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Abstract

The thermal state of the intergalactic medium (IGM) is an important probe of physical
properties for the bulk of gas in the universe. Here, we perform a new measurement
of the thermal state for redshift z . 5.4 covering 12 billion years from the endstage of
reionization to the present day. For this purpose we measure the Lyman-α forest flux
power spectrum based on high resolution quasar spectra from different ground- and
space-based spectrographs, combine this analysis with archival measurements of percent
level precision, analyze hydrodynamical simulations, use powerful statistical techniques
for interpolation, and perform Bayesian inference via Markov chain monte carlo. We
observe a rise in the temperature at mean density from 6000K at z = 5.4 towards
14 000 K at z = 3.4 followed by a cooldown phase reaching 6000 K at z = 0.03. This
evolution is provides conclusive evidence for photoionization heating due to reionization
of He Ⅱ, as well as the subsequent cooling of the IGM due to an expanding universe in
concordance with model predictions. The agreement with previous measurements is
good as well, but our analysis supercedes those by accounting for additional parameters
that we marginalize over, and by the vast cosmological timespan our measurement spans.
At the highest redshifts z > 5 we infer lower temperatures than expected from the
standard picture of IGM heating allowing leaving little room for additional smoothing
due to warm dark matter free streaming. Additionally, our measurement for z < 0.5

allows additional constraints on the ultraviolet background in contradiction to previous
claims of a UV underproduction crisis.



Zusammenfassung

Die thermische Entwicklung des intergalaktischen Mediums (IGM) ist eine wichtige
Möglichkeit physikalische Eigenschaften vom Großteil des Gases im Universum zu be-
stimmen. In dieser Arbeit führen wir eine Messung der thermischen Entwicklung über
12 Milliarden Jahre durch, welche die gesamte Zeitspanne von Rotverschiebung z ∼ 5.4

in der Endphase des Zeitalters der Reionisation bis heute umfasst. Zu diesem Zweck
bestimmen wir das Modenspektrum des Flusses im Lyman-α Wald mithilfe existieren-
der spektroskopischer Daten diverser weltraum- und bodengebundener Instrumente,
vereinigen dieses mit prozentgenauen Messungen aus dem Archiv, analysieren hydro-
dynamische Simulationen, nutzen mächtige statistische Werkzeuge zur Interpolation,
und ermitteln physikalische Parameter mittels Markov-Ketten-Monte-Carlo Verfahren.
Wir beobachten einen Anstieg der Temperatur bei mittlerer Dichte T0 von 6000 K bei
z = 5.4 zu 14 000 K bei z = 3.4. Darauf folgt eine Abkühlungsphase, sodass T0 bei
z = 0.03 einen Wert von 6000 K erreicht. Aus dieser Entwicklung lässt ein sich klarer
Beleg für die Erwärmung des IGMs durch Photoionisation während der Reionisation
von He Ⅱ. Die Abkühlung erfolgt aufgrund der Expansion des Universums und ist im
Einklang mit Modellvorhersagen. Die Übereinstimmung mit vorherigen Messungen
der thermischen Entwicklung ist ebenfalls gut, unsere Messung geht aber insbeson-
dere durch Berücksichtigung weiterer Parameter und Marginalisierung über selbige
sowie durch den erweiterten abgedeckten Zeitraum darüber hinaus. Für die höchsten
Rotverschiebungen z > 5 messen wir niedrigere Temperaturen als im üblichen Modell
für das IGM erwartet werden. Dadurch bleibt wenig Platz für die weitere Verwischung
von Strukturen, z.B. durch warme Dunkle Materie. Schließlich ermöglicht unsere Mes-
sung bei kleinen Rotverschiebungen z < 0.5 Rückschlüsse auf den metagalaktischen
UV Hintergrund. Dies widerspricht früheren Messungen, welche einen Mangel an UV
Photonen schlussfolgerten und ist im Einklang mit den neuesten Ergebnissen, welche
diesen Mangel widerlegen.
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Preface

The present thesis contains the bulk of the work I conducted for my PhD project at both
the Max-Planck-Institute for Astronomy and the University of California, Santa Barbara
which was supervised by Prof. Joseph F. Hennawi starting 2012.

The scientific goal of the project is to perform a measurement of thermal evolution in
the IGM covering the time from the epoch of reionization to the present. The original
motivation for this was that, although many measurements had been performed in
the past, at the start of the project those results have been strongly discrepant with
each other, resulting in claims for the need of non-standard sources of IGM heating to
explain thermal measurements. But in the meantime there had been significant progress
concerning both the size of datasets for these kinds of analyses available in the archives
as well as on the accuracy of numerical simulations due to the increase in computational
resources.

The general picture for thermal evolution of the IGM in the timeframe analyzed in
this work is a period of heat injection due to He Ⅱ reionization followed by a cooling
trend dominated by the expansion of the Universe. While the detection of the heating
signature has been claimed before, the latter has never been conclusively observed.
Coincidentally, this timeframe includes the peak of galaxy and quasar formation at z ∼ 2

and measurements of cosmological parameters based on spectroscopic surveys of the
Lyman Alpha (Lyα) forest fall in this range.

The project is divided into three parts. First, we measure the Lyα forest flux power
spectrum at redshifts 1.8 ≤ z ≤ 3.4. This statistical property is sensitive on the thermal
state of the IGM as well as on e.g. the nature of dark matter, or the mass of neutrinos
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Preface

and thus is of general interest independent of our conclusions on thermal evolution. We
discuss the most important properties of the Lyα forest regarding this work in chapter 2.
In chapter 3 we measure the power spectrum from archival high-resolution quasar
spectra. While this has in principle been done before, we used a significantly larger
dataset than any previous study based on high resolution data. The main challenges
for this measurement have been discrepancies with existing data based on large scale
structure surveys delivering two percent precision. These discrepancies were tracked
down to at least partly originate in contaminations inside the spectra due to e.g. metal
absorption lines, which led us to mask large parts of the data and develop a full forward
modeling pipeline for our measurement. In this part we also develop a Bayesian inference
pipeline, in principle allowing to measure the thermal state of the IGM. However, during
the project we figured out that the accuracy of the numerical simulations we used at the
time was not sufficient for the task.

In the second part, we performed a Bayesian measurement of thermal evolution for
1.8 ≤ z ≤ 5.4 (chapter 4). For this purpose, we combined our newly measured power
spectrum with recent measurements of the same quantity performed by different groups
at different redshifts and with different instruments. We switched from a relatively cheap
simulational approach based on darkmatter simulations to using grids of computationally
expensive hydrodynamical simulations. The high computation costs for those models
also required running less models than before and tuning our inference pipeline to handle
this.

Finally, in the last six months of this project, we analyzed archival datasets at later
cosmic times (chapter 5). These data have to be taken with space based UV spectrographs,
which required additional treatment of peculiarities of the Hubble space telescope.
However, due to those complications precise thermal state measurements at these times
have never been performed before. These new measurements increase our baseline in
cosmic time from ∼ 3Gyr to > 12Gyr allowing to test if models of the IGM still agree
with the data after the peak of Galaxy formation.

The work included in chapter 3 is adapted from a published paper of mine (Walther et
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al., 2018a). The thermal evolution measurement in chapter 4 is adapted from a paper that
was recently submitted to ApJ as Walther et al. (2018c). The low redshift measurement
in chapter 5 was conducted in strong collaboration with Vikram Khaire, part of this
work (the power spectrum measurement and a preliminary analysis of the ultraviolet
background) has been submitted as Khaire, Walther, et al. (2018). The thermal evolution
constraint (together with a better measurement of the UV background) is planned to be
submitted asWalther et al. (2018b) after inclusion of further redshifts from this sample. All
contributions to the modeling of the power spectrum including the characterization of the
window function for these works are my own work. The data preparation was performed
mostly by Vikram Khaire, who also performed the power spectrum measurement using
an updated version of the analysis pipeline we developed for the high-redshift analysis.
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1. Introduction

1.1. The Current Model of Cosmological Structure

Formation

Our current model of cosmology and structure formation is based on the fundamental
assumptions that the universe is (mostly) isotropic and homogeneous, and it’s evolution
is described by the framework of General Relativity. From these assumptions follows a
simple theoretical description (Friedmann, 1922; Lemaître, 1927) of the Universe whose
overall evolution is governed by the change in relative importance of different forms of
energy as well as an overall expansion:

ȧ2 + k

a2
=

8πGρ + Λc2

3
(1.1)

ä

a
= −

4πG

3

(
ρ +

3p

c2

)
+

Λc2

3
, (1.2)

with the scale factor a, the curvature parameter k , the gravitational constantG , the speed
of light c , the density ρ and pressure p. Hubble (1929) first detected an expansion (i.e.
increase of a) by measuring the line-of-sight velocity of distant Galaxiesv = zc , with the
redshift z = ∆λ/λ being connected to the scale factor as a = (1 + z)−1, and compared
them to their distances (measured from Cepheid variables). He then derived Hubble’s
law v = Hd and measured the Hubble parameter H 1.1 (although with a value far away

1.1This is only true for small redshifts, i.e. recent times, as H is evolving with time and the concept of
distance is not uniquely defined for larger redshifts (see e.g. Hogg, 1999).
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1. Introduction

from the current constraints) allowing to obtain the distance of an object by measuring
its redshift.

Since its foundations this theory proved tremendously successful. One of the most
constraining probes of this model is the cosmic microwave background (CMB) radiation
which was predicted by Alpher, & Herman (1948) and was first detected by Penzias, &
Wilson (1965). More recent observations of it have delivered percent level constraints
on cosmological paraemeters, deducing that the universe is flat (i.e. k = 0 in eqn. (1.2)).
While it is mostly homogeneous at early times, shows tiny but measurable inhomo-
geneities (∆T/T ∼ 10−5) are theoretically expected and were measured with the Cosmic
Background Explorer (COBE) (Smoot et al., 1992), the Wilkinson Microwave Anisotropy
Probe (WMAP) (Bennett et al., 2013), and Planck (Planck Collaboration et al., 2018).

At the same time, observations of virial masses of clusters (Zwicky, 1933) and galaxy
rotation curves (Rubin, & Ford, 1970) ultimately led to the postulation of collisionless cold
dark matter with overwhelming evidence now coming from many other observations as
well, e.g. lensing in clusters (e.g. the Bullet Cluster, Clowe et al., 2004), and from SNe
we learned that its expansion needs to be accelerated (Schmidt et al., 1998; Riess et al.,
1998; Perlmutter et al., 1998) demanding for some kind of Dark Energy1.2. Together these
observations led to the current standard model of cosmology (ΛCDM), consisting of a
cosmological constant Λ as well as cold dark matter (CDM). However, many questions
are still not answered, e.g.: What is Dark Energy? What is Dark Matter? When and how
did reionization happen? What is the mass of neutrinos?

The thermal evolution of the Universe is dictated its expansion history. At the begin-
ning the Universe is seeded by quantum fluctuations that are amplified to macroscopic
scales during inflation and provide the seeds for all structures we see today. After this
process the Universe is still extremely hot and subsequently cools due to adiabatic expan-
sion. During this cooling particles of decreasing mass freeze out of thermal equilibrium
as their interaction rate becomes smaller than the expansion rate. This leads to the
release of the cosmic neutrino background, Baryon nucleosynthesis, and finally the

1.2Note that both Dark Matter and Energy are required to explain the current CMB results as well.
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1.1. The Current Model of Cosmological Structure Formation

”recombination” of atoms (which was delayed due to a large photon to baryon ratio)
and release of the CMB photons (Alpher et al., 1948; Penzias, & Wilson, 1965; Planck
Collaboration et al., 2018). At this point (z ∼ 1100) the temperature of the Universe had
a temperature of ∼ 3000 K and was nearly 400 000 yr old.

After recombination, evolution is supposed to be relatively uneventful as the universe
is cooling down further and there is (nearly) no interaction between matter and radiation,
making these ”dark ages” essentially unobservable. In principle there are 21 cm emission
and absorption by H Ⅰ gas in this epoch (see Pritchard, & Loeb, 2012, for a review of the
processes), but these have never been conclusively observed1.3.

But during the dark ages bound structures start to form due to gravitational collapse in
overdense regions with the first galaxies being formed at z & 111.4. In these galaxies the
first stars formed, finally providing new photons generated via nuclear fusion processes
and thus starting the ”cosmic dawn”. Those photons then reionize the intergalactic
medium (IGM) which we’ll discuss in more detail in § 1.2.

We show the evolution of baryonic structures after reionization based on our hy-
drodynamical simulations (which we discuss in § 4.2) in Figure 1.1. Here we see the
concentration of gas forming a filamentary cosmic web which then collapse into halos
at late times. Note that while baryonic structure follows dark matter, collisions will
broaden its features relative to the extremely thin filaments formed by dark matter due
to finite pressure support.

This work aims to put constraints on thermal evolution at the end and after this ”Epoch
of Reionization”. We perform this measurement by studying the small scale structure of
the IGM (see § 1.3) probed by the Lyα forest power spectrum (see chapter 2).

1.3While a detection of the global apsorption feature has been claimed (Bowman et al., 2018), possibly this
result is based on a fluke in the data analysis (Hills et al., 2018). Current measurements of the power
spectrum of 21cm emission are performed by several groups (e.g. HERA, PAPER, LOFAR, MWA), but
currently foreground emission dominates the measurements (see e.g. Ali et al., 2015; Kohn et al., 2018).

1.4The currently highest redshift galaxy observation was presented in Oesch et al. 2016, but the James
Webb Space Telescope (JWST) is expected to find galaxies at earlier times, see e.g. Mason et al. 2015
for predictions

3



1. Introduction

Figure 1.1.: Evolution of Baryonic structure from z = 6 to z = 0.2 (top boxes and bottom left). We can
see that while most of the overdense gas (underdensities are colored in white) at z = 6 is
close to mean density and large parts of the volume are filled by this gas (light green color),
until z = 3 more and more gas moved to filaments showing overdensities of a few, and at
z = 0.2 some fraction of the gas mass is actually at halos with overdensities larger than 100.
For z = 0.2 we also show the distribution of dark matter (bottom right). Here we can see that
baryons mostly follow the dark matter distribution, but the latter produces finer filamentary
structures because it is collisionless (see Figure 2.3 for a rendering from the center of the box
showing this more clearly). The side length of the box is 20 h−1 Mpc.

4



1.2. The Epoch of Reionization

1.2. The Epoch of Reionization

The Epoch of Reionization ends the dark ages as new sources of H Ⅰ ionizing photons, i.e.
photons with E > 13.6 eV, emerge which ionize bubbles of H Ⅱ around themselves (for
general reviews about this epoch, see e.g. Barkana, & Loeb, 2001; Mesinger, 2016). These
sources are typically expected to be stars inside the first galaxies (e.g. Robertson et al.,
2013; Finkelstein et al., 2015; Oesch et al., 2014; Bouwens et al., 2015)1.5. As the ionized
bubbles grow in time, they eventually overlap, thus filling the entire universe, and leave
an almost completely ionized IGM behind.

Our currently strongest constraints of this process are coming from 2 sources. First,
CMB photons are Thomson scattered inside an ionized medium both dampening and
polarizing CMB fluctuations. The most recent constraints of these effects were obtained
by the Planck Collaboration et al. (2018) and lead to zreion,50 = 7.67 ± 0.731.6.

Additionally, as the fraction of neutral gas in the IGM increases it becomes less
transparent for Lyα photons and eventually turns completely opaque (see chapter 2 for a
more rigorous description). Measurements of the Lyα forest optical depth put this time
close to z = 6 (Fan et al., 2006a; Becker et al., 2015a; Bosman et al., 2018; Eilers et al.,
2018) revealing that reionization has to end by z ∼ 6. Recently, measurements based on
damping wings of the IGM in spectra of the highest redshift quasars (Bañados et al., 2018;
Davies et al., 2018a) and based on the equavalent width distribution of Lyα emission in
Lyman break galaxies (Mason et al., 2018) also revealed that the IGM at z ∼ 7 has to be
significantly neutral.

As the photons reionizing the universe come from individual sources, the process
of reionization is intrinsically inhomogeneous (see e.g. Becker et al., 2015b; Davies,
& Furlanetto, 2016; D’Aloisio et al., 2016, for evidence of this). Fully simulating the
formation of ionized bubbles in the IGM requires expensive simulations as radiative

1.5Note that some groups claim that quasars provide a significant or even dominant (Giallongo et al., 2015;
Madau, & Haardt, 2015) contribution to this (but see Onoue et al., 2017; Parsa et al., 2018, for strong
arguments against the measurements resulting in this scenario)

1.6zreion,50 is the redshift at which xHI = 0.50.
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1. Introduction

transfer (RT) needs to be performed on Baryons that evolve due to hydrodynamics (see,
e.g. Gnedin, 2014; Ocvirk et al., 2016, for examples)1.7. After reionization is complete
photons can travel freely, leading to a nearly homogeneous radiation field called the
metagalactic ultraviolet background (UVB) (Haardt, & Madau, 2012). The ionization state
of the IGM1.8 can be fully described by photoionization equilibrium in this homogeneous
background, enormously simplifying the modeling (Haardt, & Madau, 2012; Oñorbe
et al., 2017b; Khaire, & Srianand, 2018; Puchwein et al., 2018).

However, this is not the whole story and while by z = 6most of the Hydrogen gas has
become ionized, Helium is not fully ionized, yet. Stripping the first electron of an Helium
atom, i.e. forming He Ⅱ, has an ionization threshold of 24.6 eV. Photons of this energy
are provided by the same sources reionizing H Ⅰ. However, further ionizing He Ⅱ requires
54.4 eV photons which are not produced in most stars (Stanway et al., 2016; Topping, &
Shull, 2015). Therefore this process is delayed until z ∼ 4 when luminous quasars which
provide the required hard photons become abundant enough (Furlanetto, & Oh, 2008;
McQuinn et al., 2009). Indeed, observations of the He Ⅱ Lyα forest indicate He Ⅱ had to be
fully reionized by z = 2.7 (Worseck et al., 2011) with measurements of ionized patches
in the IGM existing at redshifts as high as z = 3.8 (Worseck et al., 2016; 2018). However,
the limited number of observational constraints due to the observational challenges of
working in the ultraviolet (UV)1.9 imply that the exact timing remains largely uncertain.

1.7This is due to the different timescales of the problems as the RT needs to resolve the time between
scatterings of photons and the hydrodynamics need to resolve movements inside the gas. Note that
there are ways to simplify the treatment of radiation, e.g. see Mesinger, & Furlanetto (2007), and the
option to not fully self-consistently treat both effects, i.e. ignoring the evolution of the IGM when
performing the RT thus allowing to post-process hydrodynamical simulations.

1.8This is only true far away from any strong source of radiation, e.g. luminous quasars, that would
dominate the number of ionizing photons locally, leading to the so-called proximity effect

1.9The He Ⅱ Lyα transition falls at λrest ≈ 304Å, i.e. is still in the far UV even at z = 4. Direct observations
of He Ⅱ at higher redshifts therefore have to wait until the next generation of UV space telescopes.
Those are currently only in their concept stage and will likely not be available within the next two
decades, e.g. the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) (Roberge, & Moustakas, 2018)
currently proposes a launch around the late 2030s.

6



1.3. The Thermal State of the IGM

However, while it is observationally tricky to obtain direct higher redshift constraints
on He Ⅱ reionization, we can indirectly constrain it via its imprint on the thermal state
of the IGM.

1.3. The Thermal State of the IGM

In the standard picture of thermal evolution, cold IGM gas (few K) is strongly heated
during H Ⅰ and He Ⅰ reionization (by few times 10 000 K), subsequently cools and then
experiences additional heating during He Ⅱ reionization (McQuinn et al., 2009; Com-
postella et al., 2013; Puchwein et al., 2015; Greig et al., 2015; Upton Sanderbeck et al., 2016;
McQuinn, & Upton Sanderbeck, 2016; Oñorbe et al., 2017b; Puchwein et al., 2018). The
combined effects of photoionization heating (and in principle also shock heating which
is subdominant for most of the redshifts of interest), Compton cooling, and adiabatic
cooling due to the expansion of the universe lead to a tight power law temperature
density relation (TDR) for most of the IGM gas (Hui, & Gnedin, 1997; Puchwein et al.,
2015; McQuinn, & Upton Sanderbeck, 2016) about ∆z ≈ 1–2 after the impulsive heating
from a reionization event:

T (∆) = T0∆
γ−1, (1.3)

where ∆ = ρ/ρ̄ is the overdensity, T0 is the temperature at mean density T0, and the
index γ is expected to asymptotically approach ∼ 1.65.

During reionization events this index is expected to be shallower due to the additional
photoionization heating which may also result in a large scatter and a more complicated
density dependence (Compostella et al., 2013; McQuinn, & Upton Sanderbeck, 2016). This
would be mostly caused by reionization not occurring uniformly, but being intrinsically
patchy and therefore leading to significant fluctuations in the UVB (Davies, & Furlanetto,
2016; Suarez, & Pontzen, 2017) as well as temperatures (D’Aloisio et al., 2015) . Hydrody-
namical simulations show that within several hundred Myr the gas relaxes to the tight
power law relation of eqn. (1.3) with the exact thermal evolution solely depending on
the shape of the UVB spectral energy distribution (SED).
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Figure 1.2.: The volume weighted TDR of the IGM at redshifts 3 (left) and 0.2 (right) from one of our
simulations. The image shows a 2d histogram of T vs ρ. Note that the colorbar is logarithmic
and the axis ranges are not matched between panels, i.e. the z = 0.2 panel has a wider range
in both directions. We can clearly see that most of the volume of the simulation follows a
very tight power law TDR (bright yellow region) in both cases. Also note that the fraction of
the gas in a hot shock heated state (WHIM) strongly increases from z = 3 to z = 0.2 (orange
region in the upper left of the diagram). Finally, we can see that gas on the main power law
relation has cooled down from z = 3 to z = 0.2.

After reionization events the cooling terms are supposed to dominate over photoion-
ization heating, resulting in a net cooling of intergalactic gas between and after the
reionization phases which has so far not been conclusively observed (McQuinn, & Up-
ton Sanderbeck, 2016). Unfortunately, there is currently no consensus about the thermal
evolution of the IGM during and after He Ⅱ reionization, although many measurements
have been performed. Finally, at late times z . 1 a significant fraction of the gas is
also shock heated to high temperatures T > 1 × 105 K forming the so called Warm-Hot
Intergalactic Medium (WHIM) (Cen, & Ostriker, 1999; Davé et al., 2001) and is expected
to contain ∼ 30% of the total Baryon budget of the universe today1.10 (Shull et al., 2012).

In Figure 1.2 we show the thermal state of the gas obtained in an hydrodynamical
1.10The problems in finding signatures for this component were dubbed the ”missing baryon problem”

which was recently claimed to be resolved through observations of the thermal Sunyaev-Zeldovich
effect (de Graaff et al., 2017; Tanimura et al., 2017) as well as by direct observations of OⅦ in X-Ray
quasar spectra (Nicastro et al., 2018)
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1.3. The Thermal State of the IGM

simulation (see § 4.2 for details about the simulation). This simulation contained cooling
via inverse Compton and expansion, as well as heating via photo- and collisional ion-
ization in the IGM, but assumes homogeneous ionization and thus does not show the
effects expected due to the patchiness of reioinization. We show two different redshifts
for comparison. At z = 3.0 reioinzation of He Ⅱ is about to finish, i.e. the gas in the
IGM reaches its maximum temperature at around this time while z = 0.2 is far after
reionization and the IGM had about nine Gigayears of time to cool down. We can roughly
subdivide this TDR into four different regimes with boundaries at T = 100 000 K and
ρ = 100ρ̄. While gas above the density cut is bound gas, coming from the hot halo or
cold condensed gas phase (e.g. Davé et al., 2010), in this work we are most interested in
the low-density gas forming the IGM. For both redshifts we can see that the photoionized
low temperature, low density gas (the so called ”diffuse IGM”) is indeed dominated by
a power law TDR as in eqn. (1.3). We note, that this power law component is cooling
from T0 ∼ 10 000 K at z = 3 to ∼ 4000 K at z = 0.2 for the simulation shown. There is
also a hot, low density component (the WHIM) visible at both redshifts due to shock
heating which gets more prominent in the lower redshift. For the bulk of this work
this component will be subdominant, and we thus neglect it. At the end of this thesis,
however, we measure the thermal state of the low-redshift IGM and need to be careful
regarding the WHIM.

In this work we put new constraints on the thermal state of the diffuse IGM from
z = 5.4 to z = 0.2. This component of IGM gas can be observed as the Lyα forest on
distant background sources. In chapter 2we introduce the statistical properties of the IGM
that are important for the rest of this work. This is followed by a new high-resolution,
high-precision measurement of the Lyα forest power spectrum at 1.8 < z < 3.4 in
chapter 3. To find the imprint of heating and cooling on the IGM during and after He Ⅱ
reionizatien, we conduct a Bayesian analysis of thermal evolution at 1.8 < z < 5.4 taking
into account degeneracies between the different thermal parameters in chapter 4. In
chapter 5 we extend the measurements of the IGM thermal state to low redshifts to test
if the predictions of a cooldown in the IGM holds over timescales of several billion years.

9
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chapter 6 summarizes this work and gives an outlook for the future.
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2. The Lyα Forest as a Cosmological
and Astrophysical Tool

2.1. What is the Lyα Forest?

The so-called Lyα forest is a series of Lyα absorption lines, i.e. the n = 1 → n = 2

transition of the hydrogen atom2.1, which is typically observed blueward of the Lyα
emission line at λrest = 1215.67Å in high-redshift quasar spectra (where it has first been
observed by Lynds 1971), but also in spectra of other distant sources, like e.g. gamma ray
bursts (GRBs) (Selsing et al., 2018), background galaxies (Lee et al., 2014), or supernovae
(Cooke et al., 2012). We show a spectrum of a quasar at z = 2.66 in Figure 2.1. We
highlight both the Lyα and Lyβ emission lines and can clearly see a dense structure of
absorption lines bluewards of the Lyα emission, which is the Lyα forest.

The Lyα forest is formed by neutral gas in the mostly ionized intervening IGM along
the quasar line-of-sight. As the universe expands, the source spectrum redshifts and thus
the Lyα absorption line in the restframe of intervening gas falls on different positions
of the source spectrum.2.2 Even if a tiny fraction of the IGM xH Ⅰ & 0.001 were neutral,
complete absorption of the spectrum by intervening gas would be expected. However,
the existance of flux blueward of Lyα provides strong evidence that the IGM is highly

2.1The term is generally used for hydrogen like ions, i.e. ions with one electron such as He Ⅱ which has
this transition at λ = 304Å. In this work we mean H Ⅰ as long as the element is not stated explicitely.

2.2Note that the forest extends also beyond the Lyβ emission line, but is then superimposed on a forest of
Lyβ absorption from higher redshift gas. The equivalent is true for higher order Lyman series lines.
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λ [Å]

Figure 2.1.: Spectrum of the Quasar Q0453-423 at z = 2.66 observed with the UVES spectrograph at the
VLT. We can see the Lyα emission line at λ ∼ 4450Å and the Lyβ emission line at λ ∼ 3800Å,
which are part of the intrinsic quasar continuum. The region between both is called the Lyα
forest. Bluewards of Lyβ it is superimposed by higher order Lyman-series lines and redwards
of Lyα there is no H Ⅰ absorption so all visible absorption lines are due to intervening metal
systems.

ionized (as first noted by Gunn, & Peterson 1965).
The Lyα forest is a unique probe of the high-redshift universe in the sense that the

observation of e.g. a single quasar can be used to probe gas at a large range of redshifts2.3,
equivalent to ∆v ∼ 40 000 km s−1 of Doppler motions (after removal of the so-called
Quasar proximity zone, areas with enhanced photoionization close to the source quasar,
resulting in reduced absorption) or e.g. ∆z ∼ 0.8 at for a z = 6 quasar.

Lyα forest fluctuations can be accurately described in the current ΛCDM framework.
As the ionization state of the post-reionization IGM is well described by ionization
equilibrium, i.e. there are as many ionizations (in principle due to photons and collisions,
but dominated by the first) as recombinations:

nH ⅠΓtot = αnHⅡne (2.1)
2.3Note that extensions to higher order Lyman lines (e.g. Iršič, & Viel, 2014; Boera et al., 2016; Davies

et al., 2018b), or equivalent forests for He Ⅱ (e.g. Jakobsen et al., 1994; Worseck et al., 2016) or metal
transitions, e.g. CⅣ (e.g. D’Odorico et al., 2016) are also possible.
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2.1. What is the Lyα Forest?

with the case A recombination coefficient α ∝ T −0.7, the total ionization rate Γtot, and
the number densities ne, nH Ⅰ, and nHⅡ of electrons, neutral, and ionized Hydrogen. In
a highly ionized IGM (and for simplicity ignoring that any non-Hydrogen gas exists)
ne = nHⅡ ≈ nH and eqn. (2.1) simplifies to:

nH Ⅰ ∝
n2Hα

Γtot
(2.2)

which together with the TDR from eqn. (1.3) yields a simple relation between the optical
depth τ of Lyα absorption and gas densities ρ sometimes called the fluctuating Gunn-
Peterson absorption (FGPA):

τ ∝
ρ2−0.7(γ−1)

ΓtotT
0.7
0

. (2.3)

Therefore, in principle the Lyα forest transmission F = exp(−τ ) directly probes a
degenerate combinations of the underlying matter, ionization and temperature fields.
However, this connection is complicated in several ways. First, lines are shifted due to
relative motions between different gas clouds leading to redshift space distortions (RSDs).
Additionally, absorption lines are broadened relative to the underlying matter field due to
two thermal effects: Doppler broadening due to thermal motions and pressure smoothing
(see § 2.4). However, line broadening mostly affects the distribution of absorption lines
on scales comparable to thermal gas velocities, i.e. a few tens of km s−1, far shorter than
a typical Lyα forest spectrum, similarly pressure broadening affects gas on scales of
∼ 100 kpc. Therefore, on large scales the Lyα forest fluctuations are mostly sensitive to
cosmology and structure formation, on small scales they are primarily used to probe
astrophysical properties of the IGM. Note that in principle there are other effects that
could affect the IGM on small scales, e.g. free streaming of warm dark matter would
erase small scale structure compared to a cold dark matter scenario, constraints on this
are strongly degenerate with the thermal state of the IGM (see e.g. Viel et al., 2013b, for
a measurement of this).
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2. The Lyα Forest as a Cosmological and Astrophysical Tool

2.2. Observability and Datasets

The observable redshift range for the Lyα forest is limited by two effects. For high
redshifts z & 5.5, extended parts of the spectra are indeed completely opaque (e.g. in Fan
et al., 2006b) as both densities and neutral fraction increase. These fully absorbed patches
are called Gunn-Peterson troughs. As these troughs increase in size and at some point
(z ∼ 6) fill the complete Lyα forest range of the quasar spectrum, observations of IGM
properties based on the forest become increasingly harder. Additionally, high-redshift
quasars tend to be fainter (due to their larger distance), making night-sky emission a
larger issue demanding for longer integration times and telluric lines in the atmosphere
become more abundant for λobs > 6000Å (roughly equivalent to Lyα absorption at z = 5)
increasing the demands on data-reduction.

On the other hand, for smaller wavelength λobs . 3200Å (corresponding to z < 1.6)
the atmosphere is opaque, making observations from the ground impossible. To observe
the Lyα forest at these redshifts one therefore has to use spectrographs on UV space
telescopes. This requirement limits the options on telescopes to the Hubble Space
Telescope (HST) for the foreseeable future which is far more costly compared to the
ground based facilities used at higher redshifts.

The largest currently available datasets for Lyα forest studies from the Sloan Digital
Sky Survey (SDSS) and the Baryon Oscillation Spectroscopic Survey (BOSS), containing
& 100000 medium-resolution (resolving power R ∼ 2300) Lyα spectra, therefore cover
redshifts of 2 . z . 4.2. From those datasets high-precision cosmological constraints
have been obtained by measuring the baryon accoustic oscillation (BAO) scale at z ∼ 2.5

(Font-Ribera et al., 2014; Bautista et al., 2017). These surveys therefore provide excellent
possibilities for cosmological parameter analyses. At the same time smaller datasets of
higher qualitity spectra have been used to constrain the physical properties of the IGM
and the nature of dark matter. For this work we will use both, survey data for large scale
information and archival datasets of high quality spectra for small scales.
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2.3. The Lyα Forest Flux Power Spectrum

2.3. The Lyα Forest Flux Power Spectrum

A premier tracer of the fluctuations in the Lyα forest flux field is the line-of-sight flux
power spectrum (first described by Croft et al., 1998). Early measurements of the power
spectrum (McDonald et al., 2000; Croft et al., 2002) were computed directly from the
transmission in the Lyα forest which relies heavily on good measurements of the intrinsic
spectrum of the source, i.e. the quasar continuum. To (partly) circumvent this issue
subsequent studies (Kim et al., 2004; McDonald et al., 2006; Viel et al., 2008; 2013b;
Palanque-Delabrouille et al., 2013; Iršič et al., 2017a; Yèche et al., 2017), including the
present work, instead use the power of the flux contrast

δF =
F − F̄

F̄
. (2.4)

which is defined as
PF (k) = 〈δ̃2F (k)〉, (2.5)

i.e. it is the variance of the Fourier transformed flux contrast δ̃F (k) over an ensemble
of observations, e.g. a set of spectra or bins in k . Fluctuations on small scales are
characterized by a large wavenumber k , whereas large scale fluctuations are represented
with small k .

There are several observational effects that play a role in the determination of the
power spectrum. First, spectra have finite resolution which depends on the spectrograph
used for the data aquisition and which generally can be expressed by a line spread
function (LSF). Additionally, the spectrum gets discretized on a finite pixel size ∆v

when it is recorded by the detector. Also, the measured flux will contain some noise N ,
which depends on the intrinsic flux of the source (due to photon counting), but also can
depend on e.g. sky background, its subtraction, or detector read-out noise if those are
limiting factors. Finally, the spectrum is a product of the source continuum Ctrue with
the transmission in the IGM Ftrue which is estimated as Cestim and divided out.

In total, the measured transmission F could therefore be described as:

F =
(CtrueFtrue) ~ LSF ~ rect(∆v) +N

Cestim
(2.6)
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2. The Lyα Forest as a Cosmological and Astrophysical Tool

where ~ denotes convolution and rect is a tophat function. As we take the power in δF ,
effects of wrongly estimating the overall continuum will cancel out, but misestimating
the wavelength dependence of the continuummight in principle be important (we further
discuss how we deal with those in § 3.1.3). The other terms will be Fourier transformed
when computing the power. Thus, the noise contribution will (mostly) lead to a constant
floor in P(k), the convolutions can be replaced by multiplications in Fourier space. Thus,
the measured power spectrum becomes:

Praw(k) =Ptrue(k)W
2(R,∆λ) + Pnoise (2.7)

W (R,∆λ) = exp
(
−
1

2
(kR)2

)
sinc

(
k∆v

2

)
(2.8)

where we used the window functionW which is the product of Fourier transforms for
the Gaussian LSF assuming a resolution R and the pixelization boxcar. In this case the
main effect of finite spectroscopic resolution is a Gaussian cutoff in the observed power
spectrum for small scales (large k). Note that while the assumption of a Gaussian LSF
is good for most instruments, in some cases it is not valid, e.g. for the Cosmic Origins
Spectrograph (COS) instrument on HST that is used for low redshift Lyα forest studies
(see chapter 5). We correct for the mentioned effects when we measure the power (see
§ 3.2.1).

In the following section we will show how the power spectrum relates to the thermal
state of the IGM and illustrate that the cutoff due to resolution can be a major limitations
for the analysis.

2.4. Connection to the Thermal State of the IGM

The major effect of the thermal state on the Lyα forest is a broadining of absorption lines.
Doppler broadening of absorption lines occurs due to thermal motions based on the
instantaneous temperatures of the gas. Where the intrinsic line-profile of an absorption
line is a Lorentzian distribution only dependent on quantum mechanical properties of
the transition, thermal motions inside the absorption systems will convolve the intrinsic
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Figure 2.2.: The power spectrum measurement from the BOSS survey from Palanque-Delabrouille et al.
(2013) as purple points compared to models with 3 different thermal states (colored lines). We
can see that the effect of thermal properties on the power spectrum is dominated by a cutoff
of the power spectrum with larger T leading to a cutoff position at larger scales/lower k). We
can also see that the scales interesting for measuring the thermal state are not covered by
the BOSS data which is due to BOSS’s limited spectroscopic resolution. The changes on the
largest scales, however, are strongly degenerate with the mean transmission F̄ of the Lyα
forest as changes of F̄ essentially shift the whole power spectrum up and down.

17



2. The Lyα Forest as a Cosmological and Astrophysical Tool

line profile with a Gaussian, leading to a Voigt profile. For realistic velocities in the IGM
of few tens of km s−1 this Gaussian part dominates, i.e. the optical depth of an absorption
line is given by (Draine, 2011; Dijkstra, 2017):

τ = τ0 exp

(
−

[
(ν − ν0)c

ν0b

] 2)
(2.9)

τ0 ∝
NH Ⅰ

b
(2.10)

b =

√
2kBT

mH
(2.11)

with the optical depth at line center τ0, the observed frequency ν , the central frequency
of the line ν0, the column density of the line NH Ⅰ, and b being the Doppler parameter,
specifying the thermal width of the line. Note that the constants of proportionality only
depend on quantum mechanical properties of the transition.

Absorption lines can fall into three different regimes: unsaturated, saturated or satu-
rated with damping wings. The dependency of their equivalent width EW to the column
density is described by the curve of growth. While for unsaturated lines (NH Ⅰ . 1014 cm−2,
with the exact transition point being dependent on b) this relation is linear, for satu-
rated lines EW only increases logarithmically with NH Ⅰ. For high column densities
(NH Ⅰ & 1 × 1019 cm−2, so called damped Lyα absorption system (DLA) and sub-DLA
systems produced if the line-of-sight comes close to a galaxy, see e.g. Fumagalli et al.
2010) even parts of the line profile dominated by the Lorentzian component produce a
measurable absorption and can thus not be ignored as in eqn. (2.9). Those lines excibit
strong damping wings and EW ∝

√
NH Ⅰ in this regime. For this work the DLA systems

are a contaminant as it is hard to produce them correctly in simulations, we therefore
mask all the lines with visible damping wings in our dataset.

Given the TDR from eqn. (1.3) an increase in T0 will lead to broader lines, an increase
in γ will however broaden lines in overdense regions and decrease the width of lines in
underdense regions. For the power spectrum this translates to an approximately Gaussian
cutoff with a characteristic scale ktherm ∝ b−1. Note that this is a very similar behaviour
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compared to the effect of finite spectroscopic resolution from eqn. (2.8). Therefore
spectroscopic observations with higher resolution than the thermal broadening are
needed to obtain good constraints on the thermal state of the IGM, and the effects of
spectroscopic resolution on the power need to be corrected.

We show the effect of varyingT0 on the power spectrum in Figure 2.2. We can see the
most precise (∼ 2%) measurement of the large scale power by Palanque-Delabrouille et al.
(2013) shown as purple errorbars compared to lines based on hydrodynamical simulations
(details for the simulational approach can be found in § 4.2) resulting in different values
of T0, bracketing the expected range of temperatures at z = 2.82.4. Indeed the major
effect of changing T0 is a change in the position of the cutoff. While we also note an
effect on the power on large scales, this effect is highly degenerate with the the slope γ
of the TDR2.5 as well as the mean transmission of the Lyα forest and these large scales
are most strongly influenced by systematics in the simulation (see § 4.5 for details about
those).

Note that the highest-precision measurements (McDonald et al., 2006; Palanque-
Delabrouille et al., 2013) currently available based on spectroscopic surveys are not
probing the thermal cutoff even for the hottestmodel shown as they lack the spectroscopic
resolution needed to measure the small-scale cutoff of the IGM flux power spectrum
and due to the aforementioned degeneracies even 2% measurements of the large scale
power cannot be used to obtain a precision constraint of the IGMs thermal state. Existing
measurements of the small scale power (McDonald et al., 2000; Croft et al., 2002; Kim
et al., 2004; Viel et al., 2008; 2013b), however, have only been performed on ∼ 20 spectra,
which didn’t allow a dense sampling in redshift to constrain thermal evolution and lead
to a lacking precision especially on large scale modes, but have been used to set early
constraints on the IGM thermal state (Zaldarriaga et al., 2001) in wide redshift bins.
There have also been recent measurements using medium resolution X-SHOOTER data

2.4Note that these models also vary in their pressure smoothing scale λP as thermal evolution is continuous
and thus higher instantaneous temperatures imply hotter thermal histories.

2.5This changes the overall shape of the power spectrum in the cutoff region, but extending to larger scales.
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Figure 2.3.: Volume renderings of the same box at z = 0.2 as in Figure 1.1 showing dark matter (left)
and baryon (right) density fields, but now seen from the center of the box. The color scale is
matched between both fields and saturates at mean density (black) to 100 times that value
(white). We can clearly see the effect of pressure smoothing erasing small scale structure in
the baryons relative to the dark matter.

(Iršič et al., 2017a; Yèche et al., 2017) at 3 < z < 4.2 that in principle probe the IGM
small scale power, but as we’ll see later suffer from uncertainties in the resolution of the
X-SHOOTER instrument. Therefore, in chapter 3 we perform our own measurement of
the small scale power spectrum based on a large dataset of 74 high-resolution quasar
spectra.

In addition to the instantaneous thermal state leading to Doppler broadening there is
another important thermal property affecting the absorption lines. In contrast to dark
matter, Baryons interact with each other and therefore observe a finite pressure. This
leads to the Baryon distribution being smoother than the dark matter distribution. The
evolution of this pressure smoothing has been studied in linear theory by Gnedin, &
Hui (1998) who found a dependence of the so-called filtering scale λF on the full thermal
history of the gas as (see also Hui, & Haiman, 2003):

λ2F (t) =
1

D+(t)

t∫
0

dt ′λ2J (t
′)

(
D̈+(t

′) + 2H(t ′)Ḋ+(t
′)
) t∫

t ′

dt ′′

a2(t ′′)
(2.12)
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with D+ being the linear growth function, H the Hubble parameter, and λ2J = πc2s /Gρ ∝

T being the the classical Jeans scale below which gas is pressure supported against
gravitational collapse. In the past (Meiksin, & White, 2001; Gnedin et al., 2003; Rorai
et al., 2013, e.g. in) the effect of pressure smoothing has been mimicked in simulations by
smoothing the dark matter field with a kernel of size λF, which in Fourier space results in
a multiplication of the 3d matter power spectrum with a cutoff, e.g. W = exp(−k2λ2F/2).
However, as the filtering scale is already highly nonlinear at the redshifts of interest for
IGM thermal evolution studies, full hydrodynamical simulations are needed to correctly
account for the effect. Kulkarni et al. (2015) quantified the fully nonlinear pressure
smoothing scale λP by fitting a cutoff to the 3d power of the real space flux, i.e. the flux
obtained from simulations negleciting any redshift space effects. 2.6

Note again that pressure smoothing depends on the whole thermal history of the gas ,
i.e. it retains memory of thermal evolution in the past, and is intrinsically a 3d effect,
i.e. a 1d measurment like the line-of-sight power spectrum will only see the projected
effect of pressure smoothing which is degenerate with Doppler broadening, while a
3d measurement based on e.g. correlations between spectra of close quasar pairs (e.g.
Rorai et al., 2017b) can be used to get an independent constraint. We visualized the
effect of pressure smoothing on the density field in Figure 2.3 by comparing the baryonic
structure to the dark matter structure. In this figure we can clearly notice that the baryon
density has far less substructure than the dark matter field. The effect of finite pressure
smoothing on the power spectrum is a cutoff similar to the one expected from Doppler
broadening, but is governed by the length scale of the smoothing, i.e. appears at scales
k & 1/λP . Thus, a degenerate combination of both effects leads to the cutoff in the power
spectrum.

2.6Note that the accuracy of this approximation is not good enough to be applicable for this study (see
Sorini et al., 2016), and e.g. can lead to biased constraints on the pressure smoothing (Rorai et al.,
2017b) that need to be corrected by simulations.
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2.5. Constraining the Thermal State using Other

Statistics of the Lyα Forest Flux

Several other statistical properties of the Lyα forest can be used to characterize the
thermal state of the IGM. The conceptually simplest way to obtain these constraints is
based on fitting a Voigt profile to each absorption line in the Lyα forest, thus obtaining
the joint distribution of b and NH Ⅰ. By assuming that the narrowest lines with a given NH Ⅰ

are only thermally broadened, one can obtain constraints of the thermal state (Haehnelt,
& Steinmetz, 1998; Schaye et al., 2000; Bryan, & Machacek, 2000; Ricotti et al., 2000;
McDonald et al., 2001; Davé, & Tripp, 2001; Rudie et al., 2012; Bolton et al., 2014; Rorai
et al., 2018; Hiss et al., 2018). However, this approach becomes complicated by the need of
automatic line fitting tools for simulations, blending between several absorption lines, or
the definition of the ”narrowest” lines especially if spurious noise spikes were identified
as a line or metal absorption lines were fit as Lyα. Note that in Hiss et al. (2018), we also
performed a measurement based on this approach, based on the same spectral dataset
we used in this work.

There have also been measurements based on several other statistical properties of
the continuous Lyα flux, e.g. the flux probability density function (PDF) (Bolton et al.,
2008; Viel et al., 2009; Lee et al., 2015; Rorai et al., 2017a; a), i.e. the distribution of flux
values inside observed spectra, and wavelet decompositions of the forest (Theuns et al.,
2002; Lidz et al., 2010; Garzilli et al., 2012) have been used. Some of those constraints
(Bolton et al., 2008; Viel et al., 2009; Lidz et al., 2010) led to strongly discrepant results
compared to the rest with temperatures at mean density being a factor of ∼ 2 higher or
values of γ < 12.7 in contrast to the γ ∼ 1.6 expected from simulations.

The formally most precise measurements of the thermal state are based on the cur-
vature, i.e. the second derivative, of the smoothed transmission (Becker et al., 2011;
Boera et al., 2014). However, this method so far only provided measurements of the
temperature at characteristic overdensities∆?, but is insensitive to γ (but see Boera et al.,

2.7A so-called inverted TDR that might need new physics to be explained (Puchwein et al., 2012)
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2016, for an updated approach). Therefore it needs to rely on external measurements of
γ to assess T0, and is harder to interpret on its own.

Finally, the quasar pair phase angle distribution (Rorai et al., 2013; 2017b), has been
used to obtain constraints on the pressure smoothing scale independent of line-of-sight
effects such as Doppler broadening.

The different approaches, differences in methodological treatment, e.g. marginaliza-
tion of nuisance parameters and propagation of uncertainties , as well as precision of
numerical simulations, impede the comparison of these measurements and therefore
complicate obtaining physical conclusions based on these data. Overcoming these issues
was a main motivation for this project and required homogeneous treatment of the
data, inference in more than five dimensions to allow for proper marginalization over
hyperparameters, hydrodynamical simulations, and fast interpolation techniques to
allow inference based on relatively few simulation runs. We obtain a new self-consistent
measurement of thermal evolution in the IGM in chapter 4 which is then extended to
lower redshifts that have previously not been studied for this purpose in chapter 5.
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3. A New Measurement of the IGM
Power Spectrum

In this chapter, we measure the Lyα forest flux power spectrum from high resolution
data to determine its thermal cutoff and thus enable measurements of the thermal state
of the IGM in chapter 4. Note that while the thermal history of the IGM has a strong
effect on the cutoff scale the small scale power is also sensitive to the nature of dark
matter (Viel et al., 2013b; Iršič et al., 2017b). The power spectrum in general can also be
used to deduce constraints for a variety of cosmological parameters, e.g. the mass of
neutrinos (Palanque-Delabrouille et al., 2015; Yèche et al., 2017; Baur et al., 2017) leading
to additional usecases for our analysis outside the main scope of this thesis.

In this chapter we perform a new power spectrum analysis on a large sample of
archival high-resolution spectra which we’ll combine with the existing low- and medium-
resolution measurements to enable an accurate measurement of thermal evolution in
the IGM in chapter 4.

3.1. High-Resolution Quasar Dataset

In this section we will describe the dataset we used for our measurement. First we
explain how our quasar sample was constructed. Then we describe which parts of the
selected data were used and how we masked regions of the data to remove contaminants
like e.g. metals or DLAs Finally we will explain how we regulate the mean flux of our
spectra.
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3. A New Measurement of the IGM Power Spectrum

3.1.1. Dataset

Our measurement of the power spectrum was performed using 38 high-resolution quasar
spectra (see Table 3.1) from Dall’Aglio et al. (2008) observed with the Ultraviolet and
Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) (Dekker et al.,
2000), and 36 spectra (see Table 3.2) from the Keck Observatory Database of Ionized
Absorption toward Quasars (KODIAQ) project (Lehner et al., 2014) observed with the
High Resolution Echelle Spectrometer (HIRES) at Keck (Vogt et al., 1994). For the latter
we used the highest S/N part of DR1 (O’Meara et al., 2015) and additional data beyond
DR1 (mostly early reductions of objects in DR2 O’Meara et al., 2017) reduced in the same
way. Reduced and continuum fitted spectra of all UVES and KODIAQ DR1 data used
here are available in the igmspec package (Prochaska, 2017), KODIAQ DR2 data will
be available in future igmspec releases and on the KODIAQ database webpage3.1.

Most of the UVES spectra have full coverage between the atmospheric cutoff at
λobs ≈ 3100Å and λobs ≈ 1 µm. This allows us to use a large range of spectrum redward
of the Lyα forest to search for metal lines as well as enabling us to search for Lyman
Limit Systems (LLSs) using higher order Lyman series transitions, in many cases even
exploiting coverage of the Lyman-limit. For the KODIAQ data the typical red spectral
coverage ends at λobs ∼ 6000Å, while the blue spectral cutoff is comparable to UVES
λobs ∼ 3100Å. For a few cases in both datasets, however, even the Lyα forest was not
fully covered.

The objects used in our analysis were chosen to have a median S/N > 20 per 6 km s−1

interval inside the Lyα forest region covered by the spectra. We also chose to omit
spectra with known broad absorption lines (BALs). Finally we omitted sightlines with
3.0 < z < 3.5 that were color selected to avoid potential biases due to their increased
abundance of LLSs (Worseck, & Prochaska, 2011).

The distribution of S/N for the dataset used in our analysis is shown in Figure 3.1. Many
objects have a much larger S/N than our cut (up to about a median S/N of 150 per 6 km s−1

3.1https://koa.ipac.caltech.edu/applications/KODIAQ/
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3.1. High-Resolution Quasar Dataset

Table 3.1.: UVES spectra from Dall’Aglio
et al. (2008) used for our anal-
ysis

median
Object zQSO

S/N per 6 km s−1

HE1341−1020 2.137 58.1
Q0122−380 2.192 56.4

PKS1448−232 2.222 57.4
PKS0237−23 2.224 102.4
HE0001−2340 2.278 65.9
Q0109−3518 2.406 70.0
HE1122−1648 2.407 171.6
HE2217−2818 2.414 93.6
Q0329−385 2.437 58.4

HE1158−1843 2.459 66.7
Q2206−1958 2.567 74.5
Q1232+0815 2.575 45.8
HE1347−2457 2.615 62.0
HS1140+2711 2.628 88.9
Q0453−423 2.663 77.6

PKS0329−255 2.705 48.0
Q1151+068 2.758 49.1
Q0002−422 2.768 75.0

HE0151−4326 2.787 98.1
Q0913+0715 2.788 54.4
Q1409+095 2.843 24.7

HE2347−4342 2.886 152.3
Q1223+178 2.955 33.4
Q0216+08 2.996 36.8

HE2243−6031 3.011 118.8
CTQ247 3.026 69.1

HE0940−1050 3.089 69.6
Q0420−388 3.120 116.2
CTQ460 3.141 40.9

Q2139−4434 3.208 31.2
Q0347−3819 3.229 83.9
PKS2126−158 3.285 63.6
Q1209+0919 3.291 30.2
Q0055−269 3.665 75.7
Q1249−0159 3.668 69.7
Q1621−0042 3.708 77.7
Q1317−0507 3.719 42.0
PKS2000−330 3.786 150.8

Table 3.2.: HIRES spectra from KODIAQ
(O’Meara et al., 2015) used for
our analysis

median
Object zQSO

S/N per 6 km s−1

J122824+312837 2.200 87.3
J110610+640009 2.203 58.5
J162645+642655 2.320 103.7
J141906+592312 2.321 36.7
J005814+0115303 2.495 36.2
J162548+2646583 2.518 43.9
J121117+042222 2.526 33.6
J101723−204658 2.545 70.3
J234628+124859 2.573 75.1
J101155+2941411 2.620 129.9
J082107+310751 2.625 64.0
J121930+494052 2.633 90.3
J143500+535953 2.635 65.0
J144453+291905 2.669 133.7
J081240+320808 2.712 48.8
J014516−094517A 2.730 76.8
J170100+6412093 2.735 81.8
J155152+191104 2.830 30.2
J012156+144820 2.870 54.5

Q0805+0462 2.877 26.8
J143316+313126 2.940 53.8
J134544+262506 2.941 34.7
J073621+651313 3.038 25.7
J194455+7705521 3.051 30.4
J120917+113830 3.105 31.4
J114308+3452221 3.146 31.9
J102009+104002 3.168 35.9

J1201+01162 3.233 30.1
J080117+5210341 3.236 43.2
J095852+1202451 3.298 44.8
J025905+001126 3.365 26.3
Q2355+01082 3.400 58.3

J173352+540030 3.425 57.3
J144516+0958361 3.530 24.6
J142438+2256001 3.630 29.3
J193957−100241 3.787 65.5

1objects are part of DR2, but a pre-DR2 reduction
has been used

2objects are not part of DR1 or DR2, but reduced
in the same way

3objects are part of DR1, but a pre-DR1 reduction
has been used
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Figure 3.1.: Histogram of the median S/N per 6 km s−1 in the Lyα forest region used divided by dataset.
Note that we only used spectra with S/N > 20 in the dataset

inside the Lyα forest in a sightline). This very high S/N enables us to perform the
measurement without strong systematics due to the limited accuracy of our noise model
affecting our measurement at the scales of interest.

The nominal FWHM spectral resolution of the data varies between 3.1 km s−1 and
6.3 km s−1 with a typical value around 6 km s−1. Therefore all Lyα absorption lines are
resolved and we expect thermal broadening and broadening due to pressure smoothing
to be the effects determining the smoothness of lines, and not smoothing due to finite
spectroscopic resolution (see e.g. Bolton et al., 2014, for a measurement of line width for
thermally broadened lines).

The data was already reduced and continuum fit, and we briefly summarize the details
here. The UVES data were fit with both a global power law in non-absorbed regions
and local cubic splines fitted automatically with spline point separations depending on
continuum slope. Systematic biases in this technique were estimated and corrected using
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3.1. High-Resolution Quasar Dataset

a Monte Carlo analysis on mock data by Dall’Aglio et al. (2008). The HIRES continua
were hand-fitted by John O’Meara one echelle order at a time by placing Legendre
polynomial anchor points at non-absorbed positions (for estimates of continuum fitting
errors, see Kirkman et al., 2005; Faucher-Giguère et al., 2008b). Afterwards a 4th to 12th
order polynomial was fit through the anchors. Further details about the reduction and
continuum fitting techniques can be found in the respective data papers (Dall’Aglio et al.,
2008; O’Meara et al., 2015).

We will use this high-resolution dataset to measure the small scale power spectrum of
the Lyα forest in redshift bins of size ∆z = 0.2 with central redshifts between z̄ = 1.8

and z̄ = 3.4. Each of the bins contains at least eight quasar spectra, with the majority
(all but the low and high redshift edges of our sample) containing more than 14 quasar
spectra. The datasets also contain eight spectra that cover higher redshifts which we did
not analyze due to the small amount of data available (two spectra cover z & 4.0, the
rest only cover the forest for z < 3.6 just half a bin further than our analysis).

In this work, we compare our power spectrum measurements to measurements from
lower spectral resolution data from BOSS (Palanque-Delabrouille et al. 2013, hereafter
PD+13)) and from the XQ-100 survey (Iršič et al., 2017a) based on X-SHOOTER data, and
also conduct joint model fits. To facilitate this comparison we use the same binning in
redshift from z̄ = 2.2 to z̄ = 3.4.

3.1.2. Spectral Masking Procedure

To prepare the data for the power spectrum computation we restrict our attention to the
restframe wavelength range of 1050Å < λr < 1180Å. This was done to exclude the Lyα
proximity zone, also accounting for possibly large redshift errors, as well as to exclude
the Lyβ and OⅥ λ1035 emission lines and possible blueshifted absorption from these
and increased continuum fitting errors close to emission lines. This is the same range
used in PD+13 and is considered a conservative choice for the Lyα forest region.

We masked parts of the spectrum to reduce contaminations due to low-quality data,
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3. A New Measurement of the IGM Power Spectrum

high-column density absorbers such as DLAs, and metal lines. If a pixel is already
masked during the reduction (due to e.g. cosmic rays or gaps in spectral coverage) it
stays masked. According to McDonald et al. (2005a) excluding DLAs and LLSs from
power spectrum calculation only changes the power by < 2% on the scales of interest for
our analysis. We nevertheless excluded absorbers with clearly visible damping wings,
i.e. DLAs and super-LLSs, from our spectra to make sure those do not influence the
result. We masked the core and wings of these strong absorbers by eye until the wings
are below the noise level of the spectra. In most cases this leads to the exclusion of big
continuous spectral regions at the boundary of a redshift bin or the whole data of this
object falling inside a redshift bin. Where a DLA mask removed only the bin center we
used the longer of the two remaining spectral regions at the bin boundaries to compute
the power. Therefore, spectra with DLAs are only shorter, but with no additional large
gaps in the data. Finally, we removed spectra that were shorter than 10% of a redshift
bin corresponding to a minimum length of ∆z ∼ 0.02 (or 3500 km s−1) to avoid noisy
contributions from short spectra that consist of only few absorption lines.

Metal lines in the Lyα forest are expected to increase the power primarily on small
scales (k & 0.1 s km−1, see McDonald et al., 2000; Lidz et al., 2010) due to their narrower
widths compared to Lyα, but due to correlations induced by the rest-frame velocity
separations of different transitions (e.g. between SiⅢ and H Ⅰ-Lyα or between the CⅣ
doublet lines) there is contamination on larger scales as well (Croft et al., 1999; McDonald
et al., 2006).

To reduce the impact of metal absorption inside our sightlines we masked metal lines
in the forest region. We identified metal absorption lines in the Lyα forest by having
two of the authors (H. Hiss and M. Walther) visually inspect the spectra and mask metal
contamination in several ways. We started by look masking all strong metal absorption
lines corresponding to the redshifts of identified DLAs. For this purpose, we used all
metal transitions in Table 3.3 and masked a region of 60 km s−1 in each direction around
each identified absorber. Thenwe search for absorption from common doublet transitions
(SiⅣ, CⅣ, Mg Ⅱ, AlⅢ, Fe Ⅱ) redwards of the forest where the spectrum is mostly clean
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3.1. High-Resolution Quasar Dataset

Table 3.3: List of metal transitions that were masked

Ion λrest/Å Metal transition λrest/Å

OⅥa 1031.9261 SiⅣa 1402.770
C Ⅱ 1036.3367 Si Ⅱ 1526.7066
OⅥ 1037.6167 CⅣa 1548.195
N Ⅱ 1083.990 CⅣa 1550.770

FeⅢ 1122.526 Fe Ⅱ 1608.4511
Fe Ⅱ 1144.9379 Al Ⅱ 1670.7874
Si Ⅱ 1190.4158 AlⅢ 1854.7164
Si Ⅱ 1193.2897 AlⅢ 1862.7895
N Ⅰ 1200.7098 Fe Ⅱ 2344.214

SiⅢa 1206.500 Fe Ⅱ 2374.4612
NⅤ 1238.821 Fe Ⅱ 2382.765
NⅤ 1242.804 Fe Ⅱ 2586.6500
Si Ⅱa 1260.4221 Fe Ⅱ 2600.1729
O Ⅰ 1302.1685 Mg Ⅱ 2796.352
Si Ⅱ 1304.3702 Mg Ⅱ 2803.531
C Ⅱ 1334.5323 Mg Ⅰ 2852.9642
C Ⅱ* 1335.7077 Ca Ⅰ 3934.777
SiⅣa 1393.755 Ca Ⅰ 3969.591

astrongest transitions, therefore used for all the
masking techniques
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3. A New Measurement of the IGM Power Spectrum

and mask all associated metal lines analogous to our procedure for DLAs (using the same
metal catalog and mask width), until there are no doublet features left redward of the
forest. We also masked out a region of 200 km s−1 in each direction around redshift zero
to get rid of metal contamination from the Milky Way (in this case the only relevant
transition is Ca Ⅰ for 2.33 < zQSO < 2.78).

Additionally, we used an automated partial LLS (pLLS) finder written by John O’Meara
to identify strong absorption systems. This finder works by searching for pixels with
zero flux (within some threshold) at the corresponding positions of Lyα, β, γ and higher
Lyman transitions if available and grouping them into systems of LLS candidates. The
candidates were then visually inspected by one of the authors (John O’Meara) and
compared to theoretical line profiles of absorbers with log(NH Ⅰ) = 15, 16, 17 in Lyα to
Lyγ, and systems which appeared consistent were positively identified as pLLSs. For
these systems, associated metal absorbers from a reduced line list (see Table 3.3 absorbers
marked with a) were masked with the same velocity window size as above. Note that
the hydrogen absorption arising from the pLLSs identified in this way was not masked
regardless of their NHI.

Lastly we perform a line-fitting analysis (see Hiss et al., 2018) using a semi-automatic
wrapper around VPFIT (Carswell, & Webb, 2014) on the same set of Lyα spectra. The
result of this is a distribution of line widths b and column density NH Ⅰ for all fitted lines
assuming that all absorption is due to hydrogen. For H Ⅰ gas at a given column density
lines are broadened both thermally (due to finite pressure broadening and instantaneous
temperature Doppler broadening) and hydrodynamically due to local gas motions. There
is a minimum broadening bcut(NH Ⅰ) populated by absorbers with zero line-of-sight
peculiar velocity which are purely thermally broadened (see e.g. Schaye et al., 2000;
Hiss et al., 2018, for more details). Therefore b(NH Ⅰ) should cut off for b < bcut(NH Ⅰ)

and all remaining lines narrower than this cutoff can be attributed to fitting artifacts
at the edges of strong absorbers, noise fluctuations, or narrow metal absorption lines.
This cutoff is fit using an iterative procedure similar to the one used in Rudie et al.
(2012). We identified all the lines in previously unmasked spectral regions fulfilling
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3.1. High-Resolution Quasar Dataset

b < 11 km s−1(NH Ⅰ/10
12.95cm−2)0.15 as these are narrower than the thermal cutoff (see

Hiss et al., 2018, for details). For each of these lines (that are in the Lyα forest region) we
checked if they could be identified using a second metal transition clearly lining up at the
same redshift. In practice, these identifications were most easily made when both metal
transitions form a doublet. Given a positive identification, masking was then performed
as for metal absorbers that we identified redward of the Lyα forest, i.e. determining the
redshift of the absorber and using the full list of metal lines in Table 3.3.

Neither of these techniques produces a fully metal free Lyα forest, and we briefly
elaborate on these limitations. The search for metals redwards of the forest only finds
transitions if both doublet counterparts are visible at redder wavelength than the Lyα
emission line. If the doublet counterpart of a line falls into a spectral region that was not
covered or is blended with a different line (from either a different absorber redshift or
e.g. a telluric absorption feature) the contaminating system will often go undetected. For
example, for a CⅣλ1548/1550 system at z > 2.5 that might contaminate the forest, the
Mg Ⅱ λ2796/2803 doublet would land at λobs > 1 µm and hence outside of the spectral
coverage of our spectra, so only if the absorber shows Fe Ⅱ or AlⅢ doublets would this
CⅣ absorber be masked. On the other hand especially for the higher redshift bins a
large fraction of the spectral range redwards of the forest is contaminated by telluric
absorption making doublet identification very challenging. The largest problem for this
method is therefore limited usable spectral coverage in the red.

For the automated pLLS finder at least Lyα to Lyγ need to be detectable to identify a
pLLS. This leads to a minimal redshift of z & 2.1 for absorbers that can be identified as
they need to be at observed wavelength higher than the atmospheric cutoff λobs ≈ 3000Å.
For reduced spectral coverage in the blue this minimal redshift is correspondingly higher.

The last of our metal masking procedures only recognizes metal absorption lines sig-
nificantly narrower than the cutoff in the b(NH Ⅰ) distribution and requires a second metal
transition for identification. Therefore singlet lines are not masked by this technique
unless another transition from a different metal species clearly lines up with them. Also
metal absorbers were not removed if all components are broadened above the b(NH Ⅰ)
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threshold adopted, and are therefore not recognized as metal candidates.

In Figure 3.2 we show an example to illustrate how much of a typical spectrum is
masked. The black line shows the non-masked part of the spectrum while the red line
shows parts that are masked due to possible metal contamination. One can see that
many narrow lines in the spectrum are masked, but also that many regions of the forest
coincidentally overlap with positions where metal lines associated with our identified
absorbers could lie, but that don’t actually contain any visible metal absorption.

In Figure 3.3 we present an overview of the dataset. For each quasar spectrum the
emission redshift is shown as well as the full coverage of the spectrum after masking
pre-existing gaps in the data and DLAs (which therefore appear as white gaps). The
remaining spectrum is divided into the data used (dark colors), masked data due to
possible metal contamination (bright colors), and spectra not used due to failing our
requirement of spectral extent (yellow). We also show the usable Lyα forest pathlength
after applying the full masking procedure compared to the available pathlength when
not masking metals in Figure 3.4. Up to ∼ 40% of the forest gets removed by applying our
metal masking procedure strongly reducing our dataset size and therefore the precision
of our measurement results. Although not perfect, our procedure significantly reduces
the metal line contamination in our spectra, which decreases the amount of small-scale
power compared with an unmasked dataset as we will see in § 3.3.1. However, this
masking also changes the power spectrum due to the application of a complex window
function in configuration space. To correct for this effect we forward model the masking
(see § 3.2.4).

3.1.3. Mean Flux Regulation and Continuum Uncertainties

In principle the estimation of quasar continua in the data is subject to errors as well. We
perform our power spectrum measurement on the flux contrast

δF =
F − F̄

F̄
, (3.1)
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Figure 3.2.: The Lyα forest region for one of our spectra (HE2347-4342) with regions masked due to
possible metal contamination in red. The purple line shows the error level of the spectrum.
Gray vertical lines show the boundaries of our redshift bins. Note that due to our approach
not only metals are masked, but also coincidental pieces of the Lyα forest.
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Figure 3.3.: Redshift coverage of the dataset used colored by spectrograph. Blue (green) lines show the
spectral coverage of each used spectrum in the Lyα forest for the UVES (HIRES) subset.
Circles mark the corresponding quasar redshifts. Most of the long gaps in this figure are due
to missing data between e.g. non-overlapping echelle orders or masked out DLAs while the
light colored parts show masks due to possible metal contamination (see § 3.1.2). Orange
lines show regions that were ultimately rejected because of limited forest coverage. Vertical
lines mark boundaries of the redshift bins used in the analysis.
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Figure 3.4.: The pathlength of used data in our analysis compared to the pathlength of spectra masked
due to several reasons (metals: red, other: yellow). About 30%-40% of each redshift bin
were masked due to possible metal contamination. Far less due to other things, e.g. DLAs,
bad reductions or only short available pathlength. As a comparison the amount of data in
McDonald et al. (2000) is shown in black for their redshift binning. Normalization is such
that the area (and not the height) of each bar corresponds to the total path inside it.

with F̄ being the mean transmission of the Lyα forest (see also chapter 2). Because of
this, any global misplacement of the continuum will be divided out as long as the mean
transmission measurement we divide by is measured on the same spectrum. In addition,
incorrect placement of the continuum could lead to gradients or wiggles in the data that
could source additional large scale power (on scales k < 0.001 s km−1). However, this
will not strongly impact the small scale power measurement we want to perform in this
work3.2(Lee et al., 2012).
3.2We performed tests on model simulations at z = 3 including quasar continua. Comparing the power

spectrum using the true continuum vs. a hand-fitted continuum showed that only the very largest
scales (smallest k) were affected by the procedure.
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Nevertheless, we perform a mean flux regulation on the dataset using the technique
of Lee et al. (2012) which enables us to easily divide out the mean transmission as well
as possible gradients in the continuum fits. For this the transmission of the Lyα forest
region (excluding masked pixels as well as possible proximity regions as discussed earlier)
of each quasar sightline is first fit by a linear relation f (z) times the mean transmission
function F̄ = exp(−τeff) with

τeff = C + τ0

(
1 + z

1 + z0

) β
(3.2)

following the functional form and parameters from Becker et al. (2013). Afterwards
f (z) is divided out so that the mean flux evolution of each spectrum follows the same
relationship.

The flux contrast δF is now easily obtained by using eqn. (3.1) on mean flux regulated
spectra using eqn. (3.2) for the mean flux evolution instead of dividing each spectrum by
a mean transmission estimate for this spectrum. This allows us to divide out the mean
flux at each pixel analytically based on the fit of the mean flux evolution across each
spectrum. While this in principle leads to a reduced large-scale power (Lee et al., 2012),
we are not measuring the affected scales in this work.

The resulting spectra are finally divided into our redshift bins of ∆zchunk = 0.2 (with
the first bin starting at z = 1.7) to increase redshift resolution to a level where we
could closely monitor thermal evolution. We will henceforth call these pieces of spectra
”spectral chunks”.

3.2. Power Spectrum Measurement and Forward

Modeling Procedure

In this section we describe our procedure for measuring the flux power spectrum. First
we explain how we measure the raw power spectrum. Next we discuss the impact of our
masking (especially the masking of metal contaminants) on this measurement. After this
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we discuss the models we use in most of this work, how we generate mock spectra from
them, and approximate the data covariance matrix by combining information from both
data and models. Finally, we discuss how we create a fast emulator of our model power
spectra, and use this to fit models to our data, allowing us to correct for the masking.

3.2.1. Measuring the Power Spectrum

We calculate the power spectrum from the flux contrast δF defined in eqn. (3.1). As our
spectra are not periodic and are not regularly sampled because of masking, we Fourier
transform δF using a Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982), allowing us
to compute the raw power Praw(k) of each spectrum for a linearly spaced set of modes
from the fundamental mode given by the length of the spectral chunk to the Nyquist limit.
We subtract the noise power Pnoise(k) from this raw power, and divide the difference by
the window functionWR resulting from finite spectroscopic resolution R, following the
FFT method described in PD+13:

Pdata(k) =

〈
Praw(k) − Pnoise(k)

W 2
R (k,R,∆v)

〉
, (3.3)

with
WR(k,R,∆v) = exp

(
−
1

2
(kR)2

)
sin(k∆v/2)

(k∆v/2)
, (3.4)

and ∆v refers to the pixel scale of the spectra in velocity units.
The noise power Pnoise is measured by creating 100 realizations of Gaussian random

noise generated from the 1σ error vector of each quasar spectrum. The resolution
assumed for the window function correction is the nominal slit-resolution of the spec-
trograph which is different from the actual spectral resolution of the data, which also
depends on the seeing of the observations. For the typical resolution in our dataset (so a
resolving power of 50,000 or equivalentlyR = 2.55 km s−1) we getW 2

R (0.1 s km
−1) ∼ 0.94.

Given this small correction, even ∼ 20% error in our knowledge of the resolution (due
to the unknown seeing), would only lead to a small . 4% correction of the power at
k < 0.1 s km−1 (for further discussion of this point see § 3.3.2 and Appendix A). Therefore,
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the resolution uncertainty does not significantly affect our measurement of the k-modes
we consider.

We chose to use the same logarithmically spaced k-bins3.3 as in McDonald et al. (2000),
i.e. using 10 bins per decade, for our analysis. Note that this is different from the linear
spacing adopted by PD+13 and Iršič et al. (2017b).

We adopt the same Fourier normalization convention as the BOSS measurement
(PD+13), such that the variance in flux contrast is σ2

δF
= σ2

F /F̄
2 =

∫ ∞

−∞
P(k)dk/(2π). Note

that this differs from the conventions used by some older high-resolution measurements
(see Appendix C) leading to additional normalization factors needed when comparing to
those results.

3.2.2. The Window Function Resulting from Masking

As described in § 3.1.2 we masked out parts of the data in real space due to metal
contamination. This is a different approach than the one used by PD+13 who estimated
the metal power from transitions with λ > λLyα ,rest by measuring the power redwards of
the forest in lower redshift quasar spectra. The power measured in this way was then
subtracted from the measurement, but this method can never account for transitions
with λ < λLyα ,rest which always fall into the forest (e.g. the SiⅢλ1206 line that leads to
the SiⅢ correlation feature in those measurements, see McDonald et al. 2006).

Masking spectra in configuration space with a window function Wm leads to the
measured Pmasked for each spectrum being effectively a convolution of the true power
Ptrue with the square of the Fourier transform W̃m of this window function:

Pmasked = Ptrue ~ W̃
2
m . (3.5)

3.3The averaging 〈. . . 〉 is performed over the individual periodograms of all spectral chunks inside a
redshift bin, and also the average over all modes k inside logarithmic bins in k , where equal weights
are given to each individual mode from any spectrum. As the fundamental mode of a shorter spectrum
is at larger k , there are less modes available in a given band power for shorter spectra and they are
therefore effectively downweighted by performing the average over modes.
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3.2. Power Spectrum Measurement and Forward Modeling Procedure

Determining the true power thus requires deconvolving the window function or adopting
a different technique to measure the power taking into account the windowing (like
the minimum variance estimator used in McDonald et al., 2006). In this work we opt to
use a simpler approach by generating forward models of the data with and without the
windowing applied to be able to determine the effect this window function has on our
data. In the end, we correct our data for those effects by dividing the measurement by a
correction function based on these models. In the remainder of this section we describe
how our forward models are generated, how we estimate the data covariance matrix
based on those models, and how we fit the data using those models.

3.2.3. Simulations and Mock Spectra

We use simulations of the Lyα forest for two reasons. First, we need to simulate the effect
of noise, resolution and the window function due to masking on the power spectrum.
Second, we want to connect the information encoded in the power spectrum to a thermal
history of the IGM (parametrized by the temperature at mean densityT0, the slope of the
temperature-density relation γ and the pressure smoothing scale λP ). For this purpose,
one generally needs to run hydrodynamical simulations with different thermal histories.
However, these are computationally expensive and at least for the first point we only need
a model that is flexible enough to provide a good fit the to observed power spectra, but it
need not necessarily provide the correct thermal parameters. Because dark matter (DM)
only simulations of the Lyα forest are more flexible and computationally inexpensive
to generate, for all the forward modeling in this chapter, we use approximate DM only
simulations (a single box with different thermal parameters generated in post-processing)
with a semi-numerical approach to paint on the thermal state of the IGM (Croft et al.,
1998; Meiksin, & White, 2001; Hui, & Gnedin, 1997; Gnedin, & Hui, 1998; Gnedin et al.,
2003; Rorai et al., 2013) This fast simulation scheme allows us to generate a grid of ∼ 500

combinations of thermal parameters in a reasonable amount of time.

These DM-based simulations are however, not sufficiently accurate to infer the thermal
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3. A New Measurement of the IGM Power Spectrum

state of the IGM, as they produce significant biases in thermal parameters when fitted
to mock data based on hydrodynamical simulations (see e.g. Sorini et al., 2016, for a
detailed comparison between hydrodynamical and dark matter only simulations). They
do, however, provide a good fit to the data (compare lines and same color errorbars
in Figure 3.6 which we’ll discuss in more detail later) and we therefore use them to
correct for the window function in our measurement as well as testing our analysis
procedure and our fast power spectrum emulator (interpolation scheme, see § 3.2.6). For
inference of IGM thermal parameters a grid of hydrodynamical simulations will be used
in chapter 4.

For the DM only simulations we use an updated version of the TreePM code described
in White (2002) to simulate the evolution of dark matter particles from initial conditions
at z = 150 up to z = 1.8. We use a simulation with Lbox = 30 h−1 Mpc and 20483

particles with a Plummer equivalent smoothing of 1.2 h−1 kpc based on a Planck Collab-
oration et al. (2014) cosmology with Ωm = 0.30851,Ωbh

2 = 0.022161,h = 0.6777,ns =

0.9611 and σ8 = 0.8288. We do not include uncertainties in cosmological parameters
in our models as CMB measurement errors on these parameters (Hinshaw et al., 2013;
Planck Collaboration et al., 2016b) are much smaller than current constraints on thermal
parameters.

Themodel is generated for snapshots with z between 1.8 and 3.4 with a separation of 0.2,
the same as our power spectrum measurements, and provides a dark matter density and
velocity field. However, the relevant quantities for absorption in the IGM are baryonic
density and temperature fields. The results of previous hydrodynamic simulations
suggested a computation of the relevant baryonic fields using scaling relations on the
dark matter quantities (Hui, & Gnedin, 1997; Gnedin, & Hui, 1998; Gnedin et al., 2003).
This basically consists of smoothing the DM density field with a Gaussian kernel to mimic
pressure support as well as rescaling the densities to get the right Ωb . Temperatures are
then introduced by applying the power law temperature-density relation from eqn. (1.3)
to the density field (see Rorai et al., 2013, section 2.2 for the exact procedure).

Given that the UVB is not known perfectly, we created a sequence of models with
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3.2. Power Spectrum Measurement and Forward Modeling Procedure

different mean transmissions F̄ spanning an ∼ 5σ range around the current observational
constraints by Becker et al. (2013), Faucher-Giguère et al. (2008b) and Kirkman et al.
(2005). This was done by rescaling the optical depths of the full set of skewers to match
the desired F̄ . In total we have a parameter grid of ∼ 500 different thermal parameter
combinations (T0, λP ,γ ) with each of those evaluated for 5 different values of F̄

3.2.4. Forward Modeling Approach

As the observed spectra are much longer than the simulation box we first divided each
spectral chunk of ∆z = 0.2 into regions smaller than our box and assigned a random
simulated model skewer to each of the pieces. The skewers were then assumed to fall on
the respective position of the spectrum and truncated to have the same length as the
spectral chunk. A model of a single real spectrum therefore consists of 4 − 8 simulation
skewers. We generated ∼ 15, 000 skewers of the same length as the simulation box for
each parameter combination, therefore we have the equivalent of & 1900 mock spectra
(or equivalently & 100 times our whole dataset) available at each set of parameters. This
step is required to enable us to add the wavelength dependent noise and masks to the
models.

While the overall mean flux of the box is a free parameter of ourmodels, we renormalize
the flux in each pixel of the skewer again to account for the slight redshift evolution of
the mean flux along the skewer with respect to the mean flux of the simulation snapshot.
To do this the fluxes are converted back to optical depth by τ = − log(F ). We then use
the best fit relation to the τ evolution by Becker et al. (2013, see eqn. (3.2)) to compute
the fractional change in τeff between box redshift and the individual pixel redshifts and
rescaled τ at each pixel with the corresponding value. After this we convert back to
fluxes. The same mean flux evolution function is then later taken out in the power
spectrum computation when we, analogous to our procedure on the data, divide by the
mean flux in order to compute the flux contrast. We then convolved these spectra with
the respective instrument resolution, and interpolate them onto the same wavelength
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3. A New Measurement of the IGM Power Spectrum

grid as the observed data. The result of these steps are mock Lyα forest spectra with the
same noise properties, spectral coverage, and masking of our data. We henceforth call
these the ‘forward models’.

We also compute the power spectrum of the same number of model skewers without
any noise, masking, or degradation of resolution which we compare to the power
spectrum of our mocks to validate our power spectrum pipeline, and to determine
the window function correction. We will henceforth refer to these as ‘perfect models’.

For fitting the BOSS data, there is no need to create full forward models, because all
the imperfections our forward model approach treats are already accounted for by the
BOSS power spectrum pipeline, and therefore we simply compare the BOSS data to the
perfect models.

3.2.5. Covariance Matrix Estimation

In addition to measurements of power spectrum, our statistical analysis requires a
covariance matrix. The full covariance matrix consists of nbins · (nbins+1)/2 independent
entries where nbins ' 15 is the number of band powers of the wavenumber k . For a
dataset like ours that consists of only nQSO ∼ 10 quasars, this estimate will be extremely
noisy. McDonald et al. (2000) did tests on bootstrapped covariance matrices based
on spectra that were subdivided into 5 spectral chunks (which then were treated as
independent data in the same redshift bin) and concluded that there was still significant
statistical uncertainties on the estimates of individual covariance matrix entries. Also
Iršič et al. (2017a) tested the bootstrap covariance estimation technique on models with
different amounts of skewers. When using only 100 model skewers, which is comparable
to the size of their dataset, noise in their correlation matrix is still clearly visible. They
also provide a correlation matrix of their measurement that looks similar to this model
estimate. As our typical redshift bin has less data available than theirs and as our data is
additionally masked for metal absorption, we do not believe that we can estimate reliable
covariance matrices from our data (see Figure 3.5 and discussion below). To circumvent
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Figure 3.5.: The correlation matrices of the non-window corrected, metal-masked Lyα-forest flux power
at z = 2.8 as measured from our DM perfect model with parameters close to the best fit
(upper left, see § 3.2.7 for how the fit was done), the forward model (upper right) at the same
parameters, the data (lower left), and the final masking corrected measurement based on the
forward model (lower right, see § 3.2.8 for an explanation about how this was obtained). We
can see that the data correlation matrix is far noisier than the others due to the limited data
sample size and therefore not usable for model fitting. For the forward model correlations
we observe that k-bins that are close together are mildly correlated (≈ 20%) and bins on very
different scales are mildly anticorrelated. For k & 0.03 correlations get far stronger due to the
power spectrum cutoff as well as the stronger influence of contaminants, e.g. metals, noise
and finite spectroscopic resolution. For the perfect model correlations are far weaker except
for neighboring k-bins or bins in the cutoff region. As the exact position of this increase in
correlation depends on the power spectrum cutoff position (and therefore e.g. on thermal
parameters) we interpolate between correlation matrices when doing model fitting. The final
masking corrected correlation matrix looks very similar to the forward model case except for
additional correlations in the smallest scale bins due to the masking correction.
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3. A New Measurement of the IGM Power Spectrum

this problem we use a hybrid approach (in a similar way as Lidz et al., 2006) and only
measure the diagonal values σ2

data of the covariance from the data itself while computing
the off-diagonal correlations Rij from simulations (see § 3.2.3) for which we can obtain
sufficient statistics:

Rij =
〈(Pm,single(ki) − Pm(ki))(Pm,single(kj) − Pm(kj))〉

σm(ki)σm(kj)
(3.6)

where Pm,single is the power estimated from a single model skewer, Pm is its mean over
all model skewers, σm its standard deviation and the average 〈. . . 〉 is performed over all
model skewers. The covariance matrix is then computed as:

Cij = σdata(ki)σdata(kj)Rij. (3.7)

To estimate the data uncertainties σdata we use a bootstrapping technique resampling
the data. We draw 1000 random sets of quasars with replacement from those contributing
to any given redshift bin, and for each compute the power spectrum using eqn. (3.3).
For the correlation matrix R, we use the same mock spectra generated with our forward
modeling procedure (the ‘forward models’ in § 3.2.4) to determine the correlation matrix
according to eqn. (3.6). No bootstrapping was performed, since for the mocks we have
access to different forward modeling realizations of the same dataset. Note that we have
a correlation matrix for each model, because the shape of the power spectrum impacts
the correlations leading to stronger correlations for modes on scales smaller than the
power spectrum cutoff.

In Figure 3.5 we show the correlation matrix for one of our redshift bins determined
from the model with parameters closest to our best-fit at this redshift. The typical
correlation between neighboring bins is ∼ 15% and decreases strongly for bins further
apart. For comparison, we compute the correlation matrix from our dataset at this
redshift as well. This correlation matrix is noisy, and is not used anywhere else in
our analysis but is shown here for the sake of illustration. However, one sees that it
qualitatively agrees well with our simulated correlation matrix, validating our approach.
We also show the correlations of a perfect model and comparing to the forward model
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we can see that the additional masking added significant correlations on the 20% level
between non-neighboring k-bins.

We also tested our bootstrap estimation of the diagonal elements of the covariance
using random simulated datasets with a size comparable to our measurement dataset
that were drawn from our full set of models without replacement. We found that the
variance of the power spectrum determined from the ensemble of simulated datasets
was in good agreement with the bootstrap estimate obtained from a single mock dataset.
Therefore we are confident that our bootstrap estimates of the diagonal elements of the
covariance are converged and reflect the actual uncertainties of the power spectrum.

3.2.6. Fast Emulation of Model Power Spectra

To be able to fit the power spectrum measurement we need to create a model for the
power in the full region of interest for thermal parameters (T0,γ , λP ) and the mean
transmission of the forest F̄ . As simulations are relatively expensive there is no way to
run a full simulation for every combination of thermal parameters at which the power
spectrum needs to be evaluated during the fitting process. Therefore we generate a grid
of simulations with different thermal parameters (using our semi-numerical DM only
simulations) and adopt a fast emulation procedure to compute the power spectrum for
parameters between the grid points (in a similar way to what is used for the cosmic
calibration framework by Heitmann et al., 2006; 2009; 2013; Habib et al., 2007). Following
the procedure described in § 3.2.3, we generated Lyα forest skewers for a grid of thermal
parameters (T0,γ , λP ) and mean flux values F̄ . We computed the power spectrum from
perfect skewers generated from these models, as well as for mock data run through the
forward modeling pipeline described in § 3.2.4.

For both sets of power spectra (perfect and forward-modeled) we perform a principal
component analysis (PCA) of the full set of model power spectra. As result the power at
any point θ = {T0,γ , λP , F̄ } in our model grid can be written:

P(k,θ) =
∑
i

ωi(θ)Φi(k), (3.8)
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where both the eigenvectors Φi(k) and the PCA weights ωi(θ) are a result of the PCA
decomposition. Note that the PCA weights depend on the gridpoints in our model
parameter space, and given a suitable interpolation scheme, they can be used to generate
model predictions at any point in this space. Along these lines, and following Habib
et al. (2007), the PCA weights ωi are then used as an input to train a Gaussian process
interpolation scheme. From this Gaussian process we can later evaluate new weights for
parameter combinations that lie between or original gridpoints, allowing us to evaluate
the power at any location. For more details on this approach see e.g. Rorai et al. (2013)
and Habib et al. (2007). The Gaussian process interpolation uses a squared exponential
kernel with smoothing lengths chosen to be larger than the separation between model
grid points of the parameter space. To speed up computations only the first 9 principal
components are actually used for the analysis. We found that the additional errors due
to discarding the higher order components is less than 1%.

In general the same approach can be used to emulate models from hydrodynamical
simulations, but this means that a separate hydrodynamical simulation must be run for
each parameter combination in the grid which is far more costly than the approach we
chose for this chapter in which we mostly use the simulation for our window correction.
For inference of thermal parameters in chapter 4 we use an improved version of this
emulator technique based on hydrodynamical simulations.

3.2.7. Parameter Exploration

To explore the parameter space and fit the measured data power spectra from both BOSS
and high-resolution datasets we use a Bayesian Markov Chain Monte Carlo (MCMC)
approach with a Gaussian multivariate likelihood:

L ≡P(data|model) (3.9)

∝
∏

datasets

1√
det(C)

exp
(
−
∆TC−1∆

2

)
=Pdata − Pemu,
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where Pdata and C are the power spectrum and covariance matrix obtained for any
dataset, and the product is over all datasets considered (i.e. BOSS and our high-resolution
measurement, but including more than two datasets would just add factors to this
product). For the high-resolution dataset C−1 is estimated using our hybrid approach
(see § 3.2.5) for each model on the parameter grid and therefore is a model dependent
quantity. Inside the likelihood computation we use nearest neighbor interpolation in
model parameter space to obtain an inverse covariance estimate for each combination of
model parameters (which is then just the matrix at the closest model grid point). For
the covariance matrix of the BOSS dataset we use the tabulated values from PD+13
which are directly measured from the data, and are therefore model independent. The
emulated model power Pemu is determined for any parameter combination using our
emulation procedure. Note that we actually have two distinct emulators, one for the
high-resolution data (using the full forward-modeling procedure), and one for the BOSS
data (using our perfect simulation skewers).

It is well known that correlated absorption of hydrogen Lyα and SiⅢ at 1206.5Å
leads to a bump in the Lyα forest flux correlation function ξ (∆v) at ∆v = 2271 km s−1

(McDonald et al. 2006; PD+13)3.4. This imprints wiggles on the power spectrum with
separation ∆k = 2π/∆v = 0.0028 s km−1. Following McDonald et al. (2006), we model
this contamination with a multiplicative correction to the power

P(k) = (1 + a2SiⅢ + 2a cos(∆v k))PH Ⅰ(k), (3.10)

with aSiⅢ being a free nuisance parameter for the strength of the correlation. In previous
works this was typically expressed as aSiⅢ = fSiⅢ/(1 − F̄ ) with fSiⅢ being a redshift
independent quantity that was fit using the entire dataset. We adopt this same parame-
terization but opt to fit for a unique value of fSiⅢ at each redshift. Therefore we have
five free parameters T0,γ , λ J , F̄ , fSiⅢ to fit to our power spectrum measurements in each
redshift bin.
3.4Note that this correlation should generally be weaker in our high-resolution dataset as we masked some

of the SiⅢ absorption.
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We used the publicly available MCMC package emcee (Foreman-Mackey et al., 2013)
based on an affine invariant ensemble sampler (Goodman, & Weare, 2010) to sample the
posterior distribution:

P(model|data) =
P(data|model)P(model)

P(data)
(3.11)

with P(data|model) being the combined likelihood of both datasets for a given set of
model parameters, and P(model) being the prior on that combination of parameters.
We assume that the priors on parameters are independent, therefore P(model) is just
the product of the individual priors for each parameter. For the thermal parameters
we adopt flat priors on γ in the range 0.5 < γ < 2.1, on log(λ J ) in the range 22 ckpc <
λ J < 150 ckpc and on log(T0) in the range 3000 K < T0 < 20 000 K. For the mean flux we
adopt Gaussian priors based on the most recent measurements of Becker et al. (2013),
Faucher-Giguère et al. (2008b) and Kirkman et al. (2005) (depending on redshift) for F̄ .
For the SiⅢ correlations we used a Gaussian prior defined by the best-fit value in fSiⅢ

and 1σ region of Palanque-Delabrouille et al. (2013). All priors for all redshifts are listed
in Table 1. Note that as long as a good fit to the data can be obtained (i.e. the model is
sufficiently flexible) the exact values of thermal parameters (and therefore also the exact
priors chosen) don’t matter in the context of this chapter as the fits are only used to
correct for the window function as we discuss in the next subsection. Fits were always
performed for individual redshifts and no correlation between thermal properties at
different redshifts was assumed.

3.2.8. The Raw Power Spectrum and Window Function

Correction

The impact of masking on the power depends on the underlying shape of the power
spectrum. We use the fits to the underlying power based on our DM models to determine
the impact of the window function on this shape. We emphasize here that we use this
window-function corrected power mainly for visualization purposes as the covariance
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Figure 3.6.: Left: The measured power spectrum at redshift z = 2.8 compared to the best-fit. The black
points show the raw power of the high-resolution data and are fitted with mock observations
including the same noise and masking as in the data. The purple points are showing the
PD+13 measurement including their metal, noise and resolution corrections. These are
then fitted with models generated from noiseless, non-masked skewers. Lines show models
randomly drawn from the posterior MCMC-chain. Right: The window function estimate
from a comparison between the power from noiseless, mask-free models and the full forward-
modeled mock observations. The band shows the 68 % contour for models drawn from the
posterior MCMC-chain. The median is applied as a correction factor to the raw data. The
width of the band is propagated into the data errorbars.

in the measurement is subtly changed by the correction. While we do provide an
approximate covariance matrix in Appendix D, ideally a full forward model of the power
spectrum should be used when doing parameter estimations.

Our measurement, emulation, and window function procedure are illustrated in Fig-
ure 3.6. On the left side we show a comparison between our raw data power spectrum (i.e.
before window function correction) and the BOSS measurement as points. After applying
our fitting procedure we obtain an MCMC chain from which we can draw parameter
combinations Θ = {T0, λP ,γ , F̄ , fSiⅢ} that are compatible with the data. Feeding random
draws from this chain into our emulator routines for both the forward model and the
perfect model produces the black and purple bands. We can see that these provide
good fits to our dataset and the BOSS dataset, respectively. For a single draw Θ from
the posterior, we can then measure a window function correction fwindow using both
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emulators as:
fwindow(k) =

Pforwardmodel(k,Θ)

Pperfectmodel(k,Θ)
. (3.12)

The gray bands on the right side of Figure 3.6 show the resulting 16% and 84% quantiles
of this quantity. The dominant effect of windowing our data is a strong increase in power
on the small scale (k & 0.07 s km−1) end of the measurement.

To extract the underlying (i.e. window function corrected) power spectrum from
our raw measurement we proceed as follows. We generate 1000 random draws from
a multivariate normal distribution with a mean given by the raw P(k) measurement
(which includes the effect of the window function) and a covariance matrix defined
in eqn. (3.6) (based on both the raw measurement and the best-fit model). We then
obtain the window function correction fwindow(k) for 1000 draws from the posterior.
By multiplying each P(k) draw with each fwindow(k) draw we obtain samples of the
distribution describing the window corrected measurement. We take the mean of these
samples to represent our window corrected power, and the covariance of these samples
gives the respective window corrected covariance. We show the resulting correlation
matrix applying this procedure at z = 2.8 in Figure 3.5 (lower right panel). Compared to
the uncorrected forward model we can see additional correlation at the smallest scales
(k & 0.07 s km−1) where the influence of the window correction is strongest. The window
function corrected measurements and correlation matrices are tabulated in Appendix D
and can be used for comparison with other datasets as well as model fitting. We also
provide MCMC chains of fwindow based on our forward models to facilitate reproduction
of our measurements.

3.3. A New Power Spectrum Measurement

In this section we present our final window-function corrected power spectrum mea-
surements over the redshift range 1.8 ≤ z ≤ 3.4. First, we discuss the impact of metal
line contamination on the power spectrum measurement. Then we compare our power
spectrum measurement to the lower-k measurements from BOSS as well as the XQ-100
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dataset, which represent the state-of-the-art from low- and medium-resolution data.
Finally, we compare our results to previous high-resolution measurements.

3.3.1. The Final Power Spectrum Measurement and the Effect of

Metals on the Data

In previous work the effect of metals on the small scale power spectrum has been largely
ignored. While McDonald et al. (2000) computed the power spectrum on a dataset with
and without metals masked and also considered the effect of masking on the power
spectrum, they did not combine both results to see the net-effect of metal contamination.
However, they did note that especially for k > 0.1 s km−1 the effect of metals as well
as noise becomes too strong for their measurement to be usable. Motivated by this
conclusion, later measurements by Croft et al. (2002), Kim et al. (2004) and Viel et al.
(2008), 2013b also ignored these small scale (larger k) modes. For lower resolution
measurements using SDSS (McDonald et al., 2006) or BOSS (PD+13) spectra, these modes
are well above the resolution limit of the data, and this has not been an issue. Instead,
for those measurements the power in metals is estimated from lower redshift data (using
a spectral range redwards of the Lyα forest). As this procedure cannot treat metal lines
that are always inside the forest large scale correlations between SiⅢ and Lyα are the
dominant effect of metal contamination in this case.

In Figure 3.7 we show a comparison between our power spectrum measurement
applying the metal masking procedure described in § 3.1.2 and performing the analysis
without masking metals. Both measurements have been noise subtracted following the
discussion in § 3.2 and corrected for their respective window functions according to
§ 3.2.8. We also show the BOSS measurement as a comparison, for z > 2.2 where those
measurements exist.

It is clear that particularly at small scales (k & 0.1 s km−1) metal lines significantly
contribute to the measured power spectrum. This increase in small scale power in general
leads to an underestimation of the small-scale thermal cutoff, and naively fitting this
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Figure 3.7.: Our power spectrum measurement of spectra with masked metals (black squares) and with
metals left inside the forest (green hexagons) as well as the BOSS measurement (purple
errorbars). Both high-resolution measurements are corrected for their respective window
function. In most redshift bins contamination due to metal absorption clearly leads to an
increased small scale (large k) power which would bias a potential temperature measurement
towards lower temperatures. The orange region shows the region excluded in our further
analysis as this effect gets far larger than our statistical uncertainties. On larger scales power
is removed as well when masking the metal lines leading to an overall better agreement with
the BOSS measurement.
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metal-contaminated power would result in lower overall IGM temperatures (i.e. more
small-scale structure and hence less thermal broadening and/or pressure smoothing). For
all further analysis we therefore use the metal-masked power (black dots in the figure),
and our model fitting is conservatively restricted to modes with k < 0.1 s km−1, where
the impact of metal line contamination is relatively weak, and hence our metal-masked
power is relatively insensitive to the fact that we may not have masked all of the metals
(see discussion in § 3.1.2).

Figure 3.7 also indicates that the impact of metal-line contamination is not restricted
to small-scales. Multiple ionic metal-line transitions are typically associated with a given
absorber redshift, and because the velocity separations are thousands of km s−1, these
large-scale velocity correlations can impact the power spectrum on large-scales (low-k)
as well. Masking metals in the data at e.g. z=2.6 decreases this effect lowering the power
spectrum and therefore increases the agreement with the PD+13 measurement.

To summarize, metal-line contamination of the power spectrum does not significantly
impact our results, given that we mask the metals and conservatively restrict our power
spectrum fits to low k < 0.1 s km−1 where the impact of residual (i.e. metals we missed in
our masking) metal-line contamination should be negligible. In principle, a more careful
treatment of metal-lines (i.e. via improved masking, or forward modeling the metals, or
subtracting the red-side metal-line power) could allow one to access even smaller scales
(higher k), although this would also require a very careful treatment of the noise and
instrumental resolution whose effect also increases for smaller scales (larger k).

3.3.2. Comparison to Previous Low and Medium Resolution

Measurements

In Figure 3.8 we show our new metal and window corrected measurement of the high-
resolution power spectrum compared to the BOSS measurement from PD+13. Note that
different power spectrum bins are correlated and the errorbars only reflect the diagonal
elements of the covariance matrix. Where both measurements overlap (k . 0.02 s km−1,

55



3. A New Measurement of the IGM Power Spectrum

10−3 10−2

k [s/km]

10−2

10−1

kP
k/π

z
3.4
3.0
2.6
2.2
1.8

z
3.4
3.0
2.6
2.2
1.8

10−3 10−2 10−1

z
3.2
2.8
2.4
2.0

PD+ 2013
Walther+ 2017 (this work)

Figure 3.8.: Our new measurement of the power spectrum (dark squares) for 1.8 ≤ z̄ ≤ 3.4 (different
colors), metal lines were masked our analysis and the power introduced by masking was
removed using forward modeling of our measurement (see § 3.2.4). Also shown are the
measurements of PD+13 (BOSS, bright errorbars on the left). We can see that at most
overlapping redshifts there is good agreement except for a mild disagreement with BOSS on
large scales (small k) for z ∼ 2.4.

2.2 < z < 3.4) we find good agreement with the high-precision BOSS power spectrum
within our errors at modes k > 0.01 s km−1 and the agreement is generally good for
larger scale (lower-k) modes as well. The discrepancies at low-k are most likely due to
the fact that our measurements are rather noisy for small wavenumbers3.5.

We also compare to the recent results of Iršič et al. (2017a) and Yèche et al. (2017)
based on the XQ-100 dataset (López et al., 2016). Specifically, Iršič et al. (2017a) measured
the power at 3.0 ≤ z ≤ 4.2, and their redshift bins at z = 3.0, 3.2, and 3.4 match those

3.5This is a result of two factors: 1) the density of modes for a one-dimensional power spectrum measure-
ment is uniform, and so for linearly spaced bins there are equal numbers of modes at each k . However,
our k-bins are logarithmically spaced, so in general our error bars are larger in a relative sense at
lower-k . 2) For some of our spectra either limited spectral coverage, or our masking procedure tend to
reduce the amount of path length available for measuring the largest scale modes, making them more
noisy.
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Figure 3.9.: Our newmeasurement of the power spectrum (blue squares) for 3.0 ≤ z̄ ≤ 3.4 as in Figure 3.8
compared to the measurements from XQ-100 by Iršič et al. (2017a) (orange open circles) and
Yèche et al. (2017) (dark red dots). To address the disagreement at small scales (high k) for
z ≥ 3.2 between our high-resolution and the XQ-100 data, we also show the XQ-100 data of
Iršič et al. (2017a) assuming a different resolution correction (see main text for details) by using
a distribution of seeings and assuming an underestimation of the X-SHOOTER slit-resolution
(green diamonds). The bottom panel shows the same comparison, but normalized by the
(untreated) Irsic+2017 measurement. The quoted Iršič et al. (2017a) measurement errors are
shown as an orange band.

used in our analysis (Yèche et al. (2017) chose to use broader bins and their z = 3.2 bin
can be compared to our results). Those are compared in Figure 3.9.

While the agreement between our measurements at z = 3 is good , at z = 3.2 and
z = 3.4 Iršič et al. (2017a) measures ∼ 10% to 50% higher power than we do at small
scales k & 0.02 s km−1, which is clearly statistically significant given the error bars for
the respective datasets. Note however that this disagreement is restricted to high-k , and
we agree well with Iršič et al. (2017a) at intermediate k in all redshift bins.

While it is difficult to be certain about the source of this discrepancy, given the different
methodology used for measuring the power, the k dependence of this disagreement pro-
vides a very important clue. Note that X-SHOOTER data is significantly lower resolution
than the dataset presented here and the resolution corrections become significant at
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higher-k .

Possible uncertainties of spectroscopic resolution can come from several sources: 1)
as X-SHOOTER is a slit-spectrograph its resolution is seeing dependent, so the seeing
itself needs to be accurately determined to get an accurate resolution, 2) seeing changes
between different observations and correcting assuming a constant resolution across the
dataset might bias the measurement (see Appendix A for more details on those points), 3)
the UVB slit resolution quoted for X-SHOOTER might be significantly underestimated3.6

(see Appendix B). Because of those problems, a correction based on the nominal slit
resolution can overproduce small scale power in the data analysis. However, Iršič et al.
(2017a) already used a higher resolution than provided in the XQ-100 data release paper
when performing his corrections3.7. Using the Iršič et al. (2017a) value for the resolution
leads to agreement between both the XQ-100 power spectrum analyses by Iršič et al.
(2017a) and the independent determination of the power spectrum from the same dataset
by Yèche et al. (2017). Yèche et al. (2017) determined the spectral resolution by assuming
the XQ-100 resolution, and estimating the seeing on object by object basis analyzing the
width of the Lyα forest in the spacial direction of the 2d-spectra. While this approach
should remove the sensitivity towards seeing, it cannot tackle a potentially misestimated
slit resolution or changes of this quantity along the spectral arm. Yèche et al. (2017)
also chose to not combine the different spectral arms. Thereby, there shouldn’t be a
strong change of resolution when reaching the overlap region between both spectral
arms. Thus, inside each redshift bin their data should be more homogeneous regarding
resolution. Nevertheless, in the end both measurements seem to give essentially the
same result.

The influence of resolution errors on the resolution correction factorW 2
R (see eqn. (3.4))

3.6Note that the resolution values quoted on the X-SHOOTER webpage were indeed increased since we
published this analysis in (Walther et al., 2018a), making this the most likely cause.

3.7They used a FWHM resolution of 50 km s−1 instead of the nominal c/R = 69 km s−1 where R is the
quoted resolving power of the X-SHOOTER spectrograph. Communication with the main author
revealed that this value was obtained by visual inspection of the raw science data before the official
values were available in a similar procedure as in the Yèche et al. (2017) analysis.
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can be found by simple error propagation:

∆ lnW 2
R = −k2∆(R2)

' −2k2R2∆ ln(R)
(3.13)

and propagates to an error on the estimated power spectrum P as:

∆ ln P = −∆ lnW 2
R . (3.14)

Assuming the nominal resolving power of 4350 (according to López et al., 2016, listing a
slightly higher value than the ESO Instrument description) using the X-SHOOTER 1′′

slit on the UVB arm as a worst case scenario a spectrum with 10% higher resolution than
assumed when performing the correction will lead to a ∼ 45% (28% assuming a resolving
power of 5350) overestimate of the power in the resolution corrected measurement. As
our own power spectrum measurement is based on ∼ 10 times higher resolution data
a comparable error in the knowledge of the resolution will have a ∼ 100 times smaller
effect (so ∼ 0.4% at k = 0.05 s km−1 and ∼ 1.5% at k = 0.1 s km−1). Therefore lack of
knowledge of the precise resolution of the spectrograph a significant concern for the
X-SHOOTER measurement, but can be safely ignored for our study.

To determine the influence of possible errors in the resolution estimates due to points 1
and 2 we divided out the resolution correction from the Iršič et al. (2017a) power spectrum
measurement and corrected using different assumptions. First, we used the nominal slit
resolution R = 4350 from the X-SHOOTER spectrograph, generated Gaussian distributed
seeing values (with a mean of 0.75 ′′ and FWHM of 0.2 ′′ similar to the distribution shown
in Yèche et al. 2017) for each we computed the resolution correctionW 2

R according to
eqn. (3.4) and obtained the mean correction which we then used as the new resolution
correction. This gives basically identical results (that we don’t show in our comparison
figure for clarity) to the original Iršič et al. (2017a) measurement showing that the seeing
estimate used for their measurement is in agreement with the distribution determined by
Yèche et al. (2017) and cannot be the reason for the disagreement with our measurement.
In addition we also generate a measurement assuming a higher slit resolution ofR = 5350
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(due to point 3 and in agreement with measurements based on calibration spectra, see
Appendix B) and otherwise performing the same analysis. This comparison is shown
as red diamonds in Figure 3.9 and we can see that the agreement between our high-
resolution measurement and XQ-100 at z = 3.2 and z = 3.4 is good in this case. However,
the agreement in the z = 3.0 bin without assuming a different X-SHOOTER resolution
correction is unclear, but might be due to possible variations in the resolution between
Echelle orders. Note that for the other spectral arms (that cover the Lyα forest for
z > 3.6) this is a less severe problem as data from those is intrinsically higher resolution.
Also note that for those arms one can in principle obtain the resolution of the science
observation from the width of telluric absorption lines (see Bosman et al., 2017), but
those are rare in the UVB arm. This can also explain the agreement between XQ-100
measurements and older high-resolution data by McDonald et al. (2000) at z ∼ 3.8 (but
as the redshift bins of both measurements are significantly different, this comparison is
tricky) and Viel et al. (2013b) at z = 4.2.

Because of the severe impact the resolution correction can have on the XQ-100 power
spectrum measurement we caution against using the smallest scales (k > 0.02 s km−1)
of this measurement (at least for the lowest redshift bins) for parameter studies. This is
especially true for measurements that rely on the accurate determination of the power
spectrum cutoff, like e.g. determining the thermal state of the IGM, or the nature of dark
matter (e.g. Iršič et al., 2017b; Iršič et al., 2017c; Baur et al., 2017). Although to be fair, for
the latter most of the sensitivity comes from the higher redshift (z & 4) bins where the
resolution of X-SHOOTER is higher and additionally high-resolution (R ' 50, 000) data
from Viel et al. (2013b) are used.

In Figure 3.4 we can see, that our metal removal and masking correction techniques do
not change the data hugely (the difference is covered by our error bars) at the redshifts
and scales where we disagree with Iršič et al. (2017a). Additionally, the changes due to
metal masking do not exhibit the same shape as the discrepancy. Finally, we also checked
the raw power spectra not corrected for any masking and could not get a small-scale
power as high as in the Iršič et al. (2017a) result. We are therefore confident of metal
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masking and window correction not being the reason for the discrepancies.

Our measurements probe the small-scale cutoff in the power (0.02 . k . 0.1) in all
redshift bins with a typical precision of 5 − 15%. The position of this cutoff is still at far
larger scales then the expected cutoff due to the spectroscopic resolution of our data
and the observed cutoff in the power results from thermal and/or pressure broadening
of the absorption lines (or e.g. warm/fuzzy dark matter). In the next subsection we
also compare to previous high-resolution measurements to make sure our measurement
agrees with existing data on small scales as well.

3.3.3. Comparison to Previous High-Resolution Measurements

Previous power spectrum measurements based on high-resolution data were obtained
by different groups using redshift bins of different size and location. They also differ
in the Fourier normalization convention used (leading to factors of 2 between some
measurements), the field of which the power is computed (flux contrast or transmission
leading to additional factors of F̄ 2 in the power) as well as whether metals were masked
and noise was subtracted. We therefore show comparisons at the quoted redshifts for the
old high-resolution measurements and linearly interpolate our results to those redshifts
and renormalize the different measurements to the power spectrum convention that we
use (see Appendix C).

For authors that chose to study the F field instead of δF , there is ambiguity of the mean
flux. While the mean flux of the IGM is clearly the same, the mean flux of the data is
sensitive to where the continuum is placed. It is well known that hand continuum fits to
high-resolution spectra are biased low (Faucher-Giguère et al., 2008a), and this systematic
effect is a bigger issue at higher redshift. If one measures the power spectrum of F , and
the continuum fits are biased low, then the power will be biased high. McDonald et al.
(2000) provide measurements of their mean flux, and we can therefore easily correct
this effect, whereas Croft et al. (2002) does not. Thus a direct comparison to Croft’s
measurements is not straightforward, but we do our best by simply assuming their
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Figure 3.10.: Our new measurement of the power spectrum (black squares) compared to the existing
measurements of McDonald et al. (2000), Croft et al. (2002) and Kim et al. (2004). Our
measurement has been interpolated between the 2 neighboring redshift bins to the same
mean redshift as the other datasets. The old measurements by McDonald et al. (2000) and
Croft et al. (2002) have been rescaled by F̄ 2 as they were obtained on the flux itself instead
of the flux contrast δF which is the cause for different overall normalizations in some
bins which is the cause for different overall normalizations in some bins. The Croft et al.
(2002) measurement has been rescaled by an additional factor of two to match the Power
spectrum normalization convention we use in this work. It is worth to remark that the older
measurements were also performed in wider redshift bins (0.3 . ∆z . 0.6). Also Kim et al.
(2004) performed their measurement on a subset of our dataset. Notice that the approaches
to noise, metal and resolution correction vary between all 4 datasets as well.
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continua are unbiased and multiplying in the mean flux of the IGM measured by (Becker
et al., 2013) at the respective redshifts of their measurements. The differences between
power spectrum conventions clearly limit the precision at which our measurements will
agree with previous work.

The comparison between high-resolutionmeasurements is shown in Figure 3.10. While
overall agreement is good considering the different approaches, some comparisons show
disagreement. The strongest mismatch is with (Croft et al., 2002) at z = 2.13 on all
scales. At similar redshifts we agree with both Kim et al. (2004) and PD+13 which hints
toward an incorrect mean flux or a problem with the Croft et al. (2002) measurement
at this redshift (which is not part of their fiducial sample). We can also see that the
shape of the different measurements on scales smaller (larger k) than the cutoff matches
between the four high-resolution datasets for scales 0.01 . k . 0.08. On smaller scales
the difference in treatment of metals and S/N of the datasets as well as removal of noise
power can probably explain the deviations between these measurements. We do note
that our z = 3.0 bin exhibits a cutoff at slightly smaller scales (larger k) than the one of
McDonald et al. (2000), but agree with Croft et al. (2002) at essentially the same redshift.
This shows that there are clear limitations of comparisons to the previous measurements
from high-resolution datasets due to the different conventions.

To summarize, we find reasonable agreement between our measurements and previous
analyses. We will therefore use our new result for parameter estimations.

3.4. Summary

In this chapter we presented a new measurement of the Lyα forest power spectrum at
1.8 ≤ z ≤ 3.4 from archival high-resolution spectra obtained with the UVES and HIRES
spectrographs. The pathlength of ∼ 20 cGpc covered by this dataset (see Figure 3.4) is
several times larger than the previous measurements McDonald et al. (2000), Croft et al.
(2002), and Kim et al. (2004). This allows us to measure the small scale cutoff in the power
spectrum and its redshift evolution with unprecedented precision.
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We developed a custom pipeline to accurately measure the power spectrum and its
uncertainty, which fully corrects finite resolution and noise. Some regions of quasar
spectra must be masked because of missing data, DLAs, and metal absorption line
contaminants, which we identify and mask using several methods. If left uncorrected,
this masking alters the shape of the power spectrum, particularly on the small-scales
(high-k) of interest for studying the thermal state of the IGM. To obtain unbiased estimates
of the power spectrum and its associated noise, we adopt a forward modeling approach.
We post-process a DM simulation (see § 3.2.3 and § 3.2.4) and generate a grid of different
Lyα forest models with the same noise and resolution as our data. The same masks are
applied to these mock spectra and we use a custom emulator (§ 3.2.6) to perform MCMC
fits (§ 3.2.7) to our measurements. These models are sufficiently flexible that they provide
a good fit to the data, although the resulting parameters are not physically meaningful.
These model fits are then used to correct our power spectrum and its covariance for the
impact of masking (§ 3.2.8). Our analysis shows that metal line contaminants significantly
alter the shape of the raw power spectrum on small-scales k > 0.1 s km−1. Although
our masking mitigates the effect of this contamination, we nevertheless restrict further
analysis of the power spectrum to k < 0.1 s km−1. Our power spectrum measurements
in 9 redshift bins covering 1.8 < z < 3.4 are tabulated in Appendix D.

We compared our new measurements to previous results from both low-/medium
(§ 3.3.2) and high-resolution (§ 3.3.3) spectrographs. Our measurements agree well with
the BOSS power spectrum (PD+13) for the low wavenumbers k < 0.02 s km−1 probed
by that low-resolution dataset. Given the extremely high ∼ 2% precision of the BOSS
study, we consider this an important validation of our approach. Our measurements
significantly disagree with the recent study of (Iršič et al., 2017a) based on the medium-
resolution XQ-100 dataset. This disagreement is restricted to redshift z = 3.2 and
z = 3.4 and is present only for the higher k & 0.02 s km−1 modes. Given the direction
of the discrepancy, and the fact that only the highest k modes are affected, we argue
that the disagreement most likely results from over-correcting the effect of spectral
resolution on the power spectrum, which can ultimately be attributed to improper
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characterization of the X-SHOOTER spectrograph’s resolution. Comparing our results
to previous high-resolution efforts (McDonald et al., 2000; Croft et al., 2002; Kim et al.,
2004), we mostly find good agreement, although some combinations of dataset and
redshift bin are discrepant at the 10 − 50% level. We do not believe these differences are
a significant source of concern, as they likely arise from the challenges in comparing
measurements covering significantly different redshift ranges, adopting different mean
flux normalization conventions (Appendix C), and other systematics that may have
plagued previous work.

In the next chapter we will use the present measurement and combine it with other
power spectrum analyses from the literature. The data are then compared to hydrody-
namical simulations to perform a measurement of thermal evolution in the IGM.
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Thermal Evolution at 1.8 < z < 5.4

In this chapter, we use the power spectrum of the Lyα forest to obtain an accurate
self-consistent measurement of IGM thermal evolution over a large redshift range from
z = 5.4 to z = 1.8. As discussed in chapter 2, the power spectrum exhibits a cutoff
at small scales (high k) beyond which there is no structure left in the Lyα forest. The
reason for this is both the smoothness in the baryon density resulting from the finite
gas pressure (often called Jeans pressure smoothing) as well as thermal Doppler broad-
ening. The great advantage of the power spectrum compared to other methods, is its
sensitivity to structure on a multitude of scales. Specifically, whereas other methods
like the curvature (Becker et al., 2011) and wavelets (Lidz et al., 2010) provide only a
small-scale measurement of spectral smoothness, the overall shape of the power spec-
trum for scales between ∼ 500 kpc and ∼ 10Mpc as well as small-scale (high-k) cutoff
provides additional constraining power that breaks degeneracies between different ther-
mal parameters4.1. For this work we consider T0, γ and the pressure smoothing scale λP
as thermal parameters and the mean transmission F̄ as a further astrophysical parameter.
We additionally marginalize over the strength of Si Ⅲ correlations and the resolution of
the X-SHOOTER spectrograph (see § 4.3.4 for more detailed information about our prior
assumptions).

4.1Note that this property can also be used to break degeneracies with cosmological parameters, e.g. the
nature of dark matter (Viel et al., 2013b; Iršič et al., 2017b; Armengaud et al., 2017) or the mass of
neutrinos (Palanque-Delabrouille et al., 2015; Yèche et al., 2017; Baur et al., 2017).
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Our analysis is based upon our recent high-precision measurements of the the small-
scale (high wavenumber k) the Lyα forest flux power spectrum in chapter 3 as well
as other recent measurements from different instruments (Palanque-Delabrouille et al.
2013, hereafter PD+13; Viel et al. 2013b; and Iršič et al. 2017b) combined with the new
Thermal History and Evolution in Reionization Models of Absorption Lines (THERMAL)
grid4.2 of hydrodynamical simulations. We then perform inference by employing fast
interpolation of our model power spectra and performing an MCMC analysis with a
Gaussian likelihood.

This chapter is organized as follows. The measurements we used in this work are
summarized in § 4.1. In § 4.2 we present our grid of hydrodynamical simulations. We
use modified versions of our forward modeling, interpolation and inference tools from
chapter 3, which we present in § 4.3, to measure the thermal state of the IGM at each
redshift. In § 4.4 we present these results and compare them to measurements from the
literature as well as thermal evolution models. Finally, we discuss the results in § 4.5
and conclude with § 4.6.

4.1. Power Spectrum Datasets for Studying IGM

Thermal Evolution

In chapter 3 we performed a new measurement of the Lyα forest power spectrum based
on 74 archival high-resolution, high-S/N quasar spectra obtained with the VLT/UVES
(from Dall’Aglio et al., 2008) and Keck/HIRES (from O’Meara et al., 2015; O’Meara et al.,
2017) spectrographs covering a redshift range from z = 1.8 to z = 3.4. This comprises a
significant improvement in dataset size compared to previous measurements based on
high-resolution spectra (McDonald et al., 2000; Croft et al., 2002; Kim et al., 2004; Viel
et al., 2008) in this redshift range. We semi-automatically masked out possible metal
contamination in our data based on several approaches, measured the power spectrum

4.2see thermal.joseonorbe.com
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4.1. Power Spectrum Datasets for Studying IGM Thermal Evolution

Table 4.1: Different data sets used in this analysis

dataset zmin zmax ∆z Nqso ∼ R kmax[s/km]

Palanque-Delabrouille et al. (2013) 2.2 4.2 0.2 11000 2200 0.02
Viel et al. (2013b) 4.2 5.4 0.4 15 60000 0.1
Iršič et al. (2017b) 3.0 4.2 0.2 100 6000–9000 0.05

Walther et al. (2018a) 1.8 3.4 0.2 74 60000 0.1

using a Lomb-Scargle Periodogram (Lomb, 1976; Scargle, 1982) on the flux contrast
δF = (F − F̄ )/F̄ , and binned the resulting power in equidistant bins in logk . Statistical
uncertainties were estimated using a bootstrap method and are . 10% for the small scale
modes that are most sensitive to the thermal state of the IGM.

Additionally, data using the BOSS (Palanque-Delabrouille et al., 2013) or X-SHOOTER
(Iršič et al., 2017a; Yèche et al., 2017) spectrographs are available with even smaller statis-
tical uncertainties (e.g. ∼ 2% on large scales k < 0.01 s km−1 for the BOSS dataset), but
limited small scale power spectrum coverage due to the significantly lower spectroscopic
resolutions of these instruments. As these analyses use the same redshift binning as we
do, but extend to higher redshifts 3.6 ≤ z ≤ 4.2 a comparison to them is straightforward.
In particular, the BOSS data provides a large scale anchor point thereby partially breaking
degeneracies between the different parameters. However, the X-SHOOTER dataset may
have significant uncertainty in its resolution estimates which we will take into account
in our modeling procedure (see § 4.3.4)4.3.

To assess the thermal state at even higher redshifts 4.2 ≤ z ≤ 5.4 (where currently no
large survey dataset exists) we use data from the previous high-resolution measurement
by Viel et al. (2013b) based on Keck/HIRES and Magellan/MIKE data. This extension

4.3This issue was discussed in chapter 3. See also Selsing et al. (2018) who show the dependence of
spectroscopic resolution on seeing for the VIS and NIR arms in their Fig. 2 and find both significant
scatter as well as overall higher resolution than previously quoted on the ESO webpage.
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allows us to cover a big part of the universes history (1.8 < z < 5.4) from just after H Ⅰ
reionization to well after the He Ⅱ reionization (according to Worseck et al., 2016) and
the peak of the cosmic star formation history.

To summarize, our fiducial dataset consists of the data from chapter 3 for z ≤ 3.4,
the BOSS data by PD+13 at 2.2 ≤ z ≤ 4.2, the data by Viel et al. (2013b) at z ≥ 4.2,
and the XQ-100 measurement by Iršič et al. (2017a) at 3.6 ≤ z ≤ 4.2 where the VIS
arm was used (for z = 3.6 jointly with data from the UVB arm) and except for z = 4.2

no high-resolution dataset was available. A summary of the datasets can be found in
Table 4.1.

4.2. The THERMAL Suite of Hydrodynamical

Simulations

Thehydrodynamical models we use in this chapter for comparison with our measurement
are part of the publically available THERMAL suite of Nyx simulations (Almgren et al.,
2013). Nyx follows the evolution of dark matter simulated as self-gravitating Lagrangian
particles, and baryons modeled as an ideal gas on a uniform Cartesian grid. The Eulerian
gas dynamics equations are solved using a second-order accurate piecewise parabolic
method (PPM) to accurately capture shocks. For more details of these numerical methods
and scaling behavior tests, see Almgren et al. (2013) and Lukić et al. (2015).

Besides solving for gravity and the Euler equations, we also include the main physical
processes fundamental to model the Lyα forest. First we consider the chemistry of the
gas as having a primordial composition with hydrogen and helium mass abundances
of Xp, and Yp, respectively. In addition, we include inverse Compton cooling off the
microwave background and keep track of the net loss of thermal energy resulting from
atomic collisional processes. We used the updated recombination, collision ionization,
dielectric recombination rates, and cooling rates given in Lukić et al. (2015). All cells are
assumed to be optically thin to ionizing radiation, and radiative feedback is accounted
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for via a spatially uniform, but time-varying UVB radiation field given to the code as a
list of photoionization and photoheating rates that vary with redshift (e.g. Katz et al.,
1992).

The THERMAL suite consists of ∼ 70 simulations, each in Lbox = 20 h−1 Mpc box and
using Ncell = 10243 Eulerian cells and 10243 dark matter particles which is a strong
improvement with respect to previous studies of the thermal state which relied on smaller
boxes with the same resolution (e.g. Becker et al., 2011). Cosmology is based on a Planck
Collaboration et al. (2014) model (Ωm = 0.319181, Ωbh

2 = 0.022312, h = 0.670386,
ns = 0.96, σ8 = 0.8288). Comparisons of different resolutions and box sizes can be
found in Lukić et al. (2015) and this box size was chosen as the best compromise between
being able to run a large grid of models and the need to be converged at least to < 10%
on small scales (large k). The power spectrum is even converged to the one percent level
on all relevant scales for z . 3 and all scales k . 0.05 s km−1 at higher redshifts with
respect to resolution. For boxsize, however, the power is converged to the ∼ 5% level,
with the largest scales (smallest k < 0.01 s km−1) being significantly influenced by poor
mode sampling and therefore excluded from our analysis. We further discuss effects of
numerical convergence in § 4.5.

For most simulations we generated different thermal histories in a similar way as
in Becker et al. (2011) by changing the heating rates relative to a fiducial model at all
redshifts and we’ll henceforth call these our ‘heating rate rescaling models’. The heating
rates we used to construct different thermal histories have been constructed as:

ϵ = A∆BϵHM12, (4.1)

where ϵHM12 are the heating rates tabulated in Haardt, & Madau (2012) and A and B are
the parameters changed to get different thermal histories. Note that while long after
any reionization event the instantaneous temperature is more or less independent of the
redshift of reionization, the pressure smoothing scale λP retains a memory of this for a
longer time (Gnedin et al., 2003; Kulkarni et al., 2015; Oñorbe et al., 2017b). As this type
of modeling leads to changes in the thermal state at all redshifts, it is hard to disentangle
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4. A New Measurement of IGM Thermal Evolution at 1.8 < z < 5.4

λP from T0 and γ from just this approach.

Because of this and to better explore the parameter space we also use a second mod-
eling approach providing completely distinct thermal histories. In this approach we
self-consistently solve for the UV background as well as the heating during reioniza-
tion following the approach laid out in Oñorbe et al. (2017b). Reionization models are
parametrized by both a total heat input ∆T during reionization and a redshift of reion-
ization zreion (at which a species is 99.9% ionized and assuming a fixed shape for the
reionization history) for both H Ⅰ and He Ⅱ reionization. We also consider the thermal
histories based on this approach to be more physically motivated and will later use them
to study the implications of our measurements on reionization.

The values for thermal parameters T0 and γ were obtained from the simulation by
fitting a power law TDR to the distribution of gas cells in log∆ and logT using a linear
least squares method as described in Lukić et al. (2015). To determine the pressure
smoothing scale λP the cutoff in the power spectrum of the real-space Lyα flux Freal

was fit as described in Kulkarni et al. (2015). Here, Freal is the flux each position in the
simulation would produce (given it’s temperature and density), but neglecting redshift
space effects.

The model parameters were chosen to bracket most current observational constraints
on thermal parameters from curvature, wavelet, line-fitting and quasar-pair phase angle
statistics. The set of all thermal evolution models used in this chapter as well as the
current observational constraints are shown in Figure 4.1. The explicit reionization based
models (red curves) show strongly different evolutionary behavior especially inT0 (most
of them show a relatively narrow He Ⅱ reionization peak around z = 3) compared to a
relatively smooth evolution for the heating rate rescaling approach (gray curves) and
will also be used later as comparison models for our measured thermal evolution.

The combined set of models results in an irregular grid of thermal parameters at each
individual redshift. This is shown in Figure 4.2 where each point in the T0,γ , λP volume
corresponds to one of our hydrodynamical simulations. We can see that a large range
is spanned in each of the parameters and most of the 2 parameter combinations. As λP
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Figure 4.1.: Redshift evolution of different thermal evolution models (lines). Most of the different curves
(gray) where obtained by changing the overall heating rates from (Haardt, & Madau, 2012)
by a factor (changing T0 at all redshifts) as well as the exponent in their density dependence
(changing γ at all redshifts) according to eqn. (4.1). As the pressure smoothing scale λP is
dependent on the full thermal evolution of the IGM it changes accordingly in these cases.
Additional models of thermal evolution (red) with different H Ⅰ and He Ⅱ reionization redshifts
and heat inputs partially break those degeneracies. Also shown is the Temperature T (∆?)

(based on the values of ∆? by Becker et al., 2011) at the overdensity where constraints from
curvature measurements are independent of γ . We compare to the measurements by Lidz et al.
(2010), Becker et al. (2011), Bolton et al. (2014), Boera et al. (2014), Rorai et al. (2017b), Hiss
et al. (2018) and Rorai et al. (2018) in the parameters constrained by the respective analysis.
The Lidz et al. (2010), Bolton et al. (2014) and Rorai et al. (2018) data have been offset by 0.02
along the redshift axis for clarity.
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Figure 4.2.: The subset of thermal models we used at z = 3.2. Each point in theT0,γ , λP space corresponds
to a different Hydrodynamical simulation. Note the correlations between T0 (γ ) and λP in
the grid. For each simulation we rescaled the optical depths to obtain outputs with different
mean transmitted fluxes F̄ .
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probes the integrated thermal history which is smooth for each individual model and
partly constrained by physical limits on heating and cooling of the IGM during and after
reionization it turns out to be relatively difficult to independently vary λP in a way that
is not correlated with the thermal state parameters T0 and γ . Alternatively, one could
generate models with abruptly changing temperature such that the pressure smoothing
does not have enough time to follow this change. While arbitrary λP could be generated
in this way, fine-tuning is needed to produce this kind of model for an individual redshift
which would take a lot of additional computational time (especially for changes at low
redshifts) and it also seems unphysical. Therefore, we do not have full flexibility (mostly
due to CPU time restrictions) in varyingT0 vs. λP orthogonal to the degeneracy direction
visible in our models. However, this in the end does not pose a problem to our analysis
as the correlation between both parameters is physically motivated.

In principle reionization is an inhomogeneous process (Davies, & Furlanetto, 2016;
D’Aloisio et al., 2015), but we only use an homogeneous model to describe photoioniza-
tions. While generally UVB and thermal fluctuations could be influencing the power
spectrum and therefore our conclusions on thermal evolution especially at z > 4 (see e.g.
Cen et al., 2009), recent analyses (Onorbe et al. 2018a, also earlier studies by McDonald
et al. 2005a and Croft 2004 obtained similar results but with a focus on lower redshifts)
have found that those mostly change the power spectrum on larger scales than used for
this work (at least for H Ⅰ reionization), but does not strongly change the power on small
scales which provides most of the sensitivity to the thermal state of the IGM. Note again
that we are not using the largest scale modes which strongly reduces our sensitivity to
inhomogeneities, further justifying our use of a homogeneous UVB.

We computed skewers of optical depth τ = − ln F by convolving each pixel along one
dimension in the simulation boxwith the corresponding Voigt-profile for the Temperature
T , NH Ⅰ ∝ ∆2/(T 0.7ΓH Ⅰ) and Doppler shifts due to v for each simulation snapshot. As
is common in Lyα forest studies (see e.g. Bolton et al., 2010b; Boera et al., 2014), the
obtained values of τ were then rescaled to match different mean transmission values F̄
to compensate for our lack of knowledge of the UVB amplitude. Generally this rescaling
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will affect the shape and large scale amplitude of the power spectrum. Lukić et al. (2015)
investigated this issue (see their Figure 23) and found that rescaling τ by a factor of ∼ 0.5

results in to ∼ 5% changes in the Lyα forest power spectrum, especially at low redshifts.
While rescaling τ could be slightly biasing our results, we emphasize that the rescalings
we perform in this work are typically smaller ∆τ/τ ∼ 30%, and hence this effect should
be subdominant compared to e.g. boxsize effects and cosmic variance (see § 4.5).

For each redshift and each parameter combination θ = {T0,γ , λP, F̄ } we generated
50000 randomly selected skewers – the same ones for each parameter combination –
which serves as the starting point of our analysis.

4.3. Measuring the Thermal State of the IGM

In this section, we describe how we perform inference on our data using the THERMAL
grid. This involves generating a forward model of the data, creating an emulator – a
fast method to interpolate from a sparse grid of simulation to any point in the multi-d
parameter space, and finally performing the actual inference via Bayesian methods.

4.3.1. Forward Modeling

To compare to existing measurements, which didn’t apply masking of spectral regions,
but instead treated metal contamination statistically by comparing to lower redshift data
where most metals are outside the Lyα forest, we compute the power spectrum based on
∼ 50000 noiseless, high-resolution skewers from our simulation. We will refer to this as
the ‘perfect model’.

However, due to fully account for the window function introduced on the power
spectrum by masking parts of the data, when comparing to our measurement from
chapter 3, we compute the power spectrum based on the skewers for each combination
of parameters applying the full forward modeling technique described in chapter 3 to
our hydrodynamical simulations. Henceforth we’ll call this the ‘forward model’. This
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technique consists of several steps of post-processing the hydrodynamical simulation
outputs followed by a power spectrum computation in the same way as for the data. To
forward model an individual quasar spectrum we first merge randomly selected skewers
(without repetition) to cover the same pathlength as the data, then convolve the spectra
with a Gaussian smoothing kernel reducing the resolution of the models to match that
of the data, rebin the models onto the pixels of the observed spectra, and add noise
drawn from a Gaussian distribution for each individual pixel with a standard deviation
equal to the 1σ uncertainty of the corresponding quasar spectral pixel reported by the
data reduction pipelines. Finally and most importantly, we mask the forward modeled
spectrum in exactly the same way as the data to account for the windowing effects
resulting from gaps in the data and our metal masking procedure. We then compute
the power spectrum by utilizing ∼ 50000 skewers from our simulation. Note that while
the full forward modeling of noise and resolution might not be completely necessary as
they have been corrected in the measurement (and are corrected in the same way inside
the forward modeling procedure as well), there might be subtle effects on the masking
correction. We therefore want to make the model spectra as similar to data as possible.
Note that this does not change our model precision which is dominated by dataset size
rather than noise or resolution.

4.3.2. Emulation of the Power Spectrum

To perform a fit to the data and infer the thermal state at a particular redshift we need to
be able to compute power spectra on a continuous range of parameters. Therefore we
need to interpolate between the discrete and sparse outputs of the THERMAL grid. To
perform this task we follow the emulation approach of Heitmann et al. (2006) and Habib
et al. (2007). For details, we refer the reader to their papers (and references therein) as
well as chapter 3; in the following we summarize the main steps of the approach. First,
we decompose the simulated logarithmic power spectra onto a PCA basis. We save the
PCA vectors Φi(k) as well as the coefficients ωi(θ j) at each thermal model location θ j .
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Figure 4.3.: Cross validation results for our emulation procedure at z = 2.8. Colored bands are showing
the relative difference between emulated and true power for different cuts of the full cross
validation set. The median is shown as a black curve. Other redshifts give similar results
especially for the 68% region. See main text for more details.
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We then use a Gaussian process to interpolate the coefficients ωi(θ j) onto any arbitrary
location in parameter space θ . Taking the dot product of the PCA vectors with these
interpolated coefficients then gives the power spectrum evaluated at any parameter
location.

We thus calculate a Gaussian process (GP) for each principal component coefficient
(using GEORGE, see Ambikasaran et al., 2016) using a squared exponential kernel plus
an additional white noise contribution

K(θ i ,θ j) = exp(−0.5(θ i − θ j)C
−1
l (θ i − θ j)) + σnδij (4.2)

for parameter values θ i , a chosen distance metric Cl (which is defined by a smoothing
length l for each parameter, i.e. it’s diagonal) and a noise contribution σn (for an in depth
introduction to GP techniques, see Rasmussen, & Williams 2005).

As the hydrodynamical grid consists of far less models (∼ 50)4.4 than the previous DM
based grid (∼ 500) used in chapter 3, we must be more careful about the interpolation
errors resulting from our emulation procedure. Instead of just using a kernel with a fixed
hand-tuned smoothing length, which was our approach in chapter 3, we additionally
optimized our kernel parameters by maximizing GP-likelihood using the scipy.op-
timize (Jones et al., 2001–) package and the so-called L-BFGS-B (Zhu et al., 1997)
method4.5. We then performed the analysis using the optimal smoothing lengths l and
noise σn for the kernel for each Gaussian process emulator.

We estimate the emulation uncertainties using a cross-validation scheme to propagate
interpolation errors. To do this we generate the emulator, but leave one simulation out of
the training set4.6. We denote emulators with a model (defined by parameters θ ) left out
as emu\θ . We then compare the actual models (with power Pmodel) for this simulation to
4.4The exact number of models used is redshift dependent because of further cuts that are discussed at the

end of this subsection.
4.5If a low likelihood was achieved we optimized again using the downhill simplex method by Nelder, &

Mead 1965 and took the more optimal of the 2 runs.
4.6In fact we discard all the different F̄ realizations for this simulation in this test as they all have the same

thermal parameters.
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the emulator (with power Pemu\θ ) at the parameters θ of this model:

∆Pemu(k,θ) = Pmodel,θ (k) − Pemu\θ (k,θ). (4.3)

We show the accuracy of the emulation in Figure 4.3. This shows quantiles of the
deviations ∆Pemu from the true underlying model inside our cross-validation sample.
We see that for most models in our parameter space the emulator works to better than
1%. However, emulation uncertainty can increase to the 5% level (with a preference for
underestimation at k > 0.06 s km−1) for some models. As the uncertainty in our power
spectrum measurements is ∼ 2% (for the 68% quantile) on large scales (k . 0.01 s km−1)
and & 5% on smaller scales, measurement errors are much larger than these interpolation
errors. Nevertheless, we opted to add the covariance matrix for the interpolation process
to our likelihood. This covariance matrix can be obtained by performing:

Cemu,ij = 〈∆emu(ki,θ)∆emu(kj,θ)〉 (4.4)

with the average performed over all possible combinations of model parameters inside
our grid for each redshift bin.

Due to the variety of thermal histories in the THERMAL suite some simulations can
have extremelly close values of their thermal parameters at some specific redshifts. In
order to avoid possible problems in the emulator due to this issue we removed models
from the THERMAL grid that did not satisfy a distance threshold4.7 and are left with 45

to 65 models per redshift.

4.3.3. Inference

We perform a Bayesian MCMC analysis on the power spectrum data at each individual
redshift using the emcee package (Foreman-Mackey et al., 2013) based on the affine

4.7To be precise we demand
√∑

θ ∈θ

(
θi−θ j

max(θ )−min(θ )

) 2
≥ 0.1, i.e. applying a minimal distance that is still

far closer than our typical grid separation. While this threshold leads to good results throughout our
redshift range, it is not necessarily the optimal one and further tests adopting different values could
therefore be used to slightly increase interpolation accuracy.
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invariant sampling technique (Goodman, & Weare, 2010) and again assuming the mul-
tivariate Gaussian likelihood (see eqn. (3.9)), but now accounting for our emulation
covariance Cemu by adding it to the data the covariance of an individual measurement
Cdata to get the full covariance C for the likelihood, i.e.:

C =Cdata +Cemu. (4.5)

For these covariances we use published values if available. For our own dataset from
chapter 3 as well as the Viel et al. (2013b) dataset, we used the published uncertainties
(i.e. the diagonal covariance elements) and combined them with the correlation matrix
of the model closest in parameter space to obtain an estimate of the covariance, i.e. we
perform nearest neighbor interpolation between covariance matrices obtained at every
point (see chapter 3 for details on this approach).

4.3.4. Parameters and Priors

Our modeling so far depends on 4 parameters, T0 and γ describing the thermal state,
λP for the pressure smoothing depending on the full thermal history, and F̄ for the
mean transmission that corresponds to a given UVB amplitude. There is, however, one
additional parameter that we input in ourmodels for each dataset to generate the observed
correlation between Si Ⅲ and Lyα (see McDonald et al., 2006; Palanque-Delabrouille et al.,
2013). Finally, because of significant uncertainties in the resolution of the XQ-100 data
(see the detailed discussion in Appendix B of chapter 3), we also marginalize over the
resolution of the XQ-100 measurement whenever we use this data, giving us another
parameter. Therefore we have a total of 5 (in the case of high-resolution data only) to
8 (in the case of fitting 3 datasets of which one comes from XQ-100) parameters. We
assume flat priors on logT0, log λP,γ . We now go into further detail about the modeling
and assumptions for the other parameters.

We add SiⅢ correlations to the model analytically by multiplying the model power
spectrum with an oscillating signal as correlations inside a spectrum correspond to
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Figure 4.4.: Corner plot showing the Prior PDF for thermal parameters and F̄ given our model grid and
excluding parameter values outside its convex hull. This was obtained by sampling our prior
with an MCMC assuming a flat likelihood. Note that the degeneracies in our model grid
lead to non-flat marginalized distributions. The diagonal shows the 1d-PDF (marginalized
over all other parameters) for each parameter with dashed vertical lines at the 16% and 84%
quantiles. The scatter plots below show the 2d-PDFs for each combination of 2 parameters
(also marginalized over all others) with contours showing the region containing the 68%
and 95% highest densities. Note that due to the restrictions of our grid there is a strong
correlation especially between T0 and λP. The additional preference towards low T0 or λP is
due to our choice of flat priors in the log of these parameters. The green band shows the 1σ
interval in F̄ we use for the Gaussian prior.
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oscillations of the corresponding power spectrum:

Ptot = (1 + a2SiⅢ + 2a cos(k ∆v))PH Ⅰ (4.6)

with aSiⅢ being a free nuisance parameter for the strength of the correlation. In pre-
vious works this was typically expressed as aSiⅢ = fSiⅢ/(1 − F̄ ) with fSiⅢ being a
redshift independent quantity that was fit using the entire dataset. We adopt this same
parametrization but opt to fit for a unique value of fSiⅢ at each redshift and for each
dataset because of the different metal treatment in the datasets and as we do not perform
a joint fit of different redshifts here. We assume a flat prior on each fSiⅢ and demand
correlations to be positive.

We modeled the resolution of the X-SHOOTER spectrograph Rnew by multiplying the
measured XQ-100 power spectrum with the resolution dependent part of the window
function:

WR(k,R) = exp
(
−
1

2
(kR)2

)
(4.7)

using the resolutions quoted in Iršič et al. (2017a) and dividing byWR(k,Rnew). Note
that the resolution of the instrument depends on two different factors: the resolution
for a fully illuminated slit (or ”slit resolution”) and the seeing which gives rise to higher
spectral resolution if smaller than the slit size. We assume two limits for the resolving
power of the XQ-100 dataset. The lower limit assumes the slit resolutions quoted in the
XQ-100 data release paper (López et al., 2016) as well as a fully illuminated slit (leading
to RUVB = 4350 for the UVB arm of the instrument, RVIS = 7410 for the VIS arm4.8). The
upper limit assumes a seeing of 0.65′′ (smaller than the slit) and higher values for the
slit resolution4.9 (leading to RUVB = 8230 and RVIS = 12184). We assume a flat prior
between these two limits. As z = 3.6 is using both spectral arms we use the lowest and
highest of the 4 resolution values above as the limits here. Note that this choice of priors
4.8These values are also close to the formerly quoted ”new values” from the instrument website as well as

manuals until Period 101.
4.9Based on our on estimates of XSHOOTER’s resolution in chapter 3 which is also close to the recently

updated values on the XSHOOTER website and manual from Period 102
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on spectroscopic resolution is an extremely conservative choice that will significantly
weaken the constraints that can be obtained from this XQ-100 dataset. This is most acute
in the UVB arm because of its intrinsically lower resolution. A more careful analysis
of the XQ-100 resolution would allow us to adopt a far stronger prior on these values,
which would increase the precision of constraints deduced from power spectra measured
from such moderate resolution spectra.

Note that most previous measurements (exceptions to this are e.g. Lidz et al., 2010;
Iršič et al., 2017b) of the IGMs thermal state did not attempt to marginalize over the
uncertainty in the mean flux estimate. Instead, typically simulations that match the
mean flux of the data assuming perfect knowledge of this quantity are used (e.g. in Voigt
profile fitting or curvature analyses). For F̄ we used both a flat prior (corresponding
to performing a joint measurement of F̄ and the thermal state) and a Gaussian shaped
prior. For the Gaussian prior we assumed a mean based on the fit by Oñorbe et al.
(2017b) to a compilation of recent measurements (Fan et al., 2006a; Kirkman et al., 2007;
Faucher-Giguère et al., 2008b; Becker et al., 2013) and a standard deviation based on
the uncertainties for the most recent measurements at z ≤ 4.0: Becker et al. (2013)
for 2.2 ≤ z ≤ 4.0, Faucher-Giguère et al. (2008a) for z = 2.0, Kirkman et al. 2005 for
z = 1.8. For z ≥ 4.2 we use σF̄ = 0.03 which is loosely based on the discrepancy
between Fan et al. 2006a for z ≥ 4.6 and the measurements by Becker et al. 2011 in the
range 4.1 ≤ z ≤ 4.7 (see also Bosman et al., 2018; Eilers et al., 2018, for more recent
mean flux measurements that are discrepant by a similar amount for 5.0 ≤ z ≤ 5.4).

To avoid extrapolating from our model grid we additionally require that all thermal
parameters lie inside the convex hull of our model grid (see Figure 4.2), i.e. the smallest
convex shape including all THERMAL grid points. The convex hull is evaluated numeri-
cally by triangulating the model grid (using scipy.spatial.Delaunay) and for
each MCMC sample we test whether it is inside the triangulation when evaluating the
prior. Otherwise the prior is set to zero. To see the effective prior resulting from only
using this non-rectangular region where we have models, we performed an MCMC run
assuming a completely uninformative dataset, i.e. using only the priors in our fit and a
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constant likelihood. The results of this procedure are shown in Figure 4.4 for z = 2.8.
In some contours, e.g. T0 and λP, we can see that parameters are highly correlated
already since our grid is non-rectangular. We argue, however, that these correlations are
physically motivated as models perpendicular to these correlations are hard to produce
(see § 4.2) and that this behavior actually constitutes prior information for our analysis.

4.4. Thermal Evolution of the IGM

4.4.1. Measurements and Degeneracies

We performed fits of the parameters governing the thermal state using combinations of
all datasets discussed in § 4.1 in 16 individual redshift bins with 1.8 < z < 5.4, where we
used a bin size ∆z = 0.2 for z ≤ 4.2 and ∆z = 0.4 for z ≥ 4.6.

The power spectra of each dataset are summarized and compared to models based
on our posterior MCMC chains in Figure 4.5. Note that for visualization purposes we
only compare window-function, Si Ⅲ correlation and resolution corrected data to the
perfect model. The window function due to masking was taken out of the UVES/HIRES
data by multiplying measurement points with the median Pemu,perfect/Pemu,forward for our
MCMC chain and propagating its uncertainties using Gaussian error propagation for
each individual mode § 3.2.64.10. Analogously, we rescaled the XQ-100 power to use
the ”best-fit” resolution correction, i.e. we renormalize withWR(k,Rnew)/WR(k,R) (see
eqn. (4.7)) from the posterior and removed SiⅢ correlations from the data applying
eqn. (4.6). We can see that satisfactory fits have been achieved at all redshifts.

In Figure 4.6 we further illustrate the posterior distribution we infer via our MCMC at
z = 2.8 with a so-called ‘corner plot’. We can see that the data strongly constrains all
parameters (e.g. compare to Figure 4.4 or the blue curves in the 1d histograms, for which
the likelihood is assumed to be completely uninformative). The most important feature

4.10Note that while we used DM models to correct the ”raw” power in chapter 3, the masking correction
performed here is fully based on hydrodynamical simulations
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Figure 4.5.: Redshift evolution of the power spectrum with colors showing different datasets. Data by
Iršič et al. (2017a) were corrected to the median of the marginalized posterior resolution,
Walther et al. (2018a) points have been corrected for the masking window function. All
data have been corrected for SiⅢ correlations. Bands show 68% confidence regions for our
emulator with parameters randomly drawn from the posterior distribution.
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Figure 4.6.: Corner plot showing 1d- and 2d- marginalized posterior distributions for all fitting parameters
at z = 2.8 assuming a flat prior on F̄ . Blue curves in the 1d-histograms show 1d- marginalized
distribution when ignoring the data and fitting the prior only (i.e. the result of the analysis
performed for Figure 4.4). We can see that there are strong constraints on all parameters
compared to the prior information. We also notice a strong correlation between permutations
of γ , T0 and F̄ . Note that the posterior in F̄ is significantly below the observed value of
the Becker et al. (2013) mean flux measurement (shown as a green line with a band for the
1-σ -region) which is, combined with the strong anticorrelation between γ and F̄ leading to
higher values of γ than typically assumed.
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4. A New Measurement of IGM Thermal Evolution at 1.8 < z < 5.4

we see is that there are strong degeneracies between some parameters, e.g. the diagonal
contours between permutations of T0, γ and F̄ . Note that the strong correlation between
T0 and γ is well understood and results from the IGM not probing the mean density,
but instead mild overdensities at these redshifts (see e.g. Lidz et al., 2010; Becker et al.,
2011). We also infer a low mean transmitted flux F̄ = 0.69±0.01 compared to the Becker
et al. (2013) measurement of F̄ = 0.727 ± 0.009 (green band). It is interesting to note
that this low value however agrees well with the joint constraint on mean transmission
evolution by Palanque-Delabrouille et al. (2015) obtained from the BOSS power spectrum
yielding A = 0.0028 ± 0.0002,η = 3.67 ± 0.02 for F̄ (z) = exp(−A(1 + z)η) resulting in
F̄ (z = 2.8) ≈ 0.687 ± 0.020. Note that the dataset used in this analysis overlaps with
the one we used here, but simulations and inference procedure are independent and our
analysis has additional higher resolution data available. Independent of the BOSS data,
we also obtain similarly low F̄ values when performing fits on the high-resolution data
from chapter 3 alone.

Additionally, the posterior distribution for γ shows a clear preference for values
γ ≈ 2.1, far above the expected value of ∼ 1.6 for IGM gas in photoionization equilibrium
long after reionization events (Hui, & Gnedin, 1997; McQuinn, & Upton Sanderbeck,
2016) Note again that there is a strong anti-correlation between γ and F̄ , so while our
analysis prefers a high value of γ and a low value of F̄ , this is a movement along the
degeneracy direction. We will further discuss this issue in § 4.4.2.

The redshift evolution of individual parameters, determined from the 1d marginal-
ized posteriors, is illustrated in Figure 4.7. For 3.0 ≤ z ≤ 3.4 we also performed fits
including the XQ-100 data, and fully marginalized over our lack of knowledge of the
exact spectroscopic resolution (see discussion in § 4.3.4). As including this dataset did
not significantly change our results, we decided to leave those points off the plot for
clarity. Numerical values for the marginalized parameters are tabulated in Table 5 in the
Appendix.

There are several noteworthy features in Figure 4.7. First, the disagreement that we
saw at z = 2.8 between our inferred value of F̄ and recent measurements is also present
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Figure 4.7.: Points with error bars show the median and the region between 16% and 84% quantiles of
the 3 thermal parameters as well as the mean transmission of the IGM (marginalized over all
model parameters of the fit) at different redshifts jointly using our fiducial dataset (squares)
at each redshift. In the F̄ panel we also show the evolution obtained by Becker et al. (2013)
(red band showing 1σ uncertainties) based on relative changes in SDSS quasar transmissions
as well as the Oñorbe et al. (2017b) (dashed line) fit to these data and further datasets. Note
the large discrepancies between our measurements and those results when assuming an
uninformative prior on the mean flux. The white range shows the space populated by our
models, i.e. we cannot expect to measure values inside the gray shade using our current
emulator.
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at all other redshifts z < 3 (green and blue datapoints compared to the pink shaded
region in the lower panel). At the same time γ reaches very high values in the same
redshift range. Also T0 drops strongly from z = 3.0 to lower redshifts, but due to the
degeneracies between T0, γ , and F̄ these measurements are all strongly correlated and
this effect is therefore expected. Note that these trends – high γ , low F̄ , and low T0 –
persists if we fit the high-resolution data alone, as the BOSS data alone do not individually
constrain all of these parameters due to the lack of high-k modes (resulting from limited
spectral resolution).

Second, for z ≥ 3 we can see that γ shows little evolution and the mean transmitted
flux F̄ is consistent with the Oñorbe et al. (2017b) fit to recent measurements. We can
also see that T0 increases from ≈ 5100 K at z = 5.0 to ≈ 15 000 K at z = 3.4. This rise
could be explained by the onset of He Ⅱ reionization, which we discuss in more detail
in § 4.4.5 where we compare our inferred parameter values to models of IGM thermal
history that treat reionization heating.

In summary, we can see that the power spectrum analyzed here can in principle achieve
high precision constraints on IGM thermal parameters and the mean transmission, but
the high values of γ ' 2 inferred at z < 3 and concomitant discrepancies between our
inferred mean flux and the Becker et al. (2013) measurements might indicate systematics
in our procedure. We consider this issue in detail in the next section.

4.4.2. Analyzing the Discrepancies in γ and F̄

In the previous section we found low values of F̄ compared to Becker et al. (2013) and
possibly unphysically high values of γ . While both parameters are degenerate and the
degeneracy direction matches with our discrepancy this might point towards some
problem within the analysis. To investigate this scenario we want to isolate the change
in the power spectrum when moving along the degeneracy direction of our posterior
distributions. Due to the dimensionality of the parameter space and correlations between
different parameters this can’t be achieved by simple cuts along a parameter direction.
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Figure 4.8.: Illustration for our approach in selecting models along the posterior distribution (see main
text for details). Left: The marginalized posterior distribution of γ values from our chain with
the bins which we used to select generate models at the 68% and 95% confidence intervals
shown as bars. The median chain value in each bin is shown as a colored line. Right: 68%
and 95% contours for γ vs. F̄ with the selected values of both parameters shown as squares.

Therefore we designed the following procedure to generate model curves tracking the
degeneracy direction for different values of γ (also see the illustration in Figure 4.8):

• We take the posterior of our MCMC analysis (i.e. the Markov chain) and define
bins such that the median of γ inside a bin is equal to a desired quantile of the
marginalized γ distribution (which are chosen to be equivalent to ±1σ ,±2σ ).

These bins are shown as colored bars in the left panel of Figure 4.8.

• For γ values in our chain within a given bin, we than compute the median of all
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Figure 4.9.: Topmost panel: The power spectrum (not corrected for masking) at z = 2.8 (other redshifts
are shown in Figure 4.10, bands are showing regions in which 68% of models in the posterior
fall) with curves showing models (drawn from the respective emulator) with different thermal
parameters. Those are chosen such that the lines represent the 2.5%, 16%, 50%, 84% and
97.5% quantiles of the posterior distribution in γ while following degeneracies with the
other parameters (see main text and Figure 4.8 for the details). Values of the most relevant
parameters are printed inside the figure (with T4 = T0/10 000 K). Both datasets have been
offset by a factor of two for clarity. Bottom panels: The fractional deviation between data in
the topmost panel and the model at median γ (green curve) for each dataset.
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Figure 4.10.: Same as Figure 4.9, but also for all redshifts z ≤ 3.4. We can see that while most redshift
bins show the strongest scatter in the power at k ∼ 0.06 s km−1 when moving along the
degeneracy direction. However, for z = 1.8, 2.0 the behaviour seems to be significantly
different most likely due to the lacking precision on small k .
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other parameters. Because of the way we chose our γ bins, this yields the quantile
of interest for γ , whereas the other parameters will track their corresponding
degeneracy direction with respect to γ . This can be seen in the colored squares in
the right panel of Figure 4.8.

• For the set of parameters at each of the quantiles (e.g. the 84% quantile in γ and the
median in all other parameters for the corresponding bin) we can then generate a
model using our Gaussian process emulator.

The result of this procedure is shown in Figure 4.9 for the power spectrum at redshift
z = 2.8 which is the highest redshift showing a high γ value. We compare models
generated in this way to the measured power spectra shown as the blue and green points
in the figure. Bands show the 68% confidence interval at each k for models generated
using our emulator with random draws from the posterior distribution. Note that the
forward model (due to both masking and forward modeling of noise and resolution) can
generate slightly more converged model power spectra than the perfect model using the
same parameters. The latter band is therefore actually a prediction for k & 0.02 s km−1

and its slightly larger extent is not surprising. Also note that due to the way we chose to
produce curves with different thermal parameters and the dimensionality of the space
the range spanned by the dashed curves is typically smaller than the colored bands.
This is expected as the band shows the actual spread in the five/six (depending on the
number of datasets used) dimensional parameter space whereas the lines are based on a
quantile for one of the parameters and values at the center of the distribution close to
that quantile for all others which will lead to a point inside the respective hypersurface,
e.g. parameters of the purple/blue curve fall inside the five/six dimensional 68% surface,
where the band corresponds to the actual surface).

We can see that all 5 models shown basically lead to the same power except for the
highest k-values measured k ≥ 0.07 (smallest scales). At those scales a higher γ and
lower F̄ indeed seems to provide a better fit to the data whereas at larger scales (smaller
k) the model does not seem to be strongly affected by the parameters when moving
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along the degeneracy.

However, for other redshift bins (see Figure 4.10) the sensitivity of the power spectrum
toward changes in γ for a region around the median value shifts to different scales. For
example, at z ≤ 2.0 the most dominant effect seems to be on large scales, but note
that we do not have the high precision BOSS measurement and that therefore both
the range in allowed power spectra and the range of parameters in the 2σ region of
γ are larger. All other redshifts seem to suggest a highest sensitivity to γ at scales
k ∼ 0.05 s km−1, different from both the lowest redshifts and z = 2.8. While we note that
differences between models of different γ along the degeneracy direction are typically
small compared to our measurement errors for an individual k-bin, it is clear that the data
of all bins combined has the precision to distinguish between these models, and that our
inference is producing sensible fits. One might argue that the fact that the k-modes that
are driving the fits to high γ and low F̄ change for different redshift bins is a source of
concern, but we caution that the degeneracies in this multi-dimensional parameter space
are complex and not always easy to visualize. We are confident that these results are not
spurious, since this high γ , low F̄ combination persists consistently across all redshift
bins with z ≤ 2.8, and both measurements and our inference of different redshift bins
are completely independent. We will return to this issue of discrepant γ and F̄ values in
§ 4.5 when we discuss possible systematic errors in our hydrodynamical simulations.

4.4.3. Measuring Thermal Evolution in the IGM using a Gaussian

Prior on the Mean Transmission

Given that independent precise constraints on the mean transmission exist we now
consider the effect of applying a Gaussian prior on the mean transmission based on these
measurements (see discussion in § 4.3.4 for details). Henceforth we will refer to these fits
as the ‘strong prior’ results, and we will designate them as our fiducial measurements
(as opposed to the joint fits for thermal parameters and F̄ described in previous sections).
Note that most previous analyses of the IGM thermal properties have simply assumed
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Figure 4.11.: Evolution of the T0 vs γ contours with redshift assuming the strong prior on F̄ for different
combinations of datasets (different colors matched to Figure 4.7, filled contours showing
our fiducial dataset while open contours show analyses ignoring the XQ-100 data as in the
circles of Figure 4.7). When high resolution data is used we can see that strong constraints
perpendicular to a degeneracy direction can be obtained. We can also see that this degeneracy
direction rotates as the Lyα forest probes higher and higher densities.

perfect knowledge of the mean transmission (see Lidz et al., 2010; Iršič et al., 2017b,
for exceptions), such that this ‘strong prior’ approach is more consistent with previous
efforts.

We present the redshift evolution of posterior parameter degeneracies assuming the
strong prior in Figure 4.11. Each panel in these figures shows the 2d marginalized 68%
and 95% confidence regions of T0 vs. γ . While γ and T0 are strongly anticorrelated at
low redshifts z ≤ 3.4, i.e. the contours are close to diagonal, this correlation gets weaker
at higher redshifts (especially at z ≥ 4.2), i.e. contours become aligned with the axes due
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Figure 4.12.: The same as Figure 4.11 but with F̄ vs. γ contours. This shows that independent of redshift
γ and F̄ are strongly anticorrelated.

to lower overdensities probed by the power spectrum. Likewise, the γ vs. F̄ confidence
regions are shown in Figure 4.12. Note that these properties are correlated independent
of redshift, in stark contrast to the thermal parameter degeneracy, while still changing
shape and direction due to the different precision of the measurements. Therefore, a
change of prior for the mean transmission measurements propagates into γ at high
redshifts (z ≥ 4.2), but does not affect T0 significantly. At lower redshifts (especially for
z ≤ 3.4), however, γ is strongly correlated with both T0 and F̄ , so a change in priors for
any of the three quantities always affects the results on the other two quantities as well.
Consequentially the change in our mean flux prior affects lower redshifts (especially
z < 3) more strongly than higher ones.

We show the fully marginalized posterior constraints on thermal parameters as a
function of redshift in Figure 4.13. We can see that now the values of γ cover the
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Figure 4.13.: The fiducial measurements from Figure 4.7, but assuming a Gaussian prior on the mean
transmission complying with the fit of (Oñorbe et al., 2017a) measurement within errorbars
given by observations (Becker et al., 2013; Faucher-Giguère et al., 2008a; Kirkman et al.,
2005). We can see that now the obtained γ values at low redshifts are far lower (and
compatible with the expected value of 1.6 long after reionization) due to the additional mean
transmission constraint. The high values of γ at high redshifts obtained here, are likely due
to the discrepancy of the mean of our chosen prior (dashed curve) with the Becker et al.
(2013) (red band) analysis for the mean transmission. Due to the far lower overdensities
probed at high-redshifts compared to low redshifts these high values of γ do not change
results on T0 strongly as degeneracies are largely broken (see also the evolution of the T0-γ
and γ -F̄ contours which can be found in Figure 4.11 and Figure 4.12 ).
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(different colors). We can see that the flat prior leads to far higher values of γ that due to
correlations between parameters lead to lower values of T0. ).
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theoretically expected value of γ ≈ 1.6 at low redshifts z < 3, while the values of T0
obtained are higher than in the fit using a flat prior on mean transmission because of
the degeneracies between T0 and γ . This is more clearly illustrated in Figure 4.14 where
we compare T0 and γ evolution for the different prior assumptions. We can see that
indeed the changes between both the two fits are strongly anticorrelated betweenT0 and
γ and that the change in marginalized parameters between the two cases can be large,
particularly for γ where the differences at 2.2 ≤ z ≤ 2.6 are & 2σ and as high as 3σ at
z = 2.8.

However, this is the first thermal evolution measurement performed over the whole
epoch of He Ⅱ reionization and beyond based on the power spectrum. Using the strong
mean flux prior we also obtained reasonable results including physically possible mea-
surements of γ , a rise in temperature for z & 3 and the first measurement of the IGM
cooling down thereafter. In the next sections we compare our strong prior results to
recent thermal parameter measurements from different methods as well as models of
IGM thermal evolution.

4.4.4. Comparison to Previous Measurements

A comparison of our results to recent measurements of thermal parameters is shown in
Figure 4.15. We discuss the various datasets involved and elaborate on the comparison
to our new measurement below.

The phase angle PDF of quasar pairs (Rorai et al., 2013) measures the smoothness of
the 3d distribution of IGM gas and therefore directly constrains the pressure smoothing
scale λP independent of the instantaneous thermal state of the IGM (i.e. T0 and γ ). Rorai
et al. (2017b) measured λP from a sample of quasar pairs in 4 redshift bins between
2.0 ≤ z ≤ 3.6. Figure 4.15 shows that our inferred values of λP are fully consistent
with the Rorai et al. (2017b) measurement. We also see a smaller uncertainty in our
power spectrum based measurement. Part of the explanation for these small error bars
lies in how our model grid, and therefore our prior probability, is set up. As discussed
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Figure 4.15.: The fiducial data from Figure 4.13 (black points) assuming the strong Gaussian prior on
F̄ . In addition to the previous plots we show the thermal parameters as well as T (∆?) at
the optimal overdensities ∆? for curvature measurements as given by Becker et al. (2011).
We compare to measurements of thermal evolution in the IGM based on different statistics:
curvature (red, pink), line fitting (green, blue, brown), wavelets (orange), phase angles (pur-
ple) and power spectrum (gray). We can see overall good agreement with previous datasets
(except for wavelets) albeit significantly higher T (∆?) than in the curvature measurements
is obtained at some redshifts. All measurement errors shown are 1σ or 68% intervals, for
measurements that only quote 2σ errorbars we divided those by a factor of two.
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4. A New Measurement of IGM Thermal Evolution at 1.8 < z < 5.4

in § 4.3.4, the degeneracy between T0 and λP within our simulated models combined
with our approach of not extrapolating to regions outside our model grid result in a
positive correlation in the prior probability between these parameters. However, the
power spectrum cutoff, is sensitive to a degenerate combination of both λP and thermal
broadening (Peeples et al., 2010b; Rorai et al., 2013) leading to an anti-correlation in the
likelihood. So the correlations inside our prior (Figure 4.4) and the degeneracy direction
of the likelihood due to the aforementioned effect are nearly perpendicular and as the
posterior distribution is the product of these two, resulting constraints appear very tight.
However, we argue that it is hard to generate physical models without imprinting the
correlation between thermal state and λP that depends on the integrated thermal history
of the IGM. While the uncertainties in λP might still be somewhat underestimated, we
note that our prior grid degeneracy has a strong physical motivation (see also § 4.3.4).

The orange points in Figure 4.15 show the T0 and γ measurements from Lidz et al.
(2010), who decomposed the Lyα forest of the Dall’Aglio et al. (2008) dataset into wavelets
and analyze the PDF of their squared amplitudes to derive constraints on the thermal
state of the IGM. We note that this data is a subset of that used to compute the power
spectrum in chapter 3 and analyzed here. Note that their γ constraint is often limited
to the boundaries of their fits4.11. While the wavelet analysis results at z = 2.6 are
consistent with our measurement we disfavor the z = 2.2, z = 3.0, z = 4 and especially
z = 3.4 wavelet results which seem to indicate a far hotter IGM than our measurement.
The origin of this discrepancy is unclear, but it was also noted before by Becker et al.
(2011).

Another method for obtaining constraints on the thermal state of the IGM is by
decomposing the Lyα forest into individual absorption lines, assuming that a cutoff in the
distribution of column densities NH Ⅰ vs. Doppler parameter b exists and can be attributed
to lines that are only thermally broadened (see e.g. Schaye et al., 2000; Rudie et al., 2012;
Bolton et al., 2014; Hiss et al., 2018; Rorai et al., 2018). Especially the new Hiss et al.
(2018) (which is based on the same dataset as chapter 3 and is using a subset of the same

4.11We therefore show the extent of their 1σ contours (as a by-eye marginalization) for γ in the Figure.
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simulation grid) thermal evolution result seems to hint toward a period of heating until
z ∼ 2.8 that could be attributed to He Ⅱ reionization.

For both T0 and γ we see broad agreement between our measurements and the line-
fitting results at most redshifts. Of particular interest are z = 2.4 and z = 2.8 where
several line fitting measurements exist. At z = 2.4 we do reproduce the result from Hiss
et al. (2018) (blue points) as well as Bolton et al. (2014) (green) in bothT0 andγ . At z = 2.8

we agree with the Rorai et al. (2018) (brown point), but obtain higher precision. However,
agreement with Hiss et al. (2018) at this redshift seems to be poor as they measure both
higherT0 and lower γ (which is along the degeneracy direction for line fitting analyses as
well as the power spectrum). Part of this discrepancy might come from systematics in the
Voigt profile analysis depending on the cutoff fitting algorithm chosen, as Hiss et al. (2018,
see Appendix B) find either a multimodal posterior probability distribution forT0,γ with
a similar 68% confidence interval as the Rorai et al. (2018) or a unimodal distribution
with the values shown here depending on the cutoff fitting algorithm used. Whether
this multimodal behavior results from systematics in the measurement procedure or is a
real physical effect from e.g. a real multimodal IGM temperature density relation is not
yet clear, but we do not see such behavior in our power spectrum analysis. For the other
overlapping redshifts (except z = 2.2 and z = 2.4 which match very well) we generally
measure a lower T0 and higher γ compared to Hiss et al. (2018).

The most precise measurements of temperature in the IGM so far are based on the
mean curvature in the Lyα forest 〈κ〉 (Becker et al., 2011; Boera et al., 2014). These
measurements constrain T (∆?) at an optimal overdensity ∆? at which a one-to-one
relation between the mean curvature 〈κ〉 of the Lyα forest andT (∆?) exists independent
of the slope γ of the TDR (note again Figure 4.11 which shows the corresponding
degeneracy for the power spectrum). However this method is not able to measure
γ or T0 independently. To compare to curvature based measurements, we compute
T∆?

= T0∆
γ−1
? (using the values for ∆? given by Becker et al. 2011) for each sample in

our MCMC chain and evaluate the 68% confidence interval. This approach allows us to
directly compare to what the curvature results measure.
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4. A New Measurement of IGM Thermal Evolution at 1.8 < z < 5.4

The agreement with the curvature analysis seems to be generally good for the largest
part of the overlapping redshift range, but we seem to measure overall slightly higher
temperatures. There are some redshifts z = 2.6, 2.8, 3.2, 3.4 where our analysis gives
significantly higher temperatures than implied by the curvature measurements. Note in
particular that at z = 2.8 where we see the strongest discrepancy between our results
and the curvature measurements, multiple measurements of the thermal state have been
performed via several differentmethods and these results do not full agree with each other.
We argue, that the overall agreement is still good given the significantly different datasets,
statistical approaches and models used for both types of analysis. E.g., the difference in
measured thermal state might potentially arise due to the different sensitivity of both
statistics to metal contamination. While the power spectrum is only weakly affected by
residual metal lines on the very smallest scales we cover here (see the comparison in
Figure 3.7), the averaged squared curvature is basically measuring

∫ ∞

kmin
k5P(k)d lnk (see

Appendix D in Puchwein et al., 2015) and thus enhances the weight of residual small
scale contamination in the Lyα forest. At the same time small scale contaminants, like
e.g. leftover metal lines, would decrease the obtained IGM temperatures as there is now
too much small-scale power, thus leading to a colder IGM in curvature than in power
spectrum analyses. Additionally, these measurements did not marginalize over the mean
flux in the simulations, thereby e.g. potentially underestimate their errors.

Finally, we also show the Garzilli et al. (2017) measurement of T0 at 4.2 ≤ z ≤ 5.4

based on the same Viel et al. (2013b) dataset we use here (gray points, the limit is at
the 1σ level), but using a different analysis pipeline and including a warm dark matter
(WDM) particle mass as an additional free parameter. We can see that for z ≤ 5 the
agreement is good, but for z = 5.4 we seem to get slightly higher values of T0 than their
1σ upper limit. Part of that difference can be attributed to the additional freedom in
their model.

Overall we conclude, that the agreement between our data and previous results is
reasonably good. Our measurement comprises a strong advancement with regard to
previous analyses especially due to the large range of uniformly covered redshifts and
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Table 4.2: Thermal evolution models used in comparisons to existing measurements, parameters are the
reionization redshifts and the total heat input during reionization for H Ⅰ and He Ⅱ, see Oñorbe et al.

(2017b) for details

model name zreion,H Ⅰ zreion,He Ⅱ ∆TH Ⅰ[K] ∆THe Ⅱ[K]

no He Ⅱ 7.3 – 20000 –
cold He Ⅱ 6.55 3.0 20000 10000

standard He Ⅱ 6.55 3.0 20000 15000
warm He Ⅱ 6.55 3.0 20000 20000
hot He Ⅱ 6.55 3.0 20000 30000
late He Ⅱ 6.55 2.8 20000 15000

due to jointly constraining T0 and γ over this full range.

4.4.5. Comparing to Thermal Evolution Models for Different

He Ⅱ Reionization Scenarios

In the previous sectionswe performed a self-consistentmeasurement of thermal evolution
in the IGM from z = 5.4 to z = 1.8 corresponding to 3Gyr of cosmic history. In this
section we compare to simulations to thermal evolution due to He Ⅱ reionization as this
is expected to be the dominant process setting the thermal state of the IGM at this epoch.

In Figure 4.16 we show comparisons between our thermal evolution measurement and
models based on different approaches. The solid curves show the ”explicit reionization”
simulations from our model grid for which hydrogen reionizes (to a level xHⅡ = 99.9%)
at zreion,H Ⅰ = 6.5 in agreement with the Planck Collaboration et al. (2016a) (and also
Planck Collaboration et al. 2018) constraints, but for which the parameters governing
He Ⅱ reionization are varied (see Table 4.2). The red dash-dotted curve is showing an
extreme version of these models for which He Ⅱ was never reionized4.12. The measured
4.12We note that this reionizes H Ⅰ slightly earlier z = 7.3 which is still in good agreement with both Planck
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Figure 4.16.: The fiducial data assuming the strong Gaussian prior from Figure 4.13 (black points) com-
pared to thermal evolution models assuming different redshifts of He Ⅱ reionization and
heat inputs during this process (solid curves) and without any He Ⅱ reionization (dot-dashed
red curve). The model parameters are given in Table 4.2. We also show comparisons to
the Upton Sanderbeck et al. (2016) (dashed pink) thermal evolution model and a run using
the Puchwein et al. (2018) non-eq. heating rates in a Nyx simulation (dashed brown). We
can clearly see that the data shows a hotter IGM than created in the model without He Ⅱ
reionization. Instead, the overall evolution of thermal parameters seems to agree well with
the standard to warm He Ⅱ reionization scenarios in bothT0 and γ . Finally, the temperatures
found at the 2 highest redshift bins are colder than any model.
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temperature at mean density is significantly higher (by & 3σ for each of the 7 individual
redshift bins with 2.2 ≤ z ≤ 3.4) than this ”no He Ⅱ” scenario for z ≤ 4.6 suggestive of a
period of He Ⅱ reionization taking place.

To allow a comparison between different He Ⅱ reionization scenarios, the gray, blue,
green, and purple curves show models with zreion,He Ⅱ = 3.0 assuming different amounts
of heat being injected ∆THe Ⅱ into the IGM varying from 10 000 K (cold) to 30 000 K (hot);
whereas the orange curve shows a model with ∆THe Ⅱ = 15 000 K but zreion,He Ⅱ = 2.8

(late). We can see that the models predict an extended period of heating (i.e. increasing
T0) until zreion,He Ⅱ followed by the IGM cooling down due to the expansion of the universe
whose effects on the thermal state cannot be fully counteracted by ionizations anymore.
Overall, for our measurement this rise and fall inT0 lies between the standard and warm
He Ⅱ evolution models for 2.2 ≤ z ≤ 4.6 disfavoring particularly hot or late phases of
He Ⅱ reionization.

We also compare to the analytical thermal evolution model by Upton Sanderbeck et al.
(2016) and the fiducial non-equilibrium reionization model by Puchwein et al. (2018, see
their Figure 6). We note that while the general shape of thermal evolution looks similar
to both models for z ≤ 4.6 we seem to obtain a slightly less pronounced peak in T0.
Overall, the temperature evolution we see in this redshift range is indeed well modeled
by an He Ⅱ reionization event followed by photoionization equilibrium in an adiabatically
expanding IGM. While it has been argued that this effect has been seen before (Becker
et al., 2011), previous work did not break the degeneracy between γ and T0. Note that
also the cooldown of the IGM after reionization has never been conclusively observed
due to this degeneracy.

Models of He Ⅱ reionization typically also show a dip in γ resulting from the IGM
to be more isothermal during reionization events (see e.g. also McQuinn et al., 2009).
We can also see this effect by comparing γ for our He Ⅱ models with the no-He Ⅱ model.
Note that while the Upton Sanderbeck et al. (2016) model also shows a dip (albeit at later
times and with a more strongly isothermal γ ), the fully non-equilibrium simulation by

results.

107
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Puchwein et al. (2018) does show an intrinsically smaller γ and no strong dip. The reason
for this is that the non-equilibrium model reached γ = 1 at z = 7 due to H Ⅰ reionization
and is still recovering from this feature, i.e. it did not yet forget about the timing of H Ⅰ
reionization. The ”dip” for this model therefore manifests in the near constant evolution
from z ∼ 5 to z ∼ 3 compared to an otherwise expected rise in γ .

We can see this dip in γ for the measurement at z ∼ 3.9 aligned in redshift with the
expected decrease due to He Ⅱ reionization in our explicit He Ⅱ reionization models. Note
that the dip is only ∼ 2σ significant compared to the no-He Ⅱ reion model, but overall
a slightly higher value for γ than this model is preferred. Also note that on the data
side this feature is currently dominated by XQ-100 data (which is the highest resolution
data available at 3.6 ≤ z ≤ 4.0) which we strongly degraded by marginalizing over
resolution. Additional high resolution data or an accurate determination of the XQ-100
dataset resolution at these redshifts and adopting a prior based on those results could
therefore lead to additional constraints on He Ⅱ reionization due to its signature in the
slope of the TDR.

Note that this feature also strongly relies on precise knowledge of F̄ as the expected
decrease is very shallow. Additionally, γ values for z > 4.2 might have a significant
uncertainty as measurements of the mean transmission get less accurate for this range
due to the smaller amounts of data available and stronger fluctuations in the ionization
state of the IGM. Thus, there are currently several discrepant measurements of F̄ (as
discussed in § 4.3.4) which consequently lead to a high uncertainty in γ .

At early times (z ≥ 5, we call those points the highest redshift measurements) we can
see that the measured T0 is lower than in any of the models. Note again that similarly
low temperatures were also obtained by Garzilli et al. 2017 based on the same dataset in a
fully independent analysis. While one could in principle think that an earlier redshift of
H Ⅰ reionization gives the IGMmore time to cool thereafter leading to lower temperatures
at these times, models suggest that is not the case and T0 has essentially forgotten about
the timing of reionization by z = 5.4 (see e.g. Oñorbe et al. 2017a who present models
for a range of different 6.0 < zreion,H Ⅰ < 9.7). Instead the post-reionization thermal state
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mostly depends on the spectral shape of the UVB (McQuinn, & Upton Sanderbeck, 2016)
and a low temperature at z ∼ 5.4 requires lower photoheating rates, i.e. a particularly
soft SED for ionizing sources is needed which is not favored by current models of the
UVB (Faucher-Giguère et al., 2009; Haardt, & Madau, 2012; Stanway et al., 2016; D’Aloisio
et al., 2018b; Puchwein et al., 2018).

While it may be that the thermal state at z ' 5.4 would still be sensitive to the
reionization redshift for particularly late z . 6 reionization scenario (which now seems
to be allowed regarding the newest CMB results from Planck Collaboration et al., 2018),
this would nevertheless need to be in conjunction with very low reionization heat
injection. The recent results by D’Aloisio et al. (2018b) who use radiative transfer to
simulate photoheating by ionization fronts during H Ⅰ reionization suggest that such low
levels of IGM heating are unlikely. Finally, note that the onset of He Ⅱ reionization can
only increase model temperatures and therefore worsen the disagreement as none of the
models shown exhibits any He Ⅱ reionization before z = 4.8.

Therefore, the small temperatures we (and also other groups using the same dataset)
obtain at z ≥ 5 are challenging to fit with current models of reionization. Consequently,
models fitting the low-T measurements would also lead to a colder IGM at later times
without additionally increasing heating due to e.g. He Ⅱ reionization. However, as
current constraints at the highest redshifts rest upon the single dataset by Viel et al.
(2013b) based on a handful of objects, future measurements based on larger samples of
quasar spectra obtained might change those low-T0 results.

4.5. Systematic Effects on the Measured Thermal

Evolution

In § 4.4.1 we attempted to jointly fit the mean flux and thermal parameters and arrived
at puzzling results for γ . This, combined with the fact that independent high-precision
measurements of the mean flux are available and that the most precise former analyses
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Figure 4.17.: Left: One model from our thermal grid at z = 2.8 (solid black, the redshift is taken as an
example, other redshifts are similar) compared to the same model run with a two times
larger box and the same spatial resolution (dotted gray). The bottom panel shows relative
differences and the size of the 68% confidence region of jointly fitting BOSS + high-resolution
data as a grey band. Center: A comparison between different initial conditions (dot-dashed)
that were elsewise run with the same setup. Right: A comparison of models based on other
cosmologies (B,C are compatible with the Planck Collaboration et al. 2016b parameters and
chosen to maximally change the matter power spectrum w.r.t. the default model, see Oñorbe
et al. 2017b for details; D is the cosmology from Lukić et al. 2015). We can see that all three
effects change the power on the 5% level.

of thermal evolution fixed the mean flux, led us to adopt the strong prior which led
to sensible results on thermal evolution of the IGM that are in broad agreement with
previous measurements as well as simulation predictions. In this section we investigate
possible systematics in our modeling procedure which could be responsible for the high
γ - low F̄ we observe with the flat prior on F̄ in § 4.4.

We think that the biggest issue is our modeling and there are several possible sources
of bias for our measurement: the small boxes used and the cosmic variance, not simulta-
neously exploring cosmological parameters, and spatial resolution of the simulation. We
attempt to quantify the significance of all these issues below. While ideally a large set of
simulations would be used to do a detailed study of each issue, due to computational
cost we are limited to a handful of simulations per problem.

To explore box size we compare one model from our grid to a simulation with exactly
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Figure 4.18.: Comparison of our results on the thermal state with fits obtained if we apply a flat ”correction
factor” of 0.94 (mimicking the joint effect of box size and cosmic variance seen in Figure 4.17)
to the model power (different colors). We can see that without the ”correction” higher values
of γ as well as lower values of T0 (due to correlations between parameters) are obtained.
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the same thermal model and cosmology performed with the same resolution, but with
twice the box size, i.e. Lbox = 40 h−1 Mpc, Ncell = 204834.13 In the left panel of Figure 4.17
we show this comparison. Similar to the results of Lukić et al. (2015), one clearly sees
that for the range of power spectrum modes that we fit a ∼ 6% bias in the power might be
expected due to box size effects. The gray curve shows the posterior 68% model interval
from Figure 4.5 as a measure of the joint precision of all datasets used in the fit. So
especially for scales k . 0.03 s km−1 box size effects are larger than this precision and
could thus strongly affect the results. Whether the overall 6% at k & 0.01 s km−1 results
from box size effects or cosmic variance (see below) is unclear, but assuming the former,
we perform an estimate of how much a flat bias affects our thermal evolution constraints.
For this purpose, we repeat our data analysis, but rescale the emulated power spectrum for
every redshift by a factor of 0.94 independent of k and model parameters. In Figure 4.18
we show our fiducial analysis (blue) compared to this ”corrected” measurement (green).
We can see that the rescaling leads to a ∼ 0.5σ to 1.2σ higher T0 and lower γ for all
2.2 ≤ z ≤ 4. Therefore, our measurement is clearly limited by the combined effect of
box size and cosmic variance in this redshift range. Note that the change when applying
this rescaling is such that the inferred γ is reduced, i.e. the discrepancies we analyzed in
§ 4.4.2 become weaker.

Simulations also suffer from statistical variance for the largest modes where the
sampling is poor. To better understand this issue we ran simulations with different initial
conditions but an otherwise identical setup. The comparison of those runs to our default
simulation is shown in the middle panel of Figure 4.18. We can clearly see, that even
with just 4 samples of initial conditions a ∼ 5% change in the power can be reached on
small scales similar to the results in the boxsize test above. Additionally, the effect of
cosmic variance on the largest scales (lowest k . 0.01 s km−1) can exceed the 10% level,
which is huge compared to the ∼ 2% errors of the BOSS measurement. To get both box

4.13Note that the initial conditions cannot be the same for two boxes of different size and so every comparison
of this kind includes cosmic variance on both boxes,but with

√
8 times lower amplitude at a given

mode for the larger box.
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size and cosmic variance effects under better control requires an analysis based on larger
simulations, where doubling the (linear) box size would be expected to reduce cosmic
variance by a factor of

√
8 (but also needs at least eight times more computing time).

To understand the effect of cosmological parameters on the Lyα forest power spectrum
we compare to three different cosmologies consistent with the Planck Collaboration
et al. (2016b) results. Cosmology B & C were selected from their posterior distribution
in order to differ as much as possible in the linear matter power spectrum (see Oñorbe
et al., 2017b). Cosmology D uses the same parameters as in Lukić et al. (2015). The
right panel of Figure 4.18 shows that a change in cosmological parameters within the
current CMB constraints can lead to a ∼ 5% change in the flux power as well. Of course
a more detailed analysis of this effect is needed and ideally one would marginalize over
cosmological parameters adding additional dimensions to our simulation grid. However
future independent higher precision cosmological constraints from either joining existing
datasets or new measurements will reduce the strength of this effect.

Finally, the finite resolution of the simulations is not an issue at z . 4 (see Figure
11 in Lukić et al., 2015, showing convergence to 1% at z ≤ 3 and to better than 5% at
z = 4), but might be of some importance at z & 5 (see Appendix of Oñorbe et al., 2017b)
and might be more severe in exceptionally cold models as pressure smoothing is then
weaker and structures are thus harder to resolve. In the latter case the power at the
smallest mode covered in our analysis could be underestimated at the ∼ 10% level which
is comparable to its errorbars. However, in contrast to box size effects only the smallest
scales (k & 0.07 s km−1) are affected which will not lead to changes as dramatic as seen
for the other modeling errors considered in this section. However, the scale dependence
of this effect, large scales (small k) being nearly unaffected while small scale power is
reduced in the model, might lead to slightly underestimated results on T0.

In summary, we have seen that all four effects we discuss in this section, box size, initial
conditions, cosmology, and resolution can affect the power spectrum by a similar amount
as our statistical measurement errors at least for some range of scales and redshifts .
We have seen that these effects can be comparable or larger than our statistical errors
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on the power spectrum, and can thus systematically change our thermal evolution at
the 0.5 to 1σ level at a range of redshifts. Note again that all the effects we considered
here are converged at the ∼ 5% level and a better treatment of any of the effects would
require additional computation time or reduce the number of simulations that can be
performed thereby increasing interpolation errors. The current analysis is therefore the
best compromise between accurate results and available computing time. But note that
the effects discussed here, might very well explain some of the discrepancies between
constraints of the thermal state obtained by different groups.

4.6. Summary

In this chapter, we presented the first uniform thermal evolution analysis based on the
Lyα forest power spectrum covering a large redshift range from z = 5.4 to z = 1.8

or equivalently a timespan of nearly 3Gyr. For this purpose we combined multiple
high-precision measurements performed by several groups using different instruments.
Furthermore, we compare this dataset with a large grid of high-resolution hydrodynami-
cal simulations to connect the measured Lyα forest to physical properties of the IGM.
To interpolate between these simulations we developed a Gaussian process emulation
scheme and take its errors into account using a cross-validation approach. Compared
to previous results we measure thermal evolution from high redshifts z = 5.4 to the
limit of Lyα forest observability with ground based telescopes due to the atmospheric
UV cutoff at z ∼ 1.8, and our combination of high-precision low-k measurements with
our new high-k analysis allows us to break the well known degeneracy between the
temperature at mean density and the slope of the TDR. Our analysis thus provides the
first comprehensive homogeneous analysis of IGM thermal evolution probing times as
early the end stages of H Ⅰ reionization, extending through the epoch of He Ⅱ reionization,
and spanning the era of galaxy formation.

Our primary results are measurements of T0, γ , and λP (see Table 6) marginalizing
over the mean transmission in two different ways (with a flat prior or a Gaussian prior
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based on recent measurements). These measurements show a clear increase in T0 from
T0 ∼ 6000 K at z = 5.4 to T0 ∼ 14 000 K at z = 3.4 followed by a decrease reaching
T0 =∼ 7000 K at z = 1.8. We compared our results to published thermal evolution
constraints using different statistics and find broad consistency with data from curvature,
Voigt profile fitting and the phase angle distribution analyses. Comparing to simulations
we indeed see compelling evidence for He Ⅱ reionization in the rise of T0 which is not
expected in absence of He Ⅱ reionization. In general the thermal parameters we obtained
from fitting the power spectrum measurements agree well with models for which He Ⅱ
reionization is complete at z ∼ 3. At later times, i.e. z < 3, we see the first conclusive
evidence that the IGM is cooling down after the last reionization heating episode driven
by adiabatic cooling due to the expansion of the universe.

However, at the highest redshifts z ≥ 5 we find evidence for low temperatures
T0 ∼ 6000 K (slightly higher, but consistent with other measurements based on the same
dataset) that might be hard to explain with our current understanding of the shape of
the UVB at those redshifts as well as our current understanding of H Ⅰ reionization. This
is especially important as the same dataset resulting in these low temperatures is also
places the most stringent limits on the mass of WDM (Viel et al., 2013b). Comparing
these power spectrum measurements to models that include both WDM particle mass as
well as the IGMs thermal history as free parameters would necessarily result in an even
colder IGM, because small-scale structure in the Lyα forest can now be erased by both
thermal broadening and a finite WDM free-streaming length (see Figure 4.15, compare
to Garzilli et al. 2017). Thus, given our current expectations for reionization heating, the
cold temperatures we infer provide additional evidence for a cold dark matter universe.

In the next chapter we will extend the constraints on the power spectrum as well as
the thermal state of the IGM towards lower redshifts z < 1.
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5. Extending Thermal Evolution
Measurements to Low Redshifts

Thermal evolution past He Ⅱ reionization is expected to be well understood from a
theoretical point of view. The overall thermal evolution of the IGM is by far dominated
by cooling due to the expansion of the universe and heating due to photoionizations
(McQuinn, & Upton Sanderbeck, 2016). Compared to the reionization epochs the mean
free path for ionizing photons is now extremely long leading to a mostly uniform UVB
and thos the details of reionization are forgotten. The IGM therefore cools down towards
a thermal asymptote which only depends on the shape of the UVB as the primary source
of heating. The goal of this chapter is to test these predictions, especially since further
sources of heating have been brought forward in recent years, e.g. Blazar heating (Chang
et al., 2012; Puchwein et al., 2012) or dark matter decay (Araya, & Padilla, 2014).

However, as the Lyα forest is unobservable from the ground at z < 1.6 (due to the
atmospheric UV cutoff at λcutoff ∼ 3300Å) there have been few previous measurements
of the IGM’s thermal state long after reionization (e.g. Ricotti et al., 2000; Davé et al.,
2001). In fact to obtain constraints from the low redshift Lyα forest UV spectroscopy from
space is needed. Data can currently only be gathered with the Space Telescope Imaging
Spectrograph (STIS) (most efficient in the near UV for λ & 2300Å, i.e. for the Lyα forest
at z & 0.9) and COS (which is especially efficient in the far UV (FUV) λ . 1800Å, i.e.
z . 0.5) on the HST which is far more costly than optical ground based observations.
As a successor for this telescope is not expected to launch within the next decade, any
permanent failure of HST could shut this window completely.
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5. Extending Thermal Evolution Measurements to Low Redshifts

To put a constraint on the IGM’s low redshift thermal state we therefore use archival
COS/FUV spectra. From those we compute the power spectrum in an equivalent way to
chapter 3. Using essentially the same approach applied in chapter 4 then allows us to
derive a joint constraint on the thermal state as well as the UVB amplitude at z = 0.2.

This chapter is organized as follows. In § 5.1 we introduce the dataset on which we
perform our analysis and note important changes in our power spectrum analysis due to
the peculiarities of working with COS. The power spectrum result is then presented in
§ 5.3 for 5 redshift bins. We then obtain our measurement of the thermal state as well as
the UVB for a subset of those bins in § 5.4.

5.1. Dataset

To measure the low-redshift power spectrum, we use the high-quality medium-resolution
(R ∼ 15000–20000, but with a non-Gaussian LSF) HST/COS FUV survey by Danforth
et al. (2016) which comprises one of the largest low-z IGM samples to date. The survey
contains 82 spectra of zem < 0.72 QSOs and covers the Lyα forest at z < 0.48. The
observations were obtained with the G130M and G160M gratings from 2009 to 2013.
Danforth et al. (2016) have co-added individual spectra (across both gratings whenever
available) to get continuous coverage across the FUV. They also fitted continua to each
spectrum and identified nearly all individual absorption and emission lines. We use the
publically available version of this dataset5.1.

To calculate the flux power spectrum, P(k), we mask the metal lines arising from
either intervening absorption systems or the ISM of the MW, all emission lines including
geocoronal airglow emissions, low quality data having S/N/pix < 5 which occur at the
edge of a few spectra, and all gaps in the spectral coverage. In contrast to our previous
high-redshift analysis the masking of metal absorption (and also emission) systems will
prove to be important for this analysis on all scales of interest (see § 5.3). To illustrate our
masking procedure, we show two chunks of spectra in Figure 5.1. We can see that the

5.1http://archive.stsci.edu/prepds/igm/
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Figure 5.1.: Illustration of our masking procedure. Each panel shows a chunk of one quasar spectrum
(transmission in black, uncertainties in magenta, continuum level as a dashed red curve,
quasar name and redshift in the legend). Shaded regions show our masking. Ticks indicate
metal absorption features that were identified and fit by Danforth et al. (2016), blue shows
contamination from the Milky Way (MW) interstelar medium (ISM) while red signifies
intergalactic absorption. We also mask geocoronal airglow emissions, which is visible e.g. in
the region around λ ∼ 1305Å in the bottom panel and in this case is associated with O Ⅰ.

low-z Lyα forest consists mostly of unabsorbed quasar continuum and contains relatively
few absorption lines (compare to the high-z example in Figure 3.2). This allowed a clear
identification of most metal absorption lines (ticks in the plot) visible. As we can identify
and mask individual lines, in total we apply less masking than in the high-z analysis
and do not require as strong a masking correction as in § 3.2.2. While we do not mark
Lyα absorption lines explicitely in Figure 5.1, most of them have been unanimously
identified utilizing higher order Lyman series lines available in the spectra. We tested
for the effects of the masking window on models and found that the effect is negligable
compared to the expected uncertainties of the analysis.

For the power spectrum calculation we again conservatively used the restframe wave-
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5. Extending Thermal Evolution Measurements to Low Redshifts
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Figure 5.2.: The redshift path covered by the Lyman-α forest sample from Danforth et al. (2016) that we
used for our low redshift power spectrum measurement color coded by S/N/pix. Horizontal
lines indicate the Lyman-alpha path excluding proximity regions (rest frame 1050 to 1180Å),
filled circles show the emission redshift of quasars (QSOs) and vertical dashed lines mark
the boundaries of our redshift bins (i.e, 0-0.6, 0.06-0.16, 0.16-0.26, 0.26-0.36 and 0.36-0.48).
Gaps in the horizontal lines show masked regions of spectra containing metal lines, emission
lines, spectral-gaps, and bad data. White bands protruding through many spectra originate
in significant MW ISM lines. The widest of those bands also contain geocoronal emission, e.g.
the feature at z = 0.073 is the same feature we highlighted in Figure 5.1.
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5.2. Adjustments in Methodology due to COS Peculiarities

length range from 1050Å to 1180Å to avoid the QSO proximity zones as well as any
contamination by higher order Lyman absorption or continuum systematics close to
emission lines5.2. After masking and choosing the relevant wavelength range, we cal-
culate the median S/N per pixel in the remaining pixels of the 82 quasar spectra and
apply a cut of S/N/pix > 10. In Figure 5.2 we show the redshift path covered by the
non-rejected data. The gaps in the horizontal lines show our masking and the lines are
color coded by S/N . The alignment between some gaps across many different spectra
in redshift shows where MW ISM lines were masked which contrary to intervening
absorbers always fall at the same observed wavelength.

We bin the total redshift path covered by the spectra into five redshift bins. The first
bin is chosen from z = 0.005 to 0.6 to remove any systematics arising from both the
core and the extended wings of the geocoronal Lyα emission line. The next three bins
(z = 0.06 − 0.16, z = 0.16 − 0.26 and z = 0.26 − 0.36) are chosen with the same width
(∆z = 0.1) and also because the mean redshift of the Lyα forest in these bins is centered
at z = 0.1, 0.2 and 0.3 thereby faciliating comparisons to previous analyses of the low-z
IGM focused on the UVB (e.g Shull et al., 2015; Gaikwad et al., 2017a; b). The last redshift
bin (z = 0.36 − 0.48) covers the remaining redshift-path covered by the data. Finally,
in each redshift bin we removed short spectra that cover less than 10% of the redshift
width of that bin leaving us with a dataset of 65 Quasars.

5.2. Adjustments in Methodology due to COS

Peculiarities

For this analysis, we calculate the flux contrast δF using the mean transmission inside
each spectrum (instead of using an external measurement of F̄ as we did before). Note
that the mean transmission is close to one here and the exact values assumed for it
5.2Note that in principle, as all absorption lines have been identified, one could mask all higher order

Lyman series lines to obtain spectra of the Lyα forest that cover the whole range from λ ≈ 1216Å to
the quasar redshift, leaving a far longer path per spectrum and thus allowing to probe larger scales.
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Figure 5.3.: Comparison of LSFs in Fourier space. Shown are the COS LSF for both medium resolution
gratings (different columns) varying lifetime position (LP) (colored lines) and Gaussian LSFs
with different resolutions for comparison. The Gaussian resolutions shown are the lower
resolution quoted in the instrument manual (dotted curve) and the result of fitting a Gaussian
LSF to the blue curve (dashed) on large scales k < 0.01 s km−1.

are therefore of less importance compared to high-redshift data. The power spectrum
Pdata(k) is then obtained following the same approach as before (see eqn. (3.3)), but with
a modification regarding the resolution correction. Note that the COS LSF has significant
wings on top of an approximately Gaussian core, i.e. pixels are correlated on far larger
scales than would be expected from the narrow core itself. The reason for those wings
ultimately lies in the polishing errors of the HST mirror.

We show the effect of the LSF on the power spectrum in Figure 5.3 by plotting the
resolution dependent part of the window functionW (i.e. we do not overplot the sinc
function part due to pixelization). We compare the true LSF (colored lines) as tabulated
on the COS webpage 5.3 to two different Gaussian LSFs. One of those approximately
matches the nominal resolution of the instrument, i.e. the Gaussian core of the LSF,

5.3 http://www.stsci.edu/hst/cos/performance/spectral_resolution/
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5.3. Power Spectrum Measurement

the other was fit to match the true LSF on large scales as close as possible. We can see
thatW 2 is significantly non-Gaussian and affects large scale modes k . 0.01 s km−1 in
a similar way as an R ∼ 5000 instrument, but leaving significantly more structure on
smaller scales until reaching the Gaussian core of the LSF (at k larger than the maximum
value shown in the Figure 5.3). The effective resolution is also dependent the LP of the
COS instrument, the grating used in the observation, and the central wavelength setting
used. We used the corresponding Tables for the LP when the observations were taken
which is LP1 or LP2 dependent on the spectrum.

As our data has been co-added from different central wavelength settings to avoid
detector gaps and both the G130M and G160M gratings to get larger spectral coverage,
the LSF for some spectra changes inside the spectrum and is not necessarily correctable
by a simple division. At this stage we chose to divide out the LSF for the grating on which
more than half the spectral pixels fall and to ignore the central wavelength completely
as its effect is far lower, in fact curves for different central wavelenghth settings would
be indistiguishable in Figure 5.3. Finally, the LSF is also wavelength dependent as the
spectroscopic resolution (for a given grating) increases toward the red. To fully account
for effects of spectroscopic resolution we generate forward models in the same way as in
§ 4.3.1, but now (instead of using a Gaussian, wavelength independent LSF) convolving
the model spectrum with the full wavelength dependent LSF and taking into account that
for some spectra both gratings are used assuming a switch of gratings at λ = 1450Å.

5.3. Power Spectrum Measurement

In Figure 5.4, we show the z < 0.5 power spectrum obtained at the 5 different redshift
bins from k = 10−3 s km−1 to 0.15 s km−1 (black points). We can clearly see that the data
probes the small scale cutoff until k ∼ 0.1 s km−1 with a precision of ∼ 15% and is thus
usable for obtaining constraints on the thermal state of the low-z IGM. Note that for the
very smallest scales (k > 0.01 s km−1) the measurement is limited by noise subtraction
and not so much by residual metal contamination which has been identified and removed.
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5. Extending Thermal Evolution Measurements to Low Redshifts

We are also able to still probe large scales of k ∼ 1.5 × 10−3 s km−1 with 25% precision.

Figure 5.4 also shows an additional version of our measurement where we did not
mask any metal absorption lines, but still masked any other feature e.g. airglow emission
(green points). We can see that while for some z ≥ 0.2 additional power due to metal
lines is visible, but only changes the power spectrum estimate on the zero to few σ level,
at the lowest redshifts z ≤ 0.1 this contamination is the dominant componenent of the
power spectrum. This is caused by strong MW absorption lines, which appear in most
spectra for these redshifts and are correlated with each other as they always have the
same separation (see white vertical bands in Figure 5.2). Therefore we expect to have
peaks in the correlation function corresponding to the separation of each pair of MW
lines. While an individual such correlation just adds a sine wave pattern (see e.g. § 3.2.7)
to the power, the superposition of many sine waves with different frequencies due to
the different correlations changes the power more drastically.

Contrary to the high-redshift analysis, there is no clear trend in the redshift evolution
of the low-z power spectrum. While in our previous analysis, a higher redshift always
corresponded to a higher overall power, in this low-z measurement the large scale power
for z ∼ 0.1, 0.2 and 0.3 is basically the same. However, such an evolution can be the
result of a steeply evolving UV background ΓUV∝∼(1+z)5 (e.g, Shull et al., 2015; Gaikwad
et al., 2017a)5.4 combined with the evolution in density ρ ∝ (1 + z)35.5 and the unknown
thermal state of the IGM at these redshifts.

Assuming the optical depth is approximately described by eqn. (2.3), one obtains
τ∝∼(1 + z)/T 0.7

0 using these redshift evolutions (for constant γ in this redshift range).
Note that at redshifts z ∼ 3 ΓUV is nearly independent of redshift (Becker, & Bolton, 2013)
leading to density evolution being the dominant effect on τ which therefore evolves like
τ∝∼(1 + z)6/T 0.7

0 , far stronger than at low redshifts z . 2.

5.4This steep evolution is supposed to happen because sources at higher redshifts are dominating the UVB
as quasar formation peaks at z ∼ 2 (Khaire, & Srianand, 2015).

5.5This is only the evolution of the mean density, in principle the overdensity corresponding to the Lyα
forest features evolves as well which we ignore for this argument.
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5.4. Measuring the Thermal State at z < 0.5

While the flux power spectrum at redshifts 0.1 ≤ z ≤ 0.4 was also presented by
Gaikwad et al. (2017a), their power spectrum normalization is different from the stan-
dard conventions and cannot be easily reproduced in models as a renormalization was
performed on each individual spectrum. Additionally they compute the power of the
transmission F instead of using the flux contrast δF which leads to a higher impact of
continuum fitting errors. These differences complicate comparisons between the different
analyses as well as comparisons of the Gaikwad et al. (2017a) data to simulations.

5.4. Measuring the Thermal State at z < 0.5

5.4.1. Changes in our Measurement Approach Compared to the

High Redshift Analysis

To derive constraints of the IGM’s thermal state at z = 0.2 we again use the THERMAL
grid of hydrodynamical simulations discussed in § 4.2. For each of the simulations in
the heating rate rescaling grid an output at z = 0.2 was already available. Additional
simulations were run to cover the other redshift bins, but the analysis of those is not yet
completed, nevertheless we will present preliminary results for the bins at z = 0.03 and
z = 0.4.

Due to the high mean transmission of the low-z IGM and the increasing abundance of
collisionally heated gas for lower redshifts5.6 we changed our approach of generating
different F̄ . Our previous approach of rescaling τ to match a given F̄ is equivalent5.7

to rescaling the total ionization rate by a factor. However, the only variable we have
available here is the photoionization rate ΓH Ⅰ as changing collisional ionizations which
only depends on hydrodynamical properties and is therfore not a free parameter. At
high redshifts nearly all gas is photoionized, thus rescaling τ effectively rescales ΓH Ⅰ.
5.6The so-called WHIM, which covers the upper left corner of Figure 1.2 with T . 1 × 105 K and ρ . 100ρ̄

(Davé et al., 2010).
5.7This is true only in the regime of low column densities where wings of the Voigt profile are not important,

but most of the Lyα gas fulfilles this criterion
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Figure 5.4.: Our measurement of the power spectrum at z ≤ 0.5 (black points) using our full data
processing pipeline including subtraction of noise, correcting for the resolution window
function and masking metal lines. The panels show different redshifts. For all the redshifts
we measure the power from large scales to the thermal cutoff. For comparison we also show
an analysis where we did not mask any intervening absorption systems (green points). We
can clearly see that metals dominate the power spectrum in that case for z ≤ 0.1. The likely
cause for this is the increasing abundance of fairly strong MW absorption lines and their
correlation with each other.
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5.4. Measuring the Thermal State at z < 0.5

At low redshifts z . 1 this assumption is no longer true (see Figure 1.2) and therefore
we recompute the skewers of τ through the simulation assuming different UVB ampli-
tudes keeping collisional ionizations fixed and redoing all Voigt profile convolutions
(see the full description in § 4.2). We also decided to parametrize the models in our
simulation grid by the photoionization rate ΓH Ⅰ instead of the mean transmission F̄

which is close to one for all models and thus compresses the photoionization values we
have put in to a narrow dynamic range. We chose to generate 15 logarithmically spaced
UVB amplitudes from ΓH Ⅰ = 4.4 × 10−14 s−1 to 2.75 × 10−13 s−1 for z = 0.25.8 bracketing
a large range around the current constraints by Gaikwad et al. (2017b). We restrict
ourselves to 0.005 s km−1 ≤ k ≤ 0.1 s km−1. Note that in principle for low redshifts
boxsize effects are expected to become more important, e.g. due to the higher abundance
of WHIM. But at the same time the power spectrum measurement at these redshifts is
less precise. A detailed characterization of boxsize effects, however, is beyond the scope
of this work.

As noted earlier we also changed our forward modeling to account for the wavelength
dependent COS LSF. This was done by performing the convolution of each simulation
skewer with the LSF in real space and evaluating the correct LSF, which is tabulated for
up to 160 COS instrument pixels in each direction and which we interpolated to the pixel
scale of the simulation, for each pixel in the process. Elsewise we used the same forward
modeling approach as for high redshifts, i.e. we randomly selected a spectrum, stitched
together as many simulation skewers as needed to arrive at the full length, convolved
with the window function, applied noise with the same level as in the data, and computed
the power in the same way as for the data. We used 50000 simulated skewers5.9 for each
forward model and again estimated the correlation matrix of the measurement from the
simulation while obtaining the diagonal covariance matrix elements by bootstrapping

5.8For preliminary results on z = 0.03 we chose 11 bins spanning from ΓH Ⅰ = 1.5 × 10−14 s−1 to
8.3 × 10−14 s−1, for z = 0.4 we chose 9 bins from ΓH Ⅰ = 6.5 × 10−14 s−1 to 2.2 × 10−13 s−1

5.960000 for z = 0.03 and z = 0.4 that for those cases were extracted along all 3 directions of the
simulation to reduce cosmic variance.
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Figure 5.5.: The same as Figure 4.3, but showing the errors in the emulation at z = 0.2.

the data.

To infer thermal parameters we use these simulations and the emulation technique
discussed in § 4.3.2. As any effects due to reionization are expected to be forgotten until
z ≤ 0.4 and therefore λP is fully degenerate with T0 and γ for a redshift this low, we did
not use additional explicit reionization models to generate the emulator and we also
do not treat λP as a free parameter reducing the emulation process from four to three
dimensions (T0, γ and ΓH Ⅰ). We show the interpolation accuracy for this emulator in
Figure 5.5. While they are significantly larger than at high redshifts, we note that those
errors are fully propagated into the final results and are subdominant for most of the
range in k . We also do not consider SiⅢ correlations to be important for this analysis
as every strong metal absorption line has been masked. We assume uniform priors on
logT0, γ and logΓH Ⅰ and keep our inference approach from the previous high redshift
analysis unchanged, i.e. we use emcee to sample the parameter space via MCMC and
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Figure 5.6.: Comparison between the measured power spectra at z = 0.03, z = 0.2, and z = 0.4. The
band shows the range of 68% best fitting models.

assume a multivariate Gaussian likelihood.

5.4.2. Thermal Evolution at Low Redshifts

In Figure 5.6 we show our fits using forward models to the measured Lyα forest power
spectrum at z = 0.03, 0.2, and 0.4. We can see that for z = 0.2 a reasonable fit has
been achieved for the whole range of k , and for the other redshifts the small scales are
reasonably fit, while the large scales are not matched well. The reason for this mismatch
is not yet clear, and we treat the resulting constraints as preliminary as the errors we
obtain might be influenced by this mismatch.

We show the corresponding constraints on IGM parameters at z = 0.2 in Figure 5.7
(as well as for the other redshifts in Figure 5.8 and Figure 5.9). Here, we can observe
multiple features. First, we can see that the data constrains the degeneracy direction
betweenT0 and γ well. However, as the low-redshift Lyα forest probes overdensities of a
few (the degeneracy direction suggests ∆ ∼ 3 for z = 0.2) results between T0 and γ are
strongly correlated and thus the marginalized constraints on each appear rather weak.
We do not see the issues of extremely high γ to the same extent as in the high redshift
analysis, while high values are still allowed, the theoretically expected values consistent
with our confidence region.

In contrast to the high-redshift bins where we always measured strong correlations
between thermal parameters and F̄ , the correlations between thermal parameters and

129



5. Extending Thermal Evolution Measurements to Low Redshifts

1.2

1.4

1.6

1.8

2.0
γ

0.4
5

0.6
0

0.7
5

0.9
0

T0[104K]

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Γ 1
2

1.2 1.4 1.6 1.8 2.0

γ

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Γ12

Figure 5.7.: Corner plot showing parameter constraints at z = 0.2. While the degeneracy direction
betweenT0 and γ is well constrained, individual marginalized constraints are weak. However,
the strength of the UVB Γ12 = ΓH Ⅰ/(1 s−1) can be tightly constrained.

ΓH Ⅰ seem to be rather weak. Therefore relatively strong constraints on the UVB can be
obtained at z = 0.03 and z = 0.2.

In Figure 5.10 we compare the thermal evolution from chapter 4 to our new low-redshift
result. For comparison we show a band covering a range of explicit He Ⅱ reionization
models ranging from cold to hot (see Table 4.2 for the definition of those terms). We
can see that independent of the exact heat input during He Ⅱ reionization there is only a
narrow range of thermal parameters generated for low redshifts. We can also see that in
contast to this a ”no-HeII reioinization” scenario produces a significantly colder IGM
even at low redshifts. Our new low-redshift measurements are fully consistent with the
predicted thermal state although with relatively large uncertainties. However, these
uncertainties are still small enough to disfavor the ”no-HeII reioinization”model adding to
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Figure 5.8.: Preliminary Parameter constraints for z = 0.03. While the degeneracy direction between T0
and γ is well constrained, individual marginalized constraints are weak. The amplitude of
the UVB seems to be well constrained.

our previous constraint from high-redshift data. The fact that we obtain the temperatures
expected for an IGM that is only heated by reionization and by photoionizations thereafter,
should also allow to set limits on alternative heating scenarios, like e.g. Blazar heating
or dark matter decay, but this analysis is beyond the scope of this work.

5.4.3. Constraints on the Low Redshift UV Background

For z = 0.2, we also obtain a ∼ 30% measurement of the amplitude of the UVB ΓH Ⅰ (see
bottom right panel of Figure 5.7). While this has been measured before from the same
dataset using a slightly different approach and a completely different set of simulations
(Gaikwad et al., 2017a; b), this measurement provides an important cross-check for
ΓH Ⅰ at a redshift where a photon underproduction crisis was previously claimed by
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Figure 5.9.: Preliminary Parameter constraints for z = 0.4, we can see that while the the degeneracy
direction thermal state between T0 and γ is well constrained, the UVB is strongly hitting the
boundaries of our model grid which needs to be extended for a final result.

Kollmeier et al. (2014). This crisis consisted of a UVB measurement suggesting a five
times higher photoionization rate than the most recent (at that time) models by (Haardt,
& Madau, 2012) which would’ve demanded a high escape fraction for ionizing photons
in low-redshift galaxies, in contradiction with current constraints. However, updated
measurements by Shull et al. 2015 brought the discrepency to only a factor of two which
updated UVB models were able to explain (Khaire et al., 2015). The value we obtain is
indeed consistent with the existing measurements by Gaikwad et al. (2017a) and Shull
et al. (2015) based on different approaches and thus confirms the standard picture that
at low redshifts quasars dominate the UVB. Performing the same analysis on the rest
of our low-redshift power spectra data will generally enable us to track the evolution
of the UVB and could also extend the redshift of available measurements further to the
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5.4. Measuring the Thermal State at z < 0.5
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Figure 5.10.: Comparison of our low-redshift measurement to thermal evolution models (band showing
the range from cold to hot He Ⅱ reionization according to Table 4.2) and the high-redshift
measurements from chapter 4. Note that the thermal state at z < 0.5 is mostly independent
of the amount of heat input during He Ⅱ reionization and that our measurement nicely
matches this prediction.

133



5. Extending Thermal Evolution Measurements to Low Redshifts

present day where currently only limits exist (Fumagalli et al., 2017).

5.5. Summary

In this chapter, we extended our measurements of both the power and the thermal
state to lower redshifts z < 0.5. As these observations cannot be performed from the
ground due to the atmospheric UV cutoff, this required working with spectroscopic
data from the HST. Fortunately, in the last few years, large datasets of far UV spectra
have been collected with its COS instrument allowing us to perform a power spectrum
measurement using 66 quasar spectra in this redshift range. While the thermal evolution
measurement based on this dataset is not yet complete, we obtained the first constraint
on the z = 0.2 thermal state ever obtained, and provide preliminary measurements of
the thermal state at z = 0.03 and z = 0.4. All three datapoints are consistent with
the standard picture of a cooling IGM in the post-reionization era. Additionally, our
measurements also allow us to obtain constraints on the metagalactic UVB, providing
further evidence for the absence of a photon underproduction crisis.
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6. Conclusions and Outlook

In the present work, we obtained new measurements of the Lyα forest flux power
spectrum at z < 0.5 (low redshift) and 1.8 ≤ z ≤ 3.4 (high redshift) and used its
sensitivity to the thermal state to constrain thermal evolution in the intergalactic medium
over 12 billion years of cosmic history.

We presented the high redshift power spectrum in chapter 3. This measurement is
based on archival high-resolution spectra obtained with the UVES and HIRES spectro-
graphs which cover a pathlength of ∼ 20 cGpc several times larger than the previous
high-resolution measurements at this redshift range (McDonald et al. 2000, Croft et al.
2002, and Kim et al. 2004). This allowed us to measure the small scale cutoff in the
power spectrum and its redshift evolution with unprecedented precision. We analyzed
the effects of contamination due to metal lines, the window function of masking those
lines, and finite spectroscopic resolution and corrected for those effects using a for-
ward modeling approach. Agreement with previous measurements from both low- and
high-resolution spectrographs is generally good. However, especially the most recent
measurements by Iršič et al. (2017a) and Yèche et al. (2017) seem to disagree with our re-
sult on small scales which we attributed to an improper characterisation of XSHOOTER’s
spectroscopic resolution and a possibly improper correction in the measurements based
on data from this spectrograph.

In chapter 4 we used the additional precision from our new measurement and showed
that combining our results with low-resolution results from the BOSS survey by Palanque-
Delabrouille et al. (2013) as well as existing higher redshift measurements (Iršič et al.,
2017a; Viel et al., 2013b) results in a powerful new dataset for placing high precision
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6. Conclusions and Outlook

constraints on thermal evolution in the IGM. In addition to this unprecedented dataset,
our inference was based on the combination of large, high-resolution cosmological
hydrodynamical simulations with powerful statistical techniques for interpolation, and
MCMC sampling for parameter estimation. The resulting thermal parameter constraints
conclusively show an epoch of heating and a subsequent cooling of the IGM.We compare
to previous measurements of the IGM thermal state based on a variety of methods (Lidz
et al., 2010; Becker et al., 2011; Boera et al., 2014; Bolton et al., 2014; Rorai et al., 2017b;
Garzilli et al., 2017; Rorai et al., 2018; Hiss et al., 2018) and find reasonable agreement
to most measurements. In comparisons to simulations we see evidence for a normal to
warm He Ⅱ reionization scenario based on the rise and fall of temperatures unexpected
in the absence of this phase transition. We also measure particularly low temperatures
at the very highest redshifts contained in this analysis that might be hard to understand
in the context of H Ⅰ reionization. As a low temperature infered by our power spectrum
measurement is a results of having more small scale structure (high-k power) than
expected, the same feature can be used to set a limit on other effects that erase structure
in the IGM, e.g. free-streaming of WDM.

We extended the current measurements of both the power spectrum and the IGM’s
thermal state to lower redshifts z < 0.5 in chapter 5. Due to the Earth’s atmosphere
being opaque in the UV, these measurements can only be performed using space based
observations. We used an archival set of HST/COS spectra (Danforth et al., 2016), masked
all identified metal lines, and developed additional techniques to fully treat the COS LSF.
We obtained power spectra in five redshift bins and noted that especially at the lowest
redshifts metal contamination has a far stronger effect than at high redshifts. We also
noticed a nearly flat evolution of the power spectrum’s overall normalization, a feature
that is not found in high redshift measurements and could be explained by a steeply
evolving UVB. Regarding the thermal state we performed a preliminary measurement in
three of the five redshift bins. The results seem to be agreeing with the standard picture
of the IGM that predicts a cooldown after the end of reionization leading to a small range
of temperatures fully consistent with our measurement, thus further excluding a no
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He Ⅱreionization scenario. Our new measurement also constrains the low redshift UVB,
an area with a recently claimed ”photon underproduction crises” (Kollmeier et al., 2014).
This problem consists of a lack of ionizing photons at low redshift and was subsequently
resolved by improved measurements (Shull et al., 2015; Gaikwad et al., 2017b) and
modeling (Khaire, & Srianand, 2015). Our measurement is in perfect agreement with
those more recent analyses disfavoring the crisis scenario.

After our analysis there are essentially two ranges of the IGM’s history with an
unconstrained thermal state. Due to a lack of Lyα forest data at 0.5 < z < 1.6, there
are essentially no constraints on the physical state of IGM gas in this redshift interval,
representing 5Gyr of the Universe’s history. Note that observations of this regime need
to be performed before the end of HST’s mission, as likely no successor will be available
for UV observations in the next decade or even decades.

Furthermore, to obtain a complete measurement of the IGM’s thermal state, Lyα forest
measurements clearly also need to be extended to higher redshifts. This would allow for
testing the current power spectrum results at z > 5 and enable stronger joint constraints
on the thermal state just after H Ⅰ reionization as well as the nature of dark matter (see
Oñorbe et al., 2017a, for a forecast of possible constraints using high-resolution data up
to z = 6). The analysis of this redshift range will be enabled by the large increase in the
available dataset size in recent years (e.g. Eilers et al., 2018, published a new medium
resolution dataset, but more high-resolution data has been obtained as well).

However, to get accurate high-precision constraints of the thermal state in the IGM
better hydrodynamical simulations are needed. We characterized the effect of box size,
cosmic variance and cosmology and found, that for some range of scales systematic
uncertainties due to these effects can be comparable to our measurement precision.
Future progress will therefore rely on simulating larger grids to marginalize over cos-
mological parameters or alternatively a more precise external determination of those
parameters as well as larger simulation boxes. Thanks to great improvements in recent
years, allowing nearly linear scaling of computing time with volume (at fixed resolution)
in some hydrodynamical simulation codes, and the current advancement of computing
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6. Conclusions and Outlook

speed in supercomputers this will be possible within the next few years.
Finally, the power spectrum of the Lyα forest does not only constrain the thermal

state of the IGM, but could also be used for measuring cosmological parameters. New
measurements of this statistics based on several hundred thousand tomillions ofmoderate
resolution quasar spectra6.1 will allow sub-percent level constraints on its large scale
modes and are projected to allow a determination of the sum of neutrino masses

∑
mν

possibly allowing to discriminate between the normal and inverse mass hierarchy (e.g.
Palanque-Delabrouille et al., 2015; Rossi, 2017). But this effort will rely on accurate
treatment of systematic effects, i.e. due to degeneracies with the thermal state of the
IGM. The greatly improved high-k precision enabled by our work will help break these
degeneracies degeneracies, and thereby enable improved constraints on neutrino masses,
but e.g. also on alternatives to the CDM paradigm such as warm (Viel et al., 2013b; Iršič
et al., 2017b) or fuzzy dark matter (Hui et al., 2017; Iršič et al., 2017c).

6.1These will be obtained from the Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration
et al., 2016) and WEAVE (Pieri et al., 2016) spectroscopic surveys (both are expected to launch science
observations in 2019), the 4-metre Multi-Object Spectroscopic Telescope (4MOST) (de Jong et al., 2016)
survey is expected to add to this as well (starting in 2021)
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Appendix

A. Impacts of seeing on power spectrum

measurements

For slit spectrographs, it is very difficult to know the exact resolution because it depends
on the seeing, and also the resolution can vary at the ∼ 10% across the echelle orders,
which is typically never carefully quantified or taken into account (e.g. the X-SHOOTER
pipeline user manual Modigliani et al., 2017, shows variations in the slit resolution
with wavelength at about this level). Note that the change of resolution with seeing
is not a problem for fiber spectrographs (such as e.g. BOSS) that allow measurements
of the resolution of the science data on sky fibers. Assuming the same resolution for
each object (whereas the objects actually have different resolutions) generally will also
increase the weight of higher resolution data in the power spectrum averages. This is
because higher resolution data has a smaller scale (higher k) cutoff. Therefore, a higher
power by a factor that is exponential in k as well as in R would be measured. When
performing the mean over all objects the higher resolution objects (which now have
been overcorrected) will bias the power estimate as 〈exp(k2R2)〉 > exp(k2〈R〉2) (if R is
not constant throughout the dataset). As explained in Yèche et al. (2017) this problem
can be weakened by measuring the seeing from the data (e.g. by measuring the width of
the object in the spacial direction) and correcting each spectrum using its correct seeing.

A similar biasing due to mixing different resolutions can appear already during data
reduction because co-adding overlapping echelle orders as well as different observations
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will give higher weight to data with better seeing as this typically has higher S/N as well.
If resolution varies strongly between echelle orders or observations, the final co-added
spectrum might be dominated by the best resolution obtained. Therefore, a knowledge
of the spectrograph resolution for each individual object on the < 10% level as well as
an individual resolution correction for each object are needed to provide an accurate
measurement.

B. Slit resolution of the X-SHOOTER spectrograph

The quoted resolution in the X-SHOOTER manual was originally 5100 for the same
slit/arm combination and was changed to 4260 during a recalibration run in 2011 (so
before XQ-100 data was taken). The full reason for this change in value between calibra-
tions is unclear to the authors. However, the X-SHOOTER Pipeline manual (Modigliani
et al., 2017) shows values more consistent with the higher resolution.1. The manual also
claims an underestimation of resolution by the pipeline for the 1x1 binning in the UVB
arm. Additionally, the reduction QC plots in the ESO archive for 1x1 binning and 1x2
binning (which XQ-100 used) for all measurements between 2012 and 2014 shows ∼ 20%
higher values for the pipeline resolution values with the 1x2 binning. We contacted ESO
about this issue and found out that the difference in estimated resolution for different
binnings is still an open problem. A determination of the instruments’ slit resolution to
the accuracy needed for small scale power analyses is therefore not available.

This motivated us to estimate the X-SHOOTER resolving power for the UVB arm and
the configuration used in the XQ-100 dataset (0.1′′ slit width and a 1 × 2 binning) from
a slit-arc spectrum (taken at 2012-05-20T17:06:41.424) reduced in the same way as one
would do for science data using the ESO Pipeline recipe xsh_scired_slit_stare.

.1Note that the resolution values quoted on the ESO webpage were again significantly changed towards
higher values since this part of the analysis was published in (Walther et al., 2018a). See here for the pre-
vious webpage: https://web.archive.org/web/20180208222115/http://www.
eso.org:80/sci/facilities/paranal/instruments/xshooter/inst.html
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B. Slit resolution of the X-SHOOTER spectrograph
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Figure 1.: A reduced slit-arc spectrum of the UVB channel with the same slit width and binning as
the XQ-100 survey and reduced with the xsh_scired_slit_stare recipe of the ESO
X-Shooter Pipeline using the same calibrations as for science data reductions (except for the
response curves and disabling sky-subtraction). The full arc spectrum is shown in the top panel,
colored lines indicate the position of zoom-ins in the bottom panel. The bottom panels also
show Gaussian fits (colored lines) to three of the arc lines with the best-fit parameters (mean µ,
standard deviation σ , both in nm) as well as the resulting resolving power R printed as text. We
can clearly see that the resolution of each of those fits is exceeding the nominal value (taken
from the XQ-100 data release paper) of R = 4350 and is varying over the spectrum.

These frames are taken on a regular basis using the same slits used for science targets. A
normal reduction process (at least with the ESO pipeline) does not need those frames
as the wavelength calibration is performed using pinhole arcs which cannot be used
to determine the resolution of science data. In Figure 1 we show the reduced slit-arc
spectrum as well as zoom-ins to three random, non-blended lines in different parts of
the spectrum. We fitted the lines with Gaussian profiles which show that the resolution
of X-SHOOTER in the UVB arm a) varies within the arm by at least∼ 10% and b) can be
∼ 25% higher than the value quoted in the XQ-100 data release paper (López et al., 2016).
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We also performed a quick automated fit for all lines in the arc line list individually
without checking for line blends and other kinds of contamination. These might make
some fits broader than a single line leading to determining a lower resolution. The
resulting resolution with respect to wavelength is shown in Figure 2. We do not observe
a clear trend with wavelength and note that the bulk of the distribution agrees with
R ∼ 5000.

These tests are in basic agreement with the QC plots in the ESO archive as well as the
pipeline manual. We therefore assume that the resolution values given in the automatic
QC plots are right and use their approximate median of R = 5350 when performing
further tests of the XQ-100 results. If one only determines the seeing and estimates
spectral resolution by combining the seeing with the slit resolution quoted on the ESO
website or X-SHOOTER manual one might therefore under-determine the true resolution
of the spectra. In principle one should be able to obtain the slit resolution from sky-lines
in the science observations as well (albeit with less available lines and worse signal
to noise than for the arc spectra) as motions in the atmosphere are slower than the
∼ 1 km s−1 resolution accuracy we want to obtain.

C. Normalization Conventions for the Power

Spectrum

While Kim et al. (2004) as well as the SDSS/BOSS/XQ-100 measurements already used the
same normalization as we do, Croft et al. (2002) and McDonald et al. (2000) measure the
power of the transmission F instead of δF . This leads to an additional factor F̄ 2 between
their measurements and the more recent ones. The Croft et al. (2002) measurement also
has a different normalization convention by a factor 2 compared to McDonald et al. (2000)
which we corrected for. The former also does not provide a measurement of the mean
transmission of their sample. Therefore we renormalized the McDonald et al. (2000)
measurement using the provided mean transmission of their sample and rescaled the
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D. Data Products for the Power Spectrum Measurment
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Figure 2.: Full slit resolution with respect to wavelength for the X-SHOOTER spectrograph estimated
from the spectrum in Figure 1. We show the resolution for a quick fit of individual lines in the
arc spectrum based on the line list provided by ESO. Obviously unphysical or unconverged fits
have been removed. As fits to blends have not been removed, spurious low-resolution fits are
included inside the figure.

Croft et al. (2002) with the external mean transmission measurement by Becker et al.
(2013).

D. Data Products for the Power Spectrum

Measurment

Truncated data tables showing our high-resolution measurement at z = 2.8 are shown
in Table 2 (including our metal masking approach) and Table 3 (without metal masking).
We also show the first and last column of the correlation matrix at z = 2.8 in Table 4.
Note that the correlation matrix is based on the best-fitting DM only simulation. It is
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therefore a model dependent quantity although the agreement of the fit with the data is
good. Thus, while it should give a good representation of data correlations, for fitting
models to the measured power spectra you might want to estimate the correlation matrix
from the actual model fitted in the analysis to be fully independent of our modeling. The
full tables including all redshifts and k-bins are available in the electronic version of
Walther et al. (2018a) Masked spectra (with and without enabled metal masking) can be
obtained from the Zenodo upload under Walther et al. (2017).2. Random samples from
our fwindow chain can be found therein as well.

E. Tables of the Measured Thermal Evolutions

In this section we tabulate our measurement values at each redshift for the flat prior on F̄

(Table 5) and the strong prior (Table 6). Those tables do not only show the marginalized
constraints of all thermal parameters, but additionally show values for the temperature
at the overdensity ∆? where curvature measurements are optimal (with the value for
∆? interpolated in redshift between results from Becker et al., 2011) as well as at ∆power

where the degeneracy between γ and T is minimized for the power spectrum. The latter
was obtained by assuming a power law relationT (∆power) = T0∆

γ−1
power to the samples in

our Markov chains and varying∆power such that the variance ofT (∆power) is minimized.
The density values where degeneracies are minimal are tabulated as well. We will provide
chains from our MCMC analysis on request.

.2https://zenodo.org/record/1041022
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E. Tables of the Measured Thermal Evolutions

Table 1: Priors used for each fitting parameter

type of lower upper
Parameter µ σ

prior limit limit

log(T0/K) flat 3.48 4.30
γ flat 0.5 2.1

log(λ J/ckpc) flat 1.34 2.18
fSiⅢ Gaussian -0.002 0.018 0.008 0.001

F̄ (z = 1.8) Gaussian 0.871 0.931 0.901 0.006
F̄ (z = 2.0) Gaussian 0.785 0.976 0.881 0.019
F̄ (z = 2.2) Gaussian 0.818 0.921 0.869 0.010
F̄ (z = 2.4) Gaussian 0.766 0.859 0.812 0.009
F̄ (z = 2.6) Gaussian 0.723 0.813 0.768 0.009
F̄ (z = 2.8) Gaussian 0.683 0.771 0.727 0.009
F̄ (z = 3.0) Gaussian 0.640 0.724 0.682 0.008
F̄ (z = 3.2) Gaussian 0.581 0.661 0.621 0.008
F̄ (z = 3.4) Gaussian 0.528 0.602 0.565 0.007

Note. — priors in F̄ are based on Kirkman et al. (2005) for
z = 1.8, Faucher-Giguère et al. (2008b) for z = 2 and Becker
et al. (2013) for the higher redshifts
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Table 2: Measured flux power spectrum at z = 2.8 after masking metals and removing the window
function due to masking. Note that the full table that also includes the other redshifts and matrix

elements is available in the electronic version of Walther et al. (2018a).

k̄
z̄ kPkπ

−1 σkPkπ −1

[s km−1]

2.795 0.002803 0.03103 0.009415
2.795 0.003499 0.03522 0.006892
2.795 0.004479 0.04468 0.008296
2.795 0.005632 0.04717 0.006015
2.795 0.00708 0.05932 0.007473
2.795 0.008945 0.05596 0.006969
2.795 0.0113 0.05733 0.005735
2.795 0.01425 0.06204 0.006429
2.795 0.01794 0.06517 0.005423
2.795 0.02259 0.05688 0.003983
2.795 0.02838 0.05032 0.002825
2.795 0.03573 0.04715 0.002449
2.795 0.04501 0.03812 0.002463
2.795 0.05666 0.02728 0.001632
2.795 0.07132 0.01872 0.001295
2.795 0.08978 0.01121 0.00106
2.795 0.113 0.00548 0.0005469
2.795 0.1423 0.002266 0.0003068
2.795 0.1792 0.0009699 0.000172
2.795 0.2255 0.0003949 9.197e-05
2.795 0.2839 0.0002304 3.592e-05
2.795 0.3574 0.0001749 2.872e-05
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Table 3: Measured flux power spectrum at z = 2.8 without masking of metals and after removing the
window function due to masking. Note that the full table that also includes the other redshifts will be

available in the electronic edition of the journal.

k̄
z̄ kPkπ

−1 σkPkπ −1

[s km−1]

2.797 0.002822 0.02772 0.007839
2.797 0.003539 0.03315 0.007177
2.797 0.004509 0.04198 0.006247
2.797 0.005635 0.04608 0.005853
2.797 0.007045 0.04969 0.006732
2.797 0.00895 0.05159 0.005478
2.797 0.01133 0.06545 0.006951
2.797 0.0142 0.06722 0.006563
2.797 0.01791 0.06762 0.004682
2.797 0.02264 0.06177 0.005428
2.797 0.02843 0.05868 0.003455
2.797 0.03575 0.04829 0.003225
2.797 0.045 0.04044 0.002322
2.797 0.05662 0.03103 0.002069
2.797 0.07131 0.02063 0.001187
2.797 0.08978 0.01292 0.001051
2.797 0.113 0.007671 0.0006593
2.797 0.1423 0.004842 0.0005712
2.797 0.1792 0.003066 0.0003734
2.797 0.2255 0.001638 0.0002774
2.797 0.2839 0.0008713 0.0001418
2.797 0.3574 0.0005683 0.0001228
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Table 4: Correlation matrix at z = 2.8 for the measurement in Table 2. Note that the full table that also
includes the other redshifts and matrix elements is available in the electronic version of Walther et al.

(2018a).

k̄
z̄ R1, j . . . Rn, j[s km−1]

2.8 0.002803 1 -0.08482
2.8 0.003499 0.1022 0.009749
2.8 0.004479 0.14 -0.05212
2.8 0.005632 0.1838 -0.02332
2.8 0.00708 0.1645 -0.002453
2.8 0.008945 0.112 0.04121
2.8 0.0113 0.03341 -0.04957
2.8 0.01425 0.07737 -0.07281
2.8 0.01794 -0.001218 0.04444
2.8 0.02259 0.05922 0.08884
2.8 0.02838 0.04739 0.1806
2.8 0.03573 -0.08184 0.2035
2.8 0.04501 -0.1025 0.2783
2.8 0.05666 -0.08604 0.3239
2.8 0.07132 -0.09288 0.4122
2.8 0.08978 -0.1069 0.5116
2.8 0.113 -0.07494 0.4853
2.8 0.1423 -0.0566 0.4612
2.8 0.1792 -0.0352 0.3981
2.8 0.2255 -0.03103 0.3749
2.8 0.2839 -0.06502 0.6858
2.8 0.3574 -0.08482 1
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Table 5: Fiducial Evolution of Thermal Parameters Assuming a Flat Prior on F̄

z λP T0 γ F̄ T∆power T∆?

[kpc] [104 K] [104 K] [104 K]

1.8 79.0+16.0
−11.9 0.684+0.180

−0.122 1.97+0.16
−0.26 0.872+0.020

−0.018 1.160+0.239
−0.239 4.288+2.162

−1.525

2.0 93.0+8.3
−17.4 0.734+0.093

−0.071 2.15+0.09
−0.26 0.831+0.033

−0.011 1.096+0.122
−0.121 5.749+1.011

−2.290

2.2 91.0+6.3
−6.4 0.789+0.085

−0.068 2.13+0.09
−0.13 0.796+0.010

−0.009 1.369+0.120
−0.106 4.942+0.773

−0.771

2.4 87.2+5.4
−5.1 0.831+0.112

−0.078 2.07+0.13
−0.18 0.772+0.013

−0.012 1.593+0.143
−0.123 3.995+0.717

−0.631

2.6 88.3+3.7
−4.5 1.000+0.146

−0.090 1.93+0.15
−0.17 0.745+0.012

−0.013 1.936+0.095
−0.084 3.449+0.445

−0.345

2.8 93.8+4.2
−4.2 1.000+0.112

−0.087 2.16+0.09
−0.13 0.688+0.013

−0.010 1.982+0.163
−0.149 3.911+0.426

−0.408

3.0 80.6+6.0
−5.6 1.429+0.313

−0.271 1.47+0.26
−0.24 0.694+0.009

−0.015 2.027+0.155
−0.143 2.347+0.269

−0.226

3.2 84.9+4.7
−6.3 1.115+0.230

−0.149 1.85+0.21
−0.25 0.623+0.018

−0.019 1.910+0.167
−0.150 2.465+0.278

−0.253

3.4 90.1+4.7
−5.8 1.330+0.295

−0.215 1.82+0.24
−0.27 0.569+0.021

−0.023 2.202+0.206
−0.214 2.592+0.283

−0.277

3.6 79.4+10.0
−9.6 1.010+0.360

−0.296 1.74+0.28
−0.36 0.512+0.022

−0.021 1.160+0.394
−0.338 1.704+0.602

−0.561

3.8 79.4+8.4
−6.7 1.029+0.287

−0.246 1.74+0.29
−0.39 0.433+0.025

−0.026 1.320+0.355
−0.273 1.548+0.441

−0.338

4.0 72.3+7.6
−5.8 0.863+0.271

−0.187 1.42+0.37
−0.34 0.387+0.017

−0.022 0.942+0.288
−0.201 1.090+0.340

−0.262

4.2 77.0+3.6
−6.0 0.905+0.122

−0.082 1.73+0.33
−0.40 0.355+0.025

−0.031 1.051+0.087
−0.082 1.246+0.118

−0.165

4.6 73.7+4.9
−5.8 0.910+0.119

−0.117 1.54+0.37
−0.39 0.278+0.023

−0.028 0.966+0.126
−0.109 1.037+0.153

−0.124

5.0 57.3+4.0
−4.3 0.535+0.117

−0.092 1.54+0.31
−0.33 0.159+0.018

−0.020 0.555+0.119
−0.095 0.580+0.122

−0.102

5.4 54.4+4.3
−4.5 0.597+0.152

−0.132 1.55+0.29
−0.29 0.060+0.009

−0.008 0.551+0.138
−0.118 0.613+0.158

−0.139
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Table 6: Fiducial Evolution of Thermal Parameters Assuming the Strong Prior on F̄

z λP T0 γ F̄ T∆power T∆?

[kpc] [104 K] [104 K] [104 K]

1.8 65.9+5.0
−4.2 0.768+0.369

−0.218 1.63+0.16
−0.25 0.897+0.005

−0.005 2.011+0.312
−0.278 2.533+0.441

−0.384

2.0 75.5+9.8
−6.4 0.732+0.169

−0.091 1.88+0.20
−0.27 0.865+0.015

−0.019 1.357+0.203
−0.151 3.411+1.320

−0.832

2.2 79.4+5.1
−5.0 1.014+0.250

−0.150 1.74+0.15
−0.21 0.825+0.009

−0.008 2.119+0.177
−0.153 3.338+0.490

−0.443

2.4 81.1+4.6
−4.7 1.165+0.290

−0.189 1.63+0.16
−0.19 0.799+0.008

−0.008 2.267+0.188
−0.165 2.980+0.348

−0.297

2.6 84.9+4.4
−4.8 1.234+0.193

−0.139 1.67+0.13
−0.15 0.763+0.007

−0.007 2.277+0.097
−0.092 2.994+0.225

−0.207

2.8 91.3+4.5
−5.3 1.286+0.191

−0.147 1.78+0.11
−0.12 0.719+0.008

−0.008 2.610+0.221
−0.195 3.278+0.301

−0.267

3.0 81.7+5.8
−5.9 1.289+0.182

−0.144 1.60+0.14
−0.16 0.687+0.008

−0.008 1.946+0.150
−0.136 2.408+0.237

−0.209

3.2 83.4+5.6
−5.3 1.186+0.133

−0.115 1.75+0.11
−0.13 0.631+0.007

−0.008 1.770+0.153
−0.138 2.385+0.238

−0.222

3.4 88.7+5.2
−5.3 1.404+0.165

−0.157 1.74+0.10
−0.11 0.576+0.007

−0.007 2.075+0.205
−0.209 2.555+0.265

−0.270

3.6 79.7+9.5
−10.7 1.038+0.313

−0.267 1.69+0.14
−0.25 0.518+0.007

−0.007 0.666+0.164
−0.139 1.696+0.638

−0.608

3.8 77.8+8.3
−6.9 1.205+0.229

−0.194 1.41+0.20
−0.23 0.457+0.006

−0.006 1.132+0.201
−0.179 1.524+0.427

−0.328

4.0 71.5+7.4
−5.2 0.940+0.220

−0.173 1.27+0.24
−0.24 0.397+0.006

−0.006 0.878+0.193
−0.154 1.084+0.334

−0.256

4.2 77.5+3.3
−5.4 0.890+0.093

−0.073 1.85+0.23
−0.33 0.346+0.025

−0.022 1.047+0.082
−0.079 1.268+0.105

−0.146

4.6 76.2+4.2
−5.4 0.877+0.130

−0.106 1.84+0.23
−0.33 0.254+0.021

−0.020 1.016+0.138
−0.112 1.080+0.147

−0.124

5.0 57.7+4.2
−4.3 0.533+0.122

−0.091 1.64+0.26
−0.32 0.152+0.016

−0.017 0.576+0.123
−0.099 0.586+0.124

−0.102

5.4 54.3+4.3
−4.6 0.599+0.152

−0.134 1.54+0.29
−0.29 0.061+0.009

−0.008 0.549+0.138
−0.117 0.616+0.158

−0.140
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Acronyms

BAL broad absorption line.
BAO baryon accoustic oscillation.
BOSS Baryon Oscillation Spectroscopic Survey.
CDM cold dark matter.
CMB cosmic microwave background.
COBE Cosmic Background Explorer.
COS Cosmic Origins Spectrograph.
DESI Dark Energy Spectroscopic Instrument.
DLA damped Lyα absorption system.
DM dark matter.
FGPA fluctuating Gunn-Peterson absorption.
FUV far UV.
GP Gaussian process.
GRB gamma ray burst.
HIRES High Resolution Echelle Spectrometer.
HST Hubble Space Telescope.
IGM intergalactic medium.
ISM interstelar medium.
JWST James Webb Space Telescope.
KODIAQ Keck Observatory Database of Ionized Absorption toward Quasars.
LLS Lyman Limit System.
LP lifetime position.
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Acronyms

LSF line spread function.
LUVOIR Large Ultraviolet/Optical/Infrared Surveyor.
Lyα Lyman Alpha.
MCMC Markov Chain Monte Carlo.
MW Milky Way.
PCA principal component analysis.
PDF probability density function.
pLLS partial LLS.
PPM piecewise parabolic method.
QSO quasar.
RSD redshift space distortion.
RT radiative transfer.
SDSS Sloan Digital Sky Survey.
SED spectral energy distribution.
STIS Space Telescope Imaging Spectrograph.
TDR temperature density relation.
THERMAL Thermal History and Evolution in Reionization Models of Absorption Lines.
UV ultraviolet.
UVB ultraviolet background.
UVES Ultraviolet and Visual Echelle Spectrograph.
VLT Very Large Telescope.
WDM warm dark matter.
WHIM Warm-Hot Intergalactic Medium.
WMAP Wilkinson Microwave Anisotropy Probe.

.
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