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Abstract

Disks around young stars are the birth place of planetary systems like our own
solar system. Thus, the study of turbulent processes in protoplanetary disks is not
only important to understand the transport of angular momentum to explain for
example the angular momentum deficit of our own sun, but also to understand how
large scale structures emerge, which are recently regularly observed and which also
represent a crucial puzzle piece in the understanding of how dust grains can grow into
planetesimals via gravoturbulent processes. In this thesis, I conduct high resolution
studies of three-dimensional global models of turbulent protoplanetary disks using
the magneto-hydrodynamics code PLUTO. I focus my studies on the Vertical Shear
Instability (VSI), which has been shown to operate efficiently at disk radii beyond a
few AU in typical protoplanetary disks. I show that vortices with radial diameters of
around 1.5 local pressure scale heights and aspect ratios χ > 8 form in VSI turbulent
disks and that these vortices can survive more than 500 orbits. The vortices are
forming irrespective of the underlying disk density gradient and aspect ratio and
can therefore act as pressure traps for small to medium sized particles over a wide
range of the disk. I also show evidence that these dusty vortices are compatible
with detections of dust concentrations by current sub-mm interferometers. These
findings therefore present a crucial puzzle piece which will help the understanding
under which conditions and how early after the formation of a disk around a young
star planetesimals can form via gravoturbulent planetesimal formation.





Zusammenfassung

Scheiben um junge Sterne sind die Geburtsstätten von Planetensystemen wie unser
Sonnensystem. Daher ist das Studium turbulenter Prozesse in diesen Protoplane-
taren Scheiben bedeutsam, und zwar nicht nur um den Drehimpulstransport zu
verstehen und damit zum Beispiel das Drehimpulsdefizit unserer Sonne zu erklären,
sondern auch um die Entstehung ausgedehnter Strukturen in diesen Scheiben zu ver-
stehen, welche in jüngster Zeit regelmäßig in Beobachtungen gefunden werden und
welche außerdem ein entscheidendes Puzzleteil in unserem Verständnis des Prozesses
bilden, welcher mit Hilfe von gravoturbulenten Prozessen Planetesimale – Asteroiden
und Kometen – aus Staubteilchen wachsen lässt. In dieser Dissertation präsentiere
ich hochaufgelöste Simulationen von dreidimensionalen Modellen turbulenter proto-
planetarer Scheiben unter Verwendung des magneto-hydrodynamik Simulationspro-
gramms PLUTO. Im Zentrum meiner Arbeit steht die Vertikale Scherinstabilität
(VSI), welche in früheren Studien als effizient operierende Instabilität in typischen
protoplanetaren Scheiben bei radialen Abständen von mehr als einer Astronomi-
schen Einheit vom Zentralstern identifiziert wurde. Ich zeige, dass in Scheiben mit
VSI generierter Turbulenz großflächige Wirbel mit einer radialen Ausdehnung von
ca. 1.5 lokalen Druckskalenhöhen und einem Achsenlängenverhältnis χ > 8 entste-
hen und dass diese Wirbel für mehr als 500 Umläufe um den Zentralstern bestehen
bleiben. Die Wirbel formieren sich dabei unabhängig vom Dichtegradienten und
Radius-zu-Druckskalenhöhenverhältnis der unterliegenden Scheibe und können da-
her als Hochdruckfallen für kleine und mittelgroße Staubteilchen über weite Teile der
Scheibe dienen. Ich präsentiere außerdem Belege dafür, dass diese staubigen Wir-
belstrukturen kompatibel sind mit aktuellen sub-mm Interferometer Beobachtungen
von Staubansammlungen in protoplanetaren Scheiben. Diese Ergebnisse sind daher
ein wichtiger Baustein in unserem Verständnis unter welchen Bedingungen und ab
welcher Zeit nach der Entstehung des jungen Sterns und seiner Scheibe die Forma-
tion von Planetesimalen durch gravoturbulente Prozesse möglich ist.
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Chapter 1

Introduction

Space: the final frontier.

Star Trek, Roddenberry
(1987-1994)

Have you ever looked at the night sky and thought: What else is out there?
If the answer is yes, then you are in very good company. Astronomers (from the
ancient greek astronomy meaning ’the law of the stars’) have looked at the night sky
for thousands of years, with historical documents going back to the times of ancient
Greece and Mesopotamia.

Some of the questions driving astronomical advance in modern times, especially
in the field of planet formation are: How did earth, and in extension our solar
system, form? And is our solar system unique or are there other systems just like
it out there around other stars? And if this is the case, how typical is our solar
system compared to all the others? And although observational breakthroughs in
the last few decades, from the first planet detected around a solar type star (Mayor
& Queloz 1995), via the 4200 confirmed exoplanets from the Kepler space mission1,
to the high resolution observations of structures in protoplanetary disks with ALMA
ALMA Partnership et al. (2015) and the recent discovery of a planet still forming
in the disk around PDS 70 (Keppler et al. 2018), some of these questions still elude
a definitive answer. But before I introduce the concept of how we think planetary
systems are formed, lets take a look at the road astronomy took to get there.

A Historical perspective
One of the first attempts to explain the formation of our solar system, the nebula
hypothesis, goes back to Immanuel Kant Kant (1755) and Pierre-Simon Laplace
Laplace (1796). They theorised that the solar system formed out of a rotating
nebula which flattens due to angular momentum conservation and eventually forms
rings around the young star which contract seperately to form the planets. But in
this model the sun has orders of magnitude less angular momentum than it should
have (this problem is known as the solar angular momentum problem). Other models
were proposed to solve this, e.g. explaining the solar system as the result of a proto-

1http://exoplanet.eu/diagrams/, accessed on 05.03.2019

1
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stellar fly-by, which extracted material from the young sun (see Woolfson (1993) for
an overview).

Parallel to the discussion of other models, the solar nebula theory was signifi-
cantly advanced during the second half of the 20th century. Weizsäcker (1943) put
Laplaces model on a modern theoretical footing and already postulated the forma-
tion of vortices in circumstellar disks. He also theorised that they are the places
where planets form. Von Weizsäcker also argued that turbulent motions must be
present in the disk and that the viscosity from this motions must drive disk evolu-
tion (Weizsäcker 1948). Later, the work of Safronov (1972) significantly advanced
the theory of both disk and planet formation and contains the analytic footing of
many current theories in the field.

The Modern perspective

Figure 1.1: Observational classification of Young Stellar Objects according to the
Lada sequence. Class 0 objects are protostars in their early collapsing phase while
Class I objects have already formed a protostellar disk, though both are still embed-
ded in a substantial envelope. Class II systems do not have an envelope but consist
of a central protostar and a thin, gas-dominated disk. Class III systems are gas-poor
and commonly known as debris disks. Image from: Pohl (2018). The images are
not to scale.

In modern astronomy, planet formation is explained as a by-product of star
formation, where planets are formed in disks of dust and gas around young stars.
The formation of the stars themselves occurs in dense molecular clouds. Once a
part of the cloud becomes massive (or cold) enough to exceed the Jeans mass it
collapses, as the internal pressure cannot balance the gravitational pull. This initial
collapse happens on a timescale of ∼ 105 yr (essentially the free-fall time) and is
halted once the gas in the inner parts becomes optically thick to its own radiation,
forming the protostar (Class 0 object). Because the protostar is rotating and has to
conserve angular momentum, it has to rotate faster. This halts the direct infall of the
outer shells, which instead form a protostellar disk in the plane perpendicular to the
angular momentum vector. Initially, the protostar and the disk will be surrounded
by an envelope of infalling gas, which is accreted or dispersed through jets within
another few ∼ 105 years (Class I objects). Once the envelope is accreted, the
essentially formed protostar is surrounded by a disk containing only a fraction of the
stellar mass, a configuration called Class II object. During this stage, the protostar
accretes mass from the protoplanetary disk while angular momentum is carried away
by the disk, slowing down the protostellar rotation. During this phase, dust grains
are believed to grow from micron sized objects to km-sized boulders, first through
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mutual sticking and later through concentration towards the midplane of the disk
and in traps forming in the turbulent disk environment. Also, the formation of gas
and ice giants happens during this stage. Once the accretion onto the central star
ceases after roughly 10 Myr, the disk disperses rather quickly (≲ 0.5Myr), leaving
behind a gas poor disk dominated by n-body interactions of asteroids and already
formed giant planets. These disks are termed Class III objects, also known as
debris disks. In these disks, rocky planets then form through the mutual interaction
and collision of asteroid sized objects and accretion of the remaining dust (see e.g.
Raymond et al. 2014, and references therein).

Although this model gives us a basic outline as to how planetary systems form,
many detailed questions are still waiting to be answered. For example, as stated
above, during the gas-rich phase of disk evolution, the disk has to shed significant
amounts of angular momentum. This is thought to occur, at least partially, through
viscously driven accretion. But, to accomplish this in the time frame laid out above,
the evolution cannot happen through molecular viscous forces alone. This problem
has been mitigated with the discovery that the Magneto Rotational Instability (MRI,
Balbus & Hawley 1991) can operate in protoplanetary disks, as the turbulence gen-
erated by the instability generates an effective viscosity (Shakura & Sunyaev 1973)
orders of magnitude larger than molecular viscosity, strong enough to drive accretion
on observed time scales. More recent work done on the MRI however shows that
it is inactive near the midplane over a significant range of the disk (Gammie 1996;
Dzyurkevich et al. 2013; Lesur et al. 2014). Therefore, hydrodynamic instabilities
are considered as a source of turbulence (Lyra & Klahr 2011).

In recent years, many hydrodynamic instabilities have been (re-)discovered for
protoplanetary disks. The most important class of instabilities for this thesis are
entropy-driven instabilities. They arise because protoplanetary disks are baroclinic,
which means that isobars (areas of constant pressure) and isopycnals (areas of con-
stant density) are not aligned. Therefore, under the right conditions, the system can
violate or circumvent the Solberg-Høiland criteria, which govern the hydrodynamic
stability of the system. Examples of this are the Convective overstability (Klahr &
Hubbard 2014) and the Vertical Shear Instability (Nelson et al. 2013), an instability
known for stellar atmospheres as the Goldreich-Schubert-Fricke instability (Goldre-
ich & Schubert 1967; Fricke 1968). These instabilities have been shown to support
turbulence on a sufficient level to explain current observations (e.g. Lyra 2014; Stoll
& Kley 2014).

Another question still not fully answered is how the growth of dust grains pro-
ceeds from sub-micron sized particles in the interstellar medium from which the disk
around the newborn star is formed, to the >1000 km sized object known to us as
earth. In the current model, small dust grains grow through sticking collisions, but
this is only possible up to the size of a few millimeters to meters, depending on the
surrounding disk conditions (see e.g. Testi et al. 2014, and references therein). To
grow to sizes above this threshold, many models have been proposed, relying on
mass transfer collisions or the ’fluffyness’ of the grains. Another avenue pursued is
to skip the growth through the regime of tens of meters sized objects entirely and
form > km sized objects via gravitational collapse of a dust cloud (e.g. Johansen
et al. 2006; Klahr & Schreiber 2016). This method relies however on the existence of
conditions in the disk which are able to efficiently concentrate particles. Especially
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in the early protoplanetary disk, these structures have to form out of the turbulence
itself. Promising candidates to work as these ’particle traps’ are zonal flows (Dittrich
et al. 2013) and vortices (Barge & Sommeria 1995), and the search especially for
vortices formed from purely hydrodynamic turbulence is one of the primary topics
of this thesis.

An Observational Perspective
For now, I only presented theoretical concepts of how we think the solar system
formed out of a cloud of interstellar gas. But as the solar system is already several
billion years old, we cannot test these theories from looking at our solar system
alone. We have to turn to observations of other stars in our neighbourhood.

The first evidence of protoplanetary disks come from unresolved observations of
stars performed in the second half of the 20th century. This was possible because
the presence of the disk alters the Spectral Energy Distribution (SED) of the object.
The SED is a measure of the Flux Fλ of a star as a function of wavelength and for a
main sequence star, it is approximately equal to a black-body of stellar temperature.
For a protostar however, the SED shows excess emissions in the infrared part of the
spectrum due to the dust surrounding the star, as the dust reprocesses the starlight
and emits it at wavelengths corresponding to the ambient dust temperature. This
leads to emission in the near infrared from hot grains close to the central source,
while colder dust far out in the disk will emit in the mid- or even far-infrared. This
classification, proposed in Lada & Wilking (1984); Lada (1987) and Adams et al.
(1987) and extended by Andre et al. (1993), is known as the Lada sequence and
describes the SED according to its near- to mid-infrared slope, with Class 0 objects
showing no excess (undefined slope), Class I showing a positive slope and Class II
and III showing negative slopes, with slopes for Class III being distinctively steeper
than for Class II.

Figure 1.2: The disk MWC 758, imaged with the SMA in 2008 and with ALMA
nearly ten years later. Although the SMA images already showed an asymmetric
blob structure, the advances in resolution capability accomplished with ALMA al-
lowed to identify and investigate the vortices in more detail and additionally reveal
an inner ring and a gap not detectable with previous instruments. The hatched oval
in the left image and the white oval in the right image represent the beam size of
the respective observation.
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With the development of high-angular resolution telescopes and interferometers,
it has become possible to detect protoplanetary disks directly (fig. 1.2). With in-
creasing resolution over the years, especially with the commissioning of the Atacama
Large (sub-)Millimetre Array (ALMA), many more disks have been shown to have
rings and gap structures as well as asymmetric, vortex-like features which were not
as easily determined in previous observations and could not be inferred from simple
SED measurements. Although the detection of the disks is also possible in optical
and near-infrared observations, the cold dust traced by far infrared/sub-mm obser-
vations gives an unique insight into the inner parts of the disk, as it is, especially
in the outer parts, mostly optically thin to radiation emitted at those wavelengths.
This enables a detailed study of the environment in which planetesimals and plan-
etary cores form, and for the firs time allows direct and detailed comparisons of
theoretical models and simulations with observational data.

Outline of this Thesis
The goal of this thesis is to investigate the structure formation capabilities of hy-
drodynamic turbulence on the special case of the Vertical Shear Instability. To
this end, I perform high resolution simulations of protoplanetary disks using the
multi-purpose MDH code PLUTO, re-examining the numerical and physical con-
ditions used in previous work. I will demonstrate that using a sufficiently realistic
numerical setup, the VSI is capable to form large scale non-axisymmetric struc-
tures identified as vortices similar to the structures found in current observations of
protoplanetary disks. The thesis is structured as follows:

Chapter 2 In this chapter, I introduce the basic concepts governing the evolution
of protoplanetary disks in the gas and dust phase, with emphasis on the processes
and equations necessary to understand the work done in this thesis. Additionally, I
introduce the numerical codes used throughout this work.

Chapter 3 Are partial simulations of 3 dimensional protoplanetary disks sufficient
to investigate hydrodynamic instabilities? Or are they missing something? This
chapter presents a disk setup investigated in different numerical setups and discusses
the influence the choice of disk extent has on the saturated state of the instability.
It also presents the first hydrodynamical simulations of long lived vortices formed
from the VSI in a global disk.

Chapter 4 Is vortex formation always a consequence of a saturated Vertical Shear
Instability? Following on the results from chapter 3, this chapter presents a param-
eter study varying the disk density gradient and aspect ratio. It shows that vortices
form in many different disk conditions, but always in a similar shape.

Chapter 5 Can the structures found in our simulations be detected in observations?
Or did we already do? In this chapter, I use analytic modelling of dust trapping
in vortices and radiative transfer calculations to show that the vortices found in
our gas-only simulations can theoretically be observed with state-of-the-art sub-mm
interferometers.
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Chapter 6 This chapter presents a summary of the work presented in this thesis
and conclusions drawn. It also addresses possible future research projects.



Chapter 2

A Short Theory of Disks Around
Young Stars

Disks around forming stars are believed to be the cradles of planet formation and
in this chapter, I will introduce the main equations and concepts necessary to un-
derstand the evolution of those disks. From observations of the interstellar medium
(ISM), we assume that protoplanetary disks consist to about 99.8% out of Hydro-
gen and Helium, whereas the mass of all other elements, colloquially called ’metals’,
combined makes up the remaining 2% of the mass (Ansdell et al. 2016). Because
the temperature of the material in the disk is lower than a few hundred Kelvin
everywhere in the disk except in the innermost part, most of the metal elements
will be in the form of solids rather than gaseous. Therefore it is necessary to define
two different phases in the disk – the gas and the dust phase – where the gas phase
is given by the Hydrogen-Helium mixture and the dust phase is comprised of the
metals in the disk.

Because the gas and the dust phase are governed by similar but different equa-
tions of motion, I start with the equations for the gas phase of protoplanetary disks,
before I introduce the equations governing the dust phase of the disk in section 2.2.
Section then briefly summarizes the equations to calculate radiative transfer models
while section introduces the numerical codes used in this thesis. In sections 2.1 and
2.2 I mainly follow the calculations of Armitage (2009), while section 2.3 is based
on Rybicki & Lightman (1986), Dullemond (2013) and Pohl (2018).

2.1 Protoplanetary Disks: The Gas View

2.1.1 The Equations of Hydrodynamics
The gas phase of the protoplanetary disk has typical particle number densities of
n ≈ 1014 1

cm3 , leading to a typical mean free path of the gas molecules in the disk
on the order of 1 cm. This distance is orders of magnitude smaller than the typical
length scale of the disk system, the pressure scale height H ≈ 5 · 1011 cm. It is
therefore possible to treat the gas of the disk as a continuous fluid. The dynamics
of the gas can therefore be described using the equations of mass (2.1), momentum
(2.2) and energy (2.3) conservation. The equations are presented in conservation
form, as they will be employed in this form throughout this thesis. A derivation can
be found in many fluid dynamics books (e.g. Clarke & Carswell 2007).

7
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∂

∂t
ρ+∇ · (ρv) = 0 (2.1)

∂

∂t
(ρv) +∇ ·

(︁
ρvvT

)︁
= −∇P − ρ∇Φ + S (2.2)

∂

∂t
E +∇ · ((E + P )v) = −ρv∇Φ + S⋆ (2.3)

Here, ρ represents the gas density, v its velocity and P the gas pressure. E = ρv2

2
+ρe

is the total energy density of the gas with e representing the specific internal energy.
Φ represents the external gravitational potential of the central star

Φ = −GM⋆

|r|
. (2.4)

Including gravity in this way neglects the mass of the disk relative to the mass
of the star, which is appropriate for protoplanetary disks with MDisk < 0.01M⋆.
For massive disks with MDisk ≳ 0.01M⋆, the disks own gravity becomes important
and and Poisson’s equation for the gravitational potential has to be solved. For
the remainder of this work, I will assume disks with low mass and neglect disk
self-gravity.

As the gas in protoplanetary disks can be described as a subsonic Newtonian
fluid, equation 2.2 can be rewritten into the Navier-Stokes-equations, where the
terms S and S⋆ represent the viscous terms in the momentum and energy equa-
tion, although the terms can include other body or surface forces. Neglecting the
additional source terms, the Euler equations are recovered.

The system is closed by prescribing an Equation of State (EoS). Throughout this
thesis, the gas will be treated as an ideal gas, and the EoS will be written in either
thermal or caloric form.

P =
ρ

µmH

kBT thermal EoS

P = ρe
√︁
γ − 1 caloric EoS

For a gas with constant temperature, this reduces to the isothermal EoS P = c2sρ

with constant isothermal sound speed cs =
√︂

kB
µmH

T .

2.1.2 Equilibrium Structure of Protoplanetary Disks
A first insight into the structure of protoplanetary disks is given by solving for the
hydrostatic equilibrium of equations 2.2, in which one assumes constant velocities
(∂/∂t = 0 and ∂vi/∂xj = 0). Because protoplanetary disks can be described as ap-
proximately cylindrical, I will use cylindrical coordinates (R,φ,z) for the following
derivations. Transforming equations 2.2 using equation 2.1 and assuming axisym-
metry for the φ-axis (∂/∂φ = 0) leads to:

v2φ
R

=
GM⋆R

|r|3
+

1

ρ

dP

dR
(2.5)

0 =
GM⋆z

|r|3
+

1

ρ

dP

dz
(2.6)
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Because in protoplanetary disks the vertical extension is generally much smaller
than the radial one (R ≫ z), the gravitational force can be simplified using the
thin-disk approximation: |r| =

√
R2 + z2 ≈ R.

Assuming an isothermal equation of state, Equation 2.6 then transforms to:

1

ρ

dρ

dz
= −Ω2

K

c2s
z (2.7)

where I introduce the Keplerian angular frequency ΩK(R) =
√︂

GM⋆

R3 . Solving the
equation for ρ then leads to the vertical equilibrium structure of the disk:

ρ(R, z) = ρ(R)e−
z2

2H2 , (2.8)

where H(R) = cs(R)
ΩK(R)

is the vertical pressure scale height of the gas.
In this context, the vertical column density of the gas can be defined as

Σ =

̂ ∞

−∞
ρ(r)dz (2.9)

and volume and column density are related via

Σ = ρ(R) ·
√
2πH . (2.10)

To gain a first estimate on the column density in the early solar system, Wei-
denschilling (1977) spread the mass of the current solar system planets over a disk
annulus defined by the distances between the planets and added enough Hydrogen
and Helium to the mix to gain solar metallicity everywhere in the disk. This model
is known as the Minimum Mass Solar Nebula (MMSN) and, neglecting Mercury,
Mars and the asteroid belt, yields a radial power law distribution with an exponent
of −3/2. With the normalization of Hayashi (1981), the column density is commonly
written as

Σ = 1700

(︃
R

AU

)︃− 3
2 g

cm2
. (2.11)

This estimate has however significant drawbacks, as it does neglect many disk evo-
lution processes, e.g. planet migration. From observations, one finds a range of
slopes generally shallower than the MMSN, for example, Andrews et al. (2009) find
a mean slope of -0.9 for disks in the Ophiuchus star-forming region.

The azimuthal velocity structure of the disk can be obtained from the radial
equilibrium equation 2.5.

v2φ = v2K +
R

ρ

dP

dR
= v2K [1− η] (2.12)

Here vK(R) = ΩK(R)R is the keplerian azimuthal velocity and η the pressure support
parameter of the disk, defined as

η = − R

ρv2K

dP

dR
∼ c2s
v2K

(2.13)
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with the geometric scale height h(R) = H(R)
R

= cs
vK

≪ 1. This means that protoplan-
etary disks rotate not strictly at keplerian, but, as the radial pressure gradient is
in general negative, at slightly sub-keplerian velocities. The deviation is small, but
will become important later on when the dust phase is introduced. As the geometric
scale height is related to the Mach number of the disk flow via h = Ma−1, this also
implies that the azimuthal rotation velocity is highly supersonic throughout most
of the disk.

2.1.3 Viscous and Turbulent Stresses
From the derivations above, we see that the disk, to first order rotates at keple-
rian velocity. Therefore the specific angular momentum of the disk gas is given
as l = R2ΩK =

√
GM⋆R, which is an increasing function of radius. But to accrete

mass, the gas has to lose angular momentum. One possibility for the gas to do so, is
viscous dissipation. Lynden-Bell & Pringle (1974) derived the viscous evolution for
a 1D radial disk model (Σ = Σ(R, t), vR = vR(R)) using the vertically integrated
equations of mass (cf. eq. 2.1)

∂

∂t
(Σ) +

1

R

∂

∂R
(RΣvR) = 0 (2.14)

and angular momentum

∂

∂t
(ΣR2Ω) +

1

R

∂

∂R

(︁
RvRΣR

2Ω
)︁
=

1

2π

∂

∂R
T . (2.15)

Here, T = R · 2πR · ΣνR ∂Ω
∂R

represents the viscous torque from outer layer shearing
past inner layer. The right hand side in the equation above then describes the net
viscous torque on the disk.

Combining equations 2.14 and 2.15 to eliminate vr and substituting Ω = ΩK

then yields the equation describing the viscous evolution of a protoplanetary disk in
radial direction.

∂Σ

∂t
=

3

R

∂

∂R

[︃
R1/2 ∂

∂R
νΣR1/2

]︃
(2.16)

For ν = const. it can be shown, by using simple substitutions, that this is a
diffusion equation with the diffusion time scale

tdiff =
4R2

3ν
. (2.17)

Using the molecular viscosity νmol ∼ λcs we can then estimate the time scale for
molecular viscosity to disperse a protoplanetary disk. The typical mean free path
λ is, as stated already at the beginning of the chapter, on the order of 1 cm at 1
AU. The typical sound speed of a disk with geometrical scale height h = 0.05 is
cs = 1.5 · 105 cm

s
at 1 AU, giving a viscosity of νmol ∼ 1.5 · 105 cm2

s
. This yields a

diffusion time scale of tdiff,mol ∼ 1013 yr, which is orders of magnitude larger than
the typical lifetime of protoplanetary disks obtained from observations, which is on
the order of 106 − 107 yr. Therefore, molecular diffusion cannot drive the evolution
of protoplanetary disks.
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The Alpha Disk Model

A model saving the explanation of the viscous disk evolution is the so-called α-model
(Shakura & Sunyaev 1973). Here, the molecular viscosity νmol is replaced by the
turbulent viscosity νturb described via a characteristic velocity u and length L. For
(nearly) isotropic turbulence in a protoplanetary disk it is reasonable to assume that
the turbulent eddies have a size smaller or comparable to the pressure scale height
L ≲ H and that the turbulent velocities are smaller or comparable to the gas sound
speed u ≲ cs. Note that the α-prescription, originally developed for disks around
black holes, does not make any assumption on how the turbulence in the flow is
created.

With these assumptions, the turbulent kinematic viscosity can then be expressed
as

νturb = αcsH (2.18)
where α is a free parameter. The only condition on alpha from our assumptions
above is that it has to fulfil 0 < α < 1, as turbulence with α ≥ 1 would be supersonic
and would lead to heating which would lead to α < 1. It should be noted that α can
and should be space and time dependent. Though using a strictly constant α allows
for rigorous analytical derivations otherwise impossible, it should always be clear
that this is a simplification and does not apply in most astrophysical applications.

To measure α in hydrodynamical simulations, the Reynolds averaged fluid equa-
tions (see e.g. Pedlosky (1992) for a derivation) can be used to find an effective
viscous stress tensor describing the turbulent flow by splitting the velocity into a
mean flow v̄ and residual fluctuations v′. The Rφ component of the Reynolds stress
tensor, which facilitates the angular momentum transport in radial direction, can
then be expressed as

TRφ = ⟨ρv′Rv′φ⟩ (2.19)
where ⟨ ⟩ denotes an average over space and/or time. Combining this with equation
2.18 leads to

⟨ρv′Rv′φ⟩ = αρc2s = αP , (2.20)
which is the form used to calculate α throughout this work.

To get an estimate how large α should be to explain the observations, we can
use equation 2.17 in combination with equation 2.18. Assuming tdiff = 5 · 106 yr
at 10 AU then gives an α of about 5 · 10−4, which, as will become apparent in the
next section, is on the order of magnitude of what is expected from (magneto-)
hydrodynamical turbulence models.

2.1.4 Instabilities in Protoplanetary Disks
Until now we have only assumed that some kind of turbulence is active in proto-
planetary disks, because it is a likely explanation for the strong viscous accretion
needed to explain the angular momentum transport. Although other means of an-
gular momentum removal, e.g. magnetically driven winds, are discussed, the focus
in this work lies with instabilities acting throughout the body of the disk.

The first instability of this kind proposed to act in protoplanetary disks is the
Magneto Rotational Instability (MRI, Balbus & Hawley (1991)). The MRI, as the
name suggests, requires a weak magnetic field threading the disk. Additionally, it
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Figure 2.1: Schematic explanation of the MRI mechanism. The box represents a
small volume within the disk, the black dots the fluid parcels and the red line a
vertical magnetic field line. The arrows show the direction of the force on the fluid
parcels due to the respective mechanism discussed. Adapted from Armitage (2011)

requires that the disk gas is ionized so it can couple to the magnetic field. Under
these conditions, the instability works as follows: Two gas parcels coupled through
a magnetic field line are slightly perturbed to orbiting on neighbouring annuli. To
conserve angular momentum, the inner parcel then rotates with a slightly larger
angular velocity, causing it to drift away from the outer parcel in azimuthal direction.
The magnetic coupling tries to oppose this, creating magnetic tension that effectively
removes angular momentum from the inner parcel and transferring it to the outer
one. This, in turn, forces the inner parcel to drift further inward and the outer to
drift outward to annuli matching their new amount of angular momentum. This
leads the whole cycle to repeat itself, signifying an instability.

Although the MRI was long seen as the main driver for turbulence in protoplan-
etary disks due to its fast growth rate and strong turbulent viscosity (α ∼ 10−2,
e.g Davis et al. (2010)), its relevance to protoplanetary disk has been debated in
recent years. Unlike in disks around black holes or neutron stars, protoplanetary
disks are at best only weakly ionized. Therefore non-linear Magneto-Hydrodynamic
effects have to be considered, namely Ohmic resistivity, ambipolar diffusion and the
Hall effect. These all work to significantly damp the MRI outside of a few tens of
AU and create a so called ”dead zone” where the MRI is not active (e.g. Gammie
(1996); Dzyurkevich et al. (2010, 2013); Lesur et al. (2014), see Armitage (2019) for
a recent review).

In this so called dead zone, hydrodynamically driven instabilities have to be
considered (Lyra & Klahr 2011). A main group of instabilities considered here
are instabilities thriving on the baroclinicity of the disk and the entropy gradient
created as a result. Baroclinicity describes a fluid state where the pressure is not only
a function of density, but also of other variables like temperature. Three different
instabilities should be noted here: The convective overstability (Klahr & Hubbard
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2014; Lyra 2014), the zombie vortex instability (Marcus et al. 2015, 2016; Barranco
et al. 2018) and the vertical shear instability (Fricke 1968; Goldreich & Schubert
1967; Urpin 2003; Arlt & Urpin 2004; Nelson et al. 2013; Lin & Youdin 2015), and
the latter of those three I will introduce in more detail later. For a comprehensive
introduction into all three instabilities I refer the reader to recent reviews by Klahr
et al. (2018) and Lyra & Umurhan (2018).

As a result of the perturbations generated by linear instabilities or overstabilities,
other instabilities can grow. The subcritical baroclinic instability (Klahr & Boden-
heimer 2003; Petersen et al. 2007a,b) has been shown to be a non-linear cousin of
the convective overstability (Lyra 2014) and has been show to form and amplify
vortices in protoplanetary disks Lyra & Klahr (2011); Raettig et al. (2013). An-
other Instability that forms as a secondary instability is the Rossby wave instability
(Lovelace et al. 1999; Li et al. 2000, 2001), which occurs wherever a steep gradient
in vorticity or entropy is present. The presence of vortices will become important
once dust grains are introduced in section 2.2.

It should also be noted, that at early times, when the disk is still very massive
(MDisk ≥ 0.1M⋆), the disks own gravity cannot be neglected. The disk self-gravity
can then also lead to an instability of the disk (see e.g. Kratter & Lodato (2016) for
an overview). Depending on the disk cooling and mass, the disk then either enters
a quasi-stable state forming large spiral arms or it fragments into clumps. The
spiral arm forming form has been shown to be able to transport angular momentum
outwards, while the fragmenting form can explain the existence of wide orbit giant
planets or brown dwarf companions. Throughout this work, self-gravity of the disk
will be neglected, as the disks are assumed to have a low mass compared to the
central object.

Stability Criteria of Rotating Fluids

Although much research has shown instabilities to act in protoplanetary disks, the
fact that those disks become hydrodynamically unstable is non-trivial. To show this,
I will in the following briefly introduce the criteria for stability against perturbations
in rotating fluids.

The most fundamental stability criterion for rotating fluids is the Rayleigh cri-
terion. It describes the stability of an inviscid rotating fluid between 2 cylinders
(Taylor-Couette flow). A derivation can be found in many fluid dynamics text-
books, e.g. Drazin & Reid (2004). It states that for the flow to be stable, the
angular momentum of the flow has to increase with radius, equal to

1

R3

∂

∂R
(Ω2R4) > 0 . (2.21)

As a protoplanetary disk can be approximated as a cylindrical flow with Ω = ΩK ∝
R−3/2, we directly see that the flow in a keplerian disk is unconditionally stable.

Strictly speaking, the Rayleigh criterion only applies to disks which do not have
any stratification. As disk unfortunately have both radial and vertical stratification,
the stability of the disk is governed by the more general Solberg-Høiland criteria
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(Tassoul 1978):

1

R3

∂j2

∂R
− 1

CPρ
∇P · ∇S > 0 (2.22)

∂P

∂z

(︃
∂j2

∂R

∂S

∂z
− ∂j2

∂z

∂S

∂R

)︃
< 0 (2.23)

where j = R2Ω denotes the specific angular momentum of the disk. Note that
for a keplerian disk, for which generally ∂P

∂z
< 0, equation 2.23 reduces to the

Schwarzschild criterion for stability against convection ∂S
∂z
> 0, which is more readily

expressed as |∇Tad| > |∇T | (i.e. the disk temperature gradient has to be subadia-
batic for the disk to be stable).

Rüdiger et al. (2002) performed a linear stability analysis for the case of rotating
accretion disks. Introducing the radial and vertical buoyancy frequency as

N2
x = − 1

γρ0

(︃
∂P0

∂x

)︃
∂

∂x
log

(︃
P0

ργ0

)︃
x ∈ R, z (2.24)

and using a perturbation ansatz in cylindrical coordinates, they show that the
Solberg-Høiland criteria can be expressed as

N2
R +N2

z + κ2R > 0 (2.25)
N2
z

N2
R

Hz

HR

κ2R − κ2z > 0 (2.26)

where Hx =
P
∂xP

is the local pressure scale height with ∂x expressing the derivative
in x ∈ R, z direction. The subscript 0 refers to the unperturbed base state and κR,z
is the epicyclic frequency in radial or vertical direction:

κx =
1

R3

∂j2

∂x
x ∈ R, z . (2.27)

Looking at equation 2.26, it is already clear that once the disk possesses vertical
shear (κz ̸= 0), the disk is mainly kept stable by vertical buoyancy forces. If these
can be diminished somehow, the disk is vulnerable to instability.

The Vertical Shear Instability

The Vertical shear Instability (VSI) relies, as the name already suggests, on the
existence of vertical shear in the disk. But as stated above, this alone is not sufficient
to trigger the instability. Additionally, the vertical buoyancy has to be diminished,
which is possible if the disk is either adiabatic or cools nearly isothermal. That these
conditions lead to instability has been first discovered in the analysis of radiative
zones of rotating stars by Goldreich & Schubert (1967) and independently by Fricke
(1968), where the instability is known as the Goldreich-Schubert-Fricke instability.
Urpin (2003) first suggested that the instability could also operate in protoplanetary
disks.

Figure 2.2 shows a schematic view of the vertical shear of the protoplanetary
disk necessary for the VSI to operate. Because the angular frequency Ω (blue solid
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Figure 2.2: Schematic view of the shear in baroclinic disks. The blue solid lines show
contours of constant angular frequency Ω, the red dashed lines contours of constant
angular momentum ΩR2 and the purple dashed-dotted lines represent contours of
constant angular kinetic energy Ω2R2. Lighter colors represent larger values of the
respective quantity, so while Ω and Ω2R2 decrease with increasing radius, ΩR2 in-
creases. This is known as radial shear. Additionally, the contours are not straight
lines independent of z, but are bent inwards or outwards, which produces vertical
shear in the disk. A gas parcel displaced along the lines of constant angular momen-
tum changes now its radial and vertical position, enabling the onset of the vertical
shear instability under certain conditions.

lines) depends not only on the radial but also on the vertical position in the disk, the
surfaces of constant angular frequency are not cylinders but parabolas. The same
then also applies to the surfaces of constant angular momentum ΩR2 (red dashed
lines) and angular kinetic energy Ω2R2 (purple dash-dotted lines). Additionally,
while angular frequency Ω ∼ R−3/2 and angular kinetic energy Ω2R2 ∼ R−1 decrease
with radius, angular momentum ΩR2 ∼ R1/2 increases with radius. We can now
think of the following scenario: A gas parcel is displaced upward along a surface
of constant angular momentum, which also displaces it slightly outward. The gas
parcel is now in a region where it has excess kinetic energy, so it can accelerate and
move further upwards and outwards. In a stably stratified disk buoyancy will now
counteract the upward motion. But in a disk which is cooled isothermal or at least
where thermal diffusivity is large (so the cooling timescale is short compared to other
timescales), the gas parcel (nearly) immediately thermalizes with the surrounding
gas which diminishes the counteracting buoyancy. The disk then becomes unstable
to small perturbations.

The instability in disks with cooling is not given by the Solberg-Høiland criteria,
but by criteria derived by Arlt & Urpin (2004) for incompressible and more recently
by Nelson et al. (2013) for compressible flow. They find the stability criterion for a
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locally isothermal disk to be:

κR − kR
kz
κz > 0 (2.28)

which immediately shows that the motions in VSI unstable disks are primarily ver-
tical as the wavelengths in the vertical direction have to be much larger than the
radial ones. Simulations indeed show that the VSI shows structures that are verti-
cally elongated. Nelson et al. (2013) also show that the VSI grows in two distinct
phases governed by two different types of modes, dubbed ’finger’ and ’body’ modes.
The finger modes are radially narrow and occur in the upper layer of the disk de-
scending to the midplane while the body modes are more radially extended and
occupy the whole vertical extent of the disk. As the finger modes are the first to
grow and appear more prominent, the VSI turbulence first appears as growing sym-
metric (with respect to the midplane) in the upper layers descending towards the
midplane, while it later shows an anti-symmetric pattern.

Nelson et al. (2013) also calculated the growth rate of the instability for a locally
isothermal, compressible gas in the shearing-sheet approximation as:

Γ2 =
−κ2R,0(c20k2z +N2

z,0) + 2Ω0c
2
0kRkz∂zVφ

c20(k
2
z + k2R) + κ2R,0 +N2

z,0

(2.29)

where the subscript 0 denotes the values at the base state and Vφ is the azimuthal
velocity. In the case of Nz → 0, small geometric scale height h0 and kz

kR
∼ O

(︂
qH0

R0

)︂
the growth rate can to first order be expressed as

Γ ∼ |q|H
R
Ω . (2.30)

Therefore the growth rate depends to first order on the slope temperature gradient
q as well as the the geometric scale height of the disk. This behaviour has been
confirmed in two dimensional axisymmetric simulations (Nelson et al. 2013). They
also showed the VSI to be able to generate turbulent angular momentum transport
on the order of α ∼ 10−3. Further simulations showed α to be generally on the order
of 10−5 − 10−3 depending on the chosen parameters, with shorter cooling times and
higher disk aspect ratio giving stronger transport as expected (Stoll & Kley 2014;
Richard et al. 2016; Flock et al. 2017b). Stoll & Kley (2016) and Flock et al. (2017b)
performed simulations of the VSI using radiation hydrodynamical simulations and
confirmed the existence of the instability in more realistic models, while finding α to
be slightly lower than in locally isothermal calculations. Stoll et al. (2017) showed
that the turbulence created by the VSI is not isotropic, but rather that the stresses in
vertical-azimuthal direction are much stronger than in the radial-azimuthal direction
(which determine angular momentum transport).

Above I already stated that the VSI works preferentially in disks where the
cooling time is short because longer cooling times mean that buoyancy can stabi-
lize otherwise unstable modes. Lin & Youdin (2015) calculated the longest critical
cooling time for which the VSI can operate as

tcrit ≤
|∂zvφ|
N2
z

≈ h|q|
γ − 1

Ω−1
K (2.31)
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where the approximation on the right holds for global models. For typical disk
parameters this critical cooling time is on the order of 0.1 orbits. In disks cooling
on longer timescales the growth of the VSI will be suppressed. Because of this
dependence on short cooling times the VSI mainly operates in the outer disk beyond
5 - 10 AU and generally favours more massive disks and host stars (Pfeil & Klahr
2019).

2.1.5 Vortices in Protoplanetary Disks
Vortices are an inherent property of turbulent flow. They appear on all scales in
our everyday life, from the small vortex found when emptying the sink, over dust
devils, tornado’s and wingtip vortices on airplanes to hurricanes and cyclones. In
astronomy, examples of vortices include the hexagon at Saturn’s pole, Jupiter’s great
red spot and vortices found in observations of protoplanetary disks.

In general, vortices can be divided in two categories: cyclonic and anti-cyclonic
vortices. Cyclonic vortices, usually referred to as cyclones in meteorology, have a
pressure minimum in there center, whereas anti-cyclonic vortices have a pressure
maximum at the center. Additionally, vortices can be sorted into categories de-
termining which forces are important when looking at a steady state solution. For
tornado’s for example, the pressure force is balanced by the centrifugal force, whereas
for Jupiter’s Great Red Spot it is the Coriolis force which balances the pressure force.
An important dimensionless number in this context is the Rossby number, which
compares the Coriolis force to the inertial forces in the Navier-Stokes-Equations:

Ro =
V

LΩ
(2.32)

where V represents a characteristic velocity of the flow, L a characteristic length of
the system and Ω the rotation frequency of the rotating system. For tornado’s typical
values of the Rossby number are Ro ≳ 1000, meaning the Coriolis force is negligible,
whereas for Jupiter’s Great Red Spot Ro ≈ 0.07 (Hess 1969), making the Coriolis
force dominant. Hurricanes usually have Ro ≈ 1, especially close to the center, and
therefore neither Coriolis nor centrifugal forces can be neglected. In protoplanetary
disks, large scale vortices typically have Ro < 1 and are therefore considered to be
dominated by a balance of pressure and Coriolis forces, a state termed geostrophic
balance. Because of geostrophic balance, cyclonic vortices rotate prograde (with the
disk rotation), whereas anti-cyclonic vortices rotate retrograde (opposite to the disk
rotation) in the frame co-moving with the vortex. In the inertial frame anti-cyclonic
vortices can nevertheless be rotating prograde if their rotation is slow compared to
the disk rotation.

Contrary to earths atmosphere, where both cyclonic and anti-cyclonic large scale
flows are observed, protoplanetary disks only permit anti-cyclonic vortices as stable
solutions. Adams & Watkins (1995) showed that prograde rotation with respect to
the disk rotation leads to the vortices being sheared away (see figure 2.4), because
the vortex rotation leads to velocities opposite to the disks shear flow. This leads
to the fast destruction of cyclonic vortices. Contrary to this, anti-cyclonic vortices,
which rotate retrograde, have velocities similar to the background shear flow of the
disk, and the vortices are stable for hundreds of orbits. This behaviour has been
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Figure 2.3: Examples of vortices in atmospheric and accretion disk flow. The top
images shows hurricanes Katja, Irma and Jose approaching the Gulf of Mexico in
September 2017 (Image credit: NASA Earth Observatory images by Joshua Stevens
and Jesse Allen). The image in the middle left shows a near-infrared image taken
by the Cassini probe of the polar hexagon, a large scale stable vortex system at
Saturn’s north pole (Image credit: NASA/JPL-Caltech/Space Science Institute)
and the image below depicts an optical images of the Great Red Spot on Jupiter,
taken with the narrow-angle camera of Voyager 2 (Image credit: NASA/JPL). The
image on the right is a sub-mm image of the disk MWC-758 and shows the particle
concentration in asymmetric features typically identified as vortices (Dong et al.
2018).

well documented in simulations (e.g. Godon & Livio 1999; Li et al. 2001; Barranco
& Marcus 2005; Meheut et al. 2010; Raettig et al. 2013).

The Vorticity Equation

A key quantity when working with vortices is the vorticity of the flow, which is
defined as the local rotation of the velocity field:

ω = ∇× v . (2.33)

To gain some insight into the behaviour of vorticity, one can look at the evolution
equation of vorticity. The following derivations follow Thompson (2006).

Taking the curl of equation 2.2 and neglecting source terms for now we obtain

∇×
[︃
∂

∂t
(v) + (v · ∇)v

]︃
= ∇×

[︃
−1

ρ
∇P

]︃
. (2.34)
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cyclone

anti-cyclone

Figure 2.4: Schematic explanation why cyclonic and anti-cyclonic vortices behave
differently in protoplanetary disks. The upper right panel shows a cyclonic vortex
in its co-moving frame of reference. The vortex rotation is shown by the arrows on
the vortex ellipse and is in the same sense as the disk rotation shown on the left
(prograde). The shear flow of the background disk is given by the arrows above and
below the vortex. The vortex rotation leads to opposite relative velocities of the
vortex flow and the disk background, destroying the vortex. The lower right panel
shows the case of the anti-cyclonic vortex, which rotates in the opposite direction
as the disk (retrograde). The velocities of the vortex in the rotating frame are now
parallel to the background shear flow, allowing the vortex to stay stable. Adapted
from Adams & Watkins (1995).

In this step, all source terms representing conservative force fields would drop out as
the curl of the gradient of a scalar field is zero. Non-conservative forces and source
terms such as viscosity however will not generally vanish. Using the vector identity
(v · ∇)v = (∇× v)× v +∇

(︁
1
2
v2

)︁
and equation 2.33 leads to

∂

∂t
ω +∇× [ω × v] = ∇×

[︃
−1

ρ
∇P

]︃
(2.35)

which we can further simplify by using the identity ∇ × [ω × v] = (v · ∇)ω −
(ω · ∇)v+ω (∇ · v)−v (∇ · ω) and noting that the last term of this identity vanishes
due to equation 2.33:

∂

∂t
ω + (v · ∇)ω = (ω · ∇)v − ω (∇ · v) + 1

ρ2
(∇ρ×∇P ) . (2.36)

This equation is known as the vorticity equation and we can already learn a few
things from it. For fluids which are barotropic, meaning the pressure P = P (ρ) is
only a function of density, the last term vanishes. If the flow is now assumed to be
incompressible and confined to the x-y plane (2 dimensional flow) the right hand
side vanishes completely and the vorticity of the flow is conserved along the flow:

D

Dt
ω = 0 (2.37)

where D
Dt

= ∂
∂t
+ (v · ∇) is the definition of the material derivative. Returning back

to 3 dimensional flow and relaxing the assumption of incompressibility, equation
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2.36 can be rewritten using equation 2.1 to

∂

∂t

(︃
ω

ρ

)︃
+ (v · ∇)

(︃
ω

ρ

)︃
=

(︃
ω

ρ
· ∇

)︃
v −

(︃
ω

ρ

)︃
(∇ · v) + 1

ρ3
(∇ρ×∇P ) (2.38)

where the quantity ω
ρ

is known as one form of the the potential vorticity (also known
as vortensity) and it is materially conserved for barotropic flow. Therefore, vortex
lines (lines parallel to the vorticity vector) move with the flow. Using Kelvins cir-
culation theorem, it can additionally be shown that if a vortex tube (defined as a
bundle of non-crossing vortex lines) is stretched or compressed, it has to increase or
decrease its vorticity to conserve its circulation.

For baroclinic flows, for which areas of constant pressure (isobars) are not aligned
with areas of constant density (isopycnals), the potential vorticity defined above will
generally not be materially conserved. It can however be shown, that the potential
vorticity ωp = ω

ρ
· ∇ψ is materially conserved if φ is conserved:

D

Dt
ωp =

D

Dt

(︃
ω

ρ
· ∇ψ

)︃
=

1

ρ3
(∇ρ×∇P ) · ∇ψ +

(︃
ω

ρ
· ∇

)︃
D

Dt
ψ = 0 (2.39)

where the last equality holds as long as Dψ
Dt

= 0. This also implies that if the
planes of constant ψ move further apart (closer together), the vortex has to increase
(decrease) its vorticity. A quantity typically chosen for ψ in atmospheric sciences is
the potential temperature of the atmosphere.

A final observation can be made by changing to a rotating coordinate system.
In the co-rotating frame, the relative vorticity can be defined as

ω = ωrel + ωframe (2.40)

where the vorticity due to the rotation of the frame is given by the vorticity ωframe =
2Ω of a rigid rotator. It can be immediately seen that, as only the absolute vorticity
(or potential vorticity) is conserved, once the rotation rate of the co-rotating frame
changes (e.g. because the vortex migrates), the relative vorticity of the vortex has
to change. If we now that the Rossby number is small ( |ωrel| ≪ |Ω|) and that
temporal changes in the vorticity can be ignored, equation 2.36 becomes

2Ω (∇ · v)− 2 (Ω · ∇)v =
1

ρ2
(∇ρ×∇P ) . (2.41)

If the fluid is then additionally barotropic and incompressible

2 (Ω · ∇)v = 0 , (2.42)

implying that there is no flow permitted in the direction of the rotation axis of the
underlying flow. This is the Taylor-Proudmann theorem.

Vortex Solutions in 2 and 3 Dimensions

Because vorticity is conserved in two dimensional barotropic, inviscid, incompress-
ible fluids, many steady state vortex solutions have been proposed. One is the
Goodman-Narayan-Goldreich (GNG) solution Goodman et al. (1987), which I will
briefly introduce here.
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The velocity field of the vortex in the GNG solution is described as

vx = ηΩKy/χ vy = −ηΩKxχ (2.43)

where the ratio η of the angular velocity Ω of the vortex to the keplerian angular
velocity is given by

η =

√︃
3

χ2 − 1
(2.44)

with the aspect ratio χ being the ratio of the semi-major to the semi-minor axis.
Vortices following the GNG solution have streamlines describing perfect ellipses. Be-
cause the derivation naturally has vz = 0, the solution even holds in three dimensions
as the vortex solution has perfect vertical equilibrium, although in this case vorticity
is no longer conserved. The solution however has some drawbacks. The derivation
does not take the background flow into account leading to a discontinuity in the ve-
locities at the vortex boundary. Also, the derivation assumes constant background
density, ignoring radial stratification which is typically assumed in protoplanetary
disks.

Surville & Barge (2015) developed a more general model of vortices in vertically
integrated disks, which takes into account the background stratification of the disk.
Their model also predicts 2 different classes of vortices, compressible vortices which
are small (χ < 7) but have a high absolute Rossby number and incompressible
vortices which tend to be large but have smaller absolute Ro. The compressible vor-
tices also exhibit stronger spiral waves than the incompressible ones. They also show
that the GNG model presented above is an acceptable model for the incompressible
vortex family.

As said above, vortex models are often developed neglecting the vertical compo-
nent of the flow and it is not immediately clear that the 2D models are applicable.
A first assumption is that three dimensional vortices can be described by vertically
’stacked’ two dimensional ones into an infinite column. Barranco & Marcus (2005)
showed that this assumption is only partially correct. They find that 3D vortices
can indeed be described as columns, but only up to a few disk scale heights, above
which the vortex is truncated by shear flows. Because vorticity is divergence free,
streamlines have to be closed which leads to additional vertical motion in vertical
direction.

Contrary to two dimensional models, 3D vortices are not in general stable. Bar-
ranco & Marcus (2005) already described the occurrence of an instability that de-
stroyed the initial vortices in their simulations after a few hundred orbits. Lesur
& Papaloizou (2009) propose the operation of a linear parametric instability which
can destroy vortices, termed the elliptic instability (EI). The instability destabi-
lizes elliptic streamlines by creating a positive resonance if the vortex turnover time
matches a frequency of the underlying flow field. In vertically unstratified proto-
planetary disks, the instability occurs for vortices with aspect ratios 1 < χ < 4
and χ > 6, whereas vortices with aspect ratios in between are not affected by the
EI. This is different for vertically stratified disks, in which vortices of all aspect
ratios are vulnerable to the EI. The growth rate depends however on the strength
of the stratification for χ > 4, making large elongated vortices less likely to be dis-
rupted. Contrary to this, vortices with small aspect ratio are always highly unstable
independent of stratification.
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Figure 2.5: Schematic view of the Rossby Wave Instability mechanism. Rossby
waves are triggered in regions with a strong gradient in L and trapped between the
two Lindblad resonances rILR and rORL (rC denotes the co-rotation radius). The
rotational shear couples the Rossby Waves to density waves which can propagate
away from the Lindblad resonances. Image from Meheut et al. (2013).

Vortex Formation in Protoplanetary Disks

In protoplanetary disk theory, there are currently two mechanisms discussed which
can form vortices. One is the Rossby Wave Instability (RWI) first derived by
Lovelace et al. (1999) and expanded upon in (Li et al. 2000, 2001), although similar-
ities to the Papaloizou-Pringle (Papaloizou & Pringle 1984, 1985) instability exist.
It operates in regions with an extremum in L , defined as

L =
Σ

2ωz

(︃
P

Σγ

)︃2/γ

. (2.45)

Inside this region, two Rossby waves are triggered, one with positive and one with
negative energy. These waves interact and increase their amplitude, growing the
instability. The rotational shear couples the Rossby waves to density waves, which
propagating outside the Lindblad resonances, carrying away energy and decreasing
the amplitude of the Rossby waves (Meheut et al. 2013). Once the amplitude of the
Rossby waves has grown sufficiently, around 5 vortices appear, which immediately
start to interact and typically merge within a few hundred orbits. On should note
that the RWI is a global instability with maximum growth occurring for azimuthal
wave numbers m ≈ 5 (Li et al. 2000), so it cannot be observed in shearing-box or
2D axisymmetric simulations.

Whereas Lovelace et al. (1999) considered the RWI only in 2D vertically inte-
grated disks, Meheut et al. (2010),Lin (2012a) and Richard et al. (2013) showed that
the instability operates in a similar way in 3 dimensional disks. The vortices form
columnar structures in the disk which resemble 2D vortices stacked in z-direction as
described above, although only Meheut et al. (2010) and Lin (2012a) reported an
additional vertical flow through the vortex in certain disk conditions. The growth
of the instability is altered in massive disks in which self-gravity is non-negligible
(Lyra et al. 2009; Lin 2012b), leading to the vortices being prohibited from merging
and suppression of the instability for the most massive configurations.

Because L depends both on ωz and Σ, the instability can be triggered in regions
with bump in vertical vorticity as well as in density. The latter has been shown to
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enact the RWI at the edges of gaps carved by planets (e.g. Lin 2012b; Fu et al.
2014; Lobo Gomes et al. 2015; McNally et al. 2019; Baruteau et al. 2019) in low
viscosity disks, which has become the most popular explanation for vortices found
in observations (e.g. van der Marel et al. 2013, 2016; Dong et al. 2018; Baruteau
et al. 2019). A density bump can also form at the inner edge of the dead-zone in
non-ideal MHD disk simulations, where the turbulence strength changes abruptly
(e.g. Varnière & Tagger 2006; Dzyurkevich et al. 2010; Lyra & Mac Low 2012;
Flock et al. 2017a). The vortices at both the gap and the dead-zone edge can exist
for hundreds of orbits, as the disk continually restores the density maximum the
instability feeds off from. Flock et al. (2015) showed that vortices can occur at
least intermittently also at the outer edge of the dead-zone, though the underlying
mechanism is yet to be determined. In chapter 3 I will show that the RWI can
also act as a secondary instability feeding on a maximum in vorticity created by the
underlying hydrodynamic instability.

Figure 2.6: Schematic view of the SBI mechanism. A gas parcel displaced radially
outward along a vortex streamline comes in contact with colder gas and experiences
buoyant forces pushing it further out. Radiative cooling slowly thermalises the
parcel while it moves half the way around the vortex. Arriving at the original
radial position it is cooler and denser and is pulled towards the star by gravity.
Moving along the second half of the vortex the gas parcel is slowly heated, arriving
at the starting position hotter than the surrounding gas. The cycle then repeats,
amplifying the vortex. From Klahr et al. (2018).

Another mechanism that forms vortices in protoplanetary disks is the Subcritical
Baroclinic Instability (SBI) (Klahr & Bodenheimer 2003; Petersen et al. 2007a,b;
Lesur & Papaloizou 2010), which Lyra (2014) identified as the non-linear saturated
phase of the convective overstability. The instability mechanism forms and amplifies
vortices as follows (Klahr et al. 2018, see also figure 2.5): A gas parcel moving
around the vortex is moved radially outward, bringing it into contact with colder
gas, creating buoyancy forces on the parcel pushing it further outwards. During
the movement along the outer half of the vortex, the parcel thermalises with the
environment, and once it is back at the original radius it is now cooler than in the
beginning. The gas parcel next moves radially inward as it continues to move along
the vortex streamline. The parcel is now brought in contact with hotter gas and the
colder, denser parcel is pulled closer to the star by gravity. It then thermalises again
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with the disk gas and once it is at its original starting position, it is hotter than when
it began the journey. The cycle then starts anew, creating a steady amplification of
the vortex.

2.2 Protoplanetary Disks: The Dust View

2.2.1 The Coupled Dust-Gas Equations

Although the dust mass in protoplanetary disks is only 2% of the total disk mass,
it is the the dust particles that form the asteroids and planets (or planetary cores
in the case of gas giants) observed in our solar system and around other stars.
However, in the ISM, dust grains have sizes on the order of microns, which makes
planet formation a process spanning 13 orders of magnitude in size. Fortunately, for
particles smaller than a few millimetres to centimetres (depending on distance to
the star) the dust phase can be treated as a fluid, similar to the gas. The equations
governing both the dust and the gas can then be written as a coupled system of
equations

∂

∂t
ρg +∇ · (ρvg) = 0 (2.46)

∂

∂t
ρd +∇ · (ρvd) = 0 (2.47)

∂

∂t
(ρgvg) +∇ ·

(︁
ρgvgv

T
g

)︁
= −∇Pg − ρg∇Φ +

1

ts
(vd − vg) (2.48)

∂

∂t
(ρdvd) +∇ ·

(︁
ρdvdv

T
d

)︁
= −ρd∇Φ− 1

ts
(vd − vg) (2.49)

where the subscript g denotes the gas and the subscript d the dust. The main
difference between the dust 2.49 and gas 2.48 momentum equations is the absence
of pressure in the dust phase. Additionally, the friction between both phases is
introduced as an equal and opposite source term in both equations. The coefficient
ts is the timescale on which friction acts to equilibrate dust and gas velocities.

2.2.2 Dust Drag Forces

Although individual dust grains come in a myriad of shapes and sizes, their inter-
action with the surrounding gas can be described rather easily. This is because the
interaction of particles with the surrounding gas can be described by friction. In
this description, the shape of the particle, however complicated it may be, can be
neglected and we can just assume every particle to be a sphere of some size a and
particle density ρp. The force on the particle due to friction is then given as

FD = −1

2
CDπa

2
•ρ(∆v)2 (2.50)
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where ∆v = vd − vg is the differential velocity between dust and gas and CD is a
coefficient dependent on the drag regime the particle has to be treated in:

CD =

⎧⎪⎨⎪⎩
8vth
3∆v

a• ≤
9

4
λ

24Re−1 a• >
9

4
λ

(2.51)

where vth =
(︁
8
π

)︁1/2
cs ≈ cs is the thermal speed of the gas and Re = 2a•∆v

ν
is the

Reynolds number of the dust. The first case is the Epstein drag regime, which
applies for particles with sizes smaller than roughly the mean free path λ of the gas.
Particles larger than the mean free path but with Reynolds numbers Re < 1 are in
the Stokes drag regime. Recollecting from the beginning of this chapter that the
mean free path of the gas in the disk is on the order of 1 cm, we immediately see
that most of the particles we are concerned with are in the Epstein regime, so the
particles will be assumed to follow the Epstein drag law throughout this thesis.

The time on which the friction force becomes important to the hydrodynamical
system is the friction time

ts =
m•∆v

|FD|
(2.52)

also known as the stopping time, as it is equal to the time the gas needs to adjust
the velocity of small grains to the gas velocity. In the Epstein and Stokes regime,
the friction time takes the form

ts =

⎧⎪⎪⎨⎪⎪⎩
ρ•a•
ρvth

a• ≤
9

4
λ

2ρ•a
2
•

9ρν
a• >

9

4
λ

(2.53)

Comparing the friction time to the timescale ted of the largest eddy then defines the
Stokes number of the particles:

St =
ts
ted

= tsΩ (2.54)

where it is assumed that for protoplanetary disks ted = 1/Ω. As the Stokes number
is dimensionless, it is also called the dimensionless stopping time of the particle τs.
Both names will be used interchangeably throughout this thesis.

2.2.3 Equilibrium State

Nakagawa et al. (1986) derived the steady-state solution for equations 2.46-2.49 for
particles with St ≲ 1. Following the notation of Youdin & Johansen (2007), the
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radial and vertical velocities of the gas and dust are given as:

vR,g =
2ϵτs

(1 + ϵ)2 + τ 2s
ηvK (2.55)

vφ,g = vK −
[︃
1 +

ϵτ 2s
(1 + ϵ)2 + τ 2s

]︃
η

1 + ϵ
vK (2.56)

vR,d = − 2τs
(1 + ϵ)2 + τ 2s

ηvK (2.57)

vφ,d = vK −
[︃
1− τ 2s

(1 + ϵ)2 + τ 2s

]︃
η

1 + ϵ
vK (2.58)

where ϵ is the ratio of the dust to the gas density and the subscripts d and g denote
dust and gas variables, respectively.

Looking at the radial velocity of the dust and assuming ϵ ≪ 1, we discover a
mayor problem: Dust naturally drifts towards the star. This happens because in a
steady-state, the gas rotates at a slightly sub-keplerain velocity because of the gas
pressure gradient. The dust on the other hand, which does not feel the gas pressure
gradient of the disk, wants to rotate with keplerian orbital velocity. Because of the
mutual drag force, small particles will now be forced to rotate at the orbital speed
of the gas, while large particles will feel a head wind due to the gas, slowing them
down in both cases. This forces the particles to move to a smaller orbit where their
orbital velocity matches the keplerian speed, leading to steady inward drift. The
fastest drift velocities are obtained for particles with τs ≈ 1, while particles with
τs ≪ 1 will be tightly coupled to the gas and therefore rotate with the same speed
as the gas. Particles with τs ≫ 1 will on the other hand rotate on keplerian orbits
and the gas drag will not influence them significantly. For increasing dust to gas
ratios ϵ, the dust will eventually dominate the motion of the gas and the dust inward
drift is replaced by an outward drift of the gas.

The equations for the azimuthal velocity of both dust and gas, we see that the
velocities of both species are always sub-keplerian and for very small Stokes numbers,
the azimuthal velocities approach the gas velocity of a pure gas disk. From the
above form of the equations it is also directly visible that dust and gas rotate with
a common center of mass velocity vCOM = vK − η

1+ϵ
vK, and the deviations due to

the stokes number are only of the order τ 2s . For small dust to gas ratios the gas will
again be unaffected by the dust drag, whereas for very large ϵ the dust will rotate
almost keplerian as it would without the gas present.

To calculate the vertical settling velocity of the particles, we now to additionally
assume that the disk is quiescent and that vg,z = 0. Then the particles fall with their
terminal velocity which is determined by the balance of the vertical component of
gravity |FGrav| = m•Ω

2
Kz and the drag force |FD| from 2.50. Assuming the particle

is in the Epstein regime, the particle settling velocity is given by

vsettle = −ΩKτsz . (2.59)

This approximation only holds for particles with St< 1, for which particles settle
down to the midplane. Particles with larger St will undergo a damped oscillation
around the midplane with the largest particles moving similar to planets on inclined
orbits.
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Figure 2.7: Artist impression of a protoplanetary disk showing the motion of dust
particles on the left and the visibility of dust in different observation bands on the
right. Dust particles are lifted from the midplane of the disk by turbulence (1)
and settle down due to the vertical component of gravity (2). Additionally, they
drift towards the star with a velocity depending on their size (3), with intermediate
size particles with St=1 drifting the fastest. Particles will collide in the disk (4),
with collisions having different outcomes depending on the relative particle sizes
and velocities: slow collisions of small particles lead to sticking (4a), higher veloc-
ity collisions eventually lead to bouncing (4b), mass transfer (4c) and eventually
catastrophic destruction (4d) for the highest velocity collisions. The right side dis-
plays the distribution of particles in the disk with larger particles settling down to
the midplane and small particles staying suspended at higher altitude. The yellow
band shows the regions of the disk probed with scattered light observations at visual
wavelegths, the green shows the parts of the disk visible to mid-infrared observations
which probe the warm dust in the inner few AU of the disk, whereas sub-mm ob-
servations show the emission of larger grains near the midplane of the mid to outer
(cold) disk. Adapted from Testi et al. (2014), T. Birnstil
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In a quiescent disk, small particles would now settle down into a razor thin
particle disk. However, disks are always turbulent to a certain degree, either due
to the turbulence mechanisms discussed in previous sections or due to the fact that
dust dominated gas flow also develops turbulence. Turbulent motions lead to particle
diffusion, which opposes settling and leads to a dust disk with finite thickness

ρd(R, z) = ρd(R) ∗ e
(︃
− z2

2H2
d

)︃
(2.60)

with the dust disk scale height Hd determined by (Dubrulle et al. 1995)

Hd = Hg

√︃
δ

τs + δ
. (2.61)

Here, the dust diffusion is given as D = δcsH with the coefficient δ determined
in the same fashion as the turbulent gas diffusion parameter α. The ratio of mass
diffusion of dust and gas, sometimes called the Schmidt number, is then given by

Sc =
Dg

Dg

=
α

δ
. (2.62)

For the last equality it is assumed that the ratio of the momentum diffusivity (given
by the kinematic viscosity) and the mass diffusivity Dg of the gas (confusingly also
called the Schmidt number) is unity. Youdin & Lithwick (2007) showed that for
general values of St the Schmidt number can be approximated as Sc ≃ 1 + St2.
For MRI disks, Sc has been determined in simulations as close to unity for small
particles (Johansen & Klahr 2005) in agreement with the above formula, but this
cannot generally be assumed for other instabilities, especially as e.g. the VSI exhibits
anisotropic turbulent transport, where Sc depends on direction and care has to be
taken in evaluating either form of Sc.

2.2.4 Dust Growth from ISM to Pebbles and Beyond
The growth of dust grains from sub-micron sized monomers to >km sized planetes-
imals is a complicated and not yet well understood process, though there have been
significant advances in recent years. In this section, I will give a brief overview of the
prevalent theories based mainly on the review by Birnstiel et al. (2016). For a more
in-depth discussions of the individual theories I recommend the reviews by Birnstiel
et al. (2016), Testi et al. (2014) and Johansen et al. (2014) for further reading.

Collisional growth

For micron to meter sized particles, growth mainly occurs through collisions, whose
outcome mainly depends on the relative velocity of the colliding particles. For the
smallest particles, this velocity is dominated by the particles Brownian motion. As
the particles grow, first random motions due to turbulence become more important
and then systematic velocity differences due to radial drift and vertical settling
dominate. Figure 2.8 shows the combined differential velocity for different particle
sizes.
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Figure 2.8: Contributions to the relative particle velocity as a function of both
particle’s sizes: Turbulence (upper left), vertical settling (upper center), Brownian
motion (upper right) and azimuthal (lower left) and radial (lower center) drift. The
lower right panel shows the total relative velocity. The values are calculated for a
disk with α = 10−3, T=63 K and Σg = 16g/cm2 at a radius of 10 AU.

Because particle collisions don’t depend only on the velocities of the collision
partners, realistic collision models are complicated. They additionally depend on
the size of the particles, the impact factor, their fractal dimensions, chemical compo-
sition, porosity and many other factors. Laboratory studies can aid to understand
some of these properties (see e.g. Blum & Wurm (2008), Testi et al. (2014), Jo-
hansen et al. (2014) and references therein), but the size of the parameter space
involved makes it impractical to explore. However, five different general outcomes
of collisions have been identified (see also element 4 in figure 2.7):

Sticking: Particles undergoing low velocity collisions will stick together.
Bouncing: Particles colliding will bounce off each other with no changes in

mass, though a compactification is possible (Zsom et al. 2010).
Fragmentation: High velocity collisions of similar size particles result in de-

struction of both collision partners (Brauer et al. 2008; Birnstiel et al. 2009).
Mass transfer: A small particle colliding with a large one is destroyed but

deposits some of its mass on the large particle (Wurm et al. 2005).
Erosion: A small particle removes some of the mass of the larger particle it

collides with.

The relative velocity at which catastrophic fragmentation occurs depends on the
properties of the grains. Laboratory studies show that silicate grains fragment at
collision velocities above ∼ 1 m/s, whereas icy grains fragment only above ∼ 10
m/s. Erosion sets in at relative velocities ∼ 15 m/s. Therefore the lower left
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panel of figure 2.8 already shows that silicate grains will not grow beyond a few
mm whereas icy grains can reach cm or more at distances of about 10 AU from the
star. Generally, this maximum grain size at which fragmentation occurs lies between
around 1 millimeter in the outer parts of the disk and few meters in innermost parts.
Grains cannot grow beyond this size, which is known as the fragmentation barrier.

Even below this critical threshold, compact particles will start to bounce off each
other instead of sticking together. This stalls growth at sizes somewhat below the
fragmentation barrier known as the bouncing barrier. Because bouncing does not
happen for porous grains, this barrier is the easiest to overcome.

Another problem to growth is the radial drift of particles discussed in section
2.2.3. If the drift timescale of the dust grains is smaller than the time they need to
grow, the particles will drift towards the star before they are fully grown. Because
larger grains drift faster than smaller ones (at least for St<1), the larger grains are
removed preferentially, leading to a maximum size for the particles that remain at a
certain location. This largest size is termed the drift barrier. Because both the drift
barrier and the fragmentation barrier occur at particle sizes of about 1 m at 1 AU,
both are sometimes summarized under the more general term meter-size barrier.

Growing beyond the ”meter-size” barrier

Many pathways have been proposed to overcome these barriers and grow to sizes
beyond a few meters. One is to assume that there exist lucky seed particles which
are larger than most of the grains. These grains could then grow through mass
transfer collisions. Windmark et al. (2012) and Garaud et al. (2013) showed that
using a velocity distribution for the collision calculations instead of a single mean
velocity allows some lucky particles to avoid getting stuck at the bouncing. But the
use of a velocity distribution also means that smaller particles fragment in collisions
with partners of similar size slowing down the overall growth of particles. And even
if a particle is lucky enough to avoid the bouncing and the fragmentation barrier,
it has to be very lucky to grow significantly in size through mass transfer collisions
before getting destroyed.

Another possibility arises when the porosity evolution of the grain is taken into
account. Up until now, collisions were assumed to be between two compact grains,
but simulations have shown that grains grow rather fluffy (Dominik & Tielens 1997;
Paszun & Dominik 2009; Ormel et al. 2007; Okuzumi et al. 2012). Additionally,
icy grains fragment at higher collision velocities. Therefore, beyond the ice line but
inside 10 AU, it is possible for icy grains to grow in a porous fasion fast enough to
reach the stokes drift regime. There the growth time scale is inversely proportional
to the particle size leading to fast growth and circumvention of the drift barrier
(Okuzumi et al. 2012). Compactification of the grains then occurs for larger grains
due to ram pressure and self-gravity (Kataoka et al. 2013). However, Krijt et al.
(2015) showed that the inclusion of erosion can stall the growth of the particles at
St ≈ 1 if the collision velocity surpasses the threshold velocity for erosion.

Planetesimal Formation in Dust Traps

An entirely different way to circumvent the growth barriers is to jump the size regime
entirely and grow from cm sized grains to km sized boulders via gravitational collapse
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Figure 2.9: Illustration explaining the concentration of particles in local pressure
maxima. The blue curve shows the global pressure gradient of a protoplanetary
disk overlaid with a local pressure bump. The pressure maximum alters the local
azimuthal velocity φ, leading to outward particle drift in the region with radii slightly
smaller than the P maximum and enhanced inward drift at radii slightly larger than
it, indicated by the black arrows. This enables particles to swiftly accumulate inside
the pressure bump, as shown by the distribution of brown pebbles.

(Johansen et al. 2006, 2007, 2011). This collapse can happen because for dust-to-
gas ratios above unity, the concentration of dust becomes self-amplifying due to a
process termed streaming instability (Youdin & Goodman 2005). Then the dust
load can become large enough inside a clump formed that it exceeds the minimum
density required to collapse despite turbulence and disk shear. A criterion defining
this critical density was presented in Klahr & Schreiber (2016) and elaborated on
in Schreiber (2018). They also show that via the collapse of a particle cloud objects
of ∼ 100 km form, a size characteristic of objects in both the asteroid and Kuiper
belts.

A hindrance to this model is however the requirement of ϵ ≥ 1, which is not
generally given in a protoplanetary disk where the typical value of ϵ is 0.01, two
orders of magnitude below the necessary value. The solutions presented to overcome
this can be sorted into two categories: global and local enhancement of particles. The
former increases the dust content of the disk by decreasing the gas content, which
can be achieved by photoevaporation, winds or gas accretion by a giant planet.
Once the disk metallicity is super-solar (Z ≳ 0.02) , the streaming instability can
be invoked to form particle clumps on a global scale (Bai & Stone 2010; Carrera
et al. 2015; Johansen et al. 2015). As photoevaporation occurs in the late stages
of disk evolution and accretion assumes an already present planet, this mechanism
may explain the formation of asteroids and rocky planets, but is rather ill suited
explain the formation of cores for large gas giants.

The latter, a local enhancement of the dust density, can occur whenever a local
pressure maximum exists in the disk (Whipple 1972). Equations 2.55 -2.58 show
that dust drifts radially inwards if η > 0 and outwards if η < 0, which is equal
to the disk gas rotating at sub-keplerian or super-keplerian velocity, respectively.
Figure 2.9 shows now the case where the disk has a local pressure maximum: Inside



32 CHAPTER 2. A SHORT THEORY OF DISKS AROUND YOUNG STARS

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

∆ ϕ

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

∆
R

T
o

S
ta

r

Disk rotation

H

Figure 2.10: Illustration explaining the concentration of particles in anti-cyclonic
vortices. As shown in figure 2.9, particles drift towards local pressure maxima like
the ones found in anti-cyclones (H = high pressure system). Particles encountering
a vortex will thus be caught by it and spiral towards the center. Because larger
particles are affected stronger by radial drift, they will concentrate more quickly
towards the point of highest pressure. This leads to a size segregation with distance
from the vortex center as illustrated by the two blue curves, where larger dots
represent larger grain sizes.

the radial position of the maximum, the pressure gradient is positive, leading to
η < 0 and outward particle drift. Outside of the maximum, the pressure gradient is
strongly negative, leading to η > ηglobal > 0 and an enhanced inward drift. Because
η = 0 at the point of the pressure maximum, the dust rotates at keplerian speed and
does not drift. Therefore, dust naturally accumulates inside local pressure maxima,
which are thus often termed dust traps.

Because local dust traps can occur early in the lifetime of a protoplanetary disk,
much work has been done in recent years to identify them. One possibility identified
are zonal flows, axisymmetric structures with a local pressure maximum in radial
direction. They form in disks with active magneto-rotational instability and have
been shown to efficiently concentrate particles and form precursors to planetesimals
(Johansen et al. 2009, 2011; Dittrich et al. 2013).

Another possibility is the concentration of particles in vortices. As discussed in
section 2.1.5, protoplanetary disks only contain anti-cyclonic vortices. And because
they have a pressure maximum in their center, they can act as particle traps (Barge
& Sommeria 1995). Particles who encounter a vortex will then spiral towards its
center, with larger particles concentrating towards the center more quickly then
smaller ones as shown in figure 2.10. Klahr & Henning (1997) and Lyra & Lin (2013)
presented theoretical predictions on the particle density enhancement possible inside
vortices, and simulations of dust in in both fiducially created and spontaneously
formed vortices have confirmed their nature as traps (Fromang & Nelson 2005;
Klahr & Bodenheimer 2006; Meheut et al. 2012; Flock et al. 2017a). Raettig et al.
(2015), using shearing-box simulations and 2 way drag forces, showed that particles
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trapped in vortices can trigger the streaming instability locally and start to form
clumps, even for initially low global dust-to-gas ratios. Because the back reaction of
the particles affects the gas flow, vertically integrated 2D simulations showed that
vortices get destroyed once the particle load inside them becomes to largeSurville
et al. (2016). Recent 3D simulations published in Lyra et al. (2018) however showed
that vertically extended vortices do not suffer the same fate, but merely get deformed
close to the dust rich midplane.

2.3 Radiative Transfer
So far, we have only looked at the theoretical models used to describe protoplanetary
disks. To test these models against observations, we need to calculate how our
models would look like when seen through a telescope. This is where we need
Radiative transfer calculations.

A fundamental principle of radiation is that, if we look at a package of rays of
light travelling through vacuum, the intensity Iν at frequency ν of the ray stays
constant:

∂Iν
∂s

= 0 (2.63)

where s represents the distance travelled along the ray. Note that, in general,
Iν = Iν(s,n) is a function of both the distance s travelled and the direction of the
ray n.

If the rays travel through a medium, energy can be added through emission or
subtracted through absorption or scattering. Therefore, neglecting scattering for
the moment, equation 2.63 modifies to the fundamental radiative transfer equation

∂Iν
∂s

= jν − ανIν (2.64)

where jν is the emission coefficient and αν is the absorption coefficient, which is
defined as the inverse of the photon mean free path λphoton = 1

αν
. Because the

mean free path is dependent on the density of the traversed medium, we can write
αν = ρκν with κν being the mass-weighted opacity of the medium. We can then
define the optical depth of the medium as:

τ =

s1̂

s0

ρ(s)κν(s)ds (2.65)

which gives the logarithm of the incident radiation at s0 to the transmitted radiation
at s1 and therefore gives a measure at how effective the medium is at absorbing
photons. A medium with optical depth τ ≪ 1 absorbs only a fraction of the incident
photons and is termed to be optically thin, whereas a medium with τ ≫ 1 is said
to be optically thick.

Using the optical depth, equation 2.64 can be rewritten to:

∂Iν
∂τ

= −Iν + Sν (2.66)
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where I introduced the source function Sν = jν
αν

as the ratio between emission and
absorption coefficient. In local thermal equilibrium (LTE), Kirchhoff’s law states
that this ratio has to be equal to the Planck function Bν , so Sν = Bν . Integrating
equation 2.66 then gives the formal solution to the radiative transfer equation

Iν = e−τν

⎡⎣Iν,0 + τν̂

0

eτ
′
νSν(τ

′
ν) dτ

′
ν

⎤⎦ . (2.67)

In protoplanetary disks we also have to consider scattering of electromagnetic
radiation off of dust particles. Describing the radiation field as a field of rays passing
through a point x, scattering can be described to transfer energy from one ray
to another ray pointing into a random direction. Therefore we can introduce the
scattering absorption coefficient αscat

ν and the scattering emission coefficient jscatν .
The absorption and emission coefficients then become

αtot
ν = αabs

ν + αscat
ν jtotν = jabsν + jscatν , (2.68)

and the source function is now given as

Sν =
jabsν + jscatν

αabs
ν + αscat

ν

. (2.69)

Defining the photon destruction probability as

ϵν =
αabs
ν

αabs
ν + αscat

ν

(2.70)

and the albedo as
ην = 1− ϵν =

αscat
ν

αabs
ν + αscat

ν

(2.71)

the source function can be rewritten using the absorption and scattering source
functions as

Sν = ϵνS
abs
ν + (1− ϵν)S

scat
ν (2.72)

and, assuming LTE, equation 2.66 becomes

∂Iν
∂τ

= −Iν + ϵνBν + (1− ϵν)S
scat
ν (2.73)

where the absorption source function has again been replaced by the Planck function.
The scattering source function can now be an arbitrarily complex function of the
radiation field and therefore the right hand side is not known a priori any more. A
solution to equation 2.73 can therefore only be obtained in general only by using
numerical methods. In general, Sscat

ν can be written as

Sscat
ν =

1

4π

̉
Iν(n)φ(n,n

′)dΩ (2.74)

with n and n′ being the direction of the incoming and outgoing ray, respectively.
φ(n,n′) is the scattering source function, which has to fulfil φ(n,n′) = φ(n′,n) ≥ 0.
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For isotropic scattering, where n′ is independent of n, the source function takes
the simple form

φ(n,n′) = 1 . (2.75)

A more commonly used approximation is the Heyney-Greenstein phase function.
Defining the scattering angle θ between n and n′ via µ = cos(θ) = n · n′ and the
scattering anisotropy factor as

gν =
1

4π

̉
φ(µ)µdµ , (2.76)

the phase function can in this approximation be expressed as

φ(µ) =
1

2

1− g2

(1 + g2 − 2gµ)3/2
. (2.77)

The values of gν can then be tabulated along with the opacities prior to the simu-
lation and the radiative transfer calculation uses equation 2.77.

2.4 Numerical Methods Used in this Thesis
During this thesis, two code packages are used: the magneto-hydrodynamics code
PLUTO and the radiative transfer code RADMC3D. Both codes come with an ex-
tended user manual and documentation, so I will only briefly introduce the main
concepts here. For further reading, the reader is encouraged to consult Toro (2009)
for a general introduction into numerical magneto-hydrodynamics and Mignone et al.
(2007) for PLUTO in particular. For more information on numerical radiative trans-
fer, a good resource is the review of Steinacker et al. (2013).

2.4.1 Numerical Hydrodynamics with PLUTO
The PLUTO code Mignone et al. (2007) is a multi-purpose magneto-hydrodynamics
code able to compute relativistic and non-relativistic hydrodynamical and magneto-
hydrodynamical flows. It solves equations 2.1-2.3 using a finite volume approach
on a static or adaptively refined grid. The code can be freely downloaded from
http://plutocode.ph.unito.it.

Godunov’s method

Finite volume methods solve the integral form of equations of the general form

dU

dt
+∇ ·T(U) = S(U) (2.78)

using Godunov’s method Godunov (1959), which can generally expressed as a three
step process: Reconstruct, solve and average. Here, U = (ρ, ρv, ρe) represents the
vector of conserved variables, T(U) is a rank 2 tensor containing the fluxes of each
component of U as rows and S(U) is the vector of source terms.

In step 1, reconstruct, the value of U at the cell interface is constructed from
the grid cell average. This is archived in the most basic case by using the volume

http://plutocode.ph.unito.it
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Figure 2.11: Schematic explaining the different quantities used in the text. Left
shows the cell averaged value of U positioned at the cell center and the values of the
magnetic field at the cell interfaces. Right shows the inter-cell fluxes in the x, y and
z direction as F, G, and H, respectively, positioned at the respective cell interface.
Image from Stone et al. (2008).

averaged value itself, but more sophisticated schemes usually use linear or higher
order polynomial interpolations. With this, a Riemann problem is constructed at
the cell interface. In the most general form, the Riemann problem can be expressed
as

U =

{︄
Ui+ 1

2
,L x < xi+ 1

2

Ui+ 1
2
,R x > xi+ 1

2

(2.79)

where Ui+ 1
2
,L(R) is the value of U obtained from the left (right) side of the cell

interface located at xi+ 1
2
. Because the

Step 2, as the name suggests, solves this problem using a so called Riemann
solver. Using an exact Riemann solver is usually a cumbersome and computationally
expensive endeavour, so approximate Riemann solvers are usually implemented. The
most widely used ones are the solver of Roe or the class of solvers based on a method
developed by Harten, Lax and vanLeer. A good introduction into Riemann solvers
and Godunov’s method in general is Toro (2009), which also contains algorithms for
implementing the solvers mentioned above. As the result of this step, one obtains
the Riemann fluxes as a solution, which can then be used to evolve the system in
time.

Step 3, average, advances the system in time using

Un+1
i = Un+1

i +
∆t

∆V

[︂
Ai+ 1

2
Fi+ 1

2
− Ai− 1

2
Fi− 1

2

]︂
, (2.80)

where Un
i and Un+1

i are the cell averages at time t and t+∆t, respectively, and Fi± 1
2

are the Riemann fluxes from the left and right cell interface. The cell interface area
is represented by Ai± 1

2
and the cell volume by ∆V . ∆ represents the time step.

To ensure stability of the method, the cell average can only depend on the
Riemann problem from its direct left and right interface. To ensure this, the time
step has to be chosen in a manner that the signal from one interface does not reach
the next interface. The timestep is therefore limited by the Courant-Friedrichs-Lewy
condition:

∆t = Cmin
d

∆ldmin

|λdmax|
(2.81)
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where ∆ldmin represents the smallest grid cell size and |λdmax| the fastest signal speed
of each dimension d. C is the Courant number which obeys C ≤ 1. For the methods
employed in this thesis, a value of C = 0.3 is chosen.

Methods available in PLUTO

The goal of the PLUTO developers was (and is) to provide a modular multi-purpose
code. Therefore, for all three stages mentioned above, multiple options are imple-
mented in the code.

For the interpolation/reconstruction the available options are flat reconstruction
for 1st order and multiple linear, total variation diminishing (TVD) reconstruction
algorithms for 2nd order accuracy in space, e.g. monotonized central difference or
the harmonic mean limiter of van Leer. A full list is available in the code man-
ual. Higher order available limiters are the third order Weighted Essential Non
Oscillatory (WENO) and a fourth order piecewise parabolic (PPM) reconstruction.
Although these schemes are higher order, the global spatial accuracy of the code is
second order.

The Riemann solvers implemented in the code are, among others, the solvers of
Roe, Lax-Friedrich and Harten-Lax-vanLeer (HLL) as well as modifications of the
latter for inclusion of the central contact wave (HLLC) and Alvfen waves (HLLD).
The time integration in the last step can be either done using an Euler or a 2nd
or 3rd order Runge-Kutta scheme. Alternatively, for some configurations, the use
of the MUSCL1-Hancock scheme is possible. Because experience has shown some
combinations of options to give better results than others, the code manual contains
a list of suggested combinations.

Throughout this thesis, the following configuration is chosen for simulations:
Piecewise parabolic reconstruction, the hllc Riemann solver and a 3rd order Runge-
Kutta scheme for the time integration.

A Note on Coordinate Systems

The PLUTO code can be used with cartesian, cylindrical and spherical grids, which
can either be static or be refined at runtime using adaptive mesh refinement. Because
spherical geometry is the closest match to protoplanetary disk models, computations
presented in this thesis are done in spherical coordinates only, using a static grid
with linear grid cell division in polar and azimuthal direction and a logarithmic grid
in radial direction. When appropriate, a coordinate transformation to cylindrical
coordinates is made for visual presentation of the results, the underlying averages
however are always done in spherical coordinates and the data is stored on the
spherical grid defined in the simulation.

2.4.2 Radiative transfer with RADMC3D
RADMC3D Dullemond et al. (2012) is a continuum radiative transfer code for dusty
protoplanetary disks, freely available from http://www.ita.uni-heidelberg.de/
~dullemond/software/radmc-3d/ . It uses the Monte Carlo method to simulate

1Monotonic Upwind Scheme for Conservation Laws

http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
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multiple scattering in dusty media using different levels of scattering accuracy and
compute the dust temperature and images of the disk self-consistently. The code
comes with an extensive manual explaining the code functionality and the basics
of Monte Carlo radiative transfer calculations, and on which most of this section is
based on. The lecture notes of Dullemond (2013) are used as an additional source
of information mainly on the opacity calculation.

Monte-Carlo Method

As the name Monte Carlo, already suggests, Monte-Carlo methods use a statistical
approach to simulate the radiative transfer equation. This makes them a different
class of methods from for example discrete ordinate methods, which instead of solve
the radiative transfer equation directly.

In this method, the luminosity of the source, e.g. the central star, is divided
into thousands of photon packages, which in turn represent many photons. These
packages are sent successively into the simulation in randomly drawn directions.
The photon packages then travel through the medium for some time until they
undergo a scattering or absorption event. The distance at which this happens is
drawn again randomly using a distribution function dependent on the optical depth
of the surrounding medium. If the photon package is scattered, the new direction is
drawn randomly from a probability function dependent on the scattering approach
selected. If the photon is instead absorbed, and we are calculating the tempera-
ture of the medium, we force it to be immediately re-emitted in a random direction
and with a new frequency calculated with the prescription from Bjorkman & Wood
(2001). When the absorption/re-emission event happens, the photon package de-
posits energy in the cell and therefore changes the temperature in it. The photon
package travels this way through the simulation until the package reaches the edge of
the simulation grid and escapes. If we are instead interested in the scattering source
function, the calculation can additionally be stopped once the photon package has
travelled many optical depths (usually around 30) and can therefore be considered
extinct. Then the next photon package is launched and the calculation repeats until
all packages have traversed the system.

Opacity Calculation

Among other input parameters, RADMC3D needs to be supplied tabulated opacities
of all grain species. These can be calculated using the Mie scattering code of Bohren
& Huffman (1983), modified by B. Draine 2. The RADMC3D code package includes
a fortran wrapper to bring the output of the code into code compatible form, as well
as a full python version of the code.

Mie scattering Mie (1908) calculates the scattering and absorption opacity us-
ing a spherical harmonic series expansion of the solution to the Maxwell equations
describing the interaction of light with a dielectric homogeneous sphere. Because
Mie theory only applies to spherical grains, it can be a bad approximation for re-
alistic grains, which can have any kind of shape and may even align with e.g. the
magnetic field in the disk. But for most applications the assumptions made are ac-
ceptable. To compute the opacities using Mie theory, the complex refractive index

2Available from https://www.astro.princeton.edu/~draine/scattering.html .

https://www.astro.princeton.edu/~draine/scattering.html
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of the materials the grains are composed of have to be supplied. Grains found in
protoplanetary disks are mostly comprised of silicates, carbon, ices or a mixture of
these. The material properties can be obtained from the Jena Database of Optical
Constants3.

A Typical Production Run

Before the calculation can start, input files containing the dust (and if desired, the
gas) densities for each grain size, the corresponding opacities for each grain size, the
luminosity sources, the grid and a top level input file containing code flags have to be
compiled. The work flow then has two steps: In step 1, invoked with mctherm, the
dust temperature is calculated using the Monte-Carlo algorithm described above.
Here, the dust is assumed to be in thermal equilibrium with the gas. This step
outputs the file dust_temperature.dat.

Armed with the dust temperature, one can proceed to step 2: The computation
of a spectral energy distribution (SED, using sed) or an image (using image). During
this step, because we have the temperature and therefore the absorption but not the
scattering source function, RADMC3D first carries out a scattering Monte Carlo
run to compute the scattering source function, which is to large to store on file
permanently. The scattering in RADMC3D can be treated as isotropic or anisotropic
using either the Heyney-Greenstein approximation described above or by considering
the full scattering matrix (see the code documentation for more information). Then
the image is calculated using Monte Carlo Ray tracing. Because the code traces a
preset finite amount of photon packages and therefore only a finite subset of photon
paths, the final image can contain Monte Carlo noise. In most cases, the default
number of photon packages is sufficient, but especially when dealing with optically
thick media a higher number of photon packages may be required to get rid of the
noise.

3https://www.astro.uni-jena.de/Laboratory/Database/jpdoc/f-dbase.html

https://www.astro.uni-jena.de/Laboratory/Database/jpdoc/f-dbase.html




Chapter 3

Vortex Formation and Survival
in Protoplanetary Disks Subject
to Vertical Shear Instability

From Manger & Klahr (2018)

3.1 Introduction
Turbulence in disks around young stars is still one of the most interesting questions
in modern astrophysics (Turner et al. 2014). Balbus & Hawley (1991) introduced
the magneto-rotational instability (MRI) as a promising source of turbulence with
an alpha viscosity (Shakura & Sunyaev 1973) large enough to explain angular mo-
mentum transport on timescales set by observations. But more recent work shows
the MRI to be hampered by non-ideal magnetic effects such as resistivity or am-
bipolar diffusion (Lesur et al. 2014). They show that the instability can be damped
efficiently in parts of the disk by low ionization fractions, where then other sources
of turbulence can and have to be considered (Lyra & Klahr 2011).

Several possible mechanisms for pure hydrodynamic turbulence have since been
proposed, acknowledging the fact that a Keplerian flow with radially increasing an-
gular momentum profile is hydrodynamic stable as can be seen in a most general
way from the Solberg-Hoiland criteria, which is derived for no thermal relaxation
(Rüdiger et al. 2002). The global baroclinic instability (aka Subcritical Baroclinic
Instability) (Klahr & Bodenheimer 2003; Petersen et al. 2007a,b; Lesur & Papaloizou
2010) and convective overstability (COS) (Klahr & Hubbard 2014; Lyra 2014) rely
on radial temperature and density stratifications introducing convective cells in disks
with moderate cooling times on the order of τ = 1/(γΩ). The Vertical Shear Insta-
bility (VSI) (Nelson et al. 2013; Richard et al. 2016; Stoll & Kley 2014) relies on
short cooling times to remove the stable vertical stratification to tap into the energy
of the vertical shear.

In all of those turbulence models, the formation of vortices has been observed.
Raettig et al. (2013) showed them in local simulations of subcritical baroclinic in-
stability, (Flock et al. 2015) in a global context at the edge of the MRI dead zones.
The Rossby Wave Instability (Papaloizou & Pringle 1984, 1985; Lovelace et al. 1999;
Li et al. 2000, 2001) has been shown to break axisymmetric rings into large vortices.
Richard et al. (2016) showed the possibility of small vortex formation within disks
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susceptible to VSI and Latter & Papaloizou (2018) found the Kelvin Helmholtz
Instability acting as a parasitic instability on the VSI modes and forming small
vortices in the disk.

Because vortices are naturally identified with local pressure maxima in the con-
text of PPDs, they act as particle traps (Barge & Sommeria 1995). They are found
to enhance the dust to gas ratio locally, aiding planetesimal formation via triggering
the streaming instability (Raettig et al. 2015) and accelerate core growth for gi-
ant planets via pebble accretion (Klahr & Bodenheimer 2006). Large vortices have
also been discussed as explanation for features found in (sub-)mm observations of
protoplanetary disks with ALMA (van der Marel et al. 2013) and VLA (Carrasco-
González et al. 2016).

In this chapter we investigate vortex formation and survival in protoplanetary
disk simulations undergoing Vertical Shear Instability, reexamining the work of
Richard et al. (2016). We find that once we loosened the restriction to small az-
imuthal domains (large azimuthal wavenumbers m) and allowed for simulation do-
mains of ϕ = 180◦ and ϕ = 360◦, we find large vortices forming in the disks after a
few hundred orbits. We also find these larger vortices to survive for hundreds of local
orbits, making them excellent particle traps and candidates for planetesimal forma-
tion sites. With this, we stress again that non-axisymmetry plays an important role
in assessing disk turbulence features (Klahr et al. 1999).

The chapter is structured as follows: Section 3.2 lays out the numerical set-up
used in all computations. In Section 3.3 we present our results and in section 3.4,
we discuss them in context of recent literature. Finally, section 3.5 summarizes our
findings and presents an outlook on future work.

3.2 Simulation Setup
We conduct 3 dimensional simulations using the magneto-hydrodynamics code PLUTO1.
In this chapter, we use 2 coordinate systems. The simulations are carried out on
a spherical grid (r, θ, ϕ), the model setup and analysis are presented in cylindrical
coordinates (R, φ, Z),

We implement the disk setup following Nelson et al. (2013). The gas density is
defined by

ρ = ρ0

(︃
R

R0

)︃p

exp

(︃
− Z2

2H2

)︃
(3.1)

with the disk scale height H = cs
ΩK

. We chose a ideal equation of state ρe = P
γ−1

with the specific internal energy e,the adiabatic index γ = 5/32 and P = c2sρ using a
radially changing isothermal sound speed c2s = c20

(︂
R
R0

)︂q
. Note that the temperature

is related to the isothermal sound speed via c2s = kT/µmH with k denoting the
Boltzmann constant, µ the mean molecular weight and mH the atomic mass of
hydrogen, thus defining a radial temperature gradient in the disk.

1http://plutocode.ph.unito.it
2The value for γ in protoplanetary disks is closer approximated by 1.44 due to the diatomic

nature of molecular hydrogen. We instead use the standard γ = 5/3 of PLUTO. This does not
significantly affect the results due to the fast cooling applied in this chapter.
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Table 3.1: Simulation parameters for all simulation conducted in this study. We give
grid parameters, phi extent and resulting time and space averaged alpha values.

Run Nr ×Nθ ×Nφ φmax[
◦] α

p45 256× 128× 96 45 1.5 · 10−3

p90 256× 128× 192 90 1.4 · 10−3

p180 256× 128× 384 180 1.2 · 10−3

p360 256× 128× 768 360 1.0 · 10−3

For all our simulations, we choose −2
3

and −1 for p and q respectively, satisfying
the requirements set for the VSI.

The q = −1 is close to the maximum of q = −1.5 that one can expect in
a viscously heated disk (see Eq. 11 in Bell et al. (1997)) in regions which are
dominated by icy grains. The value for p = −2

3
is chosen to be consistent to models

in which we try to simulate the COS, by using an identical setup as described here,
but using a longer cooling time. This particular value of p has no significant impact
on the VSI, but helps to maximise the radial buoyancy for the given p expressed in
the radial Brunt-Vaissala frequency N2

r (Klahr & Hubbard 2014).
The geometrical scale height is then constant throughout the disk with H/R =

c0/vKepler = 0.1, which is also nice to evaluate the simulation. H/R might actually
be smaller in a real circumstellar disk (Bell et al. 1997) and we tested a value of
H/R = 0.05, which was also the value choice in the work by Stoll & Kley (2014), yet
(Flock et al. 2017b) again uses values of H/R = 0.1 for the outer disk. H/R = 0.05
simulations are computationally more expensive, as the pressure scale height has to
be resolved by at least as many cells as in the H/R = 0.1 case, leading to 8 times
more cells and reducing the time step by a factor of two. Once our H/R = 0.05
simulations are finished, we will publish them in comparison to the H/R = 0.1
cases, but we claim that smaller values of H/R will show similar results for runs
with comparable resolution per scale height.

The scale height can be expressed as:

H ∝
(︃
R

R0

)︃(q+3)/2

, (3.2)

and the initial angular velocity of the disk is given by

vφ = ΩKR

[︄
1 + q − q R√

R2 + Z2
+ (p+ q)

(︃
H

R

)︃2
]︄ 1

2

(3.3)

whereas the radial and vertical velocities are set to zero. All velocity components
are initially seeded with a white noise perturbation of 10−4 cs.

The cooling in our model is described by

dP

dt
= −P − ρTinit

τrelax
(3.4)

where Tinit(R) is the initial Temperature profile and τrelax is the relaxation time scale.
It is set to τrelax = dt and is about 2 ·10−3/Ω0 in all simulations. This is the shortest
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cooling time we can realise in our explicit cooling scheme, effectively leading to an
almost locally isothermal disk.

In our numerical computations we use the hllc method (Toro 2009) with a ppm
reconstruction scheme (Mignone 2014) for spatial integration and a 3rd order Runge-
Kutta method for time integration. The mesh extends from (0.5r0, π/2 − 0.35, 0)
to (2r0, π/2 + 0.35, φmax) with r0 being the radius at r = 1 and φmax given in table
3.1. We use a logarithmic grid in radial direction and a uniform grid otherwise to
preserve the aspect ratio of the individual grid cells. This gives us a resolution of 18
cells per H in vertical and radial direction and 12 cells per H in azimuthal direction.
For the largest run (p360), we used about 1.4 million cpu-hours.

We employ outflow boundary conditions in radial direction, reflective boundaries
in vertical direction and periodic boundaries in azimuthal direction. To minimise
mass loss in radial direction and generally wave reflection at the boundaries, we add
damping layers at the inner and outer boundaries in the radial and polar direction
with ∆R = 1.0H and ∆θ = 0.05. Inside the damping layers, we damp the velocities
to their initial values if the velocity component normal to the boundary points inside
the domain. For the damping we use:

dvx
dt

= −vx − vx,0
τdamp

· f 2 (3.5)

with the damping time τdamp = 0.12π
Ω

and f = R−Rb

∆R
in radial and f = max(R−Rb

∆R
, θ−θb

∆θ
)

in meridional direction . Rb and θb denote the position of the boundary of the damp-
ing layer inside the simulation domain.

3.3 Results
We performed simulations with azimuthal extents of 45, 90, 180 and 360 degrees to
determine a minimum azimuthal range on which similar behaviour as in a complete
360 degree disk can be expected. The low resolution chosen for all simulations
enables simulation times close to 1000 orbits (which for H/R = 0.05 needs 16 times
the computation cost) enables us to determine the lifetime of the formed vortices
and possible influences on disk evolution an planetesimal formation. The simulation
parameters are summarized in Table 3.1. In this section, we present the results of
our simulations, focusing first on the flow properties and later on vorticity.

3.3.1 Transport properties
We analyse the transport properties of the VSI for all runs in a subdomain of
the simulation grid. The subdomain is defined as R = [0.7 − 1.8], Z = [±2.5H],
φ = [0, φmax]. This is done to avoid possible influence of the imposed boundary
conditions on the results.

We look at the Reynolds stresses generated in the disk following the prescription
by Klahr & Bodenheimer (2003)

Tr,φ = ⟨ρvrvφ⟩φ,t − ⟨ρvr⟩φ,t⟨vφ⟩φ,t (3.6)
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Figure 3.1: Evolution of the alpha values over the simulation time. The alpha
values are averaged over the analysis domain an as running average in time. We
observe the turbulence to saturate rapidly within around 100 orbits to alpha values
of around 10−3. The alpha values for the simulation with smaller azimuthal domain
are slightly larger than for the larger domain. The inset highlights the evolution for
the last 200 orbits.

and compute the α-parameter of the disk

αr(z) =
⟨Tr,φ⟩r
⟨P ⟩r

(3.7)

with P = ⟨ρc2s ⟩φ,t. This guarantees a mass weighted α and filters out angular
momentum flux associated with mean mass transport ⟨ρvr⟩. We plot the evolution of
α over time in figure 3.1. The values are averaged over the whole analysis domain in
each direction and up to the given point in time. We find α-values of approximately
10−3 in agreement with Stoll & Kley (2014) and (Nelson et al. 2013), but significantly
higher than those reported by Richard et al. (2016). The equilibrium alpha values
(table 3.1) can be seen to decrease with increasing azimuthal extent. This effect
is caused by the use of periodic boundary conditions in phi direction, leading to a
large pitch angle for the tightly wound spiral pattern for smaller phi extents.

To look at the vertical structure of the disk, figure 3.2 compares the meridional
α profiles of the simulated disks averaged between 500 and 700 orbits and over the
radial and azimuthal subdomain. We observe different profiles for each simulation.
We find the steepest profile for the simulation p45, showing high alpha values at the
disk surface and negative values at the midplane, which suggest moderate inward
angular momentum transport in the midplane of the disk and outward transport in
the surface layer. The profile flattens for the case p90, with positive alpha values
throughout the disk and lower alpha values at the surface compared to run p45. This
trend continues for the cases p180 and p360, though the latter show to be in good
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agreement with each other. This also suggest angular momentum is transported
outward at all heights, albeit with stronger transport in the upper layers of the disk.
The vertical profile of the Reynolds-stresses of the disk shows the largest angular
momentum transport to occur at z ≈ ±1.6H for simulation p45 and decreasing to
z ≈ ±1.3H for the full 2π disk.

To investigate this behaviour further, we calculate the radial mass flow of the
disk ρ vr as a function of height above the midplane in all our simulations, shown in
figure 3.3. We again average over the radial and azimuthal domain of the simulation
and over 200 snapshots taken between 500 and 700 local orbits. We find radial
mass inflow for all models in the midplane, which aligns with the findings of Stoll
et al. (2017), who find the same flow reversal applying an anisotropic viscosity
model with a heightened z-viscosity component. Therefore, although there is only
small to no outward radial angular momentum transport present in the midplane
from the VSI, mass can be accreted efficiently. The angular momentum however is
transported vertically from the midplane to the upper layers of the disk, where it is
then transported radially outward. This mechanism also gives an explanation to the
observed shallower vertical profiles for the models p180 and p360. We argue that
due to the large azimuthal extent of the disk, the anisotropy manifests in different
magnitudes and therefore leads to an overall shallower profile. This supports our
view that treating the disk as too high m leads to incomplete results.

To prove that the vertically averaged angular momentum transport (i.e. our
measured mean α-value) is nevertheless sufficient to prescribe the mean radial mass-
accretion, we calculate the average radial velocity given from steady-state viscous ac-
cretion theory and compare this to the simulation values. Integrating the vertically-
averaged steady-state angular momentum equation one obtains

ΣvR = Σν
dΩ

dR
= −3

2
α

(︃
H

R

)︃2

Σvk (3.8)

with Σ the disk column density, ν = αH2Ω the viscosity and dΩ/dR = −3/2Ω.
For the case p360 with α = 10−3 we get ΣvR/(Σvk) = −1.5 · 10−5. From the
corresponding simulation run we get from integrating over figure 3.3 an average
value of ΣvR/(Σvk) = −2.4 · 10−5, which agrees well to the predicted value. This
shows that angular momentum transport driven by VSI is well described in the
picture of α-viscosity, even if transport is most likely realised by travelling spiral
waves rather than local Kolmogorov-like 3D turbulence. This also supports our
claim that angular momentum is transported mainly vertically from the midplane
to higher layers and then transported outward, as the vertically averaged angular
momentum matches the value needed for the occurring mass transport despite the
low α values measured in the midplane of the disk. Whether the turbulence is
truly local, i.e. the dissipation of kinetic occurs also proportional to the measured
α-viscosity, was not possible to be determined in our simulations, but should be goal
for future setups. This would need the monitoring of local heating and cooling.

We also look at the time evolution of the rms-velocities in the disk, defined as

vrms =

(︃
1

V

̂
V

(v2R + v2Z)dV

)︃0.5

. (3.9)
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We consider only the radial and vertical component of velocity because the disk
rotation profile is not keplerian in this chapter and spatially varying systematic
deviations cannot be taken into account. The results are presented in figure 3.4. We
find the values of all runs to agree with each other for the first few orbits as expected,
as the limit in azimuthal wavenumber does not influence the onset of the instability.
The overall onset of the instability is observed earlier than in other studies. This is
explained by the specific choice of parameters in our setup, which allows for earlier
onset of the instability due to the very short cooling time. The saturated values
for cases missing the lower azimuthal wave-numbers p45 and p90 are higher than
for the other cases. We measure the growth rate of the velocity perturbations as
0.4 per orbit, about double the value reported by Stoll & Kley (2014), which is in
excellent agreement with theory as growth rate is proportional to the pressure scale
height σ ∼ qΩH

R
(Nelson et al. 2013), which was only half the value we adopted.

Note that Stoll & Kley (2014) give their value for the growth rates for the kinetic
energy. Comparing the time evolution of the rms-velocity to the time evolution of
the alpha value in figure 3.1, we find that the rms-velocity saturates after about
20 orbital periods, while α, the quantity related to angular momentum transport,
saturates only after 100 orbital period. This behaviour is linked to the transport of
energy to larger scales in the disk and we will discuss this further in section 3.4.1.

Figure 3.5 shows the vrms-values as a function of height averaged over the radial
and azimuthal subdomain and between 500 and 700 orbits. We find a similar shape
for the vertical structure of all runs with low velocities in the midplane and rising
with z/H. We find a systematic positive offset for all runs compared to p360 with
p45 having the largest offset. This compares to our findings for the α viscosity
parameter in figure 3.2, suggesting a smaller φmax systematically overestimates the
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Figure 3.5: Meridional profile of the RMS velocity. The vrms values are averaged
over the radial and azimuthal subdomain and between 500 and 700 orbits. We again
observe significantly lower values for the run p360 than for the other runs.

turbulence strength.
In spectral line observations of protoplanetary disks the total rms velocity can

however not be measured. The most easily accessible quantity is the vertical com-
ponent of the velocity, which can be measured by determining the line broadening
of face-on disks. We separately calculate the height profile for this quantity in figure
3.6. We again see the large offset for the simulations p45 and p90 compared to the
case p360, the case p180 shows similar values to the 360◦ case. The height profile
for all simulations follows a similar shape as the total vrms values with low values in
the midplane growing with height z.

Cuzzi et al. (2001) related the rms-velocity to the turbulent viscosity parameter
α via

vrms =
√
αcs (3.10)

(their equation 2) if the largest eddies have a rotation frequency comparable to
the orbital frequency. To check the applicability of this relation to the turbulence
induced by the VSI, we plot the ratio of the height dependent z component of the
rms-velocity to the square-root of the simulation averaged alpha value (see table 3.1)
in figure 3.7. For all simulations, the ratio of vrms/cs to

√
α is above unity. Therefore

the angular momentum transport in our simulations of the VSI is weaker than one
would expect from the measured velocities. The deviation depends on height with
values closer to unity in the midplane. The overall deviation is largest again for the
case p45, which also showed the highest values for vrms/cs and α and decreases with
φmax. For the case of a full disk we find however values larger than for φmax = 180◦.
For protoplanetary disks subject to the VSI, the α values calculated from measured
turbulent velocities should therefore be treated with caution. Depending on the
height above the midplane where the measurement is taken, the values for α could
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Figure 3.8: The midplane value of the z-component of vorticity after 200, 500 and
700 local orbits into the simulation. The azimuthal size of the simulation increases
from top to bottom. For the upper two rows we see the formation of zonal flows and
small vortex structures. In contrast to this we see large vortices in the lower rows
for the second and third snapshot.

be overestimated by up to one order of magnitude. Also, when comparing the alpha
values of simulations and observations, the influence of the azimuthal extent of the
simulation should be taken into account.

3.3.2 The influence of φmax on the disk structure
To asses the influence of φmax on the outcome of the numerical simulation, we plot
the z component of the vorticity

ωz = (∇× v)z (3.11)

in the disk midplane for three different times: after 200, 500 and 700 local orbits.
The results are presented in figure 3.8. For the case of p45, we find small vortices
with aspect ratios χ ≈ 4 and zonal flows. All structures show strong variations
in time, as can be seen by the differences in the time frames shown in figure 3.8.
These structures also appear in the case of p90, where also larger structures similar to
vortices emerge in the first frame but are destroyed again in the second frame of figure
3.8, also pointing to high variability with time. This changes for the simulations
p180 and p360. Here we observe small, unstable vortices forming quickly in the
beginning and additionally two larger vortices with aspect ratios χ ≈ 8− 10 after a
few hundred orbits, seen in the left frame in figure 3.8. The large vortices continue to
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Figure 3.9: Contour plots of the vorticity at different heights above the midplane
for the simulation p360 at the position of the outer vortex (Rc, φc) = (1.4R0, 3.5)
after 500 orbits. The plots show the highly turbulent state in the vortex.

appear both after 500 and 700 orbits (fig. 3.8, middle and right columns), suggesting
stability over larger times. The middle and right column also show additional large
vortices appearing at later times. This change in overall structure for azimuthal
extents larger than 180◦ suggests that the approximation of large m restricts the
development of large, long lived structures in VSI disks.

Looking at the large vortices specifically, we find them to have an inner turbulent
structure, similar to the one found in (Raettig et al. 2013; Lyra 2014). Figure 3.9
illustrates this, showing the structures inside the outer vortex of the simulation p360
at (Rc, φc) = (1.4R0, 3.5) after 500 orbits (fig. 3.8, middle column). We again plot
the z component of vorticity, now for 4 different heights z = 0, 0.5 H, 1 H and 2 H
above the midplane of the disk. We multiply the azimuth with the central radius
and scale both axis with the local pressure scale height to show the true size of the
vortex.

The structure inside the vortex shows changes on small scales, forming a highly
turbulent substructure. The turbulent structure is visible throughout the upper and
the lower left panel of figure 3.9. In these 3 panels we also find a consistent outer
boundary for the vortex as an azimuthally elongated radially narrow region of higher
vorticity relative to the inside of the vortex, forming a shell around the vortex. This
structure is consistent with the predictions of Lesur & Papaloizou (2009) for the
elliptic instability, which we will discuss in section 3.4.2. The lower right panel of
figure 3.9 shows the vortex structure fading into the turbulent background structure
of the disk, suggesting the vortex extends to about 2 scale heights above and below
the midplane.

To asses the influence of the forming vortices on the flow structure reported for
the VSI we plot the vertical velocity times density in the R-Z plane in figure 3.10
after 500 orbits, corresponding to the middle column of figure 3.8. Figure 3.10 (b)
and (c) show the models p45 and p90 at ϕ = π/8 and ϕ = π/4 respectively and (d)
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Figure 3.10: Vertical slice of the vertical velocity in the disk for different azimuthal
positions after 500 orbital periods. Plot (a) shows a 2D axisymmetric disk after 80
orbits for comparison, (b)-(d) the models p45, p90 and p180 respectively and (e)
and (f) the model p360, where (e) is taken at a ϕ position without a vortex and (f)
at the center of the outer vortex shown in figure 3.8 (middle column). The color
scale uses linear scaling for absolute values smaller 0.05 and logarithmic otherwise
to enhance visibility.

shows the model p180 at ϕ = 2.5, the center position of both vortices at that time.
Figure 3.10 (e) and (f) show model p360 at 2 different ϕ positions: (e) at ϕ = 1.0,
where no large vortices are intersected, and (f) at ϕ = 3.6, the center position of
the outer vortex. Figure 3.10 (a) shows the 2D axisymmetric simulation with the
same r,z resolution from the resolution study shown in appendix A after 80 orbits.
The snapshot from the 2D run is taken at an earlier time to avoid the non-linear
phase of the axisymmetric VSI, which differs from the full 3D simulations due to
the occurrence of the RWI in 3D.

We find a similar vertical velocity profile as reported by Nelson et al. (2013),Stoll
& Kley (2014) and Flock et al. (2017b) with strong vertical motions present over
the whole height of the disk. We find the run p45 agreeing well with the early stage
of the 2D comparison simulation, showing a pattern of disk annuli of ∆R ≈ 0.5H
with alternating positive and negative vertical velocity and symmetry about the
midplane of the disk. In (c) we see the overall pattern still preserved for the case
p90, but the annuli now have a larger radial width of ∆R ≈ H. This picture
changes once the disk is able to form vortices. Fig. (d) shows the case of p180
at the centre position of the inner vortex. The ordered pattern seen in (a)-(c) is
broken at the radii of the vortices, although it is still partly visible at other radii.
The size of the annuli of alternating velocity also decreases in this simulation. Both
vortices have negative vertical velocities, although the velocity is greatly reduced
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Figure 3.11: Track of the vortex radial position over time via a function of ωz. Only
the cases p180 and p360 in the lower panels show vortices surviving over hundreds
of orbits, indicated by the darker lines. The lower panels also show the position of
the vortex moving to smaller radii with time.

with respect to the surrounding, especially for the outer vortex. Figure (f) shows a
similar behaviour for the case p360. The overall structure of the disk is less ordered
than for the axisymmetric case and the vortex has a lower vertical velocity as the
surrounding disk, although a similarity with the VSI velocity pattern is retained.
This is also true for slices at ϕ positions outside the vortex, shown in (e). There
we also find the pattern of positive and negative vz annuli, although their strength
and width again is diminished with respect to the axisymmetric case. Interestingly,
we also find a turbulent ring structure at the raidal position of the outer vortex in
(e). This could indicate the vortex is embedded in a larger flow structure or the
occurrence of small vortices which are elongated in z-direction. Comparing (e) and
(f) in the inner part of the disk, we find the radial positions of the annuli described
above do not coincide, indicating the annuli are not axisymmetric anymore for these
larger disks.

3.3.3 Vortex lifetime
For planetesimal formation the lifetime of a vortex is a critical factor determining
the trapping efficiency. Therefore we are interested in the lifetime of the vortices
generated by the instability. A distinctive signature of a large anticylonic vortex
is a minimum in local vorticity stretching out over a fraction of a disk annulus.
We therefore apply a box filter in radial and azimuthal direction to the midplane
z-vorticity values. In azimuth, we apply a filter width of 48 and 96 grid cells for p45



3.4. DISCUSSION 55

and p90 respectively and 200 grid cells for both p180 and p360. In radial direction,
the filter width is 30 grid cells, equalling 2H. The filter damps fluctuations on scales
smaller than the filter width, enhancing the visibility of large scale structures. To
outline the radial position of the large vortices, we then find the minimum in the
deviation of the smoothed ωz from the azimuthal average in the respective annulus.
The calculation of the deviation from the azimuth ensures we exclude the large
azimuthal flow structure occurring at the outer boundary in figure 3.8. Figure 3.11
shows the evolution of this value as a function of radius and time, outlining the
radial position of the vortices in the disk over the run of the simulation.

We observe multiple long living vortices emerging in run p180 and two in run
p360, seen in the lower panel in figure 3.11. They start with distances of 1 to 5 pres-
sure scale heights and are observed to migrate inwards with a migration rate lower
than 0.0005 R0/Ω. Paardekooper et al. (2010) find similar migration rates for vor-
tices in laminar 2D vertically integrated disks. Though their results are not directly
transferable to the case presented here, we think the underlying mechanism is the
most plausible explanation of the phenomenon observed. The outward migration
of the inner vortex in p360 can be explained by the occurrence of a surface density
maximum moving outward. The vortex is trapped in the maximum and is dragged
outward again, as it cannot drift across it (Paardekooper et al. 2010). Figure 3.11 in
conjunction with fig.3.8 also shows vortices interacting and after some time merging
once one vortex migrates within one pressure scale height radial distance to another.

In contrast, we don’t observe the same in the simulations p45 and p90, shown in
the upper row of figure 3.11. We do not see any sign of larger vortices in simulation
p45, which is in agreement with (Richard et al. 2016). The case p90 shows a vortex
forming after around 150 and another after 550 and existing at least intermittently.
This suggests the phi range of a simulation to be crucial in the development and
sustaining of large, long lived vortices.

3.4 Discussion

3.4.1 RWI as secondary Instability
In this section, we now focus on evidence in our simulations that suggests the trigger-
ing of the Rossby-Wave-Instability (RWI) to initiate vortices. We therefore calculate
the values of the critical function L as given in equation 2.45 from an azimuthally
averaged density, pressure and velocity structure of our simulation. We also averaged
the field quantities over θ before calculating L .

Figure 3.12 shows L /L0 as a function of radius after 200, 500 and 700 orbits.
In the top row we show the results from p45. All plots show multiple strong global
maxima, suggesting the disk to be in principle susceptible to the RWI. The amplitude
of the extrema decreases with time but they stay as distinctive features throughout
the simulation time. In the bottom row we show L /L0 for p360. Here we also
find extrema, but fewer in number and not as distinct as for p45. Also, the overall
amplitude of the extrema is lower as in the other case.

Taking a closer look at the lower right plot in figure 3.12, we find the most
distinctive peaks at R=1.0,1.3 and 1.45. Comparing these to the initial locations of
the vortices we find in the lower left subplot of figure 3.11, we find them to be in
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energy and downward enstrophy cascade. For comparison we plot the power laws
E(m) ∝ m−5/3 and E(m) ∝ m−5, indicators of the inverse energy and downward
enstropy cascade respectively.

good agreement. This is clear evidence that the RWI is triggering the large vortices
we observe in our simulations. The decrease in amplitude of the extrema after
saturation of the instability has been shown for artificial RWI vortices by (Meheut
et al. 2010) and can explain the decrease we witness in the p360 case.

To investigate this, we also look at the azimuth of the kinetic energy spectrum
in the midplane of the disk.

E(m) = 0.5
∑︂
i

⟨|(F(vi,z=0))
2|⟩r i ∈ [r, θ, φ] (3.12)

F denotes the Fourier transform of the respective velocity component.
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(Li et al. 2000) showed the RWI has a maximum growth rate for the azimuthal
wave number m in the range of m = 3−6. These wavenumbers can only be accessed
for simulations with an azimuthal extent equal or larger than 90 degree. Therefore
the RWI is expected to only grow inefficiently in the p45 simulation. Figure 3.13
shows the radial average of the azimuthal component of the kinetic energy spectrum
after 700 orbits.

We find a broken power law for E(m) in all our simulations. At smaller wavenum-
bers m, the slope falls as m− 5

3 , as expected for the upward Kolmogorov cascade in
a rotationally dominated flow above the Rhines scale (Rhines 1975), i.e. where
the eddy turn over time is longer than the rotational period of the system. At
large wavenumbers, the spectrum behaves ∝ m−5, a scaling in agreement with a 2D
enstrophy downward cascade. This result indicates that our simulations are pre-
dominantly 2D/rotation dominated due to the fast rotating flow in the disk. This is
supported by our finding that the Reynolds stresses saturate at a later time than the
rms-velocity. The rms-velocity directly traces the turbulence generated at smaller
scales induced by the VSI, but αRey traces the angular momentum transported at
larger scales. The difference in saturation time is then explained with the observed
inverse energy cascade in the disk, which has to transport the energy generated at
small scales to the larger scales on which angular momentum is transported in the
disk. This is supported by the fact that we find from figure 3.13 that the energy
injection of the VSI occurs at about m = 40 − 60, which is about 1 − 1.5 pressure
scale heights.

At the smallest wavenumbers m, we find a maximum for E(m) at m = 3 and
m = 4 for the cases with φmax = 180◦ and 360◦, whereas for the other cases the
energy piles up at m = 4 and m = 8 for φmax = 90◦ and 45◦, the largest respective
wavenumber accessible. For the cases with φmax ≤ 180◦, the large vortices formed by
the RWI extract energy from the flow, whereas the absence of large vortices in the
other simulations forces the energy to be deposited in the largest mode accessible
in the simulation. This can also explain the systematically higher rms-velocities we
found for φmax = 45◦ and 90◦ in figures 3.4 and 3.5.

To confirm we are in the rotation dominated regime in our simulations, we plot
the Rossby number

Ro =
u

l · Ω0

(3.13)

with u being the flow velocity at length scale l. The Rossby number gives the relative
importance of Coriolis forces vs. inertial forces and is smaller unity if Coriolis forces
are non-negligible for the flow in the system. We can express this number also as a
function of wavenumber m using the kinetic energy spectrum to define the velocity
spectrum.

Ro(m) =

√︁
m/(2π R0)E(m)

m/(2π R0) · Ω0

(3.14)

We plot Ro(m) as a function of azimuthal wavenumber m in figure 3.14. We
find the Rossby number stays below unity at all scales accessible in our simulations,
confirming we are indeed rotationally dominated. We also find Ro ≈ const. at the
largest wave numbers m, indicating a change of slope for E not prominently visible in
figure 3.13. Of course we only investigate one component of the turbulent spectrum,
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Figure 3.14: Rossby number as a function of azimuthal wavelength at 700 orbits.
We find Ro to rise at large scale and later fall towards larger scales, with a maximum
at the energy injection scale. The Rossby number stays below unity at all scales
resolved in our simulation.

because neither the radial nor the vertical wave numbers are as easy measurable
as the azimuthal component. VSI is known to favour high radial and low vertical
wave-numbers, yet this investigation was not feasible with the current data sets, but
shall be attempted in the future. In any case the low values for Ro are an indication
that all our turbulence is strongly rotational dominated and thus most likely not
isotropic anyway.

Because Ro < 1 in our simulation, we now revisit equation 3.10 . Cuzzi et al.
(2001) developed the equations under the assumption that the disk turbulence is
isotropic and follows a Kolmogorov dissipation law, which implies that turbulence
has to be in the Ro> 1 regime, which is clearly not the case here. From equation 3.13
we can estimate the wavenumber at which our system should satisfy this condition.
For a typical velocity vrms = 0.01vk,0 we get

mRo=1 =
vrms ·m
2π R0

≈ 600
1

R0

, (3.15)

a value much larger than the Nyquist-wavenumber of our setup. This suggests that
the rms-velocities in the disk act on much larger scales than the turbulence scales,
and the ansatz presented in Cuzzi et al. (2001) is not always valid in protoplanetary
disks. We however consider only the azimuthal direction in our analysis, leaving the
possibility of a different scaling in the other spatial directions. Nevertheless, even if
there might be more energy at large radial and vertical wavenumbers kR, kz ≡ 600/R,
this still means that turbulence is also on small scales highly anisotropic, asking
for revisiting the Kolomogorov picture for small scale turbulence in protoplanetary
disks. Also, the results of section 5.3 show the ansatz works quite well despite vrms

being generated on different scales than assumed for the turbulent α.
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3.4.2 Influence of elliptic instability
In section 5.3 we described a turbulent substructure occurring inside the large vor-
tices in our simulation runs p180 and p360. Lesur & Papaloizou (2009) showed a
similar effect for vortices with aspect ratio χ > 8 influenced by elliptic instability.
The larger vortices in our simulations have aspect ratios 8 < χ < 11 and fit well
with the predictions. We do not observe the predicted decay of these vortices by
the elliptic instability, similar to the reports of Lesur & Papaloizou (2009). In how
far this an effect of an inactive elliptic instability (EI), maybe suppressed by low
resolution, or an overlap with the VSI is open for future investigations. At χ = 10
the minimum growth time of the elliptic instability should be about 17.6 Orbits.
But maybe the vortices receive additional driving from absorbing smaller vortices
(as observed for Jupiter’s Red Spot), which so far counteract destruction from the
EI.

The occurrence of the EI also naturally explains the fast destruction of the small
vortices we observe in all simulation runs. These vortices have χ < 4 and are
strongly influenced by the fast growing modes of the elliptic instability reported for
this size regime.

3.5 Summary & Conclusions
We have performed full 3D hydrodynamical simulations of protoplanetary disks un-
dergoing Vertical Shear Instability. We used four different azimuthal extents ranging
between π/2 and 2π to asses the influence of non-axisymmetry on the development
of the instability.

We summarize our main findings as follows:

• We find the Vertical Shear Instability to be capable of seeding vortices with
large (χ > 8) aspect ratios using the disk parameters p = −2

3
, q = −1 and

H
R

= 0.1. This has to our knowledge not been reported for simulations of
this instability. The vortices we observe are long lived (lifetimes larger than
500 local orbits) and can aid in the growth of planetesimals in protoplanetary
disks via particle trapping as proposed by Barge & Sommeria (1995).

• We find the angular momentum transport in VSI to be sufficiently efficient and
in agreement with latest assumptions for protoplanetary disks and constraints
on planetesimal formation therein (Drążkowska & Alibert 2017). Interrest-
ingly, despite most angular momentum is transported outward at large z, the
radial mass flux is also outward at large z but inward close to the midplane.
This is due to additional strong vertical transport of angular momentum in
agreement with (Stoll et al. 2017). This leads to transport of angular momen-
tum away from the midplane into upper layers, where it is then transported
outwards.

• As a direct consequence, depending on the height z above the midplane, the
ration of vrms(z) to

√
α ranges between 2.0 and 3.5. This height depending

ratio has to be taken into consideration when inferring disk α values from
rms-velocity measurements.
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• The choice of the size of the simulation domain, especially of φmax has a
significant impact on the outcome of the simulation. We find for φmax < 90
no indication for larger, long lived vortices forming. Furthermore we find a
systematic increase of α-values and rms-velocities with decreasing φmax.

Our findings for the VSI on smaller scales are therefore consistent with the
results reported by Nelson et al. (2013),Stoll & Kley (2014, 2016),Richard et al.
(2016) and Flock et al. (2017b) for the low azimuthal extent cases, while identifying
their limitations on more global disk scales. We propose future work on instabilities
in protoplanetary disks include global 360◦ simulations to identify possible low m
effects suppressed in current simulations of disks sections.

Furthermore, we find resolution as an important factor, both for the develop-
ment of the RWI and the EI in global disk simulations. We suggest the lower radial
resolution used in Stoll & Kley (2014) as a possibility why they did not find vor-
tex formation in their work. Although they use different parameters in their work
(p = −1.5, q = −1 and H

R
= 0.05), we do not find significant differences to their

work in preliminary results of a parameter study we conduct. The results of this
study will be the subject of a follow up publication. We also propose further high
resolution simulations should be performed to investigate the influence of the EI on
the longevity of the vortices generated.

3.A 2D resolution study
We performed a resolution study in 2D to confirm we resolve the instability in the
radial and meridional direction. We conducted 3 runs with radial domain sizes of
Nr = 128, 256 and 512 and Nθ = 128 and 3 additional runs with Nr = 256 and
Nθ = 64, 128 and 256. In figures 3.15 and 3.16 we show the RMS-velocities for the
initial growth phase.

We find convergence for radial domain sizes Nr ≥ 256 and Nθ ≥ 128, proving
the values we chose for the 3D simulations to be sufficient to capture the relevant
physics in the early growth phases of our simulations. We also show the slope for
a growth rate of Γ = 0.42 per orbit as a guidance value (black dashed curve). The
growth rates found for the 2D simulations are in good agreement with the results
presented above for the 3D case, supporting the validity of our choice of simulation
domain parameters.
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Figure 3.15: RMS velocities for the 2D resolution study in radial direction. We find
convergence for the domain sizes above Nr = 256. For comparison, we also plot the
values from the 3D model presented in figure 3.4.
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Figure 3.16: RMS velocities for the 2D resolution study in vertical direction. We
find convergence for the domain sizes larger or equal Nθ = 128. For comparison, we
again also plot the values from the 3D model presented in figure 3.4.





Chapter 4

High Resolution Parameter
Study of the Vertical Shear
Instability

From Manger et. al. in preparation

4.1 Motivation
In chapter 3 we showed that the VSI is capable of seeding multiple large scale vor-
tices. But we showed this only for one possible combination of disk parameters that
could influence the instability. Therefore it is not possible to say if vortices always
form once the VSI reaches its saturated nonlinear phase. In this chapter, I present
the results of the first high resolution 3D parameter study conducted for protoplan-
etary disks with Vertical Shear Instability. With this study I want to investigate on
one hand if the results obtained in resolution studies of 2D axisymmetric resolution
studies are applicable in 3D, but also investigate if vortex formation is ubiquitous
in disk with VSI and if this is the case, if and how the appearance of the vortices
relates to the disk parameters. With this parameter study I also want to reconcile
the differences observed in published simulations of the VSI by Stoll & Kley (2014)
and my previous work presented in chapter 3. To make the simulations comparable,
I choose the numerical setup to achieve a resolution of approximately 18 cells per
scale height in all directions in all simulations.

The chapter is structured as follows: In section 4.2 I briefly describe the methods
and initial conditions used in this study. In section 4.3 I present the simulation
results and in section 4.4 I take a closer look at the vortices formed in the disk.
Section 4.5 presents a resolution study in azimuthal direction. Finally, in section
4.6 I summarise the results and present conclusions for this chapter.

4.2 Model
In this chapter, we use a setup similar to the one used in chapter 3. The initial
conditions are defined in force equilibrium, with the density defined as

ρ = ρ0

(︃
R

R0

)︃p

exp

(︃
− Z2

2H2

)︃
(4.1)
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and the initial angular velocity of the disk given by

vφ = ΩKR

[︄
1 + q − q R√

R2 + Z2
+ (p+ q)

(︃
H

R

)︃2
]︄ 1

2

. (4.2)

We use an ideal equation of state ρe = P
γ−1

with the pressure defined as P = c2sρ.

Here, isothermal the sound speed c2s = c20

(︂
R
R0

)︂q
is a function of radius, where we

choose q = −1 in all our simulations. All other quantities used are defined in table
4.1. We again use a simple cooling prescription with

dP

dt
= −P − ρ cs,init

τrelax
(4.3)

where, to force the disk to be approximately isothermal, we define the relaxation
time τrelax equal to the simulation time step dt.

For our computations we use the multi-purpose MHD Godunov code PLUTO
(Mignone et al. 2007) with a hllc solver (Toro 2009). We use the piecewise parabolic
method (PPM) by Mignone (2014) for the spatial reconstruction and a 3rd-order
Runge-Kutta time integration. All simulations performed are listed in table 4.2 with
their parameters. We choose the grid sizes listed in column 3 of table 4.2 to ensure
all simulations run share a common resolution of circa 18 cells per H in all directions.

We use periodic boundary conditions in azimuthal direction and modified outflow
conditions in vertical direction, where we ensure zero inflow into the domain and
additionally extrapolate the Gaussian density profile into the ghost zones. In radial
direction, we use reflective boundaries combined with buffer zones, where we relax
all variables to their initial values. These buffer zones are excluded in our analysis
of the simulations.

4.3 Analysis of the Disk Gas Kinematics
In this section, we present the results of our parameter study on the influence of
radial density gradient and disk aspect ratio on the vertical shear instability, focusing
particularly on the angular momentum generating stresses and gas rms-velocities.

4.3.1 Stress-to-Pressure ratio
To measure the strenght of the VSI turbulence in the disk, we calculate the Tr,φ
component of the viscous stress tensor

Tr,φ = ⟨ρvrvφ⟩ − ⟨ρvr⟩⟨vφ⟩ (4.4)

which controls the amount of angular momentum transport generated by the disk
turbulence. To present the values in a non-dimensional fashion, we normalise Tr,φ
by the pressure to obtain α as defined by Shakura & Sunyaev (1973):

αr =
Tr,φ
P

. (4.5)



4.3. ANALYSIS OF THE DISK GAS KINEMATICS 65

Symbol Definition Description

R, φ, Z cylindrical coordinates

r, θ, ϕ spherical coordinates

R0, Z0 cylindrical reference coordinates

ρ density

ρ0 reference density

H = cs
ΩK

disk pressure scale height

h = H
R
= cs

vK
disk geometric scale height

P = c2sρ pressure

cs = c0

(︂
R
R0

)︂q/2
isothermal sound speed

c0 = kT0
µmH

reference sound speed

p = d log ρ
d logR

radial density slope

q =d log T
d logR

= −1 radial temperature (sound speed) slope

e specific internal energy

γ = 1.44 adiabatic index

vφ azimuthal velocity

vK =
√︂

GM⋆

R
Kepler azimuthal velocity

ΩK = vKR
−1 Kepler angular frequency

τrelax temperature relaxation time

Tr,φ eqn. 4.4 rφ component of viscous Stress tensor

α =
Tr,φ
P

turbulence parameter

vrms eqn. 4.6 root mean squared velocity

ω = ∇× v vorticity

Table 4.1: List of all symbols used within this chapter.
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model domain size grid size p h ⟨α⟩/10−4

p0.6h0.1 0.5− 2.0 : ±3.5 : 0− 2π 256×128×1024 −0.66 0.1 8.4± 2.6

p1.5h0.1 0.5− 2.0 : ±3.5 : 0− 2π 256×128×1024 −1.5 0.1 9.5± 2.1

p1.5h0.07 0.6− 1.6 : ±3.5 : 0− 2π 256×128×1464 −1.5 0.07 2.7± 0.6

p0.6h0.05 0.7− 1.4 : ±3.5 : 0− 2π 256×128×2048 −0.66 0.05 1.5± 0.3

p1.5h0.05 0.7− 1.4 : ±3.5 : 0− 2π 256×128×2048 −1.5 0.05 1.2± 0.2

p1.5h0.03 0.8− 1.2 : ±3.5 : 0− 2π 256×128×3402 −1.5 0.03 0.5± 0.2

Table 4.2: List of simulation and model parameters. From left to right: model name,
physical domain size in (rin,out/R0 : z/H : ϕ), numerical grid size in (Nr×Nθ×Nϕ),
density slope parameter, disk aspect ratio and space and time averaged stress to
pressure value.
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Figure 4.1: Cumulative space and time average of the stress-to-pressure ration for
simulations with different density slopes p (top) and aspect ratios h at constant
p=-1.5 (bottom).
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Figure 4.2: Stress-to-pressure ratio as a function of height. Top shows the depen-
dence on the density slope p, bottom shows the dependence on disk aspect ratio h.
The values are averaged in space and from 600-1000 orbits.

In figure 4.1 we present the cumulative space and time averaged values of α.
The top panel of figure 4.1 compares simulations with two different density slopes
p = −0.66 and p = −1.5 at two different values of the disk aspect ratio h = 0.05 and
h = 0.1, whereas the bottom panel compares simulations with four different values
of h and a constant value of p = −1.5.

The time evolution of the simulations with h = 0.1 shows a rapid growth of the
α value in the first few tens of orbits of the simulation, after which a slower growth
phase leads to growth to the final saturated phase of the turbulence after around 100
orbits, where values of α = 9·10−4 are reached. These values are comparable the ones
we reported for our simulations in chapter 3 for simulations with lower azimuthal
but similar radial and meridional resolution. A similar behaviour is observed for the
simulations with h = 0.05, which also show a first strong growth phase up to around
50 orbits, after which slower growth phase is observed until around 300 orbits, where
a steady state value of α = 1 · 10−4 is reached. This value is significantly smaller
than the value reported by Stoll & Kley (2014), but still one order of magnitude



68 CHAPTER 4. VSI PARAMETER STUDY

larger than the values reported in Flock et al. (2017b).
Comparing all four simulation runs, we find that the density slope p does not

significantly influence the average value of the turbulent stresses. The comparison
however shows a clear correlation of the disk aspect ratio with the turbulent α values
of the disk. This result has been expected, as the disk aspect ratio is proportional
to the disk temperature and therefore a larger value of h leads to a larger overall
temperature in the disk and to stronger turbulent velocities as visible in figure 4.3.
We therefore ran additional simulations with aspect ratios h = 0.07 and h = 0.03,
presented in the lower panel of figure 4.1 along the simulations discussed above. In
comparing these four simulation, we see a clear trend with disk aspect ratio emerg-
ing: Simulations with larger h show overall stronger turbulent angular momentum
transport, with α = 9 · 10−4 for h = 0.1 going down to 5 · 10−5 for h = 0.03. A
full list of averaged saturated alpha values is listed in 4.2, where the errors listed
are calculated for fluctuations in time only. The additional simulations also confirm
the trend for later onset of turbulent growth and longer times until saturation. The
occurrence of this trend is consistent with the results of Nelson et al. (2013), who
observed this behaviour for the kinetic energy in their 2D axisymmetric simulations.

Figure 4.2 shows the dependence of α on height above the midplane, where the
top panel again compares two different density slopes at h = 0.05 and h = 0.1
and the bottom panel. The values are averaged over the remaining dimensions and
between 600 and 1000 reference orbits. We again find no evidence that the initial
density gradient p influences the generated stresses. For both h = 0.05 and h = 0.1
the deviations between the curves representing p = −0.66 and p = −1.5 are minor
and can be explained with statistical effects. In both the top and bottom panel
the trend of overall increasing α with increasing h is observed. We also find that
higher h leads to a larger difference between the alpha values in the midplane and
the upper disk layers, though the general dependence of α with height described in
chapter 3 is found in all simulations. This is also in accordance with simulations
presented by e.g. Stoll & Kley (2014), Stoll et al. (2017) and Flock et al. (2017b).

4.3.2 rms-velocities
We now take a look at the initial growth phase of the VSI by calculating the rms-
velocity defined as

vrms =

√︂
(vr − ⟨vr⟩)2 + (vθ − ⟨vθ⟩)2 + (vϕ − ⟨vϕ⟩)2 , (4.6)

with brackets representing spatial averages in φ direction. The averages ⟨vr⟩ and
⟨vθ⟩ are assumed equal to zero.

In figure 4.3 we plot the spatial average of the rms-velocity as a function of time
for the first 200 orbits of the simulations. We find that the simulations for h = 0.1
with different values of p start their growth at a similar time and with identical
growth rates of Γ = 0.36 per orbit. This value of Γ is also in good agreement with
the values obtained in chapter 3. We also observe the secondary growth phase seen
already in the time evolution of the α value and also reported in VSI simulations of
Stoll & Kley (2014). The simulations both settle to a steady state value of vrms ≈
0.1cs. A similar qualitative behaviour is found for the simulation with h = 0.05. The
onset of the VSI growth is later than for the h = 0.1 cases in agreement with the
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Figure 4.3: Rms-velocities normalised by reference sound speed measured for the
initial growth phase of the instability. The top panel compares the disks with p =
−0.66 and p = −1.5 at h = 0.05 and h = 0.05, while the bottom panel compares
different h from 0.03 to 0.1 at a common p value. We additionally plot curves with
exponential growth rates Γ for comparison.

results from the analysis of the α stresses. The second growth phase is however not
observed in these simulations, instead we find a plateau in the vrms values after the
initial growth phase and further growth is only observed after additional 50 orbits.
For both values of p we find the initial growth rate to be Γ = 0.2 per orbit, in
agreement with the value found by Stoll & Kley (2014) for their simulations.

The difference in the growth rate between the simulations with different h is
expected. Stoll & Kley (2014) showed that for nearly isothermal disks the growth
rates obtained by Nelson et al. (2013) can be to first order expressed as

Γ ∼ |q|hΩ . (4.7)

From this formula it is expected that the growth rate rises proportional to the aspect
ratio of the disk, which is what we observe.
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Figure 4.4: Rms-velocities as a function of distance from the disk midplane. The
averages are calculated for the remaining dimensions and over the simulation time.
Simulations shown in each panel ar the same as in figure 4.3.

In the bottom panel of figure 4.3 we redo the above analysis for the simulations
with p = −1.5 and different values of h. For the simulation with h = 0.07 we find a
growth rate of Γ = 0.3 which is in good agreement with the scaling of equation 4.7.
For h = 0.03 we however get Γ = 0.08, which is lower than we would expect based
on the growth rates of the other simulations in combination with equation 4.7, from
which a growth rate of Γ = 0.12 would be expected.

In figure 4.4 we look at the vertical dependence of the rms-velocities. In the top
panel, we again find the curves corresponding to the same h to agree well with each
other, supporting our claim that the initial density gradient does not influence the
simulation result. For h = 0.1 the rms-velocity at the miplane is vrms = 0.13cs and
rises to vrms = 2cs in the upper layers. These results are consistent with the results
obtained in chapter 3 taking into account that we included the φ component of
velocity in the calculation of vrms presented in this chapter. Comparing the results
for the different h shown in the bottom panel of figure 4.4, we find that the overall
shape of the vrms stays similar for all cases, although the difference between the
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Figure 4.5: Maximum perturbed velocity as a function of time for the initial growth
phase for different values of h. We again show exponential growth rates as a com-
parison.

velocity at z = 0 and z = 2H increases with increasing h. A similar correlation
exists between h and the vrms value at z = 0, which is larger for higher h. This is
expected, as a warmer disk has more shear energy available to be converted into
turbulence.

Because of the vertical dependenc of the velocity fluctuations and the fact that
the growth of an instability is in fact governed by the larges and not the root-mean-
square velocity, we calculate the maximum velocity as

vmax =
√︂
v2r + v2θ . (4.8)

We neglect the φ component of velocity in this case as the VSI has been shown to
grow axisymmetrical. The results are shown in figure 4.5 for the simulations with
p = −1.5, where we again plot growth rates for comparison. We find the growth
rates obtained using vmax to be in good agreement with the ones obtained using
vrms.

To compare our results with the theoretical ones presented in Lin & Youdin
(2015) we calculate the h independent growth rate

σ =
Γ

hΩ
.

For the simulations with h = 0.1, 0.07 and 0.05 we obtain σ = 0.64, which is in good
agreement with the results presented by Lin & Youdin (2015) for a disk simulation
with zmax = 3H and radial wavenumber k=30. Because we obtained a smaller than
expected growth rate for h = 0.03, this case also have a lower σ and does not align
well with their largest expected growth rate.
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4.4 Vortex formation and structure: Dependence
on disk conditions

To identify vortices in our simulations, we use the vertical component of the vorticity,
defined as the rotation of the velocity vector v:

ωz = (∇× v)z . (4.9)

In this section, we use the vorticity scaled by the orbital frequency Ω to identify and
characterise the vortices forming in the disks at different values of p and h.

4.4.1 Midplane vorticity
Figures 4.6 and 4.7 show the midplane value of the vertical vorticity for the simula-
tions with different p and h after 900 reference orbits. We find vortices forming in all
our simulations irrespective of the values assumed for p and h. Each simulation has
formed between 2 and around 10 vortices at this point in the simulation, but there
is no correlation with the chosen parameters how many vortices form. The strength
of the vortices however shows a correlation with the disk aspect ratio, best seen in
figure 4.7. The vortices in the bottom left panel corresponding to the simulation
p1.5h0.1 appear to have lower absolute vorticity than the simulations in the top row
corresponding to simulations p1.5h0.03 and p1.5h0.05. Because the disk has overall
vorticity ωz = 1

2
ΩK, the lower absolute vorticity in the centre of the vortices in

the lower right panel corresponds to a larger relative vorticity and therefore vortex
strength.

In figure 4.7 it can also be seen that both simulations in the bottom row are
currently undergoing merging events of large vortices.

Additionally, the run p1.5h0.03 shows a ordered band structure in vorticity,
which does not appear in the other simulations at this stage, although the simu-
lations with h=0.05 show axisymmetric bands at some radii. The band structure
however appears for all simulations during the growth phase of the VSI, but it breaks
down soon after. In chapter 3 we already put forward the hypothesis that the RWI
is working as a secondary instability in our simulations, and the breakdown of this
azimuthal structure could be an indication of the onset of the RWI. In this case,
the RWI would not be fully saturated for the simulation p1.5h0.03 even at this late
stage, likely due to the longer growth time of the VSI in combination with a lower
vorticity maximum generated in the disk.

4.4.2 Vortex size
Because we are also interested in the size and shape of the vortices formed, we choose
one vortex from each simulation for a close up inspection. Figures 4.8 and 4.9 show
the vortices taken from figures 4.6 and 4.7, respectively, in a local coordinate system
centred on the vortex. We express the radial and azimuthal coordinate as a function
of the local pressure scale height for easier comparison. The center coordinates of
each panel are listed in the corresponding figure caption.

We find that the vortices share a common size of 1-1.5 local scale heights in
radial diameter and an azimuthal size between 10 and 20 H, leading to aspect ratios
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Figure 4.6: Midplane vorticity for different values of p and h. The top row shows
simulations with p=-0.66 and the bottom row with p=-1.5. For the left column, the
aspect ratio of the simulations is h=0.05, resulting in less extended structures than
seen in the right column where h=0.1 .

χ in the range of 8.5 - 20. Figure 4.9 again shows the dependence of the relative
vorticity on the disk scale height, but no correlation of vortex size or aspect ratio with
disk aspect ratio h can be found. Figure 4.8 seems to indicate that the vortices are
larger for simulations with p=-0.66, but as the vortices depicted from the simulation
p1.5h0.1 are currently merging, this could be artificial. This is supported by the
fact that the top left panel of figure 4.6 shows run p0.66h0.05 to also form vortices
with a sizes comparable to the ones found in p1.5h0.05.

4.4.3 Vortex evolution
To track the radial position of the vortices over time, we use the same technique
employed in chapter 3. Therein, we calculate the radial positions of the vortices
in each timestep by first applying a box filter to the vertical vorticity to eliminate
all structures smaller than 1 H in radius and 6 H in azimuth. Then the azimuthal
average of the vorticity is subtracted from this to exclude possible zonal flows and
then the minimum value in azimuthal direction is calculated.

The results are shown in figures 4.10 and 4.11. In all cases, we find the formation
of long lived vortices at the radial positions of the vortices depticted in figures 4.6
and 4.7, though the time after which the stable vortices appear seems not directly
correlated to neither density gradient nor aspect ratio. For example, the simulations
p1.5h0.05 and p0.66h0.1 show stable vortex formation early on, while p1.5.h0.1 first
shows intermittent large vortices before forming long time stable vortices. The same
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Figure 4.7: Midplane vorticity for different values of the disk aspect ratio h. The
top left panel shows the simulation with the smallest h=0.03, increasing to h=0.05
in the top right, h=0.07 in the bottom left and h=0.1 in the bottom right panel.
All simulations have initially p=-1.5. Note the increase in vorticity and decrease of
overall structure with increasing h.
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Figure 4.8: Vortex extent for different values of p and h. The simulations are,
clockwise from the top left: p0.66h0.05 with Rc, φc = 1.25, 3.5, p0.66h0.1 with
Rc, φc = 1.6, 4.5, p1.5h0.1 with Rc, φc = 1.25, 2.5 and p1.5h0.05 with Rc, φc =
1.05, 2.25.
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Figure 4.9: Vortex extent for different values of h. The simulations are, clock-
wise from the top left: p1.5h0.03 with Rc, φc = 1.03, 5.25, p1.5h0.05 with Rc, φc =
1.05, 2.25, p1.5h0.1 with Rc, φc = 1.25, 2.5 and p1.5h0.07 with Rc, φc = 1.03, 5.25.
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Figure 4.10: Evolution of the vortex radial position as a function of time. The
panels are sorted as in figure 4.6 with columns corresponding to aspect ratio and
rows to density gradient. The color shows the azimuthal minimum of the vertical
vorticty subtracted by the azimuthally averaged vorticity. To extract only larger
scale minima, we apply an image filter prior to the calculation.
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Figure 4.11: Same as figure 4.10, but now for the different disk aspect ratios as in
figure 4.7.

can be found upon inspecting additional frames of the run p1.5h0.07 which in figure
4.11 only shows strong stable vortices emerging well after 750 orbits, but vortices
can be found much earlier in the simulation, though their constant interaction makes
it hard to detect them with this method. An exception in both the time of onset of
vortex formation and the number of vortices formed is again run p1.5h0.03 which
shows only one stable vortex forming after around 600 orbits, though this could be
again attributed to the longer evolution timescale of the VSI itself.

Upon inspection of the time series of the midplane vorticity, we also find that
even if a vortex has established itself, new vortices can be formed at the same radial
distance to the star, of which one example can be seen in the bottom left panel of
figure 4.7. The newly formed vortex catches up with the dominant vortex after a
few tens to hundred orbit and is eventually absorbed into the stronger vortex. We
also find evidence of this in other runs, e.g. p0.66h1.5, but as both examples occur
for vortices located close to the reference radius we cannot exclude that this happens
for other vortices also. The effect is most easily observed close to R0 because we
take one snapshot after each completed orbit at R0, leading the azimuthal position
of the vortices with R > R0 and R < R0 to drift due to the radial dependence of Ω.

Different to our results from chapter 3, we observe vortex destruction in our
simulations with h=0.1. In both simulations, vortices formed early and close in
in the disk are destroyed after ca. 500 and 300 orbits for p==0.66 and p=-1.5,
respectively. For the case p=-0.66 this is due to a vortex forming radially close to
the vortex and interacting with it until it is destroyed. For the case p=-1.5 something
similar seems to happen, but we cannot exclude the influence of the boundary in
this case.

We also observe the migration of the vortices over time in all cases except
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model grid size (Nr × Nθ × Nϕ) ⟨α⟩/10−4

n128 256×128×128 4.9± 1.0

n256 256×128×256 5.4± 1.3

n512 256×128×512 6.8± 1.6

n1024 256×128×1024 7.2± 1.5

Table 4.3: List of parameters for the resolution study. The simulation n1024 is
identical to p1.5h0.1 from table 4.2.

p0.66h0.05 and p1.5h0.03. For the former this is likely due to the large amount
of vortices formed in the disk which prevents radial migration due to the interaction
of the vortices with each other. For the latter, it is simply the late time of the
formation of the vortices that prohibits us from detecting migration, though it is
possible that it occurs later on. For the migrating cases, the migration is stronger
for simulations with larger aspect ratio. This can be explained by the fact that
the vortices formed in disks with larger h are stronger, but we cannot exclude the
influence of the disk surface density gradient, which changes most for the cases with
large h due to overall mass loss.

4.5 Azimuth resolution study
To determine the minimum grid resolution in azimuthal direction required to achieve
a converged nonlinear state of the VSI and form vortices, I perform a small resolution
study. For all simulations I use the parameters of the simulation run p1.5h0.1
described in table 4.2 and vary only nφ. The simulations performed are listed in
table 4.3.

Figure 4.12 shows the results of the parameter study. We find that both the
spatial average of α and vrms show converged values which is the expected outcome
as the VSI modes grow axisymmetrically.

We also find that the cases n256, n512 and n1024 give similar results when looking
at the vertical profiles of α and vrms, and the results are similar. Contrary to this,
the simulation n128 shows steeper profile of both values with height than the other
simulations. Looking at figure 4.13, we find that n128 is the only case in which no
vortex formation is observed. We find a similar behaviour in our analysis presented
in chapter 3 for the α value for different spatial sizes in the azimuthal direction,
where the profile is also steeper for the case where we exclude that vortices form
in the disk. Therefore, the formation of vortices could have an influence on the
strength of the angular momentum transport higher up in the disk.

4.6 Conclusions
In this chapter we present the first 3D high resolution parameter study on the
Vertical Shear Instability. In this study, we focus our attention on the parameter
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Figure 4.12: Turbulence analysis of the simulations performed for the resolution
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the dependence on height on the right. The bottom row shows the same for the
rms-velocity.
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Figure 4.13: Midplane vorticity after 500 orbits for each simulation considered in
the resolution study.
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determining the initial density slope p of the disk and the disk aspect ratio h. The
analysis of the parameters determining cooling time and temperature gradient will
be the the focus of a future work. For now, we assume τ ≈ 10−4 and and q = −1.

We find that the VSI is capable to support angular momentum transport with
α values up to a few times 10−4 for the largest scale height. With decreasing scale
height, the α value decreases down to a value of a few times 10−5 for the lowest scale
height investigated. The α values we find in our simulations are in accordance with
the values we reported in chapter 3, but lower than the values found by Stoll & Kley
(2014). We find a similar relation with h for the rms velocities and the instability
growth rates, which are also increasing with increasing h. The growth rates we find
are in good agreement with previous studies of chapter 3 and Stoll & Kley (2014). In
vertical direction, the quantitative behaviour we observed in chapter 3 is recovered.
Contrary to the aspect ratio of the disk, the density gradient does not show any
influence on the disk turbulence. This result is expected, as the VSI itself is not
sensitive to the density gradient.

We find that the VSI is able to seed multiple vortices in all considered parameter
combinations and the vortices in all simulations live for hundreds of orbits. The
vortices generally have a radial diameter between 1 and 1.5 local scale heights, which
is close to the diameter of 2 H allowed by the disks radial shear. Most vortices have
aspect ratios of χ ≃ 8 but values of up to 20 are found. The time at which the first
stable vortex appears is not correlated with any of the investigated parameters, and
it is likely that such a time is random. We also do not find a correlation between
the number of vortices found simultaneously in the disk and any of the investigated
parameters.

An interesting observation is that the turbulence sustained by the VSI steadily
creates new vortices even at radii at which a large scale vortex has already been
established for a longer period of time. This could indicate that the VSI constantly
works to replenish the vorticity gradient that drives the Rossby-Wave-Instability,
which once replenished sufficiently creates new vortices. These new, weaker vortices
are then eventually absorbed by the larger vortex already present.

In this work, we considered the disk to be comprised purely of gas. In reality,
the disk contains ca. 2% solids, which have been shown to change the buoyancy of
the disk and can therefore have an impact on the growth of the VSI especially near
the midplane (Lin 2019). Future simulations should therefore investigate whether
vortices also emerge in a dusty disk when the vsi is suppressed close to the midplane.
We also suggest further simulations of the VSI are conducted to narrow down the
possible alpha values generated by the instability, as there is as of yet no convergence
on the values reported in this work or previous works from the literature.





Chapter 5

Vortex Signatures can be
Produced by Vertical Shear
Instability

From Manger & Klahr, 2019 submitted to A&A

5.1 Introduction
In recent years high resolution imaging of protoplanetary disks has shown how di-
verse the shape and structure of disks forming around young stars can be. In almost
all disks investigated so far either rings, spirals or asymmetric, vortex-like structures
have been observed. Some examples among the disks showing asymmetric features
are OphIRS48 (van der Marel et al. 2013, 2015), MWC 758 (Marino et al. 2015;
Boehler et al. 2018; Dong et al. 2018) and HD 135344B (Pérez et al. 2014; van der
Marel et al. 2016; Cazzoletti et al. 2018), whereas HL Tau is known for its rings
(ALMA Partnership et al. 2015), although non-axisymmetic features have recently
been detected using the VLA (Carrasco-González et al. 2016). Spirals have for ex-
ample been detected in near infrared observations of MWC 758 (Benisty et al. 2015)
and sub-mm observations of Elias 2-27(Pérez et al. 2016).

There are many explanations for the observed structures. The most common
explanation is a planet inciting spiral arms as well as carving a gap. The gap
formation can then excites vortices via the Rossby Wave Instability (Lovelace et al.
1999; Li et al. 2000) due to the density gradient present at the gap edges, explaining
the vortices observed at these positions. But recent studies have shown that weakly
magnetised protoplanetary disks with Magneto-Rotational instability (MRI) in the
inner disk to also trigger the RWI at the edge of the the so-called MHD dead zone,
where the disk becomes laminar with respect to the MRI(Dzyurkevich et al. 2010;
Flock et al. 2015). To form vortices inside the dead zone, but also in the outer regions
of a weakly magnetised disk, instabilities related to the baroclinicity of the disk
have been shown to be promising candidates. The convective overstability (Klahr
& Hubbard 2014; Lyra 2014) and its non-linear cousin, the subcritical baroclinic
instability (SBI, Klahr & Bodenheimer 2003; Raettig et al. 2013) have been shown
to seed and amplify large scale vortices in protoplanetary disks. In chapter 3 we
showed the Vertical Shear Instability(Nelson et al. 2013), first investigated in stars as
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the Goldreich-Schubert-Fricke instability(Goldreich & Schubert 1967; Fricke 1968),
to also trigger the formation of large scale vortices via the RWI mechanism.

Vortices also allow the circumvention of a central problem in planet formation:
the drift barrier (Birnstiel et al. 2010). At micrometer sizes, particles can stick
together to form pebbles of about millimetre size, but the (size-dependent) drift ve-
locity(Weidenschilling 1977) due to the pressure support of the gas prohibits growth
much larger than this as dust drifts inward faster than the particles can stick to-
gether. But vortices alter the pressure structure in a disk to allow the particles to
drift towards the center of the vortex instead of the star. This trapping mechanism
enables to form large concentrated over-densities (Barge & Sommeria 1995; Klahr
& Bodenheimer 2006; Meheut et al. 2012) in the disk to allow gravity or streaming
instability to take over(Raettig et al. 2015) and form planetesimals.

In this chapter we apply a steady state dust concentration model inspired by
the work of e.g. Klahr & Henning (1997) and Lyra & Lin (2013, hereafter LL13) to
our results presented in chapter 3 to show the capability of the VSI to qualitatively
reproduce observations of protoplanetary disks with multiple vortices, which are
commonly identified as results of planets orbiting within those disks. We show
that the vortices produced by the VSI are visible to observations in this simplified
model and that future investigations calculating the dust distribution alongside the
gas are required and justify the additional computational cost. In section 5.2 we
briefly review the model used by LL13 and describe our application to the gas-only
simulation of chapter 3 before presenting and discussing our results in section 5.3.
Finally, section 5.4 gives a brief conclusion.

5.2 Model

5.2.1 Gas Disk
For the gas disk structure in our model we use results of numerical simulations pre-
sented in chapter 3. Therein, we performed numerical simulations of protoplanetary
disks with active Vertical Shear Instability for multiple set-ups with different az-
imuthal disk ranges and evolution times of 800-1000 orbits at the reference radius.
We will use the results of the full 2π simulation presented in chapter 3 after 500
orbits at the reference radius, shown in figure 5.1. The model used in that chapter
has a radial midplane density gradient p = −0.66, a radial temperature gradient
q = −1.0 and a geometric scale height H/R = 0.1. We are aware that these gra-
dients are different than the values expected at large distances from the star in
protoplanetary disks (Pfeil & Klahr 2019). We however argue that the occurrence
of vortices in VSI-active disks should not depend on the specific value of the density
and temperature gradients as long as they allow for the VSI to grow.

In figure 5.1 we show the vorticity on the left and the gas density on the right
at the midplane of our model. In vorticity we clearly detect two large scale vortices
on the left side visible as darker oval patches in the disk. At the corresponding
positions in the gas disk we find a clear gas density enhancement at the position of
the inner vortex and also a slight enhancement at the position of the outer vortex.
Additionally, we find many large spiral arms present in the gas disk, launched by
small vortices formed in the disk. The small vortices themselves are short lived and
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Figure 5.1: Midplane vorticity and gas density of our model. The left image shows
the data in the same way as presented in 3.8. The right image shows the corre-
sponding gas density, showing density enhancements at the positions of the vortices
and additional spiral arms in the disk.

are not able to concentrate sufficient material to allow for planetesimal formation
or detection in observations.

5.2.2 Dust Disk
For the dust component we use a model inspired by various authors (Klahr & Hen-
ning 1997, LL13), where the authors derived an analytical solution for the dust
density inside a trapping vortex assuming the dust is in a diffusion-sedimentation
equilibrium, taking into account the effects of particle drift along pressure gradients.
These effects do not work for spiral arms we see in the gas, because they propagate
with respect to the gas. Only zonal flows and vortices are quasi geostrophic flow
features in which pressure forces are balanced by centrifugal and Coriolis forces. One
can prescribe the time averaged gas column density inside a vortex as a Gaussian
distribution

Σg = Σg,max exp

[︃
− b2

2H2
g

]︃
(5.1)

with the vortex coordinate b defined as

b =

√︄
(R−R0)

2 +

(︃
R0

χ

)︃2

(φ− φ0)2 . (5.2)

Here R is the radial and φ the azimuthal coordinate and (R0, φ0) the position of the
vortex center with the vortex scale length Hg = H/f(χ), which itself is a function
of the disk pressure scale height H, the vortex geometry function f and the aspect
ratio χ, the maximum gas column density at the center of the vortex Σg,max. The
dust will now sediment towards the center of the vortex until the gradients in dust
to gas ratio are strong enough to balance sedimentation by diffusion with diffusivity
D = δcsH, which leads to a smaller scale height h than for the gas as long as
the Stokes Number of the particles St = Ωτ is larger than the diffusivity. A good
approximation for the scale height of the dust-to-gas ratio is

h = H
√︁
δ/St . (5.3)
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Figure 5.2: Dust midplane density for a• = 1µm (left) and 100 µm (right) for the
model with Σ0 = 16 g/cm2. The small particles mainly trace the gas flow, whereas
the larger particles concentrate inside the vortex.

In an analytic gas vortex (LL13) one would therefor obtain a dust distribution
of

Σd = ϵΣg,max (S + 1) exp

[︃
− b2

2H2
g

(S + 1)

]︃
. (5.4)

where S = St/δ describes the relation between the Stokes number of the particles
and the turbulent diffusion of the dust. We note that the derivation of Equations 5.1
and 5.4 assumes small Stokes numbers (St ≪ 1), which limits their application to
small grains up to a few millimetres. They also use the shearing sheet approximation,
which limits the validity of the equations to a small region around the vortex. As
the dust density is also calculated a posteriori from the vortex structure set by the
gas, the back reaction of the particles is neglected; which is equal to assuming low
dust-to-gas mass ratios.

For our purpose, where we have the true gas distribution inside and outside the
vortex we derive only the local dust to gas surface density ratio from the above
considerations, i.e. the metallicity Z = Σd

Σg
as function of space. Outside of the dust

vortex h, Z is set to the background value, and inside the vortex in increases up to
S + 1 in the very center.

Z(R, φ) =
Σd

Σg

= Z0

(︃
1 + S exp

[︃
− b2

2H2
g

S

]︃)︃
(5.5)

The vertical distribution of ρd is then given by another diffusion-sedimentation pro-
cess via

ρd =
Σd√
2π

exp

(︃
− z2

2h2

)︃
. (5.6)

For simplicity, we assume δ = α with α the turbulent viscosity parameter as
described by Shakura & Sunyaev (1973). We set α = 10−3, the global average
value obtained in the simulations presented in chapter 3. We also assume that the
particles in our model are all small enough to be treated in the Epstein regime, for
which the Stokes number can be written as

St =
a• ρ•
ρgH

(5.7)
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with the dust material density ρ• and grain size a•.
We fit the column density from the simulations presented in chapter 3 using

equation 5.1 to determine the position of the vortices. The best fit of the numerical
data sets the inner vortex at (Ri, φi) = (53.0 AU, 2.29 rad) and the outer vortex at
(Ro, φo) = (79.1 AU, 3.48 rad) for a reference radius of R0 = 60 AU. The aspect
ratios are set as determined in chapter 3 as χi = 8 and χo = 10 and the vortex
scale lengths are determined from the vortex solution of Goodman et al. (1987) as
Hg,i = 7.9 AU and Hg,o = 11.8 AU.

We then use equation 5.6 to determine the dust density for the different particle
sizes listed in section 5.2.3,where we assume the particle size to be constant and use
equation 5.7 to calculate the local stokes number of the dust. For all particle sizes
listed in section 5.2.3 the Stokes number stays well below unity close to the midplane
of the disk for all models considered. Only for the models with low disk mass the
Stokes number of the largest particles is larger than one in the upper layers of the
disk, but the densities in those regions are too low to enact particle back reaction.
Additionally, we verified that the total dust to gas ratio does not surpass unity in all
but the lowest-mass model. In this model the dust to gas ratio is slightly above unity
in the innermost part of the vortex, which would enable streaming instability. But
as the region is smaller than the total vortex size, we argue that this would not affect
the result significantly because Streaming Instability cannot destroy vortices (Lyra
et al. 2018). An example of the dust density for small and medium size particles in
the midplane of the disk is shown in figure 5.2.

5.2.3 Radiative transfer
We use the Radiative Transport code RAMC3D1 to calculate the intensities for the
dust continuum emission of the disk. We use the stellar properties of the Herbig
Ae star MWC 758 as summarized in Boehler et al. (2018). The stellar mass is
M⋆ = 1.4M⊙, the stellar radius R⋆ = 2.0R⊙ and the surface temperature is given
as T = 8130 K. The system is located at a distance d = 151 pc. We set the
reference radius of our model at R0 = 60 AU as the vortex structure is observed at a
comparable radius and Pfeil & Klahr (2019) predict that the VSI is able to operate
at this radius.

The opacity tables are calculated with the BHMIE code of Bohren & Huffman
(1983) embedded in a python script. We use Pyroxene grains with a material density
of 3 g/cm3 and assume their total dust-to-gas-mass-ratio to be ϵsil = 3.4 · 10−3. We
are aware that the disk at the assumed radial distance is most likely comprised of
a mix of silicate and ice grains, we however refrain from the use of complex mixed
opacities in our simplified model. We assume the disk to be comprised of grains
having sizes a• from 0.1 µm to 2 mm, as these are the sizes visible to observation. The
grains are binned in eight size ranges with representative sizes of 1 µm, 10 µm, 55µm,
100 µm, 325 µm, 550 µm, 775 µm and 1 mm. We calculate the dust distribution
for each of these representative sizes and assume that the dust distribution does not
vary significantly inside each bin. The particle mass is distributed between these
bins using a power-law distribution for the particle number density

n(a•) ∝ a−3.5
• . (5.8)

1http://www.ita.uni-heidelberg.de/ dullemond/software/radmc-3d/
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Figure 5.3: Mock observation images of the simulated disks for different disk column
densities and inclinations. The reference surface densities from left to right are Σ0 =
1.6, 16, 40 and 80 g/cm2, and the inclinations with respect to the observer from the
top row downwards are i = 20◦, 45◦ and 60◦.

Due to dust growth and planetesimal formation via streaming instability larger
grains would certainly also be located inside the vortex. As they are however not
accessible to observations, we choose to ignore them in this model.

The images are calculated in a 2-step procedure: We first use a thermal Monte-
Carlo simulation with nphot. = 108 to determine the temperature of the dust phase
in equilibrium with the thermal radiation from the star. We then perform the
scattering ray-tracing computation using isotropic scattering with nphot.,scat. = 108

to calculate the final image of the disk.

5.3 Results and Discussion

5.3.1 Images
Figure 5.3 shows the intensity map of the simulated disk at 880 µm (ALMA Band
7) folded with a 2D circular Gaussian with σbeam = 5 AU (equal to a circular beam
with FWHM ≈ 12 AU). We use a different reference column density for each column,
increasing from left to right, Σ0 = 1.6, 16, 40 and 80 g/cm2, equal to respectively 1,
10, 25 and 50 times the estimated column density Σref = 1.6 g/cm2 of MWC 758.
The rows show the disk for each column density at an inclination of 20◦, 45◦ and
60◦, respectively.

We find that the inner vortex in our disk is visible in all investigated configura-
tions. For the lower two disk masses also the second vortex is visible in the images,
but for the two images on the right hand side the second vortex is outshone by the
disk emission. For higher inclinations the presence of the outer vortex is neverthe-
less deductible in the middle right column despite its weak emission. This is due to
the position of the vortex in the lower left part of the disk, increasing the overall
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Figure 5.4: Mock images of the simulated disks for the two lowest disk column
densities and two different values of the diffusion coefficient δ. We find that lowering
δ has a similar overall effect than increasing Σ0, but due to the influence of δ on the
dust settling a constant ratio of δ and Σ0 does not yield identical results.

intensity on the left side compared to the right side when the disk is inclined. This
occurs because the outer vortex is intrinsically weaker than the inner vortex. We
also find that the vortices are at least marginally resolved in all cases except for
the least massive case, where the inner vortex is not well resolved. Comparing the
images to the observations obtained in Boehler et al. (2018), we find that the second
colum matches the observations best. This sugests that, to match the observations
using the VSI, the disk would need to be around 5 to 10 times more massive, similar
to the values reported by Casassus et al. (2019) using VLA observations.

We de-project the images of the disks into polar coordinates accounting for the
chosen inclination. From these de-projected images we calculate the ratio between
the vortex maximum intensity Imax and the average intensity in the ring at the
corresponding radius IRing. We find the ratio to be 7.0 and 7.8 for the inner and
outer vortex, respectively, for the least massive case Σ0= 1 Σref . These ratios lower
to 2.6 and 2.4, respectively, for the case with Σ0=10 Σref and to 1.28 and 1.13 in the
most massive case. Therefore the cases with lower gas masses are favoured when
comparing our models to the observations of MWC 758, where ratios of 2.6 and 4.0
have been reported (Boehler et al. 2018).

We also looked at the position of the τ = 1 surface for the case of a face-on
viewed disk. We find that for the least massive case only the inner part of the disk
containing the large grains is optically thick, whereas for the ten times more massive
case the entire vortex is at least marginally optically thick. In the 25 and 50 Σref

cases also the background disk is optically thick, favouring again the less massive
disk cases presented in comparison to observations. Also, the emission in the more
massive disk cases is likely dominated by the less massive grains compared to the
less massive disks, as the largest grains settle to heights in the disk that are invisible
to sub-mm wavelengths under these conditions.

5.3.2 Dependence on Turbulence

In the images discussed above, we only vary the column density normalization of
the disk to influence the Stokes number of the particles. Looking at equation 5.7,
we find that varying the turbulence strength δ has the same effect on the Stokes
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number as the gas density normalisation, because:

S =
a• ρ•
ρgH δ

∝ 1

δΣ0

. (5.9)

We compared the effect of using δ = 10−4 and Σ0 = 10Σref to both the 1 and 10
Σref cases from above. Because of the assumption of α = δ, the particles now settle
closer to the midplane as in the above cases. Therefore, the effects of varying δ and
Σ0 while keeping St fixed does not lead to identical results. The disk now has an
overall intensity closer to the 10 Σref , whereas the shape of the vortices is comparable
to the 1 Σref case. The size of the region having τ > 1 is in between the 1 and 10
Σref cases, indicating that due to the different settling heights of the particles in
the lower turbulence the optical properties change and with them the grain sizes we
actually observe.

5.3.3 Limitations of the Model
In this chapter, we use a steady state model of dust trapping in vortices using a
diffusion-concentration equilibrium. Additionally, we limited our analysis to only
one parameter, the gas reference column density. We now briefly discuss the impli-
cations of these limitations.

Disk mass: As already stated above, we only vary the reference column density of
the gas phase in our models. This leads to massive disks for the 2 largest column
densities used in this chapter. The most massive disk has a total gas mass larger
than 0.1 M⊙, making it likely for the disk to be gravitationally unstable. We still
chose to present these models, as a change in the grain properties could lower the
disk mass enough to make the model viable.

Grain Properties: Equation 5.7 also shows that intrinsic grain properties influence
the Stokes number of the particles and therefore their spatial distribution inside the
vortex. Particles with lower intrinsic density will have a lower Stokes number for the
same particle size and disk properties used in this chapter. This would lead to them
being spatially more extended, possibly allowing the vortex to be spatially resolved
at the wavelength considered even at the lowest disk mass used, closer resembling
observations. However, introducing porosity or mixed species grains would also
change the opacities of the grains. This goes beyond the scope of this chapter, but
should be considered when using more realistic dust-gas models of protoplanetary
disks.

Turbulence prescription: We assumed that the turbulent dust diffusion parameter
δ equals the turbulent angular momentum transport parameter α. This may not be
the case in vortices or the VSI active disk in general. Several instabilities may change
δ significantly inside the vortex, e.g. the Streaming Instability (SI). A higher δ inside
the vortex would prevent the particles form concentrating in the center, showing a
wider vortex signal. Additionally, SI may not concentrate the particles in the center
of the vortex, but in filaments (Raettig et al. 2015), also leading to an extended
signal. This is especially true for the lowest Σ0 model, as the dust to gas ratio for
the largest grains rises above unity, so they would start to dominate the gas flow
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and trigger the SI. Also the Stokes numbers are higher than 0.1 throughout the disk
for the 1mm grains, suggesting that they would get destructed due to high relative
velocities (Birnstiel et al. 2010). To model this correctly, realistic simulations using
two-way drag forces in dust-gas simulations in vortices measuring both α and δ are
needed.

Vortex evolution: The vortices in our analysis are relatively young (200 and 120
orbits at their local radii), so the vortices may still be adjusting to the disk sur-
rounding and get stronger as time progresses. Also, vortices have been shown to be
amplified by the SBI mechanism, which is also active in regions that are dominated
by the VSI (Pfeil & Klahr 2019). So it is likely that the vortex would gain strength
in time, enabling it to trap particles more efficiently. Additionally, we showed in
chapter 3 that the vortices migrate and merge and also new vortices form, making
the intensity maps calculated in this chapter a snapshot view of an evolving system.

5.4 Conclusions
In this chapter we applied the diffusion-concentration equilibrium dust model for
vortices presented by LL13 to the fully turbulent 3D protoplanetary disk models
from chapter 3. We find that the particles concentrated in vortices generated in
VSI turbulent disk can explain the observed asymmetries in protoplanetary disks
commonly explained through the presence of giant planets. The vortices generated
in the disk, especially the outer vortex in our case, are large enough and can attract
enough dust mass to be spatially resolved in typical ALMA observations. Our model
is also able to match the peak to average intensity ratio of of observed vortices for
gas surface density values of 5 to 10 times the value estimated from observations,
consistent with recent estimates from Casassus et al. (2019). Therefore there does
not have to be a planet present to seed the vortex, which would naturally explain
the non-detection of giant planets inside the disk gaps.

In our analysis, we use a simplified model and restrict it to varying only the
reference column density and turbulence strenght. A thorough model of dust within
the VSI would need the direct calculation of the coupled dust-gas equations, which
is rather expensive. Our results nevertheless show that computational models in-
cluding dust are warranted, as they will lead to new, additional models explaining
observations. Additionally, these simulations will be able to model the dust in the
disk both in sub-mm emission and in near infrared scattered light, possibly showing
distinguishing criteria between the planet and the disk instability models.





Chapter 6

Summary and Outlook

6.1 Summary
Idenftifing large scale structure formation in the turbulent protoplanetary disk is a
crucial ste in the current paradigm of planet formation. Without a localized pressure
maximum furming in the early gas-dominated disk, the dust density enhancement
necessary to enable gravo-turbulent planetesimal formation is hard to achieve. In
this dissertation, I investigated whether the turbulence generated by the Vertical
shear instability is able to generate the necessary structures. To this end, I conducted
high resolution 3 dimensional global simulations using the grid based hydrodynamics
code PLUTO.

While chapters 1 and 2 provide an introduction into the topic and the physical
processes relevant to this work, chapter 3 presents the first simulations of the VSI
that show non-axisymmetric large scale structures in the form of vortices forming in
the disk. The vortices I find have a radial extent of about 1.5 local disk scale heights
and an aspect ratio χ > 8 and persist for more than 500 orbits, which is ideal fo
trap particles with small to moderate stokes numbers. I also present evidence to
support the theory that a secondary Rossby-Wave-Instability is active in the disk
and is the cause of the vortices I observe.

The characterization of the turbulence generated by the VSI shows that it is suf-
ficient to facilitate angular momentum transport in agreement with previous studies
of the instability (Stoll & Kley 2014; Flock et al. 2017b) latest models of planetesimal
formation (Drążkowska & Alibert 2017). It also shows that the angular momentum
transport in disks with this instability present is not transported outward purely
radially, but rather in an first upward then outward directed fashion, largely due
to the anisotropy of the turbulent stresses generated (Stoll et al. 2017). Addition-
aly, the root-mean-squared velocities and α-values measured are dependent on the
vertical distance from the midplane of the disk. I therefore advise caution when
one compares simulations and observations, especially if the depth probed by the
observation is not well constrained.

On the numerical side , I show that one of the shortcomings of previous models
was the trade-off of physical azimuthal disk extend for higher numerical resolution,
as simulations with azimuthal disk extends smaller than 180◦ do not accurately
capture the non-axisymmetric features of the saturated VSI.

Armed with this finding of vortices in VSI turbulence, I present the first global
high resolution parameter study of the instability in chapter 4. The study shows
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that vortex formation and survival is neither dependent on the disks density gradient
nor the aspect ratio, meaning vortices can potentially form everywhere in the disk
as long as the conditions for the VSI to operate are fulfilled. The vortices I find have
radial sizes of 1 to 1.5 local scale heights H independent of the value of H, making
the measured size of the vortex a possible indicator of the disks current pressure
scale height and therefore its current temperature.

The vortices in the disks are generally found to be long lived, similar to the ones
found in chapter 3 and are shown to regularly absorb weaker vortices (re-)forming
continuously in the disk, possibly due to the underlying VSI permanently rebuilding
the vorticity gradient of necessary for the RWI to operate.

Chapter 5 then addresses the question whether the vortices found in the sim-
ulations of the previous chapters can be detected in observations. Because the
simulations of chapters 3 and 4 are performed for the gas phase of the disk only, I
use an analytic model of the dust density in a steady state vortex to perform radia-
tive transfer calculations of the expected dust phase of the disk. The results show
that the vortices seeded in VSI active disks can be readily observed with current
sub-mm telescopes and that for moderate disk densities our model already reason-
ably matches the current observations of the MWC 758 disk (Boehler et al. 2018;
Dong et al. 2018).

As a general conclusion to the work presented in this dissertation, I like to say
that the vortices shown to be generated in VSI turbulence are an important puzzle
piece to understand planetesimal formation in the early phases of protoplanetary
disk evolution. The fact that the vortices can form relatively early after the onset
of the disk instability (after ca. 4000 yrs at 5Au around a solar mass star) aides
in the understanding of the formation of gas giant planets and the fact that the
formation is not tied to a specific place in the disk as it is with the mhd dead
zone models may help explain the formation of the cores of the ice giants in our
solar system and other massive companions on wide orbits. From the observational
side, I would like to remark that although the planet model may be the most readily
applicable model to explain vortex-like structures in disks, the recent non-detections
of sufficiently massive planets in observations combined with work presented here
and in other studies should lead to a reconsideration of other, non-planet related
sources of structures in protoplanetary disks.

6.2 Outlook
The simulations presented in this thesis use a simplified cooling prescription force
the disk to have a short cooling time beneficial to the growth of the VSI. This
prescription is excellent if one is interested in the specifics of the instability itself,
but it does not accurately represent the reality of protoplanetary disks, which are
governed by viscous and radiative heating and cooling processes. Therefore, future
simulations should shift their treatment of heating and cooling to radiation hydrody-
namical models to obtain more accurate predictions of the features present in actual
protoplanetary disks. The simplified prescription should be reserved for investiga-
tions into the structure and origin of the turbulence generated by the instability in
question.
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To this end, the parameter study presented in chapter 4 should be continued
to investigate the remaining free parameters governing the VSI, namely the disk
temperature gradient q and the cooling time τ . Further investigations are also
required to better understand the mechanisms behind the non Kolmogorov like
structure of the turbulence and the formation of the vortices.

Additionally, although the motivation for the search for structures forming in
turbulent protoplanetary disks is mainly the concentration of dust in particle traps,
the numerical simulations presented in this work do not include the dust phase. Fu-
ture simulations of the VSI should change this. Simulations using passively coupled
tracer particles or using low dust to gas ratios should further investigate the results
presented in chapter 5. Also, recent simulations using the full two-way drag coupling
of the gas showed that a high concentration of dust particles modifies the buoyancy
of the disk gas and can therefore suppress the mechanism driving VSI turbulence,
especially near the midplane of the disk (Lin & Youdin 2017; Lin 2019). Future
simulations using two-way drag should therefore investigate whether vortex forma-
tion is still possible in dusty protoplanetary disk environments and if additional new
constraints emerge from the treatment of the dust phase.
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Disks around young stars are the birth place of planetary systems like our own solar
system. Thus, the study of turbulent processes in protoplanetary disks is not only
important to understand the transport of angular momentum to explain for example
the angular momentum deficit of our own sun, but also to understand how large scale
structures emerge, which are recently regularly observed and which also represent a
crucial puzzle piece in the understanding of how dust grains can grow into planetesimals
via gravoturbulent processes.
In this thesis, I conduct high resolution studies of three-dimensional global models of
turbulent protoplanetary disks using the magneto-hydrodynamics code PLUTO. I focus
my studies on the Vertical Shear Instability (VSI), which has been shown to operate
efficiently at disk radii beyond a few AU in typical protoplanetary disks.
I show that vortices with radial diameters of around 1.5 local pressure scale heights and
aspect ratios χ > 8 form in VSI turbulent disks and that these vortices can survive more
than 500 orbits. The vortices are forming irrespective of the underlying disk density
gradient and aspect ratio and can therefore act as pressure traps for small to medium
sized particles over a wide range of the disk. I also show evidence that these dusty vortices
are compatible with detections of dust concentrations by current sub-mm interferometers.
These findings therefore present a crucial puzzle piece which will help the understanding
under which conditions and how early after the formation of a disk around a young star
planetesimals can form via gravoturbulent planetesimal formation.
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