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Zusammenfassung

In dieser Arbeit präsentieren wir eine Bayes’sche Methode um gleichzeitig die in-

terstellare Extinktion, die effektive stellare Temperatur und den Entfernungsmodul

zu einzelnen Sternen zu messen. Wir erstellen dreidimensionale Extinktionskarten

in Richtung der galaktischen Pole, indem wir photometrische Daten von der Sloan

Digital Sky Survey und UKIRT Infrared Deep Sky Survey kombinieren, sowie Karten

in der galaktischen Ebene mit Daten von Pan-STARRS1 und der Spitzer GLIMPSE

Durchmusterung.

Durch das Zusammenwirken von optischer und nah-infrarot Photometrie definieren

wir ein Model, welches in der Lage ist, die Farbänderung aufgrund physikalischer

Eigenschaften der Sterne und des interstellaren Mediums effektiv nachzubilden. Wir

berechnen die Wahrscheinlichkeitsdichten der astrophysikalischen Parameter für

Millionen Sterne einzeln und bestimmen anschließend gewichtete Entfernungspro-

file für die Extinktion A0 und den Extinktionsparameter R0.

Weiterhin führen wir eine neuartige, nicht-parametrische Methode ein, die als

gaußscher Prozess in sich selbst folgerichtig die dreidimensionale Staubdichte in

der Milchstraße bestimmen kann. Wir verwenden individuelle Extinktions- und Ent-

fernungsmessungen, sowie einfache Annahmen über die Entferungskorrelation der

Staubdichte, um die wahrscheinlichste Dichte an einem beliebigen Punkt zu berech-

nen, sogar dann, wenn sich dieser Punkt nicht auf einer beobachteten Sichtlinie

befindet. Wir demonstrieren anhand simulierter Daten, dass die Methode zuverlässig

bekannte Strukturen rekonstruieren kann.
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Abstract

We present a parametric Bayesian method to simultaneously infer interstellar extinc-

tion, stellar effective temperature and distance modulus to stars. We create three

dimensional maps of extinction towards the Galactic poles using multiband photom-

etry from Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey, and maps

in the Galactic plane using data from Pan-STARRS1 and Spitzer GLIMPSE surveys.

Using optical and near-infrared photometry we train a forward model to emulate

the colour change due to properties of stars and the interstellar medium. We predict

the probability density function of astrophysical parameters for millions of stars indi-

vidually and then construct weighted distance profiles in extinction A0 and extinction

parameter R0.

Furthermore we present a non-parametric model to self-consistently predict the

three-dimensional dust density in the Milky Way using a Gaussian process. Using

individual extinction and distance measurements to stars and basic assumptions

about the spatial correlation of the dust density we infer the most probable density

at any point, even if no observations are present along that line of sight. We demon-

strate the method’s ability to reliably reconstruct known dust structures with mock

data.
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1

Introduction

1.1 Dust

The distribution of dust varies strongly throughout our Galaxy, the Milky Way. How-

ever, an accurate picture of the three dimensional distribution is still not known.

This has significant implications, considering dust attenuates and reddens light from

Galactic and extra-galactic sources. This restricts the precision of many observa-

tions, in particular within the Galaxy. Considering the Milky Way is the only labora-

tory we have to measure many individual stars and test theories on, it is worthwhile

understanding and measuring the dust distribution within in.

The first systematic insight into this resulted from the heliocentric star map of

Kapteyn (1922), who realised that the star count dropped off in all directions from the

sun. A few years later, Trumpler (1930) was able to demonstrate that an interstellar

mechanism was responsible for this drop-off.

In the Milky Way approximately 1% of the mass is in solid form – dust (e.g. Draine,

2003). Despite its small mass fraction, dust plays an outsized role in observations. It

absorbes nearly 50% of all stellar light in the Universe, processing it and re-emitting

it at longer wavelengths (e.g. Kennicutt & Evans, 2012). Different dust molecules

have a wide range of energy levels to interact with light over a range of frequencies.

Perhaps it is therefore unsurprising that up to 30% of light emitted by the Galaxy was

last emitted by dust grains, rather than from the original source (Li & Greenberg,

2003).

Not only does dust influence how we perceive the Universe, interstellar dust

grains are the key ingredient in the formation of molecules. Their surfaces are

catalysts for molecular reactions. The most abundant element, hydrogen, primar-
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ily forms as molecules on the surface of dust grains. The other core constituents

of the interstellar medium (ISM), traces of heavier elements, are present in multiple

temperature and density phases. They are produced in outflows of evolved, high

mass-loss stars that shed their atmospheres, and supernovae. This hot gas cools

and condenses into particles that enrich the ISM (e.g. Speck et al., 2009; Kochanek,

2011).

Furthermore, dust is a primary source of cooling in hot gas clouds and enables

these to collapse and initiate star formation in the first place. At the same time, the

diffuse ISM is heated by dust absorbing energetic photons.

From observations we have learnt that dust forms as the metal-enriched stellar

ejecta cool. Dust is destroyed on timescales of roughly 5 ·108 yr (Seab, 1987), for

example through collisions with high velocity ions in dense environments, like those

found in supernovae shocks. At the same time, timescales of stellar ejecta are much

longer, at around 2.5 ·109 yr (Tielens et al., 1994). Dust formation, therefore, must

be dominated by other channels (e.g. Tielens et al., 1994; Draine, 2003).

1.2 Interstellar Extinction

The combined effect of absorption and scattering of light is called extinction. Follow-

ing Cardelli, Clayton & Mathis (1988), extinction in a narrow band at wavelength λ

can be parameterized as

Aλ = A0(aλ + bλ/R0) , (1.1)

where A0 is the extinction and R0 is the total-to-selective extinction ratio, often re-

ferred to as RV. The two parameters, aλ and bλ are fixed polynomials that are fit to

measurements in Johnson photometry. We use A0, the monochromatic extinction

at 5495 Å (following Cardelli, Clayton & Mathis, 1989), to characterise extinction as

a property of the ISM. Other parameterizations of extinction that tie its value to a

particular broad photometric band (such as AV), implicitly are functions of the spec-

tral energy distribution (SED) of a star and thereby depend strongly on the intrinsic

physical properties of the star itself, rather than solely on the characteristics of the

ISM.

Extinction is calculated as

A0 = −2.5 log
(∫

Fλhλ,010−0.4Aλdλ∫
Fλhλ,0dλ

)
, (1.2)
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by integrating over an SED Fλ ≡ Fλ(Teff) with fixed stellar effective temperature Teff,

whilst using the pass band function hλ,0 of the filter over all wavelengths.

Most extinction laws assume that reddening over each band corresponds to red-

dening at the band’s effective wavelength. However, due to the wavelength-dependent

nature of extinction the actual effective reddening wavelength is shorter than that of

the photometric filter. As a solution to this problem, Fitzpatrick (1999) uses the effec-

tive reddening wavelength to fit splines to extinction values. Through this approach,

these extinction laws are more accurate for narrow-band photometry, as well as

spectroscopic data.

The extinction parameter R0 is an indicator of dust grain size distribution and

composition. The parameter typically has values in the range 2.1 − 5.5 (Cardelli,

Clayton & Mathis, 1988). Higher R0 tend to be associated with dense regions of dust

(Roman-Zuniga et al., 2007), whereas lower values prevail in the diffuse interstellar

medium.

The physical properties of dust are typically inferred from extinction curves, which

are constructed empirically by comparing obscured and unobscured stellar sources

at various wavelengths. They describe the relationship between total extinction and

reddening and are often fit by polynomials between colour excesses in different

photometric bands. Different regions in the curves characterise different dust com-

ponents. A set of example curves for different values of RV are shown in Figure 1.1.

In the wavelength regime from 5− 20 µm dust emission is dominated by the molec-

ular bands of Polycyclic Aromatic Hydrocarbons (PAH, compounds containing only

carbon and hydrogen). At longer wavelengths the main effects come from ther-

mal continuum emission from the main dust population. Here, smaller dust grains

that are heated by radiation fields in star forming regions emit out to approximately

60 µm. Larger dust grains emit at even longer wavelengths (Draine, 2003).

Variations in the ultra-violet and optical regimes of extinction laws are well stud-

ied (e.g. Massa & Savage, 1989; Cardelli, Clayton & Mathis, 1989; Mathis, 1990).

More recently the infrared regime has become accessible through near- and mid-

infrared surveys such as Galactic Legacy Infrared Mid-Plane Survey Extraordinaire

(GLIMPSE, Benjamin et al., 2003; Churchwell et al., 2009) and UKIRT Infrared Deep

Sky Survey (UKIDSS, Lawrence et al., 2007). Despite a family of parameteriza-

tions being valid, typically the shape of extinction curves in optical and near-infrared

regimes depends only on R0, with minor variations for different wavelengths (Rieke

& Lebofsky, 1985; O’Donnell, 1994; Fitzpatrick, 1999). In the infrared regime, the

shape depends less on R0, but for ultra-violet (and shorter) wavelengths the depen-

dency is strongest. Using multiband photometry to measure extinction is therefore
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Figure 1.1: Extinction curves for RV values of 2.1, 3.1, 4.1 and 5.1. using the parameteri-
zation of Fitzpatrick (1999). Extinction at a wavelength is normalised to the corresponding
B − V reddening.

a good approach to characterising the dust properties in the ISM.

1.3 Extinction Models

There are two main categories of large-scale extinction models, or dust maps. The

first attempts to map dust in two dimensions, effectively characterising line of sight

extinction. The second, more recent, group focusses on improving the three dimen-

sional understanding of the dust distribution in our Galaxy.

The first two dimensional dust maps used the correlation between the dust col-

umn density and the distribution of neutral hydrogen (Burstein & Heiles, 1978). The

most widely used, large-scale dust study is that of Schlegel, Finkbeiner & Davis

(1998, hereafter SFD), who created a two dimensional map of total line of sight dust

column density in the Milky Way by analysing dust emission at 100 and 240 µm.

Assuming a standard reddening law and using calibrated dust temperatures, SFD

were able to produce maps that were at least twice as accurate, and more detailed,

as earlier ones.

However, the SFD maps are known to overestimate reddening by a factor of up

to 1.5 in regions where V -band extinction exceeds 0.5 mag, and underestimate it

in regions with steep extinction gradients (e.g. Arce & Goodman, 1999; Schlafly &

Finkbeiner, 2011).

The main shortcoming of these kind of maps is the fact that they are only two di-
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mensional. Sources inside the Galaxy lie within the dust and are likely to be affected

by only a portion of the total dust column. To overcome this, several smaller-scale

and then large scale three dimensional dust maps were created.

Hakkila et al. (1997) created an all-sky empirical extinction model by combining

results from several other surveys (Fitzgerald, 1968; Neckel, Klare & Sarcander,

1980; Berdnikov & Pavlovskaya, 1991; Arenou, Grenon & Gómez, 1992). Using

an extinction law parameterization from Cardelli, Clayton & Mathis (1989) with fixed

RV = 3.1 with intrinsic and observed B- and V -band magnitudes, they were able to

reconstruct line of sight extinctions to 78, 000 individual stars. Due to the assump-

tion of a fixed RV these maps had relatively large measurement errors, as well as

limited distance and angular resolution. Although many studies find RV = 3.1 to be a

common value for many sightlines through the diffuse interstellar medium, Schlafly

et al. (2010), Hanson & Bailer-Jones (2014) and others have found a broad range of

possible values across the sky.

In the last decade or so, significant advancements on these early maps have been

made. Marshall et al. (2006) built an extinction map using data from Two Micron All-

Sky Survey (2MASS) for Galactic latitudes below 10 degrees and longitudes lower

than 100 degrees towards the Galactic centre. The maps have a high resolution

component towards the Galactic plane. The method involves comparing observed

J − KS colours of K and M giants to predicted intrinsic colours from stellar popu-

lation models (Robin et al., 2003) to determine extinction in the inner Galaxy. The

advantage of this approach is that infrared light is less sensitive to variations in RV,

thereby being more robust than similar approaches in optical bands. They are able

to detect traces of spiral arms, dust in the Galactic bar as well as local features.

Sale et al. (2009) developed an algorithm to determine extinction from A to early

K-type stars by comparing intrinsic r − i band photometry (with lower RV depen-

dence) from INT/WFC Photometric Hα Survey (IPHAS, Drew et al., 2005) and achieve

high resolution maps at low latitudes.

Schlafly et al. (2010) and Schlafly & Finkbeiner (2011) use photometric and spec-

troscopic data, respectively, from Sloan Digital Sky Survey (SDSS, York et al., 2000;

Abazajian et al., 2009) to model extinction at higher latitudes using the colours of

main-sequence turn-off stars. They test reddening from SFD and provide large-

scale two dimensional map of RV in the Galaxy.

A Bayesian approach is introduced by Bailer-Jones (2011) using the Hertzsprung-

Russell diagram to place a prior on available stellar astrophysical parameter space

and simultaneously infer extinction, effective temperature and distances to individual

stars using broadband photometry and Hipparcos parallaxes.
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Berry et al. (2012) use SDSS and 2MASS photometry and compare observations

to the spectral energy distribution from stellar templates by applying a χ2 fit to the

data. This way they not only derive line of sight extinction estimates to millions of

stars towards the Galactic poles, they also infer RV to reasonable precision.

Gonzalez et al. (2011, 2012, 2013) compare red clump stars to reference mea-

surements in Baade’s window to produce high resolution extinction maps of the

Galactic bulge that are insensitive to differential extinction.

Chen et al. (2013) and Schultheis et al. (2014) infer extinction in the Galactic

bulge with high resolution by comparing colour-magnitude diagrams to a Galaxy

model. Chen et al. (2014) build a map towards the Galactic anticentre using Xuyi

Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC),

Wide-field Infrared Survey Explorer (WISE) and 2MASS data, by fitting SEDs to

photometric observations.

Sale et al. (2014) expands on a hierarchical Bayesian system developed in Sale

(2012) and applies it to IPHAS data to map extinction and differential extinction in

the Northern Galactic plane with fine distance resolution.

Green et al. (2014, 2015) and Schlafly et al. (2014a) combine Galactic priors to

obtain a fully probabilistic three dimensional extinction map for most of the Galaxy

above a declination of −30◦ using Panoramic Survey Telescope & Rapid Response

System (PanSTARRS 1 or PS1) photometry. They achieve a maximum distance

resolution of roughly 25% and find good agreement with the Planck-based reddening

map.

In Hanson & Bailer-Jones (2014) and Hanson et al. (2016) we expand on the

work by Bailer-Jones (2011), employing a Bayesian approach to simultaneously infer

several stellar parameters for stars towards the Galactic poles and in the Galactic

plane, respectively.

A common shortcoming of most of the aforementioned maps is the fact that an-

gular correlations are not accounted for, meaning neighbouring lines of sight are

solved for independently. Extinction of stars that are close in space should be af-

fected by the same dust structures, whereas stars with large angular separation are

less correlated. Significant progress on this topic has started to be made in recent

years.

Lallement et al. (2014) create 3D maps of the local ISM by combining colour

excess data and distance information of individual sightlines and then applying an

inversion method (Vergely et al., 2010), which is based on a regularised Bayesian

approach, thereby being able to map nearby dense clouds with a spatial resolution

between 10 pc and 100 pc, depending on the distance to the clouds.
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Sale & Magorrian (2014) introduce a survey-agnostic method based on Gaussian

random fields and a model of interstellar turbulence to address the discontinuities

seen in most extinction maps. They demonstrate the value of being able to utilise

the spatial resolution set naturally by the data, rather than imposing any binning.

In Rezaei Kh. et al. (2017), we develop a non-parametric model for inferring dust

density. Using a Gaussian Process model and assuming simple spatial correlations,

a fully self-consistent map of dust can be produced, even predicting the dust density

and line of sight extinction in regions not directly observed by the data.

1.4 Thesis Outline

This thesis is split into two conceptually distinct parts. In Part 1, I present work

based on Hanson & Bailer-Jones (2014) and Hanson et al. (2016), where we use

multiband photometry in conjunction with a Bayesian probability model trained on

synthetic spectra to simultaneously predict stellar effective temperatures, distance

moduli, extinction and relative extinction to millions of individual stars towards the

Galactic poles and in the Galactic plane.

In Part 2, I present a non-parametric model to infer the three dimensional dis-

tribution of dust in the Galaxy using line of sight extinction measurements to indi-

vidual stars. A Gaussian process is used to compute full dust density probability

distributions for mock data examples. Further results from this method, along with

applications of current extinction datasets, are published in Rezaei Kh. et al. (2017).
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Part 1

Photometric Extinction Mapping





2

Extinction Model

This chapter covers the theoretical background and algorithmic approaches com-

mon to chapters 3 and 4. These, in turn, contain the astrophysical results published

in Hanson & Bailer-Jones (2014) and Hanson et al. (2016), respectively.

The aim is to determine the full probability density function (PDF) over a set of

astrophysical parameters for a star given its photometric colours p. We infer in-

terstellar extinction A0, effective temperature Teff and distance modulus µ. In an

additional step we extend the method to also infer the extinction parameter R0 to

fully understand the three dimensional properties of dust.

2.1 Theory

We use a Bayesian approach to determine the aforementioned probability density

function. This allows us to include prior knowledge on the components of our model.

We build on the method introduced by Bailer-Jones (2011) by generalising it to in-

clude distance modulus.

In the first stage, we want to infer monochromatic extinction, A0, the effective

temperature, Teff, and the distance modulus, µ. In the second stage, we expand the

method to also estimate the relative extinction R0. The measurement data are the

set of stellar colours, the vector p, and the apparent magnitude of the star in one

band, m. By separating out the spectral and distance information in this way, instead

of using the individual magnitudes, we can construct a cleaner posterior distribution

function.

The Hertzsprung–Russell diagram, H (or HRD), introduces our prior knowledge

of stellar structure and evolution. It is a two-dimensional probability distribution over

11



M, the absolute magnitude in a band, and Teff. The specific implementations of H

will be detailed sections 3.1 and 4.1.

Using Bayes’ theorem, the posterior distribution is proportional to the product of

a likelihood and a prior

P(A0, Teff,∆|p, m, H)︸ ︷︷ ︸
posterior

=
1
Z

P(p, m|A0, Teff,∆, H)︸ ︷︷ ︸
likelihood

P(A0, Teff,∆|H)︸ ︷︷ ︸
prior(s)

, (2.1)

where the first term on the right-hand side is the normalisation factor Z−1 = P(p, m)−1.

This is a constant for every star, and therefore does not need to be explicitly com-

puted. The second term is the likelihood function, the third is the prior.

Note that we use a proxy variable, ∆ = mr−Mr, instead of distance modulus in our

formulation. We make this choice, as it prevents us from having to explicitly model

the dependency of distance modulus on extinction. However, when reporting actual

parameters for each star we compute distance modulus as µ = ∆−Ar = mr−Mr−Ar.

The r -band extinction is computed as a function of A0 and Teff. In principle we

could implement this step using any band, but for practical reasons we use r -band

magnitudes and extinction whenever they are used, such as for the HRD prior H.

Considering that p is independent of m, ∆, and H once conditioned on A0 and

Teff, we can write the likelihood function as

P(p, m|A0, Teff,∆, H) = P(p|A0, Teff)P(m|A0, Teff,∆, H) . (2.2)

The second term can be written as a marginalisation over M

P(m|A0, Teff,∆, H) =
∫

M
P(m|M, A0, Teff,∆, H)P(M|A0, Teff,∆, H) dM

=
∫

M
P(m|M,∆)

P(M, Teff|H)
P(Teff|H)

dM
(2.3)

where, due to conditional independence, we can remove A0, Teff and H from the first

term under the integral. This is because m = ∆+M, by definition. Note that because

m and ∆ are measured – and therefore noisy – quantities, P(m|M,∆) is not a delta

function. We also remove A0 and ∆ from the second term, because given the HRD

and Teff, the distribution over M is fully defined. Note that the right-hand-side no

longer has any dependence on A0. The apparent magnitude, m, is independent of

A0 because H and Teff specify a distribution over M, which together with ∆ specifies

a distribution over m.
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Assuming the prior is separable such that we can write

P(A0, Teff,∆|H) = P(A0,∆)P(Teff|H) , (2.4)

then substituting equations 2.2, 2.3 and 2.4 into 2.1 yields

P(A0, Teff,∆|p, m, H) =
1
Z

P(p|A0, Teff)P(A0,∆)
∫

M
P(m|M,∆)P(M, Teff|H) dM .

(2.5)

This expression is the product of three terms. The first is the probability of mea-

suring the colours given the astrophysical parameters A0 and Teff. The second is

the prior over extinction and the distance modulus proxy, ∆. The third is an integral

over the unknown absolute magnitude, constrained by the HRD and the relationship

between m, M, and ∆.

To obtain the corresponding relation including R0, we simply replace A0 with

(A0, R0):

P(A0, R0, Teff,∆|p, m, H) =
1
Z ′

P(p|A0, R0, Teff)P(A0, R0,∆)
∫

M
P(m|M,∆)P(M, Teff|H) dM ,

(2.6)

knowing that the previous arguments of conditional independence also hold for R0.

2.2 Modelling

With the posterior fully defined for our purposes we construct a model that utilises

it to infer the astrophysical parameters for a star. For this we build a forward model

that predicts the star’s colours given a set of parameters. It is calculated by fitting a

thin plate spline as a function of A0 and Teff (and where relevant, R0) to each colour

in p, such that f (A0, Teff, {R0}) = p′.

Likelihood

Given the forward model predictions of the colours f and assuming normally dis-

tributed errors on the measurements, the likelihood (equation 2.2) of the colours p
is
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P(p|A0, Teff) = k · exp
(
−0.5 (p − f )T C−1(p − f )

)
, (2.7)

where k = (2π)−n/2|C|−1/2 is the normalisation factor, which depends on the length n

of the colour vector p. The covariance matrix C for each star is determined from its

magnitude measurements and takes into account that errors on consecutive colours

are not independent.

Generally, for two random variables A and B, the variance Var() of their sum is

Var(A + B) = Var(A) + Var(B) + 2Cov(A, B) , (2.8)

where Cov() is the covariance. Furthermore, for the random variables A, B, C and D

and constants a, b, c, d the covariance of

Cov(aA + bB, cC + dD) =

acCov(A, C) + adCov(A, D) + bcCov(B, C) + bdCov(B, D) .
(2.9)

Assuming that magnitudes are measured independently (their covariance is zero),

then for two colours with one common band, e.g. p1 = m1 −m2 and p2 = m2 −m3,

the covariance of these colours is

Cov(m1 −m2, m2 −m3) = −Var(m2). (2.10)

For the example magnitude bands m1, m2, m3, m4, m5, the covariance matrix for

the resulting colours p = (m1−m2, m2−m3, m3−m4, m4−m5) has the following form

C =


σ2

1 + σ2
2 −σ2

2 0 0

−σ2
2 σ2

2 + σ2
3 −σ2

3 0

0 −σ2
3 σ2

3 + σ2
4 −σ2

4

0 0 −σ2
4 σ2

4 + σ2
5

 , (2.11)

where σ2
i is the variance in band i . If we were to use more colours, the matrix would

expand analogously. Standard χ2 approaches tend to overlook the fact that colours

are not independent, and therefore ignore the off-diagonal entries of the covariance

matrix.
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HRD prior

We construct an HRD prior, P(M, Teff|H) (see Equation 2.5), to characterise the

relative probability of a star’s parameters being located in some part of the HRD

parameter space. It is well understood from stellar evolution observations and mod-

els that the HRD is inhomogeneously populated. This implies that, within certain

boundaries, fixing one parameter constrains the other. This property allows us to

extract valuable information and constrain the inferred parameters of our model.

Setting aside the explicit technical implementation of an HRD prior, which is cov-

ered separately in chapters 3 and 4, we must construct an equation the links appar-

ent and absolute magnitudes and distance. If we independently estimate extinction

and effective temperature from photometric colours and use the measured apparent

magnitude mr, together with the HRD we can in principle determine the absolute

magnitude of a star and from that estimate the distance modulus.

By introducing a noise model we determine a probability distribution from noisy

measurements and the finite width of the HRD. For this, we define the random vari-

able

κ = mr −Mr −∆ , (2.12)

where ∆ is the difference between the true (but unknown) apparent and absolute

magnitudes, as used previously. Were the measurements to be error-free, then κ

would be zero. ∆ can be considered a proxy for distance modulus, which is the

actual parameter we aim to infer.

For the noise model P(κ|Mr) we select a one-dimensional Gaussian in κ,N (0,σmr)

which has an expectation value of zero and a standard deviation σ∆ = σmr, the un-

certainty in the r -band magnitude measurement for the observed star. The absolute

magnitude is not measured and as such has no error, ∆ is sampled. For a particular

measurement of mr the probability is

P(κ|Mr) = N (mr −Mr −∆, σmr) . (2.13)

Figure 2.1 illustrates this situation for a sampled X = 10 mag, which can corre-

spond to various combinations of absolute and apparent magnitudes, as long as MX

is in the physical range of the HRD.

As mr is the only noisy quantity in κ, this term can also be written as P(mr|Mr).

This represents the first term of the integral in equations 2.5 and 2.6. So, for any
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Figure 2.1: Illustration of the way the HRD prior is sampled in practice. For any sample in
∆X = mX − MX, a Gaussian with width corresponding to the uncertainty in the magnitude
measurement (here 0.2 mag for a mean X = 10 mag) is used to integrate over the probability
distribution of the HRD. The vertical turquoise and orange lines indicate the positions of 1
and 2 standard deviations, respectively.

measure of ∆, obeying κ = 0, the Gaussian describes the scatter around this value.

The full HRD prior probability is then calculated by integrating the Gaussian for a

∆ over the probability distribution of the HRD at a given Teff, as formalised in equa-

tion 2.3.

Using the HRD gives us a self-consistent means to estimate distances from pho-

tometric information. A stronger constraint on APs can be constructed if distance

information is available from independent measurements.

2.3 Mapping

To summarise and visualise these results we bin stars with a fixed angular resolution

in l and b. To compute the variation in extinction Ar (and R0) along the line-of-sight

at any value of distance modulus µj we calculate the weighted mean extinction 〈Ar〉j
and standard deviation Σj (analogously for R0) for all stars in a single bin which have

a distance modulus estimate within one magnitude of our selected position. These

are

〈Ar〉j =
∑

Ar,iwi ,j∑
wi ,j

,

Σj =

√∑
wi ,j(Ar,i − 〈Ar〉j)2

N−1
N

∑
wi ,j

, (2.14)

where the sums are over i . The weight wi ,j is a measure of the difference between

the inferred stellar distance modulus µi and the cell centre distance µj . The confi-
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dence intervals about the mode are not symmetric, so we use a split Gaussian to

approximate the distribution they describe. For each star we compute the weight

using the asymmetric Gaussian (or split normal distribution), parameterized by the

mode and the standard deviations, σ1 and σ2, of each half of the Gaussian:

wi ,j =
2√

2π(σ1 + σ2)
· exp

(
− (µi − µj)2

2σ2
k

)
. (2.15)

In the case when µi is smaller than µj then σk = σ1, otherwise σk = σ2. This

is a convenient and fast substitute for summing over all the 2D PDFs we obtain

from the inference. Stars with small confidence intervals are weighted more strongly

than those with large ones. This procedure can be applied to any arbitrary distance

modulus step µj . This is repeated for every angular bin to construct a full three

dimensional representation of the cumulative line-of-sight extinction. Analogously

we use the same procedure with the extinction parameter R0, allowing us not only to

follow the extinction variation along the line of sight, but also to look at the properties

of the dust. Due to the selection process, it is in principle possible that individual

stars appear in two consecutive distance bins, indicating that this measure is similar

to a running (weighted) mean. For each cell we require at least 10 stars to compute

the result.

We use distance modulus as the distance variable because it straightforwardly

captures the uncertainty which increases with distance. For example, the relative

error in distance for a distance modulus error of δµ = 1 mag at d = 1 kpc is δd =

0.46 kpc, whereas at d = 5 kpc it increases to δd = 2.3 kpc. It is important to note

that although the uncertainty in µ may be symmetric, it will not be in d .

17





3

Dust at the Poles

This chapter is adapted from Hanson & Bailer-Jones (2014). We use photometric

data from UKIRT Infrared Deep Sky Survey, (UKIDSS, Lawrence et al., 2007) DR9

Plus and Sloan Digital Sky Survey (SDSS, Aihara et al., 2011) DR8 to infer extinction

and distance modulus to stars towards the Galactic poles. We estimate the effects

of unknown metallicity in the models and demonstrate the benefit of including near-

infrared data.

This chapter is organised as follows. First, we introduce the data products utilised

in the analysis and then detail how they are used to construct and test the forward

model as described in Chapter 2. We then validate the performance of the method

by measuring the accuracy of the model and precision of individual estimates of

astrophysical parameters. We quantify the effects of excluding data and inferring

additional APs (R0 in particular), and present maps and profiles for the regions cov-

ered by the data. We use the SFD results as a baseline to compare the outcome to.

We conclude with a summary.

3.1 Data Products

To perform the analysis described in Chapter 1, a set of photometric data is required,

for which astrophysical parameters have been independently determined. We use

stars selected from UKIDSS and SDSS. We use data from the UKIDSS Large Area

Survey (LAS) which is designed to overlap with the footprint of SDSS. By using

real data, we are able to use the proper photometric errors and intrinsic scatter to

build the forward model, instead of depending on synthetic estimates. We perform

a crossmatch to generate a catalogue of stars with photometry in nine bands. The
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bands ugriz are from SDSS and YJHK are provided by UKIDSS LAS. In principle

we can also use (or combine) other surveys, as our method can easily be trained on

further photometric data.

Survey data

We need to simulate the effects of extinction to build an extended catalogue of stars

with known APs. We therefore require a catalogue of (ideally) zero extinction stars.

To build our training data we select only stars at high Galactic latitudes, b > 70◦,

which avoids the Galactic plane and most of the interstellar dust. Additionally these

stars are required to be dwarfs (surface gravity log g > 4). This ensures that the cat-

alogue stars only have minimal variations in log g, which improves the temperature

estimates due to the tight correlation with colour for fixed extinction (as in Figure 3.3).

Furthermore, effective temperatures determined with the SEGUE Stellar Parameter

Pipeline (SSPP, Lee et al., 2008; Yanny et al., 2009) must be available, with errors

on these of less than 200 K.

We use a weighted average of several spectroscopic and photometric tempera-

ture estimates (called ADOP in the SSPP papers) for this work. When instead using

the purely spectroscopic estimate, e.g. the ANNRR routine (Re Fiorentin et al., 2007),

we see no significant differences in our inferred extinction and distance estimates.

The temperature estimates do differ, with a standard deviation of about 80 K. But

as we are not primarily interested in inferring temperatures, we can in principle use

either of the estimates, though using the spectroscopic estimator avoids circular ar-

guments, due to nature of how they are generated.

We require the r -band magnitudes to be r < 19, which typically results in pho-

tometric errors approaching the systematic limit of approximately 0.02 mag. This

also generally forces the photometry in the other bands to be complete and of good

quality. To further ensure selection of sources with high quality data, we impose the

following selection criteria on the SDSS flags: we select only unresolved sources

(sdss.type = 6) with clean photometry (sdss.clean = 1) and general quality flags

set (sdss.’4295229440’ = 0, sdss.mode = 1). Similarly, we select objects with clean

photometry from UKIDSS (ukidss.*ppErrBits < 65 536, one for each band) that

are classified as stellar objects (ukidss.mergedClass = −1).

The data (SDSS and UKIDSS) are queried and cross-matched using the WFCAM

Science Archive, requiring complete photometry in all bands. In total, we obtain

roughly 3 200 stars that fulfil all the above criteria. Compared to the hundreds of

thousands of stars analysed in SEGUE, we retrieve comparatively few. Aside from
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Figure 3.1: Distribution of effective temperatures of approximately 3 200 crossmatched
stars. Temperatures are estimated by SSPP with mean uncertainties of 58.5 K. Of these
stars, one thousand are randomly chosen to build the extended dataset.

completeness and crossmatching reasons, this is mainly influenced by the mag-

nitude, surface gravity and temperature limits we set. In spite of this, this does

not introduce systematic biases. Our selection is representative of the full SEGUE

dataset (see below). The photometry is then corrected for the small estimated ex-

tinction from SFD, where the assumption holds that at high Galactic latitudes the

stars are behind all the layers of dust.

Of the selected data, a randomly sampled set of one thousand stars is chosen,

covering a temperature range of approximately 4000− 9000 K. A histogram of the

temperature distribution for the full training set is shown in Figure 3.1, showing a

peak around 5600 K. Only 9 % of the stars have effective temperatures above

6500 K. This is representative of the SEGUE dataset as a whole.

When later applying the method to data with unknown stellar parameters, we still

create a selection with the quality flags used above, though we naturally impose no

requirement on the existence of temperature estimates or the position in the Galaxy

(low extinction).

HRD prior

The HRD prior is constructed using stellar isochrones from Sordo et al. (2010). The

chosen stellar population comprises 100 000 stars drawn from a Salpeter initial mass

function with masses ranging from 0.2− 107 M� (though we only use stars with

Teff ≤ 9 000 K and the vast majority of stars have masses below 1.6 M�). Assuming

a constant star formation rate over the age of the Universe (13.7 Gyr), all stars evolve

independently with solar metallicity, i.e. there is no chemical enrichment. By using

the forward model, however, we are implicitly assuming that the metallicity of stars

we encounter have the same mean metallicity of the SSPP stars, which are used to
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fit the model. This mismatch between the metallicities of the forward model and the

HRD does not strongly affect the estimation of A0 and Teff directly, though it does limit

the ability of achieving good distance estimates. As we are not estimating metallicity,

this mismatch will naturally occur for most stars, independently of the choice of HRD

metallicity. An example of this limitation is given in Section 3.4.

The resulting temperatures and absolute magnitudes then are used to place the

stars in the HRD plane. To use the HRD as a prior, we need to convert the data rep-

resentation to a probabilistic description of the distribution. We achieve this by ap-

plying a two-dimensional binned kernel density estimate with a bandwidth of 12.5 K

and 0.0625 mag in effective temperature and r -band absolute magnitude, respec-

tively. The resulting grid has the pixel dimensions of 6002, we limit the tempera-

ture range to 3010− 9000 K as to extend slightly beyond the limits of the forward

model parameters. This allows for the main sequence to be fully represented down

to low temperatures without an artificial cutoff. The resulting magnitude range is

Mr ∈ (−4, 12) mag. Before normalisation, a small, but non-zero, offset is added to

each point to account for the regions which nominally have zero probability, but in re-

ality may not be completely empty. These regions include white dwarfs in the lower

left part of the figure or (post) AGB stars higher up the branch to the right. Statisti-

cally, these regions will be very thinly populated and we don’t expect to find many (if

any) of these stars in our samples, so we don’t model these in a more sophisticated

manner. A representation of the final distribution is presented in Figure 3.2.

3.2 Forward Model

Having presented the data input to the model, we are now ready to build the forward

model itself that will be used to compute the most likely set of colours given an input

set of astrophysical parameters.

Adding artificial extinction

Using the filter response functions for all filters and an extinction law (Fitzpatrick,

1999), the change in magnitude for a given extinction A0 in each band is computed

for a range synthetic spectral energy distributions (SED). Owing to the fact that we

are using broad band filters, the extinction in a band varies smoothly with temper-

ature and we do not need to do this for every unique temperature present in our

data sample. Instead we use eleven PHOENIX model SEDs (Hauschildt, Allard &

Baron, 1999) evenly spaced in the temperature range from 4000 K to 9000 K. This
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Figure 3.2: Density representation of the HRD used in this analysis. The integrated prob-
ability of the HRD is normalised to one, red is high number density and yellow is low. The
colour scale shows base 10 logarithm of the density. White areas denote regions of the
parameter space with initially zero probability. A small offset is added to each point before
normalisation to avoid this in the actual computation. In this case the offset is approximately
10−3 times the maximum density.

covers the temperature range in our catalogue. For each band we fit a set of one-

dimensional quadratic functions in Teff for fixed A0, covering the whole temperature

range noted above and extinction in steps of 0.25 mag from 0 to 5 magnitudes.

Knowing how the magnitudes vary with A0 and Teff, we expand our initial dataset

of zero extinction stars by adding artificial extinction in 21 discrete steps over the

range noted above for each of the 1 000 stars. The photometric errors are adapted

to take into account the change in magnitudes by following the average magnitude-

error relation in the data. Our expanded dataset (training set) now comprises 21 000

stars with known artificial extinction and effective temperatures.
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Figure 3.3: Effects of effective temperature and extinction on four selected colours.
Turquoise points show a subset of the training data with no extinction as a function of ef-
fective temperature. Orange dots show the effects for A0 = 2 mag. Each sample consists of
1 000 stars.

Building the forward model

In Figure 3.3 we show the effect of temperature and extinction on four different

colours. We do not convert the magnitudes in both surveys to a common system

(UKIDSS uses Vega magnitudes, for example), because the colours are merely af-

fected by a constant offset with respect to that of the other survey, and we are only

interested in changes in colours. As long as the training data and the final datasets

are handled consistently, we need not take into account this offset.

From the training set we select a random subset of 4 000 stars to create the

forward model itself, with the aim of being able to predict colours given temperature

and extinction. For each of the eight reduced colours we fit a two-dimensional thin-

plate spline to both APs. A good fit for all colours is achieved when giving the splines

20 degrees of freedom.

In Figure 3.4 we show the direct performance of the splines predicting colours

given some input APs. For four example colours we plot the residuals of colour

(pX ,true − pX ,spline) for the ranges of temperature and extinction present in the model

as contours. This is not the final result of the full parameter inference, instead it

illustrates the intrinsic inaccuracies of the model which derive from the scatter in the

real data. We do not see any systematic variation, and measure a typical scatter in

the order of 0.03− 0.06 mag for all colours, which is roughly
√

2 larger than for the

magnitudes in a band. The forward model captures the intrinsic variance, as this is
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Figure 3.4: Residuals in the forward model. This shows the difference between the true
colours and the colours predicted from the forward model thin plate spline as functions of true
effective temperature and extinction, for four colours. The contour levels shown incorporate
68%, 90% and 99% of the data points. In the top left of each panel the corresponding colour
is named, with the x-axis depicting the respective parameter ranges. All panels are scaled
to show the same range on the y-axis. Typical scatter is in the order of 0.03− 0.06 mag for
all colours.

the same order of magnitude or within a small factor of the reported uncertainties of

the survey data magnitudes. In Section 3.4 we look in detail at how assuming larger

photometric errors affects the AP estimation.

We characterise extinction using A0 to indicate that this is a parameter that solely

depends on the physics of the interstellar medium, rather than on the type of star.

When presenting results and maps later on we will use extinction in SDSS r -band to

allow more convenient comparisons with other work. Note that the conversion from

A0 to Ar has a small dependence on temperature. For R0 = 3.1 they roughly convert

as 〈Ar/A0〉 = 0.837. The standard deviation from this value over the parameter

range Teff = 4000− 9000 K and A0 = 0− 5 mag is only 0.005. The model values for

extinction in other bands, e.g. the relative extinctions AX/Ar are listed in Table 3.1 for

three different values of R0. Values reported are averages over the above Teff and A0

ranges. In particular, changes occur for the short wavelength optical bands. When

varying R0, we see that the relative extinction in the other, redder, bands changes

only slightly. In Figure 3.5 these changes are illustrated for all the bands used and

for two different effective temperatures.

For the APs used to build the forward model we implicitly implement priors that

are uniform over the APs’ training ranges, and have zero probability outside them.

We will demonstrate the use of a prior on extinction based on SFD estimates later
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R0 u g i z Y J H K
2.1 2.393 1.698 0.707 0.542 0.439 0.337 0.230 0.147
3.1 1.848 1.445 0.744 0.555 0.427 0.308 0.204 0.133
4.1 1.610 1.329 0.761 0.561 0.422 0.296 0.193 0.126

Table 3.1: Model values for extinction in all bands, compared to SDSS r -band extinction,
AX/Ar for three values of R0. Reported values are averages over the full temperature range
of the data.
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Figure 3.5: Model values for extinction relative to r -band, AX/Ar, for two temperatures over a
range of R0 and the photometric bands used in this work. Small temperature dependencies
can be seen for the optical bands u and g in particular at low R0.

in Section 3.5.

3.3 Sampling and Computation

The forward model, priors and data are combined to compute the posterior func-

tion, as detailed in Section 2.1. As we are interested in inferring multiple APs, we

use a standard Metropolis-Hastings Markov-Chain Monte-Carlo (MCMC) routine to

efficiently sample the parameter space and to compute the posterior probability dis-

tribution. The parameter space is explored in logarithmic units of the respective

quantity, forcing the estimates to remain positive and physical. The sampling matrix

is diagonal with variances of 0.1 dex in each variable (AP). We assume no correla-

tion between the variables. Convergence is sufficient with a chain length and burn

in of 10 000 steps each. This does not need to be adjusted if we also infer R0. We

only expand the sampling matrix to account for the additional parameter.

To compute the likelihoods we can either use the actual spline function or build a
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lookup table. Considering the numerical speed-up we achieve by tabulating results

in advance, we generally use this approach. For this, we build a grid in extinction

and effective temperature (and later in R0 too) and calculate the predicted colours.

We use the same parameter ranges as for training (avoiding extrapolation into re-

gions not covered by the data), creating a grid with A0 from 0− 5 mag in steps of

0.001 mag and Teff from 3000− 9000 K in steps of 10 K (effectively the same as for

the HRD). For R0 we use a coarser stepsize of 0.2 in the range from 2.1− 5.9. The

stepsizes are chosen as to be significantly smaller than the mean absolute error

(MAE) of the residuals when using the full spline function directly (see Section 3.4.)

When assessing the performance in the APs and computing further quantities,

we only use those stars whose inferred parameters are within the boundaries of the

lookup table (i.e. within our training space). As indicated in section 3.1, at lower

temperatures and smaller wavelengths the linear relation between colour and tem-

perature for fixed extinction no longer holds, therefore extrapolation is not advisable.

This avoids skewing the results due to boundary effects, like MCMC chains sticking

to the edge of the grid in one or more parameters.

We apply this filter after parameter inference as we cannot rule out including stars

that have true APs outside of our training range (we do not apply any colour-cuts to

the data selection). If we were to instead force a prior over the same ranges during

sampling we would artificially force those stars to have incorrect parameters.

Typically this filter throws out roughly 5 % of stars when estimating extinction,

effective temperature and distance modulus. When including the R0 parameter, this

increases to close to 30 %, due to the additional variation in the model.

3.4 Validation

In this section we first demonstrate the viability of the model and then analyse the

precision and accuracy of the method, as well as the colours. The following analysis

is performed on a different set of 4 000 stars (validation set), of which none where

used to train the model.

Simulated photometry

In this first step we aim to show the expected performance of the method and illus-

trate its limitations with respect to metallicity (see Figure 3.6). For this purpose we

set up two extinction clouds at 500 pc (µ ≈ 8.5 mag) and 1500 pc (µ ≈ 10.9 mag)

with extensions of 100 pc. This true extinction distribution with µ is shown as the
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Figure 3.6: Inferred distance moduli µ and extinction A0 for 500 stars. Turquoise dots
indicate results for which matching HRD metallicity (Z = 0.019) is used for sampling and
inference. Orange dots show results for mismatched HRD (Z ′ = 0.0019).

solid black line. We then place 500 stars along the line of sight, generating ef-

fective temperatures and absolute magnitudes from the HRD prior (solar metallic-

ity). According to their effective temperatures, extinctions and distances, we simu-

late appropriate photometry and photometric errors, which are characteristic of the

SDSS/UKIDSS sample we use. Finally we use our method to infer these parame-

ters. These are plotted as points in the figure.

We infer the APs for two cases. In (a) we use the same solar metallicity HRD

prior (Z = 0.019) as for selecting the stars (turquoise dots). In this case, we can see

that our method recovers the distances and extinctions very well, with points closely

tracing the extinction profile. The few points that lie furthest from the true profile

typically have bad temperature estimates, resulting in erroneous distance moduli. In

(b) we use an HRD with a tenth of that metallicity (Z ′ = 0.0019, orange dots) to infer

parameters. Although the individual estimates for extinction and temperature are

compatible, the mismatched stars are systematically shifted by ∆µ = −1 to closer

distances. Analogously, the opposite shift occurs when reversing the mismatch.

Therefore the accuracy of distance estimates is strongly limited by the unknown

metallicity of each individual star.

It is difficult to estimate metallicity using only broad band photometry, as used

here, when neither temperature nor extinction are fixed. As shown in Bailer-Jones

et al. (2013) for simulated Gaia data, given spectroscopic information it is possible to

estimate metallicity simultaneously, resulting in more accurate distance estimates.
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Effects of colours and NIR data

Considering that we are using photometry from two surveys covering optical and

near-infrared bands, it is instructive to compare how inclusion (or exclusion) of cer-

tain bands affects the parameter estimation. To examine this we train the forward

model using (a) all nine bands, resulting in the eight colours u-g, g-r, r-i, i-z, z-Y, Y-J,

J-H and H-K, (b) using only the five SDSS bands and thus only four colours and (c)

using all but the SDSS u band magnitudes (seven colours). Generally, one would

expect the use of more colours (more information) to yield better results, particularly

when taking into account that NIR wavelengths are less affected by dust attenuation

than shorter ones.

As expected, the performance of the method is significantly better when using

the NIR data (using only NIR data is also much worse). Table 3.2 summarises the

differences between the three cases. We characterise the performance with three

key statistics. The first is the bias, which is purely the mean value of the difference

between predicted and true parameter for all stars. The second is the mean absolute

error (MAE), which similarly is the mean of the absolute difference and the third is

the root mean square (RMS). For temperatures below 6500 K the performance is

generally better than for higher temperatures. This results from the combination of

having fewer stars in the higher temperature range and the scatter in the data being

larger there (see Figures 3.1 and 3.3).

A0/mag Teff/K
(a) (b) (c) (a) (b) (c)

bias −0.08 −0.41 −0.29 −67 −295 −269
MAE 0.23 0.59 0.41 300 628 440
RMS 0.45 1.05 0.68 586 1028 712

Table 3.2: Performance using all colours (a), just the four SDSS colours (b) and all bands
except u (c). Table shows performance characterised by bias, mean absolute error (MAE)
and root mean square (RMS) of the residuals, i.e. the difference between estimated and
true parameters. R0 = 3.1 is fixed in these models.

We note that the bias is negative in all three cases and parameters, though much

closer to zero in case (a). Intrinsic scatter in the data also precludes higher residual

accuracy. In Figure 3.7 we plot the results for the validation set of stars. Towards

negative values in both parameters we see two distinct tails. Stars in the tails tend

to have hotter true temperatures and larger intrinsic scatter. Only a few percent of

stars are effected by such a large error in the parameter estimation. Without these

tails, the performance would improve only minimally in MAE and RMS.
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Figure 3.7: Residuals in effective temperature and extinction for case (a) using all eight
colours. Plotted are the 68%, 90% and 99% density contours of the distribution of points in
the plot. The differences are computed as ∆X = Xestimated − Xtrue for A0 and Teff.

When excluding only the u band, case (c), we find that the performance is still bet-

ter than case (b) although significantly worse than (a). The bias, MAE and RMS for

A0 are −0.29 mag, 0.41 mag and 0.68 mag, respectively. For Teff these are −269 K,

440 K and 712 K.

In temperature and extinction we see no significant systematic effect due to the

metallicity of the HRD. As indicated in the previous section, this mainly affects the

distance estimator.

Figure 3.8 shows the residuals for both parameters as a function of the true pa-

rameters. We see no systematic trends, though we see a general bias towards

negative values, which is evident in the values reported in Table 3.2.

As we do not have any true distances to compare the inferred distances to, we

can not reference any results for distance modulus here. We must rely on the other

parameters to be accurate in order to believe the distance results we obtain. We

can however roughly estimate distances using the true extinctions and temperatures

and finding the corresponding ∆ = mr − Mr via the HRD. Doing this we compute a

bias of −0.23 mag, MAE of 2.29 mag and RMS of 3.31 mag when using all bands.

Approximately 15 % of the estimates are better than 0.2 mag. In this case, the

distance is poorly constrained by the combination of photometric data and our broad

HRD prior, when Teff and A0 also have to be estimated from the data. The bias we

encounter is primarily due to the unspecified mismatch of metallicities of the HRD

and training data.
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Precision of AP estimation

Beyond AP estimation accuracy (of the method), we are also interested in the pre-

cision, i.e. what are the individual parameter uncertainties for any given star. We

quantify this using the width of the 68% confidence interval (CI68) of the posterior

PDF (which is equivalent to the 1σ variation), using a Gaussian kernel density esti-

mation with the mean as the central point. The distribution is not generally symmet-

ric, so we obtain marginally different values for the left and right confidence bounds.

In Figure 3.9 we show the histograms of the average CI68 bounds for both extinction

and effective temperature, as well as ∆. Mean values of the confidence intervals are

〈CI68(A0)〉 = 0.04 mag, 〈CI68(Teff)〉 = 58 K and 〈CI68(∆)〉 = 2.0 mag. We can there-

fore be confident that our parameter estimates are generally precise in a statistical

sense.
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Figure 3.9: Histograms of 68% confidence intervals for extinction, temperature and ∆ using
photometric errors in the covariance matrix. The turquoise vertical lines indicate the mean
values in each case. For A0 this corresponds to 0.04 mag, for Teff it is 58 K and for ∆ it is
2.0 mag.

These values of precision are significantly smaller than the accuracy of the model

(Table 3.2), which could be taken to mean that the parameter inference is overcon-

fident compared to the information content of the data. The intrinsic scatter of the

spline fit is of the same order of magnitude as the photometric errors of the data

(see Section 3.2 and Figure 3.4), therefore properly representing the variation and

uncertainties of the model.

Average photometric errors in all nine bands vary from 0.01 to 0.03 mag, the

mean temperature uncertainty in the training data is 60 K, uncertainties in extinc-

tion can only arise from an erroneous correction of the SFD estimates, unless the

reddening law is substantially wrong. These, though, are typically only ASFD,r =

0.03 mag. Our precision therefore is on the order of the parameter errors. If we

fix the errors in all colours to σpX = 0.1 mag, which is roughly five times larger
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than the photometric errors, we obtain precisions of 〈CI68(A0)〉 = 0.36 mag and

〈CI68(Teff)〉 = 402 K. These values are in the order of 25 % larger than the MAE

reported in Table 3.2. The corresponding biases, mean absolute errors and root

mean squares only change by a few percent in respect to the tabulated results.

Therefore, a more accurate account for model limitations could imply using signifi-

cantly larger errors on photometry, although on average the statistical performance

remains compatible in either case.

To illustrate the output from the Monte Carlo sampling, Figure 3.10 shows the

contours and one-dimensional PDFs of the three parameters extinction, effective

temperature and ∆ for a single example star. In the extinction-temperature plane

(bottom left panel) we clearly see the degeneracy between the two parameters. In

the one-dimensional PDF for ∆ (middle panel) we see the typical bimodal distribu-

tion, which is the result of sampling over the parts in the HRD that represent the

main sequence and the giant branch. One peak is usually higher, which is why we

use the mode to quantify this parameter rather than the mean. In most cases the

higher peak relates to the main sequence (though not in this particular example),

which is a reasonable justification to use it, as we have trained our models using

photometry from dwarf stars.

It must be noted that the confidence intervals for ∆ are large, though the inner

68% are more tightly constrained. We can reduce this spread by either running a

longer Monte-Carlo chain, which adds more weight to the non-background regions

in the HRD, or by directly decreasing the background level by a few orders of mag-

nitude when computing it in the first place. Both options result in nearly unchanged

parameter estimates but improved precision in ∆. The second option is clearly more

appealing, as it does not increase the computation time.

Effects of relative extinction

The results shown so far were for a fixed relative extinction of R0 = 3.1. In reality,

this value is only the conventional mean value for the diffuse interstellar medium,

whereas denser regions will typically be characterised by a higher value of R0, aris-

ing from a change in size distribution and composition of the dust grains responsible

for extinction in optical bands. This does not, however, equate high line-of-sight

extinction with large R0; it simply describes properties of the local dust.

We train a new forward model in which we simulate the change of colours due

to extinction and R0 for stars with known temperatures. We expand our parameter

grid and again use 4 000 stars to train and validate the model. The general setup
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Figure 3.10: Contours of the posterior PDF for a star with true APs of A0,true = 4 mag
and Teff ,true = 5392 K. In each panel the turquoise cross or line shows the position of the
estimated parameter value (A0 = 4.06 mag, Teff = 5446 K, ∆ = 15.9 mag), whereas the
orange plus or line is the true (constructed) value. Contours show 68%, 90% and 99%
confidence intervals. The side panels show the marginalised one-dimensional PDFs for the
single parameters, as aligned with the respective axes. The peak densities are scaled to
1 in each case. The indicated true value of distance modulus is estimated using the true
temperature and the HRD from section 3.1. The best estimate values for temperature and
extinction are computed using the mean of the distribution, whereas the mode is used for
distance modulus.

remains the same as before. We use R0 in the range from 2.1 to 5.9. The model

performance we achieve like this is presented in Table 3.3.

A0/mag Teff/K R0

bias −0.22 −206 0.32
MAE 0.39 438 0.73
RMS 0.69 771 0.95

Table 3.3: Performance using all colours and variable R0, characterised by bias, mean
absolute error (MAE) and root mean square (RMS) of the residuals, i.e. the difference
between estimated and true parameters, as detailed previously.

Comparing case (a) in Table 3.2 with Table 3.3, we see that modelling R0 slightly

deteriorates the performance in the other two parameters, the standard deviation

and MAE in the residuals are increased by roughly 50% for temperature and extinc-

tion. This comes as no surprise, as we are now extracting more parameters, but

with the same initial data, noting that the observed change in colours are quite small

for larger differences in this parameter. In general we are able to roughly infer R0,

though the accuracy is not sufficient to confidently differentiate between, say, 3.1
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and 3.8. We therefore build the lookup table using somewhat larger steps of 0.2 in

R0 for the range noted above, and the other parameters remaining the same.

In Figure 3.11 we present the precision of the predicted parameters as histograms,

where the turquoise lines again depict the mean values. We obtain 〈CI68(A0)〉 =

0.05 mag, 〈CI68(Teff)〉 = 66 K, 〈CI68(R0)〉 = 0.07 and 〈CI68(∆)〉 = 1.6 mag. The

first two values are minimally larger than in the previous case, though it is to be

expected considering that we have added an additional degree of variation to the

model. Again, the confidence intervals are significantly smaller than the model ac-

curacy.
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Figure 3.11: Histogram of 68% confidence intervals of extinction, temperature, extinction
factor and ∆, which are estimates of the uncertainty on each parameter we infer. The
turquoise vertical lines indicate the mean values in each case. For A0 this corresponds to
0.05 mag, for Teff it is 66 K, for R0 it is 0.07 and for ∆ it is 1.6 mag.

3.5 Maps

We have so far summarised the accuracy and precision of the model using data

with known stellar parameters. We now apply the model to estimate APs for large

areas of the sky where individual estimates are not available. Querying the WFCAM

Science Archive with the flags detailed in section 3.1, but imposing no constraints

on SSPP information, we obtain a total of 4 191 659 unique stellar objects, of which

3 055 954 and 1 135 705 are north and south of the Galactic equator, respectively.

We also pick out a section of the southern sky with l > 180◦, which we use to

illustrate the variations of the model, namely using only photometry from SDSS,

using all photometry, and also including R0 in the parameter estimation.
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We first show the full projected maps of the northern and southern part of the

surveys in Figure 3.12. Here we use a Mollweide projection in Galactic longitude

and latitude to obtain equal area pixels, using a resolution of 11.48 arcmin/pixel in

both coordinates. This corresponds to an average of 29 stars per pixel, depending

on the region observed, with extremes of 3 and 250 stars per pixel.

The interstellar medium towards the Galactic poles typically hosts diffuse gas and

lines of sight with low extinction. Nevertheless, the area jointly probed by the two

surveys does cover some regions with higher average extinction. Generally we can

pick out larger structures that are also visible in SFD maps of the same resolution.

Towards the right of the southern part of the sky one can start to make out parts of a

larger structure, with extinction estimates in the range of 1 to 1.5 mag in the r -band.

To more quantitatively assess the credibility of the presented map, we compare

the computed extinction values with those from SFD. For this we project the data

in an identical manner and calculate the difference between the SFD extinction val-

ues and our own estimates. This is plotted in Figure 3.13 for the southern part of

the sky. We refrain from showing the equivalent image for the northern part, as it

qualitatively shows the same behaviour. In Figure 3.14 we show the histograms for

the differences between SFD extinction estimates and our own for both the south-

ern and northern part of the sky, based on the binned data. In the south the mean

difference and standard deviation are −0.02 mag and 0.13 mag, respectively. In the

north we obtain −0.06 mag and 0.11 mag.

The general trend favours very small differences, with the mean ∆Ar being close

to zero. Some regions indicate that SFD predicts higher extinction than we do. This

can have several reasons, one being the fact that we compute extinction along a line

of sight to individual stars, rather all the way to the edge of the Galaxy. Then again,

we are looking at high (absolute) latitudes, where we assume extinction in general to

be small, allowing us to cover most of the stars. Selection effects and limitations set

by our data retrieval could affect this assumption. The few pixels that have a red hue,

indicating that our model predicts higher extinction, are mostly artificial effects that

arise from binning the data, leaving only very few stars in those bins. If these stars

happen to have (erroneously) high extinction estimates, they may not be averaged

out.

This is visualised in Figure 3.15, where we show the standard deviation of Ar for

each pixel over the southern part of the sky. We see a large range of estimates

in each pixel, independent of the actual mean extinction in them and the position

on the sky. There is a noticeable correlation between the standard deviation and

the (absolute) difference between our extinction estimate and that of SFD, ∆Ar =
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Figure 3.12: A Mollweide equal area projection of the mean extinction in the full cross-
matched portion of the sky, centred on the Galactic anti-centre. The stars are binned using
resolution of 11.48 arcmin/pixel in l and b. The non-Cartesian grid in latitude and longitude
is overplotted. The colour scale shows the mean extinction Ar in any given pixel. White
areas are not jointly covered in the surveys.
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Figure 3.14: Histograms of differences between SFD extinction estimates and our own for
stars (∆Ar = Ar,SFD − Ar) in the southern part of the sky (left) and in the northern (right).
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Figure 3.15: Standard deviation σAr of r -band extinction over the southern sky using nine
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Figure 3.16: Standard deviation σAr of r -band extinction as a function of ∆Ar = |Ar−Ar,SFD|,
the difference between our estimates and SFD values for each pixel in the southern sky using
nine photometric bands and fixed R0. Turquoise dots are used for mean extinction estimates,
whereas black dots use the maximum extinction value in each pixel (see Figure 3.18).

|Ar−Ar,SFD|, see Figure 3.16. Turquoise dots are computed using the mean extinction

estimates for Ar in the equation above. Black dots use the maximum extinction

value in each pixel, i.e. Ar,max (see Section 3.5 and Figure 3.18 for further details).

In this case the range of residuals is naturally larger. In both cases, though, the

standard deviation in a pixel is a function of the difference between the two extinction

estimates.
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On the whole, the results are consistent with how we expect the model to function,

with results obtained from SFD or other data that deliver the integrated extinction to

the edge of the Galaxy. On average, we slightly underestimate the mean extinction in

a pixel due to the fact that we are averaging over multiple stars with varying degrees

of precision in their individual estimates.

Extinction prior

A simple prior to implement is using SFD estimates to constrain maximum extinction

along any line of sight. Though the SFD maps do have several systematic problems,

overestimating extinction particularly towards the Galactic plane and in regions of

high extinction (see, e.g. Schlafly et al., 2010; Schlafly & Finkbeiner, 2011), at the

latitudes probed here the corrections are only on the percent level. By constructing

a broader prior we can safely ignore this.

In practice we implement the prior as a step function with the probability dropping

from 1 to 0 at 1.3 ·Ar,SFD with Ar,SFD being the converted SFD r -band extinction. This

factor of 1.3 allows for enough range in the extinction estimates to account for errors

in the reference value and smoothing of the data, whilst also not being too restrictive.

To compare the performance of a model using this prior we use the known, simulated

extinction. We see only negligible changes to the values in Table 3.2 when adding

the prior. Naturally, more stars remain within the training grid, as maximal values in

extinction are constrained. Considering average parameter estimates do not change

much, we can be confident that the model can properly characterise the degeneracy

intrinsic to the data, independent of stronger priors.

When applying this updated model to data (i.e. with unknown APs), we do notice

some changes in respect to average extinction estimates. In Figure 3.17 we show

the differences for a region of the southern sky. The data are projected using a

Mollweide projection and colour-coded according to the mean extinction in each

pixel. The left panel depicts the results without priors (fixed R0 and eight colours). In

the right panel, the equivalent map of SFD estimates is shown, and the centre panel

that of our model including the SFD-based prior on extinction. Clearly, inclusion of

the prior reconstructs more closely the SFD reference map, whereas the alternative

produces a less smooth map, although it still closely follows the depicted distribution

on a whole, picking out the high extinction regions towards the top-right, as well as

the general trends. Individual pixels are not always accurate though. This is due to

the fact that we estimate the APs for every star individually, whereas the smoothed

SFD map is a proxy for the average extinction along a line of sight.
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Figure 3.17: Extinction maps for a subset of the data in the southern sky in a Mollweide pro-
jection. The non-Cartesian grid in latitude and longitude is overplotted. The data are binned
to a resolution of 11.48 arcmin/pixel. The left panel shows the mean r -band extinction in
each pixel for the case of using no extinction prior, the middle panel that for a prior based on
SFD estimates. In both cases eight colours are used with fixed R0. The right panel shows
for comparison the same region using the SFD estimates for the direction of each pixel di-
rectly. White areas are either not covered by the data or are missed due to binning (due to
post-processing, the panels do not necessarily use an identical set of stars, therefore some
pixels appear white in the left panel but not in the right two.)

This issue becomes more pronounced when we use the maximal value in any bin

to create the map. This is shown in Figure 3.18, where we project the maximum

values for the case of using the standard model (left) and including the prior (right).

The equivalent map for SFD values is identical to the right panel in Figure 3.17 as the

reported values are smoothed already. With this prior we limit the maximum value

for each line of sight. The resulting map is almost identical to the SFD reference

map, with slight differences visible particularly at the edges of the footprints due

to strongly varying stellar number densities. Ignoring the prior we compute varying

maximum values of extinctions, as we have no low boundary limit. As can be seen in

Figure 3.17, when using the mean these extreme values tend to average out, even

though individual estimates may still miss the true (or expected) value.

Extinction profiles

In addition to extinction and temperature we have inferred distances to all stars. We

also have full probabilistic information available for each parameter which we can

use to compute profiles of extinction as a function of distance for individual lines of

sight, as detailed in Section 2.3. We repeat this for every (arbitrary) value of distance
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Figure 3.18: Region and resolution as in Figure 3.17. The left panel shows the maximum
r -band extinction in each pixel for the case of using no extinction prior, the right panel that
for a prior based on SFD estimates. In both cases eight colours are used with fixed R0. Note
that the colour scale has changed to cover the adjusted parameter range.

modulus we would like to use. This way we can compute extinction profiles using

the full PDF of each star instead of merely averaging the data directly. Similarly this

can be done for A0 or proper distance too.

An example is shown in Figure 3.19 for the region l ∈ (189.56, 190.88) ◦ and

b ∈ (−37.35,−36.35) ◦, which is in the top right region of Figure 3.17. We have

chosen this region because it has higher extinction and as such can demonstrate the

application of Equations 2.14 and 2.15. The figure shows two profiles, both using the

nine band forward model, one without prior (turquoise) and one including a prior on

extinction as in Section 3.5 (orange). The profiles are similar in the sense that they

both are essentially flat, possibly with a slight increase towards further distances,

though the error bars on extinction are compatible with both interpretations. The

errors on distance modulus are implicitly included in the way the mean extinction

and its error are computed (see Equations 2.14 and 2.15).

The average precision of distance modulus estimates varies from approximately

0.5 mag to 1.5 mag when going from the smallest to the largest value of µ in Fig-

ure 3.19. The SFD extinction for this field is ASFD,r = 1.16 mag, which is covered by

the asymptotic error bars. Values in the orange curve tend to be slightly smaller, in

line with conclusions from the previous section, where the maximal extinction esti-

mates are constrained by the prior. However, the values are compatible within their

uncertainties. Despite imposing no constraints on distance modulus when inferring

the APs (apart from fitting into the parameter space of the HRD) and when comput-
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Figure 3.19: Mean r -band extinction as function of distance modulus for 520 stars in the
region l ∈ (189.56, 190.88) ◦ and b ∈ (−37.35,−36.35) ◦. Mean values and error bars
are computed as per Equations 2.14 and 2.15. The average SFD extinction for this field
is ASFD,r = 1.16 mag. Both profiles use all nine bands, turquoise points show the case of
no prior and orange points including a prior on extinction (Section 3.5). Top axis shows the
corresponding distances d = 10µ/5+1 in parsec.

ing the profiles, the variation of extinction with distance is physically consistent with

extinction not decreasing with increasing distance. Furthermore, the shapes of the

profiles are in agreement with the assumption that the stars at high latitudes reside

behind the dust layers. Given the bright magnitude limit of the surveys used, we

do not expect to find stars with distance moduli less than µ = 6 mag. Indeed, our

method estimates very few stars to have smaller values of µ.

Lines of sight in regions with lower extinction behave in a similar manner, though

naturally with lower asymptotic values of the extinction. In particular, cells at small

distances show larger scatter, which can be attributed to low sampling statistics at

these values, with only a few stars being computed to be very close by. In contrast,

at larger distances the extinction in each cell is computed using hundreds of stars

(owing to large uncertainties in the distance estimation and roughly d3 growth in the

volume of a cell with distance).

Inferring R0

As detailed in Section 3.4 we are able to infer the R0 parameter with moderate

accuracy, in addition to extinction, temperature and ∆. Using the corresponding

forward model, we rerun the method on the same small field of stars as before. We

refrain from showing the projected extinction map as it does not differ qualitatively
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from that with constant R0 (Figure 3.17 left and centre panels). We instead show in

Figure 3.20 the mean distribution of R0 in the same projection.
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Figure 3.20: Distribution of the parameter R0 over a subsection of the southern sky with an
average over the whole field of 〈R0〉 = 3.81±0.20. The same resolution as in previous maps
is used.

Generally we see quite some scatter around the mean 〈R0〉 = 3.81± 0.20 in this

field. Using the raw data (i.e. not binned) we obtain 〈R0〉raw = 3.82 ± 0.47, which

has a slightly larger standard deviation about the mean. Noting that we average

over a large region with varying degrees of extinction and that the model accuracy

is only MAE(R0) = 0.74, this should not be taken as a strong statement concerning

the average R0 of the diffuse ISM.

Nonetheless, this supports results by Gontcharov (2012a,b), who finds R0 to be

quite large and to have significant variations at high latitudes and low extinctions.

In comparison, Berry et al. (2012) find R0 = 3.0 with 0.1 random and systematic

uncertainties, although they argue that for Ar < 2 mag, estimates on R0 are very

unreliable.

Looking at the relation between Ar and R0 (for raw and binned data) we see in

Figure 3.21 that there is a trend (R0 = (−0.45± 0.2)Ar[mag] + 4.0), again consistent

with the previous statement in the limit of low extinctions.

Using the same technique as in Section 3.5 we compute the profiles of R0 as

a function of distance for a small region at the top right of Figure 3.17 (as in Fig-

ure 3.19). This is shown in Figure 3.22 in orange (left axis), where the mean extinc-

tion has been replaced with mean R0 in the equations. In turquoise the extinction

profile for the same data is plotted (right axis). As in the fixed R0 case, we see a
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Figure 3.21: For each pixel of the map in Figure 3.20 we plot R0 vs. Ar. Grey points are
the raw, unbinned data, orange are for the binned cells. We see the scatter about the mean
〈R0〉 = 3.81± 0.20 (red) and 〈R0〉 = 3.82± 0.47 (black).

slight increase in extinction towards larger distances, though it is more pronounced

now. At the same time R0 increases quite quickly, although the amplitude of varia-

tions are roughly the size of the error bars and well within the model accuracy. To

be able to further analyse this interesting aspect, we need to probe regions with

higher values of extinction (not covered by the crossmatched SDSS/UKIDSS data)

or obtain more informative data from other sources. As it stands, we can only make

the general statements mentioned above.

3.6 Summary

Combining large optical and near infrared surveys of stars, such as SDSS and

UKIDSS, is an effective means of constraining interstellar extinction as well as ad-

dressing the degeneracy between effective temperature Teff and extinction A0 for

individual stars. To achieve this, we construct a forward model trained on colour

changes of real data due to extinction, effective temperature and R0 in combination

with self-consistent use of an HRD prior to infer distance information. Incorporating

these physical constraints, we infer astrophysical parameters (APs) in a Bayesian

framework using an MCMC algorithm to efficiently sample over the posterior distri-

bution. This way we are able to naturally extract full probability distribution (PDF)

information in each AP. Testing with synthetic data has shown that this method pro-

duces accurate results, with the caveat of not fully incorporating the systematic effect
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Figure 3.22: Mean R0 (orange, left axis) as function of distance modulus for a subset of
stars from Figure 3.20. The same technique as in Section 3.5 is used to compute the mean
and standard deviation. In turquoise the extinction profile is plotted (right axis). Distances in
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metallicity has on distance estimation.

We have investigated the impact of the data and assumptions on the model, in

particular the effect of removing photometric bands, inferring R0 in addition, and the

effect of an incorrectly assumed metallicity on the results. When using nine bands

(five from SDSS, four from UKIDSS) we obtain a mean absolute error of the residuals

of the model for A0 of 0.23 mag and 300 K in Teff. These values are up to 50% better

than just using SDSS photometry. The MAE for ∆ = mr − Mr is 2.2 mag. With the

same set of data we can also achieve an accuracy of 0.73 in R0, with acceptable

changes to the performance in the other parameters. Using the 68% confidence

intervals (CI) to quantify the individual precision of the AP estimates, we obtain the

following values: 〈CI68(∆)〉 = 1.6 mag, 〈CI68(A0)〉 = 0.05 mag, 〈CI68(Teff)〉 = 66 K,

〈CI68(R0)〉 = 0.07. When estimating APs for fixed R0 the precision improves slightly.

Accuracies of distance modulus (or ∆) estimates are strongly dependent on the

correct assignment of metallicity to the stellar population being analysed. This can

either be achieved by matching the metallicity of the HRD prior, or by directly inferring

metallicity along with the other parameters. This, however, requires higher quality

and more informative data or spectroscopic observations of the stars.

Although we estimate APs for stars individually, our method is able to trace the

intermediate-size dust structures visible in e.g. SFD dust maps of the same regions.

In addition to line of sight extinction estimates (either averaged or per star) we can

use the full PDFs to compute probabilistic profiles of A0 and R0 as a function of
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distance, indicating how dust is distributed along the line of sight. We generally find

the expected result that, at these Galactic latitudes, the observed stars are behind

the layers of dust.

We have limited this work to stars at high Galactic latitudes common to SDSS

and UKIDSS Large Area Survey, allowing us to obtain photometry in nine bands. In

principle this method can use fewer bands, with the decrease in accuracy detailed

above, or use data from other surveys, such as Pan-STARRS (Kaiser et al., 2002) or

2MASS (Skrutskie et al., 2006). This would allow us to probe high extinction regions

towards the Galactic plane and further address the performance in respect to R0.

As analysed in Bailer-Jones (2011), the method can be expanded to combine

distance estimates, such as parallaxes, with the HRD prior in order to provide a

more accurate estimate of APs. Furthermore, metallicity and surface gravity may be

estimated as well, although, as noted above, this requires higher quality data. If we

could estimate them using spectroscopy or more photometric bands, then this would

alleviate the strong assumption made by implementing an HRD with fixed metallicity,

and thus potentially improve the accuracy of distance estimates.

Current work for the Gaia (Perryman et al., 2001) data processing pipeline, as

summarised in Bailer-Jones et al. (2013), illustrates AP estimation performance us-

ing Gaia spectra and photometry. By combining current multiband surveys with Gaia

parallaxes we expect to be able to increase the accuracy of the method and preci-

sion of the parameter estimates significantly.
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4

Dust in the Galactic Plane

This chapter is adapted from Hanson et al. (2016). Whilst conceptually similar to

Hanson & Bailer-Jones (2014), we adjust the method to use photometry from Pan-

STARRS 1 and GLIMPSE to infer extinction and distances to stars in the Galactic

plane. This significantly different environment allows us to map stars with a much

larger range of extinction values.

4.1 Data Sources

We crossmatch PS1 and Spitzer IRAC 3.6 µm point source data from the Glimpse

surveys using the API of the cross-match service provided by CDS, Strasbourg1

with a 1 ′′ search radius. This results in a data set with 19 885 031 individual stars.

Details on the surveys and data selection are noted below.

Pan-STARRS1

The Pan-STARRS1 survey has observed the entire sky north of declination −30 ◦

in five filters (Stubbs et al., 2010; Tonry et al., 2012). These cover the wavelength

range 400− 1000 nm. The resulting global photometric calibration is better than

1 % (Schlafly et al., 2012).

We select all point sources classified as stars that have good observations in the

five bands, gP1, rP1, iP1, zP1 and yP1, using the epoch-averaged photometry in each

band. We use data collected up to February 2013. We do not take into account

any variability observed across multiple epochs. About 90 % of stars have gP1-

band magnitudes between 16.19− 21.95 mag. Only a tiny fraction of the stars have
1cdsxmatch.u-strasbg.fr/xmatch
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photometric uncertainties worse than 0.1 mag, the median uncertainties in the five

bands are in the range 0.01− 0.02 mag.

Spitzer GLIMPSE

The Spitzer Space Telescope Legacy program GLIMPSE consists of four separate

surveys (I, II, 3D, 360), which together cover most of the Galactic plane within a

few degrees in latitude. The Infrared Array Camera (IRAC; Fazio et al., 2004) is

used to image at 3.6, 4.5, 5.8, and 8.0 µm. We use only the 3.6 µm data, as the

longer wavelength measurements do not improve our parameter estimation. We

select point sources that have signal to noise ratios greater than 3 and closed source

flags (csf) of 0, indicating that no other sources are within 3 ′′ of a source. This is

to ensure that sources are extracted reliably. The 90 % quantile for 3.6 µm-band

magnitudes is 11.20− 16.47 mag.

Hertzsprung-Russell Diagram

As in Chapter 3, we use a HRD prior as a constraint in the Teff−Mr -plane. To fully ac-

count for the distribution in stellar types expected in the Galactic plane, in particular

K and M dwarfs, as well as giants, we use the Dartmouth Stellar Evolution Database

(Dotter et al., 2008). For fixed solar metallicity, we smooth the data in the HRD plane

using a binned kernel density estimate with bandwidths of 25 K and 0.125 mag in

Teff and Mr, respectively. The temperature range is from 2500− 10 000 K, the ab-

solute magnitudes vary from −4 mag to 12 mag. The resulting grid has the pixel

dimensions of 751× 600 (as Teff ×Mr). Before normalisation, a small, non-negative

offset is added to all pixels to account for the fact that the regions that are empty in

the Dartmouth model HRD in reality may not have exactly zero probability. We show

a representation of the HRD in Figure 4.1.

The HRD of course depends on the metallicity, and as demonstrated in Sec-

tion 3.4 the choice affects the results. Unsurprisingly, it is not possible to also esti-

mate metallicity from our photometric data (due in part to the large - a priori unknown

- range of Teff and A0 in the data). If we fixed the metallicity of the HRD to a single

value, we would obtain artificially precise (but not necessarily more accurate) results

for the inferred parameters. To avoid this, we took an HRD and then smoothed it (us-

ing a kernel density estimation method). This produces a smooth but conservatively

broad HRD; it is broader than the one used in Chapter 3. As demonstrated there,

the lack of a metallicity determination will be the main limiting factor on the distance

accuracy, while the extinction, extinction parameter, and effective temperature are
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Figure 4.1: Density representation of the HRD, where the integrated probability is nor-
malised to one. The colour scale shows base 10 logarithm of the density, dark red is high
number density and yellow is low. Light yellow areas denote regions of the parameter space
with initially zero probability. A small offset is added to each point before normalisation to
avoid this in the actual computation. In this case the offset is approximately 10−4 times the
maximum density, resulting in a value of −7.5 in logarithmic density.

less influenced by this. We make this compromise of a simple HRD as we do not

wish to introduce yet more dependencies by imposing a complex Galaxy model.

4.2 Forward Model

We build a synthetic forward model based on MARCS model spectra (Gustafsson

et al., 2008) in the temperature range 2500− 10 000 K. Based on the bandpass

functions of the survey filters, we compute the absolute photometry for stars with

simulated extinction. The zero points are computed in the AB system. We convert

the Spitzer IRAC data (which is reported in Vega magnitudes) accordingly.

As the synthetic libraries do not model colours of M dwarfs well, we combine
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these with empirical stellar loci for the Pan-STARRS1 bands from Tonry et al. (2012)

and adapt the synthetic loci at low temperatures (≈ 3000 K). Synthetic and empirical

loci match very well for other spectral types.

For each colour we fit a three-dimensional thin-plate spline to its variation over A0,

R0 and Teff. These spline models are used to predict the colour for given trial APs,

which are compared with the measured colours via the likelihood in Equation 2.1.

To fully model all variations over small parameter changes, we use ≈ 8000 synthetic

stars and allow the splines to have 1000 degrees of freedom.

Computation

We use a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) routine to sam-

ple the parameter space in logarithmic units of the APs. Using the logarithm forces

them to remain positive without the use of an explicit prior to this effect. Sufficient

convergence is achieved with 10 000 steps each for burn-in and sampling. The sam-

pling steps are of the order of 0.1 dex in all variables. To speed up the computation

time, we use a lookup table for all parameters. This has a resolution much better

than the model accuracy in order to avoid biasing the results from grid effects.

After inferring parameters for all stars, we remove those with parameters at the

grid boundaries, resulting in ranges of 3100− 9900 K in Teff and 2.2−5.8 in R0. This

post-processing step removes close to 10 % of the stars. In the available dataset

these stars have an indicator flag set to 1 for each affected AP (see Appendix in

Hanson et al., 2016, and www.rhanson.de/gpdust).

4.3 Maps

We apply our method to the cross-matched PS1-GLIMPSE photometry to obtain

individual AP estimates for all stars individually. To summarise and visualise these

results we bin stars with a fixed angular resolution of 7 ′ × 7 ′ in l and b. We present

the maps after converting the extinction values to the r -band extinction ArPS1 (see

Section 3.2 for details of this conversion). To compute the variation in extinction Ar

(and R0) along the line-of-sight at any value of distance modulus µj we calculate

the weighted mean extinction 〈Ar〉j and standard deviation Σj (and analogously for

R0) for all stars in a single bin which have a distance modulus estimate within one

magnitude of our selected position. The recipe for doing so is detailed in Section 2.3.

The mean uncertainties on extinction A0, extinction parameter R0, effective tem-

perature Teff and distance modulus µ, based on the widths of the 68% confidence
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intervals of the individual stellar parameter estimates, are 0.17 mag, 0.36, 185 K

and 2.6 mag, respectively. For each star we obtain an entire PDF over the parame-

ters, from which we compute the confidence intervals. The lower bound of the 68%

confidence interval has 16% of the probability below it, whereas the upper bound

has 16% of the probability above it. Histograms of the uncertainty distributions are

shown in Figure 4.2.
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Figure 4.2: Histograms of the widths of the 68% confidence intervals of extinction A0, ex-
tinction parameter R0, effective temperature Teff and distance modulus µ. The turquoise
vertical lines indicate the mean values in each case. For A0 this corresponds to 0.17 mag,
for R0 it is 0.36 , for Teff it is 185 K and for µ it is 2.6 mag.

In Figure 4.3 we show histograms of the relative uncertainties for the APs for

each star (distance modulus is not included, as it is a fractional distance.) These are

computed by dividing the width of the 68 per cent confidence intervals by the mean.

The mean relative uncertainties are 0.17, 0.09 and 0.04 for extinction, extinction

parameter and effective temperature, respectively.

In Figure 4.4 we illustrate the density of stars per pixel for each line of sight. Note

that this does not indicate directly how many stars are used at each distance slice.

We impose minimal requirements in this case (10 stars per cell). The mean density

is nearly 400 stars per 7 ′ × 7 ′ pixel, whereby some pixels have only a few stars

(not counting regions not covered by the data set). The maximum is 2 931, the most

dense pixels tend to be situated slightly above and below b = 0 around the Galactic

centre. As expected the density decreases as we move away from the Galactic

centre in longitude.
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Figure 4.3: Histograms of relative uncertainties as defined by the widths of 68% confidence
intervals divided by the mean for A0, R0 and Teff. The turquoise vertical lines indicate the
mean values in each case. For A0 this corresponds to 0.17, for R0 it is 0.09 and for Teff it is
0.04.

l/deg

b
/d

e
g

0 50 100 150 200 250

−
4

−
2

0
2

0

500

1000

1500

2000

2500

S
ta

rs
 p

e
r 

p
ix

e
l
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Extinction A0

Figure 4.5 shows the cumulative line of sight extinction for eight distance slices from

µ = 6− 13 mag in units of rPS1 -band extinction as two-dimensional slices of the full

map through the Galactic plane. Various structures are visible. In particular the lack

of higher extinctions between l = 100−150◦ and towards larger distances coincides

with the warp in the dust distribution noted by Marshall et al. (2006) and Sale et al.

(2014). In Section 4.4 we will analyse in more detail a few particular molecular

clouds, which we will also use to validate the overall method.

At closer distances some cells contain insufficient stars to be assigned an extinc-

tion estimate and therefore appear white. The colour scale is limited to Ar ≤ 6 mag;

the highest extinction estimate for any pixel is Ar= 5.2 mag, although individual stel-

lar estimates may be larger.

Based on the distribution of the standard deviation of individual stellar distances

within the three dimensional cells and the standard error of the mean in each cell (per

angle and distance, for which a summary is shown in Figure 4.6), we estimate that

distances are only reliable from µ = 6− 13 mag. At closer distances we observe few

to no stars due to the bright magnitude limits of the surveys. Beyond the upper limit,

distance uncertainties become very large and the distance estimates themselves

are no longer useful (recall the relation between distance modulus and distance

uncertainties). Those distance slices are not presented here (although the individual

stellar distances are available in our published data set).

The predicted uncertainty is illustrated by the distribution of the model-predicted

standard errors in the distance modulus and is shown in the left panel of Figure 4.6.

For each cell, we compute the standard error of all inferred distance moduli from the

fixed cell distance. The average of these is 0.12 mag with a standard deviation of

0.08 mag. The distribution over all cells of the standard deviation of distance moduli

within each cell is shown in the right panel of Figure 4.6. The distribution has a

mean of 0.56 mag and standard deviation of 0.09 mag. The results indicate that the

selected distance slices represent the underlying distance distribution of the stars

well.

In Figure 4.7 we show a top-down view of the Galaxy at b = 0 in which we average

over the five central latitude slices, i.e. from b = −0.21 ◦ to b = 0.25 ◦. As a refer-

ence, a distance modulus of 5 mag (10 mag) is equivalent to a distance of 100 pc

(1000 pc). Here we can clearly see the 1 mag length scale of the distance modulus

slices as well as the expected increase of extinction within a few kpc towards the

Galactic centre at the top of the figure. As the measured extinction in neighbouring
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Figure 4.5: Cumulative line of sight extinction at distance moduli from µ = 6− 13 mag in
rPS1 -band. White regions are either not covered by the data footprint or (particularly at
closer distances) do not contain a sufficient number of stars.
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Figure 4.6: Left panel: Histogram of the predicted uncertainty of distance modulus. The
standard error is computed for each cell, using the differences of all inferred distance moduli
and the fixed cell distance. The mean of this distribution is 0.12 mag. Right panel: Distribu-
tion over all cells of the standard deviation of distance moduli within each cell. This distribu-
tion has a mean of 0.56 mag. In both panels, cells with distance moduli µ = 6− 13 mag are
included.

cells are only correlated in the radial direction, but not in longitude (or latitude), many

discontinuities can be seen.

Extinction parameter R0

We not only infer extinction A0 but also the extinction parameter R0. In Figure 4.8

we show this parameter in slices of distance modulus, analogously to Figure 4.5.

It is clear that variations here follow those in extinction. Although there is an indi-

cation that in some regions with higher extinction R0 increases above the mean of

〈R0〉 = 4.1 ± 0.27, we do not detect a global correlation between the two parame-

ters. Only for the two closest distance slices and for low extinctions (Ar < 0.5 mag),

is there an inkling that R0 increases with A0. Whilst we trust the variations of R0

we measure, we are less certain about the absolute values. This again has to do

with model uncertainties and parameter degeneracies that we are unable to remove.

Both extinction and the extinction parameter are cumulative along the line of sight to

any given distance. All the dust along the line of sight contributes to any individual

estimate. Because of this, correlations between these two cumulative parameters

are harder to see: at larger distances, the length scale over which the dust proper-

ties are averaged increases. For both the A0 and R0 estimates we use only stars in

a limited distance range around the specified distance.

Our results show that the extinction law is not universal. This has previously been

asserted by other authors, such as Gao, Jiang & Li (2009) and Chen et al. (2013)

who also look at the variation in large regions of the Galaxy.

The estimates of R0 for individual stars have, on average, an uncertainty of about
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10 %, as characterised by the ratio of the width of the confidence interval to param-

eter estimate. This is shown in the left panel of Figure 4.9 as a histogram of all stars.

The right panel illustrates the accuracy of the average R0 estimates from Figure 4.8.

We compute the ratio of the standard deviation to the range of R0 for the stars con-

tained in each cell. This average is 0.25 and indicates that for any individual cell the

mean R0 estimate is well constrained, despite possible variations arising from the

fact that APs are inferred for all stars individually.

Zasowski et al. (2009) find that the inner fields of the Galaxy correspond to a

larger R0, whereas outer fields tend to have a lower value. We also find this, as

exemplarily shown in Figure 4.10 where we plot the average extinction parameter,

〈R0〉 over several cells as a function of distance modulus for two different lines of

sight. The first (left panel) is centred on l = 0.5◦, b = 0 towards the Galactic centre.

The second (right panel) is centred on l = 47.2◦, b = −0.5◦. In both cases we

average over approximately half a degree in l and b, corresponding to 5 pixels in

each direction at our resolution. We immediately see that the inner profile increases

towards the Galactic centre, above the average of 4.1 for our data, an effect that is

also seen by Gontcharov (2012b).

The profile for the outer field, which we expect to look through more diffuse dust,

remains basically flat at a value below the global average. The mean extinction

parameter for this line of sight has a value of 3.9 ± 0.37, very close to the value of

3.8± 0.20 we find in Section 3.5 for regions towards the Galactic poles.

Our results for R0 suggest a higher value for the diffuse interstellar medium than

previous studies indicate. Mörtsell (2013) uses quasar data towards the Galactic

poles to find RV ≈ 3 with a relative uncertainty of 10 %. Savage & Mathis (1979)
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Figure 4.10: Distance modulus versus mean extinction parameter of cells within half a
degree, centred at l = 0.5◦, b = 0 (left panel) and l = 47.2◦, b = −0.5◦ (right panel).

obtain a value of 3.1 with a similar uncertainty. However, Jones, West & Foster

(2011) find a median value of 3.38 with at median uncertainty of 0.42 after fitting

SDSS spectra of M dwarfs within 1 kpc of the Sun. Their resulting distribution is

incompatible with a Gaussian with a width of σ = 0.42 centered at 3.1.

We have no reason not to believe our results: we find no systematic errors in the

data that could, for example, arise from unexpected correlations between R0 and

A0 and/or Teff and thus affect the parameter inference. This is clear from Chapter 3

where the extinction results for Galactic pole regions are not strongly affected by the

inclusion of R0 as an inferred parameter.

4.4 Validation

To validate our results, in particular the relatively uncertain distances, we compare

some of our lines-of-sight with distance estimates to molecular clouds in Schlafly

et al. (2014b), who use Pan-STARRS1 photometry to measure and model distances

to high statistical accuracy. From Table 1 in that work we select the clouds whose

coordinates lie within our survey limits. These are CMa OB1 with three individual

measurements at (l , b) = (224.5◦,−0.2◦), (222.9◦,−1.9◦) and (225.0◦,−0.2◦), as

well as Maddalena at (l , b) = (217.1◦, 0.4◦). The reported distances to these clouds

are 1369+64
−56, 1561+79

−77, 1398+63
−59 and 2280+71

−66 pc, respectively, which in distance mod-

ulus are 10.68+0.10
−0.09, 10.97+0.11

−0.11, 10.73+0.10
−0.09 and 11.79+0.07

−0.06 mag.

In Figure 4.11 we show the extinction Ar (turquoise circles) and extinction param-
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Figure 4.11: Cumulative extinction Ar (turquoise circles) and extinction parameter R0 (or-
ange triangles) as functions of distance modulus µ towards four molecular clouds. See text
for the coordinates of the fields. The error bars are computed using Equation 2.14. The
dashed vertical lines indicate the distances reported in Schlafly et al. (2014b).

eter R0 (orange triangles) as a function of distance modulus for our data using stars

within 7 ′ of the coordinates given above. The dashed lines indicate the Schlafly et al.

(2014b) distances of the clouds. The mean and error bars are computed according

to Equation 2.14.

Similarly, in Figure 4.12 we show differential profiles of Ar (turquoise circles) and

R0 (orange triangles), where the values quantify the change in both parameters in

steps of ∆µ = 1 mag.

Despite not explicitly measuring distances to individual large-scale objects, it is

clear that our method manages to capture real features in the extinction distribution.

We see that the total extinction Ar generally increases around the inferred positions

of the clouds, indicating an increase of the underlying dust density around that po-

sition. This feature is more pronounced in the two top panels, although the clouds

could be responsible for the more gradual increase in extinction in the other two
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panels as well. This is highlighted in Figure 4.12, where the increase in extinction

can be seen more clearly in the top two panels. The interpretation of the bottom

two panels in both figures is less clear cut, despite there being marginal changes

in Ar and R0 around the literature distances of the clouds. However, the spread in

Ar (and R0) is generally quite large, and the distances are so uncertain that we are

not necessarily confident of having detected the clouds. In all four panels the mean

extinction decreases slightly again beyond µ = 13 mag. We do not trust values be-

yond this distance (see Section 4.3 and Figure 4.6 for details), as we do not expect

to detect many stars at large distances due to the faint magnitude limits of the input

catalogues and the resulting selection effects.

The value of the extinction parameter R0 also appears to increase in sync with

the increase of extinction, although the magnitude of variation tends to be within the
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range of uncertainty. Nevertheless, the overall picture is one where there are dense

dust clouds which cause the cumulative line of sight extinction to increase above

some foreground value. This suggests that the inferred parameters we obtain with

our method are trustworthy and physically plausible, at least on a relative scale.

To further probe this, we compare our results with those of Berry et al. (2012,

B12) who combine SDSS and 2MASS data to calculate Ar and RV using a straight-

forward fit to stellar templates. We take a subset of the common survey area from

l = 49−51◦ and b = −1◦ to b = 1◦ and compute a 3D dust map based on their results

using Equation 2.14. Due to the different sensitivities and depths of the surveys we

use the distance slices at µ = 9 mag and µ = 10 mag for further comparison, as

other distances have many empty cells in one or both data sets. Qualitatively we

find similar behaviour and features in the Ar extinction map, although the average

extinction in our data is 〈Ar〉 = 1.63± 0.44 mag, whereas the B12 data suggests an

average of 〈Ar〉B12 = 2.41± 0.46 mag. The standard deviations are similar in both

cases. For the extinction parameter R0 we obtain an average value of 〈R0〉 = 4.04

with a standard deviation of 0.20, whereas 〈R0〉B12 = 3.02 (standard deviation is

also 0.20.) These differences are also reflected when individually cross-matching

the stars in the common footprint. The differences (this work minus B12) on aver-

age are −0.18 mag for r -band extinction and 0.79 for the extinction parameter. As

expected, due to B12’s work strongly favouring a value of 3.1 for a large fraction

of stars, we measure a standard deviation of 1.26 in R0 between the two datasets

and see that the differences increase as our R0 estimates increase. Our extinction

results agree reasonably well with the previous work. However, we seem to have

systematically higher values of R0, which, as discussed previously, may result from

fixing the metallicity in the HRD and/or using synthetic spectral templates. Neverthe-

less, we are much more confident in our relative values of the extinction parameter

(and A0), as our model assumptions have much less effect on our ability to measure

these.

To exclude the possibility that requiring NIR data could be a cause for the afore-

mentioned differences, we select a random sample of 10 000 stars in the same re-

gion based purely on their presence in the PS1 data-set. We require no counterpart

in the GLIMPSE surveys. Comparing the average widths of the 68% confidence

intervals and the average relative uncertainties with results that include GLIMPSE

data, as shown in Table 4.1, we find that including the 3.6 µm photometry signifi-

cantly improves the precision of the inferred APs. Especially the R0 estimates ben-

efit from the additional band, reducing the average width of the confidence intervals

from 0.30 to 0.22.
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PS1 + 3.6 µm PS1 only
AP 〈CI/AP〉 〈CI〉 〈CI/AP〉 〈CI〉
A0 0.12 0.23 mag 0.14 0.24 mag
Teff 0.04 217 K 0.04 206 K
R0 0.05 0.22 0.07 0.30
µ - 2.1 mag - 2.6 mag

Table 4.1: Average widths of 68% confidence intervals 〈CI〉 and mean relative uncertainties
〈CI/AP〉 for extinction A0, effective temperature Teff, extinction parameter R0 and distance
modulus µ in the cases of including 3.6 µm photometry (left) and using only PS1 bands
(right).

As this sample generally lacks GLIMPSE counterparts, we cannot measure dif-

ferences in the AP estimates for all individual stars. To nevertheless ensure that we

have not introduced (or removed) any systematic effects on the inference, we com-

pare the inferred APs for stars from the initial cross-matched sample when including

and excluding 3.6 µm photometry. In this situation the mean differences (includ-

ing minus excluding 3.6 µm data) of the APs for these stars are only 0.07 mag,

−45 K, 0.01 and 0.33 mag for A0, Teff, R0 and µ, respectively. This indicates that

the inclusion of the NIR band does not introduce systematic differences, but actually

improves the inference.

4.5 Summary

We have presented three dimensional maps in cumulative line of sight extinction A0

and extinction parameter R0 which are constructed using a Bayesian method. This

method is general and not bound to specific photometric systems. It is based on

work by Bailer-Jones (2011) that was expanded in Hanson & Bailer-Jones (2014).

We take advantage of the physical understanding of stellar evolution that is en-

capsulated in the Hertzsprung-Russell Diagram. Using photometric measurements

of 19 885 031 stars with data from the cross-matched Pan-STARRS1 and Spitzer

GLIMPSE surveys (six bands in total), we infer extinction A0, extinction parameter

R0, effective temperature Teff and distance modulus µ to all stars individually. We

achieve mean relative uncertainties of 0.17, 0.09, 0.04 and 0.18 for extinction, ex-

tinction parameter, effective temperature and distance modulus, respectively, whilst

obtaining average uncertainties of 0.17 mag, 0.36, 185 K and 2.6 mag for the four

parameters. We emphasise that while we believe the R0 variations we measure, we

are less confident in the absolute values, based on comparisons with other work.

Using these inferred parameters we compute the estimated total extinction to ar-
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bitrary distances and estimates of the extinction parameter, as formulated in Equa-

tion 2.14. The angular stellar density allows us achieve a reliable resolution of 7 ′×7 ′

in latitude and longitude. We select steps of 1 mag in distance modulus. From the

distribution of distance estimates within all three-dimensional cells, we estimate that

the reported extinction map is reliable from µ = 6− 13 mag. At closer distances we

have too few stars for trustworthy estimates due to the bright magnitude limits of

both surveys. Beyond that distance range, individual estimates become too uncer-

tain. We do not expect many stars beyond that distance due to the faint magnitude

limits, so we do not report values outside this range. We find that the extinction law

varies with each line of sight and along the line of sight, supporting previous works

which contend that using a single value to parametrize extinction is insufficient to

properly model the three dimensional dust distribution in the Galaxy. The data are

made available via www.rhanson.de/gpdust.

As previously discussed in Section 3.6, the key limitation at this stage is the dis-

tance inference, which is limited by photometric errors and intrinsic model degenera-

cies. Furthermore, on the account of our use of stellar models to estimate stellar ef-

fective temperatures, there are likely to be systematic uncertainties in our estimates

of A0 and R0. These enter through the assumption of ’true’ model temperatures,

the use of an HRD prior and lack of metallicity variations (again, see Section 3.4).

Furthermore, our extinction estimates for individual lines of sight do not account for

correlations in angular dimensions. That is, neighbouring lines of sight are solved

for independently. This clearly does not mirror reality, where the extinction estimates

for stars that are close in space (and whose photons are affected by the same dust

structures) should be strongly correlated, whereas those of stars that have a large

separation should be less so. Theoretically, due to the finite cross-sectional area of

a line-of-sight, a more distant star could show less extinction. This shortcoming is

now starting to be addressed. Sale & Magorrian (2014) introduce a method based

on Gaussian random fields and a model of interstellar turbulence, which addresses

the discontinuities we currently see in most extinction maps. Lallement et al. (2014)

use an inversion method with spatial correlation kernels that attempts to reconstruct

structures of the ISM in a more realistic manner. In Chapter 5 I will detail a new

method to self-consistently infer the three-dimensional dust distribution in a region

using individual stellar AP measurements.

Combining current large area photometric surveys, such as those employed here,

with parallax measurements from Gaia will enable us to construct accurate 3D maps

of stars in the Galaxy. Including stellar parameter estimates from future data re-

leases by the Data Processing and Analysis Consortium (DPAC), as summarised in
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Bailer-Jones et al. (2013), will significantly increase our capabilities of reconstructing

the full three dimensional distribution of dust.
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Non-parametric Dust Mapping





5

Model for Non-parametric
Dust Density

This chapter is adapted from Rezaei Kh. et al. (2017) and presents a non-parametric

model for inferring the three-dimensional distribution of dust density in the Galaxy.

This model is based on Gaussian processes and provides and analytic solution to

the problem.

The chapter is organised as follows. First, I give a brief introduction to Gaussian

processes, as they are vital to understanding the model. I then formalise it by deriv-

ing its analytical form. I demonstrate the performance using mock data and explain

the influence of the model hyperparameters. Finally I illustrate the computational

complexity and suggest potential improvements and additions.

5.1 Introduction to Gaussian Processes

At its core, a Gaussian process (GP) is a type of probability distribution of functions.

Although GPs can be used in principle for most types of machine learning problems

(see, e.g., MacKay, 2003, for a general overview), for our purpose we focus on

the regression application. We follow typical approaches, such as those in Gibbs

(1997) and Gibbs & MacKay (1997), and refer to Rasmussen & Williams (2006) and

Snelson (2007) for more in-depth introductions.

In this situation we have a data set D with N input vectors {xN} = x1, x2, ... , xN

and outputs yN = y1, y2, ... , yN . The outputs are assumed to be observed with noise

from an underlying function f (x) that is typically unknown. We therefore intend to

estimate f (x) from the data D. More accurately, we infer a probability distribution
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over likely functions. This then allows us to compute the probability of the quantity

in question at a new position, such that we solve P(yN+1|D, xN+1). Here, yN+1 is a

single datum, whereas yN+1 is the vector of the N + 1 outputs, mapped by the set of

input vectors {xN+1}.

Gaussian process model

The Gaussian process model is a method to solve this equation by assuming that

{xN} has a joint Gaussian distribution

P(yN |{xN}, CN ,µ) =
1
Z

exp
(
−1

2
(yN − µ)TC−1

N (yN − µ)
)

, (5.1)

where CN is the N×N covariance matrix and µ is the mean vector of the distribution.

Z is a normalisation constant which we ignore for now. For simplicity we consider

the µ = 0 case, which makes further notation more straight forward. Equation 5.1

then becomes

P(yN |{xN}, CN) =
1
Z ′

exp
(
−1

2
yT

NC−1
N yN

)
. (5.2)

Returning to the original goal of predicting yN+1 at a new position xN+1, we can

write the joint distribution of yN+1 as

P(yN+1|{xN}, xN+1, CN+1) =
1

Z ′′
exp

(
−1

2
yT

N+1C−1
N+1yN+1

)
. (5.3)

The full probability distribution for yN+1 can thus be written as

P(yN+1|yN , {xN}, xN+1, CN+1) =
P(yN+1|{xN}, xN+1, CN+1)

P(yN |{xN}, CN)

=
Z ′

Z ′′
exp

[
−1

2

(
yT

N+1C−1
N+1yN+1 − yT

NC−1
N yN

)]
.

(5.4)

If we now express CN+1 in terms of CN as
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CN+1 =



 CN


k


[

kT
] [

k
]


, (5.5)

where the scalar k is just the covariance of the new position vector with itself k =

C(xN+1, xN+1) and k is the vector of the covariances of all N original positions with the

new position, k = [C(x1, xN+1), C(x2, xN+1), ... , C(xN , xN+1)]. We can rewrite Equa-

tion 5.4 as

P(yN+1|yN , {xN}, xN+1, CN+1) =
Z ′

Z ′′
exp

[
−1

2

[
yN yN+1

]
C−1

N+1

[
yN

yN+1

]]
. (5.6)

Now, we express C−1
N+1 in terms of CN and C−1

N

C−1
N+1 =

[
M m
mT µ

]
, (5.7)

where

µ =
(

k − kTC−1
N k

)−1

m = −µC−1
N k

M = C−1
N +

1
µ

mmT .

(5.8)

Substituting these factors into Equation 5.6 and simplifying, we find

P(yN+1|yN , {xN}, xN+1, CN+1) =
1

Z ∗
exp

(
− (yN+1 − ŷN+1)2

2σ2
ŷN+1

)
, (5.9)

where ŷN+1 = kTC−1
N yN and σ2

ŷN+1
= k − kTC−1

N yN , and we have folded all the con-

stants into Z ∗. Thus, the maximum probability is given by the mean ŷN+1 and vari-

ance σ2
ŷN+1

.

Covariance functions

In order to effectively use a Gaussian process to solve a regression problem, a

suitable covariance function C must be defined (as well as the mean µ which we

have assumed to be zero). In general the elements of the covariance matrix are

C ij = C(x i , x j), where the function C describes correlations between different points
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C(x , x ′) = E [f (x)f (x ′)] , (5.10)

where E denotes the expectation value of some function. Constructing the covari-

ance matrix C using a covariance function ensures that the matrix is symmetric and

positive semidefinite.

There are many different choices for covariance function (see, e.g., Gneiting,

2002; Snelson, 2007; Rasmussen & Williams, 2006, for examples). Depending on

the choice, one is able to vary the smoothness, amplitude and effective lengthscales

of the Gaussian process prior. Herein lies the appeal of Gaussian processes – in-

stead of trying to define and parametrize the unknown function f explicitly, we can

instead define the correlation between different values of it.

5.2 Method

As discussed, the aim is to determine the three-dimensional distribution of inter-

stellar dust given measurements of line of sight extinction towards individual stars.

Hence, we wish to find the probability distribution over the dust density at any point

in space, irrespective of the positions of the stars used to measure the line of sight

extinction. It is important to emphasise that we are not attempting to parametrize a

specific dust model – on the contrary, the use of a Gaussian process enables us to

avoid having to define a (invariably simplified) parametric model. In effect, we are

able to probe a much wider range of functional variations than a parametric model.

To develop and derive the model we define the problem we are trying to solve

more explicitly. Defining ρ(r ) as the dust density at position r measured from the

observer, we can model the attenuation of stellar light caused by this dust for a star

at position rn as

fn ∝
∫ rn

0
ρ(r ) dr , (5.11)

where r = |r | is the length of the distance vector. The central goal is to invert

the above to get ρ(r ) for an arbitrary point in space given measurements of the

attenuation towards multiple stars. If we adopt a parametric form for ρ(r ) then this is

straightforward, but the result would be highly limited by the form adopted. Instead,

we construct a non-parametric model by dividing the imagined pencil beam along

the line of sight towards each star into several dust cells, as illustrated in Figure 5.1
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for three stars.

Figure 5.1: Schematic of the principle of splitting each line of sight into multiple dust cells
(black lines) for 3 stars. (Here we show cells of constant size.) The total number of dust cells
(towards all stars) is J, and the length of dust cell j towards star n is denoted gn,j . The blue
line illustrates a new point at which we attempt to find the dust density.

Denoting the average dust density in cell j towards star n as ρn,j , the integral in

Equation 5.11 can then be replaced by a sum

fn =
∑

j

gn,jρn,j . (5.12)

The attenuation itself is unitless. The geometric factor gn,j is the length of the cell

along the line of sight (see Figure 5.2 for Cartesian and radial examples). Thus ρn,j ,

the dust density, has units of attenuation per unit length. Opting for parsecs as our

distance unit,
[
ρn,j
]

= pc−1. Now, let an be a measurement of the attenuation towards

star n. Adopting a Gaussian noise model with standard deviation σn means that the

probability of the measurements is

P(an|{ρn,j}) =
1√

2πσn
exp

[
− 1

2σ2
n
(an − fn)2

]
, (5.13)

where {ρn,j} denotes just those cells along the line of sight towards star n. If the

non-attenuated source intensity is I0, then we assume that the observed intensity

due to an attenuation an is

I = I0 e−an . (5.14)

The measured extinction An (in magnitudes) is then computed as
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An = −2.5 log10

(
I
I0

)
, (5.15)

which results in extinction and attenuation being related as An ' 1.0857an.

Sun

star

ρi

gi

Figure 5.2: Schematic of the geometric factor, left for a Cartesian grid, right for radial grid,
centered on the Sun. The radially symmetric grid significantly simplifies the computation of
the geometric factor.

If we measure the extinction towards N stars and use a total of J dust cells (not

necessarily the same number for each star), then we define G as the N × J matrix

with elements gn,j , such that the nth row of G contains the geometric factors just for

star n. Assuming a radial geometry (as in the right panel of Figure 5.2), the matrix

is very sparse, because most row elements are zero (corresponding to the cells for

all other stars). Specifically, each column has just one non-zero element because

stars do not share lines of sight. Thus we can write Equation 5.12 as

fN = GρJ , (5.16)

where we define the set of dust densities in all J cells as the J-dimensional vector ρJ .

The predicted attenuation towards the N stars is denoted as fN . With the N attenua-

tion measurements (vector aN) and covariance V N , we can generalize Equation 5.13

to be an N-dimensional Gaussian

P(aN |ρJ) =
1

(2π)N/2|V N |1/2 exp
[
−1

2
(aN −GρJ)TV−1

N (aN −GρJ)
]

. (5.17)

This is a likelihood and defines the probability of observing the data given a set of

model parameters. From this we want to find P(ρJ+1|aN), to be able to estimate the

dust density ρJ+1 at an arbitrary point rJ+1 in 3D space. Whereas each element of ρJ

refers to the average dust density in the corresponding cell, ρJ+1 is the density at the
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point rJ+1. There is no concept of a cell for points where we want to predict the dust

density.

Gaussian process model

A typical problem may involve N = 104 and J = 105 (on average 10 cells per line of

sight). In order to infer the dust densities, we need to introduce some connection

between the lines of sight, otherwise we just have N independent equations like

Equation 5.12 with J unknowns.

Therefore lines of sight are connected using a Gaussian process (see Section 5.1)

to calculate the joint probability distribution of the dust density at any J different

points (or cell centres). This is a J-dimensional Gaussian that is fully characterised

by the choice of covariance matrix, CJ , which depends on the distance between the

points (or cell centres), i.e.

P(ρJ) =
1

(2π)J/2|CJ |1/2 exp
[
−1

2
ρT

JC−1
J ρJ

]
. (5.18)

In this formulation we explicitly assume a zero mean Gaussian, implying that the

dust density is zero in regions that are not constrained by the data. To fully utilise

the Gaussian process approach, we exploit the fact that the conditional distribution,

P(ρJ+1|ρJ), is also Gaussian.

As indicated above, the choice of covariance function is an essential factor when

using a Gaussian process as it determines the elements, ci ,j , of the covariance

matrix between two points (or cells) i and j at positions r i and r j , respectively. In

practice we use a truncated covariance function from Gneiting (2002)

ci ,j =

{
θ (1 + tα)−3 [(1− t) cos(πt) + 1

π
sin(πt)

]
if 0 ≤ t ≤ 1

0 otherwise ,
(5.19)

where t = |r i − r j |/λ with θ > 0, λ > 0. Examples of this function are shown in

Figure 5.3 for different values of α. The choice of α affects the smoothness of the

spatial variation because the gradient at zero separation changes significantly with

it (e.g. α = 2 has zero gradient at t = 0 and a smoother spatial variation than α = 1).

In the following work we use α = 1 (the solid line in the figure).

The covariance decreases monotonically from t = 0 to the scale length (λ), where

it drops to zero. The FWHM (full width half maximum – the point at which the co-

variance drops to half the maximum value, θ) is t = 0.2. This means the effective
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Figure 5.3: Covariance function in equation 5.19 with θ = 1. The solid line is the case of
α = 1 (used in this work) and the dashed lines, from bottom to top, are for different values of
α = {0.5, 0.75, 1.5, 2}.

correlation distance is actually lower than the value chosen for λ. The hyperparam-

eter θ determines the overall scale of variations of the dust density. We consider

the two hyperparameters, λ and θ, to be fixed (see Section 5.3 for analysis of their

influence on the model priors), although in principle they could also be inferred from

the data.

Beyond the fact that this covariance function has compact support (it is truncated

at λ – points separated by more than this distance will not have any effect on each

other), the specific form of the function is not physically motivated. A more practical

reason for using this kind of function is that it results in sparse covariance matri-

ces, which have significant computational benefits (both in memory and operations

terms) compared to dense ones (such as an exponential covariance function). It is

important to note, however, that not every truncated function is necessarily a valid

covariance function (being truncated is not a sufficient requirement – see, e.g., Ras-

mussen & Williams, 2006).

In Figure 5.4 we show samples drawn from the prior for different values of the hy-

perparameters. This is achieved by setting up a grid of 1000 equally-spaced points

from r = 0 to r = 5000 pc. A draw from this 1000-dimensional Gaussian is plotted

as a function r . For each fixed pair of λ and θ, we draw three samples from the

prior (orange, turquoise and purple lines). The sharpness of the function is due to

the shape of our covariance function (Figure 5.3) which influences the smoothness

of variations. As indicated earlier, a larger value of α in Equation 5.19 produces
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smoother variations. It is clear that higher values of θ result in more marked and

larger amplitude variations. Larger values of λ reduce variations at smaller scales.

The fact that the samples vary around zero is due to using a zero-mean prior. We

will see that in the presence of good data our posterior is mostly determined by the

likelihood rather than the prior (Section 5.4).
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Figure 5.4: Dust density drawn from the covariance function prior (equation 5.19) with dif-
ferent hyperparameters. Each orange, turquoise and purple line shows one draw from a
1000-dimensional Gaussian for a fixed λ and θ. The purple (orange) line is shifted up (down)
by ∆ρ = 0.001 in order to more clearly see the variation between separate draws from the
prior.

Combining this Gaussian process prior with the likelihood (Equation 5.17), we

can now determine P(ρJ+1|aN), the probability of the dust density ρJ+1 at point rJ+1

given N attenuation measurements aN . This means we are estimating J + 1 param-

eters from N measurements. As J ≥ N, the resulting density estimates will not be

independent. However, this is exactly the point of the Gaussian process model: we

introduce correlations between the dust cells to make the problem tractable and –

more significantly – to allow us to infer a PDF over the dust density at unobserved
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points.

Numeric solution

Using the law of marginalization over each line of sight towards observed stars and

then applying Bayes theorem, we can write the posterior PDF of the dust density at

any point given the data as

P(ρJ+1|aN) =
∫

P(ρJ+1,ρJ |aN) dρJ

=
∫

P(ρJ+1,ρJ)P(aN |ρJ+1,ρJ)
P(aN)

dρJ

=
1

P(aN)

∫
P(ρJ+1,ρJ)P(aN |ρJ) dρJ ,

(5.20)

where in the last line we use the fact that aN is independent of ρJ+1 once conditioned

on ρJ . This is a J-dimensional integral evaluated over all values of each component

of ρJ . The term outside the integral is independent of ρJ+1 so is just part of the

normalization constant. The first term under the integral is the Gaussian process

prior (equation 5.18), now in J + 1 dimensions. The second term is the likelihood

(equation 5.17). Both are Gaussians, but not in ρJ+1. To solve this numerically, we

apply the Monte Carlo principle and approximate the integral as

P(ρJ+1|aN) ' 1
K

∑
k

P(ρJ+1|(ρJ)k ) , (5.21)

where (ρJ)k is a sample of the dust density vector drawn from the posterior PDF

P(ρJ |aN). Thus the posterior PDF over ρJ+1 is a sum of 1D Gaussian process prior

PDFs, each with a different value of ρJ drawn from its J-dimensional posterior. This,

in general, is not a Gaussian itself.

Performing this integration in practice is (prohibitively) computationally expensive.

The posterior is defined in J dimensions, and for real problems we expect J > 104.

It would be extremely hard to draw reliable samples from this, and/or the sum would

have to be over an impossibly large number of samples.

Analytic solution

Luckily, the arguments of the terms in Equation 5.20 are linear functions of ρJ+1, and

the integral has an analytic solution. Let
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ρJ+1 =

[
ρJ

ρJ+1

]
(5.22)

be the concatenation of the J dust densities with the dust density at the new point.

Its covariance matrix is CJ+1 and the distribution of ρJ+1 follows Equation 5.18 with

J → J + 1. We now partition the inverse of the covariance matrix in an analogous

way as before

C−1
J+1 =

[
MJ mJ

mT
J µ

]
(5.23)

where MJ is a J × J matrix, mJ is a J × 1 vector, and µ is a scalar. We refer to

the steps in Appendix A to show that the result of the integration is a Gaussian with

mean −β/α and variance 1/α, such that

P(ρJ+1|aN) =
√

α

2π
exp

[
−α

2

(
ρJ+1 +

β

α

)2
]

, (5.24)

where

α = µ−mT
JR−1

J mJ ,

β = aT
NV−1

N GR−1
J mJ and

RJ = MJ + GTV−1
N G .

(5.25)

The calculation for the one-dimensional PDF over any single ρJ+1 at position rJ+1

involves inverting several matrices of size J, and this takes time O(Jn), where n . 3

for exact matrix inversion. In Appendix A we illustrate how some of these calcula-

tions can be accelerated using matrix identities.

5.3 Simulations

We set up mock observations to explore the model’s ability to capture known struc-

tures in the dust distribution. For this we test three simplified galaxy models. One

has a constant dust density throughout, the second has a dust density profile that

decreases exponentially from the galactic centre in all directions. The third adds a

dust cloud with increased density along the line of sight. In all cases we place the

observer 8.5 kpc from the centre at l = 0◦ and observe along a pencil beam towards

81



the galactic centre (l = 0◦, b = 0◦). For simplicity, all three examples are limited to

1D representations, although the method is defined generally to handle 3D data.

Constant dust density

We set up a simple model that has a constant dust density throughout the galaxy. In

Figure 5.5 we show the known dust density profile (left panel) and integrated line of

sight attenuation (right panel) along a pencil beam towards the galactic centre. Due

to the constant dust density, the line of sight extinction shows a linear increase, as

expected.
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Figure 5.5: Dust density (left panel) and attenuation (right panel) for the constant density
galaxy model as a function of distance for a pencil beam towards the galactic centre.

We now randomly select 20 positions along the line of sight and use the Gaussian

process model to estimate the dust density at these positions. We also use 20

randomly spaced extinction ”observations” along this line of sight as input data. We

use two values for measurement noise (σn in Equation 5.13), 0.1 and 0.01. We

use θ = 10−7 and λ = 2000 pc as the hyperparameters of the covariance function

(Equation 5.19; see below for an assessment of their impact). In Figure 5.6 we show

the results for both σn cases. Black circles are true values (constant), whereas the

turquoise circles with errorbars show the inferred densities. Note that the size of the

errorbars is exaggerated to emphasise the impact of the measurement uncertainties

on the predictions.

We see very good agreement with the model, in particular with a smaller σ. The

mean absolute error (MAE) of the predicted dust density is 7.0 ·10−5 (4.7 ·10−5) for

σ = 0.1 (σ = 0.01). The relative accuracies (< |ρtrue−ρpred|/ρtrue >) are 4.1 ·10−2 and

3.2 ·10−2, respectively (the constant dust density is set to 0.001, as can be seen in

Figures 5.5 and 5.6). As we can see, for this very simple case the model is capable

of inferring the dust density with a very high accuracy.
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Figure 5.6: Dust density as a function of distance for the constant density model. Left panel
uses σ = 0.1, panel on the right σ = 0.01. True values at the measurement positions are
shown as black circles, predicted values as turquoise circles and errorbars. Errorbars are
exaggerated to show the impact of σ on the predictions more clearly.

Exponential dust density

We now repeat the experiment with a slightly more complicated model. The under-

lying dust density decreases exponentially from the galactic centre (see solid lines

in Figure 5.7). Considering attenuation is the integral of the dust density along the

line of sight, it should come as no surprise that this also follows an exponential pro-

file (the observations are centred on the galactic centre and thus along the density

gradient vector.)

As before, we randomly generate 20 observations along the line of sight and infer

the dust density at a further 20 random positions. With fixed θ and λ we illustrate the

outcome for the two values of σ in Figure 5.7.

For this model, we also measure a very good performance. The predicted dust

densities clearly recover the underlying model. The mean absolute error of the dust

density is 1.2 ·10−3 (7.8 ·10−4) for σ = 0.1 (σ = 0.01). The relative accuracies are

1.7 ·10−1 and 1.0 ·10−1, respectively. Due to the more complex model, the accuracy

is slightly lower that in the case of constant density. However, the method is able to

reliably predict the dust densities in both cases.

Exponential dust density with cloud

We now modify this setup slightly by adding an artificial dust cloud 2000 pc from

the observer with a depth of 500 pc. This dust cloud has a fixed density that is
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Figure 5.7: Dust density as a function of distance for exponential density model. Left panel
uses σ = 0.1, panel on the right σ = 0.01. True values at the measurement positions are
shown as black circles, predicted values as turquoise circles and errorbars. Errorbars are
exaggerated to show the impact of σ on the predictions.

higher than the underlying exponential distribution at that position (see solid lines in

Figure 5.8). This time we generate 40 observations and infer the density at 40 po-

sitions. This is done to ensure we have a sufficient number of observations around

the position of the dust cloud. In any case, the effect it has on the extinction mea-

surements would be evident. For the same θ, λ and σ values we show the results in

Figure 5.8.

We again are able to reliably recover the theoretical density. This time the differ-

ence in measurement uncertainty (σ) is more evident. The profile is closer matched

for the lower uncertainty (right panel), even though the impact of the cloud is clearly

visible in both cases. The mean absolute error of the dust density is 7.5 ·10−3

(8.0 ·10−3) for σ = 0.1 (σ = 0.01). The relative accuracies are 2.8 ·10−1 and

2.0 ·10−1, respectively. We again see a slight decrease in accuracy compared to

the previous models, although this is to be expected given the added feature in the

dust density.

A more complicated model is shown in Rezaei Kh. et al. (2017). It shows that the

method is capable of predicting the dust density in the presence of localised dust

clouds, as well as returning consistent predictions in regions that have no direct

observations.
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Figure 5.8: Dust density as a function of distance for exponential density model with added
dust cloud (solid black lines). Left panel uses σ = 0.1, panel on the right σ = 0.01. True val-
ues at the measurement positions are shown as black circles, predicted values as turquoise
circles and errorbars. Errorbars are exaggerated to show the impact of σ on the predictions.

Effect of hyperparameters

There are three key parameters that we can set in the model: the hyperparameters

of the covariance function, θ and λ, and the size of the cells g (which could also be

different for every star, although we use a global value).

The hyperparameter θ sets the absolute scale of the covariance and with it the

amplitude of dust variations. For fixed λ and g a larger value of θ means we can

capture larger variations. For zero separation, θ is thus the expected variance in the

dust density at any point.

The length scale λ defines the maximum correlation length between dust cells (re-

call, we are using a truncated covariance function). The effective correlation length

is actually smaller (see Figure 5.3). Therefore, using a very small value will result in

most cells being disconnected (uncorrelated) from one another, meaning that infor-

mation about dust clouds, etc. will not be propagated effectively. Using a very large

correlation length will naturally connect very distant points and thus smooth out local

variations in the data.

The cell size is the distance over which we assume the dust density to be constant

in the model. It is used to represent the attenuation towards observed stars, however

it is not used directly in any further calculations and therefore does not impose a

resolution limit for the model. It defines the distance scale for which the model

is sensitive to variations. Therefore we aim to use a small value. Unfortunately,
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inverting the covariance matrix (which has dimensions J × J) is an O(J3) operation

and therefore computationally constrains the size we can use in practice.

The actual minimum length scale over which the model can detect dust variations

is given by a combination of these three parameters and, importantly, by the data

themselves.

In Figure 5.9 we show the impact of varying θ and λ on the model predictions for

stars using the exponential dust model. In all panels the black dots denote the true

dust densities at the positions of the observations, whereas the turquoise points and

errorbars are the predictions. Each column uses a fixed value for θ (see above the

top row), each row uses a fixed λ (see right hand side of figure). All simulations are

run with an attenuation error of σ = 0.1, although the qualitative results are the same

for σ = 0.01.
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Figure 5.9: Effects of the hyperparameters of the covariance function on the model predic-
tions for an exponential dust model for σ = 0.1. Black points are the true values, turquoise
points with error bars are the predictions. Each column uses a different value for θ (see
above first row), each row uses a different λ (see to the right of the third column), resulting
in nine different (θ,λ) pairs. Errorbars are multiplied by a constant factor to emphasise the
differences.
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In general we see two main effects. Larger values of the correlation length λ

result in smoother variations of the predicted dust density. This is what we expect,

considering more cells are connected with each other the larger it becomes and thus

increases the number of measurements used to infer dust densities at new points.

This also causes the size of the errorbars to decrease with increasing λ.

As indicated above, larger values of θ enable the model capture steeper changes

in the dust density. For fixed λ we see smoother changes in the predicted dust

density for smaller θ.

Our choice of covariance function implies that points separated by less than the

correlation length λ have correlated posterior distributions. Not only are the pre-

dicted dust densities correlated, so are their uncertainties. The errorbars of neigh-

bouring points in Figures 5.7 and 5.9 are therefore highly correlated. The choice of

where to predict the dust density is not affected by the number of points at which the

density is predicted, only by the number of measurements (and their uncertainties),

assuming a particular model. Therefore we can trace variations of the dust density

at a smaller scale than given by the errorbars.

5.4 Outlook

We have introduced a novel non-parametric method for reconstructing a smooth,

three-dimensional map of dust density from line of sight extinction (attenuation) mea-

surements. By using a Gaussian process prior to constrain the variation of dust den-

sity, we avoid having to define a specific functional form of this spatial correlation.

Instead, we define a simple covariance function that depends on the distance be-

tween two points. We are therefore able to predict the dust density in regions where

we have no observations and overcome the discontinuities seen in previous 3D dust

maps. For each of these new points we predict the posterior probability function

over the dust. This function is a Gaussian, and we have derived an analytic solution

for the mean and standard deviation.

We have applied the method to three simplified mock galaxy models and showed

that we are able to reliably reconstruct dust structures in regions with observed

extinctions. We have explored the effect of the covariance hyperparameters on the

predicted dust densities, illustrating that a larger correlation length scale λ results

in smoother predictions, whereas the amplitude θ affects how well steep changes

in density can be captured. We are able to probe dust structures at significantly

smaller scales than defined by λ.
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Despite having an analytical solution to the problem, and thus making a com-

putational solution feasible in the first place (see Section 5.2), the computation time

required to solve a small problem set is still significant. This is due to the matrix alge-

bra involved, in particular inverting the covariance matrix, which scales non-linearly

with the number of cells J (generally O(Jn) with n . 3). Although this particular step

only needs to be performed once, there are several other matrix inversions and mul-

tiplications which must be computed for every new prediction. For example, inverting

the covariance matrix with N = 1000 and J = 10 000 takes around one hour with a

single core on a modest computer. In principle this step can be parallelised trivially.

Predicting the density at a new point with these parameters takes approximately 50

seconds (several points can also be parallelised). However, a significant amount of

memory is needed per core, even using sparse matrix techniques, thus limiting the

potential problem size on normal machines.

As such, to use this method to probe large regions (requiring thousands of ob-

servations) will require some additional optimisation beyond basic parallelisation.

One approach could be to use approximate matrix inversion techniques that require

O(N2) time. Furthermore, intelligently partitioning and overlapping regions that are

solved for individually may be possible, as long as discontinuities are taken into ac-

count properly.

In its current form, the method only uses the uncertainties in the extinction mea-

surements, but doesn’t take into account uncertainties that arise from inferring dis-

tances to the stars. In practice these will have to factored in. Even assuming good

general accuracy from Gaia, distant and faint stars will still have uncertain distance

estimates (see, e.g. Bailer-Jones, 2015). Future work will explore the possibility of

including distance errors in the model, as well as incorporating the other suggested

modifications.
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6

Conclusion

In this thesis we have presented two conceptually different approaches to measuring

dust in the Milky Way Galaxy. Dust plays a crucial role in understanding the physical

properties of the Galaxy. Therefore, being able to reliably infer its distribution will

enable a better understanding of the objects that are affected by it and the processes

occurring within it.

In Part 1 we extend a parametric Bayesian method to infer extinction, extinction

parameter, effective temperature and distance modulus to millions of stars individu-

ally. We are able to predict these parameters with a high precision and good model

accuracy. We present maps of the Galactic poles by utilising broadband photometry

from SDSS and UKIDSS and of the Galactic plane using Pan-STARRS 1 and Spitzer

GLIMPSE data.

In Part 2 we introduce a non-parametric Gaussian process method to infer the

local dust density from extinction and distance measurements to individual stars.

We demonstrate its ability on a mock galaxy model and are able to reliably recover

known features in the dust density.

Both of these methods will benefit immensely from the upcoming Gaia data re-

leases. In particular, combining multiband photometry with the vast number of Gaia

parallaxes will enable an increase in accuracy of the method presented in Part 1,

which in its current form only has a relatively weak handle on distance modulus.

With this potential improvement on distance estimates we may be able to expand

the method to take into account metallicity by using a more detailed, metallicity-

dependent, HRD prior to further improve the model’s accuracy (as illustrated in Sec-

tion 3.4).

Similarly, utilising Gaia parallaxes for the Gaussian process method, along with
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the inferred extinctions (see, e.g. Bailer-Jones et al., 2013), will enable us to infer the

dust density for large regions of the Galaxy. Providing we continue to develop the

method to overcome some of the computational limitations detailed in Section 5.4,

a full, self-consistent 3D dust map of the observable Milky Way might be a viable

prospect.
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A

Analytic Solution for Gaussian
Process

I explicitly show the steps to obtain the analytic solution of the integral in Equa-

tion 5.20, for which the final solution is shown in Equation 5.24 (Section A.1). I also

highlight the matrix identities that are used (Section A.2).

A.1 Analytic solution of the integral

We rewrite Equation 5.20 in the general form

P(ρJ+1|aN) =
1
Z

∫
e−ψ/2 dρJ , (A.1)

where Z is a normalisation constant. From Equations 5.18 and 5.17 (with J → J +1)

we see that

ψ = ρT
J+1C−1

J+1ρJ+1 + (aN −GρJ)TV−1
N (aN −GρJ)

= ρT
J+1C−1

J+1ρJ+1 + aT
NV−1

N aN − ρT
JGTV−1

N aN + ρT
JGTV−1

N GρJ − aT
NV−1

N GρJ ,
(A.2)

with

ρJ+1 =

[
ρJ

ρJ+1

]
. (A.3)

We can eliminate the third and fifth terms in Equation A.2, because all terms are

scalars and transposing them does not change them. To evaluate the integral we
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need to separate ρJ from ρJ+1 in ρJ+1. We first partition the inverse covariance matrix

in the following way

C−1
J+1 =

[
MJ mJ

mT
J µ

]
(A.4)

where MJ is a J × J matrix, mJ is a J × 1 vector, and µ is a scalar. It is important

to note that these are components of the inverted matrix, not components of CJ+1

which are then inverted. We can then write

ρT
J+1C−1

J+1ρJ+1 =
[
ρT

J ρJ+1

] [MJ mJ

mT
J µ

][
ρJ

ρJ+1

]
= ρT

JMJρJ + 2ρJ+1mT
JρJ + µρ2

J+1 .

(A.5)

Substituting this into equation A.2 and gathering together terms gives

ψ = ρT
J (MJ + GTV−1

N G)ρJ + 2(ρJ+1mT
J − aT

NV−1
N G)ρJ + (aT

NV−1
N aN + µρ2

J+1) , (A.6)

which is a quadratic expression in ρJ . The last term is independent of ρJ so can be

taken out of the integral, allowing us to write equation A.1 as

P(ρJ+1|aN) =
1
Z

exp
(
−1

2
aT

NV−1
N aN

)
exp

(
−1

2
µρ2

J+1

)
×
∫

exp
(
−1

2
ρT

JRJρJ + bT
JρJ

)
dρJ ,

(A.7)

where

RJ = MJ + GTV−1
N G

bJ = GTV−1
N aN − ρJ+1mJ .

(A.8)

This integral again has a standard form with analytical solution∫
exp

(
−1

2
ρT

JRJρJ + bT
JρJ

)
dρJ =

(2π)J/2

|RJ |1/2 exp
(

1
2

bT
JR−1

J bJ

)
, (A.9)

assuming |RJ | > 0. Using this we can write equation A.7 as

P(ρJ+1|aN) =
1
Z

e−φ/2 with φ = µρ2
J+1 − bT

JR−1
J bJ , (A.10)

where we have absorbed all factors which do not depend on ρJ+1 into the normalisa-
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tion constant. Substituting for bJ from equation A.8 this becomes

φ = − aT
NV−1

N GR−1
J GTV−1

N aN + (µ−mT
JR−1

J mJ)ρ2
J+1+

2aT
NV−1

N GR−1
J mJρJ+1 .

(A.11)

The first term does not depend on ρJ+1 so can also be absorbed into the normal-

ization constant. Inserting this into equation A.10 gives us

P(ρJ+1|aN) =
1
Z

exp
(
−1

2
αρ2

J+1 − βρJ+1

)
, (A.12)

where

α = µ−mT
JR−1

J mJ

β = aT
NV−1

N GR−1
J mJ .

(A.13)

By completing the square in the exponent

−1
2
αρ2

J+1 − βρJ+1 = −α
2

(
ρJ+1 +

β

α

)2

+
β2

2α
, (A.14)

and taking the term exp(β2/2α) outside of the integral (and absorbing it too into

normalization constant), we see that P(ρJ+1|aN) is just a one-dimensional Gaussian

with mean −β/α and variance 1/α, i.e.

P(ρJ+1|aN) =
√

α

2π
exp

[
−α

2

(
ρJ+1 +

β

α

)2
]

. (A.15)

A.2 Accelerating the matrix evaluations via matrix

identities

We can simplify the expressions for α and β and thereby reduce the number of matrix

multiplications using some standard matrix identities. We first relate the components

of the inverted covariance matrix (Equation A.4) to the components of the covariance

matrix itself, which we partition as (see also Equation 5.5)

CJ+1 =

[
CJ k J

kT
J k

]
. (A.16)

CJ is the J × J covariance matrix involving only the fixed data. k J is the J × 1 vector

with elements given by cj ,J+1, i.e. the covariance between the fixed data and the new

point. k is the scalar cJ+1,J+1, the covariance of the new point with itself (i.e. its

variance). Recall that each element of the covariance matrix is determined by the

covariance function, such as Equation 5.19.
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A standard result of matrix algebra (e.g. Press et al., 1992) allows us to write the

components of the inverted matrix as

MJ = C−1
J + (C−1

J k J)(k − kT
JC−1

J k J)−1(kT
JC−1

J )

mJ = −(C−1
J k J)(k − kT

JC−1
J k J)−1

µ = (k − kT
JC−1

J k J)−1 .

(A.17)

Temporarily defining

hJ = C−1
J k J , (A.18)

allows us to write the matrix and vector parts of the inverted covariance matrix as

MJ = C−1
J + µhJhT

J

mJ = −µhJ .
(A.19)

It should be noted that hJhT
J is an outer product, and produces a matrix of size

J × J. We now use the matrix inversion lemma (also known as the Woodbury matrix

identity; e.g. Press et al., 1992) to write, from the first line of Equations A.8

R−1
J = M−1

J −M−1
J GT(V N + GM−1

J GT)−1GM−1
J . (A.20)

The Sherman–Morrison formula (a special case of the matrix inversion lemma)

allows us to write

M−1
J = CJ − (1 + µhT

JCJhJ)−1µCJhJhT
JCJ

= CJ − (1 + µkT
JC−1

J k J)−1µk JkT
J ,

(A.21)

where we have substituted for hJ from Equation A.18.

All of the above allows us to simplify our expressions for α and β in Equation A.13

by using

R−1
J = M−1

J −M−1
J GT(V N + GM−1

J GT)−1GM−1
J

M−1
J = CJ − (1 + µkT

JC−1
J k J)−1µk JkT

J

mJ = −µC−1
J k J

µ = (k − kT
JC−1

J k J)−1

k = cJ+1,J+1

k J = (c1,J+1, c2,J+1, ... , cJ,J+1)T .

(A.22)

C−1
J takes time O(Jn) to compute, where n is typically . 3, but must only be done

once. As we use a truncated covariance function, CJ is a sparse matrix, a fact which

we exploit when inverting it. To compute the PDF at each new point, various other
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matrix inversions and multiplications must be performed, the longest of which takes

time O(NJ2), because J ≥ N. It should be noted that G is always sparse (when

J = N it is even diagonal, although this would result in a poor resolution map of dust

density). Because CJ is sparse, M−1
J is also sparse.
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