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Simulations of an accretion disk (AD) surrounding a supermassive black
hole (SMBH) and its interaction with a nuclear star cluster
We investigate the time evolution of an AD surrounding a SMBH in an active galactic
nucleus (AGN) and its dynamical interactions with a the nuclear star cluster (NSC).
The AD is important in these interactions because of its dissipative force acting on
the NSC stars, resulting in an increased mass flow to the SMBH and asymmetries
in the phase space distribution due to its rotation. As the StarDisk project (Just
et al., Kennedy et al.) only treated a static AD, viscous hydrodynamical simulations
including gravity and self-gravity are used in this thesis to take dissipative feedback and
lifetime checks of the AD into account. These simulations were performed using the
PLUTO code along with additional modules written by Rolf Kuiper and equilibrium
initial condition similar to Shakura & Sunyayev. The results were a quasi-static state
as well as the confirmation of the scale-height assumptions from Kennedy et al. and
the estimation of the accretion rate reproducing the expected result from Shakura
& Sunyayev. Furthermore, the obtained data was used to interpolate the dissipative
forces in the direct N-body code NBODY6++GPU and carry out a first test. The
inclusion of more physics into the hydrodynamics as well as the advancement of the
NBODY6++GPU project to real applications are both tasks for future research.

Simulationen einer Akkretionsscheibe (AS) um ein supermassives schwar-
zes Loch (SMSL) und ihre Wechselwirkungen mit einem zentralen Ster-
nenhaufen
Wir untersuchen die Zeitentwicklung einer ein SMSL umgebenden AS in einem akti-
vem Galaxienkern (AGK) und ihre dynamische Wechselwirkung mit einem zentralen
Sternen haufen (ZSH). Die AS ist wegen ihrer dissipativen Kräfte, die auf die Sterne
im ZSH wirken, sehr wichtig für diese Wechselwirkungen, welche in einem erhöhtem
Massenfluss zum SMSL sowie Asymmetrien in der Phasenraumverteilung, ausgelöst
durch die Rotation, führen. Da das StarDisk Projekt (Just et al., Kennedy et al.)
die AS als statisch behandelt hat, wurden in dieser Arbeit viskose hydrodynamische
Simulationen, welche auch die Gravitation und Eigengravitation beinhalten, durch-
geführt, um die dissipative Rückkopplung und die Lebensdauer der Scheiben mitein-
zubeziehen. Diese Simulationen wurden mithilfe des PLUTO Codes unter Verwendung
von zusätzlichen Modulen entwickelt von Rolf Kuiper und Gleichgewichtsanfangsbe-
dinungen ähnlich denen von Shakura & Sunyayev durchgeführt. Das Ergebnis war
ein quasi-statischer Zustand, welcher Annahmen zur Skalenhöhe von Kennedy et al.
bestätigte und eine Abschätzung der Akkretionsrate konnte die erwarteten Resulta-
te von Shakura & Sunyayev reproduzieren. Weiterhin wurden die gesammelten Daten
verwendet, um durch Interpolation die dissipativen Kräfte im direkten N-Teilchencode
NBODY6++GPU zu verwenden und einen ersten Test durchzuführen. Das Hinzufügen
weiterer Physik in die Hydrodynamik bildet zusammen mit dem Voranbringen des
NBODY6++GPU Projektes zur Durchfühbarkeit von echten Anwendungen die Auf-
gaben für zukünftige Forschung.





Contents

1. Introduction and Motivation 1
1.1. quasi-steller radio sources (QUASARs) and the history of Active Galactic

Nuclei (AGN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1. First discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2. Radio astronomy reveals new objects . . . . . . . . . . . . . . . 1
1.1.3. QUASARs and their optical counterparts . . . . . . . . . . . . 2
1.1.4. Confirmation of cosmological redshifts and new questions . . . . 3
1.1.5. Energy source and central engine . . . . . . . . . . . . . . . . . 4
1.1.6. The “Black Hole Paradigm” becomes the accepted theory . . . . 4
1.1.7. Unified models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Emission as a proof for the structure of AGN . . . . . . . . . . . . . . 7
1.2.1. Detailed analysis of structure of AGN Accretion Disk (AD) of

the paper series starting from Collin-Souffrin (1987) . . . . . . . 10
1.3. Newer developments explored with a review paper . . . . . . . . . . . . 13

1.3.1. “The AGN Family: New Multi-wavelength observations” (Net-
zer 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2. “Mapping and Modelling the Broad Line Emitting Region (BLR)
and Measuring BH Masses” (Netzer 2018) . . . . . . . . . . . . 15

1.3.3. “Accretion Disks and Disk Winds” (Netzer 2018) . . . . . . . . 16
1.3.4. “Star Formation Galactic-Scale Winds Mergers and Feedback”

(Netzer 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.5. Cosmology: “Something Wrong: All AGN-Based Methods” (Net-

zer 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. Physics of Accretion Disks 21
2.1. Theoretical foundations of α-Disks . . . . . . . . . . . . . . . . . . . . 21

2.1.1. Disk structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2. Profiles derived in Shakura and Sunyaev (1973) . . . . . . . . . 25
2.1.3. More rigorous proof in other papers . . . . . . . . . . . . . . . . 26

2.2. Fluid dynamics description . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1. Time evolution equations . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2. Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3. Radiation hydrodynamics . . . . . . . . . . . . . . . . . . . . . 33
2.2.4. Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.5. Gravitational forces . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.6. Self-gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Contents

2.3. Equilibrium initial conditions . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2. Derivations from vertical force-balance . . . . . . . . . . . . . . 39
2.3.3. Determination of pressure profile . . . . . . . . . . . . . . . . . 41
2.3.4. Derivation of vϕ from radial force balance . . . . . . . . . . . . 41
2.3.5. Normalisation constant for ρ . . . . . . . . . . . . . . . . . . . . 42
2.3.6. Self-gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.7. On the scale-height . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.8. Resulting initial conditions . . . . . . . . . . . . . . . . . . . . 44
2.3.9. Viscosity corresponding to the initial conditions . . . . . . . . . 44
2.3.10. Toomre Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4. The drag force as the force the stars feel from the AD for N-body
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3. Numerical simulations using the PLUTO code and NBODY6++GPU 51
3.1. Astrophysical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2. The PLUTO Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1. Basic discretisation scheme . . . . . . . . . . . . . . . . . . . . . 53
3.2.2. Available grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3. Riemann solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.4. Time discretisation schemes . . . . . . . . . . . . . . . . . . . . 55
3.2.5. Interpolation schemes . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.6. Modules by Rolf Kuiper . . . . . . . . . . . . . . . . . . . . . . 59

3.3. Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.1. Target system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2. Parameters resulting from the chosen system . . . . . . . . . . . 65
3.3.3. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.4. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4. Numerical simulations without self-gravity . . . . . . . . . . . . . . . . 70
3.4.1. Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2. Results in axis-symmetric 2D simulations . . . . . . . . . . . . . 70
3.4.3. Results in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5. Numerical simulations with self-gravity . . . . . . . . . . . . . . . . . 90
3.5.1. Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2. Results in axis-symmetric 2D simulations . . . . . . . . . . . . 90
3.5.3. Results in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6. Using the data to do simulations with NBODY6++GPU . . . . . . . . 112
3.6.1. Creating a read-in module for the hydrodynamic simulation data 112
3.6.2. Extrapolation of hydrodynamic simulation data to smaller radii 116
3.6.3. First preliminary test . . . . . . . . . . . . . . . . . . . . . . . . 119

4. Conclusions and Outlook 121
4.1. Conclusions for the hydrodynamical simulations with PLUTO . . . . . 121
4.2. Conclusions for the hydrodynamical simulations with NBODY6++GPU 122



4.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A. List of Acronyms 127

B. Bibliography 131





1. Introduction and Motivation

1.1. quasi-steller radio sources (QUASARs) and the
history of Active Galactic Nuclei (AGN)

This subsection describes the study of QUASARs from their very beginnings to the
present day. This is mostly based on Shields (1999).

1.1.1. First discoveries

The first evidence of AGN already appeared at the beginning of the 20th century when
astronomers tried to determine whether the so called “spiral nebulae” were distant
objects or not. Essentially, they were asking the question if there is only one galaxy or
several of them. According to Shields (1999) Fath at Lick observatory first discovered
AGN emission lines in NGC 1068. This happend while creating a spectroscopic survey
of several “spiral nebulae” in order to proof that they are a unresolved collection
of stars which should have a continuous spectrum with stellar absorption lines. He
described the spectrum as “composite, showing bright and absorption lines” (Shields
1999). Many astronomers, among them Hubble who said their spectra were “planetary
nebula” type, had confirmed these lines in many spiral nebulae. Moreover, they had
also found that the emission lines were covering a substantial range of wavelengths.
Thus, Seyfert started the first real study of the galaxies with nuclear emission lines
in 1943. Shields (1999) also describes Seyfert’s method. He superimposed the spectra
emission lines with a G-type solar spectrum and discovered variations in the width
of the lines for the objects considered. This introduced the main distinction between
the narrow forbidden and permitted lines of e.g. NGC 1068 and the broad hydrogen
lines in e.g. NGC 4151. In honour of his work galaxies with high-excitation nuclear
emission lines are called “Seyfert Galaxies”. As confirmed in Shields (1999) Seyfert’s
paper was, unfortunately, not enough to start the new field. The final impetus was a
newly developing field that emerged in the wake of the new radio technology.

1.1.2. Radio astronomy reveals new objects

Again supported by Shields (1999) Jansky found the first astronomical radio source,
located in the Sagittarius constellation in the densest part of the Milky Way (MW),
while investigating the sources of static interfering with trans-atlantic radio commu-
nications at Bell labs. This confirmed suspicions of astronomical radio sources already
raised by Maxwell at that time and disproved that the earth’s ionosphere is repelling
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1. Introduction and Motivation

all astronomical radio signals. Initially, he suspected the sun as the source of the
radiation. Later, he rejected this idea in favour of a more distant astronomical object
as the periodicity was a sidereal day and not a solar day. Furthermore, the signal
was strongest when pointing the antenna at Sagittarius. While most professional
astronomers did not take notice of Jansky’s work it inspired electrical engineer and
amateur radio operator Grote Reber to construct a radio telescope in his backyard
near Chicago in 1937. Using this, he confirmed Jansky’s discoveries, achieved pub-
lications in a journal and created a radio map of the sky after refusing a research
appointment. This should become the basis for the rapid growth of radio astronomy
after the second world war. He also was the first to note that the “ratio of radio
radiation to optical light was vastly larger for the MW than for the sun” (Shields
1999). People and research effort originating form radar research during the second
world war were redirected to radio astronomy after it had ended. This resulted, most
notably, in the groups of Cambridge and Manchester in the UK as well as the CSIRO
in Australia.
By the means of surveys, discrete sources were discovered. An example is the MW
survey by Hey, Parsons and Phillips in 1946. Specifically, Cygnus A. Bolton, Stanley
and Slee (1949) were finally able to identify some optical counterparts for the radio
signals aided by sea-cliff technique observations (interferometry using the sea surface
as a second reflector). Positions determined by Smith enabled optical identification of
e.g. Cyg A by Baade and Minkowski in 1954. This then lead to further investigations
determining the distance to be 31 Mpc as well as high luminosities (determined from
H0 = 540 km s−1 Mpc−1 as the Hubble constant at at time) of 8× 1042 erg s−1(radio)
and 6× 1042 erg s−1 (optical). Measurements by Hanbury Brown, Jennison and Das
Gupta in 1952 also revealed that Cyg A was an alongated source with dimensions
roughly 2′ × 0.5′

1.1.3. QUASARs and their optical counterparts

As described in Shields (1999) the last step on the road to AGN was the discovery
of so called quasar (Later reduced to “quasi-stellar object” QSO). After Minkowski’s
studies of radio galaxies Allan Sandage and Maarten Schmidt undertook the task of
optical identification of the radio galaxies found. They worked together with Thomas
A. Matthews, who had new accurate positions of them on hand. Sandage first found
a stellar object of 16th magnitude “with a faint nebulosity” (Shields 1999) and broad
emission lines in unfamiliar wavelengths as well as being variable in intensity. Ad-
ditionally, excess ultraviolet emission lines were present. As many more objects like
these were found, names were developed for them such as “quasi-stellar radio sources”
(QSRS), “quasi-stellar sources” (QSS) and finally QUASARs which was that be-
came established. While initially it was thought that there “was a remote possibility
that it may be a distant galaxy of stars”, it was generally thought these objects are
“a relatively nearby star with most peculiar properties” (both Shields (1999)). The
breakthrough was on February 5th, 1963 when Schmidt identified a part of the spec-
trum as the Balmer lines with a redshift of z = 0.16. After consultation with some

2



1.1. QUASARs and the history of AGN

colleagues (Jesse L., Greenstein and J.B. Oke) Schmidt learned that Oke had also
identified a Hα line in this object and that Greenstein had obtained a spectrum that
suggested a redshift of z = 0.37 for another object. After these results were published
it was clear that the spectrum was just a very redshifted one. Despite of initially
claiming “the objects might be Galactic stars with a very high density, giving large
gravitational redshift” (Shields 1999) it became clear that this was not reconcilable
with the width of the lines and the presence of forbidden lines. Amongst several ex-
planation models it was also proposed that the redshift was due to Hubble expansion,
thus making the objects extragalactic. Nonetheless, the extreme optical brightness of
the object “10-30 times brighter than the brightest giant ellipticals” (Shields 1999),
the radio surface brightness much larger than for radio-galaxies, an estimated distance
of 500 Mpc as well as a nuclear region of 1 kpc in diameter were still seen as puzzeling.
The reason was that those numbers would imply a time-scale of 1.0× 105 yrs and a
total radiated energy of 1.0× 1059 erg. After some more discussions, the cosmological
redshift was accepted, because the width of the emission lines would require an ob-
ject of M ≥ 1.0× 109 M� in order to explain the redshifts as gravitational (Hoyle and
Fowler 1963a). While the debate about the central energy source (though a “collapsed
object” was proposed according to Hoyle and Fowler (1963a)) continued, several dif-
ferent classes of QUASARs were discovered, also in the radio quiet regime. For the
latter, see e.g. studies of Sandage, although his initial numbers were reduced by later
works.

1.1.4. Confirmation of cosmological redshifts and new questions

Through their high redshifts, the QUASARs sparked some cosmological and ex-
tragalactic science. These studies confirmed QUASARs to have roughly similar
chemical abundances as found in our galaxy. This suggests, they have reached mod-
ern chemical compostion much earlier. Also, the abundance of neutral hydrogen in
intergalactic space (see e.g .Gunn and Peterson (1965) who set a tight upper limit
for it) was found to be similar to the one of QUASARs. Furthermore, cosmological
redshifts were confirmed more rigorously by discovering matching redshifts for galaxy
clusters with QUASARs in them (Gunn 1971). One more point was identifying the
“fuzz” (Shields 1999) surrounding the quasar objects as the presence of a host galaxy
(Kristian 1973).
After this identification, the next big step was the analysis of similarities with the Sey-
fert galaxies. The similarities were seen (e.g. broad wings) and the deeper analysis lead
to the two distinct regions in AGN, namely the Narrow Line Emitting Region (NLR)
and Broad Line Emitting Region (BLR). The physical phenomenon was further in-
vestigated focusing on the energy source, the continuum source, emission-line regions
as well as which factors determine whether a galaxy has an AGN or not (see Shields
(1999) and the references therein). As Subsection 1.2 goes into much detail about the
emission regions, this will not be discussed at this point.
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1. Introduction and Motivation

1.1.5. Energy source and central engine

The question of how the AGN is powered was a debate sparked even before the
discovery of their redshifts and inspired many ideas that all had AGN as “sites of
concentrated, violent activity” (Shields 1999). These included chain reactions of su-
pernovae in dense nuclear star clusters (Burbidge 1961), mass-death of massive stars
in a coeval star cluster at the end of their lifetime (Cameron 1962) and a supermassive
star (Hoyle and Fowler 1963a;b) of up to 1.0× 108 M� as “a source of gravitational
and thermonuclear energy” (Shields 1999). Also, the model of a Super Massive Black
Hole (SMBH) accreting mass was proposed by Salpeter (1964) as well as Zel’dovich
(1964). This model would have the correct energy (material gradually spinning un-
til reaching the innermost orbit) from a reasonable mass as well correct time-scales.
Salpeter already imagined a turbulent momentum transport allowing matter to come
closer to the central SMBH. This already points to the much later Shakura and
Sunyaev (1973). Despite of thesee theories’ many merits it received limited attention.
This finally changed through Lynden-Bell (1969), who argued that the SMBH could
represent a “dead quasar”(Lynden-Bell 1969) and should be common in galactic nuc-
lei. The tracing is possible via the mass-to-light rations of nearby galaxies. This would
also explain the prevalence of AGN in earlier periods of the universe. Additionally,
Lynden-Bell (1969) also explored the disk structure that should be present in this
accreting scenario, its predicted thermal emission and its dissipation by magnetic and
turbulent processes. Effective temperatures of ≈ 1.0× 105 K are expected which one
would need for photoionisation and line emission. It is argued that “with different
values of the [black hole mass and accretion rate] these disks are capable of providing
an explanation for a large fraction of the incredible phenomena of high-energy astro-
physics, including galactic nuclei, Seyfert galaxies, quasars and cosmic rays.” (Shields
1999). Further evidence for the relativistic nature of the system came from theory and
further observations as described in Shields (1999).

1.1.6. The “Black Hole Paradigm” becomes the accepted theory

After not being included in a “widespread effort” (Shields 1999) for many years the
understanding of AGN as a SMBH with an Accretion Disk (AD) around it where
put in a new light after the discovery of the first stellar mass black holes. Some
of the discoveries from X-Ray observations included binary-star systems where one
component being a neutron star or black hole. In the neutron star case these systems,
known as binary “X-ray pulsars”, are emitting X-ray radiation by gas drawn from
the non-compact part of binary impacting on the compact component. Another class
of systems, e.g. investigated in Oda et al. (1971), shows no periodic variations like
the before-mentioned. Instead, they possess rapid flickering implying a much smaller
size of the object. Also, orbit analysis gave masses too large for a neutron star (see
e.g. Webster and Murdin (1972), Tananbaum et al. (1972)). The final conclusion,
as found by Thorne and Price (1975), was that one sees X-ray radiation created by
high temperature gas from the non-compact companion spiralling into a black hole
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1.1. QUASARs and the history of AGN

via a disk. This discovery, together with cataclysmic variables, protostars and last
but not least AGN fueled advances in AD physics with the α model as prominently
presented in Shakura and Sunyaev (1973), Novikov and Thorne (1973). This model
still is the standard model used up to the present day. A more detailed analysis,
primarily of Shakura and Sunyaev (1973) as Novikov and Thorne (1973) primarily
determines relativistic corrections relevant for the innermost regions, can be found in
Section 2.1. More details on the structure and how well it described the observed
spectra can be found in Subsection 1.2. In short words a geometrically thin disk is
assumed and the angular momentum transport and local energy release is described
by the stresses encoded in the dimensionless α-parameter. Also, the disk is divided
in three radial regions according to dominating pressure (radiation pressure/thermal
pressure) and electron scattering and the opacity source. Energy production in AGN is
primarily located in the innermost region dominated by radiation pressure and electron
scattering. Thus, atmosphere and interior are electron scattering dominated modifying
the emission spectrum from of a blackbody spectrum. Mostly, AD models can explain
the bulk of aspects of the observed spectra (blue continuum, X-ray radiation) as shown
in Shields (1999).
The model of thermal emission turned up to be too simplified for a full description.
As detailed in Shields (1999) one needs additional X-ray heating processes in order
to explain continuum variations faster than all possible thermal processes. Another
problem is the polarisation being far too low for an electron scattering dominated
atmosphere. Both of these problems are still under ongoing investigation.

1.1.7. Unified models

As a wide range of QUASARs was discovered with a wide range of intensities and
emission line widths they were all initially seen as separate objects. When the con-
nection to Seyfert galaxies became known, the idea emerged that some of the features
only dependent on the angle we are looking at the system at. As Urry and Padovani
(1995) describes the primary difference whether the system is radio-loud or radio-quite.
Radio-loud means

F5 GHz

Foptical, B

≥ 10, (1.1)

where F5 GHz is the flux in the 5 GHz band and Foptical, B is the optical flux in the
B-Band (Kellermann et al. 1989). The observed objects were grouped in different
categories as shown in Tab. 1.1. As seen in the table, apart from radio-strength, the
strength and narrowness/broadness of the optical lines is the main grouping criterion.
The highest intensities are seen in the Blazars which have similar subcategories. It
should be noted that this table is by no means exhaustive. As explained in Urry
and Padovani (1995) all of the effects can just be interpreted as results of different
viewing angles of the same type of system. Fig. 1.1 illustrates the way unification
works. Like e.g. Urry and Padovani (1995) expresses radio emission is collimated in
the direction of the jet as the jet is the major source of them. Consequently, radio
emission is only strong if the jet-emitting side of the AGN is facing the observer. One
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1. Introduction and Motivation

of the main reasons for this is special relativistic beaming (“Headlight effect”), which
is being caused by the special relativistic Doppler-factor which is, according to e.g.
Urry and Padovani (1995), given by

δ = [γ(1− β cos θ)]−1, (1.2)

where γ = (1 − β2)−1/2 is the special relativistic γ factor, θ is the line of sight angle,
β = vbulk/c is the relativistic β factor, c is the speed of light and vbulk is the bulk
velocity of the emitting matter. The specific intensity for this beaming is, as mentioned
e.g. in Urry and Padovani (1995), given by

Iν(ν) = δ3I ′ν′(ν
′), (1.3)

where Iν(ν) is the specific intensity in the observer’s frame, ν is the frequency of
the radiation in the observer’s frame, I ′ν′ is the specific intensity in the rest frame of
the emitter and ν ′ is the frequency of the radiation in the emmiter’s frame. Even
small aberrations from looking at the source head on, especially at highly relativistic
speeds, cause major differences in the observed intensities that depend on the third
power of the Doppler-factor as seen in equation (1.3). As the emitting matter of the
AGN is mostly at highly relativistic speeds it is also often hard to even detect its radio
emissions when the viewing angle is not good enough. In conclusion, all the radio-quiet
AGN are, in the idea of unification, those viewed under the “backwards” angles i.e.
facing away from the jet. This can clearly be seen in Fig. 1.1. The differences in the
optical lines observed from AGN are, in this theory, related to an obscuring toroidal
object of matter existing around the accretion disk. In Fig. 1.1 it really is a torus,
however, more modern points of view acknowledge that the shape is probably more
irregular. This is discussed in Schartmann et al. (2007) and a graphical representation
can be found in Fig. 1.2. Despite of these changes, its effect stays the same as before.
Mainly, the broad line region can be, depending on the viewing angle, obscured by the
“torus“. Evidence of this can be found by the presence of some highly polarised (and
thus scattered) broad line components and parts of the X-Ray continuum in otherwise
no broad-line showing objects. This can for example be seen when comparing certain
subtypes of Seyfert I with certain subtypes of Seyfert II galaxies. Again, the angle
under which the object is seen mainly determines the observations made. These, for
the case of the optical lines, incorporate the presence or absence of broad and narrow
lines as well as the presence of the scattered optical lines. Summed up unification is
able to redeem the wide variety of partly similar objects seen at roughly the same
general spots and redshifts as the same physical system only varying in paramters
like mass or material supply. This concludes the excursion to the history of AGN
observations and the development of theories.
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1.2. Emission as a proof for the structure of AGN

↓↓ Higher Luminosity ↓↓
Type 2 Narrow, weak Type 1 Broad, bright Type 0 Unusual

Radio-

quiet

{
Seyfert II same SI Seyfert I not luminous

QSO MB < −23.5

Radio-

loud

 NLRG

Narrow Radio BLRG Radio galaxy

Blazars

BL Lac
Farnoff-Riely I SSRQ Steep spect. OVV

FRII
FSRQ

Flat spect. HPQ...
symm. radio Radio Highly

jets Beaming variable
Biggest Luminosity

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Decreasing angle to line of sight

Table 1.1.: Inspired by Table 1 in Urry and Padovani (1995) illustrating the categor-
isation of some common AGN objects. Abbrevations: Optically Violent
Variable, Narrow Line Radio Galaxy, Broad Line Radio Galaxy, Quasi
Stellar Object, Steep Spectrum Radio Quasar, Highly Polarised Quasar

1.2. Emission as a proof for the structure of Active
Galactic Nucleus (AGN)

As direct observations of the internal structural of AGN are not possible one has
to deduce the structure properties from the emission and absorption features of the
entire electromagnetic spectrum received from the AGN. For a long time an Accretion
Disk (AD) has been hypothesized to be the essential driving part of the luminosity
of AGN. One of the most famous examples is the pioneering paper Shakura and
Sunyaev (1973). Finally, Malkan and Sargent (1982) gave, according to Collin-Souffrin
(1987), the first observational support for this hypothesis in 1982 by showing that the
optical and UV continuum of the quasars can be interpreted as a thermal emission
spectrum of an AD. The optical and UV emission can be split up in the Broad Line
Emitting Region (BLR) (e.g. Collin-Souffrin (1987)) and the Narrow Line Emitting
Region (NLR). As Collin-Souffrin (1987) and many other works explain the BLR is
thought to be composed of an assembly of small clouds ionised by the non-thermal
continuum produced by the central engine of the AGN. This can be inferred by
the fact that the effective emitting volume is much smaller than the typical size of
the emitting region. This can be infered from the ”variability time scale and the
ionization parameter“ (Collin-Souffrin 1987). In Collin-Souffrin (1986) Collin-Souffrin
describes the general properties of the BLR. Initially, she introduces High Ionisation
Line (HILs) and low ionization lines (LIL) as two distinct sets of lines probably emitted
by different regions inside of the BLR. HILs are defined as the Lα, CIII, CIV, HeI,
HeII, NV and OVI lines, whereas the Balmer, MgII, CII and FeII are defined as
the HILs. Using detailed arguments from ionisation models, Coullin-Souffrin proves
that and also gives hints to other proofs explicitly mentioning the one from B. Wills
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Figure 1.1.: Sketch of AGN system as imagined by the unification showcasing the
different types seen under certain viewing angles along with a obscuring
torus. No clear creator determinable for this figure. It was taken from
Molina (2018), but it appears in many other places. It seems to be a
coloured and annotated version of Fig. 1 in Urry and Padovani (1995)

from the same IAU symposium as Collin-Souffrin (1986). The electron density can
approximately be determined by looking at the line intensities (see e.g. Davidson and
Netzer (1979)). The upper bounds are ≈ 109 cm−3 or ≈ 1012 cm−3 − 109 cm−3 for one
single source region and two separate source regions, respectively. The temperature
is estimated to be < 30 000 K pointing to the fact that ionisation in the HIL region
must be radiative and not collisional. Furthermore, Collin-Souffrin estimates an upper
limit for the size of the BLR from the time variation of the emission lines for Seyfert
Galaxies to 0.1 pc < R < 1 pc as an upper limit. The ionisation parameter is also
introduced as the “ratio of the ionizing photon number density to the electron density”
(Collin-Souffrin 1986).

U =
Lν

α′4πR2cne

, (1.4)

where U is the ionisation parameter, Lν is the luminosity of a continuum source at
the Layman edge, α′ is the spectral index of the Laymann continuum, c is the speed
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Figure 1.2.: A more realistic illustration of the obscuring ”torus“ and its position
within the central part of the AGN, taken from Schartmann et al. (2007).

of light n,e is the electron density and R is the distance from the continuum source.
Detailed photoionisation models can yield line intensities dependent on said ionisation
parameter for the radiative ionisation mechanism present in the HIL region. From
that it can be concluded that not all of the HIL originate from the same region for all
AGN objects. Collin-Souffrin also draws first conclusions of the geometrical structure
in Collin-Souffrin (1986). Starting from the consensus of the BLR consisting of a “large
number of high-velocity clouds” (Collin-Souffrin 1986) filling only a tiny fraction of the
overall emitting volume of the system Collin-Souffrin draws some conclusions. Firstly,
she mentions, after listing the observational and theoretical evidence for the BLR
assumption, that a “disk shaped structure” (Collin-Souffrin 1986) could be present.
In this structure the emitting region would be “confined to a thin outer shell” (Collin-
Souffrin 1986). As the column density N is the most important parameter for these
emmitting regions, detailed photoionisation models (Kwan and Krolik 1981) predict a
limited range of 1× 1022 cm−2 to 1× 1023 cm−2. The disk as the emitting object can
be supported with some further arguments described in Collin-Souffrin (1987). Collin-
Souffrin explains that Keplerian motions are not the likely reason for the line width
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and line-profiles (see references in Collin-Souffrin (1987)) as quasi-steller radio sources
(QUASARs) and AGN have similar profiles roughly independent of the luminosity.
These profiles would imply Keplerian rotation at distances 103 − 104RS, where RS

is the Schwarzschild radius., from the centre which contradicts the fact that some
of the emitting gas should also be at larger distances. The problem of the missing
narrow emission lines from face-on seen disks, as inferred by the model showcased
in Collin-Souffrin (1987), can be overcome by assuming a slight warping of the disk.
Alternatively, the perpendicular jet released should make the object appear as a BL
Lac object also resolving the issue. In the case of not having enough UV and X-ray
continuum energy in order to account for BLR lines in AGN or QUASARs, another
discrepancy emerges. This discrepancy is that this lead to contradistinctions in column
densities, which can also be resolved by assuming a geometrically thin disk illuminated
from above as described in Collin-Souffrin (1987). In the same paper, the dissipation
of gravitational energy in the disk is also mentioned as an energy loss mechanism.
Collin-Souffrin (1987) stresses theoretical arguments for the disk to be the source
of the emissions. The disk would would give a natural formation and confinement
mechanism for the clouds.
The models presented in Collin-Souffrin (1987), using the α disk formalism of Shakura
and Sunyaev (1973) as a basis, are able to explained the emission as comming from an
optically thin layer of the disk. The power source is the heating by the down-scattered
part of the non-thermal continuum from the AGN. Furthermore, hard X-ray heating
of the is presented as the source of the “missing energy” in the budget of the BLR
(see reference in Collin-Souffrin (1987)) as well as the infra-red 5 µm bump. One can
thus reproduce some features of the line emission by the disk model presented here.
Temperatures are estimated to be in the 1× 103 K range, but are admittedly not
modelled very well in Collin-Souffrin (1987). This is addressed in Collin-Souffrin and
Dumont (1990) and Dumont and Collin-Souffrin (1990b).

1.2.1. Detailed analysis of structure of AGN AD of the paper
series starting from Collin-Souffrin (1987)

Collin-Souffrin and Dumont (1990) describes the radial structure of the disk in more
detail and gives hints for its vertical structure. Also, the X-Ray illumination by the
central engine is included more rigorously, but still limited to luminosities Lbold ≤
1× 1046 erg s−1. In terms of radial range the range R > 102RSW is looked upon, for
reasons of not treating self-consistent gravitating disc structure as well as gravitational
instabilities due to self-gravity or the surrounding star-cluster of the AGN. Collin-
Souffrin and Dumont again adopt the α disk formalism and assume a radiative X-Ray
continuum heating for R > 104RSW.

1.2.1.1. Disk without illumination

Collin-Souffrin and Dumont (1990) treats a disk without illumination. It is assumed
that “the gravitational energy release D(R)” (Collin-Souffrin and Dumont 1990), equal
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1.2. Emission as a proof for the structure of AGN

to the radiation flux of the disk, is given by

D(R) =
3GM ˙MBH

8πR3
erg cm−2 s−1 , (1.5)

where G is the gravitational constant, MBH is the mass of the central black hole and
Ṁ is the accretion rate. The geometrical thickness H(R), is estimated by “twice the
scale-height of a gas in hydrostatic equilibrium assuming a constant temperature”
(Collin-Souffrin and Dumont 1990) as

H(R) = 2cS0R
3
2 (GMBH)−

1
2 cm , (1.6)

“where cS0 is the sound velocity at the disk centre” (Collin-Souffrin and Dumont 1990).
The “disk centre” is the equatorial plane. This equation is equivalent to equation
(2.15) taken from Shakura and Sunyaev (1973) and the later derived equation (2.124).
The additional factor of two is just a matter of definition as shown in the calculations
leading to equation (2.124). Using the fact that gas pressure pgas dominates in the outer
regions (R > 1.0× 102RS, these are the regions considered later in the simulations)
one can conclude

H(R) = 2

(
kBTc(R)

µmp

) 1
2

R
3
2 (GM)−

1
2 cm , (1.7)

where Tc(R) is the temperature in the equatorial plane, µ is the mean molecular mass,
kB is Boltzmann’s constant and mp is the proton mass. The accretion rate is given by

Ṁ = 2πH(R)Rnc(R)mpvRg s−1 , (1.8)

where nc(R) is the density in the equatorial plane and vR is the radial velocity given
by

vR = αcS
H

R
. (1.9)

α is the parameter from Shakura and Sunyaev (1973) and is “assumed to be a constant
in the disk and (. . . ) of the order or smaller than unity” (Collin-Souffrin and Dumont
1990). The effective temperature is defined as the one generated through gravitational
energy release as

σT 4
eff = D(R) , (1.10)

where σ is the Stefan-Boltzmann constant. As stated in Collin-Souffrin and Dumont
(1990) the temperature in the equatorial plane is connected to to the effective tem-
perature Teff T by

Tc ≈ Teff (0.75τ)
1
4 , (1.11)

“where τ is the mean optical thickness and is much larger than units” (Collin-Souffrin
and Dumont 1990). Furthermore, the surface temperature, which is important for
emission, is stated to be very close to the effective temperature by Collin-Souffrin.
Also, Collin-Souffrin and Dumont (1990) explores the simplifications if τ < 1 reducing
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equation (1.11) to

Tc ≈ Teffτ
− 1

4 . (1.12)

These equation allow to derive the radial structure of the disk in case the mean opacity
is known. Collin-Souffrin concludes that the disk is optically thick in its inner parts
and optically thin in the outer parts as the surface density decreases with increasing
radius (mass-conservation). The surface temperature is mentioned to decrease via

R−
3
4 (akin to the profile derived in Shakura and Sunyaev (1973) for region “a)”) and

Tc also follows a radial variation. An important fact to be mentioned is that the
disk is vertically isothermal in the optically thin outer regions and in the range of
1× 103 K to 1× 104 K for disk around stars and 1× 103 K for massive disks according
to Collin-Souffrin and Dumont (1990). Collin-Souffrin and Dumont (1990) justifies
the vertically constant temperature with the “thermostatic effect of the atomic and
line cooling which is a strongly temperature-dependent function”. By again looking
at the introduction if Collin-Souffrin and Dumont (1990), we find that the “inner”
regions here refer to the interval

R ∈ [1.0× 102RS, 1.0× 103RS], (1.13)

whereas the “outer” regions refer to the interval

R ∈ [1.0× 103RS, 1.0× 104RS]. (1.14)

1.2.1.2. Disk with illumination

Now, Collin-Souffrin considers a non-thermal continuum that is illuminating the disk,
causing heating and ionisation as long as the column density allows X-Ray photons
to penetrate into the equatorial plane. Moreover, as shown in the subsequent pa-
per Dumont and Collin-Souffrin (1990a) the assumption of a continuum extending
up to 100 keV along “with a spectral index close to or smaller than unity” (Collin-
Souffrin and Dumont 1990) results in gas of column density 1× 1025 cm−2 heated up
to 7× 103 K. At higher column density (increases for decreasing radius) the penetrat-
ing length of X-rays becomes smaller, eventually becoming less than the disk height.
“this radiatively heated layer is optically thin to visible radiation” (Collin-Souffrin and
Dumont 1990). In this radial region, the disk will be hotter than without illumination
changing from a infra-red molecular emission to atomic line spectrum in visible and
ultraviolet. The strong cooling outside of this region leads to the separation into a thin
hot radiative outer layer, that has most of the mass flow, and a cold inner layer that
is gravitationally heated. The inner layer can be either optically thin or thick, critic-
ally depending on the amount of dust (Explored in more detail in Collin-Souffrin and
Dumont (1990)). At exactly the boundary (R25) between the regions it is said to be
isothermal both vertically and horizontally at roughly 1.0× 103 K. Fig. 1.4 displays
the profiles resulting from the careful calculations in the paper, using the different
regimes and regions as defined in Fig. 1.3 and Tab. 1.2. It should be noted that the
radius dubbed “ρ” in the paper is in units of 1.0× 104RS. The radial range considered
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Regime T Opacity dominated Regime ρ <

A Tc ≥ 2× 104 K by e− scattering 1 0.14α−
2
9f
− 4

9
ε f

2
3
LL
− 2

9
44

B 3× 103 K < Tc < 1× 104 K by Atomic processes 2 3.65ρ1

C 1.4× 103 K < Tc < 3.0× 103 K by Molecules 3 4.65ρ2

D Tequil ≈ 1.4× 103 K N/A 4 > ρ3

E Tc < 1.4× 103 K by grains

Table 1.2.: Explanation of Regions and Regimes as used in Tab. 1.3, radius again in
units of 1.0× 104RS, Tc = Tc is the temperature in the equatorial plane,
H is the thickness, nc is the density in the equatorial plane and τ is the
optical thickness (opacity related)

corresponds to the range later considered in this thesis where R ≥ 1.0× 103RS will be
considered. Thus, we should see some similarities.Thus, we are dealing with the parts
dubbed “outer parts” in this paper series later. We can see the growing thickness of
the disk and the varying central temperature depending on the heating process and
X-ray penetration depth. These results are more detailed than the ones presented in
Shakura and Sunyaev (1973). The thickness is shown to almost linearly grow over
the entire radial range, i.e. no difference caused by self-gravity, as assumed in later
models, can be seen here. The gas pressure is shown to dominate in all regions in
the model presented here, which is an interesting result. Consequently, it should be
possible to do simulations without its inclusion for wide ranges. However, for a full
treat, especially for lower R is required for acquiring more complete solutions. This
alternative models, slightly based on Shakura and Sunyaev (1973), contains lots of
hints on the origins of the spectrum and could be a basis for its determination in
future work.

1.3. Newer developments explored with a review paper

In order to get an idea about the developments up to the present day we take a look
at Netzer (2018) primarily focusing on the difference between the subfields dubbed
“right” (great progress, understanding of big picture present) and these which are
dubbed “wrong” (still missing crucial details). Very short summaries are provided
here, while more detailed information can be found partly in Netzer (2018) and mostly
in its references which are partly referenced here.
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1.3.1. “The Active Galactic Nucleus (AGN) Family: New
Multi-wavelength observations” (Netzer 2018)

1.3.1.1. “Something Right: Systematic Study of LINERS [Low-ionisation
nuclear emission line regions], Seyferts, High Luminosity AGN and
Objects Containing Disk-Like Broad Line Emitting Region (BLR)s”
(Netzer 2018)

Netzer (2018) described progress in this field is primarily driven by new surveys and
instruments making much larger surveys of AGN available. The SDSS survey is
mentioned amongst various smaller surveys such as COSMOS and BAT, which can
give much insight on the topics above. Márquez et al. (2017) looked at LINERs and
Seyfert 2s galaxies. Using a multi wavelength approach, it was confirmed that most
LINER objects are AGN-powered in the local universe. Furthermore, using a study
of spectral X-ray variability, long term oscillations were confirmed as very common
and related primarily to hard X-rays at energies of 2 keV to 10 keV. Additionally,
more evidence for LINERs residing at the low end of AGN luminosity was found
via mid-infrared imaging. Richards (2017) offered a type-I AGN catalogue from
SDSS cross-referenced with HST, combined with a new division mechanism which
uses eigenvector groups. Lira et al. (2018) presented reverberation mapping employed
on a sample of high luminosity quasi-steller radio sources (QUASARs) at high z
on a time period of over 10 years, observed photometrically and spectroscopically.
Lusso and Risaliti (2018) is mentioned to “provide a fresh look at X-ray sources ”
(Netzer 2018). They used SDSS data cross-matched to the XMM-Newton catalogue
3XMM-D36, to conclude a modified non-linear relation between the 2 keV and 250 µm
ultraviolet emission in quasars following the equation

LX ∝ LγUV, (1.15)

where LX is the emitted X-ray luminosity, LUV is the emitted UV luminosity and γ
is some exponent. Starting from this, Lusso and Risaliti (2018) arrived at a tighter
correlation of LX−LUV to the full width at half maximum of the MgII broad line and
redshift evolution was observed.Netzer (2018) also mentioned two methods developed
by Agnello (2017) in order to scan for selecting strongly lensed QUASARs in wide-
field surveys. Having been successfully applied to e.g. SDSS, it is now suggested to
use them on GAIA data to automatically identify e.g. galactic streams.

1.3.1.2. “Something wrong: A complete picture of Radio AGN” (Netzer 2018)

Mainly referring to the extensive review by Padovani (2017), Netzer (2018) concludes
that there is yet no agreed-upon general understanding of all the radio sources related
to AGN. Despite lots of data and more details, described as an “ AGN zoo” (Padovani
2017), only incremental progress is reported in the last two decades.
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1.3.2. “Mapping and Modelling the BLR and Measuring BH
Masses” (Netzer 2018)

1.3.2.1. The subfields dubbed “right”

Netzer (2018) mentions the successful subfield of “Reverberation Mapping in One and
Two Dimensions” (Netzer 2018), where location and kinematics were determined for
e.g. NGC 5548 by HST (Hubble space telescope) and ground based telescopes. Netzer
(2018) expects great advancement for the analysis of the BLR. Moreover, the results
of Horne and Agn Storm Team (2015), Fausnaugh et al. (2017) offer new insights into
time dependent broad and narrow emission lines which also result in more structural
information on the Accretion Disk (AD). Secondly, regarding the subfield of “The R-
L Relationship and Single-Epoch Mass Measurements” (Netzer 2018). It is described
that several authors managed to provide a great collection of sources that determined
the weighted radius of the broad Hβ line by “correlated line and continuum variations”
(Netzer 2018). Some more results have been found for the BLR motion and a coupling
of size of the Hβ emission region to the “Eddington ratio of the accreting BH” (Netzer
2018). A great new result, according to Netzer (2018), is that it was determined
that the emitting regons for the CIVλ1549 and Lyα line are a factor of 2-3 closer
the black hole than previously assumed. It is stressed that this question has been
unanswered for 10-15 years, and that sometimes long-term observations are required
to arrive at answers. Furthermore, VLT/GRAVITY will enable the community to
directly determine the sizes of the BLR in type-I AGN and, recent more detailed
type-1 studies begin to reveal fundamentally different physics from the current picture.

1.3.2.2. The subfields dubbed “wrong”

Almost no progress is reported for the subfield of “Phase-Space Modelling of the BLR”
(Netzer 2018). Although there are the great 2D reverberation mapping maps, as
reported earlier, the lack of good data for other sources prevents the community from
developing consistent models connecting spatial positions and dynamics. The state of
this research field is is reported to be the same than as the first optical UV RM studies
were made 20 years ago. On a positive note, Czerny et al. (2017) presented a better
location pinpointing of the BLR clouds within the “dusty outer parts of the accretion
disk” (Netzer 2018). It is indicated that these (and similar) models could be tested
employing next generation 2D BLR models. Apart from these facts, Netzer (2018)
mentions that ideas revolving around the dependency of radial position of the BLR
might give insight into better mass estimates for the black holes. As a last point in this
subsection, Netzer (2018), mentions new efforts to improve the estimates of the black
hole masses. More specifically, Mej́ıa-Restrepo et al. (2018) is cited for a new proposed
method of using the broad emission lines under the assumption of virialised gas moving
in “close vicinity to the active black holes” (Mej́ıa-Restrepo et al. 2018). However,
this method is plagued by uncertainties in the gas cloud distribution according to
Mej́ıa-Restrepo et al. (2018). It should be noted that this was only reported to be
useful for AGN high in luminosity and redshift.
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1.3.3. “Accretion Disks and Disk Winds” (Netzer 2018)

1.3.3.1. “Right”

Netzer (2018) positively addresses the subfield of “Thin Accretion Disk Models and
the Optical-UV SED” (Netzer 2018) for managing to fit the optical-UV continuum to
the “canonical spectrum of a thing accretion disk” (Netzer 2018) for AGN with an
Eddington ratio not too large and a Super Massive Black Hole (SMBH) mass that
is not too high (1.0× 108 M� to 1.0× 109 M�). While he acknowledges that all the-
oretical models and simplified numerical simulations predict the presensence of disk
winds especially close to the SMBH. More specifically, Elitzur and Netzer (2016) is
mentioned for advocating dust-free winds as a necessary component of disks with a
strong magnetic field. On the other hand, it is pointed out that there are not any
observations giving undoubted proof for these winds. However, some results that are
droping strong hints are described. Some observations of “polar dust” found in inter-
ferometry data. Netzer (2018) proposes the result of looking at the lens magnification
map of a system lensed by a foreground star, allowing to combine location and velocity
of the BLR of the lensed object, as one of the most important new results. While this
highlights the contribution of Hutsemékers et al. (2017), it is also admitted that this
method can only be used for a very limited number of sources.

1.3.3.2. “Wrong”

While some “wrong” was already mentioned for the winds, Netzer (2018) points out
that although huge theoretical and observational effort is put fourth, thin ADs ex-
ceeding an Eddingtion ratio of ≈ 0.3 are not understood as of now. The main reason
is that there are discrepancies between observations and theory.

1.3.4. “Star Formation Galactic-Scale Winds Mergers and
Feedback” (Netzer 2018)

1.3.4.1. “Something Right: Observational Evidence for Outflow and Mergers”
(Netzer 2018)

This subfield is presented very positively. Enormous observational effort made it
possible to release high quality velocity maps for a wide range of objects showing (for
a range of redshifts) “outward motion of ionized and molecular gas” (Netzer 2018).
The interpretation of this is an association with the vicinity of the SMBH creating
X-ray outflows, the Narrow Line Emitting Region (NLR) or even regions further away
in the host galaxy. Additionally, it is reported that new instruments like the JWST
(and others) will contribute a lot to the further enrichment of this subfield.

16



1.3. Newer developments explored with a review paper

1.3.4.2. “Something Wrong: Interpreting Outflow and Feedback” (Netzer
2018)

A quite bleak picture is painted here for the status of this subfield. Because accurate
outflow measurements are not possible, the important influence these have to the
quenching of star formation and the general structure of the host galaxy, summed up
as AGN feedback, cannot be reliably estimated and compared to observations. While
molecular outflows are somewhat understood, apart from the CO line production,
ionised outflows have too many uncertainties to be useful for this subfield. Netzer
(2018) furthermore presents current feedback models as still not adequate for any
determination of influence on the galactic scale. The main problem is the inability
to decide whether energy conserved or momentum conserved outflows have the bigger
effect. On the one hand, the observations have improved a lot, but neither theory
nor simulations could draw reliable conclusions up to now. As an upside, Lira et al.
(2018) is cited as a reference for the better understood influence of larger structures
such as powerful radio jets and X-ray cavities. Contradicting results are reported for
the correlation of AGN luminosity and star formation rate in high and low redshift
sources. Again, contradictions appear when looking at near companion galaxies as a
trigger for star formation between the remarkable (but still contradicting) results of
Fogasy, J. et al. (2017), Kimball et al. (2015), Trakhtenbrot et al. (2017).

1.3.5. Cosmology: “Something Wrong: All AGN-Based
Methods” (Netzer 2018)

Netzer (2018) describes that no reliable tools yet exist to use AGN physics to help
mapping the universe and its expansion. While many ideas have been put forth in
some references within Netzer (2018) describing possible methods “systematic un-
certainties in all the methods, combined with lack of understanding of some of the
involved processes” (Netzer 2018) are preventing the AGN community from reducing
uncertainties to a level that can be trusted.
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Figure 1.3.: Profile equations from model presented in Collin-Souffrin and Dumont
(1990). τ is the mean vertical thickness, H15 is twice the scale height
in 1× 1015 cm, nc10 is the central density in 1× 1010 cm−3, N25 is the
column density measured in 1× 1025 cm−2, L44 = 1× 1044 erg s−1 is the
Luminosity, fε is the efficiency of mass-energy conversion divided by 0.1
(canonical value), fL = Lbol

Ledd0.1
is the ratio of the bolometric luminosity

divided by the Eddington luminosity and 0.1 and ρ = R
104RS

, Explanation
of Regime and Regions see Tab. 1.2
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Figure 1.4.: Profiles from model presented in Collin-Souffrin and Dumont (1990)
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2. Physics of Accretion Disks

2.1. Theoretical foundations of α-Disks

In Shakura and Sunyaev (1973) Shakura and Sunyayev present the basis for the α-
Disk formalism. The goal of the paper is to explain the observational appearance
of black holes in binary systems. The main characteristic of such systems, as for
Active Galactic Nucleus (AGN) systems, is the presence of a black hole that is actively
accreting matter. Here, the source of the material is the companion star. Shakura and
Sunyaev (1973) mentions, that as the material originating from the companion star has
high angular momentum relative to the black hole, a pure free-fall of (cold) matter
into the black hole cannot happen. Thus, a mechanism for removing this angular
momentum must to be at work in order for the black hole to accrete matter. An
Accretion Disk (AD) supplies such a mechanism and is also able to partly explain the
emission spectra. This includes soft X-rays, optical radiation as well as UV radiation.
It is mentioned in Shakura and Sunyaev (1973), that it is possible for this radiation
to outshine the companion star in observations. The central factor for the luminosity
is identified to be the accretion rate Ṁ , e.g. the amount of matter accreted per time
unit. Following Shakura and Sunyaev (1973), three cases are observed:

• Ṁ ∈ [1.0× 10−9 M� yrs−1 − 3.0× 10−8 M� yrs−1],(Subcritical case)
The AD around the BH is a powerful source of X-ray radiation with 1 keV .
hν . 10 keV and 1.0× 1037 erg

s
. L . 1.0× 1038 erg

s
. A dropping flux of accreting

matter will result in a decrease of the effective temperature of the radiation and
its luminosity.

• Ṁ > 1.0× 10−9 M� yrs−1

The luminosity of the disk will exceed solar values and will be dominated by
re-radiation of X-rays and UV radiation from the central part of the AD. In
certain circumstances gas can be evaporated and thus auto-regulate accretion.

• Ṁ � 1.0× 10−8 M� yrs−1

The luminosity has stabilised at L ≈ M
M�

1.0× 1038 erg yrs−1. Only a small frac-
tion of matter enters the Schwarzschild radius, the rest flows out of the central
regions with high velocity. In this supercritical case the black hole may appear
to be a hot, bright optical star with strong outflow.
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In order to treat the gas of the AD we introduce

Etot = Egas + Erad (2.1)

ptot = pgas + prad (2.2)

where Etot is the total energy density, Egas is the energy density of the gas, Erad is the
radiation energy density, ptot is the total pressure, pgas is the gas pressure and prad is
the radiation pressure. These quantities are given by

cS
2 =

2Etot

ρ
(2.3)

v2
1D =

kB

µmH

T (2.4)

Egas =
3

2
ρv2

1D (2.5)

pgas =
2

3
Egas = ρv2

1D, (2.6)

where cS is the sound speed, ρ is the gas volume denstiy, v1D is 1D thermal sound
speed of the gas, T is the gas temperature, mH is the mass of an hydrogen atom, µ is
the relative mass constnat of the gasd and kB is Boltzmann’s constant. The central
point of the accretion theory is the effectiveness of the angular momentum transport
mechanism. Integral to this are the turbulent motions of the matter as well as the
magnetic field that is assumed to exist. Shakura and Sunyaev (1973) introduces the
α parameter describing the efficiency of the angular-momentum transport mechanism
defined as

α =
vT

cS

+
H2

4πρc2
S

, (2.7)

where
ρc2

S

2
=

3

2
ρ
kB

mp

+ Erad (2.8)

is the total internal energy density of the matter, Erad is the radiation energy density,
vT is the turbulent velocity, cS is the sound speed of the gas, H is the magnetic field,
ρ is the volume gas density, kB is Boltzmann’s constant, T is the gas temperature
and mp is the proton mass. As shown later in Shakura and Sunyaev (1973) α ≤ 1 is
valid in the subcritical regime. The subcritical regime is, accourding to Shakura and
Sunyaev (1973) if

Ṁ ≤ ˙Mcrit = 3.0× 10−8 0.06

η

MBH

yrs
, (2.9)

where ˙Mcrit is the critical accretion rate, MBH is the black hole mass and η is the
efficiency at which gravitational energy is released. Moreover, it is assumed that α
is constant over the entire disk. Presuming the accretion disk scenario, the paper
proposes a concrete picture for the angular momentum loss mechanism. Particles
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2.1. Theoretical foundations of α-Disks

in different layers of the disk lose angular momentum by friction between adjacent
layers, thus spiraling into the black hole and converting gravitational to rotational
energy as well as disssipated into thermal energy and radiation. The paper primarily
treats the subcritical regime of the disk as characterised by equation equation (2.9).
Also, Newtonian physics is used, since general relativistic effects are only needed be-
low 10RSW (where RSW = 2GM/c2 is the Schwarzschild radius of the black hole).
This region’s contribution to the radiation output can be, however, ignored for the
system considered. Assuming the energy 0.06c2 is released per unit mass of infalling
matter and L = 0.06c2Ṁ as the luminosity of the AD the angular momentum model is
constructed. The idea is angular momentum transport by differentially rotating tan-
gential stresses between adjacent layers in a medium connected by a magnetic field,
turbulence and radiative viscosity. It is shown that the magnetic field energy cannot
exceed the thermal energy of the gas because of the differentially rotating nature lead-
ing to chaotic and small scale magnetic field loops. Despite no consistent theory of
turbulence in the disk being available, the paper presents a model using results from
laminar flows of incompressible fluids. The turbulence is consequently perturbed at
high Reynolds numbers. Taking into account turbulence from release of gravitational
energy as well as the radiative flux to surface layers, one can conclude that the turbu-
lence cell can only be of the order of the disk half-thickness z0. Thus one can conclude
that the stress-tensor element (see Subsection 2.2.2 for details) is given by

− σRϕ = αρc2
S, (2.10)

where R is the cylindrical radius and. ϕ is the cylindrical coordinate angle. It should
be noted that while magnetic fields are almost certainly present, the turbulence is not
so clearly proven to exist, according to this paper. One can conclude that α < 1,
because α > 1 would mean supersonic turbulence that would induce extreme heating
and thus to α ≤ 1. Also, α < 1 is likely as magnetic angular momentum transport
is possible in this case. α � 1 may also occur for wide range of initial conditions.
Actually, α should at least depend on the cylindrical radius. However, considering
experiments involving turbulence Shakura and Sunyaev (1973) infer that

1.0× 10−15

(
Ṁ

Ṁcr

)
< α < 1. (2.11)

The α-formalism thus allows us to make predictions about external properties of the
AD without knowing the details about the mechanism driving the angular momentum
transport. It is furthermore derived that the disk’s luminosity is, for essentially sub-
critical fluxes of Ṁ = 1.0× 10−12 M� yrs−1 to 1.0× 10−10 M� yrs−1, given by L =
1.0× 1034 erg s−1 to 1.0× 1036 erg s−1. In this context the paper also states TS =
3.0× 105 K to 1.0× 106 K as the maximum surface temperature for the inner regions
of the disk. These also release the bulk of the energy (mainly radiated in the UV
and X-ray bands). This energy is re-radiated energy emitted by the central engine.
The paper mentions a layered approach to this problem which allows an estimation of
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2. Physics of Accretion Disks

the emitted spectrum. Further details are omitted here as no radiation spectrum was
determined in the course of this thesis.

2.1.1. Disk structure

On top of its more broad elaborations, concrete structures and profiles for the AD are
calculated in Shakura and Sunyaev (1973). To first order, the rotation of the gas can
be assumed to be Keplerian i.e.

vK,0 =

√
GM

R
, ω =

√
GM

R3
=
vK

R
. (2.12)

Here, vK,0 is the Keplerian velocity only depending on R (z = 0), R is the cylindrical
radius, ω is the angular velocity and G is the gravitational constant. Equation (2.2)
in Shakura and Sunyaev (1973) is in our notation

u0
ωR2

t
= −u0vR

ωR2

R
0

1

R
ΣRϕR

2, (2.13)

where u0 is the surface density, vR is the velocity in the R direction and ΣRϕ the stress

between adjacent layers i.e.
∫ h

0
σRϕ. When assuming stationary conditions we can

conclude that vR = 0 and Ṁ = 2πu0vRR = const (stress between adjacent layers).
For a non-rotating black hole, pure Newtonian physics we get arive at

Ṁω = 2παu0c
2
S, (2.14)

when using equation (1.2) in Shakura and Sunyaev (1973). This is equation (2.4)
in Shakura and Sunyaev (1973) when assuming that R � RS. It assumed that the
radial velocity is vR � vK in the disk. In stationary conditions Ṁ = const. Assuming
vertical hydrostatic equilibrium and a vertically constant sound speed cS gives the
half-thickness (i.e. the vertical height at which the density of the equatorial plane has
dropped to e−1) of the disk z0 as

z0 =
cS

vϕ
R. (2.15)

In the following z0 = h will be used as the general notation throughout the rest of
this thesis. For determining some of the radiative properties of the disk it is required
to think about opacity and radiation pressure. The two relevant opacity processes are
the Thompson scattering (gouverned by the σT cross section) on free electrons and the
free-free absorption of electrons (gouverned by the σff cross section. In the optically
thick regions inside the disk Erad = aradT

4, where T is the temperature and arad is
the radiation constant. Also, cS

2 = Erad/(3ρ) is valid in radiation pressure dominated
regions, whereas cS = kBT

µmp
is valid in gas-pressure dominated regions. All of this gives

rise to the three regimes distinguished in Shakura and Sunyaev (1973) dubbed

a) prad > pgas, matter-radiation interaction is dominated by Thompson scattering
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2.1. Theoretical foundations of α-Disks

on free electrons (σT > σff)

b) prad < pgas, matter-radiation interaction is still dominated by Thompson scat-
tering on free electrons (σT > σff)

c) prad < pgas, matter-radiation interaction is dominated by free-free absorption
(σT < σff)

a) describes the innermost regions of the disk which neighbours region b) separated
by Rab which can be determined from

Rab

3RSW

(
1−

(
Rab

3RSW

)− 1
2

)− 16
21

= 150

(
α
MBH

M�

) 2
21

(
Ṁ
˙Mcrit

) 16
21

, (2.16)

where ˙Mcrit = 3× 10−8 M
yrs

(equation (2.17) in Shakura and Sunyaev (1973)). As

Rab

3RSW

(
1−

(
Rab

3RSW

)− 1
2

)− 16
21

≥ 1 (2.17)

one can conclude that region a) only exists if

Ṁ
˙Mcrit

≥ 1

170

(
αM

M�

)− 1
8

(2.18)

Following suit is the region c) whose border to region b) is defined by the equation
(equation (2.20) in Shakura and Sunyaev (1973))

Rbc = 6.3× 103

(
Ṁ
˙Mcrit

) 2
3
(

1−
(

Rbc

3RSW

)− 1
2

) 2
3

. (2.19)

2.1.2. Profiles derived in Shakura and Sunyaev (1973)

Shakura and Sunyaev (1973) uses its considerations to derive, amongst other things,
expressions for the surface density u0, half-thickness z0 (dubbed scale height h through-
out most of this thesis) and the radial velocity vR. All formulas assume vr � vϕ which
requires

R

3RSW

− 1 > 1.0× 10−6α
8
7

(
Ṁ
˙Mcrit

) 3
7

(2.20)

along with R > 49/36RSW. In all of the cases considered in this thesis R will always
be at least one (most of the time two or three) orders of magnitude higher than the
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2. Physics of Accretion Disks

Schwarzschild radius, thus justifying 3RSW/R ≈ 0, which also implies(
1−

(
3RSW

R

)− 1
2

)
≈ 1. (2.21)

For a) this results in (equation (2.16) in Shakura and Sunyaev (1973))

u0 =
64π

9α

c2

σT

√
R3

GMBH

1

Ṁ
(2.22)

vR =
Ṁ2

128π2

σT

c2
9α
√
GMBHR

− 5
2 (2.23)

h =
3

8π

σT

c
Ṁ , (2.24)

where σT is the cross-section and u0 =
∫∞
−∞ ρdz is the surface density. Advancing to

b) one obtains (equations (2.19) and (2.11) in Shakura and Sunyaev (1973))

u0 =

(
1

2π

mp

αkB

) 4
5
(

9

32π

σT

c

)− 1
5

a
1
5
radṀ

3
5G

1
5M

1
5R−

3
5 (2.25)

vR =

(
1

2π

mp

αkB

)− 4
5
(

9

32π

σT

c

) 1
5

a
− 1

5
radṀ

2
5G−

1
5M− 1

5R−
2
5 (2.26)

h =

(
1

2πα

)(
mp

kB

)− 2
5
(

9

32π

σT

c

) 1
10

a
− 1

10
rad Ṁ

1
5G−

7
20M− 7

20R
21
20 (2.27)

whereas in c) the profiles determinde are (equation (2.19) in Shakura and Sunyaev
(1973))

u0 =
1

2π

(
99

25600π3

cm5

g

)− 1
10

α−
4
5

(
aradcmpK−

7
2

) 1
10

(
mp

kB

) 3
4

Ṁ
7
10G

1
4M

1
4R−

3
4 (2.28)

vR =

(
99

25500π3

cm4

g

) 1
10

α
4
5 (aradcmpK5)

1
10

(
mp

kB

) 1
10

Ṁ
3
10G−

1
4M− 1

4R−
1
4 (2.29)

h =

(
99

25600π3

cm4

g

) 1
20

α−
1
10

(
aradcmpK−

7
2

)− 1
20

(
mp

kB

)− 3
8

Ṁ
3
20G−

3
8M− 3

8R
9
8 (2.30)

2.1.3. More rigorous proof in other papers

Balbus and Papaloizou (1999) describes the dynamical foundations for α disks. It
investigates to what extend the α formalism is applicable considering theoretical mod-
els available at the time the paper was written. Detailedly, Balbus and Papaloizou
(1999) relates Magneto Hydrodynamics (MHD) turbulence to the α disk prescription
resulting in an equation describing the energy dissipation rate. Local MHD disturb-
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2.1. Theoretical foundations of α-Disks

ances force local magnetic field dissipation into a turbulent flow. Concretely, Balbus
and Papaloizou (1999) gives the analogy to vorticity dynamics in an unmagnetised
shear layer. The paper states, however, that this is not the case for self-gravitating
disks even if they are turbulent. Flow dynamics in these disks is much more complic-
ated and specifically cannot be described using a “simple restrictive form” for both
the mean momentum and energy fluxes which especially cannot depend on any other
transport properties apart from the viscous stress tensor element σRφ and the density
averaged radial speed 〈vR〉ρ. There are anomalous flux terms allowing self-gravitating
disturbances propagating non-locally in the disk via the perturbed gravitational po-
tential. While the angular momentum is strictly conserved in such a disk and has the
same canonical form as a non-self-gravitating disk (∝ σRφ), the energy flux is funda-
mentally different. Summed up, non-local transport cannot be captured by α disks.
Under special circumstances, however, one can re-establish local α behaviour. Thus,
Balbus and Papaloizou (1999) confirms that α-Disks are a reasonable descriptions for
non-self-gravitating, MHD turbulence driven disks.
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2. Physics of Accretion Disks

2.2. Fluid dynamics description

2.2.1. Time evolution equations

The Navier-Stokes equations are assumed to describe the gaseous disk in this thesis.
This is based on three assumptions, following Shakura and Sunyaev (1973) and other
presented cited papers:

• The requirements for a fluid dynamical description are satisfied.

• The distance from the central black hole is large enough to be able to use New-
tonian physics.

• The formalism of α-Disks (e.g. Shakura and Sunyaev (1973) and Section 2.1) is
valid; magnetic fields can thus be incorporated in the viscosity formalism, but
neglected outside of it; This is valid as B2 � Etot at our radial range

We are dealing with a non-relativistic, viscous fluid being subjected to gravity along
with self-gravity. We assume the fluid to be a monoatomic ideal gas with added
viscosity. Viscosity is assumed to be given by the α viscosity which is reformulated to
fit the shear and bulk viscosity formalism. The formalism tells us that bulk viscosity
is unimportant and can thus be set to zero and only shear viscosity can be considered
(for details see Subsection 2.2.2 and Subsubsection 2.2.2.1 and Subsubsection 2.3.9).
We thus consider a variant of the Navier-Stokes equations. This exact form is the
one given in Toro (2009) in the chapter “Equations of Fluid dynamics”. Equation
(1),(1)-(1.5) shows the Euler equations, equations (1.86)-(1.88) showcase the Navier-
Stokes including the central gravity term. Note that heat conduction is excluded here
i.e. Q = 0 and that the additional source-term for the self-gravity as a potential
was added. The detailed form for this can be found in the PLUTO userguide (Code
used later for simulations) which can be obtained at http://plutocode.ph.unito.it.
These have the form

∂ρ

∂t
+∇ · (ρv) = 0 (2.31)

∂m

∂t
+∇ (m · v) +∇p = ρg − ρ∇ΦGas +∇σ (2.32)

∂E

∂t
+∇ (Ev) +∇ (pv) + ρΦGasv = m · g +∇ · (σ · v) . (2.33)

In these equations ρ is the density, v is the velocity vector, E is the total energy density,
p is the pressure, g is the acceleration vector of the central Super Massive Black
Hole (SMBH) gravity, ΦGas is the potential of the self-gravity, cS is the soundspeed, σ
is the viscous stress tensor and m = ρv is the momentum density.
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2.2. Fluid dynamics description

2.2.2. Viscosity

The viscosity components of this tensor σ are to be determined and the parameters
set such that they correspond to the α formalism described in Shakura and Sunyaev
(1973). In order to distinguish abstract differential geometric component notation and
absolute physical components we denote the abstract components with braces as (i)
(inspired by Mihalas and Weibel-Mihalas (1999)).
In Mihalas and Weibel-Mihalas (1999) we find the form

(σ)(ij) = µ

(
v(i);(j) + v(j);(i) −

2

3
∇v(k),(k)δ(ij)

)
+ ξv(k);(k)δ(ij), (2.34)

where v(i);(j) is the covariant derivative, µ is the ordinary coefficient of viscosity, ξ is
the coefficient of bulk viscosity, v is the velocity,

v(i),(j) =
∂v(i)

∂x(j)

. (2.35)

v(i),(i) =
∂v(i)

∂x(i)

(2.36)

and δ(ig) is the Kronecker delta. Beginning from this, we can derive the tensor in
cylindrical polars by using the Christoffel symbol formalism. It should be noted that
the relations g(ij)v

i = v(j) and g(ij)v(i) = v(j) are valid for the metric tensor g(ij) and
that the covariant derivative can be expressed as v(i)

;(j) = v(i)
,(j) + Γ(i)

(mj)v
(m) and

v(i);(j) = v(i),(j) − Γ(m)
(ij)v(m) for the contravariant and covariant vector, respectively.

More detailed information on this formalism can e.g. be found in Schutz (2009).
Starting from equation (2.34) we obtain

σ(ij) = µ
(
v(i);(j)

+ v(j);(i)

)
+

(
ξ − 2

3
µ

)
δ(ij)v

(k)
;(k) (2.37)

= µ
(
v(i),j

− Γ(m)
(ij)v(m) + v(j),i

− Γ(m)
(ji)v(m)

)
+

(
ξ − 2

3
µ

)
δ(ij)

(
v(k)

,k + Γ(k)
(mk)v

(m)
)

(2.38)

Use that Γ
(m)
(ij) = Γ

(m)
(ji) to conclude

= µ
(
v(i),j

+ v(j),i
− 2Γ(m)

(ji)v(m)

)
+

(
ξ − 2

3
µ

)
δ(ij)

(
v(k)

,k + Γ(k)
(mk)v

(m)
)

(2.39)
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Now, we use special properties of the cylindrical polar coordinates. The covariant
metric tensor for cylindrical polars is

{g(ij)} =

1 0 0
0 R2 0
0 0 1

 , (2.40)

whereas the contravariant form is

{g(ij)} =

1 0 0
0 1

R2 0
0 0 1

 . (2.41)

The metric tensor is obviously diagonal, i.e.

g(ij) =

{
6= 0 if i = j

0 else.
(2.42)

Thus, we can conclude, that
g(mi)v

(m) = g(ii)v
(i) (2.43)

which is also true for the derivatives of metric or vector in this term. These properties
simplify the tensor to take the form

σ(ij) = µ
(
v(i),j

+ v(j),i
− 2Γ(m)

(ji)v(m)

)
+

(
ξ − 2

3
µ

)
g(ij)

(
v(k)

,k + Γ(k)
(mk)v

(m)
)

.

(2.44)

Because of the metric terms we know that

g(ii),j
=

{
2R for i = R and j = ϕ

0 else
(2.45)

From the Christoffel symbols we can clearly see that

Γ(k)
(mk)v

(m) = Γ(ϕ)
(Rϕ)v

(R) =
1

R
v(R) (2.46)

as all other possible components vanish. This implies another simplification

σ(ij) = µ
(
v(i),j

+ v(j),i
− 2Γ(m)

(ji)v(m)

)
+

(
ξ − 2

3

)
g(ij)

(
v(k)

,k +
1

R
v(R)

)
. (2.47)
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For the other combinations of indices one gets

Γ(m)
(ij)v(m) =


Γ(R)

(ϕϕ)v(R) = for i = j = ϕ

Γ(ϕ)
(Rϕ)v(ϕ) =

v(ϕ)
R

for (i, j) ∈ {(Rϕ), (ϕR)}
0 else

(2.48)

=


−Rv(R) for i = j = ϕ
v(ϕ)
R

for (i, j) ∈ {(Rϕ), (ϕR)}
0 else

. (2.49)

For j = i we can infer that g(ii),j
= 0 as no suitable combination of indices exist which

contributes. For convenience we define the notation

w :=

(
ξ − 2

3
µ

)
. (2.50)

Summed up we arrive at:

σ(ij) =
2µv(R),R

+ w
(
v(k)

,k + v(R)

R

)
µ
(
v(R),ϕ

+ v(ϕ),R
− 2

v(ϕ)
R

)
µ
(
v(R),ϕ

+ vϕ,(R) − 2
v(ϕ)
(R)

)
2µ
(

2vϕ,(ϕ) +Rv(R)

)
+ w

(
v(k)

,k + v(R)

R

)
µ
(
v(R),z

+ v(z),R

)
µ
(
v(ϕ),z

+ v(z),ϕ

)
µ
(
v(R)

,z + v(z)
,R

)
µ
(
v(ϕ),z

+ v(z),ϕ

)
2µv(z),z

+ w
(
v(k)

,k + v(R)

R

)
 .

(2.51)

2.2.2.1. Viscosity in α disks

As mentioned by e.g. Shakura and Sunyaev (1973) of the tensor σ, as derived in
equation (2.51), merely the Rϕ component matters. This can also be seen in our
result when assuming

vR = 0 vz = 0
∂vϕ
∂ϕ

=
∂vϕ
∂z

= 0. (2.52)

As we will see later our initial conditions will fulfil these assumptions exactly. This
is the case when assuming a circular shearing flow as mentioned in Lodato (2008).
As stated in Mihalas and Weibel-Mihalas (1999), Toro (2009) as well as the PLUTO
(code later used for simulation) userguide the bulk viscosity always vanishes for an
ideal, monoatomic gases as used here. More details can be found in “§32” in Mihalas
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and Weibel-Mihalas (1999). Thus, the only relevant term is

σ(Rϕ) = µ

(
∂v(R)

∂ϕ
+
∂v(ϕ)

∂R
− 2

v(ϕ)

R

)
. (2.53)

Following Mihalas and Weibel-Mihalas (1999), we describe how we transform this
tensor element to represent physical components instead of abstract coordinates. Ini-
tially, following equation (A.340) in Mihalas and Weibel-Mihalas (1999), we remind
ourselves that the line element ds2 in a three-dimensional coordinate system with a
diagonal metric tensor can be written as

ds2 = (h(1)dx
(1))2 + (h(2)dx

(2))2 + (h(3)dx
(3))2, (2.54)

where h(i) = (g(i)(i))
1
2 and (i) describes the i-th component of the metric’ coordinate

variables. If looking at the increment path length, Mihalas and Weibel-Mihalas (1999)
mentions that the “increment of path length associated with a coordinate increment
dxi is not dxi itself, but ds(i) = h(i)dx

(i).” (Mihalas and Weibel-Mihalas 1999). We
now look at equation (2.55), dubbed equation (A.337) in Mihalas and Weibel-Mihalas
(1999),

|a| = (a(i)a
(i))

1
2 = (g(ij)a

(i)a(i))
1
2 (g(ij)a(i)a(i))

1
2 , (2.55)

where |a| = a is the absolute physical length of vector a. Following this one can infer
that the vector length is equal to

a2 = (h(1)a
(1))2 + (h(2)a

(2))2 + (h(3)a
(3))2. (2.56)

As indicated in equation (A3.41) in Mihalas and Weibel-Mihalas (1999) demanding
consistency with the Pythagorean theorem leads to the connection

ai = h(i)a
(i) (2.57)

for the contravariant vector components and

ai =
a(i)

h(i)

(2.58)

for the covariant vector components. Furthermore, more elaborations in Mihalas and
Weibel-Mihalas (1999) lead to their equation (A3.45)

Tij =
T(ij)

hihj
, (2.59)

where Tij is a rank 2 tensor. For cylindrical coordinates we can easily calculate

h(R) = 1, h(ϕ) = R and h(z) = 1 (2.60)
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and thus

aR = a(R) = a(R) , aϕ =
a(ϕ)

R
= Ra(ϕ) and az = a(z) = a(z). (2.61)

Using those, we convert the vector components in equation (2.53) resulting in

σ(Rϕ) = µ

(
∂vR
∂ϕ

+
∂Rvϕ
∂R

− 2Rvϕ

)
(2.62)

= µ

(
∂vR
∂ϕ

+ vϕ +R
∂vϕ
∂R
− 2vϕ

)
(2.63)

= µ

(
∂vR
∂ϕ

+R
∂vϕ
∂R
− vϕ

)
. (2.64)

Now, equation (2.59) is used in order to determine the physical components of the
viscosity tensor as

σRϕ = µ

(
1

R

∂vR
∂ϕ

+
∂vϕ
∂R
− vϕ
R

)
. (2.65)

2.2.3. Radiation hydrodynamics

In order to compare results to observations as well as to fully include the radiation,
a model of radiation transport is required. This is especially the case for Active
Galactic Nucleus (AGN) systems as they are primarily observed using electromagnetic
radiation and they reach high temperatures. Thus, we need to specifically model
emission, absorption, heating, cooling, re-emission and re-absroption along with the
radiative pressure carried by the photons. However, in this thesis we do mostly not take
radiation into account and focus and the dynamics. But for future work and because
the radiation transport module developed by Rolf Kuiper (see e.g. Kuiper et al. (2018,
submitted)) is later used for simualtions we include a description of the formalism used
for that for completeness. The “Makemake” module (Subsection 3.2.6.1) employed
later uses the Flux Limited Diffusion (FLD) approximation as outlined in Kuiper et al.
(2018, submitted). This subsection mainly follows Kuiper et al. (2018, submitted).
We give a short summary of the method here, while more detailed information can be
found in Kuiper et al. (2018, submitted). Assuming the radiative transfer equation
(equation (1) in Kuiper et al. (2018, submitted), consistent with Castor (2004))(

1

c
∂t + Ω · ∇+ χext

)
Irad =

c

4π
(χabsBrad + χscatErad) , (2.66)

where c is the speed of light, Ω is the direction of the radiative flux, Irad is the radiation
intensity, χext is the intensity extinction due to absorption and scattering, Erad is the
radiation energy density, Brad is the integral of the black-body Planck spectrum, χabs

is the extinction due to absorption, χabsBrad is the emission source term, χscat is the
extinction due to scattering, and χscatErad is the scattering source term. Moreover,
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2. Physics of Accretion Disks

χext = χabs + χscat. The possible irradiation is skipped here as this will not be part of
our model in the foreseeable future. It could only be used for a more advanced model
that includes the hard radiation from the central engine of the AGN. Kuiper et al.
(2018, submitted) first performs an integration over all solid angles on equation (2.66)
and moreover employs the definitions

Erad =

∫
4π

IraddΩ (2.67)

Frad =

∫
4π

IradΩdΩ, (2.68)

where Frad is the radiation energy flux density Frad and Ω is the solid angle. The
result of that is

∂Erad

∂t
+∇ · Frad = cχabs (Brad − Erad) . (2.69)

It should be noted that everything is presented in Grey approximation (frequency
independent). It is possible to have frequency-dependent FLD, but this is not used
or discussed in this work. The interested reader can refer to the references in Kuiper
et al. (2018, submitted). Using the radiation pressure tensor Prad and the radiation
diffusion tensor Drad one can write equation (2.69) as

Frad = −∇ ·DradErad. (2.70)

The first simplification introduced is that the tensor Drad is approximated by a scalar
diffusion coefficient

Drad =
λc

χR

, (2.71)

where λ is a dimension-less flux-limiter function and χR is the reciprocal of the mean
absorption length in the medium. Consequently, one has

Frad = − λc
χR

∇Erad. (2.72)

Using this, we can rewrite equation (2.69) leading to

∂Erad

∂t
−∇ (Drad∇Erad) = cχabs (Brad − Erad) , (2.73)

where Brad is the bolometric energy density. In order to solve this equation fully one
would need to solve for both Erad as well as the local medium temperature T , as
Brad = aradT

4, where

arad =
4σSB

c
(2.74)

is the radiation constant and σSB is the Stefan-Boltzmann constant. Furthermore,
T is coupled via heating and cooling processes. This would require us to solve the

34



2.2. Fluid dynamics description

time-evolution of the local internal energy Eint using

∂Eint

∂t
= −cχabs (Brad − Erad) . (2.75)

The code, which we apply, already takes non-thermodynamic changes of Eint, such
as advection, compression and expansion, into account in its hydrodynamic or mag-
netohydrodynamic calculations. Therefore, these can be neglected here and in the
following. While solving for Eint and Erad is a valid approach, tremendous simplifica-
tions are possible when assuming that the local radiation field is in equilibrium with
the temperature of the medium. This results in Eint, Brad and Erad referring to the
same temperature. We can thus sum up equation (2.73) and equation (2.75) wih the
simplification Erad = Brad. Thus one arrives at

∂ (Erad + Eint)

∂t
−∇ · (Drad∇Erad) = 0. (2.76)

Using the relation
Eint = cVρT , (2.77)

where cV is the heat capacity at constant volume and ρ is the volume gas density, one
can, along with

Erad = aradT
4, (2.78)

derive
∂Eint

∂t
=

cVρ

4aradT 3

∂Erad

∂t
. (2.79)

When defining the energy ratio

fc =

(
cVρ

4aradT 3
+ 1

)−1

(2.80)

along with equation (2.79) we can rewrite equation (2.76) as a modified diffusion
equation

∂Erad

∂t
− fc∇ (Drad∇Erad) = 0. (2.81)

This now finally allows for a direct solution of this diffusion equation. As stated in
Kuiper et al. (2018, submitted) both this approximation as well as the full solution of
the coupled equation (2.73) and equation (2.75). Along with this radiation transport,
the radiation-matter interaction will, because of the momentum conservation, lead to
radiative forces otherwise known as radiation pressure. Again, the details of this are
given in Kuiper et al. (2018, submitted). Generally, the acceleration due radiation
pressure arad is given by

arad =
κ

c
Frad, (2.82)

35



2. Physics of Accretion Disks

where κ = χR

ρ
is the opacity of the medium. Combining this with equation (2.72) we

arrive at

arad = −λ
ρ
∇Erad. (2.83)

As an alternative to this scheme the Eddington approximation (see e.g. 11.3 in Castor
(2004)) can be used which states that

prad =
Erad

3
. (2.84)

This can then be used to determine the radiation acceleration. When combining these
elaborations with the hydrodynamic equations, equation (2.31), equation (2.32) and
equation (2.33) , and assuming the equilibrium temperature we obtain

∂ρ

∂t
+∇ · (ρv) = 0 (2.85)

∂m

∂t
+∇ (m · v) +∇p−∇σ = ρg − ρ∇ΦGas + ρ

κ

c
F (2.86)

∂E

∂t
+∇ (Ev) +∇ (pv)−∇ · (σv) +∇ (ρΦGasv) = m · g + ρ

κ

c
v · F (2.87)

∂Erad

∂t
= ∇ · (Drad∇Erad) (2.88)

as the system of equations. If we absorb the radiation pressure terms as a part of the
total pressure ptot gradients the set of equations reduces to

∂ρ

∂t
+∇ · (ρv) = 0 (2.89)

∂m

∂t
+∇ (m · v) +∇ptot−∇σ = ρg − ρ∇ΦGas (2.90)

∂E

∂t
+∇ (Ev) +∇ (ptotv)−∇ · (σv) = m · g (2.91)

∂Erad

∂t
= ∇ · (Drad∇Erad) . (2.92)

This allows us to perform calculations without including the radiation pressure while
still considering radiation transport. This is sufficient as we are primarily interested in
the dynamics of the disk and not its temperatures and spectra. The latter are reserved
for future work. In order to close the system we employ the caloric equation of state
for an ideal gas

e =
ptot

ρ (γ − 1)
, (2.93)

where e is the specific internal energy of the gas.
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2.2.4. Spherical coordinates

As we will employ spherical coordinates for the simulations we shortly introduce the
choice of coordinates. The Cartesian coordinate variables x, y, z are given by

x = r sin θ cosϕ (2.94)

y = r sin θ sinϕ (2.95)

z = r cosϕ, (2.96)

where

r =
√
x2 + y2 + z2 (2.97)

θ = arcos
(z
r

)
(2.98)

ϕ = arctan
y

x
. (2.99)

It should be noted that, especially for the arctan one has to choose the correct intervals.
The ranges of the spherical coordinate variables are

r ∈ (0,∞) In the later simulation the upper boundary will be limited (2.100)

θ ∈ [0, π] (2.101)

ϕ ∈ [0, 2π] (2.102)

and the conversion of cylindrical variables R,ϕ, z is given by (hint ϕ is the same for
spherical and cylindrical coordinates)

r =
√
R2 + z2 (2.103)

R = r sin θ (2.104)

θ = arcos
(z
r

)
(2.105)

z = r cos θ. (2.106)

2.2.5. Gravitational forces

In the AGN system, there are two components of gravity. First, there is the gravity
of the central SMBH and secondly there is the self-gravity created by the Accretion
Disk (AD) itself. Now let us first explore the gravity of the SMBH

2.2.5.1. Gravity of the central black hole

The gravity forces of the central SMBH will be represented by an acceleration vector.
As we are using cylindrical or spherical coordinates for reasons of simplicity we need
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2. Physics of Accretion Disks

to calculate the acceleration vector in those two coordinates. Generally,

ΦBH = −GMBH

r
, ∇Cylindrical =

 ∂
∂R

1
R

∂
∂ϕ
∂
∂z

 , ∇Spherical =

 ∂
∂r

1
r
∂
∂θ

1
r sin θ

∂
∂ϕ

 , (2.107)

where MBH is the mass of the central SMBH, G is the gravitational constant, r is the
spherical radius and R is cylindrical radius. Thus, we arrive at

gBH, cyl = −∇CylindricalΦBH = −GMBH

r3

R0
z

 (2.108)

for the cylindrical gravitational acceleration and

gBH, spher = −∇SphericalΦBH = −GMBH

r2

1
0
0

 (2.109)

for the spherical gravitational acceleration.

2.2.6. Self-gravity

Self-gravity is included as a potential Φ derived from the mass distribution. The latter
is infered from the density distribution of the AD via the Poisson equation (see e.g.
Kuiper et al. (2010a))

∆ΦGas = 4πρG. (2.110)
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2.3. Equilibrium initial conditions

2.3. Equilibrium initial conditions

Firstly, we need to derive initial conditions which start the disk off in force equilibrium.

2.3.1. Assumptions

We assume that the soundspeed cS is vertically constant i.e. ∂cS
∂z

= 0. In the ideal gas
case, the relation for the speed of sound

cS
2 =

∂p

∂ρ
(2.111)

is valid and can be rearranged as

∂p = c2
S∂ρ+ ρ∂c2

S. (2.112)

Additionally, we assume the radial distribution of the density ρ, i.e.

ρ(R, z = 0) = ρ0R
β, (2.113)

to be following a power-law as shown in e.g. Shakura and Sunyaev (1973). Moreover,
we strife to have an system in equilibrium. Thus, we infer that there is no change in
momentum in the R, ϕ and z directions, i.e.

∂mR

∂t
=
∂mϕ

∂t
=
∂mz

∂t
= 0. (2.114)

Furthermore, there is only a Keplerian rotation, meaning it is restricted to the ϕ
coordinate. The change in momentum is governed by equation (2.90). Because we
assume vR � vK,0 ≈ vϕ and vz � vK,0 the term ∇ (m · v) is zero. Additionally, it is
assumed that the changes due to self-gravity term ρ∇ΦGas and the viscosity term ∇σ
are only smaller corrections and the system will equilibrate itself quickly after the start
of the simulation. This is because the system will be quite close to the equilibrium.

2.3.2. Derivations from vertical force-balance

The vertical force-balance is calculated from the z component of equation (2.90), which
when neglecting the terms described above and requiring force equilibrium reduces to

∂ptot

∂z
!

= ρgz. (2.115)
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Using equation (2.112) and keeping in mind that R is the cylindrical radius and r =√
R2 + z2 is the spherical radius, we consequently obtain

cS
2

ρ

∂ρ

∂z
= −zGMBH

r3
(2.116)

⇔
∫ z

0

d ln ρ

dz′
dz′ =

∫ z

0

−GMBH

cS
2
z
(
R2 + z′

2
)− 3

2
dz′ (2.117)

⇔ ln ρz = ln ρ0 −
1

cS
2

GMBH

1

(
1

−
√
R2 + z2

+
1

R

)
(2.118)

⇔ ln ρz = ln ρ0 −
1

cS
2

GMBH

R

1− 1√
1 + z2

R2

 (2.119)

⇔ ρz = ρ0 exp

−v2
K,0

cS
2

1− 1√
1 + z2

R2

 (2.120)

= ρ0 exp

(
v2

K,0

cS
2

(
R

r
− 1

))
. (2.121)

In these equations ρ0 is the density in the equatorial plane (z = 0), ρz is then density
for a given z and

v2
K,0 =

GMBH

R
. (2.122)

If we now perform a Taylor expansion for small z up to 2nd order in the exponent we
can infer

ρz = ρ0 exp

(
−v

2
K,0

cS
2

z2

2R2

)
+O

(
exp

(
z4
))

. (2.123)

With this we can define the the scale-height, analogous to equation (2.15),

h =
cSR

vK,0(R)
. (2.124)

When comparing this to equation (1) in Kennedy et al. (2016) we find that the expo-
nential factor in the vertical density dependence is the same. Moreover, the relation
is equivalent to equation (25) in Lodato (2008) and equation (2.5) in Shakura and
Sunyaev (1973). Hence, we can conclude that it makes sense to assume z to be small
for the whole simulation as it is then akin to Kennedy et al. (2016) concerning vertical
dependence.
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2.3. Equilibrium initial conditions

2.3.3. Determination of pressure profile

If we assume h to be a given quantity as in Kennedy et al. (2016) or Lodato (2008)
we can use equation (2.124) along with the equation

p = ρc2
S (2.125)

for an ideal gas to arrive at

p = ρ
h2v2

K,0(R)

R2
. (2.126)

2.3.4. Derivation of vϕ from radial force balance

In the following we derive the initial condition for the velocity in the ϕ direction via
the radial force balance under the before mentioned power-law assumption for the
radial density distribution as described in equation (2.113). We moreover introduce
a reference radius Rd which poses as the radial limit for the disk. Summed up this
gives, along with equation (2.123),

ρ0(R) = ρRd

(
R

Rd

)β
, (2.127)

where ρRd is ρ(Rd). This time, we use a stationary version of equation (2.90)’s radial
component and again use all previously mentioned assumptions along with the fact
that we have another centrifugal component in radial balance

∂p

∂R
= ρgR + ρ

v2
ϕ

R
. (2.128)

If we hypothetically knew the exact vϕ we could derive ∂p
∂R

. Additionally, we can derive
the initial vϕ by

vϕ =

(
∂p

∂R

R

ρ
−RgR

) 1
2

. (2.129)

Using the pressure profile given in equation (2.126), equation (2.124) and using a linear
h with a prefactor H (later determined akin to Kennedy et al. (2016)) i.e.

h

R
= H = const, (2.130)
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we can calculate

vϕ =

[
h2

R2

R

ρ

(
∂ρ

∂R
vK,0

2 + ρ
∂vK,0

2

∂R

)
+ vK,0

2

] 1
2

(2.131)

=

[
h2

R2

R

ρ

(
β

R
+

z2

h2R
− 1

R

)
ρvK,0

2 + vK,0
2

] 1
2

(2.132)

= vK,0

[
(β − 1)

h2

R2
+
z2

R2
+ 1

] 1
2

. (2.133)

Summed up, this gives us a initial condition for vϕ, which is the slightly modified
Keplerian velocity. Because we only consider small z (i.e. z is close to 0) this reduces
to

vϕ = vK,0

[
(β − 1)

h2

R2
+ 1

] 1
2

(2.134)

2.3.5. Normalisation constant for ρ

We want that the total mass enclosed in the three-dimensional space in which the
total diskmass Md is contained. Thus, we want to determine the constant ρ0 such
that this condition if fulfilled. In order to have a finite radial interval we use the
already introduces reference radius Rd i.e. our radial interval is limited to R ∈ [0, Rd].
Consequently, we demand∫ Rd

0

∫ 2π

0

∫ ∞
−∞

Rρ(R,ϕ, z)dRdϕdz
!

= Md. (2.135)

Using our knowledge gathered so far and the Gaussian integral we conclude:∫ Rd

0

∫ 2π

0

∫ ∞
−∞

RρRd

(
R

Rd

)β
exp

(
− z2

2h2

)
dRdϕdz =

∫ Rd

0

2π
√

2πρRd
hRβ+1R−βd dR

(2.136)

=
2π
√

2πhRd
2

(β + 2)
ρRd

= Md. (2.137)

Accordingly, the normalisation constant ρ0 is given by

ρRd
=

β + 2

2π
√

2πRd
2h
Md, (2.138)

which is equivalent to the one given in Kennedy et al. (2016).
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2.3.6. Self-gravity

When self-gravity is included and is acting as a dominant gravitational force, we can
only apply the ΦGas terms in equation (2.90) and thus base the calculations solely on
the self-gravitating terms. The hydrostatic equilibrium (see Lodato (2008) and the
references therein) results in the vertical density profile

ρ(z) = ρ0
1

cosh2
(

z
2HSG

) , (2.139)

where HSG =
c2S

2πGΣ
is the self-gravity scale-height and Σ is the surface density. Despite

of this we retain our earlier derived initial conditions also in the radial region where
the self-gravity is dominating. This approach is similar in spirit to Kennedy et al.
(2016) with the difference that we will employ a linearly-growing scale-height over the
entire radial domain. We should thus see a change to a constant scale height. The
next subsection covers the scale-height in more detail.

2.3.7. On the scale-height

Shakura and Sunyaev (1973) (in which h is named z0) supplies equations to determine

the scale-height. While constant in the region dubbed “a)”, it is proportional to R
21
20

and R
9
8 in regions b) and c), respectively. Thus, it is close to a linear dependence

in “b)” and “c)” which has inspired Kennedy et al. (2016) to assume a linear R
dependence for the scale height until a critical radius RSG is reached. This radius,
after which the scale-height becomes constant, marks the break-even point for the
central Super Massive Black Hole (SMBH) gravity and self-gravity. As we are also
interested in the influence of self-gravity on the scale height we initially prescribe the
linearly growing scale-height everywhere. This is opposed to it being constant after
RSG as in Kennedy et al. (2016). The constant scale height is chosen such that it
fits a radially isothermal profile as described in Just et al. (2012) at RSG. The linear
constant is such that the scale-height grows to this value at RSG. Thus,

h

R
=
hzRd

RSG

, (2.140)

where hz is a constant prefactor (no unit) and RSG is the radius where the vertical
gravitational force at z = hzRd generated by the black hole is equivalent the the
vertical component of the gravitational force generated by the self gravity, i.e.

GMBHhzRd

R3
SG

= 2πGu (RSG) . (2.141)
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In this equation u (RSG) is the surface density at the self-gravity radius. The surface
density can be determined by calculating

∫∞
−∞Rρ(R, z)dz. Consequently,

RSG =

(
1

2 + β

MBH

Md

hzRdR
2+β
d

) 1
3+β

(2.142)

=

(
1

2 + β

MBH

Md

hz

) 1
3+β

Rd. (2.143)

2.3.8. Resulting initial conditions

Summing this all up we conclude:

ρ =
2 + β

2π
√

2πRd
2h
Md

(
R

Rd

)β
exp

(
− z2

2h2

)
(2.144)

p = ρ
h2vK,0(R)

R2
(2.145)

vR = 0 (2.146)

vϕ = vK,0(R)

(
(β − 1)

h2

R2
+ 1

) 1
2

(2.147)

vz = 0. (2.148)

Note: Obviously, there results can easily be transferred to spherical coordinates, i.e.

vr = 0 and vθ = 0. (2.149)

The changes to the other quantities merely change by replacing

R = r sin θ, z = r cos θ (2.150)

in equation (2.144), equation (2.145) and equation (2.147).

2.3.9. Viscosity corresponding to the initial conditions

Now we can calculate the Rϕ element, as derived in equation (2.65), of the viscosity
tensor σ using these initial conditions and the assumption

∂vR
∂ϕ

= 0 (2.151)

as the initial conditions are axis-symmetric. Additionally, we switch from the kin-
ematic viscosity formulation to the shear viscosity i.e.

µ = ρνshear. (2.152)
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Consequently, the viscosity tensor element is given by

σRϕ = ρνshear

(
0− 1

2

vϕ
R
− vϕ
R

)
(2.153)

= −3

2
ρνshear

vϕ
R

, (2.154)

which is consistent to Lodato (2008). Shakura and Sunyaev (1973) derives its equation
(1.2)

σRϕ = −αρc2
S, (2.155)

where cS is the sound speed and α is the already introduced parameter from Shakura
and Sunyaev (1973). Along with the α disk property

h

R
=
cS

vϕ
(2.156)

one obtains

σRϕ = −αρh2
v2
ϕ

R2
. (2.157)

Comparing this to equation (2.154) we can conclude that

νshear =
2

3
αh2vϕ

R
. (2.158)

When looking at equation (13) in Kuiper et al. (2010a) we realise that this is only
consistent if

αK10 =
2

3
α, (2.159)

where αK10 is an alternative α definition used in Kuiper et al. (2010a).

2.3.10. Toomre Q

As described in e.g. Toomre (1964), the stability of disk-like equilibrium systems is
described by the QToomre parameter which is given by

QToomre =
cSκ

πGu
. (2.160)

In this expression κ is the epicyclic frequency and u is the surface density. For a
Keplerian disk, as assumed here,

κ =
vK, z=0(R)

R
. (2.161)
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When comparing equation (2.160) with the criterion for RSG in equation (2.141) and
insert

h =
cSR

vK, z=0

, (2.162)

h = hzRd at RSGm we find

GMBHh

R3
SG

= 2πGΣ(RSG) (2.163)

⇔ v2
K,0cSRSG

R2
SGπGΣ(RSG)v2

K,0

= 2 (2.164)

⇔ κcS

πGΣ(RSG)
= 2 (2.165)

⇔ QToomre(RSG) = 2. (2.166)

Hence, theQToomre = 2 at the self-gravity radius, which is close to the stability criterion
stating that the disk is stable if

QToomre > 1. (2.167)

The proximity of the two radii emphasises the connection between QToomre and the
vertical force balance as the source of the instability is the vertical force imbalance
between the central gravity and self-gravity. To determine which radius is the bound-
ary for the stability criterion, using the beforementioned initial conditions, we first
calculate

u =

∫ ∞
−∞

ρ(R, z)dz = ρ0R
β
√

2πh =
2 + β

2π
R
−(2+β)
d MdR

β. (2.168)

Combined with the density profile, given in equation (2.144), as well as h
R

= cS
vK,0

derived above we can continue the calculation as

QToomre =

√
h2v2

K,0

R2

vK,0

GπR

R2+β
d R−β2π

(2 + β)Md

(2.169)

= h
v2

K,0

GMd

2R2+β
d

2 + β
R−(β+2) (2.170)

= h
GMBH

RMdG

2R2+β
d

2 + β
R−(2+β) (2.171)

⇔ R3+β = h
MBH

Md

2R2+β
d

2 + β

1

QToomre

(2.172)

⇔ R =

(
h
MBH

Md

2R2+β
d

2 + β

1

QToomre

) 1
3+β

(2.173)
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If we set h = hzRd, as in Kennedy et al. (2016), and compare it to RSG we arrive at

R =

(
2

QToomre

) 1
3+β
(
hz
MBH

Md

1

2 + β

1

QToomre

) 1
3+β

Rd =

(
2

QToomre

) 1
3+β

RSG. (2.174)

So the unstable region (QToomre ≤ 1) always begins slightly after the vertical self-
gravity starts dominating (i.e. R > RSG) if β + 3 > 0. As we are not using the
constant scale-height after RSG as in Kennedy et al. (2016), but are linear all the way(
h = hzRdR

RSG

)
the result changes to

R =

(
2

QToomre

) 1
2+β

R
− 1

2+β

SG

(
hz
MBH

Md

1

2 + β

) 1
2+β

R
3+β
2+β

d (2.175)

=

(
2

QToomre

) 1
2+β

R
− 1

2+β

SG R
3+β
2+β

SG (2.176)

=

(
2

QToomre

) 1
2+β

RSG. (2.177)

Hence, the general property is preserved, but is slightly shifted and 2 + β > 0 is the
required parameter condition securing that the radius at which QToomre = 1 is larger
than RSG.
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2. Physics of Accretion Disks

2.4. The drag force as the force the stars feel from the
Accretion Disk (AD) for N-body simulations

The stars in the Nuclear Star Cluster (NSC) are orbiting the central Super Massive
Black Hole (SMBH) and some of them will at some point cross the AD. Direct N-body
simulations are used to investigate the evolution of these stars. To incorporate the
AD we need to consider its interactions with single stars. Just et al. (2012), Kennedy
et al. (2016) both discuss the force and the resulting acceleration the disk will exhibit
on stars crossing it. This section is mainly based on those papers. The main effects
contributing, according to Just et al. (2012), Kennedy et al. (2016), is the ram pressure
due to the bow shock. The drag force Fdrag acting on a single star is given by

Fdrag = Qdπr
2
∗ρ|vrel|vrel, (2.178)

where Qd is the drag coefficient, r∗ is the radius of the star, ρ is the AD’s mass density
of the current location of the star and vrel is the relative velocity of the star relative
to the AD. Kennedy et al. (2016) states that Qd is an uncertain factor, but that
its estimation is possible from the shock-conditions detailed in the references within
Kennedy et al. (2016). Thus, the value used henceforth is

Qd = 5. (2.179)

Furthermore, it needs to be considered that all currently possible N-body simulations
are unable to recreate a sufficient number of particles. Consequently, we need to make
one particle in the simulation represent multiple stars which in turn also means the
real drag coefficient needs to be rescaled following the formula

Qtot(N) = QdN

(
r∗
Rd

)2

, (2.180)

where N is the real number of stars in the NSC and Rd is the influence radius as
discussed before. Thus, one can combine this to

Fdrag = Qtot(N)
R2

d

N
πρ|vrel|vrel. (2.181)

The dynamical timescale

tdyn =

(
rh

GMCl

) 1
2

, (2.182)

where rh is the half-mass radius of the cluster, G is the gravitational constant and MCl

is the total clustermass, for the NSC stays the same no matter the particle number.
However we face the problem that the relaxation time

trx(N) =
0.14N

ln 0.4N
tdyn, (2.183)
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where N is an arbitrary particle number, changes depending on the number of particles
used. Thus, we want the drag force to be effective at the correct timescale. This can
be reached be defining

Qtot(Nsim) =
trx(Nreal)

trx(Nsim)
Qtot(Nreal) = Qd

N2
real

Nsim

ln 0.4Nsim

ln 0.4Nreal

(
r∗
Rd

) 1
2

, (2.184)

where Nsim is the number of particles used in the simulation and Nreal is the real
number of stars in the NSC. Using Rd = 10 pc, 2.0× 109 sun-like stars and 4000
simulated stars we arrive at

Qtot(4000) = 0.01. (2.185)

This number is now used and is rescaled to the proper number of simulated particles
via

Qtot(Nreal) =
ln (0.4 · 4000)

4000

Nreal

ln 0.14Nreal

Qtot(4000). (2.186)

As the code is using in the acceleration corresponding to the drag force we just di-
vide equation (2.181) by the mass of the individual star (m∗) to arrive at the drag
acceleration

adrag = Qtot(Nsim)
R2

d

Nsimm∗
πρ|vrel|vrel. (2.187)
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3. Numerical simulations using the
PLUTO code and
NBODY6++GPU

3.1. Astrophysical system

The astrophysical system considered is an Active Galactic Nucleus (AGN) composed
of an accretion disk, a Super Massive Black Hole (SMBH) and the surrounding Nuclear
Star Cluster (NSC). While we do not consider the NSC in the hydrodynamical simu-
lations, it will be the main focus in the simulations using NBODY6++GPU.

Black Hole

SMBH

1.5× 108 M�

Ig
nored inner region

Rmin = 7.66× 103RSW ≈ 1.10× 10−1 pc

Non
-sel

f-gravitating region RSG = 2.06× 105RSW ≈ 2.92 pc

Region in influence radius

Rinf = 1.74× 106RSW ≈ 25 pc

109RSW106103

2 · 102 2 · 105 2 · 108

Figure 3.1.: Detailed figure of the radial structure of the physical system used in the
simulation. In the very centre one can see the SMBH. The radial scal-
ing is done in a logarithmic scaling using base 1.0× 103 in units of the
Schwarzschild radius. The boundaries of the computational domain at
both radial ends and the region where self-gravity starts to dominate the
vertical gravity force are marked. The distance to the SMBH is always
large enough such that Newtonian physics can be applied.
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3.2. The PLUTO Code

3.2. The PLUTO Code

This section is an extended and adapted version of Section 3.3 “PLUTO” from my
master thesis Klein (2014). Each paragraph was adapted language-wise and partly
updated or extended. The general structure and content was kept untouched apart
from adding the last two subsubsections.
The PLUTO code is a freely-distributed code jointly developed by the Dipartimento

di Fisica, Torino University, INAF, Osservatorio Astronomico di Torino and the SCAI
Department of CINECA. This subsection primarily follows Mignone et al. (2007). In
it, the PLUTO code is presented as a code designed to be able to treat a wide range
of astrophysical flows in the presence of great discontinuities especially for hypersonic
flows. In order to achieve this, the code uses high-resolution shock-capturing. For
dealing with larger system the code uses parallelisation by MPI. The four physics
modules available treat Newtonian fluid dynamics, Magneto Hydrodynamics (MHD) in
Newtonian physics, fluid dynamics in Special Theory of Relativity (STR) and MHD in
the regime of STR, respectively. Thus, PLUTO possesses a framework for integrating
systems of conservation laws. PLUTO is able to solve the Euler equations along with
the induction equation for MHD including source terms for e.g. gravity or other body
forces. Additionally, viscosity, the processes of thermal conduction, resistivity and
optically thin cooling can be included inducing parabolic terms into the equations.
The code is written in a very modular way. In order achieve this, the different solvers
and physics modules are separate entities in the code. The very core of the solver
has been built on Godunov-type finite volume techniques i.e. “a piecewise polynomial
reconstruction followed by the solution of a Riemann problem at zone interfaces and
a final evolution stage.” (Mignone et al. 2007).

3.2.1. Basic discretisation scheme

All conservation equations involved in fluid dynamics have the form

∂U

∂t
= −∇ ·T(U) + S(U), (3.1)

where T(U) is a tensor of rank two describing the fluxes associated with every com-
ponent of the conservative quantity U and S(U) defines the source/sink terms of the
equation. It should be noted that additional source terms might emerge from the
gradient of the fluxes. In order to perform the calculations, one also needs a set of
primitive variables V along with methods to convert between them and the conser-
vative quantities. The set of conservative quantities consists of the density ρ, the
momentum density m, the total energy density E and optionally the magnetic field
B. In contrast, the set of primitive variables consists of the density ρ, the velocity
v, the gas pressure p and the magnetic field B. These converters are also known to
enforce physical constraints like pressure positivity for all cases and subluminal motion
in the case of relativistic flows. To this end, so called mapper-functions are used.
As usual, finite volume schemes use shock-capturing techniques by using a time evol-
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

ution of volume averages. Generally speaking, this consists of six steps as illustrated
below.

(1) Averaging:
Create the cell averages from the polynomial approximations in the cells.

(2) Convert:
In this step the primitive variables are recovered from the conservative variables
(e.g. by using the equation of state).

(3) States:
For each zone in a finite volume cell, two states (left and right) are created with
a discontinutiy between them.

(4) Riemann:
A Riemann solver solves the Riemann problem constructed in the previous step
for all zones in each finite volume cell.

(5) Update:
Advance the cell averages in time using a time discretisation

(6) Reconstruction:
Use interpolation routines to recover the polynomial approximations from the
cell averages.

One needs, consequently, several building blocks in order to implement this scheme.
Following the modular philosophy of PLUTO, all building blocks should be created
such that one can always switch each building block for another one of the same type.
Generally, we need a cell-average calculator, including one for staggered grid quantities
in the case of vectorial quantities like the magnetic field, a conversion function from
conservative to primitive variables, a Riemann solver, a suitable time discretisation
and a applicable interpolation procedure. Of course one also needs functions providing
the correct fluxes and the source functions, if they exist.

3.2.2. Available grids

What went unmentioned before is the theatre, where all the calculations play in: The
grid. PLUTO is able to create and process Cartesian, polar and spherical grids in
up to three dimensions. For this purpose PLUTO uses logically rectangular grids of
orthogonal curvilinear coordinates. The domain decomposition technique is used in
order to enable parallel computations with the PLUTO code using the MPI standard
(Forum 2018). As hinted upon in Mignone et al. (2007) and officially finished and
published in Mignone and Zanni (2012), the PLUTO code is now able to make use of
adaptive mesh refinement using the CHOMBO library (Colella et al. 2003).
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3.2. The PLUTO Code

3.2.3. Riemann solver

As the name suggests these class of solvers is applied to Riemann problems. This
refers to initial value problems that have two states separated by a discontinuity as
initial conditions, i.e.

U(x, t0) =

{
U+,L if x < x+

U+,R if x > x+

. (3.2)

Also required is a one-dimensional evolution equation for U governing the evolution.
In case of one dimension, one can theoretically solve a Riemann problem analytically.
As the analytical solution requires the decay of non-linear waves, it can be quite
complicated and computationally expensive. Hence, numerical Riemann solvers, which
are based on different approximation levels, are generally used in upwind type schemes.
Because we make use of the hll solver, a short introduction to it is given in the
following. The basic idea is to approximate the solution by a limited number of N
waves for which λk+1 > λk or k ∈ [1, N − 1], where λk is the k-th waves’ wavelength.
Moreover, we require that these waves should be separated by N + 1 states. The flux
function is calculated as

F =


fL if λ1 > 0

fk if λkλk+1 < 0

fR if λN > 0

, (3.3)

where the fk are calculated by suitably parametrising the Rankine-Hugoniot jump
conditions across each wave. These conditions are given by

λk(Uk+1 −Uk) = fk+1 − fk. (3.4)

The hll solver is the case corresponding to N = 2. More details can be found in the
book Toro (2009).

3.2.4. Time discretisation schemes

The PLUTO code offers several explicit time discretisation schemes. “Explicit” refers
to the fact that only the current and previously known state of the system is used to
arrive at the solution advanced in time i.e.

S(tn+1) = f(S(tn), S(tn−1), . . . S(tn−N)), (3.5)

where S(tn+1) is the state of the system in the next time-step, S(tn) is the current
state of the system, S(tn−m) are consequently other former states and f is a function
mapping from a number of N previous states to the next time-step. Usually, stability
constraints apply for explicit times stepping. In most cases there is a condition imposed
on the time step that involves parameters from the equation(s) and the mesh. For
our flow-type problems with explicit time-discretisation, this is primarily given by the

55



3. Numerical simulations using the PLUTO code and NBODY6++GPU

CFL condition first described in Courant et al. (1928), which is given by

C = ∆t

( |λmax|
∆xmin

)
, (3.6)

where λmax denotes the largest signal velocity and ∆xmin describes the minimum cell
length. This obviously limits the time step size and is one of the major limitations
of explicit schemes. While most problems considered here allow for C ≤ 1, some
schemes also permit a smaller or lager CFL number as a maximum or minimum.
There are many explicit time discretisations of varying order. Depending on the latter
and their calculation steps, a varying number of Riemann solvers calls are needed for
every time-step in every cell, also depending on the spatial dimension of the grid.
The Runge-Kutta schemes employed in the later calculations are well known time
discretisation and will not be discussed in more detail here. For more details the
interested readier is again referred to Toro (2009).

3.2.5. Interpolation schemes

The interpolation schemes are used in the reconstruction step, where one recovers
the piecewise polynomial approximation to V in each cell from the corresponding cell
averages. Using the notation of Mignone et al. (2007), this means that we start from

V±,S = I(P,V), (3.7)

where P(x) represents the polynomial interpolation of V in each cell and S describes
the right or left hand zone side. Moreover, I denotes the interpolation routine giving
the values interpolated at the edges in every cell such that

Vl,+ = lim
x→x+

P(x) (3.8)

or
Vl,− = lim

x→x−
P(x), (3.9)

respectively. In the notation of Mignone et al. (2007) L and R denote the left or
right-hand side cell interface. As stated in Mignone et al. (2007) and Toro (2009),
reconstruction methods are required to fulfil monotonicity constraints in pursuance of
preventing spurious oscillations in the vicinity of discontinuities and steep gradients.

V±,S = V ± ∆Ṽ

2
(3.10)

exemplifies the procedure for a 2nd order linear interpolant. The slope Ṽ is calculated
by a limit procedure as

∆Ṽ =
∑
k

∆w̃krk, (3.11)
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where ∆w̃k = lim(∆w̃k,+,∆w̃k,−) and rk denotes the set of left eigenvectors of the
primitive equations and k is labelling the k-th characteristic field. Additionally, lim
represents a slope limiter. In equation (3.11) the set of right eigenvectors of the
primitive equations are denoted by rk, whereas the forward (+) and backward (-)
derivatives are given by

∆wk,± = ±ll · (Vi±1 −Vi). (3.12)

The so-called slope limiters possess distinct characteristic steepening properties and
can be applied to both the primitive variables as well as a characteristic fields. Fur-
thermore, this can be done independently of one another. As stated in Mignone et al.
(2007) the available interpolation schemes are:

• FLAT: 1st order

• LINEAR 2nd order

• CONVEX ENO: 3rd order convex, see Zanna et al. (2002)

• PARABOLIC: 3rd order in smooth regions, for details see Mignone et al. (2005)

• WENO: Finite difference scheme, 5th order (only hydrodynamics), see Jiang and
Shu (1996)

3.2.5.1. Physical module used

We employ the so called HD module which in PLUTO itself consists of the set of
equations

∂

∂t

 ρ
m
E

+∇ ·

 ρm
m · v + pI
(E + p)v

T

, (3.13)

where ρ is the mass density, v is the velocity vector, m = ρv is the momentum density,
p is the gas pressure, I is the unit 3x3 tensor, T refers to the transposed matrix and
E is the total energy calculated via

E =
p

γ − 1
+
|m|2
2ρ

. (3.14)

Finally, γ is the adiabatic index. The before-mentioned set of primitive variables is
thus given by

V = (ρ,v, p)T . (3.15)

There are several Riemann solvers offered for this module. Among them the hll scheme
which will be employed later. For details see the references in Mignone et al. (2007). It
should be noted that certain curvilinear coordinates may introduce additional source
terms to some of the equations, which are integrated explicitly during the advection
step by adding their contribution to the right hand side of the equations. Furthermore,
parabolic terms e.g. emerging from the viscosity or the magnetic field in other physical
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modules can also introduce more source terms. These terms introduce second order
spatial derivatives. Thus, the solution of diffusion equations included in the original
conversation law picks up the an additional time-step constraint. This is given by

∆t = min
(
∆tad,∆tpar

)
, (3.16)

where ∆tad is the advection time-step determined by the CFL condition (see equation
(3.6)) and

∆tpar < 0.5mind=1,2,3

[(
∆xd

)2

max(σ)

]
, (3.17)

where d = 1, 2, 3 is the dimension, 0.5mind=1,2,3 is the minimum all the dimensions.
Moreover, ∆xd is the lowest cell-size in dimension d and σ is a characteristic velocity
squared of the parabolic quantity in question.

3.2.5.2. Body forces

As described in its userguide, PLUTO allows the addition of body forces either via an
acceleration vector g or a potential Φ. These terms are added as source terms i.e.

Sgravity =

 0
−ρ∇ΦGas + ρg
−∇ · (ρΦ)v + m · g

 . (3.18)

While arbitrary forces can be put into these, this is constructed such that Newtonian
gravity can be easily added to the code.

3.2.5.3. Viscosity

The non-ideal effect of viscosity results in solving the Navier-Stokes equations instead
of the Euler equations. The involved viscous stress tensor given by

(Π)ij = 2
ν1

hihj

(
vi;j + vj;j

2

)
+

(
ν2 −

2

3
ν1

)
∇ · vδij, (3.19)

where ν1 is the shear viscosity, ν2 is the bulk viscosity, hi is the “geometrical element”
of the respective direction, vi;j denotes the covariant derivative of the vi component by
the j-th coordinate, vj;j is the covariant 4-divergence of v. The covariant derivatives
are needed for the non-Cartesian coordinates as described in the PLUTO user guide.
This tensor adds ∇·Π to the left hand side of the momentum equation and a ∇·(v · Π)
to the left hand side of the energy equation. Comparing equation (3.19) with equation
(2.34) we see a very close resemblance apart form the h terms. These, however, are
only important for the grids used in PLUTO. Thus, we could infer by equation (2.158)
that

ν2 =
2

3
αh2vϕ

R
. (3.20)
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However, Kuiper et al. (2010a) uses a different definition of α as visible in equation
(9) that absorbs the factor 2

3
. As the equation (7) therein reveals that the same tensor

is used as in our calculation. Consequently, we always assign

ν2 = αh2vϕ
R

. (3.21)

Thus, we have to take this into account when comparing it to Shakura and Sun-
yaev (1973) and Kennedy et al. (2016). Moreover, ν2 = 0 is set, because it vanishes
according to molecular theory for mono-atomic gases as mentioned in Toro (2009).

3.2.6. Modules by Rolf Kuiper

Rolf Kuiper has written additional modules for PLUTO that are adding additional
physics via source terms. A good overview can be obtained from Kuiper et al. (2018,
submitted). Fig. 3.3 illustrates the interoperation and sequence of the modules,
which is indicated by the dotted arrows. The starting point is the self-gravity module
“Haumea” (to which external initial conditions are fed). The connected red boxed
represent the output quantities (if they are fed to another module). The yellow arrows
graphically represent which quantities are send as input parameters. Moreover, the
green arrows represent dependent quantities that are updated. One can easily see that
PLUTO is the central part for all the modules. The simulations in this thesis only use
the “Stellar Gravity” module, the self-gravity module “Haumea” and the radiation
transport module “Makemake”. “Stellar Gravity” is not a real module, but a two
function calls allowing one to conveniently add external forces in PLUTO as described
in Subsubsection 3.2.5.2. Thus, only these are covered in more detail in close reference
to Kuiper et al. (2018, submitted) and previous papers about the modules. On top of
that irradiation and dust temperatures are not considered in the “Makemake” module
for this thesis for now.

3.2.6.1. “Makemake” (Flux Limited Diffusion (FLD))

The “Makemake” module deals mainly with radiation transport and radiation pressure
in the FLD approximation as described in Subsection 2.2.3. If we again take a look
at Fig. 3.3 we see that “Makemake” is fed the gas density ρ. In the following, it
determines the radiative flux along with the radiative forces (not depicted) and the new
gas temperature. These are then fed back to PLUTO and used as source terms and for
the determination of the new gas pressure. Note that all quantities related to unused
modules stay unmentioned here. Let us now take a look how the module actually
determines these quantities using the formalism explained in Subsection 2.2.3. While
Kuiper et al. (2018, submitted) does not give many implementation details, Kuiper
et al. (2010b) provides more information on that. In Fig. 3.4, taken from this paper,
we can see the main loop of “Makemake”. First the FLD equations are solved using
an implicit solver which will provide the new radiation energy density. This will then
be used in order to update the temperature profile using an iterative Newton-Update.
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Figure 3.3.: “Flow chart of the overall multi-physics numerical framework for astro-
physical fluid dynamics. Black boxes represent module for a specific phys-
ical task. Connected red boxes to the modules represent their output
quantities; output quantities of a module are only shown, if they denote
an input for another module. Black dotted arrows represent the call se-
quence of the different modules; the main loop starts from pre-defined
initial conditions by calling the self-gravity module. Yellow arrows denote
input quantities. Green arrows denote update of a dependent quantity”
(Kuiper et al. 2018, submitted), also taken from there; ρgas is the gas
density, pgas is the gas pressure, Frad is the radiative flux, Tgas is the gas
temperature and ΦGas is the potential generated by the self-gravity of the
AD
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3.2. The PLUTO Code

As no irradiation is considered the “Initial Setup” is reduced to just supplying the
density distribution. Eq. (16) from Kuiper et al. (2010b) is equivalent to equation
(2.73) in this thesis. It should be noted that Kuiper et al. (2010b) just considered
the equilibrium temperature case which corresponds to the equation (2.76) and Eq
(15) refers to equation (2.78). Moreover, Kuiper et al. (2010b) assumes a temperature
dependent opacity, which is why a Newton-Raphson is used in the determination of
the new temperature distribution, which is of course unnecessary if the opacity is not
temperature dependant. The central point of the module is the implicit solver used
for the FLD equation. After converting the relevant equation (here: equation (2.78))
to a linear system this system has to be solved. By default, this is done using the
GMRES (Generalised minumum residual) method. As Kuiper et al. (2010b) mentions
a general linear equation looks like

Ax = b, (3.22)

where A is a matrix, x is the initial vector and b is the result vector. In the case of
an implicit scheme we assume x to be vector of the advanced time-step and b to be
the initial values. Thus, we need to find the inverse of matrix A and multiply b by it.
Consequently, the equation

x = A−1b (3.23)

is to be solved. The differential equations considered can all be rearranged to a system
like that. As an example, see Hans Petter Langtangen (2017) in Subsection 3.2.1.
GMRES uses a Krylov subspace method in order to approximately invert this equation
under the assumption that A is large but sparse. The choice for GMRES is justified by
claiming that it is better than the conjugate gradient method and “at least as good as
(. . . ) improved stabilized Bi-Conjugate Gradient” in Kuiper et al. (2010b). Following
Kuiper et al. (2010b), the general idea of the GMRES method will be explained. The
i-th Krylov subspace Ki is defined as

Ki = span
{
b, Ab, A2b, . . . , Ai−1b

}
. (3.24)

In each iteration step the Krylov subspace is incremented by one basis basis vector

Ai−1b, (3.25)

which “approximates the solution of the system of linear equations by vector xi which
minimised the normal of the residual r = |Axi|” (Kuiper et al. 2010b). While this
method converges monotonically and is predicted to reach the exact solution after the
same number of iterations as the number of columns in A, a relative or absolute change
abort criterion is used. I.e. the iterations stops when the relative or absolute difference
between the current and last iteration goes below a certain threshold. This allows to
reach convergence in a few iterations tailored the problem at hand. The background is
that, according to Kuiper et al. (2010b), the computation grows as O (i2) and thus the
iterations should be limited to as few as possible. It should be noted that in the newer
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Figure 3.4.: “Schematic flow chart of the radiation module. Exponents declare the
iteration (timestep) number n. The actual timestep corresponds to dtn =
tntn1” Kuiper et al. (2010b), also taken from there

versions, in contrast to Kuiper et al. (2010b), the default GMRES solver of PETSC
(Balay et al. 2016) is used. Both the solver described in Kuiper et al. (2010b) as well
as the current PETSC solver are fully parallelised using MPI and thus can use the
already existing MPI framework of PLUTO. For more detailed tests of the module see
Kuiper et al. (2010b) and Kuiper et al. (2018, submitted).

3.2.6.2. “Haumea” (self-gravity)

The “Haumea” module is responsible for supplying the value for ΦGas derived from
the density distribution. Kuiper et al. (2010a) describes that a diffusion Ansatz is
used in order to solve the Poisson equation. Again, the resulting linear system from
the implicit time-discretisation is solved using the GMRES (Generalised minimum
residual) method is as explained in the “Makemake” subsubsection. The result is now
ΦGas. The accuracy, “i.e. the abort criterion for the approximate matrix inversion”
can be set as a relative or absolute value as in “Makemake”. There are several options
for the boundary conditions. Kuiper et al. (2010a) only describes one method, akin
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3.2. The PLUTO Code

to Black and Bodenheimer (1975), a Taylor expansion of the density distribution to
the boundary. From this only the monopole is used, as tests in Kuiper et al. (2010a)
revealed that this is sufficient. However, we employ a newer version of the module
in this thesis which allows to use other boundary conditions and other solvers and
preconditioners. As it is later used, one of the new boundary condition choices is
explained here. It is possible to rely on an explicit method that determines the profile
at the boundary now. As this is quite computation intensive we calculate these values
for the initial conditions and use them throughout the simulation. More information
on the boundary conditions can be found in Subsection 3.3.4. As with “Makemake”
the newer version also allows a selection of other solvers and preconditioners. More
application examples can be found in Kuiper et al. (2011).
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

Figure 3.5.: Picture of M31 including H-α. Source: Evans (2010)

3.3. Set-up

3.3.1. Target system

In order to be able to compare the results to the ones from Kennedy et al. (2016), we
have chosen M31 as the system we will simulate in this thesis. For a visual represent-
ation we give Fig. 3.5). Thus, we choose all parameters for the system as displayed in
Kennedy et al. (2016). Consequently, the parameters

MBH = 1.5× 108 M�, rinf = Rd = 25 pc (3.26)

are employed. Additionally, we also assume Md = 0.1MBH and hz = 1.0× 10−3 as in
Just et al. (2012), Kennedy et al. (2016). Furthermore, the calculations in Kennedy
et al. (2016) (for more details see Subsubsection 3.4.2.4) arrive at

˙MBH(gas) = 2.0× 10−2 M� yrs−1 (3.27)

for the accretion rate. Because of the different definitions of α as described in equation
(2.159) we calculate the value corresponding to αK10 = 2.0× 10−1. The result is

˙MBH(gas, K10) ≈ 2.85× 10−2 M� yrs−1. (3.28)

We can later compare this to the integrated radial mass flow in the simulation.
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3.3.2. Parameters resulting from the chosen system

In order to stay as close as possible to Kennedy et al. (2016) we choose β = −3
4
.

Following equation (2.143), we can determine

RSG = (0.008)
4
9 Rd ≈ 2.924 pc (3.29)

along with
h

R
= (0.008)−

4
9 hzRd ≈ 8.46× 10−3. (3.30)

The radius at which QToomre = 1, as shown in equation (2.177), is given by

RQToomre=1 ≈ 5.05 pc. (3.31)

In order to have a measure for the closeness to the Super Massive Black Hole (SMBH)
we calculate the Schwarzschild radius

RSW =
2GMBH

c2
≈ 1.4355× 10−5 pc. (3.32)

For the radial range we choose r ∈ [0.11 pc, 25 pc] and thus our closest distance to the
SMBH is ≈ 7663RSW. This clearly means that we can use Newtonian physics. We
also set a lower density threshold, i.e.

ρinitial =
√
ρ2 + ρ2

min. (3.33)

We choose ρmin = 1× 10−23 g cm−3 as the very low density regions below this threshold,
rather part of the disk’s atmosphere, are not expected to contribute much to any
physical effects in the system. Moreover, the numerical calculations on computational
systems would be error-prone because of the range of different orders of magnitudes
involved in calculations with low density. Consequently, the regions where ρinitial ≤
ρmin are ignored in the numerical calculation. The reason is their little importance
as well as the high risk of shocks appearing in very low density regions. We simulate
±5◦ over the equatorial plane in θ and use a lower radial limit 0.11 pc. I.e. the total
ranges are

r ∈ [0.11 pc, 25.0 pc] (3.34)

θ ∈
[π

2
− π

36
,
π

2
− π

36

]
(3.35)

ϕ ∈ [0, 2π] . (3.36)

3.3.3. Units

For the basic units in the computation we choose

[l] 1 pc ≈ 3.085 677× 1018 cm
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[ρ] 1.0× 10−15 g cm−3

[v] 1 pcc
tly
≈ 9.778× 105 km s−1.

Using this, we can derive more units for the problem.

[t] [l]
[v]
≈ 1.471 405× 1013 s

∧
= 1.001 yrs

[p] 9.561× 106 dyn
cm2 .

3.3.4. Boundary conditions

As for any numerical simulation of partial differential conditions, boundary conditions
need to be specified in order to be able to determine approximate solutions. In our
current case we need boundary conditions for the hydrodynamic quantities used in
PLUTO. There are ρ, p, vr, vθ and vϕ, the radiation energy density from the “Make-
make” module as well as the self-gravity potential Φ “Haumea”. Boundary conditions
must be defined for all three coordinate dimensions i.e. r, θ and ϕ in our case. PLUTO
always dubs the three coordinate dimensions as X1, X2 and X3. In the PLUTO code,
two boundary cells are created per dimension. Fig. 3.6 illustrates all of this for a 2-
dimensional Cartesian grid, where four inner cells were requested for each dimension.
The first number in each cell represent their coordinate index of the first dimension,
whereas the second is the same for the second dimension. One can clearly see that the
boundary zones have overlapping parts and that, apart from the 16 internal cells, 48
boundary cells are created. In three dimensions as well as for curvilinear coordinates
all of this works analogously. The PLUTO code defines IBEG as the last coordinate
before the inner boundary for the X1 coordinate and IEND as the last index before
the outer boundary for the X1 coordinate. Similar definitions apply for the X2 and
X3 directions. For these the letter J and K are used, respectively. The numbers NX1,
NX2 and NX3 describe the number of internal grid cells (excluding the boundaries)
in the i, j and k direction, respectively. NX1 TOT (similar for the other directions)
is defined as the total number of grid points including the boundary cells. In this
example IBEG = 2, IEND = 5, JBEG = 2, JEND = 5, NX1 = 4, NX2 = 4,
NX1 TOT = 8 and NX2 TOT = 8.

3.3.4.1. Hydrodynamic quantities

As we have a closed circle in ϕ, periodic boundary conditions are assigned for all
quantities i.e. when taking the X3 boundary as an example

qi,j,k =

{
qi+NX3,j,k if at the inner boundary

qi−NX3,j,k if at the outer boundary
, (3.37)

where i is an index running within the X1 boundary zone. This means, i = IBEG−
1 or IBEG− 2 is valid at the inner boundary, whereas i = IEND + 1 or IEND + 2
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Figure 3.6.: This figure reprents a 2-dimensional grid including the boundaries as cre-

ated by PLUTO when using Cartesian coordinates requesting four inner
cells in each direction. The colourcoding (i boundary, j boundary) shows
the last inner cells for the corresponding direction. The coloured boxes
show the relevant boundary sections showcasing that they are overlapping
to some degree, inspired by Fig. 4.2 in the PLUTO userguide

is valid at the outer boundary. In contrast, j and k are indices running in the entire
domain and boundaries of the other directions (X2, X3). Lastly, q is one of the
quantities ρ, p, vr, vθ, vϕ,Φ, Erad. In the r direction we enforce a zero gradient for the
pressure p

∂p

∂n r
= 0. (3.38)
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

Opposed to this, a conditional boundary condition is employed for ρ and vr

ρ:

{
∂ρ
∂nr

= 0 if vr ≤ 0

ρ(ri, θ, ϕ) = ρ(r2I−i±1, θ, ϕ) else
, (3.39)

vr:

{
∂vr
∂n r

= 0 if vr ≤ 0

vr(rI , θ, ϕ) = −vr(r2I−i±1, θ, ϕ) else
. (3.40)

Finally, we ensure a Keplerian gradient toward the computational domain for vϕ

vϕ(ri, θ, ϕ) = min

{
vK(ri, θ), vϕ, old(ri, θ, ϕ)

√
rI
ri

}
. (3.41)

In these equations, n is the boundary plane direction normal, I is the index of the
first cell of the upper or lower boundary (i.e. IBEG− 1/IEND + 1), ± is + for the
lower boundary and − for the upper boundary respectively, i is index of the current
boundary cell in the boundary, vϕ, old is the vϕ velocity prior to the boundary assign-
ment, v2

K(ri, θ) = GMBH

ri cos θ
and min{} is the minimum of its two arguments. One can see

that the pressure is always assigned a zero gradient boundary condition, whereas ρ is
only assigned that if the vr velocity is non-negative. Otherwise, a reflective boundary
condition is assigned for ρ. The same condition is applied to the velocity vr. The
underlying reason is that one needs to prevent an inflow back into the computational
domain. On top of that, vϕ is changed such that a gradient towards the computational
domain is created. The same mechanism is applied to the θ-boundary X2, expect that
instead of vr, vθ is considered

∂p

∂n θ
= 0 (3.42)

ρ:

{
∂ρ
∂nθ

= 0 if vθ ≤ 0

ρ(r, θj, ϕ) = ρ(r, θ2J−j±1, ϕ) else
(3.43)

vθ:

{
∂vθ
∂n θ

= 0 if vθ ≤ 0

vθ(r, θj, ϕ) = −vθ(r2J−j±1, θ, ϕ) else
(3.44)

vϕ(r, θj, ϕ) = Min

{
vK(r, θj), vϕ, old(r, θj, ϕ)

√
θJ
θj

}
. (3.45)

In these expressions, J is the first cell the upper or lower θ boundary (i.e. JBEG −
1/JEND + 1), j is the current index within the θ boundary.

3.3.4.2. Erad

For Erad we assign a zero gradient boundary condition (No radiative flux over boundary
interface) for the lower r boundary. For the upper r boundary as well as both θ
boundaries we assign the temperature values prescribed via the initial conditions in
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the corresponding cell as
Erad = aradT

4
initial, (3.46)

where T 4
initial = pinitial

µmH

kBρinitial
, µ = 0.7, kB is Boltzmann’s constant and mH is the

hydrogen atom mass. In the ϕ-direction periodic boundary conditions are prescribed
once more.

3.3.4.3. Self-gravity potential Φ

As the last point, the boundary conditions for the self-gravity potential Φ are discussed.
For the radial boundaries we prescribe a zero-gradient condition again. Also, periodic
boundary conditions are again assigned to ϕ. For the θ boundaries we assign the
explicitly calculated values from the initial condition, i.e. the explicit solution for the
Poisson equation

∆ΦGas = −4πGρinitial (3.47)

at the boundary derived from the initial density profile.
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

3.4. Numerical simulations without self-gravity

As first tests we performed simulations that do not include self-gravity. Thus, these
simulations get a smaller radial range which stops at the radius RSG, describing the
break even point between central Super Massive Black Hole (SMBH) gravity and
self-gravity. Both axis-symmetric 2D simulations as well as full-scale 3D simulations
were performed.

3.4.1. Initial conditions

We prescribe the before mentioned initial conditions. This results in the density, total
pressure and ϕ profiles (Reminder: vr and vθ were initialised to 0) as displayed in Fig.
3.7, Fig. 3.8 and Fig. 3.9. These illustrate that the initial conditions are independent
of ϕ and symmetric in cos θ and that we are covering five orders of magnitude in ρ and
p and two in vϕ. Moreover, the lower density threshold, and its effect on the pressure
profile, can be seen in the plots of the density and pressure profile (blue lines in Fig.
3.8 denotating where the minimum density begins, flattening profiles in Fig. 3.9a and
Fig. 3.9b).

3.4.2. Results in axis-symmetric 2D simulations

Initially, axis-symmetric simulations were performed. The initial conditions are, of
course, the same as for a 3D simulation as there is no ϕ dependence. The pressure
mostly follows the density (as visible in the initial conditions) and there is no significant
change in vϕ as to be seen in Fig. 3.10 (Dashed line: initial conditions overlap with
current values). Consequently, these quantities are not discussed in the following. In
the Fig. 3.11a and Fig. 3.12a show that there are small oscillations in the density
representing waves passing through the system that are dissipating over time. Fig.
3.12a specifically shows that the oscillations are bigger further away from the equatorial
plane. This behaviour is mirrored in the radial velocity vr as visible in Fig. 3.11b and
Fig. 3.12b which are displaying the same wave patterns. Below r = 3× 10−1 pc no
oscillations are present proven best by Fig. 3.12b. Additionally, vr is almost zero in
the equatorial plane and only shows oscillations. Moreover, there is a spike to zero
close to the inner boundary which is most probably a boundary condition effect, which
is not physical. For the θ values much above/below the equatorial plane one can see
we see the same jump near the inner boundary and oscillations. However, they clearly
have negative values with a downward slope up to the jump. All of this can be a
sign that the system is equilibrating. As can be seen in Fig. 3.11c and Fig. 3.12c
the vθ velocity is almost zero in the inner high density parts of the disk and only
have a non-zero value in the regions above and below that region. A shock behaviour
can be observed there which creates material falling onto the disk from both vertical
directions. This seems to be already a quite constant state.
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3.4. Numerical simulations without self-gravity

(a) ρ

(b) ptot (c) vϕ

Figure 3.7.: Initial conditions without self-gravity showing the equatorial plane (i.e.
cut in θ) emphasising the axis-symmetry of the initial conditions
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(a) ρ

(b) ptot (c) vϕ

Figure 3.8.: Initial conditions without self-gravity showing a cut in θ and ϕ
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3.4. Numerical simulations without self-gravity

(a) ρ

(b) ptot (c) vϕ

Figure 3.9.: Initial conditions without self-gravity showing showing 1D plots showcas-
ing r dependence with several θ values
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3.4.2.1. Equilibrated state

After ≈ 8.0× 104 yrs the system is equilibrated and the simulation was continued until
1.0× 107 yrs. The plots can be seen in Fig. 3.13 and Fig. 3.14. All oscillations have
disappeared, we only see a slight decrease in the density near the inner boundary (see
Fig. 3.14a) which is also a boundary condition effect. The radial velocity (see Fig.
3.14b) is also oscillation free and only shows jumps at the inner and outer boundary.
vθ (see Fig. 3.14c) also shows no more oscillations and is still essentially zero expect
for cells much above the equatorial plane.

3.4.2.2. Analysis of the scale-height

In order to determine potential changes in the constant h
R

(as described in Subsection
2.3.7) we fit the function

ρ(r, z) = ρ0(r) exp

(
− z2

2h2

)
(3.48)

at every radius r, where ρ0(r) is the density of the equatorial plane which can be
obtained as the density of each of the cells of the equatorial plane and z = r cos θ
is the Cartesian height coordinate. From this we can obtain h(R) (as r = R in the
equatorial plane) and h

R
. The result can be seen in Fig. 3.15 which shows that the

factor has stayed constant, but dropped from its initial value h
Rt0
≈ 8.46× 10−3 to

h

R
≈ 6.60× 10−3. (3.49)

This means the disk’s aspect ratio h
R

has dropped by ≈ 21% i.e. the disk has become
thinner in the equilibration process. However, its has done so in the same way over
the whole r range emphasising that a linear growing scale-height is the correct equilib-
rated state. The slightly different value might be related to the fact that the initially
prescribed value for h

R
is derived from an approximation.

3.4.2.3. Analysis of the radial velocity

Furthermore, we can take a closer look on the radial velocity vr. Shakura and Sunyaev
(1973) predict a power law for the radial velocity

vr = aRl, (3.50)

where a is a constant (that also depends on more parameters of the system such as
α) and l is a real number. Following Kennedy et al. (2016) we look at the region c)
in Shakura and Sunyaev (1973) which has l = −1

4
. When fitting the power law to the

data (i.e. to each vr(r) for each θ) we obtain the results displayed in Fig. 3.16. It
should be noted that both values were set to zero if no convergence of the fit could
not converge. As Fig. 3.16a reveals we generally see 0 on the boundaries (part of the
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3.4. Numerical simulations without self-gravity

Figure 3.10.: vϕ after 1.0× 107 yrs from a 2D simulation with αK10 = 2.0× 10−1, the
dashed line are the initial conditions

not integrated domain) and no clear conclusion in the equatorial plane. There is a
pronounced global minimum a bit before cos θ = −0.05. We unfortunately only partly
observe the predicted clear dependence of the constant a on the α parameter. One
can see, however, see a much more steep decline for αK10 = 4.0× 10−1 and 2.0× 10−1

as well as lower absolute magnitude of the minimum. A closer look at Fig. 3.16b
confirms that there was no convergent result for the equatorial plane as p = 0 is valid
in it for all α apart from αK10 = 5.0× 10−2. Strangely, there are positive p values in
a local maximum for all α. Otherwise we get a negative p which are close to p = −1
and are going down to p = −4. While the negative sign is expected, this is at least
four times higher than the predicted p = −0.25. However, the value is closer to
the other values of the other subregions from Shakura and Sunyaev (1973) (−1

5
and

−1.5). Apart from αK10 = 1.0× 10−2 the p values are very similar in their constant
regions which should be the case. It is unclear why it is different for one αK10 value.
When looking at the qualitative plots in Fig. 3.17 we can see that the reason of the
strange behaviour of αK10 = 1.0× 10−2 is probably due to the higher oscillations still
present in it. Furthermore, one sees that the radial velocity is higher in regions above
the equatorial plane and that one can see a larger negative value for vr for higher
α. The lowest oscillations are to be seen for αK10 = 2.0× 10−1 followed closely by
αK10 = 5.0× 10−2. While higher viscosity should mean lesser oscillations in general
we cannot see this here. The system seems to have specific α values which result in a
oscillation free-simulation in vr after equilibration. It might be that the self-gravity is
a factor for this. Thus, we will revisit this again later.
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(a) ρ

(b) vr (c) vθ

Figure 3.11.: 2D Plots of ρ, vr and vθ after 1.0× 104 yrs from a 2D simulation with
αK10 = 2.0× 10−1
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(a) ρ

(b) vr (c) vθ

Figure 3.12.: 1D Plots of ρ, vr and vθ after 1.0× 104 yrs from a 2D simulation with
αK10 = 2.0× 10−1
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(a) ρ

(b) vr (c) vθ

Figure 3.13.: 2D Plots of ρ, vr and vθ after 1.0× 107 yrs from a 2D simulation with
αK10 = 2.0× 10−1
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(a) ρ

(b) vr (c) vθ

Figure 3.14.: 1D Plots of ρ, vr and vθ after 1.0× 107 yrs from a 2D simulation with
αK10 = 2.0× 10−1

79
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Figure 3.15.: h
R

at each radius r after 1.0× 107 yrs obtained from a 2D simulation with
αK10 = 2.0× 10−1
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Figure 3.16.: Plots of the power law f(R) = aRp fitting parameters for vr for different
values of α determined from a 2D simulation without self-gravity, be
aware that there is no unit stated for a as it depends on the value of p
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3.4. Numerical simulations without self-gravity

(a) αK10 = 5.0× 10−2 (b) αK10 = 1.0× 10−2

(c) αK10 = 2.0× 10−1 (d) αK10 = 4.0× 10−1

Figure 3.17.: Plots of vr for a variety of θ values derived from 2D simulation without
self-gravity for four different values of αK10 after 1.0× 107 yrs
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3.4.2.4. Analysis of the radial mass flow as a precursor for the accretion rate

In the next step we take a look at the integrated radial mass flow as a precursor for
the accretion rate i.e. the result of the calculation

ṁr =

∫
ρvrdA (3.51)

for each radius r, where A is the spherical surface corresponding to the radius. As
already suggested by the notation we are using this as a approximation for the accretion
rate which is constant in Shakura and Sunyaev (1973). It can be calculated from the
other input parameters and profiles as given in Shakura and Sunyaev (1973). Kennedy
et al. (2016) uses equation 2.19 from Shakura and Sunyaev (1973) to arrive at

Ṁ = 1.8× 10−6 M� yrs−1α
8
7

(
Md

M�

) 10
7
(
MBH

M�

)− 5
14
(
Rd

R�

)− 25
14

(3.52)

which gives, for our choice MBH = 1.5× 108 M�, Md = 0.1MBH and α = 2.0× 10−1,
Ṁ ≈ 2.0× 10−2 M� yrs−1. As mentioned before the different α definitions means that
the simulations should have a value of Ṁ ≈ 2.85× 10−2 M� yrs−1. When plotting the
values obtained form the simulations we obtain the results displayed in Fig. 3.18. At
first glance one can see that there are great oscillations for higher radii for αK10 =
1.0× 10−2 and 4.0× 10−1, whereas the curves are really smooth for the other two
alpha values. This is clearly related to the oscillations seen in the radial velocity
in the subsubsection before. However, the non-oscillating regions look qualitatively
similar to the ones of in the cases without oscillations. The range of values seems
to be roughly the same apart from slight slope differences for αK10 = 5.0× 10−2 and
2.0× 10−1. According to Shakura and Sunyaev (1973) one expects a constant accretion
rate (which should also mirror in the radial mass flow) throughout the whole disk and
a dependence of the constant value on the α parameter. While we cannot see the
any clear dependence on α here (the missing self-gravity might play a role) we see a
constant plateau for the αK10 = 2.0× 10−1 case. When looking at the quantitative
numbers we see ≈ (4.0± 2.0)× 10−3 M� yrs−1 which is roughly five to seven times
lower than the predicted value. Again, we have to check if the missing self-gravity
plays a role in this case. Furthermore, it should be checked if a full 3D simulation
changes the result significantly. But it is already a significant milestone that the value
is only one order of magnitude different from the predicted value.

3.4.3. Results in 3D

In the following, we discuss simulations in full 3D with 30 cells in the ϕ direction.
Initially, we look at the plots from the beginning of the simulation after 8.0× 104 yrs
in Fig. 3.19 and Fig. 3.20. At first glance it is striking that there is no break of axis-
symmetry in Fig. 3.19 for any of the quantities displayed. We compare the results
to the plots of a 2D simulation (as discussed in the section before) at a similar time

82



3.4. Numerical simulations without self-gravity

(a) αK10 = 5.0× 10−2 (b) αK10 = 1.0× 10−2

(c) αK10 = 2.0× 10−1 (d) αK10 = 4.0× 10−1

Figure 3.18.: Plots of the integrated radial mass flow from a 2D simulation without
self-gravity for four different values of α
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as to be seen in Fig. 3.21. When analysing the similarities and differences between
these two, it is very noteworthy that there is no visible difference between them in the
density plots in Fig. 3.20a and Fig. 3.21a. While the radial and θ velocity look very
similar at first glance there are slight differences as indicated by the contour lines in
Fig. 3.20b, Fig. 3.20c, Fig. 3.21b and Fig. 3.21c. These differences are, however, quite
small. In the following we will again look on the scale-height, the radial velocity as
well as the radial mass flow in order to see how different this is to a 2D axis-symmetric
simulation.

3.4.3.1. Scale-height

Because of the almost exactly equivalent density profile we expect no change compared
to the 2D simulation. This is well-proven by Fig. 3.22 (The cut in ϕ is not a problem
as there are no differences in ϕ for ρ as shown before). The value for the constant h

R

is also equivalent to the one before in the given precision.

3.4.3.2. Radial mass flow

Again, we take a look at the integrated radial mass flow as a precursor for the accretion
rate. A comparative plot for the 2D and 3D case can be seen in Fig. 3.23. While
both cases still show oscillations above r = 1 pc, there are somewhat less oscillations
near the inner boundary for the 3D case as to be seen in Fig. 3.23b. Overall the
shape of the curves seems similar, but a closer investigation reaveals that the value
are shifted to more negative values for the 2D simulation as displayed in Fig. 3.23a
which is also preserved up to 1.0× 107 yrs as displayed in Fig. 3.18c. It is, roughly,
2.0× 10−2 M� yrs−1 lower than for the 3D case. The slight changes in the radial
velocity that have been seen before could be the cause of this. In this case, this effect
is amplified by the ϕ integration, as it sums up the velocities lower in magnitude for
all ϕ. Unfortunately, this puts the number a bit further away from the predicted
accretion rate value.

3.4.3.3. Why are there no longer 3D simulations?

Unfortunately, it turned out the 3D simulations are tremendously computationally
expensive. Even reaching 5× 104 yrs took 48h on 800 cores which is close to the limit
of cores available on the clusters used for this project (BWfor, MilkyWay). When
estimating how many cores are required to reach a decent performance one arrives at
≈ 3000 cores which are not easily obtainable within the given timeframe of this thesis.
PLUTO is proven to scale to these core numbers in the PLUTO userguide. Thus, it
was decided to focus all the computational power on performing one big 3D simulation
with self-gravity and not continue big 3D simulations without self-gravity.
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3.4. Numerical simulations without self-gravity

(a) ρ

(b) vr (c) vθ

Figure 3.19.: Cut through the equatorial plane showing ρ, vr and vθ after 8.0× 104 yrs
from a 3D simulation with αK10 = 2.0× 10−1 without self-gravity
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) ρ

(b) vr (c) vθ

Figure 3.20.: Cut in ϕ showing ρ, vr and vθ after 8.0× 104 yrs from a 3D simulation
with αK10 = 2.0× 10−1 without self-gravity
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3.4. Numerical simulations without self-gravity

(a) ρ

(b) vr (c) vθ

Figure 3.21.: Plot showing ρ, vr and vθ after 8.0× 104 yrs from a 2D simulation with
αK10 = 2.0× 10−1 without self-gravity
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) 3D

(b) 2D

Figure 3.22.: h
R

as a cut in ϕ derived from a 3D simulation without self-gravity with
αK10 = 2.0× 10−1
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3.4. Numerical simulations without self-gravity

(a) 2D

(b) 3D

Figure 3.23.: Integrated accretion rate obtained from a 2D and 3D simulation after
8.0× 104 yrs with αK10 = 2.0× 10−1
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

3.5. Numerical simulations with self-gravity

As self-gravity is an important aspect in the comparatively massive Active Galactic
Nucleus (AGN) Accretion Disks (ADs) we now turn it on and also simulate the full
radial range up to Rd = 25 pc. This will also enable us to confirm if a change in scale-
height occurs as assumed in Kennedy et al. (2016) along with the question if there
is an influence on the radial mass flow. As the presence of self-gravity might lead
to instabilities we now include calculations of the QToomre as presented in Subsection
2.3.8. As QToomre does not depend on θ or ϕ only a radial analysis is sufficient.

3.5.1. Initial conditions

The initial conditions can be investigated in Fig. 3.24, Fig. 3.25 and Fig. 3.26. They
are essentially the same as for the case without self-gravity apart from the radial range
extending up to 25 pc. The QToomre discussed in Subsection 2.3.10 is plotted in Fig.
3.27 for the range QToomre ≤ 5. We see that instabilities are expected for the higher r
values because QToomre is in the order of magnitude of 1 and also ≤ 1. Additionally,
one can rediscover that QToomre = 1 for r ≈ 5 pc as determined in equation (3.31).

3.5.2. Results in axis-symmetric 2D simulations

As with the non-self gravitating case 2D simulations were performed at first. The plots
after 8.0× 104 yrs can be seen in Fig. 3.28 and Fig. 3.29. Once again small density
oscillations, especially in Fig. 3.29a. One can also make them out prominently in the
radial velocity in Fig. 3.29b. All features seem somewhat similar to the case without
self-gravity. The instabilities predicted by the QToomre are not yet visible confined to
the predicted region.

3.5.2.1. Equilibrated state

Now, the state after 1.0× 107 yrs is displayed in Fig. 3.30 and Fig. 3.31. We see
that while a steady state has been reached the oscillations have NOT disappared like
in the none self-gravitating case. This can be seen best in the density (Fig. 3.30a
and Fig. 3.31a) and the radial velocity (Fig. 3.30b and Fig. 3.31b), respectively.
For R ≥ 10 pc the disk seems to have mostly disrupted and thinned considerably.
Moreover, there is a build-up of density around 20 pc with minimal density behind
it. The Fig. 3.31b shows a hard boundary in velocity that has formed at the some
position. Furthermore, Fig. 3.31c shows a point where vθ = 0 before rising again. One
suspicion might be that strong oscillations have disrupted the disk. When looking at
Fig. 3.27 and equation (2.177) and equation (3.31) one more time one can discover
that the oscillations start at the radius that corresponds to QToomre = 1 in the initial
conditions (≈ 5 pc) and thus agreeing with the expectation of instability in this region
very well. Thus, we are not dealing with numerical noise but with a physical effect
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3.5. Numerical simulations with self-gravity

(a) ρ

(b) ptot (c) vϕ

Figure 3.24.: Initial conditions with self-gravity showing a cut in θ showing the equat-
orial plane
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) ρ

(b) ptot (c) vϕ

Figure 3.25.: Initial conditions with self-gravity showing a cut in ϕ, blue lines represent
the initial line of the minimum density
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3.5. Numerical simulations with self-gravity

(a) ρ

(b) ptot (c) vϕ

Figure 3.26.: Initial conditions with self-gravity showing a cut in ϕ and several θ values
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

Figure 3.27.: Toomre Q determined from the initial conditions for the standard
parameters of a simulation with self-gravity, plotting range limited to
QToomre ≤ 5

here matching the theoretical predictions. Similiar to the none-self-gravitating case vϕ
is almost unchanged apart form minor oscillations near the outer boundary which are
not surprising considering the disturbances in this region as seen in Fig. 3.32.

3.5.2.2. Analysis of the scale-height

Like in the simulations without self-gravity we take a look at the scale-height in a
similar manner. First, we plot the fits as can be investigated in Fig. 3.33. One
can quickly see that the before-mentioned oscillations disturb the fitted values for
r ≥ 5 pc. Despite of these oscillations we can see a major assumption of Kennedy
et al. (2016) realised in the plots. Kennedy et al. (2016) assumes a linear growing
scale-height until the approximate radius where the vertical self-gravity dominates
over the central Super Massive Black Hole (SMBH) gravity (here ≈ 2.92 pc) after
which the scale-height becomes constant. The curve in Fig. 3.33a begins linearly and
then slowly changes curvature to become more and more flat. This gradual behaviour
is expected as the ratio of the two gravity forces also changes gradually and not at one
point. When looking at Fig. 3.33b displaying h

R
one can read of that the value of the

constant in the linear growing regions is, similarly to the non-self-gravitating case, as

h

R linear
≈ 6.3× 10−3. (3.53)

94



3.5. Numerical simulations with self-gravity

(a) ρ

(b) vr (c) vθ

Figure 3.28.: 2D Plots of ρ, vr and vθ after 8.0× 104 yrs from a 2D simulation with
αK10 = 2.0× 10−1 with self-gravity, the blue line denotes the line of
the initial minimum density which marks the borders of the integrated
domain
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) ρ

(b) vr (c) vθ

Figure 3.29.: 1D Plots as a several cuts in θ of ρ, vr and vθ after 8.0× 104 yrs from a
2D simulation with αK10 = 2.0× 10−1 with self-gravity
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3.5. Numerical simulations with self-gravity

(a) ρ

(b) vr (c) vθ

Figure 3.30.: 2D Plots of ρ, vr and vθ after 1.0× 107 yrs from a 2D simulation with
αK10 = 2.0× 10−1 with self-gravity, the blue line denotes the line of
the initial minimum density which marks the borders of the integrated
domain
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) ρ

(b) vr (c) vθ

Figure 3.31.: 1D Plots of ρ, vr and vθ after 1.0× 107 yrs from a 2D simulation with
αK10 = 2.0× 10−1 with self-gravity, the blue line denotes the line of
the initial minimum density which marks the borders of the integrated
domain
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3.5. Numerical simulations with self-gravity

Figure 3.32.: vϕ after 1.0× 107 yrs from a 2D simulation with αK10 = 2.0× 10−1 with
self-gravity

So the scale-height has decreased in a similar manner. The constant scale-height value
(predicted to be 2.5× 10−2 pc by Kennedy et al. (2016)) can roughly be estimated to

hconst ≈ 1.8× 10−2. (3.54)

This value is very close to the value predicted by Kennedy et al. (2016) which is
a very encouraging result along with the correct transition. It also shows that the
assumptions used in Just et al. (2012), Kennedy et al. (2016) in order to arrive at the
constant scale-height as well as the transition radius are reasonable.

3.5.2.3. Analysis of the radial velocity

Again in similarity to the analysis performed for the case without self-gravity we take
a closer look at the radial velocity by fitting a power law to the data and compare
the results for different α values. Because of the oscillations we restrict the fitting to
the region where the central SMBH gravity dominates over self-gravity. For more
information on the fitting and this aspect please refer to Subsection 3.6.2. The cor-
responding results are displayed in Fig. 3.34. The plot of the constant a, which
can be investigated in Fig. 3.34a, looks somewhat similar to the same figure for the
none-self gravitating case (see Fig. 3.16a). The main difference is a more pronounced
asymmetry in θ showing a shallower decline of the prefactor for cos θ > 0. Also, there
seems to be a smaller amount of slightly positive values near the equatorial plane. The
equatorial plane itself, however, is at 0 for both cases. Again the local minima appear
at cos θ ≈ ±0.03, but in contrast to the self-gravitating case the number value is about
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) h (b) h
R

Figure 3.33.: Scale-height h and aspect ratio h
R

after 1× 107 yrs derived from a 2D
simulation with self-gravity and αK10 = 2.0× 10−1

16% less deeply negative. The overall range of values is roughly the same though. Now
we focus our attention on the p parameter that is representing the exponent which,
according to Shakura and Sunyaev (1973), should be 1

4
. This is plotted in Fig. 3.34b

which only somewhat resembles the shape of the figure in the case without self-gravity
(see Fig. 3.16b). It is far less symmetric and we do not see the characteristic very
negative values of the none-self-gravitating case (−16). Instead of this we see a zero
line for αK10 = 1.0× 10−2 and slightly positive values for the other α. Additionally,
we see one downward spike at cos θ ≈ −0.05 in the negative part and a dripping down
of values for the positive case. What is still similar is that we see a region of roughly
constant p ≈ −1 in approximately cos θ ∈ [±0.01,±0.04]. In both the case with and
without self-gravity αK10 = 1.0× 10−2 is not showing this behaviour. Summed up,
the self-gravity gives us a slightly more clear result. For a more general overview we
also plotted the radial velocities in Fig. 3.35. These are mostly similar to the non-
self-gravitating case apart from the oscillations caused by the instabilities for high r.
Even the fact that αK10 = 1.0× 10−2 shows a somewhat erratic behaviour compared
to the other simulations with different α values. The values themselves are mostly
similar. So apart from the oscillations there is no qualitative difference visible and it
really needs the quantitative analysis executed above in order to see the differences.

3.5.2.4. Analysis of the radial mass flow as a precursor for the accretion rate

Again, the radial mass flow is investigated here. As the title already gives away we
now again look at the integrated radial mass flow as a precursor for the accretion rate.
The plots for varying α can be seen in Fig. 3.36. On first glance it is obvious that
the ever-present oscillations due to the instabilities caused by the self-gravity prevent
us from obtaining a proper values for r ' 3 pc which is a bit smaller of a radius
than observed for the other quantities. Overall, it can can be seen that there are less
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3.5. Numerical simulations with self-gravity
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Figure 3.34.: Plots of the power law f(R) = aRp fitting parameters for vr for different
values of α determined from a 2D simulation with self-gravity, be aware
that there is no unit stated for a as it depends on the value of p

differences from a straight line in the plots compared to the case without self-gravity
(see Fig. 3.18). This is an encouraging results. The higher α values show more of
a dip compared to the lower values of α. It is interesting that Fig. 3.36a and Fig.
3.36b are very similar suggesting that α does not have an influence beyond a certain
lower limit. In contrast to the simulations without self-gravity we can see more clearly
that a higher α results in a higher mass flow (and thus accretion rate) especially when
looking at Fig. 3.36c and Fig. 3.36d. The self-gravity seems to stabilise the radial
mass flow which shows that it is integral to the mass flow in AGN ADs. Looking at
Fig. 3.36c we can again estimate

Ṁ ≈ (0.05± 0.01) M� yrs−1 (3.55)

again placing the values at roughly five times the value expected from Shakura and
Sunyaev (1973). Overall this results is encouraging as we could arrive at a number
this close despite of not yet including momentum transfer through radiation.

3.5.3. Results in 3D

Again we now look at fullscale 3D simulation to see if any significant changes appear
when the ϕ dimension is fully simulated and axissymmetry is not enforced. The initial
conditions are again the same as for the 2D case and we chose to use αK10 = 2.0× 10−1.
First we look at plots made after 8.0× 104 yrs as displayed in Fig. 3.37 and Fig. 3.37.
On closer inspection Fig. 3.37 shows (as also the case for the simulations without
self-gravity) no visible deviations from the symmetry in ϕ in neither of the quantities
plotted. Fig. 3.37b and Fig. 3.38b, displaying v, gain show the well-known oscillation
patterns caused by the self-gravity. When comparing it to the plot in 2D (Fig. 3.28)=,
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) αK10 = 5.0× 10−2 (b) αK10 = 1.0× 10−2

(c) αK10 = 2.0× 10−1 (d) αK10 = 4.0× 10−1

Figure 3.35.: Plots of vr for a variety of θ values derived from 2D simulation with
self-gravity for four different values of α
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3.5. Numerical simulations with self-gravity

(a) αK10 = 5.0× 10−2 (b) αK10 = 1.0× 10−2

(c) αK10 = 2.0× 10−1 (d) αK10 = 4.0× 10−1

Figure 3.36.: Plots of the integrated radial mass flow from a 2D simulation with self-
gravity for four different values of α after 1.0× 107 yrs
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

they seem a bit less severe in the 3D case. This will be investigated in further detail
for the mostly equilibrated state. No remarkable features can be seen in vθ displayed
in Fig. 3.37c and Fig. 3.38c apart from it being almost zero most of the time and
having some odd features at the lower and upper radial boundaries.

3.5.3.1. Equilibrated state

As the beforementioned computational power demands prevent us from doing runs
for millions of years a run with almost 1.0× 106 yrs was performed in order to get
an impression of the mostly equilibrated system. The know well-known plots for ρ,
vr and vθ can be seen in Fig. 3.39 and Fig. 3.40. Fig. 3.40a clearly shows the
oscillation pattern. However, it seems lighter than those seen in the 2D plots. The
same can be said about vr in Fig. 3.40b. This suggets that some effect is dampening
the oscillations in the 3D simulations. What is still missing is an investigation of the
state after 1.0× 107 yrs which should be a subject of further work.

3.5.3.2. Analysis of scale-height

As before we investigate the scale height h and the aspect ratio h
R

determined by
fitting. Fig. 3.41 contains time-averaged plots for both h and h

R
. The time-averaging

was employed in order to dampen the oscillations present. Especially the h, portrayed
in Fig. 3.41a, showcases that the oscillations are a lot less prominent. When checking
out Fig. 3.42, displaying the not time-averaged h, we see that this is not only due to the
averaging, but also due to just less oscillations being present. This further encourages
that there are less oscillations in the 3D simulations. In Fig. 3.41b the transition
to a constant scale-height (and thus h

R
∝ 1

R
) is visible again. It is even clearer here

because of the smaller oscillations. However, because of the low simulation time this
effect is not clearly obvious in Fig. 3.41a yet. We again try to estimate the constant
scale-height for r ≥ RSG. Because of the bad visibility in the h plot we use the value
for r = 10 pc in the h

R
figure to estimate

h =
h

R
(10 pc) ≈ 4.0× 10−2 pc. (3.56)

This number is quite close to the 1.8× 10−2 pc determined for the 2D case. Potentially,
the values might align if simulations of similar runtime would be possible. Once more,
the result is close to the choice from Kennedy et al. (2016) (2.5× 10−2 pc). Moreover,
it is even closer to the choice from Kennedy et al. (2016) compared to the 2D case.

3.5.3.3. Analysis of the radial mass flow as a precursor for the accretion rate

Once more, the integrated radial mass flow is used as a precursor to the accretion rate.
The result can be investigated in Fig. 3.43. Again we see roughly the same picture as
before and again the result is equivalent to the ones from Kennedy et al. (2016). The
somewhat higher oscillations, in comparison to the 2D simulations, are most probably
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3.5. Numerical simulations with self-gravity

(a) ρ

(b) vr (c) vθ

Figure 3.37.: Cut through the equatorial plane showing ρ, vr and vθ after 8.0× 104 yrs
from a 3D simulation with αK10 = 2.0× 10−1 wit self-gravity
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) ρ

(b) vr (c) vθ

Figure 3.38.: Cut in ϕ showing ρ, vr and vθ after 8.0× 104 yrs from a 3D simulation
with αK10 = 2.0× 10−1 wit self-gravity
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3.5. Numerical simulations with self-gravity

(a) ρ

(b) vr (c) vθ

Figure 3.39.: Cut through the equatorial plane showing ρ, vr and vθ after 9.9× 105 yrs
from a 3D simulation with αK10 = 2.0× 10−1 wit self-gravity
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

(a) ρ

(b) vr (c) vθ

Figure 3.40.: Cut in ϕ showing ρ, vr and vθ after 9.9× 105 yrs from a 3D simulation
with αK10 = 2.0× 10−1 wit self-gravity
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3.5. Numerical simulations with self-gravity

(a) h

(b) h
R

Figure 3.41.: Time-averaged (over 9.9× 105 yrs) scale-height h and aspect ratio h
R

in
a cut in ϕ obtained from a 3D simulation with self-gravity and αK10 =
2.0× 10−1
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

Figure 3.42.: None time-averaged after 9.9× 105 yrs scale-height h in a cut in ϕ ob-
tained from a 3D simulation with self-gravity and αK10 = 2.0× 10−1

related to the fact that only 9.9× 105 yrs have passed here, while 1.0× 107 yrs have
passed in the 2D case. However, the general picture is confirmed.
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3.5. Numerical simulations with self-gravity

Figure 3.43.: Integrated radial mass flow obtained from a 3D simulation with αK10 =
2.0× 10−1 after 9.9× 105 yrs
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

3.6. Using the data to do simulations with
NBODY6++GPU

As we are interested if the equilibrated disk from the previous numerical simulations
reproduces and/or changes the results from Just et al. (2012), Kennedy et al. (2016)
(increased accretion rate compared to simulations without the disk). We expect at
least slightly different results as the scale-height has equilibrated to a different value
and we have non-zero vr and vθ. In order to be able to compare this we want to
include the data in the direct nbody-code NBODY6++GPU (for details on the code
see Spurzem (1999), Aarseth (2003), Wang et al. (2015)) and perform a simulation in
the style of Kennedy et al. (2016) with this data. Basis for this is an implementation
of the analytic drag acceleration into NBODY6++GPU created by Taras Panamarev.
For the calculation of the resulting drag acceleration we will use equation (2.187) taken
from Kennedy et al. (2016).

3.6.1. Creating a read-in module for the hydrodynamic simulation
data

In order to make the data obtained in Section 3.5 available to NBODY6++GPU we
need to get continuous data from the grid based data PLUTO supplies. Thus, a spatial
interpolation scheme is required to obtain these values.

3.6.1.1. Spatial interpolation

First, given the Cartesian position (x, y, z) we need to calculate the corresponding
spherical coordinates (r, θ, ϕ) via

r =
√
x2 + y2 + z2 (3.57)

θ = acos
(z
r

)
(3.58)

ϕ = atan
(y
x

)
. (3.59)

It should be noted that we need to take care to have ϕ ∈ [0, 2π] by choosing the atan2
function and adding 2π for negative results form that. In the following we determine
the indices in the grid giving values closest to these i.e. find (i, j, k) such that the
differences

|ri − r|, |θj − θ|, |ϕk − ϕ| (3.60)

are minimal. Due to using a logarithmic grid in r we use the formula

r = r0 (1 + ε)I ⇔ I = log
r

r0

1

log 1 + ε
, (3.61)
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3.6. Using the data to do simulations with NBODY6++GPU

where I is the index of r in the grid, r0 is the lowest radius and 1 + ε is a constant
of the logarithmic grid. For r we employ equation (3.61) to determine I. As the
result might not be an integer, we need a modus operandi to arrive at one. Here, we
always round-off the integer resulting in always arriving at I such that rI ≤ r (rI is
the radius corresponding to the determined index). On top of that it is made sure
that I ∈ [0, Imax] as given by the PLUTO data. The same is done for the other two
coordinates but due to them using equidistant coordinates we can just use

θJ = θ0 + J∆θ ⇔ J =
θ − θ0

∆θ
(3.62)

ϕK = ϕ0 +K∆ϕ⇔ K =
ϕ− ϕ0

∆ϕ
(3.63)

along with the correct bounds for J and K. Depending on the chosen interpolation
scheme we require a different number of grid cells separating them from the respective
boundaries. When using linear interpolation and the lower index we require one cell
to the right in each direction. The only special treatment is required at the last cell
before the outer boundary. In this case we have to use the cell to the left. Thus for
any quantity q in the PLUTO data we can determine the coefficients for the linear
approximation

mr =

{
qI+1,J,K−qI,J,K

rI+1−rI if I < Imax

qI,J,K−qI−1,J,K

rI−rI−1
if I = Imax

(3.64)

mθ =

{
qI,J+1,K−qI,J,K

θJ+1−θJ if J < Jmax

qI,J,K−qI,J−1,K

θJ−θJ−1
if J = Jmax

(3.65)

mϕ =

{
qI,J,K+1−qI,J,K
ϕK+1−ϕK if K < Kmax

qI,J,K−qI,J,K−1

ϕK−ϕK−1
if K = Kmax

. (3.66)

With this the final result will be

qinterpol = qI,J,K +mr(r − rI) +mθ(θ − θJ) +mϕ(ϕ− ϕI). (3.67)

If we determine ρinterpol, vxinterpol, vy interpol and vz interpol from the PLUTO data and
combine it with the particle velocities in order to determine the relative velocity vector
we can use equation (2.187) to determine the drag acceleration vector. It should be
noted that in the case of only one cell in any of the dimensions, the corresponding
liner interpolation factor has to be left out from the calculation because of vanishing
denominators.
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3. Numerical simulations using the PLUTO code and NBODY6++GPU

3.6.1.2. Estimation of the drag acceleration derivatives

As also the time derivative of the drag acceleration vector is required this also needs
to be estimated. For this purpose we chose to use a finite difference scheme. We chose
to use a three-point backward difference i.e.

f ′(tn) =
3f(tn)− 4f(tn−1) + f(tn−2)

tn−2 − 4tn−1 + 3tn
+O

(
(tn−2 − tn)2) , (3.68)

where f(t) is a t dependent function defined on a time-grid (i.e. f0n = f(t0), . . . ,
fn−1 = f(tn−1)), f ′(t) is its time derivative and tn denotes the n-th timestep. As the
time-step is usually not constant in our case we opted not to assume an equidistant
time-grid. In the case of an equidistant grid (i.e. tn− tn− 1 = tn− 1− tn− 2 = h)
equation (3.68) takes the more familiar form

f ′(tn) =
3f(tn)− 4f(tn−1) + f(tn−2)

2h
+O

(
h2
)

. (3.69)

The order of this scheme should be sufficient as a start to serve the 4th order Hermite
scheme of NBODY6++GPU. In the future, higher orders could be used. During the
run this needs to be calculated for all components of the drag acceleration vector which
will give us the three components of the derivative of the drag acceleration. Moreover,
it requires us to develop the code such that we store the last two drag acceleration
vectors along with the corresponding times for particles moving in the data-domain.
Easily one can see that this means that we can only assign a derivative when the
particle has had a history of two previous time-steps. This already hints that there
are limits to this as explained in the next subsubsection.

3.6.1.3. Selection criteria

In the case of analytic drag acceleration calculations one can freely chose which part of
the whole computational domain should be considered for these (i.e. by disk density
threshold, height limits etc.). In contrast, when loading hydrodynamical data we are
restricted to the domain supplied by that data. We thus choose to ignore particles that
are not contained within the space spanned by the hydrodynamical data. Furthermore,
as the drag acceleration history of a particle is required particles need to be ignored
two times even when they are moving in the disk (The drag acceleration and time
values are, however, stored). This requirement is obviously tied to the finite difference
scheme employed to determine the derivative. The number of steps required may thus
change when using different schemes.

3.6.1.4. Implementation

The module used is centred around a single Fortran type (class-like object introduced
in newer Fortran versions). This type is used to store all the relevant information
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like the Q used, the total particle number or the array containing the data read-
in from the PLUTO simulation. On top of initialising these values it is also ready
to change them or read-in a different datafile. This is especially important if the
units the calculation is done in should change in the course of the NBODY6++GPU
simulation or the new datafile uses different hydrodynamical units. The initial para-
meters given are also used to pre-calculate as many constant terms as possible. Apart
from the structure holding the hydrodynamical data, the object storing the particle
history data is the most important part of the type. The history is needed in or-
der to calculate the derivatives of the drag acceleration as described before. As the
integer array “NAME” stores the unchanging name-integer of each particle, the data-
structure of an associative container was chosen to store the information. As a con-
tainer like that is not readily available in Fortran, an interface to the C++-STL (Stand-
ard template library) container “unordered map” was chosen. For more information
see e.g. http://www.cplusplus.com/reference/unordered_map/unordered_map/

or the C++-Standard document. This container works on a “key-value” basis which
means the elements are not accessed by their index, but by their unique “key”. In the
current application it is logical to choose an integer “key” in the form of the “NAME”
entry for each particle. For the value, we save the critical information needed for
each particle in an STL “vector” container of double precision floating point num-
bers. The critical information consists of the data on the time at the last time-step
as well as the components of the drag acceleration vector. Because a 2nd-order back-
ward difference (i.e. a finite difference) is the scheme mainly used we store the data
of the last two time-steps in the array, meaning we have a “vector” with 8 entries.
This is sufficient as these quantities are always known for the current time-step. We
are using “unordered map” instead of the standard “map” because “unordered map”
uses a hashtable to retrieve the entries minimising lookup time at the price of not
having an continuous data-alignment in memory. This is favourable over all other
retrieval strategies is as an integer cannot be mapped to an array index because it
might be negative or zero (Fortran arrays start at element 1). These cases really
occur in NBODY6++GPU e.g. when new binaries are generated and thus no direct
“NAME” entry to index array mapppings are possible. The algorithm used to determ-
ine the drag acceleration vector and its derivatives works as described in Fig. 3.44.
At program startup, the type “readPLUTOPythonProcessed” is initialised with user
supplied information, the PLUTO data as well as some constants from the simulation.
As mentioned before all of this can be changed anytime. This algorithm is called for
every single particle that appears in the “drag force” routine. This routine supplies
the current postion vector, velocity vector and “NAME” entry of the particle along
with the current time. In the following, a routine is called that calculates the indices
in the grid closest to the given postion. Furthermore, it is determined whether the
particle is in the data range loaded from PLUTO. If it is not, the particle’s data is re-
moved from the container and zero is returned for both drag acceleration as well as its
derivative. If the particle is in the data range the drag acceleration is calculated form
the interpolated density and relative velocities. Next, the routine checks whether here
are enough previous time-steps stored for the particle. If not, the drag acceleration
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vector is saved along with the current time for later use and again zero is returned.
If, however, the request ends in the affirmative, the finite difference method described
previously is used to determine the derivative of the drag acceleration vector. In this
case, both of them are returned with their proper, non-zero values. Before that, the
current drag acceleration and time is incorporated into the history which might involve
deleting old time steps and shifting data. The next relevant task is the inclusion of this
scheme into the MPI communication used in the NBODY6++GPU code. We have to
synchronise all the containers between all the different processes. In order to to that
we incorporate the data into the so-called “XMPI” scheme which already manages
sending the various relevant quantities to all other MPI processes. The history data
is extracted for each particle and is sent, along with its “NAME” integer entry, to the
other process. On the other end, the history is added to the correct particle using
the “NAME” identifier. This scheme is possible as each particle’s data can only be
changed once per time-step after which the MPI communication is executed.

3.6.2. Extrapolation of hydrodynamic simulation data to smaller
radii

Because the simulations in Kennedy et al. (2016) are done using much deeper inner
radii than the 0.11 pc used in the hydrodynamical simulations we employ an extrapol-
ation of the simulation data for r ≤ 0.11 pc. Because we only need ρ, vr, vθ and vϕ
(actually we need the Cartesian vectors but they can easily be determined from the
spherical ones) the extrapolation will be limited to these quantities. Fitting using the
standard Levenberg-Marquardt algorithm is used for this purpose. For ρ we execute
a fit for every θ value (i.e. θ =const during the fit) employing the function

ρ(r) = ρ′0r
p, (3.70)

where ρ′0 is a fitting parameter with units [g cm−3− p], r is the spherical radius. In
this way we can determine all needed parameters in one fit instead of doing a radial
fit followed by a vertical fit. Both the vr and vθ are fitted to a general power law

vR or vθ = aRp, (3.71)

where a and p are fitting parameters. As vϕ is mostly keeping its Keplerian shape we
fit the function

vϕ = ar−
1
2 , (3.72)

where a and p are fitting parameters. The so determined parameters h, ρ′0, ar, aθ
and aϕ are used to calculate ρ, vr, vθ and vϕ for smaller r values. If no convergence
can be reached for any given fit the corresponding parameters are all set to zero. In
order to minimise problems stemming from oscillations in the self-gravitating case as
seen in Subsection 3.5.2 we will limit the fitting to the radial range r ≤ RSG where no
oscillations are present after equilibration as once more determined in Subsection 3.5.2.
Fig. 3.45 displays an example of this extrapolation for a 2D simulation with self-gravity
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readPLUTOPythonProcessed

Userinput

PLUTO data

type subroutine
“GetAdragDerivatives”

“dragforce” subroutine

Determine closest
indices in grid

Is particle in
disk?

Interpolation,
Calculate adrag

Remove particle from
container if present

Two previous
time-steps
available?

Save time-step
for later use

Interpolate ˙adrag,
Add time-step

data, shift olf data

Return adrag, ȧdrag Return adrag = 0, ˙adrag = 0

Qd, N . . .

data, units, . . .

x, y, z, vx, vy, vz, t

NAME(i)

no

yes

yes

no

Figure 3.44.: Figure illustrating the algorithm to determine the drag acceleration vec-
tor and its derivative from grid-based data obtained from simulations
with the PLUTO code. Determine the closest grid indices, if the particle
is not in disk then return zero and remove from data structure if present,
Otherwise, do interpolation to calculate the drag acceleration, if two pre-
vious are not time-steps present, save the drag acceleration and time and
return 0, otherwise calculate derivative and return proper values
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Figure 3.45.: Example for the extrapolation of ρ, vr, vθ and vϕ from a 2D simula-
tion including self-gravity with αK10 = 2.0× 10−1 for two θ values, after
3.06× 106 yrs

and αK10 = 2.0× 10−1 after 3.06× 106 yrs. The density extrapolation displayed in
Fig. 3.45a is very seamless and does not show any problems. The vr extrapolation
showcased in Fig. 3.45b looks quite well for the θ < π

2
plot as it nicely continues the

shape. However, the extrapolation in the equatorial plane shows slight deviations in
the shape, but generally follows the almost zero line making the extrapolation useful.
The least well extrapolation can be seen in Fig. 3.45c for vθ. While things are fine for
the equatorial plane, the curvature seems slight wrong outside of it. Despite of that
the extrapolation should still be useful as the divergence is ≤ 1 km s−1 and vθ is a lot
smaller than vϕ and its absolute value is smaller than vr close to 0.11 pc where the
original radial boundary is. In contrast to this, the extrapolation for vϕ displayed in
Fig. 3.45d the curve is slightly too high outside of the equatorial plane. Nonetheless,
the small scale of the discrepancies makes this problem a bearable one. Overall, the
extrapolations are safe to use as shown here.
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3.6.3. First preliminary test

In order to verify the code we performed two simulations with 128× 103 particles with
equal mass using a Plummer distribution equilibrated with a Super Massive Black
Hole (SMBH) potential present that is also still present during the run. Additionally,
we choose 2.12 pc as the basis length and 11 718.75 M� as the basic mass unit. The
mass unit is chosen such that the total clustermass is 1.5× 109 M� and the SMBH
mass is 1.5× 108 M� akin to the M31 system used earlier. While this is not important
for the N-body simulation, it is needed for converting the code units of PLUTO to the
N-body units. Moreover, we choose Raccr (radius where a star is labelled as “accreted”)
of 3.0× 10−4 in N-body units. In one simulation, the analytical formulas for the drag
acceleration and its derivative where used. In contrast, the other simulation used
data from PLUTO containing the analytic profiles for density and the velocities as
initial conditions. Additionally, the PLUTO data was extrapolated up R = Raccr to
confirm the extrapolation is working correctly one more time. It should be noted
that we thus use use the interpolation on the density and velocity profiles and also
make use of the before-mentioned finite difference method in order to calculate the
derivative of the drag acceleration. Both simulations where run up to 10.0 N-body
time units as a test. Comparative plots of the dissipation energy Ediss (Energy lost
to the drag forces) as well as the Lagrange radius containing 10% of the total cluster
mass were created and are depicted in Fig. 3.46. When looking at the plot of the
time evolution of the Lagrange radius containing 10% of the total mass, Fig. 3.46b
reveals that the radius is very similar for the analytic formula and the interpolation of
the initial conditions. There are some discrepancies in the initial drop, but then they
are quickly aligning and equilibrate to the same value after about two N-Body time
units. The very small discrepancies are expected because of the errors that came with
interpolation. The dissipated energy displayed in Fig. 3.46a is quite the same for the
analytic and the interpolated case up to t ≈ 1NB, the interpolated simulation seems
to underestimate the dissipated energy t due to the drag forces. An explanation for
this could be that only particles who have spent three consecutive time-steps in the
data range are assigned a non-zero value for both the drag acceleration vector and its
time derivative. While the slopes are also very much the same up to 1NB unit, they
diverge a bit afterwards, but not by a large factor. Summed up these results are quite
encouraging as no unexpected discrepancies occur between critical values of the two
simulations. The next step is now to replace the initial conditions by a simulation
more advanced in time.
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(a) Ediss

(b) Rlagr10%

Figure 3.46.: Comparative plots of Ediss and Rlagr10% (Radius within which 10%
of the total mass are contained) determined from a simulation with
128× 103 particles with equal with a position and velocity distribution
of a Plummer sphere equilibrated to a SMBH present at the centrer
using 3.0× 10−4[NB] as the radius a star is considered accreted to the
SMBH (Raccr). Data was extrapolated to the centre up to R = Raccr.
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4.1. Conclusions for the hydrodynamical simulations
with PLUTO

We have successfully performed hydrodynamical simulation of a numerical model of
an Shakura and Sunyaev (1973)-style Accretion Disk (AD) in an Active Galactic
Nucleus (AGN) in two and three dimensions with and without self-gravity. While
most other simulations only cover two dimensions are only deal with a very limited
radial range we have here produced a three dimensional set of self-consistent models of
the AD. The initial conditions inferred were determined using a static-state approach.
It was possible for the system to reach an equilibrium state within ≈ 1.0× 105 yrs
(without self-gravity) or ≈ 5× 105 yrs (with self-gravity). As seen in Section 3.4 a
almost perfect equilibrium is reached relatively quickly and no oscillations disturb the
system without including self-gravity. For the simulations with self-gravity, as to be
seen in Section 3.5, we were also able to reach an equilibrated state and could even
confirm the change in scale-height R dependency from Shakura and Sunyaev (1973).
There are non-subsiding oscillations which, however, do not significantly slow down
the simulation or cause problems like strong shocks. As unfavourable as this may
seem, the oscillations are actually the embodiment of the Toomre stability criterion
as discussed in Subsection 2.3.10. The onset of the oscillations is almost exactly
at the radius predicted by equation (3.31). This is an encouraging result as this
shows that our simulation is governed by physical effects and not numerical effects.
We later discuss how the oscillations could be prevented. The primary change after
equilibration compared to the initial conditions was that the linear constant of the
scale-height dropped from (

h

R

)
initial

≈ 8.46× 10−3 (4.1)

to (
h

R

)
end

≈ 6.6× 10−3 (4.2)

in the regime where self-gravity is not an important. This shows that the initially
chosen constant using the arguments from Just et al. (2012), Kennedy et al. (2016) is
not exactly correct, but is in the correct range. This is a confirmation of the model
used in Just et al. (2012), Kennedy et al. (2016). Moreover, we were able to confirm
that the self-gravity changes the scale-height from linear growing in R to constant in
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R. Some averaging was necessary due to the oscillations, but this was manageable
quite well. This mostly confirms the assumption made about this in Kennedy et al.
(2016) and greatly showcases the gradual change (as opposed to the abrupt change in
Kennedy et al. (2016)). This is expected as the self-gravity is slowly growing to match
and eventually surpass the gravity of the central Super Massive Black Hole (SMBH).
Another aspect is the integrated radial mass flow which can be seen as a precursor for
the accretion rate. In Shakura and Sunyaev (1973) and also Kennedy et al. (2016) the
accretion rate is assumed to be constant. Despite not enforcing an value via an inflow
from the outer boundary we still end up with a more or less constant value, which is
even quite close to the determined value by using the profiles derived in Shakura and
Sunyaev (1973). We can also see slight differences between different α values. This
is something requiring more investigation as the differences are not this pronounced.
This is very encouraging as it again confirms educated assumptions and we reach,
despite of some problems, a state that closely resembles the theoretical predictions.
Interestingly, the self-gravity seems to stabilise the radial mass flow as less oscillations
can be seen. Additionally, we could see that full three dimensional simulations are
a little less oscillation prone. However, more numerical experiments have to confirm
this first. Furthermore, the axis-symmetry is mostly preserved in all three dimensional
simulations mostly justifying analysing the axisymmetric two dimensional simulations
without losing much information. Still, more three dimensional simulations would be
beneficial to further investigate the system. Also, three dimensional data is best suited
for combining it with simulations using NBODY6++GPU.

4.2. Conclusions for the hydrodynamical simulations
with NBODY6++GPU

A module for NBODY6++GPU was written to read the data obtained in the earlier
hydrodynamical simulations. In addition we were able to run a first preliminary test
simulation with this module employing the analytic initial conditions as data from
the PLUTO code. We could confirm that the module is working within the expected
tolerances. This was proven by looking at the dissipated energy as well of the Lagrange
radius in which 10% of the total star mass is contained. This now allows us to proceed
to using real simulation data to arrive of significant physical results. The module was
written in such a way that alterations and additions are easily possible.

4.3. Outlook

The first issue which should be addressed in future work is the lack of three dimen-
sional simulations running 1.0× 107 yrs and a variety of α values. For this purpose we
could try to obtain computational resources capable of supplying roughly 5000 cores
in order to reach the same grid cells per process for 30 grid points in the ϕ direction
as for the two-dimensional simulations. It would also be interesting to increase the
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number of grid points in the ϕ direction to see if this might break axis-symmetry. An-
other possible approach is to make use of the adaptive mesh refinement for PLUTO
as described in Mignone and Zanni (2012). This would allow to tailor the grid to our
problem making calculations more efficient. Of course, this would require answering
the question what should be the basis for the adaptive mesh refinement. I.e. where
the mesh should be fine and where coarse. Currently, we just assume that the inner
parts require more resolution and are hence using a logarithmic grid with decreasing
cell size towards the centre. The first step in this would be to make cells in the ignored
region where ρinitial ≤ ρmin a lot coarser. Another point is the introduction of stars
crossing the disk which would introduce heating into the disk. PLUTO already offers
a mechanism for this, so future work could address this by reading data determined
from NBODY6++GPU simulations. It would then just be added as another source
term. Alternatively, one could strife to speed up the PLUTO calculations by e.g.
including an GPU as an accelerator or profiling backed alterations of the code. This
would also involve the inclusion of the modules developed by Rolf Kuiper (Kuiper et al.
2018, submitted; 2010a;b; 2011) into this process. The second most interesting area
for future work is the inclusion of the radiative pressure into the simulation. While
it can be simply activated in the “Makemake” module its correct treatment also in-
volves looking at the equations of state and find a set of equilibrium initial conditions
including. This is because some of the assumptions in the derivation of the current
initial conditions, such as the vertically constant sound-speed, are no longer valid if
radiation pressure and a proper equation of state is considered. Apart from a more
correct force balance this would also supply information on the radiation pressure
dominated and gas pressure dominated region boundaries which could be compared
to Shakura and Sunyaev (1973). Likewise, the different sound-speed might stabilise
the Accretion Disk (AD) bringing more of it in the region predicted to be stable by
the QToomre. Moreover, the temperature determined in this process can be compared
to other estimations of it, e.g. in Collin-Souffrin and Dumont (1990). Furthermore, it
could be used together with the already existing opacity treatment in “Makemake”,
to determine spectra generated by the disk. These could than be compared to to
observations of real Active Galactic Nuclei (AGN) in the universe enabling direct
comparison with nature. While the Special Theory of Relativity (STR) and General
Theory of Relativity (GTR) effects are not treated yet information on the Broad Line
Emitting Region (BLR) and Narrow Line Emitting Region (NLR) could be extracted.
This open up another possibility to enhance the model in the future. PLUTO already
posses a module for special-relativistic calculations which could be activated. How-
ever, this would require to also adjust the additional modules to be able to treat STR.
A full treatment of the system would also involve the treatment of magnetic fields as
well as GTR. While the first one might be feasible with PLUTO, GTR effects would
require a different code or significant changes to PLUTO.
The next step for the NBODY6++GPU simulations is the usage of equilibrated snap-
shots later in time instead of just using the initial conditions used as a test case in
order to verify the method. For this purpose we need to address the oscillations ap-
pearing in the outer parts of the disks as they might cause problems because of the
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strongly-varying density in this region. This would affect the interpolation of the dens-
ity and thus the drag acceleration. Furthermore, a star moving through that part will
experience very different drag forces (and thus drag acceleration) which would create
problems for the finite difference calculation to determine the derivative of the drag
acceleration. It would be possible to use an approach similar to the extrapolation that
involves fitting. One would need to be a bit more careful because of the change of the
scale height in that area. This will be addressed in future work shortly and we expect
to have results in the near future. As flexibility was a great concern when writing the
module, future work can profit a lot from this module. It is easily possible to add new
time or space interpolation schemes or to use data provided by another great. The
ultimate goal, however, would be to incorporate the hydrodynamic calculations into
the NBODY6++GPU calculations creating a true mutual feedback between Nuclear
Star Cluster (NSC) and AD.
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A. List of Acronyms

AGN Active Galactic Nucleus

AD Accretion Disk

NSC Nuclear Star Cluster

HIL High Ionisation Lines

BLR Broad Line Emitting Region

NLR Narrow Line Emitting Region

SMBH Super Massive Black Hole

MHD Magneto Hydrodynamics

rms root mean square

MW Milky Way

quasar Quasi-stellar radio source

FLD Flux Limited Diffusion

STR Special Theory of Relativity

GTR General Theory of Relativity
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