by the
magnetic diffusivity suppressing the MRI in the torus. For η 6 1 × 10−3, only
that part of the evolution is shown, afterwards these simulations experience nu-
merical instabilities - similar to simulations torT1 and torT2. Note that in these
plots, the time point when massive accretion takes place differs from those in
Qian et al. (2017) because of a slightly different setup in the code. . . . . . . . 83

5.1 Shown is the logarithmic initial density of the disk simulation in code grids
(see Section 3.3.2). With the grid resolution 128 × 128, the radius inside the
disk inner boundary r = 6rg is resolved by 38 grids. In the theta direction, the
disk region from θ ≈ 75.8◦-104.2◦ is resolved by 48 grids. . . . . . . . . . . . 86

5.2 The initial profiles of density (left plot) and diffusivity (right plot) at radius
r = 6rg for simulation D16. Both profiles decrease steeply in the θ direction
with increasing distance from the disk mid-plane. In the simulations, densities
are normalized to the maximum density inside the disk. According to Equation
(5.2), this value appears at the disk inner boundary. Thus the density profile
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to η0 (see Equation 5.6), which is 10−3 in simulation D6. Thus the diffusivity
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5.3 The density plot of simulation D1 in logarithmic axes at time t = 0tg. The
maximum density is normalized to 1. The white solid lines in the plot show the
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5.4 An illustration sketch of the surface where the accretion and ejection are mea-
sured. In our discussion below, we set a at r = 6rg, b at θ = 75◦ (disk initial
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5.5 Density snapshots in logarithm from simulation D0 at t = 0tg (upper left),
t = 1000tg (upper right), t = 2000tg (lower left) and t = 3000tg (lower right).
Apart from for some turbulent structures on the surfaces, the accretion disk ba-
sically kept its disk-like shape during the time evolution and no outflow stream
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cover θε(0, 180) and the left hemispheres are just mirrored (same for all plots
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velocity. It seems that a pure Paczyński-Witta profile is not able to fit the steady
state. Yet, an initial profile with Rpw ∼ 1.7 may reduce the discrepancy to the
steady state. Note that the plot starts at r = 6rg since this is the disk inner radius. 94

5.7 Accretion and ejection rates and their average values for simulation D0 from
t = 1000tg to t = 3000tg. The outer radius for accretion calibration is set at r =
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5.8 Magnetic field in the radial direction measured at r = 12.6rg at t = 0tg (left
plot) and t = 1000tg (right plot). The different pointing directions of the radial
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while the center-symmetric jagged curve within the disk range at t = 1000tg is
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5.10 Radial velocity profile for simulation D6 at t = 3000tg with different contrast.
In the left plot, the color bar resolves values from 0 to 0.1. We see that the disk
wind has a moderate outward radial velocity vr . 0.1 (the velocity is normal-
ized by c). Also, to identify the accretion region, the color bar in the right plot
resolves values from −0.005 to 0.005. With the exception of minor turbulent
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5.12 The ejection rate and the inner accretion rate for simulations D1 (upper plots)
and D6 (lower plots) from t = 1000tg to t = 3000tg. The averages are taken
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rates for simulations D1 are much larger than simulation D6. Nevertheless,
simulation D6 has a better efficiency in the outflow production (see text). . . . 101

5.13 The ejection rate and the inner accretion rate for simulation D17. Since the
simulation has not yet finished, we can only give the data from t = 1000tg to
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5.15 The radial component of the magnetic field for simulations D1 (upper left),
D6 (upper right) and D17 (lower plot) measured by r = 12.6rg at t = 2400tg.
Note that the disk surfaces in our disk model are at θ = 75◦ and θ = 105◦
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5.16 Field line structures for simulation D1 (left plot) and D17 (right plot) at t =
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across the field lines, which prevent the field lines from being disturbed by the
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sibility that the disk wind is driven by centrifugal force, that is, the BP process. 108

5.19 left: The thermal pressure in logarithm for simulation D6 at t = 1000tg. The
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5.20 Field line structure for simulation D6 at t = 2000tg (left plot) and t = 3000tg
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and D8 with parameter m = 0.6 (right plot). The smaller the parameter m is,
the more the field lines are inclined to the disk mid-plane. See also Figure 5.3
for the initial field line structure with parameter m = 0.4. . . . . . . . . . . . . 116

5.23 The ejection rate and the inner accretion rate for simulation D5 from t = 1000tg

to t = 3000tg. The averages are taken in the time interval from t = 2000tg to
t = 3000tg. The accretion and ejection rates for simulations D5 are both weaker
than simulation D6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.24 The time averaged ejection rate and the inner accretion rate for simulations D5,
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Chapter 1

Introduction

Jets as collimated, supersonic flows are observed in various astrophysical contexts. The origin
of these jets lies in the accretion processes in star formation or black hole accretion systems
with strong magnetic fields. Launched from the center of an active galactic nucleus that contains
a supermassive black hole, the beams of the collimated magnetized material jets, known for
their relativistic speeds and the long ranges, can influence the surroundings on the galactic scale.
Being mostly detected in synchrotron emission, the structure of these relativistic jet sources-
the center engines in active galactic nuclei-remain unresolved by observations and numerical
approaches are often used to investigate the generation of jets from active galactic nuclei.

1.1 Astrophysical jets

Basically, jets can be classified into three broad categories determined by the different types of
their central sources – young stellar objects (YSOs), stellar mass black holes/neutron stars and
super massive black holes in galactic centers.

The most common type of astrophysical jets are powered by YSOs. While stars with masses
above about 10M� sometimes generate wide-angle outflows, most low-mass stars produce highly
collimated jets and outflows during their formation (Bally 2007). These jets have typical veloci-
ties of a few hundred km s−1 and drive outflows with sizes ranging from hundreds of AU to tens
of parsecs (Reipurth et al. 1997; Hartigan et al. 2001; Gómez et al. 2005; Curiel et al. 2006).
Shocks powered by YSO outflows excite many emision lines, e.g. the near-Infrared (IR) lines of
H2 and [FeII], visual-wavelength [OI], [SII] lines, hydrogen recombination lines, and forbidden
lines depending on the medium and the velocity of jets (Bally 2007).

The first documented visual observation of an astrophysical jet was the outflow of the young star
TTauri, recorded by Burnham (1890) as “variable nebula.” In the late 1950’s, the “Burnham’s
nebula,” together with other peculiar nebulous objects observed at that time, were investigated
and eventually recognized as the early stages of newly formed stars. Such objects are nowadays
named as HH objects, after Herbig and Haro, who restarted the discussion of “Burnham’s nebula”
sixty years after its first observation. In Figure 1.1, jets from two HH objects, HH47 and HH212,

1
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are shown.

Figure 1.1: left: An image of HH47 jet taken by NASA Hubble Space Telescope in visible light.
The center source of this roughly 0.5 lightyear-long jet is hidden inside a dust cloud at the lower
left edge of the image. The jet has burrowed a cavity through the dense gas cloud and now travels
at high speed into interstellar space. Shock waves form when the jet collides with interstellar
gas, causing the jet to glow. Credit: J. Morse/STScI, and NASA. right: The false color image of
HH212 jet taken by VLT in the infrared H2 emission line (adapted from Bally (2007)). It shows
a very young jet driven by an invisible protostar in the vicinity of the Horsehead nebula in Orion
(Zinnecker et al. 1998).

In our galaxy, binary systems of stellar mass black holes and neutron stars can also produce jets
that are even moving with relativistic speed (Mirabel & Rodrı́guez 1999). Due to the differing
emission mechanism from YSO jets, these objects only give broad emission lines which makes
it difficult to analyze the chemical ingredients of jets. Such binary systems are called X-ray
binaries (XRBs) since they were mostly and originally discovered in either X-ray or hard X-
ray bands (Zhang et al. 1997). On the other hand, according to the observations in the two
extremes of the electromagnetic spectrum, namely, in the domain of the hard X-rays and radio
wavelengths, the stellar-mass black holes mimic, on a smaller scale, many of the phenomena
seen in quasars, they are hence known as microquasars (Mirabel & Rodrı́guez 1998, 1999).

The first superluminal jet within the Milky Way discovered by Mirabel & Rodrı́guez (1994) was
a microquasar GRS 1915+105. This superluminal source is at a distance of about 11 kpc from
Earth and has relativistic ejections with a stable jet axis at scales of 500-5000 AU (Fender et al.
1999; Dhawan et al. 2000). GRS 1915+105 has a black hole with mass 14 ± 4M� (M� is the
solar mass) in its center (Greiner et al. 2001). Due to the relativistic superluminal effect (see
Appendix A.1), the apparent velocity of the ejecta moving towards the observer reached 1.25c,
but was actually moving with a spred of 0.92c at an angle θ = 70◦ to the line of sight (Mirabel &
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Rodrı́guez 1994). An observation of GRS 1915+105 in radio wavelength is shown Figure 1.2.

Figure 1.2: A sequence of MERLIN observations of the X-ray binary GRS 1915+105 taken in
1997 October/November (Fender et al. 1999). This false color image shows the data observed
using the MERLIN array at 4.994 GHz (radio wavelength) with a bandwidth of 16 MHz. The
anti-parallel ejection of clouds in this plot were moving at relativistic velocities. Credit: MER-
LIN/VLBI National Facility.

There are also other X-ray sources nearby like, e.g. XTE J1550-564 with a center black hole of
mass > 10M� lies only about 5kpc from the earth (Orosz et al. 2002; Titarchuk & Shrader 2002).
Although they are close to Earth (still in Milky Way), the highest angular resolution in terms of
Schwarzschild radii (rs) that can actually be achieved is in an extragalactic jet originating at the
galaxy M87, whose the fastest superluminal feature reaches apparent velocity of six times the
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speed of light (Biretta et al. 1999).

Although the galactic jets (microquasars) are much closer to us by distance, e.g. another nearby
source XTE J1550-564 with a center black hole of mass > 10M� lies only about 5kpc from the
earth (Orosz et al. 2002; Titarchuk & Shrader 2002), the highest angular resolution in terms of
Schwarzschild radii (rs) can actually be achieved in an extragalactic jet originating at the galaxy
M87, the fastest superluminal feature of which reach apparent velocity of six times the speed of
light (Biretta et al. 1999).

Figure 1.3: left: An image taken by Hubble Space Telescope which shows the jet of matter
ejected from M87 at nearly light speed, as it stretches 1.5 kpc from the galactic core. The
appearance of the single jet component is due to the relativistic beaming effect (see Section
1.2.2). right: An image of radio galaxy 3C31 in ∼ 100kpc scale. Blue color shows the optical
image from POSS II survey while the red color gives the radio image from the VLA at 21cm
wavelength. It is clear to see the influence of the jets to its ambient in the galactic scale. Credit:
NRAO/AUI.

M87 (or NGC 4486) is a supergiant elliptical galaxy in the constellation Virgo located at a dis-
tance of 16.7 ± 0.6Mpc which contains a supermasive black hole of (6.2 ± 0.4) × 109M� in its
center (Doeleman et al. 2012). The observations by very-long-baseline interferometry (VLBI)
have reached angular resolutions less than 10rs (Doeleman et al. 2012; Hada et al. 2013, 2016;
Kim et al. 2016). Observations showed that the relativistic jet of energetic plasma that originates
at the core and extends outward at least 1.5 kpc (Doeleman et al. 2012) with the radio lobes
extended further out to a distance of 77 kpc (Figure 1.3 left plot; Klein 1999). The engine of the
extragalactic jets from M87 is an active galactic nucleus (AGN) powered by accretion of matter
onto the supermassive black hole in its galactic center. The galaxies that host active galactic
nuclei are called active galaxies. Approximately 10% of active galactic nuclei exhibit relativistic
jets. In the right plot of Figure 1.3, another observed active galactic nucleus 3C31 that produces
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relativistic jets is shown. I will discuss the formation of the these extragalactic jets in Chapter
1.2.

Jets often play a key role in various astrophysical process. The YSO jets feedback has an effect on
the local environment of a star and further afield in interstellar medium on galactic scale. The rel-
ativistic jets from XRBs and AGNs are the key to explaining gamma-ray bursts (GRBs), 1 which
are believed to be produced when the kinetic energy of an ultra-relativistic flow is dissipated via
internal shock (Piran 2004). The feedbacks of the AGN jets, although not fully understood, have
been observed in numerical simulations, where the onset of the jets lead to an increase in the star
formation rate by a factor of 2 and even more in the star forming gaseous disk of 10kpc scale
(Antonuccio-Delogu & Silk 2010; Gaibler et al. 2012).

Unlike YSOs jets, relativistic jets are mostly detected in synchrotron emission. For this reason,
while jets from YSOs can be rather well resolved and typical features such as mass fluxes, ve-
locities, or even rotation can be observed (Bacciotti et al. 2002; Coffey et al. 2004), the structure
of the relativistic jet sources remains unresolved. What the relativistic jets are made of or how
they are produced, is still a mystery of astrophysics.

1.2 Jets in active galactic nuclei

An active galactic nucleus (hereafter AGN) is a compact region at the center of a galaxy that
produces an excess of electromagnetic radiation. The host galaxy of an AGN is called an active
galaxy. Figure 1.4 shows images of different types of AGNs. While all the stars from a normal
(non-active) galaxy together yield a typical luminosity of 1044ergs−1, AGNs can, in the most
extreme manifestations, exceed this value by a thousand times. Approximately 10% of AGNs
exhibit relativistic jets (Doeleman et al. 2012). Observations suggest that the majority of AGN
jets have velocities lower than Lorentz factor Γ = 10, while some others, can reach Γ = 50
(Jorstad et al. 2005; Lister et al. 2009). The radiation and the relativistic jets originated from
AGN are believed to be the result of accretion of matter onto the black hole in the center of the
host galaxy. However, the mechanism detail of this process is still a mystery.

1.2.1 A brief AGN story

Unlike any other astronomical object, the electromagnetic radiation from an AGN can be ex-
tremely broad-band. Due to the different observational conditions (e.g. environment around
AGN, viewing angle of the host galaxy to the line of sight, etc.), it is possible that only a part
of the AGN spectrum is visible in an observation. Thus, before the unification theory, which
classifies AGNs into two basic types–radio quiets and radio louds (see below), different types of

1GRB is the γ-ray flash in the sky for a duration from 10−3s to 103s which releases energy of the order 1051-
1054ergs per second.
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AGNs were often thought to be various astrophysical objects.

The first detected AGN was documented by Fath (1909). In this observation, NGC 1068 was
described as a “spiral nebula” with “a diffuse nucleus” which had unusual bright emission lines
in optical/infrared wavelength. In the seminal paper of Carl K. Seyfert, NGC 1068 was dis-
cussed with NGC 4151 and other galaxies as objects with “an exceedingly luminous stellar or
semistellar nucleus which contains a relatively large percentage of the total light of the system”
(Seyfert 1943). These objects later defined the term “Seyfert galaxy.” By the end of the 1950s,
more important characteristics of Seyfert galaxies were discovered, including that their nuclei
are extremely compact (< 100pc) and have mass ∼ 109±1M� (Woltjer 1959).

Seyfert galaxies are now known as one of the two largest groups of active galaxies, which de-
pending on the subclass (type 1 or 2), show optical range nuclear continuum emission, narrow
(Seyfert 2) and broad (Seyfert 1) emission lines, and occasionally strong nuclear X-ray emission
(Seyfert 1). Seyfert galaxies are usually spiral or irregular galaxies. In Figure 1.4 left plot, an
image of NGC 4151, a type I Seyfert galaxy, is shown.

Figure 1.4: left: A composite false color image of the spiral Seyfert galaxy NGC 4151. In
the image, the X-rays (blue) from the Chandra X-ray Observatory are combined with optical
data (yellow) showing positively charged hydrogen (“H II”) from observations with the 1-meter
Jacobus Kapteyn Telescope on La Palma. The red around the bright core shows neutral hydrogen
detected by radio observations with the NSF’s Very Large Array. right: An image from Hubble’s
Wide Field and Planetary Camera 2 (WFPC2) of quasar 3C 273, which resides in a giant elliptical
galaxy in the constellation of Virgo. Its light has taken some 2.5 billion years to reach us. Despite
this great distance, it is still one of the closest quasars to Earth.

Quasars (quasi-stellar radio sources) represent the other large group of AGNs. As revealed by its
name, quasars were originally observed in radio wavelength (Matthews & Sandage 1962; Bolton
et al. 1963; Greenstein & Schmidt 1964; Bolton et al. 1965). While the host galaxies of Seyferts
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are clearly detectable, quasars appeared usually as point sources, indistinguishable from stars,
except for their peculiar spectra. They emit, almost uniformly, from X-rays to the far-infrared
with a peak in the ultraviolet-optical bands; some quasars are strong sources of radio emission
and of gamma-rays.

Although quasars appear faint when viewed from Earth, they are among the most luminous and
energetic objects known in the universe. The quasar that appears brightest in the sky is 3C 273
(see Figure 1.4 right plot) discovered in the early 1960s (Schmidt 1963; Greenstein & Schmidt
1964). It has an apparent magnitude of 12.8, but its absolute magnitude reaches -26.7, which
represents a luminosity about 100 times that of the Milky Way (Greenstein & Schmidt 1964).

To see the emission contribution of jets in AGNs, it is convenient to divide AGN into two classes,
conventionally called radio-quiet and radio-loud. Radio-quiet AGNs, including Seyfert galaxies
and the majority of quasars, do not show manifestation of jets. Radio-loud AGNs, on the other
hand, have emission contributions from the jets (see Section 1.2.2) that dominate the luminosity
of the AGN at radio wavelengths. Radio-loud quasars, blazars and radio galaxies belong to this
class.

Radio-loud quasars, e.g. 3C 273, behave exactly like radio-quiet quasars except for the additional
jet emission, while blazars are distinguished by rapidly variable, polarized optical, radio and X-
ray emission. Radio galaxies, in addition to the similar radio emission character of the two
relative groups, usually display large-scale structure jets (see Section 1.2.2). Despite different
observational appearances of radio-loud AGNs, the similar emission and dynamic properties
brought them to the same intrinsic structure within the unification model.

In the late 1970s, superluminal phenomenon with one-sided jets morphology on the milliarcsec
scale were found in quasars (Cohen et al. 1977; Readhead et al. 1978, 1979). This morphology
was explained to be a relativistic jet viewed at a small angle to the line of sight (Rees 1966;
Blandford & Königl 1979). The explanation later became the base of the unification theory of
the radio-loud AGNs, which claims, in simple words, that the blazars and quasars were normal
radio galaxies observed at some angles to the line of sight (Antonucci & Ulvestad 1985; Barthel
1989; Urry & Padovani 1995). The unification model explains the facts that many superluminal
sources have blazar properties, one-sided core-jet radio morphology, and usually small broad
emission line widths (Readhead et al. 1978; Wills & Browne 1986; Impey 1987; Barthel 1989).

A similar orientation model has been applied to the unification of radio-quiet Seyfert galaxies,
where the Seyfert 2 galaxies are simply the edge on version of Seyfert 1 galaxies (Antonucci
1993). A schematic explanation of AGN unification model can be found in Figure 1.5 (see also
Antonucci (1993) for more detail). Although the unification model shows a quite straightforward
way to unify AGNs, it is not yet clear and still cannot explain all the observed differences among
different AGN classifications.

It has been argued that an AGN must be powered by accretion of mass onto massive black holes.
During this process, kinetic energy and gravitational potential energy of the material falling onto
the black hole are converted to radiation. Several models of the accretion process, in other words
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Figure 1.5: A schematic explanation of AGN unification model. The orientation of the AGN
host galaxy (face on or edge on) plays an important role here. For the radio-loud AGNs, when
observed at 90◦ from the jets (left), they appear as radio galaxies, when at an angle to the jet
(middle), as quasars, and when directly down to the jet (right), as blazars. Since the fact that the
galaxy’s disk can obscure certain ranges of AGN emission, the orientation-dependent model has
also been applied to unify radio-quiet AGNs. For the radio-quiets, when the viewing angle is 90◦

(left), they appear as Seyfert 2 as galaxies, and when at an angle, as Seyfert 1 galaxies. Figure
credit: Ron Kollgaard.
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– the central engines, have been proposed to this point. As the main subject of this doctoral thesis,
they will be introduced in Section 1.2.3 and described in detail in Chapter 2. The corresponding
results will be discussed in Chapter 5.

1.2.2 Observational features of AGN jets

The first observed AGN jet was reported by Curtis (1918) as “A curious straight ray which lies in
a gap in the nebulosity..., apparently connected with the nucleus by a thin line of matter” in M87
(NGC4486). After a century of research, it is known that the extragalactic jets are usually ejected
from radio-loud AGNs and are supposed to be bipolar (“two-sided twin jets”). It has already
been confirmed that they have relativistic motions. In some observations, the common values of
Lorentz factor of jets can reach Γ ∼ 10−20 (which corresponds to a velocity of 0.995c−0.999c)
(Jorstad et al. 2005; Lister et al. 2009; Homan 2012). Under certain observational conditions
together with this level of speed, the relativistic velocities of AGN jets can result in two important
relativistic effects – beaming and superluminal motion.

Figure 1.6: left: 3C31 as an example of FRI radio galaxy. Its relativistic electron jets detected
in radio wavelengths extend for several kpc with the brightness of the jets decreasing outwards.
left: FRII radio galaxy 3C219 detected in radio wavelengths. The filamentary lobes in the plot
extend several hundred kpc with bright hot spots in both lobes. Figure credit: NRAO/AUI.

The relativistic beaming effect is the process by which relativistic effects modify the apparent
luminosity of emitting matter that is moving at speeds close to the speed of light, and originally
comes from the idea first presented by Rees (1966). According to the beaming theory, it is
possible to boost the observed flux at certain frequency from a moving source to over 103 times
larger for a large range of β (β = v/c) when the source moves towards the observer with a
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small angle to the line of sight while the observed flux from the same source can be diminished
significantly by moving away from the observer (Blandford & Königl 1979; Vermeulen & Cohen
1994).

Figure 1.7: A VLBI high resolution radio interferometry image of M87 core in 10−2pc scale
adapted from Hada et al. (2016).

In Figure 1.3 left plot, the twin jets in M87 show how beaming affects their appearance in ob-
servations. On the one hand, the one jet of M87 moves almost directly towards Earth, hence, is
clearly visible to telescopes and is many times brighter due to beaming. On the other hand, the
other jet is moving away from us and is so much fainter due to the Doppler shift (redshift) that
it is rendered invisible. In Figure 1.3 right plot, the bipolar jets from radio galaxy 3C 31 move
perpendicular to the line of sight, thus showing comparable brightnesses although their observed
fluxes were affected by the beaming effect as well.

Superluminal motion was first discovered in the late 1960s during the discovery of quasars. It is
caused by jets travelling very close to the speed of light within a certain range of angles towards
the observer. Due to the angle to the line of sight, later emitted light passes a shorter distance
than the earlier emitted light, thus “catches up” in the time, which makes the velocity of the
motion sometimes greater than c from appearance. Theoretically, the superluminal effect cannot
be triggered if the velocity of the jet is less than 0.7c (see Appendix A.1 for the detailed model).

The radio emission from radio-loud AGN jets is synchrotron emission that has very smooth,
broad-band nature and strong polarization. This implies that the radio-emitting plasma contains
electrons with relativistic speeds and magnetic fields. Sometimes, the particles (electrons) in the
jets can be accelerated to high enough energies to produce synchrotron radiation in infrared, op-
tical, ultraviolet or even X-ray. The interaction between the relativistic electrons and the ambient
photons, can also trigger the inverse-Compton process, in which the photons are scattered to high



INTRODUCTION 11

energies. This process turns out to be particularly important in the X-rays emission (Croston et
al. 2005).

Since the synchrotron radiation from radio loud AGN jets are mostly in radio wavelength, the
observations of these jets take great advantage of the unmatched resolution by interferometry.
Radio interferometric imaging of jets (as example from radio galaxies) often shows extended
structure on the kpc (kilo parsec) to Mpc (mega parsec) scale called lobes. The lobes are double,
often fairly symmetrical, roughly ellipsoidal structures placed on either side of the AGNs. In
1974, the extended jets morphology was quantified by Fanaroff and Riley into two classes (FRI
AND FRII) according to the luminosity and the relative distance of high brightness region and
low brightness region from the host galaxy (Fanaroff & Riley 1974). As shown in Figure 1.6,
FRI sources were brightest towards the centre (left plot), while FRII sources were brightest at
the edges (right plot). FRI jets are inefficient in the sense that they radiate a significant amount
of their energy away as they travel. In comparison, FRIIs appear to be able to transport energy
efficiently to the ends of the lobes.

Although the large scale of AGN jets can be observed with good resolution, their “cores” from
which the jets are launched and ejected stay unresolved. Today’s best resolution level of AGN
center sources comes from VLBI observations. As shown in Figure 1.7, a resolution of ∼ 10rs

(rs is Schwarzschild radius) is not enough to reveal the inner structure of the region where jets
from M87 are originally produced. For this reason, numerical simulations are often used as the
tools to resolved the jet generation processes (see later).

1.2.3 Central engines of AGNs

Several theoretical models have been established to describe the “AGN engine”, namely to ex-
plained different processes during mass accretion and ejection that are happening in the yet un-
resolved origin of jets. In this section, I will briefly introduce the models proposed by previous
seminal works to explain the jet ejection that are involved in the research of this thesis. The
detailed illustrations with equations are in Chapter 2.

The core question here is: what kind of energy source powers AGN jets? For decades, it has
been argued that AGNs are powered by the black hole accretion systems. A black hole by itself
is not able to generate energy. However, a black hole coupled with a magnetized accretion
disk is possibly the most efficient way to produce large amounts of energy in the universe by
converting kinetic energy and gravitational potential energy of the disk material falling onto the
black hole to radiation. The accretion disk is usually made of plasma gas that rotates differentially
in circular orbits around a supermassive black hole in the center of the AGN host galaxy. Due to
conservation of angular momentum, gas particles in the accretion disk circulating the black hole
need to lose their angular momentum when moving from a larger orbit to a smaller orbit (see
Appendix A.3). In the seminal paper, Shakura & Sunyaev (1973) suggested that the tangential
stresses between adjacent layers provided by the magnetic field, together with the turbulence in
the disk, contribute to the mechanism of angular momentum transport. The efficiency of angular
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momentum transport can be characterized by an α parameter, which is a function of turbulent
velocity, sound speed, density and the magnetic field strength (see Section 2.1.1). It was also
predicted in this work that “the field is most likely to be chaotic and of small scale” within the
disk. Nevertheless, in the absence of the complete theory of turbulence and the observational
check at that time, they just assumed its presence.

Figure 1.8: left: An illustration plot of MRI. The originally straight magnetic field line was bent
by a tiny random displacement between two parts in the disk. The magnetic tension then serves as
restoring force and transports angular momentum between the two parts and results in accretion.
Credit: Plasma Physics Group/Physics Department/University of Wisconsin–Madison. right:
The centrifugally driven disk wind caused by the large scale magnetic field line that cross the
accretion disk with an angle (see corresponding text). Plot adopted from Sheikhnezami et al.
(2012).

The generation and evolution process of the “turbulence viscosity” was investigated in Balbus &
Hawley (1991) analytically and numerically as the local shear instability in the weak magnetized
disk. In this work, they used a model where the Keplerian differential rotating accretion disk
was penetrated everywhere by weak magnetic field lines which are originally parallel to the disk
rotating axis. Since in ideal magneto-hydrodynamics (MHD), matter (plasma) can only move
along the field lines (see Section 1.4.2), a displacement randomly generated between the two
parts from the same radius and different height of the disk will bend the same field that penetrates
them as shown in the Figure 1.8 left plot. The magnetic tension will then serve as the restoring
force just like a stretched elastic band. This tension will break one part and accelerate the other
part. As a result, both parts are not able to stay at their original orbits. The accelerated part will
move outwards while the decelerated part moves inward (see Section 2.2.1). Consequently, the
magnetic field in the disk becomes turbulent together with the disk itself. The instability caused
by this process is named magnetorotational instablilty (MRI). The numerical study in Balbus
& Hawley (1991) show that within the linear regime in time MRI only takes place in a certain
spatial scale range (wave number), while it takes place in all spatial scales after stepping into the
non-linear regime (see Section 2.2.2).

While MRI reveals a way to transport the angular momentum locally using magnetic field, Bland-
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ford & Payne (1982) examined the possibility to remove energy and angular momentum mag-
netically from accretion discs by field lines that penetrate the disc surface and extend to large
distances. Under the assumptions of ideal MHD (infinite conductivity), axial symmetry, self-
similarity etc., they solved the equations of MHD and showed it is possible that matter flow from
a Keplerian accretion disc can be driven centrifugally from the disc, if the poloidal component of
the magnetic field makes an angle of less than 60◦ with the disc surface (see Section 2.3.1). As
shown in Figure 1.8 right plot, once the matter is loaded onto the field lines and reaches the sur-
face of the disk, they can be spun centrifugally and leave the disk, where the angular momentum
gained by outflowing matter comes from the rotating disk. The Blandford-Payne (BP) process
has been later introduced to the accretion systems of YSOs as the mechanism for protostellar jets
(Pudritz & Norman 1986).

Besides the rotating accretion disk around black hole as a power source, Blandford & Znajek
(1977) demonstrated that when the black hole is rotating, energy can also be extracted from the
black hole itself (Blandford-Znajek process). They showed that if the magnetic field and angular
momentum are large enough, a force-free magnetosphere will be created, surrounding the black
hole by a cascading production of electron-positron pairs in the unstable vacuum. By solving
the energy and momentum conservation equations under general relativity, it has been proven
that under such circumstance, the energy flux at the event horizon can be positive, thus impling
energy extraction from black hole (see Section 2.4). A physical observer rotating at constant
radius close to the horizon will see a Poynting flux of energy entering the hole, but he will also
see a sufficiently strong flux of angular momentum leaving the hole to ensure the positive energy
flux at horizon (Blandford & Znajek 1977). Thus, the black hole spin is slowed down during
this process. The produced energy will then be carried by the outflowing electrons while the
positrons flow into the black hole.

Blandford-Payne and Blandford-Znajek processes are considered to be the two most important
theoretical models that describe the mechanism of energy sources in AGNs. Nevertheless, the
Blandford-Payne process takes place within tens of 10rs, while the Blandford-Znajek process oc-
curs in the ergosphere of a rotating black hole. This makes current observational tools incapable
of resolving either of them. The efforts to investigate the contribution of the two processes can
thus only be done by the numerical simulations (see Section 1.5).

In addition to the two processes, Lynden-Bell (1996) introduced an interpretation of jets from
accretion systems as tower jets which “are primarily growing towers of twisted magnetic field
together with the currents that they carry”. The tower jets are also observed in the later simulation
results in this thesis (see Section 5.6.4).

1.3 Spacetime around the black hole

In general, the exact expressions of equations describing physical events depend on the geometry
(metric) of the spacetime where the events happen. Additionally, different coordinate systems are
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used under differing circumstances. In this section, the spacetime and the coordinate systems that
are employed to investigate black holes are introduced. It is also discussed how they influenced
the main physical equations used in this thesis work. Since it is not the concern of this thesis to
derive general relativity, most of the equations will given directly. The equations in this section
follow the common convention in Section 1.6.

1.3.1 Spacetime and metric

Once an observer builds up her/his coordinate system, she/he is able to denote an event (e.g.
the appearance of a tiny particle) by recording the time and the position when/where the event
takes place with a number set (one number stores the time information and three numbers store
the position information). This number set can be put into an infinite four-dimensional space
called spacetime. Whether the particle is moving or not, its existence shows a trajectory in
the spacetime. On the other hand, when the trajectory for a particle in spacetime is given in
the first place, its position at anytime including the future can be determined from the trajectory.
Physical laws were therefore built to calculate the trajectory of objects in spacetime under certain
conditions. The Lagrange equation and the Euler equations are well-known examples of these
physical laws.

The theory of general relativity (Einstein 1916) proposed that objects with masses are able to
curve spacetime (see Figure 1.9) and the natural phenomenon that all things with mass are
brought toward one another is resulted by the curved spacetime. In general relativity, Newto-
nian gravity is considered as a limitation case for the “low mass densities” (e.g. mass density of
the sun) and “low velocities” (e.g. the orbital motion of the earth around the sun). The spacetime
that is not influenced (curved) by any mass is called a flat spacetime or Minkowski spacetime.

Now consider an observation of a tiny particle in Minkowski spacetime. The mass of the particle
is ignorable, hence its mass will not disturb the flat spacetime around it. Our four-dimensional
coordinate system x is denoted by

x = (x0, x1, x2, x3), (1.1)

where x0 is the time component and x1, x2, x3 are the three Cartesian spatial components. If the
particle makes an infinitesimal movement in the spacetime from point x, to neighbouring point
x,,, the displacement of this movement will be denoted by

x,, − x, = dx = (dx0, dx1, dx2, dx3), (1.2)

where dx here is a vector. As known from special relativity, the observer-frame-invariant “dis-
tance” in the four-dimensional spacetime is given by

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (1.3)

Equation (1.3) is a special case for flat spacetime. To introduce the curved spacetime in general
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Figure 1.9: A preliminary sketch of mass curved spacetime. In example a, mass is absent and
spacetime is flat. In example b, spacetime is curved because of the attendance of the mass in
the center. Imagine a tiny particle with ignorable mass moving along the trajectory of a grid
line in example a, the orbit of this particle will be a straight line. However, putting this particle
into example b and letting it again move along the same grid line, its orbit will become a curve
although it actually follows the trajectory as in the flat space. Note that this sketch is a very
rough illustration. The true spacetime is 4 dimensional and its curvature needs to be calculated
according to the situation very carefully. Figure credit: Jacky Jerome.

relativity, we need to rewrite it using the form of vector inner product

ds2 = gµνdxµdxν, (1.4)

where µ and ν run from 0 to 3 (see Section 1.6). Tensor gµν is the metric tensor. The metric
captures all the geometric and causal structure of spacetime, and is used to define notions such as
time, distance, volume, curvature, and angle. In other words, the metric tensor tells us whether
and how the spacetime is curved (see also Section 1.3.4). The metric tensor of a flat spacetime
has the following form

gµν = ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

where ηµν is called the Minkowski metric. Equation (1.3) can be retrieved by applying the
Minkowski metric to Equation (1.4). The metric of Minkowski spacetime can also be written
in other coordinate system, e.g. for the spherical coordinates (x0, x1, x2, x3) = (t, r, θ, φ)

gµν =


−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2sin2θ


,

or
ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2. (1.5)
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(Hereafter the metric will be presented always in the form of a line element.) This metric still
represents the flat spacetime although it contains components other than −1 and 1.

If one wants to learn physical laws in a curved spacetime it is necessary to get the metric of that
spacetime first. As mentioned above, it is mass that curved the spacetime. Thus, the relation that
connects the mass and spacetime geometry is the key to solve for the metric. The solution was
given by Albert Einstein first published in Einstein (1915) (see also Einstein 1917), where the
spacetime geometry and the energy-momentum tensor were put into one relation known as the
Einstein field equation

Gµν − Λgµν =
8πG
c4 Tµν. (1.6)

In this equation, Gµν is the Einstein tensor which is a function of metric g (see Section 1.3.4) and
Tµν is the energy-momentum tensor. The factor Λ is the cosmological constant responsible for
the accelerating universe expansion which will not be further considered here (Λ = 0), since we
only care about the local universe of a black hole. With Equation (1.6), we are able to solve for
the spacetime around the black hole as will be seen in the next subsection.

1.3.2 Non-rotating/rotating black hole and the Boyer-Lindquist coordi-
nates

Non-rotating black holes are also called “Schwarzschild black holes,” the solution for their space-
time was first given in (Schwarzschild 1916). The Schwarzschild solution is a time independent
spherically symmetric solution of Einstein’s field equations for vacuum spacetime. It is origi-
nally supposed to describe the spacetime around a non-rotating homogeneous spherical “mass
piece.” However, when the mass piece is compact enough, it becomes a black hole (see below).

In spherical coordinates (t, r, θ, φ), to fulfill the static and spherically symmetric condition, the
metric must have the form

ds2 = −e2a(r)dt2 + e2b(r)dr2 + r2(dθ2 + sin2 θdφ2). (1.7)

Functions a(r) and b(r) in the equation must vanish for r → ∞ since the spacetime at infinity from
the black hole is flat. Additionally, the assumption for vacuum means a zero energy-momentum
tensor which makes the Einstein tensor in Equation (1.6) vanish. Writing the Einstein tensor
using the metric tensor in Equation (1.7) (see Section 1.3.4) and solving for Gµν = 0, it gives the
condition

e2a = e−2b = 1 −
2M

r
, (1.8)

where M is the mass of the center “mass piece.” (see Schutz 2009, page 258-263 for derivation).
The Schwarzschild solution can then be presented by

ds2 = −(1 −
2M

r
)dt2 + (1 −

2M
r

)−1dr2 + r2(dθ2 + sin2 θdφ2). (1.9)

On the one hand, this solution (the spacetime) refers back to Minkowski spacetime when no
matter exists, namely M = 0. On the other hand, a singularity due to the choice of coordinates
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has arised at rH = 2M. When the mass piece plunges itself into this radius (e.g., stellar collapse),
a black hole will form (Schutz 2009, page 281). rH is then the radius of the black hole horizon.
For an external observer, events inside the horizon of a black hole can never influence the exterior.
The singularity at r = 2M can only be removed by a special choice of coordinate system (see
Section 1.3.3).

Figure 1.10: A two dimensional illustration plot of the ergosphere of a rotating black hole. The
axes in the plot are in units of GM/c2. And the parameter a = 0.99M. The inner horizon is the
inner singularity and the outer horizon is the black hole event horizon. The grey area between
event horizon the the ergosphere is called ergoregion where no object inside is able to hold still to
an observer at infinity (see text). The ergosphere is not a strict spheroid since the BL coordinates
are not strictly spherical. Credit: Yukterez (Simon Tyran, Vienna).

The spacetime looks different when the center mass is rotating. The solution of the metric around
a rotating black hole/mass pieve was first published by Roy Kerr in 1967 (see Kerr & Schild
2009 for the republication version). For this reason, the family of rotating black holes are also
called Kerr black holes. Boyer & Lindquist (1967) rewrite Kerr’s solution in a form similar to
the Schwarzschild solution in Equation (1.9) by using the “Boyer-Lindquist”(BL) coordinates
(tbl, rbl, θbl, φbl) whose spatial components have the following relation to the usual Cartesian co-
ordinates

x =
√

r2 + a2 sin θ cos φ,

y =
√

r2 + a2 sin θ sin φ,

z = r cos θ. (1.10)

If we define a as the angular momentumJ per unit mass (aε[−M,M], M is the mass of the black
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hole), the Kerr solution in BL coordinates is

ds2 = (−1 +
2Mr
ρ2 )dt2 − 2 ·

2Mra sin2 θ

ρ2 dtdφ +
ρ2

∆
dr2 + ρ2dθ2 +

Σ2 sin2 θ

ρ2 dφ2, (1.11)

where

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2,

Σ2 = (r2 + a2)2 − ∆a2 sin2 θ. (1.12)

Equation (1.11) reduces to Schwarzschild metric in Equation (1.9) when the center object is not
rotating (a = 0). The Kerr solution in BL coordinates has two singularities at r = M ±

√
M − a2

(∆ = 0). The horizon of the Kerr black hole is the outer singularity, namely rH = M +
√

M − a2.

The rotation of mass drags the spacetime with it which is known as “frame dragging”. Due to
the frame dragging, a test particle falling freely towards the center object will have a non-zero
angular velocity

Ω = −
gtφ

gφφ
(1.13)

with respect to an observer at infinity. In the case of black hole, it can be concluded by Equation
(1.11) (Schutz 2009, page 311-312), that there exists a spheroid like surface (see Figure 1.10)
called an ergosphere outside the horizon at r = M+

√
M2 − a2 cos2 θ, inside which objects cannot

stay stationary to an observer at infinity, unless they were to move faster than the speed of light
(an impossibility) with respect to the local spacetime.

1.3.3 The Kerr-Schild coordinates

As mentioned in Section 1.3.2, the BL coordinates have singularities at ∆ = 0 when expressing
the metric around a rotating black hole. These singularities are resulted by the special choice
of coordinates, thus can be removed by changing the coordinate system. In the case of the Kerr
metric, it can be done by writing the metric in Kerr-Schild (KS) coordinates (tks, rks, θks, φks). The
relation between BL and KS coordinates is

dtks = dtbl +
2Mrbl

∆
drbl,

drks = drbl,

dθks = rdθbl,

dφks = dφbl −
a
∆

drbl. (1.14)

In KS coordinates, the Kerr metric is

ds2 = dr2 + 2a sin2 θdrdφ + (r2 + a2) sin2 θdφ2 + ρ2dθ2 − dt2

+2Mr
ρ2

(
dr + a sin2 θdφ + dt

)2
(1.15)
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(Boyer & Lindquist 1982). Note that the coordinates r and θ do not change during the transfor-
mation, thus ∆ and ρ2 can be a function of either rks or rbl. In KS coordinates, the components of
the KS metric pass through the horizon r = M +

√
M − a2 smoothly. The only possible singular-

ity in the metric is at r = 0 which is a physical singularity (cannot be removed by any coordinate
transformation). In numerical simulations, one can extend the computation area inside the black
hole horizon by choosing KS coordinates. The simulation code rHARM employed by this thesis,
is namely executed in a modified KS coordinate system (see Section 3.3.2).

1.3.4 Derivative in the curved spacetime

Physical laws are often expressed in the form of differential equations. In the flat spacetime,
differential equations consist of partial derivatives with respect to the coordinates. As an example,
the conservation law of the stress-energy tensor T µν in Cartesian coordinates is

∂νT µν = 0. (1.16)

Under the context of general relativity, the partial derivatives in Equation (1.16) must be adjusted
to fit the curved spacetime. Thus, the partial derivatives will be replaced by the covariant deriva-
tives ∇ – the “derivative” in the curved space time. (see Chapter 5 and Chapter 6 in Schutz 2009
for detailed derivation of the following equations) The notation of the operator ∇ is used in the
way

∇vy, (1.17)

where v is a vector and y can be a scalar function, a vector or a tensor. The operation in Equation
(1.17) tells how the components in y change if y is moved in the spacetime by a displacement v. If
we define ∂i as the local direction of a infinitesimal change in the ith component of the coordinate
system and ,i = ∂

∂xi
as the partial derivative with respect to the ith coordinate component, the

components of the covariant derivatives are related to the spacetime geometry by

∇∂i∂ j ≡ Γl
i j∂l, (1.18)

where Γl
i j are called the Christoffel symbols and are defined by

Γl
i j =

1
2

glk(gik, j + g jk,i − gi j,k). (1.19)

Using Equation (1.19), the Ricci tensor Rµν is calculated by

Rµν = Γδνµ,δ − Γδδµ,ν + ΓλνµΓ
δ
δλ − ΓλδµΓ

δ
νλ. (1.20)

The Einstein tensor in Equation (1.6) can be then defined by

Gµν ≡ Rµν −
R
2

gµν, (1.21)
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where R = Rµνgµν is the Ricci scalar. Clearly, if we apply Equation (1.19) and (1.20) to Equation
(1.21), the Einstein tensor Gµν becomes only a function of the metric g.

With the notation ∇i = ∇∂i , the general form of the energy-momentum conservation in Equation
(1.16) is defined in any coordinate system and any spacetime by

∇νT µν = 0. (1.22)

One can further derive Equation (1.19) and get

Γl
µl = (

√
−g),µ/

√
−g, (1.23)

where g is the determinant of the spacetime metric. This allows us to rewrite Equation (1.22) as

1
√
−g

(
√
−gT µν),ν = 0. (1.24)

The conservation equations in Chapter 3 employ the form of Equation (1.24).

1.4 A brief introduction of magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of the magnetic properties of electrically conducting
fluids.The fundamental concept behind MHD is that magnetic fields can induce currents in a
moving conductive fluid, which in turn polarizes the fluid and changes the magnetic field itself.
The resistive GR-MHD equations in Section 3.2.1 based namely on the MHD equations, which
is showed in this section.

1.4.1 The MHD equations

The equations that describe the physics in MHD system are based on the following assumptions.
First, the velocity vvv of the observed fluid satisfies

vvv � c. (1.25)

Second the characteristic length L and the characteristic time scale τ of the fluid system satisfies,

L
τ
� c. (1.26)

The MHD system can then be described by the mass continuity equation

∂ρ

∂t
+ ∇ · (ρvvv) = 0, (1.27)
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the momentum equation

ρ

(
∂

∂t
+ vvv · ∇

)
vvv = JJJ × BBB − ∇p, (1.28)

the energy equation

d
dt

(
p
ργ

)
, (1.29)

and the equations for the electric magnetic field

∇ × BBB = JJJ,
∂BBB
∂t

= −∇ × EEE,

∇ · BBB = 0,

JJJ = λ(EEE + vvv × BBB). (1.30)

Here, ρ is the fluid density, p is the pressure, vvv is the velocity vector, BBB is the magnetic field
vector, EEE is the electric field vector, JJJ is the current density and λ is the conductivity. These
differential equations must be solved simultaneously, either analytically or numerically (as done
in an usual MHD numerical simulation).

1.4.2 The ideal MHD assumption

The ideal MHD assumption describes the behavior of the magnetic field in moving plasma.
Plasma is a state of matter which is considered as a gaseous mixture of negatively charged elec-
trons and highly charged positive ions, created by heating a gas or by subjecting gas to a strong
electromagnetic field. The derivation of the ideal MHD assumption can be found in , Kippenhahn
& Moellenhoff (1975) (page 60-62). Here only the results are given.

Consider a closed curve C in plasma, it encloses a surface fff (see Figure 1.11, left plot). The
curve line is embedded in the plasma, which means the curve always follows the plasma and
becomes bigger when the material enclosed in the surface expands, and smaller when the material
contracts during the proceeding time. The curve C1 flows with the plasma and becomes C2

after time dt. The surface enclosed by C2 is fff 2. The magnetic flux through the two surfaces is
calculated by

φi =

∫
fff i

BBB · d fff i, (1.31)

with i = 1, 2. The expression (φ2 − φ1)/dt = dφ/dt shows how the magnetic flux through the
closed curve changes moving with the plasma. If any magnetic field line passes through the side
surface M during this process, dφ/dt will not be zero. Further derivation shows

dφ
dt

= −

∫
CCC1

ηJJJ · dlll1, (1.32)
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where η ≡ 1/λ is the magnetic resistivity. In ideal MHD, η = 0 (or EEE = −vvv × BBB, see Equation
1.30), hence

dφ
dt

= 0. (1.33)

This result implies that under the ideal MHD condition, fluid elements will be coupled with mag-
netic field lines. Or in other words, a fluid element threaded by one magnetic field line is not
allowed to leave this field line when it moves. This conclusion leads to two important regimes.
In the case where fluid/gas pressure is predominant, the magnetic field will be strictly enclosed
to (“frozen in”) the matter flow. On the other hand, if the magnetic pressure is stronger than the
matter pressure, the fluid elements can then only move along the field lines (no perpendicular
movement) as shown in Figure 1.11 right plot. The coupling of the fluid elements and the mag-
netic field is namely the ideal MHD assumption, which turns out to affect the disk structure and
the accretion process (see Chapter 4 and 5).

Figure 1.11: left: A closed curve C1 embedded in and flow with the material. After time dt,
the circle moves to C2. The surface closed by C1 is f1, and f1 by C2. right: Illustration figures
of frozen filed lines in ideal MHD. v in the plot stands for velocity. In this case, no matter
how the the magnetic field lines construct, fluid elements always follow the field lines to keep
the magnetic flux unchanged inside the closed circle that moves from c to c, (see text). Credit:
Kippenhahn & Moellenhoff (1975)

1.5 Jets in Numerical Simulation

BP and BZ effects are both feasible mechanisms in the vicinity where AGN jets are originally
produced (see Section 1.2.3). Nevertheless, while jets from young stars can be rather well re-
solved and typical features such as mass fluxes, velocities, or even rotation can be observed
(Bacciotti et al. 2002; Coffey et al. 2004), the structure of the AGN jet sources stays unresolved,
and the dynamical jet parameters are uncertain as these jets are mostly detected in synchrotron
emission. On the other hand, the physical equations governing such systems are non-linear,
time-dependent, and intrinsically multidimensional, so their solution is difficult. Therefore, this
subject has often been investigated by means of numerical methods.
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1.5.1 The numerical approaches in jets simulation

The accretion disk consists of gas plasma with an electromagnetic field embedded in it. Because
the inner boundary of the disk is very close to the black hole2, the spacetime curvature cannot be
neglected. Under such environment, the numerical simulations need to employ general relativis-
tic magnetohydrodynamics (GR-MHD) to solve for the process of relativistic jet formation.

In the past, a few numerical schemes have been developed to evolve the GR-MHD equations.
The first GR-MHD simulation was already presented by Wilson and Ruffini (Ruffini & Wilson
1975; Wilson 1977). However, it took another two decades before research returned to this topic.
The GR-MHD schemes have also been supported by the substantial advancement of CPU power.

A few stages have been experienced before the modern GR-MHD schemes were realized, in-
cluding the construction of non-relativistic MHD schemes (see e.g. Stone & Norman 1992),
special relativistic hydrodynamics codes (Del Zanna & Bucciantini 2002), special relativistic
MHD (Komissarov 1999; Del Zanna et al. 2003), general relativistic hydrodynamics (Hawley et
al. 1984; De Villiers & Hawley 2002), and also MHD with pseudo-Newtonian potential (Hawley
& Balbus 2002).

Today, upon the milestones established by these schemes, quite a few GR-MHD codes have been
accomplished (Koide et al. 1999; De Villiers & Hawley 2003; Gammie et al. 2003; Del Zanna et
al. 2007), being mainly used to simulate the evolution of black hole accretion systems (see e.g.
Koide et al. 1999; De Villiers & Hawley 2003; McKinney & Gammie 2004; McKinney 2006).
All of the codes cited above work in the ideal GR-MHD regime (thus neglecting resistivity or
magnetic diffusivity).

1.5.2 The necessity of diffusivity in GR-MHD

In order to disentangle the powering mechanism for relativistic jets, one needs to investigate
the two important processes for jet formation, that is (1) the Blandford-Znajek effect and (2)
the Blandford-Payne effect (see Section 1.2.3). Energy extraction from a black hole by the
Blandford-Znajek effect has been observed in ideal GR-MHD simulations (McKinney & Gam-
mie 2004; McKinney 2006; McKinney et al. 2012). On the other hand, the jet formation from
an accretion disk due to the Blandford-Payne effect has been observed and investigated in non-
relativistic simulations (Ouyed & Pudritz 1997; Fendt & Čemeljić 2002) and also special rela-
tivistic simulations (Porth & Fendt 2010; Porth et al. 2011; Porth 2013). However, the launch-
ing problem, the transition from accretion to ejection that requires the presence of a substantial
amount of magnetic diffusivity in order to allow for persistent disk outflows has not been treated
in GR-MHD. Thus a jet formed from an accretion disk by the Blandford-Payne effect has yet to
be observed in GR-MHD simulations.

2Due to the general relativity effect, the innermost stable circular orbit for a rotating particle is at 3rH where rH

is the radius of horizon. Thus the inner boundary of a stable accretion disk never “touches” the black hole horizon.
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The launching question is essential because it allows us to compare the mass fluxes of the disk
and jet consistently, as demonstrated by non-relativistic simulations of several groups (Casse
& Keppens 2002; Zanni et al. 2007; Sheikhnezami et al. 2012; Fendt & Sheikhnezami 2013;
Stepanovs & Fendt 2014, 2016). As the MAJOR MOTIVATION of this thesis, we believe that
it is the absence of disk magnetic diffusivity in recent GR-MHD simulations that does not allow
the formation of long-lasting powerful disk winds which may turn into jets. With magnetic
diffusivity, a magnetized disk wind is launched and the angular momentum of the orbiting disk
material can be efficiently removed, allowing for efficient accretion.

In the ideal GR-MHD regime, the matter cannot “cross” the magnetic field lines (see Section
1.4.2). Such field lines that vertically thread the accretion disk are expected from advection of
the magnetic flux from outer disk areas. Thus, any mass that is ejected from the disk into the
jet cannot be replenished by accretion from outer disk areas, and jet formation will decay. In
this case, the accretion flow will push the magnetic field lines inwards, which will accumulate
out of the horizon of the black hole and a magnetically arrested disk (MAD) will form, allowing
for further accretion only via the magnetic interchange instability (Igumenshchev et al. 2003;
Narayan et al. 2003; McKinney et al. 2012).

In order to allow for a relative motion between plasma and magnetic field, we are going to apply
resistive MHD, thus magnetically diffusive MHD (see also Ferreira 1997; Casse & Keppens
2002). Furthermore, being able to handle the re-distribution of mass flux that is needed for
the launching mechanism of disk outflows, a resistive code can also treat physical magnetic
reconnection (Fendt 2009; Del Zanna et al. 2016) which may be able to explain the observed
X-ray emission (Machida & Matsumoto 2003).

1.5.3 Existing resistive codes

A few of resistive relativistic MHD codes have been developed (although none of them dealt
with accretion disk simulation), starting from Watanabe & Yokoyama (2006) who investigated
relativistic magnetic reconnection. Pioneering work by Komissarov (2007) presented a multi-
dimensional upwind scheme with resistivity in special relativity. In Palenzuela et al. (2009) an
implicit-explicit (IMEX) Runge-Kutta method was used to solve the stiff relaxation terms arising
from resistivity. That work has been further extended to three dimensions and the general rela-
tivistic regime by Dionysopoulou et al. (2013). In Takamoto & Inoue (2011), a one-dimensional
resistive approach was undertaken in special relativistic regime using a method of characteristics.
More recently, Mizuno (2013) investigated the role of the equation of state in resistive GR-MHD.

In this thesis, I implement resistivity, namely magnetic diffusivity, into the existing ideal GR-
MHD code HARM (Noble et al. 2006). The new code3 follows the prescription of Bucciantini
& Del Zanna (2013) who extended the 3+1 GR-MHD code ECHO (Del Zanna et al. 2007) by
implementing a mean-field dynamo closure and resistivity.

3The new code is denoted as rHARM which takes meaning from “resistive HARM”.
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1.6 Convention and units in this thesis

The equations and derivations in this thesis follow the conventional notation of Misner et al.
(1973). In particular, the sign convention for the metric is (−,+,+,+). When the upper index
and the lower index share the same letter, their final product follow Einstein notation. The Greek
alphabet is used for space and time components, where indices take on values 0, 1, 2, 3. The Latin
alphabet is used for spatial components only, where indices take on values 1, 2, 3. Bold letters
denote vectors while the corresponding thin letters with indices represent vector components.
For example,

∂νT µν = ∂0T µ0 + ∂1T µ1 + ∂2T µ2 + ∂3T µ3,

viB
i = v1B

1 + v2B
2 + v3B

3,

BBB = (B0,B1,B2,B3). (1.34)

The Levi-Civita symbol is defined by

εαβγδ =
√
−g[αβγδ],

εαβγδ = −
1
√
−g

[αβγδ], (1.35)

where [αβγδ] is the conventional permutation of the numbers that are included. Without addi-
tional mention, G = c = µ0 = 1 is applied where G is the gravitational constant, c is the speed of
light, and µ0 stands for permeability of the vacuum. In rHARM, mass of the black hole is set to
M = 1, while the spherical coordinates in the code denote the Kerr-Schild coordinates. The units
of basic quantities are given in Section 3.3.1. In Chapter 4 and 5, the accretion rate, the ejection
rate and the energy flux are all presented in code units.

1.7 Outline of the thesis

In this thesis, the accretion and ejection processes in the black hole accretion system is investi-
gated using resistive GR-MHD simulations.

Chapter 2

Reviews the prevailing theories including the α parameter accretion disk model, the theory of
magnetorotational instability, the Blandford-Payne mechanism and the Blandford-Znajek mech-
anism, which describe the accretion and ejection processes of the black hole accretion system.



26 CHAPTER 1

Chapter 3

Illustrates the implementation of magnetic diffusivity into the existing ideal GR-MHD code
HARM (Noble et al. 2006) and provides test simulations. The equations of the time evolution
for the variables, the numerical structure and features in the new code rHARM are presented in
detail. This chapter follows from my publication Qian et al. (2017) with my supervisor Christian
Fendt.

Chapter 4

Shows the results of simulations by rHARM applied to a more astrophysical context, namely,
investigating the development of the magneto-rotational instability (MRI) in tori that are magnet-
ically diffusive. This chapter follows from my publication Qian et al. (2017) with my supervisor
Christian Fendt.

Chapter 5

Presents the results of the preliminary survey study of rHARM simulating the launching of disk
winds from a thin accretion disk threaded by inclined open poloidal field lines. The importance
of the magnetic field strength, field structure and magnetic resistivity to disk wind evolution are
discussed. The driving forces of the disk wind are analyzed.

Chapter 6

Shows, as a further study of Chapter 5, the influence of the black hole spin on the accretion and
ejection processes.

Chapter 7

Summarizes the main conclusions of this thesis and gives an outlook on the future projects ex-
tending this work.



Chapter 2

Physical process in accretion system

Black hole accretion systems are considered the energy source for AGN jets. In Section 1.2.3, I
briefly mentioned the prevailing theories that describe the main physical processes in the black
hole accretion system. In this chapter, I will illustrate these theories, namely the seminal works
from Shakura & Sunyaev (1973), Blandford & Znajek (1977), Blandford & Payne (1982) and
Balbus & Hawley (1991) in detail with mathematical expressions.

2.1 The Shakura and Sunyaev accretion disk model

The background of accretion disk models started with the investigation of the gas streams in close
binary systems. In the 1960s and 1970s, it was intensively argued that the most probable model of
a binary system containing a collapsar (black hole, neutron star etc.) is accretion with formation
of a disk around the collapsar (Gorbatskii 1965; Prendergast & Burbidge 1968; Pringle & Rees
1972; Shakura 1973; Shakura & Sunyaev 1973). This section is written based on the seminal
work of Shakura & Sunyaev (1973), which gave a detailed picture of an accretion disk which
can be applied to the black hole accretion system. In Shakura & Sunyaev (1973), the angular
momentum transport and the corresponding energy release is characterized by the parameter α
(see Section 2.1.1). The accretion disk is then divided into three distinct parameter regimes and
the physical quantities in each regime can be expressed in terms of explicit algebraic formulae
(see Section 2.1.2 and A.4). The discussion of the spectrum features of the disk will not be
highlighted as it is not the concern of this project.

2.1.1 The general picture of black hole accretion disk

In a binary system that consists of a black hole and a normal star, if matter flows strongly outward
from the star, some fraction of the matter flow will fall under influence of the gravitational field
of the black hole. In the case that the matter falls radially towards the the black hole, it will just
flow into the horizon without any energy release. Nevertheless, in a binary system, the matter
outflow from a star onto the black hole has considerable angular momentum. For this reason, at
some distance, the centrifugal forces of the falling matter will be comparable to the gravitational
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forces and matter will begin to rotate in circular orbits. Consequently, an accretion disk is formed
around the black hole (see Figure 2.1).

Figure 2.1: Two regime of matter flowing from a star in a binary system into the influence of
the black hole: upper): a normal companion star that fills up its Roche volume and the matter
flows mainly through the inner Lagrangian point. Lower): the size of the companion star is much
smaller than the Roche volume. The matter will then lose part of its kinetic energy in the shock
wave before being captured by the gravitational field of black hole. In both cases mentioned
above, an accretion disk will form around the black hole. Figure credit: Shakura & Sunyaev
(1973).

In such an accretion disk, the role of molecular viscosity is negligibly small and cannot lead to
disk accretion. On the other hand, angular momentum cannot be transported by means of radia-
tion which itself originates from accretion. Thus, the matter in the disk is stable against further
accretion due to the rule of angular momentum conservation (see Appendix A.3 for an example
in Keplerian circular orbits). However, if there is a mechanism to transfer angular momentum
outwards in the the disk, then it is possible to have accretion further from the disk. Shakura &
Sunyaev (1973) suggested that the tangential stresses between adjacent layers, provided by the
magnetic field together with the turbulence in the disk, contribute to the mechanism of angular
momentum transport. In their model, the magnetic stresses, wm, can be written:

wm ∼ −
H2

4π
, (2.1)

where H is the magnetic field strength. The stresses caused by turbulence is

wt = −ρvtl
dω
dR
∼ −ρvtl

vφ
R
, (2.2)
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where vt is the turbulent velocity, l the maximal turbulent cell scale, ω and vφ are the angular
velocity and the Keplerian orbit velocity at radius R. The turbulent l is on the order of the disk
thickness, thus

l ∼ R
vs

vφ
, (2.3)

where vs denotes the sound speed. Insert Equation (2.3) into Equation (2.2) and the turbulent
stresses can be expressed by

wt ∼ −ρvsvt. (2.4)

The total stress is then

−w ∼ −(wm + wt) = ρvs
2(

vt

vs
+

H2

4πρvs
2 ) = αρvs

2. (2.5)

Since the efficiency of angular momentum transport is related directly to the stresses (see Equa-
tion 2.11), it can then be characterized by only the parameter α:

α =
vt

vs
+

H2

4πρvs
2 . (2.6)

The choice of a negative sign before w in Equation (2.5) gives the parameter α positive value.
The parameter α is a function of radius. For a wide choices of disk conditions, α � 1. It has
been argued that in the range 10−15(Ṁ/Ṁcr) < α < 1 (Ṁcr is the accretion rate at Eddington
luminosity), the disk structure is not significantly changed, thus, the external appearance of the
disk can be computed without deciding which mechanism (wm or wt) dominates the angular
momentum transfer.

In the case of an AGN accretion system, the cold material in the vicinity of the galactic center,
that falls into the potential well of the supermassive black hole, also carries a large amount of
angular momentum, which at a certain time will prevent its further infall. An accretion disk
around the supermassive black hole is then also expected. Such an accretion disk includes a
strong magnetic field, the origin of which is still poorly understood. Thus the accretion theory in
Shakura & Sunyaev (1973) is thoroughly applicable under the context of this thesis project since
the principle physical processes in the accretion disk do not vary due to the black hole mass.

2.1.2 The disk structure

With the α parameter, the approximation of the disk structure can be given upon the assumption
of a Keplerian disk. The rotational velocity and angular velocity are then

vφ =

√
GM

R
,

Ω =

√
GM
R3 . (2.7)
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In the vertical direction of the disk, the vertical component of the black hole gravitational force
is balanced by the turbulent, gas pressure gradient, magnetic pressures and radiation pressures.
According to the hydrostatic equilibrium equation, the half-thickness of such disk is

z0 =
vs

vφ
R. (2.8)

We can further define the surface density

u0 = 2
∫ z0

0
ρdz, (2.9)

and the stress between adjacent layers

W = 2
∫ z0

0
wdz = −αu0v2

s . (2.10)

The angular momentum efficiency is then related to the stress by

u0
dΩ

dt
R2 = −u0vr

dΩ

dR
R2 =

1
R

dW
dR

R2, (2.11)

where vr = dR/dt is the radial velocity of the accreting flow caused by the friction between the
adjaent layers. In the stationary case, vr < 0 and the mass accretion rate Ṁ = 2πu0vrR is time
independent. After integrating Equation (2.11), we obtain

ṀΩR2 = −2πWR2 + C. (2.12)

The integration constant C is determined by the condition, that W w 0 at the innermost stable
circular orbit R0, where R0 = 3rH in the Schwarzschild black hole case (see Section 1.3.2 for
the definition of horizon rH). Thus, C = ṀΩ(R0)R2

0. Replacing Ω(R0) by Equation (2.7) and
inserting the result into Equation (2.12), we have

ṀΩ

[
1 −

(R0

R

)1/2]
= 2παu0v2

s . (2.13)

The energy flux radiated from the disk surface unit per unit time is given by

Q =
1
2

WR
dΩ

dR

=
1

4πR
d

dR

Ṁ

v2
φ

2
−

GM
R

 − 2πR2WΩ


=

3
8π

Ṁ
GM
R3

[
1 −

(R0

R

)1/2]
. (2.14)

At a given flux Q, the energy density of radiation at the surface density u0 is determined by

ε =
3
4

Q
c
σu0 =

9
32

Ṁ
GM
R3

σu0

c

[
1 −

(R0

R

)1/2]
, (2.15)
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where σ is the opacity of the matter. According to the Stefan-Boltzmann law, the effective
temperature of the disk can then be expressed by

T =

(
ε

b

)1/4
, (2.16)

where b is the Stefan–Boltzmann constant. The physical quantities of the accretion disk in Equa-
tion (2.8) and Equations (2.13) - (2.16) only depend on α when the sound speed vs is given. In
Shakura & Sunyaev (1973), the disk is considered to be composed of the combination of three
distinct regimes:

a) the radiation pressure is dominant and v2
s = ε/3ρ. The opacity σ = σ f f , which is the

free-free absorption opacity.

b) the gas pressure is dominant and v2
s = kT/mP where k is Boltzmann constant and mP is the

proton mass. The opacity σ = σT which is the cross section of Thomson scattering on free
electrons.

c) the sound speed is given by v2
2 = kT/mP and the opacity σ = σ f f .

The two c) regions are the outermost and the very narrow, closest to the black hole where the
radiation is dominant. The two b) regions are intermediate between a) and c). Thus the struc-
ture of disk truncation looking from the disk side is, in the language of regime a), b) and c):
“BH–c—b—a—b—c”. If these the conditions are applied to the equations above, then the phys-
ical quantities from different disk regions can be expressed in explicit algebraic formulae (see
Appendix A.4).

2.2 Magnetorotational instability

Shakura & Sunyaev (1973) predicted that a chaotic magnetic field in the accretion disk can lead
to the angular momentum transfer between adjacent disk layers. Nevertheless, due to the absence
of the complete theory, they just assumed the existence of magnetic turbulence and argued that
nonlinear perturbations would be required to disrupt the laminar flow. After about two decades,
John F. Hawley and Steven A. Balbus investigated the local shear instability in magnetized disk
in detail. They showed with both an analytical solution and numerical simulations that the distur-
bance to the regular rotation of a Keplerian disk by the weak magnetic field is local and extremely
powerful, and can also take place in the linear perturbation regime. The content in this section is
based on Balbus & Hawley (1991).

2.2.1 The analysis of linear perturbation

The theoretical analysis of magnetorotational instability (MRI) requires the assumption of ideal
MHD. To get a general picture of MRI in mind, let us consider a differentially rotating disk which
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is threaded by a vertical magnetic field. If a fluid element in the disk is displaced outwardly,
the field line that threads the element will move outward so that the element can keep being
penetrated by the same magnetic field line (see Section 1.4.2). The field line will, on one hand,
try to return the element back to its original position by resisting stretching, and on the other
hand, enforce the rigid rotation by resisting shearing. While the first situation is stabilizing, the
latter adds to the instability in the disk. The fluid element is then forced by the magnetic field to
rotate faster than the angular velocity of its new orbit and hence, is driven farther outward until
the return force is finally conquered by the destabilization.

The analytical model set up in Balbus & Hawley (1991) employs a standard cylindrical coordi-
nate system (R, φ, z). The equilibrium angular velocity of the disk Ω(R) is assumed to be constant
on cylinders. The basic dynamical equations for the physical quantities are

dlnρ
dt

+ ∇ · vvv = 0,

dvvv
dt

+
1
ρ
∇

(
P +

BBB2

8π

)
−

1
4πρ

(BBB · ∇)BBB + ∇ΦΦΦ = 0,

∂BBB
∂t
− ∇ × (vvv × BBB) = 0. (2.17)

The symbols in the equations have their usual meanings unless the notation Φ is the external
gravitational potential and d/dt denotes the Lagrangian derivative. The perturbations with space-
time dependence is considered as ei(kR+kz−ωt), where kR and kz refer to the wave vector in the
corresponding direction.

In the following, I review the condition for the stability of the perturbation. Let us denote the
Fourier amplitudes of perturbed flow attributes of variable x as δx. If we apply the perturbation
and Fourier transformation to Equation (2.17) and only keep the linear order, the components
can be written out as

kRδvR + kzδvz = 0,

−iωδvR +
ikR

ρ
δP − 2Ωδvφ −

δρ

ρ2

∂P
∂R

+
ikR

4πρ
(BφδBφ + BzδBz) −

ikz

4πρ
BzδBR = 0,

−ωδvz +
ikzδP
ρ
−
δρ

ρ2

∂P
∂z

+
ikz

4πρ
BφδBφ = 0,

−iωδvφ + δvR
κ2

2Ω
− ikzBz

δBφ

4πρ
= 0,

−iωδBR − ikzBzδvR = 0,

−iωδBz − ikzBzδvz = 0,

−iωδBφ −
dΩ

dlnR
δBR − ikzBzδvφ = 0, (2.18)

where

κ2 ≡
2Ω

R
(R2Ω)

dR
, (2.19)
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is the square of the epicyclic frequency. Combining these equations with the requirement that the
entropy for adiabatic perturbations is in the Boussinesq approximation, we get, after rearranging
and simplification (see Balbus & Hawley 1991), a dispersion relation:

k2
z + k2

R

k2
z

ω̃4 −

κ2 +

(
kR

kz
Nz − NR

)2 ω̃2 − 4Ω2k2
z v2

Az = 0. (2.20)

The variable vAz = B2
z/(4πρ) is the z component of the Alfvén velocity and ω̃2 ≡ ω2 − k2

z v2
Az. NR

and Nz are defined by

N2
z ≡ −

3
5ρ
∂P
∂z
∂lnPρ−5/3

∂z
,

N2
R ≡ −

3
5ρ
∂P
∂R

∂lnPρ−5/3

∂R
. (2.21)

Since ω is always real, ω̃ must be real and a continuous function of its parameters in Equation
(2.20). We may then investigate the stability of the disk by considering the condition of Ω2 = 0 .
Equation (2.20) then becomes

k2
R(k2

z v2
Az + N2

z ) − 2kRkzNRNz + k2
z

(
dΩ2

dlnR
+ N2

R + k2
z v2

Az

)
= 0. (2.22)

Now we treat the Equation (2.22) as a quadratic equation for kR. To assure the stability of
the perturbation, real solutions for kR are not allowed. Consequently, the discriminant of the
quadratic equation should be negative

k4
z v4

Az + k2
z v2

Az

[
(N2

z + N2
R) +

dΩ2

dlnR

]
+ N2

z
dΩ2

dlnR
> 0. (2.23)

Note that if dΩ/dR > 0 is fulfilled, then the stability criterion always holds. But a normal
gravitationally bound accretion disk does not satisfy this condition. Solving Equation (2.23), we
finally find a critical value for k2

z :

(kz)2
crit =

1
2v2

Az


(N2 +

dΩ2

dlnR

)2

− 4N2
z

dΩ2

dlnR

1/2

−

[
N2 +

dΩ2

dlnR

] . (2.24)

Perturbations with wave number k2
z > (kz)2

crit are still able to keep their stability in the linear
regime. In other words, perturbations that have the wave number k2

z 6 (kzcrit)2, will become
unstable and grow exponentially!

2.2.2 Dependence of perturbation growth on field strength

In Section 2.2.1, we saw that a linear perturbation in a weak magnetized accretion disk is un-
stable. The dynamical instability leads to the exponential growth of magnetic fields and rapid
angular momentum transfer. These effects can be seen clearly by the numerical simulation re-
sults in Balbus & Hawley (1991). In these simulations, a 2D gas box taken from the truncation



34 CHAPTER 2

Figure 2.2: The mode amplitude from simulations with different magnetic field strength in the
same numerical resolution, top: βz = 1000, middle: βz = 4000, lower: βz = 16000. Below 2.2
orbital rotations, the perturbations are still in the linear regime. Some modes stay stable, while
others start growing according to the corresponding critical wave numbers (see text). This figure
is adopted from Balbus & Hawley (1991).

of Keplerian disk is investigated. The box is penetrated by a pure vertical magnetic field (only
Bz , 0) and the plasma gas has infinite conductivity (ideal MHD assumption). The strength of
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the initial vertical field is controlled by the plasma-beta

βz =
P

(B2
z/8π)

, (2.25)

where P is the pressure of the plasma gas. The growth of the perturbation will shift the gas
element from their original orbit either inwards or outwards and draw the field lines with them.
A radial component of the magnetic field will then be induced, which is initially zero. Thus
the diagnostics of the power of the perturbation instability with the wave number kz can be
represented by

1
Rout − Rin

∫ Rin

Rout

ln | f |dr, (2.26)

where

f (R) =

∫ a

0
BR(R, z)eikzz/adz (2.27)

is the average radial component of the magnetic field in the vertical direction. Here, a = 1 is the
size of the simulation box.

The factor 1/2v2
Az in the critical wave number equation (Equation 2.24) is related to the vertical

Alfvén velocity

vAz =
Bz

µ0ρ
. (2.28)

This implies, if a certain Bz allows the instability for wave number k 6 K , then a weaker field
strength, e.g. Bz/2, will allow the instability for k 6 2K in the linear regime.

The results of the simulations in Balbus & Hawley (1991) is shown in Figure 2.2, the top plot
is the perturbation evolution with βz = 1000. In this plot, the modes k̄z ≡ kz/2π = 1, 2 have
exponential growth, while all other modes with higher wave numbers are stable in the linear
regime. The corresponding critical wavelength is λmin = 0.513. After about 2.2 orbital rotations,
all perturbation modes step out of the linear regime and start growing rapidly. In the middle plot,
βz = 4000 indicates a magnetic field with only half strength compared to the top simulation.
The wave numbers 1 through 4 are now unstable with the minimal wavelength λmin = 0.25. The
modes k̄z = 5, 6 are still not growing in the linear regime. In the lower plot, βz is 16000, hence
kzcrit should be doubled again. As expected, all wave modes from 1 to 6 are unstable and start
growing in the linear regime.

In Figure 2.3, the poloidal field structures at the beginning and end of the simulation with
βz = 1000 are shown. The top plot presents the initial magnetic field which is purely vertical.
As analyzed above, the growth of the perturbation (with k̄z = 1, 2) leads to angular momentum
transfer among the gas elements, the radial movements of which also draws the magnetic field
inwards and outwards. The evolution of the field configuration depends on the unstable pertur-
bation mode that is dominating. In this simulation, k̄z = 1 (one wave per unit disk thick length)
is predominant, thus the field line structure at 3.3 orbits looks like that in the lower plot of Figure
2.3.
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Figure 2.3: The poloidal field line structure in the simulation with βz = 1000 at upper: t=0,
lower: t=3.3 orbits. The dominant mode of unstable perturbation in this simulation is k̄z = 1 (see
corresponding text). This figure is adopted from Balbus & Hawley (1991).

2.3 Disk driven wind - the Blandford & Payne mechanism

While Balbus & Hawley (1991) focused on the local angular momentum transfer mechanism
inside the weak magnetized accretion disk, Blandford & Payne (1982) have investigated the
wind/jet that is driven centrifugally by the strong, large-scale magnetic field that penetrates the
accretion disk and given a self-similar solution of the cold MHD flow from the disk. In this
section, I will introduced the fundamental idea of centrifugally disk-driven wind and the behavior
of the wind according to the self-similar solution based on the work of Blandford & Payne (1982).

2.3.1 The centrifugally driven outflow

As mentioned in Section 1.4.2, in an ideal MHD flow, the fluid elements and the magnetic field
lines are coupled. In the case of a strong magnetic field (Pmag � Pfluid), the motion of fluid
elements follow the magnetic field lines. With this background, let us consider a rotating accre-
tion disk, the surfaces of which are penetrated by field lines that extend to large distances (see
Figure 1.8 right plot as an example). At the disk surfaces, magnetic pressure is dominant. Fluid
elements loaded on a field line can be treated as beads threaded by a rigid wire. This wire (the
field line) is rotating with the disk rigidly and all the beads on this wire are forced to rotate with
the same angular velocity, which is decided by the position where the wire is anchored on the
disk surface. The centrifugal force for the circular motion required by the beads at larger radii
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will then exceed that of the gravitational force. These beads will then fly outwards.

To see this process in mathematical language, let us consider a 2-D truncation in the radial
direction of Keplerian disk. The simulation employs cylindrical coordinates (r, z), where the
black hole is set at point (0, 0), and the gravitational potential can be expressed by

ΦG(r, z) = −
GM

(r2 + z2)1/2 . (2.29)

On the other hand, the centrifugal force of an arbitrary element in the disk is only a function of r

C(r) = Ω2r =
GM
r3 r. (2.30)

For a fluid element A at (r, z), bound to a strong magnetic field line that penetrates the accretion
disk through (r0, 0), rotates with the same angular velocity as at r0. Thus, we apply r = r0 in the
angular velocity in Equation (2.30) and integrate it to get the potential of centrifugal force

ΦA
C(r) =

1
2

GMr2

r3
0

. (2.31)

Now we combine Equation (2.29) and (2.31) to get a total potential for element A

Φ(r, z) = ΦG − ΦA
C = −

GM
r0

1
2

(
r
r0

)2

+
r0

(r2 + z2)1/2

 . (2.32)

The equipotential surfaces of Φ is shown in Figure 2.4, where lower surface has lower value of
Φ.

We now release the fluid element A from rest at r0. The total force in the direction perpendicular
to the field line always vanishes since the field line is assumed to be rigid. Along the field line,
the total force that acts on A is F = −∂Φ/∂vvv, where vvv is the unit vector along the field line
starting from r0. It is clear that if vvv points to the stable region in Figure 2.4, that is, the element
A makes an attempt to leave the rotating disk to the stable region, then F will be negative and
the higher potential will push A back to the disk. Nevertheless, if vvv points to the unstable region
on the right hand side, then the centrifugal force becomes dominant and A will keep moving
farther from the disk to the lower potential. The unstable region on the left hand side is gravity
dominant (accretion onto the black hole) and is not our concern. Note that the angle between the
right marginal stable surface and the disk is 60◦. Thus we can conclude that if the magnetic field
lines which penetrate the accretion disk make an angle less than 60◦ to the disk mid-plane, then
the fluid elements loaded on the field lines become unstable against the rotation and the outflow
is created.

2.3.2 Behavior of the disk wind in self-similar solution

As shown in Section 2.3.1, it is possible to drive outflow centrifugally from an accretion disk
through magnetic field lines. The behavior of the disk outflow after leaving the disk surface is
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Figure 2.4: Equipotential surfaces for the fluid element A threaded on a magnetic field line that
goes through the Keplerian accretion disk at point (r0, 0). The stable region has higher potential
than the point (r0, 0), while the unstable regions have lower potential. An attempted movement
for A from r0 to the unstable region on the right hand side makes A leave the disk to the lower
potential region. The dashed line at r =

√
3r0 is the asymptote for the surface of marginal

stability which reaches infinity in the z-direction. The angle between the right marginal stable
surface and the disk is 60◦. This figure is adopted from Blandford & Payne (1982).

important as well. In Blandford & Payne (1982), this problem is investigated by solving the time
independent ideal MHD equations under cold MHD flow conditions (ignoring the thermal term)
in axisymmetric cylindrical coordinates (r, φ, z)→ (r, z). The accretion disk around a black hole
with mass M has Keplerian differential rotation with the field strength B(r, 0) ∝ r−5/4. In the
solution, the coordinates in r and z are rescaled by ξ and χ

rrr = [r0ξ(χ), φ, r0χ], (2.33)

so that all quantities will scale with spherical radius along a given direction. After the rescaling,
the magnetic field looks self-similar in the new coordinates (ξ, χ). The rescale function ξ(χ)
depends on the construction of the magnetic field lines. In reverse, the choice of ξ(χ) decides
what kind of magnetic field a specific solution is dealing with. Parameters that define the final
solution are the specific energy, the specific angular momentum, the magnetic field configuration
and the ratio of the constant mass flux to the constant magnetic flux.

The derivation of the solutions is rather abstract and lengthy, so I will give the solution with
the “standard set” of parameters in Blandford & Payne (1982) directly. The integrated flow
streamlines (magnetic field lines) projected into the poloidal plane for the “standard” solution is
shown in Figure 2.5 left plot. With these parameters, the opening angle of the jet is θ = 6◦ and
the flow becomes super-Alfvénic at the points where the the dashed line intersects the field lines
in the plot. The positions for certain pitch angles α = tan−1 |Bφ/Bp| (Bp represents the poloidal
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field strength) of the magnetic field are denoted by the dotted lines. As is presented in the plot,
all outflow streams are bent after leaving the disk and possess toroidal motion. This implies that
the rigid field line assumption used in Section 2.3.1 cannot hold above a certain distance from
the disk depending on the radius where the stream flows out, i.e., where the field line is anchored
in the disk. When the stream comes from a smaller radius with faster rotation, the bending of the
stream takes place earlier.

Figure 2.5: The results of the “standard” solution for the cold ideal MHD flow in Keplerian
accretion disk. left: The integrated field lines projected into the poloidal plane in self-similar
coordinates (ξ, χ). The dashed line presents the surface where the Alfvén Mach number

√
m = 1.

The surfaces for certain pitch angles α = tan−1 |Bφ/Bp| are denoted by the dotted lines. right: The
dynamics along a single outflow streamline.

√
m is the Alfvén Mach number,

√
n is the fast-mode

magnetosonic Mach number,
√

U f stands for the poloidal velocity and g represents the toroidal
velocity. The ratio of the toroidal field strength to the poloidal field strength is also given in the
plot. The parameter θ is the polar angle as measured from the origin of the coordinate system.
Credit: Blandford & Payne (1982).

The mechanics of the outflow stream along a single field line is shown in Figure 2.5 right plot. In
this plot, the toroidal velocity increases until the Alfvén critical point (v = vA) is almost reached,
as the matter is accelerated along the field line by the magnetic stresses. During this process,
the toroidal flow always attempts to rotate slower to keep the angular momentum when moving
to the larger radius; this is also the reason for field line bending mentioned previously. Beyond
the Alfvén critical point, the matter starts dominating the azimuthal and causes the decrease of
toroidal velocity. Furthermore, the poloidal velocity in the plot increases until the Mach number
of the fast-mode magnetosonic wave is unity. Far before this point, the toroidal velocity had
already started decreasing, thus weakening the centrifugal force. The acceleration of the poloidal
field here implies that the matter flow is also accelerated by the magnetic pressure gradient. It
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has also been discussed in Blandford & Payne (1982) that there exists a value nt for the square of
the fast-mode magnetosonic Mach number n, above which the radial velocity becomes negative
and the flow converges towards the z-axis, which corresponds to the collimation phase of a jet.

The solution in Blandford & Payne (1982) has been extended to a more general solution in
Pelletier & Pudritz (1992). The maximal opening angle between the magnetic field lines and the
disk surface, which allows the operation of the centrifugally driven outflow, is as much as ' 70◦

when a finite gas pressure is considered.

2.4 Energy extraction from rotating black hole - the Bland-
ford & Znajek mechanism

In Section 2.3.1, a mechanism was shown where the outflow/jet is powered by the rotational
energy of an accretion disk around the BH. During this process the accretion disk will be slowed
down due to the loss of angular momentum energy. Through a quite different mechanism -
the Blandford & Znajek process, which was inspired by the radiation mechanism of pulsars
(Ruderman & Sutherland 1975), Blandford & Znajek (1977) presented a way to extract rotational
energy from the rotating black hole. This process requires the presence of magnetic field at the
vicinity of black hole horizon. When the field is large enough, a cascade production of electron-
positron pairs is produced, creating a force-free magnetosphere. Under this circumstance, it is
possible to have positive radial energy flux at the horizon of the black hole. In the following, the
Blandford & Znajek process will be illustrated based on the work Blandford & Znajek (1977).

2.4.1 The force-free magnetosphere around a black hole

Assuming that the accretion disk around the black hole (if not totally, at least almost) satisfies
the ideal MHD condition in the disk1, the magnetic flux frozen into the material flow will accrete
with the flow, so the field strength close to the horizon can become quite large. Because the
black hole is rotating, the field lines that penetrate the ergosphere of the black hole rotates with
spacetime (see Section 1.3.2). Similar to a homopolar generator experiment, the adjacent layers
of magnetic equipotential surfaces will then have different electric potential ∆V ∝ ΩHΦ, where
ΩH is the black hole angular velocity and Φ denotes the magnetic flux included by an equipo-
tential surface. Any stray charged particles flowing between the adjacent magnetic surfaces will
then be accelerated (see Figure 2.6). For each ΩH there exists a magnetic field strength above
which electrons can reach an energy high enough to radiate gamma-ray photons by the curvature
process. These high energy photons cause the instability of the vacuum and, consequently, create
electron-positron pairs which in turn are accelerated, leading to a cascade. The freely produced
charges will then make the electromagnetic field approximately force-free in the vicinity of the

1This condition is actually not really satisfied in the simulations in Section 6
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Figure 2.6: A sketch of the electrical flow on the equipotential surfaces of the magnetic field
lines that penetrate the ergosphere of the black hole. The angular velocity of the magnetic field
lines noted by Ω, is defined so that an observer orbiting with this angular velocity would not see
any electric field. The black hole spins with angular velocity ΩH. ΩL is the angular velocity of
an external load resistance. Here the mechanism of gamma-ray production can be treated as the
external resistance (see corresponding text). This figure is adopted from Blandford et al. (1990),
page 207.

horizon.

In a force-free magnetosphere, the electromagnetic field tensor Fµν satisfies

FµνJν = 0, (2.34)

where Jν is the current 4-vector. Fµν can be defined by a vector potential Aµ so that

Fµν = Aν,µ − Aµ,ν. (2.35)

The expression X,y denotes the derivative of quantity X to y (since we are in GR, the derivative
here is the covariant derivative). If we apply Equation (2.35) to Equation (2.34) in the Boyer-
Lindquist coordinates and define the toroidal magnetic field strength as BT = −grr sin θBφ, under
the certain boundary conditions, the toroidal field on the surface of the black hole horizon can be
expressed by

BT [Aφ(rH, θ)] =
sin θ[Ω(r2

H + a2) − a]
r2

H + a2 cos2 θ
Aφ,θ(rH, θ), (2.36)

where aε[−1, 1] stands for the black hole spin parameter (see Section 1.3.2) and Ω = −A0,θ/Aφ,θ

is the electromagnetic angular velocity which is not necessarily equal to any material angular
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velocity (see also Figure 2.6). The radial energy flux and angular momentum flux can be denoted
by

Er = −
Ωε0Aφ,θBT

sin θ(r2
H + a2 cos2)

,

Lr =
Er

Ω
, (2.37)

where ε0 is the vacuum permittivity. The total rate of energy extraction from the black hole
measured at infinity is then (see Blandford & Znajek (1977) for the detailed derivation)∫ 2π

0
dφ

∫ π

0
dθEr sin θ(r2

H + a2 cos2) = −4πε0

∫ Aφ(θ=π/2)

Aφ(θ=0)
dAφBT Ω. (2.38)

Similarly, the angular momentum extraction rate is given by∫ 2π

0
dφ

∫ π

0
dθLr sin θ(r2

H + a2 cos2) = −4πε0

∫ Aφ(θ=π/2)

Aφ(θ=0)
dAφBT . (2.39)

Since Er and Lr are only dependent on the potential Aφ and the spin parameter a, and once Aφ

is known, we will have a relation between the energy and momentum extraction rate from the
black hole and the spin parameter.

2.4.2 Dependence of the energy extraction efficiency on the black hole spin

Nevertheless, the exact solution of Aφ is not trivial. In Blandford & Znajek (1977), a pertur-
bation method is introduced to find a solution which is valid for a slowly rotating black hole
|a| � 1. It has been concluded that the power P radiated from the horizon satisfies P ∝ a2. Af-
ter being confirmed by numerical simulations (Komissarov 2005; McKinney & Gammie 2004),
the Blandford-Znajek effect has frequently been investigated through numerical approaches. In
Tchekhovskoy et al. (2010), a survey over a wide range of black hole spin parameter a has been
executed by GR-MHD simulations under the force-free condition. From the data fitting, a solu-
tion that accurately describes the scaling of the jet power is given by

P ≈ kΦtot

( a
rH

)2

+ α

(
a
rH

)4

+ β

(
a
rH

)6 . (2.40)

In this equation, Φtot is the total poloidal magnetic flux in the jet and k is a constant which
depends on the geometry choices in the simulation. The parameter α ∼ 1.38 and β ∼ −9.2.
Clearly, Equation (2.40) reduces to P ∝ a2 for tiny a.
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Numerical Implementation of Resistive GR-MHD

As mentioned in Section 1.5, the dynamical structure of the AGN jet sources are unresolved by
observations since jets are mostly detected in synchrotron emission. Neither is any analytical
solution available because of the complexity of the MHD equations that govern the accretion
system. For these reasons, AGN jet production has often been investigated by means of numerical
simulations. In this thesis project, we decide to implement magnetic resistivity into the existing
ideal GR-MHD code HARM (Gammie et al. 2003) and run simulations with this updated code
in order to get stable outflows from the accretion disk. The new code is named rHARM where
the letter “r” stands for “resistive.” In this chapter, I will introduce the structure and features of
rHARM in detail. As the code is newly developed, two verification tests of the code will also be
shown. The derivation of equations and tests of the new code in this chapter can also be found in
the published paper Qian et al. (2017) by my supervisor Christian Fendt and I.

3.1 Basics of rHARM

The resistive GR-MHD code rHARM is developed on the basis of the 2D non-resistive GR-MHD
code HARM (Gammie et al. 2003), which is a Godunov’s (conservative shock-capturing) scheme
for evolving the GR-MHD equations. In this section, the basic equations of the Godunov’s
scheme, the approximate flux Riemann solver and the basic structure of rHARM, which is in
common with HARM, will be presented.

3.1.1 A brief introduction to the Godunov’s scheme

Godunov’s scheme is a conservative numerical scheme, created by Sergei K. Godunov for solv-
ing partial differential equations. The application of a conservative form of the equations in
the Godunov’s scheme is important, especially when dealing with problems admitting shocks or
other discontinuities in the solution. Since the GR-MHD equations can all be written in the con-
servative form, Godunov’s scheme is widely used in performing the time evolution of GR-MHD.

For the illustration, we can take the µ = 0 component of Equation (1.24) in the one dimensional

43
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Figure 3.1: The mesh grid sketch for the illustration of Godunov’s scheme (see text for the detail)
adopted from the “Lecture Notes for the COMPSTAR School on Computational Astrophysics,”
August 10, 2010 by Olindo Zanotti & Gian Mario Manca.

case with the 0th component denoting time and the 1st component denoting position,

∂t(
√
−gT 00) + ∂x(

√
−gT 01) = 0. (3.1)

This is a partial differential equation made of the conserved variable
√
−gT 00, hereafter U, and

its flux
√
−gT 01, hereafter F. Equation (3.1) can then be written as

∂tU + ∂xF = 0. (3.2)

The variables U(x, t) and F(x, t) are position dependent and time dependent. Now we discretize
the spatial domain into N computing cells Ii = [xi−1/2, xi+1/2], so each cell has the size ∆x =

xi+1/2 − xi−1/2 with i = 1, ...,N. A time forwarding step ∆t > 0 is defined by ∆t = tn+1 − tn. We
now focus on the physical equation in the “control volume” V ≡ Ii × [tn, tn+1] as shown in Figure
3.1. If we integrate Equation (3.2) first over Ii

d
dt

∫ xi+1/2

xi−1/2

U(x, t)dx = F(xi−1/2, t) − F(xi+1/2, t), (3.3)

and then over the time interval ∆t∫ xi+1/2

xi−1/2

U(x, tn+1)dx =

∫ xi+1/2

xi−1/2

U(x, tn)dx +

∫ tn+1

tn
F(xi−1/2, t)dt −

∫ tn+1

tn
F(xi+1/2, t)dt, (3.4)

we then obtain the integral form of Equation (3.2). To execute the integral over time via numeri-
cal simulation, we need to write Equation (3.4) in discrete form. By defining the average of U in
the cell

Un
i =

1
∆x

∫ xi+1/2

xi−1/2

U(x, tn)dt (3.5)
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and the average of F in the time interval ∆t

Fi±1/2 =
1
∆t

∫ tn+1

tn
F(xi±1/2, t)dt, (3.6)

we can finally rewrite Equation (3.2) as

Un+1
i = Un

i +
∆t
∆x

(Fi−1/2 − Fi+1/2). (3.7)

The average conserved variable U at time tn+1 can then be calculated by Equation (3.7). The
average of the conserved variable defined by Equation (3.5) is called “piece-wise constant” (see
also Martı́ & Müller 1999, Komissarov 1999 and the lecture notes for the COMPSTAR school
on computational astrophysics 1.). Readers might have already found that Equation (3.7) itself
is an exact mathematical expression with no approximation. Nevertheless, F(x, t) is usually a
function of the primitive variables (non-conserved variables like density, velocity, etc., see later)
that can be obtained by conserved variables like U(x, t) in practice. Thus, we do not possess
the knowledge of F(x, t) in tε[tn, tn+1] since it depends on the knowledge of U(x, t) in tε[tn, tn+1],
which again requires the integral of F(x, t) towards the future. Together with the fact that U
becomes discontinuous on the cell board because of the piece-wise method, Fxi±1/2 values are
usually approximated (see Section 3.1.2). When the integrals of flux F(x, t) over time in Equation
(3.6) are approximated by certain methods, Equation (3.7) becomes indeed a numerical scheme
– “Godunov scheme,” which is the basic equation of the time numerical evolution in rHARM.

As an important remark for the Godunov scheme, the time interval ∆t that is allowed must satisfy

∆t ≤
∆x
|vn

max|
(3.8)

to keep the causality for a step forward time evolution, where vn
max, composed by the sum of

flow speed and sound speed, presents the maximum wave velocity through the computational
domain at time tn. In rHARM, the time step constraint is controlled by both Equation (3.8) and
the resistive time scale Equation (3.34).

3.1.2 The approximate flux on the cell board

As has been mentioned in Section 3.1.1, the flux terms Fi±1/2 in Equation (3.7) need to be ap-
proximated by certain methods. The time integral in Equation (3.6) can be easily approximated
by Fi±1/2 = F(xi±1/2, 0) which holds well when ∆t is small. F(xi±1/2, 0) depends on the conserved
variable U on cell boards. But because of the piece-wise method applied in Equation (3.5), we
only have the information of the average U of each cell which forms a discontinuous distribu-
tion as shown in Figure 3.2. The flux on the board can then be solved by approximate Riemann

1Lecture Notes for the COMPSTAR School on Computational Astrophysics, August 10, 2010 by Olindo Zanotti
& Gian Mario Manca
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Figure 3.2: An example of the discontinuous distribution of the conserved variable U caused
by the piece-wise constant method. This Figure is adopted from the “Lecture Notes for the
COMPSTAR School on Computational Astrophysics,” August 10, 2010 by Olindo Zanotti &
Gian Mario Manca.

solvers. Typical approximate Riemann solvers can be divided into two types: approximate state
Riemann solvers, where U(xi±1/2, t) is first solved to evaluate F(xi±1/2, t), and approximate flux
Riemann solvers, where an approximation is given to the flux directly without computing the
state U(xi±1/2, t). In rHARM, the solver of the latter type is employed.

To illustrate the solver, let us focus on the board between cell i−1 and i in Figure 3.1 and redefine
the coordinates xi−1 = xL, xi = xR and xi−1/2 = 0, as shown in Figure 3.3 left plot. We ignore
the occurrence of rarefaction waves and assume that both nonlinear waves are shock waves. The
solid lines originate from (0, 0) point in the plot representing the propagation path of the sound
waves in the left and right directions with velocities S L = vL − aL and S R = vR + aR, respectively.
Here, v is the flow velocity and a presents the sound speed. The time tn is set to 0 and tn+1 = T .
Thus, the control volume is now V ≡ [xi−1, xi] × [0,T ]. The state in this volume can be divided
like in Figure 3.3 right plot. The two regions that are untouched by the shock waves have their
original states from cell i − 1 and i denoted by UL and UR. The state of the region in the middle
influenced by the shock is denoted by UHLL (HLL stands for Harten, Lax and van Leer, who were
the contributors of this solver). The fluxes from left to right are then FL, FHLL and FR.

Applying Equation (3.3) to the region [xL, 0], yields

d
dt

∫ x0

xL

U(x, t)dx = F(xL, t) − F(0, t). (3.9)

According to the discontinuity in Figure 3.3, the right hand side of this equation can be split as

d
dt

∫ x0

xL

U(x, t)dx =
d
dt

∫ TS L

xL

U(x, t)dx +
d
dt

∫ 0

TS L

U(x, t)dx. (3.10)

Applying the formula

d
dt

∫ x2(t)

x1(t)
f (x, t)dx =

∫ x2(t)

x1(t)

∂ f (x, t)
∂t

dx + f (x2(t), t)
dx2(t)

dt
− f (x1(t), t)

dx1(t)
dt

. (3.11)
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Figure 3.3: Left: Control volume for the computation of the approximate HLL flux. Right:
The average of U in different regions divided by the shock wave propagation in two directions.
Both plots are adopted from the “Lecture Notes for the COMPSTAR School on Computational
Astrophysics,” August 10, 2010 by Olindo Zanotti & Gian Mario Manca.

to Equation (3.10), yields

d
dt

∫ TS L

xL

U(x, t)dx =

∫ TS L

xL

∂U(x, t)
∂t

dx + U(TS −L , t)S
−
L ,

d
dt

∫ 0

TS L

U(x, t)dx =

∫ 0

TS L

∂U(x, t)
∂t

dx − U(TS +
L , t)S

+
L , (3.12)

where S −L and S +
L stands for the left and right limit for the sound velocity S L at x = TS L. With

the result in Equation (3.12), Equation (3.9) can be written as

F(xL, t) − F(0, t) = U(TS −L , t)S
−
L − U(TS +

L , t)S
+
L

+

∫ TS L

xL

∂U(x, t)
∂t

dx +

∫ 0

TS L

∂U(x, t)
∂t

dx. (3.13)

The points (xL, t) and (TS −L , t) are always in the left region uninfluenced by the shock wave, so
F(xL, t) = FL and U(TS −L , t) = UL. The points (0, t) and (TS +

L , t) are always inside the shock
region, thus F(0, t) = FHLL and U(TS +

L , t) = UHLL. If the time interval T is small enough, the
partial integrals in Equation (3.13) vanish. Assuming S −L ' S +

L = S L and meanwhile keeping the
difference between UL and UHLL, Equation (3.13) becomes

FHLL = FL + S L(UHLL − UL). (3.14)

Equation (3.14) is a variation of the Rankine-Hugoniot condition which connects states and
fluxes across a discontinuity (in this case at x = xL). The same procedure from Equation (3.9) to
(3.14) can also be applied to the right propagation wave S R to get

FHLL = FR + S R(UHLL − UR). (3.15)

Finally, if we combine Equations (3.14) and (3.15) to eliminate UHLL, which we want to avoid
from the beginning, we obtain the HLL flux

FHLL =
S RFL − S LFR + S LS R(UR − UL)

S R − S L
(3.16)
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(see also the lecture notes for the COMPSTAR school on computational astrophysics 2). Do not
forget that FHLL in Equation (3.16) is Fi−1/2 in Equation (3.7). The Godunov scheme described in
Section 3.1.1 can work for cell i once the Fi+1/2 is found by the same method descreibed in this
Section. In this thesis, we have applied a variation of FHLL, which is called Lax-Friedrichs flux,
to rHARM, in order to improve the efficiency of the simulations. By assuming S L = −S R = S ,
the Lax-Friedrichs flux is expressed by

FLAXF =
1
2

[FL + FR − S (UR − UL)] . (3.17)

3.1.3 Primitive variables and the inversion scheme

In case of rHARM, primitive variables are those variables like density, velocity, internal energy,
etc. (see Section 3.2.3), which compose the expressions of the conserved variables (see Section
3.2.1). They are not evolved by Equation (3.7), with the exception of some variables which are
both conservative and primitive, as we will see in Section 3.2.1. Furthermore, primitive variables
are needed for the calculation of the fluxes in Equation (3.7) (see Section 3.2.1). Thus, after a
time evolution of conserved variables or in other words, before the beginning of the next time
evolution of conserved variables, we need to calibrate primitive variables as described by flow
chart in Figure 3.4. The expressions of conserved variables as functions of primitive variables
are explicit. Nevertheless, primitive variables can seldom be expressed by conserved variables
explicitly. For this reason, a whole scheme is usually used in a conservative code to inverse
conserved variables to primitive variables. The inversion scheme in rHARM is the core of the
code, which I will illustrate in detail in Section 3.2.3.

Figure 3.4: A flow chart for the basic structure of rHARM as a conservative scheme. Before the
start of the next time evolution over conserved variables, primitive variables which determine the
flux on the cell board mentioned in Section 3.1.2 need to be updated from the current conserved
variables. Credit: Mignone et al. (2007).

2Lecture Notes for the COMPSTAR School on Computational Astrophysics, August 10, 2010 by Olindo Zanotti
& Gian Mario Manca
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3.2 Implementation of magnetic resistivity

In the following section, I will derive the equations of resistive MHD in general relativity that
are implemented in the existing ideal GR-MHD code HARM (Gammie et al. 2003; Noble et
al. 2006). As the core of rHARM, the inversion scheme that is used in the code will also be
illustrated in detail. The derivations follow Bucciantini & Del Zanna (2013), who have also
implemented resistivity in their code ECHO. Significant changes to HARM had to be made,
such as implementing new variables to describe the electric field and the magnetic diffusivity.
The metric g that will be used in the derivations refers to the definition of the Kerr metric in
Section 1.3.3. The notation in this section follows the convention mentioned in Section 1.6. In
order to avoid confusion, it needs to be specified that the sign convention in the definition of
the Levi-Civita tensors (see Equation 1.35) in these section follows Misner et al. (1973), which
differs from the convention used in Bucciantini & Del Zanna (2013) (see Section 3.2.1).

3.2.1 The general form of GR-MHD equations

Like in HARM, rHARM applies the two observer frames that are defined by the co-moving ob-
server, uµ, and the normal observer, nµ. The spacetime of the normal observer is split into the so
called “3+1” form (see Appendix A.2). The electric and the magnetic four vectors that are mea-
sured in the two frames are denoted by eµ, bµ and Eµ, Bµ, respectively. For the normal observer
frame we follow Noble et al. (2006) with the normal observer four velocity nµ = (−α, 0, 0, 0) and
the lapse time α = 1/

√
−gtt.

As a conservative scheme, the time evolution in rHARM follows the description in Section 3.1.1
and 3.1.2, except that it evolves eleven conserved variables simultaneously, instead of only one
as in the example. The time evolution of these eleven variables is then governed by eleven equa-
tions. Correspondingly, these equations consider the conservation of mass, energy, momentum
and the evolution of the electric and the magnetic field. Among these eleven equations only the
equation for mass conservation can be taken from HARM,

1
√
−g

∂µ
(√
−gρuµ

)
= 0, (3.18)

with g ≡ det(gµν) and the mass density ρ. The equations considering the conservation of energy-
momentum keep their general form,

∂t

(√
−gT t

µ

)
+ ∂i

(√
−gT i

µ

)
=
√
−gT κ

λΓ
λ
µκ, (3.19)

where Γλµκ is the metric connection defined by Equation (1.19) and T µ
ν is the stress-energy tensor

consisting of a fluid part and an electromagnetic (EM) part,

T µν = T µν

fluid + T µν
EM. (3.20)

Here, a difference to the ideal GR-MHD equations arises. The general definition for T µν
EM is

T µν
EM = FµαFν

α −
1
4

gµνFαβFαβ. (3.21)
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For the ideal GR-MHD version of T µν
EM I refer to Gammie et al. (2003). For the resistive case, the

T µν
EM needs to consider the electric field, thus, to implement the anti-symmetric Faraday tensor,

Fµν = uµeν − eµuν + εµνλκuλbκ
Fµν = uµeν − eµuν + εµνλκuλbκ (3.22)

in T µν
EM. The εµνλκ in the equations are the Levi-Civita tensors defined in Section 1.6. For uµ, we

may use the four velocity of an arbitrary observer, while eµ and bµ, respectively, are the electric
and the magnetic field measured in this observer’s frame. Similar equations hold for the dual
Faraday tensor ∗Fµν. After some lengthy algebra (for derivation, please see Appendix A.5), we
have for the electromagnetic energy-momentum tensor

T µν
EM =

(
b2 + e2

) (
uµuν +

1
2

gµν
)
− bµbν − eµeν − uλeβbκ

(
uµενλβκ + uνεµλβκ

)
, (3.23)

which is in agreement with McKinney (2006). In order to avoid confusion, it needs to be specified
that the sign convention in the definition of the Levi-Civita tensors in the equations here follow
Misner et al. (1973), which differs from the convention used in Bucciantini & Del Zanna (2013).
Eventually, the stress-energy tensor that I apply in rHARM becomes

T µν =
(
ρ + u + p + b2 + e2

)
uµuν +

(
p +

1
2

(
b2 + e2

))
gµν

− bµbν − eµeν − uλeβbκ
(
uµενλβκ + uνεµλβκ

)
. (3.24)

Here, u is the internal energy, p denotes the gas pressure and b2 = bµbµ, e2 = eµeµ.

In rHARM, both the electric and the magnetic field are evolved in the normal observer frame.
The evolution of the magnetic field four vector follows from the Maxwell equation,

∂t(
√
−g

∗

F
it
) = −∂i

(√
−g

∗

F
i j)
, (3.25)

and the constraint
∂i(
√
−g

∗

F
it
) = 0. (3.26)

Similar to the modification of the stress-energy tensor, the complete form of the dual Faraday
tensor,

∗

F
µν

= −uµbν + bµuν + εµνλκuλeκ, (3.27)

is required for the EM field evolution here.

With the definition Bi ≡ nν
∗

Fνi
= α

∗

F it and B0 ≡ nν
∗

Fνt
= 0, a direct relation follows between the

∗

F it and the magnetic field four vector Bµ, which is the magnetic field in the normal observer’s
frame. Similarly, the electric field four vector is defined by Ei ≡ nνF iν = −αF it, while E0 = 0.
In order to present the equations more comprehensively, we will use Bµ, Eµ for the theoretical
derivation instead of

∗

F it, −F it, which are actually used in rHARM. The time evolution of the
electric field four vector Eµ follows from

γ−1/2∂t

(
γ1/2EEE

)
− ∇ × (αBBB − βββ ×EEE) + (αvvv − βββ) = −αΓ [EEE + vvv ×BBB − (EEE · vvv)vvv] /η, (3.28)
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(Bucciantini & Del Zanna 2013), where βββ = {βi} is the spatial shift vector in the 3+1 formalism,
Γ denotes the Lorentz factor and γ =

√
−g/α is the determinant of its spatial 3-metric. The vvv

denotes the three velocity in the normal observer frame (see Section 3.2.3). Here a new variable
enters the system of equations, specifically the resistivity or magnetic diffusivity η (see Section
3.2.2). Note that Equation (3.28) is the combination of the two Maxwell equations for the electric
field

γ−1/2∂t

(
γ1/2EEE

)
− ∇ × (αBBB − βββ ×EEE) = − (αJJJ − qβββ) ,

∇ · EEE = q (3.29)

and the resistive condition eµ = η jµ (see also Section 3.2.2), where q is the electric charge
density, JJJ is the electric current for the normal observer and jµ denotes the components of
the electric current in the co-moving observer frame (see Bucciantini & Del Zanna 2013 for a
detailed derivation).

3.2.2 Turbulent resistivity in rHARM

Essentially, two new physical quantities enter the system of equations in rHARM. These are the
electric field variable (as the electric field was replaced by EEE = −vvv×BBB in the ideal HARM) and the
resistivity (or magnetic diffusivity) η = η(r, θ). We understand the resistivity is due to turbulence,
thus is closely related to the alpha-viscosity in turbulent accretion disks (Shakura 1973; Shakura
& Sunyaev 1973). In the following I will briefly motivate the use of a turbulent resistivity,
mainly quoting from derivations presented by Khanna & Camenzind (1996) and Bucciantini &
Del Zanna (2013).

Starting from classical Ohm’s law EEE + vvv × BBB = ηoJJJ with the (microscopic) resistivity ηo and
assuming turbulent fluctuations in the velocity vvv′, the electric field EEE′, and the magnetic field BBB′,
mean-field averaging will lead to a revised mean electric current

EEE + vvv × BBB = −vvv′ × BBB′ + ηoJJJ, (3.30)

with the mean-field velocity and fields vvv,BBB,EEE, respectively. The term vvv′ × BBB′ does not vanish,
since the fluctuating quantities inside are presumably correlated. A key assumption is that this
term can usually be written as a linear combination of both the mean magnetic field and its curl,
namely

vvv′ × BBB′ = −αDBBB − ηt∇ × BBB, (3.31)

where the two scalars αD and ηt are isotropic coefficients and are both proportional to the local
turbulent correlation time. With this assumption and dropping the bars from now on, we can
rewrite Ohm’s law as

EEE + vvv × BBB = αDBBB + (ηt + ηo)JJJ. (3.32)

The αD-term may introduce exponentially growing modes and is usually known as the mean-field
dynamo, while the ηt-term acts as a resistivity – a turbulent resistivity. In this thesis, I will not
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consider the dynamo term (see Bugli et al. 2014 for an application) further. I will mostly focus
on the diffuse effect of resistivity, and also also refer to it as magnetic diffusivity. In astrophysical
plasma, usually ηt � ηo so I will apply η ≡ ηt ' ηt + ηo and write Ohm’s law as EEE + vvv × BBB = ηJJJ,
or, in a covariant form of the equation in the co-moving frame, where v = 0,

eµ = η jµ. (3.33)

The scalar η in Equation (3.33) is exactly the input diffusivity in the present version of rHARM.
The ideal GR-MHD regime can be retrieved by setting η = 0, namely eµ = 0. Applying magnetic
diffusivity, the numerical time stepping ∆t requires consideration of the diffusive time scale on
the grid scale, thus

∆tη < ∆x2/η, (3.34)

where ∆x is the smallest cell size. This turned out to be critical, especially when running the
code with at relative large η, where the dynamic time scale becomes larger than the diffusive
time scale.

3.2.3 The inversion scheme

Precisely, rHARM uses the following set of conserved variables

UUU ≡
√
−g(D,T t

t,T
t
i,
∗ F it,−F it), (3.35)

where D ≡ ρut. T µν and T µ
ν are related by T µ

ν = gναT µα.

The time evolution of UUU is performed by using the equations derived in the previous section.
These equations are written in the so-called conserved form, for which the time derivative of the
variable depends on the position derivative of its “flux”. To model these fluxes FFF for UUU across
the surfaces of the simulation cells, an additional set of so-called “primitive” variables is needed.
Similar to the ideal HARM, the “primitive” variables in rHARM are

PPP = (ρ, u, vi,∗F it,−F it) (3.36)

where ρ stands for density, u for internal energy, and vi for the spatial 3-velocity for the normal
observer. The

∗

F it and −F it are related to the magnetic and the electric four vectors for the normal
observer by a factor of α (see Section 3.2.1) and they are both conserved as well as primitive
variables.

As discussed in Gammie et al. (2003), the variables UUU(PPP) and FFF(PPP) can be expressed as analytic
functions of primitive variables, but the inverse operations do not have a closed-form. Therefore,
the numerical inversion scheme to extract PPP from UUU at each time step after the evolution of UUU is
the core of a conservative GR-MHD code.

The resistive term in Equation (3.28) could become stiff (Bucciantini & Del Zanna 2013), as we
usually deal with a small resistivity η . 10−2. Unfortunately, the stiff term also containsEEE, which
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makes EEE impossible to evolve in time simultaneously with other conserved variables. Therefore,
its solution has to be found by some implicit scheme, e.g. together with primitive variables, and
the inversion scheme used in ideal GR-MHD HARM must be emended in rHARM under the
resistive context.

Following Noble et al. (2006), it is convenient to project the energy-momentum density into
normal observer frame

Qµ ≡ −nνT µν, (3.37)

together with the projection tensors jµν = gµν + nµnν, and the energy-momentum flux perpendic-
ular to the normal observer can be described by Q̃µ = jµνQν. Q̃µ is a four vector with its zeroth
component always being zero, and we note it as Q̃i. Also, we define U ≡ −Qµnµ = α2T 00.
Obviously, Q̃i and U inherit the information from conserved variables T t

µ.

With the Lorentz factor Γ, W is defined by W ≡ (ρ + p + u)Γ2. The flow velocity relative to the
normal observer is denoted by ṽi = ji

µu
µ and vi = ṽi/Γ, v2 ≡ vivi. Γ is a function of v2 where

Γ2 = 1/(1− v2). The gas pressure p is a function of v2 and W depending on the equation of state,
which is u = p/(γgas − 1) in rHARM.

The variables to be solved by the inversion scheme are ρ, vi and Ei. The relation between the
conserved variables and ρ, vi is given (with help of the above definitions) by

D = ρΓ

Q̃̃Q̃Q = Wvvv +EEE ×BBB

U = W − p + (EEE2 +BBB2)/2 (3.38)

(Noble et al. 2006; Del Zanna et al. 2007). The ideal GR-MHD regime is retrieved by replacing
the vector EEE with −v × BBB. However, in the resistive case, EEE needs to be solved separately.
Rewriting Equation (3.28) into the numerical form, the relation between Ei and other variables
is (Bucciantini & Del Zanna 2013)

Ei = {ε i jkṽ jBk + η̃[N i + (Nkṽkṽi)/(1 + η̃Γ)]}/(Γ + η̃), (3.39)

where

N i = Ei(0) + ∆t[−
(
αvi − βi

)
γ−1/2∂k

(
γ1/2Ek(0)

)
− ε i jk∂ j

(
αBk − εklmβ

lEm
)
]. (3.40)

The expression η̃ is defined by 1/η̃ = ∆α/η. The N i comes from the none-stiff term, which does
not include η, and hence can be solved explicitly. The Ei(0) and Ek(0) denote the electric field four
vector from the last time step. The sign flip preceding ε i jk, in comparison to Bucciantini & Del
Zanna (2013), is due to the different definitions of Levi-Civita tensor as mentioned above.

Noble et al. (2006) have suggested a way to combine Equation (3.38) (under the condition EEE =

−v ×BBB) into an equation system with two equations of only conserved variables, W and v2. This
equation system can eventually be solved by a 2-dimensional Newton-Raphson (NR) method
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(see Appendix A.6). We keep this feature in our inversion scheme and combined Equation (3.38)
by calculating Q̃̃Q̃Q2 = Q̃iQ̃i

Q̃̃Q̃Q2 = (Wvvv +EEE ×BBB)2

= W2vvv2 + (EEE ×BBB)2 − 2WEEE · (v ×BBB). (3.41)

To eliminate vvv, it is useful to calculate

Q̃̃Q̃Q ×BBB = Wv ×BBB + (EEE ×BBB) ×BBB, (3.42)

which gives the relation
v ×BBB = W−1[Q̃̃Q̃Q ×BBB − (EEE ×BBB) ×BBB]. (3.43)

Inserting this into Equation (3.41), and using some simple algebra we obtain

Q̃̃Q̃Q2 = v2W2 − (EEE ×BBB)2 − 2EEE · (Q̃̃Q̃Q ×BBB). (3.44)

Since p is a function of v2 and W, the last equation in Equation (3.38) already satisfies the
requirement and together with Equation (3.44), they give an equation system that only consists
of conserved variables, v2 and W

Q̃̃Q̃Q2 − v2v2v2W2 + (EEE ×BBB)2 + 2EEE · (Q̃̃Q̃Q ×BBB) = 0,

U −W + p(v2v2v2,W) −
1
2

(EEE2 +BBB2) = 0. (3.45)

For a given EEE, Equation 3.45 can be solved by a 2D NR-method. Once v2 and W are solved, ρ, u
and vi can be retrieved by

ρ = D(1 − vvv2)1/2

vi = W−1[Q̃i −EEE ×BBB
i],

u = p/(γgas − 1). (3.46)

Nevertheless, EEE does not evolve with other conserved variables and cannot be considered as
given at the beginning of the inversion scheme. We solve this problem by considering an extra
loop, which specifically makes EEE converge. In sum, the inversion scheme to extract the primitive
variables from the conserved variables in rHARM follows the steps below.

1. Take the conserved variables after a new time evolution, except theEEE that is taken from the
former time step (or initial time step).

2. Apply them to the two equations in Equation (3.45) and solve for the primitive variables
u, vi with the 2D NR scheme.

3. Renew EEE with the solution obtained in step 2 using Equation (3.39).

4. Repeat step 2 and step 3 until W, v2 and EEE converge.
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5. Calculate the primitive variables using Equation (3.46).

Since this inversion scheme uses a 2D Newton-Raphson method with an additional extra loop
over EEE, we find it convenient to denote it by the term 2D+1 scheme. Note that in ideal HARM,
a series of inversion schemes had been included (see Noble et al. 2006), from which we only
revised the 2D scheme, no other inversion scheme works in rHARM for now. A schematic flow
chart with a description of the numerical procedures for the time evolution in rHARM is shown
in Section 3.2.5.

3.2.4 A preliminary test of the implementation

The implementation of the electric field can be tested by running rHARM with η → 0 (I used
η = 10−12), comparing the evolution of the conservative variables and the fluxes from all grid
cells generated by the primitive variables for a few time steps. I find that they coincide within
errors of 10−10. I then compared the primitive variables obtained by the inversion scheme of
the first time step with those obtained by the ideal HARM, finding similar accuracy. We may
thus confirm the correct implementation of the new stress-energy tensor and the new inversion
scheme which now also considers the electric field. Further tests of rHARM considering η > 0
will be discussed in Section 3.4 and Section 3.5.

3.2.5 Time Evolution in HARM

The “building blocks” for rHARM are now complete. The numerical procedures of one step
in time evolution in rHARM can be then expressed by a flow chart (see Figure 3.5) with the
following explanations to each step shown in the chart:

(1) Take the primitive variables PPP(tn) from the previous step tn and convert them to the con-
served variables UUU(tn) (see Section 3.2.3 for the definitions of PPP and UUU). D can be calcu-
lated by D ≡ ρut as defined by Equation (3.35). The T t

µ can be obtained with the help of
Equation (3.24). The magnetic and electric fields α∗F it,−αF it (hereafterBBB, EEE, see Section
3.2.1) are already provided, since they are both conserved and primitive variables.

(2) Evolve the conserved variables from U(tn) to U(tn+1) (except EEE). To do so, we first need
to calculate the flux of U(tn). Knowing PPP, the flux of D ≡ ρut is ρui and the fluxes of
T t

µ are T i
µ, which can be obtained from Equation (3.24). The flux of Bi is ∗F i j, defined

by Equation (3.27). The D, T t
µ,
∗F it are then evolved through Equations (3.18), (3.19)

and (3.25) advancing dtn in time. The evolution of the electric field EEE is implicit, and
hence cannot be evolved with other conserved variables. Still the “non-stiff part” (N i in
Equation 3.40) is a function of only PPP(tn), and is therefore calculated using the primitive
variables from the time step tn.
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Figure 3.5: The flow chart describing the numerical procedure of one time evolution in rHARM.
Boxes with a grey background denotes one or a series of routines that achieve the function written
inside those boxes. The flow chart on the left hand side presents the procedure of one time
evolution while the large box on the right hand side is a detailed flow description for the process
inside the box (3) on the left hand side. See the text for explanations of each step in the chart.

(3) Apply U(tn+1) and the non-stiff part of EEE(tn+1) to the inversion scheme in order to extract
PPP(tn+1) and the complete EEE(tn+1). As discussed above (see Section 3.2.3), we first use
U(tn+1), except the electric field that is taken from the previous time step, namely,EEE(tn). We
use the two equations in Equation (3.45) and solve for the temporary primitive variables
u, vi by applying the 2D Newton-Raphson scheme. We update EEE using Equation (3.39)
with the temporary primitive variables just obtained. We return the temporary EEE and the
temporary primitive variables back to the 2D Newton-Raphson scheme, and repeat this
process until the primitive variables and EEE converge. The converged primitive variables
and EEE are now PPP(tn+1) and EEE(tn+1).

(4) The new time interval dt is calculated considering also the diffusion time scale (see Section
3.2.2), together with PPP(tn+1) (including EEE(tn+1) as primitive variables). We finally arrive at
the evolutionary time step (tn → tn+1).

To make the flow chart in Figure 3.5 look methodical, I simplify the time evolving loop that
is executed in rHARM. However no structural changes are made at this point. The actual time
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evolution in rHARM keeps the simple first-second scheme built in ideal HARM, where the flux
for the time forwarding ∆t is calculated by the primitive variables from ∆t/2. In general, the time
evolution of the conserved variables can be written in the form

∂tUUU = K(UUU,EEE),

∂tEEE = G(UUU,EEE) +
1
η

R(UUU,EEE). (3.47)

In the case of rHARM, the first equation is responsible for the evolution of conserved variables
except for electric field variables, and the second equation only for the evolution of electric field
variables. The structure of function K depends on corresponding relations in Equations (3.18),
(3.19) and (3.25), while the structures of functions G and R depend on the relation in Equation
(3.28). According to the definition of conserved variables in Section 3.2.1, K, G and R are
functions of primitive variables in Equation (3.36). But we know that the primitive variables are
calibrated through the knowledge of conserved variables (see Section 3.2.3), thus we can write
K, G and R as functions of UUU and EEE. If we denote the indices at the initial state (outcomes from
the last time evolution), the half time step and the complete time step as n, n + 1/2 and n + 1,
respectively, and take ∆t as the time interval of the time evolution, then the simple first-second
scheme used in the time evolution in rHARM can be described by going through the procedure

UUUn+1/2 = UUUn +
∆t
2

K(UUUn,EEEn),

EEEn+1/2 = EEEn +
∆t
2

G(UUUn,EEEn) +
∆t
2η

R(UUUn+1/2,EEEn+1/2),

UUUn+1 = UUUn +
∆t
2

K(UUUn+1/2,EEEn+1/2),

EEEn+1 = EEEn +
∆t
2

G(UUUn+1/2,EEEn+1/2) +
∆t
2η

R(UUUn+1,EEEn+1). (3.48)

In the context of the flow chart above, steps (1) to (3) in Figure 3.5 are actually executed two
times with time interval ∆t/2 and ∆t for one time forwarding referring to the first two equations
and the last two equations in Equation (3.48).

3.3 Other common settings in rHARM

In this section I will briefly mention the common setup for rHARM, which is used for the nu-
merical simulations and results presentation in this thesis. I basically follow the setup in ideal
HARM (Gammie et al. 2003; Noble et al. 2006) with minor additions in the boundary conditions
for the electric field.

3.3.1 Units and normalization

The length unit in rHARM is set by rg ≡ GM/c2 with the condition GM = c = 1. The time unit
is then tg ≡ GM/c3. The dimensionless Kerr parameter a = J/M where −1 6 a 6 1 is defined by
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the black hole angular momentum J = jGM2/c. I use the notation rH = 1 +
√

1 − a2 to denote
the event horizon, which varies with the black hole spin parameter a. The densities, mass fluxes
and energy fluxes presented in this thesis are in the code unit.

3.3.2 Numerical grid

The numerical integrations in rHARM are carried out on a uniform grid with so-called modified
Kerr-Schild coordinates: x0, x1, x2, x3, where x0 = t, x3 = φ are the same as in Kerr-Schild
coordinates (see Section 1.3.3), while the radial and θ coordinates are calculated by the relation:

r = R0 + ex1 ,

θ = πx2 +
1
2

(1 − h) sin(2πx2). (3.49)

Different R0 and h ∈ [0, 1] will return different concentrations of grid resolution in radial and θ
directions. A smaller h value indicates a better concentration in θ around equatorial plane. Except
for the 1D shock tube test presented in Section 3.5, which employs a flat spacetime with uniform
Cartesian coordinates, we used the modified Kerr-Schild coordinates with R0 = 0 as the executing
coordinates in the code for all simulations in this thesis. Without special announcement, the data
results will be presented in normal Kerr-Schild coordinates. Note that for scalars, the r and θ
vector components are invariant against the transfer to Boyer-Lindquist coordinates, only the
time component and φ-component transform differently.

3.3.3 Boundary conditions and the initial condition for electric field

The outflow condition is applied at inner and outer boundaries, for which all the primitive vari-
ables are projected into the ghost zones, while inflow is forbidden at inner and outer boundaries.
Both axial boundaries have a reflection condition, where the primitive variables are projected
into the ghost zone with a mirror effect. Boundary conditions for the electric field have been
added for rHARM, similar to those for the magnetic field3. The initial electric field is chosen to
be equal to the ideal MHD value, EEE = −vvv ×BBB. It turned out that this choice worked very well in
the non-ideal GR-MHD simulations.

3.3.4 Scaling code units to reality

The code units of rHARM is determined by a factor “κ” in gas pressure and the “plasma β” which
is the ratio of gas pressure to the magnetic pressure. The scaling of the code units works through
these two parameters as following. The motion of an arbitrary particle inside the accretion disk

3Note that for our test simulations of rHARM, a variety of geometrical setups and boundary conditions were
used (see Section 3.4 and Section 3.6 for detail).
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is determined together by the gravitational acceleration ag, gas pressure gradient acceleration ap

and the acceleration by the electromagnetic force aem. ag is independent of disk density while
ap is a function of disk density. The initial magnetic field is normalized to gas pressure through
plasma β, thus aem is a function of density as well. In general, if we reduce κ in the simulation,
the gas pressure and the magnetic field will decrease correspondingly while the gravity keeps
the same. The ratios between ag and ap, aem will then change so that the accretion system in the
simulation is equivalent to a system with the same black hole mass but a lighter disk compared
to the simulation with the larger κ.

As an example, assume that the relation between disk density and gas pressure satisfies

p = κργG , (3.50)

where γG = 4/3 is the polytropic exponent. The magnetic field strength is defined by

B =

√
8πp
β

=

√
8π(κργG)

β
. (3.51)

If κ = κ1 = 1, then

p1 = κ1ρ
γG
1 = ρ

γG
1 ,

B1 =

√
8π(κ1ρ

γG
1 )

β
=

√
8π(ργG

1 )
β

. (3.52)

Now we change κ to κ2 , 1, the gas pressure and the magnetic pressure become

p2 = κ2ρ
γG
1 = ( fρ1)γG ,

B2 =

√
8π(κ2ρ

γG
1 )

β
=

√
8π[( fρ1)γG]

β
, (3.53)

where

f =
1

γG
√
κ2
. (3.54)

On the one hand, the acceleration through gas pressure gradient ap ∝ p and the acceleration by
Lorentz force aem ∝ B. On the other hand, the gravitational acceleration ag does not change from
Equation 3.52 to Equation 3.53. Thus, changing κ from 1 to κ2 is equivalent to choosing a disk
density which is f times of the density when κ = 1. The simulations in Chapters 5 and 6 have
κ = 10−3. Apply this value to Equation 3.54, we get f ≈ 5.6×10−3, hence the density in the code
is 177.8 times smaller than the density with κ = 1.

Nevertheless, the meaning of ρ must be normalized to the disk mass in relation to the black hole
mass, which is yet unknown. For this reason, the physical quantities like density, accretion rate
and ejection rate, etc., can only be expressed in code units in the thesis.
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3.4 Diffusivity tests I – gas box test

In this section, a test for the implementation of magnetic diffusivity by comparison with an
analytic solution of the diffusion equation is presented. The test follows the procedure suggested
by Fendt & Čemeljić (2002). A similar approach was presented by Bucciantini & Del Zanna
(2013): the evolution of a self-similar current sheet. The test simulations are performed in a
small, almost rectangular box of hydrostatic gas at varying distance from the black hole. The
gas in the box is “heavy” and is penetrated by a “weak” magnetic field, such that dynamical
effects due to Lorentz forces are negligible and the magnetic field distribution changes only by
diffusion. Different levels of diffusivity (set constant in the domain) have been applied. The
results are compared to the known analytic solution and a perfect match was found between the
numerical and the analytical results.

3.4.1 Simulation region and boundary condition

The simulation area is chosen as a small sub-sector of the axisymmetric spherical uniform grid
along the equatorial plane; it is small enough that the shape of the area is rectangular to a high
degree. The size of this area extends ∆R in radius and ∆θ in latitude, and is located at a radius
r0. The concentration parameter is set to h = 1, which means the spacing in the θ direction is
uniform. For ∆r � r0, the sector can indeed be treated as a rectangular box with r ∈ [r0 −

∆r/2, r0 + ∆r/2], θ ∈ [π/2 − ∆θ/2, π/2 + ∆θ/2] and ∆r = r0∆θ = R.

In the test simulations the Kerr parameter, a = 0 and the event horizon, in this case, is the
Schwarzschild radius, rH = 2. A continuous outflow boundary condition is set for all four
boundaries of the box. Our simulations are denoted by difT0, difT1, difT2, difT3, and difT4 (see
Table 3.1).

3.4.2 Initial conditions

We apply a relativistic gas with polytropic index γG = 4/3. Initially, the gas in the box is
in hydrostatic equilibrium. Both the density profile and the magnetic field profile are set to be
uniform in the θ direction. In the radial direction, the density profile was set such that the pressure
gradient cancels the gravity,

∇r p(r) = −ρ(r)r−2. (3.55)

For simplicity, we have used a Newtonian potential in Equation (3.55). This choice works well
for large distances from the black hole. Close to the black hole, our choice is inconsistent with
GR. Specifically, a hydrostatic state no longer exists (see below). Nevertheless, these inconsis-
tencies were small and did not significantly influence our main conclusion regarding the test of
magnetic diffusivity. From Equation (3.55) we apply the following radial profiles for density and
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Figure 3.6: Numerical tests of magnetic diffusivity. The radial profile of the magnetic field Bθ(r)
is plotted along the equatorial plane. We show simulation difT0 with η = 10−10 (upper) and
simulation difT2 with η = 10−2 (lower), both with a grid resolution 256x256. Different colors
represent the corresponding simulation time steps t as labeled in the legend. The actual time t̃ of
these steps are t̃ = t0 + t, where t0 depends on the initial condition. Solid lines are from simulation
results, while dashed lines from analytic solutions. Note the difficulty in distinguishing dashed
lines from solid lines, due to the perfect match between the analytical and numerical solutions. In
simulation difT0, all 6 curves are plotted. Yet, they look like one curve, because with η = 10−10,
the magnetic field does not diffuse at all.
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Figure 3.7: Numerical tests of magnetic diffusivity. The radial profile of the magnetic field Bθ(r)
is plotted along the equatorial plane. We show simulation difT1, where η = 10−3 (upper) is
applied with a grid resolution 256x256 and simulation difT3, where η = 10−3 is applied with a
grid resolution 128x128 (lower). Different colors represent the corresponding simulation time
steps t, as labeled in the legend. The actual time t̃ of these steps are t̃ = t0 + t, where t0 depends
on the initial condition. Solid lines represent simulation results, while dashed lines represent
analytic solutions. Note the difficulty in distinguishing dashed lines from solid lines, due to the
perfect match between the analytical and numerical solutions.
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Table 3.1: Test simulations of magnetic diffusivity η in rHARM. Parameter choices in simula-
tions difT0, difT1, difT2, difT3, difT4. The table shows the radial position of the domain in the
equatorial plane and the domain size, both in units of rg, as well as the grid resolution in the
domain. The magnetic diffusivity η is constant in the domain. Simulations were done for a = 0.

run η distance from origin domain size grid size

difT0 10−10 300rg 1x1r2
g 256x256

difT1 10−3 300rg 1x1r2
g 256x256

difT2 10−2 300rg 1x1r2
g 256x256

difT3 10−3 300rg 1x1r2
g 128x128

difT4 10−3 30rg 5x5r2
g 256x256

pressure in the box,

ρ(r) = C · rα,

p(r) = β · ργG , (3.56)

where α = 1/(1 − γG), β = 1/(1 − α) and C denotes a proper normalization constant.

For the magnetic field, we only consider the θ component. The initial field strength Bθ is cho-
sen from the solution of the one dimensional diffusion equation for infinite space, resembling a
Gaussian profile with time evolution

Bθ(r, t̃) =
1
√

t̃
exp

(
−

(r − r0)2

4ηt̃

)
. (3.57)

Here, t̃ = t0 + t and in our context t is the actual code running time. The parameter t0 is then
defined by the choice of the peak value of the initial Gaussian profile. The initial Bθ is thus
defined by t = 0. The solution (Equation 3.57) will later be compared to our simulation results.
We choose a very weak magnetic field with a plasma beta β ≡ pgas/pmag = 108. The diffusivity η
is set to be uniform throughout the simulation region.

3.4.3 Test simulations of magnetic diffusivity

In this subsection, we show the results of test simulations difT0 to difT3 with a box of size of
1x1 rg placed at r0 = 300. At this distance, GR effects can be neglected and the box can safely
be considered “rectangular.” In general, the grid resolution is 256x256, with the exception of
simulation difT3, which has a grid size of 128x128 in the interest of exploring resolution effects.

In order to compare the simulation results to the analytic solutions, we show the magnetic field
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Figure 3.8: Simulation difT4 with η = 10−3 in a box of 5x5 rH located at r = 30rH and a grid
resolution 256x256. The radial profile of the magnetic field Bθ(r) is plotted along the equatorial
plane. The upper plot shows advection of magnetic flux by the infalling corona. The lower
plot shows the same simulation results, but compensated for advection / infall with the magnetic
profile maximum shifted back to the center of the simulation box (after the simulation). In the
lower plot, solid lines represent the simulation result while dashed lines represent the analytic
solution.
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Bθ(r) along the equatorial plane θ = π/2 at different time steps (see Figures 3.6 and 3.7). Numer-
ical results are plotted in solid lines, while the analytic solution is shown in dashed lines.

In the first test, we ran simulation difT0 considering a tiny resistivity η = 10−10 (the upper plot in
Figure 3.6). As a result, we retrieve the behavior of the ideal MHD gas, such that the magnetic
field did not diffuse at all. Simulations difT1 and difT2 apply a high diffusivity with η = 10−3 and
η = 10−2, respectively (upper plot in Figure 3.7 and lower plot in Figure 3.6). In both cases, the
initial Gaussian profiles decay nicely, following the analytic solution exactly. Simulation difT3
with two times lower resolution (lower plot in Figure 3.7) performed similarly well, except that
the peak of the Gaussian is not as well resolved as before.

3.4.4 Diffusivity test near a black hole

It is essential to test the implementation of magnetic diffusivity in rHARM for regions closer to
the black hole also. In order to test the code performance in this regime, we have set up simulation
run difT4, for which we chose a “box” size of 5x5 and a box location located at r0 = 30rg. We
show the results in Figure 3.8.

The left plot shows that in addition to the diffusive decay of the magnetic field, the magnetic flux
is also advected inwards. The velocity of this motion is about vr ' −10−3 at time t = 3tg. This
effect can also be observed in the simulations discussed previously, only that the radial velocities
are much lower (about 10−5 at t = 3tg), and thus negligible. In the simulation runs discussed in
Appendix 3.6, the run time is comparatively much longer, so that the acceleration towards the
black hole can be seen more clearly. We attribute this effect to our choice of an initially hydro-
static corona, derived using a Newtonian potential (Thus, this setup becomes more inconsistent
with GR for small radii). The gas in the computational domain will start to fall towards the black
hole, and will thereby advect magnetic flux. We can, however, easily disentangle this effect and
compare the magnetic diffusion in the simulation with the analytic solution. In order to do so, we
have shifted the profile of the magnetic field distribution resulting from the simulations outwards
to the center of the simulation area, compensating for the advection of magnetic flux. We can see
(lower plot) that the shifted curves and the analytic solution are in very good agreement, again
verifying our implementation of magnetic diffusivity.

We note that the numerical curves are slightly higher compared to the analytic solutions in this
case. This can be explained by the infall of gas that comes along, in addition with a compression
of the gas and magnetic field. Close to the black hole, the simulation area is rather a sector of a
ring than a rectangular box (note that r0∆θ = 5rg ∼ r0).
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3.5 Diffusivity tests II – shock tube test

In this section, I will present the results of test simulations of the magnetic diffusivity imple-
mentation applying a classical shock tube setup (Dumbser & Zanotti 2009; Bucciantini & Del
Zanna 2013). The test simulations for the shock tube test were executed in 1D tube in Minkowski
spacetime. We have applied different levels of (constant) magnetic diffusivity and compared the
results to those in the above mentioned papers.

3.5.1 Computational domain and initial conditions

The shock tube simulation applies Minkowski spacetime and Cartesian coordinates with an
equally spaced grid. The dimensional computational domain extends from x0 to x0 + 1.5rg.
In principal, x0 can be set arbitrarily; here we chose x0 = 299.75rg and a computational do-
main x = [299.75rg, 301.25rg]. The initial conditions of primitive variables follow the setup in
Dumbser & Zanotti (2009) and Bucciantini & Del Zanna (2013), which are

(ρ, p, vx, vy, vz, Bx, By, Bz) = (1.08, 0.95, 0.4, 0.3, 0.2, 2.0, 0.3, 0.3) (3.58)

for x < 300.5 and

(ρ, p, vx, vy, vz, Bx, By, Bz) = (1.0, 1.0,−0.45,−0.2, 0.2, 2.0,−0.7, 0.5) (3.59)

for x > 300.5. The initial electric field is set to the ideal MHD value Ei = −ε i jkB jvk. We apply
Dirichlet boundary condition, where the primitive variables of both boundaries are fixed to the
initial condition. The adiabatic index here is γ = 5/3, following the test solutions from the
literature.

3.5.2 Shock tube test simulations

In shock tube test simulations, three different resolutions with N = 4500, 600, 120 equidistant
cells have been applied for different types of tests. First, a high resolution test was done with
N = 4500 and η = 10−12 in rHARM and then compared to a similar simulation applying the ideal
HARM code. Both simulations match perfectly as shown in Figure 3.9. The curves also recover
all features seen in Dumbser & Zanotti (2009).

We then compare simulations ran with η = 10−12, 10−4, 10−3 and 10−2 by rHARM in order
to see the impact of diffusivity on the shock structure. Since the time stepping of the code
becomes dominated by the diffusive time step for high diffusivity, a resolution N = 4500 cannot
be reached. Thus, for this set of tests we chose N = 600 grid cells for the resolution. The results
are shown in Figure 3.10 by solid lines. Due to the lower resolution, thus the larger numerical
diffusivity, the discontinuities at the shock wave front for the η = 10−12 curve are broader than
those for the high resolution plots. Moreover, the η = 10−4 curve does not differ much from
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Figure 3.9: Shock tube simulation in ideal MHD regime. Density and vertical magnetic field at
time t = 0.55tg. In this figure, we show results of simulations with grid resolution N = 4500,
where the curves of the two simulations match perfectly to each other. Although the actual
computational domain is larger, only the range x = [300rg, 301rg] is plotted in order to easily
compare to the two reference papers.
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Figure 3.10: Shock tube simulations in diffuse MHD regime. Density and vertical magnetic field
at time t = 0.55tg. In this figure, we show the results of simulations with N = 600. In addition,
the magenta and cyan dashed lines in the lower plots represents the simulations with resolution
N = 120. Although the actual computational domain is larger, only the range x = [300rg, 301rg]
is plotted in order to easily compare to the two reference papers.
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the η = 10−12 simulation, essentially indicating a numerical diffusivity of similar order in this
setup. Nevertheless, the two curves representing η = 10−3 and η = 10−2 nicely agree with those
in Dumbser & Zanotti (2009) and Bucciantini & Del Zanna (2013).

For simulations with η > 10−2, we chose a resolution with N = 120 cells for two reasons. On
one hand, we recognized that some cell-scale oscillations that appear on the edge of the shock
propagation (visible in Figure 3.10 for η > 10−2) grow stronger and finally disturb the evolution
of the shock propagation. A lower resolution can dissipate these oscillations (see below for a
discussion). On the other hand, the time costs of such diffusivity level require a lower resolution.
However, note that the numerical diffusivity for this lower resolution is still below the physical
diffusivity. Our results for high diffusivity are shown by the dashed lines in Figure 3.10. The
shape of these curves implies that the evolutions are still dominated by the physical diffusivity.
However, the discrepancy between these two simulations and those from the literature (Dumbser
& Zanotti 2009; Bucciantini & Del Zanna 2013) is obvious.

We believe that instability appearing at the shock front mentioned above results from the shock
capturing abilities we use in rHARM. We find that this instability strongly depends on how the
derivatives are calculated in the non-stiff term in Equation (3.40). We have tried various lim-
iters, such as monotonized central, van Leer and minmod slope limiters. Different slope limiters
always return slightly different results, but the problem could not be fixed by simply changing
the slope limiter. Note also, that rHARM uses a simple first-second scheme for time evolu-
tion instead of the IMEX scheme applied in Palenzuela et al. (2009), which was also employed
in Bucciantini & Del Zanna (2013). This might add to the inaccuracy of the code in the high-η
regime as well. However, since the magnetic diffusivity values we apply in our accretion-ejection
setup will always be below η = 10−2, we decided not to go deeper into this problem, at this point
in time.

3.6 The numerical diffusivity

With a physical magnetic diffusivity in the code, it is now possible to measure the numerical
diffusivity of rHARM. This can be achieved using the model setup in Section 3.4 by simply
decreasing the physical diffusivity within an extended parameter range and meanwhile watching
the behavior of the decay magnetic strength curve; When the physical diffusivity is below the
numerical diffusivity, the decaying curve should be no more sensitive to the change of physical
diffusivity, in which way the numerical diffusivity can be found.

As in Section 3.4, the simulations were executed in a box size of (∆r × r∆θ) = (1.0 × 1.0),
located at r = 300, with numerical grids of (16 × 16), (32 × 32), (64 × 64), (128 × 128), and
(256 × 256) applied. Depending on the resolution, the range of physical magnetic diffusivities
that were applied are between η = 10−8 and 10−3.

As a typical example, the simulations with resolution (128 × 128) are shown in Figure 3.11 and
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3.12. The physical magnetic diffusivities applied for these simulations were η = 10−7, 10−6, 10−5, 10−4.
The dashed curves show the analytic solution of the diffusion equation for the physical magnetic
diffusivity, while the solid curves show the result of the numerical simulation for the same time
steps. Note that we did not correct for the mass infall (see discussion in Section 3.4). This results
in the slight acceleration of the material towards the black hole, and an average infall velocity of
vfall ≡ ∆r∆t ' 0.2/150 = 1.3 × 10−3 (in code units).

For η = 10−4 (upper plot Figure 3.11), the numerical simulation follows the analytic solution,
indicating that the decay of the magnetic field was dominated by the physical magnetic diffusiv-
ity. This simulation has been executed only until t = 50, which is about the decay time scale
for η = 10−4 in the analytic solution. For η = 10−5 (lower plot Figure 3.11), numerical diffu-
sivity seems to contribute to the decaying curve which can been seen more clearly as the time
went on. For η = 10−6 (upper plot Figure 3.12), numerical diffusivity becomes predominant, as
the analytic solution would only slightly decay within the time frame applied, while the actual
decaying curve fell quickly. This can be confirmed by the simulation with η = 10−7 (lower plot
Figure 3.12), where the numerical evolution of the magnetic field is practically identical to the
simulation results from η = 10−6, implying that the systems now evolve only under numerical
diffusivity. In this case, the physical diffusivity prescribed is too small compared to the numerical
diffusivity to contribute to the evolution of the magnetic curve and so, numerical diffusivity is the
only one that matters. With the results above, we can conclude that for the given setup with reso-
lution (128×128), the numerical diffusivity is of the order of ηnum ∼ 10−5. Furthermore, a similar
study with resolution (256× 256) showed that with this resolution, the numerical diffusivity is of
the order ηnum ∼ 10−6, while for (64 × 64) the numerical diffusivity is ηnum ∼ 10−4.

As an alternate study, a range of different grid resolutions have been applied for a fixed (physical)
magnetic diffusivity of η = 10−5 and η = 10−4. In agreement with the previous study, we find
that the numerical magnetic diffusivity equalize the physical magnetic diffusivity for a certain
resolution and dominates the physical diffusivity for lower resolution.

Clearly, the exact values of numerical diffusivities depend on the numerical setup, but in order to
evolve physical diffusion processes in rHARM with a physical diffusivity of η = 10−4...10−2, a
grid resolution of ∆r ≤ 10−2 is needed. Also, for a physical magnetic diffusivity varying in space
(for example, a disk magnetic diffusivity) the numerical diffusivity serves as a “floor” value - a
value depending on resolution.

3.7 Summary and conclusions

In this chapter, I have illustrated the implementation of resistivity and magnetic diffusivity into
the ideal GR-MHD code HARM (Noble et al. 2006) and provided test simulations. The imple-
mentation of resistivity applies the general definition of the Faraday tensor - the general form
of the stress energy tensor, including the electric field - to the new code rHARM. We followed
the equations in Bucciantini & Del Zanna (2013) to calculate the electric field. The inversion
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Figure 3.11: Measure of numerical magnetic diffusivity. The simulations shown apply a numeri-
cal resolution of (128×128) and a physical magnetic diffusivity η = 10−5, 10−4 (see figure titles).
Dashed curves show the analytic solution of the diffusion equation for the physical magnetic
diffusivity (as in Section 3.4). Solid curves show the result of the numerical simulation for the
same time steps. The decay of magnetic field lines in these plots are still dominated by physical
magnetic diffusivity.
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Figure 3.12: Measure of numerical diffusivity. The simulations shown apply a numerical resolu-
tion of (128 × 128) and a physical magnetic diffusivity η = 10−7, 10−6 (see figure titles). Dashed
curves show the analytic solution of the diffusion equation for the physical magnetic diffusivity
(as in Section 3.4). Solid curves show the result of the numerical simulation for the same time
steps. The decay of magnetic field lines in these plots are dominated by numerical magnetic dif-
fusivity, hence, the decreasing physical magnetic diffusivity value does not influence the decay
of field lines.
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scheme in rHARM that is based on the 2D inversion scheme in Noble et al. (2006), which uses
an extra loop to make the electric field variables converge.

The implementation of resistivity in rHARM is verified by comparing the diffusion of an initial
magnetic field distribution to the analytic time evolution of the profile as given by the diffusion
equation. These simulations were performed in rectangular boxes of weakly magnetized gas,
excluding any dynamical effect by Lorentz forces. Boxes at different distances from the black
hole were investigated. The magnetic diffusion evolving in rHARM are identical to the known
analytic solution for different magnetic diffusivities from η = 10−10 to η = 10−2.

We have further tested rHARM by a classical shock tube problem, finding very good agreement
for magnetic diffusivities η < 0.1. For larger diffusivity, rHARM does not capture the shock front
perfectly anymore, but such large diffusivities are beyond the scope of our aims of treating the
disk accretion-ejection structure.

Having implemented physical magnetic diffusivity in the code, we are able to measure the nu-
merical diffusivity. The magnetic diffusivity clearly depends on the setup and resolution. For a
cell size of ∆x ' 0.01, the numerical diffusivity is ηnum ∼ 10−5.





Chapter 4

Simulations of resistive magnetized tori

In this chapter, the resistive GR-MHD code rHARM is applied to a problem that is more as-
trophysically relevant - the evolution of a magnetized torus around a rotating black hole. The
simulations follow the general setup in Gammie et al. (2003) prescribing an axisymmetric torus
of rotating gas with a magnetic field distribution that is confined in the torus. The simulations
will be presented with two choices of grid resolution and also different values for a magnetic
diffusivity that is constant in space and time. For comparison, another simulation is executed
using the original ideal HARM code (Noble et al. 2006). The parameters of the simulation runs
are listed in Table 4.1. Simulations denoted by torT0...2 apply a grid resolution of 256x256 and
are intended to further test the implementation of magnetic diffusivity in rHARM by comparing
torT1 and torT2 to the ideal MHD HARM simulation torT0. Simulations denoted by mriT1...6
apply a grid resolution of 128x128 and intend to survey how magnetic diffusivity affects the
evolution of the magneto-rotational instability (MRI) in the torus. The simulations and discus-
sions presented in this section are also to be found in the published paper Qian et al. (2017) my
supervisor Christian Fendt and I.

4.1 Computational domain and initial conditions

The computational domain used here is an axisymmetric half sphere with the radius ranging from
rin = 0.98rH to rout = 40rg. For all the simulations, the angle θ ranges from 0 to π and the grid
concentration parameter is set to h = 0.3. As we apply a Kerr black hole with a/M = 0.9375, the
event horizon rH ≈ 1.35tg (see Section 3.3).

The simulations in this section evolve an equilibrium gas torus surrounding a black hole, which
is a particular solution of the class of equilibria found by Fishbone & Moncrief (1976) and
Abramowicz et al. (1978). The torus is embedded in a vacuum (of a certain floor density).
Centrifugal forces and gas pressure in the torus balance gravity (see also Gammie et al. 2003).
The torus inner edge is set at (r, θ) = (6, π/2) and the pressure maximum is located at rmax = 12rg.
The orbital period of the torus at the radius of pressure maximum is about 267tg, measured by
an observer at infinity. A polytropic equation of state p = (γG − 1)u is applied with γG = 4/3.
The purely poloidal initial magnetic field consists of concentric field lines superposed on the

75
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Table 4.1: Parameter choice in the torus simulations that use rHARM and ideal HARM. The
table shows the value of diffusivities, innermost boundaries, and resolutions that are used in
the torus simulations. With the exception of torT0, which was executed by ideal HARM, all
other tests were done by rHARM. The Kerr parameter is a = 0.9375 in all simulations, thus
0.98rH = 1.32rg.

η grid size code

torT0 - 256x256 HARM

torT1 10−12 256x256 rHARM

torT2 10−3 256x256 rHARM

mriT1 10−6 128x128 rHARM

mriT2 10−4 128x128 rHARM

mriT3 5 × 10−4 128x128 rHARM

mriT4 10−3 128x128 rHARM

mriT5 5 × 10−3 128x128 rHARM

mriT6 10−2 128x128 rHARM

density contours of the equilibrium torus, applying a vector potential Aφ ∝ max(ρ/ρmax − 0.2, 0)
(Gammie et al. 2003). The field is normalized such that the minimum value of the plasma beta
is β = pgas/pmag = 102 (Gammie et al. 2003).

The diffusivity in the torus simulations is constant in space and time. According to our previous
test results of rHARM, a diffusivity η = 10−12 in simulation torT1 will retrieve the ideal MHD
regime of HARM, while with η = 10−3, diffusive MHD effects should appear in simulation torT2.
For the MRI simulations, we choose a range of diffusivity, between η = 10−12 and η = 10−3, in
order to scan the impact of diffusivity on the evolution of the MRI.

4.2 Robustness of rHARM as seen from torus simulations

For most of the simulations presented in this Chapter, the inversion scheme converged to high
accuracy for almost all grid cells. However, under certain conditions - such as very low magnetic
diffusivity or a very strong magnetic field - convergence might fail. While the strong-field limit
is a typical problem of MHD codes in general, the case of low resistivity is usually not applied
with a resistive code (we applied this only for testing the implementation of resistivity). Still,
advancing the inversion scheme for applications of the code in these regimes will be one of the
next steps in further developing our code.
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Figure 4.1: The figure shows the comparison of simulations torT0 and torT1. Simulation torT0
applies ideal MHD HARM, while torT1 applies rHARM with tiny magnetic diffusivity η = 10−12.
Mass accretion rates in simulations torT0 (upper plot) and torT1 (lower plot) are measured at
r = 2.2rg close to the horizon. The average accretion rates given in the plot title are taken from
t = 240tg to t = 400tg.
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Figure 4.2: Density (log(ρ)) distribution of simulation torT0 (upper plot) and torT1 (lower plot)
at t = 400tg (the computational domain covers only the right side of the plot, the left part is just
mirrored).
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Due to the problems mentioned above, it is not possible to compare the diffusive simulations
torT1 and torT2 over the same period of time as the ideal MHD simulation torT0 was running.
For example, simulation torT1 is supposed to retrieve the evolution of torT0 for which massive
accretion of matter sets in as soon as the MRI is established. However, even in the ideal HARM
simulation, we observe that the inversion scheme is “overburdened” at cells close to the hori-
zon when a density discontinuity develops after massive accretion starts. The scheme returns
primitive variables with less accuracy and even fails to converge on singular grid cells after time
t = 250tg, which is about the time of first accretion impact (see Figure 4.1). This problem is
augmented in rHARM for the sake of the extra loop to make electric field variables converge in
the 2D+1 scheme. In the end, this somewhat diminishes the robustness of the inversion scheme
in the present version of rHARM.

Note that also the simulation torT2 runs longer than simulation torT1 since the accretion rate
in torT2 is much lower (and hence produces a milder density jump) and occurs much later.
Nevertheless, we can still compare simulation torT0 to the data from simulations torT1 and torT2
for a limited period of evolution. In the following, we compare results of these simulations.

4.3 Comparing rHARM simulations to the HARM simulation
torT0

We first compare the results from simulations torT0 and torT1. As mentioned above, these two
simulations are supposed to be consistent with each other. We calculate their mass accretion rates
at r = 2.2rg, from t = 0 to t = 400tg, and plot them in Figure 4.1. The accretion rates (Ṁ) are
calculated using

Ṁ(r) =

∫ π

0
2πρ(r, θ)ur(r, θ)

√
−gdθ. (4.1)

As can be seen from the plots for the accretion rate, the torus in both simulations keep their
equilibrium state until the angular momentum transport supported by MRI (Balbus & Hawley
1991; Gammie et al. 2003) finally allows for accretion after about t = 220tg. The features of
accretion beginning in simulation torT0 are retrieved quite well in simulation torT1. Figure 4.2
shows the density plots of the two simulations at t = 400tg where the accretion has already started
and began to disturb the surface of the gas torus. In sum, the Ṁ calculation and the density plot
from simulation torT1 nicely match those of simulation torT0.

Having verified the validity of rHARM in the ideal GR-MHD regime, we compare the results
from simulations torT0 and torT2 to see how magnetic diffusivity influences the torus evolution.
Since simulation torT2 lasted longer than simulation torT1, we plot the accretion rate from t = 0
to t = 600tg and compare it to simulation torT0. Both plots are shown in Figure 4.3. In simulation
torT0 (upper plot), the equilibrium of the torus breaks slowly and at about t = 220tg the accretion
starts. The perturbation of the inflow (choked accretion) tended to be steady after t = 300tg. The
average value of the mass accretion rate in simulation torT0, from t = 300tg to t = 600tg, is about
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Figure 4.3: Mass accretion rates of simulation torT0 (upper plot) and torT2 (lower plot) at r =

2.2rg. The upper plot in Figure 4.1 is actually a part of the upper plot here. The average values
shown in the plot titles were taken from t = 300tg to t = 600tg. A continuous accretion appeared
in torT0 after about t = 250tg, while no massive accretion observed in torT2 until t ∼ 400tg. The
presence of magnetic diffusivity delays the time point when disk accretion happens.
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−0.25. However, in simulation torT2 with η = 10−3 (lower plot), there was no sign of massive
accretion before t ∼ 400tg and the average value of the mass accretion rate in simulation torT2,
from t = 300tg to t = 600tg, is only −0.087. The presence of magnetic diffusivity suppresses
MRI and thus the angular momentum transport by allowing for relative motion between matter
and magnetic field (see Section 4.4 for a detailed discussion). The lack of coupling prevents the
decay of the torus equilibrium state and hence only allows for inefficient accretion within the
chosen time interval. This can be seen even more clearly in Figure 4.4, where we plot the density
from simulations torT0 and torT2 at time 600tg. The evolution of the torus in simulation torT2 is
much smoother (less turbulent) than in simulation torT0.

4.4 MRI evolution in a resistive GR-MHD torus

We have shown that the evolution of the MRI can be suppressed by magnetic diffusivity, and
therefore influences the mass accretion rate from the torus to the black hole. In order to quantify
the gradual influence of diffusivity, we have performed simulations considering various strengths
of diffusivity η (denoted by mriT-simulations). Here we present the results for η ranging from
10−12 to 10−3.

It has been mentioned in Fleming et al. (2000) that for a given diffusivity η, the magnetic diffusion
rate will be of order k2η , where k stands for wave number. According to Balbus & Hawley
(1991), the MRI may grow only in a certain range of wave numbers k ∈ [0, kmax], in the linear
MRI regime. Furthermore, there exists a wave number kMRI for which the MRI growth rate
reaches a maximum (see Hawley & Balbus 1992 for the case of a Keplerian disk). A certain
number of MRI modes can therefore be damped out when k2

MRIη is comparable to the maximum
growth rate of the MRI. Moreover, for a large enough η, it is even possible to damp out most of
the MRI modes in the linear evolution of the MRI.

In the following, we apply the time evolution of the mass accretion rate as the indicator of the
MRI growth in the torus. The mass accretion rate is attributed to the turbulent angular momentum
exchange, triggered by the MRI. For this reason, when magnetic diffusivity damps the growth of
MRI, the point in time when massive accretion will set in is delayed. Also, the MRI evolution
in Balbus & Hawley (1991) started to be non-linear after about 2 rotations. In our simulations,
the rotation period of the torus at pressure maximum is 267tg and about 98tg at the inner edge of
torus. Thus, we assume that the growth of MRI becomes non-linear after t = 530tg.

The results of our simulations treating a magnetically diffusive torus are shown in Figure 4.5. We
see that for this setup the accretion rate for the magnetic diffusivity η = 10−4 is indistinguishable
from that for η = 10−6. In both cases, massive accretion takes place at about the same time
compared the ideal GR-MHD simulation torT1. Thus, a small η 6 10−4 does not affect the growth
of the MRI significantly. Note that this is the range of η, for which simulations are probably
dominated by numerical diffusivity (see Section 3.6 for a discussion on numerical diffusivity).
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Figure 4.4: The figure presents log(ρ) of simulations torT0 (upper plot) and torT2 (lower plot) at
time 600tg. In simulation torT0, MRI made the torus unstable and later the torus became turbulent
with an accretion flow (Gammie et al. 2003). On the other hand, the torus structure of simulation
torT2 evolves in a less turbulent way, where MRI is damped by the magnetic diffusivity.
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Figure 4.5: Mass flux as the indicator of MRI growth in simulations mriT1-mriT6. Two plots
are shown in order to avoid confusion between the curves. In the upper plot, the mass accretion
rates for η = 10−6 (black), η = 10−4 (cyan) and η = 5 × 10−4 (red) are shown, while in the lower
plot, the accretion rates for η = 1 × 10−3 (blue), η = 5 × 10−3 (green) and η = 10−2 (magenta)
are given. The η = 5 × 10−4 (red dashed line) curve is plotted in the lower plot as a reference.
As illustrated, the time when substantial accretion initiates is delayed with increasing η. The
similar results for η 6 10−4 indicate a numerical diffusivity ∼ 10−5 (see Section 3.6). The delay
in accretion can be explained by the magnetic diffusivity suppressing the MRI in the torus. For
η 6 1 × 10−3, only that part of the evolution is shown, afterwards these simulations experience
numerical instabilities - similar to simulations torT1 and torT2. Note that in these plots, the time
point when massive accretion takes place differs from those in Qian et al. (2017) because of a
slightly different setup in the code.
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On the other hand, for the simulations with η > 10−4, the onset of massive accretion is delayed.
We find indication for a critical value of 10−3 ' ηcrit ' 5 × 10−3 for the magnetic diffusivity
concerning MRI growth and mass accretion. This value, of course, holds for the choice of our
simulation setup, grid resolution and magnetic field strength. While for η & 5 × 10−4 there is an
obvious delay for massive accretion; for η > 5×10−3, the MRI seems to be completely suppressed
during the linear regime and for this parameter regime. This result is consistent with Longaretti
& Lesur (2010), who demonstrated that the growth rate of the MRI substantially decreases with
1/η as soon as critical diffusivity is exceeded.

4.5 Summary and conclusions

In this chapter, rHARM has been applied to a more astrophysical context, namely, investigating
the development of the magneto-rotational instability (MRI) in tori that are magnetically diffu-
sive. For the MRI simulation survey, we followed the initial setup in Gammie et al. 2003; Noble
et al. 2006 which is an initially stable gas torus carrying a poloidal magnetic field that follows
the density contours. As further verification of the new code rHARM, we ran a simulation with
a very small magnetic diffusivity η = 10−12 (clearly below the numerical diffusivity of the code).
This simulation recovers the time evolution of the accretion rate that has been found previously
by using the ideal GR-MHD code HARM. In contrast, in the simulation with a high diffusivity
η = 10−3, the mass accretion onto the black hole decreases significantly due to the suppression of
MRI. In order to investigate further the influence of magnetic diffusivity on relativistic MRI tori,
we have performed a parameter survey ranging from η = 10−12 to η = 10−3. we find indication
for a critical magnetic diffusivity value of η & 5× 10−4 (in this specific simulation model), above
which the MRI inside the torus does not grow in the linear regime.



Chapter 5

Resistive magnetized thin accretion disk and disk
outflows

Numerical investigations of the launching of disk winds, thus the simulations of the accretion-
ejection transition have mostly been done for non-relativistic systems (see e.g. Casse & Keppens
2002; Zanni et al. 2007; Tzeferacos et al. 2009; Sheikhnezami et al. 2012; Stepanovs & Fendt
2014; Sheikhnezami & Fendt 2015). Here I extend this treatment to disks in GR-MHD for the
first time. In this chapter and Chapter 6, I apply rHARM to the astrophysical context where
a thin accretion disk is threaded by inclined open poloidal field lines. The parameters of my
simulation runs are listed in Table 5.1. These simulations include several surveys that investigate
the influences of the magnetic field strength, magnetic diffusivity (and its profile), magnetic
field structure and the black hole spin (see Chapter 6) on the accretion and ejection processes
in black hole accretion systems. The instruction of the surveys is shown in Section 5.1.4. Due
to the time limitation of my PhD project (the current version of the code is not parallel and the
disk simulations are very time consuming), the discussions in this chapter regarding the disk
simulation results are mostly preliminary.

5.1 Simulation setup

In this section, the model setup for the disk simulations is presented. The different initial condi-
tions for the simulations are listed in Table 5.1. ( *Note that Table 5.1 is located at the end of this
chapter.)

5.1.1 Simulation region and boundary conditions

For all disk simulations, the computational domain is an axisymmetric half sphere similar to
the one used in the torus simulations. In the radial direction, the computational domain ranges
from rin = rH to rout = 80rg (rg is defined in Section 3.3.1), where the black hole horizon
rH ≡ 1 +

√
1 − a2 in code units. The angle θ ranges from 0 to π and the grid concentration

is set to h = 0.3 (see Section 3.3.2). The boundary condition for the inner radius and outer

85
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Figure 5.1: Shown is the logarithmic initial density of the disk simulation in code grids (see
Section 3.3.2). With the grid resolution 128 × 128, the radius inside the disk inner boundary
r = 6rg is resolved by 38 grids. In the theta direction, the disk region from θ ≈ 75.8◦-104.2◦ is
resolved by 48 grids.

radius forbids the mass inflow from outside into the simulation domain. Thus the matter flows
either into the black hole or out of the computational region. With the exception of the magnetic
field variables and electric field variables (see Section 3.3), the two polar (axial) boundaries have
continuous condition, where the physical values in the ghost zone are simply copied from the
simulation boundary.

5.1.2 Initial disk density and the velocity profile

I apply a pure Keplerian rotation with Paczyński-Witta approximation as the disk velocity profile
(Paczyńsky & Wiita 1980), where the angular velocity is

Ω = r−3/2
(

r
r − Rpw

)
. (5.1)

The smoothing length scale Rpw = 1.0 (see also Equation 5.2) for all simulations. The reason for
choosing the Paczyński-Witta rotation profile is mainly a matter of simplicity, since the system
will evolve anyway into a new dynamical equilibrium, thus with a new distribution of physical
quantities. The disk and the black hole (if a , 0) share the common rotation axis. Additionally,
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Figure 5.2: The initial profiles of density (left plot) and diffusivity (right plot) at radius r = 6rg

for simulation D16. Both profiles decrease steeply in the θ direction with increasing distance
from the disk mid-plane. In the simulations, densities are normalized to the maximum density
inside the disk. According to Equation (5.2), this value appears at the disk inner boundary. Thus
the density profile in the plot here has a peak value 1. The magnetic diffusivities are normalized
to η0 (see Equation 5.6), which is 10−3 in simulation D6. Thus the diffusivity profile has the peak
value of 10−3.

with this kinematically stable profile (not sub-Keplerian nor super-Keplerian), we are also able
to see the importance of the magnetic field presence in the disk for the disk wind generation (see
the discussion for simulation D0 below).

For the disk density and pressure distribution, I apply the solution from the non-relativistic sim-
ulations (Casse & Keppens 2002), where

ρ(r, θ) =
R3

ck(
R2

ck + r2
)3/2

(
1 − (γG − 1)

cos2 θ

2ε2
D

)1/(γG−1)

. (5.2)

Rck and Rpw are theoretically unrelated, so I choose Rck = Rpw for simplicity (see Section 5.3 for
the disk evolution consequence by this choice). γG in Equation (5.2) is the polytropic exponent.
The parameter εD is the classical disk aspect ratio defined by the local disk height divided by the
radius. In the simulations, I apply εD = 0.1 and set the upper and lower surfaces of the disk at
θmin and θmax, where

θmin = arccos


√

2ε2
D

γG − 1

 ,
θmax = arccos

−
√

2ε2
D

γG − 1

 , (5.3)

respectively. In difference to the simulations in the Newtonian limit (see e.g. Ouyed & Pudritz
1997; Casse & Keppens 2002; Zanni et al. 2007), I adopt the polytropic exponent γG = 4/3
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for the relativistic case. The normalized polytropic constant κ is set to 10−3 (see Section 3.3.4).
Applying εD = 0.1 and γG = 4/3 to Equation (5.3), the disk has the angle range θ ≈ 75.8◦-104.2◦.
The inner boundary of the disk is at r = 6rg, which is the innermost stable circular orbit for a
non-rotating black hole. The rotation period at the inner boundary is 15.4tg. Inside the disk (the
region that satisfies r > 6rg and 75.8 < θ < 104.2), the density in Equation (5.2) is defined and
the gas pressure follows the polytropic equation of state

p(r, θ) = p = κργG . (5.4)

The density profile defined by Equation (5.2), hence also the pressure, decreases steeply in the θ
direction with increasing distance from the disk mid-plane (see Figure 5.2 left plot). Outside the
disk (the regions that satisfy r < 6rg, or θ < 75.8, or θ > 104.2), I apply a corona in hydrostatic
equilibrium as described in Section 3.4.2 to intentionally prevent the expansion of the disk in the
θ direction. The density and pressure setup are kept unchanged in all simulations in this section.

As aforementioned, the grid setup follows the description in Section 3.3.2. Figure 5.1 shows
the image of the initial density in code grids. In the case of grid resolution 128 × 128 (which is
applied to all disk simulations except simulation D7), the region within the disk inner boundary
r = 6rg is resolved by 46 grids in radius. Inside the disk, the disk height is resolved by 48 grids.
Thus the choice of grid resolution here should be sufficient to resolve the dynamics within the
disk inner boundary and inside the disk.

5.1.3 Initial condition for the magnetic field and diffusivity

The initial magnetic field is set to be pure poloidal and follows the setup in Zanni et al. (2007)
and Sheikhnezami et al. (2012), where the field lines are solved by the vector potential

A(r, θ) =
5
2

Bp,0 (r sin θ)3/4 m5/4(
m2 + tan−2 θ

)5/8 . (5.5)

The parameter Bp,0 determines the strength of the initial magnetic field and is determined by the
choice of the plasma β ≡ pgas/pmag = 8πpgas/BBB2. The parameter m defines the inclination angle
of the magnetic field lines to the disk surface. The smaller m is, the more oblique the field lines
are towards the disk mid-plane.

In disk simulations, the magnetic diffusivity is not constant in the computational domain as in
Section 4. Instead, the profile of the diffusivity is θ dependent and symmetric to the disk mid-
plane while decreasing exponentially with distance from the disk mid-plane (see Figure 5.2 right
plot),

η(r, θ) = η0 exp
−2

(
α

αη

)2 . (5.6)

Here, α ≡ π/2 − θ is the angle towards the disk mid-plane, and αη ≡ arctan(χ · εD) is the angle
defining the scale height of the diffusivity profile. χ is a scale parameter (see below). Equation
(5.6) is a Gaussian profile over θ, whose maximum value is determined by parameter η0 (see
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also the model setup in Sheikhnezami et al. 2012). Thus, the choice of η0 decides the peak of
the Gaussian and can be treated as the indication of the diffusivity level, while the choice of χ
controls the width of the Gaussian. A χ value that is greater than 1 indicates a diffusivity profile,
that is broader than the disk density profile while χ < 1 implies a profile narrower than it.

The choice of magnetic field and magnetic diffusivity are very important in accretion and ejec-
tion processes. Thus, η0, χ, plasma β and inclination parameter m are all the parameters that
are controlled in the simulations as shown in Table 5.1. To have an intuitive understanding of
the initial disk morphology (see Figure 5.3, which shows the initial density and magnetic field
structure profile of simulation D1).

In the simulations, the density profile is normalized to the maximum density value inside the
disk which appears at the disk inner boundary (see Figure 5.2 left plot). The pressure is then
calculated from Equation (5.4). Furthemore, the magnetic field strength is normalized according
to the value of plasma β. The interpretation of this normalization in reality is discussed in Section
3.3.4. The simulations are set to stop at t = 3000tg.

5.1.4 About the choice of simulation parameters

The simulations which I am going to discuss are shown in Table 5.1. The purpose of these
simulations is to investigate the influence of different initial conditions on the accretion and
ejection process in the black hole accretion system. Specifically, simulations D1, D2, D3, D4,
D6 and D17 consist of a survey where different levels of magnetic diffusivity is investigated
(see Section 5.5), while the survey with simulations D6, D9, D12, D13 and D14 investigate the
influence of different magnetic diffusivity profiles (see Section 5.5.3). Simulations D5, D6 and
D8 belong to the survey where different inclinations of the initial magnetic field to the accretion
disk mid-plane is the control variable (see Section 5.8). The survey with simulations D9, D10,
D11, D15 and D16 is meant to investigate the influence of different black hole rotations (see
Section 6). Finally, the comparison between simulations D6 and D7 shows the influence of the
grid resolution, namely numerical diffusivity (see Section 5.9).

Simulation D0 is a control simulation to examine the choice of initial density and angular veloc-
ity, where the behavior of a very weakly magnetized thin disk is investigated. As readers shall
see in Section 5.2, simulation D0 is the only case in the presented simulations where no disk
outflow is observed.

5.2 Measuring the accretion rate and ejection rate

I use the mass accretion rate and ejection rate as one of the tools to investigate the simulation
results. Specifically, I calculate the accretion and ejection rate with the help of a control volume
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Figure 5.3: The density plot of simulation D1 in logarithmic axes at time t = 0tg. The maximum
density is normalized to 1. The white solid lines in the plot show the structure of the large scale
magnetic field lines. Note that the mosaic-like appearance in the disk comes from the external
plotting-routine where the spherical code grids are converted into the cylindrical grids. The disk
is well resolved in the simulation (see Section 5.1.2).
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Figure 5.4: An illustration sketch of the surface where the accretion and ejection are measured.
In our discussion below, we set a at r = 6rg, b at θ = 75◦ (disk initial upper surface) and c at
θ = 105◦ (disk initial lower surface). The radius of d is at r = 60rg, when not redefined in the
text.

as shown in Figure 5.4. The accretion rate is the same as in Section 4.3, namely

Ṁacc(r) =

∫ θ2

θ1

2πρ(r, θ)ur(r, θ)
√
−gdθ. (5.7)

The ejection rate is defined by

Ṁeject(θ) = ∓

∫ r2

r1

2πρ(r, θ)uθ(r, θ)
√
−gdr, (5.8)

which is the poloidal flow that passes the surface at a certain angle vertically. The minus sign is
valid for surface b, while the plus sign for surface d (see below). I calibrate the radial accretion
at surface a and d using Equation (5.7), while at surface b and c, the poloidal ejection will be
measured by Equation (5.8). According to the initial condition of the disk inner radius and the
disk thickness, I set a at r = 6rg (disk inner boundary), while d is set to r = 60rg (note that the
choice of the positions of a and d also decides the length of surfaces b and c). The surface b is set
at θ1 = 75◦ (disk initial upper surface), c at θ2 = 105◦ (disk initial lower surface). The ejection
processes in the simulations are basically symmetric to the disk mid-plane, thus the ejection rates
presented in the data analysis are the sum of Ṁeject at surfaces b and c.

For the discussion below, I specify that a negative accretion rate at radius a and d means radial
accretion towards the black hole, while a positive value indicates outwards radial motion. For
the ejection, a positive ejection rate at surfaces b and c indicates disk wind outflow, while a
negative value refers to mass concentration towards disk mid-plane. Furthermore, I define the
negative total mass loss as the matter gain inside the control volume. As the readers will see, the
outer accretion rate at r = 60rg does not return much useful information. Thus I will use both
terms “accretion rate” and “inner accretion rate,” to indicate the accretion rate at the disk inner
boundary r = 6rg.
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5.3 Very weakly magnetized accretion disk

To eliminate the influence of the magnetic field in the disk wind production, I have run simulation
D0, where the thin disk is very weakly magnetized. The plasma β in simulation D0 is 108, like
in the diffusive tests in Section 3.4. Under such circumstance, the magnetic field is meant to be
negligible. Thus, the choice of parameters χ and m are unimportant here. Since strong magnetic
field is always required in the theories for disk-driven wind (see Section 1.2.3 and 2.3.1), the disk
evolution in simulation D0 is not expected to produce disk wind.

5.3.1 Disk structure evolution

In Figure 5.5, the density for simulation D0 at t = 0tg (upper left), t = 1000tg (upper right),
t = 2000tg (lower left) and t = 3000tg (lower right) is presented. During the simulation time,
some discontinuous structures along the radial direction at the disk surface and also inside the
disk can be observed. The magnetorotational instability may be responsible for turbulence inside
the disk, but it cannot cause such appearance as described in Section 2.2. Nor is the Blandford-
Payne-effect able to influence the disk evolution due to the weak magnetic field. Therefore, I
consider the time evolution of the density and radial velocity profile along the disk mid-plane
(θ = π/2). I find that this choked structure began with a density perturbation at the beginning of
the simulation. In the data from the first saved time step (t = 10tg), this perturbation showed up
at the inner disk boundary, while the remaining density distribution kept the initial profile. The
perturbation propagated outwards in the radial direction with the evolving time and later spread
to the whole disk.

I attribute this disk density evolution to the initial condition. I argue that the non-relativistic den-
sity profile (Equation 5.2) does not fit the relativistic Paczyński-Witta velocity profile (Equation
5.1) well in the vicinity close to the black hole (the density profile determines the pressure profile
inside the accretion disk, thus is also important in force balancing). In Figure 5.6, the angular
velocity along the disk mid-plane is shown. In the left plot, the initial angular velocity and the
angular velocity at t = 3000tg are presented. It is worth mentioning that the angular velocity
along the disk mid-plane rarely evolves after t ∼ 2000tg. Thus, it is possible treat the angular
velocity profile at t = 3000tg as a steady state and compare it to the profile at t = 0tg. In general,
the initial profile has a good match to the profile at t = 3000tg. Nevertheless, there is discrepancy
near the black hole, especially within r < 10rg. This discrepancy, namely the sub-steady rota-
tion, will then cause a radial velocity which triggers the density perturbation and, consequently,
the discontinuous structures. In Figure 5.6 right plot, I compare the angular velocity profile with
different choices of Rpw in Equation (5.1) to the profile from simulation D0 at t = 3000tg. It turns
out that no matter which Rpw I choose, there is always slight differences in the profile near the
disk inner boundary. But a value of Rpw ∼ 1.7 fits best to the long-term evolution , and thus may
reduce the impact of the discrepancy. Apart from the perturbation patterns, the accretion disk
basically keeps its disk-like shape as expected.
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Figure 5.5: Density snapshots in logarithm from simulation D0 at t = 0tg (upper left), t = 1000tg

(upper right), t = 2000tg (lower left) and t = 3000tg (lower right). Apart from for some turbulent
structures on the surfaces, the accretion disk basically kept its disk-like shape during the time
evolution and no outflow stream originates from the disk. The snapshots are presented in Kerr-
Schild coordinates. As in the spherical plots in Section 4, the calculation domains only cover
θε(0, 180) and the left hemispheres are just mirrored (same for all plots presented later).
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Figure 5.6: Left: The disk angular velocity profile for simulation D0 at time t = 0tg and t =

3000tg. The red curve at t = 0tg also stands for the Paczyński-Witta profile with Rpw = 1.0.
Through this plot, we know that the initial condition given in Equation (5.1) is very close to the
angular velocity at t = 3000tg, where the disk has evolved into a steady state. Right: A simple fit
of Rpw in the initial angular velocity. It seems that a pure Paczyński-Witta profile is not able to fit
the steady state. Yet, an initial profile with Rpw ∼ 1.7 may reduce the discrepancy to the steady
state. Note that the plot starts at r = 6rg since this is the disk inner radius.

5.3.2 Accretion due to MRI

The accretion rate and ejection rate for simulation D0 are plotted in Figure 5.7. It is shown in
the time interval from t = 1000tg to t = 3000tg, where the evolution of the disk is relatively
steady. The outer radius for the accretion calibration is at r = 60rg. Among the four plots, the
amplitude of the outer accretion rate has, relatively, the largest amplitude and varying signs. This
is possibly due to the density perturbation inside the disk caused by the initial condition. Since
the period at r = 60rg is T ∼ 2871tg, nothing significant should happen at t = 3000tg.

The disk inner boundary has ∼ 195 rotations by t = 3000tg. I thus consider the mass accretion
rate at the disk inner boundary as an indicator of the angular momentum transport inside the disk.
As shown in the uppermost plot in Figure 5.7, there is a continuous matter accretion which has
an average of 1.36×10−3, from t = 2000tg to t = 3000tg at this radius. The accretion implies that
the angular momentum transport indeed took place in simulation D0. Since the magnetic field is
weak, field lines that penetrate differentially rotating layers of the accretion disk should not play
a role in accelerating and breaking plasma in the large scale. The alternative is then left to be
MRI (see Section 2.2), which takes place locally inside the disk. If MRI is present in the disk,
we can expect the similar wiggly field line structure as shown in Figure 2.3 (see also Balbus &
Hawley 1991). To have an idea about the field structure inside the disk, I plot the radial magnetic
field along θ at r = 12.6rg in Figure 5.8. Note that the rotation period here is T ∼ 258tg and the
disk surface extends from θ = 75◦ to θ = 105◦. The sign change of the radial field in the left
plot reflects the curved initial magnetic field lines that penetrate the disk (see Figure 5.3). In the
right plot, the frequent sign changes of the radial magnetic field (jagged curve) indicate wiggled
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poloidal field lines. Furthermore, the amplitude of the wiggle structure grows during the time
evolution as the radial field strength becomes larger. This behavior of the radial magnetic field
strongly implies the presence of MRI. Note that the right plot in Figure 5.8 shows a growth of
MRI which is symmetric to the disk mid-plane.

5.3.3 Matter collapsing towards the disk mid-plane

The ejection rate for simulation D0 is shown in the second lowest plot of Figure 5.7. The time
averaged ejection from t = 2000tg to t = 3000tg is negative. This indicates that in simulation
D0, the matter at the disk surface collapses towards the disk mid-plane. This behavior is not
yet well understood. Nevertheless, the negative ejection rate clearly indicates that there is no
disk-driven wind in simulation D0. This proves the necessity of a large magnetic field strength
in magnetically driven wind production.

5.4 Outflows from accretion disk

Simulation D0 is the only simulation that has weak magnetic field plasma β = 10. It is also the
only simulation in Table 5.1 that does not show outflows from the disk during the time evolution.
The simulations with strong magnetic plasma β = 10 all show outflows, the evolution of which
share many common features. Before the investigation into the properties of the outflows, I will
first give a description of the general outflow morphology. Here I take simulation D6 as the
“fiducial model,” because it has the most similarities to all other simulations (see Section 5.1.4),
and will focus on its results.

5.4.1 Disk evolution

The density snapshots for simulation D6 at simulation time t = 400tg, t = 600tg, t = 1000tg,
t = 1600tg, t = 2200tg and t = 3000tg are shown in Figure 5.9. The time evolution of the
accretion disk shows some wave-like structure that moves from the inner disk to the outer disk
along the disk mid-plane. This behavior is the disk evolution under the initial condition (see
Section 5.3), but in the case of strong magnetic field. The density snapshot at t = 3000tg (lower
right plot in Figure 5.9) itself looks very different compared to that of simulation D0 (Figure 5.5).
However, if we neglect the outflows in simulation D6, then common features in the disk shapes
can be seen.
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Figure 5.7: Accretion and ejection rates and their average values for simulation D0 from t =

1000tg to t = 3000tg. The outer radius for accretion calibration is set at r = 60rg. The most
interesting plots are the most upper plot and the second lower plot, which show the accretion and
negative ejection (matter moves towards disk plane instead of ejection). The total mass loss in the
control volume is dominated the second upper plot, which reflex the radial density perturbation
in side the disk (see above).
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Figure 5.8: Magnetic field in the radial direction measured at r = 12.6rg at t = 0tg (left plot) and
t = 1000tg (right plot). The different pointing directions of the radial magnetic field at t = 0tg is
caused by the initial condition (see Figure 5.3), while the center-symmetric jagged curve within
the disk range at t = 1000tg is released by MRI. Note that the curves in both plots are not
magnetic field lines.

5.4.2 Disk wind evolution

As is shown Figure 5.9, clear outflows leave the disk surface during the simulation. The outflows
originate from the “density bumps” at disk inner boundary caused by the initial condition (see
Section 5.3). As these bumps move outwards and carry the growing outflows with them while
new produced bumps near the at the inner boundary keep triggering new outflows (see the two
top plots in Figure 5.9). The outflows leave further away from the disk mid-plane and show
certain degree of collimation towards the axis (the middle left plot),which seems not to be the
collimation process of jet (see Section 5.6). As the outflows keep growing,they begin to come
out from everywhere on the disk surface, which merges with the former streams (middle right
plot). Consequently a steady disk wind is generated (bottom plots). The time averaged ejection
rate for simulation D6 from t = 2000tg to t = 3000tg is 7.02× 10−3. Note that the only difference
between simulation D6 and D0 is the initial plasma β (see Table 5.1). Thus the outflows we see
here must be related to the strong magnetic field. I will discuss the origin of the outflows later in
Section 5.6.

5.4.3 Wind radial velocity

In Figure 5.10, I plot the radial velocity for D6 at t = 3000tg. Generally, the inward velocity
values (of accreting flow) are much smaller than the outward velocity values. Thus, I have
applied a two color bar contrast in the left and right plots to show the different regimes. As we
can see in the right plot, except for the region inside the disk and some turbulent region above
the disk, the radial velocity in the wind are all above zero, insuring an outward flowing wind.
We can see in the left plot that the outflow above the disk has a moderate outward radial velocity
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Figure 5.9: Density snapshots in logarithm from simulation D6 at t = 400tg (top left), t = 600tg

(top right), t = 1000tg (middle left), t = 1600tg (middle right), t = 2200tg (bottom left) and
t = 3000tg (bottom right). During the time evolution, the process of outflow leaving the disk
accretion is clearly observed. The snapshots are presented in Kerr-Schild coordinates.
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Figure 5.10: Radial velocity profile for simulation D6 at t = 3000tg with different contrast. In the
left plot, the color bar resolves values from 0 to 0.1. We see that the disk wind has a moderate
outward radial velocity vr . 0.1 (the velocity is normalized by c). Also, to identify the accretion
region, the color bar in the right plot resolves values from −0.005 to 0.005. With the exception
of minor turbulent patterns in the wind, negative radial velocities exist only in the accretion. The
typical accretion velocity is vr ∼ 10−3.

Figure 5.11: “Zoomed-in” density plots in logarithm from simulations D1 (left plot) and D6
(right plot) at t = 3000tg. The massive accretion in simulation D1 connects the disk and the BH
while in D6 the disk inner boundary still keeps its position at the 6rg with a thin flow accreting
onto the BH. Note that the circle shapes in both plots come from the initial condition described
in Section 5.1. The circle is more obvious in the right plot as the stable inflow stream has not yet
destroyed it unlike in the left plot.
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vr . 0.1 (unit of velocity is c). On the other hand, the accretion (negative values) in the right plot
mostly appear inside the disk. The averaged value of the radial velocity along the disk mid-plane
is 1.03×10−3. Although the outflowing wind is much faster than the accreting flow, the accretion
and wind production processes are still in balance, if we take the density into consideration (see
Figure 5.9).

5.4.4 Inner boundary of the disk

When changing the magnetic diffusivity level (parameter η0) in the disk, an interesting behav-
ior of disk inner boundary is observed. As was discussed in Section 1.5.2, by the presence of
magnetic diffusivity allows accreting matter to pass through magnetic field lines freely and ac-
crete onto the black hole. However, if the disk is not diffusive (like in simulation D1), accreting
matter will drag the field lines together towards the black hole, destroying the structure of the
initially well ordered field lines. The influence of magnetic diffusivity on the disk morphology
can be clearly seen in Figure 5.11. The left plot shows the density snapshot of simulation D1
at t = 3000tg. Without a diffusivity that allows the matter to pass through the field lines, the
massive flow accretes with the field lines and pushes the disk inner boundary towards the black
hole. In this case, the accretion disk connects directly to the black hole horizon. As is shown in
Figure 5.11 right plot, the magnetic diffusivity, whose value peaks at the disk mid-plane, allows
an accreting flow at the disk mid-plane without disturbing the disk inner boundary. The disk
inner boundary is then exactly at the initial radius rin = 6rg. Nevertheless, the massive accretion
in simulation D1 implies a stronger angular momentum transport inside the disk. I will discuss
this point in Section 5.5.

5.5 Influence of diffusivity on accretion and ejection rates

In Section 5.4, I mentioned that the position of the disk inner boundary is influenced by the
presence of magnetic diffusivity. In this context, I also ran a series of simulations D1, D2, D3,
D4, D6 and D17 where diffusivity level (η0) is the controlled parameter. The evolution of the
outflow morphology from these simulations are all similar to simulation D6 (see Section 5.4).
However, their accretion and ejection rates are indeed influenced by different choices of η0.

5.5.1 Diffusivity and accretion

Simulations D1, D2, D3, D4, D6 and D17 have the same initial conditions except for the normal-
ized diffusivity value η0, which are, 10−12, 10−6, 10−5, 10−4, 10−3 and 10−2, respectively (see Table
5.1). As readers will see, the numerical diffusivity is still predominant in the regime η0 < 10−4

according to the simulation results. I will thus focus on the simulations D1, D6 and D17 in the
discussion.
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Figure 5.12: The ejection rate and the inner accretion rate for simulations D1 (upper plots) and
D6 (lower plots) from t = 1000tg to t = 3000tg. The averages are taken in the time interval from
t = 2000tg to t = 3000tg. The accretion and ejection rates for simulations D1 are much larger
than simulation D6. Nevertheless, simulation D6 has a better efficiency in the outflow production
(see text).
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Figure 5.13: The ejection rate and the inner accretion rate for simulation D17. Since the simula-
tion has not yet finished, we can only give the data from t = 1000tg to t = 2400tg. The averages
are taken in the time interval from t = 2000tg to t = 2400tg. Due to the suppressed MRI process
by the magnetic diffusivity, the accretion and ejection rates here are weaker than simulation D6
and much weaker than simulation D1.

Figure 5.14: The time averaged accretion rate (left plot) and ejection rate (right plot) for sim-
ulations D1, D2, D3, D4, D6, D17 with normalized diffusivity values η0 = 10−12, 10−6, 10−5,
10−4, 10−3 and 10−2, respectively. The averages are taken in the time interval from t = 2000tg to
t = 3000tg, except for simulation D17, which are taken in the time interval from t = 2000tg to
t = 2400tg (see text). Note that the accretion rates in the left plot have been multiplied by −1 so
that they could be plotted with a logarithm vertical axis.
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Figure 5.15: The radial component of the magnetic field for simulations D1 (upper left), D6
(upper right) and D17 (lower plot) measured by r = 12.6rg at t = 2400tg. Note that the disk
surfaces in our disk model are at θ = 75◦ and θ = 105◦ and the Keplerian rotation period at
radius r = 12.6rg is 239.4tg. Through these plots, we can see an obvious suppression from the
increasing diffusivity level on the MRI inside the disk. The MRI is still growing in simulations
D6 and D17 (simulation D17 much weaker than simulation D6), while the field in simulation D1
has already become totally turbulent (see text).
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Figure 5.16: Field line structures for simulation D1 (left plot) and D17 (right plot) at t = 2000tg.
In simulation D1, the field lines inside the accretion disk have become chaotic (especially within
r < 20rg) due to the turbulence caused by MRI. However, the field lines in simulation D17
still keeps their original structure at t = 2000tg; the reason for this is two-fold. First, the MRI
inside the disk is suppressed by the magnetic diffusivity which makes disk less turbulent than in
simulation D1. Second, with diffusivity, the matter flow is allowed to move across the field lines,
which prevent the field lines from being disturbed by the accreting flow and the turbulence inside
the disk.
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Figure 5.17: The time averaged ejection rate and the inner accretion rate for simulations D6
(χ = 0.8), D9 (χ = 1.0), D12 (χ = 1.2), D13 (χ = 1.4) and D14 (χ = 2.0). The averages are
taken in the time interval from t = 2000tg to t = 3000tg. As illustrated in this plot, the accretion
and ejection rates do not have significant difference in this set of simulations.

First, I plot the accretion rate at the inner disk boundary and the total ejection rate for simulations
D1 and D6 in Figure 5.12 from t = 1000tg to t = 3000tg and for simulation D17 in Figure 5.13
from t = 1000tg to t = 2400tg (simulation D17 is still running and t = 2400tg is the time it
reached when this part of the thesis was written). The accretion rate curves in the three plots
show a similar period (≈ 300tg) at the time when the local accretion minima take place, e.g. at
t ∼ 1000tg, t ∼ 1300tg, t ∼ 1600tg, etc. These local minima can also be also found in the inner
accretion rate plot in Figure 5.7. I attribute this feature to the radial velocity fluctuation caused
by the initial condition near the inner disk boundary where the initial angular velocity is slower
than the “steady state” angular velocity (see Figure 5.6).

I then compare the time averaged accretion rate and ejection rate taken from t = 2000tg to
t = 3000tg for simulations D1 and D6, and from t = 2000tg to t = 2400tg for simulation
D17. I find that the accretion and ejection rates are clearly suppressed with increasing diffusivity
level. In Section 4.4, it was shown that the increasing magnetic diffusivity prevents the MRI
from growing in the torus evolution and consequently weakens the accretion rate. Furthermore,
I proved the existence of MRI inside the disk in Section 5.3. Thus, I argue that an increase
of diffusivity suppresses the MRI, hence the angular momentum transport inside the disk (see
Section 2.2), which leads to a less efficient accretion rate.

To prove this argument, I repeat the method used in Section 5.3. We plot the radial component
of the magnetic field along θ in Figure 5.15 for simulations D1 in upper left plot, D6 in upper
right plot and D17 in the lower plot. The radial magnetic fields are measured by r = 12.6rg at
t = 2400tg. I only show the region θε[70◦, 110◦] since the disk surfaces in our disk model are
at θ = 75◦ and θ = 105◦. The Keplerian rotation period at radius r = 12.6rg is 239.4tg and at
t = 2400tg, there have been about 10 rotation periods, which is far beyond the linear MRI regime
in ideal MHD (see Balbus & Hawley 1991). In the upper left plot, an asymmetric profile of
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the radial magnetic field is observed which implies that the field in simulation D1 has become
turbulent at t = 2400tg. On the other hand, in the upper right plot and the lower plot, we can
still see the symmetric wave-like structure to the disk mid-plane showing the growing MRI. The
amplitudes of the radial magnetic field oscillations largely decreases with the increasing η0 which
strongly supports the argument that the MRI is suppressed by the diffusivity.

In Figure 5.14, the time averaged inner accretion rate (left plot) and the ejection rate (right plot)
for the simulations D1, D2, D3, D4, D6 and D17 are presented. In the regime η0 < 10−4, the
simulations are dominated by the numerical diffusivities so the increasing η value does not influ-
ence the accretion and ejection. However, above η0 = 10−4, the increasing diffusivity obviously
weakens the accretion rate through the suppression of the MRI inside the disk. In Figure 5.14, a
correlation between accretion rate and ejection rate is clearly seen. A larger ejection rate always
corresponds to a larger accretion rate. Although, the exact process of how (a part of) accreting
matter is turned into outflow is unclear. We can still explain this relation with the following sim-
ple logic: a larger accretion rate implies a stronger angular momentum transport inside the disk
where more angular momentum is transported outwards, and thus yields a larger ejection rate.

With the current grid resolution (numerical diffusivity), the correlation between accretion and
ejection rates can be better investigated by a rHARM survey that searches the parameter space
10−4 < η0 < 10−2.

5.5.2 Efficiency of outflow launching

In Figure 5.14, we notice that the simulations with high diffusivity have higher efficiencies in
disk outflow production. Here the outflow efficiency is defined as

ξ = |
Ṁe je

Ṁacc
| × 100% (5.9)

where Ṁe je and Ṁacc are the total ejection rate and the inner accretion rate defined in Section
5.2. The efficiency for simulation D1 from t = 2000tg to t = 3000tg is 51%, while those for
simulations D6 and D17 are 358% and 356%. The outflow production efficiencies of a high
diffusive disk are much larger than that of a low diffusive disk.

This behavior can be attributed to the field line structure above the disk. According to the
Gaussian-like diffusivity profile (see Equation 5.6), the region above the accretion disk can be
treated as in ideal MHD. In this case, the disk winds only flow along the field lines. The pro-
cess of outflow leaving the disk surface is more efficient if the field line that penetrates the disk
surface is smoother pointing to the region above the disk (just like the initial field structure in
Figure 5.3). In other words, a knotted (chaotic) field line will, to some extent, prevent a smooth
outflow launching process (see also Section 5.6 for the discussion over the forces that drive the
disk wind).

In Figure 5.16, we show the field line structures for simulation D1 (left plot) and D17 (right
plot) at t = 2000tg. In the non-diffusive simulation D1, the matter flow inside the disk becomes
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turbulent due to the MRI, which also disturbs the initial field lines inside the disk. The perturbed
field structure inside the disk then also influences the structure above the disk, making it chaotic
and consequently jams the outflow efficiency. On the hand, due to the influence of the high
diffusivity, the field lines in simulation D17 keep their initial shape by allowing the matter flow
to across the field lines inside the disk. The smooth field structure lets the outflow in simulation
D17 leave the disk more easily in comparison to that in simulation D1.

5.5.3 Simulations with different diffusivity profile

As defined in Equation (5.6), the parameter χ controls the width of the diffusivity profile. I thus
select simulations D6, D9, D12, D13 and D14, the initial conditions of which only differ in the
choices of χ, to investigate the influence of diffusivity profiles with different widths. In this set
of simulations, the parameter χ varies from 0.8 (narrower than disk height) to 2.0 (twice the
disk height). The time averaged inner accretion rates and the ejection rates from the simulations
do not significantly differ from each other as shown in Figure 5.17. This can be explained as a
combined effect from a wider diffusive region. On one hand, a wider diffusive region in θ allows
more matter to pass the magnetic field lines at certain radii. On the other hand, the diffusivity
also suppresses the MRI in this region. The two effects compensate each other, thus the accretion
rate does not vary with χ. The ejection rate follows accretion rate (see above), thus also keeps
the value. Thus, I conclude that changing the width of the diffusivity profile in this range does
not significantly affect the disk evolution much.

5.6 The driving force of outflow

In Section 5.4, I described the morphology of the disk driven outflow in simulation D6. It is now
important to determine the origin that drives the wind from the disk and whether the Blandford-
Payne process is actually observed or not. The best way to do this is to calculate the different
force components along the magnetic field lines. Similar analysis have been done in Porth &
Fendt (2010) (see also Ouyed & Pudritz 1997; Fendt & Čemeljić 2002). Nevertheless, such
analysis requires a steady state where the physical quantities in the simulation region are only
position dependent. This condition is well satisfied in Porth & Fendt (2010), where the simulation
regions do not include the accretion disk. In such kind of simulation, the outflows come from the
(injection) boundary condition which is supposed to be the accretion disk surface.

None of the simulations, all of which include a “real” disk, listed in Table 5.1 have reached such a
steady state within the simulation time (see Figure 5.20 of simulation D6 as an example). For this
reason, the displacement current in the simulation results is not zero (see Equation 5.14). Thus
the force analysis of diffusive GR-MHD is much more complicated than in Porth & Fendt (2010)
and cannot be completely included in this thesis project. I will thus give a preliminary analysis
based on the pressures from different force components and conceptually discuss the roles of
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Figure 5.18: The magnetic field characters for simulation D6 at t = 3000tg represented by the
Alfvén Mach number (upper left), ratio of poloidal field strength divided by toroidal field strength
(upper right), toroidal field strength in logarithm (lower left) and poloidal field strength in loga-
rithm (lower right). According to the plots, the disk outflow becomes almost immediately super-
Alfvénic after leaving the disk surface and the strength of the toroidal magnetic field is much
larger than that of the poloidal field. To some extent, these facts refute the possibility that the
disk wind is driven by centrifugal force, that is, the BP process.
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Figure 5.19: left: The thermal pressure in logarithm for simulation D6 at t = 1000tg. The thermal
pressure shown in this plot is comparable to the magnetic field strength inside the disk, however,
it decays exponentially from the disk mid-plane and quickly becomes much smaller than the
magnetic field strength. Therefore, the thermal pressure cannot be the dominant factor in the
wind production/acceleration. right: The toroidal magnetic field strength for simulation D6 at
t = 1000tg. According to this plot, the concentration behavior towards the axis in Figure 5.9 is
not the “true collimation” caused by Lorentz force.

the centrifugal force, the magnetic force and the thermal pressure force. In the following, I take
simulation D6 as the subject of the discussion. Letter “p” in the subscript denotes the poloidal
component of a vector where the φ component is not considered. The φ component is the toroidal
component of a vector.

5.6.1 Poloidal Alfven Mach number

If the disk wind is driven centrifugally (Blandford-Payne effect), we can expect a poloidal mag-
netic field to dominate the region above the disk surface since the wind should be centrifugally
accelerated by the poloidal magnetic field. This can be represented by the poloidal Alfvén Mach
number defined by 1

MA,p =

√
4πhup

2

Bp
2 , (5.10)

with the specific plasma enthalpy

h =
γ

γ − 1
p
ρ

+ 1. (5.11)

1Note that we set µ0 = 1 (see Section 1.6), thus the factor 4π in Equation (5.10) is not included in our calculation.
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Figure 5.20: Field line structure for simulation D6 at t = 2000tg (left plot) and t = 3000tg (right
plot). Although the accretion and outflow become relative steady during this period, the state of
the whole system, especially the structure of field lines, still evolves during the time forwarding,
making it impossible to do a force analysis along the field lines.
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Figure 5.21: Time evolution of the toroidal field strength in logarithm for simulation D6 at
t = 100tg (upper left), t = 300tg (upper right); t = 1100tg (lower left) and t = 2000tg (lower
right), see also the lower left plot in Figure 5.18 for t = 3000tg. It is evident that the propagation
of the toroidal field in the direction vertical to the disk plane, which supports the outflow we see
in simulation D6, is related to tower jets (see corresponding text).
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The Alfvén Mach number can be interpreted as the kinetic energy divided by the magnetic pres-
sure. A super-Alfvénic value (MA,p > 1) thus implies a weak poloidal magnetic field with a large
flow density or velocity. Under such circumstance, a driving outflow by the Blandford-Payne
effect is difficult.

The poloidal Alfvén Mach number for simulation D6 at t = 3000tg is plotted in Figure 5.18
(upper left plot). We see that depite some minor turbulent regions in the outflow, the disk wind
becomes almost immediately super-Alfvénic after leaving the disk surface (defined in Section
5.2). Inside the outflow region, typical values of MA,p, at the height of 30rg from the disk mid-
plane (5 times the initial disk inner radius) are over 5. On the other hand, the MA,p still keeps
being sub-Alfvénic (MA,p < 1) over the height of ∼ 20 times the disk inner radius in Porth
& Fendt (2010). This may arise from the difference between the choice of the accretion disk
and injection boundary condition. In rHARM simulations, the fluid element inside the disk has
only toroidal rotation initially. By the injection boundary condition in Porth & Fendt (2010),
the inflow possesses an initial poloidal velocity that can keep magnetic field lines from bending
to toroidal directions due to the ideal MHD assumption explained in Section 1.4.2. The super-
Alfvénic Mach numbers starting from the disk surface implies, to some extent, that the outflow
is not accelerated magneto-centrifugally (Blandford-Payne effect).

5.6.2 Magnetic field pressure

I then examine at the Lorentz force component in the wind system. The magnetic diffusivity
we apply has a Gaussian profile which peaks at disk mid-plane and decays quickly towards the
rotating axis (see Equation 5.6 and Figure 5.2). Thus, the ideal MHD condition

EEE = −vvv × BBB, (5.12)

can be applied in the region above the disk. For the current density jjj, we have 2

jjj +
∂EEE
∂t

= ∇ × BBB. (5.13)

Combining Equation (5.12) and (5.13), we get

jjj −
∂(vvv × BBB)

∂t
= ∇ × BBB. (5.14)

Due to the fact that further analysis with the displacement current would be very complicated and
that the poloidal velocity is less than 0.1c, I neglect the second term on the left side of Equation
(5.14) and adopt

jjj = ∇ × BBB. (5.15)

The Lorentz force acting per unit volume on the fluid carrying the current is then

FFFL = jjj × BBB

= (∇ × BBB) × BBB. (5.16)
2Again, factors 4π and c do not show up because of the normalization.
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With the corresponding vector identity, we can rewrite the above equation as

FFFL = −∇BBB2 + (BBB · ∇)BBB. (5.17)

Equation (5.17) indicates that the Lorentz force is directly related to the gradient of BBB or BBB2. In
Figure 5.18, we show the toroidal magnetic field strength

√
BBBφBBBφ (lower left plot) and poloidal

magnetic field strength
√

BBBpBBBp (lower right plot). If we neglect the disk mid-plane where toroidal
field cannot be produced by the disk rotation, then we see the toroidal field strength is decreasing
along the radius and also from the disk mid-plane to the vertical direction in the outflow region,
which builds the gradient outwards. Thus the toroidal magnetic pressure is likely to drive the
disk wind outwards.

For the poloidal field, the field strength decreases outwards inside the outflow region as well
(see Figure 5.18 lower right plot). However, as also reflected in the Alfvén Mach number profile
(Figure 5.18 upper left plot), the poloidal magnetic field does not have much strength compared
to the toroidal field above the disk (inside the outflow). If the poloidal field strength itself is
small, a large gradient from it cannot be neglected. Although the poloidal field strength in the
vicinity around the disk rotational axis shows a large outward gradient, it cannot contribute too
much to the wind acceleration to much since the density in these regions is extremely low (see
Figure 5.9).

The ratio between the toroidal field and the poloidal field (not in logarithm) is shown in Figure
5.18 upper right plot. It is clear in this plot that the toroidal field strength is much larger than the
poloidal field strength in almost the entire outflow region. This also implies that the BP process
is not predominant in driving disk wind.

5.6.3 Thermal pressure

Another force that could drive outflow from the disk is the thermal pressure force, which is
simply the gradient of thermal pressure. To have an idea of the thermal pressure contribution,
I plot the thermal pressure profile in Figure 5.19. A strong gradient at the disk surface is seen.
Also, the thermal pressure in the flow region is tiny. This implies that the thermal pressure
contributes to the outflow acceleration only near the disk surface. But similar to the poloidal
field strength, the pressure drops quickly from the disk mid-plane. Furthermore, the amplitude
of the thermal pressure is overall, magnitudes smaller than the toroidal magnetic field strength
in the outflow region. Thus, I conclude that the Lorentz force produced by the toroidal field is
predominant in driving the disk wind in simulation D6.

5.6.4 Tower jet

In Lynden-Bell (1996), it was suggested that the acceleration of the outflow may also come from
the pressure gradient of the toroidal magnetic field. An earlier numerical study (Ustyugova et al.
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1995) has also reported that in the ideal MHD simulations, where the accretion disk was treated
as a boundary condition, the rotation of the disk twisted the initial poloidal magnetic field. This
twist then propagates into the corona pushing and collimating matter into jet-like outflows in a
cylindrical region. The jets are then interpreted as “growing towers of twisted magnetic field
together with the currents that they carry.”

I plot the time evolution of toroidal field strength in logarithm in Figure 5.21. It is clear to see
the propagation of the toroidal field in the direction that is vertical to the disk plane (the growing
tower) in the time evolution. Through such evolution, the toroidal field strength and its pressure
gradient are spreading outwards. Additionally, in Section 5.6.2 and 5.6.3, I have showed that
the poloidal magnetic pressure and the thermal pressure are negligible compared to the toroidal
magnetic pressure in the outflow region above the disk. The toroidal magnetic field plays the
most important role in the wind generation. Thus, the outflow we see in simulation D6 is very
likely a tower jet.

5.6.5 Collimation or not?

In Figure 5.9, the behavior of the outflow density at time t = 600tg and t = 1000tg show some
degree of collimation towards the rotating axis at the simulation board. In jet production, the
forces that contribute to the collimation are gravity and the Lorentz force. Here I focus on the
collimation through the electromagnetic effect. Since the poloidal magnetic pressure is negligible
compared to the toroidal magnetic pressure at the location where the collimating behavior occurs,
I plot the toroidal field strength in Figure 5.19 right plot. In general, the correlation between
the magnetic pressure differences and the “collimation places” are not clear. The toroidal field
(magnetic pressure) difference at r ∼ 45rg seems to match the “collimation” at r ∼ 45rg in the
middle left plot of Figure 5.9. Nevertheless, the magnetic pressure difference that matches the
“collimation” at r ∼ 60rg is hardly to seen in the right plot of Figure 5.19. Furthermore, Figure
5.21 shows that the local minimum and maximum of the toroidal field strength disappear as the
time evolves. Thus, these “collimation” behavior we see in Figure 5.9 is more likely to be caused
by the turbulence from the early stage of the simulation which disappear when the evolution of
the outflow becomes relative steady.

5.6.6 Comparison to non-relativistic simulations

Simulations with a similar setup as discussed above have also been presented in Sheikhnezami et
al. (2012), where the common magnetic diffusivity profile and initial magnetic field are shared. In
that work, the time evolution of the accretion disk structure had also been self-consistently taken
into account. However, the disk density profile in Sheikhnezami et al. (2012) was taken from
Zanni et al. (2007) and their simulation code does not include relativity, which differs from my
disk simulations in Table 5.1. In their low plasma-β (β = 10) simulations, the magnetocentrifugal
acceleration is the most efficient mechanism in outflow production, while for weak magnetic
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fields, it is the toroidal magnetic pressure gradient which drives the outflow (tower jet).

In the disk simulations with rHARM where the plasma β values are also 10, the toroidal magnetic
fields are much larger than the poloidal fields during the time evolution (see above), making it
very unlikely to have an outflow dominated by magnetocentrifugal force. Nevertheless, since it
is impossible to project different forces along the field lines in the analysis of my simulations,
I cannot determine if the outflow production is dominated by centrifugal forces or the toroidal
magnetic pressure gradient.

5.7 Convergence issue in simulations D8 and D16

As in the torus simulations (see Section 4.2), we also encounter convergence problem in simu-
lations D8, D15 and D16. The bad convergences started at the outer calculation boundary near
around the rotational axis and spread toward the outflow and the disk, making the simulation re-
sults unphysical before they reached time t = 3000tg. Thus, in the discussion below (see Section
5.8 and Chapter 6), I will only use the data in the time range prior to the bad convergences, which
contaminated the evolutions of these simulations.

5.8 The initial field structure dependence

In order to investigate the influence of the initial field inclination on the outflow generation, we
have run simulations D5 and D8. Together with simulation D6, these three simulations have the
same setup except for the magnetic field inclination parameter m, where m = 0.2 in simulation
D5, m = 0.4 in simulation D6 and m = 0.6 in simulation D8. A smaller m value indicates a initial
field line structure that is more inclined towards the disk mid-plane. The initial field structures of
simulation D5 and D8 are shown in Figure 5.22 while that of simulation D6 is shown in Figure
5.3 (it does not matter here that the plot is made from the initial condition of simulation D1 since
the different diffusivity setup is not drawn on the plot).

We first plot the accretion rate from the inner disk boundary and the ejection rate from t = 1000tg

to t = 3000tg for simulation D5. The shape of the inner accretion rate and the ejection rate curves
do not seem to have correlation with the two plots in Figure 5.12. It is possible that the alteration
of the initial magnetic field line structure changes the process of the disk evolution. One can see
from the plot that the absolute value of the time averaged inner accretion and the total ejection
rate from t = 2000tg to t = 3000tg for simulation D5 are both weaker than simulation D6.

Since simulation D8 encountered a convergence issue, we can only use the data from t < 1200tg

when comparing simulations D5, D6 and D8. We thus calculated the time averaged inner ac-
cretion rate and total ejection rate for the three simulations in the time between t = 500tg and
t = 1200tg in Figure 5.24. The plot illustrates clear relations between parameter m and accre-
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Figure 5.22: Initial field line structure for simulations D5 with parameter m = 0.2 (left plot) and
D8 with parameter m = 0.6 (right plot). The smaller the parameter m is, the more the field lines
are inclined to the disk mid-plane. See also Figure 5.3 for the initial field line structure with
parameter m = 0.4.
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Figure 5.23: The ejection rate and the inner accretion rate for simulation D5 from t = 1000tg

to t = 3000tg. The averages are taken in the time interval from t = 2000tg to t = 3000tg. The
accretion and ejection rates for simulations D5 are both weaker than simulation D6.

Figure 5.24: The time averaged ejection rate and the inner accretion rate for simulations D5, D6
and D8 (see x axis ticks). The averages are taken in the time interval from t = 500tg to t = 1200tg

where the outflow states from the simulations are not yet steady. According to this plot, the
accretion is enhanced by the increasing parameter m. As well as the corresponding ejection rate.
This implies a “more vertical” field is more efficient in the outflow production in our simulations.
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Figure 5.25: The toroidal field strength in logarithm for simulation D5 (left plot) and D8 (right
plot) at time t = 1000tg. These plots imply that a “more vertical” field structure allows for a
faster propagation of the toroidal field in the vertical direction. The wine glass shape in the right
plot shows the boundary of the outflow from simulation D8 at the aforementioned simulation
time.

tion/ejection rate. A larger m (“more vertical” field lines) gives a stronger outflow and, as a
matter of angular momentum transport, a heavier accretion. From Section 5.6, we know that
the largest contribution of the outflow driving comes from the toroidal magnetic field. The two
plots in Figure 5.25 show the toroidal magnetic field strength of simulation D5 (left plot) and
simulation D8 (right plot). Readers can also take the lower left plot in Figure 5.21 as a reference,
just note that this plot is made for t = 1100tg. We can then argue that a “more vertical” initial
field structure leads to a faster growth of the toroidal field in the vertical direction and, in our
simulation setup, stronger accretion and ejection.

Nevertheless, due to the time limitation of my thesis, only three simulations were done for this
investigation which could be inadequate. Furthermore, and the plot in Figure 5.24 was made in
the time interval where the disk outflows are not yet steady. Thus, more simulation results are
needed in order to support the conclusion argued here.

5.9 The resolution dependence of the simulations

As discussed in Section 5.5, I observed a numerical diffusivity 10−4 . ηnum . 10−3 in the survey
with simulations D1, D2, D3, D4, D6 and D17. Although simulation D6 with grid resolution
128×128 shows accretion and ejection rates that are clearly influenced by the magnetic diffusivity
(see Figure 5.14), it is still unknown how much the numerical diffusivity has influenced the
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Figure 5.26: Density snapshots in logarithm from simulation D7 at t = 400tg (top left), t = 600tg

(top right), t = 1000tg (lower left) and t = 1600tg (lower right). The snapshots are presented
in Kerr-Schild coordinates. The morphology of the disk wind evolution show differences when
compared to simulation D6 in Figure 5.9, which has the same initial condition but a lower reso-
lution.
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Figure 5.27: The radial component of the magnetic field vector for simulations D6 (left) and
D7 (right) measured by r = 12.6rg at t = 1000tg. Note that the disk surfaces in the disk model
are at θ = 75◦ and θ = 105◦, the Keplerian rotation period at radius r = 12.6rg is 239.4tg. The
resolution of simulation D7 doubles that of simulation D6 in both dimensions that provides the
time evolution with less numerical diffusivity.

results of simulation D6. Thus, I ran simulation D7 which has the same initial conditions as in
simulation D6 but double the grid resolutions (256 × 256) in both dimensions. With this higher
resolution, the influence of the numerical diffusivity on simulation D7 (when still noticeable at
all), must be much smaller than on simulation D6.

Since the current rHARM code is not in parallel, running an rHARM simulation is time consum-
ing, e.g., the running time of simulation D6 was about four weeks. For this reason, simulation
D7 which has a higher resolution, is still running at time t = 1650tg when this part is written. I
thus only discussed the data before t = 1600tg from simulation D7 here. In Figure 5.26, I present
the density snapshot for simulation D7 at time t = 400tg, t = 600tg, t = 1000tg and t = 1600tg.
Compared to the corresponding plots for simulation D6 in Figure 5.9, similar processes of out-
flow leaving disk surfaces can be observed for both simulations. Nevertheless, the disk wind
production of the two simulations obviously differ from each other in fine details. These differ-
ences can only be attributed to the different grid resolutions, specifficaly the different levels of
numerical diffusivity in both simulations.

I then calculate the time averaged accretion rate for simulations D6 and D7, which are −3.45 ×
10−3 and −6.6 × 10−3, respectively, and the time averaged ejection rate which are 6.41 × 10−3

and 5.66 × 10−3, respectively. The averages are taken from t = 1000tg to t = 1600tg. The
accretion rate for simulation D7 almost doubles that for simulation D6, while the ejection rate
for simulation D7 is only slightly less than that for simulation D6. This is a strong indication
for the fact that the numerical diffusivity in simulation D6 weakens the MRI process inside the
disk. The disk in simulation D6 will then be less turbulent and have a lower level of angular
momentum transport, hence weaker accretion rate, than in simulation D7. To confirm this, I
again plot the radial component of the magnetic field vector inside the disk at r = 12.6rg for both
simulations at t = 1000tg. In Figure 5.27), it is clear to see in these plots, that the growth of MRI
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in simulation D6 is much slower than that in simulation D7. Since the MRI growth is slower in
simulation D6, the magnetic field lines above the disk will be less disturbed in simulation D6
than in simulation D7 (see Section 5.5). Thus the ejection efficiency defined by Equation (5.9) is
also higher in simulation D6 (186%) than in simulation D7 (86%).

According to the discussion above, a resolution higher than 128 × 128 is recommended to elimi-
nate the influence of numerical diffusivity in my simulation with magnetic diffusivity η0 = 10−3.
Taking into account that the time forwarding of the code evolution depends on the resolution of
the physical length and the value of magnetic diffusivity (see Equation 3.34), higher resolutions
mean a huge amount of computing time in running the simulations. With the current version of
rHARM, running a simulation with normalized magnetic diffusivity η0 from 10−4 to 10−2, in the
same grid resolution as in simulation D7, would be unrealistic for a typical usual science project.
Thus the parallelization of rHARM is strongly called for!

5.10 Summary and conclusions

In this chapter, I have presented results of MHD launching of disk winds from a thin accre-
tion disk threaded by inclined open poloidal field lines. The results are preliminary since the
simulations have not yet reach a quasi-steady state of accretion-ejection that is known from non-
relativistic simulations.

I first discussed the results from the simulation with a non-diffusive very weakly magnetized
(plasma-β = 108) disk around a zero-spin black hole, in which no outflow was observed and
the accretion disk kept its disk-like shape during the evolution. I showed the MRI growth inside
the accretion disk which led to the accretion of matter onto the black hole. As far as I know,
this is the first time that MRI is directly observed inside the thin accretion disk in a GR-MHD
simulation.

In the same simulations with a strong magnetic field (plasma β = 10), disk wind ejections are
clearly detected. I then investigated the relation between accretion and ejection rates and the
different levels of diffusivity. In my analysis, I found that (i) the increasing diffusivity level
suppresses the MRI process inside the disk and lowers the matter accretion rate onto the black
hole. The accretion rate from the simulation with diffusivity normalization factor 10−4 is about
102 times larger than that from the simulation with diffusivity normalization factor 10−2, (ii) a
lower accretion rate is always accompanied by a lower disk wind ejection rate, thus the increasing
diffusivity level also weakens the disk wind ejection rate, and (iii) the increasing diffusivity
level helps preventing the magnetic field above the disk from turbulent structure. Although the
accretion rate is 102 times weaker, the ratio of ejection rate to accretion rate from the simulation
with diffusivity normalization factor 10−2 is almost 8 times larger than that from the simulation
with diffusivity 10−4.

From my analysis, I attributed the predominant driving force of the disk wind launching in the
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simulations with strong magnetic field to the toroidal magnetic field pressure gradient. I showed
that the contributions from the poloidal field pressure gradient and thermal pressure gradient are
minor for wind launching. It is not yet clear if the jet is driven centrifugally since the force
projection analysis along the steady field lines is not possible here. Additionally, the simula-
tions with the “more vertical” initial magnetic fields (less inclined towards disk mid-plane) show
stronger accretion and ejection rates because of the faster propagation of toroidal magnetic fields
in the vertical direction.

Finally, I showed that the numerical diffusivity has noticeable influences on the current survey
simulations with grid resolution 128 × 128. The huge time consumption for a higher resolution
survey strongly suggests the parallelization of rHARM.
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Table 5.1: Parameter choice in the thin disk simulations that use rHARM. The table shows
the value of normalized magnetic diffusivities (defined in Section 5.1), plasma β, the scale of
diffusivity profile (defined in Section 5.1), the large scale field line inclination parameter m,
the black hole spin parameter a and grid resolutions that are used in the torus simulations. All
simulations were done by rHARM. Please see Section 5.1 for other common setups.

η0 plasma β χ m a grid size

D0 10−12 108 0.8 0.4 0 128x128

D1 10−12 10 0.8 0.4 0 128x128

D2 10−6 10 0.8 0.4 0 128x128

D3 10−5 10 0.8 0.4 0 128x128

D4 10−4 10 0.8 0.4 0 128x128

D5 10−3 10 0.8 0.2 0 128x128

D6 10−3 10 0.8 0.4 0 128x128

D7 10−3 10 0.8 0.4 0 256x256

D8 10−3 10 0.8 0.6 0 128x128

D9 10−3 10 1.0 0.4 0 128x128

D10 10−3 10 1.0 0.4 0.1 128x128

D11 10−3 10 1.0 0.4 0.2 128x128

D12 10−3 10 1.2 0.4 0 128x128

D13 10−3 10 1.4 0.4 0 128x128

D14 10−3 10 2.0 0.4 0 128x128

D15 10−3 10 1.0 0.4 0.5 128x128

D16 10−3 10 1.0 0.4 0.9375 128x128

D17 10−2 10 0.8 0.4 0 128x128





Chapter 6

Accretion system with rotating black hole

One of the key points in this thesis project is studying the role that a rotating black hole plays in
the energy output of the black hole accretion system. In the seminal paper Blandford & Znajek
(1977), it was proven that the presence of magnetic field lines around the black hole horizon can
extract rotational energy from the central rotating black hole. According to the theory and the
existing simulation results (see Section 2.4.2), the power of the energy extraction rises with the
increasing black hole spin parameter a. I thus, as a further study of Chapter 5, pick out the series
of simulations D9, D10, D11, D15 and D16 (see Table 5.1) for analysis. Since simulations D15
and D16 encounter convergence issues (see Section 5.8), I will only discuss the simulation time
before t = 800tg which is the limit of simulation D16 where its time evolution is still physical.
Due to the time limitation of my PhD project, the discussions in this chapter regarding the disk
simulation results are mostly preliminary.

6.1 Influence of the black hole spin on accretion and ejection

The initial conditions are the same in simulations D9, D10, D11, D15 and D16 except for their
black hole spin parameters a, which are 0, 0.1, 0.2, 0.5 and 0.9375, respectively. I first plot
the density snapshots for simulations D9 and D16 at times t = 200tg, t = 400tg, t = 600tg

and t = 800tg (Figure 6.1 and Figure 6.2). Simulation D9 shows the time evolution for a non-
rotating black hole. Its only difference compared to simulation D6 is the profile of magnetic
diffusivity (parameter χ). If we look at the corresponding plots in Figure 5.9, we see that the
disk wind evolution in simulation D9 is very similar to that in simulation D6. Simulation D16
has the largest spin parameter a = 0.9375. We see that there are outflows leaving the disk
surface as well. Nevertheless, the morphology of the outflows is different from that in simulation
D9. If we compare the two upper plots in Figure 6.1 and Figure 6.2, from the first density
“bump” on the disk mid-plane moving outwards, there is a clear outflow production in simulation
D9 but no outflow production in simulation D16. At t = 800tg, there are already two outflow
streams leaving the disk surfaces in the 2D snapshot in simulation D9, while there is only one in
simulation D16. Thus, the high black hole spin is indeed influencing the disk wind evolution.

In Figure 6.3, I show the time averaged accretion and ejection rates for simulations D9, D10, D11,

125
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Figure 6.1: Density snapshots in logarithm from simulation D9 at t = 200tg (top left), t = 400tg

(top right), t = 600tg (lower left) and t = 800tg (lower right). The snapshots are presented in
Kerr-Schild coordinates. The morphology of the disk wind evolution is very similar to simulation
D6 in Figure 5.9.
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Figure 6.2: Density snapshots in logarithm from simulation D16 at t = 200tg (top left), t = 400tg

(top right), t = 600tg (lower left) and t = 800tg (lower right). The snapshots are presented in
Kerr-Schild coordinates. The morphology of the disk wind evolution show differences being
compared to simulation D9 in Figure 6.1.
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Figure 6.3: The time averaged accretion rate (left plot) and ejection rate (right plot) for simula-
tions D9, D10, D11, D15 and D16 with the black hole spin parameter a = 0, 0.1, 0.2, 0.5 and
0.9375, respectively. The averages are taken in the time interval from t = 500tg to t = 800tg.
Note that the accretion rates in the left plot have been multiplied by −1 so that they can be plot
in a logarithmic vertical axis.

Figure 6.4: The toroidal magnetic field strength in logarithm for simulation D9 (left plot) and
D16 (right plot) at time t = 800tg. In the right plot, the field lines tangled by the black hole
rotation create a large amount of toroidal magnetic field around the rotational axis.
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D15 and D16, with respect to spin parameter a. As we can see in the left plot, the simulations
with higher black hole spin parameters return weaker accretion rates. The offsets from simulation
D15 may be caused by the choice of the time interval for averaging; note that the averages are
taken from t = 500tg to t = 800tg and the accretion system is not yet in steady state at time
t = 800tg. The ejection rates presented in Figure 6.3 right plot does not show a clear trend.
However, the outflow efficiencies (Equation 5.9) for these simulations, which are ξ = 56%, 75%,
94%, 75% and 434%, respectively, are clearly amplified by the increasing black hole spin.

The influence of the black hole spin on the accretion and ejection rates can be explained by
the behavior of the magnetic field lines that penetrate the black hole ergosphere. As illustrated
in Section 1.3.2, the rotation of the black hole will create an ergosphere around itself. The
magnetic field lines which penetrate the ergosphere will be tangled around the rotation axis, and
thus we can expect a larger toroidal field near a rotating black hole than a non-rotating black hole.
To confirm this point, I plot the toroidal field strength for simulations D9 and D16 (see figure
caption) in Figure 6.4. In simulation D9, the black hole is not rotating and the toroidal magnetic
field is induced by the rotation of the accretion disk. For this reason, the toroidal field can be
found mainly in the disk and outflow region. The black hole in simulation D16 rotates rapidly,
thus we see an amplified toroidal field due to the co-rotation of the spacetime with the black
hole (see Section 1.3.2). Additionally, simulation D16 presents strong toroidal magnetic field
strength in the vicinity of the black hole horizon whereas no toroidal field is shown in simulation
D9. This is strong evidence of the black hole frame dragging mentioned above. I believe that the
magnetic pressure from the toroidal field near the black hole horizon tends to “push back” the
accreting flow, and hence, suppress the accretion rate. This leads to the lower accretion rates for
simulations with a , 0.

6.2 Blandford-Znajek process in the simulation

The power of the Blandford-Znajek process (see Section 2.4) can be calculated by the electro-
magnetic energy flux that leaves the black hole horizon. Here I follow McKinney & Gammie
(2004) and define the total electromagnetic energy flux that goes through a certain radius R as

Ė(EM) = 2π
∫ π

0
dθ
√
−g(r, θ)|r=RF(EM)

E (r, θ)|r=R, (6.1)

where

F(EM)
E (r, θ) = −T r

t
(EM)

= −[(b2 + e2)(uµuν +
1
2

gµν) − bµbν − eµeν

−uλeβbκ(uµε λβκ
ν + uνεµλβκ)] (6.2)

is the electromagnetic energy flux per solid angle (see Equation 3.24). The time averaged F(EM)
E

for simulation D16 from t = 500tg to t = 800tg at radius r = 2rg is shown in the left plot of
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Figure 6.5: Left: The time averaged profile of electromagnetic energy flux per solid angle (F(EM)
E ,

defined by Equation 6.2) along θ for simulation D16. The values of F(EM)
E are calculated at

r = 2rg and averaged from t = 500tg to t = 800tg. Right: The same profile (but also hemisphere
averaged) from an ideal GR-MHD simulation in McKinney & Gammie (2004). The simulation
employed a gas torus surrounding a rotating black hole with spin parameter a = 0.5. This plot is
adopted from McKinney & Gammie (2004).

Figure 6.6: The time averaged electromagnetic energy flux defined by Equation (6.1) measured at
r = 2rg for simulations D9, D10, D11, D15 and D16. The averages are taken in the time interval
from t = 500tg to t = 800tg. To eliminate the influence of accreting flow, I only integrate θ from
0◦ to 75◦ and 105◦ to 180◦. The energy flux shows a clear enhancement with the increasing black
hole spin.
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Figure 6.7: The time averaged electromagnetic energy flux (left plot) defined by Equation (6.1)
and the time averaged matter energy flux (right plot) defined by Equation (6.3) measured at
different radius as indicated in the plots. The averages are taken in the time interval from t =

500tg to t = 800tg. To eliminate the influence of accreting flow, I only integrate θ from 0◦ to 75◦

and 105◦ to 180◦. The energy fluxes increase with the radius which implies that the disk wind
has a positive influence on both the electromagnetic and matter energy fluxes.

Figure 6.5. The positive F(EM)
E values in the regions θ from 20◦ to 70◦ and from 110◦ to 160◦

are specifically the energy output from the black hole through the Blandford-Znajek mechanism.
The negative peaks that point down near the disk mid-plane indicate the accreting flow from
the disk. The reason why there are several peaks instead of one, is unclear. However, we can
compare this plot to the right plot in the same figure, where the same time averaged profile from
the ideal GR-MHD simulation in McKinney & Gammie (2004) is presented. Their simulation
initially employed a gas torus surrounding a rotating black hole with spin parameter a = 0.5.
The F(EM)

E values in this plot were also influenced similarly by the disk accretion. Note that
McKinney & Gammie (2004) employed a thick torus and ideal GR-MHD, which enhance the
influence of the accretion on F(EM)

E .

Using the definition in Equation (6.1), I plot the time averaged electromagnetic energy flux mea-
sured at r = 2rg for simulations D9, D10, D11, D15 and D16 in Figure 6.6. The simulations with
a 6 0.5 still return negative electromagnetic energy flux, even if I do not consider the influence
from the accreting flow (see figure caption). I attribute this behavior of the energy flux to the
time evolution of the corona density that I set in the spherical region r < 6g (see Section 5.1).
The black hole horizon cannot provide any support to the corona. Thus the corona will gradually
fall into the black hole. The falling corona with a certain density can then cause an amount of
Poynting flux that enters the black hole. When the output energy flux from black hole is weaker
than that from the corona Poynting flux, the electromagnetic energy flux will then be negative.
Taking this into account, the energy output from the black hole clearly increases with the black
hole spin parameter.

However, the energy flux of the Blandford-Znajek process does not show an obvious non-linear
growth with the increasing a in Figure 6.6 when compared to the results in McKinney & Gammie
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(2004); Tchekhovskoy et al. (2010). The reason for this is still unclear to me. Perhaps like I
mentioned earlier, in the time interval from t = 500tg to t = 800tg, the evolution of the system is
not yet steady, so the accretion from the disk can influence the magnetic field strength around the
black hole horizon and lead to an unexpected Blandford-Znajek power, since the energy output
from the black hole also depends on the magnetic field strength (see Section 2.4.1).

6.3 Disk wind v.s. Blandford-Znajek effect

Finally, it is the exciting moment to compare the energy output from the black hole to that from
the disk wind. In this analysis, I focus on simulation D16, which has the largest spin parameter.
Since the energy output from a black hole is indicated by the electromagnetic energy flux in the
radial direction, I take here the matter energy flux in the radial direction Ė(MA) as indication of
the energy output from the disk wind. Similar to Equation (6.1), Ė(MA) is defined by

Ė(MA) = 2π
∫ π

0
dθ
√
−g(r, θ)|r=RF(MA)

E (r, θ)|r=R, (6.3)

where

F(MA)
E (r, θ) = −T r

t
(MA)

= −[(ρ + u)uµuν + p(uµuν +
1
2

gµν)] (6.4)

is the matter energy flux per solid angle (see Equation 3.24).

With this definition, I then calculate the time averaged electromagnetic energy flux and matter
energy flux for simulation D16 at different radii in Figure 6.7. In the left plot, the electromagnetic
component of the energy flux is presented. The flux values show an obvious growth from r = r10

to r = 40rg, which implies that the outflowing disk wind also contributes to the radial component
of the electromagnetic energy flux. Note that the outflows originate from the disk surfaces;
calibrating the flux at a larger radius means including larger areas of disk surfaces and more
outflows, hence larger contribution from the disk wind to electromagnetic energy flux. This
growth stops at r ∼ 50rg since the outflow and the launching area have not yet reached that far
within t 6 800tg (see Figure 6.2). In the right plot of the same figure, the matter component of the
energy flux is presented. Similar to the electromagnetic energy flux, the matter energy flux also
grows with increasing radius. Within r . 30rg, the accreting flow is predominant and the matter
energy flux is negative, while at r > 30rg, outflow begins to dominate which leads to positive
matter energy flux. Above the radius r = 50rg, growth ceases because of the same reason that
halted the electromagnetic energy flux growth.

On one hand, according to Figure 6.6, the pure energy output from the black hole in simulation
D16 is Ė(EM) ∼ 10−5. This value increases to ∼ 10−4 if we take the Poynting flux from disk
wind into account (see Figure 6.7). On the other hand, the energy output from the disk wind is
Ė(MA) ∼ 10−3. Thus, the conclusion in this preliminary study is that the disk wind substantially
contributes in the energy production within this specific evolution period of simulation D16.
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As was once mentioned in Section 2.4.1, (Blandford & Znajek 1977) assumed ideal MHD con-
dition in their derivation of the Blandford-Znajek effect. They argued that “the magnetic flux
will be frozen into the accreting material and so the field close to the horizon can become quite
large-much larger than the field at infinity.” This condition is, nevertheless, not quite satisfied in
the simulations in this section because the disks are magnetically diffusive. On the other hand,
the ideal MHD condition above the disk required by disk-driven wind is well satisfied since the
diffusivity value drops exponentially in the direction away from the disk mid-plane (see Equation
5.6). This contrast of the diffusivity level may be reflected, to some extent, by the dominance of
the energy output from the disk wind.

6.4 Summary and conclusions

For the main purpose of this project, I discussed the simulations that have non-zero spin black
holes in this chapter. I found that the accretion rate is suppressed by the increasing black hole spin
parameter a, due to the magnetic pressure from tangled toroidal field lines around the horizon
induced by the spacetime frame dragging of the rotating black hole. The accretion rate for the
simulation with black hole spin a = 0.9375 is 10 times smaller than that for the simulation
with a non-rotating black hole. Furthermore, the magnetic pressure from the tangled field lines,
despite its suppression on accretion, still acts positively on the ejection by increasing the ratio
of ejection rate to accretion rate. In the analysis of the simulation with a = 0.9375, I observed
a spherically integrated radial energy flux from the disk wind that is ∼ 102 times stronger than
the electromagnetic energy flux generated by the rotating black hole (Blandford-Znajek effect).
Thus, in this preliminary study, the energy production of the accretion system is dominated by
disk wind.





Chapter 7

Conclusions and Future Projects

In this thesis, the resistivity, or magnetic diffusivity, has been implemented into an existing GR-
MHD code. The new code is named rHARM and its resistivity performance has been tested.
The purpose for developing rHARM is to run simulations that can better imitate the physical
environment of the black hole accretion system predicted by theories. Thus, several such simula-
tion surveys have been carried out by rHARM after its completion. I now summarize my major
conclusions; further results are noted in the corresponding sections of the individual chapters. In
this chapter, I will also give an outlook for possible future projects that can extend the content of
this thesis work.

Summary of main conclusions

In Chapter 3, I have illustrated the implementation of magnetic diffusivity into the ideal GR-
MHD code HARM (Noble et al. 2006) and provided test simulations. The implementation of
resistivity requires applying the general form of the stress energy tensor including the electric
field to rHARM. The calculation of the electric field follows the equations in Bucciantini & Del
Zanna (2013). The inversion scheme in rHARM is based on the 2D inversion scheme in Noble
et al. (2006) and uses an extra loop to make the electric field variables converge.

I have verified my implementation of resistivity by comparing the diffusion of an initial magnetic
field distribution to the analytic time evolution of the profile as given by the diffusion equation.
These simulations were performed in rectangular boxes of weakly magnetized gas, excluding any
dynamical effect by Lorentz forces. Boxes at different distances from the black hole were inves-
tigated. The magnetic diffusion evolving in rHARM are identical to the known analytic solution
for different magnetic diffusivities from η = 10−10 to η = 10−2. I have further tested rHARM
with a classical shock tube problem and found very good agreement for magnetic diffusivities
η < 0.1. For larger diffusivity, rHARM does not capture the shock front perfectly, but such large
diffusivities are anyway beyond the scope of our aims of treating the disk accretion-ejection
structure.

Having implemented physical magnetic diffusivity in the code, it is now able to measure the
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numerical diffusivity. The magnetic diffusivity clearly depends on the setup and resolution. For
a cell size of ∆x ' 0.01, the numerical diffusivity is ηnum ∼ 10−5.

In Chapter 4, I have applied rHARM to a more astrophysical context, namely, investigated the
development of the magneto-rotational instability (MRI) in tori that are magnetically diffusive.
Here the simulations follow the initial setup in Gammie et al. 2003; Noble et al. 2006, which
is an initially stable gas torus that carries a poloidal magnetic field that follows the density con-
tours. As further verification of the new code rHARM, I have ran a simulation with a very small
magnetic diffusivity η = 10−12 (that is clearly below the numerical diffusivity of the code). This
simulation recovers the time evolution of the accretion rate that has been found previously by
using the ideal GR-MHD code HARM. In contrast, in the simulation with a high diffusivity
η = 10−3, the mass accretion onto the black hole decreases significantly due to the suppression
of MRI. In order to investigate further the influence of magnetic diffusivity on relativistic MRI
tori, I have performed a parameter survey ranging from η = 10−12 to η = 10−3. I find indication
for a critical magnetic diffusivity value of η & 5× 10−4 (in this specific simulation model), above
which the MRI inside the torus does not grow in the linear regime.

In Chapter 5, I have presented rHARM survey of MHD launching of disk winds from a thin
accretion disk threaded by inclined open poloidal field lines. The results are preliminary since
the simulations did not yet reach a quasi-steady state of accretion-ejection that is known from
non-relativistic simulations.

I first discussed the results from the simulation with a non-diffusive very weak magnetized
(plasma-β = 108) disk around a zero-spin black hole. No outflow is observed in this case and
the accretion disk keeps its disk-like shape during the evolution. I have shown the MRI growth
inside the accretion disk which leads to the accretion of matter onto the black hole (see Section
5.3). As far as I know, this is the first time that MRI is directly observed inside the thin accretion
disk in a GR-MHD simulation.

In the same simulations with strong magnetic field (plasma-β = 10), disk wind ejections are
clearly detected. I then investigated the relation between accretion and ejection rates and the
different levels of diffusivity. In my analysis, I found that (i) the increasing diffusivity level
suppresses the MRI process inside the disk and lowers the matter accretion rate onto the black
hole, the accretion rate from the simulation with diffusivity normalization factor 10−4 is about
102 times larger than that from the simulation with diffusivity 10−2, (ii) a lower accretion rate
is always accompanied by a lower disk wind ejection rate, thus the increasing diffusivity level
also weakens the disk wind ejection rate, and (iii) the increasing diffusivity level helps to prevent
the magnetic field above the disk from turbulent structure. Although the accretion rate is 102

times weaker, the ratio of ejection rate to accretion rate from the simulation with diffusivity
normalization factor 10−2 is almost 8 times larger than that from the simulation with diffusivity
10−4.

From my analysis, I attributed the predominant driving force of the disk wind launching in
the simulations with strong magnetic field to the toroidal magnetic field pressure gradient and
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showed that the contributions from the poloidal field pressure gradient and thermal pressure gra-
dient are minor for wind launching. It is not yet clear if the jet is driven centrifugally since the
force projection analysis along the steady field lines is not possible here. Additionally, the sim-
ulations with the “more vertical” initial magnetic fields (less inclined towards disk mid-plane)
show stronger accretion and ejection rates because of the faster propagation of toroidal magnetic
fields in the vertical direction.

At the end of Chapter 5, I also showed that the numerical diffusivity has noticeable influences on
the current survey simulations with grid resolution 128 × 128. The huge time consumption for a
higher resolution survey strongly suggests the parallelization of rHARM.

Finally, as the main purpose of this project, I discussed the simulations that have non-zero spin
black holes in Chapter 6. I found that the accretion rate is suppressed by the increasing black
hole spin parameter a due to the magnetic pressure from tangled toroidal field lines around the
horizon built by the spacetime frame dragging of the rotating black hole. The accretion rate for
the simulation with black hole spin a = 0.9375 is 10 times smaller than that for the simulation
with a non-rotating black hole. Furthermore, the magnetic pressure build by the tangled field
lines, despite its suppression on accretion, still acts positively on the ejection by increasing the
ratio of ejection rate to accretion rate. In the analysis of the simulation with a = 0.9375, I
observed a spherically integrated radial energy flux from the disk wind that is about 102 times
stronger than the electromagnetic energy flux generated by the rotating black hole (Blandford-
Znajek mechanism). Thus, in this preliminary study, the energy production of the accretion
system is dominated by disk wind.

Future Projects

Within this thesis, magnetic diffusivity has been implemented into a GR-MHD code and the
simulation surveys that are executed by this new code show encouraging results. Nevertheless,
there are indeed some elements in this work that deserve improvement. Here, I will write my
opinions to and outline how further progress can be achieved.

As one of the two key issues within this work, the huge time consumption of running rHARM
simulations has directly lead to the results incompletion of simulations D7 and D17 in Chapter 5.
Moreover, I have also pointed out in Section 5.9 that the numerical diffusivity value is comparable
to the magnetic diffusivity values that is scientifically interesting in disk wind production, thus
requiring rHARM surveys with higher grid resolution. For the future researches with rHARM,
it is necessary to speed up the current version of code. From my knowledge of rHARM and
HARM (see Gammie et al. 2003; Noble et al. 2006), there is not much space left that can be done
to accelerate the current code by changing the routine structures. Nevertheless, a large potential
exists in the code parallelization, which would allow for the execution of several processes in
rHARM to be carried out simultaneously. If this can be achieved, the results in Chapter 5 will
become more accurate and can be discussed over a longer time range.
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The other key issue that constrain the performance of rHARM is the robustness of the inversion
scheme. Under certain circumstances, the scheme cannot converge the roots properly in convert-
ing the primitive variables to conserved variables (see Section 4.2 and 5.8). The convergence
issue, which always shows up first at the boundary of the computational domain, will spread
out and lead to the unphysical evolution in the whole simulation region. If this issue is solved,
interesting simulations, especially those with fast rotating black hole spins can by investigated
for a much longer time period than discussed in Section 6. Improving the inversion scheme is a
purely numerical problem.

In my opinion, the improvements of the inversion scheme can be done mainly in two aspects,
namely improving the solver and improving the structure of the time evolution. The solver is
responsible for solving the two implicit equations in Equation (3.45). In rHARM, they are solved
by a 2+1 dimensional Newton-Raphson iteration method (see Sectinon 3.2.3 and Appendix A.6),
which might not perform well when the shapes of the equations are complicated, e.g., shapes with
large slope, local maxima/minima in certain variable, etc. The specific improvement of the solver
should be made after diagnosing the exact difficulty in the convergence process.

There are many variations of Newton-Raphson methods that might work better in certain regimes
than the standard version applied in the current rHARM. However, I will very roughly discuss
the possibility of using a totally different family of methods as another option, i.e., the Markov
chain Monte Carlo methods (Berg 2004). The Markov chain Monte Carlo method is usually used
for sampling the likelihood of a parameter space. According to Equation (A.6), we can build the
parameter space upon (v2v2v2,W) and define the likelihood as

L = −(A2 + B2) (7.1)

where

A = Q̃̃Q̃Q2 − v2v2v2W2 + (EEE ×BBB)2 + 2EEE · (Q̃̃Q̃Q ×BBB),

B = U −W + p(v2v2v2,W) −
1
2

(EEE2 +BBB2). (7.2)

The root of (v2v2v2,W) in Equation (A.6) togther with the parameter space near it will return the
largest likelihood and be mostly sampled. We can then take the average of the mostly sampled
(v2v2v2,W) samples after the convergence of the Markov chain. In Markov chain Monte Carlo, step
length for root searching is independent of the equation, while in the Newton-Raphson method,
it depends on the local derivative of the equation to the parameter. Thus applying Markov chain
Monte Carlo could avoid problems when the derivative is extremely small. Additionally, an
affine-invariant ensemble sampler for Markov chain Monte Carlo is built in Foreman-Mackey et
al. 2013, which can handle local maxima/minima in parameter space. Thus the Markov chain
Monte Carlo method could be employed in rHARM as a backup solution when the standard
solver fails to converge.

Improving the structure of the time evolution may also help the convergence of the inversion
scheme in rHARM. The time evolution in current rHARM employs a simple first-second scheme
described by Equation (3.48). It is feasible to substitute it with the IMEX schemes introduced in



CONCLUSIONS AND FUTURE PROJECTS 139

Palenzuela et al. (2009). As shown in the tests by Bucciantini & Del Zanna (2013), the IMEX
schemes return better convergences, especially in the high resistivity regime, than the first-second
scheme.

Aside from the improvements that could be made in rHARM, it would also be an interesting
future project to extend the current axial-symmetric 2-dimensional code to 3-dimensional. Since
rHARM is able to resolve the magnetic reconnection, a fully 3D code would allow one to inves-
tigate the energy release of the shock waves that is produced by the reconnection of the toroidal
magnetic field (Machida & Matsumoto 2003) and other interesting phenomena.

As the first step of reforming ideal HARM, rHARM only considers the implementation of re-
sistivity (magnetic diffusivity). In Bucciantini & Del Zanna (2013), the evolution equations of
both resistivity and mean field dynamo are given. But currently, there are only few existing GR-
MHD codes that include mean field dynamo. (Bugli et al. 2014) has studied a kinematic dynamo
which assumes the background flow structure as given. Sa̧dowski et al. (2015) has implemented
a mean-field model in the general relativistic radiation magnetohydrodynamic code and applied
it to thick disk simulations. Based on the derivation in Bucciantini & Del Zanna (2013) and
the success of resistivity implementation in this thesis work, it would be very interesting to also
develop a resistive GR-MHD code that takes the mean field dynamo self-consistently into ac-
count. If this can be achieved, we can run simulations of black hole accretion system where the
large scale magnetic field can be evoked by small-scale velocity fluctuations in the accretion disk
instead of being given prior.

Everything that was done throughout this thesis and proposed in this final chapter might help to
discover the origin of relativistic AGN jets. One day, the “true face” of the unresolved center
region in a massive galaxy will be revealed!





Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor Christian
Fendt who always answered, with great patience, to my major or minor questions. I thank him
for enlightening my understanding of the subject that I was working on. I thank my coauthor
Scott Noble who provided the HARM code, which the new code rHARM is based. I appreciate
the opportunity to learn directly from him in Tulsa during my PhD study. I am grateful for
having an excellent colleague, Matteo Bugli, who helped me substantially in the development of
the inversion scheme in rHARM. It has also been a great pleasure to have valuable discussions
with Somayeh Sheiknezami and Christos Vourellis. I thank Steffi Yen as the language editor of
this thesis.

For being part of my thesis committee and for the follow up of my project, I express my gratitude
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Appendix A

Appendixes

A.1 Superluminal motion

In astronomical observations, it is possible to see objects whose apparent motion is faster than
the speed of light. This phenomenon is called “superluminal motion.” Superluminal motion can
be seen in AGN jets, like e.g. some radio galaxies, BL Lac objects, quasars and recently also in
some microquasars (Porcas 1983; Biretta et al. 1995). When first observed in the early 1970s,
superluminal motion was taken to be a piece of evidence against quasars having cosmological
distances. Today, it is believed that apparent velocities greater than the velocity of light are only
optical illusions in the frame of special relativity.

Figure A.1: An illustration for the astronomical superluminal motion. Please see corresponding
text for the derivation. Credit: Muhammad, Wikipidia

Superluminal motion can be explained by assuming that jets are travelling very close to the
speed of light at a very small angles towards the observer. As shown in Figure A.1, observer O
is measures a far away (φ � 1, OB ∼ OC = DL) event, where an object moves from point A to
point B within time t2 − t1 = δt with velocity v = |vvv| (v < c) and an angle θ to the line of sight.
Because the event is at large distance from O, the observer can only see the event as if the object
moves from C to B. On the other hand, the light of the object emitted at point A will be received
by the observer at time

t,1 = t1 +
OA
c

= t1 +
DL + vδt cos θ

c
, (A.1)

1
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while the light of the object emitted at point B will be received at time

t,2 = t2 +
OB
c

= t2 +
DL

c
. (A.2)

Thus, for the observer O, the object moves from point C to B within time δt, = t,2 − t,1 = δt −
vδt cos θ/c. The apparent velocity of this event for O is then

v, =
BC
δt,

=
vδt sin θ

δt − vδt cos θ/c
=

v sin θ
1 − β cos θ

, (A.3)

where β = v/c. Equation (A.3) can also be written in the form

β
′

=
v,

c
=

β sin θ
1 − β cos θ

, (A.4)

A greater-than-light apparent velocity means that β
′

> 1, which implies the condition

β >
1

√
2 sin(θ + π/4)

. (A.5)

The minimum value of β to obtain superluminal effects is then a function of viewing angle θ. The
minimum for β appears when the viewing angle is θ = π/4. In this case, the original velocity of
the object needs to exceed 0.71c.

A.2 3+1 spacetime

Because of computational reasons, the physical quantities (tensors and vectors) are sometimes
projected to the spacetime that is perpendicular to a certain four-vector in the numerical re-
alization of rHARM. In the following, the concepts of spacetime decomposition and “normal
observer,” together with the definition of the projection tensor, will be illustrated.

A.2.1 Split spacetime into space and time

In this section, we use (t, x1, x2, x3) to denote the coordinates where t is the time-like compo-
nent, and (x1, x2, x3) are spatial components. The metric for the spacetime is gµν. Now we
“slice” the spacetime in the time coordinate, vectors within each slice Σt have vanishing zero-th
component. Assuming that the spacetime is curved such that the inner product of a time vector
t̃̃t̃t = (1, 0, 0, 0) = ∂t and an arbitrary vector XXX = (0, X1, X2, X3) on Σt is g(t̃, X) , 0, the time-like
vector t̃̃t̃t can then be split into the component on Σt and the component normal to Σt. We note this
decomposition as

t̃̃t̃t = αnnn + βββ, (A.6)
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Figure A.2: A schematic explanation of the normal vector in 3+1 spacetime. Between the two
slices of pure space, σt and σt+dt (see text), the red vector nnn shows the heading of time in local
Minkowski space, while the green vector ttt shows the direction of coordinate time in curved
spacetime, which actually has projections in spacial components. The shift in the space during
the coordinate time t and t + dt is given by the blue vector βββ. Credit: Rezzolla & Zanotti (2013)

where vector βββ is the spatial decomposition of t̃̃t̃t and nnn is a vector that is normal to Σt (g(nnn, βββ) = 0).
The parameter α is defined by

α ≡ −g(t̃, n). (A.7)

The task now is to find the expression of the parameter α and the components in α and βββ by
known quantities. The restriction of the spacetime metric on Σt gives rise to the induced metric

γ̂ = γi jdxi ⊗ dx j, (A.8)

where by definition γi j ≡ gi j. According to the definition of dot product,

g(βββ,βββ) = γ(βββ,βββ) = βββ2. (A.9)

If we write βββ = (0, β1, β2, β3) and with g(nnn, ∂i) = 0, we have

gti = g(∂t, ∂i)

= g(αnnn + βββ, ∂i)

= g(βββ, ∂i)

= g jiβ
j ≡ βi. (A.10)

Similarly,

gtt = g(∂t, ∂t)

= g(αnnn + βββ, αnnn + βββ)

= −α2 + 2αg(nnn, βββ) + g(βββ,βββ)

= βββ2 − α2. (A.11)
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Equations (A.10) and (A.11) give the expression of the parameter α and components in β by the
components of metric tensor. We can then also write the metric tensor in the following way

ds2 = (βββ2 − α2)dt2 + 2βidtdxi + γi jdxidx j. (A.12)

According to the definition, the normal vector nnn is then

nnn =
1
α

(t̃̃t̃t − βββ) ≡
1
α

(1,−βi). (A.13)

A trivial calculation shows that

nµ = gµνnν = (−α, 0, 0, 0), (A.14)

which is the covariant form of the normal vector nµ. The observer with a four velocity of nnn is
then called a “normal observer” or “Eulerian observer.” A schematic explanation of the normal
vector is given in Figure A.2.

A.2.2 The projection tensors

Knowing a four vector uuu, it is possible to write a projection tensor that can project any vector
onto the spacetime that is perpendicular to uuu by writing the projection tensor as

hµν = gµν + uµuν. (A.15)

The correctness of tensor hµν can be easily proven in the following way. Assume an arbitrary
vector vvv, its projection is

vvv⊥ = hµνv
ν

= gµνv
ν + uµuνvν

= vµ + uµ· < µ, ν > . (A.16)

The inner product of vvv⊥ and uuu is then

< vvv⊥,uuu > = vµuµ + uµ· < µ, ν > uµ
= < µ, ν > − < µ, ν >

= 0. (A.17)

Thus, vvv⊥ is indeed perpendicular to uuu. Similarly, we can define a projection tensor jµν which
projects any vector onto the spacetime that is perpendicular to the normal observer nnn where

jµν = gµν + nµnν. (A.18)

The projection tensor jµν will be used in defining the primitive variables in rHARM (see Chapter
3).
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A.3 Orbits shift of Keplerian rotating object

Consider an object with mass m rotating around a massive object with mass M on an orbit r1.
The mass m is ignorable in comparison with M, as m � M. The angular momentum L of the
object as a function of radius r is

L = m
√

GMr. (A.19)

The Keplerian velocity v1 and the kinetic energy E1 of the object are

v1 =

√
GM
r1

,

E1 =
1
2

mv2
1 =

GMm
2r1

. (A.20)

Imagine that the object now moves to orbit r2, during which only gravity does work so that
angular momentum is always preserved. Then, the new kinetic energy E,

2 at r2 can be expressed
by

E,
2 = E1 + V2 − V1 =

GMm
2r1

+ GM
(

1
r2
−

1
r1

)
, (A.21)

where V1 and V2 denote the gravitational potential at r1 and r2. Using the definition

E,
2 =

1
2

mv,2, (A.22)

we can solve for the final velocity of the object

v,2 =
√

GM ·

√
1
r2

+

(
1
r2
−

1
r1

)
. (A.23)

On the other hand, the Keplerian velocity at r2 is

v2 =
√

GM ·

√
1
r2
. (A.24)

Thus if the object moves inwards, r2 < r1, hence v,2 > v2, the object will then be accelerated
outwards back to r1 by the centrifugal force. If it moves outwards, r2 > r1, v,2 < v2 and the
centrifugal force is weaker against gravity, then the object is pulled again back to r1. As a result,
in a differentially rotating medium with a distribution of angular momentum increasing outwards,
matter is stable with respect to small shifts preserving the angular momentum.

A.4 Different regimes in the radial direction of the Shakura
& Sunyaev disk model

In the Shakura & Sunyaev disk model, the disk structure in the radial direction consists of the
combination of three different regimes a), b) and c) (see Section 2.1.2). It is convenient to
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introduce the following non-dimensional parameters

m =
M
M�

,

ṁ =
Ṁ

Ṁcr
=

Ṁ

3 · 10−8 M�
yr

×

(M�
M

)
,

r =
R

3rH
=

1
6

Rc2

GM
=

M�
M

R
9km

, (A.25)

where M� is the solar mass, rH is the horizon of a Schwarzschild black hole and Ṁcr is the mass
accretion rate at Eddington critical luminosity. In the regime a), radiation pressure and Thomson
scattering is dominant, namely Pr � Pg and σT � σ f f . Using Equation (2.8) with Equations
(2.15) and the condition of sound speed v2

s = ε
3ρ , the disk half thickness in this regime is

z0[cm] =
3

8π
σT

c
Ṁ(1 − r−1/2) = 3.2 · 106ṁm(1 − r−1/2). (A.26)

Regime a) represents the middle part of the disk, thus r � 1 and the disk thickness along the
radius is almost constant (see Shakura & Sunyaev 1973 for a detailed discussion of the disk
structure). Apply the sound speed condition to Equation (2.13), we obtain from Equations (2.13)
and (2.15)

u0

[ g
cm2

]
=

64π
9α

c2

σ2
T

= 4.6α−1ṁ−1r3/2(1 − r−1/2)−1,

ε
[ erg
cm3

]
= 2

c
σT

Ω

= 2.1 · 1015α−1m−1r−3/2,

n
[
cm−3

]
=

u0

2mPz0

= 4.3 · 1017α−1ṁ−2m−1r3/2(1 − r−1/2)−2,

vr

[cm
s

]
=

Ṁ
2πu0R

= 7.7 · 1010αṁ2r−5/2(1 − r−1/2),

H[Gauss] 5

√
4π
3
αε

= 108m−1/2r−3/4. (A.27)

The effective temperature can be calculated by Equation (2.16):

T [K] = 2.3 · 107(αm)−1/4r−3/4. (A.28)

The optical depth, with respect to absorption for a plasma with σT � σ f f is determined as:
τ∗ =

√
σTσ f f u0, namely

τ∗ = 8.4 · 10−5α−17/16m−1/16ṁ−2 · r−93/32(1 − r−1/2)−2. (A.29)
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With the similar derivation for regime a), the physical quantities in regime b) and c) are

b) Pg � Pr and σT � σ f f

u0 = 1.7 · 105α−4/5ṁ3/5m1/5r−3/5(1 − r−1/2)3/5,

T = 3.1 · 108α−1/5ṁ2/5m−1/5r−9/10(1 − r−1/2)2/5,

z0 = 1.2 · 104α−1/10ṁ1/5m9/10r21/20(1 − r−1/2)1/5,

n = 4.2 · 1024α−7/10ṁ2/5m−7/10r−33/20(1 − r−1/2)2/5,

τ∗ =
√
σ f fσT u0 = 102α−4/5ṁ9/10m1/5r3/20(1 − r−1/2)9/10,

vr = 2 · 106α4/5ṁ2/5m−1/5r−2/5(1 − r−1/2)−3/5,

H 5 1.5 · 109α1/20ṁ2/5m−9/20r−51/40(1 − r−1/2)2/5. (A.30)

and

c) Pg � Pr and σ f f � σT

u0 = 6.1 · 105α−4/5ṁ7/10m1/5r−3/4(1 − r−1/2)7/10,

T = 8.6 · 107α−1/5ṁ3/10m−1/5r−3/4(1 − r−1/2)3/10,

z0 = 6.1 · 103α−1/10ṁ3/20m9/10r9/8(1 − r−1/2)3/20,

n = 3 · 1025α−7/10ṁ11/20m−7/10r−15/8(1 − r−1/2)11/20,

τ∗ = σ f f u0 = 3.4 · 102α−4/5ṁ1/5m1/5r3/20(1 − r−1/2)1/5,

vr = 5.8 · 105α4/5ṁ3/10m−1/5r−1/4(1 − r−1/2)−7/10,

H 5 2.1 · 109α1/20ṁ17/40m−9/20r−21/16(1 − r−1/2)17/40. (A.31)

A.5 The electromagnetic component in the stress-energy ten-
sor in resistive GR-MHD

The electromagnetic part in the stress-energy tensor is defined by

T µν = FµαFν
α −

1
4

gµνFαβFαβ. (A.32)

Note that changing the order of ν and α in expression Fν
α makes a difference, since

Fν
α = Fβαgνβ = −Fαβgβν = −F ν

α . (A.33)

We can start the calculation of T µν with the Faraday tensors

Fµν = uµeν − eµuν + εµνλκuλbκ,

Fµν = uµeν − eµuν + εµνλκ.uλbκ. (A.34)

The above definition has discrepancies with Equations (9) & Equation (17) in Bucciantini & Del
Zanna (2013) due to a different sign choice in the definition of Levi-Civita tensor εµνλκ. The
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second part in Equation (A.32) is determined by

FµνFµν = (uµeν − eµuν + εµνλκuλbκ) · (uµeν − eµuν + εµνλκuλbκ)

= uµeνuµeν − uµeνeµuν + uµeνεµνλκuλbκ

−eµuνuµeν + eµuνeµuν − eµuνεµνλκuλbκ

+εµνλκuλbκuµeν − εµνλκuλbκeµuν + εµνλκuλbκεµνλκuλbκ. (A.35)

It is straightforward to find that

uµeνuµeν = eµuνeµuν = −e2,

−uµeνeµuν = −eµuνuµeν − (e · u)2 = 0,

εµνλκbλuκεµνλκbλuκ = 2b2. (A.36)

where the last equality comes from ideal GR-MHD. Also, using the identity εαβγδuαuβ = 0, which
makes all terms except those in Equation (A.36) vanish. Thus we have

FµνFµν = 2b2 − 2e2. (A.37)

On the other hand, the first part in Equation (A.32) is determined by

FµαFν
α = (uµeα − eµuα + εµαλκuλbκ) · (uβeα − eβuα + εβαθϕuθbϕ) · gνβ

= (uµeα − eµuα + εµαλκuλbκ) · (uβeα − eβuα − εαβθϕuθbϕ) · gνβ

= uµeαuβeαgνβ − uµeαeβuαgνβ − uµeαεαβθϕuθbϕgνβ

−eµuαuβeαgνβ + eµuαeβuαgνβ + eµuαεαβθϕuθbϕgνβ

+εµαλκuλbκuβeαgνβ − εµαλκuλbκeβuαgνβ − εµαλκuλbκεαβθϕuθbϕgνβ. (A.38)

Here we also have the following relations which can help the calibration

uµeαuβeαgνβ = e2uµuν,

−uµeαeβuαgνβ = −eµuαuβeαgνβ = 0,

eµuαeβuαgνβ = −eµeν,

eµuαεαβθϕuθbϕgνβ = −εµαλ,κuλbκeβuαgνβ = 0,

−εµαλκuλbκεαβθϕuθbϕgνβ = b2gµν + b2uµuν − bµbν, (A.39)

where the last relation can be derived as following

−εµαλκuλbκ · εαβσγuσbγgνβ = εαµλκuλbκ · εαβσγuσbγgνβ

= −δ
µλκ
βσγuλbκu

σbγgνβ

= −(δµβδ
λ
σδ

κ
γ − δ

µ
βδ

λ
γδ

κ
σ − δ

µ
σδ

λ
βδ

κ
γ − δ

µ
γδ

λ
σδ

κ
β

+δµσδ
λ
γδ

κ
β + δµγδ

λ
βδ

κ
σ)uλbκuσbγgνβ

= b2gµν + b2uµuν − bµbν. (A.40)
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The remaining two terms −uµeαεαβθϕuθbϕgνβ and εµαλκuλbκuβeαgβν can be rearranged using the
identity εαβγδ = gαζgβηgγθgδ`εζηθ`, hence

−uµeαεαβθϕuθbϕgνβ = −uµeα(εABCDgAαgBβgCθgDϕ)uθbϕgνβ

= −uµeαεABCDgAαgνBuCbD

= −uµεAνCDbDuCeA

= −uµεβνλκbκuλeβ
= −uλeβbκuµενλβκ (A.41)

and

εµαλκuλbκuβeαgβν = εµαλκuλbκeαuν

= uλeβbκεµβλκuν

= −uλeβbκuνεµλβκ.

(A.42)

Thus, Equation (A.38) becomes

FµαFν
α = (b2 + e2)uµuν − bµbν − eµeν + b2gµν − uλeβbκ(uµενλβκ + uνεµλβκ). (A.43)

After applying the results in Equations (A.37) and A.43 to Equation (A.32), the electromagnetic
component in the stress-energy tensor in resistive GR-MHD can be then expressed by

T µν
EM = (b2 + e2)(uµuν +

1
2

gµν) − bµbν − eµeν − uλeβbκ(uµενλβκ + uνεµλβκ), (A.44)

or with the definition εαβγδuδ = εαβγ, by

T µν
EM = (b2 + e2)(uµuν +

1
2

gµν) − bµbν − eµeν − eβbκ(uµενβκ + uνεµβκ). (A.45)

A.6 Newton-Raphson Method

(The following paragraph refers to the article on Wikipedia.) Newton’s method (also known as
the Newton–Raphson method), is a method for finding successively better approximations to the
roots (or zeroes) of a real-valued function. Generally, in mathematical language, if f (x) is a
non-trivial function of x, the Newton–Raphson method can then be used to approximate the root
for

f (x) = 0 (A.46)

by a series of guesses for x. Starting with the initial guess x0, a better approximation x1 is given
by

x1 = x0 −
f (x0)
f ′(x0)

, (A.47)
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where f
′

(x0) is the derivative of f (x) to x at x = x0. Geometrically, (x1, 0) is the intersection of
the x-axis and the tangent of the graph of f (x) at (x0, f

′

(x0)). The process is repeated as

xn+1 = xn −
f (xn)
f ,(xn)

, (A.48)

until the solution for x returns an acceptable tolerance.

The Newton-Raphson method can be extend to equation systems with N functions and N vari-
ables. In our context, the equation system in Equation (3.45) is two dimensional. If we name the
two variables x and y, and the first equation AAA(x, y), the second equation BBB(x, y), the process of
the Newton–Raphson method is then expressed by

xn+1 = xn −
∂AAA(xn, yn)

∂xn
|(xn,yn) −

∂BBB(xn, yn)
∂xn

|(xn,yn),

yn+1 = yn −
∂AAA(xn, yn)

∂yn
|(xn,yn) −

∂BBB(xn, yn)
∂yn

|(xn,yn). (A.49)
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