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A B S T R A C T

Building upon the recent developments of Kinetic Field Theory (KFT) for cosmic struc-
ture formation we develop a systematic way to calculate correlation functions of the
momentum-density field. We show that these correlators can be calculated from the fac-
torised generating functional after application of partial derivatives with respect to the
momentum shift. For visual aid and in order to facilitate an automatic evaluation of cor-
rections by particle interactions we introduce a diagrammatic representation of terms.
We employ this formalism to calculate the 2-point momentum-density correlation ten-
sor including initial correlations to quadratic order and completely. A comparison of
the results shows that the initial correlations are responsible for the deformation of the
power-spectrum on small scales rather than the particle interactions. In the spirit of the
Born approximation we use an effective force term to calculate the corrections due to
gravity. Our results are in good agreement with previous analytic and simulation re-
sults.
Recently, Fuzzy Dark Matter models such as Ultra-Light Axions have caught a lot of
interest. Their dynamics is described by the classical equations of a condensate. This
introduces a quantum potential in the Euler equation and is generally repulsive. We
have developed an extension to KFT treating the effects of the quantum potential on
the dynamics and on the initial density fluctuation power-spectrum. We find the effects
to be largest on scales in the range of 3h/Mpc & k & 0.3h/Mpc, close to the onset of
non-linear structures.

Auf Grundlage jüngster Entwicklungen in der Kinetischen Feldtheorie (KFT) für kosmis-
che Strukturbildung erarbeiten wir eine systematische Herangehensweise zur Berech-
nung von Korrelationen des Geschwindigkeitsdichte-Feldes. Diese Korrelationsfunktio-
nen können durch partielle Ableitungen nach der Impulsverschiebung von dem fak-
torisierten generierenden Funktional berechnet werden. Wir führen eine diagrammatis-
che Repräsentation der durch Wechselwirkungen zwischen Teilchen auftretenden Kor-
rekturen als visuelles Hilfsmittel ein. Diese Diagramme ermöglichen auch eine automa-
tische Berechnung dieser Korrekturen.
Wir benutzen diesen Formalismus, um den 2-Punkt Korrelationstensor der Impulsdichte
zu berechnen. Die anfänglichen Korrelationen berücksichtigen wir dabei entweder bis
zur quadratischen Ordnung oder vollständig. Ein Vergleich der Ergebnisse lässt den
Schluss zu, dass die anfänglichen Korrelationen wichtiger sind für die Deformation
des Power-Spektrums auf kleinen Skalen als die Wechselwirkungen zwischen Teilchen.
Zusätzlich berechnen wir die Auswirkung von gravitativer Wechselwirkungen durch
einen effektiven Kraft-Term im Sinne der Born-Näherung. Unsere Ergebnisse stimmen
mit vorigen analytischen und Simulationsergebnissen überein.
In letzter Zeit hat das Interesse an Fuzzy Dark Matter Modellen, wie z.B. Ultra-Leichte
Axionen, stark zugenommen. Zur Beschreibung der Dynamik werden die klassichen Gle-
ichungen eines Kondensats genutzt. Dies führt zu einem Quantenpotential in der Euler-
Gleichung, welches im Allgemeinen abstoßend wirkt. Wir haben KFT um die Effekte des
Quantenpotentials auf die Dynamik und auf das anfängliche Dichtefluktuations Power-
Spektrum erweitert. Unsere Ergebnisse zeigen, dass diese Effekte auf Skalen im Bereich
3h/Mpc & k & 0.3h/Mpc am größten sind. Dies ist nahe der Skala der nicht-linearen
Strukturbildung.
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1
I N T R O D U C T I O N A N D M O T I VAT I O N

Standard analytical tools of cosmic structure formation are based on the Boltzmann
equation or the hydrodynamical equations (cf. Bernardeau et al. [7] for a review). The
dynamical fields in those theories are continuous, namely the phase-space density, or
mass-density and velocity field of the fluid. For collisionless dark matter those theo-
ries generally break down, as soon as streams cross leading to an ill-defined velocity
field. Bartelmann et al. [6] recently developed an alternative to the common fluid ap-
proaches called Kinetic Field Theory (KFT). In the spirit of Martin, Siggia, and Rose [23]
KFT describes structures as ensembles of correlated microscopic particles obeying Hamil-
tonian dynamics. The dynamical fields in this approach are the phase-space coordinates
of the microscopic particles and the ensemble is completely described by a generating
functional that contains information about the initial phase-space distribution and the
dynamics of the particles. Structurally, this approach is closely related to the path in-
tegral formulation of Quantum Field Theory (QFT). Correlators of macroscopic fields,
e. g. the density, are calculated from the generating functional by application of appro-
priate functional derivatives.
Problems arising in conventional analytic approaches to cosmic structure formation are
avoided by the use of particle dynamics rather than smooth fields. The Hamiltonian
flow in phase-space is symplectic, i. e. volume conserving by Liouille’s theorem, and dif-
feomorphic. Therefore each particle moves on a unique trajectory in phase-space. This
avoids problems of crossing streams and ill-defined smooth fields. One can think of KFT
as the analytical analogue of the N-body simulation commonly used in cosmology.
Recent publications (Bartelmann et al. [5], Bartelmann et al. [4]) have developed KFT
further and applied the formalism to the calculation of the density fluctuation power-
spectrum. In this work we extend the analysis of previous publications to the calcula-
tion of momentum-density correlations. In the first part we review the formalism to KFT.
Based on that we derive a systematic way to calculate n-point momentum-density corre-
lators from the generating functional employing diagrams as a visual aid. The derivation
involves the factorisation of the generating functional. The factorisation is possible due
to the statistical homogeneity and isotropy of the initial correlations. As a result, corre-
lators can be calculated from convolutions of power-spectra.
We apply the developed formalism to calculate the 2-point momentum-density correla-
tion tensor in Chapter 4. For the calculation we will first consider initial momentum cor-
relations only quadratically as Bartelmann et al. [6] did for the density power-spectrum.
Then we give expressions using the factorised form of the generating functional. In the
spirit of Bartelmann et al. [4] we employ the Born approximation in order to estimate
the effect of gravitational particle interactions.
As an application of our calculations we look at secondary anisotropies in the Cosmic Mi-
crowave Background (CMB) radiation. The CMB was released when the Universe became
electrically neutral and the optical depth dropped to zero. The radiation field is highly
isotropic with small anisotropies, either primordially seeded during inflation or secon-
darily due to interactions of photons along their journey. The formation of astrophysical
objects, such as stars and galaxies, in halos of dark matter causes the reionisation of
the intergalactic medium by radiation. One possible secondary anisotropy is caused by
inverse Compton scattering off free electrons, called the Sunyaev-Zel’dovich effect. We
can distinguish the thermal Sunyaev-Zel’dovich effect (tSZ) caused by random motion
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2 introduction and motivation

of electrons and the kinetic Sunyaev-Zel’dovich effect (kSZ) caused by electrons moving
with the bulk. Here we investigate the kSZ effect which is directly related to the power-
spectrum of the momentum-density.
In the last Chapter we extend the formalism of KFT towards Fuzzy Dark Matter (FDM).
The particle nature of dark matter is unproven and the variety of particle candidates
is vast. As we have described above, in KFT we treat the dark matter as classical mi-
croscopic particles following the Hamiltonian equations of motion. That description is
valid for Cold Dark Matter (CDM), whose particles have low velocity dispersions and
interact only gravitationally. Apart from the great success of CDM in predicting the large
scale structure in the Universe, there exist some discrepancies between simulations and
observations:

• The cusp/core problem (cf. de Blok [37]): simulations predict cuspy density pro-
files at the centers of galaxies, while observations of rotation curves favor flat
profiles.

• The missing satellites problem (cf. Bullock [11]): the abundance of low-mass halos
is larger in simulations than observations around the Milky Way suggest.

These problems may be related to problems with the implementation of baryonic physics
in the simulations (Brooks et al. [10]) or in the nature of the dark matter itself.
Here we direct our attention to FDM models, such as the axion or axion-like particles
(e. g. Marsh [22]). The term was coined by Hu, Barkana, and Gruzinov [16] who pro-
posed an extremely light, non-thermally produced boson whose de-Broglie wavelength
would be relevant on cosmological scales. For a typical mass of ma ' 10−22eV/c2 the
de-Broglie wavelength is of the order of 1kpc.
The small particle mass implies large occupation numbers in galactic halos. Thus, the
classical field equations of a condensate describe the dynamics of FDM. In the context
of structure formation the scales under consideration are much smaller than the Hubble
horizon and larger than the de-Broglie wavelength, so that we can work in the Newto-
nian limit. The set of equations describing the dynamics of a self-gravitating condensate
is the Gross-Pitaevskii-Poisson system (Gross [15], Pitaevskii [31]), which can be trans-
formed into a set of hydrodynamical equations using the Madelung form of the wave-
function (Madelung [20]). The difference to a pressureless fluid is an additional force
which is in general repulsive on small scales. The force is the gradient of the quantum
potential (Bohm [8]) and stems from Heisenberg’s uncertainty principle. While large
scales behave as CDM, the quantum potential can stabilise small scale perturbations and
thus alleviate conflicts between simulations and observations.
In this thesis we work out how the effects of the quantum potential can be included in
the framework of KFT. In other words, we do not change the degrees of freedom of KFT,
i. e. the phase-space coordinates of classical particles, but we add the quantum potential
gradient to the dynamics. In fact, we need to adapt the dynamics as well as the initial
power-spectrum, since the quantum potential stabilises structures below the so-called
quantum Jeans scale. Thus, the initial FDM power-spectrum is truncated with respect to
the initial CDM power-spectrum.



Part I
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2
K I N E T I C F I E L D T H E O RY

In this Chapter we review the key concepts and mathematical structure of KFT devel-
oped by Bartelmann et al. [6]. The basic idea is to describe structures as canonical en-
sembles of correlated classical particles. In analogy to the path integral formulation of
QFT (cf. Peskin and Schroeder [30]), a generating functional is at the center of the theory
which includes all information on the initial correlations and dynamics of the particles
in phase-space.
Here we review the construction of the generating functional Z[J] for an ensemble of
classical particles and how correlations of macroscopic quantities, such as the density,
can be obtained from it. In a first step we have a look at the Hamiltonian dynamics of
the particles and give a general solution to their trajectories in phase-space by means
of a Green’s function. In a second step we make use of the deterministic nature of the
Hamiltonian flow to write down the probability of the transition from an initial set of
phase-space coordinates x(i) to a set at a later time x(t) with t > t0. Then the generating
functional is given by an integral over the initial distribution of particles in phase-space
weighted by the transition probability. In cosmological applications the initial distribu-
tion is completely specified by the density-fluctuation power-spectrum at CMB release.
In order to calculate correlation functions of the microscopic degrees of freedom and
of macroscopic/collective fields, such as the density, we construct operators including
functional derivatives with respect to generator fields. We include interactions by a mul-
tiplicative operator and conclude the general description of KFT with a formal analogy
to Statistical Mechanics.
The second part of this Chapter is dedicated to a more thorough discussion of the
Green’s function in a cosmological setting. For that purpose we will transform the time
coordinate from physical time to the linear growth factor of structures D+(t), which
solves the second order differential equation for the density contrast in the linear hydro-
dynamics description (cf. (A.32)). We discuss ballistic motion in this new time coordinate
and a deviation from this that was suggested by Bartelmann [3].

2.1 generating functional

2.1.1 Hamiltonian Particle Dynamics

The dynamical fields of KFT are the phase-space coordinates ~xj(t) =
(
~qj(t),~pj(t)

)ᵀ of
all j = 1 . . .N microscopic particles. We adopt the notation of Bartelmann et al. [6] and
organise the phase-space coordinates of all particles in tensors

x(t) = ~xj(t)⊗~ej =

(
~qj(t)

~pj(t)

)
⊗~ej, (2.1)

where summation over repeated indices is implied. The properties and a scalar product
of these tensors are defined in Appendix B.1.1.
For each particle j the phase-space coordinates obey the Hamiltonian equations of mo-
tion

~̇qj = ∇pjH(x, t), ~̇pj = −∇qjH(x, t), (2.2)

5



6 kinetic field theory

with the Hamiltonian H(x, t) and the gradients acting on the position and momentum
of the j-th particle. The Hamiltonian equations are symplectic and thus preserve the
phase-space volume of the collection of particles by Liouville’s theorem. In addition,
trajectories of particles in phase-space will never cross, since the solution to the Hamilto-
nian equations is unique. This is a decisive advantage over standard methods in cosmic
structure formation which break down as soon as (fluid) streams cross since one of the
dynamical fields, namely the fluid velocity, becomes ill-defined.
We bundle the equations of motion (2.2) for the position and momentum of each particle
into one simple equation with the use of our tensor notation (2.1):

ẋ = III∇∇∇H(x, t), (2.3)

with the 6N-dimensional phase-space gradient ∇∇∇ = ∇j ⊗ ~ej (cf. B.8) and the symplectic
matrix

III =

(
0 I3

−I3 0

)
⊗ IN. (2.4)

Here Id represents the identity in d dimensions. Without loss of generality we can split
the Hamiltonian of the system into a free and a non-linear/interaction part. In the exam-
ple of Section B.2.3 the former is the ballistic motion of particles according to their initial
momentum and the latter is a potential-gradient force. Then the Hamiltonian equations
of motion assume the form

ẋ(t) = III∇∇∇Hfree(x, t) + EI(x, t). (2.5)

Here the inhomogeneity EI(x, t) = III∇∇∇HI(x, t) represents the interaction that we have
split off the full Hamiltonian H(x, t).

2.1.2 The Generating Functional

In analogy to the path integral formulation of QFT, we aim at the probability of the
transition from an initial configuration of particles x(t0) = x(i) to a configuration later
in time t > t0. The Hamiltonian equations are deterministic. Therefore the transition
probability must be unity if and only if the phase-space trajectories of the particles
follow the solution of (2.5).
The translation of this concept into a path integral is

P[x(i) 7→ x(t)] =
∫

x(i)
dx(t)δD [ẋ(t) − III∇∇∇Hfree(x, t) − EI(x, t)] (2.6)

where we introduced a functional Dirac delta distribution. The path integral is to be
taken over all possible phase-space trajectories x(t) starting with the initial configura-
tion x(i). The functional delta distribution ensures that only the Hamiltonian trajectories
solving the equation of motion (2.5) contribute to the transition probability. In other
words, fixing the initial positions also fixes all subsequent positions of the classical par-
ticles in phase-space.
Since the evolution of the microscopic degrees of freedom is deterministic, the only ran-
dom element are the initial conditions for the ensemble of particles. Therefore in the
construction of the generating functional of KFT we need to integrate over the initially
available phase-space, i. e. the complete 6N-dimensional phase-space weighted by a suit-
able probability distribution function. We express the initial phase-space measure as

dΓΓΓ = dq(i)dp(i)P[q(i), p(i)], (2.7)



2.1 generating functional 7

position q

time t

momentum p

trajectories
(p, q)(t)

Figure 1: Shown is the principle idea of the generating functional Z[J]. The initial configuration
of particles in phase-space (light blue) is mapped to a configuration later in time (dark
blue) by the classical solution xcl(t). Courtesy of Matthias Bartelmann.

with the probability distribution P[q(i), p(i)] properly adapted to the system at hand.
We will specify the distribution for cosmological initial conditions shortly.
The generating functional is now readily constructed from the transition probability and
an integral over the initial phase-space distribution

Z[J] =
∫

dΓΓΓP[x(i) 7→ x(t)] exp
(

i
∫t
t0

dt ′
〈
J(t ′), x(t ′)

〉)
=

∫
dΓΓΓ
∫

x(i)
dx(t)δD [ẋ(t) − III∇∇∇Hfree(x, t) − EI(x, t)] exp

(
i
∫t
t0

dt ′
〈
J(t ′), x(t ′)

〉)
=

∫
dΓΓΓ exp

(
i
∫t
t0

dt ′
〈
J(t ′), xcl(t

′)
〉)

. (2.8)

In the last step we have carried out the path integral and replaced the trajectory in the
phase factor by xcl(t), i. e. the retarded solution of the classical equations of motion (2.5).
We have also introduced the 6N-dimensional source field J(t) in the sense of (B.9) that
couples to the position and momentum vectors of each particle.
The general idea of Z[J] is shown in Figure 1. The initial configuration of particles x(i)

occupies a volume in phase-space specified by the initial phase-space measure dΓΓΓ . Each
particle in the configuration follows the classical path, i. e. the solution to (2.3), which
propagates the configuration forward in time. Information on the ensemble or macro-
scopic properties can be deduced from the propagated phase-space configuration.
The functional derivative of the generating functional Z[J] with respect to ~Jqj(t) evalu-
ated at J = 0 returns

δ

iδ~Jqj(t)
Z[J]

∣∣∣∣∣
J=0

=

∫
dΓΓΓ ~qj(t) =

〈
~qj(t)

〉
, (2.9)
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i. e. the position of the j-th particle at time t averaged over all initial phase-space con-
figurations drawn from the distribution P[q(i), p(i)]. This corresponds to an ensemble
average. In principle, the ensemble average of any observable Q can be calculated, if the
observable is a function of the phase-space coordinates, i. e.Q = Q(x). Replacing x by
the functional derivative with respect to the source field J defines an operator and the
expectation value for any observable can be written as

〈Q(x(t))〉 = Q

(
δ

iδJ(t)

)
Z[J]

∣∣∣∣
J=0

. (2.10)

Higher order correlation functions of the microscopic degrees of freedom or observables
are computed from Z[J] by consecutive application of suitable operators and evaluation
at J = 0.

2.1.3 Macroscopic Quantities

So far we only considered the microscopic degrees of freedom of the particle ensemble,
since those are the dynamical fields of KFT. For our discussion of structure formation we
will need to define macroscopic or collective quantities of the ensemble. Each particle
contributes to these collective quantities.
The most straightforward example of a collective quantity is the density

ρ(~q, t) =
N∑
j=1

δD(~q− ~qj(t)), (2.11)

which is a sum over the densities of all particles j = 1 . . .N. The density of a point
particle is a Dirac delta distribution peaked at its respective position. The position of the
j-th particle is given by the classical trajectory.
As the second collective quantity we introduce the momentum field or rather the momen-
tum-density field. From the considerations of the previous paragraph the velocity field
is naively constructed

~p(t) =

N∑
j=1

~pj(t) = m

N∑
j=1

~uj(t), (2.12)

where ~uj(t) is the velocity of one particle and we assume all particles to have the same
massm. Unfortunately this definition lacks all information about the spatial dependence
of the momentum field, since the microscopic degrees of freedom are the phase-space
coordinates of all particles. Our aim is the calculation of spatial correlation functions of
the momentum field. So in order to recover the spatial information we have to impose
that a particle can contribute to the momentum at a position ~q if and only if it is at that
position

~Π(~q, t) =
N∑
j=1

~pj(t)δD(~q− ~qj(t)) =

N∑
j=1

~pj(t)ρj(~q, t), (2.13)

expressed by a Dirac delta distribution. This field is no longer the momentum field, but
we recognise the delta distribution as the density of particle j at position ~q and time t,
which means that the new field ~Π(~q, t) is a momentum-density.
In this thesis we will consider only interactions between the particles that can be de-
scribed by a potential, such as gravity, and external potentials are neglected. Each par-
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ticle experiences the interaction potential V(~q, t) at position ~q and time t as a sum over
one-particle potentials v,

V(~q, t) =
N∑
j=1

v(~q− ~qj(t)). (2.14)

Using the definition of the density we can turn the sum into an integral expression

V(~q, t) =
∫

d3yv(~q− ~y)

N∑
j=1

δD(~y− ~qj(t)) =

∫
y
v(~q− ~y)ρ(~y, t), (2.15)

which will be helpful when we construct the interaction operator.
For the calculation of correlation functions of the macroscopic quantities defined in this
Section we need to construct operators that can act on the generating functional as we
have described at the end of the last section. Throughout this work we will calculate cor-
relation functions in Fourier-space. Therefore we construct the operators for the density
ρ(~q, t) (2.11) and momentum-density field ~Π(~q, t) (2.13) from their Fourier-transforms.
Each particle contributes to the density ρ(~q, t) by a delta distribution. The one-particle
contribution of particle j to the density at the point 1 := (~k1, t1) in Fourier-space is

ρj(1) = exp(−i~k1 · ~qj(t1)). (2.16)

The one-particle density operator is thus readily constructed by replacing the position
of the j-th particle by a functional derivative

ρj(1) = exp

(
−i~k1 ·

δ

iδ~Jqj(t1)

)
. (2.17)

The complete density operator is a sum over the one-particle operators.
The momentum-density operator is constructed from the density operator in a simple
way. We first realise that the Fourier transformation leaves the momentum of particle
j unchanged and the second factor in (2.13) is the one-particle density. Therefore by
replacing the momentum ~pj(t) by a suitable functional derivative with respect to the
source and our previous result we get

~Πj(1) =
δ

iδ~Jpj(t1)
exp

(
−i~k1 ·

δ

iδ~Jqj(t1)

)
=

δ

iδ~Jpj(t1)
ρj(1) (2.18)

for the one-particle momentum-density. The momentum-density for the ensemble is
obtained by summing over the one-particle contributions.

2.1.4 Interaction Operator

In equation (2.15) we introduced the interaction potential V(~q, t) experienced by each
particle as the sum of all N one-particle potentials v. This makes the interaction term
EI(x, t) non-linear: all particles in the ensemble are connected by their mutual interac-
tions and an individual treatment of each particle trajectory is not possible. We aim at
the form

Z[J, K] = eiSI
∫

dΓΓΓ exp
(

i
∫t
t0

dt ′
〈
J(t ′), x̄(t ′)

〉)
(2.19)
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of the generating functional. This form includes an additional source field K(t). Since
the inclusion of the full non-linear interaction in our calculations is not feasible, we aim
at a perturbative ansatz by expanding eiSI in a Taylor series

exp (iSI) = 1+ iSI −
1

2
SI · SI +O(S3I ). (2.20)

The function SI encodes the interaction term EI(x, t) and the terms in this series can
be interpreted as the free motion (0-th order), one interaction/scattering happens along
the trajectories (linear), two scattering/interaction events happen along the trajectories
(quadratic), and so on.
The first step in the construction of equation (2.19) is to introduce a new source field
K(t) which formally replaces the non-linear term EI(x, t) in the classical equations of
motion (2.5)

ẋ = III∇∇∇Hfree(x, t) + K(t). (2.21)

The source K(t) represents an inhomogeneity. Using a retarded Green’s functionGR(t, t ′)
we can solve the equations of motion

x̄(t) = GR(t, t0)x(i) +
∫t
t0

dt ′GR(t, t ′)K(t ′), (2.22)

as we described in Appendix B.2.3. The Green’s function for the 6N-dimensional phase-
space is symbolically given by

GR(t, t ′) =

(
gqq(t, t ′)I3 gqp(t, t ′)I3
gpq(t, t ′)I3 gpp(t, t ′)I3

)
θ(t− t ′)⊗ IN. (2.23)

The scalar functions gab(t, t ′) are propagators describing the free motion of particles
through phase-space, such that

~qj(t) = gqq(t, t0)~q
(i)
j + gqp(t, t0)~p

(i)
j (2.24)

is the position of particle j due to its inertial motion only. An example for classical par-
ticles in static Euclidean space is given in (B.34). We will specify these propagators to
expanding space-time in the next section.
We substitute the classical solution xcl(t) in Z[J] in equation (2.8) by the solution x̄(t)
including the inhomogeneity K(t) and construct the interaction operator eiSI to (per-
turbatively) recover the non-linear term EI(x, t) using a functional derivative. We define

SI =

∫
dt ′
〈
EI(x, t ′),

δ

iδK(t ′)

〉
, (2.25)

as the action operator associated with the interaction. Application of this operator to the
phase-space trajectories returns

iSIx̄(t) = iSI

(
GR(t, t0)x(i) +

∫t
t0

dt ′GR(t, t ′)K(t ′)
)

=

∫
dt1EI(x, t1) ·

∫
dt ′GR(t, t ′)δD(t ′ − t1)

(
1

1

)

=

∫
dt1GR(t, t1)EI(x, t1), (2.26)
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which is the correct form of the inhomogeneous term as seen by a comparison with
equation (B.35).
In this thesis we consider solely interactions of the particles with a potential V(~q, t) that
is a sum of one-particle contributions. The equations of motion for particle j due to the
interaction are

~̇qj = 0, ~̇pj = −∇qjV(~q, t). (2.27)

We rewrite the momentum change in the following way

~̇pj(~q, t) = − ∇qV(~q, t)|~q=~qj(t)
= −

∫
q
δD(~q− ~qj(t))∇qV(~q, t)

=

∫
q

[
∇qδD(~q− ~qj(t))

]
V(~q, t), (2.28)

where we used that the boundary terms vanish. In the last expression we can again
identify the delta distribution with the one-particle density ρj at position ~q and time t
of the j-th particle.
To arrive at the operator SI for the potential interaction, we replace the function EI(x, t)
in (2.25) by the rates of change for the position and momentum

SI =

∫
dt
∫
q

 N∑
j=1

δ

iδ~Kpj(t ′)
·
[
∇qδD(~q− ~qj(t))

]V(~q, t). (2.29)

The term in brackets defines the response field B(~q, t). With our definition of the inter-
action potential using the one-particle potentials v the action operator turns out to be

SI =

∫
dt
∫
q

∫
y
B(~q, t)v(~q− ~y, t)ρ(~y, t). (2.30)

From this equation the meaning of the response field becomes apparent: it quantifies the
response of particles at position ~q to an interaction with the density field at position ~y.
An operator expression in the sense of the previous paragraph can be constructed by
transforming (2.30) into Fourier-space. We will assume that the one-particle interaction
potentials are translation invariant, depend on the difference ~q− ~y only and acts instan-
taneously. The Fourier tranform is

SI =

∫
dt1

∫
k
B(−1)v(1)ρ(1) (2.31)

with −1 := (−~k1, t1) as introduced in Section B.1.2. The one-particle contribution to the
response field B(1) in Fourier-space is given by

Bj(1) = F

(
δ

iδ~Kpj(t1)
· ∇qδD(~q− ~qj(t))

)

=

[
−i~k1 ·

δ

iδ~Kpj(t1)

]
ρj(1). (2.32)

This serves as our operator expression for the response field.
In summary the complete generating functional for an ensemble of classical microscopic
particles drawn from a probability distribution P[q(i), p(i)] is given by

Z[J, K] = eiSI
∫

dq(i)dp(i)P[q(i), p(i)] exp
(

i
∫t
t0

dt ′
〈
J(t ′), x̄(t ′)

〉)
. (2.33)
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The trajectories x̄(t) solve the inhomogeneous equations of motion (2.21) by means of a
Green’s function and the potential interaction between particles is included by the form
of SI in equation (2.31). In practical calculations we expand the interaction operator into
a Taylor series as described in the beginning of this paragraph.

2.1.5 Initially Correlated Particles

For the generating functional Z[J, K] to be fully specified we need to give an expression
for the initial distribution of the microscopic particles in phase-space. Here we review
the main steps to find the initial probability distribution and a more detailed calculation
can be found in Bartelmann et al. [6]. For the sake of readability we omit the upper
index (i) and understand that we construct the probability distribution for the initial
phase-space coordinates.
In the context of cosmology we demand spatial correlations of the particles such that
their number density is a homogeneous and isotropic Gaussian random field. The spatial
correlations imply correlations of momenta and cross-correlations of the spatial and
momentum degrees of freedom by continuity.
The microscopic particles sample the number density. Therefore the probability to find
a particle j at position ~qj has to be proportional to the density at that point

P(~qj|ρj) =
ρj

N
. (2.34)

Here ρj = ρ(~qj) and the normalisation N is set by the volume integral over the density.
In the hydrodynamical treatment of cosmic structure formation to linear order in the
perturbations (cf. Appendix A.2) we find that the rotational part of the peculiar velocity
δ~u decays proportional to one over the scale-factor a. It is thus reasonable to assume
that the initial velocities of the particles are irrotational and given by the gradient of a
velocity potential ψ

δ~uj = ~pj = ∇ψj, (2.35)

where we assumed the same mass m = 1 for all particles and ∇ψj = ∇ψ(~qj). Therefore
the conditional probability for the momentum ~pj is given by

P(~pj|∇ψj) = δD(~pj −∇ψj). (2.36)

By means of the linear continuity equation (A.27) we find a relation between the density
contrast δ = (ρ− ρb)/ρ and the velocity potential

δj = −∇δ~uj = −∇2ψj (2.37)

at position ~qj. With the use of the conditional probabilities (2.34) and (2.36) the proba-
bility for finding a particle at (~qj,~pj)ᵀ in phase-space

P(~qj,~pj) =
∫

dδj

∫
d(∇ψj)P(~qj|ρj)P(~pj|∇ψj)P(δj,∇ψj) (2.38)

can be calculated from the probability distribution P(δj,∇ψj) for the density contrast
and the gradient of the velocity potential. For the ensemble of N particles the probability
is given by

P[q, p] = V−N

∫
dNδ

N∏
j=1

(1+ δj)P(δj,~pj), (2.39)
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where we used the definition of the density contrast and the identity (2.35).
The density contrast and the velocity potential are related by the continuity equation,
and hence ψ and its derivatives are homogeneous and isotropic Gaussian random fields
that are fully specified by their respective power-spectra. For the density fluctuations the
power-spectrum is defined by〈

δ(~k)δ(~k ′)
〉
= (2π)3δD(~k+~k ′)Pδ(k), (2.40)

with the Fourier-transform of the density contrast δ(~k). Statistical homogeneity is en-
sured by the delta distribution and for a statistically isotropic field the power-spectrum
can only depend on the absolute value of the wave vector k rather than its direction. By
continuity, the power-spectrum for the velocity potential is given by

Pψ(k) = k
−4Pδ(k). (2.41)

Bartelmann et al. [6] have shown that the full initial phase-space distribution is given by

P[q, p] =
V−N√

(2π)3NdetCpp
C(p) exp

(
−
1

2
pᵀC−1

ppp
)

, (2.42)

with the polynomial

C(p) =
N∏
j=1

(
1−Cδjpk

∂

∂pk

)
+
∑
(j,k)

Cδjδk

∏
{l} ′

(
1−Cδlpk

∂

∂pk

)

+
∑
(j,k)

Cδjδk

∑
(a,b) ′

Cδaδb

∏
{l} ′′

(
1−Cδlpk

∂

∂pk

)
+ . . . (2.43)

depending on the density fluctuation and momentum auto-correlations and the cross-
correlations, Cδδ, Cpp, and Cδp respectively.
These correlations are completely determined by the initial power-spectrum of the den-
sity contrast and we give the definitions here. The two-point correlation function of the
density fluctuation is given by the Fourier-transform of its power-spectrum

〈
δjδk

〉
= Cδjδk =

∫
k
Pδ(k)ei~k·(~qj−~qk). (2.44)

The indices j and k indicate that the correlation is evaluated between two different points
~qj and ~qk. For the cross-correlation we get

〈
δj~pk

〉
= Cδjpk = i

∫
k
k2~kPψ(k)ei~k·(~qj−~qk), (2.45)

and for the momentum correlation〈
~pj ⊗ ~pk

〉
= Cpjpk =

∫
k

~k⊗~kPψ(k)ei~k·(~qj−~qk). (2.46)

Evaluating the correlation functions at the same position we obtain the one-point vari-
ances

〈
δjδj

〉
= σ22,

〈
δj~pj

〉
= 0,

〈
~pj~pk

〉
=
σ21
3

I3, (2.47)
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with the definition

σ2n =

∫
k
k2(n−2)Pδ(k). (2.48)

In the early Universe the density fluctuation auto-correlations and the cross-correla-tions
are weak compared to the momentum auto-correlations. We will therefore assume the
correlation polynomial C(p) ' 1 in our calculations. For the initial power-spectrum we
will use the one provided by Bardeen et al. [2] for CDM and a truncated power-spectrum
for FDM (cf. Chapter 5).

2.1.6 Similarities to Equilibrium Statistical Physics

Conceptually, KFT is largely different from Statistical Physics, because the former de-
scribes a system that is far from equilibrium. The generating functional Z[J] is con-
structed from the joint probability density P[x(i), x(f)] that the system starts in the con-
figuration x(i) and takes the configuration x(f) at the final time. We have expressed this
by the probability distribution of the initial phase-space coordinates of all particles (2.42)
and the conditional probability for the system to evolve from an initial configuration to
one later in time, i. e. the transition probability (2.6). We adopt the notion of an ensemble
since we consider the number of particles and the volume of the system fixed, and draw
the initial configuration from a continuous probability distribution. The calculation of
correlators from the generating functional is then analogous to an ensemble average,
i. e. an average over many realisations of the initial distribution.
Statistical physics on the other hand mostly describes systems in equilibrium, i. e. fluc-
tuations of macroscopic quantities about the mean are small, and ergodic, such that time
averages are equivalent to ensemble averages. In this sense macroscopic quantities are
sufficient to describe the system and knowledge about the microscopic configuration in
phase-space is irrelevant. The canonical ensemble describes systems that are in equilib-
rium with a heat bath, i. e. the mean energy (temperature) per degree of freedom is fixed.
The canonical partition function is given by

ZC =

∫
dΓΓΓ exp(−βH(x)), (2.49)

where β = (kBT)
−1 is the energy scale of the system with temperature T . The exponen-

tial function is the Boltzmann factor which compares the total energy of a configuration
x with the temperature of the system. Thus, it represents the probability distribution
for configurations in phase-space. Averages of macroscopic quantities can be calculated
from the canonical partition function by taking the appropriate derivatives, for instance
the mean energy is given by 〈E〉 = − ∂

∂βZC.
The canonical partition function ZC and the generating functional Z[J] build the for-
mal analogy between statistical physics and KFT. Although one describes an equilibrium
and the other a non-equilibrium system both contain the initial phase-space distribution
and the dynamics of the microscopic degrees of freedom. Macroscopic quantities are
calculated from partial derivatives of the partition function/generating functional.
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2.2 particle trajectories

2.2.1 Lagrangian in an Expanding Space-Time

Along the lines of Peebles [29] we briefly discuss the effective Lagrangian for a point par-
ticle moving in expanding space-time. The motion of a classical particle in an expanding
space-time is described by the Lagrangian

L(~r,~̇r, t) =
m

2
~̇r2 −mΦ(~r), (2.50)

where ~r are the physical coordinates of the particle. The gravitational potential Φ(~r)

obeys the Poisson equation

∇2rΦ = 4πGρ−Λc2, (2.51)

with a cosmological constant Λ. The transformation to comoving coordinates ~q = a~r

leads to

L(~q, ~̇q, t) =
m

2

(
ȧ2~q+ a2~̇q2 + 2aȧ~q~̇q

)
−mΦ(~q) (2.52)

with all functions depending on the new coordinates.
Since the addition of the total time derivative of a function leaves the equations of motion
invariant, we define an effective Lagrangian

L 7→ L−
d
dt
m

2
aȧ~q2 =

m

2
a2~̇q2 −mφ (2.53)

with an effective potential

φ = Φ+
aä

2
~q2. (2.54)

The effective potential obeys the Poisson equation

∇2qφ = 4πGa2ρ− a2Λc2 + 3aä = 4πGa2(ρ− ρb), (2.55)

where in the second step we used the second Friedmann equation (A.9b) with the mean
background density ρb(t) and neglected the pressure term.
In a next step we introduce the dimensionless time coordinate τ = D+ −D

(i)
+ using the

linear growth factor, i. e. the growing solution to the linearised hydrodynamic equations
(cf. Section A.2). The initial value is τ(i) = 0 and we choose D(i)

+ = 1. The transformation
of differentials is given by

dτ = dD+ =
da
dt

dD+

da
dt = HD+fdt, (2.56)

with the usual definitions for the Hubble function H := ȧ/a and the growth rate f :=
d lnD+

d lna .
The classical action S must be invariant under this transformation. We demand

S =

∫
dtL(~q, ~̇q, t) =

∫
dτL ′(~q,~q ′, τ) =

∫
dt

dτ
dt
L ′(~q,~q ′, τ), (2.57)

where the prime on ~q denotes a derivative with respect to the dimensionless time coor-
dinate τ. The effective Lagrangian is given by

L ′(~q,~q ′, τ) =
dt
dτ
L(~q, ~̇q, t) =

m

2
a2HD+f~q

′2 −
mφ

HD+f
. (2.58)
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We divide the effective Lagrangian by mHi with Hi = H(τ = 0) and change our notation
such that the dot over a quantity now denotes a derivative with respect to τ rather than
physical time, i. e. we replace ~q ′ by ~̇q. The motion of a particle in expanding space-time in
comoving coordinates and the dimensionless time coordinate τ is given by the effective
Lagrangian

L =
g(τ)

2
~̇q2 − v(~q, τ), (2.59)

and the effective potential

v(~q, τ) =
φ

HD+fHi
=

a2φ

H2ig(τ)
, (2.60)

with the function

g(τ) =
H

Hi
a2D+f. (2.61)

From (2.55) we find the Poisson equation for the effective potential

∇2v(~q, τ) =
4πGa

H2ig(τ)
(ρ− ρb), (2.62)

where we replaced the physical densities by their comoving values ρ 7→ ρa3. We can
rewrite the Poisson equation by using the definition for the comoving background den-
sity of matter. It is given by

ρb =
3H2i
8πG

Ωmi, (2.63)

where we multiplied the critical density (A.14) by the matter density parameter at the
initial time. Then introducing the density contrast δ = (ρ− ρb)/ρ we find

∇2v(~q, τ) =
3

2

a

g(τ)
Ωmiδ (2.64)

for the Poisson equation. The canonically conjugate momentum is

~pc =
∂L

∂~̇q
= g(τ)~̇q, (2.65)

and the Hamiltonian is

H(~q, ~̇q, τ) = ~pc · ~̇q−L =
~p2c
2g(τ)

+ v(~q, τ). (2.66)

The Hamiltonian equations of motion are

~̇q =
~pc
g(τ)

, ~̇pc = −∇v. (2.67)

2.2.2 Zel’dovich Approximation

The comoving particle trajectories are often modelled according to the Zel’dovich ap-
proximation (cf. Zel’dovich [35]). In our choice of coordinates these trajectories are equiv-
alent to inertial motion of the particles due to their initial momenta. The Green’s function
(2.23) is then given by

GR(τ, τ ′) =

(
I3 (τ− τ ′)I3
0 I3

)
θ(τ− τ ′)⊗ IN. (2.68)
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Then the equations of motion have the form

~̇q = ~p =
~pc
g(τ)

(2.69)

~̇p = −
∇v
g(τ)

−
ġ(τ)

g(τ)
~p, (2.70)

where initially ~p = ~pc. We see that due to this choice of free motion an additional
contribution to the change of momentum arises.

2.2.3 Improved Zel’dovich Approximation

The motion in the Zel’dovich approximation is unbounded. The particles will first move
towards each other and thereby form structures, since their initial momenta point into
the direction of the gravitational potential gradient. But structures/particles are again
driven apart by the inertial motion. Bartelmann [3] has suggested how this removal of
structure can be reduced by effectively adding a zero to the equations of motion and a
reinterpertation of the free and interaction parts of the motion.
We do not change the equation of motion for the position but for the momentum

~̇p = ḣ~p− ḣ~p−−
∇v
g(τ)

−
ġ(τ)

g(τ)
~p

= ḣ~p−
∇v
g(τ)

+
ġ(τ)

g(τ)
h~p, (2.71)

where we introduced the function

h(τ) = g−1(τ) − 1. (2.72)

To arrive at a Green’s function we interpret the first term in this equation as the free mo-
tion of particles. We call the solution the improved Zel’dovich approximation, because it
reduces the removal of structures compared to the Zel’dovich approximation. Therefore
the scalar functions in the Green’s function (2.23) are

gqq(τ, τ ′) = I3, gqp(τ, τ ′) =
∫τ
τ ′

dτ̄eh(τ̄)−h(τ
′), (2.73)

gpq(τ, τ ′) = 0, gpp(τ, τ ′) = eh(τ)−h(τ
′). (2.74)





3
M O M E N T U M - D E N S I T Y C O R R E L AT I O N F U N C T I O N S

In this Chapter we show how correlation functions for the momentum-density field are
calculated from the generating functional in the free and in the interacting theory. In the
free theory the microscopic degrees of freedom evolve according to their initial config-
uration in phase-space and the retarded Green’s function that solves the homogeneous
equations of motion. Interactions are included perturbatively via an interaction operator
as described in the previous Chapter.
We derive general expressions for n-point correlation functions and review the factorisa-
tion of the generating functional (Bartelmann et al. [5]) if initial density correlations and
density-momentum cross-correlations can be neglected. To calculate perturbative correc-
tions due to particle interactions systematically, we present a diagrammatic approach to
represent the terms contributing to those corrections at arbitrary order.

3.1 general form of correlation functions

3.1.1 Collective Quantities

As is usual in a statistical field theory, n-point correlation functions of any field are
calculated by applying n field operators to the generating functional Z[J, K] and setting
the source fields J and K to zero. For the density we write

Gρ...ρ(1 . . . n) = ρ(1) . . . ρ(n)Z[J, K] (3.1)

with the abbreviation 1 = (~k1, t1). In this Section we derive general expressions for
correlation functions of the density ρ, momentum-density ~Π and response field B. The
operator expressions for those fields are

ρ(1) =

N∑
j=1

ρj(1) =
∑
j

exp

(
−i~k1 ·

δ

iδ~Jqj(t1)

)
, (3.2)

~Π(1) =

N∑
j=1

~Πj(1) =
∑
j

δ

iδ~Jpj(t1)
ρj(1), (3.3)

B(1) =

N∑
j=1

Bj(1) =
∑
j

(
−i~k1 ·

δ

iδ~Kpj(t1)

)
ρj(1). (3.4)

Since each operator contains a one-particle density operator ρj, we work out the effect
of n such operators on the generating functional first. We enumerate the operators in
accordance with the contributing particles by js = 1 . . .N

ρj1(1) . . . ρjn(n)Z[J, K] = Z[J + L, K]. (3.5)

We notice that each ρjs(s) amounts to a shift L of the source J, since derivatives are the
generators of the translation group. Working out the functional derivative we find

L(t) = −

n∑
s=1

(
~ks

0

)
δD(t− ts)⊗~ejs (3.6)

19
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for the shift. Here ts denotes the time when the s-th one-particle density operator is
evaluated and ~ejs picks out the particle corresponding to that operator. The full density
correlation function is obtained after summing (3.5) over all js particles with J = K = 0.
For the sake of brevity we define projections of the shift vectors into the position and
momentum subspaces

~Lqj(t1) =

∫
dt

〈
L,GR(t, t1)

(
I3
0

)
⊗~ej

〉
, (3.7a)

~Lpj(t1) =

∫
dt

〈
L,GR(t, t1)

(
0

I3

)
⊗~ej

〉
, (3.7b)

including the free Green’s function GR(t, t ′). Using the form of the shift tensor and the
scalar components of the Green’s function we arrive at the shift tensors

Lq(t1) = −

n∑
s=1

~ks ⊗~ejs , Lp(t1) = −

n∑
s=1

gqp(ts, t1)~ks ⊗~ejs , (3.8)

in position and momentum space, respectively. Here we used that gqq = 1 for the trajec-
tories considered and we will omit the time-dependence of the shift tensors whenever t1
is the initial time t0. Notice that the only non-vanishing components of the shift tensors
are those of the particles js of the corresponding one-particle operators. If we ignore
interactions and set the source fields to zero, then the free n-point density correlation
function is

G
(0)
ρ...ρ(1 . . . n) =

N∑
(j1,...jn)

∫
dΓΓΓ exp (i 〈Lq, q〉+ i 〈Lp, p〉) , (3.9)

where the superscript (0) denotes the free evolution, and the tensors q and p denote
the initial positions and momenta of the particles. We call Z0[L, 0] the free generating
functional with shifts L. The integral over the initial phase-space measure has still to be
carried out and we will show that this integral factorises due to the homogeneity and
isotropy of the initial Gaussian random fields.
The next field we consider is the momentum-density field ~Π. Following the same steps
as for the density field, we apply n one-particle momentum-density operators to the
generating functional. Since each operator involves a one-particle density, the application
leads to shifts (Lq, Lp)ᵀ and pulls down the momentum trajectories from the phase
factor:

Π
α1
j1

(1) . . . Παnjn (n)Z[J, K]

=eiSI
∫

dΓΓΓ

[
n∏
s=1

(
gpp(ts, t0)p

αs
js

+

∫
dt ′gpp(ts, t ′)Kαspjs (t

′)
)]

ei〈J(t)+L(t),x̄(t)〉

(3.10)

where all indices js are different and with the definition of the classical solution x̄(t)
(2.22) including an inhomogeneity. The greek indices αs refer to the components of
the momentum. In calculations we will substitute the initial momentum ~pjs by a partial
derivative with respect to the corresponding momentum shift vector of particle js. Again,
ignoring interactions and setting the source fields to zero we get the n-point momentum-
correlation function for an ensemble of freely moving particles

G
(0),α1...αn
Π...Π (1 . . . n) =

∑
j1,...jn

[
n∏
s=1

(
gpp(ts, t0)

∂

i∂Lαspjs

)]
Z[L, 0], (3.11)
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where the integration over the initial phase-space distribution remains to be carried out.
The last field we need to discuss is the response field B. For that purpose we take the
definition of the one-particle response field operator and split it into the one-particle
density operator ρj and another operator that we write as

bj(1) =

(
−i~k1 ·

δ

iδ~Kpj(t1)

)
. (3.12)

Let us consider an n-point density correlation function and apply the new operator to
it. This is formally equivalent to a correlation function of (n− 1) density fields and one
response field. We write

bj(n)ρj(n)ρj1(1) . . . ρjn−1(n− 1)Z[J, K] = bj(n)Z[L, K], (3.13)

where on the right-hand side we applied the shift L as shown in (3.5) and set the source
field J = 0 since bj only acts on K(t). After evaluation of the functional derivative we
find for the b-factor

bj(n) = i
n−1∑
s=1

gqp(ts, tn)~ks ·~knδjjs (3.14)

with the Kronecker delta ensuring that the particles j and js are identical. For this exam-
ple we have the same argument for the n-th density operator as for the bj operator, since
we considered a correlation of a response field with (n− 1) density fields. Therefore the
term with j = jn is zero because of the Green’s function.
The situation is different if the response field acts on a momentum-density correlation.
We will only give an example in the case of a 2-point correlation of the response field
and the response field, but this is easily extended to higher orders. We can write for the
free correlation

Bj(1)Π
α
k (2)Z[J, K] =

[
bj(1)gpp(t2, t0)

∂

i∂Lαpk
+ igpp(t2, t1)kα1 δjk

]
Z[L, 0]. (3.15)

The first term in brackets stems from the application of the bj(1) operator on the phase-
factor and the last term from the application of bj(1) on the momentum trajectory. Since
this example contains only two particles, the b-factor only consists of the single term

bj(1) = igqp(t2, t1)~k2 ·~k1δjk. (3.16)

By causality, pure response field B correlation functions must vanish exactly. This is
because the product of b-factors leads to a contradiction in the sequence of times. This
can be easily seen from the Heaviside function θ(t− t ′) that we omitted in the definition
of the scalar Green’s functions gab(t, t ′). We have to keep the time-ordering in mind that
t > t ′. To clarify this point, we give an example of a 2-point response field correlation
function

Bj(1)Bk(2)Z[J, K]
∣∣ = bj(1)bk(2)Z[L, 0]

=
(
gqp(t2, t1)~k1 ·~k2

)(
gqp(t1, t2)~k2 ·~k1

)
Z[L, 0] (3.17)

The first factor implies t2 > t1 and the second t1 > t2, and thus, the result vanishes.
The same is true for n-point response field cumulants, which lead to the combination of
statements tj > tk and tk > tj.
In all following calculations we will only be interested in cross-correlations between the
response field B and either/both the density and momentum-density fields, δ and ~Π, in
order to find the corrections due to particle interactions.
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3.1.2 The Free Generating Functional

In the previous paragraph we have seen that all n-point (cross-)correlation functions of
the fields ρ, ~Π and B can be written in terms of the free generating functional Z[L, 0] with
shifts L. In this paragraph we perform the integration over initial momentum space and
show that the remaining integral can be factorised.
After the application of n one-particle operators we obtain the free generating functional

Z0[L, 0] =
∫

dqdpP[q, p]ei〈Lq,q〉+i〈Lp,p〉, (3.18)

where the initial distribution is given by (2.42) and the shifts are given by (3.7). Here all
phase-space coordinates (q, p)ᵀ denote the initial coordinates.
The integral over momentum space can be carried out if we replace the momenta in the
correlation polynomial C(p) by a partial derivative with respect to the momentum shift
Lp. The remaining integral is a Fourier-transform of a multivariate Gaussian function

Z0[L, 0] = V−NC

(
∂

i∂Lp

) ∫
dq exp

(
−
1

2
Lᵀ
pCppLp + i〈Lq, q〉

)
(3.19)

with the momentum correlation matrix Cpp. For our cosmological applications we will
assume that the correlation polynomial, which is a function of the density and the
density-momentum correlations Cδδ and Cδp, is unity. This is a safe approximation
if correlators are evaluated at sufficiently late times and the Green’s function gqp(t, t ′)
is unbounded. The initial conditions for cosmic structure formation are set at the last
scattering surface, i. e. the correlations we observe in the CMB. The scale factor of the last
scattering surface is ai ' 10−3, and the approximation seems to hold for evaluations of
correlation functions at a > 10−2. Therefore C(p) ' 1 in our calculations.
We will now follow the calculations presented in Bartelmann et al. [5] and show that
the position space integral factorises. In this calculation we make use of the fact that
in a statistically homogeneous field only coordinate differences ~qj − ~qi are relevant and
that these differences must be statistically indistinguishable. Therefore we first introduce
the coordinate differences of all particles with respect to an arbitrarily chosen particle
labeled ’1’:

~qj1 := ~qj − ~q1, (3.20)

where j = 2 . . . n denotes the labels of the one-particle operators. The scalar product of
the positions q and the spatial shift vectors Lq is

〈Lq, q〉 =
n∑
j=1

~Lqj · ~q1 +
n∑
j=2

~Lqj · ~qj1. (3.21)

With this we can evaluate the spatial integral over all (N − n) particles that are not
involved in the correlator and the integral over ~q1. The result is

Z0[L, 0] = V−n(2π)3δD

 n∑
j=1

~Lqj

 n∏
j=2

∫
qj1

exp

−
1

2
Lᵀ
pCppLp + i

n∑
j=2

~Lqj · ~qj1

 (3.22)

Here we used that the momentum correlation matrix Cpp depends only on the absolute
value of all pair-wise coordinate differences, by statistical homogeneity and isotropy of
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the velocity potential ψ. With this in mind, we want to express Z0[L, 0] depending on
the coordinate differences

~qjk := ~qj − ~qk, ∀k = 2 . . . (n− 1), j = (k+ 1) . . . n (3.23)

rather than the differences ~qj1 to particle ’1’ only. To include the remaining coordinate
differences in our expression for the generating functional, we introduce appropriate
Dirac delta functions and change the integration from ~qj1 to ~qjk

Z0[L, 0] = V−n(2π)3δD

 n∑
j=1

~Lqj

×
×
∏
j>k

∫
qj1

exp

−
1

2
Lᵀ
pCppLp + i

n∑
j=2

~Lqj · ~qj1

∏
a>b

δD(~qab − ~qa + ~qb), (3.24)

and the indices (a,b) satisfying

b = 2 . . . (n− 1), a = (b+ 1) . . . n. (3.25)

Next we can use the Fourier-transform to represent the delta distributions and write
down the final result

Z0[L, 0] = V−n(2π)3δD

 n∑
j=1

~Lqj

 eQD(~k,t)
∏

a>b>2

∫
kab

∏
j>k>1

Ijk (3.26)

with several definitions to be completed. The function QD(~k, t) is the damping of the
correlations arising from free-streaming of the particles. It is defined as

QD(~k, t) := −
1

2
~LᵀpjCpjpj

~Lpj = −
σ21
6

n∑
j=1

~L2pj (3.27)

with the initial velocity dispersion σ21. We define the integrals over coordinate differences
as

Ijk :=

∫
qjk

exp
(
−~LᵀpjCpjpk

~Lpk + i~kjk · ~qjk
)

(3.28)

with the wave-vectors

~kjk :=

~Lqj −
∑j−1
b=2

~k ′jb +
∑n
a=j+1

~k ′aj, for k = 1, j = 2 . . . n

~k ′jk, for k = 2 . . . (n− 1), j = (k+ 1) . . . n

(3.29)

and a,b as in (3.25). Since we pulled the one-particle momentum variance in front,
the integral is to be carried out over the coordinate differences. Thus, the generating
functional is a convolution of independent factors for all particle pairs over the wave-
vectors ~k ′ab.
In order to evaluate the generic factors Ijk we use the definition of the momentum
correlation matrix

Cpjpk =

∫
k

(
~k⊗~k

)
Pψ(k)ei~k·~qjk = −(∇⊗∇) ξψ(qjk) (3.30)
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Figure 2: Shown are the functions a1(q) and a2(q) of equation (3.33) for a ΛCDM power-
spectrum according to Bardeen et al. [2] with cosmological parameters Ωm0 = 0.3
and ΩΛ0 = 0.7.

with the correlation function ξψ of the velocity potential ψ. By statistical isotropy ξψ
can depend on the distance between to points only. Defining the projectors parallel and
perpendicular to the direction of the separation of the two points

π̃‖ =
~qjk ⊗ ~qjk

q2jk
, π̃⊥ = I3 − π̃‖, (3.31)

we arrive at

Cpjpk = −π̃‖ξ
′′
ψ(qjk) − π̃⊥

ξ ′ψ(qjk)

qjk
(3.32)

for the initial momentum correlation matrix. The correlation function and its derivatives
are readily constructed from the spherical Bessel functions and their recursion relations

ξψ(q) =
1

2π2

∫
dkk2Pψ(k)j0(kq), (3.33a)

ξ ′ψ(q) = −
1

2π2

∫
dk
k
Pδ(k)j1(kq) =: qa1(q), (3.33b)

ξ ′′ψ(q) −
ξ ′ψ(q)

q
=

1

2π2

∫
dkPδ(k)j2(kq) =: a2(q), (3.33c)

where we omitted the indices j,k and used the relation Pψ = k−4Pδ from the Poisson
equation (2.37). We show the functions a1(q) and a2(q) in Figure 2.
Since the generic factors involve products of this matrix with the momentum shift vec-
tors ~Lp, it is more convenient to express the matrix with projectors with respect to the
wave-vector ~kjk. These projectors are given by

π
‖
jk =

~kjk ⊗~kjk

k2jk
, π⊥jk = I3 − π

‖
jk (3.34)
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and we are looking for the functions a‖(qjk) and a⊥(qjk) such that

Cpjpk = −π
‖
jka‖(qjk) − π

⊥
jka⊥(qjk). (3.35)

Using equation (3.32) we arrive at the expressions for the parallel and perpendicular
correlation functions

a‖(qjk) = µ
2ξ ′′ψ(qjk) + (1− µ2)

ξ ′ψ(qjk)

qjk
(3.36a)

a⊥(qjk) = (1− µ2)ξ ′′ψ(qjk) + (1+ µ2)
ξ ′ψ(qjk)

qjk
(3.36b)

with µ = ~kjk · ~qjk being the angle cosine between the wave and separation vectors. With
those definitions the generic factors become

Ijk =

∫
qjk

exp
(
~Lᵀpjπ

‖
jk
~Lpka‖(qjk) +~Lᵀpjπ

⊥
jk
~Lpka⊥(qjk) + i~kjk · ~qjk

)
. (3.37)

This specifies the free generating functional Z0[L, 0] completely.

3.1.3 Contributions to Momentum-Density Correlators

Momentum-density correlators are computed from the free generating functional Z[L, 0]
by consecutive application of partial derivatives with respect to the momentum shift
vectors Lp. For a free n-point correlation function we write

Π
α1
j1

(1) . . . Παnjn (n)Z[J, K]
∣∣∣
J,K=0

=

(
n∏
s=1

gpp(ts, t0)
∂

i∂Lαspjs

)
Z0[L, 0], (3.38)

where αs = 1, 2, 3 are the vector components. The free generating functional contains
two functions that are dependent on the momentum shifts

f(Lp) := exp(QD(~k, t)) = exp

(
−
σ21
6

n∑
s=1

L2ps

)
, (3.39)

g(Lp) :=
∏
j>k

∫
qjk

exp
(
~Lpj · π

‖
jk
~Lpk(a‖ − a⊥) +~Lpj ·~Lpka⊥ + i~kjk · ~qjk)

)
. (3.40)

In the second definition we omitted the dependence of a‖ and a⊥ on the spatial separa-
tion qjk for brevity.
The next step is to calculate the derivatives of the two functions f(Lp) and g(Lp). The
first and second derivatives of the damping factor are

∂

∂Lαpa
f(Lp) = −

σ21
3
Lαpaf(Lp), (3.41)

∂

∂L
β
pb

∂

∂Lαpa
f(Lp) =

(
σ41
9
LαpaL

β
pb

−
σ21
3
δabδ

αβ

)
f(Lp), (3.42)

with the generalisation(
n∏
s=1

∂

∂Lαsps

)
f(Lp)

= f(Lp)

(−σ21
3

)n∏
s

Lαsps +

(
−
σ21
3

)n−1∑
(a,b)

δabδ
αaαb

∏
s ′
Lαsps + . . .

 , (3.43)
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with a sum over the pairs (a,b) and a product over s ′ = 1 . . . n without a and b. All
terms except for the first demand at least two particles to be the same. But in the calcu-
lation of n-point correlation functions we connect n different particles with each other.
Thus, only the first term contributes to any momentum-density correlator, since terms
with lower multiplicity drop out in the limit of N→∞. So for our purposes we have(

n∏
s=1

∂

∂Lαsps

)
f(Lp) = f(Lp)

(
−
σ21
3

)n∏
s

Lαsps (3.44)

for the n-th partial derivative of the damping factor f(Lp) with respect to the momen-
tum shift vectors.
The derivatives of the function g(Lp), that depends on the initial 2-point momentum cor-
relations, need more work to evaluate. We first work out the derivatives of the quadratic
form Q = ~LᵀpjCpjpk

~Lpk , which are

∂

∂Lαpa
Q =((π

‖
jkLpk)

αδja + (Lpjπ
‖
jk)
αδka)(a‖(qjk) − a⊥(qjk))

+ (Lαpkδja + Lαpjδka)a⊥(qjk), (3.45)

∂

∂L
β
pb

∂

∂Lαpa
Q =(δjaδkb + δkaδjb)(π

‖αβ
jk (a‖(qjk) − a⊥(qjk)) + δ

αβa⊥(qjk)),

(3.46)

and higher orders vanish. The generic factors Ijk depend exponentially on the quadratic
form Q, therefore derivatives of Ijk are sums of terms proportional to either the first or
second derivatives of Q. For the sake of brevity we define

Mαa(qjk) :=
∂

∂Lαpa
Q, and N

αβ
ba (qjk) :=

∂

∂L
β
pb

∂

∂Lαpa
Q, (3.47)

which are to be calculated according to (3.45) and (3.46). And we proceed to the calcula-
tion of the derivatives of the function g(Lp) that are given by

∂

i∂Lαpa
g(Lp) =

∏
j>k>1

∫
qjk

eQ(qjk)+i~kjk·~qjk
∑

x>y>1

Mαa(qxy), (3.48)

∂

i∂Lβpb

∂

i∂Lαpa
g(Lp) =

∏
j>k>1

∫
qjk

eQ(qjk)+i~kjk·~qjk×

×

 ∑
x>y>1

N
αβ
ba (qxy) +

 ∑
x>y>1

Mαa(qxy)

 ∑
u>v>1

M
β
b(quv)


(3.49)

and obvious extensions to higher order derivatives.

3.2 diagrammatic approach

3.2.1 Perturbation Theory

The interaction operator is defined as eiSI with the operator SI from (2.31) of Sec-
tion 2.1.4. The non-linearity of the interactions, namely that the trajectory of each particle
depends on the interaction with all other particles, makes it impossible to include the
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complete interaction described by said operator. In practice, we will expand the expo-
nential in a Taylor series

exp (iSI) = 1+ iSI −
1

2
SI · SI +O(S3I ), (3.50)

such that each order corresponds physically to the number of interactions one particle
has along the path. Effectively this is an expansion in the one-particle potential, which
becomes small at late times (cf. Bartelmann [3]).
To simplify notations we define the generating functional Z[J, K] without the interaction
operator as

Z0[J, K] =

∫
dΓΓΓ exp

(
i
∫t
t0

dt ′
〈
J(t ′), x̄(t ′)

〉)
. (3.51)

We consider a cross-correlation function of (n − r) density and r momentum-density
fields

ρjn(n) . . . ρjn−r(n− r)Παrjr (r) . . . Π
α1
j1

(1)Z0[J, K]

=

∫
dΓΓΓ

[
r∏
s=1

(
gpp(ts, t0)p

αs
js

+

∫
dt ′gpp(ts, t ′)Kαspjs (t

′)
)]

ei〈J(t)+L(t),x̄(t)〉, (3.52)

where the shift L is due to all n one-particle density operators. If we set the source fields
J, K to zero, we get the free correlation function.
We aim here at a systematic calculation of the corrections due to potential particle in-
teractions up to m-th order to (3.52). Since the function SI includes one density and
one response field, we add two shift vectors to L at each order. Thus the correction of
an n-point correlator at m-th order of particle interactions must be calculated from a
(n+ 2m)-point correlator. The number and form of terms contributing to the correction
depends on the number r of momentum-density fields. We work this out for some ex-
amples and give a diagrammatic representation for the terms below.

one momentum-density field : We first consider a cross-correlation of (n − 1)

density and one momentum-density field. The general expression (3.52) reduces to

F
(0),α
Πρ...ρ(1 . . . n) := ρjn(n) . . . ρj2(2)Π

α
j1
(1)Z0[J, K]

=

∫
dΓΓΓ
[(
gpp(t1, t0)pαj1 +

∫
dt ′gpp(t1, t ′)Kαpj1 (t

′)
)]

ei〈J(t)+L(t),x̄(t)〉. (3.53)

The correction to this function at linear order of interactions is calculated by the correla-
tion

Bl1(−1
′)ρk1(1

′)F(0),α
Πρ...ρ(1 . . . n)

∣∣∣
J,K=0

=

[
bl1(−1

′)gpp(t1, t0)
∂

i∂Lαpj1
+ igpp(t1, t ′1)k

′α
1 δj1l1

]
Z0[L, 0], (3.54)

with the definition of the bm1(−1
′)-factor from (3.14) and the shift tensor having (n+ 2)

entries. The first term corresponds to corrections resulting from deviations in the final
particle positions due to particle interactions by means of the b-factor and the second
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term corresponds to a change of the momentum due to the potential gradient force.
At quadratic order we get again two different types of terms:

Bl2(−2
′)ρk2(2

′)Bl1(−1
′)ρk1(1

′)F(0),α
ρ...ρΠ(1 . . . n)

∣∣∣
J,K=0

=

[
bl2(−2

′)bl1(−1
′)gpp(t1, t0)

∂

i∂Lαpj1
+ibl2(−2

′)gpp(t1, t ′1)k
′α
1 δj1l1 + ibl1(−1

′)gpp(t1, t ′2)k
′α
2 δj1l2

]
Z0[L, 0]. (3.55)

The first term accounts for deviations from the freely-evolved distribution due to two
different scattering events along the trajectories of the (n+m) particles and the other
two account for the acceleration due to a potential gradient of one particle and the devi-
ation from the free distribution due to a scattering of another particle.
The number of particles for a correction at m-th order is (n+m) since each Kronecker
delta in any b-factor identifies two particles. Physically, the meaning of this is simple:
assume we calculate the linear correction to the density power-spectrum. The total num-
ber of operators (and associated particles) is four, but the b-factor reduces the number
of contributing particles to three. In this example two particles (j,k) enter the interaction
by the response and density field operators. The terms in the b-factor identify the parti-
cle j associated to the response field with either of the two particles (j1, j2) contributing
to the power-spectrum. Thus, each term in the b-factor accounts for an interaction of
either j1 or j2 with particle k. We will return to this, when we introduce a diagrammatic
representation.
Going to higher orders of SI we see that the correction of an n-point correlation with
one momentum-density field contains two types of terms. The first type is proportional
to the product of all b-factors

Tm1 =

[
m∏
s=1

bls(−s
′)

]
gpp(t1, t0)

∂

i∂Lαpj1
, (3.56)

and the second type is

Tm2 = i
m∑
s=1

gpp(t1, t ′s)k
′α
s δj1ls

∏
x 6=s

blx(−x
′)

 . (3.57)

The complete correlation function that contributes to the m-th order correction is

F
(0),α
BρΠρ...ρ(−1

′1 ′1 . . . n) = (Tm1 + Tm2 )Z0[L, 0]. (3.58)

Then the number of different terms is N = 1+m, if we count the product of different
b-factors as one.

two momentum-density fields : If the correlator contains two momentum-density
fields, another type of correction term contributes. The new type of term does not con-
tribute to the linear order correction but to all higher orders.
Since the function F(0)ΠΠρ...ρ contains two momentum trajectories in the kernel, we need
to change Tm1 and Tm2 accordingly. That is

Tm1 =

[
m∏
s=1

bls(−s
′)

]
gpp(t2, t0)gpp(t1, t0)

∂

i∂Lβpj2

∂

i∂Lαpj1
, (3.59)

Tm2 = i
m∑
s=1

δj1lsgpp(t1, t ′s)k
′α
s

∂

i∂Lβpj2
+ δj2lsgpp(t2, t ′s)k

′β
s

∂

i∂Lαpj1

∏
x 6=s

blx(−x
′)

 .

(3.60)



3.2 diagrammatic approach 29

The third type of terms comes from the correlations between the deviations from the free
momentum trajectories due to accelerations along potential gradients and contributes
only at m > 2, since the two particles associated with the momentum-density field must
have scattered with another particle. At arbitrary order m we can write

Tm3 =
(
δj1lmδj2l(m−1)

gpp(t1, tm)gpp(t2, tm−1)k
′α1
m k

′α2
m−1

+δj2lmδj1l(m−1)
gpp(t1, tm−1)gpp(t2, tm)k ′α1m−1k

′α2
m

) ∏
s6=(m,m−1)

bls(−s
′)

+ different pairs of interacting particles, (3.61)

where the interacting pairs can be formed from any two particles labeled l1 . . . lm and
the additional terms have the same form as the first one. The total number of terms is
N = 1+ 2m+ 2 m!

(m−2)!2! , if we count permutations of indices.

arbitrary number of momentum-density fields : With the examples above
we can deduce the number of terms that contribute to an m-th order correction due to
particle interactions to an n-point correlator with r momentum-density fields. We have
in total

N =

min(m,r)∑
a=0

a!

(
m

a

)(
r

a

)
(3.62)

contributing terms. The sum extends to the minimum of m and r, since some terms
do not appear in the linear corrections, for example. The factorial a! results from the
product rule and indicates the first order of interaction the term contributes to. The first
binomial factor gives the number of permutations available for the response field bjs
to act on either the exponential exp(i〈L, x̄(t)〉) or on the generator field ~Kp in the free
momentum solution. The last binomial factor accounts for the number of summands
in (3.52) that contain the same number of integrals over the generator field ~Kp which
ultimately decides how many qualitatively similar terms contribute. As in the examples,
the number of terms does not count the types of terms but the number of permutations
in those types.

3.2.2 Rules

The previous paragraph showed that the calculation of corrections due to interactions
of the form SI is rather tedious and prone to errors. To calculate the corrections system-
atically we introduce diagrams as a visual tool representing the contributing terms. We
build upon the representation that was developed by Bartelmann et al. [5] for density
correlations and extend their framework.
The extension will allow to include momentum-density fields as external wave-vectors,
the replacement of one free momentum by the wave-vector of interactions and the iden-
tification of particles given by the Kronecker deltas in the previous section. In order to
represent those terms we extend rules (i), (iv) and (v) from Section 4.3 in Bartelmann
et al. [5] while the others remain unchanged. The rules are the following:

(i) The free generating functional Z0[J, K] is represented by a circle. All operators
(3.2)-(3.4) include a one-particle density operator ρjl causing a phase-shift in Z0.
Thus, each of these operators adds a wave vector to the shift tensor L as shown in
(3.6). According to (3.52), a functional derivative with respect to the source field
component ~Jpjl contributes a free one-particle momentum to Z0.
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a. Attach s = n + 2m wave vectors (represented by arrows) to the circle marking
the free generating functional Z0 pointing outward, where s is the total number of
density, momentum-density and response field operators.

b. Of these, distinguish r by dashed arrows representing the momentum-density oper-
ators ~Πjl from the (s − r) solid arrows representing density fields associated with
either ρjl or Bjl .

(ii) The operators act at different times which are represented by filled dots on the
circumference of Z0, such that each arrow begins at a filled dot. The internal
wave vectors representing interactions are pairwise attached to the same time since
the particle interaction SI is instantaneous. For equal-time cumulants the external
wave vectors start at the same filled dot as well.
The time ordering is counter-clockwise and the latest time is at the top. Interactions are
represented by two lines attached to Z0 at the same point in time. If the correlator is
simultaneous, the external wave vectors are also attached to the same point.

(iii) According to (2.31) the density and the response fields associated with each in-
teraction are connected by an interaction potential v. In the case of a potential
depending only on the distance between the particles, the two internal wave vec-
tors of the density and response field operator need to have the same magnitude
and opposite directions.
The interaction potential is represented by a circled v connected to a pair of internal wave
vectors, which are marked with a prime. If the potential is translation-invariant, the con-
nected internal wave vectors point in opposite directions and have the same magnitude.

(iv) Given equations (3.14) and (3.15), each response field identifies two particles at
different times, i.e. two different wave vectors at different times are assigned to the
same particle. As in the diagrammatic representation for pure density cumulants
the response field begins at the negative internal wave vector in the interaction
operator SI.

a. Each response field is drawn as a circle segment starting at a negative internal wave
vector and connecting two different wave vectors. The circle segments always end at
a later time.

b. Distinguish dashed circle segments representing a deviation of the particle distribu-
tion/position from the freely-evolved one given by the response field factor bjl in
equation (3.14) from solid circle segments corresponding to a change of the particle
momentum by gpp(ts, tl)k

αs
l δjljs . These lines can only connect a response field

(solid arrow) with a momentum-density (dashed arrow).

c. At a dashed wave vector, either no or one solid circle segment must end, but arbi-
trarily many dashed circle segments may end at the same wave vector, internal or
external.

(v) In density cumulants equivalent diagrams may appear multiple times. This is a
consequence of the density being a homogeneous random field, where the external
wave vectors are equivalent. For cumulants including at least one momentum-
density each diagram appears exactly once and there are no equivalent diagrams.
Each diagram has an assigned multiplicity which is the number of equivalent diagrams.

The application of these rules allows a quick evaluation of the number and kinds of
terms that contribute to the desired correlation function. The diagrams explicitly rep-
resent all terms that come from products of b-factors in the terms we discussed in the
previous paragraph.
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Figure 3: At linear order three terms contribute to the correction of the 2-point cumulant of a
density and momentum-density field. The first two come from the b-factor represent-
ing a deviation from the final freely-evolved position due to interactions and the last
diagram accounts for the deviation from the free momentum trajectory.

3.2.3 Examples

To illustrate how the diagrams are constructed we consider a simultaneous 2-point cross-
correlation function of a density ρ and a momentum-density field ~Π.
For the linear correction we apply one additional response field B(−1 ′) and one addi-
tional density field ρ(1 ′) to the generating functional, that are linked by a one-particle
potential v. The according diagrams are shown in Figure 3. By rule (i) we attached one
line for each field to the circle representing the free generating functional. The solid
density line and the dashed momentum-density line start at the same point, since we
consider a simultaneous correlator, and the internal wave-vectors are connected by the
interaction potential. From this configuration we need to construct all particle identifica-
tions compatible with rule (iv). There are three possibilities to draw the response field
and therefore three terms/diagrams. The first two include a dashed circle segment and
come from the b-factor. This accounts for misplacements of a particle from its freely
attained position at the time of evaluation. The third diagram accounts for the deviation
of the particle’s momentum due to the potential gradient. If we enumerate the particles
clockwise starting in the upper left from 1 to 4, we can write down the cumulants that
the diagrams represent:

D1a =

∫
dt ′
∫
k ′1
v(1 ′)gqp(t1, t ′)~k1 ·~k ′1δ1,4gpp(t1, t0)

∂

i∂~Lp2
Z0[L, 0], (3.63a)

D1b =

∫
dt ′
∫
k ′1
v(1 ′)gqp(t1, t ′)~k2 ·~k ′1δ2,4gpp(t1, t0)

∂

i∂~Lp2
Z0[L, 0], (3.63b)

D1c =

∫
dt ′
∫
k ′1
v(1 ′)gpp(t1, t ′)δ2,4Z0[L, 0], (3.63c)

where the identification of particles changes either ~L1 or ~L2.
At quadratic order we have to consider more terms/diagrams that are readily con-
structed from our rules (i)-(v). The product of two b-factors is shown in Figure 4. Again
we have drawn a circle representing the free generating functional Z0[J, K] and attached
four internal and two external lines to it. Next we construct according to rule (iv) the
diagrams with dashed circle segments. Respecting time-ordering we can draw eight dif-
ferent diagrams. All of them represent corrections to the 2-point correlator 〈ρ~Π〉 due to
displacements of particles from their freely evolved end-position due to two scatterings
along their paths. The diagrams correspond to the terms Tm1 with m = 2 in equation
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Figure 4: Diagrams representing the correction term Tm1 for an n=2-point cumulant of r=1
momentum-density field and (n− r)=1 density field at m=2 order in the particle inter-
actions. The multiplicity of each diagram is one, since there are no equivalent diagrams.

(3.56). Apart from these eight diagrams we can construct six more diagrams as shown
in Figure 5 with solid circle segments. These diagrams represent terms of type Tm2 with
m = 2 from equation (3.57).
As we did for the linear order, we can read off the contributing terms from the diagrams
directly. We do so for the first diagram in Figure 4

D ′2 =

∫
dt ′1dt ′2

∫
k ′1

∫
k ′2
v(1 ′)v(2 ′)gqp(t1, t ′1)~k1 ·~k

′
1gqp(t1, t ′2)~k1 ·~k

′
2×

× δ1,4δ1,6gpp(t1, t0)
∂

i∂~Lp2
Z[L, 0], (3.64)

and for the first diagram in Figure 5

D ′′2 =

∫
dt ′1

∫
dt ′2

∫
k ′1

∫
k ′2
v(1 ′)v(2 ′)gqp(t1, t ′1)~k1 ·~k

′
1×

× gpp(t1, t ′2)~k
′
2δ1,6δ2,4Z[L, 0], (3.65)

with a clockwise enumeration starting at the top left line. In summary, we can translate
diagrams into functions of the form

Dm =

[
m∏
s=1

∫
dt ′s

∫
k ′s
v(s ′)

]
S(~k ′1, . . .~k ′m)

∏
x∈J

∂

i∂Lαxpx

Z0[L, 0]. (3.66)

Here the index set J ⊆ (j1, . . . , jr) is a subset of the one-particle momentum-density
operator labels and depends on the diagram Dm represents. In our example J is empty
for diagrams containing one response field represented by a solid circle segment.
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Figure 5: Diagrams representing the correction term Tm2 of an n=2-point cumulant for r=1
momentum-density and (n − r)=1 density field at m=2 order in the particle interac-
tions.
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4
2 - P O I N T M O M E N T U M - D E N S I T Y C O R R E L AT I O N S

In this Chapter we use the tools developed for KFT in the previous Chapters to calcu-
late the 2-point momentum-density correlation tensor. We calculate the free correlator
〈~Π⊗ ~Π〉(0) and the corrections of linear order δ(1)〈~Π⊗ ~Π〉. Our results are given in com-
ponents and we calculate scalar quantities from them, namely the trace of the correlator
and power-spectra for the divergence and the curl of the momentum-density field. We
approximate

〈~Π⊗ ~Π〉(12) = 〈~Π⊗ ~Π〉(0)(12) + δ(1)〈~Π⊗ ~Π〉(12) (4.1)

as the 2-point momentum-density correlation tensor. Statistical homogeneity ensures
that ~k2 = −~k1. The scalar quantities that we will calculate in this Chapter are

Tr〈~Π⊗ ~Π〉 = 〈ΠαΠα〉, (4.2a)

〈
(
∇ · ~Π

)(
∇ · ~Π

)
〉 = ~k1 · 〈~Π⊗ ~Π〉~k1, (4.2b)

〈
(
∇× ~Π

)
·
(
∇× ~Π

)
〉 = ‖~k1‖2Tr〈~Π⊗ ~Π〉− 〈

(
∇ · ~Π

)(
∇ · ~Π

)
〉 (4.2c)

with the arguments (12) = (1,−1). The last two quantities are also the power-spectra for
the projections of ~Π on the wave-vector ~k1 multiplied by its absolute value squared.
In the calculations presented here we first include the initial momentum correlations
Cpp only quadratically in the same way as Bartelmann et al. [6] did for the density
fluctuation power-spectrum. Then we use our results from Section 3.1.2 to include the
full hierarchy of initial momentum correlations. Since calculations including interactions
are numerically challenging, we calculate an average force using Born’s approximation.
In Section 4.3 we present the calculations of Bartelmann et al. [4] and extend their dis-
cussion to the momentum-density correlation tensor. We compare our results with the
numerical results of the Millennium-XXL simulation.
As an application we discuss the kinetic Sunyaev-Zel’dovich effect. The CMB is the ear-
liest electro-magnetic signal in the Universe that we can measure. The photons have
today a mean temperature of T = 2.7255K with primordial fluctuations of the order
δT/T ∼ 10−5 (Planck Collaboration et al. [32]). The signal was released when the Uni-
verse became electrically neutral at a redshift of z = 1100, so that the Universe became
transparent to photons. In the course of time structures and astrophysical objects (stars,
galaxies, etc.) formed. Radiation from those objects reionised the Universe and CMB pho-
tons would scatter from electrons. The kinetic Sunyaev-Zel’dovich effect accounts for
secondary temperature fluctuations in the CMB from photon scatterings off electrons
moving with the bulk of structures. The effect is depends sensitively on the power-
spectrum of the momentum-density.

4.1 approximated initial correlations

In our first calculations we adopt the approximations of Bartelmann et al. [6], i. e. that the
initial density and density-momentum correlations are weak and the initial momentum
correlations contribute up to quadratic order. Thus, we set the correlation polynomial
C(p) = 1 in the initial phase-space distribution and apply two momentum-density op-

37



38 2-point momentum-density correlations

erators to the generating functional. We consider the free contribution first and set all
source fields to zero. From (3.52) we can read off

Παa(1)Π
β
b(2)Z0[J, K]

∣∣∣
J,K=0

=

∫
dΓΓΓgpp(t1, t0)pαagpp(t2, t0)p

β
bei〈Lq,q〉+i〈Lq,q〉, (4.3)

where (a,b) are two different particle labels that without loss of generality can be set to
(1, 2). Greek indices are the vector components and the shift tensors are

~Lq1 = −~k1, ~Lq2 = −~k2, (4.4a)
~Lp1 = −gqp(t1, t0)~k1, ~Lp2 = −gqp(t2, t0)~k2. (4.4b)

To keep notations short we abbreviate gt,t
′

ij := gij(t, t ′) with i, j being either q or p. The
substitution of the momenta by partial derivatives with respect to the momentum shift
vectors allows to carry out the momentum integration as in (3.19). Setting C(p) = 1 and
applying the two partial derivatives with respect to Lαp1 and Lβp2 we arrive at

F
(0)αβ
Π1Π2

(12) = i2
∂2

∂L
β
p2∂L

α
p1

Z0[L, 0] = i2V−Ng
t1,t0
pp g

t2,t0
pp

∫
dqeQD+Q+i〈Lq,q〉×

×
[
−Cαβp1p2 +

(
Cp1pj

~Lpj

)α (
Cp2pk

~Lpk

)β]
,

(4.5)

where a sum over the indices j,k is implied, the damping QD is taken from (3.27), and
the quadratic form Q := −~LpxCpxpy~Lpy with x 6= y. As we mentioned in the beginning
of this Section, we keep initial momentum correlations only up to quadratic order, such
that we approximate

eQ ≈ 1+Q+
Q2

2
(4.6)

for correlations between particles. The damping term suppresses structures by the free-
streaming of the particles. We will include this term always one order lower than the
2-point correlations, such that this suppression is not too strong. This is legitimate since
we expect gravity to counteract the free-streaming of particles, and therefore less sup-
pression than the full factor eQD would suggest.
We write down all terms up to quadratic order in Cpp with the appropriate particle
labels

F
(0)αβ
Π1Π2

(12) = −V−2g
t1,t0
pp g

t2,t0
pp eQD

∫
q1

∫
q2

ei〈Lq,q〉×

×

−Cαβp1p2 (1−~Lᵀp1Cp1p2
~Lp2

)
+

(
σ21
3

)2
Lαp1L

β
p2

+
σ21
3

(
Lαp1

(
Cp2p1

~Lp1

)β
+ Lβp2

(
Cp1p2

~Lp2

)α)
+
(
Cp1p2

~Lp2

)α (
Cp2p1

~Lp1

)β]
. (4.7)

We use the definition of the momentum correlations Cp1p2 from equation (2.46) to eval-
uate the spatial integrals and specify to a synchronous correlator (t1 = t2). The result
for the free 2-point momentum-density correlation tensor is given by

〈ΠαΠβ〉(0)(12) = ρ̄2δD(~k1 +~k2)(g
t1,t0
pp )2eQD

(
A(1) +A(2) +A

(2)
int

)
, (4.8)
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Figure 6: Diagrams contributing at linear order to corrections of the 2-point momentum-density
correlator by deviations from the free final particle positions.

where the superscript on the terms A denotes (1) linear and (2) quadratic dependence
on Cpp. The overall factor ρ̄2 comes from the fact that we need to sum over all pairs of
particles giving a factor of N(N− 1) and divide the whole expression by V−2. The Dirac
delta ensures statistical homogeneity. The terms are

A(1) = (2π)3Pψ(k1)k
α
1 k
β
1 , (4.9a)

A(2) = −
2σ21
3

(gt1,t0
qp )2k21A

(1), (4.9b)

A
(2)
int = (gt1,t0

qp )2
∫
k
Pψ(k)Pψ(∆)

(
~∆ ·~k1

)[(
~∆ ·~k1

)
kαkβ +

(
~k ·~k1

)
∆αkβ

]
, (4.9c)

where we defined ~∆ = ~k1 − ~k. By the argument above, we approximate the damping
factor eQD ∼ 1 for A(1) and eQD ∼ (1−QD)−1 for A(2) and A(2)

int in order to keep the
correlation positive-definite, since QD is a negative-semidefinite function.
To calculate the corrections in linear order of gravitational interactions we construct the
appropriate diagrams as described in Chapter 3. In the following calculation we omit
the convolution with the interaction potential and give expressions for the terms rep-
resented by the diagrams that contribute to the correlator of one response, one density
and two momentum-density fields. We start by the diagrams representing the b-factor.
The diagrams are shown in Figure 6. Both of them correspond to the functional form

B1(1
′12) = −igt1,t ′1

qp
~k ·~k ′1V

−3(gt1,t0
pp )2eQD

∫
q1

∫
q2

∫
q3

ei〈Lq,q〉×

×
[
−Cαβp1p2

(
~LᵀpxCpxpy

~Lpy

)
+
(
Cp1pj

~Lpj

)α (
Cp2pk

~Lpk

)β]
, (4.10)

where a sum over repeated labels (x,y, j,k) is implied and the vector ~k depends on
the diagram. The indices can take the values (1, 2, 3) labeling the lines in the diagrams
clockwise starting with the top left line.
For the left diagram ~k = ~k1 and the shift vectors are

~Lq1 = −(~k1 −~k ′1), ~Lq2 = −~k2, ~Lq3 = −~k ′1, (4.11a)

~Lp1 = −(gt1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1), ~Lq2 = −gt1,t0
qp

~k2, ~Lq3 = −g
t ′1,t0
qp

~k ′1, (4.11b)

with t1 = t2, since we calculate a synchronous correlator. For the right diagram ~k = ~k2
and the shift vectors are

~Lq1 = −~k1, ~Lq2 = −(~k2 −~k ′1), ~Lq3 = −~k ′1, (4.12a)

~Lp1 = −gt1,t0
qp

~k1, ~Lq2 = −(gt1,t0
qp

~k2 − g
t ′1,t0
qp

~k ′1), ~Lq3 = −g
t ′1,t0
qp

~k ′1. (4.12b)
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Figure 7: Diagrams contributing at linear order to corrections of the 2-point momentum-density
correlator by deviations from the free final particle momenta.

Next we notice that in B1 at least one label (x,y, j,k) has to be 3 to contribute, since that
term would be zero otherwise. After plugging in all definitions for Cpp and the shift
vectors we get

Btotal(1
′12) =iρ̄3(gt1,t0

pp )2g
t1,t ′1
qp g

t ′1,t0
qp

[
(2π)6

σ21
3

(
~k1 ·~k ′1

)(
~k2 ·~k ′1

)
(F1 + F2)

+(2π)3δD(~k1 +~k2)
(
~k1 ·~k ′1

)
(F3 + F4 + F5 + F6 + F7)

]
, (4.13)

with the definitions

F1 := ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
)α
k
β
2 Pψ(k2)δD(~k1 −~k ′1)δD(~k2 +~k ′1), (4.14a)

F2 := kα1 ·
(
g
t1,t0
qp

~k2 − g
t ′1,t0
qp

~k ′1
)β
Pψ(k1)δD(~k1 +~k ′1)δD(~k2 −~k ′1), (4.14b)

F3 := −2∆α∆βgt1,t0
qp ‖~k ′1‖

2
(
~k1 ·~k ′1

)
Pψ(∆)Pψ(k

′
1), (4.14c)

F4 := 2kα1 k
β
1 ‖~k

′
1‖
2
(
~k ′1 ·

(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k1)Pψ(k

′
1), (4.14d)

F5 := −
(
∆αk

′β
1 + k ′α1 ∆

β
)
g
t1,t0
qp ‖~k ′1‖

2
(
~k1 · ~∆

)
Pψ(∆)Pψ(k

′
1), (4.14e)

F6 :=
(
k ′α1 k

β
1 + kα1 k

′β
1

)
‖~k ′1‖

2
(
~k1 ·

(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k1)Pψ(k

′
1), (4.14f)

F7 :=
(
∆αk

β
1 + kα1∆

β
)
g
t ′1,t0
qp

(
~k ′1 · ~∆

)(
~k1 ·~k ′1

)
Pψ(k1)Pψ(∆), (4.14g)

and the same definition for ∆ := ~k1 −~k ′1.
Next we construct the diagrams corresponding to deviations from the free final momen-
tum, i. e. diagrams with solid circle segments. The diagrams are shown in Figure 7. The
two diagrams represent the terms

C1(1
′12) = −igt1,t0

pp g
t1,t ′1
pp k ′α1 eQD

∫
q1

∫
q2

∫
q3

ei〈Lq,q〉
(
Cp2pk

~Lpk

)β (
~LᵀpxCpxpy

~Lpy

)
,

(4.15a)

C2(1
′12) = −igt1,t0

pp g
t1,t ′1
pp k

′β
1 eQD

∫
q1

∫
q2

∫
q3

ei〈Lq,q〉
(
Cp1pk

~Lpk

)α (
~LᵀpxCpxpy

~Lpy

)
,

(4.15b)
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again, a sum over repeated labels (k, x,y) is implied. The shift vectors are assigned in
the same way as for the previous diagrams by the identification of particles through the
response field. With the definitions of Cpp and the shift tensor we arrive at

C1(1
′12) =iρ̄3gt1,t0

pp g
t1,t ′1
pp k ′α1 eQD

[
(2π)g

t ′1,t0
qp g

t1,t0
qp δD(~k1 −~k ′1)δD(~k2 +~k ′1)(G1 +G2)

+(2π)3g
t ′1,t0
qp δD(~k1 +~k2)(G3 +G4 +G5)

]
(4.16a)

C2(1
′12) =iρ̄3gt1,t0

pp g
t1,t ′1
pp k

′β
1 eQD

[
(2π)g

t ′1,t0
qp g

t1,t0
qp δD(~k2 −~k ′1)δD(~k1 +~k ′1)(G

′
1 +G

′
2)

+(2π)3g
t ′1,t0
qp δD(~k1 +~k2)(G

′
3 +G

′
4 +G

′
5)
]

(4.16b)

with the functions

G1 :=
σ21
3
k
β
2 g
t1,t0
qp k ′21

(
~k2 ·~k ′1

)
Pψ(k

′
1) (4.17a)

G2 := g
t ′1,t0
qp

∫
k
kβ
(
~k ·~k ′1

)(
~k ′1 ·

(
~k ′1 −~k

))(
~k2

(
~k ′1 −~k

))
Pψ(k)Pψ(~k

′
1 −

~k), (4.17b)

G3 := g
t ′1,t0
qp k

β
1

(
~k1 ·~k ′1

)(
~∆ ·~k ′1

)(
~∆ ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k1)Pψ(∆), (4.17c)

G4 := kβ1 k
′2
1

(
~k ′1 ·

(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))(

~k1 ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k1)Pψ(k

′
1),

(4.17d)

G5 := −gt1,t0
qp

(
∆β
(
~k1 ·~k ′1

)
+ k ′β1

(
~k1 ·∆

))(
∆ ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k

′
1)Pψ(∆),

(4.17e)

and

G ′1 :=
σ21
3
kα1 g

t1,t0
qp k ′21

(
~k1 ·~k ′1

)
Pψ(k

′
1) (4.18a)

G ′2 := g
t ′1,t0
qp

∫
k
kα
(
~k ·~k ′1

)(
~k ′1 ·

(
~k ′1 −~k

))(
~k1

(
~k ′1 −~k

))
Pψ(k)Pψ(~k

′
1 −

~k), (4.18b)

G ′3 := g
t ′1,t0
qp kα1

(
~k1 ·~k ′1

)(
~∆ ·~k ′1

)(
~∆ ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k1)Pψ(∆), (4.18c)

G ′4 := kα1 k
′2
1

(
~k ′1 ·

(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))(

~k1 ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k1)Pψ(k

′
1),

(4.18d)

G ′5 := −gt1,t0
qp

(
∆α
(
~k1 ·~k ′1

)
+ k ′α1

(
~k1 ·∆

))(
∆ ·
(
g
t1,t0
qp

~k1 − g
t ′1,t0
qp

~k ′1
))
Pψ(k

′
1)Pψ(∆).

(4.18e)

In order to get the full correction at first order of particle interactions we need to sum
the diagrams and perform the convolution with the interaction potential. Then the full
correction is given by

δ(1)〈ΠαΠβ〉(12) = i
∫

dt ′1

∫
k ′1
v(1 ′)

(
Btotal(1

′12) +C1(1 ′12) +C2(1 ′12)
)

. (4.19)

The terms of the diagrams are all quadratic in the initial correlation function Cpp, there-
fore we include the damping as eQD ' (1−QD)−1.
The momentum-density correlation tensor including linear corrections due to gravity is
given by

〈ΠαΠβ〉(12) = 〈ΠαΠβ〉(0)(12) + δ(1)〈ΠαΠβ〉(12) (4.20)
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Figure 8: The left column shows the power-spectrum of the trace of the 2-point momentum-
density correlator, while the right column shows the power-spectrum of the divergence
of the momentum-density. The top panels show the complete expression from Sec-
tion C.1, the center panels the contribution from diagrams with dashed circle segments,
and the bottom panels the contribution from diagrams with solid circle segments. We
also separated the terms that couple modes from those terms that do not.
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Figure 9: The power-spectrum of ∇× ~Π. It is purely given by convolutions of density fluctuation
power-spectra.

which we evaluate at t1 = t2 and wave-vectors ~k1 = −~k2. We omit the functional depen-
dence from now on. From the tensor we calculate the scalar quantities (4.2a)-(4.2c) for
which we give explicit expressions in Section C.1. Here we show the the power-spectra
for the trace, divergence and curl in the figures and check how large the contribution
from the two types of diagrams are.
The Figure 8 shows the terms contributing to the scalar 2-point correlators of the momen-
tum-density today. The left column shows the trace of the correlation tensor, while the
right column shows the power-spectrum of the divergence of ~Π. The top panels show
the contributions from the free correlator and from the two types of diagrams shown
in Figure 6 and 7. We notice that for a momentum-density correlation the deviation
from the inertial momentum trajectories contributes more than the deviation from the
particles’ final position, i. e.Ctotal > Btotal. The lower panels separate the mode-coupling
terms in the corrections of the interaction from terms that are proportional to the ve-
locity variance σ21. The latter have a sub-dominant effect here. The dependence of the
power-spectra on the wavenumber is proportional to k−1 for the trace and k for the
divergence field for large scales. Based on the continuity equation (2.37) this behaviour
is reasonable, since the density power-spectrum of the density fluctuations is propor-
tional to k for large scales and ~Π = ρb(1+ δ)~p, where ρb is the background. Therefore
we expect the divergence field power-spectrum to behave like the density fluctuation
power-spectrum on small scales, but on non-linear scales cross-correlations between δ
and ~p become important and the divergence of ~Π behaves differently.
In Figure 9 we show the power-spectrum of ∇× ~Π today, which is completely given by
convolutions of two density fluctuation power-spectra weighted by a kernel depending
on the wave-vectors (cf. Section C.1). From a hydrodynamical point of view, the velocity
is parallel to ~k at any order, as a consequence of the Helmholtz theorem, and therefore
the first contributing term to this power-spectrum is the cross-correlation of δ and ~p. We
also notice from the plot that the most power arises from interactions. Again, the devia-
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tion from the final particle positions is on small scales less relevant than the acceleration
due to potential gradients.

4.2 full initial momentum correlations

We have shown in Chapter 3 that after the application of an arbitrary number of opera-
tors (3.2)-(3.4) it is possible to factorise the free generating functional Z0[L, 0], which al-
lows the inclusion of the full hierarchy of initial momentum correlations. A momentum-
density correlator is calculated by partial derivatives of Z0[L, 0] with respect to the mo-
mentum shift vectors according to (3.38). Here we repeat the calculation of the previous
Section 4.1 using the result (3.26) for the factorised free generating functional.
The free 2-point correlation tensor is by the product rule a sum of four terms

F
(0)αβ
Π1Π2

(12) =i2V−2(2π)3δD(Lq)eQD(g
t1,t0
pp )2

(σ21
3

)2
Lαp1L

β
p2
I21

+
σ21
3

∫
q

eQ(q)+i~k21·~q
(
Lαp1M

β
2 (q) + L

β
p2
Mα1 (q)

)
+

∫
q

eQ(q)+i~k21·~q
(
N
αβ
21 (q) +Mα1 (q)M

β
2 (q)

)]
, (4.21)

where we used that only two particles are contributing and the functionsMαa(q),N
αβ
ba (q)

defined in equation (3.47). For a synchronous 2-point function we can immediately write
down the shift tensor

Lq = −~k1 ⊗ (~e1 −~e2) , Lp = −gt1,t0
qp

~k1 ⊗ (~e1 −~e2) , (4.22)

by the Dirac delta function and the auxiliary wave-vector ~k21 = ~Lq2 =
~k1. Then the free

2-point correlation tensor reduces to

F
(0)αβ
Π1Π2

(12) =V−2(2π)3δD(Lq)eQD(g
t1,t0
pp )2

(σ21
3

)2
(gt1,t0
qp )2kα1 k

β
1 I21

+
2σ21
3

(gt1,t0
qp )2kα1 k

β
1

∫
q

eQ(q)+i~k21·~qa‖(q)

+

∫
q

eQ(q)+i~k21·~q
(
π
‖αβ
21 (a‖(q) − a⊥(q)) + δ

αβa⊥(q)
)

−(gt1,t0
qp )2kα1 k

β
1

∫
q

eQ(q)+i~k21·~qa2‖(q)
]

. (4.23)

The first term comes from the momentum auto-correlations multiplied by the power-
spectrum of the density which emphasises the linear relation (2.37). The other terms
depend on modified integrals over initial correlations. While for the density the generic
integrals have an exponential dependence on the initial momentum correlations, the
integrals for the momentum-density power-spectrum include projections parallel and
perpendicular to ~k1. Thus, the generic factors must be modified by appropriate factors
of the initial parallel and perpendicular correlations. From the above, we can already see
that the free power-spectrum of the divergence can only depend on integrals over a‖,
while for the curl only integrals over a⊥ will remain.
The first order corrections are calculated from the same diagrams as in Figure 6 and
Figure 7 as before. For all diagrams we need to evaluate a correlator of two density
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and two momentum-density fields with contributions of three particles, because the
response field identifies two particles. Thus the difference to the free correlator here is
that we include three shift vectors and a prefactor depending on the diagram, which
we described in rule (iv)b. The delta distribution relates the shift vectors by ~Lq1 =

−(~Lq2 +
~Lq3) and ensures that ~k1 = −~k2 as is true for the free correlator due to statistical

homogeneity. The wave-vectors associated to the coordinate pairs ~kjk are in this case

~k21 = ~Lq2 +
~k ′32, ~k31 = ~Lq2 −

~k ′32, ~k32 = ~k ′32. (4.24)

Therefore the diagrams correspond to terms of the form

D1 = −

∫
dt ′1

∫
k ′1
v(k ′1)S(~k

′
1)F

(0),αβ
ρρΠ1Π2

(−1 ′1 ′12) (4.25)

with

F
(0),αβ
ρρΠ1Π2

(−1 ′1 ′12) = i2V−3(2π)3δD(Lq)eQD(g
t1,t0
pp )2

∫
k ′32

(σ21
3

)2
Lαp1L

β
p2

3∏
j>k>1

Ijk

+
σ21
3

3∏
j>k>1

∫
qjk

eQ(qjk)+i~kjk·~q

Lαp1
 3∑
x>y>1

M
β
2 (qxy)

+ Lβp2

 3∑
x>y>1

Mα1 (qxy)


+

3∏
j>k>1

∫
qjk

eQ(qjk)+i~kjk·~q

 3∑
x>y>1

N
αβ
21 (qxy) +

 3∑
x>y>1

Mα1 (qxy)

 3∑
u>v>1

M
β
2 (quv)


(4.26)

In Section C.2 we show the explicit expressions for the free power-spectra of the trace,
the divergence and the curl. We show the results for the three power-spectra today in
Figure 10. The power-spectra depend on integrals over the initial correlation functions
a‖ and a⊥ of equation (3.36). For both the trace and the divergence power-spectrum we
find that the leading contribution on large scales comes from the integral over a‖, which
is the projection of initial momentum correlations parallel to the wave-vector. Based on
our previous discussion at the end of the last chapter this is to be expected. On small
scales cross-correlations between the density fluctuation and momentum become rele-
vant and for the free power-spectrum only a residual remains. The curl power-spectrum
depends only on the integral over a⊥, meaning that initial correlations perpendicular to
the wave-vector are enhanced over time. In the limit of small arguments of the exponen-
tial in (C.15), i. e. very large scales or short times, the integral vanishes exactly as pointed
out by Bartelmann et al. [5]. That means that very early in time the momentum-density
does not have any component perpendicular to ~k which is self-consistent with our as-
sumption of an initial gradient field. This also proves that the curl power-spectrum is an
effect of cross-correlations between the density fluctuations and the momenta.
The comparison between the free power-spectra involving the full hierarchy of initial
momentum correlations with the free power-spectra of the previous Section which con-
sider initial momentum correlations only up to quadratic order we see that the form on
small scales k > 1h/Mpc is strongly affected. If the hierarchy of initial correlations is
truncated, interactions are needed to add power to those small scales. This shows that
much of the power in the non-linear scales is set by the initial correlations and not by
particle interactions.
We did not show first order corrections due to interactions, since the convolution over
the auxiliary wave-vector ~k ′32 makes the corrections (4.26) difficult to handle numerically.
In the next Section we work out a way to estimate the effect of the gravitational force by
use of the Born approximation and averaging over the freely evolved power-spectrum.
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Figure 10: The free power-spectra for the trace, the divergence and the curl are shown. We show
the total power-spectrum and the individual terms Ti of (C.13)-(C.15), where the terms
are enumerated in the order that they are written in the equations. Negative contribu-
tions are represented by dashed lines.
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4.3 born’s approximation

The perturbative ansatz for particle interactions is problematic in practice. Although we
have constructed a systematic way to calculate the corrections to free correlators at ar-
bitrary order, the convolutions of the generic factors (and derivatives thereof) make the
evaluation numerically challenging.
We suggested in Bartelmann et al. [4] to start from equation (2.8) and include the poten-
tial gradient in the classical solution xcl(t) as an inhomogeneity. The goal of this Section
is to review how the Born approximation can be employed to approximate the potential
gradient and include the associated corrections in a 2-point correlator. In the end we will
apply this to the momentum-density correlation tensor.
First, we apply two one-particle density operators with wave-vectors ~k1,2 to the generat-
ing functional and set the source field J to zero

Z[L] =
∫

dΓΓΓ exp (i〈Lq, q〉+ i〈Lp, p〉− F(t)) , (4.27)

with the shifts

Lq = −~k1 ⊗ (~e1 −~e2) , Lp = −gt,t0qp ~k1 ⊗ (~e1 −~e2) , (4.28)

since statistical homogeneity enforces ~k1 = −~k2. We define the time-integrated interac-
tion term

F(t) := i
∫t
t0

dt ′〈Lp(t ′),∇V∇V∇V(t ′)〉. (4.29)

To evaluate this integral we need to approximate the potential gradient. We express the
force between two arbitrary particles 1 and 2 by its Fourier-transform

∇1V2(t ′) = i
∫
k

~kv(k, t ′)ei~k·(~q1(t ′)−~q2(t
′)), (4.30)

with v(k, t) being the one-particle potential in Fourier space. The positions of the parti-
cles are given in the Born approximation by

~q(t ′) = ~q+ gt
′,t0
qp ~p, (4.31)

where the phase-space coordinates without an argument denote initial values, i. e. the
particles propagate according to their inertial motion.
Next, we calculate an effective force between the particles by averaging the phase-factor.
The average is taken over the phase-space distribution of the particles evaluated at the
shifts (4.28) corresponding to the density modes involved, and propagated according to
their inertial motion. The average is

〈ei~k·(~q1(t ′)−~q2(t
′))〉 =

∫
dΓΓΓei〈Lq,q〉+i〈Lp,p〉+i~k·(~q1(t ′)−~q2(t

′)), (4.32)

which is the free generating functional Z0[L ′, 0] (3.26) at the shifts

L ′q = −~κ⊗ (~e1 −~e2) , L ′p = −gt,t0qp ~κ⊗ (~e1 −~e2) (4.33)

with ~κ = ~k1 −~k. It was shown in Bartelmann et al. [5] that this is

Z0[L ′, 0] = eQD(κ,t ′)
[
(2π)3δD(~κ) +P(κ, t ′)

]
, (4.34)
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with the density fluctuation power-spectrum

P(κ, t ′) =
∫
q

[
e−(g

t ′ ,t0
qp )2κ2a‖(q) − 1

]
ei~κ·~q. (4.35)

The angular brackets in (4.34) are the generic factor I21 of equation (3.37). The last
approximation that we will use is that for sufficiently small arguments of the exponential
the function P(κ, t ′) ' (gt

′,t0
qp )2Pδ(κ) returns the linearly evolved density fluctuation

power-spectrum. Then the force between two arbitrary particles is given by

〈~F1〉(t ′) = i
∫
k

~kv(k, t ′)
[
(2π)3δD(~κ) + P̄δ(κ, t ′)

]
, (4.36)

where P̄δ(κ, t ′) is the damped linearly evolved δ power-spectrum, with the damping
factor eQD(κ,t ′). For any 2-point function we can use that after the averaging process
only the forces on particle 1 and 2 remain, which by Newton’s third axiom are opposing
∇1V2 = −∇2V1. Thus, the time-integrated interaction term is

F(t ′) = 2
∫t
t0

dt ′gqp(t, t ′)
[
k21v(k1, t ′) +

∫
k

(
~k1 ·~k

)
v(k, t ′)P̄δ(κ, t ′)

]
(4.37)

The first term is purely due to Poisson sampling from a statistically homogeneous field.
Therefore this term cannot contribute to any directed quantity, such as the force between
particles, and we ignore it in calculations of power-spectra. The second term quantifies
the excess from a Poisson sampling due to correlations between particles. This will even-
tually lead to the enhancement of structures by interaction.
Lastly, we need to specify the one-particle potential v(k, t ′). The force acting on a particle
depends on the choice of the retarded Green’s function, which in cosmological applica-
tions we choose to be either the Zel’dovich or improved Zel’dovich approximation of
Section 2.2. For both trajectories we can write this force as

~a = f(t)~p−
∇v
g(t)

, (4.38)

with g(t) from (2.61). The function f(t) is given by

f(t) =

− ġg Zel ′dovich

− ġg
(
1− g−1

)
improved Zel ′dovich

(4.39)

depending on the chosen Green’s function. As Bartelmann et al. [4] point out, the spatial
correlations grow like (gt,t0qp )2 while cross-correlations of the velocity and position grow
like gt,t0pp g

t,t0
qp . Thus, the growth of the velocity dependent force is lowered by a factor of

g
t,t0
pp /g

t,t0
qp compared to the potential-gradient. But the dependence on the wave-vector

~k is the same for both terms i ~k
k2
Pδ(k) although for different reasons. For the velocity

dependent force it is due to the velocity potential gradient, while it is the gradient of the
interaction potential for the other. Thus, we can write for the potential in (4.36)

v(k, t ′) = (A1(t
′) +A2(t ′))k−2, (4.40)

where the time-dependent amplitudes are

A1(t
′) := f(t)

g
t,t0
pp

g
t,t0
qp

, A2(t
′) := −

3a

2g
. (4.41)
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We have shown in Bartelmann et al. [4] that particle interactions calculated by (4.37) par-
tially compensate the free-streaming of the particles, which is an inevitable consequence
of the initial momentum fluctuations in the particle ensemble. On scales k < 10h/Mpc
our results (4.27) reproduce numerical results with an accuracy of ∼ 15%. The low dis-
crepancy encourages the use of the Born approximation also in other applications, such
as the calculation of the momentum-density correlation tensor or higher order correla-
tions.
We aim at the 2-point correlation tensor of momentum-densities including particle inter-
actions in the Born approximation. The application of two ~Π-operators returns

Πα1 (1)Π
β
2 (2)Z[J]

∣∣∣
J=0

=

∫
dΓΓΓ~pα1 (t1)~p

β
2 (t2) exp (i〈Lq, q〉+ i〈Lq, q〉− F(t)) , (4.42)

with the particle momenta given by

pα1 (t1) = g
t1,t0
pp pα1 −

∫t1
t0

dt ′gt1,t ′
pp Fα1 (t

′), (4.43)

and analogously for the second particle.

4.3.1 First/Naive Approximation

In collaboration with Christian Sorgenfrei as part of his Bachelor thesis project we em-
ployed the averaged forces between particles given in (4.36) and (4.37). We use the ab-
breviation

~f1 :=

∫t1
t0

dt ′gt1,t ′
pp 〈~F1〉(t ′) (4.44)

in order to keep notations shorter. Under this assumption we can write down the syn-
chronous 2-point momentum-density correlation tensor as〈
Πα1Π

β
2

〉
= eQD−F

((2π)3δD(~k1) +P(k1)
)(gt,0qpgt,0ppσ213

)2
kα1 k

β
1

−igt,0qpg
t,0
pp

σ21
3

(
fα1 k

β
1 + kα1 f

β
1

)
− fα1 f

β
1

)

+

[∫
q
w(q)a‖(q)

](
2σ21
3

(gt,0qpg
t,0
pp)

2kα1 k
β
1 − igt,0qpg

t,0
pp

(
fα1 k

β
1 + kα1 f

β
1

))

−(gt,0pp)
2

∫
q
w(q)

[
π
‖αβ
21 (a‖(q) − a⊥(q)) + δ

αβa⊥(q) − a
2
‖(q)(g

t,0
qp)

2kα1 k
β
1

]]
, (4.45)

where we renamed t1 = t and introduced the function

w(q) := exp
(
Q(q) + i~k · ~q

)
. (4.46)

We give expressions for the trace, divergence and curl power-spectrum in Section C.3.1
and note that those expressions depend on the projections of ~f1 parallel and perpendic-
ular to the wave-vector ~k1. Working out the scalar products with the use of (4.36) and
(4.44) we find

~k1 · ~f1 = i
∫t
t0

dt ′gt,t
′

pp

[
k21v(k1, t ′) +

∫
k

(
~k1 ·~k

)
v(k, t ′)P̄δ(κ, t ′)

]
, (4.47)

~f1 · ~f1 =

(
~k1 · ~f1

)
k21

, (4.48)
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where ~κ = ~k1 − ~k. In other words, the perpendicular projection of ~f1 with respect to ~k1
is exactly zero. Therefore, the only effect the averaged force 〈~F1〉(t) has on the power-
spectrum of the ~Π-component perpendicular to ~k1 is the compensation of the damping
as we saw for the density fluctuation power-spectrum. This is a direct consequence of
approximating the momentum trajectory (4.43) with the ensemble-averaged force. There-
fore, we deliberately ignored any cross-correlations between the force on one particle
and the force acting on the other, and correlations between the forces.
We show the changes of the power-spectra due to the Born approximation evaluated
today in Figure 11. The Born approximated force enters in two ways into these plots: (i)
it counters the damping factor due to free-streaming on large scales, while momentum-
diffusion dominates on small scales, (ii) it adds terms contributing deviations from the
free particle momenta. On the large scales we notice no difference between the free
results of the previous Section 4.2 and the corrected results discussed here. Power on
the small scales is enhanced by as much as two orders of magnitude on k = 10h/Mpc.
Since the curl power-spectrum does not contain any additive contributions from the
Born approximated force, we can see the same effect as for the density power-spectrum
in Bartelmann et al. [4]. The exponential term exp(−F) counteracts the free-streaming of
the particles and results in an enhancement of power on scales 1h/Mpc < k < 10h/Mpc.
We will return to this result when we discuss the kSZ effect in Section 4.4. For the trace
and the divergence power-spectra we notice that the first additive term, which is pro-
portional to the density fluctuation power-spectrum reduces structure on all scales. This
correction can be split in two terms: the first is proportional to the scalar product of
the force with the free-streaming motion of the particles, and the second is the scalar
product of the force on particle one and on particle two. As the factors act in opposite
directions this correction can only remove power. The second correction is proportional
to a‖(q) and is the product of the ordered/correlated motion of the particle multiplied
by the force. This term enhances the power of the momentum-density field on all scales.
On the smallest scales the two additive terms are of the same magnitude and only the ef-
fect of exp(−F) remains, which enhances the power on the small scales as for the curl or
the density fluctuation power-spectrum. The dependence of the trace and the divergence
spectrum is flatter than for the free result of the previous Section 4.2.

4.3.2 Revised Approximation

We evaluate the product of the two momentum trajectories in (4.42) and find four terms
in total

pα1 p
β
2 = (gt,0pp)

2p1
αp2

β + igt,0ppp2
β

∫
t ′
gt,t

′
pp ∇α1V2(t

′)

− igt,0ppp1
α

∫
t ′
gt,t

′
pp ∇

β
1V2(t

′) −
∫
t ′,t ′′

gt,t
′

pp g
t,t ′′
pp ∇α1V2(t

′)∇β1V2(t
′′) (4.49)

where we used that ∇1V2 = −∇2V1 and only the forces between the two particles will
remain after integration over the phase-space distribution. The first term corresponds to
the correlator of free momenta. The second and third terms correspond to the correlation
between the free momentum of one and the force acting on the other particle. The fourth
term is the correlation between the forces on the two particles.
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Figure 11: The power-spectra for the trace, the divergence and the curl including corrections due
to gravitational interactions evaluated in the Born approximation are shown. We show
the total power-spectrum and the corrections Ti due to the gravitational force given
by (C.17)-(C.19). The terms are enumerated in the order that they are written in the
equations and summarise terms proportional to the same integral over q. Negative
contributions are represented by dashed lines.
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We wrote down the first term in Section 4.2 and after substituting the momentum by a
partial derivative with respect to the shift the second term is

T2 = −gt,0pp∂
β
Lp2

∫
dΓΓΓ
∫

dt ′
∫
k
gt,t

′
pp k

αv(k, t ′)×

× exp
(

i〈Lq, q〉+ i〈Lp, p〉− F(t) + i~k · (~q1(t ′) − ~q2(t
′))
)

(4.50)

= −gt,0pp∂
β
Lp2

∫
dΓΓΓ
∫

dt ′
∫
k
gt,t

′
pp k

αv(k, t ′) exp
(
i〈L ′q, q〉+ i〈L ′p, p〉− F(t)

)
(4.51)

with the new shifts

L ′q = −~κ⊗ (~e1 −~e2), L ′p = −(gt,t0qp ~k1 − g
t ′,t0
qp

~k)⊗ (~e1 −~e2), π̂
‖
21 =

~κ⊗~κ

κ2
, (4.52)

with ~κ = ~k1 −~k. Equivalently we can write down the third term.
The fourth term is readily obtained by substituting the Fourier-transforms of the poten-
tial gradients

T4 = −

∫
dΓΓΓ
∫

dt ′
∫

dt ′′
∫
k

∫
k ′
gt,t

′
pp v(k, t ′)gt,t

′′
pp v(k

′, t ′′)kαk ′β×

× exp
(
i〈L ′q, q〉+ i〈L ′p, p〉− F(t)

)
, (4.53)

with the shifts and projector

L ′q = −~κ ′ ⊗ (~e1 −~e2), L ′p = −(gt,0qp~k1 + g
t ′,0
qp

~k+ gt
′′,0
qp

~k ′)⊗ (~e1 −~e2), (4.54)

π̂
‖
21 =

~κ ′ ⊗~κ ′

κ ′2
, (4.55)

and ~κ ′ = ~k1 −~k−~k ′.

4.4 application : kinetic sunyaev-zel’dovich effect

4.4.1 Sunyaev-Zeldovich Effect

The earliest electromagnetic signal that we receive from the Universe is the CMB ra-
diation, which was released at the time of hydrogen recombination. At that time the
temperature of the Universe was low enough for electrons and protons to form neutral
hydrogen atoms. The removal of free electrons raised the mean free path of photons
in the Universe and photons were less likely to scatter off electrons. The time of CMB
release is therefore also referred to as the surface of last scattering.
The radiation field is highly isotropic but small anisotropies are present. The mean tem-
perature of the photons today is T = 2.7255K with anisotropies of the order δT/T ∼ 10−5

(Planck Collaboration et al. [32]). These anisotropies are either primary, i. e. primordial
fluctuations seeded during inflation, or secondary, i. e. caused by interactions of photons
along their journey from the last scattering surface to the observer.
One example for secondary anisotropies is the Sunyaev-Zel’dovich (SZ) effect (Zeldovich
and Sunyaev [36]). As astrophysical objects such as stars formed in the Universe, their ra-
diation reionised the intergalactic medium, thus providing free electrons that could scat-
ter with photons. In fact, the Sunyaev-Zel’dovich effect is the result of inverse Compton
scattering off free electrons in the reionised Universe. The scatterings induce a temper-
ature anisotropy by inhomogeneities in the motion of the electrons. We can distinguish
the thermal and the kinetic SZ effects, tSZ and the kSZ, respectively. The tSZ is caused by
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the random motion of electrons in a hot plasma, while for the kSZ the electrons move
with the bulk of structures. The temperature fluctuation induced by bulk motion is given
by

δT

T
(γ̂) =

∫
e−τσTne~v · γ̂dl, (4.56)

where γ̂ is the unit vector in the line-of-sight direction, ne is the number density of free
electrons, σT is the Thomson cross section, τ is the optical depth and ~v the peculiar velo-
city of structures. The integral is taken along the line-of-sight from the time of emission
until today. The electron number density and the peculiar velocity may be combined to
the momentum-density that we investigated in Chapter 3. Of course, we have to keep
in mind that the electron number density scales with the ionisation fraction χ and the
fraction of baryons Ωb in the Universe.
The 2-dimensional angular power-spectrum of the kSZ temperature fluctuations is ob-
tained from the 3-dimensional power-spectrum of the momentum-density by an integra-
tion along the line-of-sight. We note that in this radial projection the contributions from
the longitudinal component ~Π‖~k vanish due to cancellations of the contributions from
wave peaks and troughs (cf. Vishniac [34], Jaffe and Kamionkowski [17]). Therefore, only
the transverse component contributes to the kSZ power-spectrum. In the small-angle ap-
proximation the angular power-spectrum is given by a Limber equation (cf. Limber [18])

Cl =
σ2T n̄

2
e

H20

∫
dx
x2a4

e−2τPΠ⊥

(
l

x
, t
)

, (4.57)

where l is the multipole, n̄e is the mean electron density and PΠ⊥ is the power-spectrum
of ~Π perpendicular to the wave-vector ~k (cf. Ma and Fry [19]). The integral is to be
taken over comoving distance dx = cda/(a2H(a)) from the source to the observer. The
small-angle approximation is valid as temperature fluctuations are generated on scales
l & 1000 (cf. Ostriker and Vishniac [25], Jaffe and Kamionkowski [17]).
The observed signal will also depend on the reionisation history. This is encoded in
the optical depth τ as well as the ionisation fraction χ. Inhomogeneities during the
epoch of reionisation are expected to modulate the kSZ power-spectrum. Park et al. [26]
point out that this even boosts the power compared to homogeneous reionisation. In
our discussion we focus on the effect of the momentum-density power-spectrum and
compare our results for the 3-dimensional power-spectrum to those of other works.

4.4.2 Results

The kSZ power-spectrum depends on the transverse component of the momentum-densi-
ty, i. e. the perpendicular projection of ~Π on the wave-vector ~k. Comparing to equation
(4.2c) we realise that the power-spectrum of the perpendicular component is given by
the power-spectrum of the curl-field divided by the wave-number k squared.
For an analytical comparison with previous studies, we focus on the linear regime of
perturbations. In Section A.2 we showed that the the velocity components perpendicular
to ~k decay inversely proportional to the scale factor at linear order of hydrodynamics.
Thus, it is common practice to assume an irrotational velocity field initially. Then, by
Helmholtz theorem the velocity field is parallel to ~k at any order and the lowest order
contribution to the perpendicular component of the momentum-density comes from
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Figure 12: We show the scale dependence of the power-spectrum of the transverse component of
PΠ⊥ from linear theory (4.58), i. e. the result by Vishniac [34], and from KFT (4.59). In
the limit of small wavenumbers the results differ by a factor of two, while they are the
same for very large wavenumbers.

the cross-correlation of density fluctuations and the momentum. Assuming that both
quantities evolve linearly, Vishniac [34] arrived at

Plin
~Π⊥

(k, t) = ȧ2f2
∫
k ′
Pδ(k

′, t)Pδ(∆, t)
k2(k− 2k ′µ)2(1− µ2)

k ′2∆4
, (4.58)

where ∆ =
√
k2 + k ′2 − 2kk ′µ and µ is the angle cosine between the wave-vectors ~k and

~k ′. We need to compare this result with our own (C.10). After evaluation of the scalar
products and recovering the correct time conversion we arrive at

PKFT
~Π⊥

(k, t) =ȧ2f2D2+(g
t,t0
pp )2(gt,t0qp )2eQD×

×
∫
k ′
Pδ(k

′)Pδ(∆)
k2(k− k ′µ)(k− 2k ′µ)(1− µ2)

k ′2∆4
, (4.59)

with the same definitions and after recovering conversion factors due to the trans-
formation of the time coordinate in Section 2.2. We notice that using the Zel’dovich
approximation the propagators gt,t0qp = D+ and g

t,t0
pp = 1 reproduce the same time-

dependence as the Vishniac power-spectrum. The damping is close to unity on linear
scales. The kernel of the power-spectrum is different in the Vishniac case ∝ (k− 2k ′µ)2

and ∝ (k− k ′µ)(k− 2k ′µ) for KFT. We used for our calculations only the free contribu-
tions to the power-spectrum and truncated the dependence on the initial momentum
correlations at quadratic order. It is not clear, how the difference in the kernels comes
about. We evaluate both integrals numerically and show the results in Figure 12. In the
limit k → 0 both power-spectra scale as the wavenumber k2, which is to be expected
due to momentum conservation (Mercolli and Pajer [24]). On the largest scales, where
we expect agreement of both calculations, the predictions are off by a factor of two. This
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is a direct consequence of the difference in the kernels. We believe that this problem
cannot be resolved by truncating the Taylor series in initial momentum correlations at
higher orders, since this would involve terms that are cubic in the power-spectrum. We
observed previously in Section 4.1 that the contribution from interactions is larger than
from the free motion and has the same dependence on k. That suggests that we might
not compare the same quantities here, since corrections from interactions at higher or-
ders lead to the same dependence on initial power-spectra.
Park et al. [27] have recently studied the non-linear kSZ and focus on the calculation
of the 3-dimensional power-spectrum of the transverse momentum-density component.
They point out that in the fluid approach this power-spectrum is a 4-point function
which can be split according to Wick’s theorem into products of disconnected 2-point
functions and the connected 4-point term. The connected term was ignored in all pre-
vious studies. We have compared our results of Section 4.3.1 with their results. Their
figure Fig. 1 shows simulation results for the power-spectrum of the curl of ~Π evaluated
today. Comparing the position of bumps and the amplitude with our Figure 11 we find
very good agreement. We can also compare to their analytical results in their Fig. 3,
where they have included the connected term, and find the same level of agreement. At
this point we may note that we arrive at the same result with less effort than in Standard
Perturbation Theory (SPT), since our calculation involves the calculation of a 2-point
function of the momentum-density from the factorised free generating functional and
the inclusion of the Born approximated force, while the SPT calculation involves solving
complicated loop integrals (cf. the Appendix of Park et al. [27]).

4.5 comparison with millennium-xxl

We have planned a comparison of our analytical calculations with simulation data. We
have access to data from the Millennium-XXL simulation (Angulo et al. [1]) and had
help from Dr. Daniele Sorini for retrieving the power-spectra from the snapshots. The
Millennium-XXL simulation contains only dark matter and is an N-body simulation
with cosmological parameters Ωm0 = 0.25, ΩΛ0 = 0.75, h = 0.73, the normalisation of
the power-spectrum today is fixed by σ8 = 0.9, and the spectral index n = 1. The boxsize
is 3Gpc/h and the particle mass is 6.17× 109h−1 solar masses. The power-spectra at
z = 0 provided by Dr. Daniele Sorini’s codes are shown in Figure 13. We compare this
figure with our previous results Figure 8-11. Firstly we notice that the dependence on
the wavenumber for the trace and divergence spectra are similar although the curves
seem shifted to smaller values of k. Secondly, the curl spectrum is in Figure 13 is very
close to the divergence spectrum. We do not expect this behaviour, neither from SPT
and simulations (cf. Vishniac [34], Park et al. [27]) nor from KFT. We thus believe that
something went wrong in the evaluation of the snapshots, since it may be more difficult
to extract a non-linear effect such as this which stems from cross-correlations of the
density fluctuations and momentum.
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Figure 13: The power-spectra were calculated from the Millennium-XXL simulation with the aid
of Dr. Daniele Sorini. Since our comparisons of the curl spectrum divided by k2 with
Vishniac [34] and Park et al. [27] worked out very well, we expect that at least for the
curl spectrum the evaluation of the Millennium-XXL snapshots is flawed.



5
I N C L U S I O N O F F U Z Z Y D A R K M AT T E R I N K F T

So far we have treated dark matter as composed of classical microscopic particles that
have low initial velocity dispersion and interact gravitationally only. These are the char-
acteristics of CDM. Although CDM models are very successful in explaining the formation
of cosmic structure, there are a few conflicts with observations on small-scales, namely
the cusp/core problem (e. g. de Blok [37]) and the missing satellites problem (e. g. Bullock
[11]). Simulations suggest cuspy dark matter halo density profiles, while observations of
galaxy rotation curves favor flat density profiles, and the abundance of low mass halos
in simulations is much larger than what is inferred from observations around the Milky
Way. Possible solutions to these problems may lie in the currently imperfect treatment of
the baryonic gas in simulations (Brooks et al. [10]) or in the nature of dark matter. Here
we focus on the second possibility.
While the particle nature of dark matter is unknown, there exists a vast range of particle
candidates. Mass bounds for these model particles are provided by observations of the
large-scale structure. Warm Dark Matter (WDM) models assume thermally produced
particles that suppress small-scale structure due to their velocity dispersion, i. e. the
free-streaming out of potential wells. The mass bound for those models is mW >
few keV/c2. Another suite of models, usually referred to as FDM (Hu, Barkana, and
Gruzinov [16]), propose an extremely light non-thermally produced scalar-field particle
whose de-Broglie wavelength is relevant on cosmological scales. The most popular class
among these models proposes Ultra-Light Axions (ULAs). The mass bound on such par-
ticles is ma > 10−23eV/c2. A recent review is given by Marsh [22].
Here we discuss models of FDM. Hu, Barkana, and Gruzinov [16] point out that the occu-
pation numbers in galactic halos are so large that the dark matter behaves as a classical
field if it is composed of ultra-light scalar particles. Then dark matter behaves like a self-
gravitating Bose-Einstein Condensate (BEC) with (quartic) self-interactions. In view of
structure formation, length scales are much smaller than the horizon and we can work in
the Newtonian limit. Then the classical field is described by the Gross-Pitaevskii-Poisson
system (Böhmer and Harko [9], and Chavanis [12]). Using the Madelung [20] form of
the wave-function the Gross-Pitaevskii (or non-linear Schrödinger) equation turns into
a set of hydrodynamic equations, namely a continuity equation for the probability den-
sity and an Euler equation with an isotropic pressure due to self-interactions and an
anisotropic force due to a quantum potential that stems from Heisenberg’s uncertainty
principle. On large scales the effects of self-interaction and the quantum potential are ir-
relevant and FDM behaves like CDM. But on small scales the quantum effects can stabilise
halos against gravitational collapse, thereby alleviating small-scale problems of CDM.

5.1 fuzzy dark matter

5.1.1 Hydrodynamical Treatment

We assume that dark matter is composed of an extremely light boson, whose de-Broglie
wavelength is relevant on cosmological scales. The production of this boson is non-
thermal and for ULA due to spontaneous breaking of the Peccei-Quinn symmetry (Peccei
and Quinn [28]). Due to the small mass of the boson the occupation numbers must be
large and the dynamics are given by the classical field equations of a condensate. As
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Marsh [22] pointed out, it is a separate question whether axions actually form a BEC in
a cosmological context. For our discussion we assume condensation only to the extent
that a classical field captures the dynamics.
For a self-gravitating light bosonic field ϕ with (quartic) self-interaction the dynamics
are given by the Gross-Pitaevskii-Poisson system (Gross [15], Pitaevskii [31])

i h∂tϕ =

(
−

 h

2ma
∇2 +maΦ+ gNma|ϕ|

2

)
ϕ, (5.1)

∇2Φ = 4πGNma|ϕ|
2, (5.2)

with mass ma of the boson, the gravitational potential Φ and the coupling constant g
for the self-interaction. The de-Broglie wavelength for an ULA is

λ

2π
=

 h

mav
= 1.92

(
10−22eV/c2

ma

)(
10km/s
v

)
kpc, (5.3)

for a typical masses and velocities. The equations (5.1) and (5.2) are valid on sub-horizon
but super-Compton scales (H < k <  h

mac
). By means of the Madelung [20] transforma-

tion of the wave-function

ϕ(~r, t) = A(~r, t) exp
(

i
B(~r, t)

 h

)
, (5.4)

and the identifications

ρ = Nma|ϕ|
2, ~u =

1

ma
∇B (5.5)

for the density and velocity fields we can identify the imaginary and real parts of (5.1)
as the continuity and Euler equations of a fluid,

∂tρ+∇ · (ρ~u) = 0, (5.6)

∂t~u+ (~u · ∇) ~u = −∇Φ+∇

(
 h2

2m2a

∇2√ρ
√
ρ

)
− g∇ρ, (5.7)

where we used that the velocity field is irrotational and the vector identity

∇(~a · ~b) = (~a · ∇)~b+
(
~b · ∇

)
~a+ ~a×

(
∇× ~b

)
+ ~b× (∇× ~a) (5.8)

The continuity equation is to be interpreted as a probability conservation equation. The
last term in Euler’s equation is solely due to the quartic self-interaction and can be
interpreted as an isotropic pressure with a barotropic equation of state (cf. Chavanis
[12]).
Apart from self-interactions another interaction enters the Euler equation (5.7) due to
the potential

VQ =
 h

2m2a

∇2√ρ
√
ρ

=
 h2

4m2aρ

[
∇2ρ− ∇ρ · ∇ρ

2ρ

]
, (5.9)

which in cosmology is often called "quantum pressure". Since the origin of this term is
purely connected to Heisenberg’s uncertainty principle and has no links to thermody-
namics, we will refer to it as quantum potential (Bohm [8]).
Following our discussion of linear structure formation in Section A.2 we can transform



5.1 fuzzy dark matter 59

the system of equations (5.2), (5.6) and (5.7) into a single equation for the Fourier modes
of the density contrast

δ̈+ 2Hδ̇+

(
−4πGρb +

 h2k4

4m2aa
4
+
gρbk

2

a2

)
δ = 0. (5.10)

Here we used the usual definitions for the density contrast ρ = ρb(1+ δ), the Hubble
function H = ȧ/a and used the background solutions (A.22). Since self-interactions
are model-dependent and sub-dominant to gravity on linear and non-relativistic scales
(Marsh [21]), we ignoring self-interactions (g = 0) and do so for the remainder of this
chapter, we can define a quantum Jeans scale

kQ = (16πGρbm
2
aa
4/ h2)

1/4 , (5.11)

which defines the length scale on which the quantum potential exactly stabilises struc-
tures against gravitational collapse. Thus, growth of structures on small-scales k > kQ
is inhibited by the quantum potential.
Since in general self-interactions are model dependent we ignore them for the rest of the
discussion and focus on the effects of the quantum potential VQ. In fact, equation (5.10)
can be solved for g = 0 and has a growing and a decaying mode

D+(x) =
[
(3− x2) cos x+ 3x sin x

]
/x2 (5.12)

D−(x) =
[
(3− x2) sin x− 3x cos x

]
/x2, (5.13)

with the function x(k,a) =
√
6k2/k2Q(a). Linear structure growth is therefore scale-

dependent for FDM, while it is scale-independent for CDM.

5.1.2 Initial Conditions

During inflation the seeds of cosmological structures are believed to be created. If infla-
tion is due to a single inflaton field, the intial conditions are adiabatic. At early times
(after inflation) radiation is the dominant energy component and the photons carry the
inflationary perturbations. Then the density fluctuations in the photons are related to
the density fluctuations of other energy components by

δi =
3

4
(1+wi)δγ, (5.14)

where wi is the equation of state parameter for the component i (cf. equation (A.11)).
We repeat the line of argument of Marsh [22]. The equation of state parameter for axions
depends on its mass relative to the Hubble function. Early in time, when H > ma, the
axion field is overdamped by Hubble friction and wa = −1. When the Hubble function
is lower than the mass of the axion (H < ma), the axion field begins oscillating and
the equation of state parameter is zero on average, with an oscillation frequency that is
much smaller than the expansion rate given by the Hubble function. Then axions/FDM
particles behave like ordinary matter and the density perturbations follow the photon
perturbations.
As we have seen in the previous paragraph the growth of perturbations on scales smaller
than the quantum Jeans scale k > kQ are suppressed relative to CDM. The dependence
of this scale depends on the dominant energy content in the universe: for radiation
domination kQ = const. and for matter domination kQ ∝ a

1/4 as can be inferred from
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Figure 14: The FDM density fluctuation power-spectrum is shown for particle masses ma =

10−24 . . . 10−20eV/c2 in comparison to the CDM density fluctuation power-spectrum.
For the CDM power-spectrum PCDM(k) we used the Bardeen et al. [2] power-spectrum
and evolved it with the scale-independent linear growth factor D+(a). The power on
small scales is suppressed for FDM particles due to the quantum potential.

(5.11). To account for the suppression of structure below this scale one can introduce a
transfer function TF(k), such that

PFDM(k) = T2F (k)PCDM(k). (5.15)

Here Pi(k) are the power-spectra of density fluctuations at the last scattering surface,
i. e. the time of CMB release. Numerically, the transfer function is found to be

TF(k) =
cos x3

1+ x8
with x = 1.61

(
ma

10−22eV/c2

)1/18 k

kVQ,eq
(5.16)

with the quantum Jeans scale at matter-radiation equality

kVQ,eq = 9

(
ma

10−22eV/c2

)1/2
Mpc−1. (5.17)

Since kQ depends only mildly on the scale factor, the quantum Jeans scale today is
similar to the scale at matter-radiation equality. We show the initial power spectrum of
FDM for masses ma = 10−23 . . . 10−20eV/c2 in Figure 14. The normalisation is chosen
such that today σ8 = 0.8 for the CDM power-spectrum. The initial power-spectrum of
FDM falls off rapidly near the quantum Jeans scale and is proportional to a squared
cosine. This behaviour is due to the harmonic equation (5.10), where a transition from
exponential growth for large scales to harmonic oscillations on small scales occurs. For
larger masses of the bosonic particle kQ is larger and therefore less structure relative to
CDM is suppressed.
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5.2 extension of kft

5.2.1 Dynamics

In the previous Section we found that the dynamics of FDM is that of an effective fluid.
This fluid is subject to gravity and the quantum potential arising from Heisenberg’s
uncertainty principle (cf. equation (5.7)). In order to treat dark matter as a light bosonic
field in terms of KFT, we need to find a way to include the quantum potential into the
dynamics of the microscopic particles. There are two solutions we want to discuss: a
perturbative treatment as in Section 2.1.4 and an effective potential along the lines of the
Born approximation in Section 4.3.
Before we discuss the two options we repeat the Euler equation in an expanding space-
time (ignoring self-interactions)

∂t~v+H~v+ (~v · ∇)~v = −
∇V
a

+∇VQ, (5.18)

where we define the quantum potential VQ as

VQ =
 h2

2m2aa
3

[
∇2√ρ
√
ρ

]
=

 h2

2m2aa
3

[
∇2ρ
2ρ

−
∇ρ · ∇ρ
4ρ2

]
. (5.19)

The mass of the bosonic particle is ma and a is the scale factor. Since it is a potential
interaction, we can adopt ideas from our treatment of gravity.

perturbative dynamics : Here we aim at an operator expression that in analogy
to (2.30) can be used to perturbatively include the effects of the quantum potential VQ.
From the Euler equation we realise that particles are accelerated by another potential,
which counteracts gravitational collapse. Therefore we can write for the j-th particle

~̇pj(~q, t) = ∇qjVQ =

∫
q
δD(~q− ~qj)∇VQ(~q, t) = −

∫
q

[
∇δD(~q− ~qj)

]
VQ(~q, t). (5.20)

This is the same form as for the gravitational potential. Hence, the action associated with
the quantum potential interaction is

SQ = −

∫
dt
∫
q

 N∑
j=1

δ

iδ~Kpj(t ′)
·
[
∇qδD(~q− ~qj(t))

]VQ(~q, t), (5.21)

where the term in brackets represents the response field again.
The tricky part here is to evaluate the quantum potential VQ from one-particle contri-
butions, since it involves inverse densities. Since the density is a distribution-valued
function, its inverse cannot be expressed by an operator involving functional derivatives.
In order to avoid complications we expand the inverse density in a Taylor series around
the background value and as a first approximation we use the background value for
now. Then the quantum potential is

VQ(~q, t) '
 h2

2m2aa
3

[
∇2ρ
2ρb

−
∇ρ · ∇ρ
4ρ2b

]
(5.22)

with the background density ρb independent of position.
The last step is to transform the quantum potential into Fourier-space and express the
densities by operators. By use of the convolution theorem we get

˜VQ(~k, t) =
 h2

2m2aa
3

[
−k2ρ(~k, t)
2ρb

+
1

4ρ2b

∫
k ′

~k ′ ·
(
~k−~k ′

)
ρ(~k ′, t)ρ(~k−~k ′, t)

]
. (5.23)
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With this expression we can account for the quantum potential in the perturbative ex-
pansion that we described in Chapter 3.

effective dynamics : Since the calculation of each contribution in the perturbative
scheme is a tedious task, we tried to incorporate the effects of the quantum potential VQ
by assuming an effective quantum potential of each particle. In a next step we evaluated
the quantum force applying the Born approximation and averaging over the correlated
particle ensemble in the same way as Bartelmann et al. [4]. The calculations presented in
this paragraph were done by Leander Fischer as part of a student research project under
our co-supervision.
To find an effective quantum potential we need to assume an underlying density profile.
We choose

ρ(q) = ρb

[
c+ exp

(
−

q2

(2σ2)

)]
(5.24)

which may be seen as an effective size of the particles. The parameters c and σ are
free. In the case of the width σ of the Gaussian profile a sensible choice may be the
Compton wavelength of the FDM particle, λCompton =

hPlanck
mac

' 0.5pc for a typical mass
of ma = 10−22eV/c2, or the de-Broglie wavelength with typical cluster velocities.
Beginning with the density profile (5.24) we arrive at an effective potential of the form

VQ,eff(q, t) =
 h2

4m2aσ
2a3

χ

(
−3+

q2

2σ2
(2− χ)

)
(5.25)

with the definition

χ :=

(
1+ ce

q2

2σ2

)
. (5.26)

The naive choice for the particle size is a Gaussian profile without any offset. This choice
leads to a different quantum potential and in particular non-physical behaviour at infi-
nite distances. For ρ = exp(− x2

2σ2
) we get VQ ∝ x2 and therefore diverging. Thus, parti-

cles at large distances would feel large accelerations, which is unphysical. The constant
off-set cρb prevents the divergent behaviour. We show the effective quantum potential
in Figure 15 with the choice of parameters being c = 1 and σ = 1Mpc/h. While in the
application we will choose smaller values for the width σ, we aim here for a proof of
concept. The plot shows that for short distances from the center the quantum potential is
repulsive and becomes attractive in a small range of distances, before its effect becomes
negligible.
In the end we want to calculate the resulting force in the same way as we did for grav-
ity in Section 4.3. The correction to the density fluctuation power-spectrum due to a
potential gradient is determined by

F(t) = −i
∫

dt ′〈Lp(t ′),∇VQ∇VQ∇VQ(t ′)〉 (5.27)

where 〈.〉 denotes an average and 〈., .〉 a scalar product. With the effective quantum
potential VQ,eff(q, t) the scalar product evaluates to

〈Lp(t ′),∇VQ∇VQ∇VQ(t ′)〉 = 2gqp(t, t ′)
[
k21ṼQ,eff(k1, t ′) +~k1

∫
k

~kṼQ,eff(k, t ′)P̄δ(~k1 −~k, t ′)
]

,

(5.28)
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Figure 15: Shown is the effective quantum potential VQ,eff(q, t) of (5.25) divided by the overall
amplitude. The free parameters were chosen to be c = σ = 1, where σ is measured in
Mpc/h.

where ṼQ,eff(k, t ′) denotes the Fourier-transform of (5.25) and P̄δ(~k1 − ~k, t ′) is the lin-
early evolved density fluctuation power-spectrum. The first term is an uncorrelated force,
i. e. this term does not contribute a directed force as it corresponds to a homogeneous
Poisson process. Thus, we may ignore the first term in the effective dynamics. The sec-
ond term on the other hand is the correlated contribution to the force and will therefore
lead to a directed net force which in this context is repulsive.
Since the effective quantum potential depends on distance only, its Fourier-transform is
readily given by an integral over a spherical Bessel function

ṼQ,eff(k, t) = 4π
∫

dqq2VQ(q, t)j0(kq). (5.29)

As in Bartelmann et al. [4] we introduce the relative wave-vector ~κ = ~k1 − ~k and the
dimensionless parameter y = κ/k1 so that the Born-approximated force due to the
quantum potential becomes

F(t) = −

∫t
t0

dt ′A(t, t ′)
k51
2π2

∫∞
0

dy
∫1
−1

dµy2(1− yµ)ṼQ,eff(k(µ), t)P̄δ(k1y, t ′) (5.30)

with the time-dependent amplitude

A(t ′) =
 h2

4m2aσ
2a3

gqp(t, t ′). (5.31)

We show the result of this integral in Figure 16 evaluated using a Monte-Carlo integra-
tion routine with 128 and 1024 points at two different times. We notice that the chosen
integration method is not stable enough to apply the result to the density fluctuation
power-spectrum. The main problem in the evaluation lies in the Fourier integral of the
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Figure 16: Shown is the Born-approximated force term resulting from the effective quantum po-
tential (5.25) for c = 1 and σ = 1Mpc/h at different times a = 0.5 and a = 1. We
evaluated the integral (5.30) using a Monte-Carlo integration routine with 128 and
1024 points. The evaluation has yet to be improved to apply this correction to the
density fluctuation power-spectrum. We infer at this point that VQ,eff has a repulsive
effect, as we expected. Courtesy of Leander Fischer.

effective quantum potential, but this problem may be solved employing other integra-
tion methods such as a Levin collocation. Although the results are not stable, we can
infer that the force is repulsive. Although we expected the repulsive nature of the quan-
tum potential, we did not expect the scale on which the effect is the strongest. The effect
is the strongest on scales where structures start to deviate from linear growth.
Since the effective quantum potential involves two free parameters, we checked the influ-
ence of those parameters on the effective correction. In Figure 17 the effects are shown.
As we might expect, c changes the amplitude and the width σ changes both the ampli-
tude and the scale on which the effect is the strongest by changing the curvature of the
potential.
In this paragraph we have shown that we can incorporate the additional dynamics of
FDM by assuming an effective potential for the particles assuming a Gaussian density
profile. The aim was a proof of concept and more work is to be done in solving the
integral (5.30). Also we have to find reasonable choices for the parameters c and σ of
the underlying density profile. The results of this part thus far suggest that the effect
of the quantum potential is most relevant on scales at the onset of non-linear structure
formation.

5.2.2 Probability Distribution

In Figure 14 we showed the effect of the quantum potential VQ on the initial power-
spectrum of density fluctuations for various masses of the FDM particle: fluctuations on
scales smaller than the quantum Jeans scale (k > kQ) oscillate rather than collapse. On
those scales fluctuations are stable and the power-spectrum is suppressed. In order to
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Figure 17: Shown is the Born-approximated force term resulting from the effective quantum po-
tential (5.25) for different values of the parameters c and σ. Courtesy of Leander Fis-
cher

incorporate this effect in KFT we need to adjust the initial distribution of microscopic
particles in phase-space, namely P[q, p] of (2.42).
The suppression of power on small scales does not change the nature of the pertur-
bations: the density fluctuation δ and the velocity potential ψ are homogeneous and
isotropic Gaussian random fields fully specified by their respective power-spectra. In
particular, their relation by continuity does not change.
Then the analytic expressions of Chapter 2 for the initial probability distribution (2.42)
and the initial density Cδδ, density-momentum Cδp and momentum Cpp correlations
(2.44)-(2.46) are valid for FDM as well. But in this application the initial power-spectrum
Pδ(k) entering the expressions has to be adjusted using the transfer function TF(k) (5.16)
of the previous section.
We have shown in Chapter 3 that after the application of n density operators the generat-
ing functional factorises, if initial density and density-momentum correlations are weak.
Then an n-point correlation of the density or momentum-density fields only depends on
the initial momentum correlation matrix and is given by the correlation function ξψ(q)
of the velocity potential and its first and second derivatives. We repeat the definitions of
the functions

a1(q) :=
ξ ′ψ(q)

q
, a2(q) := ξ

′′
ψ(q) −

ξ ′ψ(q)

q
, (5.32)

that we introduced previously (cf. 3.1.2) and compare these functions for the suppressed
FDM power-spectrum with the CDM power-spectrum of Bardeen et al. [2] in Figures 18
and 19.
We observe the following properties of the functions a1(q) and a2(q): (i) asymptotically
the functional dependence on the distance q is the same independent of the dark matter
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dependence on distance is asymptotically the same for either mass ma of the boson
and CDM, the amplitude is reduced on small scales due to the quantum potential. The
smaller the mass ma, the stronger is the suppression, since kQ decreases.
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Figure 19: Shown is the ratio of the correlation function a2(q) for FDM and CDM. As for a1(q)
we notice that the dependence on distance is asymptotically the same for either mass
ma of the boson and CDM, the amplitude is reduced on small scales due to the quan-
tum potential. The smaller the mass ma, the stronger is the suppression, since kQ
decreases.
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Figure 20: We show the non-linearly evolved density fluctuation power-spectrum using Newto-
nian dynamics and the suppressed initial power-spectrum of FDM. On linear scales
Fuzzy and Cold Dark Matter show the same behaviour. While power on the scales
that are non-linear today are suppressed in the initial conditions, gravity can restore
power on those scales. For the lowest mass ma = 10−23eV/c2 the restoring effect is
the weakest.

model and the mass ma of the light bosonic particle, (ii) the amplitude of both functions
is reduced for small distances relative to CDM. The second effect is stronger for lighter
particles. This effect is readily understood, when we look at (5.10) and the correspond-
ing quantum Jeans scale. The wavenumber kQ, i. e. the smallest inverse length scale on
which perturbations are stable, is proportional to the square-root of the particle mass.
Therefore, lower-mass particles suppress initial correlations on larger scales than heavier
particles.

5.2.3 CDM Dynamics for FDM

In this paragraph we apply the formalism of KFT with Newtonian dynamics to the ini-
tial conditions of Fuzzy Dark Matter. We ignore the quantum potential in the dynamics
completely but include its effects on the initial power-spectrum of density fluctuations.
Using the Born approximation (cf. Section 4.3) we calculate the non-linear density fluc-
tuation power-spectrum today from the initial conditions given by the FDM power-
spectrum from equation (5.15). The non-linear power-spectrum is given by

P(k, t) = eQD(k,t)−FN(t)

∫
q

[
e−g

2
qp(t,t0)a‖(q)k2 − 1

]
ei~k·~q, (5.33)
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Figure 21: The ratio of the non-linear density fluctuation power-spectrum for a bosonic particle
of mass ma and the power-spectrum of Cold Dark Matter. For the smallest mass
considered (purple) gravity is not enough to get a power-spectrum similar to CDM.
For a boson of the fiducial mass or heavier the power-spectra are very similiar up to
k ' 5h/Mpc, while for very small scales the FDM power-spectrum is larger than the
CDM power-spectrum.

where a‖(q) = a1(q)+µ2a2(q) defined in (3.33) and µ is the angle cosine between ~k and
~q. The negative quadratic form QD(k, t) accounts for the free-streaming of the particle
ensemble and damps structure on small scales. FN(t) is the average gravitational force
calculated with the Born approximation as in Bartelmann et al. [4]. They showed that
the analytic result (5.33) is on average ' 15% off typical numerical results up to wave
numbers k 6 10h/Mpc. A calculation for the average gravitational force is also given in
Section 4.3 above.
In Figure 20 we show the non-linear power-spectrum. The evolution of the linear scales
is unaffected by any modifications of the initial correlation functions, since the quantum
pressure is negligible. For smaller scales we observe that gravity has enough restoring
power to raise the correlations of FDM to about the same level as CDM, except for the
smallest boson mass ma = 10−23eV/c2 considered. This is counterintuitive since the
average gravitational force FN(t) depends on the linearly evolved density correlations
in the ensemble and connects particles on all scales by a convolution integral. Therefore
suppression of power on small scales also decreases the average force on those scales.
We show this in Figure 22.
In order to see the difference between the non-linear power-spectra more clearly we

plotted in Figure 21 the ratio of the power-spectra. On scales k 6 10h/Mpc we find
relative deviations of up to 20% for masses ma = 10−22eV/c2 and higher. For those
masses of the bosonic field the gravitational interaction between the particles leads to
similar non-linear structure as Cold Dark Matter. For the lowest mass that we have
considered the quantum potential has suppressed too much structure prior to CMB re-
lease that, even though gravity forms structure, it is much less than is expected from
numerical simulations and observations. Comparing with our results of the previous
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Figure 22: The averaged gravitational force FN(t) in the Born approximation is shown for Cold
Dark Matter and different boson masses ma = 10−23 . . . 10−20eV/c2.

paragraph we find that the truncated initial power also mainly affects those scales near
the onset of non-linear structure evolution. The power-spectrum of the boson with the
largest mass follows the Cold Dark Matter power-spectrum the closest since the initial
conditions are also closest to the fiducial CDM case. The plot shows a puzzling trend on
the non-linear scales (k > 0.3h/Mpc): relative to the CDM power-spectrum the fiducial
mass boson (ma = 10−22eV/c2) has more power on scales 1h/Mpc < k < 5h/Mpc and
less power on scales 5h/Mpc < k < 30h/Mpc and rising for smaller scales, while the
boson with ma = 10−21eV/c2 has everywhere more power and the amplitude of the
power-spectrum for the most massive boson ma = 10−20eV/c2 falls between the ampli-
tude for the two lighter bosons. This trend could result from the fact that we normalised
the power-spectrum PCDM(k) with the value σ8 = 0.8 rather than the power-spectrum
PFDM(k).
On highly non-linear scales k > 10h/Mpc the amplitude of the Fuzzy Dark Matter
power-spectrum grows relative to the Cold Dark Matter power-spectrum. The reason
for this deviation lies in the suppression of initial correlations on small scales and influ-
ences the damping QD(k, t). The amplitude of the damping function QD depends on
the initial velocity dispersion

σ21 =

∫
k
k−2Pδ(k). (5.34)

The suppression of power on small scales due to the quantum potential effectively re-
duces free-streaming as the velocity dispersion is lowered. Effectively Figure 21 shows
that the damping due to free-streaming for CDM is stronger than in the FDM case.
In this paragraph we assumed the dynamics of FDM to be the same as of CDM, i. e. classical
microscopic particles under the influence of gravity in an expanding space-time, and
calculated the non-linear density fluctuation power-spectrum. For the calculation we
used the initial momentum correlations given by the FDM power-spectrum PFDM(k) =

T2F (k)PCDM given the transfer function (5.16). On the linear scales we did not find any
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difference between the different dark matter models. On non-linear scales we found that
the gravitational interaction between the particles can restore structure that was sup-
pressed by the quantum potential interaction before the time of last scattering. The small-
est scales k > 10h/Mpc are plagued by the large damping factor due to free-streaming,
which dominates all other effects that may be relevant on those scales.
At this point we can think of two improvements of this calculation in order to compare
better with numerical results (e. g. Schive et al. [33]): (i) normalisation of PFDM(k) via
σ8. In our calculation we fixed the amount of power enclosed by a radius of 8Mpc/h for
the CDM power-spectrum to emphasise the effect of the transfer function TF(k) on the
small scales. For a proper treatment the amplitude of PFDM should be fixed by σ8. (ii)
inclusion of scale-dependent growth in the averaged gravitational force. The calculation
of F(t) involves an integral over the linearly evolved density fluctuation power-spectrum.
This is intuitively clear as for an uncorrelated homogeneous and isotropic density field
the average force equals zero. Here we used the power-spectrum linearly evolved with
the growth factor of CDM that is scale-independent. With a change of the growth factor
D+(a) 7→ D+(k,a) of equation (5.12) we might improve the calculations presented here.

5.2.4 Modifications by the Quantum Potential

In this section we derived how KFT, which is a non-equilibrium statistical field theory
for classical particles, needs to be extended in order to model Fuzzy Dark Matter such
as axions rather than Cold Dark Matter. We ignored self-interactions in our discussion,
which would be accounted for by an isotropic pressure gradient force with a barotropic
equation of state (cf. Chavanis [12]). The main dynamical difference between CDM and
FDM is the relevance of the particle’s de-Broglie wavelength on cosmological scales. Then
the wave nature of the particles introduces a quantum potential that acts repulsively on
small scales, which stabilises density perturbations against collapse. This leads to a trun-
cation of the initial power-spectrum and a scale-dependent linear growth of structures.
In order to incorporate the effects of the quantum potential we need to modify both, the
dynamics and the initial probability distribution.
For the dynamics we can introduce a new potential interaction as we did for gravity
and treat it perturbatively (cf. 2.1.4). Another possibility is to introduce an effective po-
tential, evaluating the resulting force in the Born approximation and averaging over the
correlated particle ensemble. Our early results for an underlying Gaussian density dis-
tribution suggest that the repulsive quantum force is strongest on scales near the onset
of non-linear structures (1h/Mpc > k > 0.3h/Mpc). On those scales growth of structure
deviates from the linear solution and higher orders become important. Intuitively this
makes sense, since on larger scales FDM acts like CDM and on smaller scales structures
have already collapsed by non-linear interactions. We emphasise that the presented cal-
culations are a proof of concept only. We have to work out a stable integration scheme
for the Fourier-transform of the effective quantum potential, and sensible parameter val-
ues for c and σ need to be included.
The only modification to the initial probability distribution is the form of the power-
spectrum. The quantum potential leads to a truncation of power on scales smaller than
the quantum Jeans scale kQ of (5.11). The truncation can be captured by a transfer func-
tion that is a cosine function with a rapidly decreasing envelope. We explored the ef-
fect of the modified initial power-spectrum by assuming gravitational interactions only,
i. e. we used FDM initial conditions and CDM dynamics. For all particle masses consid-
ered we observed the formation of non-linear structures compatible with the non-linear
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scales of CDM, but for the lowest mass considered (ma = 10−23eV/c2) the amplitude
of non-linear structure was up to 80% lower than for standard CDM. For the typical
Ultra-Light Axion mass ma = 10−22eV/c2 and heavier we found that the truncated
initial power-spectrum affects the density fluctuation power-spectrum scales near the
onset of non-linear structure as well. While this effect is slightly shifted to smaller scales
3h/Mpc > k > 0.5h/Mpc compared to the effect of FDM dynamics, it is peculiar that
only scales close to the onset of non-linear behaviour are affected.
Ultimately we aim at the combination of FDM initial conditions and particle dynamics
given by Newtonian gravity, the quantum potential and possible self-interactions. While
the actual calculations are beyond the scope of this thesis, we have discussed the rele-
vant modifications to the formulation of KFT to incorporate the classical equations for a
condensate.





6
C O N C L U D I N G R E M A R K S

This thesis is based on the recently developed KFT for cosmic structure formation of
Bartelmann et al. [6]. KFT is a non-equilibrium statistical field theory for initially corre-
lated particles obeying the Hamiltonian equations of motion. The ensemble of particles
is described by a generating functional that contains all information about the initial dis-
tribution of particles in phase-space and their dynamics described by a retarded Green’s
function. In analogy to QFT, correlation functions of macroscopic quantities can be ex-
tracted by application of appropriate functional derivatives. Interactions between parti-
cles can be included perturbatively as in QFT or by an effective force calculated in the
Born approximation (cf. Bartelmann et al. [4]).
In the first part of this thesis we developed a systematic way to calculate n-point corre-
lation functions of the momentum-density field ~Π. In order to do so we employ recent
developments in the calculation of density correlators by Bartelmann et al. [5]. They
showed that the statistical homogeneity and isotropy of the initial correlations allows
the factorisation of the generating functional, i. e. it becomes a convolution of structurally
equivalent factors. Here we show that the same calculation can be carried out for ~Π cor-
relators, since each momentum can be substituted by a partial derivative with respect to
the corresponding momentum shift.
Corrections to a correlator due to particle interactions are treated perturbatively. Every
order of the particle interaction corresponds to one scattering event along the path of a
particle contributing to the correlator. As a visual aid for the calculation of corrections
we extend the diagrams originally suggested by Bartelmann et al. [5] in order to rep-
resent corrections to n-point correlation functions of density and momentum-density
fields.
In the second part, we calculate the 2-point 〈~Π⊗ ~Π〉 correlation tensor and scalar quan-
tities thereof, namely the trace, the divergence and the curl power-spectrum. The diver-
gence and the curl power-spectra are the power-spectra of the projections of ~Π parallel
or perpendicular to the wave-vector ~kmultiplied by k2. In the first calculation we consid-
ered initial momentum correlations only up to quadratic order as Bartelmann et al. [6]
in their first calculations of the density fluctuation power-spectrum. In that approxima-
tion, power on small scales is a consequence of particle interactions. In the subsequent
calculations we employ the framework of the first part and use the factorised generating
functional. This calculation considers the full hierarchy of initial momentum correlations.
Plotting the free power-spectra we see enhanced power on small scales differing from
the linearly evolved power. Thus, more than particle interactions, initial correlations are
responsible for the deformation of the power-spectrum on non-linear/small scales. In-
stead of perturbative corrections by interactions we employed together with the BSc
student Christian Sorgenfrei the Born approximation for the gradient of the interaction
potential and averaged over the correlated particle distribution.
In view of the kSZ effect, which is a secondary temperature anisotropy in the CMB radi-
ation induced by inverse Compton scattering of photons with free electrons following
the bulk motion of structures, we compared our results for the power-spectrum of the
transverse component ~Π⊥~k with the literature. The first comparison is between our free
result quadratic in the initial conditions and the linear result by Vishniac [34]. Our re-
sults agree save for a factor of 2. In the second comparison we find that our result using
the full hierarchy of initial momentum correlations and interactions within the Born ap-
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proximation matches the analytic and simulation results of Park et al. [27] very well.
In the last Chapter of this thesis we aim at a description of FDM in the framework of KFT.
Fuzzy Dark Matter is a term for non-thermally produced extremely light bosons whose
de-Broglie wavelength is relevant on cosmological scales. The difference from CDM is the
quantum potential in the equations of motion for FDM particles, which is repulsive on
small scales. We have shown how the quantum potential can be treated perturbatively
in the same way as the gravitational potential. In collaboration with Leander Fischer
as part of his student research project we tried to describe the quantum potential by
an effective potential and evaluate the force within the Born approximation. Our early
results show that this force has the strongest effect on scales close to the onset of non-
linear structures and counteracts the gravitational force. This suggests a suppression of
power on the intermediate scales compared to standard CDM. Apart from the dynamics,
the repulsive nature of the quantum potential stabilises density fluctuations on small
scales. This leads to a suppression of power in the initial power-spectrum compared to
CDM. The suppression scale depends on the particle mass. We investigated the effect
on the non-linear density fluctuation power-spectrum today assuming an initial FDM
power-spectrum in the phase-space probability distribution and ignoring the quantum
potential in the dynamics. Our results show that the different initial conditions also
affect scales near the onset of non-linear structure formation.



Part III

A P P E N D I X





A
C O S M O L O G Y

a.1 friedmann equations

The dynamics of space-time is described in the framework of General Relativity. Here,
space-time is a four dimensional manifold with a metric tensor gµν being the dynamical
field of the theory. The metric defines the line element, i. e. the differential arc length of
world lines, and a scalar product by

ds2 = gµνdxµdxν (A.1)

aµb
µ = gµνa

νbµ. (A.2)

We adopt conventions that index pairs on different levels are to be summed over and
greek indices enumerate all four space-time coordinates (0 6 µ 6 3) while latin indices
enumerate three dimensional space (1 6 i 6 3). The metric tensor gµν is symmetric,
which implies it has 10 independent components. The geometric degrees of freedom,
i. e. the metric components, are coupled to the energy content of space-time by Einstein’s
field equations (Einstein [13])

Gµν =
8πG

c4
Tµν +Λgµν. (A.3)

The right-hand side is the energy content expressed by the energy-momentum tensor
Tµν augmented by a ’cosmological constant’ Λ term. The left-hand side is the Einstein
tensor

Gµν = Rµν −
1

2
Rgµν, (A.4)

which is given by the Ricci (curvature) tensor Rµν and its trace. The Ricci tensor is
a function of the first and second order derivatives of the metric and thus Einstein’s
field equations are second order differential equations for the metric components. It
is important to note that this theory is inherently non-linear, since the geometry of
space-time is determined by its energy content and the motion of matter and energy is
determined by the geometry of space-time.
In cosmology two simplifying assumptions about space-time are being made:

• spatial isotropy,

• spatial homogeneity.

These assumptions can only hold for averages over sufficiently large scales. Observations
of galaxies show that their distribution is anisotropic but the CMB is highly isotropic. The
CMB is the signal from the last scattering surface, when the Universe became electrically
neutral and transparent (to photons). Before, the mean free path of photons was very
short due to the large Thomson cross-section of the free electrons. Homogeneity follows
from the fact that no position in the Universe is preferred to any other.
This allows considerable simplifications for the metric tensor. Considering a fundamen-
tal observer, whose comoving coordinates are fixed (dxi = 0), his proper time must be
the coordinate time and therefore g00 = −c2. It must be possible to choose coordinates
such that the space-time components of the metric g0i are zero, since g0i 6= 0 would
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specify a direction, violating isotropy. Then the metric permits a foliation of space-time
into spatial slices of constant time, since the line element takes on the form

ds2 = −c2dt2 + gijdxidxj. (A.5)

Homogeneity allows the spatial hypersurfaces to be scaled by a function a(t) that de-
pends on time only, and isotropy demands spherical symmetry. Introducing polar coor-
dinates (χ, ϑ,ϕ) the line element can be written in the form

ds2 = −c2dt2 + a2(t)
[
dχ2 + f2(χ)

(
dϑ2 + sin2 ϑdϕ2

)]
. (A.6)

The radial function f(χ) depends on the curvature of space, which by homogeneity must
be the same everywhere on the same hypersurface and must be trigonometric, linear or
hyperbolic in χ:

f(χ) =


K−1/2 sin(K

1/2χ), K > 0

χ, K = 0

‖K‖−1/2 sinh(‖K‖1/2χ), K < 0

, (A.7)

Here K parameterises the spatial curvature. The metric can therefore describe a spatially
closed (K > 0), flat (K = 0) or open (K < 0) space-time. The metric defining the line
element described by equation (A.6) is called Robertson-Walker metric.
The dynamics of space-time given by Einstein’s field equations (A.3) now reduces to
differential equations for the scale-factor a(t). In order to retrieve equations for a(t) we
need to specify the energy-momentum tensor, which will be that of a perfect fluid as
seen by a fundamental observer:

Tµν =
(
ρc2 + p

)
uµuν + pgµν. (A.8)

Due to homogeneity the energy density ρ and the pressure p may be functions of time
only. The differential equations governing the evolution of the scale-factor are(

ȧ

a

)2
=
8πG

3
ρ+

Λc2

3
−
Kc2

a2
(A.9a)

ä

a
= −

4πG

3

(
ρ+

3p

c2

)
+
Λc2

3
. (A.9b)

These are Friedmann’s equations [14]. The overdot refers to a derivative with respect
to time. If the scale-factor in the Robertson-Walker metric satisfies these two equa-
tions, (A.6) is called Friedmann-Lemaître-Robertson-Walker metric. The scale-factor is
uniquely determined once its value is set for a specific point in time. A common choice
is a(t0) = a0 = 1 today.
Friedmann’s equations can be combined to yield an equation for the evolution of the
energy density

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (A.10)

This equation expresses energy conservation and is equivalent to the first law of thermo-
dynamics in absence of heat flows which would violate isotropy.
Pressure and energy density of a species, e. g. (non-)relativistic matter, are related by the
equation of state parameter w in the following way

p = wρc2. (A.11)
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For non-relativistic matter w = 0 and the energy density is proportional to a−3, i. e. the
energy density is diluted due to the expansion of space. Relativistic matter has w =
1/3 and the energy density falls like a−4, i. e. in addition to the dilution the energy is
redshifted.
Next we introduce parameters and rewrite equation (A.9a) in terms of those. The first
parameter is the Hubble function

H(t) =
ȧ(t)

a(t)
, (A.12)

which is the expansion rate of the Universe. Its value today is called the Hubble constant
and is usually expressed in terms of the dimensionless parameter h

H0 = 100h
km/s
Mpc

. (A.13)

with h = 0.6727± 0.0066 (Planck Collaboration et al. [32]). A length scale of the Universe
is given by the Hubble length lH =c/H(t), i. e. the speed of light divided by the Hubble
function. The total energy density in a spatially flat Universe with K = 0 is the critical
density

ρc =
3H2

8πG
(A.14)

with a value today of

ρc0 = 1.86× 10−29h2 g
cm3 . (A.15)

It is customary to express the energy densities of non-relativistic matter, radiation (rela-
tivistic matter), the cosmological constant and curvature as dimensionless quantities in
the following way:

Ωm =
ρm(t)

ρc
, Ωr =

ρr(t)

ρc
, ΩΛ =

Λc2

3H2
, ΩK = −

Kc2

a2H2
. (A.16)

With these parameters the first Friedmann equation (A.9a) becomes

H2(t) = H20

(
Ωm0a

−3 +Ωr0a
−4 +ΩΛ0 +ΩK0a

−2
)

, (A.17)

where the curvature parameter today equals ΩK0 = 1−
∑
Ωi0 and is close to zero.

a.2 linear structure formation

While on the largest scales the Universe is homogeneous and isotropic, it contains struc-
tures such as galaxies and galaxy clusters. The growth of these structures should be
worked out in terms of General Relativity but, since their size is much smaller than the
scale of the Universe, i. e. the Hubble length lH =c/H, and velocities are non-relativistic,
any effects of curvature and propagation of information at a finite speed can be ne-
glected. Then it is sufficient to work with Newtonian dynamics.
A perfect fluid under the influence of gravity obeys the hydrodynamic equations to-
gether with the Poisson equation for the gravitational potential Φ:

∂tρ+∇ · (ρ~u) = 0, (A.18)

∂t~u+ (~u · ∇) ~u = −
∇p
ρ

−∇Φ, (A.19)

∇2Φ = 4πGρ. (A.20)
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The first is the continuity equation stating the conservation of mass in a given volume:
the change of a fluid element’s density in time is given by the difference of in- and
out-flow of mass. The second is the Euler equation which is a momentum conservation
equation. The acceleration of a fluid element is given by the forces, i. e. pressure gradient
and gravity, acting on it. The last is the Poisson equation meaning that the curvature of
the gravitational potential is sourced by the mass density.
The density ρ, velocity ~u, pressure P and gravitational potentialΦ are functions of time t
and position ~x since we are now considering the formation of inhomogeneous structures.
We will decompose these quantities in a homogeneous and isotropic background and a
small perturbation. For any quantity Q(t,~x) we write:

Q(t,~x) = Qb(t) + δQ(t,~x), (A.21)

where the subscript b indicates the background solution. The background quantities
solve equations (A.18)-(A.20) exactly and have the form

ρb = ρ0a
−3, ~ub =

ȧ

a
~r = H(t)~r, Φb =

2πG

3
ρbr

2, (A.22)

and the scale-factor obeys Friedmann’s equations. The subscript 0 refers to the value
today, when a0 = 1.
We can now plug in the perturbed quantities into (A.18)-(A.20), use the fact that the back-
ground solves the equations separately and keep only terms linear in the perturbations.
We then arrive at

∂tδρ+ 3Hδρ+H~r · ∇δρ+ ρ∇ · δ~u = 0 (A.23)

∂tδ~u+ 3Hδ~u+H~r · ∇δ~u = −
∇δP
ρ

−∇δΦ (A.24)

∇2δΦ = 4πGδρ. (A.25)

Usually the equations are expressed in terms of the density contrast δ = δρ/ρ̄ and comov-
ing coordinates ~x = ~r/a are introduced. Spatial derivatives must be changed accordingly
∇x = a∇r, and from the total differential of an arbitrary function f(t,~r)

df = ∂tfdt+∇rfd~r = (∂t +H~x · ∇x)fdt+∇xfd~x (A.26)

the partial time derivative in physical coordinates must be augmented by the advective
derivative with the cosmic flow. Then the linearised hydrodynamical equations are

∂tδ+∇ ·~v = 0 (A.27)

∂t~v+ 2H~v = −
∇δP
a2ρ̄

−
∇δΦ
a2

(A.28)

∇2Φ = 4πGρ̄a2δ, (A.29)

where we introduced the comoving peculiar velocity ~v =δ~u/a and omitted the reference
to the comoving coordinate ~x in the gradient terms. In addition to these equations we
need an equation of state relating the density and pressure perturbations

δP = c2sδρ, (A.30)

with the speed of sound cs.
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a.2.1 Density Perturbations

The linearised equations can be combined to yield a second order equation for the den-
sity contrast

δ̈+ 2Hδ̇−

(
c2s∇δ
a2

+ 4πGρδ

)
= 0, (A.31)

which is usually transformed into Fourier-space, i. e. the density contrast is decomposed
into plane-waves (cf. B.2.1). In Fourier space the evolution equation for each mode ~k

reads

δ̈k + 2Hδ̇k +

(
k2c2s
a2

− 4πGρ

)
δk = 0. (A.32)

From this equation it becomes apparent that pressure gradients will counteract the gravi-
tational contraction on small scales and lead to oscillations. The scale where gravitational
and pressure forces are in equilibrium is called the comoving Jeans scale

kJ =
2a
√
πGρ

cs
. (A.33)

Any perturbations on scales smaller than the Jeans scale (k > kJ) will oscillate and on
larger scales (k < kJ) either grow or decay.
On scales much larger than the Jeans scale or in pressureless fluids, i. e. dark matter,
pressure gradients can be neglected and the density contrast has a growing and decaying
solution

δk(a) = C1D+(a) +C2D−(a) ' δ0D+(a), (A.34)

that depend on the energy content of the Universe. Only the growing solution will be of
interest and is

D+(a) =
5a

2
Ωm(a)

(
Ω
4/7
m (a) −ΩΛ(a) +

(
1+

Ωm

2

)(
1+

ΩΛ(a)

70

))−1

, (A.35)

as given by Bernardeau et al. [7]. We give two examples:

• in the matter-dominated era withΩm0 = 1 density perturbations grow as the scale
factor a

• in the radiation-dominated era density perturbations grow proportional to a2.

a.2.2 Velocity Perturbations

The peculiar velocity δ~u of structures can also be read off the linearised equations. The
continuity equation (A.27) yields for the velocity divergence

∇ · δ~u = −aȧ
dδ
da

= −ȧ
d lnD+

d lna
δ. (A.36)

Commonly the logarithmic derivative of the growth factor is abbreviated as f = d lnD+
d lna

which is the growth rate. Then the peculiar velocity in linear theory is given by

δ~u = i
~k

k2
ȧf(a)δ. (A.37)
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For a pressureless fluid, Euler’s equation in its linearised form (A.28) suggests that the
peculiar velocity is proportional to the gradient of the potential perturbation. Employing
the ansatz δ~u = u(t)∇δΦ we arrive at

u(t) = −
2f(a)

3aHΩ
, (A.38)

where H(t) the Hubble function and Ω =
∑
iΩi is the sum over the energy density

parameters as defined in (A.16).
By taking the solenoidal part, i. e. the velocity components perpendicular to the wave-
vector ~k, of Euler’s equation (A.28) we find

δ~u⊥ ∝ a−1. (A.39)

Thus, the curl of the peculiar velocity in linear theory decays inversely proportional to
the scale factor from whatever initial value it had. Therefore it is safe to assume, that the
peculiar velocity field is sourced by a scalar potential initially.



B
M AT H E M AT I C A L B A C K G R O U N D

b.1 notation and abbreviations

b.1.1 Tensor Notation

In KFT the dynamical fields are the microscopic degrees of freedom of a canonical ensem-
ble ofN classical particles. Each particle may be labeled by a latin letter j,k, l, · · · = 1 . . .N
and therefore its position in 6-dimensional phase-space is

~xj(t) =

(
~qj(t)

~pj(t)

)
, (B.1)

where ~qj is the position and ~pj the canonical momentum. In order to keep notations
short and simple, we adopt the tensor notation of Bartelmann et al. [6] and organise the
phase-space coordinates of all particles in tensors

x(t) = ~xj(t)⊗~ej =

(
~qj(t)

~pj(t)

)
⊗~ej, (B.2)

where summation over repeated indices is implied. The N-dimensional vectors ~ej label
the particles with only the j-th component being non-vanishing and unity, i. e.

(
~ej
)
i
= δij.

We will also bundle the positions q(t) and momenta p(t) in the same way

q(t) = ~qj(t)⊗~ej, p(t) = ~pj(t)⊗~ej (B.3)

for convenience. The properties of the tensor product are

(a⊗ b)(c⊗ d) = (ac)⊗ (cd) (B.4)

(a⊗ b)ᵀ = aᵀ ⊗ bᵀ (B.5)

Tr(a⊗ b) = Tra · Trb, (B.6)

and we define the scalar product of two tensors of type (B.2) by

〈a, b〉 ≡
(
~aj ⊗~ej

)
·
(
~bk ⊗~ek

)
= ~aj · ~bkδjk = ~aj · ~bj, (B.7)

with an implied summation over repeated indices. In this notation the 6-dimensional
phase-space gradient for the j-th particle takes the form

∇j =

(
∇qj
∇pj

)
, (B.8)

where the gradient ∇qj acts on the position and ∇pj acts on the momentum of the j-th
particle. We can extend this along the lines of (B.2) to all N particles.
Apart from the particles’ respective phase-space coordinates we attribute source fields
J(t) and K(t) to particles

J(t) =

(
~Jqj(t)

~Jpj(t)

)
⊗~ej, K(t) =

(
~Kqj(t)

~Kpj(t)

)
⊗~ej, (B.9)

with the obvious reduction to the position and momentum subspaces.
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b.1.2 Abbreviations

Aside from the tensorial notation we introduce additional abbreviations. Integrals over
6N-dimensional phase-space are written as

∫
dx =

∫
dq
∫

dp =

 N∏
j

∫
d3qj

 N∏
j

∫
d3pj

 , (B.10)

with the obvious reduction to position and momentum subspaces. Since we will en-
counter various Fourier transformations (cf. B.2.1), we introduce the following shorthand
notations∫

q
=

∫
d3q,

∫
k
=

∫
d3k
(2π)3

, (B.11)

where ~q is the real-space and ~k the Fourier-space position vector.
The macroscopic fields that we calculate from the generating functional (2.8) in the body
of this work depend on both time t and position in Fourier-space ~k, which we abbreviate

as 1 =
(
~k1, t1

)
and −1 =

(
−~k1, t1

)
for notational convenience.

We will also abbreviate parial derivatives with respect to time with either of the follow-
ing

∂

∂t
f(t) = ∂tf(t) = ḟ(t). (B.12)

b.2 mathematical concepts

b.2.1 Fourier Transform

The Fourier transform of a function f(~q) in real space represents a decomposition into
plane waves with wave number ~k. It is defined by the integral

f̃(~k) = F[f(~q)] =

∫
q
f(~q)e−i~k·~q, (B.13)

and its inverse is given by

f(~q) = F−1[f̃(~k)] =

∫
k
f̃(~k)ei~k·~q (B.14)

with the abbreviations introduced in (B.11).
In this work we will frequently make use of two particular Fourier-transforms, namely
for the Dirac delta distribution

F[1] =

∫
q

e−i~k·~q = (2π)3δD(~k), (B.15)

and for a Gaussian distribution

F

[
1√

(2π)3σ
exp

(
−
q2

2σ2

)]
= exp

(
−
σ2k2

2

)
, (B.16)

which is again a Gaussian distribution but with inverse width.
An important property of Fourier transforms is expressed by the convolution theorem,
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i. e. the Fourier transform of a convolution in real space turns into a multiplication in
Fourier space:

F[f ∗ g] = F

[∫
x
f(~x)g(~q−~x)

]
= f̃(~k)g̃(~k), (B.17)

which also applies to a convolution in Fourier space and the inverse transform.
Another property we will frequently make use of is the relation between the derivative
of a function in real space and its Fourier transform:

F[∇qf(~q)] = i~kf̃(~k), (B.18)

which is readily proven by a partial integration and assuming the function vanishes at
infinity. Of course this relation can be easily extended to higher order derivatives.

b.2.2 Functional Derivative

The main object of KFT is the generating functional Z[J, K], which is an integral over
phase-space weighted by a conditional probability. Information about macroscopic fields
are obtained by appropriate functional derivatives acting on the generating functional.
In general a functional is a map from the set of continuous and differentiable functions
into the set of real or complex numbers:

F : C∞ 7→ R or F : C∞ 7→ C. (B.19)

An easy example is the integral of a function

F[ϕ] =

∫b
a

dxϕ(x) (B.20)

over an interval (a,b). The functional derivative δF
δϕ(x) quantifies the change of the

functional F when varying the function ϕ. Say the variation of the function by a small
amount can be written as δϕ(x) = εφ(x) with ε being an infinitesimal number and some
function φ(x). Then the functional derivative is defined by∫

dx
δF[ϕ]

δϕ(x)
φ(x) =

d
dε
F[ϕ+ εφ]

∣∣∣∣
ε=0

. (B.21)

Analogous to the usual derivative, the functional derivative is linear, obeys the product
and the chain rules, and the order of mixed functional derivatives can be chosen arbi-
trarily.
While (B.21) is the formal definition of the functional derivative and closely related to
the principle of least action, we will give the reader a few relations that will be used
frequently in the calculations of this work. The functional derivative of a function ϕ(x)
with respect to itself is

δ

δϕ(y)
ϕ(x) = δD(x− y), (B.22)

where x,y ∈ Rd with arbitrary dimension d. If the dimension is different from one, we
understand that the difference (x− y) is zero in every component.
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We will often apply the functional derivative to an exponential of an integral over a
product of functions. The result reads

δ

δϕ(y)
exp

(∫
dxϕ(x)ξ(x)

)
= exp

(∫
dxϕ(x)ξ(x)

) ∫
dxδD(x− y)ξ(x)

= ξ(y) exp
(∫

dxϕ(x)ξ(x)
)

. (B.23)

Since the source fields (B.9) are 6-dimensional vectors for each particle, we encounter
the functional derivative with respect to vector-valued functions. We interpret this as a
functional gradient

δ

δ~ϕ(~x)
=

(
δ

δϕ1(~x)
, . . . ,

δ

δϕn(~x)

)ᵀ

(B.24)

for an n-component function.

b.2.3 Green’s Function

In Chapter 2 we will discuss the trajectories of particles through phase-space by means
of Green’s functions, which are the solutions to the homogeneous (free) equations of
motion. A homogeneous equation of the form

(∂t + a(t)) f(t) = 0 (B.25)

is solved by

fR(t) = f0 exp
(
−

∫t
t0

dt ′a(t ′)
)

(B.26a)

fA(t) = f0 exp
(∫t0
t

dt ′a(t ′)
)

, (B.26b)

where the indices denote the retarded fR and advanced fA solutions and f0 denoting
the initial value. Since we are only interested in the retarded solution of this problem,
we discard the advanced solution for now.
Knowing the solution of (B.25) allows solving the inhomogeneous equation

(∂t + a(t)) f(t) = g(t) (B.27)

by variation of constants. The retarded solution is given by

fR(t) =

∫t
dt ′g(t ′) exp

(
−

∫t
t ′

dt ′′a(t ′′)
)
θ(t− t ′). (B.28)

Therefore the retarded Green’s function to the problem is

GR(t, t ′) = exp
(
−

∫t
t ′

dt ′′a(t ′′)
)
θ(t− t ′). (B.29)

The complete solution is given by a superposition of the homogeneous and particular
solutions

f(t) = GR(t, t0)f0 +
∫t
t0

dt ′GR(t, t ′)g(t ′) (B.30)
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with appropriate boundary conditions and t > t0.
We give here a simple example from classical mechanics and leave the discussion of
motion in expanding space to the body of this work. Imagine a particle moving under
the influence of an interaction potential through phase-space with initial position ~x(i) =(
~q(i),~p(i)

)ᵀ
. Its equation of motion is given by the Hamiltonian equations

∂t~q = ∇pH(~q,~p, t), ∂t~p = −∇qH(~q,~p, t), (B.31)

where H(~q,~p, t) is the Hamiltonian of the motion

H(~q,~p, t) =
p2

2m
+ V(~q, t). (B.32)

Rewriting the equations of motion for the phase-space vector ~x they read

∂tx = I∇H(~q,~p, t) =

(
∇p
−∇q

)
H(~q,~p, t) =

(
~p/m

−∇qV

)
, (B.33)

where we used the form of the symplectic matrix I and the form of the Hamiltonian. We
can now split the motion into the ballistic free motion of the particle due to its initial mo-
mentum ~p(i) and treat the interaction due to the potential V(~q, t) as the inhomogeneity.
Then the Green’s function for this problem reads

GR(t, t ′) =

(
I3 t−t ′

m I3
0 I3

)
θ(t− t ′), (B.34)

such that the trajectory of this particle through phase-space is given by

~x(t) = GR(t, t(i))~x(i) −
∫t
t(i)

dt ′GR(t, t ′)

(
0

∇qV(~q, t ′)

)
, (B.35)

that is a sum of the free motion and the correction due to a potential interaction,
e. g. gravity.





C
S C A L A R S O F T H E 2 - P O I N T M O M E N T U M - D E N S I T Y
C O R R E L AT I O N T E N S O R

c.1 approximated initial correlations

Here we give expressions for the power-spectrum of the momentum-density, divergence
and curl of this field based on our calculations of Section 4.1.

Tr〈~Π⊗ ~Π〉 = ρ̄2δD(~k1 +~k2)(2π)
3
(
Atr

free +B
tr
total +C

tr
total
)

, (C.1)

〈∇ · ~Π∇ · ~Π〉 = ρ̄2δD(~k1 +~k2)(2π)
3
(
Adiv

free +B
div
total +C

div
total

)
, (C.2)

〈
(
∇× ~Π

)
·
(
∇× ~Π

)
〉 = ρ̄2δD(~k1 +~k2)(2π)

3
(
Acurl

free +B
curl
total +C

curl
total

)
, (C.3)

where the functions Aifree denotes the free contributions, Bitotal denotes the corrections
from the diagrams in Figure 6, and Citotal denotes the corrections from the diagrams
in Figure 7, with i = (tr, div, curl). The explicit form of the terms is after renaming
~k1 = −~k2 = ~k:

Atr
free =(gt,t0pp )2eQD

[
Pψ(k)k

2

(
1−

2σ21
3

(gt,t0qp )2k2

)

+(gt,t0qp )2
∫
k ′
Pψ(k

′)Pψ(∆)
(
~∆ ·~k

)((
~∆ ·~k

)
k ′2 +

(
~k ·~k ′

)(
~∆ ·~k ′

))]
, (C.4)

Btr
total =2(g

t,t0
pp )2

∫
dt ′gt,t

′
qp g

t ′,t0
qp

[
eQDv(k, t ′)

σ21
3
(gt,t0qp − gt

′,t0
qp )k6Pψ(k)

+

∫
k ′

eQDv(k ′, t ′)
(
~k ·~k ′

)
×

×
[
−gt,t0qp k

′2Pψ(∆)Pψ(k ′)
(
∆2
(
~k ·~k ′

)
+
(
~∆ ·~k ′

)(
~∆ ·~k

))
+k ′2Pψ(k)Pψ(k ′)

(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
)
·
(
~k ′k2 +~k

(
~k ·~k ′

))
+gt

′,t0
qp

(
~∆ ·~k

)(
~∆ ·~k ′

)(
~k ·~k ′

)
Pψ(k)Pψ(∆)

]]
, (C.5)

Ctr
total =2g

t,t0
pp

∫
dt ′gt,t

′
pp g

t ′,t0
qp

[
eQD

(
v(k, t ′)(gt,t0qp )2

σ21
3
k6Pψ(k)

−gt
′,t0
qp g

t,t0
qp

∫
k ′

(
~k ·~k ′

)2 (
~∆ ·~k

)2
Pψ(k

′)Pψ(∆)
)

+

∫
k ′

eQDv(k ′, t ′)
[(

~k ·~k ′
)
Pψ(k)

(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
)

·
(
~∆gt

′,t0
qp

(
~k ·~k ′

)(
~∆ ·~k ′

)
Pψ(∆) +~kk ′2

(
~k ′ ·

(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
))
Pψ(k

′)
)

−gt,t0qp k
′2
(
~∆ ·
(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
))
Pψ(∆)Pψ(k

′)×

×
((

~∆ ·~k ′
)(

~k ·~k ′
)
+ k ′2

(
~∆ ·~k

))]]
, (C.6)
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with the definition ~∆ := ~k−~k ′. For the divergence spectrum the explicit expressions are

Adiv
free =(gt,t0pp )2eQD

[
Pψ(k)k

4

(
1−

2σ21
3

(gt,t0qp )2k2

)

+2(gt,t0qp )2
∫
k ′
Pψ(k

′)Pψ(∆)
(
~∆ ·~k

)2 (
~k ·~k ′

)2]
, (C.7)

Bdiv
total =2(g

t,t0
pp )2

∫
dt ′gt,t

′
qp g

t ′,t0
qp

[
eQDv(k, t ′)

σ21
3
(gt,t0qp − gt

′,t0
qp )k8Pψ(k)

+

∫
k ′

eQDv(k ′, t ′)
(
~k ·~k ′

)
×

×
[
−2gt,t0qp k

′2Pψ(∆)Pψ(k ′)
(
~∆ ·~k

)2 (
~k ·~k ′

)
+k2k ′2Pψ(k)Pψ(k ′)

(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
)
·
(
~k ′k2 +~k

(
~k ·~k ′

))
+gt

′,t0
qp

(
~∆ ·~k

)(
~∆ ·~k ′

)(
~k ·~k ′

)
k2Pψ(k)Pψ(∆)

]]
, (C.8)

Cdiv
total =2g

t,t0
pp

∫
dt ′gt,t

′
pp g

t ′,t0
qp

[
eQD

(
v(k, t ′)(gt,t0qp )2

σ21
3
k8Pψ(k)

−gt
′,t0
qp g

t,t0
qp k

2

∫
k ′

(
~k ·~k ′

)2 (
~∆ ·~k

)2
Pψ(k

′)Pψ(∆)
)

+

∫
k ′

eQDv(k ′, t ′)
(
~k ·~k ′

)[
k2Pψ(k)

(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
)

·
(
~∆gt

′,t0
qp

(
~k ·~k ′

)(
~∆ ·~k ′

)
Pψ(∆) +~kk ′2

(
~k ′ ·

(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
))
Pψ(k

′)
)

−2gt,t0qp k
′2
(
~∆ ·
(
g
t,t0
qp

~k− gt
′,t0
qp

~k ′
))
Pψ(∆)Pψ(k

′)
(
~∆ ·~k

)(
~k ·~k ′

)]]
. (C.9)

For the curl spectrum we multiply the terms of the trace with k2 and subtract the diver-
gence terms

Acurl
free =(gt,t0pp g

t,t0
qp )2eQD

∫
k ′
Pψ(k

′)Pψ(∆)
(
~∆ ·~k

)
×

×
[
k2k ′2

(
~∆ ·~k

)
+ k2

(
~k ·~k ′

)(
~∆ ·~k ′

)
− 2

(
~k ·~k ′

)2 (
~∆ ·~k

)]
, (C.10)

Bcurl
total =2(g

t,t0
pp )2

∫
dt ′gt,t

′
qp g

t ′,t0
qp g

t,t0
qp

∫
k ′

eQDv(k ′, t ′)Pψ(k ′)Pψ(∆)k ′2
(
~k ·~k ′

)
×

×
[
2
(
~k ·~k ′

)(
~∆ ·~k

)2
− k2∆2

(
~k ·~k ′

)
− k2

(
~∆ ·~k

)(
~∆ ·~k ′

)]
, (C.11)

Ccurl
total =2g

t,t0
pp

∫
dt ′gt,t

′
pp g

t ′,t0
qp g

t,t0
qp

∫
k ′

eQDv(k ′, t ′)Pψ(k ′)Pψ(∆)k ′2
(
~∆ ·
(
g
t,t0
qp

~k− gt
′,t0
qp

~k
))
×

×
[
2
(
~k ·~k ′

)2 (
~∆ ·~k

)
− k2

(
~∆ ·~k ′

)(
~k ·~k ′

)
− k2k ′2

(
~∆ ·~k

)]
. (C.12)

It is important to note at this point that the power-spectrum of ∇⊗ ~Π is completely
determined by mode-coupling terms. And is therefore a non-linear effect.
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c.2 full initial momentum correlations

In this section we give only the free contributions since the explicit expressions including
the first order interactions do not provide any more insight than the expressions given
in Section 4.2.

Tr
〈
~Π⊗ ~Π

〉
=ρ̄2δD(~k+~k ′)(2π)3eQD

{∫
q

exp(Q(q) + i~k · ~q)
}(

gt,0qpg
t,0
pp

σ21
3

)2
k2

+

{∫
q

exp(Q(q) + i~k · ~q)a‖(q)
}[

(gt,0pp)
2

(
2σ21
3

(gt,0qp~k)
2 − 1

)]

+

{∫
q

exp(Q(q) + i~k · ~q)a2‖(q)
}
(gt,0qpg

t,0
pp)

2k2

−

{∫
q

exp(Q(q) + i~k · ~q)a⊥(q)
}
2(gt,0pp)

2

]
, (C.13)

~k ·
〈
~Π⊗ ~Π

〉
~k =ρ̄2δD(~k+~k ′)(2π)3eQD

{∫
q

exp(Q(q) + i~k · ~q)
}(

gt,0qpg
t,0
pp

σ21
3

)2
k4

+

{∫
q

exp(Q(q) + i~k · ~q)a‖(q)
}[

(gt,0pp~k)
2

(
2σ21
3

(gt,0qp~k)
2 − 1

)]

+

{∫
q

exp(Q(q) + i~k · ~q)a2‖(q)
}
(gt,0qpg

t,0
pp)

2k4
]

, (C.14)

〈
(
∇× ~Π

)
·
(
∇× ~Π

)
〉 =ρ̄2δD(~k+~k ′)(2π)3eQD×

×
[
−2(gt,0ppk)

2

∫
q

exp(Q(q) + i~k · ~q)a⊥(q)
]

. (C.15)

The quadratic form Q(q) is defined by

Q(q) := −(gt,t0qp )2k2a‖(q), (C.16)

for a 2-point function. We omit at this point the explicit expressions for the corrections
of the linear interaction order, since their form does not provide any insight. The terms
are readily written down from (4.26).
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c.3 born’s approximation

c.3.1 First/Naive Approximation

In the following we make use of the fact that the force on particle one is opposite to the
force on particle two but of the same magnitude:

Tr
〈
~Π⊗ ~Π

〉
= eQD−F

{∫
q
w(q)

}(gt,0qpgt,0ppσ213
)2
k2 − 2igt,0qpg

t,0
pp

σ21
3
~k · ~f1 − (~f1)

2


+

{∫
q
w(q)a‖(q)

}[
(gt,0pp)

2

(
2σ21
3

(gt,0qp~k)
2 − 1

)
− 2igt,0qpg

t,0
pp

~k · ~f1

]

+

{∫
q
w(q)a2‖(q)

}
(gt,0qpg

t,0
pp)

2k2 −

{∫
q
w(q)a⊥(q)

}
2(gt,0pp)

2

]
, (C.17)

~k ·
〈
~Π⊗ ~Π

〉
~k

= eQD−F

{∫
q
w(q)

}(gt,0qpgt,0ppσ213
)2
k4 − 2igt,0qpg

t,0
pp

σ21
3
k2~k · ~f1 − (~k · ~f1)2


+

{∫
q
w(q)a‖(q)

}[
(gt,0pp~k)

2

(
2σ21
3

(gt,0qp~k)
2 − 1

)
− 2igt,0qpg

t,0
ppk

2~k · ~f1

]

+

{∫
q
w(q)a2‖(q)

}
(gt,0qpg

t,0
pp)

2k4
]

, (C.18)

〈
∇× ~Π · ∇× ~Π

〉
= k2Tr

〈
~Π⊗ ~Π

〉
−~k ·

〈
~Π⊗ ~Π

〉
~k

= eQD−F
[{∫

q
w(q)

}(
(~k · ~f1)2 − (~f1)

2k2
)
− 2(gt,0ppk)

2

∫
q
w(q)a⊥(q)

]
= −2eQD−F(gt,0ppk)

2

∫
q

exp(Q(q) + i~k · ~q)a⊥(q), (C.19)

with w(q) = exp(Q(q) + i~k · ~q)

c.3.2 Revised Approximation

We showed the form of terms T2 and T3 in (4.51). Due to statistical homogeneity is the
contribution of those terms the same and we may write

2T2 =2(2π)3ρ̄2δD(Lq)gt,0ppe−F
∫
~κ,t ′

gt,t
′

pp v(~k−~κ, t ′)eQD×

×

[
σ21
3
Bi
∫
q

eA(~κ,~q,t,t ′) +

∫
q
(Ki1 +K

i
2)e

A(~κ,~q,t,t ′)

]
, (C.20)

with ~κ = ~k− ~k ′ and i = (tr, div, curl). With the definition of the shift tensors and the
projector

L ′q = −~κ⊗ (~e1 −~e2), L ′p = −(gt,t0qp ~k− gt
′,t0
qp

~k ′)⊗ (~e1 −~e2), π̂
‖
21 =

~κ⊗~κ

κ2
, (C.21)
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we can write down the function

A(~κ,~q, t, t ′) = L ′p2 π̂
‖
21L
′
p1

(
a‖(q) − a⊥(q)

)
+ L ′p2 · L

′
p1
a⊥(q) + i~κ · ~q

= −(gt,0qp)
2 [(1− χ)kµ− χκ]2 a‖(q) − (gt,0qp)

2(1− χ)2(1− µ2)k2a⊥(q) + i~κ · ~q. (C.22)

Here µ is the angle cosine between ~k and ~κ, and χ := gt
′,t0
qp /g

t,t0
qp . The other functions Bi

and Ki1,2 are defined by scalar products

Btr :=
(
~k−~κ

)
· L ′p2 = g

t,0
qp ((1− χ)k(k− κµ) − χκ(kµ− κ)) , (C.23)

Bdiv := ~k ·
(
~k−~κ

)
~k · L ′p2 = g

t,t0
qp k

2(k− κµ)((1− χ)k− χκµ), (C.24)

Bcurl := k2
(
~k−~κ

)
· L ′p2 −~k ·

(
~k−~κ

)
~k · L ′p2 = g

t,0
qpχκ

2k2(1− µ2), (C.25)

and the other kernels have the form

Ktr
1 =

(
~k−~κ

)
· (π̂‖L ′p2)a‖(q)

= gt,0qp (kµ− κ) ((1− χ)kµ− χκ)a‖(q) (C.26)

Ktr
2 =

(
~k−~κ

)
· L ′p2 −

(
~k−~κ

)
· (π̂‖L ′p2)a⊥(q)

= gt,0qp(1− χ)k
2(1− µ2)a⊥(q) (C.27)

for the trace, and

Kdiv
1 = ~k ·

(
~k−~κ

)
~k · (π̂‖L ′p2)a‖(q)

= gt,0qpk
2µ(k− κµ) ((1− χ)kµ− χκ)a‖(q) (C.28)

Kdiv
2 = ~k ·

(
~k−~κ

)(
~k · L ′p2 −~k · (π̂‖L ′p2)

)
a⊥(q)

= gt,0qp(1− χ)k
3(k− κµ)(1− µ2)a⊥(q) (C.29)

for the divergence, and

Kcurl
1 = k2K1 −K

div
1

= −gt,0qp(1− µ
2)k2κ ((1− χ)kµ− χκ)a‖(q) (C.30)

Kcurl
2 = k2K2 −K

div
2

= gt,0qp(1− χ)k
3κ(1− µ2)µa⊥(q) (C.31)

for the curl power-spectrum.
The fourth correction term can be written as

T4 = −(2π)3ρ̄2δD(Lq)e−F
∫

dt ′
∫

dt ′′
∫
k ′,κ ′

gt,t
′

pp g
t,t ′′
pp eQDCi

∫
q

eA
′(~κ ′,~q,t ′,t ′′), (C.32)

with the shifts and projector

L ′q = −~κ ′ ⊗ (~e1 −~e2), L ′p = −(gt,0qp~k− g
t ′,0
qp

~k ′ − gt
′′,0
qp

~k ′′)⊗ (~e1 −~e2), (C.33)

π̂
‖
21 =

~κ ′ ⊗~κ ′

κ ′2
, (C.34)

and ~κ ′ = ~k−~k ′ −~k ′′. The kernels are

Ctr = ~k ·~k ′ = k(k1µµ ′ − k− κµ ′), (C.35)

Cdiv = (~k1 ·~k)(~k1 ·~k ′) = k21kµµ
′(k1 − kµµ ′ − κµ), (C.36)

Ccurl = k21C
tr −Cdiv = k21k(k(µ

2µ ′2 − 1) + κµ ′(µ2 − 1)). (C.37)
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