


Dissertation submitted to the
Combined Faculties of the Natural Sciences and Mathematics

of the Ruperto-Carola-University of Heidelberg. Germany
for the degree of

Doctor of Natural Sciences

Construction and stability of disk
galaxies, and the radial migration of

their stars

Put forward by:
Denis Yurin

born in: Kazakhstan
Oral examination: 17.12.2014

Referees:

Prof. Volker Springel
Prof. Bjoern Malte Schaefer



To Julia



Contents

Abstract 4

Zusammenfassung 6

1 Introduction 8
1.1 Cosmic initial conditions for structure formation . . . . . . . 10
1.2 Galaxy formation processes . . . . . . . . . . . . . . . . . . 14
1.3 Numerical modeling techniques . . . . . . . . . . . . . . . . 18
1.4 Important codes and simulation projects . . . . . . . . . . . 22
1.5 Simulations as virtual laboratories . . . . . . . . . . . . . . . 24
1.6 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . 26

2 A new iterative method for the construction of N-body
galaxy models in collisionless equilibrium 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Density merit function . . . . . . . . . . . . . . . . . 37
2.2.2 Velocity dispersion merit functions . . . . . . . . . . 40
2.2.3 Optimization procedure . . . . . . . . . . . . . . . . 42

2.3 Velocity constraints . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 Spherically symmetric distribution functions . . . . . 45
2.3.2 Axisymmetric systems with two integrals of motion . 47
2.3.3 General systems with three integrals of motion . . . . 48

2.4 Implementation details . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 Adaptive logarithmic binning . . . . . . . . . . . . . 53
2.4.2 Orbit integration . . . . . . . . . . . . . . . . . . . . 55
2.4.3 Optimization procedure . . . . . . . . . . . . . . . . 57
2.4.4 Determination of the initial realization . . . . . . . . 59
2.4.5 Parallelization approach . . . . . . . . . . . . . . . . 60

2.5 Galaxy models . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.1 Models with a single halo component . . . . . . . . . 63
2.6.2 Systems with a bulge and a halo . . . . . . . . . . . . 71
2.6.3 Systems with a halo, a disk, and an (optional) bulge . 72
2.6.4 Dependence on nuisance parameters . . . . . . . . . . 75

2.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . 78

2



Contents

3 The stability of stellar disks in Milky-Way sized dark mat-
ter halos 80
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3 Simulation set . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Results for pure disk models . . . . . . . . . . . . . . . . . . 91

3.4.1 Disk orientation and visual morphology . . . . . . . . 91
3.4.2 Radial and vertical structure, and its evolution . . . . 96
3.4.3 Bar strength and vertical heating . . . . . . . . . . . 103

3.5 Models with bulges and lighter disks . . . . . . . . . . . . . 105
3.6 Impact of substructures . . . . . . . . . . . . . . . . . . . . 119
3.7 Resolution dependence . . . . . . . . . . . . . . . . . . . . . 123
3.8 Discussion and conclusions . . . . . . . . . . . . . . . . . . . 126

4 The radial migration of stars in disc galaxies formed in
moving-mesh cosmological simulations 130
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3 Extent of radial migration . . . . . . . . . . . . . . . . . . . 134
4.4 Metallicity structure . . . . . . . . . . . . . . . . . . . . . . 140

4.4.1 Age-metallicity relation . . . . . . . . . . . . . . . . . 140
4.4.2 Metallicity profiles . . . . . . . . . . . . . . . . . . . 142

4.5 Vertical structure and radial migration . . . . . . . . . . . . 143
4.5.1 Different causes for population thickening . . . . . . 143
4.5.2 Correlation between birth place and vertical scale height145

4.6 Resolution dependence . . . . . . . . . . . . . . . . . . . . . 147
4.7 Discussion and conclusions . . . . . . . . . . . . . . . . . . . 148

5 Concluding remarks 152

Bibliography 156

3



Abstract

This thesis studies the stability of disk galaxies and the radial migration

rate of their stars in self-consistent cosmological models of the formation

of Milky Way-sized galaxies. In order to carry out appropriate numerical

experiments, we first develop a new method for creating multi-component

N-body galaxy models in a stationary state. Unlike previous techniques,

this approach can flexibly cope with nearly arbitrary axisymmetric density

distributions, and allows the construction of disk galaxy models with distri-

bution functions that have three integrals of motion. To demonstrate the ca-

pability and accuracy of our parallel code GALIC in which we implemented

the method, we examine 20 different galaxy models and study their stabil-

ity when evolved as a live N-body system, finding very good results. We

then apply the method to study the evolution of thin disk galaxies inserted

in high-resolution dark matter halos drawn from the Aquarius simulation

suite. The galaxy models are constructed with GALIC and are adiabatically

grown in the evolving dark matter halo from redshifts z = 1.3 to z = 1.0,

and then evolved live for a period of about 6 Gyrs to the present epoch. Our

analysis of the simulations explores to what extent the galaxies are affected

by the dark matter halo’s triaxiality and the large number of dark matter

subhalos orbiting in it, and by how much the disk orientation is tumbling

during this evolution. Finally, we study the radial migration of stars in

hydrodynamical simulations of the same Milky Way-sized galaxies, carried

out with the novel moving-mesh code AREPO. We are especially interested

in the question whether radial migration can strongly modify metallicity

gradients and the age-metallicity relation in such galaxies, and whether it

can potentially contribute to the formation of a thick disk component.
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Zusammenfassung
In der vorliegenden Arbeit wird die Stabilität von Milchstraßen und die

radiale Migrationsrate von Sternen in großen Scheibengalaxien mit Hilfe

von selbstkonsistenten kosmologischen Galaxienentstehungsmodellen unter-

sucht. Um hierfür geeignete numerische Experimente durchzuführen, ent-

wickeln wir in einem ersten Schritt eine neue Methode zur Bestimmung

des stationären Zustands eines N-Teilchen Galaxienmodells. Im Gegensatz

zu bisherigen Verfahren kann unsere neue Methode auf beliebige achsen-

symmetrische Dichteverteilungen angewandt werden. Dies erlaubt die Kon-

struktion von Galaxienmodellen mit Verteilungsfunktionen welche drei Er-

haltungsgrößen beinhalten. Um die Leistungsfähigkeit und Genauigkeit un-

seres neuen parallelen GALIC Codes zu testen, führen wir N-Teilchen Simu-

lationen von 20 verschiedenen Scheibengalaxien durch.

Wir wenden unsere Methode auf die Entwicklung von dünnen Scheiben-

galaxien in hochaufgelösten Halos aus dunkler Materie an. Die Galaxien-

modelle werden mit dem GALIC Code erstellt und wachsen anschließend

zwischen Rotverschiebung z = 1.3 und z = 1.0 adiabatisch im sich entwi-

ckelnden Halo. Im Anschluss wird das gesamte System selbstkonsistent für

sechs Milliarden Jahre bis zum heutigen Zeitpunkt entwickelt. In der Ana-

lyse dieser Simulationen untersuchen wir die Auswirkungen der Triaxialität

der Halos auf die Galaxien, sowie den Einfluss der großen Zahl von Satel-

litenhalos, welche im Haupthalo kreisen. Insbesondere analysieren wir die

Veränderung der Orientierung der Galaxienscheiben während der Simula-

tionen.

Schließlich studieren wir die radiale Sternmigration in hydrodynami-

schen Simulationen in Galaxien von der Größe der Milchstraße. Diese wur-

den mit dem neuartigen AREPO Code ausgeführt, welcher die hydrodyna-

mischen Gleichungen auf einem sich bewegenden Voronoi-Gitter löst. Ins-

besondere interessiert uns die Frage, ob die radiale Migration die Metalli-

zitätsgradienten und die Alter-Metallizität Relation signifikant beeinflusst

und einen Beitrag zur Bildung einer dünnen Scheibenkomponente liefert.
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1

Introduction

“What is real? How do you define ’real’?
If you’re talking about what you can feel,
what you can smell, what you can taste
and see, then ’real’ is simply electrical
signals interpreted by your brain."

— Morpheus, The Matrix

Galaxy formation is a phenomenon of great complexity that incorpo-

rates an enormous variety of intertwined physical processes acting on an

extremely wide range of scales. The geometrical complexity and lack of

simple symmetries make it basically impossible to establish an accurate an-

alytical model of this phenomenon. The only known way to avoid these

restrictions and obtain “predictions of the sky” that resemble the level of

detail in available observational data is through numerical modeling (see

Frenk & White 2012, for a recent review).

The best numerical models of the Universe available today are based

on the Lambda Cold Dark Model (ΛCDM). They take initial perturbations

observed in the cosmic microwave background (CMB) as an input, and

compute the large-scale structure of the Universe at the present-day as

output. ΛCDM is not just successful in reproducing many observational

facts, it also has substantial predictive power and confronts us with deep

puzzles about the nature of the energy and matter content of the Universe.

To be the best among potential alternative models, ΛCDM demands that

the Universe contains only about 30% of the matter required for closure,

to have nevertheless a flat spatial geometry, and to have acoustic peaks of

specific lengths and amplitudes in CMB power spectrum that suggest the

existence of a dark energy component.
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1. Introduction

Unfortunately, despite of all the cosmological successes, ΛCDM still

poses us with crucial questions on galactic scales. One of these issues is

that theoretical models of galaxy formation in ΛCDM typically greatly un-

derestimate the number of thin disk galaxies in the Universe. The reason is

that ΛCDM predicts a large number of mergers (during the process of hier-

archical assembly of structures). If disk galaxies merge with other galaxies

the merger will likely destroy, or at least greatly disrupt the disk, implying

that the resulting galaxies are not expected to be thin disk galaxies with

small or absent stellar bulges. However, the majority of today’s galaxies

(65%) are observed to be disk galaxies (Lintott et al. 2008), many of them

with small central bulges. This problem does not necessarily mean that

the ΛCDM model is potentially wrong, it could rather also mean that our

understanding of galaxy formation is still inadequate, and that it requires

further refinement to accurately predict the population of galaxies expected

to form in the Universe. Currently, a lot of work is therefore being done

that try to improve theoretical galaxy formation models. In simulation

models, these efforts aim to reduce the freedom in parameterizations of star

formation and feedback physics, to improve the numerical integration ac-

curacy, to incorporate additional physics that is potentially important, and

to refine the comparison to observational data.

Numerical models have rapidly become more powerful in the recent past.

Using them, we have now entered a new era of astronomical research, where

computer simulations have become a new tool that can mimic reality in an

increasingly realistic fashion. We can carry out controlled experiments of

synthetic astrophysical processes, and take their results as an approximate

reflection of real experiments. This is particularly fascinating in astron-

omy, were the corresponding real experiments can actually not be carried

out. Controlled experimentation allows us to decompose complex physical

processes into their components, and in this way to derive their proper-

ties and their roles in the system as a whole. Moreover, the results of

computer simulations can be observed in great detail over the entire phase-
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Cosmic initial conditions for structure formation

space at any angle and as close as we like. This offers an unprecedented

opportunity to see, for example, how exactly the large-scale structure of

the Universe emerged from the primordial noise, how razor thin galaxies

are able to survive despite the hazardous merging, or how processes like the

radial migration of stars in disk galaxies affect the properties of individual

galaxies.

In this thesis, we aim to exploit numerical simulation techniques to study

different aspects of the structure, stability and evolution of disk galaxies. In

essence, the thesis addresses three different, interrelated topics which con-

sist of (1) a new method to create equilibrium galaxy systems for controlled

experimentation and its implementation in the GALIC code, (2) a set of

controlled experiments to study the stability of fully formed disk galaxies

in a realistic ΛCDM cosmological environment, and (3) an analysis of ra-

dial migration of stars in hydrodynamical simulations of Milky Way-sized

galaxies carried out with the moving-mesh code AREPO. In this introduc-

tory chapter, we in addition provide a short exposition of the cosmological

context and the employed numerical techniques.

1.1 Cosmic initial conditions for structure
formation

The initial conditions for ΛCDM consist of a near-uniform, slightly per-

turbed distribution of matter, where the statistics of the fluctuations are

given by a nearly scale-invariant Gaussian random field with two free pa-

rameters, the amplitude of perturbations and the spectral index, which

measures the slight deviation from exact scale invariance, known as the

Harrison-Zel’dovich spectrum (Harrison 1970; Zeldovich 1972). The den-

sity fluctuations are of adiabatic nature, where all matter components are

coupled and perturbed in the same way, so that the total density varies but

the ratio of baryons to dark matter remains spatially invariant. According

to recent observational constraints (Planck Collaboration et al. 2013), the
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1. Introduction

dark matter is assumed to constitute 84.5% of the total matter content. The

ordinary matter (15.5%), in turn, is inferred to consist mostly of hydrogen

(∼ 75%) and helium (∼ 25%), with a very small admixture of heavier ele-

ments (‘metals’ in astronomy) dominated by lithium. These conditions are

thought to exit when the Universe was much smaller than it is now.

After the expansion of the Universe had been discovered (Lemaître 1927;

Hubble 1929), it was not difficult to infer that when the evolution is traced

backward in time, the Universe has to contract, get denser and become

hotter (Lemaître 1931). Extrapolating the known laws of physics to the

conditions of the increasing density and temperature, right up to the known

limit of their applicability (roughly expected at the Planck scale, 1093g/cm3,

1032 K), it was possible to form a hypothetical picture of the earliest pro-

cesses taking place in the Universe, known as the Big Bang Theory.

According to this theory, the Universe has gone through a series of

epochs and phase transitions during its early expansion. The very first

period accessible for substantive theoretical description is the Grand Unifi-

cation Epoch, when three of the four known interactions (strong, weak and

electromagnetic) were merged into one gauge force. As the temperature fell

further (< 1028 K) the unified gauge force split into strong and electroweak

forces, and matter took the form of a quark-gluon plasma. The temper-

ature was so high and the random motions of particles were so energetic

that particle-antiparticle pairs of all kinds were continuously created and

destroyed in collisions. At some point a still poorly understood reaction

called baryogenesis broke the symmetry of particle/antiparticle creation

and destruction, leading to a very small excess of leptons and quarks over

antileptons and antiquarks, of order of one normal extra particle for every

30 million particle-antiparticle pairs. This was enough however to cause

matter to dominate over antimatter.

As the density and temperature of the Universe continued to decrease,

the typical energy of each particle was decreasing as well, until electroweak

symmetry spontaneously broke and the electroweak force split into weak
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Cosmic initial conditions for structure formation

and electromagnetic forces. At this point, the theoretical picture becomes

much clearer and robust, since particle energies dropped to values that

can be achieved in particle physics experiments. About 10−6 seconds later,

quarks and gluons had cooled sufficiently to combine and form baryons such

as protons and neutrons, as well as their antimatter partner. Along with a

further drop in temperature and density, the balance between creation and

annihilation of proton-antiproton and neutron-antineutron pairs became

shifted toward annihilation, and the number of surviving baryons quickly

approached zero. But since the baryons were born in slightly greater num-

ber than antibaryons, thanks to a small excess of quarks over antiquarks, a

small fraction of them, approximately 1 per 10 billion, was left over when

the creation of new baryon-antibaryon pairs was no longer possible and all

existing pairs had annihilated. Something similar happened for electrons

and positrons about one second later. Eventually, the remaining protons,

neutrons and electrons were no longer moving relativistically and the energy

density of the universe became dominated by photons instead (with a mi-

nor contribution from neutrinos). After a few minutes, the temperature was

about a billion Kelvin and the density was about the density of air. Dur-

ing this time, neutrons combined with protons and formed the universe’s

deuterium and helium nuclei with a small admixture of light isotopes in a

process called Big Bang nucleosynthesis (Alpher et al. 1948).

Once about 380 thousand years had passed, the temperature had dropped

so much that the ionization and recombination of protons and electrons

went out of equilibrium, and it became possible to form hydrogen atoms.

Shortly after, the photons were released from Thomson scattering on free

electrons and now could travel freely through the Universe, largely unim-

peded. As a consequence of this thermal history, this radiation still has to

be present everywhere in the Universe, even today (Gamow 1948; Alpher

& Herman 1948). And, indeed, this primordial relic light was detected as

cosmic microwave background radiation (CMB), coming uniformly to us

from all directions (Penzias & Wilson 1965). This confirms a remarkable
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1. Introduction

Figure 1.1: All-sky map of CMB anisotropies measured by ESA’s Planck space
telescope (Planck Collaboration et al. 2013). It shows tiny temperature fluctua-
tions that correspond to regions of slightly different densities at very early times,
representing the seeds of all future structure such as today’s galaxies.

prediction of the Big Bang Theory.

The detailed study of the CMB, first with the Cosmic Background Ex-

plorer (COBE) satellite (Smoot et al. 1992), revealed that in addition to

forming a highly isotropic nearly perfect black body signal, there are ex-

tremely faint fluctuations of relative amplitude 4 × 10−5 imprinted in the

temperature of the radiation (see Fig. 1.1), after the dipole component due

to our own motion relative to the CMB is subtracted. Since the radia-

tion and matter were coupled before recombination these fluctuations have

to reflect inhomogeneities in the matter distribution at the distant epoch

where the radiation was released. The Big Bang theory itself provided

no explanation for these inhomogeneities and their origin. Moreover, the

statistical properties of CMB anisotropies were found to be the same at an-

gles exceeding the cosmological horizon, i.e. for separations where a causal

contact seems impossible. This marks the horizon problem, describing the

puzzle that different parts of the Universe should have not been able to

communicate with each other yet they show highly similar properties. The
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Galaxy formation processes

latter can only be naturally understood if they have been in casual contact

in the past after all (Misner 1969). In addition, the Big Bang theory alone

fails to explain the flatness problem, describing the observational fact that

the Universe’s matter and energy density appear to be fine-tuned to critical

density (Dicke & Peebles 1979).

To solve these problems, a modification of the simple Big Bang scenario,

known as inflation theory, has been proposed (Guth 1981; Linde 1982). Ac-

cording to this theory the initially hyper-dense and hot Universe has gone

through a phase of rapid, exponential expansion (called inflation) driven

by the vacuum energy of a hypothetical quantum field (inflation). This

rapid expansion smoothed out the matter beyond the cosmological hori-

zon, providing the isotropy and homogeneity of its properties in areas that

have later not been able to communicate any more. Another generic conse-

quence of this proposal is that density perturbations generated by quantum

fluctuations at early times show up on macroscopic scales in the density dis-

tribution of the Universe and become imprinted on it. Also according to the

inflation scenario, the Universe expanded so much beyond the cosmological

horizon that its curvature radius grew to be so large that the geometry of

the observable Universe should appear basically flat. While the Big Bang

theory combined with inflation tells nothing about the true nature of Dark

Matter (Zwicky 1933; Rubin & Ford 1970) and Dark Energy (Riess et al.

1998; Perlmutter et al. 1999), it provides a clear and very successful theo-

retical framework for the growth of cosmic structure and the origin of the

ΛCDM initial conditions.

1.2 Galaxy formation processes

In studying galaxy formation, we are faced with a wide mix of object sizes

and a diverse set of physical processes whose properties and detailed laws are

not all well understood. This complexity hampers a formalization of galaxy

formation theory and makes even a qualitative understanding of this natural
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1. Introduction

phenomenon a non-trivial goal. However, significant strides in unraveling

galaxy formation have been achieved in recent times. The purpose of this

subsection is to briefly outline a qualitative picture of galaxy formation,

corresponding to the current understanding in the field.

Once the baryonic matter decouples from radiation and stops being

smoothed by its pressure, it quickly catches up with the growing roughness

of dark matter spreading over its potential wells. By the typical starting

redshifts of cosmological simulations, z ∼ 100, the spatial distribution and

the level of inhomogeneities in baryons and dark matter become almost

indistinguishable (Zel’dovich 1970).

The reason for the heterogeneity in the early structure growth lies in the

interplay of cosmic expansion and gravity. Overdense regions expand slower

than rarefied areas because there gravity is working more strongly against

the expansion. As a result, a dense region tends to become denser and

smaller, while a low density region becomes more diffuse and bigger. The

expanding regions of lower density, so-called voids, acquire the topology of

inflating bubbles (Dubinski et al. 1993). Matter appears “pushed” to their

periphery/outskirts and becomes more concentrated in the spaces between

the bubbles. As the expansion continues, the bubbles contact each other

and the matter is further “displaced” to the contact interfaces, forming so-

called filaments that connect regions of maximum matter concentration in

the inter-bubble space. Thus the matter distribution starts to resemble a

foam-like Voronoi mesh (Aragón-Calvo et al. 2007), known as the Cosmic

Web, as depicted in Fig. 1.2.

At a certain stage, the most overdense regions become so dense that the

self-gravity completely stops their expansion, they turn around and begin to

collapse. These regions decouple from the background expansion. Because

the dark matter is believed to be effectively collisionless, it collapses in a

dissipation-less way and shrinks to half the size reached at maximum expan-

sion, forming quasi-virialized objects called dark matter halos. In contrast

to the dark matter, the baryonic gas is collisional and subject to electro-
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Galaxy formation processes

Figure 1.2: Left image: Soap bubbles (adopted from Shutterstock.com). Each
bubble represents approximately a specific region that is closer to its center than
to the center of any other bubble. Such regions are called Voronoi cells. Right
image: The cosmic web (adopted from Springel et al. 2005b), characterized by a
foam-like distribution of matter. The void intersections are identified with walls
in matter the density. The edges forming at the rim of each wall are identified
with filaments in the matter distribution. The densest regions with a maximum
concentration of matter are located at the nodes of this web.

magnetic forces. Therefore it can cool radiatively (via Bremsstrahlung ra-

diation, atomic excitation and de-excitation mechanisms, as well as inverse

Compton scattering of CMB photons). Because of its dissipative nature, gas

can loose its pressure support and contract to much smaller scales, reaching

the kind of densities needed to trigger star formation.

The first stars in the Universe were likely the most massive and the most

powerful in cosmic history (Bromm et al. 2002). This is because for later

generations of stars the temperature of the gas from which stars are formed

is expected to be lower due to the presence of metals, and the lower the

temperature, the lower the gas pressure and therefore the less mass is needed

before the final runaway collapse to make a star sets in (Larson 2000). The

powerful radiation of the first stars ionized and heated the surrounding gas,

possibly preventing other stars from forming out of the remaining gas in

the same cloud (Abel et al. 2002). These single, massive stars are hence

expected to sit in the centers of virialized dark matter clumps filled with

hot gas. Later, these sites will become the seeds of the first galaxies.

The life of the first stars, known as Population-III stars, was very short
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1. Introduction

and ended with giant explosions that swept their material into the surround-

ing gas and enriched it with first heavy elements. Enriched gas cools much

more quickly cool and contracts efficiently. It is believed that the formation

rate of the second generation of stars (Population II) defines the original

morphology of the galaxies (protogalaxies). If most of the gas turns into

stars as it falls in, the collapse becomes dissipation-less, and infall motions

turn into random motions of stars, resulting in an elliptical galaxy. On the

other hand, if the cloud remains gaseous during collapse, the gravitational

energy can be effectively dissipated via shocks and radiative cooling. In

this case, the cloud will shrink until it is supported by angular momentum,

leading to the formation of a rotationally-supported disk, and eventually to

the formation of a spiral galaxy (White & Rees 1978).

As the cosmic expansion continues, increasingly large areas of higher

than average density are being decoupled from the background expansion,

turn around and start to collapse. This leads to the hierarchical merging

of protogalaxies in a bottom-up way, in which ever larger regions decouple

from the expansion and their embedded smaller structures merge to form

bigger structures (Searle & Zinn 1978). The morphology of each galaxy

depends sensitively on the type and amount of mergers that it has experi-

enced during its formation. If a galaxy that is originally a spiral undergoes

a number of major mergers this unavoidably destroys its disk in a process

of violent relaxation that transforms infall energy of the progenitors into

internal energy of the virialized remnant. Effectively, this converts a spiral

galaxy with ordered stellar motion into a fuzzy ball of unordered stellar

orbits, looking like an elliptical galaxy. If there is still remaining gas that

cools onto the elliptical galaxy, a new disk may form, resulting in a disk-

bulge system. Potentially, a spiral galaxy can also protect its morphology

during a merging process if only mergers with small objects occur, i.e. if

its merging history is quiet enough. This leads to the expectation that

spiral galaxies are preferentially found in relative isolation, whereas ellip-

ticals should mostly populate crowded environments like a galaxy cluster
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(Dressler 1980).

By z ∼ 1 major mergers become rare in almost all parts of the Universe

(Ryan et al. 2008) and internal dynamical effects come to the forefront. For

example, a successfully formed spiral galaxy may be intrinsically unstable

and thereby significantly change its morphology at later time. This mainly

affects the evolution of massive spiral galaxies (Melvin et al. 2014). A thin

disks with too high a surface density are often subject to non-axisymmetric

instabilities (Sellwood 2013), which produce cigar-like structure in their

centers, known as bar.

The evolution of stars also affects the evolution of galaxies via so-called

feedback processes. Radiation and blastwaves from supernovae explosions

heat the surrounding gas and potentially vent it out of galaxies, significantly

reducing the rate of star formation (Larson 1974). On the other hand, su-

pernova explosions can also compress the surrounding gas and thus enhance

the star formation rate locally. Another important source of feedback is pro-

vided by Active Galactic Nuclei (AGN) (Silk & Rees 1998), i.e. accreting

supermassive black holes at the centers of galaxies. If they manage to trans-

fer part of the enormous energy liberated during black hole growth into the

surrounding gas, they may play an important role in shutting off star forma-

tion in very large galaxies, especially those at the centers of galaxy clusters.

We note however that this picture of galaxy formation, especially the role

played by feedback processes, is still very sketchy and contains aspects that

are poorly understood. Many ongoing theoretical studies and observational

campaigns therefore aim to refine it further.

1.3 Numerical modeling techniques

In contrast to the qualitative view described above, modern numerical mod-

els allow a description of the hierarchical merging of galaxies in its full ge-

ometrical complexity. They operate by discretizing the underlying physical

objects and processes, allowing a description in terms of the processes that
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1. Introduction

act on small spatial elements. For example, computer models describe the

motion of individual dark matter particles (actually, they use more massive

“macro” particles) under the action of gravity, and the motion of gas ele-

ments under the action of simple hyperbolic conservation laws describing

ideal hydrodynamics. Nonlinearities in the interactions are not a problem

for the numerical models, and complex behaviour of systems can arise from

the collective behaviour of all the individual elements. Typical simulations

are computed as time evolution models, where the dynamics over a small

time interval is approximated with linear solutions to the dynamical equa-

tions, based on an initial state of the system. Then the new predicted states

of every element are considered as the new initial state, and the procedure

is repeated, until the evolution of the system is described over the desired

finite time interval.

There are two main concerns with numerical methods: computational

cost and accuracy. They both depend sensitively on the resolution, i.e. the

number of elements on which we discretize the system. This number is

sometimes also limited by how well we understand the properties of the

small discrete elements that are used; if very small scale processes are not

understood, then it may make no sense to try to resolve them. The higher

the resolution, the smaller the discrete elements become. Also, they then

become more linear in their properties, and consequently the description of

their behavior becomes more precise. However, a larger number of elements

implies more calculations and hence a larger computational cost. At the

same time, the better we understand the properties and laws of individual

elements, the more precisely we can predict their behavior, or alternatively,

we can reduce computational cost while keeping the same accuracy. Finding

an optimum compromise between accuracy and computational cost for given

computational resources is a difficult task. In practice, this optimum is often

determined heuristically, and is in any case dictated by the limited available

computing resources.

For the numerical treatment of gas, several different discretization meth-
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ods have been invented, among them splitting gas into individual particles

(so-called smoothed particle hydrodynamics, SPH) (Lucy 1977; Gingold &

Monaghan 1977; Monaghan 1992), into Cartesian cells (Stone & Norman

1992; Cen 1992; Teyssier 2002) or into unstructured and moving Voronoi

cells (Springel 2010; Duffell & MacFadyen 2011). Interestingly, the numer-

ical properties and errors of these gas elements are different, although the

underlying physical equations are the same. In the simplest versions of

these methods, the gas is treated on the assumption that its properties at

the molecular level do not change. However, the evolution of galaxies is

also sensitive to processes associated with a change of internal properties of

atoms, such as radiative cooling, photo-ionization and chemical enrichment

(Katz et al. 1992; Steinmetz & Mueller 1994). Such processes are part of

the subgrid physics and they are added to a numerical model of an ideal gas

as a set of additional properties and laws. Another critical, but less well un-

derstood subgrid process is the transformation of gas into stars (Springel &

Hernquist 2003). In addition to changing the state of the gas elements, this

leads to the creation or removal of star particles. Often, the prescriptions

used by numerical models for these processes are not based on fundamental

physical laws, but consist of ad hoc equations that are calibrated against

observational data, or in some cases on smaller-scale simulations with high

resolution. In either case, such sub-grid prescriptions may not be valid in

all physical regimes (see Vogelsberger et al. 2013, for details).

Gravity, which determines the dynamics of the star and dark matter

particles and also plays an important role in the dynamics of gas elements

is in principle a fairly simple physical law. However, its computational cost

is very high because it is a long range force. In order to calculate the grav-

itational force acting on one particle one needs to calculate the interaction

with all the other particles, resulting in a N2 scaling of the computational

cost to calculate the gravitational force for all particles, where N is the

total number of particles. A variety of methods had been developed to

reduce this cost, among them Particle-Mesh (Hockney & Eastwood 1981),
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Multi-Grid (Fedorenko 1962; Brandt 1977) and Tree-based (Barnes & Hut

1986) methods. Involving approximations to the force they can drop the

cost to N logN , while keeping the force accuracy good enough for the pur-

poses of collisionless systems. One can also gain computational efficiency

by adaptive time integration. In essence, by analyzing the behavior of a

particle orbit in a self-gravitating N-body system one can detect the level

of nonlinearity in the orbit and compute the force less frequently when the

motion is close to linear. This idea is the basis of hierarchical time stepping

techniques that are commonly employed in cosmological simulations.

Accounting for stellar evolution is necessary to properly describe the

changing properties of star particles in simulations, which usually represent

full stellar populations of at least tens of thousands of stars. Fortunately,

these stellar populations can be viewed as macro-particules whose evolu-

tion is clearly defined based on spectro-photometric and stellar population

synthesis models that have been developed for decades. Their behavior can

thus be predicted with a high degree of accuracy, just based on the ini-

tial stellar mass function and chemical composition of the star-forming gas

(Springel & Hernquist 2003).

The expansion of the Universe needs to be reflected in numerical models

of galaxy formation as well. There are two ways to accomplish this. First,

a simple model of cosmic structure formation can be constructed by using

a sphere of matter that is initially put into homologous expansion, i.e. a

velocity proportional to the distance from the center is added to dark mat-

ter particles and gas elements. Due to Birkhoff’s theorem, the expansion

at a given radius is slowed down by the gravity of the enclosed mass, and

the resulting equation of motion agrees with the one derived through the

Friedman-Lemaitre solutions of general relativity. Alternatively, one can

subtract the expansion from the proper motion, and describe the motion

in terms of a peculiar velocity relative to an expanding homogenous back-

ground. This practice, known as integration in comoving coordinates, is

usually adopted. It also allows the treatment of effectively infinite spaces
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in a Newtonian approximation by applying the trick of periodic replication

to a fundamental simulation box.

Today, the main efforts in developing better numerical models is mainly

aimed towards a better description of the sub-resolution physics, and to

improve the balance between computational cost and accuracy. The reso-

lution that can ultimately be used for simulations of galaxy formation is

determined both by technological advances and our capability to utilize it.

It is in fact highly non-trivial to leverage the full power of modern parallel

supercomputers, because not all calculations can be easily parallelized in a

perfectly efficient fashion.

1.4 Important codes and simulation projects

To bring a numerical model to a life and use it scientifically, one needs to

write computer code that realizes all operations prescribed by the numer-

ical model. Nowadays, a computational astrophysicist is as likely to be

found puzzling over the engineering of a complex computer code and strug-

gling to make it run on a computer cluster than to be found working with

mathematical equations on paper (or chalkboard). Making good use of the

rapidly growing power of modern computer hardware is a great challenge

for astrophysics, requiring also some knowledge in computer science.

Over the last decades several advanced codes for cosmological simula-

tions have been developed, among them ENZO, Flash, RAMSES, GAD-

GET, Gasoline, HYDRA, and AREPO. A special mentioning should per-

haps be made of the GADGET code (Springel et al. 2001b), which is prob-

ably the most widely employed code in the field – and we will also make use

of it in this work. It is a general purpose, publicly available code that com-

putes gravitational forces with a hierarchical tree algorithm and represents

gas by means of smoothed particle hydrodynamics (SPH). It features hier-

archical block time stepping that significantly reduces the total calculation

cost when a wide dynamic range in time is present. The code can integrate
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isolated systems in proper or in comoving coordinates both with or without

periodic boundary conditions, and is parallelized using the message pass-

ing interface (MPI), based on work-load balanced domain decomposition.

This allows the efficient use of massively parallel computers with distributed

memory.

The GADGET code was used in 2005 to carry out the biggest cosmo-

logical simulation of the growth of dark matter structure of its time, known

as Millenium Simulation (Springel et al. 2005b). This calculation has sub-

sequently seen very intense scientific analysis. To follow the dark matter

distribution it used ≈ 1010 particles in a cubic region 500h−1Mpc on a side.

A supercomputer located in Garching, Germany, executed the simulation,

for more than a month. The output of the simulation needed about 25

terabytes of storage. Application of semi-analytic techniques to the stored

output of this calculation predicted the distribution of ∼ 107 galaxies.

In 2008, the most comprehensive study for individual dark matter halos

thus far was done, known as Aquarius Project (Springel et al. 2008a). This

was also carried out with the GADGET code. Aquarius simulated a sample

of 6 ultra-highly resolved Milky-way sized halos using a so-called zoom-in

simulation technique. In our thesis work, we will also study the Aquarius

halos and use them for our disk insertion experiments. The halos of the

Aquarius simulation project are especially interesting due to the high qual-

ity of the initial conditions, which in particular allow accurate convergence

studies.

We will also analyze hydrodynamical simulations of the Aquarius halos,

which self-consistently form stellar disks. In fact, Marinacci et al. (2014a)

achieved for the first time disk galaxies with realistic properties in such

fully self-consistent cosmological hydrodynamic simulations. This was ac-

complished with the help of the AREPO code, which offers a much more

accurate method for treating gas dynamics than the older SPH technique.

In addition, these simulations use a comprehensive model for galaxy forma-

tion physics that is more sophisticated than in previous work. This model
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was also employed in the Illustris simulation project (Vogelsberger et al.

2014b), the thus far largest and most ambitious attempt to model galaxy

formation with cosmological hydrodynamical simulations in a representa-

tive part of the Universe.

1.5 Simulations as virtual laboratories

Unlike most other disciplines in natural science, astronomy is not a ‘labora-

tory science’, because nobody can directly experiment with objects in the

sky, no one can rearrange them. However, now that we have entered the

era of advanced computer simulations, one can create a synthetic universe

in a computer and “move” stars and galaxies in it. Numerical experiments

are similarly affected by assumptions, caveats, and limitations associated

with any traditional, laboratory-based experiments. And indeed, in com-

mon terminology in the field, simulated results are often described as being

“empirical” data, a term usually reserved for natural phenomena rather than

for numerical models of nature. Or as Kevin Heng (2014) puts it, simulated

data are referred to as “data sets”, seemingly placing them on an equal

footing with observed natural phenomena.

The danger of blurring this distinction is probably small in reality, even

though virtual laboratories offer opportunities for experimentation and ob-

servation that in some sense even go beyond what is possible in any real

physical laboratory. In a virtual laboratory on the computer, we can turn

off or turn on any processes we want, analyzing how they affect each other.

Or we can change their properties (even into unphysical regimes) in order

to understand what role they play in detail. We can trace back in time

the evolution of any object to see how its properties emerged. We can ob-

serve a process under any spatial and time angle, unrestricted by sensitive

limitations of instruments.

Applied to astrophysics in the form of this thesis, the primary objective

of such experimentation is to improve our understanding of galaxy forma-
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Figure 1.3: Left image: Moore’s Law for microprocessors, showing that the num-
ber of transistors in microchips doubles approximately every two years (adopted
from WikimediaFoundation.org). Right image: Growth of resolution elements in
cosmological simulations as a function of publication year (adopted from Genel
et al. 2014). This shows the same tendency to double roughly every two years.

tion. Also, as numerical modeling has been demonstrated to have predictive

power, it is in principle possible to discover physical phenomena that have

not been detected yet in observational data. There is no doubt however

that when interpreting numerical experiments we have to be careful. To

use a simulation as a laboratory, one has to understand its limitations –

otherwise, one may wrongly identify an artifact as a result. For exam-

ple, numerical oscillations or enhanced viscosity that arise from errors in

numerical schemes could be easily be mistaken as physical effects.

Since Moore’s law (Moore 1965) still holds true (see Fig. 1.3), continuing

the trend over the last 40 years, we can hope that the accuracy and level

of detail reached in numerical simulations will still continue to grow (Genel

et al. 2014). And consequently, the reliability of virtual experimentation

should continue to grow as well. If one day all of the relevant physical laws

of galaxy formation will be captured and incorporated in a numerical simu-

lation, then one may end up with an ab-initio prediction of galaxy formation

that nearly perfectly reproduces the physical reality. At the moment, this

is still a distant goal.
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1.6 Structure of this thesis

The key properties of spiral galaxies, which are also commonly called disk

galaxies, are that they are thin stellar systems which rotate rapidly and

often show spiral structure. One of the main challenges to our qualitative

understanding of galaxy formation in the ΛCDM cosmogony is the great

number of thin disk galaxies observed in the local Universe. Many of them

are also found to contain old stars in their disks. But the problem is that

disks are very fragile, and mergers with other galaxies can easily destroy thin

disks. This conceptually challenges the hierarchical “bottom-up” scenario,

where basically all galaxies form as the end result of a number of merging

processes.

This concern becomes a real problem once one considers that our best

theoretical ΛCDM simulation models are thus far all failing to form a suf-

ficient number of disk galaxies with low bulge-to-disk ratio (Vogelsberger

et al. 2014b; Genel et al. 2014). There is a hope that this may simply be

due to a lack of resolution and inadequate modeling of the relevant physics,

preventing the formation of disk galaxies. In this case, we may just need to

wait until numerical simulations reach a level where numerical resolution

and physics modeling is not a limitation any more.

Unfortunately there is however also the nagging possibility that some-

thing is conceptually wrong, and future simulations may then not be able

to resolve this issue. To address this question already today one can for

example consider controlled experiments that place fully formed thin disk

galaxies with realistic properties inside a live dark matter halo as it assem-

bles and evolves cosmologically, and see whether this galaxy can survive in

the tumultuous cosmological environment.

Unfortunately there are obstacles on the way to such an experiment.

In particular, one evidently needs a disk galaxy that is in equilibrium with

itself and with the dark matter halo it is going to be placed in to carry

out such an experiment. We have to make sure that the disk model will
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not be destroyed or deformed because of intrinsic instabilities, but rather is

only affected by the host’s halo evolution, otherwise any conclusion about

whether thin disks can survive or not would be misleading. However, it is

actually quite challenging to realize particle disks with prescribed realistic

properties that are in near perfect dynamical equilibrium. Several such

methods were invented that can in principle be tried to achieve this goal,

among them are distribution function based and moment-based methods,

Schwarzschild’s method, and the made-to-measure method, but none of

them is actually suitable and accurate enough for the controlled experiment

we have described.

In order to overcome this problem, we have developed a new method that

is powerful enough to construct high-quality steady-state compound disk

galaxies for such experiments. Our method will be described in full in the

next chapter of this thesis and originates in principle from a simple idea (see

Fig. 1.4), namely to iteratively adjust the initial velocities of the particles

until their time-averaged orbits reproduce a prescribed mass distribution.

In order for this idea to work the velocity adjustments need to be well

balanced and not biased to specific particles or specific directions, which

is one reason why a practical realisation of the idea is difficult. To arrive

at a robust scheme, we combine our method with analytical solutions of

the Jeans equations to obtain second velocity moments that are imposed as

additional velocity constrains. This allowed us to develop a general purpose

code which we dubbed GALIC that can create composite halo-disk-bulge

galaxy models with prescribed density distribution and velocity anisotropy.

Using this newly developed code we initialized well equilibrated disks in

the full set of eight Aquarius halos and re-simulated their joint evolution,

as described in Chapter 3 of this thesis. We analyzed in particular the

role played by the triaxiality of dark matter halos, by infalling dark matter

subhalos and by the initial structural properties of the disk and bulge.

Interestingly, we find that disks tumble substantially in space as they are

torqued by the triaxial dark halo potential, but their survival is actually
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Figure 1.4: This plot illustrates our original idea that led us to develop a new
method for the construction of N-body systems in collisionless equilibrium, as
described in full in Chapter 2 of this thesis.

less problematic than it may seem, provided the disks are light enough and

the dark matter and/or stellar bulge is concentrated enough to avoid the

formation of a stellar bar.

Finally, in Chapter 4 of this thesis we consider another important science

topic related to stellar disks, namely the radial migration of stars. If a

disk galaxy is assumed to be a largely unperturbed system then one would

expect to have a nice correlation between age and metallicities of stars.

However, observationally it is found that the stars of a given age and at a

given radius have a broad spread of metallicity (Edvardsson et al. 1993).

This poses the question where this spread of metallicities comes from. One

proposal is that it may result from a radial redistribution of stars due to

scattering of circular orbits on transient spiral waves, which may alter the

angular moment of stars without increasing their random motions much

(Sellwood & Binney 2002). Because there is a metallicity gradient in disks,

stars that formed in the inner disk are expected to be more metal rich

than those formed in outer parts. So as a result of radial migration, the
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scatter in the age-metallicity relation may be substantially affected. In

addition, it has been speculated that radial migration may form a so-called

“thick-disk” component in the Milky Way. We study the importance of

radial migration in a suite of hydrodynamical cosmological simulations of

disk galaxy formation carried out with the AREPO code. All previous

work on the subject has in contrast relied on idealized isolated galactic

disc, an approach that suffers from a significant dependence on arbitrary

assumptions made for the initial conditions, something that is eliminated

in our approach.

In brief, this thesis is organized as follows. In Chapter 2, we describe

our new method to create equilibrium galactic systems and our new code

GALIC that implements the approach. In Chapter 3, we describe a set of

controlled numerical experiments aimed at studying the influence of dark

matter halo assembly on the stability of fully formed disk galaxies that we

insert into the Aquarius halos with the help of the GALIC code. In Chapter 4

we analyze the radial migration of stars in state-of-the-art hydrodynamical

simulations of Milky Way-sized galaxies carried out with the moving-mesh

code AREPO. Finally, we conclude with a brief summary of our findings in

Chapter 5.

The contents of Chapter 2 have been published in slightly modified form

in Yurin & Springel, Monthly Notives of the Royal Astronomical Society,

444, 62 (2014). Submission of Chapters 3 and 4 as journal publications is

in preparation.
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A new iterative method for the
construction of N-body galaxy

models in collisionless
equilibrium

“Think beyond the limits"
— HITS’ slogan

Abstract

We describe a new iterative approach for the realization of equi-
librium N-body systems for given density distributions. Our method
uses elements of Schwarzschild’s technique and of the made-to-measure
method, but is based on a different principle. Starting with some
initial assignment of particle velocities, the difference of the time-
averaged density response produced by the particle orbits with re-
spect to the initial density configuration is characterized through a
merit function, and a stationary solution of the collisionless Boltz-
mann equation is found by minimizing this merit function directly by
iteratively adjusting the initial velocities. Because the distribution
function is in general not unique for a given density structure, we aug-
ment the merit function with additional constraints that single out a
desired target solution. The velocity adjustment is carried out with a
stochastic process in which new velocities are randomly drawn from
an approximate solution of the distribution function, but are kept
only when they improve the fit. Our method converges rapidly and
is flexible enough to allow the construction of solutions with third
integrals of motion, including disk galaxies in which radial and ver-
tical dispersions are different. A parallel code for the calculation
of compound galaxy models with this new method is made publicly
available.
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2.1 Introduction

The large number of stars and dark matter particles in galaxies and galaxy

clusters makes them essentially perfect collisionless systems. Their dynam-

ics is hence described by the collisionless Boltzmann equation, coupled to

self-gravity through Poisson’s equation. Relaxed systems correspond to

stationary solutions of these equations, and much of the field of galactic

dynamics is concerned with understanding different aspects of these solu-

tions (see Binney & Tremaine 2008, for an excellent exposition). This is

particularly important for using observational probes of kinematics to infer,

for example, something about the underlying density distribution.

Numerical N-body simulations have become a primary work-horse to

study collisionless systems, both in stationary and dynamic situations. Promi-

nent examples include the study of bar instabilities (e.g. Athanassoula

2002), the formation of spiral waves (e.g. D’Onghia et al. 2013), or ma-

jor and minor mergers of galaxies (e.g. Barnes & Hernquist 1992; Hernquist

& Mihos 1995). They are also actively used to study the response of disks

to the bombardment by dark matter clumps (e.g. Kazantzidis et al. 2008;

D’Onghia et al. 2010), or the radial migration of stars caused by resonance

scattering (e.g. Sellwood & Binney 2002), and many more.

In carrying out numerical experiments targeting these questions, a re-

current challenge is to construct suitable initial conditions. One usually

requires them to be in a reasonably stable, approximate equilibrium in

the beginning, otherwise any subsequent dynamics may be dominated or

heavily contaminated by the specific out-of-equilibrium state one started

out with. Often, one has a relatively clear notion of the density structure

one wants to realize, but initializing the particle velocities appropriately is

a quite non-trivial problem. This is because doing this perfectly requires

knowledge of the full distribution function (DF) of the system, or in other

words, availability of a stationary solution of the collisionless Boltzmann

equation. However, such solutions are analytically known only for a very
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limited number of density distributions.

There is hence significant demand to construct equilibrium solutions

numerically, not only for realizing N-body initial conditions but also in the

context of modelling observational data sets. In the latter case, finding

such models is a main component of the reverse-engineering process aimed

at constructing self-consistent three-dimensional systems that reproduce the

observations. They can then be examined in great detail, allowing insights

into properties that are not directly observable (Cretton et al. 1999; van

den Bosch et al. 2012).

To our knowledge, there are presently mainly five different methods in

use for constructing such equilibrium models:

1. DF-based: For certain mass distributions, the distribution function

(DF) can be analytically calculated or accurately approximated. Un-

fortunately, this ideal case is not generally available for arbitrary den-

sity distributions. The main problem is that we do not know the

analytical form of the third integral of motion. In some cases it may

be reasonably approximated, but this leads at best to nearly self-

consistent solutions (Kuijken & Dubinski 1995; Widrow & Dubinski

2005). Nevertheless, there are some useful classes of solutions known,

for example for spherical galaxies (Osipkov 1979; Jaffe 1983; Merritt

1985; Hernquist 1990). However, because many real systems are not

particularly close to any of these parameterized classes of systems, the

approach is rather restrictive in practice.

2. Moment-based: Moments of the velocity distribution can be calcu-

lated or estimated with the hierarchy of Jeans equations. If one ne-

glects higher order moments and assumes a functional form for the

velocity distribution (often taken to be Gaussian, e.g. Hernquist 1993;

Springel & White 1999) that reproduces the estimated moments, one

obtains an approximate distribution function. This method is quite

general and can be applied to all mass distributions. Since the true
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velocity distribution function is usually close to a triaxial Gaussian for

much of the mass of a system, the method typically produces systems

that are roughly in equilibrium. But the crux is that this equilibrium

is by no means perfect, and that it is hard to overcome this limita-

tion within this method. Especially difficult are the central regions

of galaxies; when the constructed ICs are evolved in time, one here

typically finds density ripples propagating through the system while

it relaxes to a true equilibrium state. This can interfere with the in-

terpretation of numerical experiments, especially when they require

particularly quiet ICs.

3. Orbit-based method: Schwarzschild (1979) introduced a radically dif-

ferent approach to solve the problem. He suggested to integrate a

wide variety of orbits in a given potential, and then to distribute

the mass of the system over this orbit library such that the time-

averaged density of the system becomes as close as possible to the

one corresponding to the potential. Finding the weights of each of

these orbits defines a linear optimization problem with positive coef-

ficients, which can be solved iteratively. The resulting weights then

effectively define the velocity distribution function. A practical prob-

lem with this method is that the size of the orbit library is severely

constrained by the available memory. Moreover, the method is ill-

conditioned in its basic form, something that needs to be cured by

adding ad-hoc assumptions such as smoothness constraints or maxi-

mum entropy measures for the weights. Also, the velocity distribution

functions constructed with this method are typically very noisy and

may feature large jumps. One needs to smooth them, but the re-

quired level of smoothing is hard to define. Many attempts have been

made to overcome these difficulties (e.g. Vandervoort 1984; Jalali &

Tremaine 2011).

4. Made-to-measure: Attempts to improve on Schwarzschild’s method
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have resulted in a new technique where the orbit integration process

and the mass/weight redistribution are combined. This ‘made-to-

measure’ technique makes the storage of a full orbit library unneces-

sary and therefore removes the memory barrier. But it still requires a

smoothing procedure for the velocity distributions (Syer & Tremaine

1996; Dehnen 2009).

5. Guided-relaxation: Another class of methods exploits the fact that

any isolated system left to itself tends to an equilibrium state. Know-

ing the target mass distribution we may try to directly relax to it by

steering a system appropriately in the process. This guiding can be

done by introducing an additional force, e.g. adiabatic drag on the

vertical components of the particle velocities in order to squeeze the

system (Holley-Bockelmann et al. 2001), or we may restrict particle

mobility such that the target density distribution is maintained and

the systems evolves towards a self-consistent equilibrium state (Rodi-

onov et al. 2009). A disadvantage of this approach is that it involves

one of the other methods to create an initial state for the further

relaxation. Also, there is only limited control on the outcome, mak-

ing it, e.g., difficult to construct systems with a prescribed velocity

anisotropy.

The purpose of this work is to introduce a new, flexible approach for the

construction of compound N-body models of axisymmetric galaxies in an

essentially perfect equilibrium state. The method only requires the specifi-

cation of the density profiles of the different components and a selection of

the desired bulk properties of the velocity structure, such as the degree of

rotational support or the ratio between radial and vertical velocity disper-

sion in the disk plane. Our code then constructs an N-body system that

is in equilibrium and fulfills the imposed constraints on the velocity struc-

ture. Implicitly, it hence also provides a solution for the full 3D distribution

function. This is achieved for essentially arbitrary axisymmetric density
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structure and by taking the mutual influence of different mass components

(if present) fully into account. We argue that the resulting flexibility and

accuracy makes our approach an attractive alternative compared with other

IC generation methods in the literature.

This chapter is structured as follows. In Section 2.2, we describe the ba-

sic methodology adopted in our method, which consists of an iterative pro-

cedure to adjust the velocities of an N-body realization of a galaxy model

until the prescribed density structure is maintained self-consistently un-

der time evolution, and the imposed velocity constraints are fulfilled. In

Section 2.3, we highlight how we specify velocity constraints for different

structural choices. They take the form of second velocity moments which

we determine through solutions of the Jeans equations. We then specify

in Section 2.4 various implementation details of our numerical methods as

realized in the GALIC code introduced here. Section 2.5 is concerned with a

brief description of the specific density profile models currently implemented

in this code; these are employed for a suite of tests presented in Section 2.6.

Finally, we conclude with a summary of our findings in Section 2.7.

2.2 Methodology

If density profiles for all collisionless mass components of a galaxy model

are given, a random N-body realization of particle positions can be easily

created by interpreting the density distribution as a probability field for a

Poisson point process. But assigning suitable velocities to the particles is the

difficult step. Our idea is to do this iteratively: Starting from some guess for

the particle velocities, we try to correct them such that the system becomes

closer to the desired equilibrium state. This is in some sense similar to

Schwarzschild’s method, where one models the distribution function from

which the velocities are drawn through a set of weights, which are then

iteratively adjusted until a global merit function is extremized. Differently

from this technique, we however optimize the velocities of each particle
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directly. This eliminates the explicit orbit library of the Schwarzschild

method, and all the restrictions that come with it. Instead, the particles

of our N-body model themselves define the orbit set that is optimized.

Importantly, this set is free of any discreteness restrictions or potential

biases due to incompleteness of the Schwarzschild orbit library.

As basic merit function that is optimized we consider the difference be-

tween the target density field and the actual density response created by

our N-body realization with the currently assigned initial velocities. The

density response is here defined as the time-averaged density field of the

N-body orbits, calculated in the static potential of the target density distri-

bution. For a steady state system, this density response is supposed to be

time invariant, and equal to the initial density field. We can readily imagine

several different optimization schemes that adjust individual particle veloc-

ities iteratively such that this difference becomes as small as possible, for

example multi-dimensional steepest decent.

Before discussing the details of our specific solution for this, it is how-

ever prudent to consider two apparent conceptual problems with the basic

approach as outlined thus far. One is that the density structure does not

uniquely specify the velocity structure of an equilibrium model, or in other

words, there can be more than one steady-state solution of the collision-

less Boltzmann equation for a given density structure. For example, for a

spherically symmetric mass distribution, one can have solutions where the

velocity distribution is isotropic everywhere, and the distribution function

depends only on energy (the ‘ergodic’ case). But there are also solutions

with an anisotropy between radial and tangential motions. Furthermore,

one can also have many different axisymmetric solutions that feature dif-

ferent degrees of net rotation.

It is hence not clear to which equilibrium solution our adjustment scheme

would converge when only the density response is optimized. This ambigu-

ity can be lifted by making a selection for the desired type of solution one

wants to obtain, and to suitably incorporate this constraint in the merit
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function. For example, one may request to obtain an anisotropic solution

with a certain prescribed ratio of radial and tangential velocity dispersions.

We can then augment our density based merit function with further condi-

tions that enforce this velocity structure.

A second problem, of perhaps somewhat lesser importance, is the pos-

sibility of overfitting individual particle velocities. In the continuum limit

of a collisionless system, individual particles are completed uncorrelated

from each other. An iterative optimization approach will however always

adjust a particle’s velocity given the current realization for positions and

velocities of all other particles. This can in principle introduce undesired

correlations between particles. Related to this, one may easily end up in an

unfavorable local minimum of the merit function. We largely eliminate this

effect by using a special optimization strategy in which new values for the

velocity of a given particle are not searched in the vicinity of the current

velocity, but rather globally in a random fashion, completely independent

of the particle’s current velocity.

In the following, we first discuss our formalism for determining the den-

sity response of a particular realization and for measuring its goodness of fit

through a merit function. We then extend the discussion to merit functions

for the velocity moments, and present our approach for optimizing both of

them concurrently.

2.2.1 Density merit function

Consider a collisionless N-body system with N particles, initial coordinates

x̂i, and initial velocities v̂i. We assume that an initial density distribution

ρ0(x) is given, which can be used to create a realization of the coordinates

x̂i by random sampling. Determining the v̂i is more complicated, however;

we want to initialize them such that a stationary solution of the collisionless

Boltzmann equation is obtained where the particles move in a given, station-

ary gravitational potential Φ(x). In other words, the collection of particles

should move such that the density field they create is time invariant and
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identical to the initial density distribution. If this is achieved, the gravi-

tational field can then also be chosen self-consistently as the one created

by the mass distribution itself (plus additional contributions by other mass

distributions, if desired), such that one obtains a stationary self-gravitating

solution of the Poisson-Vlasov system.

The density field created by the particles of our system can be formally

expressed through a superposition of Dirac delta functions:

ρ(x, t, v̂1, . . . , v̂N) =
N∑
i=1

mp δ(xorbit(x̂i, v̂i, t)− x), (2.1)

where the function xorbit(x̂
′, v̂′, t) describes the time-dependent orbit of a

particle starting in the phase-space point (x̂′, v̂′). Note that in the expres-

sion for the density field we have explicitly retained the dependence on the

initial values of the particles velocities (which we have yet to determine),

whereas the initial positions can be viewed as fixed parameters.

Next, we define the time-averaged density response for the chosen initial

velocities as

ρ̄(x, v̂1, . . . , v̂N) = lim
T→∞

1

T

∫ T

0

ρ(x, t, v̂1, . . . , v̂N) dt. (2.2)

The best steady-state for the system can be defined as the smallest possible

difference between the time-averaged density and the initial density field.

To this end, we introduce an objective function

S(v̂1, . . . , v̂N) =

∫
| ρ̄(x, v̂1, . . . , v̂N)− ρ0(x) | dx, (2.3)

which measures the L1-norm of the difference between the two fields. The

linear weighting of the mass difference at a given location is motivated by

the source term in Poisson’s equation, which is ultimately what we want

to keep constant as much as possible in a steady state to avoid potential

fluctuations that can modify particle energies.

Therefore, the task to construct a best possible steady-state that has a

given density distribution is primarily about finding the v̂i such that the
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difference S defined by equation (2.3) reaches a minimum. Note that this

can in principle be viewed as a high-dimensional minimization problem with

respect to the initial velocities. This could, for example, be tackled with the

method of steepest decent. A direct adjustment of the velocities to minimize

the function S is indeed the central idea we pursue in this chapter, yielding

a novel scheme for constructing equilibrium solutions. There are however a

number of obstacles that make such a minimization non-trivial.

First of all, the problem needs to be somehow discretized, otherwise we

cannot meaningfully define a density field for a finite number of particles.

We will deal with this aspect in the remainder of this subsection. A further

conceptual problem, namely the non-uniqueness of the obtained solutions,

needs to be addressed as well.

Let’s assume we discretize the space covered by our system in terms of

cells of volume Vj, indexed by j. The cells cover the volume but they do not

need to be of the same size (e.g. we may choose to use adaptive logarithmic

grids, as we do in practice). The merit function (2.3) can now be written

as

S(v̂1, . . . , v̂N) =
∑
j

∣∣M j(v̂1, . . . , v̂N)−M0
j

∣∣ , (2.4)

where M j and M0
j give the masses of the time-averaged and the initial

density field that fall into cell j, respectively. To determine M j, we add the

time-averaged contributions of the orbits of all particles to this spatial cell.

Since the trajectories of different points require different times to saturate

their impact on the common averaged density, it is computationally more

efficient to follow their orbits over individually chosen time scales Ti. We

can then write

M j =
N∑
i=1

∫
cell j

dx

∫
dt

Ti
mp δ(xorbit(x̂i, v̂i, t)− x). (2.5)

This reduces to

M j =
N∑
i=1

mp τ
orbit
j (x̂i, v̂i), (2.6)
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where τ orbit
j (x̂i, v̂i) gives the fraction of time an orbit starting in the given

phase-space point spends in cell j. The expected mass in the cell, M0
j , is

simply given by

M0
j =

∫
cell j

ρ0(x)dx. (2.7)

We note that the above equations correspond to so-called nearest grid point

assignment of the current position of a particle to the mesh. One can replace

this with a higher-order assignment scheme if desired, with the simplest

possibility being clouds-in-cell assignment1.

A more important question concerns the choice of the spatial binning

scheme. There should be enough bins to resolve all relevant detail of the

density distribution, but the Poisson noise affecting M j due to the finite

number of particles we use clearly limits the minimum size of a bin that

is reasonable. In order to make the noise in each bin comparable, it is

advantageous to choose the bins sizes such that they contain roughly equal

mass. We follow this strategy by adopting a hierarchical adaptive binning

scheme combined with a logarithmic grid. We will describe this approach

in full detail in Section 2.4.1.

2.2.2 Velocity dispersion merit functions

As we discussed earlier, the requirement of a stationary density field does

not in general imply a unique solution for the distribution function. For

example, in an axisymmetric system, it would always be possible to flip

the signs of the azimuthal velocities to generate, e.g., a system where all

particles orbit around the z-axis with positive Lz, or with negative Lz, or

with any desired mixture of the two. It is hence unclear in which minimum

one ends up when one would try to directly minimize S with respect to the

v̂i.

In order to lift this ambiguity and make the solution more well defined,

we need to add additional constraints that drastically reduce the accept-
1We actually use the latter in our implementation, even though the improvement

relative to nearest grid point assignment is here minor.
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able solution space. We do this by invoking symmetry assumptions about

the velocity structure of the system. This then allows solving the Jeans

equations for the second velocity moments, which we impose as a further

optimization constraint.

In general, there are three first moments and three second (reduced)

moments of the velocity distribution function at every point. We will here

focus on axisymmetric systems and employ cylindrical coordinates (R, φ, z).

In a stationary system, we always have 〈vR〉 = 0 and 〈vz〉 = 0. We shall

now assume that as part of specifying our desired target system, we pro-

vide enough assumptions such that the three dispersions and the azimuthal

streaming can be calculated everywhere, i.e. σ2
R = 〈v2

R〉, σ2
φ = 〈(vφ − vφ)2〉,

σ2
z = 〈v2

z〉, and the mean azimuthal streaming vφ = 〈vφ〉 can be considered

to be known as a function of (R, z). How we compute these quantities in

practice for different cases will be discussed in Section 2.3.

In order to impose these velocity moments as additional constraints on

the initial velocities v̂i, we again consider spatial bins indexed by j, allow-

ing us to estimate the actual (initial) velocity dispersions of our particular

realization. For example, the average radial dispersion in bin j is given by[
σ2
R

]actual

j
=

1

Mj

∑
x̂i in cell j

mp(v̂i · e(i)
R )2. (2.8)

The normalization factor

Mj =
∑

x̂i in cell j

mp (2.9)

is simply equal to the mass of the initial realization that falls into the spatial

bin. The vector e
(i)
R is the radial unit vector at the position of particle i.

The expected target velocity dispersion in the bin is given by[
σ2
R

]target

j
=

1

M0
j

∫
cell j

ρ0(x)σ2(x) dx, (2.10)

where M0
j is the mass expected in the continuum in the cell. We may then

define a merit function that measures the deviation of the actually realized
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velocity dispersion relative to the target value. To this end we adopt

QR =
∑
j

| [σ2
R]

actual
j − [σ2

R]
target
j |

[σ2
R]

target
j

. (2.11)

Similarly, we define merit functions Qz and Qφ for the dispersions in the

z-direction and the azimuthal φ-direction, respectively. In the azimuthal

direction, we actually measure and constrain both the full second moment〈
v2
φ

〉
and the dispersion relative to the mean streaming σ2

φ. Combined, this

then also constrains the mean streaming itself.

As for the density case, we need to adopt a suitable discretization for

the spatial bins. In order to avoid biases due to different noise levels in

the bins, we adopt bins in which the mass per bin (or, equivalently, the

number of particles) is roughly constant, a situation we realize with the

help of a hierarchical adaptive binning scheme. We note that it is possible

to employ the same spatial bins as used for the density merit function, but

if desired the corresponding target value for the mass per bin can also be

chosen differently.

2.2.3 Optimization procedure

Our goal is to iteratively adjust the v̂i such that S, QR, Qφ and Qz are

simultaneously minimized. We do this by combining these quantities into

a single goodness-of-fit parameter,

Sglobal = S + χ(QR +Qφ +Qz), (2.12)

where the constant χ is adjusted such that S and QR +Qφ +Qz are of the

same magnitude and have the same units. In other words, we give equal

weight to the density and velocity constraints.

The function Sglobal(v̂1, . . . , v̂N) depends only on the initial particle ve-

locities. Hence we are formally charged with the task to find its minimum

in the high-dimensional space of all the 3N velocity components. Trying

to find this minimum is a computationally rather tricky problem, because
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the function will feature a large number of local minima in which a direct

search may easily get stuck. Also, the function is non-linear and expensive

to evaluate – calculating S involves orbit integrations of a large number of

particles over a long time interval. Even if a single force calculation is com-

paratively cheap due to the static potential, the cumulative CPU cost can

become demanding, especially since we are not dealing just with a single

particle but rather with a (potentially quite large) particle collection of size

N .

Nevertheless, it is still possible to estimate the local gradient of Sglobal

with respect to the v̂i and then to move in the direction of steepest decent

by simultaneously modifying all velocities in the direction opposite to the

gradient. But finding a local minimum in this way will still be very hard

(we have tried); typically, one will instead overshoot in at least one of the

many dimensions of the problem.

Another consideration also argues against this brute force approach.

Physically, we expect that the particles should be completely uncorrelated

in proper collisionless initial conditions. Directly minimizing Sglobal simul-

taneously with respect to all velocities invokes the danger of ‘overfitting’,

where a low value of the merit function is obtained through the introduction

of velocity correlations in the specific N-body realization of the system.

Our solution to these problems involves two components. First, we se-

rialize the minimization procedure, i.e. we always pick only one particle

randomly, and then optimize its velocity such that Sglobal is reduced. Sec-

ond, we do not actually try to adjust the velocity of the single particle such

that Sglobal is necessarily minimized, as may be done by using the result of

a line search along a single parameter. Rather, we simply randomly pick

a new guess for the particle’s velocity and (re)evaluate the merit function

for this choice. If the proposed velocity improves the fit, we retain it as

the new velocity of the particle, otherwise we simply keep the particle’s old

velocity and proceed with the next particle. This is simply repeated until

the fit cannot be improved significantly any more. We note that this ap-
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proach bears some resemblance to Monte Carlo Markov Chain techniques,

except that we are here trying to find a global optimum rather than explor-

ing a likelihood surface where one also moves occasionally away from the

optimum with a certain probability.

The distribution from which one draws the trial velocities is in principle

arbitrary, provided it is broad enough to sample all allowed velocities. How-

ever, it is highly advantageous to make it close to the target distribution

function, because in this case the convergence speed can be expected to be

particularly rapid (just as in MCMC). In our case, we can simply use Gaus-

sians for that, as we already have the second moments in hand based on our

Jeans solutions and the distribution function will in most cases resemble a

Gaussian locally, so this should facilitate rapid convergence. Note that every

new trial velocity we pick is completely independent of the previous value,

as well as of the velocities of all other particles. This helps to minimize cor-

relations between different particles in the created initial conditions, and

it prevents to get easily stuck in a local minimum. Nevertheless, velocity

correlations are not completely absent, because the acceptance decision for

the velocity of a particular particle still depends on the discrete spectrum

of velocities realized at this instant for all the other particles. But as our

results show, any present residual correlations do not seem to negatively

impact the quality of the created initial conditions.

In practice, we choose to process all particles in a random order. In

each pass over the particles, we pick for a given particle one of its three

principal coordinate directions and draw a random trial value for the corre-

sponding velocity component. We note that the evaluation of Sglobal can be

significantly accelerated if only one particle is varied. In this case, only the

summed orbital response of all particles needs to stored, without requiring

storage of all the responses individually. Evaluating Sglobal for a changed

velocity of one particle then boils down to calculating the orbit response

for this particle twice, both for the old and new velocities. The differen-

tial between the two results can then be appropriately added to the global
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response to assess the change in Sglobal.

2.3 Velocity constraints

As discussed above, a problematic aspect of optimizing only a density merit

function is that it is ambiguous to which solution this will converge. Recall

that for a given density distribution there will in general be a vast number

of possible distribution functions. The iterative optimization will yield a

particular realization of one of these distribution functions, and this solution

might depend on the initial velocity guesses one has used at the beginning.

In order to make the solution well defined, we need to impose additional

constraints that reflect the desired properties of the specific solution one

is looking for. We do this in terms of second moments of the velocity

distribution and by forcing the system to converge to a solution that features

these moments. The moments themselves are calculated from the Jeans

equations. Different possibilities for a specification of the desired properties

of the target system exist.

2.3.1 Spherically symmetric distribution functions

If the density structure is spherically symmetric and the velocity distribu-

tion function depends at most on the magnitude of the angular momentum,

we can make use of the spherically symmetric Jeans equation for the second

radial velocity moment,

∂(ρσ2
r)

∂r
+ 2

βρσ2
r

r
+ ρ

∂Φ

∂r
= 0. (2.13)

Here σ2
r = 〈v2

r〉 is the radial dispersion. The velocity distribution functions

in the transverse directions at any given position need not be equal to that

in the radial direction, but we have σθ = σφ due to the assumed symmetry.

The degree of radial–tangential anisotropy is usually measured in terms of

β = 1− σ2
t

2σ2
r

= 1−
σ2
φ

σ2
r

, (2.14)
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where σ2
t = σ2

θ +σ2
φ = 2σ2

θ measures the total tangential dispersion, and due

to spherical symmetry we have σθ = σφ. If the distribution is isotropic, we

have β = 0. If the orbits are biased towards radial motions we have β > 0,

while for β < 0 they are preferentially tangential.

For given ρ(r) and prescribed β(r), and thanks to the purely radial de-

pendence, equation (2.13) becomes an ordinary differential equation for ρσ2
r

which can be readily integrated using the boundary condition ρσ2
r = 0 for

large radii. Dividing the solution by the density then yields the dispersion

σ2
r(r) as a function of radius, and from it we also obtain σ2

θ(r) = (1−β)σ2
r(r).

We note that we may choose β to be a function of radius, as suggested

by the structure measured for cosmological dark matter halos. Hansen &

Moore (2006) found that the local anisotropy of dark matter halos correlates

well with the logarithmic slope

α =
d ln ρ

d ln r
(2.15)

of the density profile. Their numerical results are well fit by the relation

β(r) = −0.15− 0.2α, (2.16)

which we adopt as an additional option in our IC code. This implies nearly

isotropic orbits in the center of a Hernquist or NFW halo, and a growing

preference for more radial dispersion as a function of distance.

A particularly simple choice for β(r) is the isotropic case, β = 0, where

the velocity distribution function is independent of direction at every point.

In this ergodic case, the distribution function depends only on energy. Hern-

quist (1990) constructed such a solution for a density profile of the form

ρ(r) ∝ r−1(r + a)−3, which is cosmologically particularly relevant as it has

a shape similar to the NFW density profile (Navarro et al. 1997) measured

for relaxed halos in cold dark matter structure formation simulations. This

makes the isotropic Hernquist model a particularly useful analytic distri-

bution, and we will also use it here to verify our procedures. We note

however that a yet more realistic model would be one with a radially vary-
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ing anisotropy β(r). No analytic distribution functions are known for this

case, but such models can be readily constructed with our new method.

2.3.2 Axisymmetric systems with two integrals of
motion

For axisymmetric systems, the angular momentum Lz around the z-axis is a

conserved quantity for all orbits, hence we expect the distribution function

to depend on Lz besides energy E. In general, there can be a third integral

of motion, I3, which is however often not easy to identify and therefore

considered “non-classical”. If one disregards I3 and assumes that the distri-

bution function is only a function of E and Lz, then the situation simplifies

considerably, as one can then infer that all mixed moments of the velocity

distribution vanish (i.e. 〈σRσz〉 = 0). In this case the axisymmetric Jeans

equations simplify considerably and can be comparatively easily solved.

With two integrals of motion, the non-trivial axisymmetric Jeans equa-

tions become:
∂(ρσ2

z)

∂z
+ ρ

∂Φ

∂z
= 0, (2.17)

and 〈
v2
φ

〉
= σ2

R +
R

ρ

∂(ρσ2
R)

∂R
+R

∂Φ

∂R
. (2.18)

The mean streaming motions in the radial and vertical directions vanish,

〈vR〉 = 〈vz〉 = 0 (but not necessarily in the azimuthal direction), and impor-

tantly, the radial and vertical dispersions are equal everywhere, σ2
R = σ2

z .

This in particular means that the density distribution fully specifies the

vertical and radial dispersions in the meridional plane (R, z). They can be

explicitly calculated as

σ2
R = σ2

z(R, z) =
1

ρ(R, z)

∫ ∞
z

ρ(z′, R)
∂Φ

∂z
(R, z′) dz′. (2.19)

Once these dispersions are known, we can now determine the second

moment
〈
v2
φ

〉
of the azimuthal motion from the radial Jeans equation (2.18).

However the mean streaming 〈vφ〉 in the azimuthal direction is not specified
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by the Jeans equations. Indeed, 〈vφ〉 does not have to be zero if there is

net rotation. For any given solution with non-zero 〈vφ〉, one can readily

construct new, equally valid equilibrium solutions, for example by reversing

all or a fraction of the particles’ φ-motions. It is hence clear that the

requirement of axisymmetry does not specify 〈vφ〉. In fact, we are (within

limits) free to set this.

We adopt the parameterization

〈vφ〉2 = k2
[〈
v2
φ

〉
− σ2

R

]
(2.20)

suggested by Satoh (1980) to specify the mean streaming. For the interest-

ing choice k = 1, we obtain for the azimuthal dispersion

σ2
φ ≡

〈
v2
φ

〉
− 〈vφ〉2 = σ2

R = σ2
z , (2.21)

i.e. σ2
φ is then equal to the radial and vertical dispersions. This defines the

case of an isotropic rotator. But we may also adopt a lower or higher value

for k, or even one with a spatial dependence, up to the maximum allowed

local value of

k2
max =

〈
v2
φ

〉〈
v2
φ

〉
− σ2

R

. (2.22)

In k climbs up to this value, the azimuthal dispersion vanishes and we

have 〈vφ〉2 =
〈
v2
φ

〉
, corresponding to a system with the maximum possible

angular momentum for a given density structure. In our GALIC code, we

either choose a constant k or specify k in units of kmax when the case of a

f(E,Lz) distribution function is selected.

2.3.3 General systems with three integrals of motion

While simple disk models can be constructed as isotropic rotators, observa-

tions in the Milky Way at the Solar circle suggest that σR is not equal to σz.

Rather, the two dispersions are related approximately by σz ' 0.5σR (Bin-

ney & Merrifield 1998). Even if the Milky Way can still be described well as

an axisymmetric system, this already means that the distribution function
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Figure 2.1: Sketch of the geometry adopted to describe the assumed tilt of the
velocity ellipsoid in the f(E,Lz, I3) case.

is not only dependent on (E,Lz); instead, a third integral of motion must

play an important role. In the outer parts of the disk, this is approximately

given by the energy of the vertical motion in the disks potential, but in

the inner parts of the disk this identification presumably becomes a poor

approximation.

Another interesting observational fact is that the velocity ellipsoid above

the disk mid plane is not aligned with the coordinate plane; instead, it ap-

pears tilted (i.e. 〈vRvz〉 6= 0) towards the centre of the system. Using RAVE

velocity data, Siebert et al. (2008a) and Binney et al. (2014) quantified the

tilt at 1 kpc above the disk to be around α = 7o (see sketch of Fig. 2.1). We

are hence forced to apply the general axisymmetric Jeans equations, which

take the form:

∂(ρσ2
z)

∂z
+ ρ

∂Φ

∂z
+

1

R

∂(Rρ 〈vRvz〉)
∂R

= 0, (2.23)

〈
v2
φ

〉
= σ2

R +
R

ρ

∂(ρσ2
R)

∂R
+R

∂Φ

∂R
+
R

ρ

∂(ρ 〈vRvz〉)
∂R

, (2.24)

∂(ρ 〈vzvφ〉)
∂z

+
1

R2

∂(R2ρ 〈vRvφ〉)
∂R

= 0. (2.25)
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This system of equations is significantly under-specified and additional as-

sumptions are needed for closure. We shall assume that the velocity ellipsoid

is not tilted in the φ-direction, hence 〈vzvφ〉 = 〈vRvφ〉 = 0. This eliminates

the third equation. However, we need to retain a tilt in the meriodonal

plane, as encoded by 〈vRvz〉. If α is the local angle between the velocity

ellipsoid and the R-axis, this mixed moment can be expressed in terms of

the radial and vertical moments, i.e. we have

〈vRvz〉 =
1

2
tan(2α)

[
σ2
R − σ2

z

]
. (2.26)

For reference, the dispersions in the rotated coordinate frame (R′, z′) are

given by 〈
v2
R′

〉
= σ2

R cos2(α) + 〈vRvz〉 sin(2α) + σ2
z sin2(α), (2.27)〈

v2
z′

〉
= σ2

R sin2(α)− 〈vRvz〉 sin(2α) + σ2
z cos2(α). (2.28)

The tilt angle is the one for which 〈vR′vz′〉 = 0, by construction.

Interestingly, the tilt observed for the Galaxy at the Solar circle is con-

sistent with the velocity ellipsoid pointing approximately to the center of

the Galaxy; the most recent determination by Binney et al. (2014) gives

α ∼ 0.8 arctan(z/R). We here assume for definiteness that this alignment

is perfect and holds throughout the system, in which case the angle α is

simply given by

tanα =
z

R
. (2.29)

Specifying the orientation of the velocity ellipsoid in this way has the nice

property of naturally producing a spherically symmetric orientation close to

the galactic centre, i.e. the ‘disk regime’ seamlessly transitions to a ‘bulge

regime’. Far out in a thin disk, the velocity ellipsoid will align with the

coordinate axes, while near to the centre the situation becomes closer to

that in a spherically symmetric case with a radial alignment, which seems

plausible.

Prescribing the tilt angle is not yet enough to solve equations (2.23) and

(2.24), because they involve four unknowns. An additional assumption is
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required. To this end, we adopt a prescribed relation between the radial

and vertical dispersions in the tilted velocity ellipsoids, namely〈
v2
R′

〉
= fR

〈
v2
z′

〉
, (2.30)

where fR is a factor specifying the anisotropy between radial and transverse

motions. For the disk of a Milky Way like galaxy, we would expect fR ' 2

at the Solar circle, but little is own about a potential radial variation of this

value. We also note in passing that the Toomre stability criterion depends

sensitively on σR, so invoking values fR > 1 is one way of stabilizing a stellar

disk of given thickness against axisymmetric perturbations. For simplicity,

we shall assume a spatially constant value for fR in the disk, but note that

our techniques could be easily generalized to include a radial or vertical

variation of this factor.

Given the above model for the dispersions, we can now express the mixed

moment 〈vRvz〉 through the vertical dispersion, namely

〈vRvz〉 = hσ2
z , (2.31)

where the function h = h(R, z) is given by

h =
(f − 1) tan(2α)

2 cos2(α)− 2f sin2(α) + (1 + f) sin(2α) tan(2α)
, (2.32)

and the shortcut f = fR is understood. The Jeans equation (2.23) now

becomes an inhomogenous first order partial differential equation (PDE)

for σ2
z . Defining q ≡ ρσ2

z , the relevant equation takes the form

∂q

∂z
+
∂(hq)

∂R
+
hq

R
+ ρ

∂Φ

∂z
= 0. (2.33)

We can solve this PDE numerically with the methods of lines by discretizing

in R and replacing the spatial R-derivative with a finite difference approx-

imation. We can then integrate the resulting system of coupled ordinary

differential equations along the z-direction, starting at z ' ∞ and ending

up at z = 0. The initial condition is q(R, z =∞) = 0, augmented with the
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boundary condition q(R = ∞, z) = 0. For numerical stability, one needs

to take care that an upwind finite difference estimate for the R-derivative

is used. Note also that the hq/R term is not singular for R = 0, because

h/R→ (f − 1)/f for R→ 0.

Having obtained a solution for q(R, z), we then readily have σz, σ2
R,

〈vRvz〉, as well as 〈v2
R′〉 and 〈v2

z′〉 throughout the meridional plane. Sim-

ilar as with the axisymmetric f(E,Lz) case, we still have the freedom to

choose a streaming velocity in the φ-direction, except that now we have to

use equation (2.24) to infer the corresponding dispersion available in the

azimuthal direction. We continue to use the parametrization of equation

(2.21) for the azimuthal streaming. For the case k = 1, we then get σ2
φ = σ2

R

in the mid-plane.

We note that one can also obtain from epicycle theory a statement about

the relation between 〈(vφ − vc)2〉 and σ2
R, valid for small radial dispersions

σR, namely
〈(vφ − vc)2〉

σ2
R

' 1

γ2
(2.34)

where γ = 2Ω/κ. Ω2 = 1
R
∂Φ
∂R

is the circular orbit frequency, and

κ2 = R
dΩ2

dR
+ 4Ω2 (2.35)

is the epicycle frequency. Typically we have 1/γ2 ' 0.5. We note that

equation (2.34) is only reliable for very cold thin disks, with σR � vc (see

Binney & Tremaine 2008). Interestingly, combined with equation (2.24),

the epicycle approximation gives the azimuthal streaming (and hence also

the axisymmetric drift) in the equatorial plane as

〈vφ〉 = vc +
σ2
R

2vc

(
∂ ln(ρσ2

R)

∂ lnR
+
γ2 − 1

γ2

)
. (2.36)

On the other hand, we obtain from equation (2.20) the following expression

for the streaming velocity to leading order in σR/vc:

〈vφ〉 = k vc +
k σ2

R

2vc

(
∂ ln(ρσ2

R)

∂ lnR

)
. (2.37)
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2. Constructing equilibrium N-body models

Consistency with the epicycle approximation hence requires k = 1 for thin

cold disks. The residual difference grows for large σR/vc, but note that in

this limit the epicycle approximation becomes inaccurate anyway.

2.4 Implementation details

2.4.1 Adaptive logarithmic binning

To account for the typical power-law growth of the density towards the

center in self-gravitating systems, we generally employ logarithmic grids.

For the sake of simplicity, we restrict ourselves to axisymmetric systems

in this chapter, and also assume mirror symmetry with respect to the z =

0 plane. Adopting cylindrical coordinates, this means we only have to

cover the positive quadrant in the (R, z)-plane. We assume that the mass

distribution is fully contained inside a cube of side-length 2dmax, i.e. our

mesh needs to cover the region 0 ≤ R < dmax and 0 ≤ z < dmax. If we

use Nbin = 2l bins per dimension, and require that the width of the bins

grows by a constant factor f from bin to bin, the borders of the bins can

be written as

Ri = dbase(f
i − 1), (2.38)

zj = dbase(f
j − 1), (2.39)

with i, j ∈ [0, 1, . . . , Nbin]. The bin (i, j) (with 0 ≤ i, j < Nbin) then covers

[Ri, Ri+1]× [zj, zj+1] in the (R, z)-plane and has volume

Vij = 2π(R2
i+1 −R2

i )(zj+1 − zj). (2.40)

To cover the full volume, dbase and f need to be chosen such that

dmax = dbase(f
Nbin − 1). (2.41)

This still leaves room for one additional constraint to fully specify the quan-

tities dbase and f . We typically address this by requiring that the first bin,

bounded by R1 = dbase(f − 1), encloses a small prescribed fraction of the
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Figure 2.2: Density response of our hierarchical binning scheme. The top left
panel shows the average orbit response as recorded on the finest grid used (which
is a logarithmic grid with 2562 pixels). The next four panels show coarsened
representations of this field, with resolutions of 642 to 82 pixels (this continues to
even coarser meshes that are not shown). Finally, the bottom right panel shows
the variable resolution response that is actually used to compare with the target
density distribution, based on bins containing roughly equal mass.

total mass of the system (e.g. 10−6), such that the central region is still

well resolved by the grid.

As we discussed earlier, the objective functions assessing the density

response and the initial velocity distribution work best if the spatial bins

are chosen such that they contain approximately constant mass. We realize

such a scheme by first constructing the mass response on a relatively fine

grid, given by the level lmax. We then recursively construct a set of coarsened

meshes on levels lmax − 1, lmax − 2, . . ., 1, 0, until there is only one cell left

covering the whole quadrant. Computing the mass response of one of the

grid cells of a coarsened mesh is done recursively by summing over the
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2. Constructing equilibrium N-body models

corresponding four cells in the finer mesh one level higher. Similarly for the

velocity dispersion fields.

Evaluating the objective functions then proceeds with a recursive algo-

rithm that walks the tree of nested mesh cells. Beginning at the ‘root node’,

a mesh cell is included in the sum if it contains less than a certain threshold

mass or if it is already a cell of the finest level. Otherwise, the mesh cell

is ‘opened’, and its four daughter cells are considered in turn as candidates

for being included in the sum. This procedure automatically selects a close

to optimum set of cells of different sizes. Note that the union of the cells

that enter the sum form a space-covering tessellation, i.e. each point in the

(R, z)-plane is accounted for exactly once.

In Figure 2.2 we show an example for the mass response grid of a set

of orbits in the (R, z)-plane for a mesh with Nbin = 28 cells per dimension,

together with the hierarchy of the next four coarsened representations at

higher levels. The final panel on the bottom right shows a mixed image

of variable resolution, indicating what is effectively used in the adaptively

calculated sum that defines the merit function.

2.4.2 Orbit integration

In order to efficiently and accurately compute orbits of particles for arbitrary

mass distributions, we produce a look-up table of the gravitational potential

and its derivatives ∂Φ/∂R and ∂Φ/∂z in the positive quadrant of the (R, z)-

plane. Due to the axisymmetry we assume, this is sufficient to obtain the

forces and the potential everywhere through a table look-up. We use a fine

logarithmic grid in R and z and bilinear interpolation for the look-up table.

In order to allow a computation of the forces for arbitrary density dis-

tributions without analytic solutions of Poisson’s equation, we numerically

evaluate the potential and forces on the fine grid based on randomly sam-

pling the density distribution with a very large number of fiducial particles

combined with a calculation of the forces and potentials with a gravitational

tree algorithm. This procedure is very flexible and accurate. In order to
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help reducing noise effects from the sampling to a negligible level, a large

number of fiducial points is used, and additionally, we evaluate and average

the field at a set of different azimuthal angles.

For the orbit integration of particles, which gives us xorbit(x̂i, v̂i, t), we

use the leapfrog scheme with adaptive timestep based on the kick-drift-kick

formulation. If (x(n),v(n)) denote position and velocity after step n, then

the update to the next step is obtained through

v(n+1/2) = v(n) + a(n)∆tn/2, (2.42)

x(n+1) = x(n) + v(n+1/2)∆tn, (2.43)

v(n+1) = v(n+1/2) + a(n+1)∆tn/2. (2.44)

We set the size ∆tn of the timestep of step n as

∆tn = min

(
ηorbit

V200

|a(n)|
, ηmesh

d
(n)
cell

|v(n)|

)
, (2.45)

where V200 is the circular velocity of the halo of the constructed galaxy and

d
(n)
cell is the dimension of the mesh cell at the particle’s current location. The

dimensionless coefficients ηorbit and ηmesh are meant to ensure an accurate

integration of the orbit and a precise accounting of the time spent by the

orbit in each of the bins used for recording the density response.

We select the integrated timespan Ti for each particle individually. To

this end we use the circular velocity at the particle’s initial position, and

introduce a dimensionless factor ηtimespan for scaling the circular orbital time

at the local distance. Explicitly, we set

Ti = ηtimespan
2π|x̂i|
vcirc(x̂i)

, (2.46)

where vcirc(x̂i) ≡ (|x̂i| |âi(x̂i)|)1/2. We typically found ηtimespan = 10.0 to be

sufficient, yielding an average number of about 15 orbits for the particles of

a typical halo.
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2. Constructing equilibrium N-body models

2.4.3 Optimization procedure

As discussed earlier, we in principle would like to optimize the particles

sequentially. Unfortunately, this immediately poses a serious problem for

any efficient parallelization. If we enforce strictly sequential iterative ad-

justments of the particle velocities (such that a subsequent evaluation of

the merit function already takes the effects of a potential change of the

previous particle’s velocity fully into account), then the optimization can

evidently not be done concurrently for several different particles.

However, we have found that in practice we still obtain good results

if we allow a small fraction of all particles to be treated simultaneously,

each remaining unaware of the changes in the other particles until these are

‘committed’ at the end of the concurrent phase. With this approach, we can

exploit massive parallelism in the optimization procedure (as implemented

in our GALIC code).

For definiteness, this practical aspect of our optimization scheme is con-

trolled by a parameter fopt which gives the fraction of particle orbits that

can be set to new starting velocities without taking note of each other. Our

default values for this parameter is fopt = 0.001, meaning that our code will

process the particles in batches of size foptNpart particles from a randomly

shuffled list of all particles. In each batch, all the trial velocities are drawn

and evaluated independently (hence this can be done in parallel), and only

at the end the velocity updates are committed to the new global response

of the system, affecting the next batch.

When a particle is selected for optimization, we first randomly select one

of the three primary coordinate directions, and then replace the correspond-

ing velocity component with one drawn from the corresponding Gaussian

distribution. In this way, each of the optimizations effectively couples only

to one of the velocity dispersion measures. We found this advantageous

also for the following reason. To exclude any possibility that systematic

binning effects might prefer orbits that start, for example, with positive vR
as opposed to negative vR, we actually assess orbits by averaging the merit
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Figure 2.3: Decline of the merit function in a typical optimization run (actually
the model D1 from Table 1) as a function of the number of attempted velocity
adjustments in units of the particle number of the corresponding component. The
solid line shows the result for the dark matter particles, while the dashed lines is
for the disk particles.

functions for orbits both with vR and −vR velocities, and likewise for the vz
velocities. This guarantees symmetry of the resulting velocity distribution

functions in these two directions, and in particular, 〈vR〉 = 〈vz〉 = 0. How-

ever, in the φ-direction, this reversal trick is not indicated, both because

here the symmetry of the binning procedure excludes the possibility of any

such effects by construction (unlike for the R- and z-directions), and be-

cause in the φ-direction orbits with a reversed φ-velocity are not necessarily

equally probable. We note that to ensure that all particles remain bound,

we reject any trial velocity that is larger than ηmaxvesc, where vesc is the

local escape velocity and ηmax = 0.9999 is a parameter very close to 1.

In Figure 2.3, we show the decline of the value of the merit function

as a function of the number of velocity optimizations that have been at-

tempted by the code, in units of the total particle number, for a typical

initial conditions model where the initial velocity guess were computed with
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2. Constructing equilibrium N-body models

the moment-based method. We see that after ∼ 3 optimization attempts

for each particle, the initial convergence speed slows down significantly,

and a stationary state in which no further improvement appears possible

is reached after approximately ∼ 5 optimizations. We find this is a quite

typical behaviour in all of our models. Conservatively, we usually run our

models to ∼ 10 optimizations per particle.

2.4.4 Determination of the initial realization

There are only two functions that need to be provided for any desired

density distribution that should be treated with our scheme. For each com-

ponent of the system (i.e. halo, disk and/or bulge), one function needs to

return the density of the component at a given point, the other must return

a randomly sampled coordinate from the density field, i.e. the probability

density of the corresponding point process must be proportional to the den-

sity field. Having these functions in hand, we can create the x̂i simply by

randomly sampling each density component present in the target system.

Also, we can create a (large) fiducial set of points for evaluating the force

field to arbitrary precision with a tree algorithm. Finally, we can make

use of the function returning the continuum density in solving the Jeans

equations.

Since in our approach we anyway compute the second moments with

the Jeans equations, we may as well initialize initial guesses for the par-

ticle velocities v̂i by drawing randomly from Gaussian distributions with

the correct local dispersions. This corresponds to the frequently invoked

approximation of adopting triaxial Gaussians for the local velocity distri-

bution function, and since this is in most cases reasonably close to the

correct distribution, it accelerates convergence. The iteration method is

then in essence only responsible for determining the higher-order moments

of the velocity distribution function.
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2.4.5 Parallelization approach

Our C-code for creating stable initial conditions with the scheme described

here, GALIC, has been fully parallelized for distributed memory machines

using the message passing interface (MPI). For calculating the gravitational

field in the (R, z)-plane, we let each MPI-task sample particles indepen-

dently. The resulting particle set is then subjected to a domain decomposi-

tion, and a parallel distributed tree algorithm derived from the well-known

GADGET simulation code (Springel et al. 2001b; Springel 2005a) is invoked

to compute the force field.

For creating the particles of the actual initial conditions, we again let

each MPI-task create a random, disjoint subset of the target particle set

for each mass component. Then we let each MPI-task work independently

and in parallel on the orbit optimizations associated with one batch of size

foptNpart. The results are then interchanged and the sums over the orbit

responses are updated accordingly, allowing the next cycle of optimizations

to proceed. As a result, the scalability of our code is essentially perfect

provided foptNpart is substantially larger than NCPU, otherwise work-load

imbalances may become substantial as not all tasks could then be expected

to have roughly equal amounts of work in each batch.

We have also made use of some of the I/O code from GADGET when

writing the final initial conditions to disk. They can be stored in any of the

three file formats supported by GADGET (including one in HDF5-format),

thereby simplifying the subsequent use of the ICs with this simulation code,

or the application of existing file format conversion tools from GADGET’s

format to other simulation codes. Finally, our use of parallel I/O routines

also facilitates the creation of extremely large galaxy models, if desired.

2.5 Galaxy models

The approach outlined above is quite general and can be used with nearly

arbitrary axisymmetric density profiles. For definiteness, we describe in
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this section a specific set of parameterizations for dark matter halos, stellar

disks and stellar bulges, which we shall use in our test galaxy models. These

parameterizations follow models widely employed in the literature.

We usually model the dark matter density profile as a spherically sym-

metric halo with density

ρdm(r) =
Mdm

2π

a

r(r + a)3
, (2.47)

where a is the scale factor. Following Springel et al. (2005a), we can relate

a to the concentration c of a corresponding NFW halo of massM200 = Mdm

such that the shape of the density profile in the inner regions is identical.

The relation between a and c is then given by

a =
r200

c

√
2[ln(1 + c)− c/(1 + c)], (2.48)

where r200 and M200 are the virial radius and virial mass of the NFW halo,

respectively.

We may also consider axisymmetric dark matter halos with either pro-

late or oblate distortions. For simplicity, we assume that the isodensity

contours of the distorted shape are ellipses, effectively created by linearly

distorting the spherical shape along the symmetry axis. If s = a/c is the

(radially constant) stretch factor, and a = b and c are the axes of some

isodensity ellipsoid, then a prolate halo has c/a > 1 (and hence s < 1),

while an oblate halo has c/a < 1 (with s > 1). We can then define the

density profile of the distorted halo as

ρ̃dm(R, z) ≡ s ρdm(
√
R2 + s2z2), (2.49)

which leaves the total mass invariant.

For the disk, we adopt in general a model with exponential radial scale

length, and a sech2-profile in the vertical direction. More specifically, the
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3D disk density profile2 is described by

ρ?(R, z) =
M?

4πz0 h2
sech2

(
z

z0

)
exp

(
−R
h

)
. (2.50)

The disk scale length h can either be set to a prescribed value, or calculated

by assuming that the disk contains a certain fraction of the specific angular

momentum of the halo (see, e.g., Mo et al. 1998). We assume a radially

constant scale height z0 of the disk, but this could be easily modified if

desired. Usually, we parameterize z0 in terms of the disk scale length, with

typical disks lying in the range z0/h ∼ 0.1− 0.3.

Finally, we model a stellar bulge (if present) with a Hernquist halo as

well, using the profile

ρb(r) =
Mb

2π

b

r(r + b)3
. (2.51)

The bulge scale length b is prescribed through a parameter that gives its

size in units of the halo’s scale length.

We specify both the bulge and disk masses as fractions md and mb of

the total mass, i.e. Md = mdMtot and Mb = mbMtot. This parameteriza-

tion has previously been adopted in the study of Mo et al. (1998) on disc

structure, as well as in some earlier work on compound disc galaxy models

(e.g. Springel & White 1999; Springel et al. 2005a).

All the many reasonable combinations of the above components, to-

gether with the various velocity structures possible for them, produce a

fairly large number of possibilities our code GALIC has to deal with. In

particular, requiring that a galaxy model always needs to have a dark mat-

ter halo (either of spherical or oblate/prolate shape), that a disk can either

be present or absent, and that a bulge is optional but may have different

shapes if present (spherical, oblate, or prolate), we already arrive at 12 pos-

sible combinations of these three components. Of the corresponding mod-

els, only 2 have spherically symmetric potentials (namely either the model
2We note that equation 10 of Springel et al. (2005a) contains a typo in the form of

an extraneous factor 1/2 in the argument of the sech-function. All model calculations in
that paper have however been done correctly, based on equation 28 of Springel & White
(1999), which is what we adopt here too.
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with just a spherical halo, or the model with spherical halo and a spherical

bulge), allowing ergodic f(E) distribution functions or f(E, |L|) models for

them (besides axisymmetric f(E,Lz) or f(E,Lz, I3) distribution functions

possible for all the models). Allowing just for different combinations of

these extra velocity structures, this means that the 2 density models really

correspond to 6 possible variants. Similarly, the other 10 possible density

models give rise to 54 possible velocity variants, so that we have of order 60

valid combinations of density model and associated velocity structures. Of

course, many of these models really correspond to a continuum of further

possibilities once the additional free parameters describing, for example, the

degree of net rotation or the radial velocity anisotropy are used.

It is clear that we cannot present exhaustive tests of all these possibilities

in this work. Rather, we instead focus on a representative selection of

models which we list in Table 2.1. This sample of models covers a good

fraction of the space of possible model variants of interest, hence our tests

should give a good assessment of how well our techniques work in practice.

We consider, in particular, models that contain only a dark matter halo

(denoted as ‘H1’, ‘H2’, etc.), that feature a pure disk embedded in a halo

(labeled ‘D1’, ‘D2’, etc.), that contain a bulge but no disk inside a halo

(‘B1’, etc.), and finally, models that feature both a disk and a bulge (‘M1’,

‘M2’, etc.). In each of these four groups, we consider models with a variety

of velocity structures, and/or different halo or bulge shapes. Detailed test

results for the produced initial conditions will be discussed in the next

section.

2.6 Test results

2.6.1 Models with a single halo component

The simplest of our models is ‘H1’, featuring a Hernquist dark matter halo

with an isotropic velocity distribution. For definiteness, we adopt v200 =

200 km s−1 and c = 10 to set the total mass and concentration of the halo,
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Model Components and their shape Imposed velocity structure

H1 spherical dark halo ergodic (i.e. isotropic Hernquist model)
H2 spherical dark halo spherical anisotropy, radial orbits dominating,

β = 0.5
H3 spherical dark halo spherical anisotropy, tangential orbits dominat-

ing, β = −1.0
H4 spherical dark halo radially varying anisotropy,

β(r) = −0.15− 0.20d log ρ
d log r

H5 spherical dark halo axisymmetric velocity structure, isotropic rota-
tor with k = 1

H6 prolate dark halo with s = 0.85 axisymmetric velocity structure, no net rotation
H7 oblate dark halo with s = 1.15 axisymmetric velocity structure, no net rotation

B1 spherical dark halo, spherical
bulge

ergodic

B2 spherical dark halo, spherical
bulge

different anisotropies for bulge and halo, βhalo =
0.5, βbulge = −1.0

B3 prolate dark halo s = 0.85,
spherical bulge

axisymmetric velocity structure, no net rotation

B4 oblate dark halo s = 1.15, pro-
late bulge s = 0.85

axisymmetric velocity structure, no net rotation

D1 spherical dark halo, thin disk axisymmetric velocity structure for halo and
disk, disk isotropic rotator

D2 prolate dark halo with s =
0.85, thin disk

axisymmetric velocity structure for halo and
disk, disk isotropic rotator

D3 spherical dark halo, thin disk disk with f(E,Lz, I3) structure and fR = 2.0,
halo axisymmetric with k = 0

D4 spherical dark halo, thin disk disk with f(E,Lz, I3) and fR,disk = 4.0, halo
axisymmetric with k = 0.5

D5 prolate dark halo with s =
0.85, thin disk

disk with f(E,Lz, I3) and fR,disk = 2.0, halo
axisymmetric isotropic rotator

M1 spherical dark halo, spherical
bulge, thin disk

axisymmetric structure for halo and bulge (no
rotation), disk isotropic rotator

M2 spherical dark halo, spherical
bulge, thin disk

axisymmetric velocities for halo/bulge, disk
with f(E,Lz, I3), fR,disk = 2.0

M3 spherical dark halo, spherical
bulge, thin disk

disk with f(E,Lz, I3) and fR = 4.0, bulge no
rotation, halo with k = 0.1

M4 prolate dark halo s = 0.85,
oblate bulge s = 1.15, thin disk

disk with f(E,Lz, I3), fR = 2.0, halo and bulge
both isotropic rotators

Table 2.1: Set of basic galaxy models constructed for testing purposes with
the methods outlined in this paper. Unless stated otherwise, we have used 106

particles for each model component. The models labeled ‘H1’, ‘H2’, etc., contain
only a dark matter halo but differ in the halo shape or the assumptions made
for the velocity structure. The models denoted ‘B1’, ‘B2’, and so on, contain a
bulge in addition to the halo, and the modes with ‘D1’, ‘D2’, etc., feature a disk
in addition to the halo. Finally the models ‘M1’, ‘M2’, etc., contain both a stellar
bulge and a stellar disk, next to a dark matter halo.
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Figure 2.4: Radial and azimuthal velocity distribution functions in different
radial shells for the isotropic Hernquist sphere. The blue line show the exact
analytic solution. The red and green lines show the constructed solution with our
method, separately for azimuthal and radial velocity components. The numbers
at the top of each panel indicate the radial range of the measurement.

and we use N = 106 particles in order to have enough sampling points for

a reliable measurement of the produced velocity distribution function.

In Figure 2.4, we show radial and azimuthal velocity distribution func-

tions measured from the ICs produced by our code for this classic Hernquist

model, where the analytic distribution function is known analytically. We

measure the distribution function in a set of 6 radial shells, as labelled in

the different panels. In each panel, we show the analytic distribution func-

tion in blue, and the one produced by the GALIC code in red ( azimuthal

direction) and green (radial direction), respectively. We can nicely see from

the figure that the model calculated by GALIC reproduces the expected

distribution function rather well in all radial shells, without any signifi-

cant difference. In particular, note that the model produces the platykurtic

nature of the velocity distribution of the Hernquist sphere, which directly

shows the presence of higher-order moments that are missed by simpler

moment-based methods but are capture by our new approach. This is seen

explicitly in Figure 2.5, where we compare the shape of the produced radial

velocity distribution function to a Gaussian with the same dispersion.
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Figure 2.5: Distribution function of the radial velocities in a Hernquist model
within a thick radial shell. The black line gives the result of our code for the
H1 model, while the red curve is a normal distribution with the same dispersion.
The correct platykurtic shape of the distribution function (which is missed in
moment-based approaches) is reproduced by our method.

The most important critical test of a method’s ability to create initial

conditions in equilibrium is however to check the stability of the ICs in

a self-consistent simulation under its own self-gravity. To this end, we

use the GADGET N-body code, with force accuracy and time integration

parameters set conservatively such that energy conservation is excellent. To

control discreteness effects in the potential we set the gravitational softening

length to a value of 0.05 kpc. In this way we make sure that any secular

evolution that is seen really reflects imperfections of the ICs rather than

being influenced also by N-body integration errors or two-body relaxation.

Figure 2.6 shows the relative deviation of the spherically averaged den-

sity profile from the initial values at different radii and different simulation

times, for our H-models. Different line colors mark the different times, as la-

belled. We have here restricted the simulation time to 1 Gyr, but note that

nothing qualitatively changes if this is expanded to 10 Gyrs, significantly
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Figure 2.6: Density profile changes of different realizations of our halo-only
H-models when evolved in time. The panels show the relative deviation of the
spherically averaged density profile from the initial values at different radii and dif-
ferent simulation times. Different line colors mark the different times, as labelled.
The top left panel corresponds to initial conditions for the isotropic H1-model
realized with the analytic distribution function, while the top middle panel is for
the moment-based approach, for comparison. All other results (H1 to H7) are for
our new method as implemented in the GALIC code.

longer than the dynamical time of the galaxy model. Let us first focus on

a comparison of runs for three different initial conditions constructed for

H1, the isotropic Hernquist model. The simulation starting from ICs cre-

ated with the analytic distribution function is shown in the top left panel,

the top right panel shows our GALIC technique, and the top middle panels

gives the moment-based method (here realized with the MAKENEWDISK

code described in Springel et al. 2005a). As can be seen, our result (top

right panel) is nearly indistinguishable from the analytic initial conditions.

There is a hint of some small deviations standing out of the noise compared
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Figure 2.7: Time evolution of the relative change of kinetic and potential en-
ergies in the H1 model, for initial conditions realized either through the analytic
distribution function (red), through the GALIC code (green), or with a moments
based approach (blue).

with the analytic solution, but this is very small if real at all. In contrast,

for the moment-based method we see a prominent perturbation propagat-

ing outwards, irreversibly changing the mass distribution of the system as

it relaxes to a new equilibrium state.

Another view of this difference in the dynamical evolutions of these three

simulations is given in Figure 2.7, where we compare the relative changes

of the kinetic and potential energies of the three runs as a function of time.

We can see that both the N-body realization drawn from the analytic Hern-

quist distribution function and the GALIC result show essentially stationary

energies over the simulation, as expected from a virialized system in equilib-

rium. In contrast, the moment-based approach shows a rapid evolution in

the energies in the first ∼ 300 Myr, and only then settles into a stationary

state. Note that in this initial phase, the central potential fluctuates, al-

lowing individual particles to change their energies and the system to relax

to a new equilibrium.

We now turn to considerably more demanding models that have an
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Figure 2.8: Halo shapes of models H6 and H7 as a function of evolution time.
We show the ratios of the principal eigenvalues of the moment-of-inertia tensor
at two different radii as a function of time. The values reproduce the intended
shapes according to Table 1, and are constant in time.

anisotropic, but still spherically symmetric velocity structure. These are

models H2, H3, and H4, characterized by asymmetry parameters β = −1

(for H2) and β = 0.5 (for H3), corresponding to the cases σ2
r = σ2

θ/2 and

σ2
r = 2σ2

θ , respectively. The model H4 adopts a radially varying profile β(r)

as suggested by cosmological simulations.

In Figure 2.9, we show radial profiles of the radial and azimuthal velocity

dispersion profiles for initial conditions produced by GALIC for these 4 cases

(and for completeness also for all other H-models), both at the initial time

and after different times of evolution. For reference, we also include in the

figure panels the result for H1 (top left panel) as a grey line, which is the

isotropic β = 0 case. We see that the initial conditions code manages to

accurately impose the desired velocity anisotropy at the initial time. Upon

time evolution, these velocity dispersion profiles are quite well maintained,

but not perfectly in the very central regions for models H2, and to lesser

extent, H3. While these two models still manage to maintain a directional

difference in the velocity dispersions in the innermost halo even after 1 Gyr
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Figure 2.9: Radial and azimuthal velocity dispersion profiles for our models H1
to H7. In each panel, we show the initial conditions produced by GALIC, and
the evolved states after different times. The expected profiles based on the Jeans
equations are shown underneath. The grey line reproduced the dispersion profile
expected for the H1 model, for comparison. In the top row, we also show results
for H1 obtained with the analytic distribution function (top left), and with the
moment-based method (top, middle).

of evolution, the initial profile is not fully retained in the very central region.

Overall, we consider these results however still to be quite good.

We note however that the density profiles of these anisotropic models

are accurately retained even in the centres in these anisotropic cases. Some

of the panels of Figure 2.6 report the density variations of the anisotropic

models H2-H4 upon time evolving their ICs. The relative fluctuations of the

density profiles are very small, consistent with the findings for the simple H1

model. Note that in Fig. 2.6 we also include results for the models H5, H6,

and H7. These latter three models now feature an axisymmetric assumption
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2. Constructing equilibrium N-body models

for their velocity structure. H5 is actually slowly rotating, whereas H6 and

H7 have prolate or oblate shape distortions, respectively. The absence of

any significant time evolution in the spherically averaged density profiles

shown in Fig. 2.6 indicates that these models are also rather robust and in

good equilibrium.

This is also confirmed by a look at their velocity dispersion profiles

shown in Figure 2.9, and a direct analysis of the halos shapes of models H6

and H7 at the final times. Simple measurements of the eigenvalues of their

moment of inertia tensors as a function of time (see Figure 2.8) confirm that

the imposed halo shapes are accurately retained over time. We also note

that the time evolution of the kinetic and potential energies (not shown)

confirms that the models are in good equilibrium.

2.6.2 Systems with a bulge and a halo

Next, we consider models that are slightly more complicated and feature two

different mass components of very different spatial extent, a Hernquist halo

with an embedded, much small stellar bulge, also modelled with a Hernquist

profile. Our model B1 simply consists of two ergodic systems nested into

each other. B2 varies that by invoking different velocity anisotropies for halo

and bulge, with a preference for radial orbits in the halo and tangential ones

in the bulge. Finally, B3 and B4 test different shape distortions for halo

and bulge, under the assumption of an axisymmetric velocity structure and

no net rotation.

Figure 2.10 shows the changes in the radially averaged density profiles of

these systems when they are evolved in time, separately for the stellar bulge

and the dark matter components. The stability appears to be excellent in

most cases, something that is also confirmed by other measures, such as

the time evolution of kinetic and potential energies. Only the B2 model

performs slightly worse, an outcome that we blame on the dominance of

radial orbits in the dark matter component of this model even in the very

centre (similar as in H2), and some of these orbits can be affected by the
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Figure 2.10: Density profiles changes of different bulge models (B-models in
Table 1) when evolved in time. For each of the four models, two panels are given
that show the relative deviation of the spherically averaged density profile of halo
and bulge components relative to the initial values, as a function of radius and
for different simulation times. Different line colors mark the different times, as
labelled.

radial orbit instability (Buyle et al. 2007).

2.6.3 Systems with a halo, a disk, and an (optional)
bulge

We now turn to the much more challenging case of models containing a

thin stellar disk. In Figure 2.11, we show the rotation curves of our models

containing just a halo and a disk (D-models, top panel), and those of our

models containing in addition a bulge as well (M-models, bottom panel).

In the innermost regions, the disk dominates slightly over the spheroidal

halo in the D-models. The specific parameters chosen for the D-models are
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Figure 2.11: Rotation curves of the different mass components in our D-models
(top panel) which contain only a dark matter halo and a stellar disk, and our
M-models (bottom panel) which in addition contain a central bulge.
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Figure 2.12: Stability against axisymmetric perturbations as expressed through
the Toomre Q-parameter, for different D- and M-models.

md = 0.035 and λ = 0.035, and the M-models contain additionally a bulge

with mb = 0.05 and a scale length set to a tenth of that of the halo. We

note that these choices are somewhat arbitrary and not meant to represent

a specific system such as the Milky Way; our methods work with similar

quality when the parameters are varied over a plausible range.

Interestingly, depending on what assumptions we make about the ve-

locity structure of the disk systems, the expected stability with respect to

axisymmetric perturbations can be quite different. In Figure 2.12, we show

Toomre’s Q-parameter for the disk models D1 to D4, as well as for our

M-models. As we see, D1 actually nearly straddles the stability boundary

at Q = 1, and can hence be expected to be somewhat more prone to ax-

isymmetric perturbations than D3, were Q is boosted thanks to a higher

radial velocity dispersion.

In Figure 2.13, we show the time evolution of the azimuthally averaged

projected disk surface density profiles, for models D1-D4, and for M1-M4.

We can see that all models are reassuringly stable. The improvement com-

pared with moment-based methods such as that implemented the MAK-
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Figure 2.13: Radial surface density profiles of the stellar disk component under
time evolution, for D1-D4 (top row), and M1-M4 (bottom row). The left column
shows the D1 and M1 models again, but this time for initial conditions produced
with the moment-based approach implemented in MAKENEWDISK.

ENEWDISK code can perhaps be best appreciated by comparing to the

results for this method, which are give in the leftmost panels of Fig. 2.13

for models D1 and M1.

Finally, a complementary view of the disk stability is obtained by con-

sidering the time evolution of the vertical density structure of the disks,

wich is shown in Figure 2.14. Again, the models D1-D4 and M1-M4 are

seen to retain their disk density structure accurately, relatively independent

of the different variants of halo and bulge shapes, and the different degrees

of rotation that we tried. Only M3 performs noticeably worse than the

other models in the outer disk. When we compare the D1 and M1 models

to corresponding realizations obtained with the moment based approach

(left most panels in the figure), there is a clear improvement.

2.6.4 Dependence on nuisance parameters

Our iterative method for finding equilibrium galaxy models with the GALIC

code involves several free parameters, for example the fraction of particles

that is allowed to be concurrently optimized, the number of optimization
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Figure 2.14: Vertical disk height as a function of radius at different times when
our disk models are evolved in time, for the D1-D4 models (top row), and the
M1-M4 models (bottom row). In the left column, we show for comparison the
corresponding results when the initial conditions for D1 and M1 are constructed
with a moment-based approach.

cycles before a randomization is carried out, the resolution of the density

response grid, the length of time over which orbits are integrated, and a

few more minor ones.

We have carefully tested whether our results depend significantly on the

settings of any of these parameters. This is fortunately not the case. We

find that our results are rather robust when any of these nuisance param-

eters is changed around our default settings. As a case in point, we show

in Figure 2.15 an explicit test for the number of orbits that are integrated,

comparing results produced for the M1 model where this parameter has

been lowered by a factor of 2, or increased by a factor of 2, compared with

our default choice. Reassuringly, we see that the density deviations occur-

ring in time evolutions of the produced ICs are of very similar magnitude,

i.e. their quality appears indistinguishable.

We also find that that the grid resolution used for recording density and

velocity dispersion responses plays only a negligible role for the results, pro-

vided the finest possible level is not overly coarse. This can be understood
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Figure 2.15: Test of the dependence of our results on the integration time of
particle orbits. We show the relative changes in potential and kinetic energies
when evolving initial conditions constructed with integration times lowered or
increased by factors of two relative to our default value. The particular system
used here is M1, but similar results are found for other models and other changes
of numerical parameters in our code.

as a result of our adaptive binning prescription. Potentially more important

may be the value of the number of particles required in a cell before it may

be split up in finer cells. But we have also found here that varying this

parameter over a significant range does not change the results appreciably.

Finally, the last free parameter that we have extensively tested is the inte-

gration accuracy of the orbits. Here our typical relative energy errors for

the integration of individual orbits are below 10−3, already suggesting that

this should be good enough and not introduce any significant errors into

the results. Indeed, investing more computational effort and lowering the

integration errors through finder timestepping does not change our results

in any significant way.
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2.7 Discussion and conclusions

In this chapter, we introduced a new iterative method for constructing equi-

librium N-body galaxy models. The principle advantage of our method is

that it can produce N-body systems that are essentially in exact equilibrium

for rather general density distributions, making the method ideal for stud-

ies of galaxy dynamics and numerical experiments with isolated or colliding

galaxies. Compared to alternative schemes like the Schwarzschild method,

our approach eliminates restrictions arising from a finite orbit library or

from required regularization schemes. Also, our method allows a natural

inclusion of simulation aspects like the need for a gravitational softening.

The test results we have analyzed show a considerable improvement of

the quality of the created initial conditions compared to existing codes such

as the moment-based MAKENEWDISK, a technique that has been used

in numerous studies over recent years. This is possible thanks to the ab-

sence of any assumptions in our approach with respect to the importance

of higher-order moments of the velocity distribution function. The main

disadvantage of our method lies in its higher computational cost compared

to moment-based approaches. However, thanks to the scalable paralleliza-

tion implemented of our code, this should not be a serious restriction in

practice. For example it took about 5 hours on 96 AMD-6174 cores (2.2

GHz) to compute high-quality solutions for our most compicated models

M1-4, while for the one component models it took only 1 hour. And since

poor ICs may also impact any further scientific investigation, the additional

CPU effort invested for better ICs should in many cases be well worth the

effort.

Finally, we also note that numerous optimizations in our code could well

be made to reduce its CPU time consumption. For example, the time to

full convergence for a system with large N may be reduced considerably

by first treating a smaller subsample of the particles with correspondingly

higher mass. Once this system has fully converged, one could then create
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the large target realization from it through bootstrap sampling, followed by

briefly relaxing the big system to the final equilibrium.

In future work, it might be interesting to extend our approach to gen-

uinely triaxial systems, which are of course considerably more challenging

than the axisymmetric case considered here. One could even include addi-

tional phenomena such as figure rotation. An important challenge is here

to suitably store the density response grid. Here, our approach, which

only requires essentially one such response grid should be considerably less

restrictive than Schwarzschild’s method because the requirement to store

a huge orbit library is avoided. In the meantime, we publicly release our

GALIC code (http://www.h-its.org/tap/galic) , hoping that it proves useful

for future N-body studies in galactic dynamics.
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The stability of stellar disks in
Milky-Way sized dark matter

halos
FAUST:
Nun gut, wer bist du denn?

MEPHISTOPHELES:
Ein Teil von jener Kraft,
Die stets das Böse will
Und stets das Gute schafft.

— Faust, Goethe

Abstract

We employ an improved methodology to insert live stellar disks
into high-resolution dark matter simulations of Milky Way sized ha-
los, allowing us to investigate the fate of thin stellar disks in the
tumultuous environment of cold dark matter structures. We study
a set of eight different halos, drawn from the Aquarius simulation
project, in which stellar disks are adiabatically grown with a pre-
scribed structure, and then allowed to self-consistently evolve. The
initial velocity distribution is set-up in very good equilibrium with
the help of the GALIC code. We find that the residual triaxiality of
the halos leads to significant disk tumbling, qualitatively confirming
earlier work. We show that the disk turning motion is unaffected by
structural properties of the galaxies such as the presence or absence
of a bulge or bar. In typical Milky Way sized dark matter halos, we
expect an average turning of the disks by about 40 degrees between
z = 1 and z = 0, over the coarse of 6 Gyr. We also investigate the
impact of the disks on substructures, and conversely, the disk heat-
ing rate caused by the dark matter halo substructures. The presence
of disks reduces the central subhalo abundance by a about a factor
of two, caused by an increased evaporation rate due to gravitational
shocks from disk passages. We find that substructures are impor-
tant for heating the outer parts of stellar disks but do not appear to
significantly affect their inner parts.
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3.1 Introduction

The ΛCDM cosmogony represents the leading theoretical model for struc-

ture formation and predicts a hierarchical growth of galaxies in which dark

matter halos have prominent triaxial shapes and are full of substructures.

It is not well understood how grand design spiral galaxies can form and

survive in this violent environment, which seems at the outset quite hostile

towards the long-term survival of thin, cold stellar disks. Such disks may

easily become distorted and tilted by triaxial potentials, they may suffer

from bar instabilities or excessive heating from dark matter substructures

and merger events.

Until recently, full hydrodynamical cosmological simulations have not

been particularly successful in making realistic thin disk galaxies without

dominating bulges, even though some remarkable progress has recently been

achieved on this long-standing problem (Governato et al. 2010; Agertz et al.

2011; Guedes et al. 2011; Aumer et al. 2013; Stinson et al. 2013; Marinacci

et al. 2014a). But even in the most recent simulation works, the disks have

generally been found to be too thick (e.g. Marinacci et al. 2014a). This could

plausibly be related to inaccurate modelling of the disk formation physics,

to a lack of numerical resolution, or to a combination thereof. However,

another possibility is that the hierarchical nature of dark matter halo growth

in cold dark matter models, combined with the strong triaxiality of CDM

halos, quite generally causes excessive disk heating. In this case, CDM

scenarios may pose restrictive intrinsic limits on the possible abundance

of thin stellar disks. It is therefore important to shed more light on the

question under which conditions thin stellar disks can comfortably survive

in CDM halos.

It is difficult to study this issue systematically with full cosmological

hydrodynamical simulations, due to their very high computational cost and

the lack of freedom to prescribe the structural disk properties of the galax-

ies. An alternative approach is to study the stability of well-resolved col-
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lisionless stellar disks that are inserted into dark matter halos in a suit-

able fashion. This has been explored in numerous previous works, but

most of these studies employed isolated toy models of halos and disks, and

not the full cosmological context (e.g. Walker et al. 1996; Sellwood et al.

1998; Velazquez & White 1999; Athanassoula & Misiriotis 2002; Debattista

et al. 2006; Gauthier et al. 2006; Kazantzidis et al. 2008; Read et al. 2008;

Machado & Athanassoula 2010). Only a few works have tried to achieve a

consistent cosmological embedding, where the disk is somehow inserted by

hand in a suitable fashion in a growing dark matter (Berentzen & Shlosman

2006; D’Onghia et al. 2010; DeBuhr et al. 2012). If this is done carefully,

one can hope to reach much higher resolution than accessible in full hy-

drodynamical simulations, while at the same time having full control about

the structural parameters of the inserted disk galaxy. The latter allows in

principle an easy exploration of the full space of observationally realistic

disk parameters.

The most sophisticated variant of this approach has recently been pre-

sented by DeBuhr et al. (2012), who introduced disks in a subset of the

halos studied in the “Aquarius” project (Springel et al. 2008a), which con-

sists of high-resolution simulations of Milky Way-sized halos in a ΛCDM

universe. The Aquarius halos have been particularly well studied, with a

subset of them also being followed up hydrodynamically (Scannapieco et al.

2009, 2012; Aumer et al. 2013, 2014; Marinacci et al. 2014a,b; Pakmor et al.

2014; Okamoto et al. 2014). The corresponding initial conditions exist at

different resolutions and are of high quality, allowing converged results even

including the density profiles of individual dark matter subhalos (Springel

et al. 2008a).

The study of DeBuhr et al. (2012) has examined halos A, B, C, and

D of the original Aquarius set. A general result of their work was that

disks in CDM halos of Milky-Way sized halos appear to be rather brittle,

and can be expected to substantially change over the coarse of a few Gyrs.

In particular, DeBuhr et al. (2012) have found that their disks tumble
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substantially, and universally grow bars, unless very light disks are used. A

substantial fraction of the initial disk material reached large heights above

and below the disk plane, and significant warps in the disks where detected

as well.

However, DeBuhr et al. (2012) used a comparatively simple method to

initialize the disk velocity distribution function, and only one family of ini-

tial galaxy structures was considered. In the present work we try to improve

on this earlier work in several respects, in particular by extending the study

to a larger halo sample that encompasses eight Aquarius halos, by using a

more sophisticated and flexible method to initialize the initial disk models

based on our GALIC code (Yurin & Springel 2014), by including also mod-

els with stellar bulges, and by checking the robustness of our results with

a convergence study at much higher resolution than used in previous work.

We also consider additional lines of analysis, for example by examining the

mutual impact of the disk and the substructures onto each other. Sub-

structures may induce heating of the disk, but they may also themselves be

depleted through gravitational shocks experienced during disk transition or

pericentre passage.

In this work we are especially interested in the question how universal

the disk tumbling phenomenon is, and to what extent it is affected by the

initial orientation and structure of the disk galaxy relative to its hosting

dark matter halo. We would also like to better understand under which

conditions strong bars can be avoided in live dark matter halos, and whether

the large number of dark matter substructures poses a significant problem

for disk stability.

This chapter is structured as follows. In Section 3.2 we review the

methodology we apply, while in Section 3.3 we describe the simulation set

we have carried out. Section 3.4 is then devoted to an analysis of our results

for pure disk models, whereas in Section 3.5 we turn to models that also

include a central bulge. In Section 3.6 we briefly analyze the impact of

disks on substructures and vice versa, and in Section 3.7 we examine the
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robustness of our results with respect to numerical resolution. Finally, we

conclude with a discussion and summary in Section 3.8.

3.2 Methodology

In this study, we carry out resimulations of the “Aquarius” set of initial

conditions of Milky Way-sized dark matter halos. They have previously

been analyzed in a number of studies (Springel et al. 2008a,b; Navarro

et al. 2010; Xu et al. 2009), where in particular the high quality of the zoom

initial conditions (created by Adrian Jenkins) was demonstrated, allowing

good convergence of all dark matter properties of the halos. We shall mainly

work with ‘level 5’ in the nomenclature of Springel et al. (2008a), were the

dark matter halos have close to 1 million particles in the final virial radius,

corresponding to a dark matter particle mass of about ∼ 3 × 106 M�. For

selected models, we also carry out simulations at 8 times (‘level 4’) and 64

times (‘level 3’) better resolution, reaching up to ∼ 50 million particles dark

matter and ∼ 19 million star particles in the virial radius.

In order to set-up a live stellar disk in the evolving dark matter (re-

)simulations of the Aquarius halos, we proceed similarly to DeBuhr et al.

(2012). At a certain redshift zinsert we place a number Ndisk of massless star

particles into the dark matter halo, sampling a prescribed density distri-

bution placed at the centre of the potential minimum and oriented along

one of the principal axes of the halo at that time. The disk mass is then

grown linearly in time to a final mass Md reached at a redshift zlive. During

the growth phase, the relative distances of the disk particles with respect

to each other are kept fixed in physical coordinates, and the whole set of

disk particles is coherently moved as a solid body under the total gravita-

tional force experienced by all the particles of the disk. The initial velocity

of all the disk particles is set equal to the bulk velocity of the inner dark

matter halo (defined as r < R200/4, where R200 is the radius enclosing a

mean overdensity 200 times the critical density). While the disk mass is
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ramped up, the dark matter particles start to experience the additional

gravitational force due to the disk particles, so that the dark matter halo

reacts adiabatically to the growing disk. This process of inserting the disk

ensures that the disk stays well centred in the moving dark matter halo,

and the realization of the disk potential through particles avoids the need

to make any approximation in representing the disk potential; in fact, the

density structure of the inserted stellar system can be chosen freely as long

as it is physical.

When the disk has reached its final mass, we continue the simulation by

treating the disk particles as live, which simply means that from this point

on they are treated as ordinary collisionless particles with independent or-

bits in an evolving gravitational potential. This requires an initialization

of the initial velocities of the star particles at zlive, which should be done

such that the disk is in a self-consistent dynamical equilibrium at this in-

stant. Formally, this corresponds to finding a stationary solution of the

Poisson-Vlasov system, which is a quite non-trivial problem for general

mass distributions (Binney & Tremaine 2008). In DeBuhr et al. (2012), an

approximate solution of the Jeans equation was used to initialize the disk

velocities, but the details of this procedure were not described. Here we

adopt the method of Yurin & Springel (2014), which iteratively derives a

high quality distribution function for the disk particles. The method as

implemented in the publicly available GALIC code integrates a large set of

test particles representing the target mass distribution in the self-consistent

gravitational potential of the system, and adjusts the velocities until the

deviation between the time-averaged density response of the particle orbits

and the target density distribution is minimized.

In order to take the actual shape of the dark matter halo into account at

the moment the disk goes live, we directly use the dark matter particles in

the cosmological simulation to compute the halo forces in GALIC. However,

as the stable version of the code is at present restricted to axisymmetric

disk models, the dark matter halo forces are averaged in the azimuthal di-
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rection, i.e. the dark matter force field is “axisymmetrized” without actually

changing the dark matter halo. We note that this approximation could be

avoided in principle in future refinements of the method, in which case it

would then become possible to insert ellipsoidal disks. For the moment, we

stick however with inserting axisymmetric disk models with a correspond-

ingly axisymmetric velocity structure. Also, we note that GALIC uses addi-

tional constraints on the velocity dispersions in order to single out a desired

target solution among the many different degenerate solutions that are in

principle possible for reproducing the same density distribution. For exam-

ple, GALIC can realize disk models with three integrals of motion and tilted

velocity ellipsoids, similar to what is observed for the Milky Way (Siebert

et al. 2008b; Binney et al. 2014; Büdenbender et al. 2014). However, for

simplicity, we have restricted ourselves to simpler models with two integrals

of motion (E,Lz), implying that the radial and vertical velocity dispersions

are equal.

In practice, we have used the moving-mesh code AREPO (Springel 2010)

for evolving our N-body systems in time. While the hydrodynamical fea-

tures of this code are not exercised in this work, its N-body solver represents

an improved and more efficient realization of the algorithmic methods of the

GADGET code (Springel 2005b), which we found convenient to make use

of. In particular, the built-in parallel version of the SUBFIND algorithm

(Springel et al. 2001a) used to identify dark matter substructures is more

efficient in AREPO than in GADGET. We run SUBFIND regularly on the

fly while the N-body system is involved in order to track the masses and

positions of all halos and subhalos, as well as to measure basic dark matter

halo properties such as their shape orientations.

To facilitate the realization of a large number of disk insertion simula-

tions, we have largely automized the process of putting in live disks into

the Aquarius halos. To this end, the cosmological simulation automatically

measures the dark matter halo orientation at zinsert, inserts the initially

rigid stellar system, and continues with the disk growth phase until zlive,
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at which point a snapshot file is written. A special version of GALIC is

then started by a script that replaces the disk velocities in this snapshot file

with a self-consistent stationary solution, taking the halo motion, the disk

orientation, the Hubble flow at that epoch, etc., into account. Then, the

AREPO simulation of the N-body system is continued from zlive to z = 0.

To determine the orientation of the dark matter halo, we calculate the

principal axes of the moment-of-inertia tensor of the dark matter particles

in a spherical region of size Rvir/4. By restricting ourselves to the inner

region, we avoid strong influences from the less well relaxed outer parts of

halos. In general, analysis of the halo shapes of CDM halos have found

only mild variations of the axis ratios with radius (Allgood et al. 2006),

and quite stable directions of the ellipsoidal axis (Hayashi et al. 2007). By

measuring the moment-of-inertia tensor in a spherical aperture the axis

ratios are biased low, but the directions of the principal axes, which is all

that matters for our purposes should be unaffected and line up well with the

principal axes of the halo potential. In our simulations we have aligned the

spin axis of the disk either with the minor or the major axis identified in this

way. The direction of the spin axis was chosen such that the angle with the

dark matter angular momentum of the inner halo (again using r < R200/4

for selecting this) was minimized. To take account of the fact that we

expect the formed galaxy to be stationary in physical coordinates, we keep

the gravitational softening fixed in our runs in comoving coordinates until

z = 1.5, and fixed in physical coordinates thereafter. The same softening

length is used for the stellar particles and the high-resolution dark matter

particles.

The above methodology can be readily generalized to stellar systems

that include a bulge component besides a disk. To this end an additional

set of particles is inserted and grown in parallel to the disk component, and

GALIC then calculates initial velocities for the bulge component as well.

For test simulations, we have also implemented a “roundening” pro-

cedure for the dark matter halo. To this end, all dark matter particles
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contained in the friends-of-friends (FOF) group of the target halo at zinsert

are rotated by a random angle around the halo centre, and their velocity

vectors are randomized in direction in the rest frame of the halo. By con-

struction, this procedure makes the halo spherically symmetric and smooth

with isotropic distribution function while keeping the spherically averaged

density profile and kinetic energy in random motions unchanged. All sub-

structure in the FOF halo is eliminated as well. However, as a result of

this procedure the halo will be slightly out of equilibrium initially. It has

however enough time to relax again during the disk growth phase, so that

when the disk goes live it does so in a stationary halo that is spherical apart

from asymmetries induced by the disk growth itself. In a variant of this

procedure, we restrict the rounding operation to just those particles bound

in substructures (which amount to a few percent of the total mass of the

halo). This allows the creation of dark matter host halos that retain the

cosmological triaxiality but are largely pruned of dark matter substructures,

at least at times close to zinsert. Later, new substructures will fall in due to

halo growth.

3.3 Simulation set

For definiteness and ease of comparison with DeBuhr et al. (2012), we

adopt for our default disk insertion runs their choice of disk mass, Md =

5 × 1010 M�, and disk scale length, Rd = 3 kpc. Also, we use in these

default models their choices of zinsert = 1.3, zlive = 1.0, and Ndisk = 200, 000,

combined with a canonical thickness of 0.2 times the scale length. For our

adopted cosmology1, the growth period of the disk then lasts Tgrowth '
1 Gyr, and the live evolution of the disk system proceeds for Tlive ' 6 Gyr.

1The cosmology adopted in the Aquarius project is the same one used in the Mil-
lennium simulation, and is characterized by Ω0 = 0.25, ΩΛ = 0.75, σ8 = 0.9, ns = 1.0,
and a Hubble constant of H0 = 73 km s−1Mpc−1, consistent with with the WMAP-1
and WMAP-5 cosmological constraints. The small offset of the cosmological parameters
with the most recent determinations by Planck does not matter for the purposes of this
study.
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We have carried out simulations for eight different Aquarius dark matter

halos, labelled A to H, following the notation of Springel et al. (2008a) and

Scannapieco et al. (2009). In all of these, the pure disk models were run both

with minor and major axes orientations, forming a set of 16 default models.

The simulations are so-called ‘zoom-simulations’ where the mass resolution

of the initial particle load has a strong spatial resolution; a high-resolution

sampling of the Lagrangian region of the target halo is surrounded by shells

of progressively more massive particles, so that the target halo feels the

same gravitational tidal fields as if it was forming in a simulation where the

whole periodic box of side-length 137 Mpc was uniformly followed at the

high resolution.

In additional simulation sets, either the structural properties of the in-

serted galaxy models were modified, the time of the disk insertion was

varied, or additional experiments like a rounding of the dark matter halo

or a (partial) elimination of substructure was carried out. Most of these

additional runs were only done for the minor orientation, as we generally

find only small systematic differences between the minor and major orienta-

tions, with a small preference for a higher stability of the minor orientation.

Finally, we have done runs at higher resolution for selected models of the

A-halo, the pure disk model with the minor rotation, and also the default

disk plus bulge with minor axis orientation.

Besides the default disk series, our other main series of runs consists

of disk plus bulge models where the total stellar mass was kept fixed at

M? = 5×1010 M�, but one third of the stellar mass was moved to a spherical

stellar bulge, modelled with a Hernquist profile with scale length a = 2 kpc,

with the rest staying in a disk with exponential surface density profile. Note

that these systems still have roughly the right stellar mass expected based

on abundance matching arguments for halos of this size, and the disk-to-

bulge mass ratio of 2:1 is still reasonably large. In another series we have

made this ratio more extreme, by exchanging the masses of disk and bulge,

yielding a disk-to-bulge mass ratio of 1:2. In addition, we have considered
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# Simulation names Disk parameters Alignment Bulge parameters εgrav Notes
Md [1010M�] Ndisk Mb [1010M�] Nbulge [kpc]

1 A5..H5-minor 5.0 2× 105 minor 0.68
A4-minor 5.0 1.6× 106 minor 0.34
A3-minor 5.0 1.28× 107 minor 0.17

2 A5..H5-major 5.0 2× 105 major 0.68
3 A5..H5-with-bulge-minor 3.33 2× 105 minor 1.67 1× 105 0.68

A4-with-bulge-minor 3.33 1.6× 106 minor 1.67 8× 105 0.34
A3-with-bulge-minor 3.33 1.28× 107 minor 1.67 3.2× 106 0.17

4 A5..H5-lighter-disk-minor 3.33 2× 105 minor 0.68
5 A5..H5-massive-bulge-

minor
1.67 2× 105 minor 3.33 2× 105 0.68

6 A5..H5-rounded-minor 5.0 2× 105 minor 0.68 rounded dark
halo (like #1)

7 A5..H5-with-bulge-
rounded

3.33 2× 105 minor 1.67 1× 105 0.68 rounded dark
halo (like #3)

8 A5..H5-subs-wiped-minor 5.0 2× 105 minor 0.68 rounded dark
halo (like #1)

9 A5..H5-with-bulge-subs-
wiped

3.33 2× 105 minor 1.67 1× 105 0.68 rounded dark
halo (like #3)

10 A5..H5-reorient-minor 5.0 2× 105 minor 0.68 growth phase
reorientation

11 A5..H5-reorient-major 5.0 2× 105 major 0.68 growth phase
reorientation

12 A5..H5-late-insert-minor 5.0 2× 105 minor 0.68 zins = 0.5,
zlive = 0.364

Table 3.1: Overview of our simulation sets and their basic numerical parameters.
We have organized the runs in different series, as illustrated in the table. The first
series consists of our default pure disk runs, inserted along the minor axis. Here
we also carried out runs for the A-halo at 8 times and 64 times higher resolution,
respectively. Series #2 repeats the level-5 runs with a major orientation of the
disk. In series #3 we replace the disk with a bulge+disk system in where one
third of the mass is moved to a disk. In series #4 this lighter disk is kept but
the bulge is omitted, while in series #5 we swap the masses of disk and bulge
wis that we end up with a relatively massive bulge and a disk of half the mass
of the bulge. The remaining series represent special simulations to test various
aspects of our procedures. Series #6 and #7 repeat the runs of series #1 and
#3, respectively, but this time the dark matter halo is “rounded”when the disk
is inserted, as described in the text. Series #8 and #9 restrict the rounding to
particles bound in substructures, so that smooth dark matter halos are produced.
In series #10 and #11 we have tested for minor and major orientations whether a
continuous reorientation of the disk during the growth phase between zinsert = 1.0
and zlive = 1.3 helps in reducing disk tumbling. Finally, series #12 delays the
disk insertion to much later time, where the dark matter halos have relaxed more
and therefore may potentially make it easier for disks to survive unaffected.
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a series of runs where only the disk mass was reduced by one third relative

to our default disk model (“light disk” models) and the bulge was omitted.

Table 3.1 gives an overview of these different simulation sets and lists

some of their most important numerical parameters. In all the runs, we have

used conservative integration settings for the tree force accuracy and time

integration timestep in order to ensure that all simulations are unaffected

by orbit integration errors.

3.4 Results for pure disk models

3.4.1 Disk orientation and visual morphology

In Figure 3.1 we show projected images of the time evolution of the stellar

disk material in our eight Aquarius halos, where a pure disk of mass 5 ×
1010 M� and scale length Rd = 3 kpc is inserted along the minor axis of the

halos. In the different panels of the figure, the disk stars have been turned

into a face-on orientation, taking the spin angular momentum of the stars

in the central region of the disk (within 5 kpc) to define the disk normal.

All the models almost immediately form very strong bars, consistent with

the findings of DeBuhr et al. (2012) for halos A-D.

When viewed in an edge-orientation, as shown in Figure 3.2, a planar

disk-like distribution of the majority of stars is maintained in all the cases,

but the presence of the strong bars is clearly revealed by pronounced X-

shaped features in the centre of the galaxies. It is also evident that the

disks are thickened to different degrees. Halo E sports a particularly thick

disk at the end, and some systems, notably halos B and F, show substantial

bending in the periphery of the disks. Nevertheless, the amount of stellar

material significantly outside the disk plane seems to be rather limited,

somewhat different from the findings of DeBuhr et al. (2012) for halos A-D.

The equivalent simulations for inserting the disks along the major ori-

entation of the halos (series #2) yield qualitatively very similar results, and

we therefore refrain from showing the corresponding images. Figure 3.3

91



Results for pure disk models

Figure 3.1: Face-on projections of the stellar mass of the disks in our default
runs (series #1). Each row shows a different Aquarius halo, as labeled, with
the columns from left to right showing different times ranging from z = 0.85 to
z = 0. Each panel has a fixed physical size of 54 kpc on a side, and uses the
same logarithmic grey scale (covering a dynamic range of 1000 in surface density)
for visualizing the adaptively smoothed surface density of star particles. In each
panel, the stellar particles have been turned independently into a face orientation
as determined by the angular momentum vector of the stars within the central
5 kpc of the disk.

92



3. Stability of disks

Figure 3.2: Edge-on projections of the stellar disks in our default runs with pure
disks. This images correspond to side-views of the corresponding images shown
in Figure 3.1, with an unchanged physical size of each panel in the horizontal
direction (54 kpc), and an identical color-scale.

gives instead an overview of the time evolution of the orientation of the ha-

los’ minor, major and intermediate axes, as defined based on the moment

of inertia tensor of the central dark matter distribution in a spherical aper-

ture of size R200/4. We also include in the plots the evolving orientation

of the disk spin axis as a function of time (based on the minor orientation

runs of series #1), as well as the dark matter spin direction of the central

region of the halo. The individual panels are Mollweide projections of the

corresponding direction angles, one for each Aquarius halo. The origin of

the projection has been shifted such that the initial position of the disk

orientation lies at the center of the corresponding Mollweide map.

Interestingly, in several of the systems, the dark matter halo spin is

quite well aligned with the minor axis. This is in particular the case for

systems A, E, G, and H, and to a lesser degree in B. In halos C and D,
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Figure 3.3: Orientations of the principal dark matter halo axes, the stellar disk
spin vector, and the central dark matter halo angular momentum as a function
of time between z = 1.3 and z = 0 in our eight Aquarius halos. In each panel,
a different simulation corresponding to our default series #1 runs is shown, as
labeled. In each of the displayed runs, a pure disk is inserted at z = 1.3 and
grown to its final mass at z = 1.0 keeping its shape and orientation fixed in
time during the growth phase. From z = 1.0 to z = 0, the disk is evolved live.
Different redshifts are singled out with symbols, as labelled. In each panel, the
vector orientations are shown in a Mollweide projection of the unit sphere, with
the initial orientation of the disk aligned with the centre of the map.
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Figure 3.4: Angle between the current disk spin axis and the initial disk orienta-
tion when the disk goes live (at z = 1.0), in our default disk models of simulation
series #1, as a function of time. The left panel shows our results if the disks are
aligned along the minor axes of their hosting dark matter halos, the right panel
is for the major axes. Most of the disk galaxies experience substantial tilting
during the 6 Gyr of evolution from z = 1 to z = 0, independent of whether they
are initially oriented along the minor or the major axis of the dark matter halo.

the dark matter spin is reasonable stable in orientation but offset from the

minor axis, while in F it wanders all over the place. Studies of cosmological

halos have long found a preference of the dark matter halo spin to line

up with the minor axis (e.g. Hayashi et al. 2007), a trend also seen here.

Interestingly, there is growing observational evidence from alignment studies

of SDSS galaxies (Zhang et al. 2014) that favor a picture where disk spins

line up with the dark matter halo angular momentum of the inner regions of

halos, suggesting that the minor orientation arises naturally and is actually

preferred.

What is also evident from Figure 3.3 is that the disk spins of several of

the models wander away significantly from their original orientation, espe-

cially in those cases where the minor axis shows a change of orientation as

well. In cases where it moves little, such as E and H, the disk spin exhibits

a fairly stable orientation. A clearer view of the size of the changes in ori-

entation is given in Figure 3.4, where the angle between the current disk
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orientation and its initial orientation is shown as a function of time, from

redshift z = 1 to z = 0. The left panel shows our results when the disk is

initially aligned with the minor orientation, the right panel is for the major

orientation. Some of the models show rather substantial reorientations of

the disks reaching up to 65 degrees in the minor cases, and even larger

angles beyond 110 degrees for the major orientation. The average tumbling

angle (shown as a dashed line) for the eight systems is 35 degrees for the mi-

nor orientation, and 60 degrees for the major orientation. The substantially

smaller average tilt angle for the minor orientation suggests that this orien-

tation typically offers better long-term directional stability than the major

orientation. We note that our results for A-D show a large resemblance to

those of DeBuhr et al. (2012), for example, we find the same characteristic

evolution pattern for halos a A and C. This is reassuring, given the inde-

pendent and at a technical level quite different methodology to introduce

and simulate the live disks. However, there are also some quantitative dif-

ferences, and for a subset of the systems we tend to find somewhat smaller

angles than DeBuhr et al. (2012).

3.4.2 Radial and vertical structure, and its evolution

As pointed out by DeBuhr et al. (2012), it is perhaps not too surprising

that these systems show such strong tendencies to form bars. Whereas their

rotation curve structure, shown in Figure 3.5, in principle suggests that the

disks are not exceeding the rotation curve contribution of the dark matter

anywhere (apart from halo G for a small region) and are thus far away

from being maximal disks, the simple criterion of Efstathiou et al. (1982)

for stability against bar formation,

Qbar ≡
vmax

(GMd/Rd)1.2
> 1.1 (3.1)

is violated for all the models. Here vmax is the maximum rotation curve

velocity, and Md and Rd refer to mass and scale-length of the exponential
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Figure 3.5: Rotation curves of our default disk models (series #1) at redshift
z = 1, when the disk goes live. The rotation curve velocity is here defined based
on the enclosed mass at a given radius. Note that the disk is kept the same in all
these eight simulations, hence its contribution to the rotation curve (dot-dashed
line) is always the same. The dashed lines show the contributions of the different
dark matter halos, while the solid curves give the total rotation curves of the
eight systems, with different colours as specified in the legend.

stellar disk. In fact, the values for Qbar after the disks have been inserted

are 0.99, 0.79, 1.0, 0.88, 0.87, 0.82, 0.85, and 0.92, for A to H, respectively.

In this context it is also interesting to look at Toomre’s stability param-

eter for axisymmetric stability of stellar disks (Toomre 1964),

QToomre ≡
σR κ

3.36GΣ
> 1, (3.2)

where σR is the radial velocity dispersion, Σ the surface density, and

κ2 =
3

R

∂Φ

∂R
+
∂2Φ

∂R2
(3.3)

is the epicycle frequency. The value of QToomre is shown as a function of

radius in Figure 3.6. Interestingly, most of the models are Toomre stable,
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Figure 3.6: Radial run of Toomre’s Q-parameter (Toomre 1964) for axisym-
metric stability for our disk simulations of series #1, at zlive = 1. Model B5 is
expected to be marginally unstable against axisymmetric instabilities, whereas
E5 should be strongly unstable. Evidence for this is in fact seen in Figure 3.1,
where E5 shows residual axisymmetric ring-like features in its disk at z = 0.85
that are not present in this form in the other runs.

with B and F being marginal cases, but the light halo E is clearly predicted

to be unstable against axisymmetric instabilities. And indeed, inspecting

the stellar images at z = 0.85 in Fig. 3.1 one can clearly see ring-like

spherical features that are absent in this form in the other models, providing

evidence that such instabilities have occurred in the early evolution of the

system.

We find further signs for this special evolution of halo E in the evolu-

tion of the structural properties of the systems, which we examine next.

In Figure 3.7 we show the radial and vertical density profiles, at a set of

different times. The exponential surface density profile measured for the

face-on orientation of the disks is quite robust and more or less retains its
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Figure 3.7: Radial and vertical disk density profiles for our default disk simulations
(series #1) as a function of time. We show results for all of our eight Aquarius halos, in
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the vertical density profiles on the right. For the latter, three families of curves are shown,
corresponding to averages over different radial ranges (R < 3.5 kpc, 3.5 kpc < R < 7 kpc,
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Figure 3.7 (continue): In all panels, the initial density distribution when the disk goes
live is shown together with 6 subsequent times down to z = 0, and at each time, the disk
plane has been defined based on the angular momentum of the stars in the inner 5 kpc.

100



3. Stability of disks

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

A5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

B5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

C5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

D5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

E5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

F5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

G5-minor

0 5 10 15 20

R [ kpc ]

0

20

40

60

80

100

120

σ
z
  

[ 
k

m
 /

 s
ec

 ]

z =  0.99

z =  0.85

z =  0.60

z =  0.40

z =  0.24

z =  0.11

z =  0.00

H5-minor

Figure 3.8: Evolution of the vertical velocity dispersion profile of the disk particles in
our default disk insertion simulations (series #1). The panels give the expectation value
of the vertical stellar velocity σz =

〈
v2
z

〉1/2 measured in in different cylindrical shells
aligned with the stellar spin axis of the stars at the corresponding times.
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Figure 3.9: Evolution of the half-mass height profile of the disk particles in our
default disk insertion simulations (series #1). The height profiles give the median
of |z| relative to the disk plane, i.e. half the stars have distances below/above z1/2

from the disk plane.
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initial shape, despite the rather dramatic bar formation events occurring in

these simulations. In contrast, the vertical density profiles (three families

of curves are shown, corresponding to different radial ranges, as labeled)

show the damaging impact of the forming bars more clearly. In particular,

a relatively sudden transition to a new vertical equilibrium with a thicker

profile is apparent in most of the models. One interesting difference with

DeBuhr et al. (2012) is that our models A-D show substantially less broad-

ening in the outer parts of the disks. This is presumably a reflection of our

more accurate approach to initialize the velocities of the initial disk models.

Further support for this is provided by the evolution of kinematic quan-

tities, for example those shown in Figure 3.8 and Figure 3.9. The eight

panels in Fig. 3.8 give the evolution of the profiles of the vertical velocity

dispersion σ2
z , while the eight panels of Fig. 3.9 measure the disk height in

terms of the median z1/2 of the absolute value of the vertical z-coordinates

of the star particles relative to the disk plane. Or in other words, half of

the stellar mass has a height above the central disk plane less than z1/2.

Comparing again to DeBuhr et al. (2012), we see that our σz(r) profile at

z = 0.85 is much closer to the initial profile than in their case, suggesting

that our disk models are in better dynamical equilibrium initially. This

equilibrium is however anyway destroyed relatively quickly by the onset of

bar formation. Another notable difference are the much smaller values for

z1/2 we find in the outer parts of the disks, corroborating the observation

that our disk models appear to be in better equilibrium.

3.4.3 Bar strength and vertical heating

The formation of the bar can also be studied more quantitatively, for ex-

ample through measuring a bar strength indicator, or by looking at the

vertical heating of the stellar disk. As a simple global measure of the total

amount of vertical heating we can use the quantity

ζ =
〈v2
z〉

〈v2
z〉0

, (3.4)
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Figure 3.10: Bar strength parameter A2 (left panel) and relative vertical heating
(right panel) in the simulations of our default pure disk insertion simulations
(series #1), as a function of time. It is clearly seen that all the models develop a
strong bar characterized by A2 ' 0.6, except for model E, which yields A2 ∼ 0.3
at the end. The latter model is special as it shows substantial vertical heating
right after the disk becomes live. This is because this system is instable against
axisymmetric instabilities (see Fig. 3.6).

which simply is equal to the total kinetic energy in vertical motion relativ

to the initial value of this quantity at the time the disk starts to evolve live.

As a characterization of the bar strength, we adopt a simple measure for

the m = 2 Fourier mode of the disk, as is often done to quantify bars. For

definiteness and ease of comparison, we measure the bar strength similarly

as DeBuhr et al. (2012), by first determining the quantities

a
(b)
2 =

∑
i∈b

mi cos(2φi) (3.5)

b
(b)
2 =

∑
i∈b

mi sin(2φi) (3.6)

for a set of 30 radial bins between R = 0 and R = 2Rd = 6 kpc. Here

φi refers to the azimuthal angle of each disk star, and the sums extend

only over the particles in a radial bin b. Defining c2 =
√
a2

2 + b2
2, we then
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calculate a bar strength parameter as

A2 =

∑
bRb c

(b)
2∑′

bR
′
bM
′
b

(3.7)

where Mb is the mass falling into bin b, and Rb is the bin radius.

In Figure 3.10, we show our results for the time evolution of the A2

parameter in the left panel, and in the right panel we give the time evolution

of the vertical heating parameter ζ. Consistent with the evolution of the

visual morphology, all the systems show a rapidly growing bar signal in

their early evolution, with all the models except E converging to a similarly

high bar strength of A2 ' 0.6 at the end.

Interestingly, the relative vertical heating parameter shows only a small

and slow growth in the beginning, but then jumps up rapidly by a large

factor, followed by a stabilization at a new high level. In contrast, the bar

strength indicator becomes high already significantly earlier. Presumably

this is a combination of two different effects. One is that some disk asym-

metries quickly develop in the early disk evolution simply because of the

non-sphericity of the halo potential, which for example manifests itself in

pronounced spiral patters in the disks. The other is that during the initial

phase of bar formation the density contrast of the bar grows without yet

leading to a notable change in the vertical structure. Only later, once the

bar “collapses” or buckles, a sudden transition to a new equilibrium occurs,

and this is associated with some degree of violent relaxation and significant

vertical heating.

3.5 Models with bulges and lighter disks

The strong bars formed in the models considered in the previous section

raise the question under which conditions disk galaxies could survive in

the Aquarius halos and maintain a nice, disky morphology all the way to

z = 0. It appears clear from the preceding results that the bar criterion of

Efstathiou et al. (1982) should be taken as an important first guide. In-
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creasing the value of Qbar in a given dark matter halo can be achieved first

of all by making the disk lighter, and/or by making it larger. However, we

note that there is only limited room for such changes if one wants to keep

the disk parameters close to observational inferences, such as the stellar

mass–halo mass relationship derived from abundance matching (Guo et al.

2010; Moster et al. 2010), or direct constraints on the size–stellar mass rela-

tionship (Shen et al. 2003). Another problematic aspect of simply adopting

a very light disk is that this will greatly reduce the roundening effects of the

dark matter halo due to the growth of a baryonic mass distribution in the

centre. Such a rounding is however essential to keep the destructive effects

of a highly triaxial dark matter potential on disk stability and morphology

at bay.

Another approach to improve the stability of the disk against bar for-

mation is to add a central stellar bulge in addition to the disk. Such a bulge

increases the circular velocity of the spheroidal component of the system,

i.e. it contributes to the numerator of the bar stability criterion. At the

same time, growing a central spherical bulge in a dark matter halo is an

effective way to rounden the dark matter potential. Of course, on the other

hand, adding a central bulge is limited by the observed bulge-to-disk ratios,

and is not a promising option for explaining pure disk galaxies.

To test these options, we have considered a few additional sets of runs.

Our default standard bulge models (series #3) have the same stellar mass

as our default disk models, but one third of the stellar mass is put into

a bulge, with two thirds remaining in the disk. Such bulge-to-disk ratios

are about the smallest ones that the present generation of hydrodynamical

simulations of disk formation can achieve (e.g. Marinacci et al. 2014a).

In addition, we have also run models were we omitted this bulge, which

is exploring the lighter disk option at some level. Here the disk mass was

reduced to 2/3 of the value in our default models (series #4). This is

complemented by a further set of runs in which we swapped the masses of

disk and bulge of our standard bulge models, ending up with 1/3 in the
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3. Stability of disks

disk and 2/3 in the bulge (series #5). We would expect these models to be

extraordinarily stable against bar formation.

Finally, to test the influence of the residual triaxiality of the dark matter

halos on the disk stability, we have also run two sets of simulations where

we artificially sphericalized the dark matter halos at the instant of disk

insertion, i.e. at z = 1.3 (series #6 and #7). To this end, we simply took

all dark matter particles in the FOF halo at that time and rotated them

randomly around the halo center. Also, their velocities were isotropized by

turning them randomly in the rest frame of the halo. In this way, the density

structure and potential energy of the halo was approximately maintained,

with any deviation from non-equilibrium decaying away during the disk

growth phase. When the disk goes live at z = 1.0 it then does so in an

essentially spherical halo, but the mass growth of the halo, including the

accretion of newly infalling substructures onto the halo, stays unaffected.

We begin our review of the results of these runs with images of the disks

in the runs with the small bulges. These are shown in face-on and edge-on

orientations in Figures 3.11 and 3.12, respectively. Note that the bulge stars

are not included in these images. Compared to the corresponding images

for the simulations with pure disk, the disks are clearly much less effected

by bulge formation, although most systems still do form bars, albeit of

weaker strength and at later times. The edge-on projects of the disk stars

correspondingly show much less evidence for central bars.

The rotation curves of the models with bulges, as well as the correspond-

ing profiles of the Toomre stability parameter are shown in Figure 3.13.

None of the models is any more dominated by baryon at any radius, and

as expected, the resistance against axisymmetric instabilities is increased

substantially. Note however that halo E is still predicted to be Toomre un-

stable. This is confirmed by visual inspection of simulation E at z = 0.85

in Fig. 3.11, which reveals conspicuous axisymmetric rings of stars.

The weaker bar strengths in the bulge-runs also become evident in Fig-

ure 3.14, which shows the time evolution of the bar strength parameter A2
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Models with bulges and lighter disks

Figure 3.11: Face-on projections of the stellar mass of the disks in our runs
with bulges (series #3), where one third of the stellar mass is moved to a central
spheroidal bulge and two thirds are kept in the disk. Otherwise, the outline of the
figures and the image generation method corresponds exactly to that of Fig. 3.1.
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3. Stability of disks

Figure 3.12: Edge-on projections of the stellar disks in our runs with bulges,
giving the side-views of the corresponding images shown in Figure 3.11. As in the
corresponding images of Fig. 3.2, each panel has an unchanged physical size in
the horizontal direction (54 kpc) and uses an identical color-scale as in the face-on
images.

and the vertical heating parameter ξ of the disks of our eight standard bulge

models. Comparing to the corresponding results for the pure disk models

(Fig. 3.10) clearly shows a much weaker trend towards making strong bars.

Most notably the early evolution is very different, where all the models

show a small value of A2 as a result of deviations from axisymmetry due to

the aspherical dark halo potential, but no strong bulge signal is present yet.

Only after a few Gyr, a subset of the models starts to grow a significant

bar.

It is also interesting to examine differences in the evolution of the struc-

tural properties of the models with bulges. This is shown in Figure 3.15

in terms of the radial and vertical density profiles, and in Figure 3.16 and

Figure 3.17 in terms of the vertical velocity dispersion and half mass height

109



Models with bulges and lighter disks

0 10 20 30 40

R  [ kpc ]

0

50

100

150

200

250

300

V
c 

 [
 k

m
 /

 s
ec

 ]

A5-minor

B5-minor

C5-minor

D5-minor

E5-minor

F5-minor

G5-minor

H5-minor

with bulge

0 2 4 6 8 10 12 14

R  [ kpc ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
T

o
o

m
re

A5-minor

B5-minor

C5-minor

D5-minor

E5-minor

F5-minor

G5-minor

H5-minor
with bulge

Figure 3.13: Rotation curves and Toomre-Q stability parameter of our default
simulations with bulges (series #3), as a function of radius. The left panel shows
the rotation curves, where the disk (dot-dashed) and bulge (dotted) always make
the same contribution due to their constant parameters. The different dark matter
halo contributions are shown by dashed lines, and the total rotation curves by solid
lines. The panel on the run illustrates the expected stability against axisymmetric
instabilities. While the bulge has a substantial stabilizing influence (compare to
Fig. 3.6), model E5 is still found to be unstable for the adopted stellar parameters
of disk and bulge.

as a function of radius. We see a very substantial improvement in the

structural stability of the models with respect to the runs with pure disks.

This is reflecting both, the stronger stability against bar formation, and the

slightly rounder dark matter halo potential due to the more concentrated

distribution of the baryons.

Getting completely rid-off the bars is achieved in our models that adopt

a massive bulge and a light disk (series #5). Here the disk images show

a remarkable degree of stability. For conciseness, we refrain from showing

their uneventful time evolution. Instead, we collect all our simulations in a

single plot of the bar strength versus the initialQbar-parameter of Efstathiou

et al. (1982), allowing us to assess how well this venerable criterion works

in the context of full cosmological CDM models. Figure 3.18 compiles our

different runs, with the bar strength A2 measured at z = 0, and the Qbar-
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Figure 3.14: Bar strength parameter A2 (left panel) and relative vertical heating
(right panel) in our default disk+bulge simulations (series #3), as a function of
time. These evolutions can be directly compared to the corresponding results
for the pure disk case shown in Fig. 3.10. Now only a subset of the systems
develops bars, and even if this happens, the bars are weaker and form later.
Model E still appears as an outlier, caused by its instability against axisymmetric
perturbations. We note that the early growth of the A2 indicator to values of
around ∼ 0.2 does not really measure a bar; it is presumably caused by a quick
distortion of the spherical disk into an ellipsoidal disk due to the the residual
asymmetry of the dark matter halo potential.

parameter evaluated at z = 1.0 when the disk goes live. Remarkably,

the threshold value 1.1 originally introduced by Efstathiou et al. (1982)

for the dividing line between bar-unstable and stable models still serves

as a surprisingly robust indicator, even in the light of all sorts of other

complicating factors. In particular, we note that the different symbols in

the figure show a broad range of simulation models, including runs with

and without bulge, with minor or major axis orientation, with ordinary or

artificially rounded dark matter halos, etc. Irrespective of these factors, it

appears that the strength of the disk self-gravity relative to the supporting

spheroidal potential is by far the most decisive parameter for governing

stability against the formation of strong bars. We note that this therefore

cannot be ignored in the interpretation of mass models derived for the Milky
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Figure 3.15: Radial and vertical disk density profiles for our default disk+bulge
simulations (series #3) as a function of time. As in the corresponding Fig. 3.7
for the pure disk runs, we show results for all of our eight Aquarius halos, in each
case with a pair of panels where the surface density profile is shown on the left,
and the vertical density profiles on the right.
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Figure 3.15 (continue): Especially in the much more modest evolution of the
vertical structure it is evident that these disks evolve comparatively little; i.e. the
bulge has largely stabilized the disks against strong bar formation.
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Figure 3.16: Time evolution of the vertical velocity dispersion profile and of the
disk particles in our default disk+bulge simulations (series #3). These results
correspond directly to the simulations for our pure disk simulations shown in
Fig. 3.9. Note that only disk star particles are included in the measurements.
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Figure 3.17: Time evolution of the half-mass height profile of the disk particles
in our default disk+bulge simulations (series #3). These results correspond di-
rectly to the simulations for our pure disk simulations shown in Fig. 3.9. Note
that only disk star particles are included in the measurements.
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Figure 3.18: Compilation of the measured bar strength parameter A2 at z = 0 in
our simulation set versus the Qbar parameter of Efstathiou et al. (1982). We here
collect results for all of our runs (except for the late insertion and reorientation
ones). Different colours are used for the different Aquarius halos, and different
symbols for the different simulation series, as indicated in the legend (the number
in the symbol key refers to series # in Table 3.1). It is clear that the criterion
Qbar ≥ 1.1 formulated by Efstathiou et al. (1982) for indicating stability against
bar formation works pretty well for our simulations. Other parameters such as
minor or major disk orientation, or the residual a-sphericity of the dark matter
halo, appear to be only of secondary importance.
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Figure 3.19: Angle between the current disk spin axis and the initial disk
orientation as a function of time, for different types of simulations. The top left
panel shows results for our simulation series #4, where a lighter disk is used
compared with our default disk runs. The top right panel shows our default
disk+bulge models instead (series #3), whereas the bottom left gives the tilt
angle evolution for our simulations with massive bulges and a light disk (series
#5). Finally the bottom right is for our default pure disk simulations, but this
time the dark matter halo has been artificially rounded at z = 1.3 when the disk
was inserted (series #6). Interestingly, the disk structural properties appear to
play only a minor role for the disk tumbling (compare also to Fig. 3.4). The
latter is clearly governed by the dark matter halo and could only be eliminated
by substantial roundening that is far stronger than the effects achieved by the
halo’s response to the growing baryonic component.
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Way. For example, the rotation curve decomposition derived by Bovy &

Rix (2013) suggests that the corresponding live galaxy model should be

violently bar unstable according to our results.

In light of these differences, it is now interesting to consider the stability

of these models with respect to the spatial orientation of the disks. In

Figure 3.19 we show results for several of our modified runs, including the

ones with a lighter disks, the ones with a bulge, the ones with a very massive

bulge, and the ones for a rounded dark matter halo. The latter are for the

pure disk case (series #6), but the results for the bulge case (series #7)

look essentially identical.

Comparing with the corresponding results in Fig. 3.4 for the pure disk

case, it is evident that the amount of disk tumbling is fairly independent of

the structural properties of the galaxies. In particular, it does not matter

much whether a bar is present or not. Apparently, the reorientation of the

disk is primarily controlled by the tumbling of the dark matter halo and

the torques it exerts on the disk, and this is only marginally affected by

the growth of the baryonic disk/bulge system. Only when the halos are

artificially rounded and any figure rotation of the inner dark matter halo

is stopped by construction, the disk orientation remains stationary. Except

for halo F – its disk turns even in this case by a substantial angle, starting

at z ' 0.35. The same characteristic turning motion of F-disks is also seen

in the standard runs at this time, suggesting that this is caused by the fly-

by of a massive substructure that interacts with the disk at this time and

torques it substantially.

The results above suggest that disk tumbling of significant size is virtu-

ally inevitable in CDM halos. We expect typical tumbling rates of about

40 degrees from z = 1 to z = 0, or about ∼ 6− 7 degrees per Gigayear on

average. Some systems may have up to 2-3 times that, while others stay

below it by a similar factor. Occasionally, disks may also brought into a

turning motion by a close encounters with a substructure. Importantly, our

results show that disk can survive such reorientations largely unaffected,
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Figure 3.20: Change of the cumulative abundance of substructure as a function
of mass due to presence of a stellar disk. We count all substructures identified by
SUBFIND within 200 kpc of the halo centers, and averaged over our 8 Aquarius
halos. The “no disk” runs refer to results at z = 0 of pure dark matter only runs
of the halos where no stellar component is inserted, while the “with disk” results
are for our default disk systems of simulation series #1.

i.e. they are not in apparent conflict with the observed abundance of thin

stellar disks.

3.6 Impact of substructures

Cold dark matter subhalos contain a large amount of substructures, raising

the question whether they may interfere with the stability of cold stellar

disks and induce substantial heating. We note however that it is well estab-

lished that substructures populate primarily the outer parts of dark matter

halos (e.g. Ghigna et al. 1998; Diemand et al. 2004; Springel et al. 2008a),

leaving the inner halo relatively smooth. Also, the subhalo mass function is

skewed very slightly to being dominated by the most massive subhalo sys-

tems. Those are expected to dominate the heating (Springel et al. 2008a),
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Figure 3.21: Change of the cumulative abundance of substructure as a function
of radius due to presence of a stellar disk. We count all substructures identified by
SUBFIND with a mass larger than 6 × 107 M�, and average over our 8 primary
galaxy models. The comparison corresponds to that shown in Fig. 3.20, but
considers the radial distribution instead of the mass distribution.

but their number is small.

We here use our models to check whether subhalos contribute signifi-

cantly to the disk heating, and whether the disk in turn plays a significant

role in reducing substructure abundance when they pass through pericen-

ter and experience gravitational tidal shocks from the disk or the enhanced

central cusp. There is a body of previous work on this subject, largely based

on much simpler toy simulations than studied here. Our analysis is so far

the most elaborate attempt to study this in the correct cosmological set-

ting, and in particular takes the expected system-to-system variation into

account.

We consider first the subhalo abundance in runs without any disk (i.e. these

are dark-matter only runs of A to H at z = 0), and compare it to the one

found at z = 0 in our default runs with disk. In Figure 3.20, we show

the cumulative abundance of substructures as a function of mass in both
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types of simulations. To emphasize the mean difference in a clear way

we show the averaged abundance over all eight systems we simulated; we

note that orienting the disk along minor or major axis makes no differ-

ence here. There is a ∼ 30% reduction of substructure abundance across

all mass scales in the runs with the disk. This can be understood as an

effect of accelerated substructure depletion due to the gravitational shocks

the substructures experience as they pass through the disk. This enhanced

destruction rate shows up particularly strongly in the halo center, as ev-

idenced by Figure 3.21, which gives the cumulative average abundance of

substructures with mass larger than 6× 107 M� as a function of radius. In

the inner parts of the halo, there is about a factor of two reduction of the

subhalo abundance. These results are in good agreement with the analysis

of D’Onghia et al. (2010), who carried out orbit integrations for the subhalos

found in the dark matter only simulations of Aquarius and estimated their

evaporation rate analytically by summing up the impact of gravitational

shocks (Ostriker et al. 1972) experienced during disk passages.

In order to explicitly test for the influence of substructures on disk heat-

ing and disk stability, we have carried out a series of runs where we varied

our “rounding halo” experiment above. Instead of sphericalizing all dark

matter particles in the halo at z = 1.3, we have done so only for the dark

matter particles bound in substructures. Combined, these subhalos amount

to a few percent of the mass of the halo, so by redistributing the substructure

particles in a spherical fashion, the halo is made smooth without affecting

its dynamical equilibrium much. We note however that a large fraction of

the substructures found in a halo at low redshift will be accreted at z < 1.3;

they are unaffected, and so this cleaning of substructure will only temporar-

ily make the halo smooth. This is seen explicitly in Figure 3.22, where we

show the abundance of substructures as a function or radius at different

times, comparing an ordinary disk run with a run where the substructure

cleaning has been done at z = 1.3. While at z = 1.25 the inner halo is

still largely devoid of subhalos in the cleaned run, in the redshift range
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Figure 3.22: Illustration of the impact of our “substructure cleaning” procedure
where at the disk insertion redshift of z = 1.3 all particles in bound substructures
of the central FOF group are spherically redistributed. The plot shows the cumu-
lative radial abundance of substructures with mass above 6× 107 M� at different
times, comparing runs where the substructure reduction was carried out with nor-
mal simulations where this was not done. At z = 1.25, the reduction of subhalos
in the inner parts of the target halo is still very strong, but soon the subhalo
population is replenished by the accretion of additional mass and substructures.
This reduces the substructure reduction effect at late times substantially, but in
the range 1.0 < z < 0.85 it is more or less constant as a function of radius and
amounts to a suppression of around a factor of 2.

1 < z < 0.85, the abundance is suppressed on average by a factor of 2,

whereas towards z = 0 it is down by only ∼ 20%.

We now use the subhalo cleaning run to look at differences of the disk

heating rates between z = 1.0 and z = 0.85. At this time, the disks

are still largely intact even in the runs that form strong bulges, and here

the substructure suppression in the runs with the subhalo cleaning is still

substantial and fairly uniform across radius and in time. In Figure 3.23 we

show the difference in the vertical velocity dispersion in the standard runs

and the runs with subhalo cleaning. We clearly see evidence for an enhanced
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Figure 3.23: Differential heating of the stellar disk in runs with normal or
reduced substructure abundance. We here show radial profiles of the increase of
the vertical velocity dispersion of disk stars between times z = 1 and z = 0.85
in our runs with pure disks. The reference simulations correspond to series #1,
while in the comparison runs of series #8 the substructure has been smoothed out
at the disk insertion time (zinsert = 1.3). In the runs with reduced substructure
abundance, we find a substantially reduced hearing rate in the outer parts of
the disk whereas in the inner parts, within two disk scale length no difference is
detected.

heating rate of the disks in their outer parts, amounting to several km s−1

over the coarse of 1 Gyr. However, within two disk scale lengths, there is

virtually no detectable difference in the disk heating rate, suggesting that

substructure heating is negligible for the bulk of the disk’s stellar mass. It

may however play an important role in contributing to flaring of the stellar

disk in the outer parts.

3.7 Resolution dependence

So far, all our results have been based on ‘level-5’ Aquarius simulations, with

a resolution of 2× 105 particles in the disk, a dark matter halo resolved by
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Figure 3.24: Resolution dependence of disk morphology in our default runs
with pure disks (series #1) and disks+bulges (series #3). The top three rows of
images compare the face-on projections of the stellar disks at different times of
our simulations of A5, A4, and A3 in the runs with pure disks. The corresponding
simulations when a third of the stellar mass is moved to a central bulge are shown
in the bottom three rows. It is reassuring that the runs agree rather well, apart
from the phase angle of the bar.
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about 106 particles, and a gravitational softening length of 680 pc. Some

effects of galactic dynamics can depend strongly on numerical resolution

(e.g. Weinberg & Katz 2002), so it is advisable to check the robustness and

numerical convergence of our primary results in the relevant regime.

To this end we have repeated our primary A-5 simulations at two higher

resolution levels, where the particle number is increased by factors of 8 and

64, respectively, in both the dark matter and stellar components. The grav-

itational softening lengths are reduced by factors of 2 and 4, respectively.

In our highest resolution simulation A-3, this means that the stellar disk

is represented with 12.8 million particles, the stellar bulge (if present) with

6.4 million, and the dark matter halo with about 50 million particles.

In Figure 3.24 we show a visual comparison of the stellar disk evolution

seen in the three resolution levels. The top three rows compare pure disk

models at the resolution levels 5, 4, and 3, whereas the bottom three rows

give the same comparison for our standard models with bulges. Overall,

the disk morphologies are very similar in both resolution sequences. The

position angles of the bar motion do not line up exactly, but such phase

differences are to be expected. However, the overall morphological evolution

is clearly very similar, which suggests good convergence of the structural

evolution of the galaxies.

More quantitatively, we show in Figure 3.25 a convergence study of the

tilt angle evolution in the two resolution sequences. Especially the two high

resolution runs line up remarkably well. The lower resolution run shows a

small offset in its evolution in comparison, but since there is no systematic

trend with resolution we interpret this small difference in angle as a chance

effect. Other quantities we examined are similarly stable with respect to

resolution. We hence believe that already the level-5 resolution provides

robust results for the quantities studied in this work.
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Figure 3.25: Disk tilt angle measured for simulations at different numerical
resolutions, ranging from Aquarius level-5 to level-3. Two types of runs are shown,
the A-halo with a pure disk (from series #1), and the A-halo with a disk+bulge
(from series #3). The tilt angles of the disks do not line up quantitatively in detail
for the different resolutions, but the evolution qualitatively still agrees reasonably
well, without any indication of systematic trends with resolution. The tilt angle
evolution for a given resolution is almost identical for runs with or without a
bulge, showing that it is governed almost exclusively by the dark matter halo,
so that the difference we find between A3, A4, and A5 likely originate in small
differences of the dynamical states of their dark matter halos when the disk is
inserted.

3.8 Discussion and conclusions

In this study, we have analyzed the stability of disk galaxies inserted into

high-resolution zoom-simulations of the formation of Milky Way-sized dark

matter halos, with initial conditions taken from the Aquarius project. We

have refined a methodology previously used by DeBuhr et al. (2012), most

notably by using a more sophisticated approach to determine the initial

velocity distribution of the star particles. For the latter we employed the

iterative method realized in the GALIC code (Yurin & Springel 2014), which

is capable to compute high-quality stationary solutions in general dark mat-
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ter halos. For the dark matter potential, we directly used the distribution

of dark matter particles found in the Aquarius halos, without using any

approximation besides imposing axisymmetry on the force field.

Using this improved methodology, we have extended the analysis of the

Aquarius halos to a larger halo sample (using eight systems, A to H), and

to structural variants that also include systems with central bulges. We

have also investigated a number of toy simulations where the dark matter

halos were artificially rounded or dark matter substructures were erased, in

order to highlight the impact of residual triaxiality or of substructures on

the dynamical evolution of the disks.

Our main findings can be summarized as follows:

1. The presence/absence of a stellar bulge, as well as the presence/absence

of a stellar bar, do not affect the tumbling of disk galaxies. The turn-

ing motion of disks appears to be primarily driven by the triaxiality of

the halo and its figure rotation; in rare cases encounters with massive

substructures can also initiate substantial disk tilt.

2. Disks initially oriented along the dark matter halo’s minor axis show

marginally better directional stability than disks oriented along the

major axis.

3. We predict that an average tumbling angle of about 40 degrees over 6

Gyr between z = 1 and z = 0 should be quite typical for disk galaxies,

corresponding to 6 − 7 degrees per Gyr. Importantly, thin disks can

survive such tumbling rates in a largely unaffected way.

4. We confirm that the simple criterion of Efstathiou et al. (1982) is a

good predictor for bar instability also in the full cosmological context.

Other parameters appear to be at most of secondary importance, in

particular, we do not find strong evidence that disk systems in round

halos are less prone to bar formation than the disks in the mildly

triaxial CDM halos studies here.
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5. There is a significant depletion of dark matter substructures due to

the presence of a massive disk. If part of the disk mass is put into a

bulge instead, the effect is slightly reduced (to be confirmed), suggest-

ing that gravitational shocking at the disk is indeed more important

than the enhancement of the central core density and the associated

increase of pericenter at the halo cusp.

6. Dark matter substructure appears to significantly contribute to disk

heating in the outer parts of disks, while this appears negligible in the

inner regions within ' 2 disk scale lengths.

7. Our quantitative numerical results appear unaffected by numerical

resolution, as evidence by our resolution tests that cover a factor of

64 in mass resolution, and a factor of 4 in gravitational softening

length.

Overall, our results suggests that the survival of thin stellar disks is in

principle not a problem in CDM halos. In particular, the triaxiality and

high substructure abundance in CDM halos do not preclude the survival

of thin stellar disks, even though we would expect them to tumble slowly

with time. What is arguably more difficult to understand is how massive,

cold stellar disks can survive strong bar formation. Cuspy cold dark matter

actually help here, but the low central dark matter densities often inferred

observationally for the inner parts of galaxies (even for the Milky Way Bovy

& Rix 2013) make it unclear how such observed systems manage to sport

only a small or no bar. This remains an interesting topic for further study.

The methods used here demonstrate the power of our technique to in-

troduce stellar systems into growing dark matter halos. This allows one to

carry out traditional galactic dynamics work at very high resolution within

a realistic and complex cosmological environment, something that promises

to be a worthwhile avenue for future work.
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4

The radial migration of stars in
disc galaxies formed in

moving-mesh cosmological
simulations

Abstract

Radial migration of stars has been suggested as an important
mechanism for shaping the metallicity structure in disk galaxies, and
for possibly contributing significantly to the formation of a thick disk
component. Here we use for the first time fully cosmological hydrody-
namical simulations of disk galaxy formation to quantitatively assess
the level of radial redistribution of stars. We consider simulation
models of six different halos carried out with a moving-mesh hydro-
dynamical code which forms galaxies that are broadly consistent with
the expected structure of Milky Way sized galaxies. We find that the
radial redistribution can be described to good accuracy as a random
walk process with a typical diffusion constant of 0.8 kpc2 Gyr−1. At
this level, the strength of radial migration present in the simulations
affects the metallicity gradients only by an insignificant amount. We
confirm previous findings that disk thickness and vertical velocity
dispersion are both a function of stellar age and of the amount of ra-
dial migration. Outwardly migrating stellar populations reduce their
velocity dispersion but keep their thickness approximately constant,
suggesting that the impact of radial migration on disk thickening is
at most of limited importance. Our resolution tests indicate that
our results for radial migration are numerically well converged, but a
possible dependence of the stellar disk structure on feedback physics
constitutes an important systematic uncertainty.
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4.1 Introduction

Understanding the build-up of the stellar disk of our own Milky Way and

of galaxies of similar size remains one of the most interesting problems in

galaxy formation. In hierarchical models based on the prevailing ΛCDM

cosmological model, we expect a ‘bottom-up’ formation of galaxies (White

& Rees 1978) and a substantial content of dark matter even in the inner-

most regions of late-time galaxies (Navarro et al. 1996). It is still unclear

whether this can be consistent in detail with the observed structural prop-

erties of galaxies, such as their rotations curves or the claimed think/thick

structure of the stellar disk. In addition, their hosting dark matter halos

should be full of smaller subhalos (e.g. Moore et al. 1999), likely providing

a strong source of perturbations in the gravitational potential, making it

difficult to understand how thin stellar disks and stellar streams can sur-

vive. It is therefore important to confront detailed numerical simulations of

galaxy formation and evolution with the increasingly reach data on galactic

structure.

For example, recent observations such as the Gaia-ESO survey (Berge-

mann et al. 2014) show that there is a large scatter in metallicity at given

stellar age, significantly degrading the utility of the age-metallicity relation

for constructing reliable models of the build up of the disk. This also chal-

lenges the idea that all the stars present at a local region of the disk formed

more or less in close proximity to each other, i.e. from the same patch of gas.

More sophisticated chemo-dynamical models that either model the complex

gas flows in galaxies faithfully or take into account dynamical redistribution

of stars in galaxies appear therefore needed.

A large spread in metallicity at a given stellar age, even in an inside-out

disk formation scenario, could for example arise if stars are not restricted to

their birth radius, but rather that any local sample of stars really comprises

birthplaces at very different radii. This idea of significant radial migration

has a long history (Wielen 1977; Wielen et al. 1996; Sellwood & Binney
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2002), and was recently revived with a number of galaxy simulations in iso-

lation (Roškar et al. 2012; Solway et al. 2012; Roškar & Debattista 2014).

The simulations largely confirmed an important role of the corotation res-

onance mechanism proposed by Sellwood & Binney (2002) for facilitating

radial migration. Scattering at this resonance is able to exchange angular

momentum and energy without causing significant heating of the orbits. On

average, the vertical action is expected to be conserved during radial mi-

gration (Solway et al. 2012), but alternatively, some theoretical works have

also conjectured that the vertical energy is conserved instead (Schönrich &

Binney 2009).

In full cosmological simulations, additional mechanisms can potentially

redistribute material in the disks, such as satellite mergers (Quillen et al.

2009; Kazantzidis et al. 2009) or growing bars (Debattista et al. 2006;

Minchev & Famaey 2010; Di Matteo et al. 2013). In general, it may be dif-

ficult to cleanly separate these processes in cosmological simulations, even

though they are clearly physically distinct. But the advantage of such

self-consistent models is that they do not rely on ad-hoc choices of initial

conditions which may potentially distort the results. Despite this advan-

tage, so far no analysis of the radial migration rates in full cosmological

hydrodynamical simulations of disk galaxy formation has been attempted.

A primary reason of this is that such calculations have simply not been

available until very recently. Only the newest generation of such hydro-

dynamical cosmological simulations finally succeeded in making reasonable

disk galaxies, with roughly the right stellar mass and right stellar size (e.g.

Governato et al. 2010; Agertz et al. 2011; Guedes et al. 2011; Aumer et al.

2013; Stinson et al. 2013; Marinacci et al. 2014a). In the present study we

want to take advantage of this important advance and carry out a first anal-

ysis of radial migration in such fully cosmological disk formation models,

using the set of simulations first presented in Marinacci et al. (2014a).

This chapter is structured as follows. In Section 4.2 we briefly review

the methodology of our hydrodynamic simulations. We then present mea-
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surements of the extent of radial migration in Section 4.3, implications for

the metallicity structure in Section 4.4, and results for changes in the ver-

tical structure of migrating stellar population in Section 4.5. Finally, we

briefly examine the convergence and numerical robustness of our results in

Section 4.6. Conclusions and a summary are given in Section 4.7.

4.2 Methodology

In this study, we analyse the hydrodynamical simulations of disk galaxy for-

mation previously analysed in Marinacci et al. (2014a,b). In brief, they are

hydrodynamical versions of the ‘Aquarius’ initial conditions of Milky Way-

sized galaxies (Springel et al. 2008a), carried out with the moving-mesh

code AREPO (Springel 2010) and a sophisticated model to treat star for-

mation and associated feedback processes. The Aquarius halos were chosen

to be mildly isolated and to have a quiet merger history, which favours the

formation of disk galaxies, but otherwise they were purely mass-selected to

have a mass around 1012 M� at z = 0 (see Springel et al. 2008a, for details

on the selection procedure and the technical set-up of the Aquarius “zoom”

simulations). We here focus on a subset of six of the eight Aquarius systems

simulated by Marinacci et al. (2014a), disregarding halos D and E as they

produced only poorly defined disks at low redshift.

The hydrodynamical simulations examined here used a comprehensive

model for galaxy formation physics described in full in Vogelsberger et al.

(2013). It implements the baryonic processes considered to be most impor-

tant for regulating star formation and galaxy growth. Specifically, the hy-

drodynamic simulations include metal-dependent radiative cooling, a sub-

resolution model for regulating star formation in the interstellar medium, a

self-consistent treatment of stellar evolution and metal enrichment (follow-

ing 9 elements, H, He, C, N, O, Ne, Mg, Si and Fe), a galactic wind model,

growth of supermassive black holes and associated energy feedback, and a

UV photoionizing background. The model has been specifically developed
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for the AREPO moving-mesh code and has been shown to successfully re-

produce a number of key properties of the observed galaxy distribution. In

fact, the simulations analysed here are arguably among the most successful

simulation models of Milky Way sized galaxies available thus far (Marinacci

et al. 2014a; Pakmor et al. 2014). The disk galaxies formed in the simula-

tions have the right stellar mass expected for halos of this mass based on

abundance matching arguments, and they also have approximately the size

expected observationally for this stellar mass. Furthermore, in applications

of the same galaxy formation model to large cosmological volumes in the

‘Illustris’ simulation project (Vogelsberger et al. 2014a,c) it has been shown

that the model is quite successful in reproducing a broad range of observa-

tions both at high redshift and at the present epoch (see also Genel et al.

2014; Bird et al. 2014).

In this work, we mainly focus on the ‘level-5’ resolution in the notation

of Springel et al. (2008a) and Marinacci et al. (2014a), which corresponds to

a baryonic mass resolution of ' 4.1×105 M�, a dark matter mass resolution

of ' 2.2 × 106 M�, and a gravitational softening length of 680 pc for dark

matter and baryons in the high-resolution region. However, we will also

carry out a resolution study for halo C, for which an 8 times better (‘level-

4’) and an 8 times worse resolution (‘level-6’) is available.

4.3 Extent of radial migration

In Figure 4.1, we give a visual impression of the degree of radial mixing in

our different disk systems. In the left-most column, the identified “clean”

disk stars are shown in different radial annuli of width 3 kpc, using different

colours. The same stars are then shown again for subsequent simulation

output times, over a timespan of 2.5 Gyrs.

It is evident that the models show a range of different behaviour. There

is particularly violent mixing in the halo G5, where a late time passage of a

massive satellite galaxy takes place (see Fig. 2 of Marinacci et al. 2014a, for
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Figure 4.1: This plot gives a visual impression of the evolution of the radial
distribution of disk stars in a face-on projection. Each row shows a different
disk galaxy. The stars are drawn with different colour according to 7 radial bins
defined at t = 11.08 Gyr (left column), and only stars with circularity parameter
larger than 0.8 are included. Subsequent columns then show how the stars in
different initial radial bins become mixed with time.
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Figure 4.2: Change of the radial redistribution of disk stars between times
t = 11.08 Gyr and t = 13.58 Gyr. The shaded histograms indicate the initial
radial ranges that are examined, and have an area proportional to the amount of
stellar mass in the corresponding bin. The solid lines give the radial distributions
of the same stars at the present epoch, normalized again to the corresponding
stellar mass.

a time sequence of this event). In the other cases, the stars progressively

diffuse to the neighbouring radial bins in a more or less gradual fashion.

Notice also that in some cases the strength of radial mixing varies with

azimuthal angle, implying that an azimuthally averaged analysis of radial

migration glosses over some of the finer details of this process.

A more quantitative view of the radial redistribution process of stars is

provided by Figure 4.2, where we show the distribution of the final radii of

stars for different selections of initial radii. In this figure, we subdivide the

radial range 0 ≤ R < 18 kpc into 6 different regions of width 3 kpc. Disk
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Figure 4.3: Effective diffusion rate due to radial migration. The individual plots
show the root-mean-square difference between current and initial radial positions
of selected stars whose mass-weighted circularities (defined as in Marinacci et al.
2014a, Eq. 1) are greater than 0.7. The dashed lines refer to different radial
ranges, with a colour key given in the top right. The solid thick lines show the
mean result for all stars within 18 kpc of the center. The different panels are for
the 6 examined galaxies, as labelled.
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stars that are on highly circular orbits (with circularity parameter larger

than 0.8) in each of the bins are identified at z = 0.22 (i.e. at a lookback

time of 2.5 Gyr ago). Their relative number as a function of radius is indi-

cated through the shaded histograms. Finally, we show the distribution of

the same stars at the present epoch with solid lines. Note that the vertical

scale is logarithmic. Whereas clearly tails of these distributions develop

into neighbouring radial bins at late time, the distributions remain in the

majority of cases strongly peaked at their original annuli, suggesting that

the degree of radial migration is quite limited globally. An exception is halo

G5, which shows a relatively broad redistribution of stars, consistent with

the results of the visual inspection of the stars in Fig. 4.1.

If we assume that stars migrate radially through random resonant scat-

tering effects that are uncorrelated, we expect a random walk process in

which the mean squared radial displacement growth proportional to time.

This suggest that we can define an effective radial diffusion constant

D ≡ 〈(Rfinal −Rinitial)
2〉

tfinal − tinitial

(4.1)

and use it to measure a net radial diffusion speed, as one quantitative

measure of the strength of radial migration.

In order to test whether this definition can provide a reasonable de-

scription of the radial migration, we show in Figure 4.3 measurements of

s ≡ 〈(Rfinal −Rinitial)
2〉1/2 as a function of the final time tfinal. We see that

there is indeed an approximately linear relation between s2 and the elapsed

time, at least at late times. This is especially true for the inner regions of

the galaxies, whereas the measurements for the outer regions are affected

by substantial counting statistics noise. When the mean for all disk stars is

considered, it is evident again that G5 is an outlier, showing a much larger

radial redistribution rate than the other galaxies. The averaged values we

obtain are quite similar for all systems, except for G5. If the latter is ex-

cluded the average value we measure for our models is D ' 0.8 kpc2 Gyr−1.

In Figure 4.4, we focus instead on a radial region corresponding to the
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Figure 4.4: Birth radii distributions of the disk stars in the “Solar neighbour-
hood” of our disk galaxies. We here select all disk stars in the radial range
7 kpc < R < 9 kpc and show the distribution of their birth radii. The latter is
measured for the first output time where these stars are found. The solid line is
for all stars, the dashed and dotted lines are for low and high metallicity stars,
respectively.

“Solar circle” today, i.e. at the stars on nearly circular orbits in the radial

region 7 kpc < R < 9 kpc. Here we ask the question at which radii the

corresponding stars were born, and show the corresponding radial distri-

butions. We also show the distributions for two subsamples of different

metallicity in order to examine whether the trends depend on metallicity.

Interestingly, whereas A5, C5, and F5 draw the stars in this “Solar neigh-

bourhood” mostly from a narrow region more or less centred on the fiducial

solar circle, system B5 has apparently seen a significant expansion of its

disk, such that most stars now in the range 7 kpc < R < 9 kpc used to be
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located closer to the center by 2 − 3 kpc. A milder effect of this kind is

also seen in H5 and in G5. In the latter case the distributions are however

also broader, consistent with our earlier findings that G5 is a special, highly

perturbed case.

Comparing our measurements in Figure 4.4 with results reported by

Roškar et al. (2008) for their isolated disk simulation, we find a qualitatively

similar behaviour, with typically more of the stars ending up in 7 kpc <

R < 9 kpc originating at smaller radii than at larger radii. However, our

distributions are clearly narrower than those of Roškar et al. (2008), with

considerably fewer stars originating at very small radii. In particular, in

our simulations there are virtually no stars that are born at R < 3 kpc

and make it into the fiducial solar neighbourhood, whereas this a sizeable

number of such stars in the simulation of Roškar et al. (2008).

4.4 Metallicity structure

4.4.1 Age-metallicity relation

It is often argued that a high diversity in the stellar populations at differ-

ent locations in disk galaxies can be viewed as an important signature of

stellar migration (Roškar et al. 2008; Schönrich & Binney 2009; Roškar &

Debattista 2014). In Figure 4.5, we show the age-metallicity relation for all

disk stars in our simulations (black dots), together with the mean (thick

lines) and 1σ dispersion around the mean (dashed lines).

There is clearly a strong correlation of the mean metallicity with age at

early times, where the galaxies quickly self-enrich and climb up to average

metallicities around solar. This average metallicity stays then nearly flat,

for periods of around 8 Gyr, with the exception of the G5 system again,

where the rise to high metallicity is more gradual. In the latter case, the

distorted structure of the galaxy may also mean that our selection of disk

stars ends up being not very representative for all the stars of G5, which

may be the reason of the different shape of the age metallicity relation in
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Figure 4.5: Age-metallicity relation for disk stars in our simulation models.
The dots show the individual disk stars in the metallicity-age plane, while the
thick lines show the mean in the different bins. The dotted lines indicate the 1σ
dispersion around the mean.

this system.

Arguably the most striking result of Figure 4.5 is however that there is

a large metallicity spread at any given age, of about ∼ 0.3− 0.4 dex. Given

that radial migration is not overly strong in our models, this casts significant

doubts about the notion that such a dispersion indicates the presence of

substantial radial migration. In fact, our results rather suggest that radial

migration is not a significant driver in creating this scatter at a given radius,

unlike proposed by Roškar et al. (2008). Instead, it seems much more

likely that the complicated fountain-like gas flows and galactic winds that

permanently exchange material between the interstellar and circum-galactic

media (e.g. Marinacci et al. 2014b) play a major role in establishing the large

metallicity spread. Note also that the vast majority of disk stars form later
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Figure 4.6: Evolution of metallicity profiles in the six examined disk galaxies.
The different coloured lines show the metallicity profiles of the set of “clean” disk
stars (i.e. excluding the bulge stars) in the galaxies at different output times over
the recent 2.5 Gyrs. The thick grey line shows the profile if the stars are instead
placed at their birth radii, i.e. at the radius where they first can be identified.
This in some sense should ‘undo’ the effects of radial migration.

than 8 Gyr ago, at which point the age-metallicity relation is essentially flat,

demonstrating that metallicity is not a particularly useful age indicator for

these stars at all.

4.4.2 Metallicity profiles

Further evidence for a subdominant influence if radial migration is obtained

by an examination of the metallicity profiles in the disk galaxies. In Fig-

ure 4.6, we show radial metallicity profiles of all of our simulations at a set

of different times. Again, we restrict the measurements to a “clean” sample

of disk stars on highly circular orbits in order to highlight effects of radial

migration. The metallicity gradient at z = 0 (snapshot dump 63) is shown

142



4. Radial migration in moving-mesh cosmological simulations

with a thin yellow line, the profiles at earlier times with different colours,

as labeled. The black line gives the profile at z = 0.22 (snapshot dump 55).

The thick grey line shows the profile if the z = 0 stars are instead placed

at their birth radii.

Overall, there appears to be little systematic change in the steepness of

the metallicity profiles over this timescale. In particular, a significant trend

towards a flattening of the profiles with time is not evident, although this

may still operate at a weak level in a subset of the systems. We also see

that the grey thick profile is generally very close to the yellow profile, apart

from some larger distortions in the outer parts in B5 and G5. Hence, radial

migration has apparently not affected the shape of the radial metallicity

profile of the z = 0 stars in a significant way, demonstrating also that it

must have been a weak effect overall for the structural evolution of the

galaxies.

4.5 Vertical structure and radial migration

4.5.1 Different causes for population thickening

If stars migrate radially, their mean vertical displacement above the disk

plane is expected to be changed, an effect presumably governed by action

conservation (e.g. Loebman et al. 2011). Indeed, Roškar et al. (2013) showed

for simulations of isolated disk formation that the vertical thickening is

both a function of stellar age and the amount of radial displacement. The

vertical thickening is expected to increase with the age of stars, because

stellar populations born close to the mid-plane of disks are expected to be

heated through various channels, for example by the bombardment with

dark matter substructures or by minor mergers. However, radial migration

can also affect the thickness of a stellar population as it changes its radius.

Interestingly, different claims have been made as to whether a stellar

population will thicken or become narrower when it migrates outwards.

Minchev et al. (2012) has argued, based on vertical action conservation, that
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Figure 4.7: Mean velocity dispersion σz (colour-coded) of disk stars as a function
of their age and the amount of radial migration they have experienced since birth.
Only stars forming in a narrow radial are selected, as labelled (i.e. 4 kpc < r <
6 kpc in the left panel, and 6 kpc < r < 8 kpc in the right panel).

stars would not thicken as the migrate outwards, whereas just the opposite

has been claimed by (Schönrich & Binney 2009), who instead assumed

energy conservation in the vertical distribution of stars in their analytic

model. Loebman et al. (2011) present N-body simulations that seem to

support the analysis of Schönrich & Binney (2009), but Minchev et al.

(2012) have supported their dissenting conclusions with a set of different

N-body simulations (Chilingarian et al. 2010; Martig et al. 2012). Also,

Solway et al. (2012) found that the vertical action rather than the vertical

energy is conserved on average during radial migration.

In light of these disagreeing results it is particularly interesting to anal-

yse our simulations with respect to this question, taking advantage of the

fact that they are the first fully cosmological simulations of disk formation

available for studying this topic. In Figure 4.7, we show for stars born in a

small radial interval their mean vertical velocity dispersion, both as func-

tion of age and as a function of the amount of radial displacement they

have experienced. In other words, we examine for stars originally born at
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a fixed radius how their velocity dispersion depends on their age and the

shift away from their birth location. The left and right panels of the figure

refer to different radial ranges for the birthplace, 4 kpc < Rbirth < 6 kpc and

6 kpc < Rbirth < 8 kpc, respectively. The two-dimensional distributions of

the panels show the mean vertical velocity dispersion of disk stars on nearly

circular orbits, with a colour-scale as given in the legend, both as a function

of the radial migration shift ∆R in the horizontal direction and the age in

the vertical direction. We have here stacked our different simulation models

to reduce statistical noise.

At a given ∆R, there is a clear trend for stars that are older to show

a higher vertical velocity dispersion. This is expected and consistent with

a gradual vertical heating of ageing stellar populations. More interesting

is the trend seen for fixed age. Here we see that stars moving to smaller

radii actually increase their velocity dispersion, while stars moving outward

become colder. This is qualitatively very similar to recent results by Roškar

et al. (2013). It agrees with the analytic analysis of Minchev et al. (2012),

but not with that of Schönrich & Binney (2009).

4.5.2 Correlation between birth place and vertical
scale height

Because the vertical velocity dispersion is directly related to the vertical

thickness of a stellar population, we in principal expect that corresponding

trends about the impact of radial migration can also be seen directly in the

thickness of stellar populations.

In Figure 4.8, we test this idea by showing for a fiducial population

of ‘Solar neighbourhood’ stars (those today in the radial range 7 kpc <

R < 9 kpc) their root mean square vertical height above the disk plane,

zh =
√
〈z2〉, as a function of the radial migration ∆R these stars have ex-

perienced. To improve the statistics, all 6 galaxy models have been stacked.

We show two different measurements; the blue line uses simply the current

z-coordinate of the stars above the disk plane, whereas the red line uses
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Figure 4.8: Correlation between mean height zh =
√
〈z2〉 of stars found in

the solar neighbourhood today (7 kpc < r < 9 kpc), and the amount of radial
migration they have experienced. The blue line is for the current (i.e. final)
height, whereas the red line uses the height always at birth time of the stars. We
see that stars that have migrated in to the Solar position had initially greater
average height, while stars that moved out reduced their vertical scale height. To
improve statistics, this plot stacked the different galaxy models.

the zbirth coordinate, i.e. the values of the z-coordinate of the stars the first

time we find them in a snapshot file after they have been born.

Interestingly, the red line shows a pronounced trend of decreasing zh

with growing ∆R. Stars that had to migrated outward to reach the Solar

circle have originally formed in an on average narrower component. This can

be understood by the flaring of an approximately isothermal gas disk with

radius when the surface density drops. The scale-height of stars forming

in the outer parts of disks should then have a tendency to be higher than

those forming in the inner regions.

As the blue line shows, this signal is however largely erased when the
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instantaneous scale heights of the stars are computed as a function of the

amount of radial migration they experienced. Here we might in principle

still expect a negative correlation between average scale height and migra-

tion distance, because if stars reduce their vertical velocity dispersion as

they migrate outwards, one may also expect that they reduce their vertical

scale length as well. However, this assumes that the strength of the vertical

gravitational field stays the same. If the surface density declines with radius

(which it does), this is however not the case, and the narrowing of the stellar

distributions can be prevented. Apparently, this effect is indeed operating

in our simulations. In fact, if the stars begin with a relatively high velocity

dispersion in the center, and if the surface density drops sufficiently with

radius, then outward stellar migration could still lead to a thickened pop-

ulation, as argued by Roškar et al. (2013). The idea that stellar migration

contributes to the formation of a thick disk component is therefore not fully

excluded, but our results do not really favour such a scenario.

4.6 Resolution dependence

The radial migration phenomenon may in principle depend sensitively on

resolution, because the effect is expected to be strongest at the corota-

tion resonance (Sellwood & Binney 2002), and resolving resonances well is

notoriously difficult (Weinberg & Katz 2002). Unfortunately, the exact nu-

merical requirements on particle number and gravitational softening length

in order to reliably account for radial migration are unknown. However,

simulations of the same initial conditions carried out with widely differ-

ent resolutions allow us to at least empirically check the consistency of our

primary results with respect to numerical resolution.

To this end, we consider in Figure 4.9 the resolution dependence of

results we obtained for the radial migration of disk stars obtained for model

Aquarius-C, as simulated by Marinacci et al. (2014a). The three different

resolution levels we consider differ in mass resolution by factors of eight,
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Figure 4.9: Resolution dependence of the birth radii distributions in the models
Aq-C-6, Aq-C-5, and Aq-C-4. This plot repeats the measurements shown in the
different panels of Fig. 4.4, except that here three different resolution runs of the
C model are shown. It is reassuring that these different resolution agree rather
well.

so that the total dynamic range covers in particle number (or equivalently

mass resolution) is 64, that in spatial resolution (i.e. gravitational softening

length) is a factor of 4. Reassuringly, the quantitative results obtained in

Fig. 4.9 agree very well. This shows that not only the stellar mass and radial

scale length of these forming disk galaxies agree quite well, the convergence

also extends to more subtle dynamical properties of the stellar distributions.

The employed numerical procedures appear hence to be quite robust and

are not a significant source of uncertainty. Note however that it is unclear

whether the underlying model for star formation and its regulation through

feedback processes is reliable and reasonably close to reality. This therefore

remains as a substantial systematic uncertainty.

4.7 Discussion and conclusions

The analysis we have presented in this chapter is the first study of radial

migration in disk galaxies forming in self-consistent hydrodynamical cos-

mological simulations. Such simulations have only become available very
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recently, and all previous work on radial migration had to rely on isolated

toy simulations with ad-hoc initial conditions.

We have quantified the level of radial migration occurring for stars on

nearly radial orbits in our disk galaxies. We have found that the radial

redistribution of stars is consistent with a slow diffusion process that can

be characterized by a diffusion constant of order D ' 0.8 kpc2 Gyr−1. At

this rate, the impact of radial migration on radial metallicity gradients

appears to be rather small, making it unlikely that radial migration signif-

icantly contributes to the scatter in the age-metallicity relation. We have

also examined the change of the vertical structure of stellar populations as

they migrate radially. Our results confirm that stellar populations reduce

their vertical velocity dispersion as they migrate outwards. This cooling is

consistent with theoretical models that assume conservation of the vertical

action, but disagrees with the assumption that the vertical energy is con-

served. Interestingly, at the same time we find that outwardly migrating

stellar populations roughly maintain their thickness. While this does not

strictly preclude the idea that radial migration contributes to the formation

of a thick disk component, it also does not favor this in any way.

While the analysis of self-consistent hydrodynamic simulations elimi-

nates any dependence on arbitrary choices for initial conditions, there are

nevertheless important limitations of our approach. For example, the rela-

tively large gravitational softening length used may artificially puff up the

vertical disk structure, rendering the migration mechanisms less effective,

and hiding some of the induced changes in the vertical dispersion. A simi-

lar concern applies to the effective equation of state subgrid model for star

formation (Springel & Hernquist 2003) employed in the simulations, which

may lead to artificially thick, flared stellar disks in the outer parts, and pos-

sibly to a distorted velocity distribution of the disk stars. Furthermore, the

feedback processes assumed in the hydrodynamical simulations carry sig-

nificant uncertainties, making the star formation histories predicted by the

simulations uncertain, although the fact that the simulation models agree
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quite well with global properties of late-time galaxies such as the Milky

Way suggests that the model predictions are plausible. We note that our

resolution study suggests that our results for radial migration should be

robust with respect to numerical resolution.

In the coming years, better observational data from missions such as

GAIA should become available that make a better theoretical understand-

ing of radial migration quite pressing. We note that this is also required

for the proper interpretation of chemical tagging techniques (e.g. Freeman

& Bland-Hawthorn 2002). Numerical simulations are a highly useful tool

for advancing our understanding of this topic and of galactic dynamics in

general, and fully cosmological simulations of disk galaxy formation like the

ones studied here are in principle ideal for this. It will be very interesting

to push these calculations to much higher resolution such that also very

subtle effects of galactic dynamics become accessible with them.
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Concluding remarks

The exponential growth of computer performance in the recent past has

dramatically increased the capabilities of numerical methods in Astronomy.

Advanced cosmological simulations based on the ΛCDM paradigm supply us

with crucial tests of the cosmological model and extremely detailed predic-

tions of galaxy formation. Increasingly, the results of numerical simulations

also inform and motivate observational searches for theoretically predicted

effects. For the first time in history, we are now able to experiment with

astrophysical processes through synthetic analogs created as computer sim-

ulations.

In this thesis we have carried out a set of controlled experiments with

the halos of the Aquarius project of Milky Way-sized galaxies. We placed

fully formed “hand made” disk galaxies into the centers of assembling dark

matter halos and let them co-evolve. We were interested in testing whether

thin disk galaxies can survive in realistic dark matter halos, despite their

triaxiality and large content of substructures. If this could be answered pos-

itively, it would justify hopes that the failure to produce the right amount

of such galaxies in all simulations thus far is due to an inaccurate treatment

of the relevant physics rather than a more fundamental issue in the realm

of cosmology. We found that, while thin disk galaxies that are carefully

inserted in the centers of dark matter halos may be significantly tilted and

strong instabilities like bars and spiral arms may be generated, their overall

morphology as thin disks remains largely unchanged. We also confirmed

that the presence of a central stellar bulge and/or a light stellar disk may

stabilize against bar formation to some extent.

In the process of this work, we were confronted with the task to provide
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steady-state galaxy models with prescribed properties that are in the best

possible equilibrium with a given dark matter halo. To address this problem,

we invented a new iterative method to derive stationary solutions of the col-

lisionless Boltzmann equation. We developed a new code based on it, that

we called GALIC. Our code creates a particle realization of the prescribed

density distribution and then iteratively adjusts the velocities of individual

particles, so that the time-averaged superposition of their orbits reproduces

the prescribed density distribution. Solving Jeans equations for the second

velocity moments, we developed a scheme that allows good guesses for the

velocity adjustments through a stochastic process that prevents the method

from getting stuck in local minima. As an additional benefit it allow us to

converge to a solution with desired properties, for example with a certain

velocity anisotropy, in a sometimes large space of degenerate solutions. In

our numerical experiments with the set of created galaxy models, we found

that all of them showed good stability going beyond what can be achieved

with conventional moment-based methods that are widely used in the field.

We made our code publicly available so that other researchers in the com-

munity can benefit from it and ideally improve it further. We have also

done some exploratory work in this direction ourselves (not reported in this

thesis), where we have extended the method from axisymmetry to full three

dimensions, allowing us to also create triaxial equilibrium models.

Finally, we used recent hydrodynamical simulation of galaxy formation

that successfully formed disk galaxies with realistic properties to study the

origin of the spread of metallicities in the age-metallicity relation. We found

that radial migration of stars, generally suspected to potentially have a

strong influence on the metallicity distribution, has only a modest impact

on metallicity gradients and therefore is unlikely to be responsible for the

scatter in the age-metallicity relation. We caution that our findings are

based on a specific simulation model that uses phenomenological parame-

terizations of star formation and associated feedback processes, which intro-

duces systematic uncertainties. But it is very encouraging that our results
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for radial migration in galaxies studied with this model at widely different

numerical resolution are in excellent agreement.
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