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Abstract

Turbulence is a dominant feature operating in gaseous flows in a variety of
systems, from aerodynamics to highly compressible media common in as-
trophysical environments. We present a systematic analysis of the influence
of different forcing types on the statistical properties of supersonic, isother-
mal turbulence in both the Lagrangian and Eulerian frameworks. We study
a series of high-resolution, hydrodynamical grid simulations and examine
the effects of solenoidal (divergence-free) and compressive (curl-free) forc-
ing as well as varying root mean square Mach numbers on the parameters
describing the statistical state of the system. The probability density func-
tions of the gas density, velocity, and the velocity increments are measured.
Structure functions and power spectra are investigated to quantify the two-
point correlation properties of compressible turbulence. We find that the
mode of the forcing mechanism has an influence on the all measurements
mentioned above. Compressively driven simulations show a more intermit-
tent behaviour, a larger fractal dimension of the most dissipative structures
(Chapter 4), a significantly larger density contrast with more pronounced
wings of the density PDF (Chapter 5), and steeper power spectra with a
decreased influence of the bottleneck effect (Chapter 6), at the same root
mean square Mach number.



Zusammenfassung

Turbulenz ist ein wichtiges Phänomen in unterschiedlichen Gasen, von Aero-
dynamik bis hin zu stark komprimierbaren Medien, welche häufig in astro-
physikalischen Zusammenhängen auftreten. Diese Arbeit umfasst eine sys-
tematische Studie über den Einfluss von verschiedenen Kraftfeldern auf die
statistischen Eigenschaften von isothermer Überschallturbulenz im Lagrange-
und Eulerbezugssystem. Wir analysieren eine Reihe von hoch aufgelösten,
hydrodynamischen Gitter-Simulationen und bestimmen den Einfluss von quel-
lenfreien (divergenzfreien) und komprimierenden (rotationsfreien) Kraftfel-
dern, sowie von verschiedenen quadratischen Mitteln der Machzahl, auf die
Parameter, die den statistischen Zustand des Systems beschreiben. Die
Wahrscheinlichkeitsdichtefunktion der Massendichte, der Geschwindigkeit,
als auch der Geschwindigkeitsinkremente werden gemessen. Strukturfunk-
tionen und Leistungsspektren werden untersucht, um die Eigenschaften der
Zweipunktkorrelation von Überschallturbulenz zu quantifizieren. Wir zeigen,
dass die Art des Kraftfeldes einen Einfluss auf alle gerade genannten Größen
hat. Die komprimierend getriebenen Simulationen zeigen ein intermitten-
teres Verhalten, eine größere fraktale Dimension der dissipativen Strukturen
(Kapitel 4), erheblich größere Dichtekontraste mit ausgeprägteren Flanken
in der Wahrscheinlichkeitsverteilung der Massendichte (Kapitel 5), und steil-
eren Leistungsspektren mit einem verringerten Flaschenhalseffekt (Kapitel
6) bei gleichem quadratischen Mittel der Machzahl.
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Chapter 1

Introduction

Richard Feynman once declared that turbulence is ”the most important un-
solved problem in classical physics”, even tough the appearance of turbulent
motions is quite common, present in everyday life such as in the rise of smoke
from a cigarette, the air flow passing a runner, the water flow behind a wa-
ter gate. Yet, a mathematical description of turbulence has been elusive for
many years, inspiring Richard Feynman to make his statement.

The cornerstone of the theory was formulated by Kolmogorov (1941a,b)
treating fully developed, incompressible turbulence. The intermittency prob-
lem of this theory was considered in the seventies by himself (Kolmogorov,
1962), and later by the famous work of Mandelbrot (1972), leading to the
intermittency model of She and Leveque (1994), which is still the most suc-
cessful model describing the stochastic occurrence of the energy transfer and
dissipation events with a log-Poisson distribution (Birnir, 2013). The exper-
imental investigation of turbulence was also rapidly evolving during this pe-
riod starting with the analysis of atmospheric turbulence with only few mea-
suring probes (Gurvitch, 1960), over wind tunnel experiments (Gagne and
Hopfinger, 1979), to the advanced and most recent analysis of the “French
washing machine” (Mordant et al., 2005). This experiment creates a turbu-
lent flow in a cylindrical container filled with water driven by two counter-
rotating disks. The full 3D velocity information gets extracted from the
Doppler shift measured by ultrasonic transducers using small, solid particles
in the flow. In the nineties the rapid development of the computer technol-
ogy facilitated the analysis of turbulence in numerical simulations, providing
huge datasets.1 Different approaches can be made for simulating or modelling
turbulence, including direct numerical simulations (DNS), large eddies simu-

1Richardson et al. (1922) developed a mathematical technique for systematically fore-
casting the weather. It took him three months to predict the weather for the next 24
hours.

1



2 CHAPTER 1. INTRODUCTION

lation (LES), turbulent viscosity models (k-ε model), Reynold stress models,
and probability density function (PDF) methods (Pope, 2000).

Despite of all these developments Richard Feynman’s quote still holds and
an holistic theory is still missing. For example, the theoretical description
of turbulences uses the assumption of a constant density field and there-
fore only considers velocity fields with ∇ · v = 0. Analytic results without
these assumptions are still rare. Just recently Galtier and Banerjee (2011)
and Banerjee and Galtier (2013) derived analytically scaling relations for
the mass weighted structure functions. Because of difficulties in creating
compressible turbulence with a significant varying density field for exper-
iments, astrophysical observations and numerical simulations are the only
data sources for analysing fully developed supersonic turbulence. In this
thesis we focus on the latter.

The goal of this thesis is to understand fully developed supersonic tur-
bulence, occurring in many astrophysical contexts, by performing direct nu-
merical simulations. We focus on supersonic turbulence present in Giant
Molecular Clouds (GMC) yielding a filamentary, hierarchical density field
varying over many orders of magnitude and influencing the statistical prop-
erties of the star formation process (e.g. the fragmentation degree, the initial
mass function, star formation rate).

1.1 Motivation of this Study

”One must still have chaos in oneself to be
able to give birth to a dancing star.”

Friedrich Nietzsche
Thus spoke Zarathustra
A book for all and none

Nietzsche (1883)
The night sky is the astrophysical stage for the cosmic play. The main theme
reappearing through the whole plot is the fragmentation and the subsequent
collapse of gas due to self-gravity determining the shape and structure over all
observable scales. This process leads to a hierarchical clustering of mass start-
ing from the largest scales with galaxy clusters, down to individual galaxies,
the interstellar medium (ISM), giant molecular clouds (GMCs), star clusters,
protostellar cores, and planets on the smallest scales. In distinct scenes dif-
ferent physical processes adopt the dominant role and exhibit their character.
However, our vision of the cosmic play unfolding in front of us is quite lim-
ited, where light particles are nearly the only information carrier reaching us
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and telling us the storyline. As most observed photons are emitted by stars,
a solid understanding of star formation and stellar evolution process, as well
as the subsequent interaction of these photons with their environment is es-
sential in nearly all astrophysical disciplines. This ties the properties of stars
to the observation of various astrophysical topics and shows the importance
of a comprehensive understanding of these objects. Stars are also born in
the gas and dust of the interstellar medium (ISM) and the obstetricians are
gravity and turbulence dominating the gravo-turbulent fragmentation pro-
cess. Turbulence plays here a double role, on one side it prevents the collapse
of clouds on the GMC scales, visible in the turbulent pressure term, while
on the other side, it promotes collapse on the small scales, compressing and
collecting large amount of gas by supersonic shocks and is then responsible
for the statistical occurrence of star formation.

Stars and clusters of stars are formed in molecular clouds (MC), which
are cold (10-20 [K]), dense objects (∼ 100 [cm−3]), enabling the transition
from a monatomic composition of the interstellar gas to the molecular one
by self-shielding against the background radiation field. Dust works as a
catalyst for converting hydrogen into H2 molecules. H2 forms primarily on
the surface of dust grains and gets destroyed by far ultraviolet (FUV) ra-
diation. The equilibrium abundance of H2 is therefore controlled by the
external FUV radiation field and the local density attenuating it (see Glover
and Mac Low, 2007a,b, for a fully time-dependent chemo-dynamical simula-
tion of the GMC formation process). The complete CO survey2 of the whole
Milkyway by Dame et al. (1987, 2001) revealed the large spatial extent of
GMCs and their substantial contribution to the mass budget of the ISM.
The mass of individual MCs range from ∼ 102M� for small clouds above
the galactic plane to ∼ 107M� in the central molecular zone of the galaxy.
GMC have a complex, clumpy and filamentary internal structure such that
their mass-density probability distribution function (PDF) spans orders of
magnitude (Schneider et al., 2013). Even tough, the mass of different clouds
can vary by five orders of magnitude and also internal structure can span
orders of magnitude, their surface densities are similar and vary only by fac-
tors of a few, Σ ∼ 40 − 170M� pc−2. This is known as one of the famous
Larson’s laws Larson (1981). A typical GMC with the above given den-
sity, temperature, and bulk velocity of ∼ 1 [km s−1], has a Reynolds number
of ∼ 109 on the dissipation scale ∼ 0.1AU (see Section 4.2 Dobbs et al.,
2013). This high Reynolds number guarantees that the gas motions inside
a molecular cloud are turbulent and measurements of the velocity disper-

2As CO requires even more shielding as H2 their abundances are correlated and CO
can be used as a tracer.
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sion indicate Mach numbers of ∼ 5–50 (Elmegreen and Scalo, 2004; Scalo
and Elmegreen, 2004). These supersonic motions create a turbulent pressure
p = ρσ2

v capable of counteracting gravitational collapse. The virial parame-
ter, which describes the large-scale dynamics of the gas in GMCs, is defined
as αG = Mvirial/MGMC , is a useful guide to predict the evolution of GMCs,
where Mvirial = 5σ2

vR/G. Using the Larson laws ΣGMC(R) ≈ const and
σv(R) ∝ R0.5 results in a constant virial parameter αG ≈ 1 indicating that
GMCs are marginally gravitationally bound objects.

The dynamical properties of the MC, e.g. the supersonic motions ubiqui-
tously observed, have a direct influence on the star formation process (Mac
Low and Klessen, 2004; McKee and Ostriker, 2007). The physical properties
of the MCs depend on the creation mechanisms, which are still under debate.
The main theories describe GMC formation with gravitational instability,
localised converging flows, spiral arm induced collisions, magneto-Jeans in-
stability, or Parker instability (for a detailed discussion of the formation
processes see Section 3 in Dobbs et al., 2013, and references therein). These
formation mechanism have to explain the GMC clumpy and filamentary in-
ternal structure and the origin of the non-thermal motions.

It is well known that turbulence decays in a dynamical time scale in the
absence of external energy input. What mechanism is driving the turbulent
velocities in GMCs is still under debate: (a) The large velocity dispersions
are caused by the global gravitational collapse rather than random turbulent
motions (Ballesteros-Paredes et al., 2011a,b; Hartmann et al., 2012). (b)
This scenario explains the turbulent motions with internal sources of energy,
like H II regions, radiation pressure, protostellar outflows, or other feedback
mechanism (Dekel and Krumholz, 2013; Krumholz et al., 2014). (c) An alter-
native explanation is that GMCs are driven externally. Klessen (2011) argues
with different processes of cloud formation that drives the internal motions
by setting up a turbulent cascade transporting kinetic energy from large to
small scales. These processes are diverse and range from accretion flows of
extragalactic gas falling on the galactic disc, converging flows of atomic gas
triggered by spiral density waves, to supernova explosions. However, GMCs
are embedded in a galactic flow, where cloud-cloud collisions in spiral arms or
close encounters with shear can also drive the turbulent motions externally.
Most likely, all these mechanism play a role and which one is dominating de-
pends on the individual cloud. But, with the scenario (a) one cannot explain
the relatively long lifetimes of GMCs (' 20 Myr) in comparison to the free-
fall time3 and the inverse P-Cygni line is absent, which is a typical feature of

3The same argument can be done with the galaxy-average low star formation efficiency
or the low galaxy-average star formation rate.
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large-scale collapse. Scenario (b) has also two caveats, Brunt (2003); Heyer
and Brunt (2004); Brunt et al. (2009) study the principal component analy-
sis, a method to measure the two-point correlation properties of the velocity
field similar to structure functions. They find no break in the scaling rela-
tions on large scales and concluded that the mechanism driving the turbulent
motions in GMCs must operate on scales comparable to the size of the cloud
or larger. In addition, there is no correlation between the star formation rate
and the strength of the turbulent motions inside molecular clouds (e.g. the
Magdalena cloud or the Pipe nebula indicate a low star formation rate, but
a significant amount of turbulence (Klessen, 2011)), which one would expect
for this scenario.

We close this section with a short sketch of the star formation process. A
review about star formation studies in numerical simulations can be found
in Klessen et al. (2011) and detailed description of star formation theories
and observations can be found (Mac Low and Klessen, 2004; McKee and
Ostriker, 2007), who discuss also the importance of magnetic fields creating
an additional pressure counteracting the gravitationally collapse. The picture
we propose follows mainly this presented in Klessen (2011). Molecular clouds
form in the stagnation points of large-scale converging flows. Therefore, the
density goes up and shields the gas against the background radiation field.
Molecules form and enable the gas to cool efficiently reinforcing the creation
of the dense, cool cloud. As the time scale of the large-scale converging
flow goes like T ∼ L/V (L), L and V are the scale and the velocity of the
converging flow, it delivers fresh material and the cloud grows in mass over an
extended time. The gravitational collapse, which also sets in, together with
the kinetic energy of the converging flow cascade to smaller scales driving the
turbulent motions in the cloud. Figure 1.1 (Figure 2, from Klessen, 2011)
illustrates the kinetic energy cascade in the context of star formation. We
know that the Mach number in an isothermal gas scales linearly with the
standard deviation of its density distribution (see Chapter 5 for a detailed
discussion). For example a typical cloud with averaged number densities
∼ 100 [cm−3] and a Mach number of ∼ 30 reaches over-densities of ∼ 105

[cm−3], so a density contrast of ∼ 103. If we zoom in a high-density and
cluster forming core with 104 [cm−3] we still observe Mach numbers of ∼ 5
and therefore still expect high density variation. By chance some of these
fluctuations may exceed the critical mass for gravitational collapse such that
further fragmentation sets in resulting in a multi stellar population, instead
of forming one high-mass star. At even smaller scales the kinetic energy
spectrum is so low, that the average turbulent motions are below the sound
speed. Therefore they cannot produce over-densities any more and further
gravoturbulent fragmentation stops.



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Cartoon of the kinetic energy density spectrum as a function
of the wave number k with the relation to different cloud structures. The
turbulent motions are driven on the larger scales in comparison to the cloud
size L and dissipated on the very small scales ηK . (Figure 2, from Klessen,
2011)

1.2 Overview of this Study

We analyse different sets of numerical experiments, which are called ’turbu-
lence in a box simulations’. The name refers to the fact that we are assuming
periodic boundary conditions and apply a forcing field, which is created in
Fourier space to drive the turbulent motions. We solve the Euler equations
and analyse the statistical properties on all scales.

Chapter 2 gives an introduction in the basic theoretical background. We
start with hydrodynamics on the microscopic level in section 2.1. From
the Boltzmann equation we derive the macroscopic Euler and Navier-Stokes
equations. Next we give a small introduction into turbulence theory in section
2.2, where we provide the theory in a phenomenological manner. We provide
a detailed discussion about statistical tools measuring two-point correlations
caused by a turbulent velocity field and show the connection between auto-
correlation functions, structure functions, and power spectra. We end this
chapter with a brief introduction in Bayesian statistics.

We collected in Chapter 3 the description of our numerical setup and the
definition of the used methods to avoid repetitions.

In Chapter 4 we start discussing our results. We compare structure func-
tions, their scaling exponents, and the probability density functions of the
gas density and velocity increments measured in the Eulerian and Lagrangian



1.2. OVERVIEW OF THIS STUDY 7

frameworks. Additionally, we compare our findings with common intermit-
tency models. There are two underlying ideas of performing a grid simulation
and interpolate the hydrodynamical quantities on so called ’tracer particles’
and analyse their properties. The first is to close the gap in the comparison
of grid based simulations with smoothed particles simulations, as performed
by Price and Federrath (2010). The second motivation was to understand the
dynamical properties of sink particles, which are implemented in the same
way as the tracer particles. Sink particles are normally used in simulations
to prevent runaway collapse at the resolution limit in simulations.

In Chapter 5 we analyse the influence of the compressibility of the flow.
We do this by studying the connection of the one-point statistical properties.
We investigate the linear relation between the root mean square (r.m.s.)
Mach number and the standard deviation of the density distribution. In
addition, we decompose the velocity field into its longitudinal and transverse
component and find that the density distribution can be described with the
parameters of the longitudinal velocity field.

In Chapter 6 we introduce a hierarchical Bayesian fitting method to es-
timate the parameters describing the scaling relations of the velocity power
spectrum. We demonstrate the accuracy and other advantages of this tech-
nique compared with ordinary linear regression methods.

The last Chapter 7 summaries our findings and provides an outlook.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Theory

This chapter provides the relevant theoretical basics necessary for a full un-
derstanding of this work. We start in Section 2.1 with deriving the equations
of hydrodynamics. Beginning with the collisionless Boltzmann equation on
the microscopic level we derive the Euler and the Navier-Stokes equations
describing the macroscopic behaviour. In 2.2 we introduce incompressible
turbulence theory, first put forward by Kolmogorov’s seminal work (Kol-
mogorov, 1941a,b). We also discuss the partial failure of the Kolmogorov’s
theory leading to the development of intermittency models.
The chapter ends in Section 2.3 with an introduction in statistical data anal-
ysis focusing on Bayesian methods.

2.1 Gas dynamics

One common starting point for an analytic treatment in physics is to derive
the dynamical theory of a system. In a dynamical theory, a series of dif-
ferential equations, governed by a set of basic parameters, can conclusively
describe the time evolution of the physical system. That is, the system-
parameters at one instant of time, determines its evolution through the set
of differential equations. For continuous media the Navier-Stokes equation
and the initial conditions comprise a dynamical theory. Even though, gases
and fluids can be described as continuous media following macroscopic equa-
tions, they are ultimately made up of molecules or atoms normally electrically
neutral1. In the astrophysical context the media have often a few particles

1Heating a gas to very high temperatures, applying an external radiation field, or
by passing an electric discharge through it, one can break up the molecules and atoms
in the medium into charged particles. Under certain conditions this medium is called
a plasma and can be described with the Vlasov instead of the Boltzmann equation on

9
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per cm3, so it is questionable if a continuous description is applicable. There-
fore we choose as a starting point the Boltzmann equation, which describes
a N particle system on the microscopic level and derive the Navier-Stokes
equation, mentioning and scrutinising the assumptions on each level. We
mainly follow the elegant derivations presented in the textbook Choudhuri
(1998).

2.1.1 The collisionless Boltzmann equation

Let us consider a dynamical system of N similar particles, which can be
described by the classical Hamilton theory2, and the generalized position
and momentum coordinates are (qi, pi; i ∈ 1...3N). The Liouville theorem
states for such a system, that the time derivative of the density of ensemble
points in phase space is constant,

dρe
dt

= 0 . (2.1)

To prove this statement we write down the total differential for the density
of ensemble points,

dρe(t, q,p) =
∂ρe
∂t

dt+
∂ρe
∂qi

dqi +
∂ρe
∂pi

dpi , (2.2)

and a generalized version of the continuity equation in 6N -dimensional phase-
space

∂

∂t

∫
V

ρe d3Nq d3Np = −
∮
δV

ρe v · df = −
∫
V

∇q, p · (ρe v) d3Nq d3Np , (2.3)

where V is any volume in phase-space, δV is its surface with the out-
wards directed normal df, and v is the velocity of the phase-space point
d/dt (q1...q3N , p1...p3N). As this equation is true for any V the integrand
have to fulfil,

∂

∂t
ρe + ∇q, p · (ρe v) = 0 (2.4)

which is the continuity equation in 6N -dimensional phase-space. Using (2.2),
(2.4), and Hamilton’s equations,

∂q̇i
∂qi

=
∂

∂qi

∂H

∂pi
=

∂

∂pi

∂H

∂qi
= −∂ṗi

∂pi
, (2.5)

the microscopic level and end up in the full Magneto Hydrodynamic equations in the
continuous description.

2 The assumption of a classical system implies that the de Broglie wavelength’s are not
overlapping, so n1/3 � h/

√
mκBT , where m is the mass of a particle, κB is the Boltzmann

constant, T the temperature, and h the Planck constant.
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the Liouville theorem (2.1) follows directly. Suppose that a number of en-
semble points fill up the volume d3Nq d3Np and after some time d3Nq′ d3Np′.
Form conservation of ensemble points it follows that

ρed
3Nq d3Np = ρ′ed

3Nq′ d3Np′ . (2.6)

Since dρe/dt = 0 we see that

d3Nq d3Np = d3Nq′ d3Np′ , (2.7)

which we will use later.
Now we map the 6N -dimensional phase-space Γ(qi, pi; i ∈ 1...3N) to a

6-dimensional phase-space µ(x, u). Every point in the Γ-space describes the
whole system of the N particles and corresponds to N points in the µ-space.
This has the advantage that we can define a density distribution function in
µ-space,

f(x, u, t) = lim
V→0+

δN

δV
, (2.8)

where δV is a small volume (compared to the overall spatial extension of the
system) and δN is a sufficient large number of particles inside this volume.
We used in (2.5) the Hamilton equations to derive the Liouville theorem.
Therefore, we define the Hamilton function in µ-space

H(x, u, t) =
1

2
u2 + φ(x) , (2.9)

where we assume that φ(x) is an external potential.3 With this definition
the Liouville theorem can be derived in the µ-space,

df

dt
=
∂f

∂t
+ ẋ ·∇f + u̇ ·∇uf = 0 , (2.10)

which is the famous collisionless Boltzmann equation (Boltzmann, 1872).

2.1.2 The full Boltzmann equation

We discuss now how equation (2.10) has to be modified for a a dilute gas4, tak-
ing collisions into account. Therefore, we modify equation (2.10) by adding

3Here we have in fact two constrains. First, we assume that the system is conservative
∂φ(x)/∂u = 0, neglecting dissipation, as we are describing the particle level. Second, we
neglect the particle interactions, like collisions, which would result in a potential of the
form φ(x,x’) for |x− x’| 6 a, where a is the collision radius.

4We assume a dilute gas and therefore the volume of the particles can be neglected with
respect to the total volume na3 � 1, where n is the number density of particles and a is
the particle radius. This implies that the ideal gas law will be a result later, multi-particle
interaction can be neglected, and the mean free path λ� a. In other words, the particles
are moving freely most of the time and collisions are instantaneous events.
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a source and a sink term on the right-hand side

df

dt
d3xd3u = Cin − Cout , (2.11)

where Cin and Cout are the rates at which particles get scattered in and out
the volume d3xd3u in µ-space due to collisions. To calculate these terms
we make the Ansatz with the differential cross section, assuming two beams
of particles with initial velocities u1, u2 and number densities n1, n2 and
resulting velocities u′1, u′2 and number densities n′1, n

′
2. From momentum

and energy conversation in a single collision it follows directly

|u1 − u2| = |u′1 − u′2| , (2.12)

u2
1 + u2

2 = u′21 + u′22 . (2.13)

The number of collisions per unit volume and unit time δnc that get
deflected into the solid angle dΩ is proportional to the densities, the difference
in the velocities and the differential cross section σ(u1, u2|u′1, u′2) (see e.g.
Choudhuri, 1998, Section 2.1 and 2.2),

δnc = σ(u1, u2|u′1, u′2)n1n2 |u1 − u2| dΩ . (2.14)

Replacing the number densities n = f(x, u, t)d3u and integrating over all
possible velocities of the second beam d3u2 and solid angles dΩ, results for
the rate of particles that get scattered out of the phase-space volume d3x d3u1

in

Cout = d3x d3u1

∫∫
d3u2 dΩσ(u1, u2|u′1, u′2) |u1−u2| f(x, u1, t) f(x, u2, t) .

(2.15)
For calculating Cin we assume that collisions on the particle level are

reversible, what results in a symmetric differential cross section

σ(u1, u2|u′1, u′2) = σ(u′1, u′2|u1, u2) . (2.16)

With the same Ansatz (2.14), but now considering the reverse collisions with
initially d3u′1 and d3u′2 and resulting d3u1 and d3u2, we get for the number
of particles per unit time Cin that get scattered in the volume d3x d3u1

Cin = d3x d3u1

∫∫
d3u2 dΩσ(u1, u2|u′1, u′2) |u1−u2| f(x, u′1, t) f(x, u′2, t) ,

(2.17)
where we used (2.7, with d3x = d3x′), (2.12) and (2.16). Putting (2.15)
and (2.17) in (2.11), renaming the indices, and assuming that the differential
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cross section is spherically symmetric, we finally have the same result as
Boltzmann (1872),

∂f

∂t
+ ẋ ·∇f + u̇ ·∇uf =

∫
d3ũ

∫
dΩ |u− ũ |σ(Ω)(f ′f̃ ′ − ff̃) , (2.18)

where we substituted f̃ ′ = f(x, ũ′, t).

2.1.3 The Maxwellian distribution

A uniform classical gas left to itself relaxes to a Maxwellian distribution
Maxwell (1860). This distribution can be derived with the equilibrium so-
lution of the full Boltzmann equation with the collision integral (2.18) (see
Section 2.3 in Choudhuri, 1998)

f(x,u, t) = n(x, t)

(
m

2πκBT (x, t)

)3/2

exp

[
−m(u(x, t)− v)2

2κBT (x, t)

]
(2.19)

where f(x,u, t) is the particle distribution function in 6 dimensional phase
space, n(x, t) is the particle number density, m is the mass of a particle, κB
is the Boltzmann constant, T (x, t) is the averaged temperature, u(x, t) is
the velocity of the particles, and v is the mean local velocity. Although we
assumed for deriving the Maxwell distribution static equilibrium ∂f/∂t = 0
and a uniform medium ∂f/∂x = 0 we keep these dependencies in the general
equation (2.19) such that we can refer later to this equation.

2.1.4 The conservation equation

Let’s consider a quantity which is conserved in a binary collision χ(x, u) +
χ(x, ũ) = χ(x, u′) + χ(x, ũ′). By multiplying equation (2.18) with χ and
integrate over d3u we get∫

d3uχ
df

dt
=

∫
d3u

∫
d3ũ

∫
dΩ |u− ũ |σ(Ω)(f ′f̃ ′ − ff̃)χ . (2.20)

The right-hand side of equation (2.20) vanishes (see e.g. Choudhuri, 1998,
Section 2.5), so that we can write using (2.10)

∂

∂t

∫
d3uχf+

∂

∂xi

∫
d3uχuif−

∫
d3uuif

∂χ

∂xi
−
∫

d3u u̇if
∂χ

∂ui

∫
d3u fχ

∂u̇i
∂ui

= 0 ,

(2.21)
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where we used that d/dt χ = 0 and that the integral
∫

d3u ∂/∂ui(χu̇if) can
be transformed into a surface integral, which vanishes at infinity assuming
f → 0 for x→∞. By introducing the average of a quantity Q,

〈Q〉 =
1

n

∫
d3uQf , (2.22)

where n =
∫

d3u f is the number density per unit volume, it follows from
(2.21) that

∂

∂t
(n 〈χ〉) +

∂

∂xi
(n 〈uiχ〉)− n

〈
ui
∂χ

∂xi

〉
− n

m

〈
Fi
∂χ

∂ui

〉
− n

m

〈
χ
∂Fi
∂ui

〉
= 0 ,

(2.23)
where we introduced an external force on a particle Fi = mu̇i. This is the so
called conservation equation, which is of central importance, as it describes
how the volume density n 〈χ〉 of any quantity χ conserved in a binary col-
lision evolves in time. It also provides the important step going from the
microscopic particle level towards the macroscopic continuum description.

2.1.5 The moment equations

Deriving the equations describing the time evolution of the mass, momentum,
and energy using equation (2.23) one assumes that these quantities are con-
served in a binary collision5. Further, the force is assumed to be independent
of the velocity. Putting χ = m in (2.23) results in

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0 , (2.24)

where nm = ρ is the local mass-density and 〈ui〉 = vi is the averaged flow
velocity. Substituting χ = muj in (2.23) gives

∂

∂t
(ρvj) +

∂

∂xi
(ρ 〈uiuj〉)− nFj = 0 , (2.25)

which can be further simplified with the definition of the tensor

Pij = nm 〈(ui − vj)(uj − vi)〉 = nm(〈uiuj〉 − vivj) , (2.26)

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj) = −∂Pij

∂xi
+
ρ

m
Fj . (2.27)

5The translational kinetic energy is only conserved in binary collisions for monatomic
gas particles. For more complex molecules the energy can be transformed in e.g. rotational
energy.
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Finally, substituting the kinetic energy χ = 1/2m |u− v|2 in equation (2.23)
gives

∂

∂t
(ρε) +

∂

∂xi
(ρεvi) +

∂qi
∂xi

+ PijΛij = 0 , (2.28)

where

ε =
1

2

〈
|u− v|2

〉
(2.29)

is the internal energy per unit mass,

q =
1

2
ρ
〈
(u− v) |u− v|2

〉
(2.30)

is the energy flux, and

Λij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.31)

We stress here that equations (2.24), (2.27), and (2.28) do not constitute a
dynamical theory as they are five independent equations for fourteen vari-
ables.

2.1.6 The Euler equations

Section 2.1.3 showed that collisions between particles play an important role
in establishing a fluid like behaviour, as they tend to set up a Maxwellian
velocity distribution. To demonstrate how the Maxwell distribution on the
microscopic level and a fluid-like behaviour on the macroscopic level are
connected, we assume a medium that fulfils the Maxwell distribution (2.19)
on each point. Using equations (2.19) and (2.22) in (2.26), (2.29), and (2.30)
gives

Pij = pδij ,with p = nκBT , (2.32)

ε =
3

2

κBT

m
, (2.33)

q = 0 , (2.34)

where p is the pressure, (2.32) is the equation of state of an ideal gas, and
(2.33) is the internal energy of a monatomic gas. Using these results and
substituting (2.19) and (2.22) in (2.24), (2.27), and (2.28) gives

∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.35)

∂v

∂t
+ (v ·∇) v = −∇p

ρ
+ f , (2.36)
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ρ

(
∂ε

∂t
+ v ·∇ε

)
+ p∇ · v = 0 , (2.37)

which are the well-known Euler equations. Additionally, we assign f = F/m
as the force per unit mass, instead of the force on a single particle, as we end
up with the continuum description of the medium6. As we can express the
pressure p and the internal energy ε with the temperature T and the density
ρ (equations 2.32, 2.33) we have five independent variables (ρ, T, v) and five
independent scalar equations, which can be considered as a dynamical theory
of macroscopic nature. However, some characteristics of real fluids are still
lacking, e.g. transport of energy or momentum inside the systems, which is
caused by assuming Maxwell distributed velocities at each point.

2.1.7 Transport phenomena

Assuming two locations in a medium separated by the distance L with dif-
ferent temperatures, we expect two different velocity distributions at these
locations (2.19). In a position in between, the particles streaming in from
the hotter region are faster than these from the colder region, so that the
region in between deviates from the initial distribution depending on the
temperature difference. Therefore, we make the Ansatz

f(x, u, t) = f 0(x, u, t) + g(x, u, t) (2.38)

where f 0(x, u, t) is the Maxwell distribution and g(x, u, t) is a small de-
parture from it. We will not perform here the derivation by putting (2.38)
in the full Boltzmann equation (2.18). We refer the reader interested in this
complex and complicated topic to Chapman (1916); Enskog (1917) or the
textbook Chapman and Cowling (1970). An order-of-magnitude estimate,

6We introduce here the common nomenclature by defining the force per unit mass f .
However, we want to mention that this can be misleading. The F/m = u̇ term comes from
the time derivative of the velocity of a particle, so introducing a force, which is the time
derivative of the momentum, is not problematic as the particle cannot change mass. So,
the minor mistake of speaking about force instead of force per unit mass, has no effect.
But, in the continuum description, where we have a varying density field one has to be
more careful. In the derivation of the Navier-Stokes equation on the macroscopic level the
common Ansatz is to calculate the force on a volume element

δF = δFsurface + δFbody .

The right-hand side of this equation gives
∫
δV
PijdSj + Fbody, which is the same as the

RHS of (2.36) divided by the density, but the LHS gives d/dt(ρv) = vd/dtρ + ρd/dtv.
Therefore, the minor mistake of dropping the ”per unit mass” has an impact there.
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called BGK equation after Bhatnagar et al. (1954), gives

df

dt
=
f 0 − f
τ

, (2.39)

where the approximated function f relaxes to the Maxwell distribution f 0

in the collision time τ . The Chapman-Enskog expansion approximates the
distribution function with

f =
∞∑
i=0

(
λ

L

)i
f i , (2.40)

where λ is the mean free path and L is a typical length scale. The goal
of these approximations is to express g as a function of the already known
parameters such that we can put it in (2.26) – (2.30), as we did in the last
section with the Maxwell distribution. The zero order approximation for
example gives f = f 0 and using

∂f 0

∂t
=
∂f 0

∂n

∂n

∂t
+
∂f 0

∂T

∂T

∂t
+
∂f 0

∂vi

∂vi
∂t

(2.41)

and similar expressions for ∂f 0/∂xi and ∂f 0/∂ui, (2.39) leads to(
∂

∂t
+ ui

∂

∂xi
+
Fi
m

∂

∂ui

)
f 0 =

g

τ
. (2.42)

After few steps of algebra we end up with

Pij = pδij − 2µ

(
Λij −

1

3
δij∇ · v

)
, (2.43)

q = −K∇T , (2.44)

where µ is the the kinematic viscosity and K is the thermal conductivity.
With the zero order approximation these parameters are

K =
5

2
τn
κ2
Bn

m
µ = τnκBT , (2.45)

which is derived in Choudhuri (1998, Section 3.4, 3.5). The pre-factors of
these expressions change, depending on the approximation. But it is note-
worthy that with the crude zero order approximation of f one gets results
only changing by a factor of few (≈ 3) for these material parameters in com-
parison with much more complicated derivations with higher orders. Using
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these results and assuming that ∂µ/∂xi = 0, one gets from the moment
equations (2.27) and (2.28)

∂v

∂t
+ (v ·∇) v = −∇p

ρ
+
µ

ρ

(
∇2v +

1

3
∇(∇ · v)2

)
+ f , (2.46)

ρ

(
∂ε

∂t
+ v ·∇ε

)
+ ∇ (K∇T ) + p∇ · v− 2µ

(
ΛijΛij −

1

3
∇(∇ · v)2

)
= 0 .

(2.47)
These equations can be simplified further by assuming that the ∇ ·v term in
(2.46) is usually small and can be neglected. The µ term in (2.47) corresponds
to the transformation of kinetic energy into internal energy due to viscosity
and can also be neglected in most circumstances. With these assumptions
we can write down the full set of hydrodynamic equations for the dynamical
theory:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.48)

∂v

∂t
+ (v ·∇) v = −∇p

ρ
+
µ

ρ
∇2v + f , (2.49)

ρ

(
∂ε

∂t
+ v ·∇ε

)
+ ∇ (K∇T ) + p∇ · v = 0 , (2.50)

which are called Navier-Stokes equations.

2.2 Turbulence theory

”Big whorls have little whorls, which feed on
their velocity, and little whorls have lesser
whorls, and so on to viscosity.”

Reformulation in the turbulence context by
Lewis Richardson, original poem of

De Morgan (1872)

Unlike in other fields of physics where the structural requirements of a
dynamical theory yield completely predictable systems, gases and fluids can
develop random and chaotic turbulent motions, which are completely unpre-
dictable. This is kind of the same problem we had in the last section. All
positions and velocities of N particles in a fluid element follow the determin-
istic description in the Hamilton theory, but it is intuitively clear that this
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N -body system is unpredictable after some time. “Chaos theory suggests
that even in a deterministic system, if the equations describing its behaviour
are non-linear a tiny change of the initial conditions can lead to a cata-
clysmic and unpredictable result.” (Lorre et al., 2013). The reason for this
behaviour is that small perturbations on the initial state end up in totally
different regions in phase space, such that the trajectories describing the time
evolution of the whole system drift apart even if they start very close to each
other. However, by transforming the problem in six dimensional phase-space
with the Boltzmann distribution function we are able to simplify the prob-
lem ending up with the hydrodynamic equations with only few parameters
determining the behaviour of a fluid element, consisting of many atoms or
molecules. In the derivation we found that the Maxwell distribution function
is a statistical treatment of all the particles velocities, so that we can ignore
the individual particles velocities and can describe their average influence
on the fluid element. In a turbulent medium the situation is the same. For
example, the chaotic motions of smoke coming out of a chimney indicate
random velocities ranging from the size of the chimney down to the length
scales our eye or camera can resolve. But, we can simplify the equations
describing e.g. the chemical mixing of the smoke in the air by describing
the velocity field with a statistical theory. Even though an overall theory
of turbulence remains elusive, the milestone work of Kolmogorov (1941a,b)
provides predictions for the averaged behaviour of the velocity field in a tur-
bulent medium in a statistical sense. Unfortunately, this theory is limited
to incompressible media, where the density is assumed to be constant. In
the astrophysical context, e.g. for understanding the supersonic motions in
giant molecular clouds, the motions have to be described with a compressible
turbulence theory, where analytic results are even rarer. In addition, com-
pressible turbulence can not be studied efficiently in laboratory experiments
such that astrophysical observations and numerical simulations are the only
data sources for studying compressible turbulence.

Before we go on with the turbulence theory, we want to mention that we
can decompose a velocity field in a mean flow v and a turbulent part v’. We
focus in the following discussion on the turbulent part, which fulfils v’ = 0,
and write for it v without the prime.

2.2.1 Phenomenology of turbulence

The similarity principle states that the Reynolds number

Re =
LV

ν
, (2.51)
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Figure 2.1: Photographs from van Dyke (1982) illustrating the transition
from a laminar flow to a chaotic, turbulent one by increasing the Reynolds
number. Left: Uniform flow around a cylinder with a Reynolds number
Re � 100. Photograph by D. H. Peregrin. Right: Homogeneous, isotropic
turbulence behind a grid at large Reynolds number, Re � 100. Photograph
by T. Corke and Hassan Naghi.

where L, V , and ν being a characteristic length, velocity and kinematic
viscosity, is the only control parameter of a flow for a given geometrical
shape of boundary conditions. In Figure 2.1 we show photographs presented
in van Dyke (1982) to illustrate the influence of the Reynolds number. The
left figure shows a laminar flow around a cylinder at low Reynolds number,
whereas the right picture provides a turbulent flow at high Reynolds numbers
behind a grid. At which Reynolds number this transition happens depends
strongly on the properties of the experiment, such as the geometry.

We will use these examples to discuss the symmetries of the Navier Stokes
equations. We follow mainly the discussion in Frisch (1995) and focus there-
fore on the invariant group7 describing incompressible turbulence.

Definition (Symmetry group)
LetH be the set of all functions solving the Navier Stokes equation (2.49) and
G be a group of transformations acting onH. G is called a symmetry group, if
for all velocity fields solving the Navier Stokes equations v(x, t) ∈ H and all
transformations g ∈ G the resulting function g (v(x, t)) ∈ H, so g : H → H.

7 Recall that a group is a set G with an operation (·) which has to fulfil the properties:
(closure) ∀a, b ∈ G, a · b ∈ G, (associativity) ∀a, b, c ∈ G, a · (b · c) = (a · b) · c, (identity
element) ∃!e : a · e = e · a = a.
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space translations: gλ t, r,v 7→ t, r + λ,v λ ∈ R3

time translations: gτ t, r,v 7→ t+ τ, r,v τ ∈ R
Galilean transformations: gU t, r,v 7→ t, r + Ut,v + U U ∈ R3

parity: gP t, r,v 7→ t,−r,−v
rotation: gR t, r,v 7→ t,Rr,Rv R∈SO(R3)
scaling(for ν = 0) : gγ t, r,v 7→ γ1−ht, γr, γhv γ ∈ R+

h ∈ R

Table 2.1: List of symmetry groups of the Navier Stokes equation.

Table 2.1 provides a list of the known symmetries of the Navier Stokes
equation (2.49). The scaling transformation plays a special role in turbulence
theory and applying it to equation (2.49) shows that all terms get multiplied
by γ2h−1, except the viscous term which is multiplied by γh−2. Therefore
the scaling group does in viscous fluids only contain the transformation with
h = −1, which is the above mentioned similarity principle, as this trans-
formation keeps the Reynolds number constant. It is intuitively clear from
Figure 2.1 that the laminar flow (left) follows some symmetries that are not
present in the turbulent case (right). But these symmetries can be restored
by averaging over small volume elements in the turbulent wake, leading Kol-
mogorov (1941b) to his hypotheses8:

Hypothesis (H1)
“In the limit of infinite Reynolds numbers, all the possible symmetries of
the Navier Stokes equation, usually broken by the mechanism producing the
turbulent flow, are restored in a statistical sense at small scales and away
from boundaries.” (Frisch, 1995)

Hypothesis (H2)
“Under the same assumptions as H1, the turbulent flow is self-similar at
small scales, i.e. it possesses a unique scaling exponent h.” (Frisch, 1995)

Hypothesis (H3)
“Under the same assumptions as H1, the turbulent flow has a finite non
vanishing mean rate of dissipation ε per unit mass.” (Frisch, 1995)

8 We use the rather freely reformulations following the description of Frisch (1995) em-
phasising the modern interpretation in the context of symmetry group theory, dynamical
systems, and stochastic differential equations.
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When all symmetries are restored in statistical sense, the turbulent flow
is called fully developed. With this idea of treating turbulence Kolmogorov
(1941b) derived an exact relation describing the scaling behaviour of the
third order longitudinal structure function, known as the four-fifths law :

“In the limit of infinite Reynolds number, the third order longitudinal
structure function of homogeneous, isotropic turbulence, evaluated for incre-
ments ` small compared to the integral scale, is given in terms of the mean
energy dissipation rate per unit mass ε (assumed to be finite and non vanish-
ing) by 〈

(δv‖(r, `)
3
〉

= −4

5
ε` .′′ (2.52)

(Kolmogorov, 1941b)

(We will discuss structure functions, their definition, interpretation, and con-
nection to other two-point measurements in detail in the next section 2.2.2
and focus here more on the main results of the Kolmogorov theory.)

To understand this result we have to look at the energy budget of the
flow. Subtraction of the continuity equation (2.48) multiplied by 1/2vivi and
equation (2.43) in (2.27) by vi gives for the kinetic energy (equation 4.1 in
Kida and Orszag, 1990)

∂

∂t
Ekin = − ∂

∂xi
(viEkin)− vi

∂p

∂xi
+ 2µvi

∂

∂xi

(
Λij −

1

3
(∇ · v)2

)
+ ρvifi

= (AD) + (PD) + (VD) + (F) , (2.53)

where the four terms on the RHS are called advection (AD), pressure di-
latation (PD), viscous-dissipation (VD), and forcing (F) terms, respectively.
By assuming incompressibility the PD term vanishes and by performing a
spatial and time average we get〈

∂

∂t
Ekin

〉
= 〈AD〉+ 〈V D〉+ 〈F 〉 , (2.54)

where the AD term vanishes by using the ”Gauss’s theorem“ to transform
the volume integral in a surface integral and assuming that the velocity field
vanishes at infinity. In the state of fully developed turbulence the LHS is
zero such that the viscous transfer of energy from kinetic towards internal
has to balance the energy input rate of the external forcing. Kolmogorov
(1941a) confined now the forcing mechanism on much larger scales and the
influence of viscosity on much smaller scales as he wanted to describe in his
theory. Therefore, the AD term causes an energy transfer trough the scales
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but is not influencing the global averaged energy budget. It can be shown
by multiplying the Navier Stokes equation with vi(r + `) that the energy
transfer trough the scales ε(`) is (see e.g. Section 6.2 Frisch, 1995)

ε(`) = −1

4
∇` ·

〈
|δv(`)|2 δv(`)

〉
= − ∂

∂t

1

2
〈v(r) · v(r + `)〉+

〈
v(r) · 1

2
(f(r + `) + f(r− `)

〉
+ ν∇2

` 〈v(r) · v(r + `)〉 , (2.55)

assuming ρ = const and where ∇` denotes partial derivatives with respect
to the increment `. Comparing (2.54) with the second line of (2.55) shows
that the advection term is causing this energy transfer. These equations lead
to the picture of the Richardson cascade (Richardson, 1920), we mentioned
in the introduction (see Figure 1.1). In this picture the energy gets injected
on the largest scales, creates a constant energy flux through the scales (hy-
pothesis H3), and is taken out of the system by viscosity on the smallest
scales.

To derive phenomenologically some scaling relations, we indicate for the
rest of this Section with ∼ an equality within an order unity constant. Lets
denote with ` the scale under consideration and v` the typical velocity as-
sociated with this scale. For the integral scale L0, where the energy gets
injected, with the corresponding velocity V0, the integral time scale is

T0 =
L0

V0

. (2.56)

To get a rough limit of the scale of the smallest possible eddies, we assume
a Reynolds number of order unity, i.e.

`DvD ∼ ν . (2.57)

The energy transfer rate can be estimated by

ε ∼ v2
`

τ`
∼ v3

`

`
, (2.58)

so that for the scaling invariance group h = 1/3 can be directly inferred.
Using (2.57) and (2.58) for the smallest scales results in

lD ∼
(
ν3

ε

)1/4

, vD ∼ (νε)1/4 (2.59)
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Figure 2.2: Scaling exponent ζp of structure functions as a function of the
order p. Data of van Atta and Park (1972) have open triangles and Anselmet
et al. (1984) filled circles, open squares and filled triangles. The lines cor-
respond to different intermittency models as indicated in the figure. Figure
from Anselmet et al. (1984).

By using the same trick for the integral scale we get

L

lD
∼ Re3/4 ,

V

vD
∼ Re1/4 , (2.60)

indicating that the separation between the integral scale and the viscous scale
increases with the Reynolds number with the power of 3/4.

We close this Section with a discussion about the intermittency problem.
With the four fifths law and his second hypotheses (H2) one can conclude
that h = 1/3. By using the scale invariance transformation one can de-
rive the scaling law for the p’s order structure function 〈(δv(`)p〉 ∝ `p/3.
Measurements of the scaling behaviour of higher order structure functions
revealed partial failure of Kolmogorov’s theory (Gurvitch, 1960). But Kol-
mogorov (1962) and later his collaborator Obukhov (1962) became the first
pioneers in the investigation of the ’intermittency’ problem with random
cascade models, softening the assumption of the constant energy flux. Many
intermittency models were derived afterwards to explain the measurements
of the scaling exponents, which had a rapid increase in precision (van Atta
and Park, 1972; Anselmet et al., 1984; Maurer et al., 1994) (see Figure 2.2).
Fractal and log normal models (see Section 8 in Frisch, 1995) showed devi-
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ations to the experimental results, whereas log-poisson models of Dubrulle
(1994); She and Leveque (1994) do agree. Most recently, the log-poisson
processes were used in a mathematical, statistical description for velocity
increments (Birnir, 2013) and verified with numerical simulations of incom-
pressible turbulence (Wilczek, 2010; Wilczek et al., 2011) and experiments
(Sreenivasan and Dhruva, 1998; Chen et al., 2005; Xu et al., 2006).

2.2.2 Two-point statistics

We will provide in this Section the definition of the covariance, correlation,
autocorrelation, structure functions, velocity increments, and power spectra,
as these are the main tools for analysing a turbulent medium.

Definition (Correlation, covariance, as used in statistics)
The correlation coefficient cx,y of two random variables x, y with expectation
values µx, µy and standard deviations σx, σy, is defined as

cx,y = corr(x, y) =
cov(x, y)

σx σy
=
E ((x− µx)(y − µy))

σx σy
, (2.61)

where cov(x, y) is the covariance function and E() is the expected value.

Definition (Auto-Correlation, as used in turbulence theory)
The autocorrelation tensor of the turbulent velocity field is defined as

Rij(`) = 〈vi(r)vj(r + `)〉 , (2.62)

where the brackets indicate the average over all positions r. It follows from
homogeneity that the autocorrelation tensor is independent of r and from
isotropy that it can only depend of the magnitude of ` and not its direction.

We can directly conclude from this definition that for ` = 0 the diagonal
elements of the autocorrelation tensor are 〈v2

i 〉, which is the squared standard
deviation of the turbulent velocity field and a measure of its total turbulent
kinetic energy

Eturb =
1

2

〈
v2
〉

=
3

2

〈
v2
i

〉
. (2.63)

On the other hand, assuming that ` → ∞ the velocities are uncorrelated
resulting in

lim
r→∞
〈vi(r)vj(r + `)〉 = 〈vi(r)〉 〈vj(r + `)〉 = 0 . (2.64)

Therefore, the autocorrelation is only non-zero in a limited range. Thus
with the autocorrelation tensor the strength and the correlation length of
turbulence can be measured.
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Karman and Howarth (1938) showed that assuming homogeneity, isotropy,
and preserving parity, the autocorrelation tensor can be written in the form

Rij(`) = A(`)rirj +B(`)δij , (2.65)

with the scalar functions A(`) and B(`). We decompose the velocity auto-
correlation into the part parallel and perpendicular to `, called longitudinal
and transverse respectively. Hence

Rll(`) = A(`)r2 +B(`) =
〈
v2
i

〉
f(`) , (2.66)

Rtt(`) = B(`) =
〈
v2
i

〉
g(`) , (2.67)

with the scalar functions f(`), g(`), which fulfil f(0) = g(0) = 1. Using these
definitions we can write for (2.65)

Rij(`) =
2

3
Eturb

(
f(`)− g(`)

`2
`i`j + g(`)δij

)
(2.68)

Besides the assumption of homogeneity and isotropy Kolmogorov designed
his theory for an incompressible medium such that ∇ · v = 0. It is easy to
see that

∂Rij

∂`i
=
∂Rij

∂`j
=

〈
vi(r)

∂vj(r + `)

∂`j

〉
= 0 , (2.69)

leading to

g(`) = f(`) +
1

2
`
df

d`
. (2.70)

In the next step we consider the Fourier transformation of the autocorre-
lation tensor

φij(k) =
1

(2π)3

∫
Rij(`) exp (ik · `)d3` , (2.71)

where we used the spherical symmetry in k-space. We can make the same
Ansatz for φ as in real-space (2.65)

φij(k) = C(k)kikj +D(k)δij (2.72)

and with the incompressibility condition in Fourier space

kiφij = kjφij = 0 (2.73)

we get

D(k) = −C(k)k2 , (2.74)
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so that we can write φ as a function of only one scalar function E(k)

φij(k) =
E(k)

4πk4
(k2δij − kikj) . (2.75)

The physical interpretation of φ becomes clear by considering the total kinetic
energy

Eturb =
1

2

〈
v2
〉

=
1

2
Rii(0) =

1

2

∫
φii(k)d3k , (2.76)

where we sum over the index i ∈ [x, y, z]. Replacing d3k = 4πk2dk we obtain

Eturb =

∫ ∞
0

E(k)dk (2.77)

where E(k) is the kinetic energy spectrum of turbulence.
Now we define velocity increments and structure functions

Spij(`) = 〈|δvij(`)|p〉 = 〈|vi(r + `)− vj(r)|p〉 , (2.78)

known as the structure function of order p of the velocity increment δv(`) .
For the second order we get〈

|δvij|2
〉

=
〈
v2
i (r + `)

〉
+
〈
v2
j (r)

〉
− 2 〈vi(r + `)vj(r)〉 , (2.79)

which we can transform assuming homogeneity, isotropy and using equation
(2.62) to

1

2
S2
ij(`) =

2

3
Eturb −Rij(`) . (2.80)

To summarise, the autocorrelation, the power spectrum, and the second order
structure function contain all exactly the same information, as they can be
derived from each other. They connect the total amount of kinetic energy
in turbulent motions with the scale dependent statistical properties of the
velocity field, where the energy spectrum can be directly interpreted as energy
density distribution as a function of the scale. The structure functions of
different orders can be interpreted as the higher moments of the velocity
increment PDF as a function of the lag variable `. With the assumption (2.64)
that the autocorrelation function vanishes at infinity one can show that the
distribution functions converge to a Gaussian function on large scales (we do
this in section 4.8 to normalize the measurements of the structure functions).
The scaling exponents are playing in the interpretation now a crucial role,
as they tell how the relation between the different orders change with the
lag `. So they tell how the form of the distribution function changes from
a Gaussian PDF on large ` towards the peaky, intermittent PDF on small
scales.
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2.3 Bayesian statistics

One of the most fascinating experiences in life is observing a kid exploring
its environment and surrounding. The learning process of assimilating infor-
mation, cause relations and the connection between events in the external
environment and then updating the existing knowledge based on that in-
formation is the natural behaviour of humans from the early beginning and
determines our picture and interpretation of the world.
In modern science the analysed processes are getting more complex and com-
plicated, but the learning process itself stays the same. Learning by revising
beliefs in light of new information and data that become available lies also
in the heart of the Bayesian framework. Bayes’ theorem provides the formal
means of putting that mechanism into action and the resulting probabilities
are interpreted as degree of beliefs.

The Likelihood function

The Likelihood function is the fundamental quantity in the Bayesian frame-
work and therefore we introduce it on an easy example. Assuming we observe
the radioactive lifetime Θ of an isotope and we measure the number of de-
cayed atoms in a sample per second x1, x2...xN in N measurements. The
joint density function of a given value of Θ is

p(x1, x2...xN |Θ) (2.81)

which defines the probability of observing the decay rates xi in N mea-
surements assuming a value of Θ and is known as the likelihood function.
Assuming the number of decays follow a Poisson distribution p(X = k) =
Θk

k!
exp (−Θ) for k ∈ N then we can write down the likelihood

p(x1, x2...xN |Θ) = ΠN
i=1p(X = xi|Θ) = ΠN

i=1

Θxi

xi!
exp (−Θ) . (2.82)

The maximum likelihood for the value of Θ yielding the set of measurements
can be determined by setting the derivative of equation (2.82) in respect to
Θ equal to zero. Knowing that a function and its logarithm have the same
maxima and few steps of algebra result in

Θ =
ΣN
i=1xi
N

, (2.83)

which is the mean of the decay rates per time interval. Assuming that the
decay rates are Gaussian distributed instead of Poisson and performing the
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same calculations we end up with the well known formula for the mean and
standard deviation.

Now, we return to the Bayesian theorem. It follows directly from the
basic equations of conditional probability theory,

P(θ,D) = P(θ|D)P(D)

= P(D|θ)P(θ)

⇒ P(θ|D) = P(D|θ)P(θ)/P(D) , (2.84)

where P(D|θ) is the above defined likelihood function of the set of parameters
θ given the set of data D and P(θ) is the probability of the parameter called
prior probability distribution. P(D) is the probability distribution of the set
of data and acts here as a normalisation. We can transform this term a bit
further

P(D) =

∫
dθ P(D,θ) (2.85)

=

∫
dθ P(D|θ)P(θ) . (2.86)

With these replacements Bayes rule reads:

P(θ|D)︸ ︷︷ ︸
posterior

= P(D|θ)︸ ︷︷ ︸
likelihood

P(θ)︸ ︷︷ ︸
prior

/

∫
dθ P(D|θ)P(θ)︸ ︷︷ ︸

evidence

. (2.87)

The likelihood function contains the model and the relation between the
parameters. In the above stated example the model was that the number
of decays can be described by a Poisson distribution. The prior reflects
our beliefs of the behaviour of the parameters before taking the data into
account. The priors can be divided into two groups the uninformative and
the informative priors. If one has no preliminary beliefs and constrains on the
parameter one takes an totally uninformed prior. In the above example we
know that the number of decays per time has to be positive, so a wide prior
containing this information is a uniform distribution from zero to infinity,
stating that we believe that every value in [0 : ∞] could be the true value
with the same probability. The evidence works here just as an normalisation
and is only used in the comparison of different models. The posterior provides
a probability distribution for the parameters containing the information of
the data under the assumption of the model. For a detailed introduction to
Bayesian data analysis we refer the reader to standard textbooks like Gelman
et al. (2004); Kruschke (2011); Wakefield (2013).
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Chapter 3

Numerical setup and methods

3.1 Numerical setup

3.1.1 Properties of the simulations

To model the dynamics of a turbulent gaseous flow, we solve the equations
of hydrodynamics, consisting of the continuity equation, the Euler equation
with a stochastic forcing term F per unit mass, and the equation of state:

∂ρ

∂t
+ (v · ∇)ρ = −ρ∇ · v , (3.1)

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ F , (3.2)

p = κρΓ . (3.3)

Here, ρ denotes the mass density, v the velocity field, p the pressure, κ the
polytropic constant, and Γ the polytropic index. Observations indicate that
the dense interstellar medium and molecular clouds behave as an isothermal
flow due to efficient cooling processes (Elmegreen and Scalo, 2004). Accord-
ingly, we simulate an isothermal medium throughout this study, assuming
Γ = 1, κ = cs

2, following p = ρcs
2, with the sound speed cs.

We employ the FLASH code (version 3 and 4) (Fryxell et al., 2000; Dubey
et al., 2008) to solve the set of partial differential equations (3.1) – (3.3). We
use the piecewise parabolic method (PPM) (Colella and Woodward, 1984) in
Chapter 4, 5 and HLL5R solver (Waagan et al., 2011) in Chapter 6 on a uni-
form three-dimensional grid. To distinguish between physical and numerical
effects, we run simulations with 2563, 5123, and 10243 grid cells.
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We compute the random forcing field F in Fourier space as described by
(Schmidt et al., 2009),

dF̂(k, t) =
F0

Tac

(k, Tac)Pζ(k)dW(t)− F̂(k, t)
dt

Tac

, (3.4)

where the dW(t) is a three-dimensional standardised Gaussian random in-
crement. Pζ(k) is a projection tensor in Fourier space as a function of the
wave number k. In index notation, this operator is

Pζ ij(k) = ζP⊥ij(k) + (1− ζ)P‖ij(k) , (3.5)

where P⊥ = δij − kikj/k
2 and P‖ = kikj/k

2 are the fully solenoidal and
compressive projection operators respectively and i, j are ∈ [x, y, z]. The
forcing has finite autocorrelation time scale, Tac, so that it is smooth in space
and time. The forcing amplitude F0(k) is a three-dimensional power-law
(parabolic)1 function. The forcing only occurs on the large integral scales
1 6 |k| 6 2(6 3)1, peaking at k = 1 (k = 2), which corresponds to (half of)1

the box size L (L/2)1, as we measure k in units of 2π/L. The autocorrelation
time-scale of the forcing algorithm is set equal to the dynamical time-scale
Tac = T = L/(2csM) and we adjust the amplitude of the forcing field, such
that the root mean square Mach numbers are M ≈ 0.1, 0.5, 2, 5.5, 15. As
one of our goals is to study the influence of the forcing scheme, we use the
projection tensor in Fourier space to get a purely solenoidal (divergence-free,
∇ · F = 0) and a purely compressive (curl-free, ∇× F = 0) vector field.

We start with homogeneously distributed gas at rest and let it evolve
for several dynamical time scales (15 or 10). The physical quantities in the
simulations are scale-free so that we define L = 1, the mean mass-density
〈ρ〉 = 1 and cs = 1. We store the relevant quantities every 0.1T and the fluid
reaches the equilibrium state after about three turbulent crossing times.

The parameters of these simulations are described in Konstandin et al.
(2012a,b, 2014), and a detailed description of the forcing is presented in
Schmidt et al. (2009) and Federrath et al. (2010).

3.1.2 Tracer particles

Tracer particles are analysed only in Chapter 4. We start with uniformly dis-
tributed tracer particles at rest. Afterwards they can move freely within the
computational domain. The velocity and density of the tracer particles are
calculated with a cloud-in-cell interpolation from the grid at the beginning of

1The description in the brackets refer to the study in Chapter 4 and 5, as we changed
the forcing routine for the last study in Chapter 6.
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each time step. Given the interpolated velocity, the tracer particles are then
moved with an Euler method, based on the hydrodynamical time step. The
tracers thus follow the gas flow in the Lagrangian frame of reference. Instead
of the linear interpolation of the neighbouring grid points, a second-order
(triangular-shaped cloud) and third-order (tricubic) space interpolation, as
well as a higher-order temporal integration scheme (predictor-corrector type)
were tested, but they did not lead to statistically significant differences. As
the tracer particles have no influence on the fluid, they are passive tracers of
the fluid motion.

3.2 Methods

3.2.1 Relation between the Eulerian and Lagrangian
frameworks

Here we introduce two different kinds of time derivatives. The Eulerian
derivative denoted by ∂/∂t is the differentiation at a fixed point in space,
whereas the Lagrangian denoted by d/dt, is a differentiation of a quantity
moving with a fluid element. Looking at a quantity Q(X) ∈ R as a function
of X ∈ RN the total differential is defined as

dQ(X) =
N∑
i=1

∂Q(X)

∂Xi

dXi (3.6)

and defining X ≡ (r, t) it follows

dQ

dt
=
∂Q

∂t
+

3∑
i=1

∂Q

∂ri

dri
dt

=
∂Q

∂t
+ v · ∇Q , (3.7)

which is a useful relation between the Eulerian and Lagrangian frameworks.

3.2.2 Helmholtz-decomposition theorem

We present here the Helmholtz-Decomposition theorem, as one aspect of
this thesis is to analyse the influence of the different modes of a decomposed
vector field on the statistical properties of supersonic turbulence. In summary
it states that under specific circumstances every vector field a(r) is uniquely
described by its source field ∇ · a(r) and its curl field ∇ × a(r) and can be
expressed by the sum of these two fields.
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Helmholtz-Decomposition theorem

Let a(r) be a vector field in R3, which is twice continuously differentiable,
and a(r) vanishes faster than 1/r as r →∞. Then a(r) can be decomposed
into a curl-free component and a divergence-free component:

a(r) = −∇φ+∇×A (3.8)

where

φ(r) =
1

4π

∫ ∇′ · a(r′)

|r − r′| d3r′ (3.9)

A(r) =
1

4π

∫ ∇′ × a(r′)

|r − r′| d3r′ (3.10)

If additionally the vector field a(r) vanishes as r →∞, then the decomposi-
tion is unique.

3.2.3 The power spectrum

The Fourier spectrum of the velocity field is defined as

P(k)dk = 4πk2v̂(k) · v̂∗(k) dk , (3.11)

where v̂ is the Fourier-transformed velocity field and v̂∗ its complex conju-
gation. With this definition the integral over the whole k-range corresponds
to the square of the Mach number,

M2 =

∫ ∞
0

P(k)dk , (3.12)

and the zero’th mode contains the averaged velocity field for velocity com-
ponents i ∈ x, y, z,

〈vi〉 = Pi(0) =
1

L3

∫ ∞
0

vi(r) d3r . (3.13)

In addition to the above mentioned total spectrum, we calculate the spec-
tra of the decomposed velocity field using the same decomposition as we
use for the forcing field (3.5) and refer to these as the longitudinal and the
transverse spectra for the curl-free and divergence-free velocity components,
respectively.
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3.2.4 Statistical Moments

In order to calculate the higher-order moments of the PDFs in Section 4.2,
we use the following definition for the first four standardised central mo-
ments:

mean 〈q〉 =
∑
q p(q) ∆q

standard deviation σq =
√
〈(q − 〈q〉)2〉

skewness: Sq = 〈(q−〈q〉)3〉
σ3

kurtosis: Kq = 〈(q−〈q〉)4〉
σ4 ,

where ∆q is the bin width of the PDF p(q). With this definition a
Gaussian has a skewness Sq = 0 and a kurtosis Kq = 3.

3.2.5 The Multivariate normal distribution

The multivariate normal distributed vector x ∼ N (µ,Σ), x ∈ Rn has a
density

p(x|µ,Σ) = (2π)n/2 |Σ|−1/2 exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
, (3.14)

where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is the positive semi-definite
covariance matrix. The diagonal elements of Σ are the variances of the
components of x and the off-diagonal elements are the covariances introduced
in the definition of the correlation (2.61). As the indices i, j commute, Σ is
symmetric and contains n(n − 1)/2 independent elements. Two important
properties, which follow from the definition, are. First, for any vector α ∈ Rn

is the quantity y = α · x (univariate) normal distributed. Second, it exist
a vector z ∈ Rm with independent standard normal random variables as
components, a vector µ ∈ Rn, and a matrix A ∈ Rn×m with

x = A z + µ . (3.15)

The matrix A has to fulfil Σ = AAT and m is the rank of Σ, which defines
the number of basis vector of the parameter space.
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Chapter 4

Statistical properties of
supersonic turbulence in the
Lagrangian and Eulerian
frameworks

The co-authors of this study are Christoph Federrath, Ralf S. Klessen and
Wolfram Schmidt (Konstandin et al., 2012a). The simulations and the im-
plementation of the tracer particles were provided by C. Federrath.

In this study we present a systematic analysis of the influence of different
forcing types on the statistical properties of supersonic, isothermal turbu-
lence in both the Lagrangian and Eulerian frameworks. We analyse a series
of high-resolution, hydrodynamical grid simulations with Lagrangian tracer
particles and examine the effects of solenoidal (divergence-free) and compres-
sive (curl-free) forcing on structure functions, their scaling exponents, and
the probability density functions of the gas density and velocity increments.
Compressively driven simulations show a significantly larger density contrast,
a more intermittent behaviour, and larger fractal dimension of the most dis-
sipative structures at the same root mean square Mach number. We show
that the absolute values of Lagrangian and Eulerian structure functions of all
orders in the integral range are only a function of the root mean square Mach
number, but independent of the forcing. With the assumption of a Gaussian
distribution for the probability density function of the velocity increments
on large scales, we derive a model that describes this behaviour.
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4.1 Motivation

Knowledge of the statistical characteristics of turbulence is a key prerequi-
site for understanding turbulent flows on virtually all scales (Lesieur, 1993;
Frisch, 1995). While common terrestrial flows are incompressible, astrophys-
ical flows are highly supersonic and compressible. For example, the birth
of stars in the interstellar medium is thought to be controlled by super-
sonic turbulence (Mac Low and Klessen, 2004; Scalo and Elmegreen, 2004;
McKee and Ostriker, 2007). As turbulence is by definition a process char-
acterised by a chaotic and irregularly fluctuating velocity field, there is a
scale-dependent spatial and temporal correlation of fluid quantities (Ishihara
et al., 2009). The scale-dependent energy, density and velocity distribu-
tions, and the dynamical evolution thereof, are strongly influenced by the
properties of the turbulence. While large improvements were made in the
understanding of incompressible turbulence in the last few years (e.g. with
new techniques like superstatistics and Lagrangian statistics, Beck, 2004;
Toschi and Bodenschatz, 2009), there are still open questions in our un-
derstanding of compressible turbulence. The non-local, inter-scale processes
of compressible turbulence arising for example in shock fronts change the
Richardson-Kolmogorov picture of the energy cascade of incompressible tur-
bulence, where scale-locality is crucial for the existence of universal statistics
in the inertial range. Basic questions as the existence of the inertial range,
the associated scaling laws, and the influence of intermittency are still open.
Guided by the idea of basic physical quantities like the momentum and the
kinetic energy, there is a trend using mass-weighted velocity increments to
describe turbulence in a compressible medium. For example, Kritsuk et al.
(2007), Schmidt et al. (2008), and Galtier and Banerjee (2011) describe the
intermittency appearing in their supersonic, compressible, numerical simu-
lations with a phenomenological model using mass-weighted velocity incre-
ments. Since Lagrangian tracer particles are designed to follow the turbulent
flow and thus the mass flux in numerical simulations, they are a powerful tool
to study compressible turbulence, with an intrinsic mass-weighting. Further-
more, phenomenological models treating intermittency arising in compress-
ible turbulence were developed in the last years. Boldyrev et al. (2002) used
the multifractal phenomenological model of She and Leveque (1994), which
describes the most dissipative structures in incompressible turbulence as fil-
aments, and modified it such that the most dissipative structures are sheets
instead of filaments. Nevertheless, despite of these improvements over the
last years, the theoretical understanding of compressible turbulence is still
poor and analytical derivations are rare.
Three spatial or temporal ranges have to be distinguished for turbulence: the
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viscous dissipation range at small scales, the inertial range at intermediate
scales, and the range above the turbulent injection scale, the so-called inte-
gral range. The velocity structure functions, an average of the difference of
two velocities separated by an increment in space or time, increase from the
dissipation range to the integral range. Here, we also consider the statistics
of turbulence in the integral range, where temporal correlations of the ve-
locity field are exponentially damped, and the structure functions saturate
over several integral time scales. A complete understanding of the statis-
tical properties in this range is necessary as a solid foundation for further
studies of the complex and complicated behaviour of turbulence in the iner-
tial range. In this paper we shed some light on this unattended topic. We
compute Lagrangian statistics of the density and velocity fields of supersonic
turbulence, using data from high-resolution, three-dimensional simulations
of driven turbulence with up to 10243 grid cells and up to 5123 tracer par-
ticles. By calculating probability density functions and structure functions,
we analyse the sensitivity of compressible turbulence on the forcing of the
turbulence. In particular, we compare two limiting cases of purely solenoidal
(divergence-free) and purely compressive (curl-free) forcing. We present a
detailed analysis of the scaling properties of the velocity structure functions
and intermittency in the inertial subrange. We show that a simple analytic
formula describes the saturated structure functions of all orders in the inte-
gral range, with the r.m.s. Mach number as single input parameter. This
formula can be used to check the convergence of the structure functions.

4.2 General properties of the simulations

As discussed in Federrath et al. (2009, 2010) and Price and Federrath (2010),
the fluid reaches an equilibrium state of fully-developed, supersonic turbu-
lence after about two turbulent crossing times, t ≈ 2T . We therefore restrict
our analysis to times t > 2T . Figure 5.1 shows the time evolution of the
mass-weighted r.m.s Mach number and the mass-weighted averaged density,
calculated with the data of the tracer particles. As the tracer particles are
advected by the flow, their density is correlated with the mass density. As
a consequence, the average of a quantity over all tracer particles is mass-
weighted. We denote quantities calculated with this quasi Lagrangian statis-
tics with a subscript M . Figure 5.1 demonstrates that at t ≈ 2T , a regime
of statistically fully-developed turbulence is reached. The right panel of Fig-
ure 5.1 shows that the compressive forcing yields a nearly eight times larger
mass-weighted mean density and fluctuations thereof. The mean values in-
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Figure 4.1: Mass-weighted r.m.s Mach number (left), and averaged mass-
weighted density (right), as a function of the dynamical time, calculated by
averaging over all tracer particles. Within the first 2T , a statistically steady
state was reached for both solenoidal (sol) and compressive (comp) forcing.
The mean values were averaged over t ∈ [2, 10]T and the errors are the 1σ
variations in time.

dicated in Figure 5.1 are averaged over the interval 2T ≤ t ≤ 10T , and
the errors are the 1σ variations in time. In the state of fully-developed
turbulence, the time-averaged r.m.s Mach number on the tracer particles is
〈Msol,M〉t = 4.9 (subscript t for time average) with solenoidal forcing, and
〈Mcomp,M〉t = 4.4 with compressive forcing. In Federrath et al. (2008, Ta-
ble 1), the volume-weighted Mach number of this simulation was measured
(〈Msol,V 〉t = 5.3, 〈Mcomp,V 〉t = 5.6). Clearly, the intrinsic mass-weighting
of the tracer particles influences the statistical properties, discussed in more
detail below. The values of the volume-weighted and mass-weighted r.m.s.
Mach number for the different forcings are summarised in Table 4.1 (first
row). To illustrate the different flow patterns for solenoidal and compres-
sive forcing, we show a randomly selected slice through the mid plane of
the computational domain at t = 6T in Figure 4.2. It shows the logarithm
of the mass density computed on the grid cells in this slice, as well as the
norm of the velocity of the tracer particles that are in one slice with thick-
ness of 0.1 grid cells. Each dot represents a tracer particle with the colour
corresponding to the norm of the velocity. The density fluctuations are more
space-filling with solenoidal forcing, and have smaller amplitude, while com-
pressive forcing yields larger voids and denser regions. The bottom panel of
Figure 4.2 shows a magnification of a head-on collision of two flows that leads
to a strong shock in the simulation with compressive forcing. The density
field shows a sharp, well-defined shock front. In these compressed regions,
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Figure 4.2: Top panels: Slice in the xy-plane at z = 0.5 and time t = 6T
as an example for the regime of statistically fully-developed, compressible
turbulence. The logarithm of the mass density of the grid cells in this slice
(blue) as well as the norm of the velocity of the tracer particles (red) in
one slice with thickness of 0.1 grid cell are displayed for solenoidal (left) and
compressive forcing (right). Bottom right: Magnified slice of a shock front in
the simulation with compressive forcing (see white box in upper right panel).
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the tracer particles accumulate and have a significantly lower Mach number,
MM ≈ 1− 2. These stagnation points, showing a correlation of high density
with low velocities (e.g. Ballesteros-Paredes et al., 2003; Klessen et al., 2005),
are important in the theory of star formation (Mac Low and Klessen, 2004),
as they are good candidates for the formation of dense-cores, which are the
progenitors of individual stars and binary stellar systems. This correlation in
the stagnation points causes the mass-weighted values of the Mach number to
be smaller than the volume-weighted ones. Compressive forcing excites more
head-on collisions and shock fronts, so this effect has a stronger influence in
that case.

4.3 The probability density function of the

gas density

The probability density function (PDF) of the gas density p(ρ) and its stan-
dard deviation σρ are important quantities in astrophysics. For instance,
Padoan and Nordlund (2002) and Hennebelle and Chabrier (2008, 2009) re-
late the density PDF to the mass distribution of dense gas cores and stars.
Padoan et al. (1997) and Passot and Vázquez-Semadeni (1998) have shown
that the standard deviation grows proportional to the Mach number of the
turbulent flow, if the density PDF is close to a log-normal distribution (see
Price et al., 2011, for a recent, extended study). Federrath et al. (2010)
demonstrated that the density PDF is not only influenced by the r.m.s Mach
number, but also by the forcing parameter ζ, and presented a modification of
the existing expression, which takes the ratio of solenoidal and compressive
modes of the forcing into account. In many numerical experiments of driven,
supersonic, isothermal turbulence with solenoidal and/or weakly compressive
forcing, it was found that the density PDF is close to a log-normal distribu-
tion (e.g. , Padoan et al., 1997; Klessen, 2000; Lemaster and Stone, 2008;
Federrath et al., 2008),

p(s) =
1√

2πσs
exp

(−(s− 〈s〉)2

2σ2
s

)
, (4.1)

where s = log10(ρ/〈ρ〉V ) is the logarithm of the density divided by the
volume-weighted mean density. Li et al. (2003) argued that the mass-weighted
density distribution is also a log-normal, with the same standard deviation
as the volume-weighted distribution. With the assumption of a log-normal
density PDF, the authors derived a relation between the mass-weighted and
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the volume-weighted quantities,

〈s〉V = −〈s〉M = −σ
2
s

2
. (4.2)

Figure 4.3 presents the time-averaged (t ∈ [2, 10]T ) PDF of the quantity
sM , calculated on the tracer particles in linear (left panel) and logarith-
mic scaling (right panel). The first four standardised central moments (see
Section 3.2.4) of the density PDF pM(s) are summarised in Table 4.1 to-
gether with the volume-weighted moments calculated in Federrath et al.
(2010, Table 1). Compressive forcing yields a significantly broader mass-
weighted density distribution with standard deviation, σs,M about 1.5 times
larger at the same volume-weighted Mach number than solenoidal forcing
(σs,sol,M = 1.23, σs,comp,M = 1.77). The peak is shifted to larger values of
the logarithmic density (〈s〉sol,M = 0.81, 〈s〉comp,M = 2.37). The PDF is
compatible with a Gaussian distribution for solenoidal forcing. However,
the Gaussian fit (black dashed line) shows that the density PDF has weak
non-Gaussian contributions in the wings of the distribution. On the other
hand, in the density PDF obtained from compressive forcing, the discrep-
ancy to the Gaussian distribution in both wings is more prominent. The
deviations from the log-normal distribution for the compressive forcing is
caused by both a physical and a numerical effect. Price and Federrath (2010)
analysed the influence of measuring the density PDF by using a grid-based
simulation and an SPH simulation and found that the PDF of the SPH
particles increases slightly in the high-density tail with increasing resolution
and decreases in the low-density tail. We expect that this effect will de-
crease the deviations from a log-normal distribution for both forcing types
in our simulation as the resolution is increased. Federrath et al. (2010, Fig-
ure 6) analysed the volume-weighted density PDFs for resolutions of 2563,
5123, and 10243, showing that changing the resolution affects solenoidal and
compressive forcing in roughly the same way. Schmidt et al. (2009) also
argue that the deviations from a log-normal PDF produced by compressive
forcing are a genuine effect. From this we can conclude that the stronger
non log-normal features seen for compressive forcing likely have a physi-
cal origin rather than a purely numerical one. The higher moments of the
distribution with compressive forcing (Scomp,M = −0.57, Kcomp,M = 3.50)
show larger deviations from the Gaussian values (S = 0, K = 3) than for
solenoidal forcing (Ssol,M = −0.13, Ksol,M = 2.95). Checking the relation
(4.2) between the mean value and the standard deviation demonstrates that
for solenoidal forcing, the assumption of a log-normal PDF is nearly fulfilled
(σ2

s,sol,M/2 = 0.76). In contrast, we find larger discrepancy for compressive
forcing (σ2

s,comp,M/2 = 1.57). Measuring the volume-weighted PDF, Feder-
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rath et al. (2010) also reported small deviations from a Gaussian distribution
for solenoidal forcing (Ssol,V = −0.10, Ksol,V = 3.03) and larger deviations
for compressively-driven turbulence (Scomp,V = −0.26, Kcomp,V = 2.91). The
mass-weighted quantities show larger discrepancy from the Gaussian values
than the volume-weighted quantities.
Padoan et al. (1997) and Passot and Vázquez-Semadeni (1998) motivated a
linear relation between the r.m.s Mach number and the standard deviation
of the linear density,

σρ/ρ0 = bM , (4.3)

with a proportionality constant b. Several measurements of b were obtained
from different simulations and with different types of forcing, and yielded b
between 0.26 and 1.05 (Passot and Vázquez-Semadeni, 1998; Li et al., 2003;
Kritsuk et al., 2007; Beetz et al., 2008; Federrath et al., 2008; Schmidt et al.,
2009; Price et al., 2011). From the distribution pM(s) shown in Figure 4.3,
we calculate pM(ρ). Since equation (4.3) was derived with volume-weighted
quantities, we have to transform our results using the relation (see, Li et al.,
2003),

pM(ρ) ∝ dM

dV

dV

dρ
∝ ρ pV (ρ) , (4.4)

where pM(ρ) and pV (ρ) are the mass-weighted and the volume-weighted
PDFs of the gas density, respectively. We find σρ,sol,V = 1.90 for purely
solenoidal and σρ,comp,V = 6.03 for purely compressive forcing. With the
volume-weighted Mach number of this simulation, we get bsol = 0.36 for
solenoidal forcing and bcomp = 1.08 for compressive forcing, in good agree-
ment with Federrath et al. (2008).

4.4 Velocity increments and structure func-

tions

In order to calculate the increments, we use the following definition of the
time-dependent, Lagrangian velocity increment

δvmi (t, τ) = vmi (t+ τ)− vmi (t), (4.5)

where τ is a temporal increment and vmi (t) is the velocity in spatial direction
i ∈ {x, y, z} of the mth tracer particle at the time t. The space-dependent,
Eulerian velocity increments are defined as

δvmni (r, `) = vmi (r + `)− vni (r) (4.6)
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solenoidal compressive
mass-weighted volume-weighted mass-weighted volume-weighted

M 4.9± 0.2 5.3± 0.2 4.4± 0.3 5.6± 0.3
〈s〉 0.81± 0.04 −0.83± 0.05 2.37± 0.24 −3.40± 0.43
σs 1.23± 0.03 1.32± 0.06 1.77± 0.09 3.04± 0.24
Ss −0.13± 0.05 −0.10± 0.11 −0.57± 0.17 −0.26± 0.20
Ks 2.95± 0.07 3.03± 0.17 3.50± 0.33 2.91± 0.43

Table 4.1: Mass-weighted and volume-weighted r.m.s. Mach number (first
row) and the first four standardised central moments of the PDF pM(s)
(column 1 and 3) and pV (s) (column 2 and 4) for solenoidal and compressive
forcing. These quantities are averaged in time when the equilibrium state
of fully-developed, supersonic turbulence is reached (see Section 4.2 and 4.3)
and the errors are the standard deviation in time.

Figure 4.3: Mass-weighted PDF pM(s) of the logarithmic mass density s =
log10(ρ/〈ρ〉V ) for solenoidal (solid line) and compressive (dashed-dotted line)
forcing in linear (left panel) and logarithmic scaling (right panel), calculated
on the tracer particles. The PDFs are calculated for 81 time steps in the
state of fully-developed turbulence t > 2T and averaged. The error bars
indicate the standard deviation of the temporal fluctuations. The dashed
lines show log-normal fits with the mean value and the standard deviation
as fitting parameters.
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δvmn‖ (r, `) = vm‖ (r + `)− vn‖ (r) , (4.7)

where r is the position of the tracer n, ` is the spatial increment between the
tracer particles m and n, and v‖ = v · ˆ̀ with ˆ̀ = `/` being the unit vector
in the direction `. The Lagrangian structure function (LSF)

LSp(τ) = 〈〈|δvmx (t, τ)|p〉m + 〈|δvmy (t, τ)|p〉m + 〈|δvmz (t, τ)|p〉m〉t/3 (4.8)

is obtained by averaging the velocity increments over the different tracer
particles m, the three directions of the coordinate system x, y, z and over
t ∈ [2, 10]T . This is reasonable because of the time invariance and isotropy
in the state of fully-developed turbulence.
In practise, we randomly select 5×106 tracer particles for all 801 time samples
with t > 2T in the fully-developed state for the averaging procedure (4.8).
We checked the validity of this approach by doing these calculations also with
all 5123 tracer particles for one time-line starting at t = 2T to ensure that
the used number of sampling pairs has no statistically significant influence
on our results (see Appendix 4.11). For calculating the Eulerian structure
functions (ESFs)

ESp(`) ≡ 〈〈|δvmnx (r, `)|p〉mn + 〈|δvmny (r, `)|p〉mn + 〈|δvmnz (r, `)|p〉mn〉t/3 (4.9)

ESp‖(`) ≡ 〈|δvmn‖ (r, `)|p〉mn,t (4.10)

the simulation box was divided in 163 sub boxes. For m, a fixed number of
tracer particles is chosen homogeneously distributed over all sub boxes. To
obtain a constant sampling of the ESF with `, for each m, a subset ∝ 1/r2

of tracer particles of every sub box is selected for n, where r is the distance
from m to the centre of the sub box. As the number of sub boxes increases
proportional to r2, this procedure ensures that for each lag `, roughly the
same number of sampling pairs is used. The selection procedure is normalised
in a way that for m, nearly the same number of tracer particles is selected
as for n. The ESFs are calculated for 81 snapshots in time intervals of
∆t = T/10 each with about 1010 sampling pairs. We tested our results with
different numbers of sub boxes, where with insufficient sub boxes (. 83) we
have to calculate the ESFs with many more sampling pairs to get a good
statistic on the smallest scales. Using more than 163 sub boxes showed no
effective improvement of the distribution. With 163 sub boxes, we calculate
the ESFs with different numbers of sampling pairs to ensure that increasing
the sampling pairs has no statistically significant influence on our results.
We provide detailed convergence tests in Appendix 4.11. Since all increments
are calculated on the tracer particles, the structure functions are intrinsically
mass-weighted.



4.5. THE PROBABILITY DENSITY FUNCTIONS OF VELOCITY INCREMENTS47

4.5 The probability density functions of ve-

locity increments

The simplest set of correlation functions to quantify the statistical properties
in a compressible, supersonic turbulent flow is the distribution of the velocity
increments and its higher moments, the structure functions, defined by (4.8
to 4.10). The deviation of the structure function scaling exponents from the
predicted values of the Kolmogorov model (Kolmogorov, 1941b) is an effect
of intermittency (e.g., She and Leveque, 1994). A property of intermittency
is that the PDFs of the velocity fluctuations become more and more non-
Gaussian on smaller and smaller scales (Gotoh et al., 2002; Mordant et al.,
2002).
Figure 4.4 shows the PDF of the velocity increment δvi in the Lagrangian
framework for five temporal increments τ ∈ {0.01, 0.08, 0.4, 2, 4}T and in
the Eulerian framework for six spatial increments ` ∈ {0.006, 0.02, 0.06, 0.12,
0.25, 0.49}L. The PDFs follow a Gaussian distribution for τ → T and `→ L.
Decreasing the spatial or temporal increment, the Gaussian PDFs vary con-
tinuously towards distributions with exponential wings indicating the in-
termittent behaviour of the turbulent velocity field. Figure 4.5 shows the
kurtosis (see Section 3.2.4) of the distributions of the Lagrangian (left panel)
and Eulerian (right panel) velocity increments, calculated with the structure
functions

K(τ) = LS4(τ)/[LS2(τ)]2 (4.11)

(solid and dash-dotted lines) and the values calculated with the PDFs (crosses
and stars). The kurtosis can be used as a measure for the deviations of the
distributions of the velocity increments from a Gaussian distribution. In the
Lagrangian framework, the kurtosis obtained with solenoidal forcing con-
verges towards the Gaussian value (K = 3) on times comparable with the
dynamical time scale, τ ≈ 1T . The compressive forcing yields PDFs con-
verging already on smaller temporal lags, τ ≈ 0.7T than solenoidal forcing.
Compressive forcing develops a more intermittent behaviour with larger kur-
tosis than the solenoidal forcing for times τ . 0.08T . As the non-Gaussian
wings of PDFs of the density and/or velocity is caused by intermittency (see
Federrath et al., 2010), this analysis of the kurtosis and the more intermittent
behaviour of the compressive forcing confirm our observation of the density
PDF and its deviation from the log-normal distribution (see Section 4.3).
In the Eulerian framework, compressive forcing yields a more intermittent
behaviour with a larger kurtosis on nearly all spatial scales than solenoidal
forcing. However, the kurtosis obtained with compressive forcing converges
at the same scale (` ≈ 0.23L) towards the Gaussian value as the kurtosis of
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Figure 4.4: Top panel: PDFs of the velocity increment δvi in the La-
grangian framework for solenoidal (left panel) and compressive forcing (right
panel). It shows the PDFs with five different temporal increments τ ∈
{0.01, 0.08, 0.4, 2, 4}T . Bottom panel: PDFs of the velocity increment δvi
in the Eulerian framework for solenoidal (left panel) and compressive forc-
ing (right panel). It shows the PDFs with six different spatial increments
` ∈ {0.006, 0.02, 0.06, 0.12, 0.25, 0.49}L. For small temporal or spatial lags,
τ and `, respectively, the PDFs differ from a Gaussian distribution because
of intermittency. For large τ or `, they converge towards a Gaussian distri-
bution.
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Figure 4.5: Kurtosis as a function of the temporal or spatial increment τ
(left) and ` (right). The solid and dashed-dotted lines are respectively, the
values for solenoidal and compressive forcing, calculated from (4.11). The
crosses and stars are respectively the values for solenoidal and compressive
forcing, calculated with the five PDFs shown in Figure 4.4. The horizontal,
dotted line is the value of a Gaussian distribution.

the solenoidal forcing. Comparing the kurtosis of the Lagrangian and Eule-
rian structure functions strengthens the conclusion that Lagrangian statistics
are more intermittent than Eulerian ones (here shown for two limiting types
of forcing) as already observed by Benzi et al. (2010), but only for purely
solenoidal forcing. In the region, where the kurtosis is converged towards the
Gaussian value (τ > 2.5T for the Lagrangian framework and ` > 0.4L for
the Eulerian framework), we average the structure functions to calculate the
mean value of the saturated structure functions, as discussed in Section 4.6.

4.6 Lagrangian and Eulerian structure func-

tions

Figure 4.6 shows the LSF and ESF up to order p = 7 for solenoidal and
compressive forcing. We calculate the saturation values of the structure
functions on the largest scales by averaging them in the range τ ∈ [2.5, 5]T
for the LSFs and ` ∈ [0.4, 0.7]L for the ESFs. The result is displayed as
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black lines in Figure 4.6. The compressive forcing yields structure functions
that converge to Gaussian values already on smaller scales, as observed in
Figure 4.5. For the two forcings, the saturation values are different. This
can be explained with the different mass-weighted r.m.s Mach numberMM ,
observed in Figure 5.1, because the structure functions S of order p for infinite
increments are Sp(∞) ∝Mp

M (see discussion in Section 4.8).
In turbulence theory, the structure functions follow a power law in the inertial
range

LS(p) ∝ τ ξ(p), ES(p) ∝ `ζ(p) , (4.12)

with the scaling exponents ξ(p) and ζ(p). To calculate these scaling expo-
nents, we use the inertial range as constrained by Federrath et al. (2009,
2010) (0.067 . `/L . 0.2), and transform it to the Lagrangian framework
(0.16 . τ/T . 0.34) with τ ∝ `2/3. This relation follows directly from the
Kolmogorov four-fifth law (e.g., Frisch, 1995), implying that the third-order
structure function scales linearly with ` in the Eulerian framework. In Burg-
ers turbulence, τ ∝ `, which follows from the assumption of a constant aver-
aged energy transport through the scales, ε̄ ∝ E(`)/τ ∝ v(`)2/τ , and assum-
ing Burgers scaling for the second-order velocity increment, δv2(`) ∝ v2(`) ∝
`. Using Burgers scaling for τ in the transformation of the inertial range
leads to (0.067 . τ/T . 0.2) in the Lagrangian framework. The so-called
method of extended self-similarity (ESS) proposed by Benzi et al. (1993) al-
lows for an increased scaling range between the smallest scales, influenced by
the resolution, and the largest scales with a direct influence of the forcing.
Using ESS, we thus extend the fitting range to 0.067 . τ/T . 0.34, which
covers both the transformation with τ ∝ `2/3 and τ ∝ `. For the Eulerian
structure functions, we extended the scaling range to (0.05 . `/L . 0.22) for
which we obtain a reasonable power-law scaling with ESS. Figure 4.7 shows
the ESS scaling plots, i.e., plots of the logarithm of the structure functions
calculated with equations (4.8) and (4.9) for the different orders as a func-
tion of the logarithm of the second- and third-order structure function in the
Lagrangian and Eulerian framework, respectively. The black lines indicate
linear fits for the ESS-measurement of the relative scaling exponents,

ZL(p) =
ξ(p)

ξ(2)
, ZE(p) =

ζ(p)

ζ(3)
, (4.13)

which are summarised in Table 4.2 for the Lagrangian framework (2th and 3th
columns) and the Eulerian framework (5th and 6th columns) for solenoidal
and compressive forcing, respectively.

To compare our results with data from incompressible turbulence, we
refer in Table 4.2 to the data of numerical simulations of subsonic turbu-
lence published by Benzi et al. (2010, Table 2, Reynoldsλ ∼ 600, BBFLT10)
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and Gotoh et al. (2002, Table 3, Reynoldsλ = 381, GFN02). We only show
the data of the transverse structure functions of GFN02 in the Eulerian
framework, because the differences between the longitudinal and transverse
structure function are negligible compared to the differences between the
supersonic and the subsonic results. We expect that our results of the struc-
ture function, averaged over the three directions of the coordinate system
are in-between the results of the longitudinal and transverse structure func-
tion. Additionally, we compare our results calculated with tracer particles,
discussed here, with the results of the same simulations, but calculated with
the ρ1/3 mass-weighted velocities measured on the grid published by Schmidt
et al. (2008) (SFK08, 7th and 8th columns). These scaling exponents are
also calculated for the transverse structure functions. The mass-weighting
ρ1/3, used by many authors (see e.g., Kritsuk et al., 2007; Kowal and Lazar-
ian, 2007; Schmidt et al., 2008; Galtier and Banerjee, 2011), follows from
the assumption of a constant mean volume energy transfer rate in a statis-
tically steady state, ρv2v/`, so that ρv3 ∝ `. With the data in Table 4.2 we
can analyse the influence of the different forcings in each framework. The
relative scaling exponents show only a significant difference between the scal-
ing behaviour of the solenoidal and compressible forcing in the Lagrangian
framework for the highest order. The scaling exponents of the compressive
forcing are slightly below the scaling exponents of the solenoidal forcing for
higher orders. However, in the Eulerian framework, this effect is stronger
and the compressive forcing causes scaling exponents to stay nearly constant
above an order p > 4, such that there is a significant difference between
the scaling exponents of the solenoidal and compressive forcing. With the
measured scaling exponents, we can quantify the intermittency in the differ-
ent frameworks by calculating the differences to the predicted Kolmogorov
(1941b, K41) scaling. In the Lagrangian framework and for the highest or-
der, p = 7, the scaling exponents are 46± 3% and 54± 6% smaller than the
K41 value for the solenoidal and compressive forcing, respectively. In the
Eulerian framework, the scaling exponents are 31± 4% and 49± 9% smaller
than the K41 value. For solenoidal forcing, the scaling exponents show a
more intermittent behaviour in the Lagrangian framework than in the Eule-
rian one. This is consistent with our analysis of the kurtosis in Figure 4.5
and the results of Benzi et al. (2010). For compressive forcing, we have an
intermittency of the same order for both frameworks. The intense density
fluctuations in the simulation with compressive forcing cause a more inter-
mittent behaviour and scaling exponents that deviate stronger from the K41
values. The stronger influence of the compressive forcing on the intermit-
tency in the Eulerian framework is an important result that needs further
studies.
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Figure 4.6: Lagrangian (left) and Eulerian (right) structure functions up to
the order of p = 7 for solenoidal and compressive forcing, calculated with
the velocity increment of the tracer particles. The error bars of the structure
functions indicate the standard deviation in time. To calculate the abso-
lute values of the saturated structure functions, the Lagrangian structure
functions were averaged in the range τ ∈ [2.5, 5]T , and the Eulerian struc-
ture functions were averaged in the range ` ∈ [0.4, 0.7]L, indicated by the
horizontal black lines in the integral range.

To estimate the influence of shocks and other non-local, inter-scale processes
arising in supersonic, compressible turbulence, we compare our results with
the data of other subsonic, incompressible simulations. Our scaling expo-
nents are below those for incompressible media in both frameworks and are
significantly different from the data of BBFLT10 and GFN02. This indicates
a more intermittent behaviour in our supersonic, compressible, turbulent
flow, which is even stronger for the simulations with compressive forcing.
The comparison of the scaling exponents of the tracer particles with the ρ1/3

mass-weighted results of the grid in the Eulerian framework shows that the
ρ1/3 multiplier does not have the same effect as the averaging over tracer
particles. The intrinsic mass-weighting of the tracer particles shows a less
intermittent behaviour for both forcings than the results of SFK08.
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Figure 4.7: Extended self-similarity for the Lagrangian (left panel) and Eu-
lerian (right panel) structure function for solenoidal and compressive forcing.
The black lines indicate a linear fit for the calculation of the relative scaling
exponents, which are summarised in Table 4.2.

4.7 Intermittency models for inertial range

scaling

With the relative scaling exponents of the last Section, we can compare our
results with the predictions of intermittency models. We use the generalised
equation of the phenomenological model of She and Leveque (1994) intro-
duced by Dubrulle (1994) for the scaling exponents in the Eulerian frame-
work

ZE(p) = (1−∆E)
p

3
+

∆E

1− βE
(1− βp/3E ) . (4.14)

With the assumptions τ ∝ `2/3 and LSp ∝ 〈εp/2τ 〉τ p/2, where 〈εpτ 〉 are the
moments of the energy dissipation at the time scale τ , one can show a sim-
ilar equation for the Lagrangian framework, using the same arguments and
derivations of She and Leveque (1994):

ZL(p) = (1−∆L)
p

2
+

∆L

1− βL
(1− βp/2L ) . (4.15)

For simplicity we use τ ∝ `2/3 for the transformation into the Lagrangian
framework, instead of τ ∝ `, and treat the influence of compressibility in
both frameworks by having different values for ∆ and β compared to the
K41 theory (see e.g., Boldyrev et al., 2002; Schmidt et al., 2008). Figure 4.8
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shows the measured scaling exponents and the fits with equation (4.14) and
(4.15). For the fitting procedure we follow the idea of Schmidt et al. (2008,
2009) and set ∆ = 1, which follows from Burgers scaling, τ ∝ `, as used in the
last Section, leaving us with only one free fitting parameter. With the mea-
sured β we can calculate the co-dimension of the most dissipative structures
C = ∆/(1−β), which is connected to the actual dimension of the most dissi-
pative structures via D = 3−C. The latter quantifies how volume-filling the
most dissipative structures are in the turbulent medium. From our fits we get
DL,sol = 0.87, DL,comp = 1.17 in the Lagrangian framework and DE,sol = 1.11,
DE,comp = 1.55 in the Eulerian one. In the Eulerian framework, the most dis-
sipative structures are between filamentary structures (D = 1, as in She and
Leveque (1994)) and sheet-like structures (D = 2, as proposed by Boldyrev
et al. (2002) for the Kolmogorov-Burgers model). In the Lagrangian frame-
work and for solenoidal forcing, the most dissipative structures are close to
filamentary structures. Compressive forcing yields a larger fractal dimension
than solenoidal forcing in both frameworks. Although the whole turbulent
flow is more space filling for solenoidal forcing, as observed in Figure 4.2, the
most dissipative structures of the compressive forcing have a larger dimen-
sion and are thus more space filling. However, it is unclear how to interpret
these results in the one-dimensional Lagrangian framework of temporal in-
crements rather than spatial increments as in the Eulerian framework. In
the Eulerian framework, we can compare our results with the dimensions we
get by calculating the scaling exponents with the mass-weighted velocities
of the grid. Schmidt et al. (2008) measured Dsol = 1.82 and Dcomp = 1.92,
showing the same trend between the solenoidal and compressive forcing, but
larger than the values we measured on the tracer particles. The reason for
these differences is the more intermittent behaviour of the scaling exponents,
as discussed above (see also Table 4.2).

4.8 A statistical theory of the large-scale ve-

locity increments

In this Section, we show that the statistical properties of the velocity in-
crements in a turbulent flow on large scales can be described with only one
parameter, the r.m.s Mach number. This is valid for velocity increments in
the Lagrangian and Eulerian framework. The structure functions defined by
(4.8) to (4.10) can be expressed as the moments of the PDFs of the veloc-
ity increment, which are functions of τ or `, so we can write for a general
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Figure 4.8: Relative scaling exponents for the Lagrangian (left panel) and
Eulerian (right panel) structure function for solenoidal and compressive forc-
ing. The lines indicate a fit with the intermittency model proposed by
Dubrulle (1994) with the assumption of Schmidt et al. (2008), ∆ = 1.
In the Lagrangian framework, we get a dimension of the most dissipative
structures DL,sol = 0.87 and DL,comp = 1.17 for solenoidal and compressive
forcing respectively. In the Eulerian framework we get DE,sol = 1.11 and
DE,comp = 1.55. The compressive forcing and the associated stronger density
fluctuations cause a higher dimension of the most dissipative structures.

structure function,

Sp(α) =

∫
|δv|p P (δv, α)d(δv) , (4.16)

where P (δv, α) is the probability density of δv with the increment α. In the
last Section, we showed that the PDFs of the velocity increments converge
towards a Gaussian distribution on the largest scales. The Gaussian form
can be understood analytically as a consequence of the central limit theorem,
assuming that the two velocities, vm(r + `) and vn(r) in space or vm(t + τ)
and vm(t) in time, are independent for large spatial or temporal increments.
With the Gaussian assumption, we can express the structure functions on
large scales as
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Sp(α→∞) =
2

σ
√

2π

∞∫
0

(δv)pe−
(δv)2

2σ2 d (δv)

=
Γ
(
p+1

2

)
√
π

(
√

2σ)p , (4.17)

where Sp(α) stands for any structure function of (4.8) to (4.10), α is the
temporal or spatial increment, σ is the standard deviation of the Gaus-
sian distribution, and Γ is the Gamma function. Equation (4.17b) describes
the moments of the Rayleigh distribution, which is also the result for the
moments of the total structure function with a velocity increment δv =√
δv2

x + δv2
y + δv2

z , if the increments δvi follow a Gaussian distribution.
Stutzki et al. (1998) showed that

〈(δv(`→∞))2〉 = 2M2
Mc

2
s , (4.18)

where they used homogeneity and the fact that the autocorrelation vanishes
for large spatial increments. In our case, the quantityMM is a mass-weighted
value, because the average in (4.18) is taken over the velocity increments of
the tracer particles. Furthermore, we assume that the second-order structure
function is proportional to the kinetic energy for large increments and as
the longitudinal structure function and the structure function averaged over
the three directions of the coordinate system have only one-third degree of
freedom compared with the total structure function,

〈(δv)2〉 = 〈δv2
x + δv2

y + δv2
z〉 = 3〈(δvi)2〉 = 3〈(δv‖)2〉 . (4.19)

If we combine this with (4.17) and (4.18), we get a relation between the
standard deviations of the Gaussian distributions and the r.m.s Mach number
MM :

〈(δv)2〉 = 2M2
Mc

2
s = 3σ2

i = 3σ2
‖ . (4.20)

The second-order moment can thus be used as a normalisation for our for-
mula (4.17) to predict the saturation level of the pth-order structure function

Sp(α→∞) =
Γ
(
p+1

2

)
√
π

(
2√
3
MM)p . (4.21)

Figure 4.9 shows the structure functions of Figure 4.6, but renormalised with
equation (4.21) to the r.m.s. Mach number of the solenoidal forcing. The
differences between the structure functions, driven by solenoidal and com-
pressive forcing, vanishes in the integral range, what implies that the different
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Figure 4.9: Same as Figure 4.6, but with structure functions of the compres-
sive forcing normalised to the r.m.s. Mach number of the solenoidal forcing,
using our model prediction (4.21). The differences of the structure functions
between the solenoidal and compressive forcing thus vanish in the integral
range.

forcings have no influence on the statistical properties of the structure func-
tions in the integral range. Additionally, we verify this model by calculating
the saturation behaviour with the measured r.m.s Mach number and compare
the result with the saturation values extracted from Figure 4.6. The result is
summarised in Figure 4.10. The measurements show an excellent agreement
with the predicted values, for both solenoidal and compressive forcing.

4.9 Summary and conclusions

We have investigated the influence of solenoidal (divergence-free) and com-
pressive (curl-free) forcing on the structure functions and density PDFs of
a supersonic, compressible, turbulent flow using tracer particles in a set of
three-dimensional numerical simulations. We analysed the density PDF, the
PDFs of velocity increments, and the structure functions in the Lagrangian
and Eulerian frameworks. As all of these quantities were measured on tracer
particles, we analysed mass-weighted statistics. Our main results and con-
clusions are:

• The solenoidal forcing yields a density PDF close to a log-normal dis-
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Figure 4.10: Values of the saturated structure functions measured from the
simulation (crosses, stars, and error bars) and the values predicted from
formula (4.21) (solid and dashed-dotted lines) for different orders p. The
values are shown to the left of their respective order and the crosses and
stars are from left to right the values of the Lagrangian, Eulerian, and the
longitudinal Eulerian structure function. The error bars of the measured
saturation values are the averaged errors of the structure functions.

tribution. In contrast, the compressive forcing yields distributions of
the mass density that show stronger deviations from the log-normal
shape in the wings of the distribution.

• The compressive forcing excites stronger head-on collisions and shock
fronts, which show a correlation between high density and low velocity,
affecting the mass-weighted r.m.s Mach number, such that it becomes
smaller than the volume-weighted Mach number. Similar holds for the
solenoidal forcing, but the effect is weaker, as solenoidal forcing yields
smaller density contrasts at the same r.m.s. Mach number.

• The Lagrangian framework exhibits a more intermittent behaviour than
the Eulerian one, measured with the deviations of the relative scaling
exponents from the predicted intermittency-free K41 values and also
with the kurtosis as an example for the higher moments of the PDF
of the velocity increments. This analysis also shows that the turbulent
medium, driven by the compressive forcing, is more intermittent than a
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medium, driven by solenoidal forcing. A comparison with simulations
of incompressible turbulence shows that intermittency is stronger in a
supersonic, compressible medium.

• The influence of the different forcings are stronger in the Eulerian than
in the Lagrangian framework, measured with the relative scaling expo-
nents and the kurtosis of the velocity increments.

• The fractal dimension of the most dissipative structures are larger for
compressive than for solenoidal forcing. The dimensions are around
those of filamentary structures (D = 1) in the Lagrangian framework
and between filamentary and sheet-like structures (1 < D < 2) in the
Eulerian framework. Although the whole turbulent flow driven by the
solenoidal forcing is more space filling the most dissipative structures
of the compressive forcing are more space filling.

• The behaviour of the structure functions of all orders on the largest
scales is determined by the r.m.s. Mach number of the system. With
the assumption of a Gaussian distribution for the velocity increments
on the largest scale, we derived an analytic relation, predicting the
absolute values of the structure functions in the integral range of tur-
bulence. The statistical properties of the velocity increments are in-
distinguishable in the integral range for both forcings types and follow
our derived formula (4.21). The different values of the saturated struc-
ture functions observed in Figure 4.10 are caused by the different Mach
numbers (Msol,M = 4.9 ± 0.2 and Mcomp,M = 4.4 ± 0.3), and not by
different statistical properties obtained by the different forcings. Thus,
the predictions based on equation (4.21) are independent of the en-
ergy injection mechanism of the turbulence, but only depend on the
mass-weighted r.m.s. Mach-number.

4.10 Appendix I: Influence of the numerical

grid resolution

Figure 4.11 (left panel) shows the LSF of order p = 7 for both forcing types
and with the grid resolutions 2563, 5123, and 10243. The right panel shows
the same for the ESF. The LSFs are calculated with 1283 ≈ 2.1, 5123 ≈ 16.8
and 5 million tracer particles for the different grid resolutions, respectively.
The ESFs are calculated with 163 sub boxes and with 1010 sampling pairs.
Figure 4.11 shows that the structure functions of order p = 7 differ by about
15%, caused by the different grid resolutions. This is of the same order as
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Figure 4.11: Structure functions of order p = 7 for different grid resolutions,
shown for both forcing types. The LSF (left panel) with a low grid resolution
of 2563 and 5123 were calculated with 1283 and 2563 tracer particles and the
simulation with 10243 grid cells was calculated with 5× 106 tracer particles.
The ESF (right panel) was calculated with 163 sub boxes and 1010 sampling
pairs. The structure functions of the compressive forcing was multiplied with
a factor of 10 so that the structure functions are distinguishable.

the 1 σ variations in time of the structure functions indicated as error bars
in Figure 4.6. Therefore, the influence of the resolution is smaller than the
temporal variations.

4.11 Appendix II: Convergence test for the

structure functions

In order to verify that our calculations are converged with a sufficient number
of data pairs to sample the structure functions, we show that the structure
functions do not change significantly by further increasing the number of
sampling pairs. As large velocity fluctuations have a stronger influence on
the higher orders of the structure functions and these events are very rare,
the statistical convergence of the higher orders is slower compared with the
lower orders. Thus, if we can demonstrate convergence for the higher order
structure functions, this automatically holds for all lower orders. Figure 4.12
(left panel) shows the Eulerian structure function of order p = 7 for solenoidal
and compressive forcing. The structure function of the compressive forcing
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Figure 4.12: Left panel: ESF of order p = 7 for both forcing types, 163 sub
boxes and different numbers of sampling pairs. The structure functions are
converged on large scales for more than 1010 sampling pairs. Right panel:
Same as left panel, however with 1011 sampling pairs and different numbers
of sub boxes. In both Figures, the structure functions of the compressive
forcing was multiplied by a factor of 10.

is multiplied by a factor of 10, so that the structure functions of the differ-
ent forcings are distinguishable. In order to check the convergence, we use
one random time sample (t = 4T ) in the state of fully-developed turbulence,
163 sub boxes and different numbers of sampling pairs (109, 1010, 1011). In-
creasing the number of sampling pairs further only influences small scales,
` < 0.07L. The structure functions are converged on larger scales. For the
Eulerian structure function, we also verified that the method of selecting
tracer particles for the calculation with our procedure of sub boxes has no
significant influence on the results. Therefore, we calculated the structure
function with 1011 sampling pairs and different numbers of sub boxes (83, 163

and 323). Figure 4.12 (right panel) shows that further increasing the number
of sub boxes also only influences scales ` < 0.05L, and with 163 sub boxes,
the structure functions are converged.
For the Lagrangian structure function, we also have to verify that the struc-
ture functions do not change significantly with the number of sampling pairs.
We calculate the LSF for all 5123 tracer particles for one time-line from
t = 2T to t = 10T and compare it with the LSF calculated with 5 and
10 million tracer particles. The results are shown in Figure 4.13, where the
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Figure 4.13: LSF of order p = 7 for both forcing types and 5, 10, and
5123 ≈ 134 million sampling pairs. The structure functions calculated with
solenoidal forcing are converged on all scales. The structure functions cal-
culated with compressive forcing show a small influence of the number of
used sampling pairs. The structure function of the compressive forcing was
multiplied by a factor of 10.

structure functions with compressive forcing are multiplied with a factor of
10. The structure functions calculated for solenoidal forcing are converged
on all scales, and the structure functions calculated for compressive forcing
show only small variations with the number of sampling pairs. The reason
for the large fluctuations in the integral range in Figure 4.13 is that the
LSF was here calculated with one time-line only. Figure 4.13 shows that the
time evolution of the forcing module has a direct influence on the amplitudes
of the velocity increments in the integral range, but these fluctuations are
smaller than the variations in time, we use as errors in Figure 4.6. However,
this direct influence vanishes on average by using different staring times for
calculating the LSF. In the inertial range with τ < 1T , the structure func-
tions in Figure 4.6 have a factor of about 700 more sampling pairs for each
bin. This large statistic we used there ensures that our structure functions
are also converged in the inertial range.
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Chapter 5

A new density variance - Mach
number relation for subsonic
and supersonic, isothermal
turbulence

The co-authors of this study are Philipp Girichidis, Christoph Federrath, and
Ralf S. Klessen (Konstandin et al., 2012b). The simulations were provided
by C. Federrath.

The probability density function (PDF) of the gas density in subsonic
and supersonic, isothermal, driven turbulence is analysed with a system-
atic set of hydrodynamical grid simulations with resolutions up to 10243

cells. We performed a series of numerical experiments with root mean square
(r.m.s.) Mach number M ranging from the nearly incompressible, subsonic
(M = 0.1) to the highly compressible, supersonic (M = 15) regime. We
study the influence of two extreme cases for the driving mechanism by apply-
ing a purely solenoidal (divergence-free) and a purely compressive (curl-free)
forcing field to drive the turbulence. We find that our measurements fit the
linear relation between the r.m.s. Mach number and the standard deviation
of the density distribution in a wide range of Mach numbers, where the pro-
portionality constant depends on the type of the forcing. In addition, we
propose a new linear relation between the standard deviation of the density
distribution σρ and the standard deviation of the velocity in compressible
modes, i.e. the compressible component of the r.m.s. Mach number Mcomp.
In this relation the influence of the forcing is significantly reduced, suggesting
a linear relation between σρ andMcomp, independent of the forcing, ranging
from the subsonic to the supersonic regime.

65
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5.1 Motivation

Understanding the intricate interplay between interstellar turbulence and
self-gravity is one of the key problems in star formation theory. The su-
personic turbulent velocity field is likely responsible for the complex and
filamentary density structures observed in molecular clouds. It creates dense
regions that can become gravitationally unstable and collapse into dense
cores, and eventually turn into new stars (Elmegreen and Scalo, 2004; Mac
Low and Klessen, 2004; McKee and Ostriker, 2007). Statistical quantities,
describing this process, such as the initial mass function, the core mass func-
tion (Padoan and Nordlund, 2002; Hennebelle and Chabrier, 2008, 2009),
and the star formation rate (Hennebelle and Chabrier, 2011; Padoan and
Nordlund, 2011) depend on the standard deviation (std. dev.) of the density
of the molecular cloud. The pioneering works by Padoan et al. (1997) and
Passot and Vázquez-Semadeni (1998) have shown that the std. dev. σρ of the
probability density function(PDF) of the mass-density grows proportional to
the root mean square (r.m.s.) Mach number M of the turbulent flow

σρ/〈ρ〉V = bM , (5.1)

where 〈ρ〉V is the volume-weighted mean density and b is a proportionality
constant. A solid understanding of the interplay between the highly turbulent
velocity field and the resulting statistical properties of the density distribu-
tion is not just important for models of star formation theory, but also for
other fields of astrophysics, such as the diffuse interstellar medium (e.g. Hill
et al., 2008; Burkhart et al., 2010; Gaensler et al., 2011), galaxy evolution
(e.g. Bigiel et al., 2008), or galactic and protogalatic dynamos (e.g. Beck,
1996; Schober et al., 2012). Federrath et al. (2008, 2010) explained the de-
pendence of σρ on b by taking the modes of the forcing into account that
drive the turbulent velocity field. This model predicts for purely solenoidal
forcing b = 1/3 and for purely compressive forcing b = 1, and explains the
large deviations of b ranging from b = 0.26 to b = 1.05 in previous works
(e.g. Padoan et al., 1997; Passot and Vázquez-Semadeni, 1998; Li et al., 2003;
Kritsuk et al., 2007; Beetz et al., 2008; Schmidt et al., 2009; Price et al., 2011;
Burkhart and Lazarian, 2012; Konstandin et al., 2012a; Molina et al., 2012).
We follow up on this work and discuss the physical origin of this dependency
and introduce a new relation, similar to equation (5.1), however, correlating
the compressible component of the r.m.s Mach number Mcomp with σρ.
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Figure 5.1:
R.m.s. Mach
number of all
simulations as a
function of the
dynamical time
scale, calculated
by averaging
over all grid cells
for both types of
forcing.

5.2 State of fully developed turbulence

Figure 5.1 shows the time evolution of the r.m.s. Mach numbers M in all
simulations. The fluid reaches the equilibrium state of fully developed tur-
bulence after about two turbulent crossing times t ≈ 2T . We thus average
all the following analyses for 2 ≤ t/T .

5.3 Volume- and mass-weighted probability

density functions

It is well-known that the PDF of the logarithm of the mass density p(s) in
a turbulent, isothermal medium is close to a Gaussian distribution (see e.g.
Vazquez-Semadeni, 1994; Passot et al., 1994; Padoan et al., 1997; Klessen,
2000; Kritsuk et al., 2007; Federrath et al., 2008; Konstandin et al., 2012a)

p(s) =
1√

2πσs
exp

(−(s− 〈s〉)2

2σ2
s

)
. (5.2)

Li et al. (2003) showed with the assumption of a Gaussian, volume-weighted
PDF of s that the mass-weighted PDF of s is also Gaussian with the same
std. dev. and with a shifted mean value

〈s〉V = −〈s〉M = −σs
2

2
. (5.3)

Figure 5.2 (left) shows the volume- and mass-weighted PDFs (the volume-
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Figure 5.2: Left: Mass-weighted and volume-weighted PDFs of the logarithm
of the mass density in the simulations with M = 5.5, 10243 grid cells and
both types of forcing. Right: Mass-weighted PDFs of s of the simulations
forM = 5.5, different resolutions and both types of forcing. The black solid
lines are Gaussian functions with mean value and std. dev. calculated with
the highest resolution.

weighted PDF is shifted with 〈s〉M − 〈s〉V = σ2
s for a better comparison)

for the simulation with M = 5.5 for both types of forcing. The PDFs are
averaged over 81 time snapshots in the state of fully developed stationary
turbulence for t > 2T and the error bars indicate the std. dev. of the tem-
poral fluctuations. The variance of the volume-weighted PDFs is larger than
the variance of the mass-weighted distributions. This effect is stronger for
the compressive forcing than for the solenoidal forcing. The volume-weighted
PDFs show a larger variation with time in the low-density wing of the dis-
tribution than the mass-weighted distributions. This low-density wing also
shows higher probabilities than one would expect from the underlying Gaus-
sian distribution extrapolated from the high density wing. This effect is
stronger for the compressive than for the solenoidal forcing. We assume that
this behaviour is caused by our forcing scheme. As the time correlation of the
forcing field is equal to the dynamic time scale on the largest scales, the forc-
ing has enough time to produce very low densities in large regions of diverging
flows. This process causes the volume-weighted PDF of s to have a tail at
low densities with higher probabilities than the distribution for the case of
turbulence, which is not driven on the largest scales. As this effect is propor-
tional to the amplitude of the forcing field, which increases stronger than the
r.m.s. Mach number in the statistically state of fully developed turbulence, it
becomes more important for higher r.m.s. Mach numbers and the deviations
in the low-density tail influence the calculated std. dev. of these distributions.
This effect is less pronounced measuring the mass-weighted distributions, as
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the very low density grid cells carry only little mass. We note that there
are other potential processes, which could lead to non-Gaussian wings in the
PDF, such as turbulent intermittency or self-gravity (e.g. Klessen, 2000;
Kritsuk et al., 2007; Burkhart et al., 2009; Federrath et al., 2010).

5.4 Resolution effects on the probability den-

sity functions

Figure 5.2 (right) shows the mass-weighted PDF of the quantity s with an
r.m.s. Mach numberM = 5.5 and different resolutions. The PDF of s shows
deviations from the Gaussian shape and a dependency on the resolution only
in the high-density tails of the distribution. We interpret the deviations of our
measured PDFs from the Gaussian distribution in the supersonic regime for
both types of forcing as a sign of numerical dissipation and finite sampling. In
the highly supersonic regime the medium is dominated by shock fronts, high-
density gradients and strong intermittent fluctuations, which are building up
in the high-density tail and require high resolution to converge. As the
high-density tail is always truncated due to limited numerical resolution (see
Hennebelle and Audit, 2007; Kowal et al., 2007; Kitsionas et al., 2009; Price
and Federrath, 2010; Federrath et al., 2010) we do not fully resolve them
in the M = 5.5 case and an additional dissipation occurs. This effect is
stronger in the simulations with compressive forcing and becomes stronger
with increasing r.m.s. Mach number for both types of forcing (not shown
here). However, increasing the resolution has only little influence on the
deviations from the Gaussian distribution in the low-density tail of the mass-
weighted PDFs.
With the assumption of a log-normally distributed mass density, it can be

shown that the std. dev. of the Gaussian-distributed quantity s is (see Price
et al., 2011)

σ2
s = ln (1 + σ2

ρ) . (5.4)

Figure 5.3 shows σρ as a function of σs for our volume-weighted (left panel)
and mass-weighted (right panel) distributions. The volume- and the mass-
weighted measurements of the std. dev. of s show increasing deviations from
equation (5.4) with increasing r.m.s. Mach numbers for both types of forcing.
However, the deviations are smaller in the mass-weighted case than in the
volume-weighted one. The assumption of Gaussianity, which is implied in
equation (5.4), is better fulfilled for the mass-weighted case. Figure 5.3 also
shows that our measurements withM = 15 are not converged with resolution
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Figure 5.3: Std. dev. of the mass-density σρ as a function of the std. dev. of
the logarithm of the mass-density σs, measured volume-weighted (left panel)
and mass-weighted (right panel). The deviations of the measurements from
the black solid lines, equation (5.4), quantify the deviations from a log-
normally distributed mass density.

for both types of forcing. Our measurements are in agreement with Price
et al. (2011), who showed that direct measurements of σρ show a stronger
dependency on resolution than measurements of σs.

All volume-weighted measurements show a clear trend towards the rela-
tion (5.4) with increasing resolution. However, the data points do not fit
relation (5.4) for M = 15 with solenoidal forcing and in all the supersonic
cases with compressive forcing, although the data points with M = 2 and
M = 5.5 with compressive forcing are nearly converged with resolution.
Considering that the std. dev. σs,M of the mass-weighted PDF is more com-
patible with the scaling for a log-normal PDF, equation (5.4), and that the
resolution dependence of σs,M is weaker that for σs,V , we prefer to use σs,M
as estimate for the turbulent density fluctuations in the following.

5.5 The probability density function of the

density and of the compressible modes in

the velocity field

Figure 5.4 shows the mass-weighted PDFs of the quantity s (left panels)
and the volume-weighted PDFs of the compressible modes of the velocity
field normalised to the sound speed Mcomp = vcomp/cs (right panels) for dif-
ferent r.m.s. Mach numbers and both types of forcing. The PDFs of the
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Figure 5.4: The mass-weighted PDFs of the logarithm of the mass density
(left panels) and the compressible part of the local Mach number (right pan-
els) for different r.m.s. Mach numbers, resolutions and both types of forcing.
In the inset, a magnification of the PDFs obtained with solenoidal forcing for
M = 0.1 are shown. The error bars in each panel indicate the std. dev. of
the temporal fluctuations.
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logarithm of the density largely follow Gaussian distributions for all super-
sonic r.m.s. Mach numbers. We added Gaussian functions (black solid lines),
with the first- and second-order moments calculated from our distributions in
Figure 5.4. The high-density tails of the distributions show deviations from
the Gaussian shape, which increase with increasing r.m.s. Mach number.
Also the deviations from the Gaussian distribution in the low-density tail, as
discussed in Section 5.3, get more pronounced with increasing r.m.s. Mach
number. Thereby, we have large deviations of our measurement from the
Gaussian distributions in theM = 15 case and the calculated std. dev. does
not correspond to the std. dev. of the underlying Gaussian distribution.
The density distributions of the simulations driven by solenoidal forcing in
the subsonic regime show significant deviations from the log-normal shape,
which become stronger as M decreases. These distributions become more
asymmetric and more peaked. The different behaviour of the PDFs in the
subsonic regime especially for the solenoidal forcing is caused by the different
physical processes acting here. In the subsonic regime sound waves trans-
fer information faster than the averaged flow of the medium, such that the
thermal pressure increases before two converging flows can collide. This pro-
cess prevents colliding flows from producing high-density regions and causes
the sharp edge at the high-density wing of the distributions. The thermal
pressure also decelerates the velocities in compressible modes, such that the
PDF of Mcomp also shows a narrow, peaky and intermittent behaviour for the
solenoidal forcing. This process is just visible for solenoidal forcing, because
in the compressive forcing case the velocities in compressible modes are re-
injected by the forcing to hold the r.m.s. Mach number constant. This is the
reason why the thermal pressure does not have such a strong influence there.
The right panels of Figure 5.4 show the PDFs of Mcomp, where Mcomp is
calculated by transforming the velocity field into Fourier space and apply-
ing the same projection tensor we use for the forcing field, P

‖
ij = kikj/k

2.
After transforming it back into real space, we calculate the std. dev. of the
components, which we average afterwards over the three directions of the co-
ordinate system x, y, z. The distributions of Mcomp are symmetric with zero
mean and have an increasing std. dev. with increasing r.m.s. Mach number.
The distributions obtained with compressive forcing are always broader than
with solenoidal forcing at the same r.m.s. Mach number. The PDFs of Mcomp

are Gaussian (black solid lines) with deviations in both wings. These are the
signpost of turbulent intermittency. The deviations do not show a clear trend
with the r.m.s. Mach number.
The PDF of Mcomp obtained with solenoidal forcing in the subsonic regime
with M = 0.1 shows the strongest deviations from the Gaussian shape with
a narrow, peaky, intermittent distribution. These deviations are caused by
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the thermal pressure, as discussed above.

5.6 Relation between the r.m.s. Mach num-

ber and the standard deviation of the den-

sity

In Padoan et al. (1997) and Passot and Vázquez-Semadeni (1998) the authors
found that the std. dev. of the PDF of the mass density σρ is proportional to
the r.m.s. Mach number in a turbulent flow. The std. dev. of the mass density
is an important quantity especially in astrophysics, where the Mach number
dependency of density fluctuations is used to derive analytic expressions for
the core mass function (CMF) and the stellar initial mass function (IMF)
(e.g., Padoan and Nordlund, 2002; Hennebelle and Chabrier, 2008, 2009). On
galactic scales it is used to reproduce the Kennicutt-Schmidt relation (Tassis,
2007), and Elmegreen (2008) suggests that the star formation efficiency is a
function of the density PDF. Figure 5.5 (upper left panel) shows the measured
std. dev. of the mass density as a function of the r.m.s. Mach number for
different resolutions and both types of forcing. The error bars in each panel of
Figure 5.5 indicate the std. dev. of the temporal fluctuations of the measured
quantities. They do not include any potential systematic errors stemming
from, e.g., the numerical scheme or implementation of the forcing algorithm.
Thus, we interpret the error bars as a lower limit of the real uncertainty.
The dotted and dashed-dotted lines correspond to the model of Federrath
et al. (2010), which describes the proportionality parameter b as a function
of the turbulent forcing. This model predicts for solenoidal forcing b =
1/3 and for compressive forcing b = 1. Our measurements agree with the
model of Federrath et al. (2010) in the supersonic case for both types of
forcing. We see small deviations from the model in the simulations with
M = 15, which is caused by our limited resolution (see Figure 5.3). The
std. dev.s of the density distribution of the simulation with solenoidal forcing
are smaller than the prediction of the model in the subsonic case. In the
subsonic regime, the deviations are caused by the thermal pressure, which
damps density variations and compressible modes of the velocity field and
reduces the measured std. dev. below the model prediction as discussed in
Section 5.5. The upper right panel of Figure 5.5 shows the mass-weighted,
logarithmic std. dev. σs,M as a function of the r.m.s. Mach number. The
dotted and dashed-dotted lines correspond to the standard model for the
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Figure 5.5: The std. dev. of the distribution of the mass density (left) and
the std. dev. of the distribution of the logarithm of the mass density (right)
as a function of the r.m.s. Mach number (upper panels) and as a function
of the compressible part of the r.m.s. Mach number (lower panels). In the
upper panels the lines correspond to the model of Federrath et al. (2010)
with b = 1/3 for solenoidal forcing and b = 1 for compressive forcing. In the
lower panels the solid lines correspond to a two-parameter fit and the dotted
line corresponds to a linear relation between the std. dev. of the mass density
and the std. dev. of the compressible part of the r.m.s. Mach number with a
proportionality constant

√
3.
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logarithmic density variance,

σ2
s = ln(1 + b2M2) (5.5)

with b = 1/3 for solenoidal and b = 1 for compressive forcing. Equation (5.5)
follows from equations (5.4) and (5.1) and was recently derived analytically
by Molina et al. (2012) using the shock-jump conditions and averaging over
an ensemble of shock waves. The deviations of our numerical data from
this standard model are only significant for solenoidal forcing in the subsonic
regime, while our data are in excellent agreement with equation (5.5) for both
solenoidal and compressive forcing in the supersonic regime, given our reso-
lution dependence of the M = 15 data points (see Figure 5.3, right panel).
Our results are in agreement with Kowal et al. (2007), who found devia-
tions from the linear relation with σρ in the subsonic regime with solenoidal
forcing, and with Passot and Vázquez-Semadeni (1998), who analysed one-
dimensional simulations with only compressive forcing and 0.5 ≤M ≤ 3 and
found the linear relation between M and σρ with b = 1. Price et al. (2011)
analysed three dimensional simulations with purely solenoidal forcing and
r.m.s. Mach numbers in between 2 ≤M ≤ 20 and found b = 1/3 in excellent
agreement with our result. As they did not analyse the subsonic regime with
solenoidal forcing they did not observe the large deviations in the subsonic
regime. Our analysis complements these studies with measurements in both
the subsonic and supersonic regime and for purely compressive forcing.

5.7 Physical origin of density fluctuations in

turbulent flows

Studying the continuity equation (3.1), one can argue that variations of the
density can only be caused by the divergence of the velocity field. Given that
a vector field can be decomposed in a gradient field and a rotation field and
that the divergence of a rotation field vanishes, we conclude that the density
variations can only be caused by the compressible modes of the velocity.
A similar model has also been suggested by Federrath et al. (2010), where
the parameter b in equations (5.1) and (5.5) was approximated by the ratio
of compressible to total velocity fluctuations. As we want to understand
the physical origin of the density fluctuations, we replace the r.m.s. Mach
number and the b-parameter with the compressible part of the r.m.s. Mach
number, Mcomp, in equation (5.1), where M is in fact the std. dev. of the
velocity distribution, and b is proportional to the ratio of compressible to
total velocity fluctuations and depends on the forcing. The lower panels of
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Figure 5.5 show the density fluctuations as a function of Mcomp. The data
points show a clear correlation. The different behaviour of the simulations
driven with solenoidal and compressive forcing are significantly reduced. We
added in Figure 5.5 a function (dotted line) for the relation σρ =

√
3Mcomp,

which is the simplest model for this relation assuming isotropy. The factor of√
3 is due to the fact that we use the distribution of the compressible modes of

the velocity field averaged over the three directions of the coordinate system

Mtot
comp =

√
M2

comp, x +M2
comp, y +M2

comp, z (5.6)

=
√

3Mcomp .

Our simple model fits the data, but shows deviations for the simulations with
solenoidal forcing and the lowest and highest Mach numbers. The deviations
for the M = 15 simulation are again caused by the resolution dependency
of σρ. Additionally, we perform a fit of our data (black solid line) with two
free parameters,

σρ = α
√

3Mβ
comp (5.7)

for the density relation. We obtain a normalisation α = 1.0 ± 0.1 and a
slope β = 0.85 ± 0.04. For the s-relation we transform the fitted function
with equation (5.4). The measurements of the std. dev. of the density have
larger deviations from the model as the measurements of the std. dev. of s.
However, the model fits the measurements in both cases and provides a good
description for the data points in the subsonic regime with solenoidal forcing,
which are strongly influenced by sound waves. We conclude that the thermal
pressure damps the velocities in compressible modes in a way that the relation
between the velocities in compressible modes and the density variations in a
turbulent medium is in a statistical equilibrium state, even if the medium is
strongly influenced by sound waves. The deviation of the scaling exponent
from the simple model can be interpreted as additional dissipative effects,
which are proportional to Mcomp. An example for these physical processes,
which influence our analysis, are individual shocks causing deviations from
the log-normal distributed density PDF. However, systematic errors with a
dependency on the r.m.s. Mach number could also cause deviations from
the linear scaling and would be another possible interpretation for our fitted
scaling exponent.
The shown relation between the std. dev. of the density and the compressible
part of the r.m.s. Mach number in principle enables us to measure the kinetic
energy in compressible modes in giant molecular clouds, without knowing the
absolute r.m.s. Mach number, the driving mechanism or the sound speed.
The relations shown in the bottom panels of Figure 5.5 are valid in both, the
subsonic and supersonic regime.
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5.8 Summary and conclusions

We have investigated the influence of solenoidal (divergence-free) and com-
pressive (curl-free) forcing on the PDF of the mass density in subsonic and
supersonic turbulence with a set of three-dimensional numerical simulations.
We analysed the relation between the std. dev. of the mass density distri-
bution and the r.m.s. Mach number. We found a new relation between the
std. dev. of the mass density and the std. dev. of the compressible part of
the velocity field, σρ ∝Mcomp. Our main results are as follows:

• Compressive forcing yields mass density PDFs with std. dev.s propor-
tional to the r.m.s. Mach number with b = 1. For solenoidal forcing,
we measure b = 1/3 in the supersonic regime. Our findings are in
agreement with previous studies, which however only explored differ-
ent subsets of the full parameter space investigated here. We also found
deviations of our measurements from the linear relation with solenoidal
forcing in the subsonic regime. These deviations from the linear relation
can be explained with sound waves, which damp the faint compressible
velocities and prevent the medium from producing over-densities.

• We found a unique relation between the std. dev. of the mass density
and the compressible modes of the velocity field with a fit to our data.
Our new relation is independent of the driving mechanism and still
holds in the subsonic regime, where the flow is mainly influenced by
sound waves. It does not show a strong influence on the resolution
and other effects, which may cause a non-Gaussian distribution of the
density.

• Our relation enables us for the first time to measure the kinetic energy
in compressible modes in units of the sound speed, without knowing the
r.m.s. Mach number, the driving mechanism or the sound speed of the
medium. This measurement can be used to distinguish between sub-
sonic and supersonic compressive turbulent motions. It will in principle
allow us to measure the composition of the kinetic energy in the inter-
stellar medium by combining independent measurements of the total
r.m.s. Mach number (e.g. Burkhart et al., 2009) and the std. dev. of the
density distribution (Brunt et al., 2010; Brunt, 2010; Schneider et al.,
2012).
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Chapter 6

Hierarchical Bayesian analysis
of the velocity power-spectrum
in supersonic turbulence

The co-authors of this study are Rahul Shetty, Philipp Girichidis, and Ralf
S. Klessen (Konstandin et al., 2014). The forcing routine was implemented
by Philipp Girichidis.

Turbulence is a dominant feature operating in gaseous flows across nearly
all scales in astrophysical environments. Accordingly, accurately estimating
the statistical properties of such flows is necessary for developing a compre-
hensive understanding of turbulence. We develop and employ a hierarchical
Bayesian fitting method to estimate the parameters describing the scaling
relationships of the velocity power spectra of supersonic turbulence. We
demonstrate the accuracy and other advantages of this technique compared
with ordinary linear regression methods. Using synthetic power spectra,
we show that the Bayesian method provides accurate parameter and error
estimates. Commonly used normal linear regression methods can provide
estimates that fail to recover the underlying slopes, up to 70% of the in-
stances, even when considering the 2σ uncertainties. Additionally, we apply
the Bayesian methods to analyse the statistical properties of compressible
turbulence in three-dimensional numerical simulations. We model driven,
isothermal, turbulence with root mean square Mach numbers in the highly
supersonic regime M ≈ 15. We study the influence of purely solenoidal
(divergence-free) and purely compressive (curl-free) forcing on the scaling
exponent of the power spectrum. In simulations with solenoidal forcing and
10243 resolution, our results indicate that there is no extended inertial range
with a constant scaling exponent. The bottleneck effect results in a curved

79
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power spectrum at all wave numbers and is more pronounced in the transver-
sal modes compared with the longitudinal modes. Therefore, this effect is
stronger in stationary turbulent flows driven by solenoidal forcing compared
to the compressive one. The longitudinal spectrum driven with compressive
forcing is the only spectrum with constant scaling exponent ζ = −1.94±0.01,
corresponding to slightly shallower slopes than the Burger’s prediction.

6.1 Motivation

Turbulence is a critical component of gaseous flows on nearly all scales, as
it is intimately related to many physical properties of the medium, such as
the morphology, mixing characteristics, and thermal structure. Turbulence
is known to play a strong if not dominant role in a variety of systems, from
terrestrial incompressible flows (e.g. combustion engines, aerodynamics) to
highly supersonic compressible flows often occurring in astrophysical envi-
ronments. Consequently, accurately characterising the statistical properties
of turbulence is necessary for developing a comprehensive understanding of
fluid dynamics across a wide range of different environments.

The statistical properties of turbulence, such as the power spectrum, may
serve as diagnostics for distinguishing between different models. In the astro-
physical context, for instance, these are analytical and numerical models de-
scribing accretion disks in protoplanetary systems (see e.g. Meschiari, 2012),
the dynamics of the interstellar medium relevant for star formation (see e.g.
Mac Low and Klessen, 2004; McKee and Ostriker, 2007), the formation of
star clusters and galaxies (Hopkins, 2012) and galaxy evolution (Iannuzzi
and Dolag, 2012). Turbulence theory is also important in the description of
the diffuse interstellar medium (Elmegreen and Scalo, 2004) and for galac-
tic or protogalactic dynamos (Brandenburg and Subramanian, 2005; Schober
et al., 2012). Despite the impact of compressible turbulence across a range
of disciplines a comprehensive theoretical understanding remains elusive.

One key assumption of the Kolmogorov (1941b) theory describing incom-
pressible turbulence is that the energy transfer rate from large to small spatial
scales ε should be constant. With the definition of a velocity fluctuation δu`
at a length scale ` and its dynamical time-scale τ` = `/δu` one obtains

ε ' δu2
`

τ`
⇔ δu` ' (ε`)1/3 . (6.1)

This indicates that the velocity fluctuations can be described by a scaling law
in the so called inertial range, where the energy transfer rate ε is constant
and the flow is not influenced by viscous damping or the energy injection
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mechanism. From the power law behaviour of the velocity fluctuations a
scaling law of the Kolmogorov velocity power spectrum P (k) can be derived,

P (k) ∝ ε2/3k−5/3 . (6.2)

The kinetic energy is injected on the large scales and cascades to small
scales through non-linear coupling, until viscous effects become important
with respect to the advective terms. At this “dissipation scale” viscous ef-
fects cannot be neglected any more and the kinetic energy is converted into
heat (i.e. internal energy). This description has to be extended for com-
pressible turbulence. In the incompressible case, scale locality is crucial
for the Richardson-Kolmogorov picture of a cascade with constant energy
flux through the scales (Frisch, 1995). The non-local, inter-scale processes
of compressible turbulence via shock fronts have to be taken into account.
Additionally, the complex interplay between a varying density/pressure dis-
tribution with the velocity field may be a dominant processes in a supersonic,
compressible flow. Therefore, accurately measuring the scaling exponent of
the power spectrum is necessary for gaining a comprehensive understanding
of compressible turbulence (e.g. Kaneda et al., 2003; Kritsuk et al., 2007;
Lemaster and Stone, 2009; Federrath et al., 2010).

The theoretical predictions for the scaling exponents span only a small
range from −5/3 in the incompressible Kolmogorov (1941b) case, over −2 in
the shock dominated Burgers (1948) case and up to −19/9 in the more recent
theory of compressible turbulence of Galtier and Banerjee (2011) for the ρ1/3v
spectrum. Therefore, a high precision measurement, as well as exact error
estimates are needed to distinguish between these model predictions.

Numerical simulations provide a viable avenue for measuring the sta-
tistical properties of turbulent flows, and, by extension, testing theoretical
descriptions. It is common practise to employ normal χ2-based regression
methods to estimate the scaling exponent of the power spectrum of numeri-
cal simulations. Systematic errors, such as the influence of the chosen fitting
range, are normally not explicitly treated. In this paper, we explore how
common fitting methods, and the associated assumptions, affect the result-
ing parameter estimates. We develop and compare a hierarchical Bayesian
technique with ordinary fitting methods, with the goal of quantifying how
well the power spectrum in numerical simulations follow an exact power law.
We focus here on the description of the methods and a comparison with other
methods.

Bayesian inference has the advantage that uncertainties in the data are
rigorously and self-consistently treated (e.g. Kelly, 2007; Gelman et al., 2004).
Additionally, Bayesian methods are well suited for hierarchical problems,
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where different datasets, such as individual snapshots, can be analysed si-
multaneously, providing parameter estimates of both the individuals as well
as for the whole population. In astrophysics, Bayesian methods have been
developed for analysing observational data, such as turbulence in the ISM
(Shetty et al., 2012), analysis of dust extinction (Foster et al., 2013) and
spectral energy distributions (Kelly et al., 2012). Here, we apply a gen-
eral hierarchical model for the statistical analyses of turbulence in numeri-
cal simulations. We demonstrate that the Bayesian method has important
advantages, including accurate parameter estimation, over traditional non-
hierarchical χ2-based methods.

6.2 Caveats of the ordinary fitting methods

In practice, when analysing numerical simulations the scaling exponent is
often measured by linear regression in a log-log plot of the time-averaged
power spectrum, or on a k5/3 or k2 compensated spectrum (e.g. Kaneda
et al., 2003; Kritsuk et al., 2007; Lemaster and Stone, 2009; Federrath et al.,
2010). We describe in the following four common assumptions/methods that
lead either to inaccurate scaling parameter estimates, or to complications in
interpreting the results.

First, in a doubly logarithmic plot it is often difficult to verify if the
best-fit regression line accurately reproduces the data. Many functions may
appear to follow a power law in a doubly logarithmic plot. For example, if
the scaling exponent varies slightly with k, a simple linear regression in log-
space often does not reveal such fluctuations. To demonstrate this caveat we
perform three fits in slightly varying ranges on the simulation with solenoidal
forcing and 10243 grid cells (Figure 6.1). The resulting fitting parameters
are listed in the Figure. All fits indicate a power law behaviour over a range
∆k ≈ 10, although the measured slopes change significantly. The reason for
this is the curved behaviour of the power spectrum, which does not follow a
power law over an extended range, as we will further discuss in Section 6.5.
Hence, a qualitative validation whether the fit can reproduce the measured
data is needed.

Second, the k extent of the inertial range is not known a priori. The above
example demonstrates the influence of the chosen fitting range. It shows that
the estimated slopes strongly depend on the extent in k, because the power-
spectrum slope of the data is not necessarily constant in k. Depending on
the data, the measured error of an ordinary linear regression method is very
small and does not describe the intrinsic uncertainty of the data (see error
estimate in Figure 6.1 and also Section 6.4), so that this cannot be used
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Figure 6.1: Time-averaged power spectrum of the simulation with 10243 grid
cells and solenoidal forcing (orange points and error bars) and three different
fits (black solid, dashed and dotted lines). The error bars correspond to
the 1σ time variation of the power spectrum. All fits seem to describe the
behaviour of the data in different k ranges.

to verify the quality of the chosen fitting range. In this case, an unbiased
estimate of the inertial range is very difficult to obtain.

Third, a key assumption in a χ2 linear regression is that the uncertain-
ties are independently and normally distributed. The common practice of
fitting in log space implicitly assumes that the uncertainties are normally
distributed in log space. Usually the power spectra are averaged to min-
imise their time-dependence and to reduce the uncertainties and the scatter.
However, averaging data also assumes that the uncertainties of the data are
Gaussian or at least symmetrically distributed. Hence, both methods are
based on the assumption of a Gaussian/symmetric scatter, but for the linear
space as well as for the log space. Therefore, performing the averaging in
linear space and the χ2 fitting in log space is not consistent and violates this
underlying assumption.

Finally, information such as the time variation and the intrinsic scatter
contained in the data may be neglected when averaging data. Hierarchical
models exploit all the information in the data, simultaneously estimating
model parameters on multiple levels. In the next Section we introduce a
hierarchical Bayesian method to account for these issues for analysing the
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turbulent power spectra of numerical simulations.

6.3 Hierarchical Bayesian inference

To address the issues described above, we develop a hierarchical Bayesian fit-
ting method. Hierarchical1 modelling provides significant advantages when
the dataset is naturally structured into two or more groups. For instance, the
hydrodynamic simulations provide spatial information of all relevant quanti-
ties, such as the fluid densities and velocities, at a series of snapshots in time.
The data is therefore structured into temporal groups. We can assess the
variation in the spectrum by analysing the datasets on the individual time-
level, as well as estimate the parameters of the mean spectrum. Bayesian
methods are well suited for estimating model parameters on multiple levels
in a hierarchical model.

With Bayes’ theorem the probability P of a set of parameters θ given the
observed data D can be calculated

P(θ|D) ∝ P(D|θ)P(θ) , (6.3)

where P(D|θ) is the probability of the set of data D given the set of pa-
rameters θ, known as the likelihood function L(D|θ). P(θ) is referred to as
the prior and is the probability of the set of parameters. We will define θ
in detail below. The outcome of Bayesian inference is the probability of the
model parameters θ given the data D and is called posterior distribution. To
evaluate the posterior, we perform a Markov Chain Monte Carlo (MCMC)
sampling of θ for constructing the product of the prior and likelihood. The
result of the Bayesian inference, the posterior, is the joint probability distri-
bution of the parameters. The errors in each measured quantity are assumed
to be drawn from some a priori defined distributions described by one of the
parameters. For a detailed description of the Bayesian inference method, we
refer the reader to the standard textbooks about statistical methods (Gelman
et al., 2004; Kruschke, 2011; Wakefield, 2013).

In the following we will describe the construction of the Bayesian model,
using the standard statistical notation. We describe how quantities are con-
ditionally related, such that x|y refers to a variable x given a value of y.
Characterising values and their distribution, like x|µ, σ2 ∼ N (µ, σ2) de-
notes that x is drawn from a normal distribution

N
(
x|µ, σ2

)
=

1√
2πσ

exp

(−(x− µ)2

2σ2

)
, (6.4)

1Hierarchical modelling is often referred to as “multi-level” or “random-effects” mod-
elling (Gelman and Hill, 2007).
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given the mean value µ and the variance σ2. We also employ gamma distri-
butions

G(x|s, r) =
rs

Γ(s)
xs−1 exp (−rx) , (6.5)

for the inverse of the variance with s and r the shape and rate parame-
ters, respectively, and Γ the gamma function. Before performing the fit we
standardise the data, i.e. we transform it with

ỹ ≡ y − µy
σy

, x̃ ≡ x− µx
σx

, (6.6)

where µ and σ indicate the mean and the standard deviation. This has the
advantages that we know exactly the parameter range over which we have to
sample with the “hyperpriors” (see definition further below).

In a Bayesian model all quantities are drawn from some prior defined
distributions. Therefore, we assume that the velocity power spectrum P (k, t)
follows a power law, i.e. a linear function in log-log space. Additionally, we
include a scatter term δs(ki, tj), which measures the deviations from a perfect
power law,

logP (ki, tj) = A(tj) + log ki ∗ ζ(tj) + δs(ki, tj) . (6.7)

This equation describes the relationship between the parameters on the indi-
vidual level in the hierarchy. The intercept A(tj), the power-law index ζ(tj)
and the scatter δs(ki, tj) of each individual time snapshot tj must be drawn
from the prior conditional probability distributions

A(tj)|A, σ2
A ∼ N

(
A, σ2

A

)
, (6.8)

ζ(tj)|ζ, σ2
ζ ∼ N

(
ζ, σ2

ζ

)
, (6.9)

δs(ki, tj)|σ2
∆(tj) ∼ N

(
0, σ2

∆(tj)
)
, (6.10)

1/σ2
∆(tj)|s, r ∼ G (s, r) . (6.11)

The model uses normal distributions for the slope, intercept and the scatter
and a gamma distribution for the inverse of the variance of the scatter term.
The inverse of the variance is also called precision. We chose a gamma
distribution for the precision of the scatter to have a really broad prior, as
we would like to rely on the data and not the priors.

Those quantities that depend on tj refer to individual time frames. For
instance, ζ(tj) is the slope of the time snapshot tj whereas ζ refers to the
group slope of the whole dataset. The fitting results of each relationship
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above depend on quantities from the higher group level of the hierarchy,
i.e. describe the time-averaged behaviour of the power spectrum. The prior
assumptions for this final level, which are called “hyperpriors”, are

A ∼ N (0, 10) , (6.12)

ζ ∼ N (0, 100) , (6.13)

1/σ2
A ∼ G (0.1, 0.1) , (6.14)

1/σ2
ζ ∼ G (0.1, 0.1) , (6.15)

s|m, d = m2/d2 , (6.16)

r|m, d = m/d2 , (6.17)

m ∼ G (1, 0.1) , (6.18)

d ∼ G (1, 0.1) . (6.19)

The model contains the mean, m, and standard deviation, d, of the scatter
term, as they are more intuitive than the shape and rate parameters of the
gamma distribution. The mean µ and variance σ2 of a gamma distribution
with shape s and rate r is defined as, µ = s/r and σ = s/r2, respectively.

Recall that we normalize the data with equation (6.6), so that the av-
eraged intercept is zero and the standardized slope is just the correlation
corr(x, y) ∈ [−1 : 1]. Therefore, we have broad “hyperpriors” in the model,
such that the fixed values in (6.12)-(6.19), e.g. the group slope, is drawn from
a normal distribution with mean µ = 0 and σ2 = 100. All values in (6.12)-
(6.19) do affect the number of samples until the Markov Chain Monte Carlo
method converges, but assuming sufficient sampling and that the “true” val-
ues lie inside the priors, they do not affect the end results of the Bayesian
inference. For a more detailed description of the construction of a Bayesian
model we refer the reader to standard textbooks of statistical data analysis
(Gelman et al., 2004; Kruschke, 2011; Wakefield, 2013) or recent publications
using similar models (Kelly, 2007; Shetty et al., 2013, 2014).

In summary, this Bayesian method explicitly treats the common fitting
issues mentioned in the last Section. That is, variations of the scaling ex-
ponents with time yield a larger variance of the group slope. Fluctuations
of the scaling exponents with k increase the group scatter σ2

∆(tj). Varia-
tions and uncertainties of the measured data are also treated self-consistently.
Both individual and also the global parameters are estimated simultaneously,
avoiding any data-averaging. Since defining a fitting range introduces a large
uncertainty, we test the Bayesian model on synthetic data in the next Sec-
tion, where we fit over a k range of seven points to obtain the “local“ slope
of the power spectrum.
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6.4 Test with synthetic data

We verify the hierarchical Bayesian model with synthetic data and com-
pare it with normal linear regression (LR) methods. We create a syn-
thetic dataset with 121 realisations according to the Bayesian model (equa-
tions (6.7)−(6.11)), where the group intercepts, the slopes and the scatter-
precision follow distributions with mean values of (5,−2, 1000) and stan-
dard deviations of (1, 0.4, 200). These parameters for creating the synthetic
data reflect the averaged behaviour of the measured power spectra in log-log
space, where we slightly overestimate the variation in time. The synthetic
data are distributed logarithmically on the x-axis instead of homogeneously
distributed, as we will apply the methods in log-log space. Figure 6.2 shows
the slope measured in a fitting range ∆k = 6 (with seven points) as a func-
tion of the point in the centre of the fitting range for different methods. As
we fixed the size of the fitting range in linear space its width is decreasing
with k in log space, which we will discuss further below. The hierarchical
model rigorously accounts for a number of uncertainties. The posterior prob-
ability distribution function (PDF) contains the resulting fit parameters, for
both the group and the individuals. For example, the width of the PDF, or
highest density interval (HDI), of the group slope and intercept yields the
range in plausible parameters, considering the measurement uncertainty or
insufficient statistics, caused by fitting only seven points.

Figure 6.2 shows estimates for two different parameters of the synthetic
data. The group slope of the spectra with a 2σ-HDI uncertainty estimate,
as well as the 1σ variation of the slopes with time without an uncertainty
estimate. The green circles correspond to the Bayesian measurement of the
group slope ζ (the mean value in equation 6.9 and 6.13) and its 2σ-HDI in-
terval (green, solid, thick lines), whereas the grey, dashed, thin lines quantify
the variations of the slope in time using the maximum likelihood value of the
standard deviation σζ in equation (6.9) and (6.14). To mimic hierarchical
modelling using a normal linear regression we perform a fit on each individual
time realisation and collect the slopes and error estimates in two histograms.
The mean value of the resulting histogram with 121 error estimates gives a
measurement of the averaged error of the fits (yellow, solid, thick lines). The
mean value of the resulting histogram with 121 slopes provides an estimate
of the group slope (blue squares) and its 1σ-HDI measures the variation in
time (blue, dashed, thin lines). The red crosses correspond to a normal linear
regression method applied to the spectra averaged in log space.

All methods in Figure 6.2 have a comparable accuracy for estimating
the maximum likelihood slope, which does not depend on the scale in the
shown range, whereas the error estimates are significantly different. With
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Figure 6.2: Test on synthetic data with a slope of −2 and time variation of
0.4 (indicated by the horizontal dashed-dotted lines). The ordinate indicates
estimates of the group slope, from three different methods, over an extent of
∆k = 6, plotted with the centre value of k on the abscissa . We compare the
Hierarchical Bayesian, an unpooled linear regression to mimic hierarchical
modelling with ordinary linear regression, and an ordinary linear regression
applied to the spectra averaged in log-space. With the former two methods
we estimate the variation of the slope with time (dashed thin lines) as well
as the uncertainty of the group slope (thick solid lines). The results of the
log-averaged linear regression is shifted slightly to the left, whereas these of
the unpooled method are slightly shifted to the right for clarity. The creation
of the synthetic data and the employed methods are discussed in more detail
in Section 6.4.
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normal linear regression applied to the log-averaged spectra, in nearly all
cases (71%) the true slope lies outside the error interval (the red crosses are
in most cases larger than the uncertainty intervals). Alternatively, the error
estimates of the ’unpooled’ linear regression (yellow, solid, thick) contain the
correct value in all but one case, and the Bayesian method (green, solid, thick)
contain the correct value in 92% of all cases. The uncertainty interval of the
unpooled linear regression should contain the correct value in 68% = 1σ,
as we calculate it with the mean value of the histogram of the individual
errors. It increases systematically with k, which is due to an interplay of the
decreasing width of the fitting range with k in log space and the increasing
importance of the scatter with k, making this method impractical for a high
precision measurement of the scaling exponent of the power-spectrum. On
the other hand, both the unpooled linear regression model (blue, dashed,
thin) as well as the hierarchical Bayesian model (grey, dashed, thin) recover
the variation with time of the group slope of 0.4.

Figure 6.2 indicates that the regression method can have a major in-
fluence on the results, especially the error estimate, and should be chosen
carefully. The ordinary linear regression applied to the averaged spectrum
stand out negatively, as its error estimate of the mean slope totally fails. The
implementation of a method to mimic hierarchical modelling using a normal
χ2-linear regression can recover the time variation of the group slopes, but its
measurement of the averaged error between the individuals cannot be used
to quantify the uncertainty of the group slope, as it strongly depends on the
scale k and gets too large to distinguish between the different theoretical
models. This is caused by an interplay of two effects. First, as we assume
a fixed distribution for the scatter the relative importance of the scatter in-
creases with k, which the unpooled linear regression cannot handle. Second,
as we fix the fitting range in linear space, but fit in log-log space the effective
width of the fitting range decreases with k, influencing the error estimate for
the unpooled linear regression method. The Bayesian method, on the other
hand, recovers all information about the slope with a high precision and valid
error estimates.

6.5 The velocity power spectrum in

numerical simulations

Figure 6.3 shows the total spectra for solenoidal (orange) and compressive
(purple) forcing, compensated with k2, and for the simulation with 10243

resolution. It clearly indicates that the compressive forcing yields a spec-
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Figure 6.3: Left: Total spectra for solenoidal (orange) and compressive (pur-
ple) forcing, compensated with k2, and 10243 resolution. Right: Measured
local group slope of the Bayesian method as a function of the window centre
k for three different fitting window sizes ∆k = 2, 6, 10 (red, orange, green)
performed on the total spectrum of the simulation with 10243 grid points
and solenoidal forcing.

trum following the Burgers prediction over an extended range, whereas the
solenoidal forcing yields a curved spectrum. The bump of energy at inter-
mediate scales k ≈ 20 − 40 is caused by a phenomenon normally known as
the bottleneck effect (e.g. Dobler et al., 2003; Schmidt et al., 2006; Donzis
and Sreenivasan, 2010). We will discuss its influence on the spectra in detail
further below using the Bayesian estimate of the scaling exponent.

Next, we test how the extent of the fitting range influences the measured
scaling exponents. We do this on the measured spectra instead of synthetic
data and therefore use the simulation with solenoidal forcing and 10243 res-
olution. Figure 6.3 shows the measured group slope ζ(k) as a function of
the centre of the fitting range k for three different widths of the fitting range
∆k = 2, 6, 10 (thereby including 3, 7, 11 points). Increasing the fitting range
decreases the uncertainty in the measured scaling exponent. It also averages
the high-frequency scatter out, without changing the global functionality on
k. On low k values the measurements with small fitting windows estimate
steeper slopes. But this is not a systematic error included by the small fitting
ranges. It can be explained by the changing slopes of the power spectra in
the given ranges. We indicate the k ranges of the different fitting windows on
the first point of each measurement as a horizontal dashed line. The fitting
ranges of all measurements start at k = 4, where the forcing routine has no
direct influence any more. Figure 6.3 shows that the spectrum is strongly
curved with a steep area at low wave numbers and gets systematically shal-
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Figure 6.4: Local group slope as a function of the centre of the fitting window
k with a size of ∆k = 6 applied to the total (left), transverse (middle), and
longitudinal (right) spectra of the simulations with 5123, 10243 resolution
(red/orange and blue/purple), solenoidal (upper panels) and compressive
(bottom panels) forcing. The grey error bars indicate the time variation of
the slope at each k for the 10243 simulations. The horizontal dotted lines
indicate Kolmogorov −5/3 scaling and a Burgers −2 scaling behaviour.

lower with increasing k. So the steep part at small scales k ≈ 5 influences
the first measurement of the ∆k = 10 curve at k = 9 (first green measure-
ment), whereas the measurement with ∆k = 2 at k = 9 is only influenced by
the slope in k ∈ (8 : 10) and is therefore systematically shallower (fifth red
point). Figure 6.3 indicates that the scaling exponents of the solenoidal run
span the whole range of theoretical predictions in the scale range k ∈ (5 : 15).

Figure 6.4 shows the local group slope measured with window size ∆k = 6
as a function of the centre of the fitting range k for solenoidal (upper pan-
els) and compressive forcing mechanism (bottom panels), each for different
resolutions 5123 and 10243 (red/orange and blue/purple, respectively), and
from left to right the local slope of the total, transverse and longitudinal
decomposed spectra. The grey error bars indicate the time variation of the
slope at each k only for the 10243 simulations. As we measure k in units of
2π/L with constant L for different resolution, the spectra should overlap on
the large scales (low k). The spectra with 5123 and 10243 resolution deviate
from each other already on the large scales, indicating that they are not con-
verged with resolution. All spectra are curved in the displayed range with a
slope of ≈ −2 at large scales close to the forcing routine, a shallow area at
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Figure 6.5: Same as in the left, upper panel of figure 6.4. In addition, we
show the estimates of the slope in the individual times t ∈ (3, 4, 5, 6)[T ] to
illustrate the high time variation. We provide only the uncertainty interval
of the t = 3[T ] individual slope estimation and skip these for the other times
for clarity.

intermediate scales, and systematically decreasing slopes in the range, where
the numerical dissipation can no longer be neglected. This ”bump” is more
pronounced for the transverse spectra than for the longitudinal and is still
increasing with resolution. Its peak appears for solenoidal forcing on larger
scales and with shallower slopes than for compressive forcing. The longitudi-
nal spectrum in the simulation with compressive forcing is the only case with
a constant slope over an extended range k ∈ (10 : 32), which corresponds
to 102, 32 grid cells. Applying the Bayesian model to this range produces a
group slope ζ = −1.94 with the small 2σ-HDI [−1.95 : −1.93] and a standard
deviation for the time variations σζ = 0.04.

The simulation data indicate large temporal variations of the slopes ζ
with variance σζ ≈ 0.1 − 0.2 (grey error bars in figure 6.4) for a window
size of ∆k = 6, which is independent of the forcing, k scale, and the mode
of the analysed spectra. Increasing the fitting range decreases the temporal
fluctuations (compare with the fit results k ∈ (10 : 32) for the longitudinal
spectrum and compressive forcing stated above). Figure 6.5 shows the same
as the left, upper panel of figure 6.4, but in addition it provides the esti-
mates of the individual slopes at the times t ∈ (3, 4, 5, 6)[T ] to illustrate the
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fluctuations of the slope ζ for different times.

6.6 Discussion and interpretation

The measurements show that the power spectra are curved and not converged
at a resolution of 5123 and 10243 grid cells. An accumulation of kinetic energy
just before the dissipation wave number is a phenomenon called ”bottleneck
effect“ (e.g. Dobler et al., 2003; Schmidt et al., 2006; Donzis and Sreenivasan,
2010). We interpret the bump in the slopes as an influence of a numerical,
non-physical bottleneck effect for several reasons. First, its peak appears in
a region where we expect the bottleneck effect to occur (Donzis and Sreeni-
vasan, 2010). Second, the height of the bump is still varying with resolution.
And third, we rely on numerical dissipation. The bottleneck effect peaks at
k = 16, 23 for the 10243 simulations with solenoidal and compressive forcing,
respectively. It is more pronounced in the transverse than in the longitudinal
spectrum indicating that the dissipation of the transverse modes of the ve-
locity field is fainter than of the longitudinal modes. Increasing the number
of shocks in a simulation by changing the forcing modes from solenoidal to
compressive at constant Mach number decreases the amplitude of the bot-
tleneck effect. We interpret this with the non-local energy flux through the
scales introduced by shocks, which allows the flow to jump over a range of
scales instead of transporting it steadily through the scales. However, a de-
tailed study of the energy fluxes of the different velocity modes is necessary
to validate this interpretation.

The reason for the large fluctuations in the slope ζ measured at different
times can be explained as follows. Employing a constant forcing amplitude
in (3.4) fixes the resulting Mach number only in a statistical sense. The
actual energy and and momentum injection varies with time depending on
the correlation of the density field and the forcing field. If the forcing pattern
overlaps by chance with a high density region, more energy gets injected,
causing time fluctuations in the velocity field. These are visible on the power
spectra yielding the variations of the slopes with time.

6.7 Summary

We introduced a hierarchical Bayesian method for estimating the scaling ex-
ponent of the velocity power spectrum. We validated it on synthetic data
and compared it with ordinary linear regression models applied to the log
averaged power spectrum and an unpooled linear regression method to mimic
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hierarchical modelling. We demonstrate that the ordinary linear regression
model, applied to the averaged spectra, produces parameter estimates that
fail to recover the underlying slope ≈ 70% of the time, within the 2σ un-
certainties. With the unpooled linear regression method the time variation
of the slope can be accurately recovered, but the error estimate of the mean
slope systemically increases with the scale k up to ≈ 0.2 at k = 30. The hier-
archical Bayesian method avoids the caveats of the linear regression methods
and can recover the underlying mean behaviour of the power spectrum, its
time variation, as well as all errors and uncertainties estimates on these
quantities. Therefore, the Bayesian method provides more information, and
because of the correct error estimate, more robust parameter estimates of
the power spectrum. Additionally, we implemented a routine to apply the
hierarchical Bayesian method to fitting windows, where we change the sizes
and placements systematically, to estimate the uncertainty caused by defin-
ing a fitting range.

To demonstrate the improvements of such an analysis we applied it to a
”standard” simulation setup for analysing supersonic turbulence (e.g. Feder-
rath et al., 2010; Kritsuk et al., 2007). The simulations have 10243 resolution,
a root mean square Mach number of M ≈ 15, large scale forcing field (de-
composed in solenoidal and compressive modes), an isothermal equation of
state and artificial numerical dissipation. Our findings are:

1. The resolution study with 5123 and 10243 showed that the spectra are
still varying significantly and are not converged with resolution.

2. Independent of the forcing mechanism, we can rule out with 2σ = 95%
certainty that neither the total, nor the transverse spectra show an
extended range where the power spectra stay constant. They start at
k = 4 with a slope of ≈ −2 for solenoidal (compressive) forcing, reach
a bump with shallower slopes of ≈ −1.6 (−1.8) at intermediate scales
k ≈ 16 (23) and get systematically steeper in the dissipation range.

3. We interpret the bump in the slopes as numerical, non-physical bot-
tleneck effect caused by the artificial numerical dissipation. The bot-
tleneck bump is more pronounced and appears on larger scales in the
transverse spectra in comparison with the longitudinal spectra.
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4. We find that the forcing method has a more dominant influence on
the longitudinal spectra, such that the solenoidal forcing yields the
same curved spectrum and the compressive one yields a spectrum with
a constant slope in the range k ∈ (10 : 32) of −1.94 with the 2σ-
HDI −1.95 : −1.93 and a standard deviation for the time variations
σζ = 0.04.

5. We measured the variation of the slope ζ with time σζ ≈ 0.1− 0.2 for
a window size of ∆k = 6, which is independent of the forcing, k scale,
and the mode of the analysed spectra. As observations measure only
one time realisation of the power spectrum this uncertainty has to be
taken into account.
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Chapter 7

Summary and outlook

7.1 Summary

In this thesis, we performed a systematic analysis of the statistical proper-
ties of supersonic, isothermal turbulence. Turbulent flows occur on virtually
all scales and in a variety of systems ranging from common incompressible
terrestrial to highly supersonic and compressible flows. It arises in many
astrophysical contexts, for instance, in the accretion disks of protoplanetary
systems, in the interstellar medium, which is relevant for GMC and star
formation, and in the intracluster medium (ICM). Supersonic turbulence
is likely responsible for the complex and filamentary density structures ob-
served in molecular clouds and influences the statistical occurrence of star
formation. Despite of these applications, the theoretical understanding of
compressible turbulence is still poor and analytical derivations are rare.

We studied a series of high-resolution, hydrodynamical grid simulations
and examined the effects of solenoidal (divergence-free) and compressive
(curl-free) forcing as well as varying Mach numbers on the parameters de-
scribing the statistical state of the system in both the Lagrangian and Eu-
lerian frameworks. The probability density functions of the gas density, the
velocity, and the velocity increments were measured. Structure functions and
power spectra were investigated to quantify the two-point correlation proper-
ties of compressible turbulence and we compared the scaling exponents with
intermittency models. Additionally, we employed a hierarchical Bayesian fit-
ting method to estimate the parameters describing the scaling relationships
of the velocity power spectra of supersonic turbulence and demonstrated the
accuracy and other advantages of this technique compared with ordinary lin-
ear regression methods. We found that the mode of the forcing mechanism
has an influence on all above mentioned measurements at a fixed root mean

97
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square Mach number.
The study in Chapter 4 showed that the turbulent medium, driven by the

compressive forcing, is more intermittent, has a larger fractal dimension of
the most dissipative structures, and excites stronger head-on collisions and
shock fronts, which shows a correlation between high density and low velocity,
compared to the solenoidal driven medium. A comparison with simulations
of incompressible turbulence shows that intermittency is stronger in a su-
personic, compressible medium. Additionally, we found that the influence
of the different forcings is stronger in the Eulerian than in the Lagrangian
framework and that the Lagrangian framework exhibits a more intermittent
behaviour than the Eulerian one.

Chapter 5 demonstrated that the solenoidal forcing yields a density PDF
close to a log-normal distribution. In contrast, the compressive forcing yields
distributions of the mass density that shows stronger deviations from the
log-normal shape in the wings of the distribution. Compressive forcing yields
density PDFs with std. dev.s proportional to the r.m.s. Mach number with
b = 1, whereas solenoidal forcing yields b = 1/3. We found a unique relation
between the std. dev. of the mass density and the compressible modes of the
velocity field, which is independent of the driving mechanism and still holds
in the subsonic regime, where the flow is mainly influenced by sound waves.

Chapter 6 revealed that compressive forcing yields steeper power spec-
tra than solenoidal forcing. However, the turbulent power spectra are still
varying significantly and are not converged with 5123 and 10243 resolution
at intermediate scales. Independent of the forcing mechanism, we can rule
out that neither the total, nor the transverse spectra show an extended range
where the power spectra stay constant. We found a ’bump’ in the slopes at
intermediate scales and interpreted it as the bottleneck effect. The bottle-
neck bump is more pronounced and appears on larger scales in the transverse
spectra in comparison with the longitudinal spectra. Analysing the decom-
posed longitudinal spectra showed that the solenoidal forcing yields the same
curved spectrum and the compressive one yields a spectrum with a constant
slope.

7.2 Outlook

We present first two concrete ideas, how to proceed in the analysis of super-
sonic, isothermal turbulence, before we will discuss open questions concerning
supersonic turbulence in the context of star formation.

The relation between the std. dev. of the density and the std. dev. of
the longitudinal velocity (Chapter 5) suggests that these global one-point



7.2. OUTLOOK 99

statistical properties are not independent and can be expressed with only
one parameter. If such a relation also exists for the two-point statistics, like
power spectra or structure functions, the statistical properties of the density
field are fully described by the velocity field. This means that a theory of
compressible turbulence has to describe ’only’ the properties of the transverse
and longitudinal velocity fields. We showed in Chapter 4 and 5 that the
velocity and the log-density in a turbulent flow are drawn from a normal
distribution. By measuring the statistical parameters of the density and
velocity distribution individually, what is normally done (see e.g. Federrath
et al., 2010; Kritsuk et al., 2007; Konstandin et al., 2012a), one uses the
assumption that these parameters are statistically independent distributed.

The Ansatz to model the global, one-point, statistical properties of isother-
mal, supersonic turbulent flow with a multivariate Gaussian (see Section 3.2.5
for the definition)

(log(ρ), v) ∼ N (µ,Σ) , (7.1)

can be implemented in a Bayesian framework, which does not contain the
assumption that the parameters are independently distributed and measures
the correlation of all parameters self-consistently. Isotropy leads to two inde-
pendently random variables describing the statistical properties of the flow,
the logarithm of density and the averaged velocity component (log(ρ), vi).
The study in Chapter 5 indicates a strong correlation between the longitudi-
nal component of the velocity and the density field leading to the Ansatz(
log(ρ), v⊥, v‖

)
, which could also result in a two dimensional parameter

space, if the longitudinal component and the log-density can be expressed
by each other. The matrix A in (3.15) also plays in the interpretation an
important role, as it contains the information of the basis vectors of the
parameter space.

In order to express the statistical properties of a turbulent flow only with
the

(
v⊥, v‖

)
fields, we have to show that the correlation properties of the den-

sity field are a function of these variables and can be calculated. Therefore,
we have to understand the velocity and density power spectra in detail. In
the Appendix 8 we derive expressions for the energy fluxes occurring in super-
sonic turbulence. We introduce a new energy term measuring the amount of
energy contained in the density field for the isothermal case. Measurements
of these transfer functions in numerical simulations will provide informative
insights in the dominant processes of supersonic turbulence.

Although supersonic turbulence is important for developing a theory of
star formation, the interplay with other processes, like gravity, is not fully
understood. There are many numerical studies of star formation in a turbu-
lent medium with gravity (see Mac Low and Klessen, 2004; Federrath and
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Klessen, 2012, and references therein), but they are either focusing on the
influence of the turbulent properties on the statistical description of the star
formation process or limited to one-point statistics such as the power-law
tail of the density PDF in a self-gravitating system (Girichidis et al., 2013;
Schneider et al., 2013). As far as we know, the influence of gravity on the
turbulent properties, like the PDF of the velocity increments, their Gaussian-
ity, and intermittency, is not well understood and a description of gravity in
a turbulent framework is missing. Gravity adds another source term in the
Euler equations, which will result in a different description of the density
energy-reservoir yielding new energy fluxes between the gravitational poten-
tial and the kinetic energy. We plan on adding gravity to the theoretical
description presented in Appendix 8 and investigate the influence on the
energy transfer terms as well as the power spectra of the different energy
reservoirs.

Glover et al. (2010a) showed that CO forms within a dynamical time
scale, whereas the formation of H2 typically needs more time (Glover et al.,
2010b) and is more sensitive to the number density. Micic et al. (2012)
pointed out that the H2 formation is enhanced in a more shock dominated
turbulent medium influencing the cooling rates of a fresh formed GMC. As
the dynamical evolution of a cloud is rapid and the time scale is comparable
to the time scale of most chemical processes, like the freez-out of molecules
on the surface of dust grains, the dynamics and the chemistry of the gas
are strongly coupled. The back reaction of this chemical network and the
connected cooling processes on the statistical properties of the turbulence is
not well understood and needs to be quantified further. In a first step we will
analyse the influence of dropping the isothermal assumption and replacing it
with a polytropic equation of state on the statistical properties. This adds
another energy reservoir, the internal energy, with which the kinetic energy
cascade can interact. The heating and cooling processes interact via the
pressure term with the density and velocity field. This will change the kinetic
energy spectrum and the correlation properties. A full chemical network
will change this picture again, as the chemical processes depend strongly on
the local temperature and density such that the heating and cooling (and
the connected energy fluxes) correlate with regions of high densities and
temperatures.



Chapter 8

Appendix: The energy fluxes in
supersonic turbulence

The ideas presented here were developed together with J. Graham, R. Klessen,
and W. Schmidt.

8.1 Energy fluxes of an incompressible medium

The inertial range in Kolmogorov phenomenology for an incompressible medium
is intimately connected to the ideal invariant of kinetic energy. This can be
shown with the Euler equation

∂v

∂t
+ (v ·∇) v +

∇p

ρ
= 0 , (8.1)

where v is the velocity field and p = c2
sρ is the pressure of an isothermal

gas. We neglected the forcing and the dissipation term and assume that the
average energy input from the external forcing equals the average energy loss
by the dissipation in the steady state. We derive the time evolution of the
kinetic energy density einc = v2/2, by taking the dot product of equation
(8.1) with v

∂einc
∂t

+ ∇ (veinc)− einc∇ · v + v · ∇p

ρ
= 0 , (8.2)

where the third and fourth term vanish assuming incompressibility. Assum-
ing a convenient boundary condition (e.g. fields, which converge to zero at
infinity, or periodic fields) implies for a given vector field f∫ ∞

∞
dr ∇f = 0 , (8.3)
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such that the total kinetic energy is conserved in the Kolmogorov framework

∂einc
∂t

= 0 . (8.4)

The Fourier analogue of the energy equation (8.2) is the spectral energy
density balance equation, which can be derived by Fourier transforming (8.1),
assuming incompressibility, and multiplying the result with the complex con-
jugated velocity v̂∗(k)

∂v̂(k) · v̂∗(k)

2∂t
+ v̂∗(k) · ̂[(v ·∇) v](k) = 0 (8.5)

where the first term is the time derivative of the spectral energy density and
the second is the energy transfer function. Parseval’s theorem guarantees
that the spectral energy density integrates to the total energy. The transfer
function is conservative, which can be shown with the Parseval’s theorem
and the Gauss theorem∫ ∞

0

dk v̂(k)∗ · ̂[(v ·∇) v](k) (8.6)

=

∫ ∞
0

dr ∇ (veinc)− einc∇ · v = 0 , (8.7)

and measures the rate of kinetic energy received at wave number k from
exchange with all other wave numbers of kinetic energy.

8.2 Energy fluxes of a compressible medium

To derive the scale dependent energy distributions in isothermal, compress-
ible turbulence we start with the Euler equation

∂ρv

∂t
+ (v ·∇) ρv + ρv (∇ · v) = −c2

s∇ρ . (8.8)

Adding (8.1) multiplied with 1/2ρv and (8.8) with 1/2v results in an equation
describing the time evolution of the kinetic energy density eK = 1/2ρv2 in
normal space

∂teK + ∇ (veK) = −c2
sv ·∇ρ . (8.9)

From this equations we can already conclude that the kinetic energy is no
invariant, because of the pressure term c2

sv · ∇ρ, which states that work
against density gradients acts as a sink of kinetic energy.
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To derive the spectral energy distribution we perform first the Fourier

transformation of (8.1) and (8.8), then multiplying (8.1) with 1/2(̂ρv)
∗
(k)

and the complex conjugated (8.8) with 1/2v̂(k), and adding the results gives

∂tEK(k) = TKK(k) + TSK(k) (8.10)

with

EK(k) =
1

2
ρ̂v∗(k) · v̂(k) , (8.11)

TKK(k) =− 1

2
(̂ρv)

∗
(k) · ̂[(v ·∇) v](k)

− 1

2
v̂(k) · ̂[(v ·∇) ρv]

∗
(k)

− 1

2
v̂(k) · ̂[ρv (∇ · v)]

∗
(k) , (8.12)

TSK(k) = −c
2
s

2
ρ̂v∗(k) · ∇̂s(k)− c2

s

2
v̂(k) · ∇̂ρ

∗
(k) . (8.13)

EK(k) is the spectral kinetic energy distribution, TKK(k) is the energy trans-
fer of kinetic energy from all other wave numbers to EK at k, and TSK is the
transfer from the density field to the kinetic energy at k. The energy transfer
TKK is conservative ∫ ∞

0

dk TKK =

∫ ∞
0

dr ∇ (veK) = 0 , (8.14)

whereas TSK is not. We can write the scale-by-scale cumulative kinetic energy
equation

∂tE(k) + ΠKK(k) + ΠSK(k) = 0 , (8.15)

where the cumulative spectral energy is defined as,

E(k) =

∫ k

0

dk’ EK(k’) , (8.16)

and similar definitions for the fluxes. The assumptions of a constant energy
flux in the steady state in the inertial range ε = const results in

ε ≈ ΠKK(k) + ΠSK(k) . (8.17)

If it turns out that ΠSK(k)� ΠKK for some range in k we have

ε ≈ ΠKK(k) ∼
〈
∇ ·

(
vρv2/2

)〉
⇒ ε = ρ

v3

`
, (8.18)
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which is the result of Kritsuk et al. (2007); Galtier and Banerjee (2011). We
now see the implicit assumption in this framework is that TSK ≈ 0 over the
kinetic inertial range.

In the isothermal case the internal energy cannot be part of a conserved
total energy equation, as energy must be removed from the system to keep the
temperature constant. The internal energy is for a polytropic gas normally
defined as EI = p/(γ − 1), which diverges for the isothermal case γ = 1.
Therefore, we define a new energy

eS = c2
sρ log

(
ρ

ρ0

)
= c2

sρs , (8.19)

which was already used in Galtier and Banerjee (2011) without any discus-
sion. The energy in density fluctuations can be defined positive definite by
the choice of ρ0.

For the next step we write down the continuity equation

∂

∂t
ρ+ ∇ · (ρv) = 0 , (8.20)

∂

∂t
s+ v ·∇s = −∇ · v . (8.21)

First we Fourier transform (8.20) and (8.21), then we add (8.20) complex
conjugated and multiplied with c2

sŝ(k) to (8.21) multiplied with c2
sρ̂
∗, which

results in
∂tES(k) = TSS(k) + TKS(k) , (8.22)

where
ES(k) = c2

sρ̂
∗(k)ŝ(k) , (8.23)

TSS(k) = −c2
sρ̂
∗(k)v̂ ·∇s(k)− c2

sρ̂
∗(k)∇̂ · v(k) , (8.24)

TKS = −c2
sŝ(k)

[
∇̂ · ρv

]∗
(k) . (8.25)

The energy transfer in the density fluctuations is conservative∫ ∞
0

dkTSS =

∫ ∞
0

dr ∇ (vp) = 0 , (8.26)

whereas the transfer functions TKS and TSK are alone not conservative, to-
gether they built a conserved exchange of energy between the two reservoirs∫ ∞

0

dkTKS + TSK =

∫ ∞
0

dr ∇ (veS) = 0 . (8.27)
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Combining everything, we define the total energy

etotal = eK + eS , (8.28)

which is a conserved quantity

detotal
dt

=
∂etotal
∂t

+ ∇ (v(etotal + p)) = 0 , (8.29)

and results in the spectral balance equation

∂/∂t Etotal(k) = TKK(k) + TSK(k) + TKS(k) + TSS(k) . (8.30)

With the definition of the cumulative transfer of energy describing the
flux of energy through the scale k due to interaction between fluid motions
and density fluctuations

ΠSKS(k) = −
∫ k

0

dk’ TSK(k’) + TKS(k’) , (8.31)

we can write down the scale-by-scale conserved flux of energy through the
wave number k

Πtotal(k) = ΠKK(k) + ΠSS(k) + ΠSKS(k) , (8.32)

which is the total amount of energy transferred through the scale k and sat-
isfies the Parseval-Gauss condition.

8.3 Energy fluxes of a compressible medium

decomposed in curl field and source field

The Helmholtz theorem reads for the Fourier transformed velocity field

v̂(k) = v̂⊥(k) + v̂‖(k) (8.33)

= k× 1

4π

∫
k′ × v̂(k′)

|k − k′| d3k′ (8.34)

− k
1

4π

∫
k′ · v̂(k′)

|k − k′| d3k′ (8.35)

with the divergence-free, curl field, transversal component v̂⊥(k) and the
curl-free, gradient field, longitudinal component v̂‖(k). The kinetic energy



106 CHAPTER 8. APPENDIX: ENERGY FLUXES

EK (8.11) can be decomposed in Fourier space

EK(k) =
1

2
ρ̂v∗(k) · v̂(k)

=
1

2

(
ρ̂v∗⊥(k) + ρ̂v∗‖(k)

)
·
(
v̂⊥(k) + ·v̂‖(k)

)
=

1

2
ρ̂v∗⊥(k) · v̂⊥(k) + ρ̂v∗‖(k) · v̂‖(k)

= EK,⊥(k) + EK, ‖(k) . (8.36)

Fourier transforming equation (8.1) and (8.8), complex conjugate (8.8), and
splitting the velocity in the transverse and longitudinal modes gives

̂[
∂
(
v⊥(k) + v‖(k)

)
∂t

]
+ ̂[

(v ·∇)
(
v⊥(k) + v‖(k)

)]
+ ̂[−c2

s∇s] = 0 , (8.37)

and

̂[
∂
(
ρv⊥(k) + ρv‖(k)

)
∂t

]∗

+ ̂[
(v ·∇)

(
ρv⊥(k) + ρv‖(k)

)]∗
+ ̂[(

ρv⊥(k) + ρv‖(k)
)

(∇ · v)
]∗

+ ̂[−c2
s∇ρ]

∗
= 0 . (8.38)

where the square brackets indicate the terms, which have to be Fourier trans-
formed. Now we take the dot product with the decomposed momentum
1
2
ρ̂v∗⊥(k) and velocity 1

2
v̂∗⊥(k) on (8.37) and (8.38). As the Fourier transfor-

mation of a sum can be divided into two terms we get after adding these
equations

∂tEK,⊥(k)

+
1

2
ρ̂v∗⊥(k)∂tv̂‖(k)

+
1

2
v̂⊥(k)∂tρ̂v

∗
‖(k)

+ TKK,⊥ + TKK,⊥‖ + TSK,⊥ = 0 , (8.39)
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with

TSK,⊥(k) = −c
2
s

2
ρ̂v⊥

∗(k) · ∇̂s(k)− c2
s

2
v̂⊥(k) · ∇̂ρ

∗
(k) = 0 , (8.40)

which vanishes because the transverse velocity and momentum are perpen-
dicular and the gradient fields are parallel to k. For the energy flux in the
transverse mode we get

TKK,⊥(k) =− 1

2
ρ̂v∗⊥(k) · ̂[(v ·∇) v⊥](k)

− 1

2
v̂⊥(k) · ̂[(v ·∇) ρv⊥]

∗
(k)

− 1

2
v̂⊥(k) · ̂[ρv⊥ (∇ · v)]

∗
(k) , (8.41)

and for the energy flux between the modes

TKK,⊥‖(k) =− 1

2
ρ̂v∗⊥(k) · ̂[

(v ·∇) v‖
]
(k)

− 1

2
v̂⊥(k) · ̂[

(v ·∇) ρv‖
]∗

(k)

− 1

2
v̂⊥(k) · ̂[

ρv‖ (∇ · v)
]∗

(k) . (8.42)

The flux TKK,⊥(k) is conservative∫ ∞
0

dk TKK,⊥(k) =

∫ ∞
0

dr ∇ (vE⊥) = 0 , (8.43)

whereas the flux TKK,⊥‖(k) is not. However, the sum of the fluxes TKK,⊥‖(k)
and TKK, ‖⊥(k) are conservative∫ ∞

0

dk TKK,⊥‖(k) + TKK, ‖⊥(k) =

∫ ∞
0

dr ∇
(
vρv⊥v‖

)
= 0 . (8.44)

The last missing step to derive the spectral energy balance equation is to
discuss the mixed terms in (8.39). Because of orthogonality in Fourier space
we can write

ρ̂v∗⊥(k)∂tv̂‖(k) + v̂⊥(k)∂tρ̂v
∗
‖(k)

= (−1)
(
ρ̂v∗‖(k)∂tv̂⊥(k) + v̂‖(k)∂tρ̂v

∗
⊥(k)

)
, (8.45)

showing its symmetry.
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