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Abstract

The aim of this work is to explore how dark matter structures and astronomical ob-
jects (the first generation of stars) formed in the high-redshift universe. We investigate
properties of dark matter mini-haloes and clarify the process of primordial star forma-
tion that takes place in different dark matter mini-haloes. The specific questions that
we aim to answer in this work include how dark matter mini-haloes found at z ≥ 15
differ from their more massive lower-redshift counterparts and what determines the
amount of HD that forms in primordial gas at the initial stage of protostellar collapse.
We ran a high-resolution N -body simulation that has the highest mass resolution ever
achieved for a representative cosmological volume at these high redshifts, and made
precision measurements of various physical properties that characterise dark matter
haloes. As expected from the differences in the slope of the dark matter density
power spectrum, the dependence of formation time on dark matter halo mass is very
weak in the case of the haloes that we study here. Despite this difference, dark mat-
ter structures at high redshift share many properties with their much more massive
counterparts that form at later times. We ran a separate set of cosmological hydrody-
namical simulations to study gas starting to collapse in dark matter haloes. We found
that in some of our simulated mini-haloes, HD cooling became important during the
initial collapse, and investigated in detail why this occurred. We compared HD-rich
and HD-poor mini-haloes in our simulations and found that the amount of HD that
forms is linked to the speed of the gravitational collapse. If the collapse is rapid,
dynamical heating prevents the gas from cooling to temperatures low enough for HD
cooling to become important, but if the collapse is slow, HD cooling can come to
dominate, resulting in a minimum gas temperature which is lower by a factor of two.
We investigated what properties of the mini-haloes were responsible for determining
the collapse time, and showed that, contrary to previous suggestions, the mass of the
mini-halo and the rotational energy of the gas appear to have little influence on the
speed of the collapse. We therefore suspect that the main factor determining whether
the collapse is slow or rapid, and hence whether HD cooling becomes important or
not, is the degree of turbulence in the gas.





Zusammenfassung

Das Ziel dieser Arbeit ist es, die Struktur von Dunkler Materie und astronomischen
Objekten (der ersten Generation von Sternen), die im frühen Universum entstanden
sind, zu erforschen. Wir untersuchen die Eigenschaften von Dunkle Materie Mini-
Halos und den Prozess der primordialen Sternentstehung, der in den verschiedenen
Mini-Halos stattfindet. Die genauen Fragestellungen, die wir in dieser Arbeit verfol-
gen, beinhalten, ob sich Mini-Halos bei einer Rotverschiebung von z ≥ 15 von ihren
massiveren Gegenstücken zu späteren Zeiten unterscheiden und was die Menge an
HD bestimmt, die sich im primordialen Gas am Beginn des protostellaren Kollaps
bildet. Wir haben eine hochaufgelöste N -Körper Simulation durchgeführt, welche die
höchste jemals erreichte Massen-Auflösung in einem repräsentativen kosmologischen
Volumen bei dieser hohen Rotverschiebung hat und präzise Messungen von verschiede-
nen physikalischen Größen durchgeführt, welche die Eigenschaften der Dunkle Materie
Halos charakterisieren. In den hier untersuchten Halos hängt die Entstehungszeit nur
schwach von der Masse der Dunkle Materie Halos ab, wie aus den unterschiedlichen
Steigungen der Dichte-Leistungsspektren zu erwarten war. Trotz dieses Unterschieds
teilen die Dunkle Materie Strukturen bei hoher Rotverschiebung viele Eigenschaften
mit ihren massiveren Gegenstücken, die später entstehen. Wir haben zusätzlich eine
Reihe von kosmologischen hydrodynamischen Simulationen durchgeführt, um Gas zu
untersuchen, das gerade beginnt, in den Halos zu kollabieren. In einigen unserer
simulierten Mini-Halos wurde Kühlen durch HD während des anfänglichen Kollaps
wichtig, und wir verfolgen den Grund dafür im Detail. Aus dem Vergleich von HD-
reichen und HD-armen Mini-Halos in unserer Simulation ergibt sich, dass die Menge
von HD, die gebildet wird, mit der Geschwindigkeit des Gravitations-Kollapses zusam-
menhängt. Wenn der Kollaps schnell verläuft, verhindert dynamisches Heizen, dass
HD-Kühlen wichtig wird, das erst bei niedrigen Temperaturen einsetzt. Falls der
Kollaps langsam ist, kann HD-Kühlen dominant werden, wodurch minimale Gastem-
peraturen, die um einen Faktor zwei niedriger liegen, erreicht werden können. Wir
untersuchten, welche Eigenschaften der Mini-Halos die Kollapszeit bestimmen, und
zeigen, im Gegensatz zu früheren Erwartungen, dass die Masse und die Rotationsen-
ergie wenig bis gar keinen Einfluss auf die Kollaps-Geschwindigkeit haben. Daher
vermuten wir, dass der Faktor, der bestimmt, ob ein Kollaps langsam oder schnell
verläuft, und damit, ob HD-Kühlung wichtig wird, der Grad der Turbulenz des Gases
ist.
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1 Introduction

Where did we come from? Where are we going? Thanks to the advances in natural
sciences, scientists today can do a much better job in answering such fundamental
questions than in the past. We have a common understanding that the universe was
much smaller in size, hotter, and denser when it was born in a Big Bang about 13.8
Gyrs ago, and that it continues to expand at an increasing rate. We also know that the
first generation of stars contributed significantly in changing the simple homogeneous
state of the universe at the time of its birth to the more complex and diverse state as
it is today.

The goal of this thesis is to make a small advancement in the fields of first star
formation and structure formation.

Stars are divided into three populations according to the amount of ‘metals’, i.e.
elements heavier than lithium (Li) they contain: Population I (metal-rich), Popu-
lation II (metal-poor), and Population III (metal-free). Since metals did not exist
immediately after the Big Bang, the first stars to form in the universe were Popu-
lation III (Pop III) stars. Once the Pop III stars have formed, at the end of their
lives, elements synthesised at the centres of the stars were distributed by supernova
explosions. Therefore, it is believed that there is a gradual transition from Pop III to
Pop II stars. Pop II stars are most often found in the bulge and halo of galaxies. Pop
I stars are mostly found in the disks of galaxies. The Sun is an example of a Pop I
star.

In this chapter, we will first summarise the key concepts in structure formation.
Then we will briefly explain baryonic physics which is relevant for Pop III star forma-
tion.

1.1 CDM universe

If we consider the line element ds of the form

ds2 = gµνdx
µdxν , (1.1)

under the assumptions of homogeneity and isotropy, we arrive at the below metric
(Robertson-Walker metric):

ds2 = −c2dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.2)

The Einstein’s equations read

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.3)

1



1 Introduction

where Rµν is the Ricci tensor, R (= gµνRµν) is the Ricci scalar, Λ is the cosmological
constant, and Tµν is the energy-momentum tensor (T00 = ρc2, Tij = pδij where 1 ≤
i, j ≤ 3). Substituting this metric (equation (1.2)) in the Einstein equations (equa-
tion (1.3)) we obtain Friedman equation,

H(a)

H0
=

√
Ωr

a4
+

Ωm

a3
+

ΩK

a2
+ ΩΛ

H(a) = ȧ/a

(1.4)

where ΩK = −Kc2/H2
0 , ΩΛ = Λc2

8πG/ρcr,0, and Ωm (Ωr) denotes the density of matter
(radiation) scaled by critical density of the universe at present, ρcr,0 = 3H2

0/8πG. This
equation tells us the scale factor a at a given time. It is used to convert scale factor
and physical time inside our cosmological simulations. The phases usually studied by
N -body or hydrodynamical simulations is either matter-dominated or cosmological-
constant-dominated era (meaning either the term Ωm/a

3 or the term ΩΛ is dominant
in the rhs of equation (1.4)), therefore, the radiation and curvature terms are ac-
tually not included in the code. The precise values of the cosmological parameters
that appear in these equations are known, for example, by measuring the height and
locations of peaks in the angular power spectrum of anisotropies in cosmic microwave
background (Komatsu et al., 2011). We know that a large portion of the matter com-
ponent of Friedmann equations is cold dark matter (CDM), meaning that the velocity
dispersions of the dark matter particles at the time they became non-relativistic was
not big enough to erase the density perturbations already present at that time.

1.2 Equations that govern the density peak evolution in the
universe

If we rewrite the continuity equation and equation of motion in comoving coordinates,
it reads:

∂ρ

∂t
+ 3Hρ+∇ · (ρu) = 0 (1.5)

∂u

∂t
+ 2Hu + (u · ∇)u = − 1

a2
∇
(
φ+

1

2
aäx2

)
− ∇p
a2ρ

, (1.6)

where r is the physical coordinates, x = r/a is comoving coordinates, and u = ẋ
is the velocity in comoving coordinates, ρ is the density, p is the pressure, φ is the
gravitational potential. The gravitational potential φ is given by Poisson equation,
which is expressed in the following equation when differentiated in proper coordinates,

4 φ = 4πGρ. (1.7)

There is no general analytical solution for this equation. When the density pertur-
bations are still small, it is possible to perturb equations (1.5) and (1.6) and keep only
linear terms to follow the evolution of density peaks. Of course, for the dark matter

2



1.3 Power spectrum, transfer function, initial conditions

component, the last term in equation (1.6) is not present. Let us define density per-
turbation by δ(x) ≡ (ρ(x)− ρ̄)/ρ̄ where ρ̄ is the background density at a given time.
Then, in the linear regime, if we assume δ(x) ∝ exp(ik · x), the evolution of δ(x) is
described by

∂2δ

∂t2
+ 2H

∂δ

∂t
−
(

4πGρ̄− c2
sk

2

a2

)
δ = 0. (1.8)

This shows that the modes with 4πGρ̄− c2
sk

2/a2 > 0 keeps growing in the presence
of a small initial positive perturbation. This corresponds to density perturbations
with wavelength λ ≡ 2π/k > cs/a

√
π/Gρ̄, or in proper wavelength, λp > cs

√
π/Gρ̄

(the Jeans length, see also Section 1.9). However, this tactics would not work when
the density perturbations have grown too big.

1.3 Power spectrum, transfer function, initial conditions

The power spectrum for density perturbations is given by

P (k) = 〈|δk|2〉, (1.9)

where δk is the Fourier transformation of density perturbation δ(x). In fact, the
power spectrum is a variable with dimensions of (length)3, and to evaluate its value,
the non-dimensional quantity

∆2(k) ≡ k3P (k)

2π2
(1.10)

is used. We can write d3kP (k)/(2π)3 = d ln k∆2(k) assuming isotropy and thus
replacing the integral d3k by 4πk2dk. Therefore, equation (1.10) shows the power
present in a logarithmic bin.

The initial conditions for our cosmological simulations are generated in the following
way:
First the linear power spectrum is given by

P (k) = A k T (k)2, (1.11)

where A is the normalisation factor, which depends on both cosmological parameters
used and the redshift the power spectrum is calculated. T (k) gives the amplitude of
density perturbations relative to the largest scales (e.g. normalised such that T (k)→ 1
as k → 0). This transfer function has the approximate form of

T (k)

{
1 (k � kH(teq))
k−2 (k � kH(teq))

, (1.12)

where kH(teq) denotes the wavenumber that corresponds to the Hubble radius (rH ≡
c/H) at the time of matter-radiation equality (meaning when Ωr/a

4 = Ωm/a
3 in

equation (1.4)). For the density perturbations that ‘enter the horizon’ (i.e. wavelength

3



1 Introduction

Figure 1.1: The linearly extrapolated power spectrum of dark matter at z = 0 for the
cosmological parameters adopted in Sasaki et al. (2014) and in Chapter 2.
The critical slope of k−3 is shown with dark blue line.

becomes equal to the Hubble radius) in the radiation-dominated era, the density
perturbations stop growing. This functional form accounts for the fact that the modes
that enter the horizon earlier (smaller modes) are more suppressed. As a result of this
k-dependence in the transfer function, the power spectrum of density perturbations
have a turnover (see Fig. 1.1).

The exact functional form of T (k) often used are,

T (k) =
{

1 +
[
ak + (bk)3/2 + (ck)2

]ν}−1/ν
, (1.13)

where

a = 6.4(Ω0h
2)−1 (1.14)

b = 3.0(Ω0h
2)−1 (1.15)

c = 1.7(Ω0h
2)−1 (1.16)

ν = 1.13, (1.17)

as derived by Bond and Efstathiou (1984) and

T (k) = T0(q) =
L0

L0 + C0q2
, (1.18)

with L0(q) and C0(q) of the form

L0(q) = ln(2e+ 1.8q), (1.19)

C0(q) = 14.2 +
731

1 + 62.5q
, (1.20)

4



1.4 Spherical collapse model

where q = k/hMpc−1Θ2
2.7Γ, with Γ = Ω0h and Θ2.7 = TCMB/2.7 [K] as derived by

Eisenstein and Hu (1998) (note that we followed the notation of the original paper
and used Ω0 instead of Ωm here). The latter is used for generating initial conditions
for simulations presented in Chapter 2. For the initial condition generator we used,
it is also possible to adopt an arbitrary form of transfer function that is provided by
the user.

Then by applying Fourier transform, it is possible to get particle dispositions in
real space that has a Power spectrum P (k).

The transfer functions that are used here are valid when the density perturbations
are still small (δ(x) ∼ 1). However, we need different methods to probe the densest
regions in the universe at later times. Therefore, this prescription is widely used to
generate initial conditions (particle distributions for N -body simulations) in the early
universe when the density is uniform. We find the evolution of dense structures later
in cosmic history by numerically integrating the equation of motion over time.

1.4 Spherical collapse model

The simplest model to explain formation of dense structures is the spherical collapse
model. We here consider time evolution of spherically symmetric density perturba-
tions with radius R(t) that contains total mass of M (= const.)

d2R

dt2
= −GM

R2
. (1.21)

Time integrating equation (1.21), we obtain

(
dR

dt

)2

=
2GM

R
+ 2E, (1.22)

where E is an integration constant. We see from equation (1.22) that the sign of E
decides on the fate of this sphere. If E > 0, then the rhs of equation (1.22) is always
> 0, and the radius of sphere will monotonically increase (non-bound solution). If
E < 0, then initially the rhs of equation (1.22) is > 0, however, at R = −GM

E ,
becomes equal to 0, and the expansion of R(t) stops, and after that, the sphere starts
to fall inside (bound solution). Therefore, depending on the initial state, there are
two different kinds of regions inside the universe. Those with E > 0 that continue to
expand, and those with E < 0 that stop to expand and starts to fall back at some
point.

The solutions to these equations are given in the form{
R = A2(1− cos θ)

t = A3
√
GM

(θ − sin θ)
(E < 0) (1.23)

{
R = A2(cosh θ − 1)

t = A3
√
GM

(sinh θ − θ) (E > 0) (1.24)

5



1 Introduction

where A is an integration constant and θ is the intervening variable.
For the bound solution, the maximum value in R(t) is achieved (the sphere stops

expanding) when θ = π. According to equation (1.23) this is when

tturn =
πA3

√
GM

, Rturn = 2A2 (1.25)

and the sphere collapses to a point when θ = 2π

tcoll =
2πA3

√
GM

, Rcoll = 0. (1.26)

From the above equation, if we adopt an Einstein-de Sitter universe (Ωm = 1,Ωr =
ΩΛ = ΩK = 0 in equation (1.4)) for simplicity, then the background density is given
by ρ̄ = 1/(6πGt2). Substituting the density inside the sphere, ρ = M/(4πR3/3),
density perturbations (= ρ/ρ̄− 1) can be formulated as

δ(t) =
9GMt2

2R3
− 1 =

{
9
2

(θ−sin θ)2

(1−cos θ)3
− 1(E < 0)

9
2

(sinh θ−θ)2
(cosh θ−1)3

− 1(E > 0)
(1.27)

If we consider that the sphere virializes between the turn around point and the col-
lapse point, then the kinetic energy and potential energy at this virialization satisfies

2Kvir + Uvir = 0 (virial equilibrium) (1.28)

and

Kvir + Uvir =
3

5
G
M2

Rturn
(energy conservation). (1.29)

We assumed constant density inside the sphere in deriving equation (1.29). Thus we
obtain

Uvir =
6

5
G
M2

Rturn
=

3

5
G

M2

Rturn/2
. (1.30)

Therefore, when virialized, the radius of the sphere is Rvir = Rturn/2 = A2, when
θ = 3π/2. The time required for the mass inside the sphere to virialize is the order of
tcoll, therefore, the density perturbation at this point is

δvir =
M/(4πR3

vir/3)

ρ̄(tcoll)
− 1 = 18π2 − 1 ' 177. (1.31)

In the spherical model, gravitationally collapsed regions have density contrast of ∼
177 compared to the mean background density. Even if we adopt different cosmologies,
this resulting value changes little (Peebles, 1980). Inspired by this spherical collapse
model, the overdensity of 200 is widely used as a threshold to identify virialized
regions in three-dimensional collisionless simulations intended to follow the structure
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formation in a cosmological context. ρ200 (R200) is often used to represent the density
(radius) of such regions.

Let us look at the spherical collapse model when the density perturbations are still
small and compare it with linear theory. By expanding equation (1.27) in terms of θ,
we obtain

δ =
3

20
θ2 +O(θ4) (1.32)

t =
A3

6
√
GM

θ3 +O(θ5) (1.33)

To lowest order, δ ∝ t2/3. If we note linear density perturbation by δL, we can write

δL(t) =
3

20

(
6
√
GM

A3
t

)2/3

. (1.34)

To compare values of δ and δL, the linear density perturbations at the point of collapse
is

δL(tcoll) =
3(12π)2/3

20
' 1.69. (1.35)

The Press-Schechter theory explained in the next section is based on the idea that
once the linear density perturbations reach the value of 1.69, the structure has formed.

1.5 Press-Schechter mass functions

We hereby describe a popular analytical model to predict the number of objects with
certain mass (Press and Schechter, 1974).

In this model, the critical value of density perturbations to form astronomical ob-
jects are assumed to be δc ' 1.69, which is taken from a spherical collapse model (see
Section 1.4).

If we assume that the density perturbations follow a Gaussian distribution, then
the probability distribution function for the density perturbations averaged over mass
of M is expressed as

P (δM )dδM =
1√

2πδ2(M)
exp

(
−

δ2
M

2σ2(M)

)
. (1.36)

The assumption of Gaussianity is reasonable since recent measurements in the cosmic
microwave background suggest very low non-Gaussianity (Planck Collaboration et al.,
2014) and most simple form of inflation theory predicts Gaussian density perturba-
tions. Even if the density perturbations are not exactly Gaussian, we can consider
them as sums of a large number of different modes in k-space that are independent
of each other, which, by the central limit theorem, suggests that the density pertur-
bations in real space approach asymptotically to a Gaussian distribution.
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Therefore, the fraction that exceeds the critical value when averaged over a region
with mass M is

P>δc(M) =

∫ ∞
δc

P (δM )dδM =
1√
2π

∫ ∞
δc/σ(M)

e−x
2/2dx, (1.37)

where σ(M) is the overdensity in a sphere of mass M and given by

σ(M) ≡
∫
dx′δ(x′)WR(x− x′), (1.38)

where WR and R is defined by

WR(x) =

{
1 (|x| < R)
0 (|x| > R)

, M =
4π

3
R3ρ̄. (1.39)

If we represent the number of objects with masses between M and M + dM per unit
volume by n(M)dM , and multiply the rhs by a factor of 2 to account for mass that
reside in under-dense regions, we arrive at

n(M)MdM = 2ρ̄

∣∣∣∣dP>δcdM

∣∣∣∣ dM. (1.40)

Combining equations (1.37) and (1.40), we obtain the following equation:

n(M) =

√
2

π

ρ̄

M2

∣∣∣∣d lnσ(M)

d lnM

∣∣∣∣ δc
σ(M)

exp

(
− δ2

c

2σ2(M)

)
. (1.41)

This is known to be in good match with the results of numerical simulations for a
broad mass range. For the mass function at the smallest mass ranges, see the plot in
Chapter 2.

1.6 N-body simulations

N -body simulations are the primary tool to investigate the formation of gravitation-
ally bound objects in the universe, once the density perturbations have become so
large that the perturbation theory does not work. (See Section 1.3 for one definition
when the density perturbation is large.) In this approach, by using large number of
particles, the acceleration due to gravitational force is obtained for each particle by
adding up contributions from all other particles. Perhaps this is conceptually the
most straightforward way to follow the evolution of collisionless self-gravitating sys-
tems and thus has a long history. There are in principle other ways such as solving the
Boltzmann equation in phase space (Yoshikawa et al., 2013). Note this is an expensive
operation that scales as O(N6)(!) for 3D case.

In modelling the smooth underlying dark matter distribution with a finite num-
ber of particles in the simulation, in order to prevent artificial two-body interactions,
softening length ε is widely used in the field to smooth gravitational forces when two
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particles become too close to each other. Suppose we are calculating the gravitational
force between i-th particle and j-th particle, the gravitational force proportional to

1
|ri−rj |2 is modified to 1

|ri−rj |2+ε2
, where ri and rj represent the positions of the par-

ticles in proper coordinates. ε is typically set to a few percent of the mean particle
separation in the simulation box.

In order to calculate gravitational forces that work on particles, it is necessary to
sum up contributions from all other particles for each timestep. This is an O(N2)
calculation, and can become increasingly time-consuming as the number of particles
increases. The astrophysical community has developed several ways to solve this
problem. Calculating the gravitational force is much more expensive in terms of com-
putational time than in any other operations in many-body simulations. One solution
is to build a special purpose computer dedicated to accelerate this operation (Makino
et al., 1997). Another way is to reduce the cost of force calculation by grouping
particles far away from the particle on which we are to calculate the gravitational
forces (for example, tree method; originally from Barnes and Hut 1986). This method
scales as O(N logN). However, even with special purpose computer, the maximum
number of particles we can plausibly solve by direct summation is ∼ 106 (Makino,
2002). Therefore in modern structure formation simulations, approximate methods
to reduce the cost of force calculation is essential.

1.7 Relaxation time

Following the discussions of Binney and Tremaine (2008) and lecture slides for an
astrophysical school1, let us consider a system that consists of N particles (‘stars’)
with mass m, and estimate the time it takes for a star for its velocity to be changed
significantly by encounters with other stars. Here we would like to estimate the
timescale at which we start to see numerical artifacts resulting from the discretisation
of the underlying smooth dark matter density field by finite number of particles in
our N -body simulations. We would like to study the change of velocity of a point
mass (‘subject star’) with uniform mass m by an encounter with another point mass
(‘field star’). If we assume that the subject star travels along a straight trajectory
while passing along the field star with speed v, impact parameter b, that the position
of the field star does not change throughout this encounter, and that the change in
velocity is small (|δv|/v � 1) (see how we defined the coordinates in Fig. 1.2), then
the perpendicular component of the force on the subject star can be written as

F⊥ =
Gm2

b2 + x2
cos θ =

Gm2b

(b2 + x2)3/2
=
Gm2

b2
[
1 + (vt/b)2

]−3/2
. (1.42)

The parallel component of force vanishes when integrated over time.

By time integrating this force (setting the origin of time to the moment of closest

1http://obswww.unige.ch/lastro/conferences/sf2013/pdf/lecture1.pdf
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r

b
x

F⊥ 

θ

Figure 1.2: Coordinates adopted in calculating the velocity change of the subject star.
The subject star is represented with a blue circle, the field star with a red
circle. The trajectory of the subject star is demonstrated with a solid line
here.

approach of two stars), the change in velocity is

δv =
1

m

∫ ∞
−∞

dtF⊥ =
GM

b2

∫ ∞
−∞

dt

[1 + (vt/b)2]3/2

=
Gm

bv

∫ ∞
−∞

ds

(1 + s2)3/2
=

2Gm

bv
.

(1.43)

The assumption that the change in velocity is small breaks down when δv ' v (*),
namely, when b . 2Gm/v2. The typical speed v of field star is given by

v2 ≈ GNm

R
. (1.44)

Substituting equation (1.44) to expression (*), we find that the minimum value allowed
for the impact parameter is bmin = 2R/N .

Suppose N stars are located in a disk of radius R. The surface density of stars is
N/(πR2), and therefore the expected number of encounters for this subject star per
crossing with impact parameter in the range b and b+ db is

dn =
N

πR2
2πbdb =

2N

R2
bdb (1.45)

By adding up different encounters, after one crossing, the change in mean-square
velocity becomes

(∆v)2 =

∫ (
2Gm

bv

)
dn = 8N

Gm2

Rv

∫
db

b
= 8N

Gm2

Rv
ln Λ, (1.46)
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where

ln Λ ≡ ln

(
bmax

bmin

)
. (1.47)

Using equation (1.44) to eliminate R in equation (1.46), we get

(∆v)2

v2
≈ 8 ln Λ

N
(1.48)

Since equation (1.48) gives the change in velocity after one crossing, the number of
crossings nrelax that is required for the velocity of subject star to change by of order
itself is

nrelax '
N

8 ln Λ
. (1.49)

The relaxation time is defined as trelax = nrelaxtcross, where tcross = R/v, therefore,

trelax =
N

8 ln Λ
tcross. (1.50)

Now if we evaluate the minimum and maximum value for the impact parameter,

bmax = R, (1.51)

bmin =
2R

N
, (1.52)

Λ = ln
R

2R/N
= ln

(
N

2

)
, (1.53)

thus we obtain

trelax '
N

8 lnN
tcross. (1.54)

If we replace stars by dark matter particles, this equation can be used to evaluate
the relaxation time for dark matter haloes in structure formation simulations. Here
we consider the region that is factor of 200 denser than the critical density (this is
from analogy with the spherical collapse model, see Section 1.4 for an explanation of
why regions ∼ 200 times denser than the background density is relevant). It follows
from

M200 =
4π

3
200ρcritR

3
200, (1.55)

v200 =

√
GM200

R200
, (1.56)

and

ρcrit =
3H2

8πG
(1.57)
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that

tcross '
R200

v200
∼ 1

2H
. (1.58)

Plugging equation (1.58) into equation (1.54) yields

trelax '
N

16 lnN

(
1

H

)
, (1.59)

which shows, for systems that is reasonably well resolved (N > 100), relaxation time
is longer than the age of the universe (∼ 1

H ), and that the output of our collisionless
simulations are not just artifacts resulting from two-body interactions.

1.8 Identification of structure in cosmological simulations

In a simulation using collisionless particles to represent dark matter density, the
method to identify structures that have formed inside the simulation domain can
be problematic. Different groups have adopted different methods and this is one of
the factors that make comparison of the works from different groups difficult. Most
of the structure-finding algorithms adopted today are descendants of either of the two
methods: the friends-of-friends (FOF) method (Davis et al., 1985) and the spherical-
overdensity (SO) method (Lacey and Cole, 1994). Methods based on SO first identify
density peaks, and then grow shells around these peaks until the density drops under
some predefined lower limit. This limit is usually taken from the spherical collapse
model. Methods based on FOF tries to link together particles that are located close
to each other (either in 3D space or in 6D phase-space). In the work presented in
Chapter 2, an additional algorithm to spot dense regions inside FOF haloes is used
(SUBFIND). A summary of various different approaches to identify structures is given
in Knebe et al. (2013). They find that when comparing properties of correspond-
ing objects identified by different algorithms, directly measurable properties such as
position, bulk velocity, maximum velocity have scatter of only a few percent, while
derived properties such as shape or spin have a much larger scatter. For an exam-
ple on how halo identification affects the value of spin parameter, compare Fig. 2.3
with A.5. Measuring the shape of haloes (i.e. fitting the particle distribution with
an ellipsoid) is difficult, because the shape of haloes we find in structure formation
simulations are not exactly ellipsoids. Instead, their shapes change as a function of
radius (we checked that for the data analysed in Chapter 2, the inner parts of the
halo are more spherical).

1.9 Condition for star formation

In Fig. 1.3, the cooling functions for various elements in atomic gas with solar com-
position is shown. In the early universe, when the first generation of stars form in a
region where there was no preceding generations of stars, elements heavier than Li are
absent. Therefore most of the elements relevant for cooling in the local interstellar
medium (ISM) (e.g. C+, Si+, Fe+, O, S+) are absent. Cooling due to atomic hydrogen
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1.9 Condition for star formation

Figure 1.3: Cooling functions of various elements weighted by their abundance. Taken
from Fig.1 in Dalgarno and McCray (1972)

Figure 1.4: Cooling function of H atom and He atom in primordial gas. Taken from
Fig.1 in Nishi (2002)
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and atomic helium is effective only at T > 104 K (Nishi, 2002, and Fig. 1.4). In such
a case, H2 line cooling is the primary physical process that lowers the temperatures
of gas to T� 104 K.

In order for the gas to start collapsing inside the centres of the dark matter haloes,
several conditions have to be met.

In Section 1.2 we introduced the Jeans length in a cosmological context, however,
the formulation is the same even in proper coordinates. Thus, the minimum gas mass
in haloes required to start a run-away collapse (the Jeans mass) is:

MJ ≡ 4π

3
ρ̄

(
λJ

2

)3

, (1.60)

where

λJ = cs

√
π

Gρ̄
. (1.61)

Otherwise, the collapse will be halted by the internal pressure.
For T = 200 K, n = 104 cm−3, the Jeans mass is > 100 M�. The clump with this

mass may fragment into smaller pieces later in the collapse, so this mass cannot be
directly associated with the masses of resulting stars.

The criterion tcool = ε/ε̇ ∼ 3
2nkT/Λ(T ) < tff ∼ 1√

Gρ̄
, tH ≡ a/ȧ also has to be

met (Tegmark et al., 1997), where T is the temperature of gas, Λ represents cooling
function, and ε represents the thermal energy. This gives a minimum mass of the halo
for primordial gas to collapse inside it. The exact lower mass depends on the reaction
rates adopted. However, by assuming the virial temperature of primordial gas to be
1000 K, Glover (2013) calculates the critical halo mass as:

Mcrit ' 6× 105h−1
( µ

1.2

)−3/2
Ω−1/2
m

(
1 + z

10

)−3/2

. (1.62)

If this condition is not met, the gas collapse is either prevented by thermal pressure
or the expansion of the universe. Yoshida et al. (2003) has shown this explicitly with
direct hydrodynamical simulations in a cosmological context. The latter also suggests
that dynamical heating from mergers could delay the initial collapse of primordial
gas.

1.10 Pop III - Pop II transition

The transition in the characteristic mass for different populations of stars can be
understood to lowest order by the argument of Jeans masses. As heavy elements
produced inside the stars and dust that is formed out of these metals are distributed
to the interstellar medium, there are more coolants and the Jeans masses become
lower.

There are two main theories about the main driver for transition from Pop III to
Pop II stars. There are works that argue C+ and O produced as a result of earlier
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Figure 1.5: Thermal evolution of gas with different metallicities. The second trough
in temperatures is induced by dust cooling. Taken from Fig.1 in Omukai
(2000)

generation of stars lowers the characteristic masses of Pop II stars (Bromm et al., 2001;
Bromm and Loeb, 2003; Santoro and Shull, 2006). Theoretically, there is a concept of
‘critical metallicity’, Zcrit, above which the mode of star formation changes from Pop
III stars to Pop II stars. In this theory, the critical metallicity Zcrit is found to be
∼ 10−3Z�. On the other hand, Omukai (2000) and Schneider et al. (2003) emphasises
the importance of dust, which could be produced from supernova explosions of the
first stars (Todini and Ferrara, 2001; Nozawa et al., 2003). They followed the thermal
evolution of gas with different metallicities and demonstrated that the dust grains are
mostly responsible for the fragmentation which is taking place in the enriched gas
(see Fig. 1.5). Based on works of Clark et al. (2008), Dopcke et al. (2011, 2013) have
improved on the treatment of dust and found formation of low-mass stars. For this
dust cooling scenario, Zcrit = 10−6 − 10−4 Z� is considered to be capable of changing
the characteristic mass of stars.

1.11 Reactions involving H2 in the primordial gas

As discussed in Section 1.9, H2 plays an important role in the cooling of the metal-free
gas. In primordial gas, the chemical reactions that is relevant for the formation of H2

at densities higher than ∼ 108 cm−3 is

H + H + H→ H2 + H, (1.63)
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as can be seen from the fact that the speed at which this reaction proceeds increases
rapidly as density increases (proportional to the cube of number density of hydrogen
atoms).

Other important channels in which H2 forms at lower densities are

H + e− → H− + γ (1.64)

H− + H → H2 + e− (1.65)

and

H + H+ → H+
2 + γ (1.66)

H+
2 + H → H2 + H+. (1.67)

The processes presented here are less efficient than H2 formation in the local interstel-
lar medium, where H2 molecules typically form on dust grains. In the absence of dust
grains, H + H → H2 + γ is an inefficient process since H2 molecules cannot radiate
away excess energy because they do not possess a dipole moment.

1.12 Protostellar collapse

The capital letters in square brackets in this paragraph represent different points in the
ρ-T diagram demonstrated in Fig. 1.6 and correspond to different physical processes.
At densities < 1cm−3, compressional heating is more efficient than H2 line cooling, so
the temperature increases [A]. After that, the temperature decreases due to H2 line
cooling (there is also small amount of contribution from HD) [B]. The temperature
reaches the minimum at ∼ 104 cm−3. This is because at n ∼ 104 cm−3 the energy
levels of H2 that are relevant for cooling reach local thermal equilibrium (LTE)[C]. It
means each energy level is populated according to its local thermal equilibrium value
which depends only on temperature and the cooling rate no longer scales as ∝ n2 and
only as ∝ n. According to reaction (1.63), the fraction of hydrogen molecules starts
to increase rapidly at n ∼ 1010 cm−3 from 10−3 to unity. At n ∼ 1010–1012 cm−3, H2

cooling starts to become optically thick [E]. Collisionally induced emission/absorption
becomes important [F]. As the temperature rises, H2 starts to dissociate at densities
around ∼ 1020 cm−3 [G].

First Omukai and Nishi (1998) in one-dimensional calculations and then Yoshida
et al. (2008) in three-dimensions have demonstrated that from primordial gas, proto-
stars of size ∼ 0.1 AU form.

1.13 Accretion phase

The Jeans mass gives an estimate of the protostar mass. However, the final mass of
stars is determined by the accretion phase that follows this initial collapse. By di-
mensional analysis, we find that the accretion rate Ṁacc ∼MJ/tff ∼ c3

s/G. Therefore,
the mass accretion is expected to be higher during Pop III star formation, where the
temperature remains higher than during present day star formation.
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Figure 1.6: Temperature and molecular fraction as a function of number density.
Taken from Fig. 3 in Yoshida et al. (2006)
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As shown in Fig. 1.7, what influences Pop III stars have on the surrounding ISM
is different depending on their final mass. Here, ‘final mass’ refers to the mass of the
star when it has stopped accreting matter. Note that this ‘final mass’ is referred to
as ‘initial mass’ in Heger and Woosley (2002) and in Fig. 1.7, meaning the mass of
the star before it undergoes subsequent stages of evolution.

Stars with final mass (‘initial mass’ according to Heger and Woosley 2002) M <
10 M� result in white dwarf, those in the mass range 10 M� < M < 25 M� explode as
supernovae and results in neutron stars, those in the mass range 25M� < M < 100M�
explode as supernovae and result in black holes. For those with mass M > 100 M�,
first the pulsational pair instability destroys the outer layers of the stars, then they
end up as black holes. Stars in the mass range 140 M� < M < 260 M� end their lives
as pair instability supernovae, and nothing is left behind. In the cases of stars with
mass M > 260 M�, after pair instability takes place, the stars end up in black holes.
Therefore, knowing the final mass of Population III stars is the ultimate goal for the
research on Population III stars. This is still under investigation today.

Early works on the evolution of protostars include Stahler et al. (1986b), Stahler
et al. (1986a), Omukai and Palla (2001), Omukai and Palla (2003). They solved stellar
structure equations by assuming a constant accretion onto the hydrostatic core. Their
main finding is that there is a critical mass accretion value Ṁcrit ∼ 4× 10−3 M� yr−1,
above which the mass accretion is stopped shortly after.

Some authors have made use of sink particles to study the mass accretion onto
Pop III stars (Bromm and Loeb, 2004; Clark et al., 2008; Stacy et al., 2010; Smith
et al., 2011). Sink particles are point masses to approximate mass in regions within
a predetermined radius. Sink particle technique prevents timesteps imposed by the
Courant criterion to become too small and allows us to follow the growth of stars for
a longer time. Once the sink particles are formed, they are decoupled from the gas
and only affect gas through gravitational forces and by accretion of gas. The mass
and the velocity of a sink particle is calculated from the mass and the momentum
of gas particles/cells they have accreted. This allows multiple stars to be formed in
a single simulation domain and allows statistical study on the mass of Pop III stars.
Clark et al. (2011b) has shown that the disks form around the first generation of stars,
and since the mass of these disks keep increasing, at some point, the disks start to
fragment and result in multiple Pop III stars that have a broad range of masses.

Recent simulations include radiation from protostars in calculating the accretion
rates (Stacy et al., 2012; Susa, 2013; Hirano et al., 2014). The picture that emerges
from Hirano et al. (2014) is that there is a wide range in the mass of Pop III stars
and that the low mass Pop III stars can form by radiation halting accretion onto the
central star.

1.14 Observational signatures

Although the luminosity of single Population III star is not enough to be observed
(Wiggins et al., 2014), the SNe resulting from Population III stars are considered
to be a promising channel for observing the distant universe (Weinmann and Lilly,

18
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Figure 1.7: Relation between the initial and the final stellar mass. Taken from Fig. 2
in Heger and Woosley (2002)
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2005; Meiksin and Whalen, 2013; de Souza et al., 2014). Gamma-Ray Busts (GRBs)
are especially favoured because of their high luminosity and have long been studied
as a probe of the distant universe (Bromm and Loeb, 2006). The difficulty in using
GRB observation to constrain theory of Pop III star formation is that the luminosity
function of GRBs is poorly determined (McLure et al., 2010; Bouwens et al., 2011) and
that in metal-free stars GRBs may be much less common than in higher metallicity
stars (Matzner, 2003).

There are also some attempts made to search for metal-poor stars in the Galaxy, the
field known as ‘stellar archaeology’ (Frebel, 2010). By looking at a pattern in chemical
abundances, they provide valuable information about properties of the interstellar
medium from which they formed. By finding many samples of low-metallicity stars,
we get stricter constraints on the model for first star formation and the later processes
that produce heavy elements. A successful model would have to explain the correlation
between [Fe/H] and other elements, as well as the scatter in the correlation. There has
been some success in explaining observed abundances of elements by modelling yields
of Pop III Supernovae or hypernovae (Tominaga et al., 2007; Heger and Woosley,
2010).

Another interesting possibility may be the 21-cm line of neutral hydrogen. This
offers rich information about the state of the universe at high-redshift that is inacces-
sible using other methods (see e.g. Furlanetto et al., 2006).

1.15 Structure of this thesis

In Chapter 2 of this thesis, we investigate the properties of less massive dark matter
structures than studied previously. Since such structure correspond to higher k in
the power spectrum, the initial density perturbations are statistically different from
their massive counterparts, and therefore it is worthwhile making a comparison with
their lower-redshift counterparts. Another motivation to study dark matter mini-
haloes are that they are the cites where Pop III star formation takes place. Chapter 3
briefly explains the principles of the moving-mesh code and describes the necessary
modification we have made to the code to study the initial collapse of primordial
gas. In Chapter 4, we focus on the early protostellar collapse stage of Pop III star
formation, which takes place deep inside the gravitational potential well of dark matter
mini-haloes, and demonstrate what decides on the abundance of HD that is formed
during this phase. Chapter 5 summarises the results of this thesis.
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2 Statistical properties of dark matter
mini-haloes at z >= 15

The co-authors of this study are Paul C. Clark, Volker Springel, Ralf S. Klessen, and
Simon C. O. Glover (Sasaki et al., 2014).

Understanding the formation of the first objects in the universe critically depends
on knowing whether the properties of small dark matter structures at high-redshift
(z ≥ 15) are different from their more massive lower-redshift counterparts. To clar-
ify this point, we performed a high-resolution N -body simulation of a cosmological
volume 1h−1Mpc comoving on a side, reaching the highest mass resolution to date
in this regime. We make precision measurements of various physical properties that
characterise dark matter haloes (such as the virial ratio, spin parameter, shape, and
formation times, etc.) for the high-redshift (z ≥ 15) dark matter mini-haloes we find
in our simulation, and compare them to literature results and a moderate-resolution
comparison run within a cube of side-length 100h−1Mpc. We find that dark matter
haloes at high-redshift have a log-normal distribution of the dimensionless spin param-
eter centred around λ̄ ∼ 0.03, similar to their more massive counterparts. They tend
to have a small ratio of the length of the shortest axis to the longest axis (sphericity),
and are highly prolate. In fact, haloes of given mass that formed recently are the least
spherical, have the highest virial ratios, and have the highest spins. Interestingly, the
formation times of our mini-haloes depend only very weakly on mass, in contrast to
more massive objects. This is expected from the slope of the linear power spectrum of
density perturbations at this scale, but despite this difference, dark matter structures
at high-redshift share many properties with their much more massive counterparts
observed at later times.

2.1 Introduction

Understanding the formation of cosmic structures at all scales has been of central
interest in the field of astrophysics for several decades. We now have a widely accepted
cosmological paradigm to describe the universe, known as Λcold dark matter (ΛCDM),
and its basic physical parameters are well determined today (Komatsu et al., 2011).
Once this paradigm is fixed, it is conceptually a straight-forward task to follow density
perturbations growing under gravity, allowing one to connect small Gaussian density
perturbations in the early universe to non-linear dark matter haloes, one of which
hosts our Galaxy.

An extensive body of research on studying large-scale structure formation with N -
body simulations has been accumulated (Efstathiou et al. 1988, Lacey and Cole 1994,
Katz et al. 1999, Kauffmann et al. 1999, Springel et al. 2005). More recently, very

21
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large simulations that targeted the formation of the Milky Way halo, including of
the order of a few billion particles in the high-resolution region, were performed and
clarified the hierarchical growth process which formed our Galaxy (Diemand et al.
2008, Springel et al. 2008, Ishiyama et al. 2009, Stadel et al. 2009). However, much
less work has been done on small-scale structure formation, where objects with virial
radii of the order of ∼ kpc are resolved.

Because there is a turnover in the power spectrum of density fluctuations at k ∼
0.01h Mpc−1 comoving, and the slope of the power spectrum asymptotically ap-
proaches the critical value of −3 at high wave numbers (see Fig. 2.7), the density
perturbations that exist in our initial conditions (1h−1Mpc in size) at z ∼ 100 are
statistically different from those in a box of 100h−1Mpc in size. Therefore, there is
no reason to expect that the collapsed objects forming at these different scales are
strictly self-similar. Our goal is to study the small-scale regime of the power spectrum
and the properties of the corresponding first dark matter haloes, and to quantify the
differences with larger dark matter haloes that form later.

An important additional motivation for studying these small-scale structures lies
in Population III (Pop III) star formation. Recent works (O’Shea and Norman, 2007;
Gao et al., 2007; Turk et al., 2009; Clark et al., 2011a; Greif et al., 2011; Smith et al.,
2011; Greif et al., 2012) show that the properties of Pop III stars (such as their masses
or multiplicity) formed in each dark matter halo strongly depend on the physical con-
ditions in the halo, and halo-to-halo differences can be large. Since cosmological hy-
drodynamical simulations are computationally expensive, previous calculations have
focused on the first or the first few mini-haloes to collapse in the cosmological volume
of interest. They studied statistical properties of Pop III stars by using a group of
realisations of cosmological simulations and typically studied only one halo from each
realisation. As such, halo-to-halo differences within a single cosmological realisation
are still largely unknown, and our current understanding of the Pop III star formation
process may be biased by our selection of the first collapsing halo. Recent works such
as Hirano et al. (2014), however, have increased the number of samples significantly.
But it is computationally still not possible to model all the haloes in the simulation
domain with hydrodynamic simulations.

In our work, we adopt a pure N -body simulation to statistically study halo-to-halo
variations on scales relevant for Pop III star formation. We model a cubic region of
1h−1Mpc in size using 20483 dark matter particles with a mass of ∼ 9 M� each, and
follow the dynamical evolution of this region from a redshift of z ∼ 100 to z = 15.
Full details of the simulation are provided in Section 2. To date many numerical
studies of Pop III star formation have used a friends-of-friends (FOF) method to
identify haloes in the computational volume (Yoshida et al., 2003). In order to make
a meaningful comparison with these Pop III studies, we adopt a similar approach here.
However, it has been shown that such a method of decomposing the dark matter struc-
ture can produce noisy results, with particles near the boundaries switching between
neighbouring haloes somewhat randomly each time-step, or ‘bridging’ distinct bound
structures into single larger structure (Bertschinger and Gelb, 1991). We demonstrate
in Figs 2.1 and 2.2 that this is more extreme for the high-redshift dark matter haloes
found in our simulations. To account for this feature of the FOF method, we use
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the SUBFIND (Springel et al. 2001) method to identify dense regions inside each FOF
group, and we use the most massive of these ‘subhaloes’ for analysis. Haloes in which
SUBFIND fails to identify substructure (< 1 percent of all haloes) are removed from
our analysis.

Among the previous works, our study has many similarities with the work of Jang-
Condell and Hernquist (2001). We probe slightly higher redshift than they did (their
analysis is at z = 10, whereas ours is at z = 15), and our simulation is carried out
at significantly higher resolution: we adopt 20483 particles, compared to the 1283

particles used in their study, for modelling essentially the same comoving volume in
space. As such, our study presents a factor of 4000 improvement in mass resolution
compared to previous systematic studies of this kind. There have also been more
recent attempts to study the properties of dark matter haloes at z = 15 (Davis and
Natarajan 2009, Davis and Natarajan 2010). While they concentrated on relatively
limited properties of dark matter haloes (e.g. shape, angular momentum, clustering),
our work investigates broader aspects of haloes including formation time and how
physical quantities depend on formation time. In short, this paper aims at new
precision measurements of statistical properties of dark matter haloes in the early
universe as enabled by our high-resolution N -body simulations.

This paper is structured as follows. In Section 2, we discuss the numerical methods
adopted in our work, and in Section 3, we present and discuss our results. Finally,
we give our conclusions in Section 4. An Appendix informs about technical aspects
of our analysis such as convergence tests.

2.2 Methods

We have performed an N -body cosmological simulation with 20483 dark matter par-
ticles, using the GADGET-3 code. Our initial conditions were generated using N-
GenIC, the initial condition generator originally developed for the Millenium Simula-
tion (Springel et al., 2005). We first identify haloes by the friends-of-friends (FOF)
algorithm with a standard linking length of b = 0.2 in units of the mean particle
spacing, corresponding to ∼ 0.1h−1kpc in comoving units, followed by an application
of the substructure finding algorithm SUBFIND to identify bound structures within
haloes. Substructures thus defined are used for constructing a merger tree, and the
most massive substructure identified in a given FOF group, referred to as ‘main sub-
halo’, is analysed throughout this study, unless otherwise noted.

We employ cosmological parameters consistent with the WMAP-7 measurements
(Ωm = 0.271, ΩΛ = 0.729, σ8 = 0.809, h = 0.703; Komatsu et al., 2011)1. The
simulation box is 1h−1Mpc in length, and thus the particle mass in our simulation
is ∼ 9 M�. We set the gravitational softening length to be 0.01h−1kpc. The lengths
quoted here are in comoving units. We started from a redshift z ∼ 100 and followed
the formation of dark matter haloes down to z = 15, by which time numerous dark
matter haloes capable of hosting Pop III stars have formed. Unless otherwise noted,

1We would not expect our results to differ significantly if we were to use the WMAP-9 parameters
(Hinshaw et al., 2013), or those measured by Planck (Planck Collaboration et al., 2013).
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we analysed the simulation output at the end of simulation (i.e. z = 15). Hereafter
we refer to this simulation as the ‘Small’ run.

We also performed a moderate-resolution comparison simulation at larger scales,
using 5123 particles to follow structure formation inside a region of 100h−1Mpc on a
side with force softening length 4.0h−1kpc. The results of this comparison simulation
are mostly presented in Appendix A.1, which we will refer to where necessary. This
simulation is referred to as the ‘Large’ run hereafter. The essential parameters of the
two simulations are summarised in Table A.1.

2.2.1 Merger trees

A FOF group is identified by linking all particles that are separated by less than a
fraction b = 0.2 of the mean particle separation. Thus, this method is approximately
selecting regions that are by a factor of 1/b3 denser than the mean cosmic density
(by this choice of b, naively we expect that the selected region corresponds to an
overdensity∼ 200 relative to the background, similar to the expected virial overdensity
according to the top-hat collapse model). However, FOF is known to occasionally link
separate objects across particle bridges, and it is also not suitable for identifying bound
substructures inside dense regions.

Therefore, in each FOF group, bound substructures are identified using SUBFIND2.
In short, inside each FOF halo, locally overdense regions are spotted by identifying
saddle points in an adaptively smoothed dark matter density field. The latter is
constructed with an SPH smoothing kernel with Ndens = 64 neighbours, while the
topological identification of locally overdense regions is based on Nngb = 20 nearest
neighbours (the notation here follows Springel et al. 2001). Two structures connected
with only a thin bridge of dark matter particles would be identified as two different
(sub)haloes by SUBFIND. Each dark matter particle inside a FOF group is either
associated to one subhalo or to none. In the algorithm, all subhaloes are checked to
see whether they are gravitationally bound. In defining a formation time for dark
matter halo, we shall concentrate on the most massive subhalo in each FOF halo at
the final output time; the most massive subhalo typically contains a dominant fraction
of the mass of its host FOF halo.

For each FOF group, we investigate when its most massive subhalo gained half of
its final mass at z = 15. This is done by following the merger tree along the most
massive progenitor in adjacent snapshots. We estimate the formation time by linearly
interpolating between the bound mass of subhalo at two subsequent SUBFIND output
times: one output immediately after the subhalo gained half its final mass, and one
output immediately before. A similar approach is adopted in works such as that of
Gao et al. (2005).

2We refer the reader to Springel et al. (2001) for the details of the algorithm.
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Figure 2.1: One example of a FOF halo found in the ‘Large’ run at z = 0. Its shape
resembles a sphere, and it is rich in substructure.

2.3 Results

In the following, we determine and discuss various physical properties that characterise
dark matter haloes, and try to clarify differences and similarities of dark matter
structures that reside at early time in a small box of ∼ 1h−1Mpc on a side, relative
to those forming later in a larger (∼ 100h−1Mpc) simulation box.

In Fig. 2.1 and Fig. 2.2, we show representative density maps of FOF objects taken
from our ‘Large’ and ‘Small’ runs, respectively. It is easily recognisable that the
particular FOF halo shown at z = 15 is filamentary and appears to be composed of
different dense regions that are connected together. In contrast, the FOF halo at z = 0
is much more spherical, and contains rich substructure. While not as extreme in all
cases, we confirmed these general differences through inspection of a large number of
images of different haloes. Since the particles located at the outer regions of each FOF
haloes are typically not bound to the halo, and could therefore obscure our analysis
of the halo binding, shape, etc. in later sections we chose to analyse the most massive
substructure identified by SUBFIND in each FOF halo.

2.3.1 Spin parameter

We begin with the dimensionless spin parameter of a halo. It is defined as

λ =
J |E|1/2

GM5/2
, (2.1)

where J is the total angular momentum of a halo, E is the total energy, G is the
gravitational constant, and M is the mass. For objects in the Keplerian rotation, this
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Figure 2.2: One example of a FOF halo found in the ‘Small’ run at z = 15. It has a
filamentary shape.

value is of the order of unity. For our analysis of angular momentum, we included
only haloes that have at least 1000 particles inside their main subhaloes, i.e. with
a minimum mass of ∼ 104 M�. The spin of dark matter haloes is a result of tidal
torques that they experience during their formation and subsequent evolution (White,
1984).

We show the median, and 20%, 80% percentiles of this parameter in a series of
logarithmic mass bins in Fig. 2.3. We find that at all the redshifts we looked at, the
spin parameter λ weakly depends on mass.

The distribution of λ is often fitted by a log-normal distribution (Warren et al.,
1992):

p(λ) dλ =
1√

2πσλ
exp

[
− ln2(λ/λ̄)

2σ2
λ

]
dλ

λ
. (2.2)

We obtained a log-normal fit to the spin distribution at z = 15 with parameters
λ̄ = 0.0262 and σλ = 0.495 (Fig. 2.4, top) for all haloes with at least 1000 particles.
In other parts of this paper, lower limit of 100 particles is introduced such that lower
mass haloes, which are not well-resolved, will be excluded from our analysis in this
paper (shape, virial ratios, formation times etc). We adopted a more demanding
criterion here, since the spin parameter is known to depend more strongly on how
well the dark matter haloes are resolved than other physical parameters (Davis and
Natarajan 2010, see also Appendix A.3 of this paper). Jang-Condell and Hernquist
(2001) found that the spin distribution follows a log-normal distribution at z = 10
(with λ̄ = 0.033, which is overplotted with a dashed-line in Fig. 2.4). The similar
value in λ̄ is a bit surprising, because although we model essentially the same volume
in comoving space with slightly different redshift, the different mass resolutions in the
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two simulations mean that we resolve dark matter haloes in different mass ranges.
This outcome is however consistent with findings from analytical works that predict
that λ̄ has no strong dependence on the power spectrum (Heavens and Peacock, 1988).

Since we calculate spin parameter from substructure within FOF haloes, we do not
suffer from artificial high-end tail of spin distribution in Fig. 2.4 as in Bett et al. (2007),
who analysed a simulation output produced with the same code as ours, GADGET-3,
on a larger scale but chose to analyse FOF haloes.

Because the spin of a halo is a sum of slight differences in position and velocity space,
it is sensitive to how well the halo is resolved. As such, our study qualifies as the most
precise measurement of the spin parameter at z = 15 thus far. We expect that our
estimate of the spin parameter for subhaloes with mass > 104 h−1M� (corresponding
to > 103 particles) is correct within a factor of 2 at a 1σ level (Trenti et al., 2010).
We obtain λ̄ = 0.0247 and σλ = 0.486 for haloes in the mass range 105±0.2 h−1M�
and λ̄ = 0.0274 and σλ = 0.495 for haloes in the mass range 104±0.2 h−1M� (Fig. 2.4,
bottom). This is in contrast to the result of Davis and Natarajan (2009), where
they find the more massive haloes to have systematically larger spin. This is a result
of different halo identification algorithms. The particles that lie in the surfaces of
dark matter haloes contribute little in terms of mass but much in terms of angular
momentum. Therefore, the actual value of spin parameter heavily depends on halo
identification methods employed. Comparison of Figs 2.3 and A.5 shows that the
FOF gives a positive correlation between spin and halo mass, which is not present
when we employ the more conservative SUBFIND method.

In simulations with dark matter and gas, it has been found that the spin parameters
of both components follow similar distributions (van den Bosch et al., 2002). As we
aim to study the environmental conditions of first star formation, knowledge of λ is
a key prerequisite. There is a recent work that estimates the Pop III initial mass
function (IMF) from the rotational velocity of haloes (de Souza et al., 2013). Hirano
et al. (2014) selected ∼ 100 haloes from multiple realisations of structure formation
and resimulated many samples of Pop III star forming regions in a suite of two-
dimensional radiation hydrodynamic simulations, ending up with a statistical study
of the final mass of a single protostar. Their spin distribution of the dark matter
component is centred on λ̄ = 0.0495, considerably higher than the values found in
most pure dark matter simulations including ours. This is largely due to a selection
effect and the positive mass-spin relationship of FOF haloes described earlier: these
authors employed a standard FOF algorithm to extract the haloes, and focused on the
more massive haloes in the simulation (i.e. those massive enough to have triggered
H2 cooling), which are likely to have higher spin.

2.3.2 Virial ratios

In this paper, we define the virial ratio as 2.0 × EK/EG, so that a value of unity
corresponds to virial equilibrium. The total kinetic energy EK is defined as

EK =
1

2
Σi miv

2
i , (2.3)
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2 Small-scale structure formation

Figure 2.3: Distribution of the dimensionless spin parameter λ in dark matter haloes
of different mass at redshift z ∼ 25 (top panel), z ∼ 20 (middle panel),
and z ∼ 15 (bottom panel). Crosses indicate the median value of λ, while
the error bars indicate the 20th and 80th percentiles. The dashed vertical
lines represent lower mass limit of 1000 particles. We exclude any bins
that contained less than 10 samples. The same holds for Fig. 2.5.
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Figure 2.4: The top panel is the spin distribution for all haloes with ≥ 1000 particles
at z = 15. The bottom panel shows the spin distribution for haloes within
a mass range of 105±0.2 h−1M� (diamonds) and 104±0.2 h−1M� (crosses).
The symbols represent data from our simulations, and the lines indicate
log-normal fits. The vertical solid (dashed) lines represent λ̄ for our (Jang-
Condell and Hernquist 2001) simulation.
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with velocity being defined relative to the centre-of-mass velocity of the halo through-
out this paper. The gravitational potential energy EG is defined as

EG =
1

2

∑
i 6=j

G
mimj

rij
. (2.4)

The sum is taken over all particles i and j that belong to the main subhalo in a specific
FOF halo, with mi and mj being their mass, and rij their distance. This quantity is
numerically calculated by direct summation.

Fig. 2.5 shows the distribution of virial ratios for different dark matter haloes at
redshifts z ∼ 25 (top), 20 (middle), 15 (bottom). We see that there is some variation
in this quantity, but the median, and the 20%, 80% percentiles of the virial ratio are
well above unity for all mass ranges we have investigated, and thus the dark matter
haloes are not virialized but instead are usually perturbed. This has previously been
noted by Jang-Condell and Hernquist (2001) and Davis and Natarajan (2010), with
relatively low resolution at high redshifts, and also by, for example, Hetznecker and
Burkert (2006) at lower redshifts, z < 3. It is also beneficial to compare results of
the ‘Large’ box run with the ‘Small’ run. It is clear from Fig. A.3 that dark matter
haloes found in the larger simulation box at z = 0 have systematically lower virial
ratios, and are thus closer to virial equilibrium than those at z = 15.

The median value of the virial ratio in Fig. 2.5 increases with increasing halo mass.
The median value of a given mass bin does not evolve considerably over a range
of redshift, in contrast to Hetznecker and Burkert (2006), who have found that the
virial ratio decreases monotonically with redshift between z = 3 and z = 0. These
differences reflect the different dynamical states of dark matter mini-haloes at z ≥ 15
and more massive systems at z < 3.

Our results show that dark matter haloes at z ∼ 15 cannot be considered to typically
represent isolated systems undergoing collapse (see also discussion in Section 2.3.6).
The excess kinetic energy of the dark matter haloes, if shared by their gas component,
could influence the star formation taking place because the properties of the turbulence
in the interstellar medium strongly influence the star formation process within them
(Clark et al. 2011a, Prieto et al. 2012). Distinguishing relaxed haloes from unrelaxed
haloes is not a straight-forward task, and needs to be based on complex criteria that
involve, for example, virial ratios and the fraction of mass in substructures (Neto
et al., 2007). Our simple definition of virial ratio should however already give a useful
proxy for the dynamical state of a halo.

2.3.3 Mass function

We now compare the halo mass distribution with predictions of analytical models.
Let ∆n be the number density of objects with mass (FOF mass found for our groups
or mass of main subhalo in our group) within a logarithmic bin, and ∆ logM be
logM2/M1 where M2/M1 is the ratio of upper and lower values for each mass bin
(constant). In Fig. 2.6, ∆n

∆ logM is plotted against the median value in each mass
bin along with Poisson error bars (error bars are omitted for subhalo data for easy

30



2.3 Results

Figure 2.5: Distribution of the virial ratio in dark matter haloes of different mass at
redshift z ∼ 25 (top panel), z ∼ 20 (middle panel), and z ∼ 15 (bottom
panel). The virial ratio is defined such that it tends to unity at virial
equilibrium. Crosses indicate the median value of the virial ratio, while
the error bars indicate the 20th and 80th percentiles. The mass bins are
spaced logarithmically, and symbols are only plotted for bins containing
at least 10 dark matter haloes.
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Figure 2.6: Mass function of dark matter haloes at z = 15 (diamond symbols represent
number counts for FOF haloes, when crosses denote those for the main
subhalo in a FOF halo). The Press-Schechter (Press and Schechter, 1974)
and Sheth-Tormen functions (Sheth and Tormen, 1999) are over-plotted.

recognition). The analytical Press-Schechter (Press and Schechter, 1974) and Sheth-
Tormen models (Sheth and Tormen, 1999) are plotted with continuous and dotted
lines, respectively. The Press-Schechter function underestimates the number of haloes
in the high mass range, whereas the Sheth-Tormen function gives a good fit to the
simulated FOF data over a broad range of masses including the high-mass end. Since
subhaloes contain only part of mass of its host FOF haloes and therefore some of the
haloes that belonged to a particular mass bin is shifted to neighbouring lower mass
bin, number density of subhaloes in a given mass bin is systematically smaller than
FOF haloes. Overall, we find that these analytical fitting formulae reproduce not
only the statistics of dark matter haloes with mass 107 h−1M� as previously known
(Ishiyama et al., 2013) at z = 0, but they also describe less massive haloes obtained
from our simulations, such as those as small as 103 h−1M� at z = 15.

2.3.4 Formation time

The linear power spectrum of density perturbations at z = 0 for the cosmological
parameters we adopt in our work is plotted in Fig. 2.7, where the dark blue line show
the critical slope of −3. In this section, we express the slope of the power spectrum
by p. Therefore, P (k) ∝ kp, where the slope p changes as a function of wavenumber
k. For the linear power spectrum shown in Fig. 2.7, p = −2.37,−2.62,−2.74,−2.80
at k = 1, 10, 100, 1000h Mpc−1.

The power spectrum increases at very low wavenumbers, then turns over and starts
to decrease again, approaching power law with p ' −3 at high wavenumbers. For
the mass scales extensively studied by earlier works, Mhalo ∼ 1012 h−1M�, the slope
is substantially shallower compared to a mass scale of Mhalo ∼ 106 h−1M� where
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Figure 2.7: The linearly extrapolated power spectrum of dark matter at z = 0 for the
cosmological parameters we adopt. The critical slope of k−3 is shown with
dark blue line.

the slope is close to the critical value of p = −3. It is critical in the sense that the
non-dimensional power,

∆2(k) =
k3P (k)

2π2
(2.5)

becomes independent of wavenumber k. ∆2(k) represents the amount of perturbations
in a logarithmic bin in k. For p > −3, ∆2(k) is a monotonically increasing function
of k. Therefore, given p > −3, for a fixed time, there is more power in small scales
(large k) than in large scales (small k). Thus, small gravitational structures form first
in such regimes (explicitly shown in Fig. 1 in Harker et al. 2006). In contrast, for
p = −3, ∆2(k) is independent of wavenumber k, thus the dark matter structures of
various mass collapse simultaneously and in a non-hierarchical fashion. We now show
this explicitly using our high-resolution simulation.

Adopting the methods described in Section 2.2.1, we identified the formation time
of each FOF halo. In Fig. 2.8, we divide dark matter haloes in various mass bins and
plot the median, and 20%, 80% values of formation time in each mass bin. We find
that in the mass range we are interested in, massive dark matter haloes and small
haloes form simultaneously (this is only true statistically, because there is a dispersion
of ∼ 10 Myr in the formation time in a given mass bin). This is quite different from
the more massive regime, where less massive haloes form first (Harker et al. 2006, also
see results of the ‘Large’ run in Fig. A.2). This implies that the formation processes
of dark matter mini-haloes found at high redshift in a simulation box of 1h−1Mpc
differ substantially from those found at much higher halo masses in larger boxes.
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Figure 2.8: Formation time of dark matter haloes as a function of their mass. Median,
20 %, and 80 % values in each mass bin are plotted. Haloes that differ
in mass by ∼ four orders of magnitude form simultaneously. This is quite
different from the formation time for more massive systems at z = 0.
Compare with Fig. A.2.

2.3.5 Halo shape

Often the high-density regions found in collisionless N -body simulations are not ex-
actly spherically symmetric, as opposed to the assumption which is made to derive
Press-Schechter mass function for example. Modelling dark matter haloes as ellip-
soids and measuring their three axes provide a way to quantify the shape of these
haloes and how much it differs from the spherical collapse model. Moreover, there are
several different kinds of approaches made observationally to estimate halo shapes in
the local universe: First, there are ways to measure dark matter distribution by weak
lensing using X-ray clusters (Oguri et al., 2010). Secondly, there are also attempts to
determine dark matter halo shapes for galaxies statistically using surveys (Hoekstra
et al., 2004). Lastly, there are also efforts made to derive the gravitational potential
of our Galaxy by using the kinematics of tidal tails of the Sagittarius dwarf spheroidal
galaxy (Law et al., 2009). The less massive haloes found in our study are influenced
by a much shorter wavelength portion of the ΛCDM power spectrum than the haloes
examined in these observational studies, and it is therefore interesting to see whether
there is any systematic difference in the shapes of these mini-haloes.

We define a second moment tensor of the halo shape as:

Iij =
∑
n

xixj , (2.6)

where xi (i = 1, 2, 3 corresponding to x, y, and z coordinates) is the particle position
with respect to the centre of the halo, which we define as the position of the particle
with the lowest potential energy. The same form of the shape matrix was adopted
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Figure 2.9: Median of sphericity s and triaxiality T in different mass bins for dark
matter haloes at z = 15. The sphericity and triaxiality are defined by
equations (2.10) and (2.11), respectively.

in the earlier studies of Jang-Condell and Hernquist (2001) and Macciò et al. (2008).
We note that sometimes Iij is defined as

∑
n xixj/r

′2, i.e. with a 1/r′2 normalisation
factor (Moore et al. 2004, Allgood et al. 2006). But we here adopt the former, more
widely used formulation.

The sum is taken over all the particles that belong to the main subhalo in a FOF
halo. After evaluating the inertia tensor, we compute its eigenvalues I1, I2, and I3,
which are the three principal moments of inertia of the halo, and which satisfy the
relationship I1 ≥ I2 ≥ I3. The lengths of the axes a, b, and c associated with the
principal moments of inertia are given by

a =
√

(5 I1)/Np, (2.7)

b =
√

(5 I2)/Np, (2.8)

c =
√

(5 I3)/Np, (2.9)

where Np is the number of particles summed up in equation (2.6). The sphericity of
the halo is then defined as

s = c/a. (2.10)

From the above formulation, it should be clear that a spherically symmetric halo has
s = 1. The triaxiality of the halo is defined as

T = (a2 − b2)/(a2 − c2). (2.11)

By definition, an oblate halo (a = b > c) has T = 0, and a prolate halo (a > b = c)
has T = 1.
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Black solid lines in the different rows in Fig. 2.10 show the distribution of sphericity
s for different mass ranges (namely haloes with mass 104±0.2 h−1M�, 105±0.2 h−1M�,
and 106±0.2 h−1M�). We find that the distribution of s based on all haloes has a
peak at 0.4 − 0.45, which is smaller than the value typically found for more massive
haloes at lower redshifts. For example, Allgood et al. (2006) and Macciò et al. (2008)
investigated haloes with masses ∼ 1012 h−1M� to 1015 h−1M� and found almost no
haloes with s < 0.4. This could be due to more frequent mergers at z = 15 compared
to z = 0.

If we compare the distribution function of s and T , 105 M� haloes are more likely
than 104 M� haloes to have lower values of sphericity s and higher values of triaxiality
T . This tendency of more massive haloes having small s and larger T , that has been
observed elsewhere (Allgood et al. 2006, Macciò et al. 2008), is even clearer in Fig. 2.9,
in which we show median values of s and T as a function of halo mass. Comparing
Fig. 2.9 with Fig. A.1, we find that haloes found at z = 0 are systematically more
spherical and only moderately more prolate compared to haloes at z = 15.

Fig. 2.10 also shows that for all the three different mass ranges studied here, a
large fraction of haloes are prolate (T ∼ 1). This is similar as found in previous
studies that focused on haloes forming in different regimes (e.g. more massive haloes,
Dubinski and Carlberg 1991, Warren et al. 1992). This is most likely because dark
matter haloes of various mass scales form from filamentary structures. However, we
find a significant disagreement with de Souza et al. (2013), who worked on similar
mass ranges and practically the same redshift, but with hydrodynamical simulations.
Their dark matter haloes with mass ∼ 105 M� at 11 < z < 16 have s ∼ 0.3 and more
than 90% have T . 0.4, whereas the dark matter haloes with mass ∼ 105 h−1M� at
z = 15 in our simulations have medians s ∼ 0.4 and T ∼ 0.85. We note that de Souza
et al. (2013) adopt a definition of Iij equivalent to ours. The difference in shape could
be due either to the inclusion of gas cooling or to a very different mass resolution. We
resolve substructures inside dark matter haloes with mass ∼ 105 h−1M� with ∼ 104

particles, whereas de Souza et al. (2013) resolve haloes with the same mass with only
∼ 200 particles. We speculate that the inclusion of gas makes a bigger difference than
the mass resolution, however, since our convergence study shows that even with a
relatively small particle number of 200 particles or so, the errors in the axial ratios
(b/a, c/a) remain within 10% (see Table A.2).

Histograms with different colour in Fig. 2.10 represent halo shape distributions for
haloes with different values of the spin parameter. We sorted dark matter haloes in
each mass range into percentiles according to their spin. If we denote the 33% and
67% percentile values of the spin parameter in each mass range as λ1/3 and λ2/3, we
have plotted the probability distribution of halo shapes for three different kinds of
halo selections: all the haloes in a certain mass range, only haloes with λ > λ2/3,
and only haloes with λ < λ1/3. We found that, in all the mass ranges we looked at,
dark matter haloes with high spin are less spherical and more highly prolate, a trend
already confirmed in lower redshift dark matter haloes by previous works (Bett et al.,
2007). Davis and Natarajan (2010), who used different methods to identify haloes and
estimate their shapes, also found similar trends for high-redshift dark matter haloes
with relatively low resolution. This widely observed correlation could occur because
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haloes that experienced strong gravitational forces during their formation are likely
to have high spin and an aspherical shape.

In short, using the highest-resolution simulation to date for resolving a large sample
of substructure inside dark matter mini-haloes of mass > 103 M�, we have demon-
strated that dark matter mini-haloes we find in our simulations at z ∼ 15 have
qualitatively many similarities with dark matter haloes found at z <∼ 6 regarding
their shape.

2.3.6 Correlation between formation time and virial ratio / formation
time and halo shape

Many authors have studied the effect of the mass accretion history on the concen-
tration and density profile of dark matter haloes (Bullock et al. 2001, Wechsler et al.
2002, Tasitsiomi et al. 2004). Much less work has been done on the relationship be-
tween formation time and other halo properties. For dark matter haloes found in
mass scales capable of hosting Pop III star formation, we show for the first time that
there is a direct connection between the shape of a halo, its dynamical state, or its
spin and its formation time. This could provide interesting clues on the formation
processes of dark matter haloes.

We sorted the dark matter haloes in different mass bins into three groups according
to their formation time. In Fig. 2.11, we show that the haloes that formed later (young
haloes) have higher values of the virial ratio, while in Figs 2.12 and 2.13, we show
that haloes that formed later (young haloes) have smaller sphericities and larger spin
parameters. This is because haloes of a given mass that formed later accumulated
their mass recently, and thus had no time for relaxation.

To clarify this point, let us make comparison of relevant time-scales. The Hubble
time, tH = a/ȧ is ∼ 300 Myr at z = 15. If we estimate the relaxation time trelax of dark
matter haloes by trelax = 1√

Gρ
= 1√

G200ρcrit(z=15)
, trelax ∼ 60 Myr at z = 15 (< tH,

as expected). The old haloes analysed here typically formed at around z = 18 − 20
whereas the young haloes formed at z < 16. Thus the former typically had more
than ∆t(z = 18, z = 15) ∼ 80 Myr (> trelax) while the latter had less than ∆t(z =
16, z = 15) ∼ 45 Myr (< trelax) since the time of formation. This could account for the
differences in physical properties we observe when we stop our simulation at z = 15.

In fact, Hetznecker and Burkert (2006) have demonstrated that major mergers
increase the value of the spin parameter and the virial ratio. Allgood et al. (2006)
have also found that haloes forming earlier (old haloes) are more spherical. They
have also shown that the dependence on formation time is weaker for higher mass
haloes, at least in their simulation box. The different methods adopted to calculate
halo shape and formation time preclude a direct comparison, but the high-mass end
of Fig. 2.12 clearly shows similar trends.

Our results confirm that the formation epoch of dark matter haloes influences global
parameters such as shape, virial ratio, and spin. Each dark matter halo has a different
evolution history. Furthermore, even the dark matter haloes that have similar mass
accretion histories could have accreted their mass from different spatial locations or
through different channels. A single global parameter such as formation time is not
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2 Small-scale structure formation

Figure 2.10: Sphericity s and triaxiality T for haloes with mass 104±0.2 h−1M�,
105±0.2 h−1M�, and 106±0.2 h−1M� at z = 15. Different lines represent
distributions for different groups in each mass range. (Blue dotted lines
correspond to haloes with λ < λ1/3, green dash-dotted lines correspond
to haloes with λ > λ2/3, and black solid lines correspond to all subhaloes

in that mass range.)
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Figure 2.11: Relation between formation time and virial ratios. We grouped the haloes
in each mass bin into three groups. Early one-third (old haloes), middle
one-third (intermediate haloes), and late one-third (young haloes). We
plot the median values for early (crosses) and late (diamonds) thirds.
The error bars indicate 20th and 80th percentile values for each group.
(Error bars are plotted in solid lines for haloes forming earlier, and in
dotted lines for haloes forming later. For easy reference, haloes forming
later are slightly offset in mass.) We found that haloes that formed later
(young haloes) have higher virial ratios on average due to lack of time
for relaxation.

enough to account for this, and the scatter in Figs 2.11 and 2.12 could be due to
variations in the processes that let haloes accumulate their mass.

2.3.7 Correlation function

The two-point correlation function calculated from N -body simulations is a useful
quantity, since it can be compared directly with galaxy clustering data (Springel et al.,
2005). We perform a similar analysis to clarify the properties of the mini-haloes we
find at z = 15. Gao et al. (2005) have demonstrated that haloes that assembled earlier
are more strongly clustered, casting doubt on an assumption made in excursion-set
theory (Bond et al., 1991), namely that halo properties depend only on mass and are
independent of environment.

Here we study the clustering of haloes with different spins. In order to quantify the
clustering between dark matter mini-haloes, we make two kinds of catalogues of dark
matter haloes: a simulated halo catalogue and a random catalogue. The simulated
halo catalogue is a list of positions of haloes obtained from our simulation. The
random catalogue is a list of random points distributed in a box that is equal in size
to our simulation box. We measure the two-point correlation function ξ(r) following
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Figure 2.12: Relation between formation time and sphericity. We grouped the haloes
in each mass bin into three groups. We plot the median values with error
bars for early (crosses) and late (diamonds) thirds as in Fig. 2.11. We
found that haloes that formed later (young haloes) are less spherical due
to recent mass accumulation.

Figure 2.13: Relation between formation time and spin parameter. We grouped the
haloes in each mass bin into three groups. We plot the median values with
error bars for early (crosses) and late (diamonds) thirds as in Fig. 2.11.
We found that haloes that formed later (young haloes) have higher values
of spin parameter due to recent mass accumulation. The dashed vertical
lines represent lower mass limit of 1000 particles.
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Hamilton (1993),

ξ(r) =
DD(r)RR(r)

RD(r)2
− 1, (2.12)

where DD(r), RD(r), RR(r) stand for, respectively, the number of pairs with separa-
tion r in the simulated halo catalogue (halo-halo pairs), the simulated halo catalogue
and random catalogue (halo-random point pairs), and just the random catalogue
(random point-random point pairs). The statistical errors are estimated through
RR(r)

√
DD(r)/RD(r)2.

The two-point correlation functions for haloes in the mass bin 105±0.2 M� and
104±0.2 M� are depicted in Fig. 2.14 as a function of separation in units of comoving
h−1kpc. As in Section 2.3.5, we sorted dark matter haloes in both mass ranges into
three subsets according to their spin. We found that haloes with high spin are more
clustered, which is well-known in large-scale simulations (Bett et al. 2007, Gao and
White 2007), but was only investigated with relatively low resolution in much smaller
scales (Davis and Natarajan 2009). This suggests that haloes that form in a clustered
environment are more likely to experience tidal forces from neighbouring overdense
regions, and therefore tend to have larger spin parameters.

2.4 Conclusions

In this paper, we have performed a high-resolution numerical simulation of structure
formation up to the high redshift z = 15, inside a simulation box of side-length
1h−1Mpc. Exploiting our good statistics and resolution, we made high precision
measurements for a variety of global physical parameters of haloes and demonstrated
correlations between some of these properties. We clarified the characteristics of dark
matter mini-haloes by comparing the results of our high-resolution simulation with
works found in the literature on more massive haloes and at lower redshift (z < 6),
and with results from our own moderate-resolution complementary simulation within
a cubic region of 100h−1Mpc on a side that we evolved until z = 0. Our main findings
are as follows.

1. Dark matter haloes found in our simulations have a distribution of spin pa-
rameters that is well fitted by a log-normal function around λ̄ = 0.0262, with
dispersion σλ = 0.495. This value for λ̄ is similar to the value ∼ 0.03 obtained
by studying more massive objects at z ∼ 0 (e.g. galaxy clusters). The dimen-
sionless spin parameter λ is somewhat sensitive to resolution, and hence our
measurement of this quantity is by far the most accurate thus far for the mass
scales investigated in this work.

2. We have shown explicitly from output of our simulations and merger trees con-
structed from them that the formation time of dark matter haloes, defined as
the time at which the most massive substructure in a FOF halo reaches half of
its final mass, only weakly depends on halo mass over about four orders of mag-
nitude (e.g. mass scales of ∼ 103–107 M�). At larger mass scales, structures are
known to form in a hierarchical fashion (formation redshift is a monotonically
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2 Small-scale structure formation

Figure 2.14: Two-point correlation function for dark matter haloes in the mass range
105±0.2 h−1M� and 104±0.2 h−1M�. Distance is in units of comoving
h−1kpc. We have reproduced the trend seen in previous works that high
spin haloes are more highly correlated than low spin haloes.
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decreasing function of halo mass). But on the mass scales investigated here, this
at least partially breaks down. The weak dependence of the formation time on
mass is a result of the slope of the power spectrum of density perturbations at
this scale, where it becomes close to the critical value of −3 for which all mass
perturbations are expected to collapse simultaneously. The scatter in formation
time is ∼ 10 Myr.

3. The shapes of haloes are much less spherical and more highly prolate than haloes
found at z ∼ 0. The most frequent value of the sphericity parameter lies between
0.4 and 0.45. This could be due to more frequent mergers at high redshift. The
majority of haloes have triaxiality parameter > 0.9. More massive haloes are
more likely to be slightly less spherical and slightly more filamentary (prolate).

4. We have also investigated the relationship between formation time and halo
properties such as shape, virial ratios, and spin which was not studied previously
for the scales examined here. On average, haloes that formed more recently
(young haloes) have higher values of the virial ratio, are less spherical, and have
higher values of spin when observed at z = 15. This can be understood because
the time passed between the formation of these young haloes and the end of the
simulation is less than the relaxation time, trelax ∼ 60 Myr, of these haloes.

5. Although not expected from excursion set theory, we find that haloes with high
spin are more strongly clustered, where clustering is quantified by the two-
point correlation function of the positions of different dark matter haloes. This
could mean that haloes born in clustered environments experience stronger tidal
torques during their formation.

In this study, we have investigated broad aspects of dark matter haloes at high-
redshift and found many similarities with their low-redshift counterparts. Our findings
could have important implications for the baryonic component of dark matter haloes
found at high-redshift. Our results on the correlation between formation time and
virial ratio/shape imply that the gas component inside each dark matter halo could
evolve differently depending on accretion history and the actual dynamics of accretion.

Potential caveats of our work include starting redshift of our simulations and ex-
clusion of surface terms in estimating the virial ratios. We will briefly discuss them
in the following paragraphs.

Reed et al. (2007) show that an initial redshift of 139 should be safe for studying
objects at z ' 7-15. Since suppression of high sigma density peaks that result from
use of first order perturbation theory and low starting redshift is known to be stronger
at high redshift (Crocce et al., 2006), it is possible that we are missing some of the
dark matter haloes at the high mass end, especially when studying properties such as
spin parameter of them at z ∼ 25. Due to this suppression effect, we could be under-
estimating the two-point correlation function and formation time of dark matter haloes
as well.

It is pointed out in recent literature (Ballesteros-Paredes 2006, Davis et al. 2011)
that the surface terms in virial equations are in general not negligible. Once these

43



2 Small-scale structure formation

terms are taken into account, dark matter haloes tend to have less excess kinetic
energy. However, Davis et al. (2011) show that even after correcting for the surface
terms, dark matter haloes have virial ratios that are greater than one and that increase
with increasing redshift. Therefore, although we would expect a systematic decrease in
the absolute values of virial ratios once we include the surface terms, our main results
regarding the dependence of the virial ratio on halo mass and formation redshift should
be sound.

In a future study, it would be interesting to directly follow the star formation taking
place in different dark matter mini-haloes by means of hydrodynamical simulations,
and to clarify how the global dark matter properties investigated here are connected
to the properties of the resulting Pop III stars.
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3 Improving the advection of chemical
species in the Arepo code

In this chapter, we first describe the basic principles of the AREPO code and later
demonstrate some minor modifications we have made to the code.

3.1 Numerical methods

AREPO is a hybrid code that uses an unstructured mesh (i.e. Voronoi tessellation)
to deal with the known shortcomings of previous Eulerian and Lagrangian methods
for solving hydrodynamics. While it uses a Riemann solver to solve equations that
govern hydrodynamics and there are mass flows between cell surfaces, it is particle-
like in that the cells themselves are allowed to move. Thus it does not suffer from the
lack of fluid instabilities or the lack of mixing at surfaces between fluids of different
density, which results from the use of a smoothing kernel, or have difficulty treating
shocks as traditional particle-based codes. It can also deal with fluids with large bulk
motions without introducing errors, unlike traditional mesh-based codes. The detailed
procedures that the simulation code follows is described in the chart in Fig. 3.1 (taken
from Fig. 18 of Springel 2010), so we summarise only the most important aspects in
this section.

From a purely Eulerian point of view, the fundamental equations of hydrodynamics
are reduced to following the evolution of the vector

U =

 ρ
ρv
ρe

 =

 ρ
ρv

ρu+ 1
2ρ|v|

2

 , (3.1)

where ρ is the mass density, v is the velocity, u is the specific internal energy, and e
is the specific total energy. This vector evolves according to a continuity equation of
the form

∂U

∂t
+∇ · F = 0, (3.2)

where the flux function F is given by

F (U) =

 ρv
ρvvT + P
ρ(ρe+ P )v

 . (3.3)
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In understanding how this moving-mesh code works, it is important to know that
there are two kinds of variables defined for each cell: ‘primitive’ and ‘conserved’.
Primitive quantities here include the density ρ, the velocity v, and the pressure P =
(γ − 1)ρu (ρ, v, P ). These quantities determine the state of each cell, and they
are used for solving the Riemann problem. Conserved quantities, namely, the mass,
the momentum, and the energy, are obtained by integrating vector U (defined in
equation (3.1)) over the volume of the cell. By solving the Riemann problem at cell
faces, we can calculate the change in conserved quantities. Simply put, the following
procedures are what is taking place at every timestep to follow the evolution of vector
U inside the code (according to a paragraph in section 3 in Springel 2010, notations
similar):

1. Construct a new Voronoi tessellation based on the current coordinates of the
mesh-generation points. From this, conserved quantities for each cell can be
calculated.

2. From conserved quantities calculate the primitive quantities (ρ, v, P ) for each
cell.

3. Estimate the gradients of the primitive quantities (ρ, v, P ).

4. Assign velocities to the mesh-generating points.

5. Use the Courant condition to determine appropriate timestep (divide radius of
the cell by its sound speed to obtain a timescale).

6. For each surface between cells, compute the flux from the left and the right
states of the face (solve the Riemann problem).

7. For each cell, update the conserved quantities.

8. Move the mesh-generating points with their assigned velocities for this timestep.

When we started working with the subroutine to solve primordial chemical reac-
tions in AREPO, the code could already advect the species when the cells moved. This
gave an approximately correct solution, but it did not account for the flux of species
from cell to cell. Therefore we decided to make modifications to include this effect.
Of course, already in the main body of AREPO, the fundamental quantities such as
the mass, the momentum and the energy are properly calculated with fluxes from
neighbouring cells taken into account (as described in the above procedure), but the
abundance of chemical species that is transported to the neighbouring cell with the
flow was neglected in the original setup. We describe here the details of the modi-
fications we made to the code to account for this effect. Technically, the primordial
chemical reactions are calculated inside a subroutine which is called at the end of each
loop, after the second gravitational half kick is applied (Fig. 3.1). In the next sec-
tion, we describe two technical (numerical) difficulties we have experienced, and the
code fixes to get around such problems. These are both related to the computation of
fluxes between neighbouring cells (step (6), (7) in the above diagram). The primordial
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Figure 3.1: Flow chart of the simulation code: Figure taken from Springel (2010)

chemical network solver used here includes H2,H
+,D+,HD,He+,He++,H,D,He, e−.

Inside the code, two quantities relevant for each chemical species are stored. The in-
tensive variable, ‘abundances’, and the extensive value, ‘total amount of each chemical
species (= cell mass × abundance of that species)’ (hereafter, ‘conserved abundances’
for clarity). It is customary in the field of simulations with chemistry to normalise the
‘abundance’ of each chemical species by the number of protons. For example, in case
of gas that consist purely of hydrogen atom (H) and helium atom (He), the abundance
is fH = 0.76 and fHe = (1 − 0.76)/4 = 0.06, respectively. By using this definition of
abundances, the ‘conserved abundances’ inside each cell will be described simply by
mifx,i, where mi is the mass of cell i, and fx,i is the abundance of chemical species x
in cell i.

Technically, solving fluid equations numerically and the chemical reactions that are
coupled to them simultaneously is a challenging task, since chemical reactions usually
proceed much more quickly than the motion of the fluid. We briefly describe the
methods adopted in our work here. If we represent the mass density of the chemical
species i by ρi, the continuity equation for this species reads
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∂ρi
∂t

+∇ · (ρiv) = Ci −Di, (3.4)

where Ci and Di represent the source and sink terms of chemical species i due to
chemical reactions. Timescales associated with source/sink terms are shorter than the
the advection timescale. Therefore, when we solve the set of equations numerically,
we use operator splitting, and solve the continuity equation without source or sink
terms (equation (3.5)) separately from chemical rate equations (equation (3.6)).

∂ρi
∂t

+∇ · (ρiv) = 0 (3.5)

dρi
dt

= Ci −Di (3.6)

After operator splitting, chemical rate equations can be solved by subcycling, with
standard ordinary differential equation (ODE) solvers, as described for example in
Greif et al. (2011, 2012). Technical challenges in this project involve the estimate of
abundances of chemical species at cell surfaces and the estimate of fluxes between the
cells, as we describe in the next section.

3.2 Technical challenges

In short, we have used the gradient estimation of scalar values inside the code, and
estimated the chemical abundances of each species at the surface of each cell. This is
done by adding two correction terms to the chemical abundances at the cell centre.
One term is due to the spatial gradient and the disposition between cell face and cell
centre (spatial-component). The other term accounts for the fact that each cell face
have velocity and represents spatial gradient of chemical species times the distance
the cell face travel in half the relevant timestep (time-component). Since the number
of hydrogen atoms, helium atoms, and deuterium atoms should be conserved, we
normalise these values at the surface of each cell, which is a recommended method
when treating advection of multi-fluid flows (Plewa and Müller, 1999). Technically,
this is done by multiplying the abundance of each chemical species by the correction
factor, 1/Σjfj where index j runs through all the chemical species in the chemical
network that contain element H, He, and D respectively. Note that for chemical
species HD, normalisation is done according to D (not H). In each cycle, when flow
between the cell faces are allowed (note Fig. 3.1), the chemical abundances is also
transported with the flow. This is essential in order to conserve elemental abundances
in the simulation domain.

One technical difficulty was that the estimate of the chemical abundances at the cell
surface can become negative due to moving-mesh nature of AREPO, especially when
the chemical abundances of two neighbouring cells differ drastically. This could be
the case since the sum of extrapolation due to spatial gradient and extrapolation due
to velocity at the cell surface can become negative. Consider for example a spherical
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region abundant in chemical species i that has some bulk velocity in the direction of
the arrow (Fig. 3.2), and this species has a very small abundance outside of this sphere.
The shaded boundary regions inside the sphere close to the left ridge gets a negative
contribution from both the fact that it is closer to chemically-poor outside regions, and
also from the fact that such regions are approaching. The same problems is present
also for adiabatic indexes as well in the opposite side of the ridge if the spherical
regions is fully molecular and the outside regions is fully atomic, since adiabatic index
changes from 7

5 inside of the sphere, to 5
3 outside of the sphere in an abrupt way. At

the cell interfaces the estimate of the chemical abundances is forced to be 0 (adiabatic
index is forced to be 7

5) inside the code in such a case. This can be a problem for
very artificial test cases such as the ones described in Section 3.3.1. However, in real
applications of the code, we did not experience cases where this becomes a problem,
since in a primordial gas that we studied with this code, the abundance of H2 is a
gradually increasing function of the density of the gas, and we do not have very sharp
changes in chemical abundances. Usually, in the real applications of this code, the
problem we describe in the next paragraph was more common.

Another technical difficulty arises when there is mass outflow from a cell that has
abundance of chemical species i to a cell that contains a much higher abundance of
that species. Consider for example the case depicted in Fig. 3.3. In the two cells
illustrated, the left cell has a low abundance of chemical species i, when the right cell
is much more abundant in this species. At the left side of the interfaces between two
cells (L), the estimate of chemical abundance is larger than inside the left cell (cell
A), since the chemical abundance is increasing as you approach cell B. The amount of
chemical species transported from the left cell to the right cell is determined by this
estimated value at the left (upwind) side of the interface multiplied by the mass flow
calculated from Riemann solvers. In such a case, the cell attempts to advect more of
that species than is present inside the cell. One simple solution would be to simply
abandon extrapolation at the cell faces and simply use the abundance at the cell centre
when calculating flux of chemical species (Volker Springel, private communication).
In our implementation, rather than using this lower-order method, after the flux
is transported between cell faces, it is checked whether ‘conserved abundances’ of
chemical species inside a cell becomes negative, and some small yet positive floor
value is enforced if this condition is not satisfied.

3.3 Results

We have performed different kinds of test calculations to test our implementation. The
first series of simulations test the behaviour of AREPO cells in a simple setup, namely,
when the gas density is initially uniform, and only the chemical composition is different
(fully molecular inside a sphere, and fully atomic outside). For simplicity, this first
series of simulations do not include cooling due to chemical species or cooling/heating
due to chemical reactions. We try with two different initial conditions in this setup.
The second series of simulations is a more realistic application of the code to model a
collapsing gas cloud in two different setups: an isolated rotating gas cloud and a gas

49



3 Improving the Arepo code

abundance of 

chemical species

Figure 3.2: A simple example to illustrate a case where the estimate for chemical
abundances/adiabatic index can be negative. The red sphere is abundant
in chemical species i and is fully molecular. Everywhere outside of the
sphere, there is very small abundance of this species and it is fully atomic.
The sphere has a bulk velocity in the direction of the arrow. The shaded
region in the red circle in the figure can get negative values.

cloud collapsing in a cosmological simulation. In total, we experiment with four kinds
of test problems in this section.

3.3.1 Idealised tests

In this section, we test our implementation with two sets of test problems. Both cases
involve a spherical region where hydrogen is molecular, and outside of this sphere,
hydrogen is fully atomic. The main differences are for ‘bulk velocity’ set up, all the
cells in the simulation box have a bulk velocity, whereas for ‘turbulent velocity’ set
up, the velocity varies according to the location of the cell. The size of the simulation
domain is also different for the two setups. On-the-fly refinement is not enabled for
either of the two tests.

For the ‘bulk velocity’ setup, we placed a spherical region of fully molecular hydro-
gen inside a periodic box of uniform density, which is originally in pressure equilibrium
with the fully atomic gas outside. The box size is 30.85 [1017cm], with 100 M� in-
side. We have turned off cooling due to chemical species but not the primordial
chemical network itself. All the gas cells in the box have bulk velocity in the positive
x direction. We have compared abundance of molecular hydrogen for two cases with
and without advection of chemical species. Note that the run with advection has
105 particles when the run without advection has 106 particles. We see that for the
run with advection, the H2 molecules are actually advected in the surrounding cell
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abundace of 

chemical species

L RA B

L

R

Figure 3.3: A simple example to illustrate a case where the total amount of chemical
species can be negative after flux exchange. Cell A has a smaller abun-
dance of chemical species i, when the neighbouring cell (cell B) has a much
larger abundance of the same species. Assume there is mass flux into cell
B from cell A. L and R represent the left side and the right side of a cell
face described here. The blue triangles represent the estimated abundance
of some chemical species according to gradient of chemical abundances at
cell faces L and R, respectively. Note that the estimated abundance at
L, which is used to calculate the amount of chemical species transported
from cell A to cell B, is larger than the abundance in the centre of cell A,
which is represented by the left lower plateau in the figure.
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(Figs 3.4 and 3.5).
For the ‘turbulent velocity’ setup, we placed a spherical region of fully molecular

hydrogen inside a periodic box of uniform density, which is originally in pressure equi-
librium with the fully atomic gas outside. We have switched off both cooling due to
chemical species and primordial chemical network in this run. Therefore, ‘con-
served abundances’ for each of the species should be conserved inside the simulation
box. We have used an initially uniform density distribution, with 106 particles that
represent total mass of 100 M�, inside the simulation box of length 10 [1017cm]. Ini-
tially, the gas cells have turbulent velocity with velocity power spectrum P(k) ∝ k−4,
scaled such that Egrav/Ekin = 0.5 where Egrav and Ekin represent the gravitational
potential energy and the kinetic energy, respectively. We have compared molecular
hydrogen abundance for two cases with and without cell-to-cell advection of chemical
species (Figs 3.6 and 3.7). The error in ‘conserved abundances’ of H2 is demonstrated
in Fig. 3.8 for the calculation without cell-to-cell advection of chemical species (the
error for calculation with cell-to-cell advection is 0 within machine precision for the
time range presented here). Here, the error is defined as

∆H2 =
(
∑

imifH2,i)t − (
∑

imifH2,i)0

(
∑

imifH2,i)0

, (3.7)

where the sum is taken for all the cells inside the simulation domain, mi represents
the mass of the cell, and fH2,i represents the abundance of H2 in the cell. Fig. 3.8
shows that at the point we stop our test calculation, ∼ 10−2 of the initial amount of
H2 was ‘generated’ artificially by not accounting for flux of chemical species between
moving cell surfaces. This is a pretty big error—order of 5 larger than the round-off
error even for single precision calculation.

3.3.2 Collapse tests

In this section, we test our implementation with two different sets of initial conditions:
an isolated collapsing gas cloud and a gas cloud taken from cosmological hydrodynam-
ical simulations. The initial condition for the isolated run use 106 particles with total
mass of ∼ 2700 M�, with solid body rotation around the z-axis (constant angular
velocity ω = 8.5 × 10−16 s−1), and an initial temperature of 100 K. The box size is
227.71 [1017cm]. The particle distributions are created such that it has a Bonnor-
Ebert sphere like density profile (but not exactly a Bonnor-Ebert sphere since we did
not set external pressure). The initial central number density is ∼ 3.7 × 106 cm−3.
On-the-fly refinement is not enabled for the isolated run. We have also tested the
validity of the code in a fully cosmological setup, which is mostly similar to the setup
described in Section 4.2 (number of cells per Jeans length is 64 and the dark mat-
ter particle number is 2563 here). The isolated run is stopped at number density of
∼ 1015 cm−3 whereas the cosmological run is stopped at ∼ several times 107 cm−3.

As shown in Fig. 3.9, for a simple setup, there is little difference with and without
cell-to-cell advection of chemical species. This is to be expected, since there should
be little advection of mass or chemical species from cell to cell in this case—the cells
follow the ordered flow.
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3.3 Results

Figure 3.4: Map of mass-weighted hydrogen fraction fH2 where all the cells have ini-
tial bulk velocity in the positive x direction (visualisation for a slice with
thickness of a quarter of the box length). The columns correspond to two
different output times (in the beginning of simulation, and when the blob
has travelled through the periodic box in the x-direction and appeared
again at left side of the panel). The upper (lower) row corresponds to test
calculation without (with) cell-to-cell advection. The H2 map with cell-
to-cell advection of chemical species is more noisy due to lower particle
numbers.
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3 Improving the Arepo code

Figure 3.5: Radial profile of H2 abundance (fH2) for ‘bulk velocity’ test calculation.
Density profiles presented here correspond to density projections shown
in Fig. 3.4
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3.3 Results

Figure 3.6: Time sequence of mass-weighted H2 abundance (fH2) map for ‘turbulent
velocity’ test calculation without cell-to-cell advection of chemical species.
The slice has a thickness of one quarter of the box length.
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Figure 3.7: Time sequence of mass-weighted H2 abundance (fH2) map for ‘turbulent
velocity’ test calculation with cell-to-cell advection of chemical species.
The slice has a thickness of one quarter of the box length.
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3.3 Results

Figure 3.8: The fractional error in the total amount of H2, ∆H2 (defined in equa-
tion (3.7)), plotted as a function of time in simulation units for calcula-
tions without cell-to-cell advection of chemical species. Within the time
range plotted here, the error in total amount of H2 was 0 within machine
precision for the case including cell-to-cell advection. The absolute values
of the fractional error are shown in the y-axis. Negative values are rep-
resented by filled diamonds, while positive ones are represented by empty
diamonds.
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Without advection With advection

Figure 3.9: Comparison of chemical abundances fH2 (black), fHD (turquoise), ρ-T
diagram, density profile of simulation with (right column) and without
(left) advection for an isolated gas cloud with initially solid body rotation.
For regions with n < 104-105 cm−3, we see the influence of the initial
conditions. However, the behaviour of the gas at higher densities is a
result of gravitational collapse.
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3.3 Results

Without advection With advection

Figure 3.10: Comparison of chemical abundances fH2 (turquoise), fHD (black), ρ-T
diagram, with (right column) and without (left) cell-to-cell advection in
a cosmological setup.
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As shown in Fig. 3.10, for a realistic cosmological initial condition, where there is
more turbulent motions and therefore more flux between cell surfaces, introduction of
cell-to-cell advection of chemical species makes a noticeable difference; it results in a
more tight correlation between density and fH2 or fHD. There is also less scatter in
the ρ-T diagram.
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4 Criterion for the formation of HD in the
early universe

4.1 Introduction

In primordial gas, which consists of only light elements produced by cosmic nucle-
osynthesis such as hydrogen, deuterium, helium and lithium, the elements responsible
for most of the cooling in the local ISM (C, O, Si etc.) are absent. In such an
environment, the hydrogen molecule (H2) is the most important coolant. However,
cooling due to H2 is inefficient at low temperatures (T < 200 K) because its lowest
energy rotational transition has an energy of E/kB ∼ 512 K. On the other hand, its
deuterated analogue, HD is able to cool the gas down below 100 K because its lowest
accessible rotational transition occurs at much lower energy, E/kB ∼ 130 K. In the
low density primordial gas, [HD/H2] is much larger than the cosmic ratio of [D/H]
∼ 2.6 × 10−5, obtained from absorption features in the spectra of distant systems
(Burles and Tytler, 1998). This phenomenon is known as fractionation and arises due
to the temperature dependence of the chemical reaction rates, which we will describe
below. The chemical reactions that governs the abundance of HD are (Galli and Palla
1998, Galli and Palla 2002):

H2 + D+ → HD + H+ (4.1)

HD + H+ → H2 + D+. (4.2)

The destruction process of HD is slow at low temperatures because of its endothermic
nature, so the abundance of HD is boosted at low temperatures. In equilibrium, the
HD-to-H2 ratio follows

[HD/H2] = 2 exp

[
464

T

]
[D/H]. (4.3)

If sufficient amount of H2 is present and the gas is cooled enough, then according to
equation (4.3), HD abundance is boosted (in other words, reaction (4.1) is favoured),
which allows the gas to cool even farther. Since the Jeans mass, the amount of mass
necessary for gas clouds to become dynamically unstable (discussed in Section 1.9),
changes as a function of density and temperature, how much HD forms in the early
universe, and thus the extent to which primordial gas is able to cool and reduce its
Jeans mass has a critical importance for the mass spectrum of the first generation
of stars. However, there is also an opposing view about the role that HD plays in
primordial star formation (Clark et al., 2011a), stating that more HD leads to less
fragmentation. The latter adopts two sets of initial conditions to model two different
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4 HD formation

groups of Pop III stars, and since the initial conditions for the HD-rich case start from
a higher abundance of electrons and ionized medium than in truly primordial cases,
they are probing a slightly different regime than investigated here; thus care should
be taken when comparing the results.

Since the very early works of Abel et al. (2002), Bromm et al. (2002), and Yoshida
et al. (2003) many attempts have been made to numerically model the formation of
protostars (Bromm, 2013). It is now known that the mass of protostars has some
scatter and is different from halo to halo (for example, O’Shea and Norman, 2007).
If we consider all the works aimed to follow the formation of Pop III protostars to
date, many experiments have been performed to sample the whole spectrum of Pop-
ulation III (Pop III) stars. There are also some works that focus on the role that HD
molecules play in the process of primordial star formation (Ripamonti, 2007; McGreer
and Bryan, 2008). However, very few cosmological hydrodynamic simulations to date
are dedicated to answer the simple question, ‘what determines the amount of HD that
forms during protostellar collapse?’.

HD is known to form in primordial gas that has a higher than usual abundance of
electrons, such as in pristine gas clouds that have been exposed to the UV photons
from previous generations of star formation. This is because the reaction (4.1) pro-
ceeds faster for highly ionized medium, and higher ionisation facilitates H2 formation
by reaction (4.4), which results in lower temperature, which leads to an increase in
HD abundance (according to equation (4.3)).

H + e− → H− + γ (4.4)

H− + H → H2 + e− (4.5)

In the case of the ‘very first’ Pop III stars to form, or Pop III stars that form in
locations where there are no previous history of star formation, there is no radiation
emitted by previous generation of stars. Under such conditions, HD was believed
to form only in gas experiencing shocks such as when the dark matter haloes are
merging. This idea was proposed by Shchekinov and Vasiliev (2006) and investigated
by numerical experiment by Bovino et al. (2014), who compare primordial gas collapse
taking place in an isolated halo and in a halo experiencing violent merging events.

However, according to our inspection of the density maps of collapsing gas inside
our cosmological simulations, we found no evidence of gas clumps colliding with each
other out of 10 realizations. We conclude that the gas clouds that experience collisions
with neighbouring gas clumps during their collapse (as investigated by Bovino et al.
2014) are very rare in number, and are in no way representative of numerous samples
of dark matter haloes. Hirano et al. (2014) hints that the rotation of primordial gas
delays collapse and thus allows for primordial gas to cool sufficiently, and form HD.
They resort to comparison with one-zone simulations to make this point.

In this work, we ran many samples of moderate-resolution 3D cosmological hydrody-
namical simulations, and without further assumptions, try to discover simple physical
criteria that accounts for the abundance of HD molecules in primordial mini-haloes.
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4.2 Numerical methods

4.2 Numerical methods

The initial conditions of our simulations presented here are generated in the following
way: First, we ran collisionless N -body simulations with 1 Mpc/h comoving in length
with uniform mass resolution to capture collapsing dark matter haloes starting at
z=100. We employ cosmological parameters consistent with the WMAP-7 measure-
ments (Ωm = 0.271, ΩΛ = 0.729, σ8 = 0.809, h = 0.703; Komatsu et al., 2011)1 These
collisionless simulations were executed with Gadget-3 (Springel et al., 2005). From
this parent simulation, we generate a new set of initial conditions (zoom-in ICs) with
finer dark matter resolution at the region of interest, where a specific mini-halo iden-
tified by friends-of-friends method that is present at the end of the parent simulation
is located. The selected dark matter halo is shifted to the centre of the simulation
box. The regions further away from this specific halo is represented by dark matter
particles with progressively lower resolution. The parent simulation contains 5123

particles, at the regions of interest the mass of the dark matter particles are improved
by 43 (dark matter particle mass of 7.3 M�). The results presented in this chapter
analyses simulation outputs initiated from 10 zoom-in ICs, each centred on a different
FOF halo from a single parent simulation. Therefore, they represent different regions
in the same cosmological box.

From this newly generated initial condition with improved dark matter resolution,
we start a hydrodynamical simulation with the moving-mesh code AREPO (Springel,
2010). During start-up of our hydrodynamic simulations, the code generates gas cells
from dark matter only initial conditions. In order to numerically follow the dynamics
of pristine gas in a cosmological context, we adopt on-the-fly mass refinement scheme
according to Jeans length (32 cells per Jeans length in the production run, 8 cells
per Jeans length for lower resolution comparison run shown in Section 4.4). In order
to study abundance of HD in the early stages of protostellar collapse, we stop our
simulation when the maximum density in the simulation domain reaches ' 106 cm−3.
In each timestep, the time-dependent chemical network and associated heating and
cooling is solved for each gas cell (see Section 3.1).

4.3 Results

This chapter is intended to clarify the difference between HD-rich and HD-poor gas
clouds. In doing so, the actual definition of the amount of HD in a given gas cloud is
also critical. It is better to use mass-weighted HD abundance above certain density
limit than using the HD abundance of the highest abundance cell. The mass-weighted
HD abundance shows good numerical convergence, when the maximum value of HD
abundance of individual cells can differ by a factor of few when the refinement criterion
is changed. (See also Section 4.4.) In Chapter 3, we have defined fHD as a fractional
abundance of HD with respect to protons. In this chapter, let us define fHD as the

1We would not expect our results to differ significantly if we were to use the cosmological param-
eters measured by Planck (Planck Collaboration et al., 2013). This choice of parameters is for
consistency with our previous work Sasaki et al. 2014, see also Chapter 2.
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4 HD formation

Figure 4.1: Temperatures, abundances of chemical species, and density profiles for
different gas clouds. Out of 10 samples of gas clouds, black and brown
lines indicate physical properties of gas clouds with the two highest values
of fHD (mass-weighted average of fractional HD abundance for all cells
with densities > 103 cm−3), and blue and cyan lines indicate those with
the two lowest values of fHD. Note that the gas clouds rich in HD have
less smooth density profiles.
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mass-average of previously defined fHD over cells with densities > 103 cm−3, and use
it as a measure of HD-richness in each gas cloud.

In Fig. 4.1, we show the temperature, chemical abundances, and the density profile
of primordial gas clouds for two most HD-rich clouds (black and brown solid lines)
and two most HD-poor clouds (blue and cyan solid lines) out of 10 samples (similar
color-coding is used for Fig. 4.4). We find that HD-rich clouds have lower temperature
(compare densities between 102 and 105 cm−3) than HD-poor clouds. We find that
the density profiles for HD-rich clouds are noticeably more noisy than the HD-poor
clouds. As will be shown in Fig. 4.4, they take longer time to collapse, and have
allowed secondary density perturbations to grow inside the cloud. The comparison
of the density maps illustrated in Fig. 4.2 and 4.3 further clarifies the morphological
differences between HD-rich and HD-poor primordial collapsing gas.

We next study the evolutionary track of the densest point in the primordial gas
cloud as a function of time (Fig. 4.4) to show that the speed of protostellar collapse
is relevant for HD formation. Gas clouds that take longer to collapse tend to have
higher HD fractions. After some numerical experiments, it is discovered that the time
it takes for the central density to evolve from 104 cm−3 to 105 cm−3 is most correlated
with the amount of HD that is formed. This is probably because HD is mostly formed
when the density of gas is ≤ 105 cm−3 (see Fig. 4.1). This may apparently seem as
a contradiction, as more abundance of HD, or increased HD cooling could hasten the
collapse. However, this is not the case. In the early phase of protostellar formation,
the regime we study here, the gas is not supported mainly by thermal energy but by
kinetic energy.

As shown in Fig. 4.5, there is a clear relationship between fHD and the time it takes
the gas cloud to collapse for the numerous haloes we have simulated, not just for the
selected examples shown in Fig. 4.4.

Let us define the parameter fratio as the ratio between tangential component of
velocity and the Keplerian velocity at the half-mass radius of gas particles included
inside R200 (see Section 1.4 for definition) of a dark matter halo when the central gas
density reaches 102 cm−3. fratio defined this way characterises the spin of gas in the
early stage in the gravitational collapse.

Fig. 4.6 (left) shows that the dark matter haloes in which the gas collapsed more
recently are more likely to have higher mass. There seems to be little dependence of
collapse redshift on fHD (Fig. 4.6, right). Fig. 4.7 (left) shows that the correlation
between fHD and fratio is only weak. There is some physical reasons for this correla-
tion, since the tangential component of velocity is likely to delay the collapse. The
seemingly counter-intuitive positive correlation between subhalo mass and collapse
time (namely, more massive subhaloes take longer time to collapse shown in Fig. 4.7,
right) is most likely a reflection of the fact that the gas clouds that collapse slowly
allows their host dark matter halo to grow more massive.

Rotation, however, is not the only physical process that could potentially delay the
collapse of primordial gas inside dark matter mini-haloes. We find stronger positive
correlation between velocity dispersion and fHD (Fig. 4.8). We interpret this result
such that turbulent velocity structures play more important role than rotation in
delaying the collapse and allowing enough time for HD to form in collapsing primordial
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Figure 4.2: Density slice through the densest point of gas for HD-poor gas clouds at
the final output time when the central density has reached 106 cm−3. The
circle indicates a radius of 1 proper pc, while the numbers on the axis
indicate coordinates in comoving kpc/h. Compare with Fig. 4.3.
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Figure 4.3: Density slice through the densest point of gas for HD-rich gas clouds at
the final output time when the central density has reached 106 cm−3. The
circle indicates a radius of 1 proper pc, while the numbers on the axis
indicate coordinates in comoving kpc/h. Compare with Fig. 4.2.
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Figure 4.4: Central density of gas clouds as a function of time before collapse (origin
of time is at the final time in the simulation). The numbers in the legend
indicate value of fHD. The clouds that result in high abundance of HD at
the end of simulation (when the central density reaches 106 cm−3) take
longer time to collapse.

Figure 4.5: Relation between collapse time and fHD. ‘Collapse time’ is defined as the
time when the central density increases from 104 to 105 cm−3.
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4.4 Numerical convergence

Figure 4.6: Relation between the subhalo mass and the collapse redshift (left). Re-
lation between the collapse redshift and fHD (right). All physical values
are at the final output time when the maximum density of gas reaches 106

cm−3. The collapse redshift is the redshift at the final output time.

gas clouds.

4.4 Numerical convergence

In order to confirm that the HD abundance we are measuring is stable even if we
change the refinement criterion, it is important to run the same simulation with
different resolution to check for numerical convergence. It is shown that as we increase
the number of cells per Jeans length, the redshift at which the central gas density
reaches 106 cm−3 is made slightly later in time, and the HD abundance of the highest
abundance cell in a particular dark matter halo is slightly increased. As shown in
Fig. 4.9, the temperature, the abundances of chemical species, and the density profile
show good convergence.

4.5 Conclusion

In this chapter, by directly measuring the time it takes for the central density to reach
a certain value, just from arguments based on outputs of 3D realistic cosmological
hydrodynamical simulations, we have clarified that the speed of the gravitational
collapse determines the amount of HD molecules in primordial gas. We have shown
that disordered velocity fields play a more important role than rotation in delaying
the collapse. In future work, we would like to show this in more detail.

Since this work neglects the effect of radiation from Pop III stars or the heavy
elements produced by them, which becomes important after star formation starts to
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Figure 4.7: Relation between fHD and fratio (left). Relation between the subhalo mass
and the collapse time (right). All physical values are at the final output
time, except for fratio (the ratio between tangential component of velocity
and the Keplerian velocity, evaluated at the half-mass radius of gas cells
inside R200), which is measured when the central density reaches 102 cm−3.

Figure 4.8: Correlation between fHD and the velocity dispersion in the earlier stages of
collapse (when the central density is 102 cm−3), evaluated at the half-mass
radius of gas cells inside R200.
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Figure 4.9: Comparison of temperature, abundances of chemical species, and density
profile for the same gas cloud with different refinement criterion—8 cells
per Jeans length (red solid line) and 32 cells per Jeans length (black solid
line).
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take place in a specific region of the universe, it is the lowest order approximation
to real cosmic history, and in reality, the gas collapsing at lower redshift would be
affected by the neighbouring gas clouds which have collapsed earlier in time.
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5 Conclusions

In this thesis, we studied the formation of dark matter haloes and Pop III stars in the
high-redshift universe. We used high-resolution N -body simulations to investigate the
properties of dark matter mini-haloes found at redshifts z ≥ 15 and to quantify the
differences between these haloes and their more massive lower-redshift counterparts.
Using the moving-mesh code AREPO, which we modified according to our needs (de-
scribed in Chapter 3), we studied primordial gas initiating gravitational collapse in
dark matter mini-haloes. By comparing multiple samples of collapsing gas clouds
from cosmological simulations, we sought to find out what determines the amount of
HD molecules that forms in primordial gas. Our scientific findings are summarised in
two parts, corresponding to chapters 2 and 4 respectively.

5.1 Small-scale structure formation

• Dark matter haloes found in our simulations have a distribution of spin pa-
rameters that is well fitted by a log-normal function around λ̄ = 0.0262, with
dispersion σλ = 0.495. This value for λ̄ is similar to the value ∼ 0.03 obtained
by studying more massive objects at z ∼ 0 (e.g. galaxy clusters). The dimen-
sionless spin parameter λ is somewhat sensitive to resolution, and hence our
measurement of this quantity is by far the most accurate thus far for the mass
scales investigated in this work.

• We have shown explicitly from output of our simulations and merger trees con-
structed from them that the formation time of dark matter haloes, defined as
the time at which the most massive substructure in a FOF halo reaches half of
its final mass, only weakly depends on halo mass over about four orders of mag-
nitude (e.g. mass scales of ∼ 103–107 M�). At larger mass scales, structures are
known to form in a hierarchical fashion (formation redshift is a monotonically
decreasing function of halo mass). But on the mass scales investigated here, this
at least partially breaks down. The weak dependence of the formation time on
mass is a result of the slope of the power spectrum of density perturbations at
this scale, where it becomes close to the critical value of −3 for which all mass
perturbations are expected to collapse simultaneously. The scatter in formation
time is ∼ 10 Myr.

• The shapes of haloes are much less spherical and more highly prolate than haloes
found at z ∼ 0. The most frequent value of the sphericity parameter lies between
0.4 and 0.45. This could be due to more frequent mergers at high redshift. The
majority of haloes have triaxiality parameter > 0.9. More massive haloes are
more likely to be slightly less spherical and slightly more filamentary (prolate).
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• We have also investigated the relationship between formation time and halo
properties such as shape, virial ratios, and spin which was not studied previously
for the scales examined here. On average, haloes that formed more recently
(young haloes) have higher values of the virial ratio, are less spherical, and have
higher values of spin when observed at z = 15. This can be understood because
the time passed between the formation of these young haloes and the end of the
simulation is less than the relaxation time, trelax ∼ 60 Myr, of these haloes.

• Although not expected from excursion set theory, we find that haloes with high
spin are more strongly clustered, where clustering is quantified by the two-
point correlation function of the positions of different dark matter haloes. This
could mean that haloes born in clustered environments experience stronger tidal
torques during their formation.

Now that the properties of dark matter mini-haloes are studied in detail, we should
run a separate set of simulations that include baryonic physics. It would be interesting
to study how the dark matter properties studied here are connected to the properties
of the resulting Pop III stars.

5.2 Criterion for HD formation in primordial gas

• We find that the amount of HD that forms in the gas is closely related to the
speed of the gravitational collapse. If the collapse is slow, it allows time for HD
molecules to form, which lowers minimum gas temperatures by a factor of two.

• There are several physical mechanisms that can potentially delay the gravita-
tional collapse of gas in dark matter mini-haloes (e.g. turbulence, rotation etc.).
Contrary to previous studies, we find that the amount of HD that form in pri-
mordial gas depends little on physical properties such as the dark matter halo
mass, rotation of gas inside the halo, or merger history of the halo. It seems
likely that turbulence (disordered velocity fields) is playing an important role in
delaying the collapse.

The direct next step would be to demonstrate the contribution from turbulence and
rotation in delaying the collapse in a more explicit way. It would also be quite inter-
esting to use the HD-rich and the HD-poor gas clouds we investigated in Chapter 4
as initial conditions and investigate the differences in their later stages of collapse.
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Appendix A

Appendix

A.1 Comparison of structure formation simulation at large
and small scales.

As a validity check for the data analysis method we adopt, and to make a qualitative
comparison between structure formation occurring at different scales, we performed
a numerical experiment to follow the evolution of gravitational structures at larger
scales with relatively small particle numbers. The basic simulation parameters of this
comparison simulation and the main simulation are listed in Table A.1, where Lbox is
the size of the simulation box, Npar is the number of dark matter particles included in
the simulation, and zfin is the redshift at which we terminate each of the simulations.
Since the size of the simulation box differs by two orders of magnitude in the two runs,
the mass scales of the gravitational structures found in each of the two runs differ by
∼ 106.

In Fig. A.2, we show the formation time of dark matter haloes found in the ‘Large’
run, also identified by the method described in Section 2.2.1. These results are con-
sistent with the formation times as derived from the Millennium Simulation (Harker
et al., 2006). Comparing Fig. A.2 with Fig. 2.8, a striking difference in the mass
dependence of the formation time at the two different regimes is recognised: for dark
matter structures present in the z = 0 simulations, the formation redshift decreases
as a function of halo mass. In Fig. A.3, the virial ratios of these haloes is presented
(consistent with earlier findings of Hetznecker and Burkert 2006). Comparing with
Fig. 2.5, it is clear that dark matter structures identified at z = 0 are substantially
closer to virial equilibrium compared to those at z = 15. In Fig. A.1, the median
values of the sphericity parameter and triaxiality parameter are presented, which are
consistent with results obtained from analysing the Millennium Simulation (Bett et al.,

Table A.1: Simulation parameters

Lbox ε
Run Npar (h−1 Mpc) zfin (h−1 kpc)

Large 5123 100 0 4.0
Small 20483 1 15 0.01
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Figure A.1: Median of sphericity s and triaxiality T in different mass bins for dark
matter haloes at z = 0. The sphericity and triaxiality are defined by
equations (2.10) and (2.11), respectively.

Figure A.2: Formation time of dark matter haloes as a function of their mass. Median,
20 %, and 80 % values in each mass bin are plotted. More massive dark
matter haloes form at smaller redshift.
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A.2 Influence of particle numbers on calculating sphericity parameter.

Figure A.3: Distribution of the virial ratio in dark matter haloes of different mass at
redshift z = 0. The virial ratio is defined such that it converges to unity at
virial equilibrium. Crosses indicate the median value of the virial ratio,
while the error bars indicate the 20th and 80th percentiles. The mass
bins are spaced logarithmically, and symbols are only plotted for bins
containing at least 10 dark matter haloes.

2007). Comparison with Fig. 2.9 shows that halos found in the larger simulation box
at lower redshift are much more spherical, and less prolate.

Overall, our results show good agreement with results found in the literature on
large-scale structure formation at z = 0. This confirms the validity of the analysis
methods we adopted in this work.

A.2 Influence of particle numbers on calculating sphericity
parameter.

In order to test our algorithm to calculate the shape of dark matter haloes, we per-
formed a series of controlled experiments; namely, we generated spherical distributions
of particles with ρ ∝ r−2 from 100 different seeds for a range of particle numbers.
Then, we deformed the sphere in y/z direction with a ratio of b/a = 1, c/a = 2/3, or
b/a = 1, c/a = 1/3, or b/a = 2/3, c/a = 1/3 and finally calculated halo shapes using
the prescription described in Section 2.3.5. We also measured the axis ratios of ideal
spheres before applying any deformation. In this section, we adopt b/a and s (=c/a)
to describe the shape of the spheroid, rather than s and T (=(a2 − b2)/(a2 − c2)), as
in other parts of this paper. This is because triaxiality cannot be defined properly for
an ideal sphere.

In Table A.2, the average over 100 realisations is shown with an error bar that
indicates the standard deviation obtained from 100 realisations for different types of
spheroids investigated here. There is a general trend that with increasing number of
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Table A.2: Convergence study of our method to calculate halo shapes described in
Section 2.3.5 using several different types of spheroids. Average and stan-
dard deviation is calculated from 100 realisations in each case.

real value No. of particles c/a b/a

100 0.8135 (0.0575) 0.9083 (0.0484)
b/a=1, 200 0.8649 (0.0467) 0.9345 (0.0327)
c/a=1 500 0.9109 (0.0296) 0.9558 (0.0228)

1000 0.9402 (0.0217) 0.9708 (0.0184)
2000 0.9562 (0.0147) 0.9782 (0.0131)

100 0.6209 (0.0557) 0.8917 (0.0528)
b/a=1, 200 0.6354 (0.0392) 0.9222 (0.0415)
c/a=2/3 500 0.6468 (0.0278) 0.9476 (0.0294)

1000 0.6532 (0.0196) 0.9655 (0.0206)
2000 0.6571 (0.0129) 0.9758 (0.0144)

100 0.3099 (0.0293) 0.8822 (0.0600)
b/a=1, 200 0.3175 (0.0200) 0.9152 (0.0472)
c/a=1/3 500 0.3234 (0.0125) 0.9423 (0.0286)

1000 0.3276 (0.0083) 0.9618 (0.0198)
2000 0.3292 (0.0063) 0.9734 (0.0144)

100 0.3286 (0.0325) 0.6647 (0.0635)
b/a=2/3, 200 0.3313 (0.0227) 0.6658 (0.0476)
c/a=1/3 500 0.3328 (0.0141) 0.6661 (0.0316)

1000 0.3339 (0.0092) 0.6662 (0.0214)
2000 0.3334 (0.0064) 0.6658 (0.0138)
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A.3 Resolution study of the non-dimensional spin parameter

Figure A.4: Non-dimensional spin parameter calculated from high-resolution (20483)
simulation and lower-resolution (5123) simulation. Black plus signs de-
note ‘main’ subhalo with ≤ 300 particles, green diamonds > 300, ≤ 1000
particles, blue triangles > 1000, ≤ 3000 particles, red crosses > 3000
particles in the lower resolution simulation.

particles the measured axial ratios become ever closer to the real underlying value,
and the standard deviation decreases.

It is shown here that in cases where the underlying values of c/a or b/a are unity,
the real value and the estimated value do not match within standard deviations even
with 2000 particles. Thus, our method tends to underestimate the axial ratios when
they are close to unity. This tendency was already recognised earlier by Dubinski and
Carlberg (1991), who performed similar numerical experiments for their method to
estimate halo shapes (their method is not exactly identical to the method we adopted
in this work).

A.3 Resolution study of the non-dimensional spin parameter

Since the non-dimensional spin parameter λ is known to depend severely on how well
the dark matter structure is resolved, we performed a resolution study by running
a lower-resolution version of our ‘Small’ run with 5123 particles adopting the same
cosmological parameters and the same random seed for initial conditions. By matching
dark matter haloes at z = 15 in two different runs according to their positions,
we compared the non-dimensional spin parameter. According to Fig. A.4, we find
that haloes with > 1000 particles in the lower resolution run, have relatively good
convergence. Therefore, for the high-resolution production run, we show the spin
parameter of only haloes with ≥ 1000 particles, assuming that they have enough
particles to capture the intrinsic angular momentum.
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Appendix A Appendix

A.4 Non-dimensional spin parameter calculated for FOF
haloes

In Fig. A.5, we present the non-dimensional spin parameter calculated for each FOF
haloes as a function of mass. Comparison with Fig. 2.3 shows that FOF gives a
positive correlation between spin and halo mass, which is not present for substructures
identified by SUBFIND.

A.5 Density slice through the whole box.

In Fig. A.6 and A.7, we present the density projection on to the x-y and x-z planes
from our ‘Small’ and ‘Large’ runs, respectively, in order to illustrate the differences
in structure formation at different scales.
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A.5 Density slice through the whole box.

Figure A.5: Distribution of the dimensionless spin parameter λ in dark matter haloes
of different mass at redshift z ∼ 25 (top panel), z ∼ 20 (middle panel),
and z ∼ 15 (bottom panel) calculated for FOF haloes. Crosses indicate
the median value of λ, while the error bars indicate the 20th and 80th
percentiles. The dashed vertical lines represent lower mass limit of 1000
particles.
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Figure A.6: A density projection on to the x-y (x-z) plane through the centre of the
box with thickness one-fifth of the simulation box size for our ‘Small’ run
at z = 15.

Figure A.7: A density projection on to the x-y (x-z) plane through the centre of box
with thickness one-fifth of the simulation box size for our ‘Large’ run at
z = 0.
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