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Abstract

Feedback processes play an important role in galaxy formation since they regulate
star formation both in low mass galaxies and in massive galaxy clusters. Which
mechanisms dominate and how the feedback couples to the surrounding medium, are
still open questions. In this thesis, we study the feedback from cosmic rays in different
environments in more detail. We develop steady state models for a sample of galaxy
clusters, in which cosmic ray heating together with thermal conduction prevents large
cooling flows. Observational constraints reveal that cosmic ray heating is only viable
in clusters that do not show signatures of enhanced cooling. This might indicate a
self-regulated feedback cycle. On galactic scales, cosmic rays can drive winds if they are
allowed to diffuse or stream out of the galaxy. We demonstrate in simulations of isolated
galaxies that cosmic rays are able to regulate star formation in low mass galaxies but
the wind efficiency drops rapidly with increasing galaxy mass. Furthermore, almost all
astrophysical flows are highly turbulent. This is a challenge for numerical simulations,
which cannot resolve all scales of the turbulent cascade. Therefore, we implement a
model for turbulence on subgrid scales into the hydrodynamics code AREPO. We validate
our model in idealized test cases and apply it to simulations of turbulent boxes.

Zusammenfassung

Rückkopplungsprozesse spielen eine wichtige Rolle bei der Galaxienentstehung, da sie
die Sternentstehung sowohl in Galaxien mit geringer Masse als auch in massereichen
Galaxienhaufen regulieren. Welche Mechanismen dominieren und wie genau die Rück-
kopplung mit dem umgebenden Medium verbunden ist, sind immer noch offene Fragen.
In dieser Arbeit analysieren wir im Detail die Rückkopplungseffekte von relativistis-
chen Teilchen in verschiedenen Umgebungen. Wir entwickeln stationäre Modelle für
mehrere Galaxienhaufen, in denen relativistische Teilchen zusammen mit Wärmeleitung
unkontrolliertes Kühlen verhindern. Beobachtungen zeigen, dass relativistische Teilchen
nur in solchen Galaxienhaufen effizient heizen können, in denen es keine Anzeichen von
vermehrtem Kühlen gibt. Dies könnte auf einen selbstregulierten Zyklus hindeuten.
Auf galaktischen Skalen können relativistische Teilchen Winde antreiben, wenn die
Teilchen aus der Galaxie herausdiffundieren oder strömen können. Wir zeigen mit
Hilfe von Simulationen einzelner Galaxien, dass relativistische Teilchen die Sternentste-
hung in Galaxien mit geringer Masse kontrollieren können, wobei aber die Effizienz
der Winde bei höheren Galaxienmassen schnell abnimmt. Desweiteren sind nahezu alle
astrophysikalischen Strömungen hoch turbulent. Dies stellt eine Herausforderung für
numerische Simulationen dar, die nicht alle Skalen der turbulenten Kaskade auflösen
können. Daher implementieren wir ein Modell für Turbulenz unterhalb der Gitterskala
in das Hydrodynamikprogramm AREPO. Wir überprüfen erfolgreich unser Modell mit
Hilfe von idealisierten Testproblemen und verwenden es in Simulationen von turbulenten
Boxen.
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Part I.

Introduction



1. Structure formation

1.1. Cosmological background
Cosmology is based on the assumption that the universe is homogeneous and
isotropic on large scales. This makes it possible to describe its expansion history
in terms of a scale factor a that only depends on time. In the framework of
general relativity, the energy content of the universe and its curvature drive the
evolution of the scale factor. The corresponding equations are the Friedmann
equations, which are given by( ȧ

a

)2
=

8πG
3 ρ − Kc2

a2
+
Λ

3 , (1.1)
ä
a
= −4πG

3

(
ρ +

3p
c2

)
+
Λ

3 , (1.2)

where G is the gravitational constant and ρ is the energy density. K describes
the curvature and Λ describes the cosmological constant. p denotes the pressure,
which is related to the density by an equation of state. The energy density
comprises radiation and matter, ρ = ρr+ ρm. The matter density can be further
divided into a ‘dark’ and a ‘baryonic’ component. Dark matter interacts, at
least to current knowledge, only gravitationally and its nature is still unknown.
Baryonic matter describes all normal, atomic matter in an astrophysical context.

Recent results from the Planck Collaboration et al. (2016) show that today
only ∼ 5 per cent of the energy consists of baryonic matter. Dark matter
contributes with ∼ 26 per cent but most of the energy is contained in the
cosmological constant, which accounts for ∼ 69 per cent. To include models in
which Λ is variable, the energy content of the cosmological constant is often
also called dark energy. The contribution from radiation is negligible today.
Furthermore, observations show that the universe is flat (e.g. Bennett et al.,
2013; Planck Collaboration et al., 2016) and its expansion is accelerated (Riess
et al., 1998; Perlmutter et al., 1999).
The expansion history of the universe, which is fully determined by the

cosmological parameters, implies that the universe developed from a hot big
bang. In the beginning, the universe was hot enough that matter and radiation
were tightly coupled. As the universe expanded, the temperature decreased
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Figure 1.1.: Ratio between stellar mass and halo mass as a function of halo mass
as derived by Behroozi et al. (2013b, blue) compared to the cosmic baryon fraction
(black). The star formation efficiency is reduced for both high and low mass galaxies.

and eventually it was cold enough that neutral hydrogen formed. This lead to a
rapid drop of the interaction rate between radiation and matter. The radiation
field that was emitted at the time of recombination is today redshifted to the
microwave regime and can be observed as the cosmic microwave background
(CMB). The CMB is an almost perfect Planck spectrum with a temperature
of T0 = 2.725 K (Fixsen, 2009). The relative motion between the CMB and
the Earth causes a dipole pattern in the temperature distribution, which
can be subtracted. The remaining temperature fluctuations are on the level
of δT/T0 ∼ 10−5 (Fixsen et al., 1996). These small variations correspond to
inhomogeneities in the density field at the redshift of recombination and provide
a unique observation of the universe at early times.
As the universe evolves, the small overdensities that can be seen in the

CMB grow in mass due to gravity while underdense regions are depleted. In
the standard cold dark matter theory, small structures collapse first. Larger
structures form later and additionally grow through mergers with smaller
objects. This process is called hierarchical structure formation. Since there
is much more dark matter than baryonic matter in the universe, large scale
structure formation is mostly driven by dark matter.

1.2. Galaxy formation
Luminous galaxies with gas and stars form inside the collapsed dark matter
haloes. Gas accumulates in these overdense regions but in contrast to dark
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matter, it dissipates energy through radiative processes. Thereby, the gas loses
its pressure support and sinks deeper into the potential well of the halo. If
sufficiently high densities are reached, stars form and a galaxy develops.
The stellar mass-halo mass (SMHM) relation links galaxies to their host

haloes and is therefore crucial for galaxy formation. Since it is difficult to
measure halo masses observationally, a statistical approach which is known
as abundance matching (e.g. Kravtsov et al., 2004; Vale and Ostriker, 2004;
Conroy et al., 2006) is often used to establish the SMHM relation. This method
employs mass functions of the form N (> M) that describe the number of objects
with a mass larger than the mass M. The halo mass function, N (> Mh), is
taken either from analytical considerations (Press and Schechter, 1974) or, more
commonly, from numerical simulations (e.g. Springel et al., 2005b; Klypin et al.,
2011). The stellar mass function, N (> M∗), can be inferred from observations.
The basic assumption for abundance matching is a tight correlation between
halo mass and stellar mass such that more massive galaxies reside in more
massive haloes. In the simplest case, each halo hosts exactly one galaxy. This
implies that a galaxy with stellar mass M∗ resides in a dark matter halo of
mass Mh if the mass functions are equal, N (> Mh) = N (> M∗). This basic
technique has been further refined and abundance matching has been used to
study the SMHM relation in great detail (Moster et al., 2010; Behroozi et al.,
2010, 2013b).

Fig. 1.1 shows the ratio between stellar mass and halo mass as a function of
halo mass, which can be directly computed from the SMHM relation. The blue
line shows a fit to the results from abundance matching from Behroozi et al.
(2013b) and the black line shows the cosmic baryon fraction for comparison
(Planck Collaboration et al., 2016). The figure demonstrates that the ratio
between stellar mass and halo mass peaks at halo masses of ∼ 1012 M� and
falls off for smaller and larger haloes. Moreover, only a small fraction of the
baryons is converted into stars. These results can be explained by feedback
processes that act on different mass scales. In low mass galaxies, supernova
(SN) explosions are powerful enough to reduce star formation. In galaxies that
are more massive than 1012 M�, the feedback from an active galactic nucleus
(AGN) prevents stars from forming. Both feedback mechanisms are investigated
in this thesis and therefore will be discussed in more detail in the next section.
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2. Feedback processes

2.1. Supernovae
Supernovae (SNe) are energetic explosions that can temporarily release as much
radiation as an entire galaxy. We will briefly discuss the two main types of SNe
and how these events impact their environment.

2.1.1. Types
There are two types of SNe, core-collapse SNe and Type Ia SNe. Most common
are core-collapse SNe, which are explosions at the end of the life of massive stars
(e.g. Burrows, 2000). A star with a mass above 8 M� develops an iron core
that is supported by electron degeneracy pressure if the star has exhausted all
its fuel. If the core mass exceeds the Chandrasekhar limit of 1.4 M�, the core
rapidly collapses and forms a neutron star. The star’s outer layers are no longer
supported and fall onto the surface of the newly born neutron star. There,
they rebound and are ejected. This is only possible because neutrinos transfer
additional energy to the outflowing material (Burrows, 2000). Core collapse
SNe release 3 × 1053 erg of gravitational binding energy, most of it in the form
of neutrinos. The kinetic energy of the ejecta is only ∼ 1051 erg and 1 to 10
per cent of that energy is radiated away (Smartt, 2009). Core-collapse SNe
produce a wide range of heavy elements such as carbon, oxygen, magnesium
and radiative nickel (Burrows, 2000; Binney and Merrifield, 1998).
The second class of SNe, Type Ia SNe, are explosions of white dwarf stars.

The explosion is triggered when the white dwarf mass reaches the critical
Chandrasekhar limit either by accretion from a companion or by the merger
of two white dwarfs. The details of the progenitor system and the explosion
mechanism are still unknown (Hillebrandt and Niemeyer, 2000). Type Ia SNe
release 1051 erg of gravitational binding energy almost completely in the form
of kinetic energy. Moreover, Type Ia SNe are the main producer of iron in the
universe (Binney and Merrifield, 1998).
Independent of their type, SNe inject energy into the surrounding medium

and hence produce feedback. This feedback has various forms such as neutrinos,
kinetic energy of the outflowing material and radiation (Alsabti and Murdin,
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2017). Interestingly, roughly 10 per cent of the kinetic energy of a SN can be
used to accelerate particles to relativistic energies (Hillas, 2005; Morlino and
Caprioli, 2012). These cosmic rays (CRs) provide an additionally feedback
channel (e.g. Grenier et al., 2015), which we will investigate further in this
thesis.

2.1.2. Impact on environment

SN explosions have a huge impact both on their direct surroundings and the
entire galaxy. On small scales, SNe are likely one of the main drivers of
turbulence in the inter-stellar medium (ISM, Mac Low and Klessen, 2004).
This turbulence plays an important role in regulating the star formation in
molecular clouds. Turbulent pressure prevents gas from collapsing and forming
stars but highly supersonic turbulence also creates overdense regions, which
favour gravitational collapse (Larson, 1981). Overall, star formation is very
inefficient and only ∼ 1 per cent of the available gas is converted into stars
(Zuckerman and Palmer, 1974; Krumholz et al., 2012). The mechanisms that
regulate star formation are still not understood in detail and require further
investigation, e.g. in the form of numerical simulations. In this thesis, we
implement a model for turbulence in a hydrodynamics code which will improve
future astrophysical simulations.
SN feedback is energetic enough to affect also galactic scales. In particular,

SNe drive outflows that chemically enrich the circum-galactic medium (CGM)
(Aguirre et al., 2001; Oppenheimer and Davé, 2006) and reduce the amount
of gas that is available for star formation (Stinson et al., 2013; Puchwein and
Springel, 2013). Galactic winds are observed in most star-forming galaxies
(Veilleux et al., 2005) but the exact driving mechanism is still not well under-
stood. Although most studies assume that SN feedback accelerates the gas
(e.g. Dekel and Silk, 1986; Creasey et al., 2013), it remains an open question
whether the injection of thermal and kinetic energy into the ambient medium
of one or more SNe is enough to drive the winds. CRs provide a promising
alternative mechanism to launch the outflows (Ipavich, 1975; Breitschwerdt
et al., 1991; Jubelgas et al., 2008; Salem and Bryan, 2014). We will study the
dependence of CR-driven winds on halo mass as part of this thesis.
In galaxies with masses below 1012 M�, SN feedback is efficient enough to

reduce star formation to the level that is shown in Figure 1.1 (e.g. Vogelsberger
et al., 2014b; Schaye et al., 2015). However, if the galaxy mass is even higher,
the potential wells are so deep that SN feedback is not able to drive gas out of
the galaxy and reduce star formation (Vogelsberger et al., 2013).
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Feedback processes

2.2. Active galactic nuclei
Massive galaxies host black holes in their centres which reach masses between
106 and 109 M� (Kormendy and Ho, 2013). If such a supermassive black hole
(SMBH) accretes material and provides feedback, it is called active galactic
nucleus (AGN). We will first describe the feedback mechanisms and then discuss
their impact on the surrounding medium.

2.2.1. Feedback mechanisms
AGN feedback is powered by the gravitational energy that is released when the
SMBH accretes gas. The binding energy is converted into radiation, kinetic
energy in the form of jets and winds, and possibly CRs (Begelman, 2004). The
form of energy that dominates the feedback is determined by the accretion rate.
It is often measured in units of the Eddington rate, which provides a natural
upper limit for the amount of gas that can be accreted by the SMBH. The
maximum rate is reached when the radiation pressure from the AGN balances
the gravitational infall of the gas.

There are two different modes for AGN feedback, quasar mode feedback and
radio mode feedback. If the AGN is in the quasar mode, the SMBH accretes
gas close to the Eddington limit and most energy is released in the form of
radiation (Fabian, 2012). The radiation pressure acts on electrons and dust
and might be able to accelerate galactic winds. This form of AGN feedback is
typical for young quasars at high redshift (Fabian, 2012; Combes, 2015).

Radio mode feedback, which is also known as kinetic mode feedback, operates
if the gas accretion rate is small. This is common in hot haloes that can be found
in massive elliptical galaxies at low redshift or in the centres of galaxy clusters
(Fabian, 2012; Combes, 2015). In the radio mode, the AGN launches powerful
jets that blow huge radio lobes into the surrounding medium (Churazov et al.,
2000, 2001; McNamara et al., 2000).

2.2.2. Impact on environment
AGN feedback releases enough energy to impact its host galaxy or host galaxy
cluster significantly. This can be demonstrated by an order of magnitude
estimate as shown by Fabian (2012). Consider the velocity dispersion of a
galaxy, σ, and its bulge mass, Mbul. An estimate for the binding energy
of the bulge is given by Ebul ≈ Mbulσ

2. The bulge mass is closely related
to the black hole mass (BH) such that MBH ≈ 1.4 × 10−3Mbul (Kormendy
and Ho, 2013). Assuming that the radiative efficiency of the feedback is 10
per cent, the energy that is released by the BH is EBH = 0.1MBHc2. This
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yields a ratio between the released energy and the binding energy of the
bulge of EBH/Ebul ≈ 1.4 × 10−4(c/σ)2. For typical values of σ, this results in
EBH/Ebul > 80 (Fabian, 2012). Hence, AGN feedback provides almost two
orders of magnitude more energy than would be needed to unbind the entire
bulge of the galaxy.

It is hypothesized that powerful AGN feedback leads to a common evolution
of the bulge of a galaxy and its SMBH. This would provide an explanation for
the tight correlation that is observed between the velocity dispersion of the bulge
and the mass of the SMBH (Kormendy and Ho, 2013, for a review). Moreover,
AGN feedback might drive the transition of star-forming, blue galaxies into
red galaxies without star formation. This mechanism has been successfully
demonstrated in numerical simulations (Springel et al., 2005a; Trayford et al.,
2016; Nelson et al., 2018) but it has not been possible so far to establish a clear
relation between AGN feedback and star formation rate observationally (Page
et al., 2012; Rosario et al., 2012; Stanley et al., 2015; Delvecchio et al., 2015).
Furthermore, AGN feedback is a promising way to solve the cooling flow

problem in cool core clusters. Efficient cooling in the centres of those galaxy
clusters should produce large amounts of cold gas and high star formation rates
(Peterson and Fabian, 2006). Since this is in contradiction to observations, an
unknown heating mechanism balances the cooling. AGN feedback provides
enough energy to counteract the cooling flows but it is still an open question
how the feedback energy couples to the intra-cluster medium (ICM, McNamara
and Nulsen, 2012). Several possibilities have been discussed in the liturature,
among which are the dissipation of sound waves (Sanders and Fabian, 2008;
Fabian et al., 2017), the dissipation of turbulence (Dennis and Chandran, 2005;
Zhuravleva et al., 2014) and the mixing of hot gas from the radio lobes with
the surrounding medium (Hillel and Soker, 2016; Yang and Reynolds, 2016b).
If the radio lobes are filled mostly with relativistic particles, CRs might be
able to maintain the balance between heating and cooling (Loewenstein et al.,
1991; Guo and Oh, 2008; Fujita and Ohira, 2011; Fujita et al., 2013; Pfrommer,
2013). A theoretical investigation of this possibility in a sample of cool core
clusters is part of this thesis.
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3. Outline
This thesis is structured as follows. In Section 4, we briefly introduce different
aspects of CR physics and show how they are modelled in numerical simulations.
Then, we discuss CR feedback in different environments. In Section 5, we present
our work on CR heating in cool core clusters, which is published in Jacob
and Pfrommer (2017a) and Jacob and Pfrommer (2017b). We continue with
our analysis of CR-driven winds in Section 6 and demonstrate how the wind
properties depend on halo mass. This work is published in Jacob et al. (2018).
From Section 7 to 13, we discuss a numerical model for turbulence on subgrid
scales that we implement into the hydrodynamics code AREPO. We conclude
in Sections 14 and 15 and give a short outlook.
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Part II.

Feedback from cosmic rays



4. Cosmic ray physics

4.1. Cosmic rays
CRs are charged particles with energies between 1 MeV and 1021 eV (Grenier
et al., 2015). They were first discovered in balloon flights by V. Hess in 1912, in
which he found that the ionisation rate increases with altitude (Berezinskii et al.,
1990). Today, CRs are observed by satellite-borne experiments such as PAMELA
(Payload for antimatter matter exploration and light-nuclei astrophysics, Adriani
et al., 2011) or by spacecraft experiments such as AMS-02 (Alpha Magnetic
Spectrometer, Aguilar et al., 2013) on the International Space Station.
Most CRs are protons. Helium nuclei only contribute 10 per cent of the

particles and the fraction of heavier elements is even smaller (Blasi, 2013).
Overall the chemical composition of CRs is close to the cosmic abundance with
only a few exceptions. For example, lithium, beryllium and boron are produced
in the spallation of carbon and oxygen and are hence overabundant (Kulsrud,
2005).

The CR spectrum that is measured on Earth is almost a perfect powerlaw
between ∼ 1010 eV and 1021 eV. Fig. 4.1 shows a schematic overview, which is
adapted from Fisk and Gloeckler (2012). CRs with energies below ∼ 1010 eV
are affected by the solar wind (dashed line), which reduces their flux on Earth
(Blasi, 2013). The power law index for CRs with energies below the knee at
8 × 1015 eV is ∼ −2.7. Above the knee, the index steepens slightly to ∼ −3.1
and also the composition changes. At CR energies of ∼ 1018 eV, there is a
second feature in the CR spectrum, which is called the ankle. Here, the power
law index flattens again to a value of −2.75 (Fisk and Gloeckler, 2012). The
GZK-cutoff predicts that the spectrum is significantly suppressed for energies
above ∼ 1020 eV because these CRs quickly lose energy in interactions with
CMB photons (Greisen, 1966; Zatsepin and Kuz’min, 1966).

Particles below the knee are most likely accelerated inside the Galaxy whereas
CRs with much higher energies originate from extragalactic sources (Grenier
et al., 2015). The most promising acceleration mechanism in the Galaxy is
diffusive shock acceleration at SN remnants (Krymskii, 1977; Blandford and
Ostriker, 1978; Bell, 1978). Here, particles are deflected by fluctuations of the
magnetic field such that they cross the shock front several times (Caprioli et al.,
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Figure 4.1.: Schematic overview of the CR spectrum. Adapted from Fisk and
Gloeckler (2012).

2015). In each crossing, the CRs gain energy, similar to a ball that is trapped
between two approaching walls. The resulting CR spectrum is a powerlaw and
the index is close to the observed value (Bell, 1978). The acceleration efficiency
that is required to produce the observed CR flux is ∼ 10 per cent (Hillas, 2005;
Blasi, 2013), which is in agreement with semi-analytic models and simulations
(Morlino and Caprioli, 2012; Caprioli and Spitkovsky, 2014).

Charged particles that propagate through a magnetized medium gyrate
around magnetic field lines and thereby emit radiation. This synchrotron
emission primarily depends on the magnetic field strength and the mass and
energy of the particles (Rybicki and Lightman, 1979). Generally, CRs with
higher energies radiate more efficiently but the losses are more severe for CR
electrons due to their lower mass. Synchrotron emission is one possibility to
detect CRs in distant galaxies. It is commonly observed at radio wavelengths
in star forming galaxies and AGN (Padovani, 2016, for a recent review), for
example with LOFAR (Low-Frequency Array, van Weeren et al., 2012).
Furthermore, CRs dissipate energy in several other processes. Apart from

synchrotron losses, CR electrons lose energy through bremsstrahlung, ionization
and Coulomb losses and in inverse-Compton interactions (Grenier et al., 2015).
Low-energy CR protons are mostly affected by Coulomb and ionization losses,
which lead to rapid thermalization (Enßlin et al., 2007; Jubelgas et al., 2008;
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Pfrommer et al., 2017a). CR protons with energies above 0.78 GeV are energetic
enough to produce pions in hadronic interactions with the surrounding gas
(Enßlin et al., 2007; Jubelgas et al., 2008; Pfrommer et al., 2017a). Depending
on charge, the pions decay into gamma-ray photons or secondary electrons and
positrons,

π0 → γ + γ, (4.1)
π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ. (4.2)

The secondary particles also suffer from the typical energy losses of leptons.
The cooling of CRs directly or indirectly produces electromagnetic radiation

over a wide range of energies, from radio wavelengths to the gamma-ray
regime. Observations of this radiation provide a way to probe CRs in remote
galaxies or galaxy clusters and help to understand their propagation through
the intergalactic medium (Strong et al., 2010; Grenier et al., 2015).

The strong energy losses of CR electrons lead to short cooling times and fast
thermalization. Hence, most of the CR energy is stored in protons. Due to
the steep spectrum, particles with energies of a few GeVs dominate the energy
content (Enßlin et al., 2007). In the ISM, the CR energy is comparable to
the thermal, magnetic and kinetic energy densities (Boulares and Cox, 1990),
which makes CRs an important energy reservoir.

4.2. Cosmic ray transport
Measurements of radioactive CR nuclei show that CRs spend ∼ 2 × 107 yr
in the galaxy (Kulsrud, 2005; Zweibel, 2013). This is much longer than
the light crossing time of a galaxy with radius rgal = 10 kpc, which is only
2rgal/c ∼ 6 × 104 yr. Moreover, the CRs that reach Earth are highly isotropic.
At a few GeV, the level of anisotropy is only of order 10−3 − 10−4 (Kulsrud,
2005; Strong et al., 2007). Both observations indicate that CRs cannot travel
along straight lines with velocities that are close to the speed of light. Instead,
CR propagation is dominated by interactions with magnetic fields, as we will
discuss in the following sections.

4.2.1. CR interactions with magnetic fields
Magnetic fields are omnipresent in astrophysical environments (Lazarian et al.,
2015, for a review). As charged particles, CRs are affected by the Lorentz force
and, hence, gyrate around magnetic field lines. The cyclotron frequency of a
CR proton with Lorentz factor γ is Ω = eB0/(γmpc), where B0 denotes the
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field strength. The angle between the propagation direction of the CR and the
magnetic field is called pitch angle. It is frequently changed in interactions
between the CR particle and fluctuations in the magnetic field, such as Alfvén
waves.

This pitch angle scattering is most effective if the distance along the magnetic
field line that a CR propagates in one gyro-orbit equals exactly one wavelength
of the fluctuation. The resulting resonance condition for the wave number
component that is parallel to the magnetic field, k‖, is given by (e.g. Wiener
et al., 2013)

k‖ =
1
µrL

, (4.3)

where µ = υ · B/υB denotes the cosine of the pitch angel and rL = c/Ω denotes
the Larmor radius. Combinations of particles and magnetic field perturbations
that do not meet this criterion have only a minor effect on the CR’s pitch angle.
If the fluctuation is much smaller than the projected gyro-orbit, the net force
on the particle is an average over many wavelengths of the fluctuation and,
thus, negligible. On the other hand, if the magnetic field perturbation is large
compared to the gyro-radius, the magnetic field only changes slightly during
one orbit and the pitch angle remains almost the same.
Pitch angle scattering does not only affect the CRs but also has an impact

on the magnetic field. In particular, CRs amplify Alfvén waves through the
streaming instability (Kulsrud and Pearce, 1969; Skilling, 1971). CRs that
move faster than the Alfvén speed relative to the thermal gas destabilize waves
that propagate in the same direction as the CR population. The corresponding
growth rate is derived from a perturbation analysis of the Vlasov equation and
the result is given by (Kulsrud, 2005; Zweibel, 2017)

Γ ∼ π

4Ω0C
ncr(> pmin)

ni

(
υd
υA
− 1

)
, (4.4)

where Ω0 = γΩ is the non-relativistic cyclotron frequency and C is a constant
of order unity. The ion number density is represented by ni. The quantity
pmin(k) = eB0/ck denotes the minimum momentum that is required to resonate
with a wave with wave number k. The number density of particles with the
required momentum is given by ncr(> pmin). Since this density decreases with
CR energy, the growth rate drops for waves that interact with more energetic
CRs. The last factor describes the condition that the drift velocity, υd, of
the CRs relative to the thermal gas has to be larger than the Alfvén speed,
υA = B/

√
4πρ, to cause the instability. Here, ρ is the gas density. The

Alfvén waves that are amplified by the streaming instability lead to pitch angle
scattering of the CRs, which in turn reduces their speed compared to the wave
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frame.

4.2.2. The self-confinement picture
In the self-confinement picture, the streaming instability is the dominant
source of magnetic field perturbations. CRs that initially move faster than the
Alfvén speed trigger the amplification of Alfvén waves and then scatter off the
self-generated waves. The frequent scattering isotropizes the CR population
in the wave frame such that the CRs are locked to the waves. Hence, to
first approximation, the CR population is advected with the wave frame that
propagates with the Alfvén velocity. Additionally, the CR population always
moves down its own pressure gradient. This is possible because only waves that
travel in the same direction as the CRs are amplified. We define the velocity
that describes both the wave frame and the CR population as the streaming
velocity. It can be written as

υst = − sgn(b̂ ·∇Pcr)υA, (4.5)

where b̂ denotes the direction of the magnetic field and Pcr denotes the CR
pressure.

In practice, perfect self-confinement is never achieved. The finite scattering
rate of CR particles and Alfvén waves implies that there is always some leakage
of CRs from the wave frame. This results in the diffusion of CRs along magnetic
field lines (Skilling, 1971; Wiener et al., 2017). Moreover, damping processes
counteract the amplification of Alfvén waves by the streaming instability. Thus,
the scattering rate between CRs and waves is reduced and the drift speed
of the CRs becomes larger than the Alfvén speed. However, as long as the
drift velocity remains close to the wave speed, the CRs are still sufficiently
self-confined.
The CR population can be described by a distribution function, f (x,p, t)

that is isotropic in momentum space. The transport equation that results from
the self-confinement of CRs is given by (Skilling, 1971; Guo and Oh, 2008)

∂ f
∂t
+ (υ + υst) · ∇ f = ∇ · (κb̂b̂ · ∇ f ) +

1
3p

∂ f
∂p
∇ · (υ + υst) +Q, (4.6)

where υ denotes the gas velocity. The left hand side of the equation describes
the advection of the CR population with the wave frame. The diffusion of CRs
along magnetic field lines is represented by the anisotropic diffusion term on
the right hand side, where κ denotes the diffusion coefficient. The second term
on the right hand side corresponds to adiabatic compression and expansion
of the CR population in the wave frame. General source and sink terms are

28



Cosmic ray physics

described by the last term, Q.

4.2.3. Beyond self-confinement

The self-confinement picture that we presented in the previous section requires
a fully ionized medium. Otherwise, ion-neutral friction effectively damps all
Alfvén waves and the CRs can stream freely (Zweibel, 2013, 2017). Moreover,
it is only applicable for CRs with energies around a few GeV (Wiener et al.,
2017). Alfvén waves that interact with more energetic CRs have a smaller
growth rate and are, thus, more affected by damping mechanisms.
In the case of non-linear Landau damping, two MHD waves form a beat

wave, which has a much lower phase speed (Wiener et al., 2013). Thermal
particles with velocities close to that phase speed interact with the wave and
usually extract energy from it. Moreover, MHD waves decay in the anisotropic
turbulent cascade. This turbulent damping further reduces the number of
Alfvén waves that are available for CR scattering (Farmer and Goldreich, 2004;
Wiener et al., 2013). Recently, an additional damping mechanism has been
discussed that mostly affects galaxy clusters, in which the ratio between thermal
and magnetic pressure is high (high-β plasma, Zweibel, 2017; Wiener et al.,
2018). Here, oblique MHD waves interact with thermal ions and lose energy
through Landau damping.

Alfvén waves that are generated by CRs with energies above ∼ 100 GeV are
damped efficiently by these processes and cannot be amplified by the streaming
instability any more. Therefore, these CRs are not self-confined and their drift
speed exceeds the Alfvén velocity. High energy CRs are mostly scattered by
MHD waves that are generated by other processes. This is called the extrinsic
turbulence regime (Cesarsky and Kulsrud, 1973; Yan and Lazarian, 2002, 2004,
2008; Blasi et al., 2012), which we will not consider further in this thesis.

4.3. Cosmic ray hydrodynamics

In this thesis, we mostly consider the integrated CR energy density instead of
individual particles or the CR distribution in momentum space. Therefore, we
first introduce the evolution equation of the CR energy density and then show
how this equation is coupled to the hydrodynamic equations. Moreover, we
assume the self-confinement picture for the rest of this thesis. If required, this
picture can be extended to include extrinsic turbulence as shown in Zweibel
(2017).
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4.3.1. Evolution equation for the CR energy density

The hydrodynamic variables are determined by the gyro-averaged CR distribu-
tion function, f (x,p, t). The CR number density, pressure and energy density
are given by (Zank, 2014)

ncr = 4π
∫ ∞

0
f p2dp, (4.7)

Pcr =
4π
3

∫ ∞

0
f p3υdp, (4.8)

εcr = 4π
∫ ∞

0
f Tpp2dp, (4.9)

where Tp =
[ √

1 + p2/m2c2 − 1
]

mc2 is the kinetic energy per CR particle.
Moreover, we assume an equation of state of the form

Pcr = (γsgs − 1)εcr, (4.10)

where γsgs denotes an effective adiabatic index.

With these definitions, the evolution equation for the CR energy density
can be derived from the CR transport equation. To this end, we multiply
Equation (4.6) by Tpp2 and integrate over momentum space. This yields (Guo
and Oh, 2008; Zank, 2014)

∂εcr
∂t
+ (υ+υst) ·∇εcr = ∇ · (κcrb̂b̂ ·∇εcr)− (εcr+Pcr)∇ · (υ+υst)+Qcr, (4.11)

where

κcr =

∫ ∞
0 p2Tpκ(b̂ ·∇ f )dp∫ ∞
0 p2Tp(b̂ ·∇ f )dp

(4.12)

and
Qcr = 4π

∫ ∞

0
Qp2Tpdp. (4.13)

The different terms in Equation (4.11) describe the same physical processes
as in the transport equation. The left hand side represents advection with
the wave frame, and the three terms on the right hand side stand for spatial
diffusion, adiabatic expansion and compression in the wave frame, and general
sources and sinks.
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4.3.2. Impact of CRs on the thermal gas
Individual CRs mostly interact with the thermal gas via magnetic fields. If
the corresponding processes are averaged over hydrodynamic time and length
scales, the CR population effectively exchanges energy and momentum with
the thermal gas.

The evolution equation for the CR bulk velocity perpendicular to the magnetic
field reduces to (Zweibel, 2017; Thomas and Pfrommer, 2018)

∇⊥Pcr =
jcr × B

c
(4.14)

if all terms that scale with CR inertia are neglected. jcr denotes the CR current
density. The Lorentz force on the gas is given by

FL =
jg × B

c
=

j × B

c
− jcr × B

c
=

(∇ × B) × B

c
− ∇⊥Pcr, (4.15)

where we use that the gas current, jg, is the difference between the total current,
j, and the CR current. In the last step, we use Ampere’s law and the previous
expression. Hence, the CR pressure gradient perpendicular to the magnetic
field exerts a force on the thermal gas. Moreover, it can be shown that the
momentum transfer between CRs and Alfvén waves results in the force −∇‖Pcr
(Zweibel, 2013, 2017). Thus, the thermal gas is accelerated by the total gradient
of the CR pressure, −∇Pcr.
Additionally, CRs heat the surrounding gas. In the wave frame, the CR

population is adiabatic since no electric fields are associated with the wave in
this frame. CRs scatter in pitch angle but their energy is conserved. However,
in the frame of the gas, Alfvén waves are time-varying magnetic fields that
induce electric fields and thus impact the CR energy. This results in an energy
transfer from the CRs to the thermal gas. In the self-confinement picture, the
corresponding heating rate is given by (Wiener et al., 2013; Ruszkowski et al.,
2017b)

Hcr = −υst ·∇Pcr. (4.16)
This rate is always positive due to the definition of the streaming velocity.
Hence, it is always a cooling term for the CRs and always a heating term for
the thermal gas.

4.3.3. Governing equations
A composite of thermal gas and CRs in the presence of magnetic fields can
be described by the magnetohydrodynamic equations that are coupled to the
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evolution equation of the CR energy. The conservation equations for mass,
momentum, thermal and CR energy and magnetic fields are given by

∂ρ

∂t
+ ∇ · (ρυ) = 0, (4.17)

∂ (ρυ)
∂t

+ ∇ ·
[
ρυυT + PI − BBT

]
= −ρ∇Φ, (4.18)

∂ε

∂t
+ ∇ · [(ε + P)υ − B (υ · B)] = Pcr∇ · υ +Hcr + Λth + Γth, (4.19)

∂εcr
∂t
+ ∇ · [εcrυ + (εcr + Pcr)υst] = −Pcr∇ · υ −Hcr + Λcr + Γcr

+ ∇ ·
[
κcrb̂

(
b̂ · ∇εcr

)]
,

(4.20)

∂B

∂t
+ ∇ ·

[
BυT − υBT

]
= 0, (4.21)

where ρ is the gas density and υ is the gas velocity. B denotes the magnetic
field and Φ denotes the gravitational potential. The total pressure, P, includes
the thermal pressure, Pth, the CR pressure, Pcr, and the magnetic field pressure
(in the Heaviside-Lorentz system of units)

P = Pth + Pcr +
B2

2 . (4.22)

Thermal and CR energy densities are given by ε and εcr, respectively. The CR
heating term, Hcr, appears as a gain term in the equation for thermal energy
and as a loss term in the equation for CR energy. Other heating terms of the
thermal gas are denoted by Γth. The term Λth describes energy losses of the
thermal gas. Similarly, heating and cooling terms for the CRs are given by Γcr
and Λcr, respectively. Anisotropic diffusion of CRs along the direction of the
magnetic field, b̂, is characterized by the diffusion coefficient κcr.

This set of equations is complemented by Poisson’s equation

∆Φ = 4πG(ρ + ρ∗ + ρdm) (4.23)

which determines the gravitational potential from the total mass density. In
general, this also includes the contribution from stars, ρ∗, and dark matter,
ρdm.
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4.4. Modelling cosmic rays in simulations
Many hydrodynamic codes that are used in astrophysics include a model for CRs.
In this work, we will focus on the AREPO code with the CR implementation
from Pfrommer et al. (2017a). Similar models are for example part of GADGET-
2 (Pfrommer et al., 2006; Enßlin et al., 2007; Jubelgas et al., 2008), RAMSES
(Booth et al., 2012), Enzo (Salem and Bryan, 2014) and FLASH (Yang et al.,
2012; Girichidis et al., 2016a; Ruszkowski et al., 2017b).

The codes solve the hydrodynamic equations that are coupled to an evolution
equation for the CR energy density as described in the previous section. CRs
are treated as a second fluid with an adiabatic index that is typically set to the
fully relativistic value of 4/3. In the simplest approximation, the CR fluid is
only advected with the thermal gas but often additional transport mechanisms
are taken into account. We discuss the implementation of CR transport in
more detail in the following section and then describe further aspects of the
CR model.

4.4.1. Active CR transport
Two different CR transport mechanisms are considered in hydrodynamic simu-
lations. Most common is isotropic or anisotropic diffusion but a few codes also
include CR streaming.

Anisotropic diffusion

Anisotropic diffusion along magnetic field lines corresponds to the following
part of the CR evolution equation

∂εcr
∂t
= ∇ ·

[
κcrb̂

(
b̂ · ∇εcr

)]
. (4.24)

If only isotropic diffusion is considered, the dependence on the magnetic field
direction, b̂, vanishes. The diffusion coefficient, κcr is typically treated as a free
parameter that is constant in space and time.
The time derivative is often approximated by an explicit time integration

scheme (e.g. Yang et al., 2012; Salem and Bryan, 2014), which leads to a
time-step criterion of the form

∆t ∝ ∆x2

κcr
. (4.25)

This constraint is quadratic in the linear cell size ∆x and quickly makes
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simulations with high resolution prohibitively expensive.
This problem is circumvent by the semi-implicit time integration scheme

that is implemented in AREPO (Pakmor et al., 2016a). It uses a combination
of explicit and implicit Euler steps to permit larger time-steps. Moreover,
local time-stepping enables simulations with large dynamic ranges, which are
common in astrophysical contexts. The solver from Pakmor et al. (2016a) is
also suitable for unstructured Voronoi meshes, for which the computation of
the diffusion fluxes with accurate gradient estimates is difficult.

Streaming

CR streaming requires the solution of the equation

∂εcr
∂t
+ ∇ · [(εcr + Pcr)υst] = 0 (4.26)

with the streaming speed υst = − sgn(b̂ ·∇Pcr)υA. The sign function poses
serious challenges to numerical simulations since it leads to oscillations in
regions in which the CR gradient is small. Therefore, Sharma et al. (2010)
suggest to regularize the sign function with a hyperbolic tangent. This results
in an approximate streaming velocity of

υst ≈ − tanh *
,

b̂ ·∇Pcr
ε

+
-
υA (4.27)

with the regularisation parameter ε . This velocity reproduces the correct
streaming behaviour if the argument of the hyperbolic tangent is far from zero.
If |b̂ ·∇Pcr/ε | ∼ 0, the approximation leads to diffusion. The transition between
these two regimes is determined by ε . This approach is used for example by
Ruszkowski et al. (2017b).
Recently, a new method for the implementation of streaming has been

developed (Jiang and Oh, 2018; Thomas and Pfrommer, 2018). This technique
also follows the evolution of the CR flux in addition to the CR energy. The
resulting set of equations is similar to the radiative transfer equations and can
be treated analogously in simulations.

4.4.2. Source terms
CR models in hydrodynamic simulations also include source and sink terms.
As before, we mostly focus on the implementation in AREPO from Pfrommer
et al. (2017a).
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CR injection

Most CRs are accelerated by diffusive shock acceleration. This can be directly
modelled with the implementation from Pfrommer et al. (2017a) if the shock
fronts are resolved in the simulation. Therefore, the location of the shock
front is determined with a shock finder that is modified to account for CRs
(Schaal and Springel, 2015; Pfrommer et al., 2017a). The shock finder detects
the cells that are part of the shock and defines a shock surface, a pre- and a
post-shock region. This information enables the computation of the dissipated
energy, Ediss. To model CR acceleration, a fraction, ζ , of the dissipated energy
is converted into CRs

∆Ecr = ζ (M1, θ)Ediss. (4.28)
The injection efficiency depends on the Mach number of the shock in the pre-
shock gas,M1, and the angle between the shock normal and the magnetic field,
θ. CR acceleration is most efficient for almost parallel shocks, in which the shock
normal is nearly aligned with the magnetic field. Moreover, the Mach number
has to be sufficiently large. A typical value for the acceleration efficiency is
ζ = 0.1 (Caprioli and Spitkovsky, 2014) given that θ < 45◦ andM1 >Mcrit ≈ 3.
The CR energy that is injected by the shock is distributed over all cells in the
shock zone and the first cell of the post-shock region. This injection method is
for example used to study the acceleration of ions in individual SN blast waves
(Pais et al., 2018). Similar approaches are employed to model CR electrons
that are accelerated at structure formation shocks (Pfrommer et al., 2008).
Most CRs in a galaxy are accelerated at SN remnant shocks but the time

and length scales for star formation and the first SN explosions are too short
to be resolved in galaxy formation simulations. Therefore, these processes are
described by subgrid models, which transform dense gas into star particles and
inject a certain amount of energy back into the surrounding medium (Cen and
Ostriker, 1992; Springel and Hernquist, 2003). In this case, CR acceleration
at SN remnant shocks is modelled as part of the SN feedback. In AREPO, a
fraction, ζSN, of the SN energy is converted into CR energy such that

∆Ecr = ζSNεSNṁ?∆t . (4.29)

εSN denotes the SN energy per solar mass of star formation, ṁ? describes
the star formation rate and ∆t is the time-step. The efficiency, ζSN, is a free
parameter of the model. Typical values range between ζSN = 0.1 and ζSN = 0.3
(Hillas, 2005; Morlino and Caprioli, 2012; Slane et al., 2014). The injected CR
energy, ∆Ecr, is either deposited only into the star forming cell or distributed
among several neighbouring cells.
Moreover, CRs are included in numerical studies of AGN feedback. They
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are taken into account in idealized jet simulations (Guo and Mathews, 2011;
Weinberger et al., 2017; Ehlert et al., 2018) and they are part of subgrid models
in simulations of galaxy clusters (Ruszkowski et al., 2017a).

CR cooling

CRs lose energy through many different processes as described in Section 4.1.
The CR model in AREPO takes only those cooling mechanisms into account
that are relevant for CR protons, in particular, Coulomb and hadronic losses
(Pfrommer et al., 2017a). Both processes depend on the CR spectrum. Coulomb
effects are strongest for low energy CRs and hadronic interactions only impact
CRs at higher energies. Since AREPO does not follow the energy spectrum,
an equilibrium distribution is assumed, in which Coulomb and hadronic losses
are balanced by continous CR injection (Enßlin et al., 2007). This yields
the equilibrium loss rates Λhad and ΛCoul for hadronic and Coulomb losses,
respectively. The CR energy density is then described by the equation

dεcr
dt
= Λcr = Λhadr + ΛCoul = −λcrneεcr, (4.30)

where λcr = 1.022 × 10−15 cm3 s−1 (Pfrommer et al., 2017a). This equation can
be solved analytically with the solution

Ecr(t) = Ecr(t0)e−λcrnet . (4.31)

Some of the energy that is lost by the CRs is transferred to the thermal
gas. Coulomb interactions lead to the acceleration of thermal electrons in
the Coulomb field of a CR particle, which directly heats the gas. Moreover,
secondary particles that are produced in hadronic interactions dissipate energy
in the same way. This provides an additional heating rate, which amounts to
a factor of 1/6 of the hadronic loss rate (only 2/3 of the produced pions are
charged and the secondary particles obtain on average 1/4 of the energy of the
primary pion, see Pfrommer et al., 2017a). These processes are summarized in
the energy

∆Eth = Ecr(t)(1 − e−λthnet ) (4.32)
that is transferred to the thermal gas. The coefficient λth has a value of
4.02 × 10−16 cm3 s−1 (Pfrommer et al., 2017a).
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5. Cosmic ray heating in cool core
clusters

The gas in the centres of galaxy clusters is subject to a complex interplay
of different heating and cooling mechanisms whose details are still largely
unknown. In this section, we develop steady state models for a sample of
galaxy clusters, test them against observational constraints and describe the
possibility of a self-regulated feedback cycle that is governed by CRs. This
work is published as a sequence of two papers in Monthly Notices of the Royal
Astronomical Society, Volume 467, Issue 2, p. 1449 – 1477 and in Monthly
Notices of the Royal Astronomical Society, Volume 467, Issue 2, p. 1478 – 1495.

5.1. Introduction
The population of galaxy clusters can be divided into cool core (CC) and non-CC
clusters. CC clusters are characterized by low entropies and short cooling times
in the centre (Cavagnolo et al., 2009; Hudson et al., 2010). Unimpeded radiative
cooling results in cooling flows with mass deposition rates of 1000M� yr−1 (see
Peterson and Fabian, 2006, for a review). In contrast, only a moderate amount
of cold gas and star formation is observed, which can be up to two orders of
magnitude smaller than the predictions (Peterson and Fabian, 2006). In order
to solve the emerging cooling flow problem an additional heating mechanism is
required that balances radiative cooling.

In the centres of CC clusters, the temperature increases with radius such that
the gas at the temperature peak functions as a heat reservoir. The transport of
heat to the centres of clusters by means of thermal conduction has been studied
in great detail (e.g. Bertschinger and Meiksin, 1986; Bregman and David, 1988;
Zakamska and Narayan, 2003; Guo et al., 2008). Although it is possible to
construct solutions in which thermal conduction balances radiative cooling, the
required conductivity has to be fine-tuned (Guo and Oh, 2008). Moreover, in
some clusters such a thermal balance requires a conductivity that exceeds the
theoretical maximum, i.e. the Spitzer value (Zakamska and Narayan, 2003).
In addition, the solutions are not locally stable on scales larger than the Field
length (Kim and Narayan, 2003a; Soker, 2003). Hence, thermal conduction
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cannot be the sole solution to the cooling flow problem. Nevertheless, it might
still play an important role beyond the central region at intermediate cluster
radii (Voit, 2011).
Another source of energy that is in principle powerful enough to balance

cooling is the feedback from the active galactic nucleus (AGN) of the brightest
cluster galaxy (see e.g. McNamara and Nulsen, 2007, 2012, for reviews). The
AGN accretes cooling gas and launches relativistic jets, which inflate radio
lobes that are co-localized with the cavities seen in the X-ray maps. As the
energy is transferred to the surrounding gas, this offsets radiative cooling until
the heating reservoir is exhausted and the cooling gas can fuel the central AGN
again, thus establishing a tightly self-regulated feedback loop.
Because the energetics of AGN feedback is more than sufficient to balance

radiative cooling, it has been suggested that AGN feedback can transform CC
into non-CC clusters (Guo and Oh, 2009; Guo and Mathews, 2010). However,
correlating the cavity enthalpy with the central gas entropy demonstrates that
CC clusters cannot be transformed into non-CC clusters on the buoyancy
time-scale due to the weak coupling of the mechanical to internal energy of the
cluster gas (Pfrommer et al., 2012). This calls for a process that operates on a
slower time-scale than the sound crossing time.

Various processes have been explored that could couple the energy associated
with AGN feedback to the intra-cluster medium (ICM). These include mixing
(Kim and Narayan, 2003b; Yang and Reynolds, 2016b), redistribution of heat by
buoyancy-induced turbulent convection (Chandran and Rasera, 2007; Sharma
et al., 2009) and dissipation of mechanical heating by outflows, lobes or sound
waves from the central AGN (e.g., Churazov et al., 2001; Brüggen and Kaiser,
2002; Ruszkowski and Begelman, 2002; Ruszkowski et al., 2004; Gaspari et al.,
2012a). Also the role of thermal conduction in combination with AGN feedback
has been explored (Kannan et al., 2017; Yang and Reynolds, 2016a).
Additionally, the rising AGN bubbles excite gravity modes that decay and

thereby generate turbulence. Hence, dissipation of turbulent motions is another
possibility for heating the cluster gas (e.g., Zhuravleva et al., 2014). However,
recent X-ray data find a low ratio of turbulent-to-thermal pressure in the
Perseus cluster at 4 per cent, thus challenging this scenario since low-velocity
turbulence cannot spread far without being regenerated (Hitomi Collaboration
et al., 2016). This result is in line with idealized hydrodynamical simulations,
which demonstrate that the conversion of gravity modes into turbulence is very
inefficient and transfers less than 1 per cent of the injected AGN energy to
turbulence (Reynolds et al., 2015; Yang and Reynolds, 2016b).
Moreover, all these mechanisms can only make use of one quarter of the

available enthalpy provided that the bubbles are disrupted by Kelvin-Helmholtz
instabilities within a few exponential pressure scale heights (Pfrommer, 2013).
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The remaining enthalpy is most likely contained as internal energy of relativistic
particles and magnetic fields inside the lobes, which also modifies the interplay
between jets and the cluster medium (Sijacki et al., 2008; Guo and Mathews,
2011). If the CRs are able to escape the bubbles, they will move along the
ubiquitous magnetic fields (Kuchar and Enßlin, 2011) that redistribute their
momenta to homogeneously fill the central core before they propagate towards
larger radii.

Fast-streaming CRs excite Alfvén waves via the ‘streaming instability’ (Kul-
srud and Pearce 1969; Skilling 1971; see also Zweibel 2013, for a review). The
CRs then scatter on these self-excited waves, which limits the macroscopic
CR velocity in the rest frame of the gas to approximately the Alfvén speed
(Wiener et al., 2013, assuming pressure carrying CRs at GeV energies). This
self-confinement can be very efficient since it operates on time-scales of the
order of 30 yr, which is much shorter than all other time-scales in the cluster
(Wiener et al., 2013; Zweibel, 2013). The wave growth is counteracted by
damping mechanisms such as non-linear Landau (NNL) and turbulent damping
(Farmer and Goldreich, 2004; Wiener et al., 2013), which leads to an energy
transfer from the CRs to the cluster gas (Wentzel, 1971; Guo and Oh, 2008).
Importantly, as a form of AGN feedback, CR heating allows for a self-

regulated feedback loop. The CRs that are injected by the central AGN
stream outwards and heat the cluster gas. Thereby, the CRs lose energy and
become more and more dilute such that radiative cooling eventually starts to
predominate. Cooling gas can then fuel the AGN, which launches relativistic
jets that accelerate CRs. Once those escape into the ICM, they stream again
outwards and provide a source of heat. An important aspect are the involved
time-scales: if CR heating was much slower than the involved dynamical
processes, it would not be able to efficiently heat the gas. The free fall time-
scale for a typical total density of ρ = 9 × 10−25 g cm−3 is τff =

√
3π/(32Gρ) ≈

7 × 107 yr (Krumholz, 2015). We compare this value to the Alfvén time since
CR heating is mediated by Alfvén waves. If we approximate the Alfvén time-
scale as τA = L/υA and use a typical CR pressure scale height of L = 30 kpc
and a characteristic Alfvén velocity of υA = 200 km s−1 (corresponding to a
magnetic field of 10 µG and ne = 0.01 cm−3), this yields τA ≈ 1.5 × 108 yr.
Hence, the Alfvén time-scale is of the same order as the free fall time-scale,
which demonstrates that CR heating is sufficiently fast to have an impact on
dynamical processes. Moreover, these time-scales are in the range of typical
AGN duty cycles of a few times 107 yr to a few times 108 yr (Alexander and
Leahy, 1987; McNamara et al., 2005; Nulsen et al., 2005; Shabala et al., 2008),
which is a necessary condition for sufficient replenishment of CRs.

For these reasons, CR heating has the potential to play a significant role in
solving the cooling flow problem (Loewenstein et al., 1991; Guo and Oh, 2008;
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Enßlin et al., 2011; Fujita and Ohira, 2011; Fujita et al., 2013; Pfrommer, 2013).
In particular, there exists a steady state for spherically symmetric models,
in which radiative cooling is balanced by CR heating in the central regions
and by thermal conduction further out (Guo and Oh, 2008). Unlike thermal
conduction, CR heating is locally stable to thermal fluctuations at kT ∼ 1 keV,
coincident with the observed temperature floor in some CC clusters (Pfrommer,
2013). Moreover, detailed gamma-ray and radio observations of the Virgo
cluster allow for a CR population that prevents cooling in this particular cluster
(Pfrommer, 2013).

Steady state solutions are a necessary condition for the viability of a mech-
anism to prevent cooling flows. There are various steady state solutions for
the ICM that include different physical processes in the literature (Zakamska
and Narayan, 2003; Guo et al., 2008; Fujita et al., 2013). If only the effects
of thermal conduction are considered, steady state solutions exist but the
required conductivity needs to be fine-tuned (Zakamska and Narayan, 2003).
This situation can be improved by including AGN feedback that is also able to
reduce the conductivity to physical values (Guo et al., 2008). However, Guo
et al. (2008) use the “effervescent heating” model by Begelman (2001), which
describes AGN feedback by buoyantly rising bubbles.
Motivated by the results of Guo and Oh (2008) and Pfrommer (2013), we

explore steady state solutions that simultaneously take into account thermal
conduction and CR heating and discuss common characteristics of the solutions.
We assess the viability of our steady state solutions by comparing the resulting
non-thermal radio and gamma-ray emission to observational data (similarly
to Pfrommer and Enßlin, 2004a; Colafrancesco and Marchegiani, 2008; Fujita
and Ohira, 2012, 2013). As CR protons interact inelastically with the ambient
gas protons, they produce primarily pions (provided their energy exceeds the
kinematic threshold of the reaction). Neutral pions decay into gamma-rays,
and charged pions produce secondary positrons and electrons that emit radio-
synchrotron radiation.1 Confronting our model predictions with data enables us
to put forward an observationally supported model for self-regulated feedback
heating, in which an individual cluster is either stably heated, predominantly
cooling, or is transitioning from one state to the other.

Previous works considered at most very small cluster samples. This precludes
a sound statistical statement about the viability and applicability of the solution
to the entire CC population. Hence, we extend our analysis to a considerably
larger cluster sample. Here, we are especially interested in clusters in which
CRs have already been observed, e.g. in the form of extended radio emission. In
a subsample of CC clusters, such emission occurs as radio mini haloes (RMHs)

1Throughout the paper, the term secondary electrons also includes secondary positrons.
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with typical radii of a only a few hundred kpc in contrast to the ∼ Mpc radio
haloes of non-CC clusters (see e.g. Feretti et al., 2012, for a review). Thus, we
also include those clusters in the sample selection.
This work is structured as follows. In Section 5.2, we introduce our cluster

sample and determine required properties from observations. The governing
equations of our model and our parameter choices are described in Section 5.3.
We discuss our steady state solutions in Section 5.4. In Sections 5.5 and 5.6, we
compare the non-thermal emission of the steady state solutions to observational
radio and gamma-ray data, respectively. In Section 5.7, we present the emerging
picture of the self-regulation cycle of CC clusters and conclude in Section 5.8.
Throughout this paper, we use a standard cosmology with a present-day

Hubble factor H0 = 70 km s−1Mpc−1, and density parameters of matter, Ωm =
0.3, and due to a cosmological constant, ΩΛ = 0.7.

5.2. Sample
We analyse a total of 39 CC clusters, which are chosen from the Archive of
Chandra Cluster Entropy Profile Tables (ACCEPT, Cavagnolo et al., 2009).
Here, we explain our selection criteria and perform fits to the density and
temperature data provided by ACCEPT.2 Moreover, we correlate the cooling
time at 1 Gyr to the star formation rate (SFR) of the cD galaxy.

5.2.1. Sample selection
All clusters in our sample are CC clusters that are selected from the ACCEPT
catalogue. It provides density and temperature profiles that are obtained
from high resolution Chandra observations that reach close to the centre of
the clusters. As in Cavagnolo et al. (2009), we consider galaxy clusters as
CC clusters if the central value of the entropic function K0 is smaller than
30 keV cm2. For K0, we use the fit values from Cavagnolo et al. (2009).

Ideally we would like to choose an X-ray flux limited subsample of the
ACCEPT clusters such as the extended HIghest X-ray FLUx Galaxy Cluster
Sample (HIFLUGCS, Reiprich and Böhringer, 2002). However, this sample
does not contain all clusters with a confirmed RMH, extended diffuse radio
emission in the centres of several CC clusters with a size of up to a few hundred
kpc. These sources can only be detected if the surface brightness exceeds a
limiting value that depends on the noise properties of the observations, and
effectively favours more massive clusters at higher redshifts. Nevertheless, we

2http://www.pa.msu.edu/astro/MC2/accept/

41



Cosmic ray heating in cool core clusters

include those clusters in the sample since their non-thermal emission can be
directly compared to our model.
Hence, our sample contains all 15 clusters of Giacintucci et al. (2014) that

host an RMH. Moreover, we include the CC clusters from the sample of 50
HIFLUGCS clusters with the highest expected gamma-ray emission from pion
decay that are also in ACCEPT (Pinzke et al., 2011). Since these predictions
derive from observed density profiles and a universal, simulation-based CR
model (Pinzke and Pfrommer, 2010), they also represent the X-ray brightest
CCs for which Chandra data is available in the ACCEPT data base. This
criterion yields 23 clusters for our sample. Moreover, we include 10 clusters
with deep Chandra data from Vikhlinin et al. (2006). We also add the Virgo
cluster and A 2597 due to their role in previous studies in the context of CR
heating and steady state solutions in CC clusters (Zakamska and Narayan,
2003; Guo et al., 2008; Fujita et al., 2013; Pfrommer, 2013). Since some of these
clusters are present in more than one of these samples, our final sample consists
of 39 galaxy clusters that are listed with some key properties in Table 5.1.
In Fig. 5.1, we show cluster masses and redshifts of our sample.3 Clusters

that host an RMH (shown with blue circles) are the clusters with the highest
redshifts in our sample. This is most likely due to a selection bias associated
with the limiting surface brightness effect discussed above. The majority of our
cluster sample has masses between 4 × 1014 and 2 × 1015 M�, irrespective of
whether they host an RMH or not. However, there are five clusters without an
RMH that have exceptionally low masses (light red) and three very massive
clusters with an RMH (light blue). Where appropriate, we analyse the core
sample that is (almost) unbiased in mass and indicate the outliers only for
illustrative purposes.
We further characterize our sample in Fig. 5.2 by showing the bolometric

X-ray luminosity of all ACCEPT clusters as a function of the X-ray temperature
(an observational proxy for cluster mass). We highlight the CC clusters of our
sample with RMHs (blue circles) and the clusters without RMHs (red diamonds).
More transparent colours indicate our low- or high-mass clusters, respectively.
The figure shows that the selected clusters span the whole parameter range
that is covered by the ACCEPT sample. Still, clusters with an RMH have
systematically higher bolometric luminosities than clusters without RMHs.
While our unbiased cluster sample (full colours) spans a narrow range in

M200 and TX of a factor of three, the bolometric X-ray luminosity varies by over
two orders of magnitudes, indicating the enormous variance in core densities.

3We use M200 as an estimate for the cluster mass, which is the total mass contained in a
sphere so that the mean density is 200 times the critical density ρcrit = 3H (z)2/(8πG) of
the universe, where H (z) is the Hubble function and G the gravitational constant.
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Figure 5.1.: Cluster masses and redshifts of our sample. Clusters with an RMH (blue
circles) have typically higher redshifts than clusters without an RMH (red diamonds).
The majority of the clusters has comparable masses if we exclude individual clusters
at the low and high mass end (shown with transparent colours).

CC clusters (including our entire sample) populate the upper envelope of the
Lbol–TX relation due to the higher than average density of these systems at
fixed cluster mass.

5.2.2. Density profiles
The non-thermal radio and gamma-ray emission depend on the density profiles
of the clusters, either directly since the hadronic reaction is a two-body process
with an emissivity that scales with the product of gas and CR density or
indirectly through the magnetic field, which assumes a density dependence
through the magnetic flux-freezing condition. Here, we use fits to observationally
inferred density profiles. If we were to use the density profiles of our steady
state solutions as derived in Section 5.4, this would only result in small changes
and have no influences on our conclusions.
For 15 clusters, we use the fits by Vikhlinin et al. (2006) and Landry et al.

(2013) who use the formula

npne =
n20 (r/rc)−α

[
1 + (r/rc)2

]3β−α/2
1

[1 + (r/rs)γ]ε/γ
+

n202[
1 + (r/rc2)2

]3β2
, (5.1)

where ne/np = 1.19 (see also Section 5.5.1).
We obtain the density profiles for the remaining clusters by performing
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Table 5.1.: Cluster sample.
Cluster z (1) K (1)

0 SFR(2) r (3)
200 r (4)

cool M (5)
200 kT (1)

X M (6)
200,est υ(6)

c
(keV cm2) (M� yr−1) (Mpc) (kpc) (1014 M� ) (keV) (1014 M� ) (kms−1)

Centaurus 0.0109 2.25 0.18a 1.67a 10.9 5.3a 3.96 5.7 227
Hydra A 0.0549 13.31 3.77a 1.75a 18.9 6.2a 4.30 6.5 326
Virgo (M87) 0.0044 3.53 0.24a 1.08b 9.5 1.4b 2.50 3.0 392
A 85 0.0558 12.50 0.61a 2.11a 20.0 10.9a 6.90 12.8 261
A 133 0.0558 17.26 . . . 1.78a 18.7 6.5a 3.71 6.1 0
A 262 0.0164 10.57 0.54b 1.17a 5.8 1.9a 2.18 2.4 273
A 383 0.1871 13.02 5.58a 1.54c 32.5 5.0c 3.93 8.3 346
A 496 0.0328 8.91 . . . 1.83a 17.0 7.1a 3.89 5.4 225
A 539 0.0288 22.59 . . . 1.56a 2.5 4.4a 3.24 3.7 491
A 907 0.1527 23.38 . . . 1.69c 8.5 6.4c 5.04 9.3 250
A 1644 0.0471 19.03 . . . 2.06a 9.1 10.0a 4.60 6.8 0
A 1795 0.0625 18.99 . . . 2.23a 20.0 12.8a 7.80 11.0 0
A 1991 0.0587 1.53 . . . 0.89c 17.8 0.9c 5.40 1.0 323
A 2052 0.0353 9.45 1.4b 1.56a 15.0 4.4a 2.98 4.0 0
A 2199 0.0300 13.27 0.58a 1.77a 13.1 6.4a 4.14 6.3 323
A 2597 0.0854 10.60 3.23a 1.71a 34.1 5.7a 3.58 5.6 319
A 3112 0.0720 11.40 4.2b 1.78a 19.8 6.5a 4.28 7.6 336
A 3581 0.0218 9.51 . . . 1.17a 12.9 1.8a 2.10 3.3 207
A 4059 0.0475 7.06 0.57a 1.79a 7.3 6.6a 4.69 6.6 233
AWM 7 0.0172 8.37 . . . 1.84a 5.4 7.2a 3.71 4.6 424
MKW3S 0.0450 23.94 . . . 1.64a 6.6 5.1a 3.50 4.4 304
MKW 4 0.0198 6.86 0.03a 1.08a 7.6 1.4a 2.16 2.0 364
PKS 0745 0.1028 12.41 17.2b 2.04a 44.5 9.8a 8.50 12.0 0
ZwCl 1742 0.0757 23.84 2.02a 2.25a 13.4 13.1a 4.40 16.0 0

Ophiuchus? 0.0280 8.95 . . . 3.28a 13.3 40.5a 11.79 16.5 0
Perseus (A 426) 0.0179 19.38 34.46a 1.95a 34.2 8.6a 6.79 4.8 0
2A 0335+096 0.0347 7.14 7c 1.58a 31.4 4.5a 2.88 5.9 228
A 478 0.0883 7.81 2.39a 2.17a 32.0 11.7a 7.07 11.0 358
A 1835 0.2532 11.44 235.37a 2.29d 49.2 17.5d 7.65 25.7 0
A 2029 0.0765 10.50 . . . 2.24a 24.5 12.9a 7.38 15.7 531
A 2204 0.1524 9.74 14.7b 1.93a 41.1 8.3a 6.97 6.8 463
A 2390 0.2301 14.73 40.6a 2.59d 18.9 24.8d 9.16 25.9 0
MS 1455.0+2232 0.2590 16.88 9.46a 1.48c 44.6 4.8c 4.51 7.1 569
RBS 0797 0.3540 19.49 . . . 1.81c 51.5 9.7c 6.43 7.8 250
RX J1347.5-1145 0.4510 12.45 . . . 2.42c 37.8 26.1c 10.88 46.3 0
RX J1504.1-0248 0.2150 13.08 140d 2.20c 57.0 15.1c 8.90 19.9 0
RX J1532.9+3021 0.3450 16.93 97b 1.70c 51.1 7.9c 5.44 11.9 376
RX J1720.1+2638 0.1640 21.03 . . . 1.87c 32.5 8.7c 5.55 12.4 369
ZwCl 3146 0.2900 11.42 65.51a 2.01c 43.8 12.5c 12.80 15.0 388
(1) Data are taken from the ACCEPT homepage (Cavagnolo et al., 2009) except for Ophiuchus (?), for

which we use the data from Werner et al. (2016).
(2) a) Hoffer et al. (2012) b) O’Dea et al. (2008) c) Donahue et al. (2007) d) Ogrean et al. (2010)
(3) a) Pinzke et al. (2011) b) Urban et al. (2011) c) r500 from Laganá et al. (2013), r200 = r500/0.63 (see

appendix B in Laganá et al. 2013), d) Ettori et al. (2010)
(4) We define the cooling radius rcool as the radius where the cooling time is 1Gyr.
(5) a) Pinzke et al. (2011) b) Urban et al. (2011) c) M500 from Laganá et al. (2013) d) M500 from Ettori

et al. (2010), for c) and d), we use M200 = 200 × 4πρcritr3
200/3.

(6) We use estimates from scaling relations, see Section 5.3.2.
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Figure 5.2.: Bolometric X-ray luminosity and X-ray temperature (as an observa-
tional proxy for cluster mass) of all clusters in the ACCEPT data base (grey data
points). Clusters of our sample are highlighted with blue circles if they host an RMH
and with red diamonds if not. Remarkably, clusters with an RMH have typically
higher bolometric luminosities than clusters without RMHs. Clusters at the low- and
high-mass end (that do not belong to our core sample) are shown with transparent
colours.

our own fits. To this end, we use the data points provided on the ACCEPT
homepage. Since the Chandra data only cover the centres of most clusters, we
find that a single beta profile is sufficient to describe the data and adopt the
following profile

ne = n0
[
1 + (r/rc)2

]−3β/2 (5.2)
in a suitable radial range. The fit results together with the radial range of
applicability can be found in Table 5.2.

5.2.3. Temperature profiles
For this work, it is convenient to construct continuous temperature profiles
from the ACCEPT data points to find smoother boundary conditions for
the integration of the steady state equations and to determine the maximal
temperature for each cluster (see Section 5.3).4 We also use these profiles to
determine the cooling time as a function of radius (see Section 5.2.4).

4Note that ACCEPT temperature profiles are not deprojected. While this may affect steep
temperature profiles at small angular scales, the projection effect should not significantly
influence our analysis and main conclusions (Vikhlinin et al., 2006; Cavagnolo et al., 2009).
We exchange the temperature and density profiles for the Ophiuchus cluster and adopt a
weighted average profile of the deprojected sector profiles from Werner et al. (2016), which
are based on significantly deeper Chandra data.
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To describe the temperature profile, we use the model from Allen et al. (2001)
with the modifications introduced by Pinzke and Pfrommer (2010) in order to
capture the temperature decline at large radii,

T = T0 + (T1 − T0)
[
1 +

(
r

rT

)−η]−1 
1 +

(
r

ar200

)2

−0.32
(5.3)

with free parameters T0, T1, rT and η. We vary the value of a for individual
clusters but keep it constant during the fit. The radius r200 is defined as the
radius corresponding to M200. We use the values for r200 from the literature
that are listed in Table 5.1. The resulting fit parameters and the maximum
radius, out to which the fit is performed, are shown in Table 5.2.

5.2.4. Cooling time profiles
We use the profile of the cooling time to describe the size of the central region,
in which the cooling flow problem is most severe. We determine the cooling
time as in Donahue et al. (2005), such that

τcool(r) = 108 yr
[

K (r)
10 keV cm2

]3/2 [
kT (r)
5 keV

]−1
, (5.4)

where k is the Boltzmann factor and the quantity K (r) = kT (r)ne(r)−2/3
describes the entropic function as a function of radius with the electron number
density ne. Here, we use the fits for K (r) by Cavagnolo et al. (2009).5
To characterize the cooling time profile, we define the cooling radius rcool

as the radius where the cooling time is 1Gyr. The values for the cooling
radius range between 2.5 and 60 kpc (see Table 5.1 and Fig. 5.3), which already
indicates a substantial variance of cooling properties in our sample. This
diversity might be connected to the differences of the inner temperature profiles
(Hudson et al., 2010).

In Fig. 5.3, we compare cooling radii to the observed infra-red SFR. We
take the latter from the literature as listed in Table 5.1. There is a correlation
between the SFR and the cooling radius, similar to the results from Hudson
et al. (2010). The larger the cooling radius, the larger is also the observed SFR.
The black line shows a power-law fit to the data with the log-normal scatter
σ. We distinguish between clusters with (blue) and without (red) RMHs. The
figure demonstrates that the clusters with the highest SFRs and largest cooling
radii host RMHs and vice versa. Moreover, this trend is not primarily driven

5For Ophiuchus, we calculate K (r) from our temperature and density fits.
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Table 5.2.: Parameters for density and temperature profiles.
Cluster r (1)

cut,ne n0 β rc r (1)
cut,T a (2) T0 T1 rT η

(kpc) (cm−3) (kpc) (kpc) (keV) (keV) (kpc)

Centaurus 62 0.225 0.30 0.9 63 0.2 0.8 5.1 21 1.0
Hydra A 296 0.067 0.40 11.2 297 0.5 2.5 5.9 300(4) 0.5
Virgo 44 0.230 0.29 0.6 54 0.2 1.9 3.1 28 1.4
A 85 248 0.089 0.34 7.2 248 0.3 3.0 8.7 92 1.2
A 133(5) . . . . . . . . . . . . 136 0.2 2.3 4.8 51 2.6
A 262(5) . . . . . . . . . . . . 81 0.2 1.5 2.5 9 2.5
A 383(5) . . . . . . . . . . . . 289 0.2 3.0 5.9 57 3.0
A 496 79 0.088 0.32 4.9 79 0.1 1.9 24.4 390 1.0
A 539 311 0.068 0.24 0.5(3) 146 0.2 3.0 3.2 21 10.0
A 907(5) . . . . . . . . . . . . 635 0.2 3.5 6.5 47 1.7
A 1644 284 0.051 0.26 2.1 292 0.2 2.0 5.5 49 1.5
A 1795(5) . . . . . . . . . . . . 377 0.2 3.3 7.6 75 1.5
A 1991(5) . . . . . . . . . . . . 197 0.2 0.9 3.0 19 1.5
A 2052 112 0.027 0.41 18.7 122 0.2 1.5 3.5 23 2.8
A 2199 84 0.101 0.25 2.2 104 0.1 2.7 4.9 24 2.1
A 2597 87 0.083 0.43 17.0 87 0.1 2.3 5.0 41 1.6
A 3112 226 0.079 0.40 10.2 245 0.2 2.7 5.7 35 1.6
A 3581 105 0.043 0.39 6.9 107 0.2 1.4 4.2 115 1.4
A 4059 213 0.053 0.29 3.9 221 0.2 2.1 5.0 30 2.0
AWM 7 78 0.113 0.22 0.5(3) 78 0.2 2.6 3.8 14 2.5
MKW 3S 386 0.027 0.45 21.9 229 0.1 3.1 3.7 26 3.3
MKW 4(5) . . . . . . . . . . . . 48 0.2 1.5 2.2 10 3.4
PKS 0745 496 0.112 0.52 28.0 416 0.5 3.2 20.0 300(4) 1.0
ZwCl 1742 343 0.029 0.56 30.3 343 0.2 3.0 4.3 51 6.1

Ophiuchus 257 0.463 0.26 0.5(3) 257 0.2 0.8 9.3 14 1.1
Perseus 114 0.049 0.62 42.4 115 0.2 3.2 8.7 94 2.3
2A 0335 148 0.095 0.45 12.0 148 0.2 1.6 4.9 46 1.8
A 478(5) . . . . . . . . . . . . 444 0.5 3.0 6.8 26 1.9
A 1835(6) . . . . . . . . . . . . 590 0.4 2.6 17.0 166 0.7
A 2029(5) . . . . . . . . . . . . 497 0.2 1.7 14.7 121 0.4
A 2204(6) . . . . . . . . . . . . 1040 0.2 3.3 10.2 40 3.0
A 2390(5) . . . . . . . . . . . . 549 0.3 4.0 12.7 52 1.6
MS 1455(6) . . . . . . . . . . . . 486 0.2 1.5 7.7 50(4) 0.4
RBS 797 537 0.101 0.65 43.2 315 0.5 4.2 15.2 217 1.2
RX J1347 988 0.103 0.65 54.3 501 0.08 6.6 23.8 82 1.5
RX J1504 587 0.163 0.62 31.8 587 0.5 4.4 10.9 105 1.4
RX J1532 477 0.091 0.62 38.9 477 0.4 4.1 7.6 108 2.0
RX J1720(6) . . . . . . . . . . . . 367 0.4 4.4 7.5 86 2.7
ZwCl 3146(6) . . . . . . . . . . . . 382 0.3 3.7 8.7 63 2.3
(1) Maximal radius that we include in fit.
(2) Parameter fixed in fit for all clusters.
(3) Fixed value for rc.
(4) Fixed value for rT.
(5) Density profile from Vikhlinin et al. (2006).
(6) Density profile from Landry et al. (2013).
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Figure 5.3.: We compare the observed infra-red SFR to the cooling radius, rcool,
which is defined as the radius at which the gas has a cooling time of 1 Gyr. The larger
the SFR, the larger is also the cooling radius. Clusters hosting an RMH (blue circles)
are characterized by large SFRs and cooling radii. Clusters at the low- and high-mass
end of our sample are shown with more transparent colours, indicating that the
SFR–rcool correlation is not driven by mass. The black line shows a power-law fit to
the data of our core sample (shown with full colours) and σ denotes the logarithmic
scatter.

by mass differences, which indicates another distinction between clusters that
is signalled by presence of an RMH and may even be causally connected. We
will come back to this correlation in the analysis of the steady state solutions
and in the calculation of the non-thermal emission.

5.3. Steady state model

In the following section, we first describe the governing equations for the ICM,
explain our approximations and show the resulting steady state equations.
Moreover, we specify how the remaining model parameters are chosen.

5.3.1. Governing equations

Adopting the simplifying assumptions that thermal and CR transport processes
are isotropic, the equations for the conservation of mass, momentum, thermal
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energy and CR energy are given by

dρ
dt
+ ρ∇ ·υ = 0, (5.5)

ρ
dυ
dt
= −∇ (Pth + Pcr) − ρ∇φ, (5.6)

deth
dt
+ γtheth∇ ·υ = −∇ · Fth +Hcr − ρL, (5.7)

decr
dt
+ γcrecr∇ ·υ = −∇ · Fcr −Hcr + Scr, (5.8)

where d/dt = ∂/∂t + υ ·∇ denotes the Lagrangian derivative, ρ describes the
gas density, υ is the mean gas velocity and φ is the gravitational potential.
The thermal pressure and energy are given by Pth and eth, whereas Pcr and
ecr specify CR pressure and energy. The conductive heat flux is denoted by
Fth, the CR heating rate and radiative cooling rate are denoted by Hcr and
ρL, respectively. Fcr and Scr denote the CR streaming flux and CR source
function.6

We close this set of equations with the equations of state for the thermal gas
and the CRs

Pth = (γth − 1)eth, (5.9)
Pcr = (γcr − 1)ecr, (5.10)

where γth = 5/3 is the adiabatic index for a monoatomic gas and γcr = 4/3 is an
effective adiabatic index for the CRs, for which we assume the fully relativistic
value.

Thermal pressure, gas density and temperature are related by the ideal gas
law

Pth =
ρkT
µmp

=
µe
µ

nekT, (5.11)

with the Boltzmann factor k, the mean molecular weight per particle µ and per
electron µe. As in Guo et al. (2008) and Zakamska and Narayan (2003), we
assume a fully ionized gas with X = 0.7 and Y = 0.28, such that µ = 0.62 and
µe = 1.18. Electron and proton number densities are related by ne = 1.19np.
The change in internal energy due to thermal conduction is obtained by the

divergence of the conductive heat flux Fth, which in turn is determined by

6In our model, we adopt the simplifying assumption that we can neglect turbulent heating
and diffusive CR transport as a result of scattering off external turbulence (Wiener et al.,
2017).
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Fourier’s law of conduction
Fth = −κ∇T. (5.12)

The conductivity κ is chosen as a fraction f of the Spitzer conductivity (Spitzer,
1962)

κ = f κsp = 1.84 × 10−5
(
ln λ
37

)−1
f T5/2erg s−1K−7/2 cm−1. (5.13)

We describe radiative cooling in the following form:

ρL = n2e
(
Λ0 + Λ1T1/2

)
, (5.14)

where Λ0 = 1.2× 10−23 erg s−1 cm3 and Λ1 = 1.8× 10−27 erg s−1 cm3K−1/2. With
this functional form, we approximate the cooling function of Sutherland and
Dopita (1993) at solar metallicity, appropriate to the central regions of CCs.
In addition to the bremsstrahlung scaling with T1/2 at high temperatures, we
include the flattening of the cooling function at temperatures below 1 − 2 keV
as a result of cooling due to line transitions.
In the self-confinement picture, the CR population propagates with a drift

velocity relative to the rest frame of the gas. The drift velocity results from
balancing the growth rate of the CR streaming instability and the damping
rates due to non-linear Landau (NNL) damping (Kulsrud and Pearce, 1969)
and turbulent damping (Farmer and Goldreich, 2004). NNL damping occurs
when two waves interact and form a beat wave, which propagates with a lower
phase speed than the individual waves so that it can interact with thermal
particles. Particles that move faster than the beat wave add energy to the wave
whereas particles with slower velocities extract wave energy. Since the latter
case is typical for a Maxwellian plasma (Wiener et al., 2013), this leads to
wave damping. Turbulent damping is caused by pre-existing strong turbulence
that causes Alfvén wave packages primarily to decay in the direction that is
transverse to the magnetic field. CRs can only resonantly interact with Alfvén
waves on their gyro scale. If turbulence causes those waves to decay to smaller
scales, the wave growth is exponentially damped (Wiener et al., 2013).
The drift velocity for NNL damping reads for parameters relevant to the

centres of CC clusters (Wiener et al., 2013)

υd,NNL = υA
*.
,
1 + 0.002

n3/4e,−2 (kT2keV)1/4

B10µG L1/2
z,20kpc n1/2cr,fid

γ (α−1)/2+/
-
, (5.15)

where ne,−2 = ne/10−2 cm−3 is the electron number density and kT2keV =
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kT/2 keV is the temperature of CCs, α is the spectral index of the CR proton
population, ncr,fid = ncr/8 × 10−9 cm−3 is the fiducial CR number density,7
B10µG = B/10µG is the magnetic field, Lz,20kpc = Lz/20 kpc is the CR scale-
length and γ denotes the Lorentz factor of CRs. Similarly, if turbulent damping
predominates, the CR drift velocity is given by (Wiener et al., 2013)

υd,turb = υA
*.
,
1 + 0.002

B1/2
10µG n1/2e,−2

L1/2
MHD,20kpc ncr,fid

γα−3/2+/
-
, (5.16)

where LMHD,20kpc = LMHD/20 kpc is the length scale at which turbulence is
excited with velocity perturbations comparable to the Alfvén speed υA (i.e.
with MA = 1). If velocity perturbations are sub-Alfvénic then we need to
extrapolate the wave spectrum to LMHD.

The drift velocity attains contributions from two modes of propagation. The
first contribution describes the advection of CRs with the frame of the Alfvén
waves that are excited by the streaming instability and we define this velocity
as the streaming velocity. Since CRs stream down their pressure gradient
(projected on to the local magnetic field), the streaming velocity is given by

υst = −sgn(b̂ ·∇Pcr)υA, (5.17)

where b̂ denotes the direction of the magnetic field and υA = B/
√
4πρ is

the Alfvén velocity. The subdominant second term in Equations (5.15) and
(5.16) resembles the CR drift relative to the Afvén wave frame and depends
on plasma conditions and the dominant damping mechanism. Neither of the
known damping mechanisms in ionized plasma results in diffusive behaviour.
Formally, it can be shown that (Wiener et al., 2013, 2017)

∇ · (κd∇ecr) ≈ ∇ · (ecrn (υd − υA)) (5.18)

with a diffusion coefficient, κd, and a normal vector pointing down the CR energy
gradient, n. In the case of turbulent damping, the expression for (υd − υA) is
independent of ∇Pcr, implying that CR transport is equivalent to streaming
at velocity υd down the CR gradient. For NNL damping, (υd − υA) ∝ L−1/2z ∝
(∇Pcr)1/2. This is again distinct from diffusion where the flux is proportional
to ∇Pcr. The CR flux density is given by (e.g. Skilling, 1971; Guo and Oh,

7Adopting a power-law CR spectrum with spectral index α = 2.4 and low-momentum cutoff
mpc/2, the CR number density is ncr = 1.3 × 103Pcr. To obtain the fiducial CR number
density, we assume a CR-to-thermal pressure ratio of 0.1 and values for the thermal
pressure as described.
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2008; Pfrommer et al., 2017a)

Fcr = (ecr + Pcr)υst. (5.19)

Because CRs are advected with the wave frame and electric fields vanish
there, CRs cannot experience an impulsive acceleration and can only scatter in
pitch angle. Upon transforming to the rest frame of the gas, there are electric
fields associated with the propagating Alfvén waves representing time-varying
magnetic fields. This causes an energy transfer from the CRs to the gas, with
a volumetric heating rate (Wentzel, 1971; Ruszkowski et al., 2017b)

Hcr = −υst ·∇Pcr. (5.20)

Since CRs stream down their gradient, this term is always positive. Therefore,
the thermal gas is invariably heated at the expense of CR energy that is used
to drive the dissipating wave field.

5.3.2. Model specifications
In order to solve the governing equations, we need to specify the gravitational
potential, the magnetic field and the CR source term.
We obtain the gravitational potential by combining the results of Newman

et al. (2013), who find that the total mass profile in galaxy clusters is best
described by a Navarro-Frenk-White profile (NFW, 1997), with the results
by Churazov et al. (2010). They show that the gravitational potentials of
elliptical galaxies in cluster centres, especially Virgo, are well described by
isothermal spheres. Thus, we use a superposition of an NFW density profile
ρNFW(r) = Ms/

[
4πr (rs + r)2

]
and a singular isothermal sphere. The total

gravitational potential is then given by

φ(r) = φNFW(r) + φSIS(r) = −GMs
r

ln
(
1 + r

rs

)
+ υ2

c ln
(

r
1 kpc

)
, (5.21)

with the scaling parameters Ms and rs of the NFW profile and the circular
velocity υc. As in Zakamska and Narayan (2003), we use the peak value of the
temperature profile to determine the parameters Ms and rs for the NFW profile.
We obtain these temperatures either from our fits or, in rare cases, take the
ACCEPT data point with the largest value of the radial temperature profile.
Then, we use equation 23 in Afshordi and Cen (2002), which is derived from
numerical studies by Evrard et al. (1996), to calculate M200, and proceed as in
Zakamska and Narayan (2003) to obtain Ms. The estimated value for M200 is
listed in Table 5.1. To calculate the scale radius rs, we use the scaling relation
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Figure 5.4.: We show our model of the gravitational potential (top) and the
corresponding force (bottom) for the cluster Hydra A. The potential is composed of
a singular isothermal sphere (SIS) that dominates in the centre and an NFW profile
at larger radii. The normalization of the SIS is chosen such that at the radius rt, the
forces of SIS and the NFW profile are equally strong.

by Maoz et al. (1997).
The remaining parameter is the circular velocity, υc, which describes the

normalization of the isothermal sphere. In the radial range that we consider in
this work, the SIS is only dominant in the centre of the cluster. Hence, we can
use the normalization of the SIS to set the extent of this region. To this end,
we define a transition radius, rt, at which the forces from the SIS and from the
NFW profile are equal. We now use this transition radius as a free parameter
in our model, which also determines the normalization of the SIS (i.e. υc).

Fig. 5.4 illustrates a typical example of our model of the gravitational poten-
tial. The top panel shows the potential and the bottom panel the corresponding
forces in the radial range that we consider for the steady state solutions. The
SIS dominates in the cluster centre and becomes subdominant to the NFW
profile towards larger scales. Even at the largest relevant radius for this work,
the NFW profile remains the governing potential (while the SIS would start
to predominate again at much larger radii). This holds for all clusters in our
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sample. The bottom panel highlights the definition of the transition radius.
Here, we demand that the forces due to the SIS and the NFW profile are
equally strong, which fixes the normalization of the SIS.
We do not model the magnetic field and its evolution explicitly but need

to parametrize it in order to calculate CR streaming. The strength and
orientation of magnetic fields in galaxy clusters are uncertain. Here, we will
assume spherical symmetry (see also Section 5.3.3) such that it is sufficient to
model the radial magnetic field component as (Vogt and Enßlin, 2005; Kuchar
and Enßlin, 2011)

B(r) = B0

( ne
0.01 cm−3

)αB

. (5.22)

We choose a magnetic field normalization B0 = 10µG and a power-law index
of αB = 0.5. Those values are of the same order as observed magnetic fields in
Virgo and Hydra A (de Gasperin et al., 2012; Kuchar and Enßlin, 2011), but
somewhat larger than the assumption by Pfrommer (2013). Our general picture
that CRs are injected by the central AGN implies that their number density
and pressure decrease with radius. Hence, on large scales the radial component
of the streaming velocity will be most relevant and is given by υst = υA.
In the CR heating term, we also account for small-scale CR pressure fluc-

tuations in addition to the large-scale radial gradients. Fluctuations in the
thermal pressure are found by X-ray observations especially in the centre of the
cluster. We expect corresponding fluctuations in the CR pressure that also lead
to (non-radial) CR streaming and subsequently contribute to the CR heating
rate. Following Pfrommer (2013), we model the fluctuations as weak shocks,
such that the total CR heating rate is given by

Hcr = −υst ·∇Pcr = −υA
(
dPcr
dr
− 5
2
εfPcr

r

)
, (5.23)

where εf = 0.1. The first term covers the large-scale radial gradients whereas
the second term describes the fluctuations.

To model CR injection, we assume that AGN feedback and thus CR injection
are triggered by accretion. Newly injected CRs are first transported inside
bubbles to a certain radius rcr and then released. The corresponding source
term is given by (Guo and Oh, 2008)

Scr = −νεcrṀc2

4πr3cr

(
r

rcr

)−3−ν (
1 − e−(r/rcr)2)

, (5.24)

where εcr describes how efficient the rest mass energy of the cooling flow is
converted to CR energy, Ṁ is the mass accretion rate and ν describes the slope

54



Cosmic ray heating in cool core clusters

of the CR profile after the CRs are released into the ambient medium at the
radius rcr. The last factor exponentially suppresses the injection of CRs at radii
that are smaller than rcr. We choose ν = 0.3 as in the fiducial run of Guo and
Oh (2008). In the same run, Guo and Oh (2008) choose rcr = 20 kpc and an
efficiency of εcr = 0.003. Nevertheless, we keep rcr and εcr as free parameters
and take these values only as a first guidance.

5.3.3. Steady state equations

We obtain the steady state equations from the governing equations in Sec-
tion 5.3.1. Here, we introduce the boundary conditions and the selection criteria
for the remaining parameters.

Equations

In order to solve Equations (5.5) – (5.8), we assume spherical symmetry and
only consider a steady state. The simplified equations are given by

Ṁ = 4πr2ρυ, (5.25)

ρυ
dυ
dr
= − d

dr
(Pth + Pcr) − ρdφdr

, (5.26)

υ
deth
dr
− γthethυ

ρ

dρ
dr
= − 1

r2
d
dr

(
r2Fth

)
+Hcr − ρL, (5.27)

υ
decr
dr
− γcrecrυ

ρ

dρ
dr
= − 1

r2
d
dr

(
r2Fcr

)
−Hcr + Scr, (5.28)

Fth = − f κsp
dT
dr
. (5.29)

Here, Ṁ denotes the mass accretion rate through each spherical shell and
Fcr = γcrecrυA the CR flux. We numerically solve the four ordinary differential
Equations (5.26) – (5.29) for the variables ρ(r), T (r), Fth(r) and Pcr(r). The
fraction of the Spitzer conductivity, f , is treated as an eigenvalue of the problem,
which adds a fifth differential equation d f /dr = 0 to the system of equations.
The parameters rt, Ṁ, εcr and rcr are selected prior to the integration according
to the criteria presented in the next section.
We choose the radius of the innermost ACCEPT data point as the inner

boundary rin of the integration. The outer radius rout is chosen such that the
temperature fits are still valid and the temperature profile is at most at its
maximum since we focus on the centre of the cluster. To solve these five ordinary

55



Cosmic ray heating in cool core clusters

differential equations, we impose the following five boundary conditions:

ρ(rin) = ρin, kT (rin) = kTin, (5.30)
Fth(rin) = Fth, in, kT (rout) = kTout, (5.31)
Pcr(rin) = Pcr, in. (5.32)

Here, we use the first ACCEPT data point for ρin.8 To determine the tempera-
ture values kTin and kTout, we generally use our fitted temperature profiles or,
if in some exceptional cases the fits are poor, the corresponding ACCEPT data
point. We prefer the smoother fits since the data points can have substantial
scatter in the outer regions of the cluster. We do not allow any heat flux to
cross the inner boundary and set Fth, in = 0 for all clusters. This directly implies
that the temperature gradient also vanishes there. We obtain the inner CR
pressure Pcr, in by solving the steady state equations at the inner boundary.
Since we want to focus on solutions in which CR heating dominates (see also
next section), we solve these equations here without the conduction term. All
boundary values are also listed in Table 5.3.

Parameters

The steady state equations still contain four free parameters: rt, Ṁ, εcr and rcr.
In order to simplify the integration, we specify these parameters before solving
the equations. The values of these parameters can have a significant impact on
the solutions. We use this freedom to obtain physical solutions and to focus on
CR heating. Therefore, we scan a grid in the parameter space, allowing for all
parameter combinations.

The transition radius rt that links the NFW profile at large scales to that of
an isothermal sphere in the centre, assumes values of 0, 5, 10, 20 and 30 kpc.
These values allow for a pure NFW profile and reach the maximum size of the
central galaxy whose potential might well be described by an isothermal sphere
(Churazov et al., 2010). We adopt a maximum value for the accretion rate of
10M� yr−1 and decrease its value by factors of ten because we aim at solutions
without large cooling flows. The efficiency of transforming accreted mass into
CR energy, εcr, varies between 0.001, 0.003, 0.006, 0.01 and 0.03, with a fiducial
value of 0.003 (Guo and Oh, 2008). The radius rcr, which describes how far
CRs are transported into the ICM by bubbles, varies between 5, 10 and 20 kpc.
From this set of parameters, we choose solutions that fulfil the following

criteria. We only accept physical solutions for which the required fraction of
8For two clusters (A 3581 and RX J1504), we use the second point instead to avoid an
increasing density profile at the centre. For the same reason, we use the maximal value in
Perseus.
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Table 5.3.: Radial integration limits, boundary conditions and model parameters
for our cluster sample.

Cluster rin rout n (1)
e,in T (1)

in T (1)
out Xcr,in X (2)

cr,r2 r (3)
t Ṁ (3) ε (3)

cr r (3)
cr f (4)

(kpc) (kpc) (cm−3) (keV) (keV) (kpc) (M� yr−1) (kpc)

Centaurus 0.6 62 0.177 1.0 4.0 0.08 0.03 5 0.1 0.006 5 0.25
Hydra A 2.6 296 0.066 2.8 4.7 0.12 0.07 10 1 0.006 10 0.49
Virgo 0.7 44 0.149 1.9 2.6 0.07 0.07 20 0.1 0.010 5 0.52
A 85 2.6 248 0.086 3.1 7.2 0.14 0.07 5 1 0.010 10 0.27
A 133 2.6 136 0.041 2.3 4.5 0.11 0.05∗ 0 1 0.003 10 0.43
A 262 0.8 52 0.037 1.5 2.4 0.02 0.02∗ 10 0.01 0.006 5 0.23
A 383 7.4 156 0.075 3.0 5.6 0.14 0.07∗ 10 1 0.010 10 0.57
A 496 1.5 79 0.085 2.0 5.4 0.08 0.04∗ 5 1 0.001 5 0.23
A 539 1.4 38 0.034 3.0 3.3 0.02 0.02 30 0.01 0.010 5 0.12
A 907 6.6 177 0.033 3.6 6.0 0.07 0.06 5 1 0.003 10 0.17
A 1644 2.3 221 0.033 2.1 4.9 0.05 0.03∗ 0 0.1 0.003 5 0.24
A 1795 2.8 275 0.055 3.3 6.7 0.12 0.07∗ 0 1 0.006 10 0.42
A 1991 2.7 89 0.102 1.1 2.7 0.15 0.09 20 1 0.003 10 0.55
A 2052 1.7 92 0.038 1.5 3.4 0.08 0.06∗ 0 1 0.001 10 0.32
A 2199 1.5 84 0.089 2.7 4.6 0.06 0.06∗ 10 1 0.003 10 0.57
A 2597 3.8 87 0.085 2.4 4.2 0.17 0.06 10 10 0.001 10 0.55
A 3112 3.4 166 0.076 2.7 5.3 0.11 0.06 10 1 0.006 10 0.40
A 3581 1.1 105 0.042 1.4 2.6 0.08 0.03 5 0.1 0.003 5 0.41
A 4059 2.3 140 0.048 2.1 4.8 0.07 0.05 5 0.1 0.006 5 0.19
AWM 7 0.9 78 0.086 2.6 3.8 0.03 0.03∗ 20 0.1 0.003 5 0.31
MKW 3S 2.2 72 0.036 3.1 3.6 0.04 0.03∗ 10 0.1 0.010 10 0.80
MKW 4 0.9 43 0.076 1.5 2.1 0.03 0.02∗ 20 0.01 0.010 5 0.58
PKS 0745 4.5 353 0.112 3.4 12.0 0.24 0.09∗ 0 10 0.003 10 0.28
ZwCl 1742 3.5 110 0.045 3.0 4.6 0.14 0.09 0 1 0.006 10 0.38

Ophiuchus? 1.2 257 0.234 1.3 8.8 0.18 0.17∗ 0 1 0.030 20 0.26
Perseus 0.9 114 0.054 3.2 6.5 0.05 0.04∗ 0 1 0.006 20 0.37
2A 0335 1.6 148 0.120 1.6 4.4 0.22 0.07 5 1 0.010 10 0.67
A 478 4.1 232 0.108 3.1 6.7 0.17 0.07∗ 10 1 0.006 5 0.58
A 1835 9.4 590 0.117 4.2 11.8 0.21 0.16∗ 0 10 0.010 20 0.32
A 2029 3.4 264 0.128 4.2 8.5 0.08 0.07∗ 20 10 0.001 10 0.19
A 2204 6.5 124 0.133 3.3 9.8 0.14 0.09∗ 20 1 0.030 20 0.15
A 2390 8.7 305 0.065 4.4 11.9 0.11 0.08∗ 0 10 0.003 20 0.07
MS 1455 9.5 162 0.082 3.6 5.0 0.13 0.08 30 10 0.003 20 0.69
RBS 797 6.2 241 0.096 4.4 9.9 0.22 0.11∗ 5 10 0.010 20 0.43
RX J1347 14.3 186 0.128 7.7 17.5 0.24 0.15∗ 0 10 0.030 20 0.14
RX J1504 8.3 537 0.105 4.6 10.0 0.20 0.16∗ 0 10 0.010 20 0.72
RX J1532 11.6 361 0.093 4.1 7.1 0.23 0.10 10 10 0.010 20 0.94
RX J1720 6.7 287 0.076 4.4 7.3 0.25 0.17 10 10 0.010 20 0.23
ZwCl 3146 10.3 238 0.104 3.8 8.3 0.24 0.11 10 10 0.010 20 0.29
(1) Data are taken from the ACCEPT homepage (Cavagnolo et al., 2009) except for Ophiuchus (?),

for which we use the data from Werner et al. (2016).
(2) Values represent our steady state solutions that are evaluated at rcool (no asterisk) or at the radius

where CR and conductive heating are equal (denoted by an asterisk, ∗); see Section 5.4.1.
(3) These parameters are chosen prior to the integration and kept fixed.
(4) The Spitzer fraction for thermal conductivity ( f ) is treated as an eigenvalue.
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the Spitzer conductivity is smaller than unity. The theoretically favoured value
is f ∼ 0.3 or even lower (e.g., Narayan and Medvedev, 2001; Komarov et al.,
2016). Moreover, we only accept solutions, whose density and temperature
profiles agree well with observations. From the resulting set of solutions, we
select those which maximize CR heating. In order to meet constraints from the
literature, we require that the central CR-to-thermal pressure value is smaller
than 0.3 (Churazov et al., 2010). Note, however, that the required CR pressure
also depends on the magnetic field: the larger the magnetic field, the less CRs
are necessary to achieve the same amount of heating. As a last criterion, we
favour solutions with decreasing CR-to-thermal pressure profiles towards larger
radii.
In conclusion, we select parameters that reproduce X-ray observations and

make CRs the dominant heat source for a large radial range. The chosen
parameters are listed in Table 5.3.

5.4. Diversity of steady state solutions
We present and discuss the steady state solutions of our fiducial model with
CR and conductive heating for two representative clusters and refer the reader
to Appendix A for the remaining part of the sample. In order to understand
the impact of CR heating, we additionally explore a straw man’s model with
conductive heating only. We close this section by analysing the parameter
values for our fiducial model that give the best-fitting steady state solution
with CRs as the dominant heat source.

5.4.1. Steady state solutions
In Figs. 5.5 and 5.6, we show different aspects of the steady state solutions
for two example clusters, A 1795 and RX J1720. RX J1720 hosts a confirmed
RMH while A 1795 does not.
The top panels of Figs. 5.5 and 5.6 show the steady state solutions for the

electron number density and temperature. The data points are taken from
the ACCEPT sample. Data and steady state solutions agree well for both
clusters. Part of the remaining discrepancies could be due to deviations from
our assumptions of a steady state or spherical symmetry. This assumption
does not account for features such as the observed bubbles in the central
regions of many CC clusters (e.g. Bîrzan et al., 2004). In addition to that,
inaccuracies especially in the description of the gravitational potential can have
large effects on the resulting density and temperature profiles. Still, we see
that the considered physical processes admit steady state solutions that agree
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Figure 5.5.: Dissecting the steady state solution for the cluster A 1795. Top.
Electron number density and temperature profiles. The data points are taken from
ACCEPT. Middle left. Cooling and heating rates as a function of radius; the filled
circle corresponds to the location of the cooling radius. CR heating dominates in
the centre of the cluster and thermal conduction becomes more important at larger
radii. Bottom left. Ratio between the different heating rates to the cooling rate.
Note that the total heating-to-cooling ratio (black) is less than unity, indicating
a small net cooling that causes mass accretion towards the centre. Middle right.
Ratios of CR-to-thermal pressure Xcr, magnetic-to-thermal pressure XB, as well as
total non-thermal-to-thermal pressure Xnt as a function of radius. Bottom right. We
show the relation between CR pressure and magnetic fields if CR heating balances
radiative cooling. The smaller the magnetic field, the more CRs are required and
vice versa. The solid lines show the relation at the inner boundary of our solution,
the dotted lines correspond to the radius at which CR and conductive heating are
equal, as indicated by the cross. The symbols represent the values of the steady state
solutions.
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Figure 5.6.: Same as in Fig. 5.5 but for RX J1720 which hosts an RMH. The plus
sign in the bottom-right plot indicates that the dotted lines correspond to the cooling
radius.
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well with the observed (azimuthally averaged) thermodynamic profiles.
While this is a necessary requirement for a plausible heating mechanism,

it is not sufficient due to potential local and global instabilities. We do not
carry out stability analyses for our particular set up. However, Pfrommer
(2013) demonstrates local stability of CR heating at temperatures kT & 3 keV,
around 1 keV, and finds further islands of stability at locations of cooling line
complexes in the cooling function. A global stability analysis for CR heating
has been carried out by Fujita et al. (2013), who could not find any unstable
modes. Guo et al. (2008) show that a combination of thermal conduction and
AGN heating can also be globally stable if the AGN feedback is strong enough,
thus providing circumstantial evidence that our solutions are likely sufficiently
stable on time-scales relevant for reaching self-regulated heating.

In order to scrutinize the steady state solutions further, we show the relative
merits of CR (red) and conductive heating (orange) in comparison to radiative
cooling (blue) in the middle-left panels of Figs. 5.5 and 5.6 and present both
heating rates in units of the cooling rate in the bottom-left panels of these
figures. For the chosen set of parameters, CR heating dominates in the centres
of the clusters. In A 1795 thermal conduction takes over at ∼ 10 kpc, whereas
in RX J1720 CR heating stays dominant over the entire radial range that we
consider here. The latter is less typical for the complete sample since thermal
conduction usually starts to dominate in the intermediate parts of the cluster,
which demonstrates its importance at those radii (see Appendix A). In the
middle-left panels of Figs. 5.5 and 5.6, we also indicate the required fraction
of the Spitzer conductivity ( f = 0.42 and 0.23 for A 1795 and RX J1720,
respectively) that will be discussed further in the next section. The solid black
line in the bottom-left panels of these figures shows the total heating rate in
units of the cooling rate. CR and conductive heating do not exactly add up to
the cooling rate because the mass flux (which is by construction constant in
each radial shell) and hence the central mass deposition rate are non-zero. As
a result, the energy equation contains advection and adiabatic terms that do
not vanish (see Equation 5.27). Moreover, these terms lead to radial variations
of the heating-to-cooling rate ratio.

In the middle-right panel of Figs. 5.5 and 5.6, we show radial profiles of the
ratio of CR-to-thermal pressure, Xcr = Pcr/Pth, and the magnetic-to-thermal
pressure ratio, XB = B2/ (8πPth). In both clusters, the CR-to-thermal pressure
ratio peaks in the centre and falls off to larger radii as expected for a CR
population that is injected by a central AGN. The maximal CR pressure ratio
in A 1795 is Xcr,max ≈ 0.10 and Xcr,max ≈ 0.25 in RX J1720. Note that the
CR-to-thermal pressure ratio is almost constant in the central regions of the
clusters and only starts to fall off rapidly beyond the cooling radius. Such a
constant pressure ratio is theoretically expected from a steady state where CR
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heating balances cooling (Pfrommer, 2013). This can be seen by estimating
the energy per unit volume that is transferred from the CRs to the thermal
gas in steady state,

∆εth = −τAυst ·∇Pcr ≈ Pcr = XcrPth, (5.33)

where τA = δl/υA denotes the Alfvén crossing time over a CR pressure gradient
length δl.

Fig. 5.5 also shows that the CR pressure is larger than the magnetic pressure
in the centre of A 1795. At larger radii, the CR pressure decreases faster than
the magnetic pressure such that the latter starts to dominate at a radius of
r & 30 kpc. We see the same trends in RX J1720 (Fig. 5.6) but there the CR
pressure is generally larger and thus stays dominant at all radii.
In this section, we have restricted the discussion to two example clusters

but the applicability of our model to the whole sample is a key result of this
paper. We present plots similar to Figs. 5.5 and 5.6 for the other clusters of
our sample in Appendix A. The density and temperature profiles of the steady
state solutions in our sample agree well with observations. Radiative cooling is
typically balanced in the centre by CR heating and in the intermediate parts of
the cluster, closer to the temperature peak, by conductive heating. While the
agreement of model and observed thermodynamic variables (such as density
and temperature) is a necessary requirement for a viable model, the predicted
CR and magnetic pressure values must not conflict with any other observational
data. This mainly concerns dynamical potential estimates and non-thermal
radio and gamma-ray observations of these clusters. We will return to this
point in Sections 5.5 and 5.6.

5.4.2. Non-thermal pressure constraints
If CR heating balances radiative cooling as in the cluster centres of our steady
state solutions, this imposes further constraints on the non-thermal pressure in
the system. Neglecting the mass accretion rate and thermal conduction (which
is justified in those regions), we get approximately

Crad,R ≈ Hcr,R = −υA,R
(
dPcr
dr

�����R
− 5
2
εfPcr,R

R

)
≈ −υA,RXcr

(
dPth
dr

�����R
− 5
2
εfPth,R

R

) (5.34)

at a given radius R. In the last step, we assume for simplicity that the CR-to-
thermal pressure ratio is constant, which is usually a reasonable assumption
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Figure 5.7.: CR-to-thermal pressure ratio Xcr at the inner boundary (red circle)
and at the outer radius of interest, which is either the cooling radius (+) or the radius
at which the CR and conductive heating rates are equal (×). Absolute values for
Xcr are shown in the top panel, the bottom panel shows the ratio of Xcr at the inner
radius to its value at the outer radius of interest. The steady state solutions in RMH
clusters require larger values of Xcr in comparison to clusters without RMHs. Xcr is
approximately constant across the radial range considered and does not significantly
differ in both cluster populations.

in the inner parts of the cluster. If temperature and density are known at
the radius R, e.g. from observations or from the steady state solutions, the
magnetic field that enters implicitly in the Alfvén velocity and Xcr remain the
only unknown quantities. In this case, Equation (5.34) implies BXcr = const
and therefore XB ∝ X−2cr . We use the values for XB and Xcr from the steady
state solutions to calculate the constant of proportionality at (i) the inner
boundary of the integration, rin, and (ii) either at the cooling radius or at the
radius where CR and conductive heating are equal. We choose the smaller of
these latter two radii, to avoid that the heating is dominated by conduction.
The corresponding CR-to-thermal pressure ratio is also included as Xcr,r2 in
Table 5.3.

The bottom-right panels of Figs. 5.5 and 5.6 show Xcr, XB and the total
non-thermal-to-thermal pressure ratio Xnt = Xcr + XB as a function of Xcr. The
solid line corresponds to the values at the inner boundary, rin, and the circle
marks the Xcr value that we obtain for our assumptions of the magnetic field.
The dotted line indicates the non-thermal pressure at the second radius. A
plus sign indicates the use of the cooling radius and the corresponding values
of Xcr and XB (see Fig. 5.6). The cross shows that we use the radius at which
CR and conductive heating are equal (see Fig. 5.5). Independent of the chosen
radius, the lower the magnetic pressure, the higher is the required CR pressure
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to realize the balance between heating and cooling and vice versa. Clearly, the
necessary total non-thermal pressure for CR heating to balance cooling reaches
a minimum if the magnetic pressure is half the CR pressure. In A 1795, the
CR-to-thermal pressure ratios that are realized in our steady state solution
are close to this minimum. Hence, the total non-thermal pressure can not be
reduced much further in this cluster. In RX J1720, our values lie somewhat
above the minimum, especially in the centre of the cluster. However, if the CR
pressure is larger than the optimal value, the total non-thermal pressure only
increases linearly with Xcr.

5.4.3. CR-to-thermal pressure ratio
How does the CR-to-thermal pressure ratio Xcr vary across our sample? In
Fig. 5.7, we show Xcr at the inner boundary for each cluster (red circle) and
at the outer radius of interest for CR heating. This is the smaller radius of
either the cooling radius (at which the radiative cooling time is 1 Gyr) or the
radius at which the CR and conductive heating rates are equal. As already
discussed in Section 5.4.1, Xcr is approximately constant across the radial range
considered and decreases by at most a factor of 3 towards the outer radius
(lower panel of Fig. 5.7). This behaviour is comparable for clusters with and
without an RMH.

Most interestingly, the upper panel of Fig. 5.7 shows that the CR-to-thermal
pressure ratio is typically larger in clusters with an RMH in comparison to
clusters without an RMH with medians of 0.20 and 0.08, respectively. As
we will discuss in more detail in Section 5.7, clusters that host an RMH are
on average characterized by higher central densities and thus a substantially
enhanced cooling rate. To compensate for this increased cooling in steady state,
the CR heating rate and thus Xcr need to be larger. This is a first indication
that the character of the steady state solutions is not uniform across our cluster
sample and differs for clusters with and without an RMH.
At first sight, the CR-to-thermal pressure ratios in Fig. 5.7 appear to be

high in comparison to other observational limits on Xcr that result, e.g., from
gamma-ray observations of clusters. However in our model, the CR source is
situated at the cluster centre and the CRs lose energy as they stream towards
larger radii. This implies a steep radial decline of Xcr at radii where CR heating
is insufficient to balance cooling and to maintain the thermal pressure profile
(Equation 5.33). In cluster centres, the CR pressure can only be probed in
tandem with other non-thermal pressure contributions by comparing hydrostatic
mass estimates to those inferred by dynamical potential estimates that are
probed by orbits of stars and globular clusters (e.g., Churazov et al., 2010).
These authors conclude that Xcr can reach values of 20 – 30 per cent, which is
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Figure 5.8.: Comparison of the required fraction of the Spitzer conductivity in the
steady state solutions with ( f ) and without ( fc) CR heating. The top panel shows
the absolute values and the bottom panel the ratio. If CR heating is added, the
required value of f is reduced. For some clusters only then f < 1 can be achieved,
but for most clusters CR heating has a smaller effect on f since thermal conduction
still balances radiative cooling on large scales.

in agreement with our model. In contrast to that, the upper limits that are
derived from the non-detection of gamma-rays typically assume a global CR
population that fills the entire cluster out to the virial radius and results from
diffusive shock acceleration at cosmological formation shocks (e.g. Ackermann
et al., 2014). Due to the large volume that is covered by these models, the
allowed Xcr values are typically much lower, of the order of 1 – 2 per cent. We
emphasize that in order to compare our model with gamma-ray data, we need
to compare the predicted (radio and gamma-ray) fluxes with the upper limits
from observations. We carry out such an analysis in Sections 5.5 and 5.6.

5.4.4. Required fraction of the Spitzer conductivity
The ICM is a magnetized and weakly collisional medium. It is characterized by a
mean free path that is many orders of magnitudes larger than the Larmor radius.
This implies anisotropic transport processes such as thermal conduction to act
primarily along the orientation of the local magnetic field and to dramatically
change the way in which the ICM responds to perturbations. In the case
of a rising temperature profile with radius (which defines cool cores), the
heat-flux-driven buoyancy instability (Quataert, 2008) might reorient magnetic
field lines such that conduction is suppressed in the radial direction. Instead,
hydrodynamic simulations suggest that turbulence, e.g. from AGN feedback, is
able to randomize the magnetic fields (McCourt et al., 2011; Yang and Reynolds,
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2016a). Moreover, the value of conductivity has been estimated on the basis of
observations of steep temperature gradients in the ICM (Ettori and Fabian,
2000) and long-lived cold gas that has been stripped from infalling substructure
(Eckert et al., 2014). However, these observations can also be explained by
magnetic draping, which suppresses thermal conduction and viscosity across
these temperature and density gradients by means of a strongly magnetized
boundary layer that naturally forms as a result of the magnetohydrodynamics
(Lyutikov, 2006; Dursi and Pfrommer, 2008; Pfrommer and Jonathan Dursi,
2010; Ruszkowski et al., 2014).

The value of the conductivity along the magnetic field is also strongly debated.
There is the possibility that mirror instabilities excited by pressure anisotropies
can act as magnetic traps for the heat-conducting electrons, suppressing their
transport (Komarov et al., 2016; Riquelme et al., 2016) or that oblique whistler
modes can resonate with electrons moving in the direction of the heat flux,
which potentially causes a suppression of the heat flux (Roberg-Clark et al.,
2016). However, the effective volume filling fraction of these processes has
not been studied, and it is still unclear whether a suppression of the electron
transport causes a reduction of the transport of thermal energy.
We treat the fraction of the Spitzer conductivity as an eigenvalue of the

system of steady state equations. Red crosses in the top panel of Fig. 5.8 show
the Spitzer fractions that we obtain from our fiducial solutions. Most of the
values lie between 0.2 and 0.6. Note that we directly exclude solutions with
f > 1 as being unphysical. Still, our values are somewhat on the high side as
indicated by the dashed line that represents the isotropic average f = 0.33.
Nevertheless, considering the ongoing debate about the conductivity in the
ICM, so far there is no major problem with our results for f . This result is in
line with findings by Voit et al. (2015) who suggest that thermal conduction
appears to be important for distinguishing clusters with and without a cool
core.
To analyse the impact of CR heating, we also solve the system of hydrody-

namic equations without CRs, i.e. Equations (5.25), (5.26), (5.27) and (5.29).
Radiative cooling is then balanced only by thermal conduction, which was
already explored by Zakamska and Narayan (2003) and Guo et al. (2008).
Unlike these authors, we supplement the gravitational potential of the NFW
profile by that of an SIS at small radii, which appears to be required by
dynamical potential estimates (Churazov et al., 2010). We use parameters
for the gravitational potential (i.e. Ms, rs, rt), the mass accretion rate, the
radial range and the boundary conditions that we describe in Section 5.3.3.
Without CRs, the temperature and density profiles do not change much since
they are primarily determined by the gravitational potential and the boundary
conditions.

66



Cosmic ray heating in cool core clusters

Interestingly, we obtain different fractions of the Spitzer conductivity, denoted
as fc, which are shown in Fig. 5.8 as orange plus signs. As expected, the
required conductivity increases in comparison to the results with CRs since
now conduction alone has to balance cooling; in some cases resulting in a
conductivity significantly exceeding the Spitzer value. Thus, CR heating is
required in those clusters to achieve a fraction of the Spitzer conductivity that
is smaller than unity. The bottom panel in Fig. 5.8 shows the ratio of the
Spitzer conductivity with and without CRs. It can be seen that for many
clusters the fraction of the Spitzer conductivity is not altered dramatically by
the addition of CRs, only in rare cases by more than a factor of two. The
reason is that in both models thermal conduction balances radiative cooling
on large scales in many clusters. An example is A 1795, in which the required
conductivity remains almost the same. However, if CR heating dominates
also on larger scales in our fiducial model, as in our second example cluster
RX J1720, the required fraction of the Spitzer conductivity is significantly
reduced in comparison to the conduction-only case.

Despite the seemingly small effects of CR heating on the steady state solutions,
our fiducial model with CR heating has some clear advantages over the model
that only includes thermal conduction. First, CR heating is locally stable
at certain temperatures in contrast to thermal conduction (Pfrommer, 2013).
Moreover, CR heating enables a self-regulated AGN feedback loop: CRs are
injected by the central AGN and heat the cluster gas by streaming outwards.
As soon as the CR population is too dilute and has lost most of its energy,
radiative cooling overcomes CR heating such that cold gas can fuel the AGN
and trigger CR injection again.

5.4.5. Parameters for maximal CR heating
The model parameters that enter the steady state equations before integration
have a large impact on the solution. Thus, we scrutinize our choice of parameters
in this section. To this end, we distinguish between clusters with and without
RMHs. Here, we analyse correlations between our parameters and observed
quantities and discuss the amount of fine-tuning in our solutions.

We model the gravitational potential as a superposition of a singular isother-
mal sphere in the centre of the cluster and an NFW profile at larger radii (see
also Fig. 5.4 in Section 5.3.2). The radius rt determines the transition between
these potentials as it delineates – by construction – equal force contributions
by the gravitational potentials of the SIS and the NFW profiles. To justify
the usage of an isothermal sphere within the transition radius, we compute
the temperature difference between the temperature at the selected transition
radius and the inner radius for each cluster. We find that ∆T (rin,rt) ≤ 1 keV
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Figure 5.9.: Correlation between model parameters and observed quantities. Left.
Comparison between observed infra-red SFR and mass accretion rate of our steady
state solution. Larger SFRs imply larger mass accretion rates and are more likely
to be accompanied by the phenomenon of RMHs. The black line indicates a linear
relation between SFRs and Ṁ. Middle. We compare the cooling radius rcool to the
CR injection radius rcr. The larger the cooling radius, the larger is the selected CR
injection radius, albeit with substantial scatter. Clusters with RMHs have the largest
cooling and CR injection radii. Right. As a consequence of the other relations, the
CR injection radii and mass accretion rates are also correlated.

except for one cluster with a temperature difference of 1.7 keV. Assuming
quasi-hydrostatic equilibrium, this demonstrates that within rt an isothermal
sphere is a valid assumption for all clusters.

Parameter correlations

In the discussion of our cluster sample, we already pointed out a correlation
between the cooling radius and the observed infra-red SFR in Section 5.2.4.
Here, we pursue this topic further and show the most interesting relations
between the model parameters as well as between parameters and observations
in Fig. 5.9.
In the left-hand panel of Fig. 5.9, we compare the observed infra-red SFRs

as listed in Table 5.1 with the mass accretion rates Ṁ from our steady state
solutions. Clusters with high SFRs require higher mass accretion rates to obtain
a steady state solution in which CR heating dominates. For visual guidance, the
black line shows a linear relation between both quantities, which is consistent
with the data. Apparently, larger mass deposition rates are able to sustain
larger SFRs. However, star formation and the mass accretion considered here
operate on very different time and length scales, such that a direct link between
both is not necessarily expected. Moreover, we note that the SFRs are roughly
a factor of 10 higher than the mass accretion rates. Partly this may result from
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our upper limit of the accretion rate of Ṁ = 10M� yr−1. Another possibility is
that star formation is triggered by the interaction of AGN jets and the ambient
medium (Gaspari et al., 2012b; Li and Bryan, 2014; Brighenti et al., 2015).
Interestingly, clusters with an RMH have higher observed SFRs and therefore
higher values of Ṁ in comparison to clusters without RMHs.
The middle panel of Fig. 5.9 shows the relation between the cooling radius

rcool as defined in Section 5.2.4 and the radius rcr in the CR source function.
The larger the cooling radius, the larger is the required value of rcr. Such a
relation can be expected since a large cooling radius implies that the region
where the cooling problem is most severe is also large. In order for CR heating
to stably balance radiative cooling, comparably large amounts of CRs are
needed in this entire region, which calls for a large CR injection radius rcr. As
before, there are differences between the populations of galaxy clusters with and
without RMHs: both radii are significantly larger for clusters hosting RMHs.

We finally show the CR injection radius rcr as a function of the mass accretion
rate Ṁ in the right-hand panel in Fig. 5.9. Since both values are discrete in
the parameter grid, points often lie on top of each other. Thus, we indicate the
number of the overlying points with the area of the pie chart and the colours
show the contributions from clusters with and without RMHs. The smallest
pie charts contain only one cluster, whereas the largest chart represents 12
clusters. For the majority of clusters the mass accretion rate correlates well
with the CR injection radius, which is a consequence of the relations presented
before: larger mass accretion rates imply larger SFRs, which in turn imply
larger cooling radii (see Fig. 5.3) and hence also larger CR injection radii. As
expected, clusters hosting an RMH are characterized by higher mass accretion
rates and larger CR injection radii in comparison to cluster without an RMH.
These correlations are reassuring in that our parameter choices reflect the

observed trends and relations of SFR and cooling radius of Fig. 5.3. Moreover,
the relations demonstrate that there is some diversity in the population of
CC clusters, with a continuous sequence from clusters hosting an RMH to
those without: the latter population shows a smaller SFR and mass accretion
rate, which may indicate that CR heating is more efficient in those clusters.
Although the smallest mass accretion rates occur in clusters with very low
masses, all trends are still clearly visible for the subsample of clusters with
similar masses.

Discussion of fine-tuning

The existence of global solutions immediately poses the question of potential
fine-tuning of the parameter values. Given the complexity of the involved
physics that includes modelling the gravitational potential, the magnetic field
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and the CR population, a comparably large number of parameters is unavoidable.
For some parameters we use values that are common to all clusters. However,
we put down a four-dimensional parameter grid in which we are searching for
viable solutions.

Due to the diversity in various cluster parameters, such as cooling radius,
SFR, and also to a certain extent mass (see Figs. 5.1 and 5.3), we do not expect
that all their properties can be described by the same universal parameters.
Comparable observational constraints among our cluster sample would help
to substantiate the parameter choices. However, observations of the magnetic
fields or CR populations for such a large cluster sample are not feasible in the
near future such that a parametrization of these quantities remains necessary.
Our parameter grid can span orders of magnitude in a parameter value

(especially for Ṁ and εcr). Hence, our parameter choices represent a range of
parameters rather than fine-tuned precise values and we get similarly good
matches to the observational profile if we vary our best-fitting values somewhat.
This leads us to the conclusion that although some tuning is indeed required
for our solutions, extensive fine-tuning is not necessary.

5.5. Radio emission
Hadronic interactions between relativistic CRs and the ambient cluster medium
lead to secondary electrons and hence synchrotron emission. Here, we compare
the modelled radio emission of our steady state CR population to observed
data by the NRAO VLA Sky Survey (NVSS, Condon et al., 1998) as well as
RMHs.

5.5.1. Emissivity
We calculate the radio emission closely following Pfrommer et al. (2008). The
distribution of protons, which we describe in terms of the dimensionless proton
momentum pp = Pp/(mpc), is given by

fp(pp) =
dN

dppdV
= Cp(r)p−αp

p θ(pp − qp). (5.35)

It represents a power-law in momentum with spectral index αp = 2.49. Such a
spectral index is expected for a CR population that was injected by an AGN
and may have experienced a mild spectral steepening as a result of outwards

9Note that our results are robust to changes in αp by ±0.3.
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streaming (Wiener et al., 2013). We enforce a lower momentum cut-off at
qp = 0.5 with the Heaviside step function θ(x).
We denote the normalization by Cp(r) and specify it with the steady state

solutions for the CR pressure as (Enßlin et al., 2007; Pfrommer et al., 2008)

Cp(r) =
6Pcr,ex(r)

mpc2

[
B 1

1+q2p

(
αp − 2

2 ,
3 − αp

2

)]−1
. (5.36)

Here, Bx (a,b) denotes the incomplete beta function and Pcr,ex(r) denotes an
extrapolated version of the CR pressure profile that we obtain as part of the
steady state solutions. The extrapolation is necessary since the steady state
solutions are only valid in a certain radial range, i.e., between the radii rin and
rout (see Table 5.3). To determine the non-thermal emission, we extend the
solutions to the centre of the cluster with a constant value. Since the outer
radius can vary substantially from cluster to cluster, we extrapolate the profile
to 200 kpc if rout is smaller than that, which is the case for 25 out of 39 clusters.
Beyond 200 kpc, the CR pressure has typically dropped significantly, such that
the hadronically induced fluxes are fully determined by the emission at smaller
radii and the exact cut-off radius becomes unimportant. For the extrapolation
to larger radii, we use a power law. The final CR pressure profile that we use
in Equation (5.36) is then given by

Pcr,ex(r) =




Pcr(rin) r < rin
Pcr(r) rin < r < rout
Pcr(rout)

(
r

rout

)αPcr r > rout

(5.37)

with αPcr = d ln Pcr/d ln r |rout .
Hadronic CR proton interactions with the ICM produce secondary electrons.

If radiative losses are taken into account, this population of secondary electrons
reaches a steady state with a spectral index that is steepened by one, αe = αp+1
(Sarazin, 1999). The corresponding secondary synchrotron emissivity jν at
frequency ν per steradian is given by

jν =
Aν
4πCpnN

eB

eB + erad

(
eB

eBc

) (αν−1)/2
. (5.38)

The emissivity depends on the normalization of the CR protons Cp and on
the nucleon density nN. Moreover, it depends on the frequency-dependent
normalization factor, Aν, the magnetic energy density, eB, the energy density
in radiation, erad, a frequency dependent characteristic magnetic field strength,
eBc , and the radio spectral index αν = (αe − 1)/2.
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The nucleon number density is given by nN = nH + 4nHe = ρ/mp. It is related
to the electron number density by nN = µene. We use our fits to the ACCEPT
data to describe ne (see Section 5.2.2) and a mean molecular weight per electron
of µe = 1.18. This corresponds to a composition of the ICM with hydrogen
mass fraction X = 0.7 and helium mass fraction Y = 0.28.
Assuming an isotropic distribution of the CR electrons’ pitch angles, the

synchrotron emissivity can be written in terms of the magnetic energy density
eB = B2/(8π). We parametrize the magnetic field strength as in Section 5.3.2,
which is motivated by analyses of deprojected Faraday rotation measure maps
and minimum field estimates by radio observations with the LOw Frequency
ARray (LOFAR, Vogt and Enßlin, 2005; Kuchar and Enßlin, 2011; de Gasperin
et al., 2012),

B(r) = B0

(
ne(r)

0.01 cm−3

)αB

. (5.39)

We adopt a magnetic field normalization B0 = 10µG and a power law index of
αB = 0.5. This choice implies a radially constant Alfvén speed υA.
The radiation field in galaxy clusters modifies the synchrotron emissivity

because the emitting CR electrons suffer additional energy losses from inverse
Compton scattering. The total radiation field in galaxy clusters is composed of
CMB photons and the emission from dust and stars such that erad = eCMB+eSD.
Here, we treat the energy density of CMB photons with an equivalent magnetic
field of BCMB = 3.24(1+ z)2 µG (Pfrommer et al., 2008). For the emission from
stars and dust, we employ the model by Pinzke et al. (2011).10

In Fig. 5.10 we show radial profiles of eB, eCMB and eSD for our entire cluster
sample. At small radii the SD radiation energy density predominates and starts
to fall below the magnetic energy density at radii ranging from 20 to 40 kpc,
depending on the particular cluster. At larger radii, the magnetic field starts
to predominate as long as its energy density exceeds the energy density of the
cosmic microwave background, εB > εCMB. Because we are looking at nearby
clusters (z < 0.45) and use a comparably strong magnetic field (which is still
in agreement with Faraday rotation measurements of CCs), this is the case for
ne & 10−3 cm−3, or equivalently most of the cool core regions studied in this
work (r . 130 − 200 kpc).

The emissivity scales with frequency as jν ∝ ν−αν . Here, αν = (αe − 1)/2 =
1.2, which is encapsulated in eBc and Aν. The first quantity is defined as
eBc = B2

c/(8π) where Bc = 31ν GHz−1µG. The remaining constant Aν is given

10We are correcting two typos in equations (A8) and (A9) of Pinzke et al. (2011) and replace
the factors 6.0 × 10−9 and 4.0 × 10−7 kpc2 by 71 and 4384 kpc2, respectively, so that we
can reproduce the correct results in fig. 22 of Pinzke et al. (2011).
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Figure 5.10.: Energy density profiles of the magnetic field, the CMB, and the
radiation field emitted by stars and dust. The clusters are ordered by row, starting
with non-RMH clusters and followed by RMH-hosting clusters from Perseus onward.
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by

Aν = 4πAEsynch

162−αeσppmec2

(αe − 2)σTeBc

(
mp

me

)αe−2 (
mec2

GeV

)αe−1
(5.40)

with the Thomson cross-section σT and the effective proton–proton cross-section
σpp, which is described as (Pfrommer and Enßlin, 2004a)

σpp = 32
(
0.96 + e4.4−2.4(αe−1)

)
. (5.41)

AEsynch is given by

AEsynch =

√
3π

32π
Bce3

mec2
αe +

7
3

αe + 1
Γ

( 3αe−1
12

)
Γ

( 3αe+7
12

)
Γ

(
αe+5
4

)
Γ

(
αe+7
4

) . (5.42)

In the regime of weak fields (eB � erad), the emissivity strongly depends on
the magnetic field strength (see Equation 5.38). In the limit of large magnetic
fields (eB � erad), the electrons lose all their energy to synchrotron radiation
and not by inverse Compton scattering. Thus, to good approximation we
can neglect the energy density in radiation in Equation (5.38). In this case,
we obtain a weak scaling of the emissivity with magnetic field strength since
then jν ∝ ε(αν−1)/2

B ≈ ε0.1B for our choice of αe. Because most of the secondary
synchrotron emission is collected from radii between 20 and 100 kpc for which
we are clearly in the magnetically dominated emission regime, the emissivity
is mostly insensitive to the exact value of magnetic field strength and is thus
directly proportional to the normalization of the CR distribution.

Using this emissivity, we can calculate theoretically expected surface bright-
ness profiles, luminosities and fluxes for the available observations.

5.5.2. Comparison with NVSS data
We first compare the emission from the steady state CR population to the data
from the NVSS. This survey detects point sources at 1.4 GHz with a restored
beam of 45 arcsec full width half-maximum (FWHM). These data include
emission by primary electrons that are accelerated by the AGN combined with
the secondary electrons injected in hadronic interactions between CRs and
thermal protons. Therefore, the NVSS data have to be considered as upper
limits for our purpose.
We track the radial extent of the CR population to a maximum radius

of rmax, ‖ = max {rout, 200 kpc}. This choice ensures that we account for the
entire CR energy in our non-thermal emission because in most clusters, the CR
pressure drops steeply at radii well below 200 kpc as a result of CR streaming.
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Figure 5.11.: Comparison between the predicted secondary radio flux of our steady
state solutions and the 1.4 GHz flux measured by NVSS. Because the radio emission
observed by NVSS likely acquires a partial contribution from primary accelerated CR
electrons, it represents an upper limit to the hadronically generated secondary radio
emission. The top panel shows the absolute flux values of a new predicted class of
radio micro haloes (left to the dashed line). In the bottom panel, we display the ratio
of predicted to observed flux. For most clusters without RMHs the predicted flux is
smaller than the flux observed by NVSS, whereas for RMH clusters the predicted
flux is generally in conflict with the data. This excludes CR pressures at a level
required to stably balance radiative cooling in most clusters hosting an RMH.

Moreover, this characteristic radius corresponds to a typical radial extent of an
RMH. We verified that the radio flux does not depend on the precise choice
of this radius because it is dominated by the central regions. However, rmax, ‖
subtends an angle on the sky that is larger than the NVSS beam width for all
clusters.

Hence for the flux calculations, we first project the emissivity along the radial
direction and obtain the surface brightness as

Sν (r⊥) = 2
∫ rmax, ‖

r⊥
dr

r jν (r)√
r2 − r2⊥

. (5.43)

To determine the fluxes as seen by NVSS, we cut out a cylinder with radius
rmax,⊥ that corresponds to 22.5 arcsec, half of the FWHM of the beam, such
that

Fν = 2π
∫ rmax, ⊥

0
dr⊥r⊥Sν (r⊥) . (5.44)
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Table 5.4.: Radio fluxes and gamma-ray fluences.
Cluster F (1)

ν,NVSS Fν,mod F (2)
γ,obs Fγ,mod Fγ,>1 GeV

(×10−11) (×10−11) (×10−11)
(mJy) (mJy) (ph cm−2 s−1) (ph cm−2 s−1) (ph cm−2 s−1)

A 3112 . . . 9.16× 101 27.3a 1.75 1.75
MKW3S a 1.15× 105 8.79 . . . . . . 0.50
Virgo (M87) a 1.39× 105 1.25× 101 135b 51.52 51.52
A 2052 a 5.50× 103 8.43 24c 2.88 0.80
Centaurus a 3.80× 103 7.11 801d 25.30 5.12
Hydra A a 4.08× 104 1.00× 102 19.6a 3.17 3.17
A 4059 a 1.28× 103 3.99 9.1a 0.25 0.25
A 262 a 6.57× 101 0.22 9.3a 0.13 0.13
A 3581 b 6.46× 102 2.27 110c 1.69 0.47
A 2199 a 3.58× 103 3.47× 101 19.8a 4.74 4.74
A 1644 b 9.84× 101 1.07 16a 0.10 0.10
MKW 4 b 1.71× 101 0.36 . . . . . . 0.13
A 539 b 6.3 0.14 . . . . . . 0.05
A 1795 a 9.25× 102 1.23× 102 5.8a 3.33 3.33
A 2597 a 1.88× 103 2.59× 102 4.4a 3.33 3.33
A 133 a 1.67× 102 2.78× 101 7.6a 0.96 0.96
A 496 b 1.21× 102 2.05× 101 25.2a 1.45 1.45
A 907 b 6.86× 101 2.48× 101 . . . . . . 0.22
PKS 0745 b 2.37× 103 1.37× 103 82c 45.26 12.65
AWM 7 b 2.9 1.73 384d 4.73 0.96
ZwCl 1742 b 9.12× 101 5.82× 101 10.4a 1.16 1.16
A 1991 b 3.90× 101 2.52× 101 . . . . . . 0.83
A 383 c 4.09× 101 9.79× 101 . . . . . . 0.60
A 85 b 5.67× 101 1.91× 102 18a 5.91 5.91

Perseus (A 426) a 2.28× 104 1.10× 102 0.014e 0.003 38.27
A 2029 b 5.28× 102 2.56× 102 328d 23.14 4.68
A 2390 b 2.35× 102 2.37× 102 43c 4.73 1.32
A 478 a 3.69× 101 2.15× 102 12.7a 2.63 2.63
2A 0335+096 a 3.67× 101 3.31× 102 6.7a 15.53 15.53
A 2204 c 6.93× 101 7.51× 102 13c 15.53 4.34
Ophiuchus b 2.88× 101 3.51× 102 2622d 336.41 68.01
ZwCl 3146 d 9.58× 101 1.21× 103 . . . . . . 3.85
MS 1455.0+2232 d 1.93× 101 2.62× 102 . . . . . . 0.97
RX J1720.1+2638 d 8.77× 101 1.35× 103 . . . . . . 9.42
A 1835 c 3.93× 101 1.12× 103 . . . . . . 5.02
RX J1532.9+3021 c 2.28× 101 7.99× 102 . . . . . . 2.26
RX J1504.1-0248 b 6.05× 101 2.19× 103 96c 33.70 9.42
RBS 0797 a 2.17× 101 9.21× 102 . . . . . . 2.26
RX J1347.5-1145 d 4.59× 101 3.00× 103 257d 24.90 5.03
(1) a) Bîrzan et al. (2004) b) sources from the NVSS Source catalogue browser with

distance to ACCEPT coordinates < 15 arcsec, except for A 539 (1.08 arcmin) and
MKW 4 (1.32 arcmin) c) Sayers et al. (2013) d) Coble et al. (2007)

(2) a) Ackermann et al. (2014) (> 1 GeV) b) Abdo et al. (2009) (> 1 GeV) c) Dutson
et al. (2013) (> 0.3 GeV) d) Ackermann et al. (2010) (0.2 − 100 GeV) e) Aleksić
et al. (2012) (> 1 TeV); these values are upper limits except for Virgo/M87 (Abdo
et al., 2009)
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We present the resulting fluxes together with the observations in Fig. 5.11 and
list them in Table 5.4.11

In the upper panel of Fig. 5.11, we show the absolute values of the predicted
flux at 1.4 GHz as well as the radio fluxes observed by NVSS. The bottom
panel shows their ratio. We separate clusters with and without an RMH and
order each group according to the flux ratio. The upper panel shows that the
predicted fluxes span orders of magnitude ranging from 10−4 to 10 Jy. The
synchrotron flux predictions for clusters without an RMH are significantly
smaller than for clusters hosting an RMH, whereas the fluxes from NVSS are
often larger for clusters without RMHs.

There is an even stronger correlation in the flux ratios. Due to our ordering
of the clusters, the flux ratio increases from left to right. Interestingly, the flux
ratios for clusters with an RMH are generally much larger than for clusters
without an RMH. Moreover, there is a smooth transition from the clusters
without to the clusters with an RMH. An exception is Perseus with a very
small flux ratio. The reason for this is the exceptionally strong NVSS source
Perseus A since the predicted flux is in line with that of the other clusters.
We find that most flux ratios in clusters without an RMH are smaller than

unity but almost exclusively exceed unity in RMH clusters. Thus, the level
of CR pressure required to stably heat the interiors is in conflict with radio
observations for RMH clusters while the secondary radio emission resulting from
hadronic CR interactions is well below the observed fluxes in clusters without
RMHs. Together with the gradual transition between the two populations this
may indicate a self-regulated feedback loop. On the one side, the cooling gas in
non-RMH clusters may be stably balanced by CR heating, while RMH clusters
appear to be out of balance and predominantly cooling. This interpretation is
further discussed in Section 5.7.

5.5.3. Radio mini haloes

The sources detected by the NVSS are point sources and can only be upper
limits for our predictions since they also include primary emission from the
central galaxy and its AGN. The observed RMHs allow us to test the extended
radio emission from a CR population that is able to balance cooling. To this
end, we study the fluxes of all RMHs and compare the surface brightness
profiles of individual clusters to the observations by Murgia et al. (2009). In
the end, we discuss the robustness of our conclusions with respect to changes
in the parametrization of the magnetic field.

11There is no data for A 3112 since its position on the sky was not observed by the NVSS.
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Table 5.5.: Properties of the radio mini haloes.
Cluster r (1)

RMH F (1,2)
RMH,obs F (2)

RMH,mod
(kpc) (mJy) (mJy)

Perseus (A 426) 130 3020 4914
A 2029 270 19.5 728
A 2390 250 28.3 348
A 478 160 16.6 411
2A 0335+096 70 21.1 1475
A 2204 50 8.6 688
Ophiuchus 250 83.4 8718
ZwCl 3146 90 5.2 1184
MS 1455.0+2232 120 8.5 288
RX J1720.1+2638 140 72.0 1989
A 1835 240 6.1 1449
RX J1532.9+3021 100 7.5 782
RX J1504.1-0248 140 20.0 2637
RBS 0797 120 5.2 946
RX J1347.5-1145 320 34.1 3221
(1) Giacintucci et al. (2014) and references therein.
(2) All fluxes correspond to ν = 1.4 GHz.

RMH fluxes

Here, we compare our modelled secondary RMH fluxes to the observed values
at 1.4 GHz in Giacintucci et al. (2014). The hadronically induced RMH fluxes
at this frequency from our CR population are determined as in Section 5.5.2.
In contrast to the previous calculation, we now integrate the radio flux out to
the radius rmax,⊥ = min {

rRMH, rmax, ‖
}. The radius rRMH denotes the (average)

radius of the RMH as determined by Giacintucci et al. (2014, see Table 5.5).
We show the results in Fig. 5.12. The upper panel displays the model

predictions and observational fluxes, the lower panel their ratio. Clearly,
the predicted flux exceeds the observed flux in all clusters by up to three
orders of magnitude. This demonstrates that the secondary radio emission
from a CR population that is able to balance radiative cooling is excluded by
data. Conversely, this also means that if RMHs are powered by hadronic CR
interactions, those CRs have insufficient pressure to heat the cluster gas.
While Perseus is formally excluded based on a moderate overproduction of

the RMH flux by a factor of 1.6, uncertainties in the magnetic field model
and the extent of the CR distribution along the line of sight could make it
consistent with the observational RMH data.

Surface brightness profiles

Murgia et al. (2009) analyse the surface brightness profiles of a sample of
clusters with radio haloes and RMHs. Six of their clusters also coincide with
members of our sample so that we can test our model profiles. The surface
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Figure 5.12.: Comparison between the predicted fluxes for the RMHs and the
observations from Giacintucci et al. (2014). All predicted secondary radio fluxes
exceed the observations by a substantial margin (with the exception of Perseus that
is only barely excluded). Thus, this excludes CR pressures at a level that is required
to stably balance radiative cooling in the central cluster regions exhibiting an RMH.

brightness is in principle given by Equation (5.43), but for better comparison
we smooth our brightness profiles to the resolution of the Very Large Array
observations at 1.4 GHz as described in Murgia et al. (2009). Therefore, we
convolve the surface brightness with a Gaussian beam of standard deviation
σ = FWHMbeam/(2

√
2 log(2)),

S̃ν (r) =
1

2πσ2

∫
d2x′Sν (|x′|) exp

(
− (x − x′)2

2σ2

)
(5.45)

=
1
σ2

∫ ∞

0
dxxSν (x) exp

(
− x2 + r2

2σ2

)
I0

( r x
σ2

)
,

where I0(x) denotes a modified Bessel function of the first kind. For the
convolution, we assume that the surface brightness profile has dropped to zero
beyond rmax, ‖.
In Fig. 5.13, we compare the expected surface brightness profiles (red) to

the radio data (black dots) of Murgia et al. (2009). These data contain the
central radio source and the RMH. After modelling the central AGN, the RMH
contribution is shown as black dashed lines, which take the form of exponential
profiles (Murgia et al., 2009). The modelled secondary profiles exceed the
observed RMH profiles by a factor of two in Perseus and up to two orders of
magnitude in RX J1347. In three cases the profiles exceed even the emission
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Figure 5.13.: We compare the predicted radio surface brightness profiles of secondary
synchrotron emission (red) to data from Murgia et al. (2009) (black data points).
The black dashed lines show their fits to the emission from the RMH after modelling
the central AGN emission. The expected emission exceeds the observed data by up
to two orders of magnitudes, which indicates that CR heating is not viable in those
clusters at all scales (with the exception of Perseus that is only marginally excluded).
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from the central galaxy. This demonstrates that the emission from a CR
population that is able to balance radiative cooling would overproduce the
radio emission in the core region delineated by the RMH emission, at least in
those six clusters.

Hence, our predictions generally surpass the limits set by radio observations
in clusters hosting an RMH, irrespective of whether we use NVSS data, RMH
fluxes or surface brightness profiles. Perseus and A 2390 are only excluded
by a factor of a few to several and represent thus transitional objects. These
systems can be made consistent with the observational radio data by either
lowering Xcr and increasing B0 by the same factor or by truncating the CR
distribution along the line of sight, which would lower the predicted radio flux
without affecting the central heating rate. With the exception of those clusters,
CR heating plays no central role in balancing radiative cooling in RMH-hosting
clusters. Before we turn our attention to the gamma-ray emission, we assess
the robustness of our conclusions when varying the magnetic field model.

Modifying the magnetic field

Aside from the CR population, the CR heating rate and the radio emissivity
depend on the magnetic field strength. In our model, we fix the normalization
at B0 = 10 µG at ne = 10−2 cm−3 (see Section 5.5.1). Here, we investigate
whether it is possible to find a combination of magnetic field and CR pressure
that reproduces the RMH fluxes and still balances radiative cooling.
In the limit of strong magnetic fields (εB � εCMB), the emissivity is pro-

portional to jν ∝ CpBαν−1. For our choices of the spectral index, αν = 1.2
(see Section 5.5.1), which means that the dependence of jν on the magnetic
field is extremely weak. Hence, the emissivity and therefore surface brightness
profiles and fluxes depend almost entirely on the CR population. In order to
meet the fluxes from the RMH, we would need to reduce the number of CRs
by at least a factor of 10 for most clusters (barring Perseus). If the shape
of the CR profile remains the same, the CR heating rate is proportional to
Hcr ∝ BCp. To achieve the same amount of CR heating with the reduced CR
population, we would thus have to increase the magnetic field by a factor of
10. However, magnetic fields of B0 ≈ 100 µG or higher would imply a plasma
β factor (i.e., the ratio of thermal-to-magnetic pressure) of 0.1 instead of the
observed values that are of order or larger than 20 in cool core regions. Such
a strong magnetic field is excluded by Faraday rotation measurements and
minimum energy arguments (Vogt and Enßlin, 2005; Kuchar and Enßlin, 2011;
de Gasperin et al., 2012) and would be impossible to grow and maintain with
a (turbulent) magnetic dynamo in the presence of a small turbulent-to-thermal
energy density ratio of 4 per cent (Hitomi Collaboration et al., 2016).
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For that reason, it is not possible to simultaneously reproduce the RMH
fluxes and heat the cluster gas with CRs in the entire cool core region. One
resort would be to refrain from maximal CR models that heat the entire radio
emitting region of RMHs. Instead, we could concentrate on CR heating models
for the central region that would dramatically reduce the required amount of
CR energy and by extension also the level of secondary radio emission to get
into agreement with RMH data. However, as we will discuss in Section 5.7, we
present an alternative scenario that argues for a heating/cooling imbalance in
RMH clusters, which show strong signs of cooling and star formation and for a
stable balance in clusters without an observable RMH.

5.6. Gamma-ray emission
Hadronic interactions between CRs and thermal protons produce neutral pions
that decay into gamma-ray photons with a distinctive spectral signature in the
differential source function that peaks at energies of half the pions’ rest mass.
We use upper limits to the extended gamma-ray emission of galaxy clusters
from Fermi and MAGIC to probe our model.

5.6.1. Pion decay luminosity
We follow Pfrommer et al. (2008) to determine the gamma-ray fluxes. Here,
sγ (Eγ) denotes the gamma-ray source function as a function of energy. The
omnidirectional integrated gamma-ray source density between two energies E1
and E2 in units of photons per energy, per unit time, and per unit volume is
then given by

λγ =

∫ E2

E1

dEγsγ (Eγ)

=
4Cp

3αpδγ
mπ0cσppnN

mp

(
mp

2mπ0

)αp [
Bx

(
αp + 1
2δγ

,
αp − 1
1δγ

)] x2

x1

.

(5.46)

In the last step, we have substituted the source function with the detailed
description from Pfrommer et al. (2008), which assumes that the CR population
can be described as in Equation (5.35). The source function depends primarily
on the normalization of the CR population, Cp(r), and the target density, nN(r).
As described in the case of the radio emissivity, we obtain Cp(r) from the CR
pressure profile and nN(r) from fits to observational data. We adopt a spectral
index for the CR proton population of αp = 2.4. The shape factor δγ depends
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Figure 5.14.: Comparison between the predicted gamma-ray flux as a result of
hadronically induced pion decay and the constraints from observations. The top panel
shows the predicted flux above 1 GeV for all clusters. In the middle panel we compare
our predictions to the upper limits from Ackermann et al. (2014), Ackermann et al.
(2010), Aleksić et al. (2012, Perseus) and Dutson et al. (2013) and the gamma-ray
detection in the Virgo cluster (Abdo et al., 2009). We always compute the gamma-ray
flux in the data-equivalent energy band (see Table 5.4 for details). The bottom panel
illustrates the ratio between the predicted flux and the upper limits, indicating that
present-day gamma-ray observations are not sensitive enough to seriously challenge
the CR heating model (with the exceptions of 2A 0335 and A 2204, in which the CR
heating model can be excluded based on gamma-ray observations).

on the spectral index and is given by

δγ ≈ 0.14α−1.6p + 0.44. (5.47)

The effective proton–proton cross-section σpp is the same as in Equation (5.41).
The neutral pion and proton masses are denoted by mπ0 and mp, respectively.
The last factor contains the incomplete beta function Bx (a,b) and is evaluated
at x1 and x2 with

xi =


1 +

(
mπ0c2

2Ei

)2δγ 

−1
. (5.48)

Integrating λγ over the cluster volume yields the photon luminosity per unit
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time
Lγ =

∫
dVλγ = 4π

∫ rmax,γ

0
λγr2dr, (5.49)

where we use rmax,γ = max {rout, 200 kpc} as the upper integration limit. We
obtain the gamma-ray fluence from the luminosity via

Fγ =
Lγ

4πD2
lum

(5.50)

with the luminosity distance Dlum.

5.6.2. Comparison with gamma-ray limits
We show the gamma-ray fluence above 1 GeV for all clusters in the upper panel
of Fig. 5.14 (see Table 5.4 for numerical values). The values are spread over
three orders of magnitude between 10−12 and 10−9 ph cm−2 s−1. The fluences of
clusters with an RMH are somewhat higher than for clusters without an RMH,
with median values of 4 × 10−11 and 1 × 10−11 ph cm−2 s−1, respectively. This
difference is smaller than the difference in gamma-ray luminosity of the two
subsamples, because RMH clusters are on average at higher redshifts, partially
compensating the larger luminosity (see Fig. 5.16).
Additionally, we compare our model fluences to observations. To this end,

we employ the upper limits from Ackermann et al. (2010) who analyse data
from the Fermi satellite for individual clusters. We also consider stacked Fermi
limits provided by Ackermann et al. (2014)12 and Dutson et al. (2013), and
we use Fermi observations of the Virgo cluster (Abdo et al., 2009) as well as
MAGIC observations of the Perseus cluster (Aleksić et al., 2012). Note that all
values are upper limits except for the Virgo cluster/M87.

Since these authors report their upper limits for different energy bands, we
have to choose a data-equivalent energy band from E1 to E2 in Equation (5.46).
In the middle panel of Fig. 5.14 we compare those observational gamma-ray
limits to our predictions and show the ratio of predicted-to-expected gamma-ray
emission in the bottom panel (upper limits and data-equivalent energy ranges
are shown in Table 5.4). While the expectations for most clusters are below
the upper limits, there are two clusters (2A 0335 and A 2204) that exceed the
observational constraints. In those clusters, we can exclude the CR heating
12Note that the stacked Fermi limits on individual cluster by Ackermann et al. (2014) assume
universality of the CR distribution as a result of diffusive shock acceleration at cosmological
formation shocks (Pinzke and Pfrommer, 2010). If the dominant CR population in clusters
is injected by AGNs rather than by structure formation shocks, the limits may be somewhat
weaker.
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model based on gamma-ray observations alone. However, both of these clusters
host an RMH for which our model is already excluded by the radio data. Hence,
we conclude that while gamma-ray predictions come close to observational
limits, present-day gamma-ray observations are not sensitive enough to seriously
challenge the CR heating model.

Notable are the results for the Virgo cluster. Pfrommer (2013) constructs a
CR population that simultaneously matches the observed gamma-ray emission
and is able to stably balance radiative cooling while adopting a constant CR-
to-thermal pressure ratio Xcr throughout the observed radio micro-halo (i.e.,
for r < 35 kpc). Our steady state model has also been constructed to offset
radiative cooling but falls short of the observed gamma-ray emission by a factor
of 2.6. This is mainly because conductive heating starts to balance radiative
cooling in our steady state solution at radii r & 20 kpc and causes the Xcr
profile to steeply drop at this radius. Hence, the resulting hadronic gamma-ray
emission falls short of the value it would have if conductive heating were absent.
Moreover, in this work, we employ a slightly higher magnetic field, which
translates to a slightly lower CR pressure for the identical heating rate, and a
different cooling profile (which we infer from the ACCEPT data base).
The second cluster that has been studied in detail is the Perseus cluster.

Here, we compare our model to TeV gamma-ray observations. At these energies
the flux from the central galaxy NGC 1275 has dropped significantly so that
gamma-rays from decaying pions should become dominant (Aleksić et al., 2012).
The chosen energy range also explains the small absolute values for the gamma-
ray fluence in Perseus. Although our model agrees with the current limits, we
note that possible spectral steepening associated with CR streaming (Wiener
et al., 2013) could weaken the MAGIC gamma-ray limit that assumes a single
power-law spectrum to TeV energies (Ahnen et al., 2016).

5.7. Emerging picture

5.7.1. A self-regulated scenario for CR heating, cooling, and
star formation

What is the conclusion of this at first sight disparate result that CR heating is
excluded as the predominant source of heating in clusters that manifestly show
non-thermal emission in form of RMHs? Let us summarize the main findings:

1. Our steady state solutions demonstrate that radiative cooling can be
balanced by CR heating in the central region and by thermal conduction
in the outer region. The resulting CR-to-thermal pressure in the central
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region attains values of Xcr ≈ 0.05 − 0.1 for clusters without an RMH,
and shows systematically higher values of Xcr ≈ 0.1 − 0.25 for clusters
with RMHs.

2. The level of hadronic radio and gamma-ray fluxes of our steady state
solutions is higher in clusters hosting an RMH because of the higher
target density in RMH clusters (see Fig. 5.15) and excluded by observed
NVSS and RMH fluxes.

3. In contrast, the predicted non-thermal emission is below observational
radio and gamma-ray data in cooling galaxy clusters without RMHs (with
the exception of A 383 and A 85).

4. Most importantly, the ratio of predicted-to-observed NVSS flux is dra-
matically increased in RMH clusters, the median of the flux ratio for
both populations differs by a factor of a few hundred. In addition to the
increased secondary flux noted in point (ii), the radio emission of the
central AGN in clusters without a detected RMH is on average also much
stronger. Because the AGN radio emission is a proxy for CR injection,
this implies a significantly increased CR yield in the centre of those
clusters. In particular, the predicted-to-observed NVSS flux ratio shows
a continuous sequence from 10−4 at the lower end of non-RMH clusters
to 100 for the upper end of RMH clusters (bottom panel in Fig. 5.11).

These different findings can be put together in form of a self-regulation
scenario of AGN feedback in CC clusters for which we will provide further
evidence below. A strong AGN radio emission signals the abundant injection
of CRs into the centre.13 As these CRs stream outwards they can balance
radiative cooling via Alfvén wave heating in the central regions while conductive
heating takes over at larger radii. Here, the streaming CRs can heat the ICM
homogeneously and locally stably (Pfrommer, 2013) by generating resonantly
Alfvén waves so that mass deposition rates drop below 1 M� yr−1.

Observationally, these CR heated systems could be associated with CC
clusters that do not have an observable radio mini halo. Instead, we predict a
new class of radio micro haloes, that is associated with the radio synchrotron
emission of primary and secondary CR electrons surrounding the central AGN.
Radio micro haloes have thus far escaped detection due to the small extent
13Equipartition arguments for radio-emitting lobes demonstrate that the sum of CR electrons
and magnetic fields can only account for a pressure fraction of ' 10% in comparison to the
ambient ICM pressure, with which the lobes are in approximate hydrostatic equilibrium
(Blanton et al., 2003; de Gasperin et al., 2012). This makes a plausible case for CR protons
to supply the majority of internal energy of the bubbles (see also Pfrommer, 2013).

86



Cosmic ray heating in cool core clusters

of the micro halo up to a few tens of kpcs and the large dynamic flux range
of the jet and halo emission. An exception that supports this hypothesis is
the only known micro halo in M87, the centre of the Virgo cluster, which can
only be observed due to its close proximity of 17 Mpc. The expected hadronic
gamma-ray emission can be identified with the low state of M87 (Pfrommer,
2013, see also Fig. 5.14).

Once the CR population has streamed sufficiently far from the centre and
lost enough energy in exciting Alfvén waves, the gas cooling rate increases
to values above 1 M� yr−1 that should also fuel star formation. Hence, this
picture would predict enhanced levels of star formation in clusters in which CR
heating ceases to be efficient, namely in those that are hosting an RMH. Our
self-regulation scenario of CR-induced heating not only predicts stably heated
clusters on the one side and cooling systems with abundant star formation on
the other side, but also systems transitioning from one state to the other, such
as the Perseus cluster, A 85, or A 383.

5.7.2. Supporting evidence for this picture
To test this hypothesis, we scrutinize the cluster profiles for signs of such a
cycle. To this end, we study observed quantities such as densities and SFRs as
well as quantities that are predicted by the steady state solutions such as the
required CR pressures to balance radiative cooling.

First, we correlate the observed electron number density at a reference radius
of 30 kpc to the observed SFRs (top left panel of Fig. 5.15) and the cooling
radius (top right panel). We find clear correlations of the form ne ∝ SFR0.31

and ne ∝ r0.96cool . The log-normal scatter of these relations is σ = 0.33 and 0.28,
respectively (see Table 5.6, for the fit parameters of the relation). Note that
we exclude clusters at the low- and high-mass end of our sample (shown with
transparent colours) for the fit. Most importantly, clusters hosting an RMH
populate the upper end of the correlation that is characterized by the largest
SFRs and cooling radii, i.e., RMHs signal cluster cores with enhanced cooling
activity.

In order to connect these empirical findings to our theoretically motivated
steady state solutions, we also determine the ratio of CR-to-thermal pressure
inferred from our steady state solutions at a reference radius of 30 kpc and
correlate it to the observed SFRs and the cooling radius (middle panels of
Fig. 5.15). We see a correlation that has a similar dependence on SFR and rcool,
albeit with a larger scatter. Dashed lines indicate the relations if only clusters
are considered in which our model is valid, i.e., if we exclude clusters that host
an RMH as well as A 383 and A 85. With the smaller sample, the relation is
somewhat steeper for the SFRs but remarkably similar for the cooling radius.
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Figure 5.15.: Relations between density (top), ratio of CR-to-thermal pressure
(middle) and CR pressure (bottom) at a reference radius of 30 kpc with the observed
IR SFRs (left) and the cooling radius (right). The black lines are best-fitting power-
law relations to our cluster core sample (full coloured data points). The more
transparent data points denote clusters at the low- and high-mass end of our sample
and are only shown for visual purposes. The slope and the vertical log-normal scatter
σ of the fit are indicated in the upper left of each panel. RMH clusters populate the
upper end of these correlations, which is characterized by large SFRs and cooling
radii. The top two panels represent purely observational correlations while the middle
and bottom panels employ the CR and thermal pressure profiles of the steady state
solutions. Since for some clusters those solutions are excluded by radio data (see
text), the dashed lines show fits to the remaining data points.
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Table 5.6.: Fit results for the correlations of the unbiased sample shown in Fig. 5.15
using a power-law relation of the form y(x) = axb , where y(x) is specified in the first
column.(1)

a b σ

ne(SFR) (1.6 ± 0.2) × 10−2 0.31 ± 0.04 0.33
kT (SFR) (3.6 ± 0.2) 0.06 ± 0.02 0.18
Xcr(SFR) (2.4 ± 0.4) × 10−2 0.32 ± 0.06 0.51
Xcr(SFR)val (2.1 ± 0.3) × 10−2 0.5 ± 0.1 0.37
Pcr(SFR) (5 ± 1) × 10−12 0.63 ± 0.09 0.74
Pcr(SFR)val (3.4 ± 0.8) × 10−12 0.9 ± 0.2 0.57

ne (rcool) (1.3 ± 0.3) × 10−3 0.96 ± 0.07 0.28
kT (rcool) (2.5 ± 0.4) 0.15 ± 0.05 0.19
Xcr(rcool) (1.0 ± 0.4) × 10−3 1.2 ± 0.1 0.55
Xcr(rcool)val (1.3 ± 0.7) × 10−3 1.0 ± 0.2 0.52
Pcr(rcool) (1.5 ± 0.8) × 10−14 2.1 ± 0.2 0.72
Pcr(rcool)val (3 ± 2) × 10−14 1.8 ± 0.3 0.68

(1) These fits were performed in logarithmic space,
the scatter σ was obtained assuming a normal
distribution for the deviation of the logarithm of
the data to the mean relation. SFRs are given
in M� yr−1 and cooling radii in kpc. Densities
are measured in cm−3, temperatures in keV and
CR pressures in erg cm−3. The subscript “val”
indicates the relations of the subsample of clus-
ters for which our model is valid (dashed lines in
Fig. 5.15).

Clusters with an RMH require higher values of Xcr than clusters without RMHs
to balance the enhanced cooling rates.

Last, we relate the CR pressure from the steady state solutions at a reference
radius of 30 kpc to the observed SFR and cooling radius (bottom panels of
Fig. 5.15). Since Pcr ∝ XcrnekT and the correlation of kT with SFR and cooling
radius shows no clear trends (see Table 5.6), we expect that the dependence of
the CR pressure on SFR and cooling radius derive from the previous relations.
Indeed, we obtain such steeper relations with a slope that is approximately
given by the sum of the slopes for the density and Xcr relations. We find values
of 0.63 and 2.11 for the scaling of Pcr with SFR and cooling radius, respectively.
However, the correlations of the CR pressures show the largest scatter. As
expected, clusters with an RMH have higher values for the CR pressure than
clusters without RMHs. Dashed lines indicate again the results for the sample
in which our steady state solutions are in agreement with the observational
radio (and gamma-ray) data.
Next, we consider the impact of these trends on the non-thermal emission.

Therefore, we show scaling relations of hadronically induced non-thermal lumi-
nosities and cluster masses in Fig. 5.16. We show separately radio luminosities
emitted by secondary CR electrons and gamma-ray emission due to decaying
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Figure 5.16.: Scaling relations of hadronically induced non-thermal luminosities
and cluster masses. We show the 1.4 GHz radio luminosity due to secondary electrons
(left) and the pion-decay gamma-ray luminosity above 1 GeV (right). Clusters hosting
an RMH (shown with blue circles) populate the upper envelope of these relations.
Clearly, both luminosities scale with cluster mass. However, there is an enormous
scatter in non-thermal luminosity at fixed mass due to the large variance in gas
density across our sample. The latter effect dominates the variance of non-thermal
luminosities in our core sample (shown with full colours).

neutral pions. Assuming that CRs are accelerated at cosmological structure for-
mation shocks during cosmic history and advectively transported into clusters,
the non-thermal cluster luminosity scales with the virial mass of clusters as
MαM

200 with αM ≈ 1.4 (Pfrommer, 2008; Pinzke et al., 2011, excluding the signal
from the cluster galaxies). We find a similarly strong scaling with cluster mass.
However, this scaling with cluster mass is accompanied by an enormous scatter
in non-thermal luminosity at fixed mass due to the large variance in gas density
across our sample. The latter effect dominates the variance of non-thermal
luminosities in our core sample.

To understand the origin of this scatter, we examine the scaling of the non-
thermal luminosity, Lnt ∝

∫
Pcrn f (B)dV =

∫
Xcrn2kT f (B)dV , where f (B) = 1

for the gamma-ray luminosity and f (B) represents a weak function of magnetic
field strength in the synchrotron-dominated emission regime, i.e., for eB � erad
(Equation 5.38). In Fig. 5.15, we found a similar spread of n and Xcr of a factor
of about 30 in our entire sample. Hence, we expect Lγ to vary by a factor of
about 3×104, which is only marginally reduced to 104 if we restrict ourselves to
the core sample, despite the tight restriction in cluster mass of this subsample.

There is little difference between the relations for the radio and gamma-ray
luminosities, implying that the CR electrons are primarily cooling in the strong
synchrotron regime for which f (B) depends only weakly on magnetic field
strength. Finally, clusters hosting an RMH populate the upper envelope of
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Figure 5.17.: Representative electron number density profiles of five clusters with
different SFRs, which are distributed along the correlation shown in Fig. 5.15. Note
that the cluster with the lowest SFR is at the low-mass end and not part of our
cluster core sample. The squares indicate the density at a reference radius of 30 kpc
whereas the circles denote the density at the cooling radius, rcool, of these systems.

these relations since they signal the CC systems with the highest density (at
fixed radius, see Fig. 5.15). The median values of the distribution of RMH
clusters and those without RMHs vary by more than an order of magnitude.

In order to interpret the relations that we found in Fig. 5.15 further, we show
in Fig. 5.17 the fit to the density profiles of five representative clusters along the
correlations, with a wide distribution in SFRs (RX J1504.1, ZwCl 3146, A 3112,
Centaurus, MKW 4, moving from high to low SFRs). Note that the cluster with
the lowest SFR is not part of our core sample due to its low virial mass. For
each cluster the squares indicate the density at the reference radius of 30 kpc
and the circle marks the cooling radius rcool. Clearly, higher densities imply
larger cooling rates and thus larger cooling radii. This puts a higher demand
on the heating rate to balance the much increased cooling rate. Because these
higher densities correlate with an increased SFR, the balance is apparently
unsuccessful. This implies that these clusters are currently not stably heated
but can cool to some extent. Hence, it might not be necessary for potential
heating mechanisms to (fully) counteract radiative cooling in those clusters.
As we demonstrate, CR heating is a prime candidate for providing the

necessary heating rate: clusters with low SFRs can be CR heated unlike
clusters with high SFRs. This is emphasized in Fig. 5.18 where we compare
the ratio of modelled radio flux-to-NVSS flux with the SFR (left) and with
the cooling radius (right). The figure shows that the flux ratio increases with
SFR and cooling radius. Since the ratio of predicted-to-observed radio flux is a
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Figure 5.18.: A measurement of the applicability of our model is the ratio of the
modelled-to-observed NVSS flux. The modelled 1.4 GHz radio flux derives from the
hadronically generated synchrotron emission of our steady state CR population that
stably balances radiative cooling. Here, we compare the flux ratio to the observed
SFRs (left) and cooling radii (right) and separate clusters with and without an RMH
by colour. Clusters with higher SFRs can not be successfully heated by streaming
CRs while this is a likely possibility for clusters with lower SFRs, as expected for a
self-regulated heating-cooling cycle.

measure for the applicability of our model, this demonstrates that CR heating
is viable in clusters with low SFRs and not applicable in clusters with higher
SFRs. These results support the picture of a CR heating–radiative cooling
cycle.
A note on time-scales is in order since our picture requires that the density

profile of the clusters is transformed within a heating cycle. The density profile
can only rearrange itself on a dynamical (free-fall) time, τff =

√
3π/(32Gρ) ≈

7 × 107 yr, assuming a typical total mass density of ρ = 9 × 10−25 g cm−3. (We
obtained this density scale by solving the equation for hydrostatic equilibrium
of our steady state solutions.) This time-scale is of the same order as typical
AGN duty cycles, which range from a few times 107 yr to a few times 108 yr
(Alexander and Leahy, 1987; McNamara et al., 2005; Nulsen et al., 2005;
Shabala et al., 2008). One could imagine that the rearrangement of the
density profile is modulated by a few to several short-duration AGN feedback
cycles that maintain a quasi-steady CR flux on the longer time-scale. We will
study the consequences of these considerations in future work using numerical
three-dimensional magnetohydrodynamical simulations with CR physics that
is coupled to AGN feedback (Pfrommer et al., 2017a).
Despite these favourable results for a CR regulated feedback cycle, we can

not exclude that such a cycle can be driven by another heating mechanism like
mixing (Brüggen and Kaiser, 2002; Hillel and Soker, 2016; Yang and Reynolds,
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2016b), sound or shock waves (Fabian et al., 2003, 2006, 2017) although similarly
thorough statistical studies as we present here would have to be conducted for
the alternative scenarios.

5.7.3. Origin of RMHs
We saw that RMHs are lighthouses signalling an increased cooling and SFR in
CC clusters. Is there also a causal connection between RMHs and increased
cooling rates? While we have seen that streaming CRs are not abundant enough
in the radio emitting volume of RMHs to balance radiative cooling, they could
still be energetic enough to power the observed radio emission via the injection
of secondary electrons.

To test this hypothesis, we take the spatial CR pressure profile of our steady
state solution of a non-RMH cluster that is just compatible with being CR
heated and on its way to become a transitional object. Such clusters are
characterized by a comparably large CR-to-thermal pressure ratio of Xcr ≈ 0.06
(Fig. 5.15). As the cluster is transforming into a stronger cooling CC system,
the CR population is transported outwards by streaming.

Additionally, a large number of CC clusters show spiral contact discontinuities
in the X-ray surface brightness maps, indicating sloshing or swirling gas motions
induced by minor mergers, and implying also advective CR transport by
turbulence (Markevitch and Vikhlinin, 2007; Simionescu et al., 2012; ZuHone
et al., 2013). Advective compression or expansion by means of gas motions yield
adiabatic gains or losses of the CR distribution, respectively. Interestingly, the
process of CR streaming is also a purely adiabatic process from the perspective
of the CRs (Enßlin et al., 2011; Pfrommer et al., 2017a). While dissipation
of the excited Alfvén waves is not a reversible process, the energy transferred
to the wave fields originates from adiabatic work done by the expanding CR
population on the wave frame.
To estimate the net CR pressure losses during the outwards streaming and

formation of RMHs, we only need to consider the adiabatic CR losses across a
density contrast δ, which is given by

Pcr,2 = Pcr,1δ
γcr . (5.51)

This implies a decrease of the CR pressure (in the Lagrangian wave frame) by
a factor ranging from 2.5 to 20 for a density contrast δ = 0.5 − 0.1. We cannot
uniquely relate this result to the change of CR pressure at a fixed point in
space, since this depends on the time-dependent injection rate of CRs by the
AGN at the centre and on the ratio of streaming-to-turbulent advection time-
scales γtu = τst/τtu (Enßlin et al., 2011). Without further driving the sloshing
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motions that drive turbulent advection start to cease and streaming becomes
more important in comparison to advection such that γtu drops. If we assume
negligible central injection, the outwards streaming CRs cause the CR pressure
profile to flatten. However, the steep density profiles of CCs translate into steep
CR pressure profiles, which remain steep despite the increasing importance of
streaming. Even a value of γtu = 2 shows an almost invariant CR profile (see
fig. 1 in Zandanel et al. 2014) and thus, the shape of the Xcr profile remains
approximately constant. This might explain how the approximately constant
Xcr profiles of our steady state solutions can be transformed into the equally
flat Xcr profiles that are inferred from the emission profiles of RMHs (Pfrommer
and Enßlin, 2004b; Zandanel et al., 2014). As a result, the CR-to-thermal
pressure ratio Xcr at a given point in space is expected to drop by a factor
of a few to about 100, depending on the time-dependent CR injection rate
and γtu. This range is in line with estimates for RMHs, that require values of
Xcr = 3×10−4 (Ophiuchus) to 0.02 (Perseus, see figure 2 in Zandanel et al. 2014).
This plausibility estimate suggests that RMHs could be powered hadronically
by CRs that have heated the cluster core in the past.
We complement these energetic estimates of CR streaming by calculating

spectra of RMHs and our predicted radio micro haloes. Similar to the flux
calculations in Section 5.5, we first project the emissivity along the line of
sight, assuming a radial extent of rmax, ‖ = max {rout, 200 kpc}. In contrast to
the previous calculations, here we cut out a hollow cylinder with inner radius
rmin,⊥ = 2.5 kpc and outer radius rmax,⊥ = min {

rRMH, rmax,‖
}. Note that here

we adopt rRMH = 34 kpc for the Virgo cluster (de Gasperin et al., 2012). This
procedure attempts to mock observational determinations of RMH fluxes, which
are often dominated in the cluster centre by the radio jet emission. The outer
radius is chosen such that it mimics the extent of observed RMHs.
In Fig. 5.19, we compare the resulting spectra of observed RMHs and the

predicted radio micro haloes. Dashed lines show the unattenuated radio fluxes,
scaled to the 1.4 GHz flux by a scaling factor indicated in the left-hand panel.
Dotted lines show the negative flux decrement due to the thermal Sunyaev–
Zel’dovich effect, which we determine as in Enßlin (2002).14 This induces
a cut-off to the observable RMH spectra, indicated by the solid lines. The

14For assessing the impact of the Sunyaev–Zel’dovich effect on the radio spectra, we integrate
the thermal electron pressure of the ICM over the same (hollow) cylinder as for the
calculation of the emissivity, but attempt to extend it along the line of sight as far as
possible. For practical reasons, this implies an integration limit of rmax, ‖ for all clusters but
Virgo because of its wide radio spectral coverage. In this cluster, we extend the electron
population along the line of sight to 800 kpc and find that our density and temperature
fits agree reasonably well with the ROSAT data at that radius (Böhringer et al., 1994;
Nulsen and Böhringer, 1995).
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Figure 5.19.: Spectra of three RMHs (left) and three predicted radio micro haloes
(right). The data for the RMHs are taken from Sijbring (1993, Perseus), Murgia
et al. (2010, Ophiuchus) and Giacintucci et al. (2014, RX J1532), and the data for
M87 is taken from the halo region of de Gasperin et al. (2012); the grey spectrum is
the modelled primary synchrotron emission, assuming a continuous injection that
was switched off after a certain time (de Gasperin et al., 2012; Pfrommer, 2013).
Dashed lines correspond to unattenuated RMH fluxes, scaled to the 1.4 GHz flux by
a scaling factor indicated in the left-hand panel. Dotted lines show the negative flux
decrement due to the thermal Sunyaev–Zel’dovich effect. This induces a cut-off to
the observable radio spectrum, indicated by the solid lines.

radio micro halo of M87 (black data points from de Gasperin et al., 2012) is
presumably generated by primary accelerated CR electrons that have escaped
from the bubbles. This component was modelled assuming a continuous
injection that was switched off after a certain time (grey solid line). This
causes the spectrum to drop exponentially above a break frequency, which
corresponds to the cooling time since the switch-off. Despite the harder intrinsic
spectrum of the hadronically induced secondary component (black solid line)
in comparison to the convex curvature of the primary component, the presence
of the Sunyaev–Zel’dovich cut-off precludes a detection of the subdominant
hadronic component in M87.

There is a significant range of radio mini and micro halo fluxes (Figs 5.12
and 5.19). Especially the comparably tight range of RMH redshifts and thus
luminosity distances also implies a range in luminosities. This matches our
picture in which RMHs serve as sign posts of the upper end of a continuous
sequence in cooling properties. The observed range of gas densities and CR
pressures causes the observed diversity of radio luminosities.
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5.8. Summary and conclusions
The cooling flow problem in CC clusters remains one of the most interesting
open questions in galaxy clusters. While the paradigm of self-regulated AGN
feedback is very attractive, the physical heating mechanism that balances
radiative cooling has not yet been identified. In this work, we have analysed
whether a combination of CR heating and thermal conduction is able to provide
the required heating.
To this end, we have compiled one of the largest samples of CC clusters

ever used for a theoretical investigation of the cooling flow problem. Here,
we have focused on clusters for which non-thermal activity has either already
been observed or which are predicted to be suitable targets for non-thermal
emission. In particular, this includes all clusters that host a radio mini halo,
i.e., an extended radio emission in the centres of the clusters. Clusters with
an RMH are typically at slightly higher redshifts than clusters without RMHs,
but the virial masses of most clusters are comparable with some outliers that
we treat separately. We find that the observed infra-red SFR and the cooling
radius, which we define as the radius where the cooling time equals 1 Gyr, are
correlated. Moreover, clusters with an RMH have larger SFRs and cooling radii
than clusters without RMHs.

For all clusters, we found steady state solutions to the system of hydrodynamic
equations coupled to the CR energy equation. The thermal energy equation
accounts for thermal conduction as well as Alfvén wave heating excited by
streaming CRs. We choose the parameters of the gravitational potential, CR
streaming and injection to obtain physical solutions and ask for maximum CR
heating solutions. In consequence, we find solutions that match the observed
density and temperature profiles well, however requiring a somewhat high
conductivity for some systems. Radiative cooling is typically balanced by CR
heating in the cluster centres and by thermal conduction in the intermediate
cluster parts, closer to the peak in temperature. The combination of these
two heating mechanisms has several advantages over models that include only
one of the two processes. CR heating is locally stable at temperature values
corresponding to islands of stability that form at locations of cooling line
complexes in the cooling function (Pfrommer, 2013) and it allows for self-
regulated AGN feedback, in contrast to thermal conduction, which appears to
be nonetheless required to balance cooling at large scales and to allow for mass
deposition rates that are in agreement with observational findings.
Our solutions predict modest mass deposition rates; consistent with the

low star formation rates and the observed reservoirs of cold gas in the centres
of those systems. The cooling gas can escape the detection of soft X-rays
(kT . 0.5 keV) by absorption in the filaments with a sufficiently high integrated
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hydrogen column density and/or by mixing the cooling gas with colder gas,
thereby lowering its temperature non-radiatively (Werner et al., 2013, 2014).
Furthermore, we used our comparably large cluster sample to analyse the

parameters of these steady state solutions. We found weak correlations between
the observed infra-red SFR and the mass deposition rate in our solutions as
well as between the cooling radius and the radial extent of the CR injection.
Particularly, clusters with and without RMHs occupy different parts of these
relations. Clusters that are hosting an RMH have higher star formation and
mass accretion rates in comparison to clusters without an RMH. In addition,
the cooling and CR injection radii are typically larger in clusters with an RMH.
Hence, the existence of an RMH delineates a homogeneous subclass within the
population of CC clusters.
The presented steady state solutions are constructed such that they match

X-ray observations well. However, these solutions predict a CR population
that interacts hadronically with the ambient medium. As a result, pions are
produced which decay into electrons and photons that can be observed in the
radio and gamma-ray regime, respectively. Hence, we also addressed the crucial
question whether the CR populations of our solutions are in agreement with
current observations and upper limits of this non-thermal emission. On the basis
of this data, we find that our solutions are ruled out in a subsample of clusters
that host RMHs. On the contrary, the predicted non-thermal emission respects
observational radio data in CC clusters without RMHs (with the exception of
A 383 and A 85, in which the CR-heating solution is barely ruled out). Those
non-RMH clusters show exceptionally large AGN radio fluxes, which should
be accompanied by an abundant injection of CRs and – by extension – should
give rise to a large CR heating rate.
This enables us for the first time to put forward a statistically rooted, self-

regulated model of AGN feedback. We propose that non-RMH clusters are
heated by streaming CRs homogeneously throughout the cooling region through
the generation and dissipation of Alfvén waves. On the contrary, CR heating
appears to be insufficient to fully balance the enhanced cooling in RMH clusters.
These clusters are also characterized by large SFRs, questioning the presence
of a stable heating mechanism that balances the cooling rate. In those systems,
thermal conduction should still regulate radiative cooling on large scales, which
however is unable to adjust to local thermal fluctuations in the cooling rate
because of the strong temperature dependence of the conductivity and may
give rise to local thermal instability. However, there will still be some residual
level of CR heating in those cooling systems that quenches radiative cooling
but is not able to completely offset it.
We emphasize that our self-regulation scenario of CR-induced heating not

only predicts stably heated clusters and cooling clusters with abundant star for-

97



Cosmic ray heating in cool core clusters

mation, but also systems transitioning from one state to the other, a prominent
example of which appears to be the Perseus cluster.
We predict radio micro haloes of scales up to a few kpcs surrounding the

AGNs of these CR-heated clusters, resembling the diffuse radio emission around
Virgo’s central galaxy, M87. Once the CR population has streamed sufficiently
far from the centre, it has lost enough energy so that its heating rate is unable
to balance radiative cooling any more. As a result star formation increases
in clusters that we empirically identify to host an RMH. We suggest that the
CR population that has heated the cluster core in the past is now injecting
secondary electrons that power the RMH.

Our new picture makes a number of novel predictions that allow scrutinizing
it.

1. We predict the presence of radio micro haloes associated with all CC
clusters that host no classic RMH and have small SFRs (or alterna-
tively Hα luminosities, Voit et al., 2008). While this secondary emission
component is expected to have a harder spectrum in comparison to the
convexly curved, primary radio emission, we find that the negative flux
decrement owing to the thermal Sunyaev–Zel’dovich effect typically cuts
these emission components off at high frequencies (ν & 10 − 50 GHz). In
Virgo, the primary emission component predominates the hadronically
induced secondary emission at all observable radio emission frequencies.
Hence, we envision the harder secondary emission to predominate the
primary component only in those cases where the latter has already cooled
sufficiently down, i.e., at late times after the release of the CR electrons
from the bubbles or at larger cluster-centric radii.

2. We predict an observable steady state gamma-ray signal resulting from
hadronic CR interactions with the ICM. The spectral index that is
expected to be correlated to the injection (electron and proton) index
that can be probed at small radii with low-frequency radio observations
(Pfrommer, 2013).

Future magnetohydrodynamic, three-dimensional cosmological simulations
that follow CR physics are necessary to study possible time-dependent effects
of the suggested scenario such as the impact of CR duty cycles on the heating
rates and to address non-spherical geometries associated with the rising AGN
bubbles.
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6. The dependence of cosmic
ray-driven galactic winds on
halo mass

CRs might also play an important role for the evolution of individual galaxies.
Here, an interesting question is whether CRs can act as the drivers of galactic
scale winds. In this section, we describe a study about the properties of CR-
driven winds and how they depend on galaxy mass. This work is published in
Monthly Notices of the Royal Astronomical Society, Volume 475, Issue 1, p.570
– 584.

6.1. Introduction
Galactic winds play an important role in the formation and evolution of galaxies.
Observations demonstrate that they are common at higher redshifts as well as
in star-bursting galaxies in the local Universe (see Veilleux et al., 2005; Alsabti
and Murdin, 2017, for reviews). Galactic winds might be able to transport
chemically enriched material from the star-forming disk to the circum-galactic
medium and help to explain the observed metal abundances there (Aguirre
et al., 2001; Oppenheimer and Davé, 2006, 2008; Booth et al., 2012; Tumlinson
et al., 2011). Moreover, the wind material is at least temporarily not available
for star formation in the disk.
The last point, in particular, makes galactic winds crucial in simulations of

galaxy formation that typically suffer from an overproduction of stars unless
very strong feedback models are invoked (e.g. Springel and Hernquist, 2003;
Stinson et al., 2013; Puchwein and Springel, 2013). So far, most simulations,
especially on cosmological scales, employ empirical models to drive winds.
Those sometimes include the creation of special wind particles that either
cannot cool or are temporarily decoupled from hydrodynamics (Somerville and
Davé, 2015, for a review).
To improve the subgrid prescriptions, a better knowledge of the physical

driving mechanisms of the winds is essential. Most models are based on the
notion that some aspect of stellar feedback drives the winds, but it remains
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unclear which part of the feedback physics launches the outflow. One possibility
is the direct thermal and mechanical energy input from (several) supernovae
(SNe) (Dekel and Silk, 1986; Efstathiou, 2000; Creasey et al., 2013; Martizzi
et al., 2016; Girichidis et al., 2016b). Furthermore, the radiation pressure from
young stars might be able to accelerate the gas, although the required opacity
is still subject of debate (Murray et al., 2005; Krumholz and Thompson, 2012;
Hopkins et al., 2012; Rosdahl et al., 2015; Skinner and Ostriker, 2015).
Another possibility to drive galactic winds are cosmic rays (CRs) (Ipavich,

1975; Breitschwerdt et al., 1991; Zirakashvili et al., 1996; Breitschwerdt et al.,
2002; Everett et al., 2008; Samui et al., 2010; Recchia et al., 2016). CRs are
relativistic particles that permeate the ISM with an energy density that is
comparable to the kinetic energy density and the energy density in magnetic
fields (Boulares and Cox, 1990). CRs interact with the thermal gas via magnetic
fields, which leads to an additional, effective pressure (see Strong et al., 2007;
Zweibel, 2013, for reviews). Therefore, gradients in the CR pressure exert a
force on the gas.
However, CRs can only efficiently drive winds if they can move relative to

the thermal gas. In this case, extended CR pressure gradients form above and
below the disk which can then accelerate the gas (Salem and Bryan, 2014).
The required transport mechanism depends on the detailed physics of CR
propagation. It can be modelled as either diffusion (Salem and Bryan, 2014;
Pakmor et al., 2016b) or streaming (Uhlig et al., 2012; Ruszkowski et al., 2017b;
Wiener et al., 2017). (Magneto-) hydrodynamic simulations have demonstrated
that at least one of these transport mechanisms is required to produce galactic
outflows (Jubelgas et al., 2008; Uhlig et al., 2012; Booth et al., 2013; Hanasz
et al., 2013; Salem and Bryan, 2014; Salem et al., 2014, 2016; Pakmor et al.,
2016b; Simpson et al., 2016; Girichidis et al., 2016a; Ruszkowski et al., 2017b;
Wiener et al., 2017).

Still, a driving mechanism that generates an outflow in one galaxy might
create winds with vastly different properties in a galaxy with higher or lower
mass, or not drive an outflow at all. Observations of nearby starburst galaxies
give some indication how certain wind properties depend on galaxy mass despite
large uncertainties (Heckman et al., 2015; Chisholm et al., 2017). In simulations,
this question has mostly been studied for SN-driven winds (Creasey et al., 2013;
Muratov et al., 2015; Li et al., 2017; Fielding et al., 2017). To our knowledge,
previous works on CR-driven winds with diffusive CRs have not focused on the
halo mass dependence of the wind and mostly considered only a single, or at
most two, halo masses. The halo mass dependence of winds that are driven by
streaming CRs has been analysed by Uhlig et al. (2012) with three halo masses.

In this work, we study in detail which galaxies can produce CR-driven winds
and how the wind properties depend on halo mass. To this end, we simulate a

100



The dependence of cosmic ray-driven galactic winds on halo mass

set of idealized, isolated galaxies that include CR diffusion, similar to the setup
in Pakmor et al. (2016b). We vary the virial mass of the galaxy between 1010
and 1013 M� and test different aspects of CR physics, such as isotropic and
anisotropic diffusion. Moreover, we compare our results to observations and
empirical wind models.
This paper is structured as follows. We introduce our simulations in Sec-

tion 6.2 and present the results in Section 6.3. In Section 6.3.1, we show
qualitatively the formation of winds, and in Section 6.3.2 we quantify the star
formation efficiency, the mass loading and the energy loading in relation to the
halo mass. We discuss further aspects of the simulations in Section 6.4 and
conclude in Section 6.5.

6.2. Simulations
We simulate a set of isolated galaxies to analyse the formation and properties
of CR-driven winds. This allows us to cleanly focus on the effect of halo mass,
and on differences caused by certain other aspects of CR physics.

6.2.1. The code
We use the moving-mesh code AREPO (Springel, 2010) with an improved
second-order scheme (Pakmor et al., 2016c) to solve the magnetohydrodynam-
ical equations, which are coupled to an equation for the CR energy density
(Pfrommer et al., 2017a). Hence, we solve the equations for mass, momentum
and energy conservation together with evolution equations for the CR energy
density and the magnetic field as given by

∂ρ

∂t
+ ∇ · (ρυ) = 0, (6.1)

∂ (ρυ)
∂t

+ ∇ · [
ρυυT + PI − BBT

]
= −ρ∇Φ, (6.2)

∂ε

∂t
+ ∇ · [(ε + P)υ − B (υ · B)] = Pcr∇ ·υ + Λth + Γth, (6.3)

∂εcr
∂t
+ ∇ · [

εcrυ − κcrb̂
(
b̂ ·∇εcr)]

= −Pcr∇ ·υ + Λcr + Γcr, (6.4)
∂B

∂t
+ ∇ · [

BυT − υBT
]
= 0. (6.5)

Here, ρ denotes the gas density, υ the gas velocity and B the magnetic field
strength. P is the total pressure with contributions from the thermal gas, the
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CRs and the magnetic field,

P = Pth + Pcr +
B2

2 . (6.6)

εcr is the CR energy density, whereas ε is the total energy density without
CRs,

ε = εth +
ρυ2

2 +
B2

2 . (6.7)

Thermal energy density and thermal pressure are related by an equation of
state, Pth = (γth−1)εth, with the adiabatic index γth. Similarly, CR energy and
CR pressure are related by Pcr = (γcr − 1)εcr, where γcr is an effective adiabatic
index for the CRs. I describes the identity matrix and φ is the gravitational
potential. Λth and Γth describe gain and loss terms for the thermal gas and
Λcr and Γcr describe gain and loss terms for the CRs. We take into account
CR diffusion along magnetic field lines. The CR diffusion coefficient is denoted
by κcr and the unit vector pointing in the direction of the magnetic field is
denoted by b̂ = B/|B |. We neglect CR streaming and CR Alfvén wave losses
for simplicity (see Wiener et al. (2017), for a discussion of these effects in
comparison to CR diffusion).

AREPO uses a Voronoi tessellation to discretize space with a refinement
scheme that keeps the mass in all cells approximately constant. Additionally,
we apply an upper limit on the volume of a cell, and we only allow a factor of
ten difference in the volume between adjacent cells to make the mesh resolution
vary more smoothly. In all our simulations, we take the self-gravity of the
gas and stars into account based on a tree-based gravity solver. However, the
dark matter halo is described by a static background potential in our fiducial
standard simulations, except for a subset of our simulations where we also
model the dark matter explicitly.
We employ the cooling and star formation prescriptions of Springel and

Hernquist (2003) with an effective equation of state. But importantly, we
do not include an empirical wind model in our simulations. We use the CR
two-fluid model introduced for AREPO by Pfrommer et al. (2017a) and treat
CRs as an additional fluid with an adiabatic index of γcr = 4/3, corresponding
to the ultra-relativistic limit. We apply the subgrid model for the acceleration
of CRs at supernova remnants, where we inject 1048 erg of CR energy per solar
mass of star formation. Moreover, we take into account that CRs lose energy
to the thermal gas due to Coulomb and hadronic interactions.
CRs are always advected with the thermal gas. But additional transport

mechanisms, such as diffusion or streaming, can introduce a relative motion
between gas and CRs. In this paper, we study the effects of isotropic and
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Table 6.1.: Galaxy properties.
Halo υvir Mvir rvir L(1) Mref

(2) rcyl
(3)

(km s−1) (M� ) (kpc) (Mpc) (M� ) (kpc)

Halo 10.0 35 1.00 × 1010 35 1.0 1.43 × 103 10
Halo 10.5 55 3.87 × 1010 55 1.5 5.80 × 103 15
Halo 11.0 75 9.81 × 1010 75 1.5 1.43 × 104 20
Halo 11.5 110 3.09 × 1011 110 1.5 4.64 × 104 25
Halo 12.0 160 9.52 × 1011 160 1.5 1.43 × 105 30
Halo 13.0 340 9.14 × 1012 340 2.5 1.43 × 106 40
(1) Boxsize
(2) Reference gas mass for refinement and derefinement
(3) Radius of the cylinder used to calculate the SFR and the mass

in the disk

anisotropic diffusion and leave the analysis of streaming to future work. To
this end, we use the diffusion solver from Pakmor et al. (2016a) that also
allows anisotropic diffusion if a magnetic field is present. In our fiducial
simulations with isotropic diffusion, we use a constant diffusion coefficient of
κcr = 1028 cm2 s−1. For anisotropic diffusion, we use the same value for diffusion
along magnetic field lines and set the perpendicular diffusion coefficient to zero.
This results in a lower ‘effective’ diffusion coefficient for anisotropic diffusion if
the magnetic fields are fully tangled.

In the simulations with anisotropic diffusion, we also include magnetic fields.
For this purpose, we use the ideal MHD module for AREPO from Pakmor et al.
(2011) with the Powell scheme for divergence cleaning (Powell et al., 1999).
The magnetic field is initially uniform and oriented along the x̂-direction, with
a field strength of 10−10 G.

6.2.2. The simulation setup
Our initial conditions consist of a rotating gas sphere in a static Hernquist
potential (Hernquist, 1990). We create the gas sphere as in Springel and
Hernquist (2003) with an angular momentum distribution that is derived from
the fitting formula of Bullock et al. (2001). Due to the rotation, the gas is not in
perfect hydrostatic equilibrium and a small amount of gas is initially unbound.
This results in some artificial mass loss at the beginning of the simulation (see
also the third panel of Fig. 6.4). The galaxies in our sample have virial velocities
between υvir = 35 km s−1 and υvir = 340 km s−1 (for details see Table 6.1).
The corresponding virial masses, Mvir = υ

3
vir/(10GH0), range between 1010 and

1013h−1M�.1 We use the exponent of the halo mass to label the simulations,
1Here, H0 = 100h km s−1 Mpc−1 is the Hubble constant and G the gravitational constant.
For the remaining part of the paper, we set h = 1, which corresponds to redshift 0.7.
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Table 6.2.: Physics models.
Model CRs CR diff CR MHD empirical dm N(2) εcr(3) κcr(4)

cooling model(1) halo (erg M−1� ) (cm2 s−1)

CRs, iso diff yes iso yes no no static 1.0 × 106 1 × 1048 1 × 1028

CRs, aniso. diff yes aniso yes yes no static 1.0 × 106 1 × 1048 1 × 1028

no CRs no no no no no static 1.0 × 106 – –
CRs yes no yes no no static 1.0 × 106 1 × 1048 1 × 1028

low efficiency yes iso yes no no static 1.0 × 106 3 × 1047 1 × 1028

high efficiency yes iso yes no no static 1.0 × 106 3 × 1048 1 × 1028

low kappa yes iso yes no no static 1.0 × 106 1 × 1048 3 × 1027

high kappa yes iso yes no no static 1.0 × 106 1 × 1048 3 × 1028

very high kappa yes iso yes no no static 1.0 × 106 1 × 1048 1 × 1029

no cooling yes iso no no no static 1.0 × 106 1 × 1048 1 × 1028

live DM yes iso yes no no live 1.5 × 105 1 × 1048 1 × 1028

low resolution yes iso yes no no static 1.5 × 105 1 × 1048 1 × 1028

high resolution yes iso yes no no static 5.0 × 106 1 × 1048 1 × 1028

empiric model no no no no yes live 1.0 × 106 – –
(1) From Vogelsberger et al. (2013)
(2) Initial number of cells
(3) CR injection efficiency in erg per solar mass of star formation
(4) CR diffusion coefficient

for example “Halo 10.0” for simulations of the halo with the lowest mass. The
scale radius of the Hernquist potential is chosen such that the concentration of
an equivalent NFW profile would be 5. The spin parameter for the gas is 0.05
and the gas fraction is 0.15. We keep these parameters the same for all halo
masses in order to preserve self-similarity.
The haloes are placed in a box that is large enough to capture the full

evolution of the wind and thus depends on the mass of the galaxy. The box
sizes vary between 1 and 2.5 Mpc and are listed for individual simulations in
Table 6.1. The maximal allowed cell volume changes with box size and ranges
between 1.5 × 105 and 2.3 × 106 kpc3. We start all simulations with 106 cells
in the halo, which implies a decreasing mass resolution with increasing galaxy
mass. For each halo mass, the reference mass that is targeted by the refinement
scheme is listed in Table 6.1.

We evolve the initial conditions for 6 Gyrs, such that winds can also develop
late in the galaxy’s evolution. In all simulations, the gas is allowed to cool
radiatively and form stars but the included aspects of CR physics vary. Our
fiducial runs contain CRs with isotropic diffusion. Here, the effect of CRs is
strongest and not intertwined with the effects of the magnetic field. We also
repeat our simulations with anisotropic diffusion to study its impact on the
wind.

Furthermore, we carry out a number of additional reference runs. First, we
repeat the simulations without CRs. We then include CRs but only advect
them with the gas. In order to test the robustness of our results, we run
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simulations with different values for the CR injection efficiency, εcr, and for the
CR diffusion coefficient, κcr. Moreover, we analyse runs without CR cooling,
with a live dark matter halo and with higher and lower resolution. As we also
want to compare CR-driven winds with the winds from empirical simulation
models, we run simulations with the wind model from Vogelsberger et al. (2013),
for comparison. It creates wind particles as part of the SN feedback and allows
them to escape the dense, star forming gas. To this end, the hydrodynamics
of the wind particles is switched off until the wind particles recouple with the
gas. Table 6.2 gives an overview of the physical models that are used in the
different simulations.

6.3. Results
We first determine in which galaxies CR-driven outflows develop and how
their velocity profiles look. We then focus on mass-loaded winds and on the
dependence of the wind properties on halo mass.

6.3.1. Development of outflows
For the remaining part of this paper, we refer to all material that moves away
from the centre of the galaxy as ‘outflowing’ or as an ‘outflow’. We later define
a ‘wind’ as an outflow that leads to a net mass loss from a cylinder around the
galaxy. The cylinder’s radius varies with halo mass between 10 and 40 kpc and
its total height equals twice the virial radius (see Section 6.3.2 for a detailed
discussion of the mass loss). So a galaxy that develops an outflow does not
necessarily drive a wind according to our definition.
We concentrate our analysis on the fiducial runs in which CR diffusion is

isotropic. Fig. 6.1 shows the formation of outflows in terms of edge-on views
of the velocity structure of all haloes after 6 Gyrs. For each image, we first
make a projection along the ŷ-direction of the mass flux perpendicular to the
disk, ρυz. Then, we divide the result by the corresponding surface density to
obtain a typical velocity in the ẑ-direction. We only project over the central
4 kpc of the galaxy in order to focus on the outflow. To give an impression
of the location of the galaxy, we additionally show two contours of the gas
surface density. The contour levels are indicated in units of M� pc−2 in the
bottom-right corner of each panel.
Fig. 6.1 shows that the two lowest mass haloes develop slow outflows with

velocities around 30 km s−1 but without any internal structure. In Halo 10.0,
the outflow is spherical and no stellar or gas disk forms. Instead, star formation
proceeds in a central clump. This is different in Halo 10.5, which has a rotating
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Figure 6.1.: Projections of the z-component of the velocity after 6 Gyrs in our
fiducial runs with isotropic CR diffusion. The mass of the displayed galaxies increases
from left to right and top to bottom. The contours show the gas surface density in
the central 4 kpc of the galaxy. The numbers in the bottom-right corners specify
the contour levels in units of M� pc−2. The two galaxies with the lowest masses
show slow, unstructured outflows whereas the galaxies with intermediate masses
develop biconical outflows with higher velocities. If the mass of the galaxy is further
increased, the outflow becomes weaker and is completely absent in the highest mass
galaxy.

gas disk. The outflow is launched above and below the disk plane but does not
show the ‘collimation’ of the outflows in higher mass haloes.

Strong biconical outflows with velocities of more than 200 km s−1 develop in
Haloes 11.0 and 11.5. In Halo 11.5, we also observe infalling gas. This mixture
of inflowing and outflowing gas becomes more pronounced in Halo 12.0, while
the outflow itself weakens noticeably. It is highly asymmetric and the upper
half is disturbed. The strongest part of the outflow reaches only 40 kpc after
6 Gyr.
No appreciable outflow forms in the highest mass halo, Halo 13.0. Even

after 6 Gyrs, the gas is still falling onto the centre of the galaxy. In addition
to the infall motion, the velocity map in Fig. 6.1 shows a wave-like pattern.
It occurs when the infalling gas hits the already existing disk. An analysis of
the vorticity profile indicates that these waves might be gravity waves, but a
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Figure 6.2.: Time evolution of the z-component of the gas velocity as a function
of height above the disk, z, in our fiducial runs with isotropic CR diffusion. Solid
lines indicate outflow whereas dashed lines indicate infall. The dotted lines show
the escape velocity. All haloes with masses below 1012 M� develop strong outflows
with velocities that exceed the escape speed. The maximum velocity increases with
halo mass, although not linearly. In Halo 12.0, there is some outflowing material at
late times but its velocity barely reaches the escape speed. No outflow develops in
Halo 13.0.

dedicated study is needed to confirm this preliminary result.
We analyse the velocity structure of the outflows in the simulations with

isotropic CR diffusion quantitatively in Fig. 6.2. We consider a thin cylinder
around the centre of the galaxy with a radius of 5 kpc and a total height of
1 Mpc. The cylinder is sub-divided into 40 smaller cylinders stacked along
the ẑ-direction (each with the same radius). The heights of the cylinders are
logarithmically spaced from the plane of the galaxy in order to increase the
resolution towards the mid plane. The resolution in the wind region cannot
be increased further due to the limited number of cells there. We take a mass-
weighted average of υz in each of the small cylinders and additionally average
over the upper and lower half-planes. Hence, only 20 bins are visible in Fig. 6.2.
Each panel in Fig. 6.2 shows the averaged velocity profiles at six different times
for a given halo mass. The solid lines indicate outflowing material whereas the
dashed lines indicate infalling motion. The dotted line shows the profile of the
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escape velocity after 3 Gyrs. It is calculated for individual cells as υesc =
√−2φ

from the gravitational potential φ and is averaged in the same way as the
velocity.

The figure demonstrates again that distinct outflows only develop in Haloes 10.0,
10.5, 11.0 and 11.5. Here, the outflow reaches velocities that clearly exceed the
escape velocity. Halo 12.0 also shows some outflowing material at late times,
as can be seen in Fig. 6.1, but unlike in the lower mass haloes, the velocity
barely reaches the escape speed. In the most massive galaxy with 1013 M�
(Halo 13.0), the gas keeps infalling during the entire 6 Gyrs of our simulation.

Furthermore, Fig. 6.2 illustrates that the outflows in Haloes 10.0 and 10.5
start to develop close to the centre after 1 Gyr and propagate outwards with
time. Remarkably, the outflow is accelerated away from the centre since the
maximum velocity increases for 3 Gyrs and then saturates at roughly 30 km s−1.
This velocity is almost the same for the two halo masses. Close to the centre,
the velocity decreases with time, which might indicate that the outflow is not
replenished.
In the two haloes with higher masses, Haloes 11.0 and 11.5, the outflows

also start to develop close to the centre after 1 Gyr. At the same time, the
outer parts of the haloes are still collapsing. This state lasts even longer in
Halo 11.5. With time, the outflows propagate away from the mid plane with a
velocity that is higher than in the lower mass haloes. The maximum velocity
of the outflow increases rapidly and levels off at approximately 200 km s−1.
Again, this value is very similar for the two haloes with biconical outflows. In
contrast to Haloes 10.0 and 10.5, the outflows remain fast close to the centre
in Haloes 11.0 and 11.5, even at late times.

6.3.2. Wind properties as a function of halo mass
We continue our analysis with the wind properties as a function of halo mass.
We first investigate how the outflows alter the star formation efficiency. We
then analyse which galaxies produce mass-loaded winds and consider their mass
and energy loading.

Impact on star formation efficiency

Galactic winds affect the efficiency of star formation within a galaxy. This
property makes them an important part of simulations of galaxy evolution
which is often incorporated in the form of subgrid models (e.g. Somerville and
Davé, 2015, for a review). With our set of simulations, we can directly study
the impact of CRs and CR-driven outflows on the amount of formed stars.
Here, we define the star formation efficiency as the ratio between stellar mass,
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Figure 6.3.: Star formation efficiency after 6 Gyrs as a function of halo mass. The
star formation efficiency is defined as the fraction of baryon mass that is converted
into stars. The star formation efficiency is reduced in the presence of CRs, especially
if CR-driven outflows develop in the lower mass haloes in the simulations with CR
diffusion. The black line represents a fit to observational modelling from Behroozi
et al. (2013b).

M∗, and total baryon mass in the halo, fbarMvir. The baryonic mass fraction,
fbar, is 0.15 in all our simulations.
Fig. 6.3 shows the star formation efficiency as a function of halo mass after

6 Gyrs. Independent of the included physics, the star formation efficiency peaks
in galaxies with 1011 to 1012 M�. This general shape, which is already present
in simulations without CRs and without an empirical wind model, is mainly
a result of the cooling function. It depends on temperature and thus on halo
mass. Cooling is most efficient in galaxies with masses around ∼ 1012 M� and
hence, more stars are formed in those galaxies compared to galaxies with lower
or higher masses (e.g. Silk, 1977; Rees and Ostriker, 1977).

The star formation efficiency is highest in the simulations with neither CRs
nor an empirical wind model. After 6 Gyrs, 30 to 50 per cent of the baryons are
converted into stars. If CRs are included without diffusion, the star formation
efficiency in Halo 10.0 drops by a factor of ∼ 6, from 32 to 5 per cent. In
Halo 11.0, the reduction of star formation is already smaller, from 50 per cent
of baryons in stars to 34 per cent. In the haloes with even higher masses, the
effect of CRs decreases further. CRs reduce the star formation because they
provide additional pressure support in the disk. The disk is puffed up and it
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becomes more difficult for the gas to collapse and form stars.
Even less stars are formed in the simulations in which outflows develop due

to CR diffusion. The outflows transport material away from the disk that is
then no longer available for star formation. This effect is strongest in the halo
with the lowest mass, Halo 10.0. Here, the star formation efficiency drops to
roughly two per cent. Hence, CR pressure support and CR-driven outflows
prevent star formation almost completely and no gas or stellar disk is formed.
The effect of a galactic outflow is also noticeable in Halo 11.0. Here, only

14 per cent of the baryons are converted into stars after 6 Gyrs if isotropic
diffusion is included. This number rises to 23 per cent in the simulation with
anisotropic diffusion. Thus, for this halo, it makes a difference whether isotropic
or anisotropic diffusion is used. The reason is most likely the magnetic field
topology. For anisotropic diffusion, CRs need field lines that are open in the
vertical direction in order to diffuse out of the galaxy and drive a wind. Thus,
it becomes more difficult to launch outflows and the outflows are weaker.

As shown in the previous section, no strong outflows develop in the two most
massive haloes, Haloes 12.0 and 13.0. Including CR diffusion does not have a
large effect on their star formation efficiency although the CR pressure support
is reduced if CRs can diffuse out of the halo.

For comparison, we also show results for the simulations with the empirical
wind model. The general trends are the same: the star formation efficiency peaks
at 1012 M� and falls off to higher and lower masses. However, the empirical
wind model does not shut down star formation in Halo 10.0 as efficiently as
CR-driven outflows. Still, the star formation efficiency of CR-driven outflows
agrees reasonably well with the empirical model. Since the wind model is very
successful in more realistic, cosmological simulations (Vogelsberger et al., 2013,
2014a), this result supports CRs as the driver of galactic winds.

We also compare the star formation efficiencies in our simulations directly
with cosmological abundance matching expectations. The black line in Fig. 6.3
shows a fit to the stellar mass to halo mass relation from Behroozi et al. (2013b)
at redshift 0.7.2 Overall, the star formation efficiencies are still too high, even
with CRs and CR diffusion. However, the same applies for the empirical
wind model, which has been tuned to reproduce the stellar mass to halo mass
relation in cosmological simulations (together with AGN feedback). Hence, the
simplified simulation setup as a monolithic collapse contributes substantially to
the discrepancies between simulations and observational modelling in Fig. 6.3.
Moreover, our simulations neglect other crucial feedback processes such as the
effects from AGNs or radiation.

2We multiply the halo mass with the baryon fraction, fb = 0.16 (Planck Collaboration
et al., 2016), to obtain the baryon mass as in figure 2 in Behroozi et al. (2013a).
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Time evolution of mass and energy loading

A characteristic property of galactic winds is the ratio between mass loss rate
and star formation rate (SFR), which is also called the mass loading factor.
Similarly, the kinetic energy in the wind can be compared to the CR energy
that is injected by SNe. In this section, we discuss step-by-step how we derive
these ratios for our fiducial runs with isotropic CR diffusion.
We determine the SFR in every snapshot by summing up the SFRs of

individual cells within a cylinder that encloses the star forming disk. The
cylinder has a height of 10 kpc for all galaxies and a radius that varies with
halo mass. The radii range from 10 to 40 kpc and are listed in Table 6.1. The
resulting SFRs are shown as a function of time in the top panel of Fig. 6.4.
In all simulations, there is an initial starburst which is followed by a gradual
decline of the SFR. The SFR is a strong function of halo mass with a peak
value of 0.05 M� yr−1 in the galaxy with the lowest mass and 200 M� yr−1 in
the most massive galaxy.

Next, we analyse the outflow velocity at the virial radius, rvir = υvir/(10H0)
(see Table 6.1 for the values). We choose this radius since it scales naturally
with halo mass and is far enough from the galaxy’s centre so that the outflow
can reach its maximum velocity. We first determine vertical velocity profiles for
each snapshot as described in Section 6.3.1 and illustrated in Fig. 6.2. Then,
we use a linear interpolation of the binned profile to obtain the outflow velocity
at rvir. We show the resulting outflow velocity as a function of time for the
different halo masses in the second panel of Fig. 6.4. Here, we only show true
outflow velocities and do not display infall velocities. In the galaxy with the
lowest mass, Halo 10.0, the velocity quickly reaches its maximum and then
slowly declines. In contrast, the outflow velocity in the intermediate mass
haloes stays roughly constant with time after the outflow reaches rvir. While
the maximum velocity in Halo 10.5 is only 20 km s−1, it reaches velocities of
200 km s−1 in Haloes 11.0 and 11.5. The time evolution of the outflow velocity
shows some wiggles in Halo 11.0 and 11.5, which develop when the biconical
outflows do not propagate outwards perfectly aligned with the ẑ-direction. So
when we measure the outflow velocity, we do not always probe the centre of
the biconic structure. This introduces some uncertainty to the outflow velocity
and all derived quantities. In Halo 12.0, we only observe outflowing material
at rvir after 4.5 Gyrs. As shown before, Halo 13.0 does not show any outward
moving material.
A crucial quantity for characterizing the outflow strength is the mass loss

rate due to the outflow in relation to the star formation rate of a galaxy. Unfor-
tunately, there is no unique way to determine the mass loading in simulations.
All results presented in this paper therefore apply to our definition of mass
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Ṁ
(M
�

yr
−1

)

10−1

100

101

102

Ṁ
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Figure 6.4.: The top three panels show SFR, outflow velocity and mass loss as a
function of time for all haloes in the simulations with isotropic CR diffusion. Mass
loss only occurs in the four haloes with the lowest masses and thus only those four
haloes produce a wind according to our definition. The bottom two panels show
mass and energy loading of the winds. The mass loading clearly scales with halo
mass and is remarkably constant with time. There is no apparent scaling with halo
mass of the energy loading.
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Figure 6.5.: Projections of the z-component of the velocity after 1 Gyr (top panel)
and 2.5 Gyrs (bottom panel) in our fiducial runs with isotropic CR diffusion. Each
column shows one halo mass. The mass increases from left to right and the displayed
region increases accordingly. The rectangular boxes demonstrate the cylinders that
we use to calculate mass loss. The top panel illustrates the different onset times of
the mass loss and the bottom panel shows the outflows after they have reached the
virial radius in Haloes 11.0 and 11.5.

loss and might change for other choices. We first consider the total baryonic
mass within a cylinder that is centred on the galactic centre in each snapshot.
The cylinder has the same radius as the cylinder that we use to calculate the
SFR (see Table 6.1). In the ẑ-direction, the cylinder reaches the virial radius
above and below the disk, such that its total height is twice the virial radius.
Then, we determine the mass loss as Ṁ = ∆M/∆t with the mass difference in
the cylinder, ∆M, between two consecutive snapshots that are separated by
the time ∆t. With this approach, we can only probe the total mass change in
the cylinder, i.e. the net difference between inflowing and outflowing material.
Hence, there is not automatically a mass loss when there is some outflowing
material. As mentioned before, we only call an outflow a ‘wind’ if it generates
mass loss according to this definition.
The middle panel of Fig. 6.4 shows the mass loss as a function of time.

The figure demonstrates that there is no mass loss in Haloes 12.0 and 13.0,
despite the outflowing material in Halo 12.0. Hence, with our definition, only
Haloes 10.0, 10.5, 11.0 and 11.5 drive a wind, but not Halo 12.0. The mass
loss in Halo 11.5 is already intermittent and not continuous in time. For all
haloes, the time evolution of the mass loss is similar to the SFR. It is strongest
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directly after the onset of the wind and then slowly declines. The absolute
value of the mass loss increases with halo mass but seems to level off for halo
masses above 1010.5 M�.

We remark that the galaxies start losing mass before the outflow reaches the
virial radius, in other words before we measure positive outflow velocities. The
reason for this effect can be seen in Fig. 6.5. The figure shows projections of
the z-component of the velocity for Haloes 10.0, 10.5, 11.0 and 11.5 after 1 Gyr
(top panel) and 2.5 Gyrs (bottom panel). We make these projection in the same
way as the projections that are shown in Fig. 6.1. The displayed region varies
from ±40 kpc in Halo 10.0 to ±120 kpc in Halo 11.5. The black boxes illustrate
the sizes of the cylinders that we use to measure mass loss. The top panel
shows that in Haloes 10.0, 10.5 and 11.0 the wind is initially spherical and we
start measuring mass loss as soon as this sphere reaches the side of the cylinder.
The smaller the halo mass and thus, the radius of the cylinder, the earlier
this happens. In Haloes 10.0 and 10.5, the outflow remains mostly spherical
whereas a biconical outflow develops in the wake of the spherical component
in Halo 11.0. In all haloes, we start measuring outflow velocities when the
outflow reaches the top and bottom of the cylinder. In Halo 11.5, the spherical
component is much weaker overall and we only start measuring mass loss when
the biconical wind reaches the top and bottom of the cylinder. Therefore, the
mass loss starts considerably later and also the time delay between mass loss
and positive outflow velocity is much smaller. Since the details of the onset
of the wind probably depend on our simplified initial conditions, we focus our
further analysis on later times when the wind has fully developed. We also
keep the small radius of the cylinder to probe the wind-dominated region.

With the previously determined quantities, we calculate the mass loading
of the wind, which is defined as Ṁ/SFR. We compare mass loss and SFR at
the same time and do not model a temporal offset between these quantities.
We show the mass loading as a function of time in the fourth panel of Fig. 6.4.
Remarkably, the mass loading stays almost constant with time in all four haloes,
even though SFR and mass loss change. Furthermore, the mass loading of
CR-driven winds is a strong function of halo mass with a value of ∼ 30 in
Halo 10.0 and 2 in Halo 11.0. We discuss the mass loading as a function of
halo mass in more detail in the next section.

Similar to the mass loading of the wind, we also compare the kinetic energy
in the wind with the CR energy that is injected by SN feedback. We obtain
the wind energy from the mass loss and the outflow velocity as

Ėw =
1
2 Ṁυ2

out. (6.8)
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Here, we assume that all mass is lost with the outflow velocity at the virial
radius. This is an overestimate for the gas that leaves through the sides of the
cylinder, whose velocity can be significantly lower than υout. Therefore, our
results for the energy loading can only be considered as upper limits. The CR
energy that is injected per solar mass of star formation is εcr = 1048 erg M−1�
in the fiducial simulations that we consider here. Hence, the energy loading is
given by Ėw/(εcr SFR).

The bottom panel of Fig. 6.4 shows the energy loading as a function of time.
In contrast to the mass loading, the energy loading is neither constant in time
nor a strong function of halo mass. In Haloes 10.0 and 10.5, the energy loading
shows a small peak around 1 Gyr. It is related to the mass loss before the wind
reaches the virial radius and does not represent the wind properties correctly.
The energy loading in Halo 10.0 reaches its maximum directly after the onset
of the wind and then decreases with time. In Haloes 10.5, 11.0 and 11.5, the
energy loading stays roughly constant and is largest in Halo 11.0. Therefore,
no simple scaling with halo mass exists. Overall, even the upper limits for the
energy loading are lower than the mass loading. Typical values range between
1 and 20 per cent. Only in Halo 11.0 does the energy loading factor reach unity
for more than a Gyr.

Scaling of mass and energy loading with halo mass

We are particularly interested in how mass and energy loading scale with
halo mass and how this compares to observations. The top panel of Fig. 6.6
shows the time averaged mass loading factor as a function of halo mass for
the simulations with isotropic (red squares) and anisotropic diffusion (blue
diamonds). The bottom panel displays the same for the energy loading. We
average between 2 and 6 Gyrs for the mass loading and between 3 and 6 Gyrs
for the energy loading. The reason for the different time intervals is that the
energy loading depends on the outflow velocity at rvir, which the outflow reaches
only after ∼ 2 Gyrs.
The figure shows that the mass loading factor of CR-driven winds drops

rapidly with halo mass. If we approximate this function with a power law, we
obtain a slope that is close to −2 for most halo masses. However in some mass
ranges, the slope becomes shallower and is closer to −1. For comparison, the
dashed lines in Fig. 6.6 indicate the power laws M−1vir , M−2vir and M−3vir . With the
observed scaling, the mass loading of CR-driven winds decreases faster with
halo mass than what is expected from purely energy driven winds with a slope
of −2/3 or purely momentum driven winds with a slope of −1/3 (Vogelsberger
et al., 2013). The slopes are rather similar for isotropic and anisotropic diffusion
although the mass loading is overall higher for isotropic diffusion.
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Figure 6.6.: The top panel shows the time averaged mass loading factor as a function
of halo mass, the bottom panel shows the energy loading factor as a function of halo
mass. We average the mass loading between 2 and 6 Gyrs and the energy loading
between 3 and 6 Gyrs. The dashed lines indicate the power laws M−1vir, M−2vir and M−3vir.
The data points are taken from Heckman et al. (2015) and Chisholm et al. (2017).
The mass loading factors in the simulations of CR-driven winds drop rapidly with
halo mass, much faster than in observations. The energy loading does not show a
clear scaling with halo mass in our simulations.
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Next, we compare our results to the observations of nearby starburst galaxies
from Heckman et al. (2015) and Chisholm et al. (2017).3 Both studies use
ultraviolet absorption lines to measure outflow velocities and determine mass
loss rates with the help of estimates for the geometry and density of the outflow.
Since it is extremely challenging to measure mass loss in this way, the inferred
mass loading factors are rather uncertain. Moreover, this procedure is very
different to the way we measure mass loss in simulations. Similarly, SFRs
have to be inferred observationally from infrared and ultraviolet luminosities
whereas we can determine them directly from our simulations. Despite these
caveats, we compare our results to the observations in Fig. 6.6. The figure
shows that the overall magnitude of the mass loading of CR-driven winds is in
agreement with the observations. However, the mass loading drops much faster
with mass in the simulations than in the observations. While Heckman et al.
(2015) find no significant scaling with mass, Chisholm et al. (2017) find a weak
scaling of M−1/2vir . Both results are much shallower than the scaling of ∼ M−2vir
that we find for CR-driven winds. Furthermore, many winds are observed in
galaxies with masses & 1012 M� in contrast to our simulations. A possible
explanation is our definition of mass loss, which requires a net mass loss from
a comparatively large cylinder around the galaxy. Another reason might be
that the starbursts in the simulations are not strong or spatially concentrated
enough. We explore this possibility in Section 6.4.1 but find that the bulk
properties of the starbursts are comparable in the simulations and observations.
The bottom panel of Fig. 6.6 shows the upper limits for the energy loading

of the simulated CR-driven winds as a function of halo mass. We find no clear
scaling with halo mass, neither for isotropic nor for anisotropic diffusion. In
most haloes, the energy loading factor reaches values between 3 and 10 per cent.
Only in Halo 11.0 does the upper limit increase to the remarkably high value
of 75 per cent. The large scatter without a clear scaling might be in part due
to uncertainties in the measurement of the outflow velocity. The comparison
of our results to observational data from Chisholm et al. (2017) shows that
observed and simulated values are of the same order of magnitude, although
the energy loading seems to be a bit low in the least massive halo.

Impact of model parameters

The CR model includes parameters that we have not changed so far, but which
nevertheless might influence the wind properties. One important parameter
is the CR injection efficiency, εcr, which describes the amount of SN energy
that is transferred to CRs as they are accelerated at the SN remnant. The

3We assume υvir ∼ υcirc (see the footnote in Heckman et al., 2015) and use υvir and
H0 = 100 km s−1 Mpc−1 (as in the rest of the paper) to calculate Mvir.
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Figure 6.7.: Mass loading as a function of virial mass for different CR injection
efficiencies, εcr (in erg M−1� ). The dashed lines indicate the power laws M−1vir, M−2vir
and M−3vir. The normalization of the mass loading increases with εcr but the scaling
with halo mass remains similar.
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Figure 6.8.: Mass loading as a function of virial mass for different CR diffusion
coefficients, κcr (in cm2 s−1). With increasing κcr, the slope becomes shallower.
However, it still remains steeper than M−1vir.
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CR injection efficiency has a fiducial value of 1 × 1048 erg per solar mass of
star formation. To better understand its effect on the wind, we repeat the
simulations with isotropic diffusion of Haloes 10.0, 10.5, 11.0 and 11.5 with both
lower and higher values of εcr = 3 × 1047 erg M−1� and εcr = 3 × 1048 erg M−1� ,
respectively. Analogous to Fig. 6.6, Fig. 6.7 shows the time averaged mass
loading factor as a function of halo mass. For all halo masses, the mass loading
decreases with decreasing CR efficiency. In the simulation of Halo 11.5 with
εcr = 3 × 1047 erg M−1� , the wind efficiency is so low that we only detect mass
loss in a single snapshot. Thus, we do not show a time averaged mass loading
factor for this simulation in Fig. 6.7. In contrast to the normalization, the
shape of the mass loading as a function of halo mass remains almost the same.
For all εcr, the mass loading scales as ∼ M−1vir between 1010 and 1011 M�. At
higher masses, the mass loading drops more rapidly such that it becomes almost
proportional to M−2vir . These results are in agreement with Salem and Bryan
(2014), who also find stronger winds with higher mass loading factors if they
increase the CR injection efficiency.
A second crucial parameter is the diffusion coefficient. We study how the

mass loading changes if we vary κcr in the simulations with isotropic diffusion
of Haloes 10.0, 10.5, 11.0 and 11.5. In addition to our fiducial value of
κcr = 1028 cm2 s−1, we repeat the simulations with κcr = 3 × 1027 cm2 s−1,
κcr = 3 × 1028 cm2 s−1 and κcr = 1 × 1027 cm2 s−1. The time averaged mass
loading factors as a function of halo mass are shown in Fig. 6.8. For the
lowest κcr, the mass loading drops steeply with virial mass and scales as M−2vir .
For this κcr, no continuous wind develops in Halo 11.5 (mass loss only in 7
snapshots between ∼ 5.5 and 6 Gyrs). If the diffusion coefficient is increased,
the relation between mass loading and halo mass becomes shallower. For
κcr = 1 × 1029 cm2 s−1, the slope is only −1. Although there is a systematic
trend, the slope remains steep in comparison with the results of Muratov et al.
(2015), who find a slope of −0.3, and Heckman et al. (2015), who find no scaling
with halo mass. For a given halo mass, the mass loading factor does not change
with κcr in a simple way. Since we focus here on the dependence of the wind
properties on halo mass, we leave a detailed study of the effects of different
diffusion coefficients to future work.

6.4. Discussion
In this section, we discuss further aspects of our simulations. We first consider
their starburst properties and compare our results to the empirical wind model
and other previous works. We then test whether our conclusions are affected
by numerical parameters and discuss the limitations of the simulations.
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6.4.1. Starburst properties
In Section 6.3.2, we compared the mass loading that we obtain in our simulations
with observations. Here, we study the properties of the starbursts themselves
since a stronger starburst likely creates a stronger wind and vice versa. Thus, a
comparison of the wind properties is only meaningful if the starburst properties
are comparable.

We analyse four different starburst properties as a function of virial velocity,
and thus of halo mass, in Fig. 6.9. We take the observed circular velocity as
an approximation of the virial velocity and assume υcirc ∼ υvir. Moreover,
we focus on the properties that are listed for each galaxy in Heckman et al.
(2015) due to their larger sample size. The top-left panel of Fig. 6.9 shows
the SFR. The simulated galaxies are characterized by the maximum SFR in
the runs with isotropic CR diffusion. The figure demonstrates that the SFRs
in the simulations agree well with observations, although they correlate more
strongly with halo mass. Most likely this is a result of the setup of our runs
as self-similar, isolated galaxies, which does not allow for realistic variations
in the formation history of the galaxies. The SFR in the most massive halo
is probably also a bit too high since we do not model AGN feedback, which
would additionally reduce the SFR in this mass range.

We show a typical radius of the starburst, r∗, as a function of virial velocity
in the top-right panel of Fig. 6.9. In Heckman et al. (2015), this is the half-light
radius of the UV image, which shows the location of recently born stars. Since
the half-light radius is intricate to determine in simulations, we use the scale
radius of the stellar surface density instead. We calculate this radius for the
snapshot with the maximum SFR. Since the SFR peaks before 0.5 Gyr for all
halo masses, this snapshot contains mostly young stars. Then, we determine
the stellar surface density as a function of the 2D radius in the xy-plane and
fit an exponential profile to obtain the scale radius. While the exponential
profile is a good description in the lower mass haloes, the more massive haloes
develop bulges. However, as we only aim for a rough estimate of the typical
radius of the starburst, which might also happen in the bulge, we still fit an
exponential profile. Fig. 6.9 shows that the inferred radii are well in the range
of the observed half-light radii. The presence of a bulge in the more massive
haloes leads to a decrease of the typical radius.
In the bottom-left panel of Fig. 6.9, we normalize the SFR by the area of

the starburst, which is given by 2πr2∗ . As before, we show this quantity as a
function of virial velocity. The SFR/Area in the simulations is of the same
order of magnitude as in the observations. Hence, the spatial concentration of
star formation, and thus SN feedback, is comparable. This might be important
since we would expect that it is more difficult to drive outflows if the star
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Figure 6.9.: Comparison between observed (Heckman et al., 2015) and simulated
(red dots) starburst properties as a function of virial velocity. We show the results for
the simulations with isotropic CR diffusion and measure all properties at the peak of
the SFR. The top-left panel shows the SFR and the top-right panel shows a typical
radius of the starburst. Observationally, this radius is the half-light radius in the UV
images. In the simulations, we use the scale height of the stellar surface density. In
the bottom-left panel, the SFR is normalized by the area of the starburst and in the
bottom-right panel it is normalized by stellar mass. Overall, the properties of the
starbursts in the simulations resemble the observations.

121



The dependence of cosmic ray-driven galactic winds on halo mass

formation is more distributed. The SFR/Area in the simulations scales more
strongly with virial velocity than in the observations. The reason lies in the
rapid increase of the SFR, whereas, in comparison, the radius r∗ changes only
slightly.

We show the gas consumption rate into stars, which is the SFR normalized by
stellar mass, as a function of virial velocity in the bottom-right panel of Fig. 6.9.
In the simulations, we calculate this quantity at the time of the maximum SFR,
i.e. at the peak of the initial starburst. At this early time, not many stars have
formed yet such that the simulations have significantly less stellar mass than
the observed galaxies. The lack of stellar mass is strongest in the most and least
massive haloes, and smallest in haloes with virial velocities between 100 and
200 km s−1. Fig. 6.9 shows that the ratio SFR/M∗ first decreases with virial
velocity, reaches a minimum at roughly 100 km s−1, and then increases again.
This dependence on υvir is in part due to the lack of stellar mass. In addition,
we overpredict the SFR in the haloes with the highest masses, which further
increases the gas consumption rate. Still, the values for the ratio SFR/M∗ are
of the same order of magnitude as in the observations.

In conclusion, the starburst properties in the simulated and observed galaxies
are similar. Hence, their potential for driving winds should also be comparable.
The reason for the lack of CR-driven winds in galaxies with halo masses above
∼ 1012 M� is probably not due to weaker starbursts. However, our analysis is
still fairly rough and we have only looked at a few properties of the starburst.
A more careful study that includes mock observations would be necessary to
improve the comparison with observations but this goes beyond the scope of
the current paper.

6.4.2. Comparison with empirical wind model
In this section, we study in more detail the differences between CR-driven winds
and the winds that are launched by the empirical model from Vogelsberger
et al. (2013).

The wind model creates ‘wind particles’ that are then temporarily decoupled
from hydrodynamics until they escape from the star forming phase. The mass
of these particles can be thought of as a ‘mass loading’ at the base of the wind,
which we refer to as ‘particle mass loading’. The particle mass loading scales
as M−2/3vir , which corresponds to purely energy driven winds. This scaling is
clearly less steep than the M−2vir dependence that we find for the ‘global’ mass
loading of CR-driven winds. Moreover, the model assumes a particle mass
loading factor that is roughly an order of magnitude higher than the global
mass loading factor of CR-driven winds.

Since the comparison between particle and global mass loading is somewhat
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ill-defined, we also try to directly compare the global mass loading factors of
both wind types. However, the winds that are created by the empirical model
have a different morphology than the CR-driven winds. They typically do not
have a coherent large scale structure and rarely reach the virial radius. The
velocity is overall lower and steadily increases with halo mass. In contrast to
CRs, the wind model can still drive outflows in the most massive halo with
1013 M�. Moreover, the cylinder that we use to measure mass loss has a height
equal to the virial radius and is thus not well suited for the winds that are
driven by the empirical model. Nevertheless, if we apply it, we measure some
mass loss through the sides of the cylinder, which results in mass loading factors
between 0.1 and 1 with a very weak dependence on halo mass.

6.4.3. Comparison with previous work
We first compare our results to the simulations of CR-driven winds in a 1012 M�
galaxy from Salem and Bryan (2014). While we find no significant CR-driven
outflows at this halo mass, they find strong winds with a mass loading factor
of 0.3. Their simulations differ in various ways from ours: they are run with
an adaptive mesh refinement code, have different subgrid prescriptions for star
formation and stellar feedback, and use a different solver for CR diffusion.
Moreover, Salem and Bryan (2014) start with a pre-existing gas disk and
measure mass loading differently. In addition, one of the major differences
is that their model neglects CR cooling. In contrast, our model accounts for
Coulomb and hadronic losses. To test the impact of CR cooling, we re-run the
1012 M� halo without cooling. As in Salem and Bryan (2014), we use isotropic
CR diffusion. Without CR cooling, a wind develops after ∼ 3 Gyrs with a time
averaged mass loading factor close to 0.3. This demonstrates the importance
of CR cooling for the properties and occurrence of CR-driven winds.
Next, we contrast CR-driven winds with the winds in the Feedback in

Realistic Environments (FIRE) simulations (Hopkins et al., 2014), which have
been studied by Muratov et al. (2015). The FIRE simulations are cosmological
zoom simulations of galaxies with masses between ∼ 109 and 1012 M� at redshift
2. Stars are formed in bursts that are followed by outflows. These outflows
are driven by a combination of “early feedback” from young stars (radiation
pressure, stellar winds and ionizing feedback) and energy and momentum input
from SNe. Muratov et al. (2015) find that the mass loading scales with M−1.1vir
if Mvir < Mvir,60 and with M−0.33vir if Mvir > Mvir,60, where Mvir,60 is the halo
mass that corresponds to a virial velocity of 60 km s−1. Both power laws are
significantly flatter than what we find for CR-driven winds. Though, at least
for υvir = 75 km s−1 and z = 0.7 (Halo 11) the mass loading is similar, with a
value of 11 in FIRE and 13 for CR-driven winds. This comparison could be
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Figure 6.10.: We vary the resolution and the treatment of dark matter in the
simulations with isotropic CR diffusion. Here, we show the resulting time evolution
of the mass loading factor for two halo masses. The solid blue lines show our fiducial
runs with a static dark matter potential and initially 106 gas cells. The dashed
purple lines and the dot-dashed green lines show the simulations with lower and
higher resolution, respectively. The black dotted lines give the results if we also
simulate the dynamics of the dark matter particles instead of using a stationary dark
matter potential. In this case, both, gas and dark matter, are represented by initially
1.5 × 105 cells. Overall, the mass loading factor does not change significantly with
these variations.

expanded significantly if we had cosmological zoom simulations of CR-driven
winds.

6.4.4. Impact of numerical parameters
Our simulations also include numerical parameters whose detailed settings
ideally should not have any effect on the results. Here, we study how robust
the time evolution of the mass loading factor is if two of these parameters are
varied.

First, we analyse the impact of numerical resolution. To this end we re-run
the simulations of Haloes 10.0 and 11.0 with isotropic CR diffusion. In a first
test run, we reduce the resolution of our fiducial setup from initially 106 to
only 1.5 × 105 gas cells. Then, we increase this number to 5 × 106. The results
are shown in Fig. 6.10. The dashed, purple line indicates the simulation with
lower resolution, the solid, blue line indicates the fiducial simulation and the
dot-dashed, green line indicates the simulation with higher resolution. The
time evolution of the mass loading factor is fairly similar in all simulations.
It is smoother in the runs with higher resolution but the time averaged value
is always the same. The results for the energy loading are also rather similar
at all resolutions, although the wind velocity at the virial radius in Halo 11.0
changes somewhat.
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Furthermore, we study how the representation of the dark matter halo
influences the results. In our fiducial setup, we use a static background potential.
While this approach is computationally cheap and avoids additional noise from
the dark matter halo, it cannot capture back reactions of the baryons on the
dark matter potential. Thus, we test whether our results change if we also follow
the dynamics of the dark matter particles. Therefore, we represent the gas by
1.5 × 105 cells and the dark matter with an equal number of particles. Then,
we evolve the combined system in time. The dotted, black line in Fig. 6.10
shows the results for Haloes 10.0 and 11.0. The mass loading factor changes
slightly in Halo 10.0 but remains essentially the same in Halo 11.0. Thus, a
live dark matter halo would not change our overall conclusions.

6.4.5. Limitations of the simulations
An obvious limitation of our simulations is their setup as isolated rotating
gas spheres, which cool and form disk galaxies inside-out. Hence, the entire
gas supply of the final galaxy collapses at once and creates a huge starburst
at the beginning of the simulation. Since star formation is accompanied
by CR injection, this might artificially boost the winds. We would need
to run fully cosmological (zoom) simulations to study how a more realistic
hierarchical assembly history, with sporadic gas accretion and bursty star
formation, influences the wind properties. However, this goes beyond the scope
of this paper.
Furthermore, there is still some debate about the details of the plasma

physics that governs CRs (Zweibel, 2017; Wiener et al., 2017). In particular,
CR transport is currently modelled in two different ways. The first possibility,
which we also use in this paper, is to describe the transport as diffusion (Booth
et al., 2012; Hanasz et al., 2013; Salem and Bryan, 2014; Pakmor et al., 2016b).
In this approach, CRs diffuse either isotropically or along magnetic field lines
with a diffusivity that is close to the Galactic value. The diffusion coefficient is
typically kept constant (an exception is e.g. Farber et al., 2017), although it is
expected from theory that it changes in space and time (Ptuskin et al., 1997;
Wiener et al., 2013). A varying diffusion coefficient might have an impact on
the dependence of the mass loading on halo mass. Diffusive CRs do not lose
additional energy.

The second way of describing CR transport is streaming (Uhlig et al., 2012;
Ruszkowski et al., 2017b). Streaming CRs move at roughly the Alfvén speed
down their own pressure gradient. In contrast to diffusion, the CRs lose energy
through this process and heat the thermal gas. Wiener et al. (2017) compare
the two different transport mechanisms in the context of CR-driven winds.
They find that the winds that are driven by streaming CRs are generally weaker,
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produce less mass loss and have smaller velocities. This result makes it unlikely
that streaming CRs are more effective in driving outflows, especially in galaxies
with masses around 1012 M�, but only a dedicated study with streaming CRs
can ultimately answer this question.
Moreover, diffusive CRs can, in theory, increase their energy in a peculiar

way through adiabatic compression. During the early formation of the galaxy,
CRs diffuse away from the galaxy while most of the gas is still collapsing. The
CRs do not lose energy in the diffusive process but they gain energy when they
are subsequently compressed by the infalling gas. This issue has been studied
by Pfrommer et al. (2017b). They find that this cycle leads to a net increase of
CR energy in haloes with 1012 M�. In less massive haloes, the effect becomes
weaker and the outwards advection of the wind wins over the inflow after a
short initial phase. Since this effect mostly influences haloes that do not drive a
mass-loaded wind according to our definition, it should not have a huge impact
on the scaling of the wind properties with halo mass.

6.5. Conclusions
Observations demonstrate the ubiquity of galactic winds in starburst galaxies
but the physical mechanism that drives these winds is still uncertain. Among
other possibilities, CRs are able to drive outflows if CR transport in the form
of diffusion or streaming is taken into account. In this section, we study how
the properties of CR-driven winds depend on halo mass.
We simulate a set of isolated galaxies with halo masses between 1010 and

1013 M�. We model CRs as an additional fluid and follow the time evolution
of the CR energy density. CRs are advected with the gas and can diffuse either
isotropically or anisotropically. They are injected as part of the SN feedback
and cool through Coulomb and hadronic losses.

We study which galaxies produce CR-driven outflows and focus on the mass
and energy loading of the winds (ratios between mass loss and SFR and kinetic
wind energy and SFR, respectively). Our main results are summarized below.

• We only obtain CR-driven winds with a mass loss beyond the virial radius
in galaxies with halo masses up to ∼ 3× 1011 M�. In galaxies with higher
mass, either no outflows exist or the outflows are too weak to cause
significant mass loss.

• The outflow in the smallest halo with 1010 M� is spherical and reaches
velocities of 20 km s−1. With increasing halo mass, the winds become
biconical and the velocities reach values of up to 200 km s−1.
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• CR pressure and CR-driven outflows both reduce star formation. However,
their combined effect is not sufficient to reproduce the observed stellar
mass to halo mass relation in our idealized setup.

• The mass loading factor drops rapidly with halo mass with a power-law
scaling between M−1vir and M−2vir , independent of isotropic or anisotropic
diffusion. In contrast, the energy loading shows no clear scaling with halo
mass.

• In comparison to observed, local starburst galaxies, the mass loading drops
too rapidly with halo mass. Moreover, winds are frequently observed in
galaxies with masses above 3 × 1011 M� in contrast to our simulations.
However, this comparison has to be considered with caution since crucial
quantities, in particular the mass loss, are measured differently in our
simulations and the observations.

• The CR injection efficiency changes the normalization of the mass loading
but has a minor impact on its scaling with halo mass. In contrast, the CR
diffusion coefficient affects this scaling: the higher the diffusion coefficient,
the shallower the profile becomes.

• CR cooling has a significant impact on the development of winds. When
we repeat the simulation of the 1012 M� halo without the cooling losses
for CRs, an outflow with substantial mass loss develops.

These results provide helpful insights into the properties of CR-driven winds
and suggest that they are a prime candidate for accounting for much of the
feedback needed in low mass galaxies. It remains an interesting question how
our results would change if diffusion is replaced by streaming, something that
is left for future investigations. In addition, more realistic formation histories
of the galaxies, as in cosmological zoom simulations, and a more sophisticated
treatment of the multi-phase interstellar medium would further improve our
understanding of CR-driven winds.
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7. Introduction
Most astrophysical environments are dominated by turbulence (Elmegreen and
Scalo, 2004, for a review). For example, stars form in giant molecular clouds,
whose velocity dispersions are much larger than the sound speed (Larson, 1981;
Solomon et al., 1987; Miville-Deschênes et al., 2017). This indicates the presence
of supersonic turbulence, which has a large impact on star formation (Mac Low
and Klessen, 2004; McKee and Ostriker, 2007). Turbulent pressure provides
support against gravitational collapse and thus helps to explain the low star
formation efficiencies. Moreover, supersonic motions create shocks, which likely
compress the gas sufficiently to collapse and form stars. The resulting clump
mass functions and stellar initial mass functions have been studied analytically
(Padoan and Nordlund, 2002; Krumholz and McKee, 2005; Hennebelle and
Chabrier, 2008) and in simulations (Padoan and Nordlund, 2011; Federrath
and Klessen, 2012; Haugbølle et al., 2018) in great detail.

Turbulence also plays an important role in the hot haloes of galaxy groups and
clusters (e.g. Brüggen and Vazza, 2015, for a review). The observed velocities
are of the order of a few 100 km s−1, which implies subsonic turbulence (Sanders
et al., 2010; Hitomi Collaboration et al., 2016). Simulations indicate that most
of the turbulent flows in the cluster volume are generated by cluster mergers
(Subramanian et al., 2006; Vazza et al., 2011). Additional contributions come
from gas sloshing in the gravitational potential (ZuHone et al., 2013) and the
motion of galaxies through the ICM (Kim, 2007; Ruszkowski and Oh, 2011).
To which extent the central AGN produces turbulence is still a topic of debate
(Reynolds et al., 2015; Weinberger et al., 2017). Turbulent motions contribute
∼ 10 per cent of the thermal gas pressure to the overall pressure support
against gravity and, hence, impact measurements of the gravitational potential
(Schuecker et al., 2004; Churazov et al., 2008). Moreover, the dissipation of
turbulence might play an important role in heating the ICM in the cluster centre
and preventing large cooling flows (Dennis and Chandran, 2005; Zhuravleva
et al., 2014). Additionally, CR electrons are most likely re-accelerated in the
turbulent ICM after cluster mergers, which would explain the observations of
extended radio haloes and relics (Jaffe, 1977; Brunetti et al., 2001).
A simple description of incompressible turbulence is Kolmogorov’s theory

(Frisch, 1995). It assumes that turbulence is driven by an external force that
creates eddies on a large scale, L. These eddies interact and decay to successively
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smaller scales until they are dissipated by viscosity at the Kolmogorov scale, lK.
The energy that is transported through this cascade is conserved and, thus, the
energy flux from large to small scales, ε, is constant. Dimensional arguments
show that for all scales lK < l < L with typical velocities υ(l), the energy flux
is given by

ε =
υ(l)3

l
. (7.1)

The resulting spectrum can be described by the energy spectrum function,
E(k), which is related to the kinetic energy as∫

E(k)dk = Ekin ∼ υ(l)2. (7.2)

Hence, we obtain the typical scaling for Kolmogorov turbulence

E(k) ∼ k−1υ(l)2 ∼ k−1(εl)2/3 ∼ ε2/3k−5/3. (7.3)

Supersonic turbulence is dominated by shocks, in which most of the energy is
dissipated. In this case, the energy spectrum function obeys the scaling law,
E(k) ∼ k−2 (Mac Low and Klessen, 2004).
A measure of turbulence is given by the Reynolds number. It is defined as

the ratio between inertial and viscous forces in a flow,

Re = V L
ν

(7.4)

with a characteristic velocity V and a typical scale L. ν describes the kinematic
viscosity. A flow is dominated by viscous forces if Re ∼ 1 and it becomes
turbulent if Re > 103 (Schmidt, 2015). For all scales in the turbulent cascade,
we define a corresponding Reynolds number Re(l) = υ(l)l/ν. The driving
scale dominates the overall Reynolds number of the flow, Re = Re(L). At the
dissipation scale, we obtain Re(lK) ∼ 1. The ratio between the driving scale
and the dissipation scale can be expressed in terms of the overall Reynolds
number as

L
lK
∼ Re3/4, (7.5)

where we use the definition of the Reynolds number and Equation (7.1). In
astrophysical environments, the Reynolds number is typically large, from ∼ 106
in star-forming regions (Miesch et al., 1999) to 1014 in the turbulent convection
zone of the Sun (Canuto, 1994). Therefore, the separation between the driving
scale and the dissipation scale is immense.
Numerical simulations of turbulence are limited by the grid scale, ∆. Due
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Figure 7.1.: Illustration of the scale separation in LES. The grid scale, ∆, is located
between the driving scale, L, and the dissipation scale, lK. The part of the turbulent
cascade that is below the grid scale is described by a subgrid model (grey).

to the large difference between the driving and dissipation scale, it is usually
not feasible to resolve both. Thus, the grid scale is below the largest scales
but still significantly above the Kolmogorov scale such that L � ∆ � lK. This
is the regime of large eddy simulations (LES), which is illustrated in Fig. 7.1
(Sagaut, 2006; Schmidt, 2015). The numerical simulation is able to follow the
large-scale fluid motions directly but parts of the turbulent cascade remain
unresolved. This component is indicated in the figure in grey and we denote
it as subgrid-scale (SGS) turbulence. In LES, the SGS turbulence energy is
described by a suitable subgrid model. Most other simulations are ‘implicit’
large eddy simulations (ILES), in which numerical dissipation replaces the
explicit model.

The vast majority of simulations in astrophysics are ILES (e.g. Kritsuk et al.,
2007; Federrath et al., 2010, for turbulence studies). One of the first LES with
a SGS turbulence model that has since been applied to several astrophysical
problems was run by Schmidt et al. (2006). Today, the model can be used with
adaptive mesh refinement and for cosmological simulations (Schmidt et al.,
2014). The same or similar models of SGS turbulence are used in simulations of
SN explosions (Reinecke et al., 2002; Schmidt et al., 2006; Röpke et al., 2007),
galaxy clusters (Maier et al., 2009; Iapichino et al., 2011; Schmidt et al., 2017)
and, more recently, galaxy formation, in which SGS turbulence improves the
description of star formation (Semenov et al., 2016, 2017).
In this part of the thesis, we aim to use the hydrodynamics code AREPO

(Springel, 2010) for LES. Therefore, we follow the methodology in Schmidt (2015)
and implement a simple SGS turbulence model. This chapter is structured
as follows. We first introduce the theoretical background of LES in Section 8
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and then describe the numerical implementation in Section 9. We present two
test problems in Section 10 and use our model in simulations of turbulent
boxes in Section 11. In Section 12, we discuss possible improvements of the
numerical model and future applications. In the end, we give a brief summary
in Section 13.
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8. Theory of large eddy
simulations

We introduce the basic concepts of LES in this section. First, we show how
the governing equations are derived and then discuss models for the terms that
are related to SGS turbulence. To this end, we closely follow the work from
Sagaut (2006) and Schmidt (2014, 2015).

8.1. Governing equations

LES directly simulate the flow on large scales and use a model for small scales.
Hence, only large scale motions are resolved. To derive the equations for the
resolved flow, a filter is applied to the hydrodynamics equations which assume
infinite resolution. In the following section, we will first describe the governing
equations at infinite resolution. Then, we will introduce the filtering process
and discuss the resulting equations. To distinguish filtered variables from
variables at infinite resolution, we denote the infinitely resolved quantities with
a superscript ∞· .

8.1.1. Governing equations at infinite resolution

The hydrodynamic equations describe the conservation of mass, momentum
and energy. At infinite resolution, the continuity equation, the compressible
Navier-Stokes equation and the equation for the conservation of energy are
given by

∂

∂t
∞
ρ + ∇ · (∞ρ∞υ)

= 0, (8.1)
∂

∂t

(∞
ρ
∞
υ
)
+ ∇ · (∞ρ∞υ ⊗ ∞υ)

=
∞
ρ
(∞
g +

∞
f
)
− ∇∞P + ∇ · ∞σ, (8.2)

∂

∂t
∞
e tot + ∇ ·

(∞
υ
∞
e tot

)
=
∞
ρ
∞
υ · (∞g + ∞f ) − ∇ · (∞υ∞P)

+ ∇ · (∞υ · ∞σ)
, (8.3)
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where ∞ρ is the mass density, ∞υ is the velocity and
∞
P is the thermal pressure.

∞
g = −∇∞φ describes the gravitational acceleration and

∞
f describes external

accelerations. The viscous stress tensor is given by

∞
σi j = 2η

(∞
Si j − 1

3
∞
dδi j

)
+ ζ
∞
dδi j , (8.4)

with the dynamic viscosity η and the bulk viscosity ζ .
∞
S denotes the rate-of-

strain tensor which is defined as

∞
S =

1
2

*
,

∂
∞
υi

∂x j
+
∂
∞
υ j

∂xi
+
-
. (8.5)

The divergence of the velocity field is
∞
d = ∇ · ∞υ = tr(

∞
S). The total energy

density is given by

∞
e tot =

∞
ρ
∞
utot =

∞
ρ

*.
,

1
2
∞
υ
2
+

∞
P

(γ − 1)
∞
ρ

+/
-

(8.6)

with the total specific energy ∞utot. Pressure and specific internal energy ∞uth
are related by an equation of state,

∞
P = (γ − 1)

∞
ρ
∞
uth, (8.7)

where γ = 5/3 is the adiabatic index of an ideal monoatomic gas.

8.1.2. Scale separation
In LES, the flow is directly computed on large scales whereas the dynamics
of smaller scales are treated by a subgrid model. The filter scale ∆ separates
the large, resolved scales from the small, unresolved scales. Fluctuations that
are smaller than the filter length are smoothed out in order to describe the
resolved flow. This can be achieved by applying a high-pass filter in physical
space, which corresponds to a low-pass filter in frequency space.
Filtering is mathematically equivalent to a convolution with a filter kernel

G. The filtered or resolved part, 〈q〉G (x, t), of a variable at infinite resolution,
∞
q (x, t), is given by

〈q〉G (x, t) =
∫

G(x − x′)
∞
q (x′, t)d3x′. (8.8)
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The corresponding unresolved part, q′(x, t), is defined as

q′(x, t) = q(x, t) − 〈q〉G (x, t). (8.9)

The simplest filter kernels are homogeneous and isotropic. In this case, the
filter does not depend on position or orientation in space, which implies that
the filter length is constant and identical in the whole computational domain.
Homogeneous isotropic filters are not defined at the boundaries and can, thus,
only be used for unbounded domains (Sagaut, 2006). In most of this work, only
this type of filter is considered.

The filters need to fulfil further requirements to be applicable to the hydro-
dynamic equations: they have to conserve constants and they have to be linear.
Moreover, they have to commute with space and time derivatives. Here, we
additionally assume that multi-dimensional filters can be written as a product
of one-dimensional filters.

One example for such a filter is the box or top-hat filter, which is defined for
a cutoff length ∆ as

G(x − x′) =



1
∆
, if |x − x′| ≤ ∆/2

0, otherwise
. (8.10)

Remarkably, the box filter corresponds up to a normalization factor to a finite
volume discretization with grid scale ∆, where the cell averages are given by

Qi =

∫ xi+∆/2

xi−∆/2
∞
q (x)dx. (8.11)

Hence, the flow that is computed by a finite volume scheme can be identified
as the filtered part of the flow. To simplify the notation, we denote the filtered
quantities that are computed by a finite volume scheme as q = 〈∞q〉∆.

8.1.3. Filtered equations

The equations that are solved by a finite volume scheme are technically not
the infinitely resolved equations that were presented in Section 8.1.1 but a
filtered set of equations. In this section, we apply a homogeneous, isotropic
low-pass filter to the infinitely resolved hydrodynamic equations to derive these
equations.
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Continuity equation

As an example, we demonstrate the filtering process for the continuity equation
in detail. First, we apply the filter to the entire equation which yields〈

∂

∂t
∞
ρ + ∇ · (∞ρ∞υ)〉

∆

= 0. (8.12)

Since the filter is linear and commutes with differential operators, the equation
can be simplified to

∂

∂t
〈∞ρ〉∆ + ∇ · 〈∞ρ∞υ〉∆ = 0. (8.13)

We denote the filtered density as ρ = 〈∞ρ〉∆ and use a density-weighted definition
of the filtered velocity

υ =
〈∞ρ∞υ〉∆
〈∞ρ〉∆

, (8.14)

which is also called Favre-filtered velocity (Garnier et al., 2009). The filtered
continuity equation is then given by

∂

∂t
ρ + ∇ · (ρυ) = 0. (8.15)

Due to the definition of the Favre-filtered velocity, the filtered variables follow
the same equation as the infinitely resolved variables.

Navier-Stokes equation

Similarly, we can apply a filter to the Navier-Stokes equation. Unlike in the
continuity equation, the non-linear terms give rise to correction terms such
that the filtered equation is given by

∂

∂t
(ρυ) +∇ · (ρυ ⊗ υ) = ρ (g + f ) −∇

(
P + Psgs

)
+∇ ·τ∗sgs +γ+∇ ·σ. (8.16)

The left hand side has the same form as in the unfiltered equation but the
filtering of the non-linear term ∞

ρ
∞
υ ⊗ ∞υ leads to the additional term

τsgs = − 〈∞ρ∞υ ⊗ ∞υ〉∆ + ρυ ⊗ υ. (8.17)

The tensor τsgs is also called the SGS turbulence stress tensor.
The trace of the SGS turbulence stress tensor is related to the difference

between the kinetic energy that is computed from the filtered variables and
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the actual filtered kinetic energy

1
2 trτsgs =

1
2 ρυ

2 − 1
2 〈
∞
ρ
∞
υ
2〉∆ . (8.18)

This difference represents the kinetic energy on subgrid scales that can not be
resolved by the finite volume scheme. Thus, the SGS turbulence energy density
is defined as

ksgs ≡ −12 trτsgs =
1
2 〈
∞
ρ
∞
υ
2〉∆ −

1
2 ρυ

2. (8.19)

The SGS turbulence stress tensor can be decomposed into a trace-free and
an isotropic part as

τi j = τ
∗
i j +

1
3 tr(τ)δi j = τ

∗
i j −

2
3 ksgsδi j , (8.20)

where we assume a three-dimensional flow such that τi j is a 3 × 3 matrix.
Moreover, we use the definition of ksgs in the last step. It is convenient to
identify the last term with an isotropic pressure due to SGS turbulence. We
denote the SGS turbulence pressure as Psgs and define it as

Psgs =
2
3 ksgs = (γsgs − 1)ksgs. (8.21)

By analogy to the thermal pressure, we introduce an effective adiabatic index
for SGS turbulence, γsgs, whose value depends on dimension. In three dimension
it is always 5/3, which equals the adiabatic index of a monoatomic ideal gas.

In the Navier-Stokes equation in Equation (8.16), the SGS turbulence stress
tensor is already split into an isotropic pressure component and a trace-free
part. The SGS turbulence pressure can be combined with the filtered thermal
pressure P = 〈∞P〉∆ to form a total effective pressure Peff = P + Psgs. Gradients
of Peff accelerate the gas. The trace-free component, τ∗sgs, adds a stress tensor
to the equations that is similar to the viscous stress tensor.
The filtering of the gravitational acceleration adds another correction term

to the filtered Navier-Stokes equation. It is given by

γ = − 〈∞ρ∇∞φ〉∆ + ρ∇ 〈
∞
φ〉∆ = − 〈

∞
ρ∇∞φ〉∆ + ρg, (8.22)

where g = ∇ 〈∞φ〉∆ denotes the filtered gravitational acceleration. γ vanishes if
the potential is independent of the flow variables, for example if g is an external
potential. For self-gravitating fluids, the potential is given by Poisson’s equation
and the gravitational acceleration is non-linear in the fluid variables. In this
case, γ is non-zero and should be taken into account. In practice, however,
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no suitable closure schemes exist and the correction term is neglected. This
approach is justified if the local Jeans length is well resolved (Schmidt, 2015).

Applying a filter to the external acceleration would lead to another correction
term. However, we can assume that the external forces are only acting on large
scales. Then the filtered force term can be approximated as

〈∞ρ
∞
f 〉∆ ∼ ρf (8.23)

such that no additional terms are necessary.
The last term in the filtered Navier-Stokes equation, ∇ ·σ, denotes the effects

of the filtered physical viscosity tensor σ = 〈σ〉∆. Scaling arguments show
that for high Reynolds numbers ∇ ·τ∗sgs � ∇ ·σ (Röpke and Schmidt, 2009;
Schmidt, 2015). Therefore, this term can be neglected.

Energy conservation equation

The total energy density that is computed from the filtered variables is given
by

etot = ρutot = ρ
(
1
2υ

2 +
P

(γ − 1)ρ

)
, (8.24)

where we also introduce the specific energy utot. To obtain an evolution equation
for etot, an equation for the filtered thermal pressure has to be computed first.
Then, this equation can be combined with the filtered continuity and Navier-
Stokes equations to yield the filtered equation for the total energy, which is
given by

∂

∂t
etot + ∇ · (υetot) = ρυ · (g + f ) − ∇ · [

υ
(
P + Psgs

)]
+ ∇ · (υ ·τ∗sgs)

+Psgs∇ ·υ − Σ∗ + ρε + ρλ + ∇ ·F(conv) + ∇ · (υ ·σ) .
(8.25)

The left hand side describes advection and the terms in the top row on the
right hand side correspond to the filtered gravitational and external forces, the
effective pressure and the trace-free part of the SGS turbulence stress tensor
that we discussed before.

The term Psgs∇ ·υ − Σ∗ on the right hand side of Equation (8.25) describes
the transformation of resolved kinetic energy into unresolved kinetic energy in
the turbulent cascade. This happens when eddies decay to scales below the
grid scale. Hence, the corresponding term is a loss term for the resolved energy
but acts as a source term for the SGS turbulence energy. Therefore, we will call
it the turbulent production rate of SGS turbulence or the turbulence energy
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flux. The turbulence energy flux is denoted by Σ and is given by

Σ = τi j Si j . (8.26)

Here, Si j is the rate of strain tensor that is computed from the filtered velocities.
It is defined analogous to Equation (8.5). The turbulence energy flux can be
rewritten as

Σ = (τ∗i j − Psgsδi j )Si j = τ
∗
i j Si j − Psgs∇ ·υ. (8.27)

In the first step, we use Equation (8.20) to decompose the SGS turbulence stress
tensor and combine it with the definition of the SGS turbulence pressure. Then,
we use that Sii = tr(S) = ∇ ·υ. If we denote the first term as Σ∗ = τ∗i j Si j , we
regain the expression in the filtered energy equation. Σ∗ describes the production
of SGS turbulence energy through anisotropic shear stresses whereas the last
term corresponds to adiabatic compression and expansion.

Viscous dissipation of SGS turbulence energy into internal energy is described
by the term ρε in Equation (8.25). It is given in terms of the infinitely resolved
variables by

ρε =

〈
∞
σi j

∂
∞
υi

∂x j

〉
∆

. (8.28)

It is a source term for internal energy and a loss term for SGS turbulence
energy.
The term ρλ represents the effects that are caused by SGS fluctuations of

the thermal pressure. It is a correction term for the adiabatic term in the
evolution equation of the thermal pressure. Hence, it is defined as

ρλ = − 〈∞P∇ · ∞υ〉∆ + P∇ ·υ. (8.29)

The same term appears as a source term in the evolution equation for the
SGS turbulence energy. The only closure schemes for ρλ are for subsonic
compressible turbulence (Sarkar, 1992) and, thus, we will follow Woodward
et al. (2006) and Schmidt and Federrath (2011) and neglect it in this work.

There are two remaining terms in the filtered energy equation. The first term
is a correction for the transport terms and describes the convective internal
energy flux on sub-grid scales. It is defined as

F(conv) = − 〈∞ρ∞υ∞uth〉∆ + ρυuth. (8.30)

Here, uth denotes the specific internal energy, uth = P/(γ − 1)ρ. This term is
usually neglected. The last term in Equation (8.25) corresponds to the filtered
physical viscous flux, ∇ · (υ ·σ), and can also be neglected at sufficiently high
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Reynolds numbers (Schmidt, 2015).

SGS turbulence energy equation

The evolution equation for SGS turbulence energy arises from the difference
between the equation for the resolved energy and the equation for the filtered
energy,

∂ksgs
∂t
=
∂etot
∂t
− ∂ 〈

∞
e tot〉∆
∂t

. (8.31)

The resulting equation for the SGS turbulence energy density is given by

∂

∂t
ksgs + ∇ · (υksgs

)
= −Psgs∇ ·υ + Σ∗ − ρε − ρλ + D + Γ. (8.32)

The left hand side represents the advection of SGS turbulence energy with
the flow. On the right hand side, the first two terms describe the production
of SGS turbulence through the turbulent cascade. The same terms, but with
opposite sign, are present in the equation for the resolved energy. Similarly,
the viscous dissipation term, ρε, and the pressure dilatation term, ρλ, are loss
terms for the SGS turbulence energy and gain terms for the resolved energy.
These terms were described in more detail in the previous section.

Transport processes of the SGS turbulence energy are summarized by D,

D = ∇ · (F(kin) +F(press)
)
. (8.33)

The first term represents the diffusive flux of turbulence energy on sub-grid
scales and is defined as

F(kin) = −12 〈
∞
ρ
∞
υ
2∞
υ〉∆ +

1
2 〈
∞
ρ
∞
υ
2〉∆ υ − υ ·τsgs. (8.34)

The second part describes the flux that is associated with pressure fluctuations,

F(press) = − 〈∞υ∞P〉∆ + υ 〈
∞
P〉∆ . (8.35)

The last term in Equation (8.31) is a correction term that is caused by SGS
fluctuations of the gravitational potential. It is given by

Γ = − 〈∞ρ∞υ ·∇∞φ〉∆ + υ · 〈∞ρ∇∞φ〉∆ . (8.36)

As the correction term that is related to gravity in the filtered Navier-Stokes
equation, Γ can be neglected if the Jeans’ length is resolved (Schmidt, 2015).

141



Theory of large eddy simulations

8.1.4. Summary of equations and physical interpretation
We will give a brief summary of the filtered equations that were derived in
the previous sections. Then, we will discuss the physical processes behind the
different sub-grid terms.

Summary of filtered equations

The filtering of the hydrodynamical equations leads to additional terms in
the equations for mass, momentum and energy conservation. Moreover, these
equations are coupled to an evolution equation for the unresolved kinetic energy.
In this summary, we only include the correction terms that are important for
the rest of this thesis and neglect all other terms.
The resulting set of equations is given by

∂

∂t
ρ + ∇ · (ρυ) = 0, (8.37)

∂

∂t
(ρυ) + ∇ · (ρυ ⊗ υ) = ρ (g + f ) − ∇

(
P + Psgs

)
+ ∇ ·τ∗sgs, (8.38)

∂

∂t
etot + ∇ · (υetot) = ρυ · (g + f ) − ∇ · [

υ
(
P + Psgs

)]

+ ∇ · (υ ·τ∗sgs) + Psgs∇ ·υ − Σ∗ + ρε,
(8.39)

∂

∂t
ksgs + ∇ · (υksgs

)
= −Psgs∇ ·υ + Σ∗ − ρε + D, (8.40)

with the gas density ρ and the gas velocity υ. g and f describe gravitational
forces and external forces, respectively. Thermal pressure is denoted by P and
turbulent pressure is denoted by Psgs. τ∗sgs is the trace-free component of the
SGS turbulence stress tensor. The total resolved energy density is given by
etot and the SGS turbulence energy density is given by ksgs. Σ∗ describes the
production of SGS turbulence energy due to the turbulent cascade and ρε
describes viscous dissipation of SGS turbulence energy. Internal transport of
SGS turbulence energy is denoted by D.

Physical interpretation

The conservation equations of hydrodynamics describe how energy can be
exchanged between different energy reservoirs. Fig. 8.1 gives a schematic
overview of the different forms of energy and the conversion mechanisms if SGS
turbulence energy is included. This figure is adapted from figure 5.2 in Maier
(2008).
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gravitational
energy
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τ∗i j∂iυ j

D

viscous
dissipation
turbulent
cascade
adiabatic
changes
internal
transport

lK

∆

scale

Figure 8.1.: Schematic overview of the available energy reservoirs and the different
conversion mechanisms. The energy reservoirs are ordered by scale. ∆ denotes the
filter scale and lK denotes the dissipation scale. This figure is adapted from Maier
(2008).

The boxes in the figure contain different forms of energy, which are ordered
by scale. Resolved kinetic energy and gravitational energy correspond to large
scales and are shown at the top of the figure. In contrast, internal energy
describes effects on scales below the dissipation scale, lK, and is hence depicted
at the bottom. Kinetic energy on the scales between the filter scale, ∆, and the
dissipation scale, lK, is described by SGS turbulence energy, which is shown in
the middle.
There are several ways to exchange energy between the different reservoirs.

On large scales, gravitational energy can be transformed into resolved kinetic
energy and vice versa. Gravitational effects below the filter scale are neglected
in our model. This implies that the filter scale has to be small enough such
that all relevant gravitational interactions are resolved.

The orange arrows represent the turbulent cascade. Resolved kinetic energy
decays to smaller scales until it is converted into SGS turbulence energy at
the filter scale. At the viscous scale, SGS turbulence energy is dissipated into
internal energy.
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Volume changes of a fluid parcel lead to the transfer of energy between differ-
ent reservoirs. In the figure, these adiabatic changes are shown by green arrows.
If a gas parcel expands, pdV -work leads to the conversion of internal energy
into resolved kinetic energy. Similarly, SGS turbulence energy is converted into
resolved kinetic energy if ∇ ·υ > 0. If a fluid parcel contracts, resolved kinetic
energy is transformed into internal and SGS turbulence energy.

The effects of the SGS turbulence stress tensor, τsgs, are illustrated by the red
arrow. This tensor is often modelled as viscosity, something that we will discuss
in more detail in the next section. Hence, it leads to the irreversible dissipation
of kinetic energy into internal energy. The corresponding term appears in the
governing equations if they are formulated in terms of the primitive variables
(see Section 9.1.2).

Spatial redistribution of SGS turbulence energy is denoted by the transport
term D. In this case, the energy remains in the form of SGS turbulence energy.

8.2. Closure schemes
The filtered hydrodynamic equations contain several correction terms that can
not be computed directly. It is possible to derive differential equations that
describe the evolution of the additional terms. However, the resulting equations
contain higher-order correction terms, which are still unknown. This closure
problem can be solved by modelling the extra terms as functions of the known
quantities.
With the simplifications that were described in the previous sections, the

quantities that need to be modelled are the SGS turbulence stress tensor, τsgs,
the viscous dissipation term, ρε, and the transport term, D. The turbulence
energy flux, Σ, follows from the definition of the SGS turbulence stress tensor.

8.2.1. SGS turbulence stress tensor τsgs
The SGS turbulence stress tensor is one of the major quantities that needs to
be modelled by a closure scheme. We will first describe the commonly used
eddy viscosity closure and then discuss alternative models.

Eddy viscosity closure

The eddy viscosity closure is based on the assumption that the mechanisms
that transfer energy through the turbulent cascade from resolved to unresolved
scales are similar to the molecular mechanisms that lead to classical viscosity.
Therefore, the trace-free component of the SGS turbulence stress tensor, τ∗sgs,
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can be modelled as an anisotropic viscous stress tensor (Sagaut, 2006). Hence,
a possible parametrization for τ∗sgs is

−∇ ·τ∗sgs = ∇ ·
[
ηsgs

(
∇υ + ∇Tυ − 2

3 I (∇ ·υ)
)]

= ∇ · (2ρνsgsS∗) (8.41)

where the dynamic viscosity is given by ηsgs and the kinematic viscosity by νsgs.
Both viscosities are related by ηsgs = ρνsgs. In the last step, the trace-free part
of the rate-of-strain tensor S∗ is introduced, whose components are given by

S∗i j = Si j − 1
3 tr(S)δi j . (8.42)

The isotropic component of the SGS turbulence stress tensor is treated as
an additional pressure and is fully determined by the SGS turbulence energy
density as shown in the previous section.
The trace-free component of the SGS turbulence stress tensor for the eddy

viscosity closure follows from Equation (8.41) as

τ
∗(eddy)
i j = 2ρνsgsS∗i j . (8.43)

The SGS turbulence viscosity can be modelled in terms of the filter scale ∆ and
the SGS turbulence energy density ksgs as (Sagaut, 2006)

νsgs = Cν∆

√
ksgs
ρ
. (8.44)

Cν is a constant parameter that is independent of the filter scale if the turbulence
is homogeneous and isotropic. It can be calibrated by explicit filtering of
turbulence data. Typical values range between 0.05 and 0.1 (Sagaut, 2006;
Schmidt et al., 2006; Schmidt, 2015).

The expression for the trace-free component of the turbulence energy flux Σ∗
for the eddy viscosity closure follows from the definition of the SGS turbulence
stress tensor. It is given by

Σ
∗(eddy) = τ

∗(eddy)
i j Si j

= Cν∆

√
ρksgs ��S∗��2

(8.45)

with |S∗ |2 = 2S∗i j S
∗
i j .

The eddy viscosity closure is commonly used in incompressible LES (Sagaut,
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2006) but it is still applicable in the weakly compressible and transonic regime
(Schmidt et al., 2006; Maier et al., 2009). A disadvantage of the eddy viscosity
closure is its inability to capture the backward energy cascade, which transports
energy from smaller to larger scales (Sagaut, 2006; Schmidt, 2015).

Other closure schemes

An alternative to the eddy viscosity model is the non-linear closure, which can
also be applied to compressible turbulence (Woodward et al., 2006). The total
SGS turbulence stress tensor, including the isotropic part, is then given by

τi j = 4ksgs
υi, kυ j, k

|∇ ⊗ υ |2 , (8.46)

where |∇ ⊗ υ |2 = (2υi, kυi, k )1/2 and υi, k = ∂υi/∂xk . The non-linear closure is
able to capture backscattering but it is not rotation invariant and does not
produce enough SGS turbulence energy if ksgs is small (Schmidt and Federrath,
2011; Schmidt, 2015).

The generalized two-coefficient closure is a linear combination of the eddy
viscosity closure and the non-linear closure (Schmidt and Federrath, 2011).
The SGS turbulence stress tensor is then defined as

τi j = 2C1∆
√
2ρksgsS∗i j − 2C2ksgs

2υi, kυ j, k

|∇ ⊗ υ |2 −
2
3 (1 − C2) ksgsδi j (8.47)

with the two parameters C1 and C2. Typical values for supersonic turbulence
are C1 = 0.02 and C2 = 0.7 (Schmidt, 2015). For C2 = 0, the two-coefficient
closure equals the traditional eddy viscosity closure. The contribution from
the non-linear closure allows for backscattering and the eddy viscosity term
produces enough SGS turbulence energy even if ksgs is small.
In many astrophysical applications, the fluid flow is inhomogeneous and

non-stationary. In this case, constant eddy viscosity parameters are not a
good approximation. One solution to this problem is the calculation of local
parameters (Schmidt et al., 2006). Another approach is the shear-improved
model, in which the velocity field is decomposed into a mean flow and a
fluctuating component, υ = 〈υ〉 + υ′. The shear improved eddy viscosity is
given by (Lévêque et al., 2007; Schmidt et al., 2014)

τ∗i j = 2ρνsgsS′∗i j , (8.48)

where S′∗i j is the trace-free part of the rate of strain tensor that is computed
from the fluctuating component of the flow υ′.
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8.2.2. Viscous dissipation ρε

A basic assumption of Kolmogorov turbulence is a constant energy flux through
the turbulent cascade in the inertial range. This flux can be expressed in
terms of the SGS turbulence energy. Therefore, we integrate the Kolmogorov
spectrum, E(k) = Cε2/3k−5/3, from the filter scale ∆ to infinitiy. The resulting
specific SGS turbulence energy is given by (Schmidt et al., 2006; Schmidt, 2015)

〈usgs〉 =
∫ ∞

π/∆
E(k)dk =

3
2Cε2/3

(
π

∆

)−2/3
. (8.49)

This expression can be solved for the mean dissipation rate, ε,

ε =
( 2
3C

)3/2 (
π

∆

)
〈usgs〉3/2 ∝

〈usgs〉3/2
∆

, (8.50)

which depends on the SGS turbulence energy and the filter scale.
This scaling argument provides a simple model for the viscous dissipation of

SGS turbulence energy. In terms of the SGS turbulence energy density, ksgs,
the corresponding closure for the dissipation rate, ρε, is given by

ρε = Cε

k3/2sgs

ρ1/2∆
. (8.51)

Cε is a free parameter, which is ∼ 1 for incompressible turbulence (Sagaut, 2006;
Schmidt, 2015). For isothermal supersonic turbulence, Schmidt and Federrath
(2011) find values that are closer to 1.5.

8.2.3. SGS turbulence transport D
The transport of SGS turbulence energy is typically modelled as diffusion with a
variable diffusion coefficient. This model is also known as the gradient-diffusion
hypothesis or the Kolmogorov-Prandtl relation (Sagaut, 2006; Schmidt et al.,
2006). Hence, the transport term, D, is modelled in terms of the SGS turbulence
energy density as

D = ∇ ·
[
κsgs∇

(
ksgs
ρ

)]
. (8.52)

The diffusion coefficient is given by κsgs = Cκ∆
√
ρksgs where Cκ is a constant.

Numerical experiments show that Cκ ∼ 0.4 (Schmidt et al., 2006).
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9. Numerical implementation
We implement a model for SGS turbulence that is based on the work from
Schmidt (2015) into the hydrodynamics code AREPO (Springel, 2010). To this
end, we use the eddy viscosity closure for the stress tensor and the standard
closure for viscous dissipation. The transport term for SGS turbulence energy
is neglected. The current model is only suitable for Cartesian grids although
AREPO is typically run with a moving mesh.

In this section, we first introduce the basic equations and describe the finite
volume discretization of AREPO. Then, we show how fluxes and source terms
are computed and how the time-step criterion is modified.

9.1. Basic equations
For the numerical implementation, the governing equations are used both in
conservative form and in terms of the primitive variables.

9.1.1. Conservative form
We solve the conservation equations of mass, momentum and energy that are
coupled to an evolution equation for the SGS turbulence energy density. These
equations are equivalent to Equations (8.37) – (8.40) if the transport term D is
neglected. In conservative form, they can be written as

∂U

∂t
+ ∇ · [F −Fvisc] = Sadiab + Scasc. (9.1)

The conserved quantities, U, and the corresponding primitive variables, W ,
are given by

U =
*....
,

ρ
ρυ
etot
ksgs

+////
-

and W =
*....
,

ρ
υ
P

Psgs

+////
-

, (9.2)

respectively. The total resolved energy can be computed from the primitive
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variables as
etot =

1
2 ρυ

2 +
P

γ − 1 . (9.3)

F and Fvisc denote the hydrodynamic and the viscous flux matrix, respec-
tively. These matrices can be written in terms of the primitive variables, which
yields

F (W ) =
*....
,

ρυ
ρυυT + P + Psgs

(etot + P + Psgs)υ
ksgsυ

+////
-

and Fvisc(W ) =
*....
,

0
τ∗sgs
τ∗sgsυ
0

+////
-

. (9.4)

We use the eddy viscosity closure to describe the trace-free part of the SGS
turbulence stress tensor, τ∗sgs. Hence, its components are given by (see also
Equation 8.43)

τ∗i j = 2ηsgsS∗i j . (9.5)
The dynamic eddy viscosity can be written in terms of the primitive variables
as

ηsgs = Cν∆

√
ρPsgs

γsgs − 1 . (9.6)

For the eddy viscosity parameter Cν, we use a fiducial value of 0.05 (Schmidt
et al., 2006).

The source terms on the right hand side of Equation (9.1) can be sepa-
rated into adiabatic source terms, Sadiab, and source terms that describe the
anisotropic part of the turbulent cascade, Scasc. They are given by

Sadiab =
*....
,

0
0

+Psgs∇ ·υ
−Psgs∇ ·υ

+////
-

and Scasc =
*....
,

0
0

−Σ∗ + ρε
+Σ∗ − ρε

+////
-

. (9.7)

Both terms describe the conversion of resolved energy into unresolved SGS
turbulence energy and vice versa. The turbulence energy flux that is obtained
from the eddy viscosity closure is (see also Equation 8.45)

Σ
∗ = 2ηsgsS∗i j S

∗
i j . (9.8)

The viscous dissipation term can be written in terms of the specific SGS
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turbulence energy, which yields

ρε = Cε

ρu3/2sgs

∆
. (9.9)

We use a fiducial value of 1.58 for the constant parameter Cε (Schmidt and
Federrath, 2011; Schmidt et al., 2014).

9.1.2. Primitive variable form

For the implementation of the SGS turbulence model, we also require the
hydrodynamic equations in terms of the primitive variables. Without the
source terms from the turbulent cascade, these equations can be written as

∂W

∂t
= −

(
∂W

∂t

)
hydro

+

(
∂W

∂t

)
visc

. (9.10)

The first term describes the effect of the hydrodynamic flux and the adiabatic
source terms on the primitive variables. It is given by

(
∂W

∂t

)
hydro

=

*......
,

∂(ρυi )
∂xi

υi
∂υ
∂xi
+ 1

ρ∇(P + Psgs)
υi

∂P
∂xi
+ γP(∇ ·υ)

υi
∂Psgs
∂xi
+ γsgsPsgs(∇ ·υ)

+//////
-

. (9.11)

Viscosity additionally impacts the primitive variables. We will refer to this
process as a ‘viscous kick’. The corresponding term can be expressed as

(
∂W

∂t

)
visc
=

*....
,

0
1
ρ∇ ·τ∗sgs
(γ − 1)φ

0

+////
-

. (9.12)

The second matrix entry describes the velocity kick. Its j-th component is
given by

1
ρ
∂iτ
∗
i j =

ηsgs

ρ

(
∆υ j +

1
3∂j (∇ ·υ)

)
+

2
ρ

(
∂iηsgs

)
S∗i j . (9.13)

The first term is identical to the expression that is obtained for constant,
physical viscosity (e.g. Muñoz et al., 2013). The second term accounts for
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changes of the eddy viscosity, whose gradient can be written as

∂iηsgs = ∂i
*.
,
Cν∆

√
1

γsgs − 1 ρPsgs
+/
-

=
Cν∆

2
√
γsgs − 1

√
ρPsgs

(
∂i ρ

ρ
+
∂i Psgs

Psgs

)
.

(9.14)

In the last step, we assume that the filter length, ∆, is constant.
The viscous kick includes a viscous dissipation term that alters the thermal

pressure. It is given by (Kundu and Cohen, 2008)

φ = τ∗i j
∂υ j

∂xi
. (9.15)

9.2. Finite volume discretization
In a finite volume code such as AREPO, space is discretized into individual
cells. The simulation is advanced in time by exchanging fluxes between these
cells as described by Springel (2010).
The conserved variables that describe the fluid flow in the simulation are

integrated over the cell. Hence, the vector of conserved variables in a cell i
with volume Vi, is given by

Ui =

∫
Vi

UdV, (9.16)

where U represents the infinitely resolved quantities.
Applying this integral to Equation (9.1) yields

∂Ui

∂t
= −

∫
∂Vi

[F −Fvisc] · ndA + Sadiab, i + Scasc, i, (9.17)

where we use Gauss’s theorem for the flux term. n denotes the normal of the
surface area, Ai, of the cell. The terms Sadiab, i and Scasc, i describe the volume
integrated adiabatic and turbulent source terms, respectively. The components
of the adiabatic source term can be rewritten as

±
∫

Vi

Psgs∇ ·υdV = ±Psgs

∫
∂Vi

υ · ndA, (9.18)

if the SGS turbulence pressure is taken as constant within a cell. In this form,
the adiabatic source term resembles a flux term.

The surface integral in Equation (9.17) can be converted into a sum over the
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interfaces, Ai j , that cell i shares with its neighbouring cells j. Furthermore, the
time integration from step n to n + 1 can be approximated as

U (n+1)
i =U (n)

i − ∆t
∑

j

Ai j F̂i j + ∆tŜcasc, i, (9.19)

where F̂i j is an estimate of the total flux over the interface {i j} during the
time-step. This term already includes the viscous fluxes and the adiabatic
terms. Ŝcasc, i denotes an approximation for the turbulent source terms over the
time-step.
In practice, AREPO computes the flux and the turbulent source terms

separately. Thus, the update of the primitive variables can be divided into a
source step (S) and a flux step (F), which are given by

S : U (n+1)
i =U (n)

i + ∆tŜcasc, i, (9.20)
F : U (n+1)

i =U (n)
i − ∆t

∑
j

Ai j F̂i j . (9.21)

To increase the order of the time integration, these steps are applied using
Strang splitting as follows

S
(
∆t
2

)
F (∆t)S

(
∆t
2

)
. (9.22)

First, the source term is executed for half a time-step. Then, the fluxes over
the full time-step are calculated. Finally, the source term is applied for the
second half of the time-step.

In the following sections, we will describe how the flux and source steps are
implemented in AREPO and how they are extended for the SGS turbulence
model.

9.3. Flux computation
In this section, we show in more detail the computation of the hydrodynamic
fluxes in Equation (9.21). For the additional SGS turbulence physics, we
partially reuse previously implemented models. SGS turbulence pressure is
treated analogously to CR pressure (Pfrommer et al., 2017a) and eddy viscosity
is implemented in a similar way as physical viscosity (Muñoz et al., 2013).
Although the full implementation of the SGS turbulence model is only suitable
for Cartesian meshes, some parts of the flux computation can be used with the
full moving mesh framework of AREPO. These are the isotropic SGS turbulence

152



Numerical implementation

pressure and the eddy viscosity if a constant viscosity is enforced in the whole
computational domain.

AREPO uses a second-order Runge-Kutta time integration scheme (Pakmor
et al., 2016c), which requires two flux computations, one at the beginning and
one at the end of a time-step. We reconstruct the left and right state from the
centre of the cell to the interface to improve the spatial order of the scheme.
Moreover, we extrapolate the primitive variables in time for the second flux
computation.
Overall, the following steps are executed in one time-step

(i) Computation of gradients and Hesse matrix

(ii) Spatial extrapolation and rotation into interface frame

(iii) First flux computation

(iv) Update of conserved variables

(v) Spatial and temporal extrapolation and rotation into interface frame

(vi) Second flux computation

(vii) Update of conserved and primitive variables

In the remaining part of this section, we will describe these steps in detail.

9.3.1. Computation of gradients and Hesse matrix
At the beginning of the time-step, each cell i has a consistent set of conserved
variables, U (n)

i , and primitive variables, W (n)
i . These quantities describe the

flow at the centre of mass of the cell in the lab frame.
First, the gradients of the primitive variables, ∂W (n)

∂x , are calculated with the
least-squares method from Pakmor et al. (2016c). Then, we treat the gradients
as additional, independent variables and compute an estimate for the Hesse
matrix, H, as in Muñoz et al. (2013). This is, however, not a second order
reconstruction of the primitive variables.

The flux computations are carried out in a loop over all interfaces. Thus, we
will only consider a single interface {i j} with a left state, WL, and a right state,
WR, for the following calculations.
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9.3.2. Spatial extrapolation and rotation into interface
frame

Before the extrapolation, we convert the primitive variables into the frame of
the interface, which moves with a velocity ω in the lab frame. The modified
primitive variables are given by

W ′L/R =WL/R −
*....
,

0
ω
0
0

+////
-

=

*....
,

ρ
υ − ω

P
Psgs

+////
-

. (9.23)

The gradients stay the same under this transformation,

∂W ′L/R
∂x

=
∂WL/R
∂x

. (9.24)

Next, we extrapolate the primitive variables and the gradients from the
position of the centre of mass, s, of a cell to the centre of the interface, f , by
(Springel, 2010; Muñoz et al., 2013)

W ′′L/R =W
′
L/R +

∂WL/R
∂xi

(
fi − sL/R, i

)
, (9.25)(

∂W

∂xi

)′′
L/R
=
∂WL/R
∂xi

+Hi j
(
f j − sL/R, j

)
. (9.26)

Here, we use the gradients to extrapolate the primitive variables and the
Hesse matrix to extrapolate the gradients. The reconstruction of the gradients
improves the computation of the viscous fluxes.

After the spatial extrapolation, the primitive variables are rotated into the
frame of the interface as described in Springel (2010). The resulting primitive
variables are given by

W ′′′L/R = ΛW
′′
L/R =

*....
,

1 0 0 0
0 Λ3D 0 0
0 0 1 0
0 0 0 1

+////
-

W ′′L/R (9.27)

with the rotation matrix Λ3D. This set of variables is then used to compute
the fluxes.
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9.3.3. First flux computation

The hydrodynamic fluxes are computed with a Riemann solver. In this work,
we only consider the approximate HLLD Riemann solver (Miyoshi and Kusano,
2005), which was implemented in AREPO by Pakmor et al. (2011). We mod-
ify this solver to account for SGS turbulence pressure, closely following the
implementation of CR pressure from Pfrommer et al. (2017a).

The HLLD Riemann solver first determines the fastest wave in the Riemann
fan. Since this solver is specifically constructed for MHD, this is the fast
magneto-acoustic wave. Its wave speed in the presence of an additional pressure
is given by (Pfrommer et al., 2017a)

cf =

√
|B |2 + γeffPeff +

√
(|B|2 + γeffPeff )2 − 4B2

xγeffPeff
2ρ . (9.28)

For SGS turbulence, the effective pressure is defined as

γeffPeff = γP + γsgsPsgs. (9.29)

The currently implemented SGS turbulence model does not account for magnetic
fields. So in practice, this reduces the fast magneto-acoustic wave to an effective
sound speed of

cs,eff =

√
γP + γsgsPsgs

ρ
. (9.30)

The wave speed is used to locate the interface in the Riemann fan. Then,
the Riemann solver provides an approximation of the flux over the interface,
F face
R , and the final state at the interface, W face,

{F face
R ,W face} = R

(
W ′′′L/R

)
. (9.31)

The vector W face contains values for the density and the velocity but does not
distinguish between thermal and SGS turbulence pressure. Thus, we use the
upwind value for the SGS turbulence pressure at the interface.
Due to the transformation into the frame of the interface, the flux approx-

imation that is returned by the Riemann solver corresponds to the modified
flux matrix

F face
R (W ′′′L/R) =

*..
,

ρ(∆υface)
ρ(∆υface)(∆υface)T + P + Psgs

ρ
(
u + 1

2 (∆υface)2
)

(∆υface) + (P + Psgs)(∆υface)

+//
-
, (9.32)
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where ∆υface = υface−ωface is the fluid velocity in the shifted, rotated coordinate
system. ωface = Λω denotes the interface velocity in the rotated frame and
υface is defined as the fluid velocity at the interface in the rotated coordinate
system that is not shifted by the interface motion. The flux vector, F face

R , is a
projection of the flux matrix onto the normal of the interface n,

F face
R = F face

R · n. (9.33)

Next, we transform the state at the interface back into the lab frame. There-
fore, the velocities are turned back and the interface velocity is added,

W face, lab = Λ−1W face +
*....
,

0
ω
0
0

+////
-

. (9.34)

Then, we correct the fluxes for the movement of the interface. This is still
done in the rotated frame and the resulting flux is given by

F lab,rot
R =

[
FR (U face) −U faceωface,T

]
· n

= F face
R +

*....
,

0
ωfaceFface

R [0]
ωface · F face

R [1] + 1
2ω

face2Fface
R [0]

0

+////
-

.
(9.35)

In the last step, we rewrite the corrected flux in terms of the flux in the interface
frame. The scalar Fface

R [0] denotes the mass flux in the interface frame and the
vector F face

R [1] denotes the momentum flux in the interface frame. Finally, the
fluxes are rotated back to the lab frame

F lab
R = Λ−1F lab,rot

R . (9.36)

This completes the computation of the hydrodynamic fluxes.
As shown in the previous section, the adiabatic source terms can be included

in the flux calculation. The corresponding flux vector is given by

Fadiab =
*....
,

0
0

−Psgs(υ · n)
+Psgs(υ · n)

+////
-

. (9.37)

We simply add this term to the hydrodynamic fluxes.
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Furthermore, we take into account the viscous fluxes. They depend on the
density, the SGS turbulence pressure and the velocity gradients at the interface.
We use the primitive variables W face, lab that are returned by the Riemann
solver for the density and the SGS turbulence pressure. For the gradients, we
average the space extrapolated values from the left and the right state such
that (

∂W

∂xi

) face
=

1
2

[(
∂W

∂xi

)′′
L
+

(
∂W

∂xi

)′′
R

]
. (9.38)

Then, the fluxes are computed in the lab frame as

Fvisc = Fvisc *
,
W face, lab,

(
∂W

∂xi

) face
+
-
· n (9.39)

with the viscous flux matrix, Fvisc, that is defined in Equation (9.4). The final
fluxes are given by

Ffinal = Ffinal
R + Fadiab + Fvisc (9.40)

and can be used to update the conserved variables.

9.3.4. Update of conserved variables
The fluxes over all interfaces are used to update the conserved variables. The
new variables in cell i are given by

U′i =U
(n)
i − ∆t

2
∑

j

A(n)
i j F (n)

i j (W (n)), (9.41)

where j iterates over all neighbouring cells. Here, we also add a superscript n
to highlight that the fluxes are evaluated with the primitive variables at the
beginning of the time-step. Moreover, only half of the flux from the first flux
computation is applied. The primitive variables, W n

i , are not updated and can
be used for further calculations.
In general, a new mesh is constructed after the conserved variables are

updated. However, this only affects moving meshes but not the Cartesian
meshes that we usually assume here.

9.3.5. Spatial and temporal extrapolation and rotation into
interface frame

The second flux is computed at the end of the time-step. Therefore, we
extrapolate the primitive variables and gradients not only in space but also in
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time.
The gradients are only used in the viscous flux computation which is executed

in the lab frame. Hence, we extrapolate the gradients before the coordinate
system is changed. The extrapolated gradients are given by (Muñoz et al.,
2013)

*
,

(
∂W

∂xi

) (n+1)

L/R
+
-

′
=
∂W (n)

L/R
∂xi

+Hi j
(
f j − sL/R, j

)
+ ∆t

∂

∂t
*.
,

∂W (n)
L/R

∂xi

+/
-
. (9.42)

The time derivative of the gradients depends on the primitive variables, their
gradients and the Hesse matrix, which are all still in the lab frame. The
corresponding expressions are described in detail by Muñoz et al. (2013). In
this step, we neglect the effects of viscosity.
In contrast to the viscous fluxes, the hydrodynamic fluxes are calculated in

the interface frame. Hence, we first subtract the velocity of the interface, ω,
from the left and right states. As in Equation (9.23), this yields the modified
states,

(
W (n)

L/R

)′.
Next, we extrapolate the primitive variables in space and time according to

(
W (n+1)

L/R

)′′
=

(
W (n)

L/R

)′
+
∂W (n)

L/R
∂xi

(
fi − sL/R, i

)
+ ∆t



∂W (n)
L/R
∂t

+
*.
,

∂W (n)
L/R
∂t

+/
-visc


.

(9.43)
As shown in Equations (9.10) – (9.15), the time derivatives depend on the
primitive variables, the gradients and the Hesse matrix. Here, we use the
shifted variables

(
W (n)

L/R

)′ to evaluate the time derivatives. The gradients and
the Hesse matrix are unaffected by the constant shift and can be evaluated in
the lab frame. Finally, we rotate the state vector into the frame of the interface
as in Equation (9.27).

9.3.6. Second flux computation
We use again the HLLD Riemann solver to compute the hydrodynamic fluxes at
the end of a step, Ffinal, (n+1)

R
(
W (n+1)

L/R

)′′′. In contrast to the first flux calculation,
we now use the approximation of the primitive variables at the end of the
time-step to determine the fluxes. The adiabatic and viscous fluxes are also
computed at the end of the time-step. The total flux is given by

Ffinal, (n+1) = Ffinal, (n+1)
R + F (n+1)

adiab + F (n+1)
visc (9.44)

and can be applied to the conserved variables.
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9.3.7. Update of conserved and primitive variables
At this stage, the conserved variables have already been altered after the
first flux computation. Now, they are supplemented with the second flux
contribution. The result yields the conserved variables at the next time-step,
U (n+1), and is given by

U (n+1)
i =U′i −

∆t
2

∑
j

A(n+1)
i j F (n+1)

i j

(
W (n+1)

)
=U (n)

i − ∆t
2



∑
j

A(n)
i j F (n)

i j

(
W (n)

)
+

∑
j

A(n+1)
i j F (n+1)

i j

(
W (n+1)

)
.

(9.45)

The second step demonstrates that the total flux is an average of the flux at
the beginning and at the end of the time-step. This ensures that the time
integration scheme is second order (Pakmor et al., 2016c).

Finally, the primitive variables at the next time-step, W (n+1), are computed
from the updated conserved quantities, U (n+1). This results in a consistent set
of variables and completes the hydrodynamic time-step.

9.4. Source term computation
The source term that describes the turbulent cascade is applied to the conserved
variables by the update (see also Section 9.2)

U (n+1)
i =U (n)

i + ∆tŜcasc, i . (9.46)

We use the conserved variables from the previous time-step to approximate the
source term over the course of the time interval, ∆t, such that Ŝcasc, i = S (n)

casc, i.
Thus, the update is an explicit Euler step.

The source term only affects the total resolved energy and the SGS turbulence
energy. We denote the resolved energy that is contained in a cell i with volume
Vi as Etot, i =

∫
Vi

e dV and the corresponding SGS turbulence energy as Ksgs, i. If
we assume that the source term is constant in the cell, we obtain the following
update prescriptions

E (n+1)
tot, i = E (n)

tot, i − ∆tViΣ
∗(n)
i + ∆tVi ρ

(n)
i ε(n)

i , (9.47)

K (n+1)
sgs, i = K (n)

sgs, i + ∆tViΣ
∗(n)
i − ∆tVi ρ

(n)
i ε(n)

i . (9.48)

Here, we directly show the two components of the source term, which are the
turbulence energy flux, Σ∗, and the viscous dissipation term, ρε.
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The SGS turbulence energy flux, Σ∗, describes the energy that is transported
through the turbulent cascade from resolved to unresolved scales. Hence, Σ∗
converts kinetic energy into SGS turbulence energy as shown in Fig. 8.1. To
avoid negative energies, we first compute the energy change, ∆tViΣ

∗(n)
i , and

then test whether enough resolved kinetic energy is available in the cell. If this
is the case, we directly apply the source term. On the other hand, if there is
not enough energy, we convert all available kinetic energy into SGS turbulence
energy and set the velocity to zero.

The viscous dissipation term, ρε, represents the dissipation of SGS turbulence
energy into internal energy. To prevent negative values for the specific SGS
turbulence energy, usgs, we impose a minimum of usgs,min. Hence, only the
energy difference (Ksgs, i−miusgs,min) is available for dissipation. Here, mi denotes
the mass in cell i. We only apply the dissipation term, ∆tVi ρ

(n)
i ε(n)

i , if the cell
contains enough SGS turbulence energy. If (Ksgs, i − miusgs,min) < ∆tVi ρ

(n)
i ε(n)

i ,
we set

E (n+1)
tot, i = E (n)

tot, i + K (n)
sgs, i − m(n)

i usgs,min, (9.49)

K (n+1)
sgs, i = m(n)

i usgs,min. (9.50)

Thus, only the minimum amount of SGS turbulence energy remains in the cell
and the rest is dissipated into internal energy.

9.5. Time-step
We use a Courant-Friedrichs-Lewy (CFL) time-step criterion that is modified
to account for additional pressure contributions and a moving mesh (Springel,
2010; Pfrommer et al., 2017a). In each cell, the time-step is computed as

∆t = CCFL
∆x

cf ,eff + |υ − ω | , (9.51)

where CCFL < 1 is the Courant factor. ∆x denotes the grid spacing for Cartesian
meshes and an approximation of the cell radius for Voronoi meshes. The fastest
wave speed is given by Equation (9.28) and includes the effects of SGS turbulence
pressure. Without magnetic fields, this wave speed reduces to the effective
sound speed that is given in Equation (9.30). Moreover, we subtract the mesh
motion, ω, from the fluid velocity, υ, to calculate the time-step if a moving
mesh is used.

Additional time-step criteria might arise due to the eddy viscosity terms and
the source terms (Maier, 2008; Muñoz et al., 2013). However, we have not
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yet implemented them in AREPO. Instead, we prevent unphysical behaviour
manually. We impose a minimum SGS turbulence energy floor and prevent
negative energies in the source term computation as described in the previous
section. Moreover, we use the scheme that is described in Pakmor et al. (2011)
to prevent negative thermal energies in the Riemann solver. Thus, we first
switch to the HLL solver (Harten et al., 1983) and then to the Rusanov solver
(Rusanov, 1961) if one of the previous solvers yields an invalid solution.
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10. Test problems
We verify the implementation of SGS turbulence pressure and eddy viscosity
with two idealized test problems. We first compute shock tube tests and then
simulate a decaying vortex sheet.

10.1. Shock tube
We first test our implementation of the isotropic SGS turbulence pressure
alone. Therefore, we simulate a one-dimensional shock tube, in which the
total pressure is a composition of thermal and SGS turbulence pressure. This
problem is similar to the shock tube tests that were computed by Pfrommer
et al. (2006) and Pfrommer et al. (2017a) who considered a mixture of thermal
gas and CRs.

Following Pfrommer et al. (2017a), we initialize the simulation with a shock
that has a Mach number of M = 10. The corresponding initial conditions for
the left and right states are given by

ρl = 1.0, ρr = 0.125, (10.1)
Ptot, l = 63.499, Ptot,r = 0.1, (10.2)
Xsgs, l = 0.5, Xsgs,r = 0.5, (10.3)

ul = 0, ur = 0, (10.4)

where ρi denotes the gas density and Ptot, i denotes the total pressure. We
define the ratio between SGS turbulence and total pressure as Xsgs. This yields
the following expressions for the individual pressure components

Pth, i =
Ptot, i

Xsgs, i + 1
and Psgs, i = Xsgs, i Ptot, i . (10.5)

We set Xsgs = 0.5 such that the contributions from thermal and SGS turbulence
pressure are equal.
The implementation of SGS turbulence pressure can be used with the full

mesh flexibility of AREPO and, thus, we use a moving mesh for this test
problem. The results for a simulation with 100 cells that are initially equally
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Figure 10.1.: Shock tube test withM = 10 after t = 0.35 with a resolution of a 100
cells. The initial conditions are indicated by the thin dotted lines.
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spaced are shown in Fig. 10.1. From top to bottom, the panels show the gas
density, the pressure and its individual components and the velocity. The thin
dotted line indicates the initial conditions and the coloured points represent
the simulation at t = 0.35. The black line shows the analytical solution, which
we derive from the results for CRs from Pfrommer et al. (2006). The figure
demonstrates that our implementation of SGS turbulence pressure reproduces
the analytic solutions very well. The SGS turbulence pressure is adiabatically
compressed over the shock front and expands adiabatically in the rarefaction
wave.

We also simulate the shock tube in two and three dimensions and align the
shock front with one of the coordinate axes. The results are almost identical to
the one-dimensional case.

10.2. Diffusion of a vortex sheet

We separately test the implementation of the eddy viscosity that is part of
the SGS turbulence model. For this purpose, we simulate the viscous decay of
a vortex sheet as in Muñoz et al. (2013). This test problem has an analytic
solution if the viscosity is constant and can, thus, be used to confirm the
numerical results.

10.2.1. Analytic solution

We consider the diffusion of a vortex sheet in an incompressible, viscous fluid
in two dimensions. Initially the flow has a velocity of V in the upper half plane
and a velocity of −V in the lower half plane. This results in an infinitely thin
vortex sheet along y = 0 which then decays.

Such a flow is described by the following two equations for the fluid velocity
in the x̂-direction, υ, and the thermal energy, uth (Kundu and Cohen, 2008),

∂υ

∂t
=
η

ρ

∂2

∂x2
υ, (10.6)

∂uth
∂t
= η

(
∂υ

∂y

)2
. (10.7)

η is the dynamic viscosity, which we assume to be constant. The first equation
is decoupled from the energy equation and can, thus, be solved independently.
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The boundary conditions for the velocity equation are given by

υ(y,0) = V sgn(y), (10.8)
υ(∞, t) = V, (10.9)

υ(−∞, t) = −V. (10.10)

The corresponding solutions for the velocity, υ, and the vorticity, ω, are (Kundu
and Cohen, 2008)

υ(y, t) = V erf
[

y

2
√
νt

]
and ω(y, t) =

∂υ

∂y
= V

1√
πνt

e−y
2/4νt . (10.11)

ν = η/ρ denotes the kinematic viscosity and erf () denotes the error function.
We use the solution for the velocity to solve the equation for the thermal

energy, which now reads
∂uth
∂t
=
ρV2

πt
e−y

2/2νt . (10.12)

A solution for this equation with the boundary condition uth(t = 0) = uth,0 is
given by

uth(t) = uth,0 +
ρV2

π
E1

(
y2

2νt

)
, (10.13)

where En(x) describes the exponential integral.

10.2.2. Initial conditions
The computational domain of our simulations is [0,1] × [0,1] with periodic
boundary conditions. For the first tests, we set the eddy viscosity to an artificial
value and keep it constant. In this case, we create an initially homogeneous
grid with almost hexagonal cells and allow it to move with the flow speed.
Otherwise, we use a static Cartesian mesh.

At the beginning of the simulation, the density of each cell is ρ0 = 1 and the
specific energy in the background is uth,0 = 1. This corresponds to a thermal
pressure of P0 = 2/3. The bulk velocity in the x̂-direction is given by V = 0.1.
This yields a Mach number ofM = V/cs = 0.12, which is small enough to be in
the incompressible limit.
The analytic solution of the diffusing vortex sheet has a discontinuity at

t0 = 0. To avoid this in the simulation, we use the analytic solution at t0 = 0.5
to initialize the velocity and the specific energy. Moreover, we combine three
versions of the analytic solution that are each shifted by Lbox/2 to account for
the periodic boundary conditions.
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10.2.3. Results for constant eddy viscosity

We present the results of a simulation with a constant dynamic viscosity of
η = 0.002 in Figure 10.2. For this simulation, we use a moving mesh with 502
cells. The figure shows maps and projections of the velocity, the vorticity and
the specific energy at three different times. The left column illustrates the
initial conditions at t = 0.5 and the other two columns display the simulation
at t = 1.0 and t = 1.5.
The top two panels present the velocity in the x̂-direction, υ. The first row

shows maps of the velocity and the second row shows υ as a function of y.
For the latter, we split the box into 25 bins in the ŷ-direction and project the
velocity along x. Furthermore, we compare the velocity profile to the analytic
solution, which is indicated by the red line. The figure demonstrates that the
simulation reproduces the analytic solution of the velocity well.

Similarly, the two middle panels show maps and projections of the vorticity.
Again, the simulation agrees well with the expectations. The results for the
specific energy are displayed in the bottom two panels. The numerical values
follow the analytic solution reasonably well although the latter diverges at the
boundaries and at y = 0.5. Still, the specific energy deviates only slightly from
the background value and, thus, viscous dissipation plays only a minor role in
this test problem.
To further analyse our implementation, we carry out a convergence study,

for which we vary the resolution between 202 and 2002. We first examine the
performance of our default setting that includes a moving mesh, second order
reconstruction of the gradients and a viscous kick. Then, we investigate which
parts of the implementation determine the convergence order. Therefore, we
run simulations without some of these features.
To measure the errors, we consider the L1 norm of a function f (r ) in the

volume V , which is defined as

L1 =
1
V

∫
V
| f (r ) | dV. (10.14)

In discretized form, the L1 norm is given by (Pakmor et al., 2016a)

L1 =
1
V

Ncells∑
i=1
| fi | Vi, (10.15)

where fi is the function f evaluated in cell i with volume Vi. Ncell denotes the
total number of cells. For the function f , we choose the difference between the
simulation results and the analytic solution at the centre of the cell.
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Figure 10.2.: Decaying vortex sheet with constant eddy viscosity.
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Figure 10.3.: Convergence test for the simulations of a decaying vortex sheet with
different configurations. The fiducial scheme is second order accurate both for static
and moving meshes. Without reconstruction, the scheme drops to first order.

Fig. 10.3 shows the L1 norm of the velocity and the vorticity as a function
of cell number in one dimension, N , for different simulation setups. The
dashed lines indicate first and second order convergence. The fiducial runs
are shown as red circles. They demonstrate that the scheme is second order
accurate in the presented quantities. If we use a static mesh instead of the
moving mesh, the order does not change as shown by the blue diamonds. The
spatial reconstruction of the gradients from the cell centre to the interface
has the largest impact on the convergence order. Without the reconstruction
(green squares), the order for the velocity is closer to one than two but the
results for the vorticity are not affected. Furthermore, we test whether the
temporal extrapolation of the gradients and the viscous kick in the second flux
computation change the convergence properties. The results are almost identical
to our fiducial simulation and the corresponding symbols are barely visible
behind the red circles. If we apply none of the above mentioned reconstructions,
the convergence order drops to one both for the velocity and the vorticity. This
demonstrates their importance to preserve the second order convergence of
AREPO (Pakmor et al., 2016a). However, it is possible that in other setups the
convergence order is lower because of the method that we use to compute the
Hesse matrix (compare to Pakmor et al., 2016a).

We can not reproduce the convergence results for the density and the specific
internal energy. The reason is likely the assumption of incompressibility in
the analytic solution, which is not perfectly realized in our simulations. The
density fluctuations in the simulations are small but independent of resolution.
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Table 10.1.: Parameters for the simulations of the decaying vortex sheet with
variable eddy viscosity.

η ν ρ usgs ∆ N

variable usgs (1) 0.001 0.001 1 1 0.02 50
(2) 0.002 0.002 1 4 0.02 50
(3) 0.005 0.005 1 25 0.02 50

variable ∆ (1) 0.001 0.001 1 16 0.005 200
(2) 0.002 0.002 1 16 0.010 100
(3) 0.005 0.005 1 16 0.025 40

variable ρ (1) 0.001 0.001 1 1 0.02 50
(2) 0.002 0.001 2 1 0.02 50
(3) 0.005 0.001 5 1 0.02 50

They can be reduced if the velocities are scaled down and the flow becomes
less compressible. Similarly, the L1 norm of the specific internal energy does
not change with resolution. Its value is nearly identical to the L1 norm of the
density and, hence, it is plausible that both errors are connected.

10.2.4. Results for variable eddy viscosity
We also use the diffusion of a vortex sheet to test the implementation of the
actual eddy viscosity. In terms of the specific SGS turbulence energy, usgs, the
dynamic eddy viscosity is given by (see also Equation 8.44)

ηsgs = Cν∆ρ
√

usgs. (10.16)

It scales linearly with the filter scale, ∆, and the gas density, ρ. Furthermore,
it is proportional to the square root of usgs.

In contrast to the previous simulations, we now use a static Cartesian mesh
such that the filter scale is everywhere identical. In this test problem, the
density and the SGS turbulence energy also do not change in space and time.
Thus, the eddy viscosity is constant during the simulation and we can still
compare the numerical results to the analytical solution. We use this property
to verify the implementation of ηsgs. Therefore, we vary usgs, ∆ and ρ in
the initial conditions to impose a certain viscosity. The different parameter
combinations are listed in Table 10.1.
We illustrate the results in Fig. 10.4. From top to bottom, the panels show

the simulations with variable SGS turbulence energy, filter scale and density.
Each figure displays the velocity as a function of y as in Fig. 10.2. The red
line indicates the analytical solution. The figure demonstrates that the code
reproduces the correct viscosity in all simulations.

169



Test problems

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

t =1.0

usgs =1

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

usgs =4

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

usgs =25

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

∆ =0.005

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

∆ =0.01

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

∆ =0.025

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

ρ =1

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

ρ =2

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.10

−0.05

0.00

0.05

0.10

υ

ρ =5

Figure 10.4.: Velocity profiles for the test runs with variable specific SGS turbulence
energy density, usgs, filter scale, ∆, and density, ρ (from top to bottom). For each
parameter combination, the code reproduces the correct viscosity.
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11. Turbulent boxes
As a first application of the full SGS turbulence model, we simulate turbulent
gas flows in a periodic box. Kinetic energy is injected by external forcing on
large scales and subsequently decays to smaller scales until it dissipates. This
setup provides a controlled environment to test the SGS turbulence model and
its individual components.

11.1. Turbulent forcing
We inject kinetic energy on large scales such that a steady state with statistically
stationary and homogeneous turbulence develops. Therefore, we use a statistical
forcing prescription that has been previously used in turbulent box simulations
(Schmidt et al., 2006; Federrath et al., 2010; Bauer and Springel, 2012).

In this approach, the forcing field f (x) is setup in Fourier space

f (x) =
∑

k

f̂ (k)eik·x (11.1)

with Fourier coefficients f̂ (k). The forcing is only applied in a small wave
number range with absolute wave numbers between kmin and kmax. The relative
amplitude of the Fourier modes can be adjusted. We either use a powerlaw or
a paraboloid around the mean wave number, kc = (kmin + kmax)/2.

In addition to the overall scaling, the real and imaginary parts of the Fourier
components are described by an Ornstein Uhlenbeck (OU) process. The OU
process is a statistically stationary process, Ut . It is described by the stochastic
differential equation (Schmidt, 2014; Pope, 2000)

dUt = −Ut
dt
T
+

(
2σ2

T

)1/2
dW (t), (11.2)

where the time scale T determines the autocorrelation time and the constant σ
describes the variance, 〈U2

t 〉 = σ2. W denotes a Wiener process, which is a
statistical process whose infinitesimal increments dW follow a normal distribu-
tion with zero mean and a standard deviation of dt. The conditional mean of
the OU process is given by 〈Ut |U0〉 = U0e−t/T , such that the initial conditions
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of the OU process are exponentially damped. The mean of the OU vanishes,
〈Ut〉 = 0, and the autocorrelation function is given by 〈UtUt+s〉 / 〈U2

t 〉 = e−|s |/T .
The complex Fourier coefficients of the force field are updated with the OU

process after a time ∆t. The corresponding random sequence that is used to
update the six independent coefficients is given by (Bauer and Springel, 2012)

xt = f xt−∆t + σ

√
(1 − f 2)zn. (11.3)

Here, f = exp(−∆t/T ) and zn is a Gaussian random variable. As the OU process
itself, the random sequence has a vanishing mean and an autocovariance of
〈xtxt+∆t〉 = σ2 f .
To control the amount of solenoidal and compressive forcing, the random

sequence is split up by a Helmholtz decomposition. Therefore, we apply the
projection operator (Schmidt, 2014)

Pi j = ζP⊥i j + (1 − ζ )P‖i j

= ζ

(
δi j −

ki k j

k2

)
+ (1 − ζ )

(
ki k j

k2

)
,

(11.4)

where ζ controls the type of forcing. If ζ = 1, the forcing is entirely solenoidal
since all modes are perpendicular to the wave vector. If ζ = 0, the forcing is
purely compressive.

The integral scale is a typical length scale of the driving scheme. Here, we use
the mean wave number of the driving modes to define this scale as Lint = 2π/kc.
The forcing also introduces a characteristic velocity, V = Lint/T , that is given
by the integral scale and the autocorrelation time T .

11.2. Simulation setup
We use the same setup as in Bauer and Springel (2012), who simulated turbulent
boxes with AREPO before. The periodic box has unit length and the gas
is initially at rest with a homogeneous density of ρ̄ = 1. Throughout the
simulation, we impose a minimum value for the SGS turbulence energy of
10−10. Moreover, we employ fiducial values for the eddy viscosity parameters
of Cν = 0.05 and Cε = 1.58, unless stated otherwise. For all simulations, we use
a static Cartesian mesh with varying resolution. The lowest resolution that we
consider is 643 cells and the highest is 2563 cells. Furthermore, we use a global
time-step for all cells.
We simulate turbulent boxes with three different forcing routines. Most

of the analysis will be focussed on simulations with purely solenoidal forcing.
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Table 11.1.: Simulation parameters for the turbulent boxes.
subsonic solenoidal supersonic solenoidal supersonic compressive

M 0.2 − 0.25 5 − 6 ∼ 4
ζ 1 1 0
σ 0.014 12.247 12.247
∆t 0.005 0.005 0.005
T 1 0.05 0.05
tmax/T 25.6 20 20
kmin 2 π 2 π 2 π
kmax 4 π 6 π 6 π
kc 3 π 4 π 4π
k ∝ k−5/3 −(k − kc )2 −(k − kc )2

Lint 2/3 1/2 1/2
V 2/3 10 10
Lbox 1 1 1

First, we study subsonic turbulence with thermal Mach numbers of ∼ 0.2 and
in a second set of runs, we consider supersonic turbulence with Mach numbers
around ∼ 6. For comparison, we also simulate boxes with compressive forcing,
although we do not examine them in detail in this thesis. The parameters
that are used in the forcing routine are listed for the different simulations in
Table 11.1.

As in Bauer and Springel (2012), we treat the gas as isothermal. To approxi-
mate an isothermal equation of state, we set the adiabatic index to γ = 1.001.
Additionally, we keep the entropy at the initial level by adjusting the internal
energy after each time-step. The initial specific entropy is given by

Ā = c2iso ρ̄
1−γ, (11.5)

where ciso = 1 describes the isothermal sound speed. For the thermal pressure
of a cell i with density ρi, we then obtain

Pi = ρ̄c2iso

(
ρi

ρ̄

)γ
. (11.6)

This corresponds to a specific energy of

uth, i =
1

(γ − 1)
Pi

ρi
=

1
(γ − 1)

c2iso

(
ρi

ρ̄

)γ−1
= Ā

ρ
γ−1
i

(γ − 1)
. (11.7)

Hence, after every time-step, we reset the internal energy to this value. Thereby,
we keep track of the dissipated energy that we define as the difference between
the value at the end of the time-step and the desired value.
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Figure 11.1.: Slices of the gas density, the absolute value of the velocity fluctuations
and the SGS turbulence specific energy (from left to right) for the simulation with
subsonic solenoidal forcing at a resolution of 2563 cells.

11.3. Results
We present the simulation results in this section. First, we give a visual
impression of all turbulent boxes and then analyse the simulations with subsonic
and supersonic solenoidal forcing in detail. We test whether our implementation
conserves energy and consider the time evolution of the thermal and the
SGS turbulence Mach numbers. Moreover, we examine the production and
dissipation mechanisms of SGS turbulence energy and in the end, we study
various aspects of the power spectrum.

11.3.1. Visual overview
Fig. 11.1 gives an impression of the simulation with subsonic solenoidal forcing
and a resolution of 2563 at t/T = 25.6. From left to right, the figure shows
slices of the gas density, the absolute value of the velocity fluctuations and
the SGS turbulence specific energy. The velocity fluctuations are defined as
the difference between the actual velocity and an overall bulk motion that can
be introduced by the forcing (Bauer and Springel, 2012). The bulk velocity,
υbulk, is given by the mean of the velocities in all cells. The figure shows
that the amplitude of the density variations remains small for subsonic forcing.
Furthermore, the typical spatial scale of both density and velocity fluctuations
is much smaller than the box size. The SGS turbulence energy has a filamentary
structure, which peaks along steep velocity gradients.

An overview of the simulations with supersonic forcing at t/T = 20 is shown
in Fig. 11.2. The forcing is solenoidal in the top panel and compressive in the
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Figure 11.2.: Overview of the simulations with supersonic solenoidal (top) and
supersonic compressive forcing (bottom). The slices show the same quantities as in
Fig. 11.1.

bottom panel. Both simulations have a resolution of 2563. The individual slices
show the same physical quantities as in the previous figure but we now use
a logarithmic scale for the colourbars. In supersonic turbulence, the density
varies over many orders of magnitude, independent of the forcing type. Still,
the density structure changes with the driving. Solenoidal forcing produces
fluctuations on various scales, whereas compressive forcing leads to only a few
large-scale filaments that are surrounded by pronounced voids. The velocity
fields of both simulations show thin regions of low velocity that likely represent
the shock fronts. Here, the flow converges and, thus, the absolute velocity is
small and the density high. SGS turbulence energy is predominantly generated
in regions with steep velocity gradients, which is especially obvious in the
simulation with compressive forcing. A second mechanism to produce SGS
turbulence energy is gas compression. Therefore, the distributions of density
and SGS turbulence energy are similar in all simulations.
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Figure 11.3.: Time evolution of the energy content of the simulations with subsonic
(left) and supersonic (right) turbulence. We distinguish between dissipated (orange)
and injected (green) energy as well as between kinetic (blue) and SGS turbulence
energy (purple). Deviations from energy conservation are shown in red. We display
the absolute value of the energy changes and use symbols to mark the sign. Filled,
upwards pointing triangles indicate ∆E > 0 and hollow, downwards pointing triangles
indicate ∆E < 0.

11.3.2. Energy content
In Kolmogorov theory, the energy flux through the turbulent cascade is constant.
In order to test this assumption in our simulations, we investigate how the
energy is exchanged between different reservoirs. Furthermore, we use these
calculations to probe the accuracy of energy conservation in our code.

The energy content of the simulation is externally changed by the turbulent
forcing and by the removal of additional internal energy in order to keep the
gas isothermal. For each time-step, we record the amount of injected energy,
∆Einj, and the amount of dissipated internal energy, ∆Ediss. Hence, the energy
in the simulation is modified by ∆Einj − ∆Ediss. If the energy flux through the
turbulent cascade is constant, the dissipated energy should be equal to the
injected energy. However, this condition is not always fulfilled in the simulation.
The remaining difference should be reflected in the variation of the kinetic and
SGS turbulence energy, ∆Ekin + ∆Ksgs. We measure deviations from the overall
balance by

∆Etot = ∆Ekin + ∆Ksgs − (∆Einj − ∆Ediss). (11.8)
Only if ∆Etot vanishes at all times, the code perfectly conserves energy.

We show the time evolution of the different energies in the simulations with
subsonic solenoidal forcing (left) and supersonic solenoidal forcing (right) in
Fig. 11.3. The different colours represent the different forms of energy. To
display the full range of variations, we show the absolute values, |∆E |, on
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a logarithmic scale and normalize by the total energy in the simulation at
the same time, E. We indicate the sign of the energy change by symbols.
Hollow triangles that point downwards represent fluctuations with ∆E < 0 and
filled triangles that point upwards indicate regions with ∆E > 0. The energy
variations fluctuate rapidly with every time-step. To improve the clarity of
the figure, we only use 100 time bins, in which we average ∆E. Then, we take
the absolute value and divide by the average of the total energy. The figure
demonstrates that the variations are still large but individual fluctuations of
the unfiltered time evolution can be significantly higher.
The orange and green lines in the figure show the dissipated and injected

energy, respectively. In the simulation with subsonic forcing, the energy changes
are several orders of magnitude smaller than in the simulation with supersonic
forcing. Independent of the forcing scheme, the injected energy is much larger
than the dissipated energy in the initial phase of the simulation. After t/T ∼ 10
for subsonic forcing and t/T ∼ 3 for supersonic forcing, the dissipated energy
closely follows the injected energy. Thus, the simulation reaches a stationary
state, in which the Kolmogorov hypothesis of a constant energy flux is well
reproduced. Differences between the dissipated and injected energy are mostly
balanced by kinetic energy as shown by the blue line. Whenever the injected
energy is larger than the dissipated energy, the kinetic energy increases in the
simulation, which is indicated by the filled triangles. On the other hand, if
more energy is dissipated than injected, the kinetic energy drops. The changes
of the SGS turbulence energy are shown in purple. They are between one and
two orders of magnitude smaller than the other variations and play a minor
role in the overall energy budget.
The deviations from energy conservation, ∆Etot, are shown in red. The

absolute value of the binned, relative errors is of order 10−11 for subsonic
turbulence and of order 10−7 for supersonic turbulence. The different triangles
demonstrate that the energy that is lost uncontrolled from the simulation
fluctuates around zero. Hence, at least in a time-averaged sense, the energy is
reasonably well conserved.

11.3.3. Mach numbers

We use average Mach numbers to compare the kinetic and SGS turbulence
energy in the simulations. To this end, we compute the thermal Mach number
as

M = 1
ciso

√
2∑

i
1
2mi (υi − υbulk)2∑

i mi
, (11.9)
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Figure 11.4.: Time evolution of the thermal Mach number (top) and the SGS
turbulence Mach number (bottom) for the simulations with subsonic (left) and
supersonic forcing (right). Different colours correspond to different resolutions.
The thermal Mach number is much higher than the SGS turbulence Mach number
and independent of resolution. The SGS turbulence Mach number decreases with
increasing resolution as expected.

where ciso = 1 denotes the isothermal sound speed. The last factor is an
estimate of the typical flow velocity from the mass weighted average kinetic
energy of all cells i. The kinetic energy is calculated with a velocity that is
corrected for bulk motions. By analogy to the thermal Mach number, we define
the SGS turbulence Mach number as (Schmidt and Federrath, 2011)

Msgs =
1
cs

√
2∑

i miusgs, i∑
i mi

, (11.10)

where usgs describes the SGS turbulence specific energy.
We show the time evolution of both Mach numbers for the simulations with

subsonic (left) and supersonic (right) turbulence in Fig. 11.4. To smooth
fluctuations on short time-scales, we divide the simulation time into 500 bins
and average the values inside each interval. This applies also to all other time
evolutions that we show in this section. We vary the resolution between 643
and 2563 cells as indicated by the different colours. The top panel shows the
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thermal Mach number. In the beginning, the Mach number quickly increases as
the turbulence develops. This initial phase lasts until t/T ∼ 8 in the simulation
with subsonic forcing and until t/T ∼ 3 in the simulation with supersonic forcing.
Then, an equilibrium state is reached, in which the thermal Mach number has
a value of 0.20− 0.25 for subsonic turbulence and a value of 5− 6 for supersonic
turbulence. In both simulations, the thermal Mach number is independent of
resolution.
The time evolution of the SGS turbulence Mach number is shown in the

bottom panel. The SGS turbulence Mach number also saturates when the
stationary state is reached but at a much lower level than the thermal Mach
number. It only rises to values between 0.01 and 0.02 for subsonic turbulence,
which is at most 10 per cent of the thermal Mach number. Similarly, the SGS
turbulence Mach number is only 10 to 20 per cent of the thermal Mach number
for supersonic forcing, which corresponds to values between 0.6 and 1.2. These
results are similar to Schmidt and Federrath (2011).

In contrast to the thermal Mach number, the SGS turbulence Mach number
decreases with resolution. This is expected from theory since the higher the
resolution, the more kinetic energy is resolved and the less energy is on subgrid
scales. The time-averaged SGS turbulence Mach number scales with resolution
roughly as a power law. The index ofMsgs ∝ ∆αM is 0.38 for subsonic turbulence
and 0.39 for supersonic turbulence. This is close to the theoretically expected
value of 1/3 and somewhat lower than the results from Schmidt and Federrath
(2011).

11.3.4. SGS turbulence energy
We investigate the SGS turbulence energy in the simulations with subsonic
and supersonic forcing in more detail. The top panel of Fig. 11.5 shows the
volume averaged SGS turbulence energy density that is normalized by ρ̄V2(see
Table 11.1) as a function of time. The left column shows the results for subsonic
turbulence and the right column displays the same for supersonic turbulence.
Similar to the Mach numbers, the SGS turbulence energy rapidly increases in
the initial phase of both simulations. Then, it reaches an equilibrium value
that depends on resolution. The higher the resolution, the lower the amount of
SGS turbulence energy, as expected from theory. With our normalization, the
SGS turbulence energy is roughly a factor of 10 larger for supersonic compared
to subsonic turbulence. Moreover, the fluctuations are much stronger if the
flow is supersonic.
The bottom panel of Fig. 11.5 shows the time evolutions of the volume

averaged production and dissipation rates, which are normalized by ρ̄V3/Lint.
For each resolution, we indicate the total production rate of SGS turbulence
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Figure 11.5.: Time evolution of the SGS turbulence energy density (top) for the
simulations with subsonic forcing (left) and supersonic forcing (right) for three
different resolutions. The bottom panel shows the production and the dissipation
rates. Both rates are almost equal and independent of resolution, which is required
for a constant energy flux through the turbulent cascade.
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Figure 11.6.: Comparison of the different production mechanisms of SGS turbulence
energy. For subsonic turbulence (left), most energy is produced by the anisotropic
part of the turbulent cascade, Σ∗. For supersonic turbulence (right), roughly two
thirds of the energy are produced by adiabatic compression and only one third by Σ∗.
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energy, Σ, by a solid line and the viscous dissipation rate, ρε, by a dashed
line. The results for subsonic turbulence demonstrate that the dissipation rate
closely follows the production rate with only a small temporal offset. This is
similar for supersonic turbulence, but here the lines are so close together that
it is hard to distinguish them in the figure. Hence, at all times, almost as much
SGS turbulence energy is dissipated as created, which is in agreement with
the assumption of a constant energy flux through the turbulent cascade. A
constant energy flux also implies that the production and dissipation rates are
independent of the filter scale. Fig. 11.5 confirms that this property is well
reproduced in our simulations since both rates are almost the same for the
different resolutions.

SGS turbulence energy can be produced either by adiabatic compression or
by the anisotropic part of the turbulent cascade. We analyse the two production
mechanisms in Fig. 11.6. The blue line shows the adiabatic production rate,
Psgs∇ ·υ, and the orange line shows the turbulent production rate, Σ∗. The
total production rate, Σ, is displayed in red. As before, all rates are normalized
by ρ̄V3/Lint. Although these terms mostly produce SGS turbulence energy,
they can also be negative. Therefore, we illustrate terms that are greater than
zero and represent an actual production term by a straight line and use a
dashed line otherwise.
The left panel shows again the results for subsonic turbulence. Here, SGS

turbulence energy is only produced by the anisotropic part of the cascade, Σ∗.
The corresponding line is identical to the line for the total production rate in
the figure. Since subsonic turbulence is almost incompressible, the adiabatic
term is negligible in this simulation. The amount of energy that is dissipated
by adiabatic expansion is roughly three orders of magnitude smaller than
the total production rate. This changes drastically for supersonic turbulence,
which is shown in the right panel. In this case, roughly two thirds of the SGS
turbulence energy are produced by adiabatic compression and only one third by
the anisotropic turbulent cascade. The increased importance of the adiabatic
term is due to the shocks that form in supersonic turbulence and compress the
gas.

11.3.5. Power spectra
Definition and measurement

The two-point correlation function of a general scalar or vector field, ω, can be
written as (Bauer and Springel, 2012)

Cω (l) = 〈ω(x + l)ω(x)〉x , (11.11)
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where 〈·〉x denotes a spatial average. The power spectrum of ω is then defined
as the Fourier transform of Cω (l), which is given by

Ĉω (k) =
(
2π

Lbox

)3
|ω̂(k) |2 (11.12)

with the Fourier coefficients ω̂(k).

We use a discrete Fourier transform to measure the power spectrum in the
simulations, similar to Bauer and Springel (2012). We map the simulated
quantities on a Cartesian mesh that has twice the linear resolution of the
simulation and, hence, the number of cells that are used for the discrete Fourier
transform is (2N )3. We divide the wave number space between the minimum
wave number, k0 = 2π/Lbox, and the maximum wave number, k1 = k0(2N )/2,
into 2000 logarithmically spaced bins. For each bin, [k, k + ∆k], we compute
the total power of all modes that fall into this interval

Pω (k) =
∑

|k |∈[k, k+∆k]

∑
i

Ĉωi (k). (11.13)

The second sum describes the summation over the dimensions i of the vector
ω. Since the original number of bins is comparably high, many of them
remain empty. Thus, we combine the power of several bins and only use 21
band-averaged bins for a resolution of 643 and 26 bins for 1283 and 2563.

To characterize the turbulence in our simulations, we compute power spectra
of the kinetic and the SGS turbulence energy separately. Moreover, we analyse
on which scales energy is produced and dissipated. To this end, we divide
the total kinetic energy into a resolved and an unresolved part such that the
average specific kinetic energy is given by

ukin,tot =
1
2 〈υi (x)υi (x)〉x + 〈usgs(xi)〉x

=
1
2

1
N3

∑
n

υi (xn)υi (xn) +
1

N3

∑
n

usgs(xn),
(11.14)

where we sum over all dimensions i and cells n. For the power spectra, the
velocity υ denotes the velocity relative to the bulk motion, υbulk. In Fourier
space, the same average specific kinetic energy can be computed as

ukin,tot =
1
2
∑

k

Pυ (k) +
∑

k

P√usgs (k). (11.15)
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The individual components are the velocity power spectrum,

Pυ (k) =
∑

|k |∈[k, k+∆k]

∑
i

Ĉυi (k), (11.16)

and the power spectrum of the square root of the specific SGS turbulence
energy,

P√usgs (k) =
∑

|k |∈[k, k+∆k]
Ĉ√usgs (k). (11.17)

We also calculate power spectra for the energy that is produced and dissipated
in the simulations. For this purpose, we use the same technique as for the
SGS turbulence energy and compute the power spectrum of the square root of
these quantities (Bauer and Springel, 2012). Moreover, we determine separate
spectra for positive and negative energy changes, which we denote as P√

∆E+(k)
and P√

∆E−(k), respectively. Then, we define the total power as

P√
∆E (k) = P√

∆E+(k) − P√
∆E−(k). (11.18)

In our analysis, we consider the energy spectrum function, Eω (k), instead of
the power, Pω (k). Integrating the energy spectrum function over wave number
space yields the corresponding average energy, uω, such that

uω =
∑

k

E(k)∆k . (11.19)

Hence, power and energy spectrum function are related by

Eυ (k) =
1
2

Pυ (k)
∆k

(11.20)

for the velocity and by
Eω (k) =

Pω (k)
∆k

(11.21)

for all other quantities. We normalize the energy spectrum function by ρ̄V2L4
int

and add corresponding powers of Lint if the spectrum is compensated with
powers of k.

Spectra of resolved and unresolved kinetic energy

We present the time-averaged power spectra of the different components of
the kinetic energy in Fig. 11.7. The left and right panels show the simulations
with subsonic and supersonic turbulence, respectively. We average 16 spectra
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Figure 11.7.: Time-averaged power spectrum of the kinetic energy for the simula-
tions of subsonic (left) and supersonic (right) turbulence at different resolutions. We
distinguish between resolved, SGS turbulence and total kinetic energy. Overall, SGS
turbulence has a negligible impact on the total power spectrum.

between t/T = 10 and t/T = 25 for subsonic turbulence and 16 spectra between
t/T = 5 and t/T = 20 for supersonic turbulence. The solid line indicates
the total kinetic energy and the dashed line represents the unresolved SGS
turbulence energy. The resolved kinetic energy is illustrated by a dot-dashed
line, which is not distinguishable from the solid line of the total energy. The
different colours correspond to different resolutions. For subsonic turbulence,
we compensate the energy spectrum function by a factor of k5/3 such that the
inertial range appears as a straight line. In the figure, this is indicated in grey.
Similarly, we compensate the energy spectrum function in the right panel by a
factor of k2, which is the expected scaling for supersonic turbulence (Mac Low
and Klessen, 2004).
The left panel shows that no clear inertial range forms in the simulations

with subsonic turbulence, even at the highest resolution that we consider. The
increased power at large wave number that is visible in the simulation with 2563
cells is known as the bottleneck effect, which is encountered in many numerical
studies of turbulence (Dobler et al., 2003; Bauer and Springel, 2012). In the
simulation of supersonic turbulence, we obtain the predicted spectrum for a
reasonable range of wave numbers.
In both simulations, the spectrum of the total kinetic energy is entirely

dominated by the resolved component. On all scales, the power in SGS
turbulence energy is at least one order of magnitude smaller than the power in
resolved kinetic energy. Still, the spectrum of SGS turbulence energy has an
interesting shape. It shows a clear peak at small scales, which shifts to larger
wave numbers if the resolution is increased. Moreover, it is located roughly at
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Figure 11.8.: Time-averaged spectra for source and sink terms of SGS turbulence
energy for the simulations of subsonic (left) and supersonic (right) turbulence. We
distinguish different production and dissipation mechanisms and additionally compare
to numerical dissipation. All spectra are surprisingly flat.

the scale at which the total power spectrum starts to deviate from the expected
slope. Remarkably, the power at the peak does not change much. The spectrum
of SGS turbulence energy demonstrates that at least part of the unresolved
turbulence is concentrated on small scales as naively expected. However, the
overall impact of SGS turbulence on the power spectrum is negligible in our
simulations.

Not shown in Fig. 11.7 is the amount of energy that forms a homogeneous
background and, hence, corresponds to the wave number k = (0,0,0). For
the resolved kinetic energy, we avoid that power accumulates in this mode by
subtracting the bulk velocity before the computation of the power spectrum.
We do not apply an equivalent correction for the SGS turbulence energy and
a significant fraction of it is contained in the background. At the end of the
simulation with subsonic turbulence, this fraction is 94 per cent at a resolution
of 643 and decreases to 90 per cent for the simulation with 2563 cells. The
values are somewhat lower for supersonic turbulence with 70 per cent at the
lowest resolution and 52 per cent at the highest resolution that we consider.
This shows that most of the SGS turbulence is homogeneously distributed
over the whole computational domain and only a small fraction resides in
the filamentary structures that can be seen in Fig. 11.2. Further studies are
necessary to establish whether this is a universal feature of SGS turbulence
models or whether it is specific for our implementation.
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Production and dissipation spectra

We analyse the production and dissipation of SGS turbulence energy in more
detail in Fig. 11.8. The figure shows time-averaged spectra of the different
source and sink terms for the simulations of subsonic (left) and supersonic
(right) turbulence with a resolution of 2563. In contrast to the previous figure,
we do not compensate the spectra by powers of k. Dashed lines indicate
dissipation terms and solid lines illustrate production terms. Different colours
correspond to different physical mechanisms. SGS turbulence energy can be
produced by the anisotropic turbulent cascade, Σ∗ (orange), or by adiabatic
compression (solid green). However, if a gas parcel expands, the adiabatic term
leads to dissipation (dashed green). Viscous dissipation is another loss term for
SGS turbulence energy (light blue). The thicker lines correspond to the total
production (red) and dissipation rates (dark blue). For comparison, we also
show numerical dissipation (grey), which we define as the amount of internal
energy that develops in the simulation and does not originate in the viscous
dissipation of SGS turbulence energy.

As shown in Fig. 11.6, most of the energy is produced by the anisotropic
part of the turbulent cascade for subsonic turbulence. Adiabatic expansion
contributes to the dissipation of SGS turbulence energy, which is dominated
by viscosity. The total production rate is almost perfectly balanced by viscous
dissipation on large scales. On small scales, the production term dominates and
creates the peak that is observed in the spectrum of SGS turbulence energy in
Fig. 11.8. However, on all scales numerical dissipation is an order of magnitude
more efficient than the dissipation through the turbulent cascade.

In the simulation of supersonic turbulence, most SGS turbulence energy is
produced by adiabatic compression with some contribution from the anisotropic
part of the turbulent cascade. Also in this simulation, production matches
dissipation on large scales but more SGS turbulence energy is produced on
small scales. Overall, numerical dissipation is still more efficient than viscous
dissipation of SGS turbulence energy but the difference is smaller than for
subsonic turbulence.

In both simulations, the spectra are surprisingly flat and SGS turbulence
energy is produced and dissipated over the whole spectral range. Naively, we
would anticipate a spectrum that shows a peak at small scales. Whether this
is a short-coming of our closure scheme and our numerical implementation or
whether there is a physical explanation, is still an open question.
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Figure 11.9.: Impact of the eddy viscosity parameters Cν (left) and Cε (right) on
the power spectra of the resolved kinetic energy, the SGS turbulence energy and the
total kinetic energy. These are results for simulations of supersonic turbulence with
a resolution of 643 cells.

Variation of the eddy viscosity parameters

The eddy viscosity closure depends on two parameters. The first parameter, Cν,
controls the viscosity and the second parameter, Cε, determines the efficiency
of viscous dissipation. To improve our understanding of the impact of Cν and
Cε, we repeat the simulation of supersonic turbulence at a resolution of 643
with different choices for the two parameters. Thereby, we try to maximize the
effect of SGS turbulence energy on small scales.

We increase the parameter Cν from the fiducial value of 0.05 to a maximum
value of 3.0. Hence, we enhance the eddy viscosity, which damps the resolved
kinetic energy and lowers the thermal Mach number. In contrast, more SGS
turbulence energy is produced by the anisotropic part of the turbulent cascade,
Σ∗. In the left panel of Fig. 11.9, we show time-averaged power spectra of the
resolved kinetic energy, the SGS turbulence energy and the total kinetic energy
as in Fig. 11.7. The different colours correspond to different values of Cν. An
increase of the eddy viscosity leads to a reduction of the power in resolved
kinetic energy on small scales. Simultaneously, the power in SGS turbulence
energy increases for intermediate and large wave numbers. The peak in the
SGS turbulence spectrum becomes more pronounced and shifts to larger scales.
If Cν > 0.1, the SGS turbulence energy is comparable or even larger than the
resolved kinetic energy for certain wave numbers. Furthermore, the power in
the background increases from 69 per cent for Cν = 0.05 to 87 per cent for
Cν = 3.0.

The second parameter defines the efficiency of viscous dissipation. So far, we
have always used a value of Cε = 1.58 but now we lower it successively to a
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minimum value of 0.005. This parameter has a small effect on the thermal Mach
number, which is only slightly enhanced for Cε = 0.005. In contrast, the SGS
turbulence energy clearly increases with decreasing values of Cε. Additionally,
the simulation takes longer to reach an equilibrium state since the reduced
dissipation rate only catches up later with the production rate. For Cε = 0.005,
such a state is not reached during the entire simulation time.

The right panel of Fig. 11.9 shows the power spectra of the different contribu-
tions to the kinetic energy for the simulations with varying Cε. The spectrum
for the resolved kinetic energy becomes steeper with increasing values of Cε,
but the overall effect is small. As expected, the power in SGS turbulence energy
increases with decreasing Cε. The gain is strongest on large scales and the
background fraction grows from 70 per cent for the fiducial value to 99 per cent
for Cε = 0.005. However, with the exception of the simulation with Cε = 0.005,
the SGS turbulence energy remains smaller than the resolved kinetic energy on
all scales. In particular, lowering the efficiency of viscous dissipation does not
raise the SGS turbulence energy significantly on small scales.

Our test simulations demonstrate that it is not possible to raise the impact
of the SGS turbulence model on the power spectrum of the resolved kinetic
energy by simply varying the eddy viscosity parameters. Moreover, the different
parameter choices also affect other turbulence properties that we do not discuss
here. Cursory inspection indicates that the simulations do not produce realistic
results for some of the extreme parameter choices. Hence, the eddy viscosity
parameters should be chosen with care, ideally with a suitable calibration
technique (Schmidt, 2015).
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12. Discussion
The SGS turbulence model that we implement into the hydrodynamics code
AREPO in the course of this thesis is still comparatively simple and not yet
competitive with state-of-the-art codes. In this section, we consider several
shortcomings of our implementation and make suggestions for improvements.
Then, we briefly discuss first physical insights from the turbulent box simulations
and indicate future applications of the SGS turbulence model.

12.1. Code improvements
Certain aspects of the implementation of the SGS turbulence model in AREPO
are still rather rudimentary. One example is the computation of the Hesse
matrix, which is a first order reconstruction of the gradients in a cell. Therefore,
we use the old Green-Gauss method that was initially introduced in Springel
(2010) to calculate the gradients of the primitive variables. In the current code
version, these gradients are determined with the least-squares method from
Pakmor et al. (2016c), which has better convergence properties. A consistent
computation of the gradients and the Hesse matrix with the new approach
would clearly improve the code.

Furthermore, we only impose a Courant-Friedrichs-Lewy time-step criterion
that we modify to account for the isotropic SGS turbulence pressure. Additional
constraints arise due to the eddy viscosity and the source terms but they are
not considered so far. It would be beneficial to update the time-step criterion
such that it also includes those effects.

Moreover, our implementation of SGS turbulence does not include the internal
transport term, D, yet. It is typically modelled as isotropic diffusion with a
diffusion coefficient that depends on the SGS turbulence energy. It should be
possible to modify the implementation of anisotropic CR diffusion from Pakmor
et al. (2016a) for this purpose.
An apparent limitation of our SGS turbulence model is its restriction to

static Cartesian meshes. Many other recent numerical models can be used with
adaptive mesh refinement (Maier et al., 2009; Schmidt et al., 2014; Semenov
et al., 2016). Here, AREPO provides the unique opportunity to combine a SGS
turbulence model with an unstructured, moving mesh. Only certain components
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of our implementation such as the isotropic SGS turbulence pressure are already
applicable to flexible meshes, many others still need to be adjusted. Voronoi
tessellations do not correspond to homogeneous and isotropic filters and are
thus difficult to address in LES. Locally, the linear grid size of a Voronoi cell
can be estimated from the cell volume by treating it either as a sphere or as
a cube. These approximations can be used to compute the source and sink
terms that only affect a single cell. More challenging are viscous fluxes, which
also depend explicitly on the grid scale. It is still an open question how these
fluxes should be exchanged between cells with different volumes. Moreover,
AREPO uses mesh refinement and derefinement to keep the mass in all cells
approximately equal. This part of the code requires additional modification
since sudden changes of the cell volume imply corresponding changes of the
cutoff scale of the turbulent cascade.

Another possibility to considerably improve our description of SGS turbulence
is the implementation of a more sophisticated closure scheme. We currently use
the traditional eddy viscosity closure, which does not capture the backscattering
of energy from small to large scales correctly. In addition, several other models
are better suited for supersonic or inhomogeneous flows. Examples are the two
component closure from Schmidt and Federrath (2011) that is still similar to the
original eddy viscosity description and the shear-improved model from Schmidt
et al. (2014). The latter is probably most appropriate for many astrophysical
applications. In this approach, the SGS turbulence energy is computed from
local velocity fluctuations and is, thus, able to represent turbulent flows that
are not isotropic and homogeneous.
A long term perspective for AREPO could be a SGS turbulence model

that takes magnetic fields into account. Magnetic fields are ubiquitous in
astrophysical environments and play an increasingly prominent role in numerical
studies. The SGS turbulence models that we examine in this thesis are not
applicable to magnetohydrodynamic simulations but several attempts to include
magnetic fields in LES exist (Miesch et al., 2015; Grete et al., 2015).

12.2. Physical applications
In this thesis, we mostly focus on the numerical implementation of the SGS
turbulence model. As a first physical application, we run simulations of
turbulent boxes, in which we study isothermal gas that is perturbed by either
subsonic or supersonic solenoidal forcing. The results demonstrate that our code
reproduces crucial features of a SGS turbulence model. The SGS turbulence
energy decreases with the grid scale and the energy flux through the turbulent
cascade is independent of resolution, as expected.
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The SGS turbulence energy is on all scales at least an order of magnitude
smaller than the resolved kinetic energy and, thus, does not play a significant
role in the power spectrum of the total kinetic energy. For this reason, the
subgrid model has also no impact on the bottleneck effect, which describes
the build-up of power on small scales. It might be possible to remedy this
problem with an improved closure scheme as shown by Woodward et al. (2006).
Their scheme allows for backscattering such that energy can be transferred
from smaller to larger scales, which is not possible with our model.
We conclude that the effect of the SGS turbulence energy on the resolved

scales is small, at least in our simulations. This is an encouraging result for
implicit LES (ILES) that are commonly used in astrophysics. They probably
produce similar results as LES, which are theoretically cleaner and incorporate
a proper model for subgrid scales. Hence, it is unlikely that any of the general
results that were obtained with ILES would change in LES. Still, we emphasize
that this might be different for other choices of the closure scheme.
Nevertheless, LES have the great advantage that the turbulence model

records the amount of kinetic energy on unresolved scales in each cell. This
yields spatially resolved information of the SGS turbulence energy that can be
used to analyse complex flows. Moreover, it is possible to model other physical
processes that depend on the turbulent energy more accurately. An example
is the propagation speed of the flame front in simulations of SN explosions
(Schmidt et al., 2006; Röpke et al., 2007)

There are various applications of the SGS turbulence model in AREPO, in
particular, if the model would be extended to moving meshes. For example, it
could be included in the idealized jet simulations of Weinberger et al. (2017)
and Ehlert et al. (2018) to study turbulent heating in the centres of galaxy
clusters. Furthermore, AREPO uses a subgrid model for star formation because
this process cannot be resolved in many simulations. So far, this model neglects
the effects of turbulence, although it is an important aspect of star formation.
The SGS turbulence model makes it possible to incorporate this information
into the star formation prescription as shown by Semenov et al. (2016) and
Semenov et al. (2017). Here, unresolved turbulence determines the efficiency
with which dense gas is transformed into stars, and some of the SN feedback
is channelled back into SGS turbulence energy. Future simulations of galaxy
formation with AREPO would also benefit from such a star formation model.
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13. Summary
Most astrophysical environments are highly turbulent and the associated
Reynolds numbers are large. Supersonic turbulence regulates star formation
on small scales and subsonic turbulence is responsible for the acceleration of
CRs in galaxy clusters.

Due to the high Reynolds numbers, it is not feasible in numerical studies to
cover the whole range between the driving of turbulence on large scales and the
viscous dissipation on small scales. Simulations are limited by the grid scale,
which is usually considerably larger than the dissipation scale. This drawback
is explicitly taken into account in LES, which only simulate the flow on large
scales directly. Unresolved kinetic energy is described by a subgrid model.

In this part of the thesis, we implement such a SGS turbulence model into the
hydrodynamics code AREPO. We use the eddy viscosity closure to describe the
turbulence stress tensor and apply a standard description for viscous dissipation.
Our model can be divided into several components. For instance, the SGS
turbulence exerts isotropic pressure on the gas and in addition introduces
viscosity. Furthermore, the energy flux through the turbulent cascade is
represented by appropriate source terms. Our current implementation only
works with Cartesian meshes and is not yet applicable to the typical Voronoi
meshes of AREPO.

We first test our implementation of the isotropic SGS turbulence pressure with
a one-dimensional shock tube problem. Then, we examine the viscosity module
by simulating the diffusion of a vortex sheet. Both test cases demonstrate that
these parts of the model work well.
In addition, we run simulations of turbulent boxes. We treat the gas as

isothermal and drive the turbulence either with subsonic or supersonic external
forcing. This setup enables us to test the full SGS turbulence model and,
simultaneously, we use it as a first physical application. The simulation results
show that our model reproduces important properties of turbulence. While the
thermal Mach number is independent of resolution, the SGS turbulence energy
in the simulation drops if the resolution is higher and more of the turbulent
cascade is resolved. In addition, the production and dissipation terms do not
depend on resolution, as expected. Furthermore, we compute power spectra
of the resolved, unresolved and total kinetic energy. In our simulations, SGS
turbulence energy is subdominant on all scales and has almost no effect on the
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resolved kinetic energy.
The current SGS turbulence model in AREPO is still rather simple and

there is ample room for improvement. For example, there are several more
sophisticated closure schemes that are better suited for astrophysical problems.
Moreover, it would be a significant step forward if it was possible to adapt
the turbulence model to moving meshes, which would also make the model in
AREPO unique. Future simulations could make use of the description of SGS
turbulence, e.g. in the form of an updated star formation prescription.
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14. Cosmic ray feedback
Feedback effects counteract radiative cooling and subsequent gravitational
collapse. Hence, they play an important role in galaxy formation and are
particularly crucial for regulating star formation. In galaxies with masses
below ∼ 1012 M�, SN explosions are the main feedback channel whereas AGNs
dominate in more massive galaxy groups and clusters. There are still many open
questions regarding this topic, for example which mechanisms contribute most
in which environments and how does the feedback couple to the surrounding
medium. In this thesis, we explore the feedback from CRs in individual galaxies
and in galaxy clusters in more detail.

In massive cool core clusters, CR heating might be essential to prevent large
cooling flows. To test this hypothesis, we construct steady state models for a
sample of clusters in which radiative cooling is balanced by CR heating and
thermal conduction. Comparisons with radio observations show that this model
is only viable in roughly half of the clusters in our sample. In the remaining
clusters, our model is ruled out. Remarkably, those clusters exhibit enhanced
star formation and cooling rates, indicating that radiative cooling might not
be completely balanced. These findings suggest the interesting possibility of a
self-regulated feedback cycle that is governed by CRs.
There are several interesting directions to expand this study. For example,

we could apply our model to more clusters and, thus, increase the sample size.
Particularly suitable for our analysis would be clusters in which additional radio
mini haloes were detected recently (Giacintucci et al., 2017). Furthermore, we
could generalize the second heating mechanism that is required in addition to
CR heating. The current model uses thermal conduction but other mechanisms
are conceivable. An option would be the dissipation of turbulent motions that
are induced by gas sloshing in the gravitational potential.

Our model for CR heating in cool core clusters relies on several assumptions
that are arguably too simplistic but probably necessary for a large cluster sample.
We consider a steady state, which implies that it is not possible to analyse a
full feedback cycle with our approach. Moreover, we adopt spherical symmetry
although this is clearly violated in the centres of galaxy clusters where AGN
feedback operates in the form of large radio lobes. In addition, we make strong
assumptions about the replenishment of CRs by AGN feedback. Most of these
simplifications can be avoided by three-dimensional magnetohydrodynamic
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simulations that include a model for CRs. For instance, numerical studies of
individual jets are able to test CR injection into the ICM (Weinberger et al.,
2017; Ehlert et al., 2018). Interestingly, the simulations of a galaxy cluster
from Ruszkowski et al. (2017a) develop a self-regulated feedback loop that is in
broad agreement with our model. These early results demonstrate the power
of simulations to constrain our model but they still leave plenty of room for
further studies.

We also analyse CR feedback on galactic scales. Here, CRs can drive powerful
winds if a transport mechanism relative to the thermal gas is taken into account.
To characterize CR-driven winds further, we run idealized simulations of a
set of isolated galaxies with masses between 1010 and 1013 M�. We show that
the wind properties such as the outflow velocity and the mass loading depend
strongly on galaxy mass. One of our main results is that CR-driven winds are
able to regulate star formation in low mass galaxies but the wind efficiency
drops rapidly in more massive galaxies.

In this work, we use (anisotropic) diffusion as the CR transport mechanism
that enables the launching of a wind. Nevertheless, streaming might be the
more relevant process and several numerical studies have already explored
this possibility (Uhlig et al., 2012; Wiener et al., 2017; Ruszkowski et al.,
2017b). Yet, implementing streaming into a hydrodynamics code is extremely
challenging. Thus, it would still be interesting to study CR-driven winds with
an alternative streaming solver in AREPO, which, however, still needs to be
developed.
In addition, we could modify the refinement and derefinement scheme in

AREPO to resolve the wind region better. By default, AREPO keeps the
mass in all cells approximately equal, which implies that the resolution in the
underdense wind is low. An alternative would be a volume limited refinement
scheme in the wind region (see also Weinberger et al., 2017; van de Voort,
in prep). Better resolution in the outflow would bring our simulations one
step closer to comparisons with observations, which are only possible if the
multiphase structure of the wind is reproduced correctly.
Overall, the results of this thesis suggest that CRs might indeed play an

important role in mediating feedback. The prospect that CRs are crucial in
both SN and AGN feedback makes them a highly promising topic for future
studies.
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15. Turbulence model
Modelling turbulent flows with high Reynolds numbers in numerical simula-
tions remains a challenge. The large dynamic range between the driving and
dissipation scale make it impossible to resolve all parts of the turbulent cascade
at once. This limitation is taken into account by LES, which solve the filtered
Navier-Stokes equations. In LES, only the large scales of a flow are simulated
directly and the unresolved parts are described by a subgrid model.

In this thesis, we implement such a SGS turbulence model into the hydrody-
namics code AREPO. The model is based on a simple eddy viscosity closure
and can so far only be used with static Cartesian meshes. We confirm that
our code reproduces the expected results in two idealized test problems and
then study simulations of subsonic and supersonic turbulence in a periodic box.
We find that the SGS turbulence energy correctly decreases with increasing
resolution as more of the turbulent cascade is resolved. In addition, we focus on
the power spectra of the resolved and unresolved kinetic energy. Interestingly,
they demonstrate that the effect of the turbulence model on the resolved scales
is small.

There are still several possibilities to improve our model. The eddy viscosity
could be replaced by a more refined closure scheme. For example, it could be
optimized to reduce the bottleneck effect in simulations of turbulent boxes.
To make the SGS turbulence model applicable to astrophysical problems, it
is in addition necessary to modify our implementation such that it supports
adaptive mesh refinement or the moving mesh of AREPO.
Further idealized simulations with the current or an improved turbulence

description would help to test and understand the subgrid model better. Here,
Rayleigh-Taylor or Kelvin-Helmholtz instabilities would provide interesting
setups to study the development of the turbulent cascade.

In the long term, it would be desirable to include the turbulence model into
the subgrid description of star formation in AREPO. Both the formation of
stars and the turbulence that controls it are unresolved in galaxy formation
simulations. Hence, the information from a SGS turbulence model can make
the star formation recipe more physical. Many simulations that are carried out
with AREPO would benefit from such an updated prescription, in particular
cosmological simulations with their limited resolution inside galaxies.
In conclusion, numerical models for SGS turbulence provide ample possi-
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bilities for many astrophysical fields of research. Their development and also
their implementation as in this thesis are an essential starting point for future
applications.
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Appendix



A. Steady state solutions for the
remaining cluster sample

Figs. A.1 - A.13 show various aspects of the steady state solutions by analogy
to Figs. 5.5 and 5.6 (albeit in a different order) for the remaining clusters in our
sample. The clusters are ordered as in Table 5.1. The density and temperature
data for Ophiuchus are weighted averages of the sector profiles provided by
Werner et al. (2016).
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Figure A.1.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.2.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.3.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.4.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.5.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.6.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.7.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.8.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.9.: We show the same properties of the steady state solutions as in Fig. 5.5
for different clusters.
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Figure A.10.: We show the same properties of the steady state solutions as in
Fig. 5.5 for different clusters.
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Figure A.11.: We show the same properties of the steady state solutions as in
Fig. 5.5 for different clusters.
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Figure A.12.: We show the same properties of the steady state solutions as in
Fig. 5.5 for different clusters.
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Figure A.13.: We show the same properties of the steady state solutions as in
Fig. 5.5 for different clusters.
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