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Hydrodynamical cosmological simulations in f(R) modified gravity

I study the effects of Hu & Sawicki (2007) f(R)-gravity on astrophysical processes
and cosmological observables. Employing hydrodynamical cosmological simulations
carried out with the mg-gadget and arepo codes in modified gravity the influ-
ences on the Lyman-α forest, Milky-Way sized halos, clustering and lensing on large
scales as well as on the Sunyaev-Zeldovich effect are investigated. Comparing mg-
gadget to other codes I find that different f(R)-gravity simulation methods agree
on a percent-level accuracy for matter power spectra and halo profiles. The f(R)
effects are in general smaller at higher redshift, resulting in very small differences be-
tween f(R)-gravity and general relativity (GR) for the Lyman-α forest. Structural
properties of Milky-Way sized halos are however altered by up to 40%. Requiring
that the Solar system is screened within the Milky-Way leads to |f̄R0|= 10−6 as a
constraint on the background parameter. The fifth force is well described by a theo-
retical approximation in ideal NFW-halos while this estimate is much less accurate
for realistic halos. Two point correlation functions and angular power spectra are
increased in f(R)-gravity compared to GR. Dark matter halos are in contrast less
strongly correlated, leading to a lower halo clustering bias in f(R)-gravity. The an-
gular power in both thermal and kinetic Sunyaev-Zeldovich maps is by a few percent
higher in modified gravity compared to a ΛCDM model.

Hydrodynamische kosmologische Simulationen in f(R)-Gravitation

Diese Arbeit untersucht die Auswirkungen von Hu & Sawicki (2007) f(R)-Gravitation
auf astrophysikalische Prozesse und kosmologische Messgrößen. Mit Hilfe von hydro-
dynamischen kosmologischen Simulationen mit den Programmen mg-gadget und
arepo werden die Einflüsse von modifizierter Gravitation auf das Lyman-α Ab-
sorptionsspektrum, milchstraßengroße Halos, Kosmische Großraumstruktur, Gravi-
tationslinseneffekte sowie den Sunyaev-Zeldovich Effekt analysiert. Ein Vergleich
zwischen mg-gadget und anderen f(R)-Simulationsprogrammen zeigt, dass die Si-
mulationsergebnisse für Materie-Leistungsspektren und Halo Profile bis auf wenige
Prozent übereinstimmen. Die Effekte durch f(R)-Gravitation sind im Allgemeinen
zu früheren Zeiten schwächer, wodurch auch die Auswirkungen auf den Lyman-
α Effekt schwer messbar sind. Die strukturellen Eigenschaften von milchstraßen-
ähnlichen Halos ändern sich allerdings um bis zu 40%. Verlangt man abgeschirmte
f(R)-Kräfte im Sonnensystem, ergibt sich ein maximal erlaubtes Hintergrundfeld
von |f̄R0|= 10−6. Die f(R)-Kraft kann in idealen NFW-Halos gut durch theoreti-
sche Approximationen beschrieben werden, für realistische Halos funktionieren die-
se Näherungen jedoch deutlich schlechter. Zwei-Punkt Korrelationsfunktionen und
Winkelleistungsspektren zeigen in f(R)-Gravitation im Vergleich zu Allgemeiner
Relativitätstheorie höhere Werte, während Halos aus dunkler Materie weniger stark
korreliert sind. Das führt zu einem geringeren Halo Bias in f(R)-Gravitation. Die
thermischen und kinetischen Winkel-Leistungsspektren des Sunyaev-Zeldovich Ef-
fekts weisen durch die modfizierte Gravitation um einige Prozent höhere Werte auf.
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1 Introduction

The discovery of the accelerated expansion of the Universe (Riess et al., 1998) raised
the question of how to theoretically account for this effect. In the standard model
of cosmology, the Λ Cold Dark Matter (ΛCDM) model, the accelerated expansion
is explained by the cosmological constant. On the one hand the ΛCDM model is
a great success and is to date consistent with allmost all observational data (see
e.g. Planck Collaboration et al., 2016a). On the other hand it also features a few
problems, one of them being the lack of a motivation for Λ. The discovery of the
accelerated expansion of the Universe therefore not only manifested the success of
the ΛCDM model but also triggered an intense search for alternative theories which
can explain the acceleration (Dvali et al., 2000; Hinterbichler & Khoury, 2010; Joyce
et al., 2015).

These theories can be roughly grouped into two categories, the dark energy and
the modified gravity models. Dark energy models add a new type of field to Ein-
stein’s equations. If the field is described by an effective equation of state with
negative effective pressure, it can account for the accelerated expansion of our Uni-
verse (Wetterich, 1988; Caldwell, 2002). Theories of modified gravity on the other
hand modify the laws of gravity to achieve the same effect (Hu & Sawicki, 2007).
As general relativity (GR) is very well tested in the solar system (Will, 2014), these
modifications must be negligibly small in our local environment. Otherwise the con-
sidered theory would be immediately ruled out. In order to hide the modifications
to Einstein’s GR in our neighborhood, practically all modified gravity models em-
ploy a so called screening mechanism. These mechanisms are usually triggered by
deep gravitational potentials or steep potential gradients and ensure that the theory
behaves like GR in high density environments (Jain & Khoury, 2010; Clifton et al.,
2012).

The fact that the modifications to gravity are screened in our local environment
does immediately imply that the only way to observationally test modified gravity
theories is to look for signatures on larger scales or in lower density regions. In the
coming years a number of large scale structure surveys, e.g., EUCLID (Amendola
et al., 2013) and LSST (Ivezic et al., 2008), will be carried out in order to perform
such a test of gravity on large scales. In order to do so, they nevertheless require a
detailed understanding of how structure formation is altered by theories of modified
gravity.

Apart from being a possible explanation for the accelerated expansion of the uni-
verse, modified gravity theories are an alternative to GR. Testing for these models
with the mentioned surveys is thus an independent test of gravity on the largest
scales. Work on modified gravity will therefore contribute to answer one of the
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1 Introduction

most important questions in fundamental physics, i.e., the question on the nature
on gravity.

The need for a screening mechanism in modified gravity leads to a very non-linear
behaviour of the underlying equations. Analytic approaches to cosmic structure
formation are therefore even more limited than for the standard cosmology. These
limitations resulted in a very active development of a number of cosmological N-body
simulation codes for various theories (Oyaizu, 2008; Schmidt et al., 2009; Dvali et al.,
2000; Li et al., 2012). These codes can efficiently simulate cosmic structure formation
and fully cover the modified gravity effects including the screening mechanisms.

In this thesis, I consider f(R)-gravity which was first mentioned by Buchdahl
(1970). This theory modifies Einstein’s GR by adding a scalar function of the Ricci
scalar to its action. It features the chameleon screening mechanism which screens
regions with deep potentials to recover GR in the solar system. If the functional form
of f(R) is properly chosen, the theory can account for the accelerated expansion of
the universe. In this work, I use the form proposed by Hu & Sawicki (2007) which
features an expansion history close to that of a ΛCDM universe.

To find observable cosmological and astrophysical signatures of f(R)-gravity, I
performed N-body simulations with the codes mg-gadget (Puchwein et al., 2013)
and arepo (Springel, 2010). The range of simulations covers both collision-less and
hydrodynamical cosmological simulations but also such employing zoomed simula-
tion techniques. To extend the capabilities of the codes I developed them further
and implemented e.g. a local timestepping scheme in mg-gadget and the modified
gravity solver in arepo. As a result of constant optimization work during this thesis
both codes can nowadays be used to very efficiently simulate structure formation in
f(R) modified gravity.

The simulations I ran are dedicated to analyze the Lyman-α forest, Milky Way
sized halos, clustering and lensing on the largest scales and the Sunyaev-Zeldovich
(SZ) effect in f(R)-gravity. I also carried out work for a modified gravity code com-
parison project which was carried out to identify potential differences and short-
comings of various modified gravity simulation techniques (Winther et al., 2015).

This thesis is structured as follows. In Chapter 2 I give a theoretical overview over
modified gravity. I specifically concentrate on f(R)-gravity and its implications for
cosmology but also make theoretical predictions which are later compared to the
simulations. Chapter 3 introduces the codes and the modified gravity simulation
techniques. I explain the code developments I carried out during this thesis in this
Chapter as well. The results of the modified gravity code comparison project are
presented in Chapter 4. In Chapter 5 I discuss how the Lyman-α forest is affected
by f(R)-gravity. The next chapter presents the results of zoomed cosmological sim-
ulations of Milky Way sized halos in modified gravity. The outcomes of the modified
gravity light-cone simulation project are presented and discussed in Chapter 7. First
results on the Sunyaev-Zeldovich effect in f(R)-gravity which were obtained through
simulations with arepo are shown in Chapter 8. In Chapter 9 I finally summarize
and discuss the results of the work carried out during this thesis and give an outlook
on its implications for future research in the field of modified gravity simulations.
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2 Theory

2.1 The standard model of cosmology
More than a decade ago the discovery of the accelerated expansion of the Universe
(Riess et al., 1998) led to the establishment of what is nowadays called standard
model of cosmology, the Λ Cold Dark Matter (ΛCDM) model. Up until now it is –
with very few tensions – compatible with all cosmological measurements. The two
main ingredients, dark matter and dark energy in the form of a cosmological con-
stant, are nevertheless not well understood yet. While dark matter is cosmologically
known to be one or several types of particles whose interactions are effectively lim-
ited to gravity (possibly along with a weak interaction) nothing has been detected
on the particle physics side yet. The cosmological constant can on the other hand
very well explain the expansion history of the universe but its theoretical motivation
is still unclear.

2.1.1 A brief overview
Starting out with GR with a cosmological constant Λ as a gravitational theory and
adopting the principle cosmological assumptions of homogeneity and isotropy the
large scale dynamics in the ΛCDM model is described by Friedmann’s equations
(Friedmann, 1922) (which can be derived from the mentioned ingredients):(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
(2.1)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
(2.2)

and the underlying Friedmann-Robertson-Walker (FRW) metric

ds2 = −c2dt2 + a2(t)
[
dw2 + f 2

K(w)dΩ2
]
. (2.3)

Here a is the scale factor and ρ and p are the spatially homogeneous (on sufficiently
large scales) but time dependent density and pressure, respectively. The gravita-
tional constant is denoted as G, c is the speed of light. For a spatially flat universe
(observations show that the universe is at least very close to flat, see e.g. Planck Col-
laboration et al., 2016a), the curvature is K = 0 and the radial function fK(w) = w,
where w is the radius in polar coordinates.

The matter content of the universe is usually given in terms of a critical density

ρcr = 3
H2

8πG
, (2.4)
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2 Theory

where H ≡ ȧ/a is the Hubble parameter, i.e. the relative expansion rate. In a sphere
filled with matter of critical density, the gravitational forces are exactly balanced
by the expansion of the universe. The matter-energy content of the universe is now
specified by

Ωm =
ρm
ρcrit

and Ωr =
ρr
ρcrit

, (2.5)

for the matter and radiation density, respectively. It is also possible to define a
density parameter associated with the field of the cosmological constant:

ΩΛ =
Λ

3H2
. (2.6)

Inserting the density parameters into Friedmann’s equations yields an expression
for the Hubble parameter as a function of time in an FRW universe

H2(a) = H2
0

[
ΩR0

a4
+

Ωm0

a3
+ ΩΛ +

ΩK0

a2

]
, (2.7)

where the zeros denote values at zero redshift z = 1−a
a

.

2.1.2 Reasons to look beyond GR
There are several reasons to explore and test alternatives to the standard model
and GR. First of all it is not clear that the standard model is the most appropriate
description of our universe. In the past years a number of alternatives, i.e., models
with a different description of dark energy or modifications to gravity have been
developed (Wetterich, 1988; Dvali et al., 2000; Nicolis et al., 2009; Hinterbichler &
Khoury, 2010). Many of them are, at first glance, as viable as the standard model
and therefore deserve to be explored further as well.

A second reason are the requirements of upcoming surveys of the large scale struc-
ture of the universe like EUCLID or LSST. These surveys are designed to test the
cosmological model and gravity on the largest scales. In order to do so, they require
a detailed theoretical understanding of how possible modifications to the standard
model or GR affect cosmological measures and what signatures to look for in order
to stress the cosmological model and standard gravity.

Thirdly, the problems with the cosmological constant are a very strong argument
to look for alternatives. Along with the lack of an elegant theoretical explanation for
Λ there are two major difficulties. On the one hand the old cosmological constant
problem just asks the question: “where does Λ come from?” It can be addressed by
many modified gravity theories which explain the late time accelerated expansion of
the universe by modifications to GR and have no need for a cosmological constant.
On the other hand there is the so called new cosmological constant problem, asking
the question why the vacuum energy of QCD is many orders of magnitude larger
than the energy density required to account for the accelerated expansion. So far,
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2.2 Modified gravity

there is no way to hide this energy density, e.g. via a QFT symmetry. Unfortunately,
almost all modified gravity and dark energy models struggle to solve this problem
as well.

2.2 Modified gravity
As pointed out above, there are several reasons to consider alternatives to the stan-
dard model of cosmology. These alternatives can be grouped in two classes, dark
energy and modified gravity models. The former group of theories adds fields (one
could also phrase it as a type of ”matter”) to the right hand side of Einstein’s
equations. If these fields have an effective equation of state with negative effective
pressure, they can account for the accelerated expansion. Examples for such dark
energy models are Quintessence (Wetterich, 1988; Peebles & Ratra, 1988), Phan-
tom dark energy (Caldwell, 2002) or coupled dark energy models (Wetterich, 1995;
Amendola, 2000).

The latter group of theories modifies the laws of gravity to account for the acceler-
ated expansion. As GR is tested to a very high precision in the Solar system (Will,
2014), theories of modified gravity share the need for a mechanism which hides the
modifications to the left hand side of Einstein’s equations in our local environment.
In order to give an overview of modified gravity models I will therefore follow Joyce
et al. (2015) and group them according to their mode of screening.

2.2.1 Screening by deep potentials
For a large group of modified gravity theories the screening mechanism depends
on the depth of the (Newtonian) gravitational potential Φ. If the gravitational
potential depth becomes too large, e.g. in high density environments, the screening
mechanism will become active and shield the modifications to GR. Theories of this
kind can in general be described by the following action, i.e. written as a scalar
tensor theory

S =

∫
d4x

√
−g

[
R

16πG
− 1

2
(∂ϕ)2 − V (ϕ)

]
+ SM(A(ϕ)2gµν , ψ), (2.8)

where ϕ is a scalar field with the potential V (ϕ), which does couple to the matter
action via A(ϕ). The acceleration of a test particle is then given by

a = −∇ [Φ + lnA(ϕ)] . (2.9)

Assuming a FLRW metric and a non-relativistic source of matter the field equation
for ϕ resulting from (2.8) is (using the notation ∂ϕx = x,ϕ)

2ϕ = Veff ,ϕ(ϕ), where Veff(ϕ) = V (ϕ) + A(ϕ)ρ. (2.10)

The dependence of the effective potential Veff on the matter density ρ is the key point
here. By appropriately choosing the potential and the field’s coupling to matter, one
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φ low density

V

Veff(φ)

ρA(φ)

V(φ)

φ high density

Figure 2.1: The effective potential of the chameleon Veff and its constituents V (ϕ)
and ρA(ϕ) in low and high density regions.

can – according to (2.10) – create a theory which features modifications to gravity
in low density regions but suppresses these in high density environments. Let me
now discuss different examples for such a screening mechanism.

Chameleon screening

The chameleon mechanism acts through a density dependent mass of the scalar field
(Khoury & Weltman, 2004a,b; Brax et al., 2004). In low density regions the mass is
small allowing for a considerable matter coupling while a high mass in high density
regions suppresses the coupling to matter and with that the modifications to gravity.
The mass is given by the second derivative of Veff at its minimum ϕmin

m2
min(ϕmin) = V,ϕϕ(ϕmin) + A,ϕϕ(ϕmin)ρ. (2.11)

To demonstrate how the chameleon mechanism works I will now choose a very simple
model (first considered in Khoury & Weltman, 2004a) with

A(ϕ) = e
ξϕ

MPl ≈ 1 + ξ
ϕ

MPl
, (2.12)

V (ϕ) =
M4+n

ϕn
, (2.13)

where M is a mass scale and n > 0 is a constant. The mass of the field is then given
by

m2
min(ρ) = n(n+ 1)M− 4+n

1+n

[
ρ ξ

nMPl

] 2+n
1+n

. (2.14)
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2.2 Modified gravity

It obviously increases with increasing density. The behaviour of the effective po-
tential is also illustrated in Figure 2.1. Its curvature at the minimum is small in
low density regions, resulting in a small effective mass and an effective gravitational
coupling. In high density regions, the curvature at the minimum is large due to
the contribution of ρA(ϕ). The effective mass is consequently much bigger and
suppresses an efficient coupling of the scalar field to matter.

For a spherically symmetric source the field will in general take the form of a
Yukawa potential (Hu & Sawicki, 2007; Joyce et al., 2015)

ϕ ∝ e−mminr

r
. (2.15)

This has several implications. If the mass of the field is high (e.g. inside heavy
objects) the field contribution from these regions will be suppressed due to the
Yukawa term. In regions with moderately low field mass but still close (in terms of
r < m−1

min) to the source, the field will drop in the same way as a Newtonian potential
and give a force contribution. Very far away from the object, i.e. r > m−1

min the field
is suppressed by the Yukawa term again. An example for a theory featuring the
chameleon screening mechanism is f(R)-gravity, which I consider in this work.

Symmetron screening

The Symmetron screening mechanism is also triggered by deep gravitational poten-
tials but acts through a density dependent coupling of the scalar field (Hinterbich-
ler & Khoury, 2010; Hinterbichler et al., 2011). More specifically, the strength of
the scalar field to matter coupling is proportional to the vacuum-expectation-value
(VEV) of the field. In low curvature environments the field gains a non-zero VEV
through spontaneous symmetry braking and thus contributes to the gravitational
forces. In high density regions the symmetry is restored resulting in a zero VEV for
the scalar field and a suppressed coupling to matter.

The Symmetron screening mechanism is used in the Symmetron gravity models.
Another screening mechanism which acts trough a density dependent coupling is the
Dilaton mechanism. It acts very similarly to the Symmetron mechanism and I will
therefore not go into further detail here.

2.2.2 Screening by derivatives of interactions
Kinetic screening

Another possibility to construct a screening mechanism is to concentrate on the
first order derivatives of the scalar field ϕ. As the Lagrangian must be a scalar,
these derivatives can only appear in combinations of ∂µϕ∂µϕ and multiples of that.
Kinetic screening then acts in a way that allows a force contribution due to ϕ far
away from a source while the ratio of this force to the standard gravity force shrinks
with decreasing distance to the source (Joyce et al., 2015).
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2 Theory

Vainshtein screening

The Vainshtein screening mechanism is a special variant of kinetic screening. To
give a rough impression how it works, I will choose the galileon gravity model as an
example theory. Around a spherically symmetric source, galileons show two modes
of operation (Joyce et al., 2015). Assuming a static solution around the spherical
source of mass m, the scalar field ϕ can be described by

ϕ′(r) =
3Λr

4

[
−1 +

√
1 +

1

9π

(rV
r

)]
, (2.16)

where

rV ≡ Λ−1

[
gM

MPl

] 1
3

(2.17)

is the Vainshtein radius. If r ≫ rV , the field will thus be proportional to a 1/r2

profile with a fifth force contribution of Fϕ = g2

3
FGR. The constant g sets the

coupling strength. Close to the source, i.e. r ≪ rV , the modified gravity force
contribution shrinks to

Fϕ =

(
r

rV

) 3
2

FGR ≪ FGR. (2.18)

The modifications to gravity will consequently be screened in this area. The Vain-
shtein effect is also responsible for the screening in many theories of massive gravity
which I will not consider in more detail here.

2.3 The f (R)-Universe
2.3.1 f(R)-gravity from a GR perspective
The field equations of f(R)-gravity can be derived in a GR framework. This is also
the way Buchdahl (1970) derived the field equations when he first mentioned the
theory. The action is very similar to that of GR, except for an additional scalar
function of the Ricci scalar R, f(R):

S =

∫
d4x

√
−gR + f(R)

16πG
+ SM(gµν , ϕ), (2.19)

where g is the determinant of the metric gµν and SM is the matter action depending
only on the metric and the matter fields ϕ. In GR one could now vary the action
in different ways but would still end up with the same theory. This is not the case
for f(R)-gravity. Varying the action with respect to the metric leads to metric
f(R)-gravity, the most widely studied f(R)-theory and also the model I consider in
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2.3 The f(R)-Universe

this work. If the action is in contrast varied with respect to both the metric and an
independent connection, one arrives at Palatini f(R)-gravity (Sotiriou, 2006).

Let me now go through the derivation of the field equations for the metric formal-
ism. Requiring the variation of the metric to vanish one starts out from

0 = δS =
1

16πG

∫
d4xδ

√
−g [R + f(R)] +

√
−gδ [R + f(R)] + δSM(gµν , ϕ),

(2.20)

where

δ
√
−g = − δg

2
√
−g

= −gµν
2

√
−g δgµν (2.21)

and

δ [R + f(R)] = δR + F (R)δR = [1 + F (R)] δR. (2.22)

The derivative of the scalar function with respect to R is denoted as F (R) ≡
∂f(R)/∂R. The variation of the Ricci scalar is in turn given by

δR = δRµνg
µν +Rµνδg

µν (2.23)
=

[
∇γ(δΓ

γ
µν)−∇ν(δΓ

γ
µγ)

]
gµν +Rµνδg

µν (2.24)
=

[
∇γ(g

µνδΓγ
µν)−∇ν(g

µνδΓγ
µγ)

]
+Rµνδg

µν (2.25)
= ∇γ

[
gµνδΓγ

µν − gµγδΓν
µν

]
+Rµνδg

µν (2.26)
≡ ∇γW

γ +Rµνδg
µν . (2.27)

From (2.23) to (2.24) one uses that the variation of a Christoffel symbol Γγ
µν trans-

forms like a tensor, i.e., ∂γ(δΓγ
µν) = ∇γ(δΓ

γ
µν), where ∇γ is a covariant derivative.

The Ricci tensor is denoted as Rµν . Inserting everything into (2.20) one arrives at

δS =
1

16πG

∫
d4x

−gµν
2

√
−g [R + f(R)] δgµν +

√
−g [1 + F (R)] δR

+ δSM(gµν , ϕ), (2.28)

=
1

16πG

∫
d4x

{
−gµν
2

[R + f(R)] + [1 + F (R)]Rµν

}√
−gδgµν

+
1

16πG

∫
d4x

√
−g [1 + F (R)]∇γW

γ + δSM(gµν , ϕ). (2.29)

Let’s focus on the term containing ∇γW
γ. Using the chain rule one obtains

1

16πG

∫
d4x

√
−g [1 + F (R)]∇γW

γ = − 1

16πG

∫
d4x

√
−g∇γF (R)W

γ

+
1

16πG

∫
d4x

√
−g∇γ {[1 + F (R)]W γ} . (2.30)
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Varying the metric only inside the integration domain, the second line of (2.30) van-
ishes due to Gauss’ theorem. In order to bring the remaining term to an appropriate
form, the variation of the connection is needed. For brevity, I will use ∇µxν ≡ xν;µ
and ∂µxν ≡ xν,µ for the covariant and the partial derivative, respectively.

δΓγ
µν = δ(gγαΓµν α) (2.31)

= (δgγα)Γµν α +
1

2
gγα(δgµα,ν + δgνα,µ − δgµν,α) (2.32)

=
1

2
gγα(δgµα;ν + δgνα;µ − δgµν;α). (2.33)

Continuing to calculate (2.30) one arrives at
1

16πG

∫
d4x

√
−gW γ∇γF (R)

=
1

16πG

∫
d4x

√
−g

[
gµνδΓγ

µν − gµγδΓν
µν

]
∇γF (R) (2.34)

=
1

16πG

∫
d4x

√
−g1

2

[
gµνgγα(δgµα;ν + δgνα;µ − δgµν;α)

− gµγgνα(δgµα;ν + δgνα;µ − δgµν;α)
]
∇γF (R) (2.35)

=
1

16πG

∫
d4x

√
−g

[
gµνgγα(δgνα;µ − δgµν;α)

]
∇γF (R) (2.36)

=
1

16πG

∫
d4x

√
−g

[
(∇µδg

µγ)− (∇γgµνδg
µν)

]
∇γF (R) (2.37)

=
−1

16πG

∫
d4x

√
−g

[
∇µ∇νF (R)− gµν2F (R)]δgµν . (2.38)

In the last step, Gauss’ theorem was used again. As above, the metric is only varied
inside the integration domain requiring the surface terms to vanish.

Finally, the variation of the matter action is commonly expressed in terms of the
energy-momentum tensor Tµν

Tµν = − 2√
−g

∂SM

∂gµν
⇒ δSM = −

√
−g
2

Tµνδg
µν (2.39)

Plugging (2.38) and (2.39) into (2.29) leads to

0 = δS =
1

16πG

∫
d4xδgµν

√
−g

{
−gµν

2
[R + f(R)] + [1 + F (R)]Rµν

−∇µ∇νF (R) + gµν2F (R)− 8πGTµν

}
. (2.40)

Substituting the Einstein tensor Gµν = Rµν − R
2
gµν and requiring √

−g ̸= 0 one
arrives at the field equations for f(R)-gravity, the Modified Einstein Equations

Gµν −
gµν
2
f(R) + F (R)Rµν −∇µ∇νF (R) + gµν2F (R) = 8πGTµν . (2.41)
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If in contrast the Palatini formalism is applied and the action is varied with respect
to both the metric and an independent connection the resulting field equations are
different. One important assumption which has to be made in order to derive the
field equations is, that the matter action does only depend on the metric and matter
fields and not on the connection. Starting out with the same action (2.19) one arrives
at (Sotiriou & Faraoni, 2010)

[F (R) + 1]
1

2
(Rµν +Rνµ)−

1

2
[f(R) +R] gµν = 8πGTµν (2.42)

∇̃λ

{√
−g [F (R) + 1] gµν

}
= 0. (2.43)

Note that the covariant derivative ∇̃λ and Rµν are defined with respect to the
independent connection in (2.42) and (2.43).

It is obvious that both the Modified Einstein equations obtained from the metric
formalism and the field equations of Palatini f(R)-gravity recover GR in the case
f(R) = 0. In the following I will nevertheless only consider metric f(R)-gravity.

2.3.2 f(R)-gravity formulated as a scalar tensor theory
f(R)-gravity can be easily rewritten as a scalar tensor theory (Brax et al., 2008).
Let me start by defining a field ϕ as

e−
2βϕ
Mpl = F + 1, (2.44)

where β =
√

1/6. Switching to the so called Einstein frame metric, which is defined
as

g̃µν = e−
2βϕ
Mpl gµν , (2.45)

the action for f(R)-gravity (2.19) becomes

S =

∫
d4x

√
−g̃

[
M2

pl

2
R̃− 1

2
g̃µν∇µϕ∇νϕ− V (ϕ) + L̃m

]
. (2.46)

In the language of section 2.2.1 the above definition of g̃µν corresponds to

A2(ϕ) = e−
2βϕ
Mpl . (2.47)

The potential of the field ϕ, V (ϕ) is given by

V (ϕ) =
M2

pl[RfR − f(R)]

2(fR + 1)2
. (2.48)

19



2 Theory

All symbols with a˜are defined with respect to the Einstein frame metric g̃µν . The
field equations then read (Brax et al., 2008)

G̃µν = R̃µν −
1

2
R̃g̃µν (2.49)

=
1

M2
Pl

{
∇̃µϕ∇̃νϕ− g̃mn

[
1

2
(∇̃ϕ)2 + V ϕ

]
+ Tµν

}
, (2.50)

2̃ϕ = V ′(ϕ)− β

MPl
. (2.51)

These equations describe exactly the same physics as the Modified Einstein equa-
tions. For some applications they are nevertheless easier to handle.

2.3.3 The Newtonian limit of f(R)-gravity
In the context of cosmological simulations the Newtonian limit of GR is considered
to be sufficient as the GR effects are negligibly small (See e.g. Adamek et al., 2016,
for a comparison between cosmological simulations carried out including higher order
GR terms and simulations adopting the weak field limit). It was also shown that
relativistic effects in f(R)-gravity due to the finite speed of light and back-reaction
do not lead to considerable changes in the laws of physics in the Newtonian limit
(Noller et al., 2014; Sawicki & Bellini, 2015). The quasi-static weak field limit is
therefore assumed in basically all cosmological simulation codes for f(R)-gravity.
Let me now derive an equivalent to the Poisson equation for f(R)-gravity and an
equation for the scalar degree of freedom fR = F (R) in the Newtonian limit.

Starting out with the Modified Einstein equations and taking their trace results
in

−R− 2f(R) +RF (R) + 32F (R) = 8πGT. (2.52)

Splitting of the background terms, assuming a pressure-less ideal fluid for the matter
term and a reasonable f(R)-model with |F |≪ 1 (this holds for all models satisfying
current constraints) one arrives at

−δR− 2δf(R) + 32F (R) = 8πGδρ. (2.53)

In a quasi-static situation the time derivatives can be neglected. Using δf(R) =
F (R)δR ≪ δR one arrives at an expression for the scalar degree of freedom

∇2F =
1

3
[δR− 8πG δρ] , (2.54)

where the ∇2 operator includes spatial derivatives only.
To derive an expression for the gravitational forces, the metric needs to be speci-

fied. Adopting conformal Newtonian gauge, the line element reads

ds2 = a(η)2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)dx2

]
, (2.55)
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2.3 The f(R)-Universe

where η is the conformal time which is related to physical time by a(η)dη = dt.
Considering the 00-element of (2.41) and only weak fields Φ ≪ 1 ⇒ g00 ≈ −1 gives

R00 +
R

2
+
f

2
−∇0∇0F (R)− gαγ∇α∇γF (R) = 8πGT00, (2.56)

where the f/2 term can be neglected for the same reasons as above. Dropping the
background terms again in inserting (2.54) leads to

δR00 =
16πG

3
δρ− 1

6
δR. (2.57)

What remains is to calculate the 00-element of the Ricci tensor. For brevity, I
will use a′ ≡ ∂a/∂η, aµ,ν = ∂aµ/∂xν . Latin indices (i, j, k, . . . ) denote spatial
coordinates in the following, Greek indices all four space-time coordinates. The
time-time component of the Ricci tensor is given by

R00 = Γα
00,α − Γα

α0,0 + Γα
αγΓ

γ
00 − Γα

0γΓ
γ
α0 (2.58)

= Γi
00,i − Γi

i0,0 + Γi
i0Γ

0
00 + Γi

ijΓ
j
00 − Γi

00Γ
0
i0 − Γi

0jΓ
j
i0 (2.59)

= ∇2
cΦ− (H−Ψ′)′ + 3(H−Ψ′)(H + Φ′)

−∇cΨ∇cΦ− (∇cΦ)
2 − 3(H−Ψ′)2, (2.60)

where ∇c denotes the gradient with respect to the spatial part of the conformal
coordinates and H ≡ a′

a
. The quasi static assumption allows us to neglect all time

derivatives and since Ψ and Φ are weak fields, all second order terms in the fields
can be dropped as well. Thus

δR00 = ∇2
cδΦ. (2.61)

In order to transform equation (2.61) back to physical coordinates, the Ricci tensor
translates as Rc

µν = a2Rµν . Since ∇ = 1
a
∇c the a-factors cancel and one gets

δR00 = ∇2δΦ, (2.62)

in physical coordinates. Combining this result with (2.57) and noting that Φ is the
Newtonian potential ϕ in the weak field limit leads to the Modified Poisson equation

∇2ϕ =
16πG

3
δρ− 1

6
δR. (2.63)

An expression for the so called fifth force, the additional gravitational force due to
the modifications to gravity, can be obtained by combining the Modified Poisson
equation with (2.54)

∇2ϕ = 4πGδρ− 1

2
∇2F (R). (2.64)

Subtracting the standard gravity part and integrating once leads to

aFifth force = −∇ϕf(R) =
1

2
∇F (R). (2.65)

The fifth force can thus simply be calculated from the gradient of the scalar field.
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2.3.4 Chameleon screening in f(R)-gravity
As already mentioned above, GR is tested to remarkably high precision in high
density regions like the solar system (Will, 2014). Therefore all modified gravity
theories need a screening mechanism to recover GR in these environments. For
f(R)-gravity this is achieved by the chameleon mechanism. Its basic operation
modes can already be seen from the Modified Poisson equation. In a low density
environment, where the gravitational potential is shallow, the curvature will be small
and thus δR ≈ 0. Neglecting the term containing δR in (2.63) it is obvious that
the gravitational forces will be enhanced by a factor of 4/3 compared to standard
gravity or – in other words – screening is inactive.

Considering a high density environment, the curvature will be comparatively large:
1
3
δR ≫ |∇2F |. (2.54) consequently reduces to

δR ≈ 8πG δρ. (2.66)
Using this approximation in (2.63) reproduces the Poisson equation of standard
Newtonian gravity:

∇2ϕ = 4πGδρ, (2.67)
showing that the chameleon screening mechanism screens the modifications to GR
in high density environments.

2.3.5 f(R) cosmology
The evolution of the large scale background can be described by an equivalent to
Friedmann’s equations. In order to derive those Modified Friedman equations, let me
assume a FRW metric for the large scale structure of the Universe (see e.g. Sotiriou
& Faraoni, 2010, for a discussion on why this is a valid assumption). Furthermore
considering a spatially flat background with K = 0 gives

ds2 = −c2dt2 + a2(t)
[
dw2 + w2dΩ2

]
. (2.68)

As for standard gravity, the Ricci scalar is then given by
R = 12H2 + 6Ḣ. (2.69)

In order to obtain an equation for the Hubble constant H = ȧ
a

(ȧ ≡ ∂ta) I will start
out with the 00-element of the Modified Einstein equations

R00 +
R + f

2
+ FR00 −∇0∇0F − 2F = 8πGT00. (2.70)

The covariant derivatives of F which is assumed to depend on time only on suffi-
ciently large scales are now given by

2F = −∇0∇0F +
1

a2

∑
i

∇i∇iF, (2.71)

∇µF = ∂µF = Ḟ δµ0, (2.72)
∇ν∇µF = δµ0δν0F̈ − Γ0

νµḞ . (2.73)
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With Γ0
00 = 0 and Γ0

ij = ȧaδij this leads to

∇0∇0F = F̈ and ∇i∇jF = −ȧaδijḞ . (2.74)

Assuming that cosmic matter behaves like an ideal fluid with the four-velocity uµ

T µν = (ρ+ P )uµuν + Pgµν , (2.75)

and plugging everything into (2.70) one obtains

−3ä

a
(F + 1) +

R + f

2
+

3

a2
ȧaḞ = 8πGρ, (2.76)

⇔ 3

[
H2 − R

6

]
(F + 1) +

R + f

2
+ 3HḞ = 8πGρ, (2.77)

⇔ (F + 1)H2 =
8πGρ

3
+
RF − f − 6HḞ

6
, (2.78)

which is the first Friedman equation for f(R)-gravity. The second one can be derived
from the trace of the Modified Einstein equation (2.52)

−(F + 1)
[
12H2 + 6Ḣ

]
+ 2(RF − f)− 3F̈ − 9HḞ = 8πG (3P − ρ). (2.79)

Inserting (2.82) for the density yields

−(F + 1)
[
3H2 + 2Ḣ

]
+

1

2
(RF − f)− F̈ − 2HḞ = 8πGP (2.80)

Rewriting (2.78) and (2.80) one obtains the Modified Friedman equations. The
f(R)-gravity contributions can be viewed as an effective density and pressure, ρeff
and Peff

H2 =
1

3(1 + F )

[
8πGρ+

RF − f − 6HḞ

2

]
(2.81)

=
8πGρ

3(1 + F )
+
ρeff

3
, (2.82)

3H2 + 2Ḣ =
−1

(1 + F )

[
8πGP − 1

2
(RF − f) + F̈ + 2HḞ

]
(2.83)

= − 8πGP

(1 + F )
− Peff. (2.84)

Using the above result one can calculate the effective equation of state parameter
for f(R)-gravity in vacuum,

weff =
Peff

ρeff
=

−(RF − f) + 2F̈ + 4HḞ

RF − f − 6HḞ
. (2.85)

23



2 Theory

It is easy to see that for a ΛCDM Universe, where f = −2Λ this equation returns
the well known standard model value of weff = −1. In order to reproduce a ΛCDM
expansion history, the following equation must hold for the f(R) theory of choice

F ′

F ′′ =
Ṙ2

HṘ− R̈
, (2.86)

where F ′ = ∂2Rf and F ′′ = ∂3Rf .

2.3.6 The functional form of f(R)
In order to compute gravitational forces in f(R) gravity, e.g. to solve equations
(2.63) and (2.54) one has to pick a certain f(R)-model or – in other words – choose
a particular function f(R). The numerical form of this function will determine
the behaviour of the cosmological model. Theories of f(R)-gravity can account for
inflation if one picks e.g. f(R) = αR2 (De Felice & Tsujikawa, 2010) or for the late
time accelerated expansion of the Universe. Examples are f(R) ∝ 1

R
(Vollick, 2003)

or the Starobinski model

f(R) = aM2

[(
1 +

R2

M4

)−α
2

− 1

]
. (2.87)

The model I will consider in this work was proposed by Hu & Sawicki (2007). It is
designed to account for the late time acceleration of the expansion of the Universe.
It is given by

f(R) = −m2 c1
(

R
m2

)n
1 + c2

(
R
m2

)n , (2.88)

where m2 = H2
0Ωm. The model has three constants n, c1, and c2 which control

its behaviour. The constant n can in principle be chosen arbitrarily but is most
commonly set to n = 1. I will adopt this convention throughout this work. The two
remaining constants can be used to control the background evolution of the universe
in the theory and to adjust the onset threshold for chameleon screening. In order to
be consistent with current observations, I require the model to have an expansion
history which is similar to that of a ΛCDM universe (Planck Collaboration et al.,
2016a), or weff = −1. Calculating the derivatives of f(R) gives

fR = F = −c1n
(

R
m2

)n−1[
1 + c2

(
R
m2

)n]2 (2.89)

≈ −c1n
c22

(
m2

R

)n+1

, (2.90)
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Figure 2.2: The redshift evolution of the effective equation of state parameter weff
for Hu & Sawicki (2007) f(R)-gravity and different values for the background field.
In the left panel a model with n = 1 is shown while the right panel displays the same
data for n = 4.

where (2.90) holds if 1 ≪ c2
(

R
m2

)n.

fRR = F ′ = −c1n
m2

(n− 1)
(

R
m2

)n−2 − (n+ 1)c2
(

R
m2

)2n−2[
1 + c2

(
R
m2

)n]3 , (2.91)

fRRR = F ′′ = −c1m2n

(
R

m2

)n

×
2
(
1 + c2

(
R
m2

)n)2
+ 3n

(
−1 + c22

(
R
m2

)2n)
+ n2

(
1− 4c2

(
R
m2

)n
+ c22

(
R
m2

)2n)
R3

(
1 + c2

(
R
m2

)n)4 .

(2.92)

Evaluating the time derivatives in (2.85) and inserting the derivatives of f(R) leads
to

weff = −RfR − f − 2(fRRRṘ
2 + fRRR̈)− 4HfRRṘ

RfR − f − 6HfRRṘ
. (2.93)

As one can see from Figure 2.2, the model obeys a phantom behaviour of the back-
ground evolution for f(R)-gravity models with a large (negative) value for fR0. For
viable models with |f̄R0|≤ 10−4, the theory nevertheless has a background evolution
parameter which is hardly distinguishable from the ΛCDM value of weff = −1.

In the limit (2.90) one can now derive a simple expression for the time evolution
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Figure 2.3: The redshift evolution of the background field in Hu & Sawicki (2007)
f(R)-gravity for |f̄R0|= 10−5.

of the background scalar field

f̄R(a) = f̄R0

[
R̄0

R̄(a)

]
, (2.94)

and

δR = R̄(a)

√ f̄R(a)

fR
− 1

 . (2.95)

The dependence of f̄R on redshift is shown in Figure 2.3. As one can see from the
plot, the background value of fR drops with growing redshift. At redshift z = 1.5,
a |f̄R0|= 10−5 model will therefore behave like an |f̄R0|= 10−6 model at redshift
zero. The screening threshold will thus become lower at higher redshift resulting in
weaker f(R) effects at earlier times.

2.3.7 Current constraints on f(R)-gravity
The current observational constraints on the Hu & Sawicki (2007) f(R) model were
obtained from measurements spanning a wide range of scales, reaching from Solar
system and dwarf galaxy constraints at sub parsec scales to Gpc scales for the CMB
constraints (Terukina et al., 2014). The most stringent restrictions on f̄R0 come
nevertheless from local measurements. Requiring that the Solar system is screened
within the Milky way leads to a maximum background parameter of |f̄R0|= 10−6 (Hu
& Sawicki, 2007; Lombriser et al., 2014; Arnold et al., 2016). The other, even more
stringent small scale constraint is obtained from distance indicators in dwarf galaxies
(Jain et al., 2013). Due to their low mass, these objects are usually unscreened
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(unless they live in a high density environment), maximizing the f(R)-effects. By
comparison to more massive screened galaxies, one can derive a constraint of |f̄R0|<
5× 10−7 at 95% confidence level.

On the large scale side of the constraints, the most stringent results come from
observations of the Coma cluster. Comparing hydrostatic mass measurements (these
are sensitive to f(R)-gravity in unscreened regions, Arnold et al., 2014) to the weak
lensing mass of the object (which is the same in both GR and f(R)-gravity) one can
derive an upper bound of |f̄R0|< 6×10−5 (Terukina et al., 2014). At the same scales,
measurements of cluster density profiles lead to a constraint of |f̄R0|< 3.5 × 10−3

(Lombriser et al., 2012b). Through a comparison of cluster abundance in simulations
with cosmological data, one obtains an upper bound of |f̄R0|< 1.3 × 10−4 at a 2σ
level (Schmidt et al., 2009). Finally, Planck data on the CMB leads to a constraint
of |f̄R0|< 10−2 (Hu et al., 2013).

Summarizing one can say that the strongest currently allowed f(R) model is |f̄R0|=
10−6. It is nevertheless sometimes useful to consider stronger modifications to GR
as a toy model in order to find out how f(R)-gravity acts on certain observables in
general.

2.3.8 Screening in spherically symmetric objects
1 It is in general not possible to analytically describe the scalar field and the fifth
forces for a complex density field. If the geometry of the density field is on the
other hand reasonably simple, such analytical solutions are well possible. In the
following I will derive an expression for the screening radius and the fifth force
inside a spherically symmetric over-density, following Davis et al. (2012); Sakstein
(2013). In order to do so, it is easier to work in the frame of f(R) as a scalar-tensor
theory as described in Section 2.3.2.

Consider a spherical over-density of radius R and density profile ρ(r) which is
embedded in a homogeneous background density ρ0. If at least part of the object is
screened, there will be some screening radius rs inside which the f(R) modifications
to GR are completely suppressed (Davis et al., 2012). When approaching rs from the
outside, the ratio of fifth-to-GR force will monotonically drop from its background
value to zero. The cases rs ≥ R and rs = 0 refer to the fully screened and unscreened
situations, respectively (see Fig. 2.4).

In the scalar-tensor theory description of f(R)-gravity, the Newtonian limit of the
field equations (2.50) and (2.51) is given by

∇2ϕ =
∂V

∂ϕ
+

βρ

Mpl

. (2.96)

One now has to distinguish different cases. If the object is at least partially
screened (top right panel in Fig. 2.4), the effective potential will reach its minimum

1The results and parts of the text of this section have already been published in Arnold et al.
(2016).
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Figure 2.4: Sketch of the screening mechanism on the field ϕ in a spherical over-
density ρ(r) with outer radius R. The top left panel shows a completely unscreened
case with the fifth force contribution F 5 ∝ ∇ϕ present at all radii. In the top right
panel a partially screened situation is sketched, where the field is constant inside a
screening radius rs. A completely screened case, where the screening radius exceeds
the radius of the over-density is illustrated in the lower panel.
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inside rs and one has (Hui et al., 2009)

∂V

∂ϕ
= − βρ

Mpl

. (2.97)

In other words, the derivative of the field ϕ will be constant inside rs, and since there
are no sources, ϕ = const. Far outside the sphere (for r ≫ R), the field ϕ0 is just
given by the background value fR0 of the scalar degree of freedom. To obtain ϕ in
the remaining region in between, i.e. in the partially screened shell of the sphere, one
can linearize Eqn. (2.96) and express it in terms of perturbations of the background
value δϕ = ϕ− ϕ0,

∇2δϕ =
∂2V

∂ϕ2
δϕ+

β δρ

Mpl

. (2.98)

Writing the density in Eqn. (2.98) in terms of the Newtonian potential ∇2ΦN =
4πGρ, integrating twice, and re-substituting the Newtonian potential for a spherical
over-density, dΦN/dr = GM(< r)/r2, one arrives at an expression for the fifth force
for r > rs (Sakstein, 2013; Davis et al., 2012):

F5 = α
GM(< r)

r2

[
1− M(rs)

M(< r)

]
, (2.99)

where α = 2β2 = 1/3 is the coupling strength of f(R) gravity.
What remains to be done in order to obtain the fifth force is to estimate the

screening radius rs. It is implicitly given by the integral equation (Sakstein, 2013)

ϕ0

2βMpl

= 4πG

R∫
rs

r ρ(r) dr. (2.100)

Equations (2.99) and (2.100) yield an estimate for the radius inside which the object
is fully screened as well as the fifth force profile for objects which are roughly spher-
ical (as the dark matter halos presented in Chapter 6). Given the density profile of
a simulated halo, one can easily compute an approximate estimate for the fifth force
and compare it to the simulation outcomes. The only remaining question is which
radius one should choose for the outer boundary R, as in practice it is hard to judge
where an halo exactly ends. In this work, I use r200 (the radius which encloses a
sphere with a mean density of 200 times the critical density) as a natural choice for
R.

Let us now assume that the density of the halo is given by a NFW-profile (Navarro
et al., 1997):

ρ(r) =
ρcritδc(

r
rNFW

)(
1 + r

rNFW

)2 . (2.101)
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To avoid confusion with the screening radius rs the scaling radius of the NFW-profile
is denoted as rNFW here. Inserting Eqn. (2.101) into (2.100), and solving for rs gives

rs =
rNFW

1
1+r200/rNFW

− 3 ln(fR0+1)

8πGρcritδcr
2
NFW

− rNFW. (2.102)

The scale introduced by the screening radius will obviously break the self-similarity
of dark matter halos with equal concentration but different masses as known in the
standard model of cosmology. Scaling both halo mass and fR0 such that the ratio
rs/r200 and the concentration parameter stay constant for different f(R) models is
nevertheless possible. This restores some kind of self-similarity in f(R) gravity:(

M1

M2

) 2
3

=
ln(fR01 + 1)

ln(fR02 + 1)
≈ fR01

fR02

, (2.103)

where M denotes M200 and the subscripts 1 and 2 refer to the first and the second
model/halo, respectively. As a cautionary remark it is important to say that this
involves a scaling of fR0 and will therefore not work for a given fixed f(R) model.
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3.1 Modified gravity simulations
There have been huge developments in the field of modified gravity numerical N-
body simulations over the recent years. The theories most commonly studied in
simulations are f(R)-gravity, galileon gravity and the Symmetron model.

For the f(R)-model, there are four efficient cosmological simulation codes which
can be used for large scale simulations. Two of them, ecosmog (Li et al., 2012)
and isis (Llinares et al., 2014a) are based on ramses (Teyssier, 2002), a cosmolog-
ical hydrodynamical simulation code employing a grid based method with adaptive
mesh refinement (AMR) and multigrid acceleration for the computation of both the
gravitational forces and the hydrodynamical equations. ecosmog and isis use this
grid to also solve the equations for the scalar field. mg-gadget (Puchwein et al.,
2013) is a cosmological f(R)-gravity simulation code which I used and further de-
veloped for the projects of this thesis. I also developed a modified gravity solver
for the moving mesh code arepo (Springel, 2010). The functionality of these two
codes is described in detail below.

Numerical simulation studies of f(R)-gravity include works on the matter power
spectrum (Oyaizu, 2008; Li et al., 2012, 2013c; Llinares et al., 2014b; Puchwein
et al., 2013; Arnold et al., 2015), the mass function of dark matter halos (Schmidt
et al., 2009; Ferraro et al., 2011; Li & Hu, 2011; Zhao et al., 2011), the velocity
dispersions of halos (Schmidt, 2010; Lam et al., 2012; Lombriser et al., 2012a), cluster
concentrations (Lombriser et al., 2012a) as well as density profiles (Lombriser et al.,
2012b). Furthermore, the integrated Sachs-Wolfe effect (Cai et al., 2014), redshift
space distortions (Jennings et al., 2012), the properties of voids (Zivick et al., 2015),
and the properties of semi-analytically modeled galaxy populations (Fontanot et al.,
2013) have been studied in f(R)-gravity. Recently, hydrodynamical simulations have
been used to study galaxy clusters and groups in f(R) gravity (Arnold et al., 2014),
the Lyman-α forest (Arnold et al., 2015, as a part of this thesis), and power spectra
and density profiles (Hammami et al., 2015). In addition, galaxy clusters (Corbett
Moran et al., 2014) and Milky Way sized halos (Arnold et al., 2016, also part of this
thesis) were simulated employing a zoomed simulation technique in order to obtain
high resolution for the object but also cover large scale cosmological effects.

The Symmetron model has been studied using the isis code for both the quasi
static (Llinares et al., 2014b) and the non-static limit (Llinares & Mota, 2014). It
was also used to study scalar waves applying a leapfrog solver to the field equations
(Hagala et al., 2016). Further simulations of the Symmetron model were carried out
with ecosmog (Davis et al., 2012). The ecosmog code was also used to simulate
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cubic and quartic galileon models (Barreira et al., 2013; Li et al., 2013b) as well as
the DGP model (Li et al., 2013a).

In the following I will give an overview over the two cosmological simulation codes
I used and developed for the projects of this thesis.

3.2 mg-gadget
Modified Gravity gadget (mg-gadget) is a modified gravity cosmological
simulation code based on p-gadget3. It essentially has all the functionalities of
the base code with a modified gravity solver for the Hu & Sawicki (2007) f(R)-
gravity model on top. mg-gadget is thus capable of performing both collision-less
and hydrodynamical cosmological simulations but also zoomed simulations in f(R)-
gravity.

The sections below are structured as follows. I will first introduce the base code
p-gadget3, then describe the modified gravity module and finally explain how the
local timestepping scheme of the code works.

3.2.1 p-gadget3
p-gadget3 is based on gadget2 (Springel, 2005). It employs a Tree Particle-Mesh
(PM) solver for the gravitational forces and an entropy based smoothed particle-
hydrodynamics algorithm (Springel & Hernquist, 2002) to solve the hydrodynamical
equations. The code is parallelized with MPI, making it applicable to very large
cosmological simulations (see e.g. Schaye et al., 2015).

The gravity solver of the code splits the gravitational forces into a long- and a
short-range part, which are computed with a PM and a gravitational Oct-Tree al-
gorithm, respectively. The advantage over a pure tree-based method is, that the
force-split algorithm avoids extensive communication between different MPI-tasks
which would compromise the scalability of the code for larger numbers of CPUs.
p-gadget3 can either be used with periodic boundary conditions in the simula-
tion setup or with non-periodic boundaries through zero-padding in the PM-force
calculation.

The tree in the short-range part of the gravity solver refines by particle number, i.e.
each time a tree-node contains more than one particle, it is refined to between one
and eight sub-nodes, depending on how many of the eight sub-cubes are populated by
particles. Starting out from a top-node, which covers the whole simulation box, this
procedure is recursively repeated until each tree node contains at most one particle
(except for very close particle groups, which are distributed other the neighboring
nodes). In the force calculation for each particle, the force of the center of mass of
every ‘small-enough’ node on the particle is computed, i.e. only the monopoles of
the multipole expansion of the node’s mass distribution are considered. If a node is
‘small-enough’ or has to be opened is decided through a relative opening criterion
which estimates the force error and compares it to the particle’s acceleration in the
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previous timestep (at the beginning of each simulation the force calculation has to
be carried out using a geometric opening criterion once, as no previous forces are
available).

For zoomed simulations, the forces are split into three parts, a periodic long range
part (calculated with PM), a non-periodic intermediate range part for the zoomed
region (calculated via non-periodic PM) and short range tree forces.

The time integration in p-gadget3 is carried out with an adaptive timesteps
using an operator split approach (Springel, 2005). The timestep for each particle is
determined such that it is small enough to prevent too large acceleration changes
from one force integration to another but as small as possible to avoid unnecessary
force calculations which would slow down the code. The total simulation time T
(e.g. from redshift z = 127 to 0) is split into ∆tmin = T/232 equally sized pieces.
The allowed timesteps are then hierarchically grouped into levels, which differ by
a factor of two in step size. The timestep size on level a is consequently given
by ∆ta = 2a∆tmin. Depending on its acceleration (which is used as a proxy for
the acceleration changes) a particle is then assigned to one of these levels. The
hierarchy ensures that all particles end up exactly at the end of a simulation and
that all particles on smaller timesteps tb < ta are at the same integration time at
the and of ta.

The timestepping for the different parts of the gravity solver is carried out as
follows. For the short range tree forces, each particle is assigned an individual
timestep ∆ti as described above. The PM force calculation is done on a global
timestep ∆tPM for all particles at once, based on a velocity criterion. The individual
timesteps of the particles are not allowed to exceed this timestep.

3.2.2 The modified gravity solver
Cosmological simulations are usually carried out in the Newtonian limit of GR as
the influence of back-reaction and the finite speed of light are negligible for those
(Adamek et al., 2016). The applicability of the quasi-static, weak field limit has
also been questioned for f(R)-gravity but the errors made due to this assumption
were estimated to be very small on the scales of cosmological simulations (Sawicki
& Bellini, 2015).

The equations which have to be solved by the code are consequently the modified
Poisson equation (2.63) and the equation for the scalar degree of freedom (2.54). The
problem with the former equation is that it is very non-linear due to the chameleon
screening mechanism. A tree algorithm as it is used in the gravity solver of p-
gadget3 is therefore not applicable. To overcome this issue, the gravity tree of
p-gadget3 is used to construct an AMR grid on which equation (2.54) is solved
iteratively. The grid is build as follows.

Each node of the gravity tree represents one grid cell. The AMR grid consequently
refines to particle number as well, i.e. it has a finer resolution in high density regions.
In order to avoid a too patchy structure on the finer levels of the grid, the tree is
build in a slightly different manner compared to p-gadget3. If a tree node is
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refined (which is the case if it contains more than one particle), all eight sub-nodes
are constructed no matter if all of them are populated by particles or not. The
refinement of the AMR grid is limited to a maximum level which can be set as a
parameter for each simulation setup individually. The minimum refinement level of
the grid is limited as well.

Solving (2.54) directly with an iterative Newton method would lead to very slow
convergence due to its non-linearity. The code therefore solves for

u ≡ ln

(
fR

f̄R(a)

)
, (3.1)

a trick which was first applied in Oyaizu (2008). Rewriting equation (2.54) accord-
ingly and using (2.95) gives

∇2eu = − 1

3f̄R(a)

[
R̄(a)

(
1− e−u

2

)
+ 8πGδρ

]
. (3.2)

Again following the method of Oyaizu (2008), (3.2) is discretised for a given cell size
h by (

∇2eu
)
ijk

=
1

h2

{
bi−jkui−1 jk + bi+jkui+1 jk − uijk

(
bi−jk + bi+jk

)
(3.3)

+bij−kuij−1 k + bij+kuij+1 k − uijk
(
bij−k + bij+k

)
(3.4)

+bijk−uijk−1 + bijk+uijk+1 − uijk
(
bijk− + bijk+

)}
, (3.5)

where

bi−jk =
eui−1 jk + euijk

2
bi+jk =

eui+1 jk + euijk

2
(3.6)

and accordingly for the other b terms. Defining

Lijk =
(
∇2eu

)
ijk

+
1

3f̄R(a)
R̄(a)

(
1− e−

uijk
2

)
(3.7)

and

fijk =
1

3f̄R(a)
8πG [ρ̄(a)− ρijk] , (3.8)

one can now write

Lijk = fijk (3.9)

instead of (3.2). This equation is now suitable to be solved with an iterative Gauss-
Seidel scheme. A new field un is then obtained from the one of the previous iteration
step n− 1 via

unijk = un−1
ijk +

fijk − Ln−1
ijk

dLn−1
ijk /dun−1

ijk

. (3.10)
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Figure 3.1: The iteration scheme for the multigrid solver in standard cosmological
simulations (left panel) and for zoomed simulations (right panel). Each dot repre-
sents a number of red-black sweeps. In both cases lc = 6 and the maximum grid
level is 12.

In order to allow for efficient parallelization the iterations are carried out in a chess-
board-pattern red-black sweep. As the information can at most ”travel” one cell per
iteration if one iterates on a fixed grid level, pure Gauss-Seidel solvers show very slow
convergence. A significant speedup can be achieved through multigrid acceleration,
where (not yet converged) solutions from the finer levels are mapped to coarser ones
and back in a V-cycle manner in order to provide a good initial guess for the finest
level which already contains the large scale information.

In mg-gadget multigrid acceleration is applied in the following way. Starting
out from an initial guess for the scalar field (obtained from the previous timestep)
on the finest level which covers the complete simulation box (let’s call it lc here)
the multigrid solver performs a few (≈ 2 − 4) red-black sweeps on lc. The solution
is then mapped to the next coarser level lc − 1, i.e. a restriction is applied. On
the lc − 1 level, again a few red-black sweeps are carried out before the process is
recursively repeated. The restriction operations end either on the coarsest AMR
level (full V-cycle) or on a certain given level lc − n (W-cycle). After a number of
iterations have been performed on the coarsest level the results are mapped back to
the finer levels (i.e. prolongation). In order to not loose the small scale information
which is already present on the finer level, only the difference of the solution on the
coarse level to the initial value which was mapped is added to the finer level. The
prolongations are applied until the initial level lc is reached again. In mg-gadget,
full V-cycles are repeated on this level until the solution converges. The result
is then prolonged to the next finer level. On this level the code either performs
red-black sweeps until the solution converges (for normal cosmological setups) or a
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series of W-cycles going up 2− 3 levels each (zoom runs). This scheme for zoomed
simulations differs from the procedure described in Puchwein et al. (2013), but shows
a much better performance for this particular setup. The prolongations and sweeps
are repeated until the finest AMR level is reached. The W-cycles are repeated until
the second-last level is reached. Afterwards only red-black sweeps are performed for
zoomed simulations.

The two different modes for multigrid acceleration are illustrated in Figure 3.1.
The left panel shows the behaviour for a standard simulation setup and the right
panel for zoom runs. Each dot represents a number of red black sweeps. Although
the procedure for the zoomed simulations seems to involve more computations in
the plot it is much faster than the standard scheme for zoom runs as the number of
“iterations per dot” is significantly lower.

Once the value of the scalar field is known, there are two options to compute the
modified gravity acceleration. The first method uses equation (2.65) to directly com-
pute the acceleration from the gradient of the scalar field. This scheme is adopted by
ecosmog and isis. It nevertheless requires a mapping of the scalar field gradients
to the particle positions. The other option is to rewrite (2.63) in terms of an effec-
tive mass density ρeff which accounts for all f(R) effects including the chameleon
screening mechanism

∇2ϕ = 4πG(δρ+ δρeff), (3.11)

where

δρeff =
δρ

3
− δR

24πG
. (3.12)

δR is obtained through (2.95). The total gravitational force can be computed em-
ploying any standard gravity solver by adding the two mass densities. This is the
way the forces were computed in the original version of mg-gadget (Puchwein
et al., 2013) using the Tree-PM gravity solver. The local timestepping scheme for
modified gravity which I implemented to make the code more efficient (described
in detail below) nevertheless required to separate standard gravity and f(R) forces.
This is still possible with the effective mass scheme. Due to its linearity, equation
(3.11) can be split into a “normal” and an effective mass part. The Tree-PM gravity
solver of p-gadget3 is then used to compute the accelerations separately.

It is not easily possible to couple local timestepping schemes for multigrid codes,
e.g. the ones used in ramses (Teyssier, 2002), to the adaptive time integration in
p-gadget3. The original version of mg-gadget therefore used equal timesteps
for all particles. This method is computationally very costly, as a single particle in
a region with very short dynamical timescales will trigger a full force computation
for all simulation particles. Especially zoomed or hydrodynamical simulations with
feedback require very short timesteps in certain regions and are therefore essentially
impossible with global timestepping. To overcome this problem I developed a local
timestepping scheme for mg-gadget as a part of this thesis which is described in
detail below.
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screened

Figure 3.2: Illustration of the local timestepping scheme in mg-gadget. The grey
shaded region displays a screened high-density environment. Blue particles will be
integrated on the global MG-PM timestep for all force parts. The green and the
red particles are also integrated on this timestep for the PM- and modified gravity
force, but are allowed to individually adjust their tree-gravity timestep to smaller
values based on an acceleration criterion.

3.2.3 Local timestepping in mg-gadget
1 The local timestepping scheme of mg-gadget is based on the fact that the regions
with the shortest dynamical timescales are to a large degree screened in f(R)-gravity.
Short timesteps are mostly required in the center of over-dense regions like the
centers of galaxies or galaxy clusters. These regions are high density environments
and therefore, depending on the background field, screened to a certain degree by the
chameleon mechanism. The modified gravity forces will consequently be very small
(and change on large timescales) compared to the Newtonian gravity force. It is thus
unnecessary to compute the modified gravity forces with the same high frequency
as for standard gravity in these regions. For the local timestepping scheme which
I implemented in mg-gadget the two force components are therefore calculated
separately and on individual timesteps.

The computation of the modified gravity forces and the very costly scalar field

1The method and parts of the results of this section have already been published in Arnold et al.
(2016)
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Figure 3.3: Local timestepping test: comparison between a simulation with the
standard setup and one with a four times smaller MG-timestep (labeled CT). The
upper panel shows density profiles of the central zoomed halo in a ΛCDM simulation
and the two f(R)-gravity runs with the different timesteps. The lower panel displays
the relative difference in the density profiles between the two timestepping schemes.
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Figure 3.5: Local timestepping test: comparison between a simulation with the
standard setup and one with a four times smaller MG-timestep (labeled CT). The
upper panel shows circular velocity profiles of the central zoomed halo in a ΛCDM
simulation and the two f(R)-gravity runs with the different timesteps. The middle
panel and the lower panel display the relative difference between total and GR-force
in the two timestep setups.
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computation are coupled to the PM-force calculation. In order to avoid a too large
PM-MG timestep, it is calculated via

∆tPM−MG = min(∆tPM,∆tMG), (3.13)

where the MG timestep is in turn computed from

∆tMG = min(∆tMG i). (3.14)

The modified gravity timestep ∆tMG i for each individual particle is estimated based
on the particles modified gravity acceleration, ensuring that the MG-PM timestep
is never too large for any particle in the simulation box. In between the MG-PM
timesteps individual standard gravity integration steps are allowed for the short
range tree force and the SPH solver in the same way as in p-gadget3.

The local timestepping scheme is also illustrated in Figure 3.2. The grey shaded
region indicates a screened high density area, where the modified gravity forces are
negligible. The global modified gravity-PM timestep is thus calculated considering
the maximum modified gravity acceleration of all blue particles and the PM step (in
fact all particles are considered for the MG timestep but the MG-accelerations of the
red and green particles are negligible due to screening). As the dynamical timescales
for the red particles are much shorter compared to those of the blue particles, the
global MG-PM timestep will be much larger than the standard gravity timestep for
the red particles in the over-dense region. In the same way as in p-gadget3, the
tree gravity timesteps will be factors of 2, 4, . . . smaller for the green and the red
particles, respectively.

In order to test if the modified gravity timestep criterion is stringent enough, a
few tests with zoomed simulations of Milky-Way sized halos were carried out (with
the B-halo in Arnold et al., 2016). The same simulation (identical initial conditions
(ICs), same parameters) was done once with the standard setup described above
and once with a four times smaller modified gravity timestep. A comparison of the
density profiles of the central halos in the zoomed regions is shown in Figure 3.3. The
density curves agree at a 0.5% level until r = 0.01Mpc which shows that a smaller
timestep does not change the result for the density, i.e. the result in the standard
setup is converged. A similar conclusion can be drawn for the velocity dispersion
profiles (Fig. 3.4) and the fifth force to standard force ratio (Fig. 3.5). The difference
in the velocity dispersion is smaller than 0.5% until r < 0.1r200 crit ≈ 0.01Mpc as
well. The total to GR force ratio is practically indistinguishable for the two timestep
sizes in Figure 3.5. One can therefore conclude that the adaptive timestep scheme
in mg-gadget is converged and produces reliable results.

3.3 arepo
arepo (Springel, 2010) is a state-of-the-art massively (MPI) parallel cosmological
hydrodynamical simulation code which is widely used for large scale simulations.

41



3 Numerics

In recent years it was used in high-resolution cosmological simulations of galaxy
formation (Vogelsberger et al., 2014b) covering a wide range of baryonic processes
like star formation, cooling, stellar- and AGN-feedback. It was also applied in
zoomed hydrodynamical simulations of Milky-Way sized galaxies (Marinacci et al.,
2014) and in hydrodynamical simulations including magnetic fields (Pakmor et al.,
2014) as well as cosmic rays (Pfrommer et al., 2017).

While the gravity solver of arepo is similar to that of p-gadget3, the hydro-
dynamical equations are solved in a completely different way. Instead of using
an SPH-solver, arepo uses a moving Voronoi mesh to obtain the hydrodynamical
forces.

As a part of this work, I implemented a solver for f(R) modified gravity in arepo
which I will describe in detail below. It is similar to the f(R) solver in mg-gadget
described above. I will therefore focus on the differences to mg-gadget.

3.3.1 The modified gravity solver in arepo

One of the major differences between arepo and p-gadget3 concerns the gravity
tree. While the tree is stored at all times (and frequently reconstructed or updated)
in p-gadget3 it is only built for the calculation of the short range tree forces
and immediately discarded afterwards in arepo. This method reduces the memory
footprint of the code. As the tree is also needed as an AMR grid for the modified
gravity solver and to store the effective masses, the order of the different steps in
the force computation algorithm has to be changed for the modified gravity solver.
While in the standard setup of arepo the force computation in the order (on global
PM timesteps; Springel, 2010),

Domain decomposition

Compute hydro forces

Compute long range PM forces

Build gravity tree

Compute short range tree forces

Discard gravity tree

the order in the modified gravity mode for global timesteps is:
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Domain decomposition

Compute hydro forces

Build gravity tree and AMR grid

Run multigrid solver for scalar field

Compute effective masses

Compute long range PM forces

Compute short range tree forces

Discard gravity tree

The memory footprint will thus be significantly higher in the modified gravity
mode as the tree is allocated during the PM-force calculation. The code is nev-
ertheless still more memory efficient compared to mg-gadget. This is partially
achieved by storing a major part of the information needed for every AMR cell of
the multigrid solver in a separate data structure which is immediately discarded
once the field is computed and not in the gravity tree.

The individual steps in the chart above are carried out in a very similar way as in
mg-gadget. In between the global steps multiple tree-gravity calculations for the
short range forces can be carried out according to the individual timesteps of the
particles. These calculations necessarily involve a tree construction but only for a
subset of them a domain decomposition is done.
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4 The modified gravity code comparison
project

In this chapter I will present a subset of the results from The modified gravity code
comparison project (Winther et al., 2015) which I contributed to as a part of this
thesis. I will focus on the outcomes which are related to mg-gadget and f(R)-
gravity.

4.1 Introduction
While gravity is tested to remarkably high precision on small scales (Will, 2014) it
has not been tested to the same degree on large scales. In order to perform such a
large scale test of gravity one has to statistically observe the large-scale structure of
the universe and compare the outcomes to the expectations from different gravity
theories (Jain & Khoury, 2010; Koyama, 2016). In the coming years several large
scale structure surveys such as EUCLID or LSST will provide powerful tests of GR
on large scales. In order to constrain or rule out possible alternative theories, e.g. the
ones described in Section 2.2, they nevertheless require a detailed understanding of
how these theories of modified gravity alter the large scale structure of the universe.

As described earlier, theories of modified gravity require screening mechanisms to
recover GR in our local environment, leading to a very non-linear behaviour of the
underlying equations. Therefore analytic approaches to cosmic structure formation
are very limited in theories of this kind. In order to understand how structure
formation is affected by theories of modified gravity it is therefore necessary to
employ cosmological N-body simulations in these theories.

The methods of the codes used to carry out these simulations should be verified
in order to ensure that their results are not significantly affected by their numerical
schemes. In order to do so, this project compared the results of a number of different
modified gravity simulation codes for different modified gravity models.

In the following I will present the results on how mg-gadget compares to other
modified gravity codes for f(R)-gravity simulations.

4.2 Simulations and Methods
To have a common starting point, all simulations in this chapter were carried out
with the same (binary identical) initial conditions. For all codes, a ΛCDM compar-
ison run was carried out in addition to simulations in |f̄R0|= 10−5 and |f̄R0|= 10−6

modified gravity.
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4.3 Results

Figure 4.1: The fifth-force to Newtonian force ratio profiles in mg-gadget for
|f̄R0|= 10−5 and |f̄R0|= 10−6. Red lines show forces obtained via the effective mass
algorithm, blue lines forces which are directly calculated from the field gradients.
The force profiles were stacked for all halos in the mass range 1014M⊙ < m <
5× 1014M⊙ contained in the simulation box. (from Winther et al., 2015)

The codes compared to mg-gadget are isis and ecosmog. Both codes are based
on ramses, i.e. employ a mesh based technique also for standard gravity. The major
difference in the modified gravity part of the codes is that they find the modified
gravity force directly from the field gradients on the grid while mg-gadget employs
the effective mass algorithm (see also Section 3.2.2).

The simulations presented below use 5123 simulation particles in a box of 250Mpc/h
side length and start at redshift z = 49. The set of cosmological parameters is
Ωm = 0.269, ΩΛ = 0.731, h = 0.704, ns = 0.966 and σ8 = 0.8.

4.3 Results
In order to test the effective mass algorithm used in mg-gadget, Figure 4.1 com-
pares the stacked fifth-force to standard force profiles in halos in the mass range
between 1014M⊙ < m < 5 × 1014M⊙ for the two force calculation methods (see
Section 3.2.2). All forces are obtained starting from the same density field at z = 0.
The forces of the effective mass algorithm are part of the standard output while I
implemented an additional mapping routine for the field gradients to also be able
to calculate the fifth force directly from the AMR grid in mg-gadget.

As one can see from the plot, the forces of the two methods are in good agreement
in the outer region (r > rvir) of the halos for the |f̄R0|= 10−6 model. In the inner
region the discrepancy is large. While interpolated fifth forces keep dropping over
the whole range of the plot, the effective mass force ratio does not drop below
5 × 10−4. The reason is that large positive and negative effective masses have to
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Figure 4.2: The ratio of the matter power spectra obtained with different codes for
a ΛCDM model (left panel), |f̄R0|= 10−5 (center panel) and |f̄R0|= 10−6 (right panel)
at different redshifts. The dotted lines display equality and a 1% error margin. For
the ecosmog code both a rectangular (CIC) and a triangular (TSC) shaped kernel
for the mass and force assignment are used. (from Winther et al., 2015)

cancel each other in screened regions which leads to relatively large numerical errors.
In practice, these residual forces will have no effect on the total acceleration as the
fifth force contribution is way below 1% of the total force at these radii.

For the |f̄R0|= 10−5 model, the picture is very similar in the inner regions of the
halo but there is an additional small force discrepancy at r = 2rvir, i.e. in a region
where the fifth force contributes significantly to the total force. In the regions where
the chameleon screening mechanism sets in, the two curves match each other very
well. The following results will show, that these force discrepancies do not lead to
significant deviations in other observables.

In order to analyze the consistency of the matter power spectra obtained from
simulations with the different codes one has to distinguish between differences in-
duced by the base codes, i.e. already in the ΛCDM part of the power spectrum and
differences induced by the modified gravity solvers. Figure 4.2 displays the ratio of
the total matter power spectrum between different codes at redshift zero and one
for |f̄R0|= 10−5, |f̄R0|= 10−6 and a ΛCDM comparison simulation. The simulations
with ecosmog were carried out twice with different assignment kernels. The codes
agree with a 2% error until k = 1 for all models and redshifts. As isis and ecosmog
TSC are two implementations of the very same method and based on the same code,
it is not surprising that the results of both codes are basically indistinguishable for
the standard model and for the |f̄R0|= 10−6 simulations. There are slight deviations
in the |f̄R0|= 10−5 model but the errors are still within a 1% error until k = 3.
The TSC kernel in ecosmog produces significantly less power compared to isis on
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4.3 Results

Figure 4.3: The upper panels display the relative difference of the |f̄R0|= 10−5 and
|f̄R0|= 10−6 matter power spectra obtained from simulations carried out with isis,
ecosmog and mg-gadget with respect to power spectra from ΛCDM simulations
carried out with the same code. In the lower panels the results relative difference
compared to mg-gadget is shown. The black dotted lines indicate a 1% error
margin. (from Winther et al., 2015)
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4 The modified gravity code comparison project

Figure 4.4: Same as Figure 4.3 but for the velocity divergence power spectrum.
(from Winther et al., 2015)

small scales, underlining that the power spectrum is quite sensitive to small numer-
ical changes. Comparing both ecosmog and isis to mg-gadget it turns out that
both codes produce less power on small scales for all models and redshifts. This is
a known issue with grid codes which struggle to reproduce structures on the very
smallest scales due to their limited cell size. Tree codes like p-gadget3 do not
have this problem and will therefore show larger values for the power spectrum on
small scales. As the results for all three models shown in the plot are very similar,
I conclude that the differences are mainly induced by the base codes and not by
the modified gravity solvers, a finding which is confirmed by Figure 4.3. It illus-
trates the relative difference in the matter power spectrum between |f̄R0|= 10−5 and
|f̄R0|= 10−6 with respect to a ΛCDM model for the codes, i.e. it provides a test of
the modified gravity modules. The results of mg-gadget, isis and ecosmog agree
on a one percent level until k = 10. Keeping in mind that it is very difficult to bring
ΛCDM power spectra of different codes to that level of agreement (Schneider et al.,
2016), this result shows that modified gravity solvers of all codes produce reliable
results for the matter power spectrum.

A very similar result is obtained for the velocity divergence power spectra, Pθθ ≡
⟨θ2k⟩, θk = ∇ · v/Ho, shown in Figure 4.4. Except for the isis power spectrum at
z = 1, all results agree within a 1% error margin until k = 3.
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Figure 4.5: The ratio of the halo mass functions obtained with different codes for a
ΛCDM model (left panel), |f̄R0|= 10−5 (center panel) and |f̄R0|= 10−6 (right panel)
at different redshifts. The dotted lines display equality. For the ecosmog code
both a rectangular (CIC) and a triangular (TSC) shaped kernel for the mass and
force assignment are used. (from Winther et al., 2015)

The differences between the codes in terms of the halo mass functions are larger
compared to the power spectra but still mainly induced by differences in the base
codes, as one can see from Figures 4.5 and 4.6. Both ecosmog and isis produce
less halos than mg-gadget in ΛCDM simulations. The discrepancy is larger at the
low mass end of the plot, reaching 10% for milky-way sized halos. The reason is
again that grid codes struggle to form structures on small scales due to their finite
grid size.

The differences induced by the modified gravity solvers in Figure 4.6 are much
smaller. The enhancement of the mass function due to f(R)-gravity agrees almost
perfectly for lower mass halos at z = 0. The relative differences at higher masses
do not exceed 2% and are likely induced by statistical fluctuations due to the low
number of high mass objects in the simulation boxes. At z = 1 the deviations are
slightly higher but still within a range of 5%, underlining that the modified gravity
solvers work very reliably.

Figure 4.7 shows stacked fR profiles for halos of different mass bins in the sim-
ulations. The least massive halos are obviously unscreened in |f̄R0|= 10−5 as their
scalar field profile stays at its background value over the whole radial range of the
plot. For more massive halos, the field starts to deviate from the background value
around rvir and drops for several orders of magnitude towards the center of the
object. The f(R) effects will thus be largely screened inside rvir for these objects.
As expected, the onset of screening is triggered already in lower mass halos for the
|f̄R0|= 10−6 model. The differences between the results from the different codes are
almost negligible for the stronger f(R) model considered. For |f̄R0|= 10−6, the re-
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4 The modified gravity code comparison project

Figure 4.6: The upper panels display the relative difference of the |f̄R0|= 10−5 and
|f̄R0|= 10−6 halo mass functions obtained from simulations carried out with isis,
ecosmog and mg-gadget with respect to mass functions from ΛCDM simula-
tions carried out with the same code at different redshifts. In the lower panels the
results relative difference compared to mg-gadget is shown. The black dotted lines
indicate a 1% error margin. (from Winther et al., 2015)
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Figure 4.7: Stacked scalar field profiles of the halos in the simulations carried
out with the three different codes. The profiles are shown for 4 different mass
bins: M ∈ [1 · 1014, 5 · 1014], M ∈ [5 · 1013, 1 · 1014], M ∈ [1 · 1013, 5 · 1013] and
M ∈ [5 · 1012, 1 · 1013] M⊙/h (bottom to top), which are vertically displaced in the
plot. The dotted black lines indicate equality for each of the bins. The left panel
displays the results for |f̄R0|= 10−5, the right panel for |f̄R0|= 10−6. (from Winther
et al., 2015)
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Figure 4.8: Stacked Newtonian force profiles of the halos in the simulations shown
for the same mass bins used in Figure 4.7 (with more to less massive halos from top
to bottom). The left panel displays the results for |f̄R0|= 10−5, the right panel for
|f̄R0|= 10−6. (from Winther et al., 2015)
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Figure 4.9: Stacked fifth force profiles of the halos in the simulations shown for
the same mass bins used in Figure 4.7 (with more to less massive halos from top
to bottom). The left panel displays the results for |f̄R0|= 10−5, the right panel for
|f̄R0|= 10−6. (from Winther et al., 2015)

sults of mg-gadget deviate from those of the other codes. While the curves agree
very well in the outer unscreened regions and at the onset of screening, there are
large differences in the inner screened regions for lower mass halos. The fields cal-
culated with isis and ecosmog drop by 7 orders of magnitude until the innermost
radius of the plot. mg-gadget gives a field value which is only 10−5 × f̄R0 at this
radius. The field calculation in the codes is practically identical, this difference can
thus only be caused by a different residual threshold in the multi-grid solvers. As
the following results demonstrate, the deviations in the field in screened regions do
not have an effect on the total forces because the fifth force is much smaller than
the Newtonian force there.

In order to also compare the standard gravity force of the base codes, Figure
4.8 shows stacked Newtonian force profiles. The plot does not show a significant
difference on a code to code basis. As the mass distribution inside the halos in the
two f(R) models is slightly different, the curves are not exactly the same for both
theories.

The force contribution from f(R)-gravity, i.e. the fifth force, is compared in Figure
4.9. The forces agree very well in the outer parts of the halo but there are again
differences between mg-gadget and the other codes in the central regions. There
are two major reasons fort he deviation. First, the scalar fields deviate in screened
regions (see Figure 4.7) and second, the effective mass mechanism will produce
slightly different results for the forces compared to the gradient based method used
in isis and ecosmog. These deviations in screened regions are even more prominent
in Figure 4.10, which displays the ratio of fifth- to standard force for the three codes
in |f̄R0|= 10−5 and |f̄R0|= 10−6. Larger deviations do nevertheless only appear in
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Figure 4.10: Stacked fifth force to standard force ratio profiles of the halos in the
simulations shown for the same mass bins used in Figure 4.7 (with more to less
massive halos from bottom to top). The left panel displays the results for |f̄R0|=
10−5, the right panel for |f̄R0|= 10−6. Vertical dotted lines indicate the theoretically
expected force ratio in unscreened regions of Fϕ = FN/3. (from Winther et al.,
2015)

regions where the fifth force contribution is negligible and will therefore not have an
impact on the total force.

Figure 4.11 shows the ratio of stacked density profiles of dark matter halos in the
simulations carried out with the different codes. Apart from statistical fluctuations,
there are no significant differences between the codes for the stronger |f̄R0|= 10−5

model. The only difference which can be spotted in |f̄R0|= 10−6, is that the least
massive group of halos in the isis and ecosmog simulations is about 10% less dense
in the center compared to mg-gadget.

Velocity dispersion profiles for the same mass bins as above are displayed in Figure
4.12. The results agree very well for both models and all mass bins.

4.4 Conclusion and discussion
Testing gravity on large scales with upcoming large scale structure surveys requires a
detailed understanding of how theories of modified gravity alter structure formation.
Modified gravity simulations thereby deliver a key ingredient to these upcoming
tests of GR. In this Chapter I presented a comparison between different codes which
are capable of simulating cosmic structure formation in f(R)-gravity. In order
to do so, the considered codes (isis, ecosmog and mg-gadget) solve the field
equations for the scalar field using an iterative multi-grid technique but slightly
different approaches to obtain the gravitational forces. With the aim to validate the
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4 The modified gravity code comparison project

Figure 4.11: Ratios of the stacked density profiles of the halos obtained from
simulations carried out with different codes. The halos are grouped in the same
mass bins as for Figure 4.7. The dotted lines indicate unity; the left panel shows
results for |f̄R0|= 10−5, the right panel for |f̄R0|= 10−6. (from Winther et al., 2015)
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Figure 4.12: Stacked velocity profiles for halos of the same mass bins as in Figure
4.7 computed with the different codes. The left panel shows results for |f̄R0|= 10−5,
the right panel for |f̄R0|= 10−6.  (from Winther et al., 2015)
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methods of the codes, I therefore focused on comparing the differences induced by
modified gravity.

One can summarize the findings as follows.

• The matter power spectra agree at a one percent level until k = 1. Differences
between the codes are mainly induced by the ΛCDM parts. The enhancement
in the power spectrum due to f(R)-gravity agrees on a 1%-level for k < 3.

• The velocity power spectrum enhancement differences at z = 0 are completely
within a 1% error margin, showing very good agreement between the codes.

• The halo mass functions differ by about 10% between the codes. The main
source of these deviations are again the base codes. Errors from the modified
gravity modules stay with a 5% margin.

• I found that the scalar field profiles agree very well in unscreened regions while
there are differences in the screened parts of halos. These will nevertheless have
a negligible effect on the total force.

• The differences in the fields are also one source for differences in the fifth forces.
Together with different force calculation schemes they lead to a deviation in
the modified gravity forces in screened regions. But because those regions are
screened, there will again be no significant effects on the total force.

• The density and velocity dispersion profiles do not show significant differences
between the codes.

Summarizing one can say that the results of the codes agree on a percent-level.
Residual differences are induced by different relaxation criteria and the effective mass
scheme used in mg-gadget. It is important to point out here that the uncertainty
in statistical cosmological measures caused by different modified gravity solvers is
much smaller that the uncertainties due to the ΛCDM parts of the codes and due to
baryonic physics. It will therefore be important to either find observables which are
less affected by baryons or to find a robust description of baryonic feedback effects,
and to improve the ΛCDM solvers in order to meet the requirements of upcoming
large scale structure surveys.
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5 The Lyman-α forest in f (R)-gravity 1

5.1 Introduction
In this work, I will for the first time extend the analysis of hydrodynamical f(R)
modified gravity simulations to the statistical properties of the Lyman-α forest.
Employing the modified gravity simulation code mg-gadget I carry out simulations
to redshift z = 2, given that most Lyman-α data lies at redshifts z ∼ 2−4. Creating
synthetic Lyman-α absorption spectra from the simulation outputs, I present an
analysis of flux PDFs, flux power spectra, line shape statistics, as well as of the
matter power spectrum for both f(R)-gravity and an ordinary ΛCDM model. I
particularly focus on the relative differences between these two cosmologies and
compare my results to observations.

This Chapter is structured as follows. Section 5.2 describes the simulation set I
have carried out. In Section 5.3, I present my main results, and I conclude in Section
5.4.

5.2 Simulations and methods
Modeling the statistical properties of the Lyman-α forest requires a cosmological
simulation code which is capable of accounting for a variety of gas physics, including
photo-heating, radiative cooling and star formation. For f(R)-gravity, the fifth force
influence has to be computed in addition.

The simulations used to obtain the results on the Lyman-α forest presented in this
section were carried out with mg-gadget. Making use of its SPH hydrodynamics
solver and the modified gravity solver a set of hydrodynamical simulations with
cooling were carried out. In order to keep the computational cost at a reasonable
level, the simulations were done with the ”Quick Lyman-α” setup of the code which
turns high-density gas into stars before the actual threshold for star-formation is
reached. This avoids the computationally costly integration of high-density gas on
short dynamical timescales. The effect on the Lyman-α forest signal is negligible
as only regions far inside the virial radius r200 of the halos in the simulations are
affected.

For a reliable analysis of f(R)’s impact on the Lyman-α forest it is necessary to run
simulations in both modified gravity and ΛCDM using identical initial conditions.
I do so by carrying out hydrodynamical simulations using 2 × 5123 particles (5123

1The results and large parts of the text of this chapter have already been published in Arnold
et al. (2015).
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LOS

vbulk

T

Figure 5.1: Sketch of the method to extract synthetic Lyman-α absorption spec-
tra from a simulation snapshot. The red line indicates the line-of-sight. All SPH
particles whose smoothing length it intersects are considered for the spectrum cal-
culation.

each gas and dark matter) in a 60h−1Mpc box for |f̄R0|= 10−5 and GR. To explore
the parameter space at a coarse level, a set of smaller box simulations at the same
mass resolution, but using 2 × 1283 particles in a 15h−1Mpc box for |f̄R0|= 10−4,
10−5 and GR were done. The set of cosmological parameters is Ωm = 0.305,ΩΛ =
0.695,Ωb = 0.048 and H0 = 0.679, consistent with CMB constraints.

To extract the statistical properties of the Lyman-α forest, synthetic absorption
spectra were calculated at different redshifts. Using the output of the hydrodynam-
ical simulations, I randomly select 5000 lines-of-sight (LOS), each intersecting the
simulation box parallel to one of the three coordinate axes. Dividing each line into
2048 pixels, the density of the neutral hydrogen, the gas temperature and the neutral
gas weighted velocity fields of the gas are computed along the lines of sight. For this
computation, we consider all SPH particles whose smoothing length is intersected
by the sight-line (see also Fig. 5.1). With the bulk flow velocities and temperatures
along the line of sight in hand, I then account for kinematic Doppler shifts and
thermal broadening of the absorption lines, which are themselves calculated from
the neutral hydrogen density. As final output, the code creates for each LOS a file
with optical depth τ as a function of distance along the LOS. This output can be
converted into a transmitted flux F = e−τ .

In the simulations, mg-gadget uses a tabulated UV-background2 which allows
the calculation of gas temperatures and ionization fractions assuming ionization
equilibrium. The results might however not fit the mean Lyman-α flux transmission

2 Taken from Haardt & Madau (2012), however with the He ii photo-heating rate boosted by
a factor 1.7 for 2.2 < z < 3.4. This slight modification results in a better agreement with
observational constraints (Becker et al., 2011) on the temperature of the intergalactic medium.
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5 The Lyman-α forest in f(R)-gravity

Figure 5.2: Left panel: PDF of the transmitted flux fraction for different redshifts
for ΛCDM and |f̄R0|= 10−5, using the results of the large simulation boxes. The dots
with error-bars show the data of Kim et al. (2007). For z = 3, the observational
results of Calura et al. (2012) are shown in addition (I plot the “no metals, no
LLS” values of this work here). Right panel: relative difference of the PDFs on the
left hand side. The shaded regions show the 1σ relative errors of the observational
results of Kim et al. (2007). The mean transmission is tuned to the values of this
work in both panels.
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5.2 Simulations and methods

Figure 5.3: Left panel: Flux power spectra for f(R)-gravity and ΛCDM obtained
from the 60h−1Mpc simulation boxes at different redshifts. The dots with error-
bars show the results of McDonald et al. (2006). Right panel: relative difference in
the flux power spectra shown on the left hand side. The shaded area represents the
relative errors of the McDonald et al. (2006) results at z = 3. The mean transmission
is tuned to the values of Kim et al. (2007) for both panels.
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Figure 5.4: Top panels: Same as Figure 5.3. Bottom panels: same as Figure 5.2.
In contrast to the previous figures the results are obtained from the 15h−1Mpc
simulation boxes and for both |f̄R0|= 10−4 and 10−5.
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Figure 5.5: Upper panel: PDF of the line-widths of the Voigt profile fits to the
Lyman-α absorption lines in the synthetic spectra for all lines with neutral hydrogen
column density NHI > 1013cm−2 at z = 2. Lower panel: normalized PDF of the
column density, considering all lines with NHI > 1012cm−2 at the same redshift. The
spectra for both panels were tuned to the mean transmission of Becker et al. (2013)
and were calculated from the 60h−1Mpc simulations.
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Figure 5.6: Upper panel: relative difference between f(R) and ΛCDM in the
Lyman-α flux power spectrum; lower panel: relative difference between modified
gravity and GR in the PDF of the transmitted flux fraction. For both plots, the
values of the mean transmitted flux were tuned either to Kim et al. (2007, blue solid
line), Becker et al. (2013, green dashed line), or Faucher-Giguère et al. (2008, brown
dotted line), respectively. The results refer to z = 3.
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actually seen in the observational data. In order to compare the mock spectra to
observations more faithfully, it is therefore necessary to tune the mean transmitted
flux to the corresponding value obtained in the observations. I perform this rescaling
of the optical depths, which is a standard procedure in theoretical studies of the
Lyman-α forest, in the post-processing of the LOS data.

5.3 Results
In analyzing the synthetic Lyman-α absorption spectra, we first consider the PDF of
the transmitted flux fraction in the 60h−1Mpc box simulations for both |f̄R0|= 10−5

and ΛCDM. Figure 5.2 shows these PDFs at redshifts z = 2, 2.5 and 3 (left hand
panels), as well as the relative differences between the two cosmological models
(right hand panels). The mean transmitted flux fraction is tuned in this plot to the
observational values of Kim et al. (2007). We also show this data in the panels on
the left hand side and its relative errors on the right hand side, for reference. In
addition, the results of Calura et al. (2012) are shown for redshift z = 3. In both
observations metal lines were excised, in the latter also Lyman-limit systems (LLS).
The mean transmission measured by Calura et al. (2012) is consistent with the one
of Kim et al. (2007). One can thus compare to the same theoretical prediction.

Comparing the absolute values, it is obvious that, despite the tuning to the same
effective τ̄ , the simulation results do not match the observations particularly well.
Especially at redshift z = 3, the gap between the simulation results of both f(R)
gravity and GR and the observational values of Kim et al. (2007) is much larger
than the error-bars. At intermediate fluxes, the Calura et al. (2012) results are
much closer to the simulations. Nevertheless, the differences at large transmitted
flux fractions clearly exceed the 3σ observational error. Considering the panels for
redshift z = 2 and 2.5, the discrepancies between simulations and the observational
data are smaller, but in certain regimes still larger than 3σ. These differences might
have their origin in the still uncertain systematic errors of observations (like, e.g.,
in the continuum placement) and simulations, in an underestimate of the statistical
errors (Rollinde et al., 2013) or in an unaccounted heating of the very low-density
intergalactic medium (Bolton et al., 2008; Viel et al., 2009) by radiative transfer
(McQuinn et al., 2009; Compostella et al., 2013) and non-ionization-equilibrium
(Puchwein et al., 2014) effects or, as recently suggested, by TeV blazars (Broderick
et al., 2012; Puchwein et al., 2012).

The difference between |f̄R0|= 10−5 and ΛCDM is much smaller than the difference
between the simulation results and the observed values and somewhat smaller than
the error-bars of the observations. This is even more obvious in the right hand pan-
els of Figure 5.2. Comparing the relative difference in the flux PDF between f(R)
and GR, it turns out that the differences between the models are mostly within the
observational errors for individual flux bins for all considered redshifts. The over-
all deviation over many flux bins and redshifts could, however, still be statistically
significant if systematic effects were better understood. Given the current uncer-
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Figure 5.7: Left Panel: matter power spectrum for ΛCDM and |f̄R0|= 10−5 at
three different redshifts. Right panel: Corresponding relative difference in the power
spectra (Pf(R) − PGR)/PGR between f(R) and GR.
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Figure 5.8: The transmitted flux fraction as a function of distance along an arbi-
trarily selected line of sight at z = 2. Th results for a ΛCDM universe are shown in
blue, those for a f(R) cosmology in green.

tainties in Lyman-α forest studies and the already very tight constraints on the Hu
& Sawicki (2007) model of f(R) gravity from other observables, it will therefore
be hard to get competitive constrains on |f̄R0| using the flux PDF of the Lyman-α
forest.

I arrive at a similar conclusion for the Lyman-α flux power-spectra obtained for the
large simulation box: Figure 5.3 shows their absolute value for both f(R) gravity
and a ΛCDM cosmology as well as the relative difference between these models.
The theoretical results from our synthetic spectra are again tuned to the mean
transmission of Kim et al. (2007). For z = 3, the simulation values are compared
to the observational results of McDonald et al. (2006), with the gray shaded area in
the relative difference plot indicating their quoted errors.

As for the flux PDF, the discrepancy between simulations and observations at
redshift z = 3 is quite large, in particular much larger than the errors given in Mc-
Donald et al. (2006). This might have its origin in systematic uncertainties which
are not considered by the error-bars. Again, the difference between the two gravi-
tational models is tiny, compared to the difference between observational data and
the results from the simulations. Because the difference to GR is again smaller than
or comparable to the error-bars of the shown observations, one needs to conclude
that the Lyman-α flux power-spectrum is only mildly affected by f(R)-gravity.

This is also particularly evident in the relative difference plots at the right hand
side. The difference in the flux power-spectrum between |f̄R0|= 10−5 and GR is
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5 The Lyman-α forest in f(R)-gravity

about 5% at maximum, considering redshifts z = 2, 2.5 and 3. Normalizing the re-
sults of McDonald et al. (2006) to the ΛCDM outcome, it is obvious that the relative
difference between the f(R) simulation results and the fiducial model is consistent
with the relative errors quoted for the individual k bins. The overall deviation over
many bins and redshifts may be statistically significant. However, systematic effects
would need to be better understood to obtain interesting constrains on f̄R0 based
on such observations.

To test if it is at all possible to constrain f(R) gravity using the Lyman-α forest,
I also run a set of simulations with smaller box size at equal mass and spatial reso-
lution, for |f̄R0|= 10−4, 10−5 and GR. The power spectra and flux PDFs at redshift
z = 3 are shown in Figure 5.4. For both power spectra and the PDFs, the results
for GR and |f̄R0|= 10−5, as well as their relative differences, are compatible with
the values from the bigger simulation box shown in Figures 5.2 and 5.3. One can
therefore conclude that the smaller box runs are sufficient for an analysis over the
shown range of values. In the |f̄R0|= 10−4 simulations, the flux power spectrum
does not fit the observed values of McDonald et al. (2006) despite tuning the mean
transmission. As the absolute value of the Lyman-α power spectrum is not known
with great accuracy, one should not overestimate the, compared to the over gravita-
tional models, smaller difference of the |f̄R0|= 10−4 curve to the observations. Again,
normalizing the GR results to the observations, one can compare the observational
errors to the differences between f(R) and a ΛCDM universe. At intermediate scales
the difference between |f̄R0|= 10−4 and GR is larger than for |f̄R0|= 10−5. Never-
theless it does not exceed the 2σ relative error of the observations for individual k
bins. Given that |f̄R0|= 10−4 appears already clearly ruled out by other methods
(Lombriser et al., 2012a,b; Smith, 2009; Schmidt et al., 2009; Dossett et al., 2014),
it does not seem that current Lyman-α data can add much new information here.

Figure 5.4 also shows the PDF of the transmitted flux for the three different
gravity models. As for the power spectrum, the |f̄R0|= 10−4 values do not fit the
data much better than the other models at z = 3. Comparing relative errors to the
difference between the models, one sees that the difference between |f̄R0|= 10−4 and
GR lies within the 1σ-error region for almost all values. Only between a transmitted
flux fraction of 0.6 and 0.9 the difference is larger than 1σ and reaches about 2σ at
maximum. The flux PDF does therefore also not seem to be very competitive with
current observational data compared to other methods to constrain f̄R0.

In comparison to other uncertainties in the cosmological model, the impact of
f(R) gravity on Lyman-α flux power spectra or PDFs is fairly small, even if one
considers quite extreme and already excluded values for |f̄R0|.

Figure 5.8 illustrates how small the modified gravity effect on the Lyman-α forest
is. It displays the transmitted flux fraction along an arbitrarily selected line of sight
for f(R) and ΛCDM as a function of distance along this line. The positions of
the absorption lines are the same for both models, as identical initial conditions
have been used in both simulations. While there appear slight differences in the
transmitted flux fractions for the individual absorption lines, no general pattern can
be identified from a visual inspection.
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Taking a more systematic approach, I used the code AutoVP (Davé et al., 1997)
to fit Voigt-profiles to the absorption lines of the synthetic spectra. The PDF of the
line-width of the fitted Voigt-profiles is shown in the upper panel of Figure 5.5 for all
lines with a neutral hydrogen column density NHI > 1013cm−2 at redshift z = 2. As
the lines almost perfectly overlap each other, it is perhaps not surprising that there
is no significant difference in the line-width distributions between f(R) gravity and
a ΛCDM universe. The lower panel of the figure displays the normalized column
density PDF of the absorption lines. As for the line-width, the difference between
the curves for |f̄R0|= 10−5 and the ΛCDM model is negligible.

The absolute values of the statistical Lyman-α measures depend on the observa-
tional value the mean transmitted flux is tuned to. To justify my previous analysis,
I briefly show that the relative differences do not depend strongly on the actual
value that is adopted. Figure 5.6 shows the relative difference in flux PDF and
power spectrum between |f̄R|= 10−5 and GR. Each line in the plot is tuned to a
different mean τ , representing the observational data of Becker et al. (2013), Kim
et al. (2007) and Faucher-Giguère et al. (2008). The figure shows that neither the
relative difference in the power spectra nor the flux PDF do strongly depend on the
choice of the tuning value for z = 3. As the analysis confirms, this does also hold
for z = 2 and 2.5. One can therefore conclude that the relative differences can be
explored safely despite the fact that the absolute values depend on the actual value
used for the mean transmission.

To complement my analysis of the Lyman-α forest in the simulations, I also ana-
lyzed the total matter power spectra at different redshifts. Figure 5.7 shows these
spectra for |f̄R|= 10−5 and ΛCDM scenarios at redshifts z = 2, 2.5 and 3, as well
as the relative difference between the models. Comparing the power spectrum en-
hancement to previous works, my results at redshift z = 2 are in good agreement
with those of Li et al. (2013c). The evolution of the enhancement with time in
our simulations is consistent with previous works, too (Li et al., 2013c; Winther &
Ferreira, 2014). This confirms that the f(R) simulations feature an impact of mod-
ified gravity at the expected level, even though the effects on the Lyman-α forest
properties are weak.

Comparing matter and flux power spectra at the same scale, the relative differences
between f(R) and GR are of similar size. The matter power spectra exhibit larger
differences at smaller scales. There the Lyman-α flux power spectrum becomes, how-
ever, degenerate with uncertainties in the temperature of the intergalactic medium.
Other gas properties like the temperature of gas in collapsed objects typically show
f(R) effects of order 30% in the unscreened regime (Arnold et al., 2014). This also
illustrates that the impact of f(R) gravity on the Lyman-α forest is rather small
in comparison. In order to constrain f(R), it therefore appears more promising to
focus on other measures of structure growth rather than the Lyman-α forest.
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5.4 Summary and Conclusions
In this chapter, I analyzed the statistical properties of the Lyman-α forest and the
matter power spectra in hydrodynamical cosmological simulations of f(R) gravity.
My simulations employed the Hu & Sawicki (2007) model and used the modified
gravity simulation code mg-gadget. For comparison, I also ran a set of simulations
for a ΛCDM universe. The main findings can be summarized as follows:

• The PDF of the transmitted Lyman-α flux fraction is only mildly affected by
f(R) gravity. The maximum relative difference between |f̄R0|= 10−5 and GR
is of order 7%. For |f̄R0|= 10−4 the difference grows to at most 10%. The
simulation results do not fit the observational data of Kim et al. (2007) at all
redshifts, regardless of the gravitational model. If the observations are normal-
ized to the GR results from the simulations, the relative differences between
the gravitational models do not exceed the 2 σ relative error of the observa-
tions. For z = 3, the Calura et al. (2012) data matches the simulation results
at intermediate transmitted flux fractions much better. This highlights that
the present observational data is relatively uncertain. At high transmissions
there are also significant deviations.

• For the flux power spectra one arrives at similar results. The relative difference
between the models reaches at most 5% for |f̄R0|= 10−5 and about 10% for
|f̄R0|= 10−4. Again, the differences to GR for the stronger model are within
the 2σ relative error of the observational data (McDonald et al., 2006). De-
spite tuning the mean transmitted flux to the observational values, the power
spectrum at z = 3 does not accurately reproduce the observational data.

• There is no significant change in the shapes and abundances of absorption lines
in f(R) modified gravity: Both the column density and line width distribution
functions based on Voigt profile fitting do not exhibit any systematic change.

• The relative differences between f(R) and GR in the flux PDF and power
spectra do not depend significantly on the observed mean transmission value
to which the simulated spectra are scaled. The tuning affects only the absolute
values of these statistical Lyman-α measures.

• The matter power spectrum shows an enhancement in f(R) gravity which
grows with time. The amplitude of the effect and the relative difference to
GR is consistent with previous works. These relative changes in the matter
power spectrum are of comparable magnitude as the changes in the Lyman-
α forest flux power spectrum at the same scale. Note, however, that the
enhancement of the matter power spectrum continues to grow towards low
redshift where it is no longer probed by the Lyman-α forest. Also, note that
a much stronger influence of f(R) has been found for other gas properties like
the gas temperature in collapsed objects in the unscreened regime as has been
reported in Arnold et al. (2014).
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All in all I arrive at the conclusion that the impact of f(R) gravity on the Lyman-α
forest is small. The relative differences in flux PDFs and flux power spectra are only
of the order of 5%. Even for likely excluded models, like |f̄R0|= 10−4, the changes in
the statistical Lyman-α forest properties do not exceed the relative errors of available
observations in individual flux or wavenumber bins. Using the full data over a range
of redshifts a detection of modified gravity effects could probably be statistically sig-
nificant due to its clearly defined signature. However, currently, systematic effects
do not seem to be understood at the required level to get competitive constraints in
practice. One can therefore conclude that Lyman-α forest properties are of limited
discriminative power to constrain |f̄R0| at the moment. The remarkable robustness
of the forest statistics has however also advantages. Given that the considered grav-
itational models have a negligible impact on the Lyman-α forest compared to other
cosmological and astrophysical uncertainties, it may not be necessary to consider
|f̄R0| as an additional parameter in constraining cosmological parameters based on
the Lyman-α forest.
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6 Zoomed cosmological simulations in
f (R)-gravity 1

6.1 Introduction

In this section, I present the first simulations of Milky Way sized objects using high-
resolution cosmological zoom simulations of f(R)-gravity. They are carried out
employing the upgraded version of mg-gadget with the local time-stepping ap-
proach described in Section 3.2.3 to resimulate a set of seven halos from the Aquar-
ius project (Springel et al., 2008). The analysis focuses on the impact of modified
gravity on density profiles, gravitational forces, circular velocities as well as velocity
dispersions. In addition, I derive an analytic estimate for the f(R)-force profile in
NFW-halos (Navarro et al., 1997) and compare this theoretical approximation to
the simulation results.

6.2 Simulations and methods

Using the same initial conditions as the Aquarius project (Springel et al., 2008;
Marinacci et al., 2014) I carry out for the first time zoom simulations in f(R)-gravity
of a set of 7 Milky Way sized halos (A, B, C, D, E, G and H in the Marinacci et al.
2014 terminology) employing the cosmological simulation code mg-gadget. For all
halos I simulate the evolution of the matter distribution for f̄R0 = −10−6 (referred
to as F6), f̄R0 = −10−7 (F7), and for the ΛCDM cosmology as a reference. In the
simulations, a Ωm = 0.25, ΩΛ = 0.75, h0 = 0.73 cosmology was used. The mass
resolution in the zoomed region reaches 3.14× 106 M⊙.

To identify the center of the simulated halos and subhalos, i.e. the minimum of
the gravitational potential of bound structures in the simulation box, the subfind
algorithm (Springel et al., 2001) inlined in p-gadget3 was used. Besides the stan-
dard outputs of an N-body code (particle positions, masses, velocities, GR-gravity
accelerations) I also include in the output the modified gravity acceleration and the
scalar field itself, interpolated from the mesh points of the AMR grid to the particle
positions.

1The results and large parts of the text in this section have already been published in Arnold
et al. (2016).
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Figure 6.1: Upper panel: The circular velocity profiles for ideal NFW halos of three
different masses but equal concentration c ≈ 10 for fR0 = −10−6 (solid lines) and
ΛCDM (dotted line) scaled with the circular velocity at r200. The velocities are
derived from the enclosed masses, taking into account the increased gravitational
forces for f(R) gravity in unscreened and partially screened regions. Lower panel:
The solid lines show the ratio of total acceleration to GR acceleration for the three
different halos in fR0 = −10−6 cosmology. Dotted lines show the theoretical expec-
tations for this force ratio. The corresponding values of the scalar field are plotted
as dashed lines. The theoretical values for the radius at which one expects screening
to set in (obtained from Eqn. 2.100), rs, are shown as dashed-dotted lines for the
heavy and the intermediate mass halo. For the least massive object, this radius is
zero. The grey shaded regions show an estimate for the uncertainty of this radius.
The highest and lowest allowed values for atot/aGR of 4/3 and 1, respectively, are
indicated by the black dashed lines.
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Figure 6.2: Same as Figure 6.1, but with the masses and the background values
of the scalar field fR0 scaled such that the screening radius rs in units of r200 is
constant for all three halos.
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Figure 6.3: Thin slice projections through the central region of the C halo for
the GR (left panels), the |f̄R0|= 10−7 (center panels) and the |f̄R0|= 10−6 (right
panels) simulation. The top panels show the density field, the middle panels the
modified gravity to standard acceleration ratio and the bottom panels the scalar
field. The cross indicates the gravitational potential minimum of each halo obtained
from subfind and the dashed white circles display r200 crit.
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Figure 6.4: Same as Figure 6.3 but for the B halo.
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6.3 Results

6.3.1 Ideal NFW halos
The theoretical estimates derived in section 2.3.8 assume perfect spherical symmetry.
This is of course not true for the simulated halos from the Aquarius suite. To
cross-compare the accuracy of the simulations and the theoretical approximations
in a more controlled environment first, I set up initial conditions for a collection
of three perfectly symmetric halos with a NFW density profile. The halos have
equal concentration of c ≈ 10 but different mass. Each object is situated in a cubic
box of 100Mpc side-length and constant background density. The halos serve as
initial conditions for mg-gadget to obtain circular velocity profiles, accelerations
and fR-profiles based on the code’s multi-grid f(R) solver.

Figure 6.1 displays the results of these tests. The upper panel shows the cir-
cular velocity profile in units of v200 ≡

√
GM200/r200 for fR0 = −10−6 as well as

for a ΛCDM reference simulation for each of the halos. The values for the ve-
locity profiles are obtained from the enclosed mass but with an additional boost
accounting for the – in unscreened regions – higher accelerations in f(R)-gravity
vc =

√
GM/r ×

√
atot/aGR. In ΛCDM, the velocity profiles for the three halos

overlap almost perfectly, which is expected due to the self-similarity between halos
of equal concentrations. This self-similarity is broken in modified gravity because
of the scale introduced by chameleon screening.

If the object is massive enough, the gravitational potential will drop below a certain
threshold at the screening radius rs, causing the chameleon screening to set in. As a
result, the fifth force quickly decreases to zero. This is exactly what one can see in
Figure 6.1. The circular velocity profiles in the upper panel do not coincide anymore
in f(R) cosmology. For the two more massive objects, there is a tilt in the velocity
curves at a certain radius depending on the mass of the object causing the circular
velocities to drop with increased screening. Having a look at the lower panel, this
can be easily explained by the force ratio of total-to-GR force. For the least massive
halo, the force ratio stays roughly constant at the theoretically expected value of
4/3 (indicated by the black dotted line) because even in the center the gravitational
potential is not deep enough to trigger screening. The slight deviations at small
radii are due to the lack of resolution in the AMR grid of the multigrid solver (the
size of the grid cells is of the order 10−2r200 for this object). At large radii, GR- and
f(R)-forces are not necessarily aligned anymore, which can cause a smaller force
ratio as well.

The force ratio of the intermediate mass object is very close to the theoretically
expected value for unscreened regions in the outer part as well. But moving inwards,
the ratio starts to decrease and quickly drops to unity. The radius at which the fifth
force becomes negligible is almost exactly at the theoretically predicted value for
rs, which was calculated from Eqn. (2.100). The grey shaded regions indicate the
uncertainty range of this radius. The errors were obtained by varying the outer
integration bound R in (2.100) from r200/2 to 2 r200. Comparing the force ratio
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Figure 6.5: Density profiles of the Aquarius halos A (red lines), B (green lines)
and C (blue lines) for the three cosmological models ΛCDM (solid lines), F6 (dashed
lines) and F7 (dotted lines). Upper panel: The density relative to the critical density
multiplied by (r/r200)

2. Lower panel: Relative difference between the densities in
f(R) cosmology and the corresponding ΛCDM values. The solid black line indicates
equality.
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Figure 6.6: Upper panel: Stacked density profiles for all simulated Aquarius halos
for ΛCDM (red solid line), F6 (green dashed line) and F7 (blue dotted line) cosmol-
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of the simulation with the theoretical estimate calculated from Eqn. (2.99) shows
remarkably good agreement, too. The largest halo is already partially screened at
the outermost radius shown in Figure 6.1. The gravitational potential well of the
object is so deep that it crosses the screening threshold already in the outskirts of
the halo. Again, both the screening radius and the force ratio show a high level of
agreement with the theoretical expectations. From Figure 6.1, one can also see that
the value of the scalar field drops by several orders of magnitude at the screening
radius, underlining its highly nonlinear behaviour.

Next, I investigate if the self similarity of the DM halos in the ΛCDM cosmology
can be restored in f(R)-gravity by a suitable rescaling of the background field am-
plitude fR0. To this end, I scale fR0 according to Eqn. (2.103) such that the ratio
rs/r200 of the high and low mass halos are the same as for the intermediate mass
object. I also use the same concentration. Figure 6.2 displays the circular velocity
profiles and the total-to-GR force ratio for the objects. In contrast to the previous
plot, a good agreement of the f(R) circular velocities can be observed. The force ra-
tios and fR profiles are very similar as well. Only the lowest mass halo shows a slight
deviation from the others which can again be explained by the worse resolution of
the AMR-grid relative to the halo size in the center of the object. The screening ra-
dius is – by construction – exactly the same. Knowing the impact of f(R) modified
gravity on a certain property for a given value of fR0, it is thus possible to predict
how the property would change for a different fR0 by scaling all masses according
to Eqn. (2.103).

6.3.2 The Aquarius halos
The ideal NFW halos analyzed in the previous section have identical density profiles
in the f(R) and ΛCDM cosmological models. Since f(R) gravity already modifies
the gravitational forces during structure formation, this will in general not be the
case for the outcome of self-consistent halo formation. The halos will furthermore
not be completely spherically symmetric as one can see from Figures 6.3 and 6.4. The
halos’ screened regions visible as the dark blue regions in the scalar field projections
are consequently not spherical. Moreover, substructure can cause screened bubbles
in unscreened regions (bright yellow areas) around the halo (see e.g. the bottom
center panel of Figure 6.3). Comparing Figures 6.3 and 6.4 it is obvious that the
size of the screened region relative to r200 depends not only on fR0 but also on the
mass of the object. As expected from theory, the less massive halo B features a
much smaller screened region in the center than the halo C. Let me now analyze the
properties of the Aquarius halos in a more quantitative way.

Figure 6.5 shows the density profiles of the Aquarius halos A, B and C, at z = 0,
simulated in the fR0 = −10−6 (F6), fR0 = −10−7 (F7) and ΛCDM cosmological
models. The upper panel displays the density profiles relative to the critical density
multiplied by (r/r200)

2. The lower panel shows the relative difference of the density
curves in f(R) gravity relative to the GR runs. Clearly, the density profiles in F6
change significantly compared to the cosmological standard model. The density in
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M200 Vmax rmax c
[1012M⊙] [km/s] [kpc]

GR A 1.846 209.13 30.46 15.24
F7 A 1.954 206.52 40.79 11.95
F6 A 2.020 229.19 41.87 12.72
GR B 0.821 158.62 43.72 9.10
F7 B 0.863 160.54 42.78 9.36
F6 B 0.919 182.22 38.92 11.22
GR C 1.772 223.07 33.76 14.78
F7 C 1.811 222.08 32.96 15.01
F6 C 2.294 241.75 48.01 11.89
GR D 1.800 204.78 57.43 8.97
F7 D 1.871 206.28 56.46 9.16
F6 D 2.251 224.31 56.70 9.78
GR E 1.192 179.95 57.26 8.08
F7 E 1.229 183.08 58.94 8.00
F6 E 1.324 205.66 42.38 11.55
GR G 1.034 154.61 82.35 5.21
F7 G 1.077 154.02 60.11 6.81
F6 G 0.984 179.41 34.46 12.22
GR H 0.852 177.20 19.84 18.75
F7 H 0.910 176.77 19.60 18.89
F6 H 0.963 202.97 17.92 22.56

Table 6.1: vmax and rmax for the Aquarius halos simulated in the models ΛCDM, F6
and F7. The values for vmax, rmax and c are obtained with the subfind algorithm
and neglect fifth force contributions. c is the traditional concentration parameter
describing the shape of the density profile.
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Figure 6.7: Upper panel: Stacked circular velocity profiles for the simulated Aquar-
ius halos calculated only based on the enclosed masses in units of v200 as a function
of r200 for ΛCDM (solid line), F6 (dashed line) and F7 (dotted line). Lower panel:
Relative difference in the circular velocity of the f(R) models compared to ΛCDM.
The dotted black line indicates equality. The grey lines in the background show the
profiles for the individual halos.
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Figure 6.8: Same as Figure 6.7 but with the circular velocities obtained from the
total accelerations taking increased gravitational forces in unscreened regions for the
f(R) models into account.
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s = (MGR/Mf(R))
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of the halos in the different models. Lower panel: Relative difference in scaled
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equality. The grey lines in the background show the values for the individual halos.
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the outer region decreases by about 10% while it increases by roughly 30% in the
inner part. The transition radius depends on the mass of the halo. For F7 the
changes are less significant. The density change in the C halo is about 10% in the
outer region but it is hard to tell if this is really a systematic effect or caused by
small timing differences in halo assembly.

To make a robust quantitative statement about the changes in the halo densities,
the density profiles of all simulated Aquarius halos were stacked. The profiles for the
three cosmological models as well as the relative difference between f(R) and ΛCDM
are illustrated in Figure 6.6. The grey lines in the background show the values for
the individual halos. As already expected from the previous plot, the change in the
density is quite large for the F6 model. Around r200 the density is about 10− 15%
lower than in a ΛCDM cosmology. At log10(r/r200) ≈ −0.5, the stacked density
ratio crosses equality and reaches a maximum of about 20% difference for the inner
part of the objects. This is easily explained. The higher gravitational forces in
unscreened regions in f(R) gravity move mass from the outer to the inner part of
the halos, thereby steepening their density profiles. The difference of the stacked
density profiles in the ΛCDM and F7 models is consistent with zero. This shows
that Milky Way sized halos are largely screened in F7. Keeping in mind that the
F6 model passes present constraints on fR0, I would like to stress that viable f(R)
models can hence change the density profile of Milky Way sized dark matter halos
by about 20%.

Systematic differences in the density profiles are likely to affect the concentra-
tions of halos. To investigate if the concentration shows systematic changes in f(R)
gravity as well, NFW-profiles (Navarro et al., 1997) were fitted to the density of
the simulated halos for each of the three simulated models. Unfortunately, I found
that the concentrations obtained from the fits show a relatively large residual depen-
dence on the radial fitting range, resulting in sizable random scatter for my small
halo sample. It is thus hard to judge on this basis if f(R) gravity influences the
concentration parameter in a significant way. As an alternative to profile fitting, I
also employed another technique and obtained the concentration from the maximum
of the circular velocity curve in terms of vmax and rmax (Springel et al., 2008):

δc = 7.213 δV = 7.213× 2

(
vmax

H0 rmax

)2

,

δc =
200

3

c3

log(1 + c)− c/(1 + c)
. (6.1)

The results are summarized in Table 6.1, where vmax and rmax are obtained from the
density profile directly through the subfind algorithm. These values can be used to
calculate the concentration parameter of the NFW-profile. In computing vmax the
force modifications which occur in unscreened regions in f(R)-gravity, i.e. vmax are
ignored and rmax are completely determined by the density profile, as appropriate
for measuring its concentration. They should not be confused with the velocities
shown in Figure 6.8. The numbers in Table 6.1 are rather connected to the curves
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in Figure 6.7.
Comparing the concentration c of the objects simulated in F6 and GR, one finds

that the concentrations are increased for the B, D, E G and H halo. For the A
and the C halo, however, the concentration parameter decreases in f(R) gravity
compared to ΛCDM. One can thus conclude that there appears to be a slight trend
to higher concentrations in f(R) gravity, but a much larger number of halos would
be needed to establish this finding robustly. It would also be important to carefully
select sufficiently relaxed halos (e.g. as in Neto et al., 2007) to avoid influences
from mergers or large substructures. Because the effects in F7 are weaker, it is even
harder to demonstrate if and how the concentration changes for this model.

Figure 6.7 shows stacked circular velocity profiles for the Aquarius halos in F6,
F7 and GR as well as the relative differences between the modified gravity models
and ΛCDM. The grey lines in the background display the velocity profiles of the
individual halos. For this plot, the velocities were obtained from the enclosed masses
using the standard relation for Newtonian gravity, hence neglecting any f(R) effects
other than those encoded in the mass distribution. In order to clearly separate
effects which are induced by the slightly higher masses in f(R) gravity, the velocities
are scaled with v200 ≡ (GM200/r200)

1/2. The velocity curves are therefore a direct
measure of the mass profile and useful to determine, for example, the concentration
of the mass profile in the standard way. It is not surprising that the relative difference
between the F6 model and GR is of order 10% compared to a 20% difference in
density in the inner part of the halo (v ∝

√
M). In contrast to the density, the

velocity does not drop significantly below the ΛCDM value in the outer regions since
the velocities see the cumulative mass profile which includes the higher density in
the center. The slightly lower values outside of r200 are due to the rescaling with
v200. Since the density profile does not change noticeably in F7 the change in circular
velocities is negligible as well.

As a cautionary remark I would like to add that the velocities shown in Figure 6.7
should not be confused with observable circular velocities. For those, the differences
in the accelerations between the different models must be included in the analysis.
This was done for Figure 6.8, where stacked circular velocity profiles obtained from
the total accelerations are shown. In the upper panel, the absolute values of the
velocities are displayed for the three simulated models, the lower panel shows the
relative differences of f(R) gravity to GR. The velocities in the F6 model are signif-
icantly higher compared to standard gravity and to the previous plot. This is easily
explained. In addition to the higher densities in the inner region of the halos, higher
gravitational accelerations in unscreened regions force the DM particles in the sim-
ulation to orbit faster in order to prevent infall. As a result, the circular velocities
are increased by up to 25% compared to GR in unscreened regions. Although a 25%
difference in the velocity profile for an allowed f(R) model seems large, one has to
keep in mind that the effects will be at least partially degenerate with (the quite
uncertain) baryonic physics (Vogelsberger et al., 2014a; Marinacci et al., 2014) and
uncertainty in the halo mass. Also, the error bars of the current observational con-
straints (Avila-Reese et al., 2008; Hall et al., 2012; McGaugh, 2012) allow a broad
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range of velocities. It will therefore be hard to constrain fR0 relying on the rotation
curves of Milky Way sized objects.

For the F7 model, the circular velocities stay unchanged in the inner region of
the halo because the f(R) modifications to gravity are screened by the chameleon
mechanism. At around 0.5 r200 the relative velocity difference increases and reaches
20% at 3 r200. This can be explained by two mechanisms. On the one hand, the halo
becomes unscreened in the outer parts due to the shallower gravitational potential.
The gravitational forces are thus by a factor of 4/3 higher and increase the velocities
even if the density is the same. On the other hand, all velocities increase outside
r200 because the particles start to see other objects and are not in virial equilibrium.
In combination with higher forces, this adds another boost to the velocities.

Figure 6.9 shows the stacked velocity dispersion profiles for F6, F7 and GR (upper
panel) as well as the relative difference of the modified gravity values to ΛCDM
(lower panel). Since the difference in halo mass between the models for a given
object (see Table 6.1) would also lead to differences in the velocity dispersion, it
was scaled according to σ2

s = (MGR/Mf(R))
2/3σ2 for the f(R) curves to account for

the mass difference. The scaled velocity dispersion shown in the plot is therefore
a measure how the velocity dispersions of halos of a given mass would change in
f(R)-gravity. For the F6 run, one finds the velocity dispersions increased by about
40% in the inner part (−1.5 < log10(r/r200) < −0.5) which is again a result of
the higher densities in this central part of the halo and the increased gravitational
forces. In the outer regions, the cumulative mass profile stays unchanged compared
to GR and thus only the 4/3 enhancement of the forces contributes to the about
30% higher velocity dispersion. Outside r200, the halo shows again larger differences
between the models due to a lack of virialisation.

The 40% difference between the f(R) and ΛCDM cosmological models is slightly
higher than the values for unscreened halos of about 30% reported in Schmidt (2010),
Lam et al. (2012), Arnold et al. (2014) and Gronke et al. (2015). There are several
reasons for this difference. First, all of these other works used cosmological simula-
tions with mass resolutions poorer by factors 10 − 100 (relative to the mass of the
considered object) compared to the high resolution simulations in this work. They
were therefore most likely not capable of capturing the increased density in full in
the inner region of the halos. Second, the previous works either present the aver-
aged velocity dispersion of the whole object or do not show the profiles in the inner
part. For both cases, the velocities will be dominated by the outer regions which
obey a smaller velocity dispersion. It is obvious that for the weaker F7 model, the
velocity dispersion stays unchanged in the central region because the fifth force is
again screened. Further out, the difference to GR grows to 10% at r200.

In the following I like to extend my comparison of the theoretically predicted
screening radius and fifth force (see section 2.3.8) to the simulated Aquarius halos. In
contrast to perfectly symmetric NFW profiles the simulated halos are ellipsoidal and
feature substructures which breaks spherical symmetry. My goal is to find out if the
theoretical approximations are nevertheless applicable and reasonably accurate for
realistic halos. The upper panel of Figure 6.10 shows the circular velocity profiles of
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Figure 6.10: Circular velocity and acceleration profiles for the halos A (red lines),
B (green lines) and C (blue lines). Upper panel: Circular velocity profiles for ΛCDM
(solid lines), F6 (dashed lines) and F7 (dotted lines) taking the increased accelera-
tions due to modified gravity fifth forces in the f(R) models into account. Center
panel: Ratio of the total force to GR force for the three halos in the F6 cosmology.
The results from the simulations are shown as solid lines. Dashed lines indicate the
theoretical expectations. The predicted screening radii, rs, are shown as vertical
dotted lines. The two black horizontal dotted lines indicate equality and the maxi-
mum value for the force ratio of atot/aGR = 4/3. For reference, the distance of the
Sun from the Galactic center is indicated by the vertical dashed dotted line. Lower
panel: Same as the center panel but for the F7 cosmology.

86



6.3 Results

the Aquarius halos A, B and C, for F6, F7 and GR. The profiles are, as in Figure 6.1,
obtained from the enclosed mass with an additional factor for the increased forces
in f(R)-gravity. The small steps visible in some of the f(R) profiles are due to
the binning of the acceleration ratio. For the A and the C halo, the velocities are
increased by about 20−30% with respect to GR in the outer region. Moving further
in, the difference between the f(R) and ΛCDM curves decreases due to chameleon
screening until they almost match. The B halo has a slightly lower mass. Its velocity
curve is by 20 − 30% higher than the curve obtained from the GR simulation over
the whole range of radii shown in the plot. This suggests that this halo is largely
unscreened.

These results are confirmed by the acceleration ratios for the F6 model displayed
in the middle panel. For the two massive halos, the acceleration ratio drops to unity
at r ≈ 0.02Mpc. Inside this radius, the f(R) modifications to gravity are screened
by the chameleon mechanism. For the B halo, the acceleration ratio stays at the
theoretical maximum of 1.33 over almost the whole range shown in the plot. Only
in the innermost part there is a slight deviation which could naively be interpreted
as the onset of screening, but is more likely an effect caused by the lack of resolution
of the AMR-grid in the central region of the least massive object.

In the weaker F7 model, all three objects are almost totally screened. The velocity
profiles coincide with the ΛCDM curves. Only in the very outer region, chameleon
screening breaks down and the velocities in F7 are increased with respect to GR.
Again, the acceleration ratios confirm this result. The lower panel of Figure 6.10
shows that the fifth force vanishes everywhere, except in the outskirts.

The middle and the lower panel of Figure 6.10 also display the theoretically ex-
pected screening radius and force ratio. It turns out that the analytical screening
radius rs (again, calculated from Eqn. 2.100) is still a very good proxy for the radius
where the actual force ratio drops to unity, although it is unsurprisingly not as ac-
curate as for the ideal NFW profiles (Figure 6.1). The force ratios are also captured
pretty well by the theoretical predictions, but are only accurate to about 5% for
realistic halos. As already mentioned, these differences occur due to the asymmetric
shapes of the simulated halos and the presence of substructures. In the vicinity of a
large subhalo the main halo may already be screened while the chameleon screening
has not necessarily set in at the same radial distance on the opposite side of the
halo. So my results show that the analytic model predictions are quite powerful
for reasonably smooth halos whereas for objects with a high abundance of massive
substructures, such as forming galaxy clusters or groups, their accuracy is somewhat
compromised. This then also underlines that for scenarios with a very non-linear
dependence of the fifth force on the density field, numerical simulations are essential
to accurately capture all relevant effects.

Coming back to the requirement that the Solar system should be screened within
the Milky Way, it is evident from Figure 6.10 that even the stronger F6 model
fulfills this constraint. For the two more massive objects A and C, which are closer
to the Milky Way in mass, the halo is already completely screened at the radius of
the Solar system, i.e. r ≈ 8 kpc. There is nevertheless not much space for more
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strongly modified models. This finding is consistent with previous constraints of the
f(R)-model (see e.g. Terukina et al., 2014).

6.4 Summary and Conclusions
In this chapter I analyzed the properties of Milky Way sized dark matter halos in
Hu & Sawicki (2007) f(R)-gravity employing cosmological zoom simulations. Using
the simulation code mg-gadget, I simulated a set of 7 DM halos from the Aquarius
suite in the F6 and F7 models, as well as in the ΛCDM cosmology, for comparison. I
also compared the simulation results against an analytical estimate of the fifth force
in DM halos. My main findings can be summarized as follows.

• The theoretical predictions for the screening radius and the fifth force inside
a spherical object derived in Vikram et al. (2014) (see also Section 2.3.8)
reproduce the results obtained with my numerical modified gravity solver to
high precision for ideal NFW-halos. For realistic halos from the cosmological
simulations, the applicability is somewhat limited due to triaxial halo shapes
and substructures. The theoretical estimate can nevertheless serve as a proxy
for reasonably smooth and relaxed halos in relatively isolated environments.

• The self-similarity of DM halos observed in ΛCDM is broken in f(R)-gravity
due to the scale introduced by the screening radius for a given choice of fR0.
It can be approximately restored by appropriately scaling both fR0 and the
mass of the object.

• My simulations show that the density of a Milky Way sized halo in F6 modified
gravity is increased in the inner part, while it is slightly lower around r200
compared to GR. For the F7 model, the density profiles are largely unchanged.

• The impact of f(R)-gravity on the mean halo concentration parameter cannot
be reliably quantified from the simulations due to random scatter in fitting
individual NFW density profiles and the small sample size. The density pro-
files, nevertheless, suggest a higher concentration of DM halos in f(R)-gravity
compared to ΛCDM. As higher concentrations imply a smaller Milky Way
mass to match observational constraints, this appears to provide yet another
potential solution for the too-big-to-fail problem (Boylan-Kolchin et al., 2011;
Cautun et al., 2014).

• Circular velocities in f(R) gravity are increased in unscreened regions with
respect to the ΛCDM cosmology. Velocities calculated in the standard way
only from the enclosed mass show a relative enhancement of about 12% in
F6, while there is almost no difference for the F7 model due to the screening
mechanism. For the circular velocities calculated more appropriately from the
accelerations, there is an additional boost from the increased forces resulting
in up to a 30% difference relative to GR for the F6 model, and in about 10%
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higher velocities for the F7 model in the unscreened outer parts of the halos.
One should pay attention that these two measures, which are equivalent in a
ΛCDM cosmology, yield different results in f(R)-gravity.

• The velocity dispersion inside the halos is increased by up to 40% in F6 with
respect to standard gravity. This relative difference is larger than the en-
hancement of about 30% which is found in previous works. One can conclude
that earlier works most likely did not have enough mass resolution to safely
capture the effects on the density profile during structure formation and there-
fore missed an imported contribution to the enhanced velocity dispersion. For
the F7 model, the differences to GR are much weaker due to the chameleon
screening mechanism.

• The simulations show that the ratio of total-to-GR acceleration is increased by
the theoretically expected factor of 4/3 in the outer parts of the halos for F6
gravity. In the inner parts, the more massive halos of my sample are screened
and thus show no difference in the force compared to GR. In the F7 model, the
halos are almost completely screened and exhibit only a small force difference
around r200.

• The halos which have a mass close to that of the Milky Way are completely
screened at the position of the Solar system both in the F6 and the F7 model.
Halos with slightly lower mass do not show screening at the Solar circle, un-
derlining that F6 is the strongest allowed f(R) model. This is consistent with
Solar system constraints on f̄R0 from the literature.

All in all one can conclude that the effect of viable f(R)-gravity models on the
density profiles and velocity dispersions of Milky Way like halos are quite large.
Both simulated parameter values of the Hu & Sawicki (2007) model, F7 and F6, are,
according to my simulations, fully consistent with local constraints. Even models
which are screened at the galactocentric radius of the Solar system can exhibit
large differences in the velocity dispersion and the density profile. In the context of
upcoming missions which are designed to test gravity on large scales, it is therefore
essential to explore the alternatives to GR and the cosmological standard model,
ΛCDM, in detail in order to provide reliable information on the effect of these
theories on cosmological observables.
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7 The Modified Gravity Lightcone
Simulations

7.1 Introduction
In this chapter I will present first results from an ongoing project employing very
large cosmological simulation in f(R)-gravity and a ΛCDM model. The aim of the
project is to explore the impact of f(R)-gravity on structure formation at very large
scales. The simulation setup is particularly designed to analyze weak gravitational
lensing, halo and dark matter clustering as well as angular power spectra and cor-
relation functions on backward lightcones which are part of the simulation output.
With this analysis I hope to find hints how to best test f(R)-gravity with upcoming
large scale structure surveys like EUCLID or LSST.

The following sections are structured as follows. In Section 7.2 I will describe
the simulation setup, the output and analysis methods used in detail. Section 7.3
presents preliminary results and in Section 7.4 I will summarize them and draw
conclusions.

7.2 Simulations and methods
The complete simulation setup for this project consists of four collision-less cosmo-
logical simulations containing 20483 simulation particles in 768Mpc/h and 1536Mpc/h
boxes. These simulations are, in terms of particle number the largest f(R)-gravity
simulations carried out so far. The f(R)-gravity run for the larger box is currently
not finished yet. I will therefore focus on an analysis of the two smaller box simula-
tions in the following. Each of the boxes is simulated once for a ΛCDM cosmology
and once for f(R)-gravity. The set of cosmological parameters is Ωm = 0.3089,ΩΛ =
0.6911,ΩB = 0.0486 and h0 = 0.6774, consistent with Planck Collaboration et al.
(2016a) constraints. The simulations are carried out with mg-gadget employing
the local timestepping approach described in Section 3.2.3.

Besides a frequent standard snapshot output the simulations feature both a 2D and
a 3D lightcone output. The 2D lightcones are written in terms of 401 HEALPIX
maps (Górski et al., 2005) which are equally spaced in look-back time between
redshift z = 49 and z = 0. The 3D lightcones contain full particle positions in the
range z = 1.4− 0.

The lightcones are written in the following way. If the simulation reaches a redshift
at which a lightcone output is desired, the lightcone routine is called. This routine
repeats the simulation box periodically in all directions around a given center (an
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Figure 7.1: Left panel: The matter power spectrum of the 1536Mpc/h boxes at
z = 0 for f(R)-gravity (green) and standard gravity (red). The relative difference
between the f(R) and the ΛCDM power spectrum is shown in the right panel.

imaginary observer). The algorithm then selects all particles which are contained in
a spherical shell of finite thickness around the imaginary observer. The radius of the
shell corresponds to the current redshift of the simulation. Its thickness represents
the desired redshift interval. The positions and the properties of the particles in the
shell are finally either written out in terms of a 3D lightcone output or binned onto
a HEALPIX map.

For the computation of angular power spectra and two-point correlation functions,
several of these HEALPIX maps are stacked. In order to identify halos and sub-
halos the subfind algorithm implemented in mg-gadget was used. It determines
the position bond over-dense regions in terms of the minimum of the gravitational
potential of the structure.

7.3 Results
To verify that the simulation results match the findings of previous works, I will
first present a few standard cosmological measures. The matter power spectrum for
the 1536Mpc/h simulation boxes are displayed in Figure 7.1. The power spectra are
extended to the high-k range of the plot by folding the density field onto itself. As
one can see from the plot, the power spectrum is increased in the f̄R0 = 10−5 model
with respect to GR. The relative difference reaches 25% on scales of k = 10h/Mpc.
This enhancement is consistent with the values quoted in the literature (Li et al.,
2013c; He et al., 2015).

Figure 7.2 shows the halo mass functions for a |f̄R0|= 10−5 and a ΛCDM model

91



7 The Modified Gravity Lightcone Simulations

1012 1013 1014 1015 1016

M/M�

101

102

103

104

105

106

107

N
(l

og
M

)

ΛCDM
f̄R0 = −10−5

1012 1013 1014 1015 1016

M/M�

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

δN
/N

G
R

Figure 7.2: Left panel: The halo mass functions for the large simulation boxes
at redshift zero for the |f̄R0|= 10−5 model and a ΛCDM universe. The relative
difference between the modified gravity and the GR results is shown in the right
panel.

as well as the relative difference between the two. The number of halos with masses
above 1013M⊙ is enhanced in f(R)-gravity due to the higher gravitational forces
in unscreened regions. The higher forces cause that a given halo accumulates more
mass in f(R)-gravity compared to GR. It will consequently appear in a higher mass
bin of the plot. At the high mass end of the plot, the halos are so massive that
chameleon screening is already active during their formation. With growing mass,
the forces in the outer region of the halos will thus become more and more similar
to the GR forces resulting in a halo mass comparable to GR as well. The relative
difference between the models is again consistent with values quoted in previous
works (Lombriser et al., 2013; Schmidt et al., 2009).

The two point correlation function of the dark matter density fields for the mod-
ified gravity and the GR simulations are shown in Figure 7.3. Although they can
in principle be obtained by calculation the Fourier transform of the matter power
spectrum, the results are obtained through a tree based algorithm (Springel et al.,
2005) in real space. As one can see from the plot, the dark matter auto-correlation
function is enhanced in f(R)-gravity with respect to the standard model, while the
relative difference is also redshift dependent. At z = 1, the differences solely appear
at large scales, while the low-radius end of the plot is not significantly different from
ΛCDM. At present times, the relative difference reaches 25% at small scales and
grows up to 200% around r = 20Mpc/h. This behaviour can be easily explained by
the evolution of the background field which sets the threshold for screening: As one
can see from Figure (2.3), the value of f̄R(a) drops with growing redshift. In other
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Figure 7.3: Left panels: The two-point correlation functions of the dark matter
density field of the 1536Mpc/h simulation boxes for a |f̄R0|= 10−5 (F5, orange)
universe and a ΛCDM model (blue) at z = 1 (top panel) and z = 0 (lower panel).
The right panels show the corresponding relative differences between the correlation
functions of the two cosmologies.
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Figure 7.4: Left panels: The two-point correlation functions of the dark matter
halos identified by the subfind algorithm (halo-halo auto correlation function, hh)
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Figure 7.5: Same as Figure 7.4 but for z = 0.
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96



7.3 Results

words, the onset threshold for screening is lower at higher redshift causing lower
mass objects to be screened as well. The impact of f(R)-gravity at higher redshift is
thus very limited and becomes larger with time. This behaviour was also observed
for the results in Chapter 5 and can be explained by the redshift evolution of the
scalar field (see Figure 2.3).

The statistical distribution of dark matter halos differs from that of the dark
matter density field. The associated halo assembly bias, i.e. the ratio of the matter-
matter and halo-halo auto-correlation functions b = ξhh/ξmm, is one of the highly
debated measures in cosmology. To get an insight how this measure is affected by
f(R)-gravity, Figures 7.4 and 7.5 show the halo-halo correlation function for halos
in different mass bins at z = 1 and z = 0, respectively. The Figures show that the
halo two point correlation function is highly mass dependent for both modified and
standard gravity. For both redshifts the differences between the halo and matter
auto-correlation functions are rather small in the low mass bins and grow with
increasing mass. Interestingly, the halo-halo correlation function takes on average
lower values in f(R)-gravity compared to ΛCDM for all mass bins at both redshifts.
The differences between modified gravity and GR are larger for low mass halos which
is reasonable as the fifth forces will more likely be screened in high mass objects.

In order to compute the halo assembly bias, the average value of b was calculated
for each model, mass bin and redshift. The results are displayed in Figures 7.6 and
7.7. As already mentioned above, the halo bias is in general low at low halo masses
and grows towards the high mass end of the plot. The bias in f(R)-gravity is lower
compared to GR over the whole mass range of both plots. At z = 1 it nevertheless
remains larger than unity for all mass bins, showing an average relative difference of
≈ −6% compared to a ΛCDM universe. This is not the case at present times. While
the bias is approximately one for GR the values drop to b = 0.75 for f(R)-gravity
at the low mass end of the plot. This means that low-mass dark matter halos are
less correlated than the dark matter density field in an f(R) universe today. The
relative difference in bias between f(R)-gravity and GR is on average ≈ −18% with
outliers at the high and low mass end of the plot. One can thus conclude again that
the impact of f(R)-gravity grows with time.

To give an example of how the 2D lightcone output looks like Figure 7.8 displays
a stacked HEALPIX map for a redshift range from z = 1.1−0.9 which was obtained
by adding the individual maps corresponding to these redshifts. Each pixel encodes
the simulation particle count corresponding to a part of the Sky. As all simulation
particles have the same mass, these counts can easily be converted to a density map
and be used to obtain the angle-based results presented below.

The first result obtained from the HEALPIX maps is the angular matter power
spectrum shown in Figure 7.9. In order to reduce noise the maps were stacked over
a certain redshift range for each of the plots. For all redshifts presented in the
plot, the angular power is only very mildly affected by f(R)-gravity at large scales
(l ≈ 100) while the relative differences between the models grow with increasing
multipole number. At z = 1.5, the relative difference reaches ≈ 7% at l = 104. For
z = 1 the relative difference to GR is already 15% at these scales and reaches more
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than 20% at redshift 0.5. This result is thus consistent with the enhanced power
in the matter power spectrum in f(R)-gravity and also fits in the big picture of
growing f(R) influence with decreasing redshift.

7.4 Conclusion and discussion
In this Chapter I analyzed the results of simulations containing 20483 simulation
particles in a 1536Mpc/h side-length simulation box which were carried out for
both the |f̄R0|= 10−5 model and standard gravity. The impact of f(R)-gravity on
the large scale structure in these simulations can be summarized as follows.

• Both the 3D matter power spectrum and the 2D angular power spectrum are
enhanced in f(R)-gravity with respect to a ΛCDM universe. The relative
differences are bigger on smaller scales and increase with decreasing redshift.
The maximum relative difference in the matter power spectrum is of order
25% at scales of k = 10h/Mpc at z = 0. The angular power spectrum is
enhanced by more than 20% in modified gravity compared to GR at z = 0.5
and l = 104.

• The halo mass function is increased in f(R)-gravity with respect to GR as well.
The relative difference between the models depends on the halo mass as the
screening mechanism introduces a mass scale. It reaches 25% at m = 1014M⊙.
This and the previous result are consistent with the ones reported in the
literature underlining the validity of the methods used for the simulations.

• The two point correlation function of the dark matter density field is increased
in modified gravity compared to the standard model while the two point cor-
relation function of the dark matter halos is on average lower in f(R)-gravity.
The effects are stronger at lower halo mass. 

• The resulting halo assembly bias is significantly lower in f(R)-gravity relative
to GR. The difference is larger at lower redshift, reaching on average ≈ −18%
at z = 0. While the bias stays > 1 for the ΛCDM model at zero redshift
it reaches values < 1 at halo masses around 1012M⊙/h for the considered
modified gravity model. Halos of approximately Milky-Way mass will thus be
less correlated than the dark matter density field in f(R)-gravity at present
times.

Wrapping up one can conclude that the simulations show once again that the
effects due to the modified forces on statistical cosmological measures in f(R)-gravity
are higher at lower redshift. The screening mechanism introduces a scale, i.e. the
onset threshold for screening, which results in larger f(R) effects on lower mass
objects. As a result, spatial scale dependent statistical measures are influenced by
modified gravity to a higher degree on smaller scales. The fact that these scales are
also heavily influenced by baryonic processes such as feedback from active galactic
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nuclei or supernovas (see e.g. Vogelsberger et al., 2014a; Puchwein et al., 2013) will
make the signatures of f(R)-gravity very difficult to probe through power spectra or
correlation functions. In order to probe gravity with upcoming large scale structure
surveys such as EUCLID it is therefore crucial to also include the effects of baryons
in future simulations unless one finds signatures of modified gravity which are less
degenerate with baryonic physics.
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8 The Sunyaev-Zeldovich effect in
f (R)-gravity

8.1 Introduction
In this Chapter I will present preliminary results on an ongoing project. The aim
of the project is to determine the effects of f(R)-gravity on the Sunyaev-Zeldovich
(SZ) signal employing full-physics hydrodynamical simulations with arepo.

The SZ effect (Sunyaev & Zeldovich, 1972) provides a powerful cosmological probe
of hot intra-cluster gas (Planck Collaboration et al., 2016b; Schäfer et al., 2006).
CMB photons which travel trough these regions get an energy kick via inverse
Compton scattering which changes their spectrum. The photons therefore carry
information not only on the temperature of the intervening gas but also on its ki-
netic motion. Statistically analyzing both the kinetic and the thermal part of the
SZ-signal can therefore provide constraints on cosmological models such as f(R)-
gravity (Arnold et al., 2014).

This chapter is structured as follows. In Section 8.2, I will describe the simulation
setup and the method used to obtain the SZ-maps. The results are presented in
Section 8.3 while Section 8.4 concludes my findings.

8.2 Simulations and Methods
The simulations of this project are carried out with arepo and the modified gravity
solver presented in Section 3.3.1. The final simulation suite is planned to consist of a
set of non-radiative hydrodynamical simulations for both f(R)-gravity and a ΛCDM
model as well as a set of full-physics simulations for both models. The full-physics
simulations will cover a number of baryonic processes such as star formation, stellar
feedback, cooling and feedback from active galactic nuclei using a model similar to
the one used in Weinberger et al. (2017).

The results presented in the following instead focus on the non-radiative simula-
tions. They are carried out using 5123 simulation particles and roughly the same
number of mesh-generating points (i.e. Voronoi mesh cells for the hydrodynamical
solver) in a 62Mpc/h side-length simulation box. The set of cosmological parame-
ters is Ωm = 0.3089,ΩΛ = 0.6911,ΩB = 0.0486 and h0 = 0.6774.

The SZ-signal can be observed in different ways. One possibility is to focus on
individual galaxy clusters and to integrate over the volume of the object ending up
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with the (angular) integrated Compton-y parameter

YSZ =

∫
ydΩ, (8.1)

where the Compton parameter for the thermal SZ-effect is given by

y =
kBσT
mec2

∫
Tenedl. (8.2)

The Thompson scattering cross-section is denoted as σT , the electron mass, temper-
ature and number density are given by me, Te and ne, respectively. This method was
applied in previous works on f(R)-gravity simulations (Arnold et al., 2014; Peirone
et al., 2016) and is also applicable to observations (Rozo et al., 2014; Planck Col-
laboration et al., 2011, 2013a,b). In this work I will nevertheless take a different
approach.

Following the methods used in Springel et al. (2001) and Dolag et al. (2005) one
can obtain the thermal SZ-signal from equation (8.2) directly by carrying out the
integral along the path of the photons. The routine which creates SZ-maps from
the simulation outputs works as follows. First, an arbitrary 1◦ × 1◦ section of the
sky seen by an imaginary observer in the simulation box is selected (see also Figure
8.1). The simulation box is then repeated along this direction to fully cover the
small lightcone which is spanned by the section of the sky. At each position along
the cone, the simulation output which is closest in time to the redshift corresponding
to the position is chosen. In total, there are 46 output times for snapshots in the
simulations. In order to avoid statistical correlations due to the repetition of the
boxes, the simulation boxes are shifted by an arbitrary distance and rotated by
an arbitrary angle for each snapshot. The redshifts for the simulation outputs are
chosen such that each position in a snapshot is only used once in the z (redshift)
direction for a slice zi in Figure 8.1. It might nevertheless appear multiple times in
directions orthogonal to the cone.

Once the cone of the patch on the sky is constructed, it is divided into 512× 512
rectangular pixels. For each of the pixels, a ray is shot along the lightcone. To carry
out the integral in (8.2), all gas cells which are intersected by the ray are considered.
In order to avoid extensive geometrical computations the gas cells are assumed to
be spherical, i.e. they are considered if the distance between their center of mass
and the ray is

rcell-ray < 2.5

(
3Vcell

4π

) 1
3

. (8.3)

The factor of 2.5 is used to smooth the gas distribution (similar to an SPH smooth-
ing radius). Using the same approach as Springel et al. (2001), the Compton-y
parameter for a pixel ij is calculated by adding the contributions of all considered
cells α

yij =
1

h2
σT
mec2

∑
α

pαwα,ij, (8.4)
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Figure 8.1: Illustration of the method used to obtain a (1◦)2 SZ-map from the
simulation outputs. The patch of the sky considered for the map is indicated in red.

where

p = (γ − 1)(1− Yp)muµxe. (8.5)

h denotes the side-length of a pixel, wα,ij is a normalized smoothing kernel, γ the
ratio of specific heats, Yp the primordial He4 mass fraction, m the mass of the
particles, u the internal energy per mass, µ the mean molecular weight and xe the
ratio of electron number density to hydrogen number density.

In a similar way, one can calculate the kinetic part of the SZ-effect through

b = σT

∫
dlnevr

c
, (8.6)

where b is a measure of the temperature fluctuation b = −∆T
T

and vr is the radial
velocity of the gas.

8.3 Results
To give an impression of the SZ-maps generated by the algorithm described above,
Figure 8.2 shows thermal and kinetic SZ-maps for the non-radiative run in the
standard ΛCDM cosmology. Bright yellow spots in the thermal map represent a
regions with strong SZ-signal, i.e. galaxy clusters with plenty of ionized gas. For the
kinetic signal the b parameter can be both positive and negative, depending on if
the gas is moving away from the observer (bright yellow structures in the plot) or
towards him (dark blue structures), respectively.

Figure 8.3 displays the angular power spectrum obtained from both the thermal
and the kinetic SZ-maps for |f̄R0|= 10−6 and a standard cosmology. The results

104



8.3 Results

thermal

kinetic
−6

−5

−4

lo
g
y

−7

−6

−5

lo
g
b

−5

−6

lo
g
−b

Figure 8.2: Maps for the thermal (top panel) and kinetic (bottom panel) SZ-effect
obtained from the non-radiative GR simulation. The maps have a side-length of
1◦ and a resolution of 5122 pixels. The thermal signal is shown in terms of the
Compton-y parameter, the kinetic signal in terms of the b parameter which can be
both positive and negative.
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Figure 8.3: Left panel: The angular power-spectrum obtained from the synthetic
SZ-maps for a ΛCDM universe (solid lines) and f(R)-gravity (dotted lines). The
spectrum for the thermal SZ-effect is shown in red, the one for the kinetic SZ-effect
in blue. The relative difference between modified gravity and GR is shown in the
right panel.

on the angular power spectra are consistent with the ones presented in Dolag et al.
(2005). The relative difference between f(R)-gravity and ΛCDM turns out to be
very small for both the thermal and the kinetic SZ-effect. The thermal spectrum
shows 1−3% higher values in modified gravity compared to GR. For the kinetic SZ-
effect, the power spectrum is enhanced by on average 3% on scales smaller than l =
2000. As f(R)-gravity makes a given galaxy cluster slightly more massive compared
to standard gravity (see e.g. Arnold et al., 2014) and matter more correlated on
small scales, it is not surprising that the angular power spectrum is enhanced. The
relatively small size of the effect is likely caused by two reasons. First, |f̄R0|= 10−6

is a quite weak model which has only very moderate effects on the matter power
spectrum (see e.g. Puchwein et al., 2013). It is thus reasonable that the effects
on the SZ-spectrum are small as well. Second, the SZ-effect primarily probes gas
in massive galaxy clusters. These objects are mostly screened by the chameleon
mechanism and will therefore not be heavily influenced by f(R)-gravity. In order to
make a more robust statement on the SZ-effect it would therefore be good to also
simulate a model with stronger modifications such as |f̄R0|= 10−5.

8.4 Conclusion and Discussion
In this Chapter I analyzed the thermal and the kinetic SZ-effect in a ΛCDM model
and f(R)-gravity employing non-radiative hydrodynamical simulations with arepo.
I constructed synthetic SZ-maps by tracing the gas along backward lightcones through
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the simulation box. These maps were then analyzed by calculating angular power
spectra for both the kinetic and the thermal SZ-signal.

While the angular power spectra are consistent with previous works, the difference
between the |f̄R0|= 10−6 model and standard cosmology turned out to be very small.
Both spectra are enhanced by a few percent in f(R)-gravity with respect to GR. A
larger effect is expected for stronger modifications of gravity.

In order to extend the analysis presented in this Chapter also full-physics hydrody-
namical simulations in both ΛCDM and f(R) cosmology will be carried out, which
are now possible thanks to my modifications to arepo. The feedback processes
can have a significant impact on the gas in the simulations which is traced by the
SZ-effect (Vogelsberger et al., 2014a).
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9 Discussion and Outlook

The theoretical explanation of the accelerated expansion of the Universe is one
of the big open questions in cosmology. While the standard model of cosmology
which explains the acceleration via the cosmological constant is very successful and
consistent with most of the observations, it also features some problems. Therefore
a large variety of alternatives to the ΛCDM model have been proposed in the past
years. One group of them, the so called modified gravity models, modify the laws
of gravity to account for the accelerated expansion.

In this thesis I considered f(R)-gravity as one theory of this kind. It features the
chameleon screening mechanism to shield the modifications to GR in high density
environments which is necessary to meet solar system constraints on the strength of
the gravitational interaction. In regions where the chameleon mechanism is inactive,
the gravitational forces are increased by a factor of 4/3 in f(R)-gravity. If the
functional form of f(R) is properly chosen, the theory can account for the accelerated
expansion. In this work I adopted the Hu & Sawicki (2007) model which is in
addition consistent with the observed expansion history of the universe.

In the coming years a number of large scale structure surveys are planned which
are also designed to test for possible modifications to gravity. In order to do so,
they require detailed information on how structure formation is influenced by the
modifications to gravity.

With this work, I tried to address exactly this question for the f(R) model. Em-
ploying cosmological N-body simulations I analyzed how different astrophysical ob-
servables change in f(R)-gravity compared to the standard model. The aim of this
work was furthermore to put constraints on the considered model and to find sig-
natures which are most promising in terms of deciding which model best describes
our Universe.

As the equations of motion are very non-linear in f(R)-gravity, cosmic structure
formation can not easily be solved with analytic approaches in this theory. I therefore
carried out cosmological N-body simulations in order to explore how cosmological
and astrophysical observables change in f(R)-gravity. The simulation codes I used
and developed for this purpose are mg-gadget and arepo. To make these codes
more efficient and versatile, I implemented a local timestepping scheme and a non-
periodic PM-solver for zoomed simulations in mg-gadget. The local timestepping
can lead to a significant speedup of the code, especially for hydrodynamical and
zoomed cosmological simulations. I also wrote a modified gravity solver for arepo
to be able to carry out highly accurate and efficient hydrodynamical simulations
with the code’s moving mesh hydrodynamics solver in f(R)-gravity. The results
can be summarized as follows.
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As a part of this thesis I contributed to a modified gravity code comparison project
which compared different modified gravity simulation codes in order to verify their
methods. It was found that cosmological measures such as power spectra or halo
profiles agree on a few percent level in simulations carried out with different f(R)
codes. Small differences in the field and force profiles are induced by different relax-
ation criteria and force computation methods, respectively. These differences appear
nevertheless primarily in screened regions and therefore do not have a significant
influence on the total force and astrophysical observables.

I also carried out a set of hydrodynamical simulations dedicated to analyze the
Lyman-α forest if f(R)-gravity. I found that the influence of this modified grav-
ity model on the Lyman-α forest is very small. Lyman-α flux PDFs and power
spectra change by less than 5% in |f̄R0|= 10−5 compared to a ΛCDM model. The
reason is that this observable is commonly measured at redshifts z = 2− 3. As the
background value of the scalar field rapidly drops with growing redshift, the impact
of f(R)-gravity is very small at early times. Absorption line shapes are therefore
only very mildly affected as well. Given the – compared to the f(R)-effects – quite
large statistical and systematic uncertainties in the observed Lyman-α power spec-
tra and flux PDFs, it will be very hard to put constraints on f(R)-gravity using
these observables.

In order to find out how f(R)-gravity affects the properties of Milky Way-sized
dark matter halos, I performed a set of zoomed simulations with initial conditions
from the Aquarius project. Depending on the background parameter, the density
profiles, rotation curves and velocity dispersion of the halos change by up to 40%
in f(R)-gravity compared to GR. The f(R)-to-standard gravity force ratio is 4/3
in unscreened regions as expected from theory. In screened regions, there is no fifth
force. The size of the screened regions inside the halos depends on both the back-
ground parameter and on the mass of the object. Small substructures in unscreened
regions can be screened if they are close enough to the main halo. With the zoomed
simulations, I could confirm that the |f̄R0|= 10−6 model is the strongest allowed
f(R) model if one requires the solar system to be screened within the Milky Way.

I also compared the force profiles of the simulated halos to theoretical predictions
for the screening radius and the fifth force inside spherically symmetric objects.
From this comparison one can conclude that the theoretical estimates work very
accurately for ideal, isolated NFW-halos while the discrepancy between simulated
and theoretical forces can be large for the real simulated halos. This can be explained
by the not exactly spherical shape of the objects, substructures and the influences of
nearby objects. The theoretical estimates can nevertheless serve as a rough measure
of the screening radius.

For the modified gravity lightcone simulation project which is also a part of this
thesis, I carried out the, in terms of particle number, largest f(R)-gravity simulations
to date. With the 2D and 3D lightcone output which I developed in mg-gadget
for this project, one can analyse clustering and lensing on the lightcone. These
observables are particularly important in the context of upcoming large scale struc-
ture surveys. The results obtained so far show that dark matter power spectra and
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9 Discussion and Outlook

two-point correlation functions are increased in f(R)-gravity with respect to ΛCDM
while dark matter halos are slightly less correlated in this modified gravity model.
The halos consequently show a lower assembly bias in f(R)-gravity compared to the
standard model which can even be smaller than unity for Milky Way-sized halos at
redshift zero. The angular power spectrum calculated from the 2D lightcone output
is enhanced in f(R)-gravity as well. The size of the effect deceases with redshift.

Another set of simulations I performed during this thesis with the arepo code
is dedicated to test the kinetic and thermal SZ-effect in f(R)-gravity. First results
show that the angular SZ-power spectra for both the thermal and the kinetic SZ-
effect are mildly increased in |f̄R0|= 10−6 with respect to GR. In order to make a
more robust statement about the influence of f(R)-gravity on the SZ-effect it would
be helpful to simulate a model with stronger modifications of gravity.

All in all one can conclude that the effects f(R)-gravity has on astrophysical
observables and objects increases towards lower redshift due to the redshift evolution
of the background field. Due to the Chameleon screening mechanism the influence
in high density regions and on high mass objects is smaller. In order to constrain
f(R)-gravity, it will therefore be most promising to focus on low density objects
at low redshift. Due to its relatively low mass and the quality of the available
observational data, observables from the Milky Way are very promising to further
constrain f(R)-gravity. Data on the kinematics of objects in the outer regions of our
Galaxy, which will be available soon from the Gaia satellite, has a great potential
in this context. As recently proposed (Carlesi et al., 2017), the dynamics within the
local group might give powerful constraints as well.

In order to make good use of data in the comparison to simulations, one has to
push modified gravity simulations forward into two directions. On the one hand,
small mass objects are usually heavily influenced by baryonic physics. As baryonic
feedback processes such as supernova or AGN feedback and modified gravity effects
might well interact in a non-trivial way one has to include both effects in future
simulations at the same time. Baryonic effects depend largely on gas densities,
which are in turn influenced by the larger gravitational forces in modified gravity.
A good understanding of the interplay between gas physics and the modifications to
gravity is therefore essential to put more stringent constraints on modified gravity
models. This would also help to resolve the degeneracy between e.g. f(R)-gravity
and AGN feedback in the matter power spectrum (Puchwein et al., 2014) which is
important for upcoming large scale structure surveys such as EUCLID or LSST.

Current modified gravity simulation codes, especially arepo, are on the other
hand restricted to a very limited number of modified gravity models. In order to
explore a larger fraction of the model space it is therefore important to include
additional gravity theories in the code and to possibly find effective descriptions
which can cover a number of models at once.

The hunt for constraints on f(R)-gravity does of course raise the question at which
point one should consider the model to be ruled out. As f(R)-gravity contains GR as
a limiting case for f̄R0 → 0 it is especially difficult to define a clear threshold. If the
background parameter becomes very small, f(R)-gravity and ΛCDM are practically
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indistinguishable. At this point, one would prefer the ΛCDM model as the easier
description of the same physics. For a scalar field parameter of |f̄R0|= 10−7, the
differences are already very small but one could still see effects in the very outer
regions of the Milky Way (see Chapter 6). For a |f̄R0|= 10−8 model, this would
be hardly possible. Employing equation (2.103) one can easily estimate that a
3×1010M⊙ halo would be largely screened in this model. If one manages to constrain
f(R)-gravity to a value of |f̄R0|< 10−8 the theory would from my point of view be
ruled out. Considering the currently most stringent constraint of |f̄R0|= 10−6, there
is nevertheless still some room for the theory.

In conclusion one can say that f(R)-gravity is still a valid theory which can explain
the acceleration of the universe without a cosmological constant. In this thesis
I was able to verify the solar system constraints on f̄R0 through cosmological N-
body simulations. I was also able to show that the Lyman-α forest is only weakly
affected in f(R)-gravity and that Milky Way-sized halos change structure in this
theory, making the Local Group a promising environment for future tests of f(R)-
gravity. In order to get a better understanding of how cosmic structure formation
is altered by theories of modified gravity in general, the simulation codes have to be
extended to a broader range of models and baryonic effects have to be included in
the simulations. Proceeding in this direction, future works in the field of modified
gravity simulations will possibly be able to answer the question whether gravity on
large scales is best described by GR or an alternative theory.
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