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Abstract

We use high resolution direct N-body simulation methods to study the stellar
dynamics in the Galactic centre (GC) and in active galactic nuclei (AGN). We follow
the evolution of the GC from the assumed in-situ formation of the nuclear star cluster
(NSC) up to 5 Gyr using one million particles taking into account single and binary
stellar evolution. We investigate 3D stellar density distributions, obtain rate of tidal
disruption events, rate of hypervelocity star ejections and estimate the number of
extreme mass-ratio inspirals. We examine the survivability of binary stars in the
NSC and discuss the contribution of binaries with compact objects in presence of
pulsars and Supernovae Ia rates in the GC. We use more simplified model to study
the stellar dynamics in AGN. The analysis of two simulations with 128000 particles
(with and without the accretion disk (AD)) shows that the interaction of the NSC
with the AD leads to formation of a stellar disc in the central part of the NSC. We
derive the mass and size of the formed stellar disc and discuss possible existence of
such discs in some nearby galaxies.

Zusammenfassung

Wir verwenden hochauflösende direkte N-Teilchensimulationsmethoden, um die
Stellardynamik des galaktischen Zentrums (GZ) und von aktiven Galaxienkernen
(AGK) zu untersuchen. Wir verfolgen die Evolution des GZ von einer angenomme-
nen in-situ Entstehung des Kernsternhaufens (KSH) über 5 Gyr mit einer Millionen
Teilchen und Einbeziehung der Einzelsternnenentwicklung und der Doppelsterne-
nentwicklung. Wir untersuchen die dreidimensionale stellare Dichteverteilung, bes-
timmen die Rate der Gezeitenzerreisereignisse, die Rate der Hyperschnellläufer und
schätzen die Anzahl der spiralförmingen Annäherungbahnen mit extremen Massen-
verhältnissen ab. Wir betrachten die Überlebensfähigkeit der Doppelsterne im KSH
und diskutieren den Beitrag der Doppelsternsysteme mit kompakten Objekten in
Anwesenheit von Pulsaren sowie die Rate von Supernovae des Typs Ia im GZ. Wir
verwenden ein vereinfachtes Modell für die Untersuchung der Stellardynamik in
AGK. Die Analyse von zwei Simulationen mit 128000 Teilchen (mit und ohne Akkre-
tionsscheibe (AS)) zeigt, dass die Wechselwirkung des KSH mit der AS zur Entste-
hung einer stellaren Scheibe im Kern des KSH fährt. Wir bestimmen die Masse und
die Größe der entstandenen stellaren Scheibe und diskutieren die mögliche Existenz
einer solchen Scheibe in Galaxien in der Nähe der Milchstraße.
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Chapter 1

Supermassive black holes

1.1 Quasars

In early sixties of the 20th century astronomers detected high-luminosity compact
quasi-stellar objects (QSOs; also called quasars) that located in the centres of their
host galaxies and had been found to outshine them (Schmidt, 1963). Yakov Zel-
dovich and Edwin Salpeter proposed that the accretion of matter onto the central su-
permassive black holes (SMBHs) can generate the required high luminosities (Salpeter,
1964; Zel’dovich, 1964). At that time black holes were too exotic objects and existed
only in theory. But since then evidence for existence of SMBHs in centres of galaxies
has been accumulated (Ferrarese et al., 2006; Nayakshin, Power, and King, 2012).
Now, we know that most if not all galaxies harbour SMBHs in their centres.

Quasars are mostly found in the early universe and their activity peaks at a red-
shift z = 2 meaning that the SMBHs were already as massive as ≥ 108M�. It is
still debated in the literature how exactly the central black holes reach such extreme
masses. While quasars are the most luminous objects known in the universe, there
are other types of active galactic nuclei (AGN) such as Seyfert galaxies, blazars and
radio galaxies. All these objects are unified under the assumption of being the same
type of astrophysical object observed from different angles (Antonucci, 1993; Urry
and Padovani, 1995) however this simple unification scheme is criticised (e.g. Net-
zer, 2015, for a review). As it was already mentioned, each type of AGN features
very high luminosity. For example, the total bolometric luminosity of some bright
quasars may reach L = 1048 erg s−1 exceeding that of the host galaxy by 3–4 orders
of magnitude.

As gas in AGN infalls from large scales it settles into a disc-like structure initially
losing energy, that is converted to the radiation, and transporting angular momen-
tum outwards. At some point, the outward radiation pressure balances the inward
gravitational pull and limits the luminosity. This is the so-called Eddington limit
and it can be written as:

LEdd =
4πGMmpc

σT
= 1.25× 1038 M

M�
erg s−1, (1.1)

where M is the mass of the object, M� is the solar mass, mp is the mass of the proton,
σT is the Thompson cross-section for electron scattering, G and c are the gravitational
constant and speed of light respectively. In other words, in order to produce the lu-
minosity L = 1048 erg s−1 by the accretion of gas, one needs the SMBH of mass
' 1010M�. But a large mass by itself does not proof the object is a black hole, one
also needs to know the size. For a black hole the region in space associated with it
should not be much larger than the hole’s gravitational radius Rg = GM/c2. The
first indication of a quasar size comes from the short-time variations of their bright-
ness. Since the large-amplitude variability occurs on a time scale of days and the
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size of the object can not be larger than its light crossing time, one can conclude that
the quasars are no more than a light-day across. In other words, the size of a quasar
must be < 100Rg, but now there are much tighter constrains on sizes of quasars (e.g.
Narayan and McClintock, 2013).

In some cases, interferometric methods allow to measure the line of sight veloc-
ities of the orbiting gas in the accretion disc. This is the case, for example, in the
nucleus of galaxy M106 where the measured velocities follow a Keplerian profile
and require a central mass of 4.0× 107M� (Miyoshi et al., 1995; Greenhill et al., 1995;
Humphreys et al., 2013). The Hubble Space Telescope and some ground based tele-
scopes equipped by the adaptive optic technique can spatially resolve central regions
of nearby quiescent galaxies. This allows to measure the stellar velocity dispersion
in the galactic core, deduce presence of a SMBH in the centre and determine its mass
(see for a detailed review Kormendy and Richstone, 1995; Kormendy and Bender,
2009).

1.2 Supermassive black hole in the Galactic centre

The centre of our own galaxy Milky Way (MW) is ∼ 100 times closer than that of the
Andromeda (the nearest to us spiral galaxy). Due to its proximity, we can monitor
individual stars in the Galactic centre (GC). These observations that are being carried
out for more than 25 years (Ghez et al., 2005; Gillessen et al., 2009; Gillessen et al.,
2017) revealed the presence of a SMBH with mass MSMBH = 4.3 × 106 M�. The
features of stellar orbital motion represent the strongest evidence for the presence
of the SMBH in the Galaxy centre so far (see for instance Ghez et al. 2000; Eckart
et al. 2017 for a review). The central black hole coexists with dense nuclear star
cluster (NSC) mostly comprised of old stars (see Genzel, Eisenhauer, and Gillessen,
2010, for a review). Therefore, the Galactic Centre can be schematised as a multi-
facet system, comprised of a central SMBH with mass MSMBH = 4.3× 106 M� and a
young population of massive stars (the S-stars and the nuclear disc) surrounded by
an old NSC with mass MNSC ' 2.5× 107M� (Schödel et al., 2014). The inner part of
the NSC features distinct dynamical components such as the S-star cluster and the
disc of young massive stars.

1.3 Introduction to stellar dynamics in galactic nuclei

The SMBH dominates stellar dynamics within a typical radius, called influence ra-
dius rinf, which encompasses the region where the SMBH potential equals the over-
all gravitational field of NSC stars (see reviews by Alexander 2005; Alexander 2017).
As a result of orbital evolution, spatial distribution of stars within rinf is expected to
evolve toward a cusp distribution, being described by a power-law ρ(r) ∝ r−γ. In
the case of a single mass component, Bahcall and Wolf, 1976 showed that over the
nucleus relaxation time, the γ value approaches a limiting value γBW ' −1.75. Early
observations of the GC did not find good matching with the theory, as the spatial
distribution of old stars seem to be flat, or even decreasing, in the inner 0.1 pc (e.g.
Buchholz, Schödel, and Eckart, 2009). However, recent studies supported by both
observations and numerical modelling alleviated the discrepancy (Gallego-Cano et
al., 2018; Schödel et al., 2018; Baumgardt, Amaro-Seoane, and Schödel, 2018).

If a star reaches a region where the SMBH tidal forces exceed its self gravity, it
can undergo tidal disruption (Hills, 1975; Frank and Rees, 1976). Such process, called
tidal disruption event, can be observed via emission of the stellar debris, which gets
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heated while falling toward the event horizon. The classical solution of the mass
fallback rate follows a power-law decay Ṁ ∼ t−5/3 (Rees, 1988; Phinney, 1989).
More than 20 tidal disruption events (TDEs) have been observed in other galaxies
(Komossa, 2015) implying a rate of ∼ 10−5yr−1gal−1 (Stone and Metzger, 2016). The
proximity of the TDEs to the event horizon of the SMBHs allows to test general
relativity in the strong gravity regime.

In the case of compact stellar remnants, such as white dwarfs (WDs), neutron
stars (NSs) and black holes (BHs), the accretion onto the SMBH will radiate the bind-
ing energy in form of low-frequency gravitational waves. As the compact stellar ob-
ject approaches the last stable orbit, the emission of gravitational radiation becomes
more efficient and it can be detected by space-borne interferometers like LISA (Babak
et al., 2017). The inspiraling objects can make ∼ 103 − 105 orbital revolutions before
being swallowed by the SMBH. The analysis of such a signal will allow to obtain in-
formation on the space-time geometry and to measure the redshifted mass and spin
of the SMBH with high accuracy (Amaro-Seoane et al., 2007; Amaro-Seoane et al.,
2015).

The SMBH plays an important role also in shaping the evolution of binary stars
affecting the mechanisms that regulate their formation and disruption. When a bi-
nary star approaches the SMBH it can be disrupted (Hills, 1988). A possible con-
sequence of such interaction is that one component is captured by the SMBH and
the second one is kicked out with a high velocity, up to several thousand km s−1.
Therefore, unveiling the origin of hypervelocity stars can provide useful informa-
tion on the existence of the Galactic SMBH. We refer to the review provided recently
by Brown, 2015 for further details. In general, binaries do not dominate the energy
budget of the NSC because single stars bound to the SMBH can become very ener-
getic (Trenti et al., 2007). The diverging velocity dispersion profile with decreasing
radius from the SMBH implies that a hard binary at outskirts of the NSC can become
soft near the centre and be disrupted by interactions with high-velocity single stars
(Hopman, 2009). Compact objects with a ‘normal’ companion can form X-ray bina-
ries. Recently, a growing number of observations revealed an overabundant pres-
ence of X-ray binaries at the GC (Muno et al., 2005b; Perez et al., 2015; Mori et al.,
2015; Hailey et al., 2018; Zhu, Li, and Morris, 2018), which might be connected with
the GC formation history (Arca-Sedda, Kocsis, and Brandt, 2017). Binary dynamics
can lead to the formation of millisecond pulsars, comprised of rapidly rotating pul-
sars spun up by its companion. These sources are expected to be the main reason
responsible for the Gamma-ray excess observed at the GC, although other possibili-
ties have been invoked (Daylan et al., 2016; Fermi-LAT Collaboration, 2017), possibly
related to the NSC formation history (Brandt and Kocsis, 2015; Arca-Sedda, Kocsis,
and Brandt, 2017; Fragione and Loeb, 2017; Abbate et al., 2018). Moreover, the pos-
sible detection of a pulsars population in the SMBH close vicinity can be crucial to
probe general relativity in the strong field regime (Psaltis, Wex, and Kramer, 2016).

1.4 Introduction to the numerical simulations of galactic nu-
clei

As discussed above, the NSC represents a highly complex stellar system, thus a reli-
able modelling of such environment requires highly precise and detailed numerical
simulations, which are on the other hand, extremely time-consuming. In the case
of AGN, the situation is even more difficult since the NSC also interacts with the
gaseous accretion disc. The fastest way of modelling star clusters with a central
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massive BH is to use Monte Carlo or Fokker-Planck approaches, but these meth-
ods are approximate (e.g. Spurzem, 1999). In order to achieve high accuracy, direct
N-body simulations are required. Pioneering work of modelling multi-mass stellar
dynamics around a massive BH (intermediate mass BH in a globular cluster) via
direct N-body simulations was done by Baumgardt, Makino, and Ebisuzaki, 2004b
and (for the case of galactic nuclei) by Freitag, Amaro-Seoane, and Kalogera (2006).
Just et al., 2012 did one of the first studies of AGN using direct N-body, but the au-
thors were restricted to low-particle number and a simplistic approach to model the
AD. One of the latest direct N-body models of the GC was performed by Baumgardt,
Amaro-Seoane, and Schödel (2018). The possibility to use more than 1 million bod-
ies to model a galaxy centre becomes possible only in recent times (Arca-Sedda et al.,
2015; Arca-Sedda and Capuzzo-Dolcetta, 2017b; Arca-Sedda and Capuzzo-Dolcetta,
2017a). However, most of the existing models in the literature did not include all the
relevant features at the same time, like a sufficiently large number of bodies, stel-
lar evolution or a proper treatment for close encounters. Recently, the first realistic
star-by-star simulations were performed for globular clusters, the DRAGON simu-
lations (Wang et al., 2016), where the authors were able to track the stellar evolution
for single and binary stars. The growing number of observations of galactic cen-
tres throughout the entire electromagnetic spectrum (e.g. Fermi-LAT Collaboration,
2017; Abuter et al., 2018; Castelvecchi, 2017) and rapidly evolving computer hard-
ware capabilities give us a great opportunity to develop a high-accuracy numerical
model of a galaxy centre which will be supported by observations.

1.5 Motivation and goal of this work

The growing number of the observational campaigns designed to study the Galac-
tic centre shows great interest of world-wide scientific community to understand
physics behind the vast variety of phenomena occurring in the central parsec of
our Galaxy. Space telescopes such as Fermi with its LAT (Large Area Telescope) in-
strument, Chandra, SWIFT and others regularly monitor the Galactic centre in the
gamma and X-ray spectral bands (Degenaar et al., 2015; Ackermann et al., 2017;
Corrales et al., 2017). The famous Hubble telescope makes fantastic images of the
centre of the Galaxy in the optical range, the Spitzer in infrared, Planck and COBE
in the microwave. The centre of the Galaxy is also the target of some ground-based
observations with use of adaptive optics (Gillessen et al., 2009; Genzel, Eisenhauer,
and Gillessen, 2010), for example, the Keck Observatory, located in Hawaii, the Very
Large Telescope (VLT), consisting of four 8-meter telescopes on Mount Paranal in
Chile. The VLT is equipped with the specialized GRAVITY instrument, that de-
veloped, mostly, for observations of galactic centres in the infrared range (Gravity
Collaboration et al., 2017; Gravity Collaboration et al., 2019). While all mentioned
telescopes, in addition to observing the galactic centre, also perform other observa-
tions, the Event Horizon Telescope (ETH) project is intended solely for monitoring
massive black holes in the centres of Milky Way and M87. It represents an array of
radio telescopes around the globe (including the South Pole telescope in Antarctica),
combined into a single facility with the length of the baseline as large as the Earth’s
diameter. The EHT was used to produce the first-ever picture of the black hole’s
shadow in M87 (Event Horizon Telescope Collaboration et al., 2019a; Event Horizon
Telescope Collaboration et al., 2019b).

Goal of this work is threefold. First is to examine the interaction of stars with the
accretion disc in a close vicinity of a SMBH. The second is to develop modules for the
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state-of-the-art numerical software NBODY6++GPU (Wang et al., 2015) which will
allow to simulate stellar dynamics in both quiescent and active galactic centres. And
finally, use the modified NBODY6++GPU to perform modelling of the MW NSC,
which will expand our understanding of the GC. This work serves as an important
and necessary step in our understanding of physical and dynamical processes in
galactic nuclei.
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Part II

METHODS AND THEORY
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Chapter 2

Stellar dynamics in galactic nuclei

Influence radius of a SMBH (rinf) determines a region in space where the SMBH
dominates the dynamics. We can define this quantity as the distance where the black
hole’s gravitational potential equals to that of the surrounding stellar system. If
we approximate the stellar potential as a singular isothermal sphere, the radius of
influence then equals rinf = GMSMBH/σ2. Note that by isothermal we mean constant
velocity dispersion1. In this case the total stellar mass inside rinf is similar to the
SMBH mass. We refer to a review by Tal Alexander (Alexander, 2017) for further
details.

2.1 The Bahcall-Wolf cusp

Gravitational interactions between individual single mass stars around a SMBH
drive the stellar density distribution to evolve toward a power-law cusp ρ ∝ r−7/4

(and distribution function to f (E) ∝ E1/4; Bahcall and Wolf 1976). This is the Bahcall-
Wolf solution of the time-dependent Bolzmann equation, that can be derived from
a qualitative argument that stars transfer orbital energy outwards (e.g. Binney and
Tremaine, 2008a).

But single mass stellar populations is a rough approximation since in reality star
systems feature a broad mass spectrum. Two body interactions in the SMBH poten-
tial well drive the system towards equipartition: massive stars slow down and sink
inward while the light ones gain speed and migrate outward. This phenomenon,
called mass segregation, modifies the Bahcall-Wolf solution. In this realistic situa-
tion each stellar type (associated with its own mass range) has its own power-law
density slope. The most massive stars (usually stellar mass black holes) approach a
limiting value for the power-law index of 7/4 (Bahcall and Wolf, 1977). In Chapter 5
we obtain the power-law index for stellar black holes from a direct million-body
simulation which is in a very good agreement with the Bahcall-Wolf solution.

2.2 The loss-cone theory

As we already discussed in the previous section, stars in a dense stellar system often
experience encounters with each other leading to exchange of energy and angular
momenta. Pericentre distance for a star with semimajor axis a on a radial orbit,
e ∼ 1, with energy E = GMSMBH/2a ∼ 0 equals

rp '
J2

2GMSMBH
, (2.1)

1In stellar dynamics we often use analogous terms from thermodynamics. For example the term
“heating" means increase in velocity.
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FIGURE 2.1: Visualization of the loss-cone. Source: Merritt, 2013.

where J =
√

GMSMBHa(1− e2) = rv sin θ is the specific angular momentum. If J is
small enough so that rp locates inside stellar tidal disruption radius, we say that the
star is on the loss-cone orbit. Quantitatively we can describe the loss-cone as a cone
centred on star’s velocity vector v and negative radius vector −r with an opening
angle

sin θ '
√

rp/r. (2.2)

This approximation follows from the angular momentum conservation: rv sin θ =
rpvp, leading to sin θ =

rp
r

vp
v , where vp is velocity at pericentre. Fig. 2.1 illustrates

the loss-cone: here rlc the loss-cone radius. The opening angle θ is usually small
and points out to the small phase space volume of the loss-cone. For example, in the
Galactic centre a solar type star at distance of 1 pc from the SMBH has θ ' 1.9× 10−3

radians. Here we assumed that the star’s pericentre distance equals to the tidal
disruption radius (see next section and Eq. 2.3).
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By definition, the loss-cone stars are destroyed (or captured) by the SMBH dur-
ing the next pericentre passage. In spherical galactic nuclei the gravitational stellar
encounters are considered to be the main mechanism for the loss-cone re-population,
while axisymmetric or triaxial potential produces torques which alter angular mo-
menta and enhance the re-population rate. We refer to Merritt, 2013 for more details
on the loss-cone dynamics and to (Alexander, 2017) for a discussion about the diffu-
sion in energy and angular momenta.

2.3 Tidal disruption of stars

In the previous section we discussed the loss-cone theory: a mechanism that drives
stars to be disrupted or captured by the black hole. But how to determine the dis-
ruption radius?

Let us consider a star with radius r∗ and mass m∗, then we can compare the tidal
force from the SMBH (difference between the gravitational force acting on the stellar
surface with that on the star’s centre) and the self-gravity of the star. Distance from
the SMBH where the tidal force equals to the star’s self-gravity is defined as the tidal
disruption radius:

rt =

(
MSMBH

m∗

)1/3

r∗ (2.3)

The Eq. 2.3 shows that the tidal disruption radius is proportional to the stel-
lar radius and to cubic root of the black hole mass. Thus, for SMBHs with masses
MSMBH > 108M� tidal disruption happens inside the hole’s gravitational radius, Rg,
and cannot be observed. But smaller supermassive black holes - like the one at the
centre of our galaxy - disrupt stars far outside the gravitational radius. For example
the tidal disruption radius of a solar type star around a SMBH of 106M� approxi-
mately equals to rt ∼ 2.3× 10−6pc ' 24Rg. The critical mass above which the star is
disrupted inside the event horizon is called the Hills mass and can be expressed as:

MHills = 1.1× 108M�

(
r∗
R�

)3/2 ( m∗
M�

)−1/2

(2.4)

We can measure the strength of the tidal disruption events by the value of ratio
between tidal radius and pericentre distance that is called the penetration factor:

β =
rt

rp
. (2.5)

The value of the penetration factor determines what part of the specific binding
energy of the stellar debris ∆ε ≈ GMSMBHr∗/r2

t is bound to the SMBH. Hayasaki et
al., 2018 use orbital eccentricity and semimajor axis to distinguish between eccentric,
parabolic and hyperbolic tidal disruption events. For example in the eccentric case
all the material is bound to the SMBH and eventually comes back leading to possible
formation of an accretion disc - thus, the classification determines the mass fallback
rate of the stellar debris onto the SMBH. Note that here we restricted our discus-
sion to the case of supermassive black holes and used basic Newtonian physics for
the above calculations. Alexander (2005) gives more general classification of tidal
disruption events, but also with use of the penetration factor β.

A parabolic tidal disruption flare features the mass fallback rate that decays in
time as t−5/3 (Rees, 1988; Phinney, 1989) and produces a lightcurve that is used
as a template to observe the tidal disruption events. So far, more than 20 of them
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have been observed implying a rate of ∼ 10−5yr−1gal−1 (Komossa, 2015; Stone and
Metzger, 2016). In theory, the loss-cone re-population mechanism determines the
tidal disruption events rate, but the theoretical estimates are one order of magnitude
higher (Magorrian et al., 1998; Wang and Merritt, 2004). This discrepancy may arise
from the fact that a major contribution to the TDE rates comes from low-mass main
sequence stars (see e.g. Panamarev et al. 2019) and may be difficult to observe. The
disruption of red giants is also hard to observe: due to the large sizes, the mass fall-
back time is longer and eventually the luminosity is lower (MacLeod, Guillochon,
and Ramirez-Ruiz, 2012). We refer to Chapter 5 for a detailed analysis of the contri-
bution from different stellar types to the tidal disruption in the Galactic centre.

As we have seen in the previous section, stars “enter” the loss-cone from radial
orbits giving rise to very high eccentricities of the disrupted stars. One of the possi-
bilities for a tidal disruption of a star on nearly circular orbit is the interaction of the
star with the accretion disc. The star–disc interactions are natural for active galac-
tic nuclei and we show in Chapter 4 (see also Just et al. 2012; Kennedy et al. 2016;
Panamarev et al. 2018) that this mechanism leads to a wide range of eccentricities of
disrupted stars and may even lead to formation of a central steady-state stellar disc
(Panamarev et al., 2018).

2.4 Extreme mass ratio inspirals

As we have seen, accretion of stars onto SMBHs with masses MSMBH < 108M�
leads to the tidal disruption. But the picture changes when a compact object such
as white dwarf, neutron star or stellar mass black hole approaches the SMBH (note
that white dwarf may be still disrupted by an intermediate mass black hole). During
the pericentre passage, these objects would radiate their binding energy producing
gravitational waves (GW) and eventually merge with the SMBH in a process called
extreme mass ratio inspiral (EMRI). The emission of GWs leads to orbital decay of
a relatively light object around a much heavier object with the mass ratio of ≥ 104.
In order to detect GWs, we measure the relative change in distance (the strain h =
∆R/R): as the wave propagates through space, distance between objects stretches
and squeezes rhythmically at the wave’s frequency. For an EMRI the strain is given
by (Thorne, 1987):

h ' 9× 10−23 m∗
10 M�

(
MSMBH

106 M�
f

10−3 Hz

)2/3 ( D
1 Gpc

)−1

(2.6)

where D is the distance to the source, f is the GW frequency. Since EMRIs originate
from the nearest vicinity of a SMBH they can be used to probe the strong gravita-
tional field and test the general relativity.

The time left to merge estimates as (Peters 1964; we assume that EMRIs originate
from parabolic orbits):

tGW ≈
768
425

5
256

c5

G3
a4

m1m2(m1 + m2)

(
1− e2)7/2

, (2.7)

where m1 and m2 are masses of the merging bodies, e and a are eccentricity and
semimajor axis, c is the speed of light. In Ch. 5 we compare the merging time with
the relaxation time and estimate the number of EMRIs originating from the Galactic
centre.
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A detection of an EMRI would allow to measure mass of the SMBH (at the mo-
ment of merging), its spin parameter, orbital properties of an in-spiralling body (in-
clination angle and eccentricity), luminosity distance (Barack and Cutler, 2004).

Planned space-borne GW interferometers like LISA and TianQuin (Luo et al.,
2016b) highlight the importance of EMRI detections to get better understanding of
gravitation.

2.5 Formation of Hypervelocity stars

Three body exchange of a binary star and SMBH may produce a hypervelocity star
(Hills, 1988). When the binary penetrates deep into the tidal field of the SMBH,
at some moment, the force exerted by the SMBH exceeds the mutual gravitational
interaction of the binary components. This tidal separation results in ejection of one
of the components while the second binary member becomes bound to the SMBH.
The tidal separation distance is given by (Hills, 1988):

rbt = a
(

3MSMBH

mb

)1/3

, (2.8)

where a is the binary semimajor axis, mb is the total mass of the binary. For a system
of two solar-type stars with semimajor axis of 0.1 AU and the SMBH in the Galactic
centre the distance equals to about 18.5 AU. It is quite small radius, but is still larger
than the tidal disruption distance for a single star.

The ejected star gains the velocity that may significantly exceed the Galactic es-
cape speed and is given by (Brown, 2015):

Vej ' 1370 km s−1
( a

0.1AU

)−1/2
(mb/M�)

1/3
(

MSMBH

4× 106M�

)1/6

(2.9)

Fig. 2.2 helps to visualize the velocities obtained by ejected stars as function of binary
separation.

Eq. 2.9 can be derived from energy conservation arguments. The orbital velocity
of the centre of mass of the binary at the separation radius is v =

√
GMSMBH/rbt,

while the relative velocity of a binary component equals to vb =
√

Gmb/a. At the
moment of disruption, stars undergo change in the specific energy: ∆ε = 1/2(v +
vb)

2 − 1/2v2 ' vvb (Hills, 1975; Yu and Tremaine, 2003). Then, the ejected star gets
the velocity at infinity of v =

√
2vvb.

2.6 Stellar and gas dynamics in AGN

An important contribution to the modern understanding of dynamic processes in
AGN was made by Kazakh researchers from Fesenkov Astrophysical Institute. For
example, semi-analytical models of the interaction of stars with the accretion disc
were developed in Vilkoviskij and Czerny, 2002, where the authors analysed the
influence of the friction forces of gas disc on the dynamics of stars near the SMBH.
Further, using numerical modelling by direct integration of the N–body problem, it
was shown that interaction with the gaseous disc leads to an increase in the accretion
rate of stars onto the SMBH (Just et al., 2012). After that, according to the results
of 39 simulations of various AGNs, the orbital parameters of accreted stars were
investigated and an important result was obtained that approximately one third of
the objects fall into the MBH with almost circular orbits, while being in the plane of
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FIGURE 2.2: Ejection velocity of HVS as function of semimajor dis-
tance. Different curves represent various total masses of binaries.

the gas disc (Kennedy et al., 2016). In this study we show that interaction with the
accretion disc leads to the formation of a stellar disc in the very central part of an
active galactic nucleus (Ch. 4, Panamarev et al. 2018).
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Chapter 3

Direct summation methods

3.1 The N-body problem

We encounter the N-body problem in many areas of astrophysics: from simulations
of planetary systems and asteroids to galaxies and galaxy clusters; from systems of
artificial satellites to active galactic nuclei and so on. For each of the cases there is a
relative approach. Nevertheless, the equations of motion are nearly the same mean-
ing that we can generalize the basic principles and methods of the N-body problem.
In this chapter we focus mostly on collisional systems and describe methods relative
to this specific case.

The stellar system is called collisional if gravitational interactions between in-
dividual stars play significant role in the overall dynamics on a time scale smaller
than the age of the system. In other words, in collisional systems the relaxation
time (Chandrasekhar, 1942; Spitzer, 1987) is smaller or comparable to the system’s
age. For instance, open and globular clusters, nuclear star clusters are collisional
systems, while galaxies, galactic bulges and discs are collisionless. The motion of
a test particle in a collisionless systems may be well described by the motion in a
smooth potential generated by all other stars. On the other hand, in collisional sys-
tems the pairwise interactions mainly determine the trajectory or at least can not be
neglected. The more frequently gravitational collisions1 occur the denser the system
is considered to be. Typical relaxation times for open and globular clusters are in
order of 10− 100 Myr and ≤ 1 Gyr respectively.

The equation of motion determines gravitational interactions between stars:

r̈i = −G
N

∑
i 6=j

mj(ri − rj)

|ri − rj|3
, (3.1)

where mj is the mass of j-th particle, ri and rj are the radius vectors of particles i and j.
We can also express this equation as a system of 6N first order differential equations
in terms of positions and velocities of the particles i and j. The Eq. 3.1 describes
behaviour of isolated system of N particles, but we can add external potential as an
additional term to account for interaction with a massive black hole, tidal field of a
galaxy (in case of globular clusters) and so on.

In general case, the N-body problem has no analytic solution, but if we know
initial conditions, then Eq. 3.1 becomes a Cauchy problem and is subject to numerical
integration. The direct N-body methods rely on the numerical integration of the
equation of motion: they are the most accurate, but at the same time, the most time-
consuming. In this chapter we summarize techniques to reduce the computational
costs while preserving the high accuracy.

1By collisions we mean close gravitational encounters, NOT physical collisions
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Sebastian von Hörner obtained the first numerical solutions for stellar systems
with N = 4, 8, 12 and 16 (von Hoerner, 1960) and later with 25 components (von Ho-
erner, 1963) on a computer at Astronomisches Rechen-Institut (Institute for Compu-
tational Astronomy) in Heidelberg, Germany. Later on, Sverre Aarseth made major
contribution to advance the direct N-body methods: he developed a family of com-
puter codes starting from NBODY1 in 1961 (Aarseth, 1963) to NBODY6 (Aarseth,
2003) nowadays. When NBODY6 was widely used, R. Spurzem (Spurzem et al.,
2008) developed a parallel version NBODY6++ to use on parallel supercomputers.
Later on, when scientists realized the advantage of graphic processing units (GPUs)
to deal with the N-body problem, Nitadori and Aarseth (2012) extended NBODY6
to NBODY6-GPU to accelerate the gravitational force calculations using GPUs. As a
result, Sippel and Hurley (2013) performed globular clusters simulations with more
than 250 000 particles. The main limitation of NBODY6-GPU was that it could be
operated only on a single-node workstation, but few years later it was extended to a
massively parallel code NBODY6++GPU (Wang et al., 2015). This development re-
sulted in four realistic star-by-star simulations of globular clusters using one million
particles (Wang et al., 2016). As one of the goals of this work, Panamarev et al. (2019)
added interaction with supermassive black hole to NBODY6++GPU and performed
a million-body simulation of the Milky Way nuclear star cluster (see Chapters 5 and
6).

3.2 The Hermite integration method

Numerical integration requires initial conditions. In our case these are position r0
and velocity v0 at an initial value of time t0. We are solving the Eq.3.1 and thus the
motion of a particle i is determined by its acceleration a0,i caused by total gravita-
tional pull by all other particles:

a0,i = −∑
i 6=j

Gmj
R
R3 , (3.2)

and its time derivative:

ȧ0,i = −∑
i 6=j

Gmj

[
V
R3 +

3R(V ·R)

R5

]
, (3.3)

where G is the gravitational constant; R = r0,i − r0,j is the relative coordinate to the
particle j; R = |r0,i − r0,j| the distance; and V = v0,i − v0,j the relative velocity.

Now, as the first step, we perform Taylor expansion for r and v in order to find
the solution in form of a polynomial approximation:

rp,i(t) = r0 + v0(t− t0) + a0,i
(t− t0)2

2
+ ȧ0,i

(t− t0)3

6
, (3.4)

vp,i(t) = v0 + a0,i(t− t0) + ȧ0,i
(t− t0)2

2
. (3.5)

In the Hermite scheme this first step is called prediction: we predict values for
position and velocity (the subscript p means prediction). But these approximations
do not satisfy our requirements of the desired error tolerance. To improve the pre-
dicted values we perform another Taylor expansion, but now for the acceleration
and its time derivative:
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ai(t) = a0,i + ȧ0,i · (t− t0) +
1
2

a(2)0,i · (t− t0)
2 +

1
6

a(3)0,i · (t− t0)
3, (3.6)

ȧi(t) = ȧ0,i + a(2)0,i · (t− t0) +
1
2

a(3)0,i · (t− t0)
2. (3.7)

The values of a0,i and ȧ0,i are given by Eq. 3.2 and Eq. 3.3. The straightforward way
to find a(2)0,i and a(3)0,i is to differentiate the Eq. 3.3 two times, but this procedure is
computationally ‘expensive’. Here comes the idea behind the Hermite method.

We calculate acceleration ap,i and its first derivative ȧp,i for the predicted values
of position and velocity using Eq. 3.2 and Eq. 3.3, and plug-in them as ai(t) and
ȧi(t) in equations 3.6 and 3.7 respectively. Now we have a system of two algebraic
equations with two unknowns a(2)0,i and a(3)0,i . A straightforward solution yields:

a(3)0,i = 12
a0,i − ap,i

(t− t0)3 + 6
ȧ0,i + ȧp,i

(t− t0)2 . (3.8)

and

a(2)0,i = −6
a0,i − ap,i

(t− t0)2 − 2
2ȧ0,i + ȧp,i

t− t0
. (3.9)

The trick here was to avoid direct computation of higher order terms by express-
ing them as a function of lower-order terms. Now, we can extend the Taylor expan-
sion for ri and vi to higher orders:

r1,i(t) = rp,i(t) + a(2)0,i
(t− t0)4

24
+ a(3)0,i

(t− t0)5

120
, (3.10)

v1,i(t) = vp,i(t) + a(2)0,i
(t− t0)3

6
+ a(3)0,i

(t− t0)4

24
. (3.11)

This is the second step of the Hermite scheme and is called ‘correction’ since it cor-
rects position r1,i and velocity v1,i of the particle i at the computation time t1.

We describe the fourth order Hermite method, but it can be extended to higher
orders by the same principle. NBODY6++GPU and PhiGPU (the two software pack-
ages used in this thesis) feature 4-th order integrator, while some other direct N-body
codes like HiGPUs use 6-th order Hermite integrator (Capuzzo-Dolcetta, Spera, and
Punzo, 2013). For analysis and discussion of higher order integrators see Nitadori
and Makino, 2008.

3.3 Individual and block time steps

One of the most important issues in the N-body problem is the choice of the timestep
(the value t− t0 from the previous subsection). This is of high importance because
stellar systems feature huge range of temporal scales: hours in the case of orbiting
double degenerate pairs (e.g. Parsons et al., 2011), tens of years in the case of single
stars moving very close to supermassive black holes (Schödel et al., 2002), millions
of years - lifetime of very massive stars, billions of years - relaxation time of globular
clusters (e.g. Binney and Tremaine, 2008b). Even if we consider only dynamics of
single stars the timespan of stellar motions will be tremendous. For this reason, if
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we choose the smallest timestep determined by the fastest particle in the centre of
the system, then we have to perform unnecessary computations for every star at the
outskirts using the smallest timestep.

A basic idea to overcome this problem was introduced by S. J. Aarseth (Aarseth,
1963). The essence is to introduce individual timestep ∆t = t1 − t0 for each particle.
Let us introduce two primary coordinate and position vectors rj(tj), vj(tj) and two
secondary r̃j(t) and ṽj(t); where tj is individual time for each particle, t - current
global time for all particles. Further on, we introduce a list of M bodies that satisfy
the condition:

tj + ∆tj < tM, (3.12)

where tM is a critical time and ∆tj is a current value of the individual timestep for
the particle j.

Initially (at t = 0), we assume tM == ∆tM, where ∆tM is chosen so that the list
M would contain ∼

√
N bodies. The list is updated when the global current time t

exceeds tM and the new members are selected from the all N bodies.
The main integration cycle begins with searching a particle with minimal value

of tj + ∆tj. If we assign this particle with index i, then the current value of global
time is:

t = ti + ∆ti (3.13)

Then we can predict its position and velocity using the first step of Hermite scheme
(see previous subsection). When the new value of time is determined, we initialize
main coordinates of the particle i:

ri(ti) = r̃i(ti) (3.14)

The integration cycle ends with computing new values for individual timesteps.
We determine the timestep using the formula empirically derived by S. Aarseth

(Aarseth, 1985):

∆ti =

√√√√η
|a1,i||a(2)1,i |+ |ȧ1,i|2

|ȧ1,i||a(3)1,i |+ |a
(2)
1,i |2

, (3.15)

where η is a dimensionless accuracy parameter which controls the error. In the sim-
ulations related to this thesis, we used the value of η = 0.02.

The individual timestep scheme was used in early realization of N-body codes,
but starting from NBODY6 the developers improved it to hierarchical block timestep
scheme.

Figure 3.1 gives a graphical illustration of the block time steps scheme. The val-
ues for the timesteps are quantized as 2−n with n = 2, 3, ... So, positions and veloc-
ities for particle i with the smallest time step (see Fig. 3.1) are determined at each
timestep, while the timestep for particle k is two times bigger and its phase space
coordinates are determined only at time intervals denoted by dots, at other time in-
tervals the coordinates are predicted. The example of particles k and l illustrates that
the step size may be changed at the end of the integration cycle. The scheme is called
hierarchical because it requires the steps to be proportional (in our case it is a power
of 2) to guarantee that all particles are synchronized at some timestep.
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FIGURE 3.1: Block time steps example for four particles. Credit: Khal-
isi, Wang, and Spurzem, 2014

3.4 The Neighbour scheme

One more way to reduce the computational time is to split the total force acting on a
particle (3.6) into two different components

ai = ai,irr + ai,reg, (3.16)

where ai,irr is irregular part - the contribution from nearest particles (called neigh-
bours) and ai,reg - is regular part - the overall contribution from remaining bodies.
The idea is that we replace the full summation in Eq. 3.2 by the sum over L nearest
particles (L � N) and predict the contribution from distant ones. This is the so–
called Neighbour scheme suggested by Ahmad and Cohen, 1973 and often referred
as Ahmad-Cohen method.

The implementation of the method is as follows. For each particle we create a
list of L neighbours that are located inside the sphere of radius Rs centred at the
particle. The neighbours exert the strongest contribution to the particle’s motion.
We also have to keep track of the buffer zone from Rs to 21/3Rs in order to make
sure that we do not miss the particles that approach neighbour sphere with high
velocities. Fig. 3.2 shows visual representation of the neighbour sphere.

In NBODY6 the size of a neighbour sphere can be computed from the local den-
sity contrast (Aarseth, 2003):

C =
2L1
N

(
R1/2

Rs

)3

, (3.17)

where L1 number of particles inside Rs, R1/2 size of the sphere containing half of the
all particles centred at the centre of mass of the whole system of N bodies. In other
words, C is the ratio of mean density of the neighbour sphere to the mean density of
the sphere containing half of the total system.
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FIGURE 3.2: Illustration of a neighbour sphere. Source: (Aarseth,
1985).
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On the other hand, NBODY6++ controls size of a neighbour sphere iteratively
by retaining an optimal number of neighbours (Khalisi, Wang, and Spurzem, 2014).
It is more convenient to scale the computational time with particle number in large-
scale simulations when all particles have roughly the same number of neighbours.
This parameter, called NNBOPT, can be changed to adjust for performance require-
ments.

The Ahmad-Cohen scheme can be implemented together with the hierarchical
block timestep method. In this case one particle has two different timesteps: ir-
regular for force computation exerted by neighbours and regular for prediction of
contribution by distant particles.

3.5 KS–Regularization

When two particles come close to each other, the right-hand side of the equations 3.2
becomes large leading to numerical errors. One way to get around this problem is
to introduce a ‘softening’ parameter as it is done in PhiGPU (Harfst et al., 2007):

ai = −∑
i 6=j

Gmj

R2 + ε2
R
R

, (3.18)

But there is more elegant solution. We briefly describe the idea as in (Orlov and
Rubinov, 2008).

Let us consider one-dimensional case of two-body problem:

ẍ = −G(m1 + m2)

x2 , (3.19)

where x is the distance between particles. The right-hand side has singularity at
x = 0, but if we multiply the equation by ẋ and integrate, we get the energy integral:

ẍ2 − 2G(m1 + m2)

x
= C, (3.20)

where C is the integration constant and is equivalent to the double total energy of
the system. But, as we see, the equation is still discontinuous at x = 0. And now we
can apply variable transformation dτ = dt/x which gives:

x′′ − Cx = G(m1 + m2), (3.21)

where prime denotes differentiation with respect to τ. Now, the equation is regular.
The problem was that this trick did not directly apply to 3–dimensional space.

After some time (actually, more than 60 years), Kustaanheimo and Stiefel man-
aged to solve this problem in 4D (Kustaanheimo and Stiefel, 1965) that allowed to
implement the idea of regularization in numerical codes.

Instead of dealing with 3–dimensional vectors, Kustaanheimo and Stiefel intro-
duced a 4–vector U = (U1, U2, U3, U4) so that:

U2
1 + U2

2 + U2
3 + U2

4 = R, (3.22)

where R is the distance between two particles m1 and m2.
Hence, the time transformation becomes:

dt = Rdτ, (3.23)
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Then, the radius-vector of particle m2 centred at particle m1 is:

R = (X, Y, Z, 0) (3.24)

Note, that here authors use 4-th ‘dummy’ dimension. The coordinates are trans-
formed by Levi-Civita matrix.

R = L(u), (3.25)

where L(u) is the Levi-Civita matrix:u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2

 (3.26)

which has a useful property:
d
dt

(LU) = 2LU′ (3.27)

After taking the time derivative of Eq. 3.25, we get the relation between velocities:

Ṙ =
2
R

LU′ (3.28)

It is also possible to express U and U′ in terms of R and Ṙ (Aarseth, Tout, and
Mardling, 2008). A system of two particles, subject to KS-regularization, is called
the KS-pair or regularized binary.

In the family of codes NBODY6 and NBODY6++ , the KS-pair is substituted by
its centre of mass and is treated in the whole system of N bodies as a single particle.

In order to identify the potential candidates for KS-regularization, we introduce
the parameter Rmin equivalent to the impact parameter for 90 degree deflection:

Rmin =
2G(m1 + m2)

vinf, (3.29)

where vinf is the relative velocity of 2 approaching particles at infinity. As the
approach is happening, the timesteps of the particles are being reduced. Hence,
another parameter to decide on regularization is the minimum timestep:

dtmin = κ
η

0.03

(
R3

min
< m >

)1/2

, (3.30)

where < m > is the average mass, η is the timestep factor (see Eq. 3.15) and κ is a
free numerical factor.

If the particles are approaching each other they have to satisfy the condition:

R ·V > 0.1
√

G(m1 + m2)R. (3.31)

And the final condition for regularization is to compare their mutual force with
perturbations exerted by other particles:

γ =
apR2

G(m1 + m2)
, (3.32)

where ap is the absolute value of the relative perturbing force. In NBODY6++ the
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particles are regularized if γ < 0.25. Finally, the KS-pair represents perturbed two-
body motion. The perturbation parameter γ is evaluated at every timestep of the
pair and if it reaches the value γmin = 10−6 the pair is considered unperturbed
and instead of numerical integration the analytical solution of two-body problem is
applied. The unperturbed pairs are referred in the code as ‘mergers’.
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Part III

RESULTS
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Chapter 4

Star–disc interaction in galactic
nuclei

Most of the results presented in this chapter are published in the peer-reviewed ar-
ticle Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just,
Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil “Star-disc in-
teraction in galactic nuclei: formation of a central stellar disc”, Monthly Notices of
the Royal Astronomical Society, Volume 476, Issue 3, p.4224-4233. T. Panamarev
analyzed the simulations output data, wrote the text, performed all necessary calcu-
lations. The co-authors contributed by initial data analysis, early draft of the paper
(B. Shukirgaliyev), comments, ideas, discussion with the referee (all co-authors).

Sec. 4.2 summaries main findings of the peer-reviewed article Kennedy, Gareth
F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just,
Andreas; Spurzem, Rainer “Star-disc interaction in galactic nuclei: orbits and rates
of accreted stars”, Monthly Notices of the Royal Astronomical Society, Volume 460,
Issue 1, p.240-255. T. Panamarev contributed by improving the accretion disc model
in order to increase its realism, helped with comments and ideas.

4.1 The model

The interaction of stars with the AD was studied by Rauch (1995) and Rauch (1999).
A later semi-analytic approach of star–disc interactions (Vilkoviskij and Czerny, 2002)
led to conclusion that competition between stellar two-body relaxation and dissi-
pation will cause a disc-like structure in the inner stellar component and a well-
defined stationary flux of stars towards the SMBH. The effects of gas damping in
dense stellar systems were studied by Leigh et al. (2014) analytically and numeri-
cally. The authors conclude that the gas drag may increase the stellar accretion rate
onto the SMBH in galactic nuclei while the effect of the star-gas interactions on the
mass segregation rate is relatively inefficient in case of dense galactic nuclei. Stel-
lar migration towards the SMBH in AGN was analysed by McKernan et al., 2011
where the authors considered compact massive stellar objects migrate by analogy
with protoplanetary migration. In result, the migration and accretion of compact
objects can explain the X-ray soft excess in Seyfert AGN. Baruteau, Cuadra, and Lin
(2011) performed hydrodynamical simulations of the gaseous disc in order to study
the migration of a binary star through the disc and they found that the hardening
of the binary happens on much shorter time-scales than the migration towards the
SMBH. It is natural to expect the presence of stellar mass black holes (sBH) in the AD
where they can accrete material and grow or even accumulate in a migration trap
and merge resulting in a formation of intermediate mass black holes (Artymowicz,
Lin, and Wampler, 1993; Bellovary et al., 2016). The gaseous drag would effectively
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reduce the semi-major axis of sBH binary resulting in a strong gravitational wave
emission followed by a merger within the lifetime of the AD (Bartos et al., 2017;
Stone, Metzger, and Haiman, 2017; McKernan et al., 2017).

Three main dynamical components of AGN are: a SMBH, an AD and a compact
stellar cluster. In order to couple stellar dynamics and the drag force from the AD,
we use an improved version of the direct N-body code φGRAPE (Harfst et al., 2007)
including the friction force of stars in the AD. The code is parallel and uses GPU
accelerators for the calculations of gravitational force. The integration of the equa-
tion of motion is done using the 4th order Hermite scheme. For more details see
Just et al., 2012. The φGRAPE code was used in Just et al., 2012 as well as in many
other papers on galactic nuclei and tidal disruption events (e.g. Zhong, Berczik, and
Spurzem, 2014; Zhong, Berczik, and Spurzem, 2015; Kennedy et al., 2016; Li et al.,
2017).

In order to estimate the stellar accretion rate onto the SMBH, the effects of stellar
tidal disruptions were included in the simulation. It was done in a way that if an
object crosses the accretion radius racc then it is considered to be tidally disrupted
and 100% of the mass is added to the mass of the SMBH. We used the racc as a free
numerical parameter which regulates the spatial resolution.

We use the data from the most realistic simulation where the number of stars
was set to N = 1.28× 105, the accretion radius racc = 3.0× 10−4rinf (the most real-
istic simulation of Kennedy et al. 2016, designated as 128k03r). The scale height of
the AD was set to have linear dependence on radius in the inner region (see next
subsection). We compare the data with the analogous 128k simulation without the
AD (128k03ng). The number of particles in the simulations is still much smaller than
the number of stars in a real galactic centre, so each particle represents a group of
stars. Detailed description of the scaling procedure of star–disc interactions is given
in Just et al., 2012.

We use Hénon units (also known as N-body units) throughout this chapter (Ch. 4)
unless other is specified. The total mass of the NSC as well as the gravitational con-
stant G are set to unity. We set the initial mass of the SMBH and the AD to be 10%
and 1% of the total stellar mass, respectively. The SMBH grows due to the capture
of stars while the AD remains stationary.

4.1.1 The accretion disc

Our model of the AD corresponds to an axisymmetric thin disc based on Shakura
and Sunyaev (1973) and Novikov and Thorne (1973). The gas density is given by

ρg(R, z) =
2− p

2π
√

2π

Md

hR3
d

(
R
Rd

)−p

exp
[
−βs

(
R
Rd

)s]
exp

(−z2

2h2

)
, (4.1)

where p = 3/4 is the surface density power-law corresponding to the outer region
of standard thin disc model, R is the radial distance from the SMBH, z is the vertical
distance from the disc plane, Rd = 0.22 is the radial extent of the disc (scaled with
the influence radius of the SMBH). The parameters s = 4 and βs = 0.7 are associated
with the smoothness of the outer cutoff of the disc (introduced for numerical rea-
sons) and h is the scale height. The gas in the disc is set to have Keplerian rotation
profile. The total disc mass is fixed to be Md = 0.01 and the gravity force from the
AD is neglected.
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We approximate the disc scale height in the inner region with a linear relation
h = R

Rsg
hz up to a distance Rsg ≈ 0.026 where the vertical self-gravity of the disc

becomes important. It gives the opening angle of the AD a value of 0.5◦. In the
region of a vertically self-gravitating disc, the scale height is constant h = hz. The
transition between two regions is estimated by equating the vertical component of
the spherically symmetric force from the SMBH at z = hz with the vertical self-
gravitation of a thin disc above the AD. We examined the effects of changing the
inner disc height profile on the results in Kennedy et al., 2016.

4.1.2 Stellar component and star–disc interactions

The initial conditions are generated in the following way. We place a point-mass po-
tential into a Plummer sphere (with virial radius of one Hénon unit) and evolve the
system to the stage of dynamical equilibrium t = 0.001trel (several crossing times).
After that, the influence radius of the SMBH (the enclosed radius where the total
stellar mass equals to that of the SMBH) is measured to be rinf = 0.22. The NSC
consists of equal mass stars. Then the interaction with the AD is ‘switched on’. The
total simulation time is 2 half mass relaxation times (trel).

Since we neglect the gravity of the AD, a star feels the gas as a drag force which
is given by the equation

Fdrag = −Qdπr2
?ρg(R, z) |Vrel|Vrel, (4.2)

where ρg is the local gas density (equation 4.1), r? is the stellar radius and Vrel is
the relative velocity between the star and the gas, Qd is the drag coefficient, we
use Qd = 5 (Courant and Friedrichs, 1948). We assume that stars have supersonic
motion while crossing the disc and therefore we treat the drag as a ram pressure
effect. Contribution from the dynamical friction is neglected since it is proportional
to V−2

rel while the ram pressure drag goes with V2
rel (see Ostriker 1999 and Sec. 2.2 of

Just et al. 2012).
Since a star particle represents a group of stars, we scale equation (4.2) by intro-

ducing an effective dissipative parameter,

Qtot(N) ≡ QdN
(

r?
Rd

)2

. (4.3)

This expression describes the dimensionless total dissipative cross section of N stars,
normalized to the disc area. Now, Eq. 4.2 can be rewritten as acceleration in terms
of global quantities, such as Rd, Mcl and Qtot:

ad = −Qtot
πR2

dρg

Mcl
|Vrel|Vrel, (4.4)

where Mcl is the total stellar mass. To get around the fact that the relaxation time in
the modelled system is shorter than the trel for a real galactic nucleus, we choose Qtot
in such a way that the ratio between the dissipation time-scale and the relaxation
time is conserved. Thus, given a galactic centre with Nreal stars and an effective
dissipative parameter Qtot(Nreal), the value of Qtot(Nsim) to be used in a simulation
with Nsim superparticles is

Qtot(Nsim) =
trel(Nreal)

trel(Nsim)
Qtot(Nreal). (4.5)
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We refer to Just et al., 2012 for a detailed description.
We neglect effects from stellar feedback to the disc (including crossings and

winds) and do not take into account the gravitational potential of the AD. Some
of this assumptions are discussed in Sec. 4.5, but we leave the detailed analysis for
future work.

4.2 Orbits and rates of accreted stars

In this section we briefly describe our results reported in Kennedy et al., 2016 as in
the next chapter we aim to extend this work.

When a star particle crosses the gaseous disc it feels action of the drag force
(equation 4.2) – its orbit gradually shrinks and tends to align with the disc plane;
eventually, the SMBH captures the star.

In order to recreate the plunge history of stars captured by the black hole, we
measure the orbital eccentricity at the moment of accretion. This then gives us three
possible scenarios: (1) disc capture – eccentricity is close to zero (e ∼ 0), (2) gas assisted
accretion – moderate eccentricity (e < 1) and (3) direct accretion – eccentricity is close
to one (e ∼ 1). In each of these categories a star may go through five phases: (1) scat-
tering, (2) slow decay, (3) fast decay, (4) disc migration and (5) radial infall. In the
first phase only interactions between other stars cause change in angular momen-
tum and binding energy while the disc is far away and its action is negligible. The
slow decay phase begins when the star’s orbit is scattered towards the disc so that
the star starts ‘feeling’ the drag force. The fast decay phase – as its name suggests –
features rapid orbital decay and happens when the star is almost aligned with the
disc. The star on nearly circular orbit fully aligned with the disc plane experiences
the disc migration phase until it is captured by the SMBH. The radial infall phase
is only experienced by plunge type 3 stars which do not interact with the disc and
are subject to the loss-cone mechanism. So, the defined above plunge types reflect
a star’s path to the accretion. The plunge types 2 and 3 also feature uniform distri-
bution of orbital inclinations, while plunge type 1 stars are accreted in the AD plane
(inclinations are close to zero).

As an example, we select stars from the three plunge categories and show (see
Fig. 4.1) how their semi-major axis, eccentricity and inclination change in time before
the star is accreted. Panels (a) and (b) show the disc capture with one example ac-
creted from a prograde orbit and another from a retrograde one (relative to the orbits
of gaseous disc particles). After both of them align with the disc, their orbits rapidly
become circular.

4.3 Formation of a central stellar disc

In the previous section (Sec. 4.2), we analysed statistics of orbital parameters of
accreted particles and found that the paths that they take to accretion depend on
their final eccentricities and inclinations. We identified three broad paths or plunge
types, these are (1) disc capture, (2) gas assisted accretion, and (3) direct accretion.
The plunge type 1 stars were captured by the AD and went through a disc migration
phase. Here we focus on the migration phase and examine how it shapes the inner
parts of the stellar system.

Figure 4.2 shows the cumulative distribution of inclination i and eccentricity e at
the time of accretion. The blue and red lines in the Fig. 4.2 clearly show that about
40% of all accreted particles throughout the simulation are accreted with very low
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FIGURE 4.1: “Semi-major axis, eccentricity and inclination of a few
sample orbits for the three types described in Section 4.2. The semi-
major axis is plotted in red when the orbits is prograde (i < 90◦) and
green when retrograde. Panel (a) shows a disc captured star with
eacc ∼ 0 and low inclination prograde orbit, (b) shows a star captured
into the disc on a retrograde orbit, (c) shows a gas assisted accretion
eacc < 1 where the inclination distribution for those orbits is uniform,
(d) shows a direct accretion onto the SMBH with eacc ∼ 1 and also
from a uniform inclination distribution. Black arrows indicate where
the decay phase begins (see text). Panel (d) shows a direct capture,
and thus has no decay phase; the gaps in the semi-major axis occur
when the orbit is instantaneously unbound”. Source: Kennedy et al.,

2016
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FIGURE 4.2: Cumulative distribution of the orbital parameters of all
accreted particles at the moment of accretion. The red line represents
eccentricity distribution and corresponds to the bottom X-axis. The
blue line represents inclination angle distribution and corresponds to

the top X-axis.

inclinations and eccentricities meaning the accretion through the AD (plunge type
1). As we will show, these particles were accreted only after several orbital times of
residency inside the disc. While on the migration phase, the particles form a nuclear
stellar disc (NSD) as we show later. Moreover, the stellar disc remains stationary
during the simulation and is supported by a constant inflow of stars from the outer
parts of the NSC. In the following sections, we examine the properties of the NSD
and the stellar migration time-scale.

4.3.1 Spatial distribution of the NSD particles

The initial mass profile as well as the mass–radius dependence for the models with
and without the AD at t = trel are presented in Fig. 4.3. The cumulative mass
profile of the NSC at 1 and 2 relaxation time reveals the mass concentration in the
inner part of the cluster, the profile remains very similar also at 2 relaxation times.
Although the stellar accretion from disc-captured particles occurs, we see no change
in the mass profile after another relaxation time, that means that the stellar disc is
continuously supplied from the NSC. The mass of the NSD stays the same in order
of magnitude and equals to MNSD ≈ 7.0× 10−4 at the end of the simulation.

Figure 5.4 shows spatial density distribution of the NSC. As we can see from the
Fig. 5.4 the initial Plummer sphere (looks like a triangle in the logarithmic z vs R
plane) is slightly distorted inwards due to the presence of a SMBH, while the AD
leads to the formation of a ‘tail’ of stars in the innermost part of the cluster with
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FIGURE 4.3: Evolution of the NSC. Cumulative mass profiles. Blue
and cyan lines represent the initial model and model without the AD
at the end of simulation, red and green lines show NSC mass profiles
at 1 and 2 trel respectively. The black dashed line is the cumulative

mass of the stellar disc.

|z| � R. The ‘tail’ can be clearly visualized as a disc of stars (Fig. 4.5 ). We call the
disc of stars the nuclear stellar disc.

In order to investigate the properties of the NSD particles and the NSD as a
whole, we have to define the criterion for a stellar disc particle. The ‘tail’ in Fig.
5.4 panel (c) gives us constrains on vertical and radial distances of the NSD parti-
cles. Comparing panels (b) and (c) of the same figure we set the condition: R < 10−2

& z < 10−3. Further on we require e < 0.5 in order to remove transient particles and
since the orbital inclination angle is derived as cos i = Lz

|L| , the condition cos i > 0.0
excludes the counter-rotating stars from the NSD. Putting all together we define the
NSD particles as particles that satisfy the following criteria:

R < 10−2; z < 10−3;
cos(i) > 0.0; e < 0.5. (4.6)

where R is the projected distance to SMBH.
We ensure that these criteria select plunge type 1 stars by plotting the distribution

of selected NSD particles in eccentricity–inclination plane when they still live in the
stellar disc (t = 1.0trel) and when they were accreted onto the SMBH (t = tacc). Fig.
4.6 shows that all these particles were accreted with very low values of eccentricity
and orbital inclination. The size of the NSD is ≈ 3 times smaller than the effective
radius of the AD (Reff in Kennedy et al. 2016; a characteristic location in the AD
where most stars begin their plunge).

Figure 4.7 shows that the inclination declines approximately proportional to the
size of the orbit as expected due to the friction force in a Kepler rotating AD. The
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(a) t = 0.001trel

(b) t = 2trel, without AD

(c) t = 2trel, with AD

FIGURE 4.4: Density distribution of NSC. The thick black line repre-
sents the accretion radius racc and the thin line stands for the accretion
disc density ρ = 1. The colour-code indicates stellar volume density.
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FIGURE 4.5: Spatial distribution of stars inside r = 0.05× Rd in YZ
plane at time t = 1.0trel. At the centre a disc-like structure formed

due to star–disc interactions.
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FIGURE 4.6: Distribution of the disc particles in eccentricity–
inclination plane at the tcur = 1.0trel (red circles). The black crosses
are the eccentricity and inclination values of those stars at their time

of accretion.

FIGURE 4.7: Inclination angles of all stars depending on a distance
from SMBH coloured by the stellar density. Blue dashed line indicates

the opening angle of the AD.
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FIGURE 4.8: Surface density of the NSD. Red dotted line represents
all NSC stars, the blue one shows only the stars that belong to NSD.
Dashed red and black vertical lines represent the accretion radius and

the influence radius respectively.

surface number density of the NSD at t = trel is displayed in Fig. 4.8. The figure
shows strong overdensity in the inner region (r < 10−3) of the NSC. The surface
density features a steep power law profile with γ = 2.3.

4.3.2 Lifetime and evolution of the NSD.

A look at some properties of the NSD stars at some arbitrary current time tcur and the
time left for the accretion gives details on how and how fast these properties change
during the migration phase. Fig 4.9 shows time left for accretion against the orbital
parameters of the NSD particles at time tcur = trel and demonstrates the decay of
eccentricities and inclinations in the migration phase. All the NSD particles accrete
in a fraction of the relaxation time. Figure 4.10 shows the same distribution as the
bottom panel of Fig. 5.4, but colour coded by the time left to accretion for all stars in
the NSC. It is clearly seen that there is an inflow of the particles towards the SMBH
at R < 10−3.
In order to compute the time a star spends inside the AD during the plunge, we track
it from the moment it is captured (equation 4.6 is fulfilled) and follow the stellar orbit
until it is gone inside the accretion radius (Fig. 4.11). We tracked all NSD particles
from the beginning of the simulation up to t = 1.8trel and found that the median time
(between capture and accretion) equals to tmigr = (0.026± 0.002)trel and represents
the fact that 50% of all the NSD stars spend in the disc no more than tmigr. On the
other hand it represents the renewal time of the NSD as we show below.
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Indeed, the cumulative number of stars captured by the AD is a linear function
of time (see Fig. 4.12) and its derivative represents the total stellar influx:

fNSD ≡
dNcap

dt
= 3.649± 0.001 (4.7)

where Ncap is the cumulative number of stars captured by the NSD (but not necessar-
ily the number of stars actually residing in the NSD, as stars eventually are accreted
onto the SMBH) and fNSD is the stellar flux, or the capture rate by the AD which
equals ' 3.65 particles per N-body time unit (this is the straight line fit in Fig. 4.12).

The number of stars resident in the NSD is roughly constant in time and its aver-
age value is 〈NNSD〉 = 81.5 with standard deviation of 8.7. From this number and the
influx rate, we can calculate a characteristic time-scale in which the entire resident
stellar population of the NSD is replaced. We define this time-scale as the renewal
time, which is then:

trenew =
〈NNSD〉

fNSD
= 22± 2 (4.8)

As expected, trenew is ' 2.5% of the half-mass relaxation time, and equals the mi-
gration time calculated previously tmigr. This time-scale is also associated with the
formation time of the NSD.

Comparison of the migration time with the stellar dissipation time tdiss = Ekin/Ėsd
(see Eq.(16) of Just et al. 2012), where Ekin is the kinetic energy of all stars and ˙Esd is
the total energy dissipation rate due to the AD, shows that tdiss exceeds tmigr by two
orders of magnitude. On the other hand, the viscous time scale of the AD

τ =

(
h

Rd

)−2 1
αΩ

(4.9)

can be shorter or longer than the effective migration time and depends on the vis-
cosity parameter α (Fig. 4.13). Here Ω is Keplerian orbital frequency.

The total number of accreted stars onto the SMBH is greater than total number of
stars captured by the AD because there is also a contribution from higher eccentric-
ity orbits (plunge types 2 and 3 from Kennedy et al. 2016). Fig. 4.14 shows long-term
origin of accreted stars in the interval 1 - 2 trel including all plunge types. We clearly
see that ∼50% of stars accreted quickly are captured by the AD. On the other hand a
significant fraction originate from r = 0.1− 1 and at first scattered into the loss cone
before being accreted or captured. The change in the shapes of the curves shows the
consistency with the derived value of the effective migration time.

We note that a closer look at the spatial distribution of the stellar disc particles
reveals small precession of the disc and warps. But the dynamics of individual NSD
particles relative to each other is complex and lies beyond the scope of this work.

4.4 Scaling to real galactic centres

For calibration to real systems, the value of Qtot have to be chosen accordingly (all
other parameters in our simulations are independent of N). For example, when
scaling the results of the simulation with N = 1.28× 105 to M87 using Eq. 4.3, Eq. 4.5
and data from Table 4.1, we get the values of Qtot(1.28 × 105) = 5.42 × 10−4 and
Qtot(6.6× 1010) = 2.1× 10−9. Thus, the value is artificially enlarged by 5 orders of
magnitude setting the dissipation and relaxation time-scales in correspondence. The
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FIGURE 4.9: The time intervals left to the accretion as function of the
inclination (lower horizontal axis) and eccentricity (upper horizontal

axis) at t = 1.0trel of the disc particles.

FIGURE 4.10: Spatial distribution of all stars in the NSC at t = 1.0trel
coloured by the time left for the accretion. Thick and thin black lines

are the same as in Fig. 5.4
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FIGURE 4.11: Cumulative histogram of the time intervals from the
moment of capture by the AD until the accretion to the SMBH.
Dashed vertical lines represent median and mean time correspond-

ingly.

FIGURE 4.12: Cumulative number of new captured particles by the
AD. The dashed line shows linear fit Ncap = kt with k = 3.65
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FIGURE 4.13: Migration time as a function of distance from the SMBH
at which the stars ‘enter’ the NSD. The red line represents the AD
viscous time-scale with α = 0.2, the dashed line shows the effective

migration time .

TABLE 4.1: Predicted nuclear stellar disc properties for a sample of
galactic nuclei.

Object MSMBH rinf trel MNSD RNSD Tmigr
(M�) (pc) (Gyr) (M�) (pc) (Gyr)

M 87 6.6× 109 291 6× 105 4.6× 107 14.55 18000
NGC 3115 9.6× 108 78 3.4× 104 6.72× 106 3.9 2040
NGC 4291 3.2× 108 24 3400 2.24× 106 1.2 729
M 31 1.5× 108 25 2690 1.05× 106 1.25 238
NGC 4486A 1.3× 107 4.5 68.8 9.1× 104 0.225 16.7
MW 4.0× 106 1.4 7.2 2.8× 104 0.07 5.35
M 32 3.0× 106 2.3 12.9 2.1× 104 0.115 2.76

Notes. We extrapolate results to this sample of galactic nuclei (adopted from Just
et al. 2012 and Kennedy et al. 2016). Columns 1–4 are the object’s name, SMBH
mass, radius of influence (calculated from the stellar velocity dispersion) and
half-mass relaxation time, respectively. Column 5 gives the mass of the nuclear
stellar disc; Column 6 gives the maximum radial size of the NSD; Column 7 gives
upper limits of the ‘effective’ migration time of a star through the AD to the SMBH.
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scaling for arbitrary N is given by (Eq. 11 of Paper II) :

Qtot(N) ≈ 5.42 ln(0.4N)/N (4.10)

All our simulations are done according to this equation, meaning that additionally
to the scaling of mass and size of the system, we also assume that the dissipation
time-scale is similar to the relaxation time:

η = tdiss/trel (4.11)

(see Eq. 16 and Fig. 6 of Paper I). Since the accretion rate scales with the friction
force ad ∼ Qtotρ ∼ QtotMd and time-scales scale with tdiss ∼ 1/ad ∼ 1/(QtotMd),
for the Galactic Centre with given Md = 0.1MSMBH the correct Qtot would be ∼ 20
times smaller leading to a 20 times smaller accretion rate and 20 times longer time to
form the NSD. If the physical Qd = 5 per star is enhanced by dynamical friction by
some factor 2-1000 dependent on the velocity and sound speed, then rough estimate
gives that the correct value for Qtot in the simulation would be larger by the same
factor. The mass of the NSD depends on the feeding by the friction force and the
loss of stars by friction. If the scatter by 2-body relaxation is not important then the
stationary stellar disc would have the same mass. If 2-body relaxation determines
the feeding time-scale then the NSD mass would be proportional to η and would be
larger by a factor of 20 in the Galactic Centre.

In a real galactic nucleus, the total number of stars Nreal is greater than the num-
ber of particles in our simulation, Nsim. So in the simulation, one particle represents
Nscale = Nreal/Nsim stars. Given the core velocity dispersion σ and mass of the
SMBH (can be taken for example from Gültekin et al. 2009), one can calculate the in-
fluence radius rinf = GMSMBH/σ2 and the relaxation time (given by Eq. 8 of Kennedy
et al. 2016), taking into account that the half-mass radius equals rhm = 3rinf. The time
and length scalings are done in a way that the relaxation time of the real system is
the same as the relaxation time of the modelled system, as well as the influence ra-
dius of the SMBH in the real system is the same as in the modelled system (detailed
description of the scaling procedure is given in Just et al. (2012) and Kennedy et al.
(2016)). Tscale = treal

rel /tsim
rel and Rscale = rreal

inf /rsim
inf .

The capture rate by the AD for the Milky Way is thus (see Table 4.1):

dNcap

dt
= 3.65× Nscale

Tscale
≈ 140[stars×Myr−1], (4.12)

In other words, after 100 Myr of evolution, we expect 14000 stars to be trapped by
hypothetical gaseous disc, while most of them would be still in the migration phase.
The ‘effective’ migration time for the MW equals to 2.76 Gyr. At t = trel, the mass
of the NSD is 0.07% of the initial total stellar mass of the NSC, converting to solar
masses we get MNSD ≈ 3.0× 104M�. Note that this is an order of magnitude esti-
mate, whereas in the real system due to mass segregation we expect more massive
stars to populate the NSD. A detailed realistic simulation is our long-term goal. The
mass of the NSD is of the order of magnitude the observed mass of the young stellar
disc(s) in the MW ' 104M� (Bartko et al., 2010), but the NSD stars should be older
because of the long migration time.

Table 4.1 gives the mass and size of the NSD as well as the migration time-scale,
in physical units scaled according to the SMBH mass and its influence radius in
nuclei of several nearby galaxies (adopted from Just et al. 2012). This time-scales
have to be treated as upper limits for the formation of the NSD. If the time is boosted
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FIGURE 4.14: The distribution the time intervals left to the accretion
at t = 1.0 trel of all particles captured in time interval from 1.0 to

2.0trel.

by the dynamical friction, we can expect the presence of the NSD in lower mass
systems while we do not expect stationary discs to form in massive galactic nuclei.

The stellar migration time could be boosted by taking into account the pressure
gradient of the AD, but this effect is very small and only relevant for the innermost
particles.

4.5 Summary and discussion

In this study we present the results from long-term simulations of a dense nuclear
star cluster surrounding a star-accreting SMBH and interacting with a central gaseous
disc which acts as a drag force and dissipates stellar kinetic energy. First simulations
of this kind were performed and described in Just et al., 2012, improved in Kennedy
et al., 2016. We examined the effect of star–disc interactions on the inner structure
of the compact stellar cluster by means of direct N-body simulations. We found
that the stars form a nuclear stellar disc before being absorbed or disrupted by the
SMBH. The AD leads to formation of a stellar disc in very close vicinity of the SMBH
with mass of MNSD ≈ 0.007MSMBH. But the AD lifetime may be too short to form
the NSD. We derived the effective stellar migration time through the AD towards
the SMBH. Scaling the results to the Milky Way galaxy gives the mass of the NSD
MNSD ≈ 3.0× 104M� which is the same by order of magnitude as the observed disc
of young massive stars in the MW, but note that the NSD formed in our simulations
consists of stars originating from the old population of the spherical NSC. The out-
ermost stars found in our NSD are located at a distance of 0.07 pc from the SMBH.
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The observed young Galactic Centre stellar disc resides between 0.04 to 0.5 pc. We
think that an NSD consisting of old stars, as found in our models, could coexist with
the observed stellar disc, but the old stars are just too faint to be detected. The sec-
ond generation instrument for the Very Large Telescope Interferometer GRAVITY
(Eisenhauer et al., 2011) or James Webb Space Telescope may be able to detect some
of the NSD stars. Assuming that the young stars formed from the same AD (disc
fragmentation) which created the NSD (by trapping stars), a detection of a disc of
old stars (NSD) would be a strong evidence for past activity and the former presence
of an AGN disc and may give some hints on the efficiency of dynamical friction in
the gaseous medium near the SMBH.

Note that our results are nicely consistent with recent ideas about the non-stationary
history of our own Galactic Centre, with sporadic AGN activity. The constant flow
of gas to galactic nuclei inevitably produces an accumulation of gas, the formation
of a central disc. This will trigger both a central AGN flare-up activity as well as a
central starburst after which the gaseous disc has disappeared (e.g. Novak, Ostriker,
and Ciotti, 2012). A huge Fermi bubble has been detected on both sides of the Galac-
tic Centre (Bordoloi et al., 2017), which could be a remnant of an AGN evolutionary
phase of our own galaxy several Myr ago.

The NSD is located inside the effective radius of the AD. As we have shown
in Kennedy et al., 2016, it equals to Reff = 0.032 leading to an enclosed mass of
Md(< Reff) = 0.09Md (note a typo of 42% in Sec. 3.2 of Kennedy et al. 2016). That
means that if we would cut the disc at Reff, the AD mass would be ' 1% of the
MSMBH with essentially the same effect. If we reduce the surface density, the en-
closed mass and the force would decrease proportionally leading to a smaller ac-
cretion rate. But the stellar disc mass would be similar, because it would just take
longer to pass this phase. As a consequence the formation time would be larger. On
the other hand, Just et al., 2012 have shown (see their Fig. 1) that dynamical fric-
tion would be very effective if the relative velocity falls below the escape speed at
the stellar surface (' 600 km s−1). The friction force would be orders of magnitude
larger leading to the same accretion rate if we reduce the surface density of the AD
accordingly. Inside Reff the flattening of the potential is already a factor of 10 smaller
and with the smaller surface density combined with dynamical friction, it would be
completely negligible. The outer radius of the AD is chosen to be equal to the in-
fluence radius of the SMBH in the sense of Mcl(< Rd) = MSMBH, therefore the AD
mass is 10% of the MSMBH and 5% of the MSMBH + Mcl at Rd. The correction to the
rotation curve would be dominated by self-gravity of the cluster.

As was described in Sec.4.1, the contribution from the dynamical friction (in
other words gravitational focusing) was ignored in this study. But in case of sub-
sonic motion the dissipation force may be enhanced leading to faster formation time
of the NSD. This enhancement can be taken into account by replacing the drag coef-
ficient Qd to the form of Qd + (vesc/Vrel)

4 ln Λ, where vesc is the escape velocity from
stellar surface, Vrel is the relative velocity of a star in the AD and ln Λ ' 10− 20 is
Coulomb logarithm. Given that for a SMBH mass of ' 108M�, typical relative ve-
locities are of the order of 1000 km s−1 at distanced below 1pc, the dynamical friction
is ignored. But it can be sufficient for compact objects since the escape velocity from
their surface is high. The supersonic motion of stars through the gaseous medium is
an active field of research in astrophysics e.g. Thun et al., 2016 and we will incorpo-
rate new results from this field to our simulations, such as Qd as a function of ρg and
Vrel.

It is more likely that NSDs may reside in low mass galactic nuclei (with MSMBH '
106M�). We assumed long-lived ADs (several hundred Myr) but in reality, the AD
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may be short-lived and the NSD would not form completely within the lifetime of
the AD. The observational estimates of AGN lifetime give wide range of values. For
example, the AGN fraction in SDSS data implies long lifetimes of tAGN > 108yr
(Miller et al., 2003), but Schawinski et al. (2015) argue that the SMBH growth pe-
riod consists of many short episodes of activity with tAGN ' 105yr. The estimates
based on the effects of quasar proximity on the surrounding gas (studying the ab-
sorption lines) yield the AGN lifetimes of order of 106 − 107 years (e.g. Schirber,
Miralda-Escudé, and McDonald, 2004; Syphers and Shull, 2014; Segers et al., 2017,
and references therein). It is likely that an NSD forms even in the case of a short
active phase, if AGN activity repeats and a gaseous disc forms in the same orienta-
tion in each such short episode (Schawinski et al., 2015). Our results show that for
shorter disc lifetimes (see Fig. 4.12) we will get a NSD, consisting of smaller mass.
We find that after around 109 years a stationary state is established, if the disc lives
that long.

If the AD disappears when the NSD is already formed then the latter will sur-
vive for a fraction of relaxation time. Although the orbital orientations of stars in
NSD may be randomised by resonant relaxation (e.g. Hopman and Alexander, 2006),
this mechanism was proposed to explain random orbital orientations of the Galactic
Centre S-stars (e.g. Perets et al., 2009; Antonini and Merritt, 2013). But whether the
resonant relaxation is really dominant in real systems, with mass spectrum, small
deviations from spherical symmetry (like our disc potential) are highly controver-
sial.

Miralda-Escudé and Kollmeier (2005) argue that stars captured by the accretion
disc are eventually destroyed and their matter diffused within the AD. This might
happen in the very inner region of the galactic nucleus where contact stellar colli-
sions play important role, but our simulations do not resolve to that extent and the
NSD forms further outside. The evolved and more massive stars have lower surface
densities and their interaction with the AD can strip outer layers of the crossing star
resulting in shallower stellar density profile (Amaro-Seoane and Chen, 2014; Kieffer
and Bogdanović, 2016).

The star–disc interactions in AGN with a stellar mass spectrum and stellar evolu-
tion are planned to be examined in future work. In particular, formation, evolution
and subsequent merging of binary black holes in the gaseous disc are of great in-
terest. While residing in the AD, black holes can accrete material and merge with
masses comparable to those detected by LIGO (Abbott et al., 2016). Bartos et al.,
2017 and McKernan et al., 2017 used semi-analytic approaches to calculate the de-
tection rate of such events by LIGO, but their estimates span three orders of magni-
tude (McKernan et al., 2017). Haggard et al. (2010) found that 0.16%± 0.06% of all
galaxies in the local universe are active (some nearby active galaxies are NGC4051 at
' 10 Mpc and NGC4151 at ' 14 Mpc; Bentz and Katz 2015), implying a very large
number of AGN ADs within the LIGO sensitivity volume. High resolution direct
N-body simulations including realistic physics of gaseous ADs may set much better
constrains on this problem. Exploring effects of stellar crossing on the gaseous disc
requires detailed SPH or hydrodynamical simulations of the AD including all rele-
vant physics. The fully realistic direct N-body simulation of AGNs remains as our
long-term goal.





49

Chapter 5

A million–body simulation of the
Galactic centre

The results presented in this chapter are published in the peer-reviewed article Pana-
marev, Taras; Just, Andreas; Spurzem, Rainer; Berczik, Peter; Wang, Long; Arca
Sedda, Manuel “Direct N-body simulation of the Galactic centre”, Monthly Notices
of the Royal Astronomical Society, Volume 484, Issue 3, p.3279-3290. T. Panamarev
improved the code to include relevant physics,performed the simulation, analyzed
the output data and wrote the text. The co-authors contributed by comments, ideas,
discussion with the referee, support with the code development and supervision.

5.1 Method

We model the NSC of the MW galaxy using the direct N-body fully parallel code
NBODY6++GPU (Wang et al., 2015). The code is a multi-node massively parallel ex-
tension of NBODY6 (Aarseth, 2003) and NBODY6GPU (Nitadori and Aarseth, 2012)
and also features accurate treatment of binary stars and close encounters using the
algorithm developed by Kustaanheimo and Stiefel, 1965 and the chain regularization
(Mikkola and Aarseth, 1993). We refer to Wang et al. (2015) for a detailed description
of the numerical features and differences with NBODY6/NBODY6GPU.

We approximate the NSC with N ' 106 particles. Although this is the largest
number of particles ever used in the direct N-body modelling of the GC so far, the
real number of stars in the MW NSC is up to two orders higher. The simulation takes
into account stellar evolution as well as the formation and evolution of binary stars.
We start the simulation after gas removal and after the onset of virial equilibrium.
Moreover, we include in our model a population of initial binaries, being 5% of
the total particles number. Our choice is compatible with observational evidences
suggesting that globular clusters dense cores are expected to host a low fraction of
binaries (Bellazzini et al., 2002). As shown by Ivanova et al., 2005 via numerical
models, even assuming a 100% fraction of initial binaries, a typical globular cluster
would retain only 5-10 per cent of them at present-day. In NSCs, this fraction can
be even lower, due to the higher velocity dispersion that tend to enhance binary
disruption via close encounters (e.g. Hopman, 2009). Many of the initial binaries are
wide and destroyed in the first few dynamical times by few-body interactions. From
Sec. 5.4 and Fig. 5.9 we conclude that the binary fraction of 5% on average is quite
stable with time; therefore we think that choosing initial binary fractions larger or
even much larger than 5% will not significantly affect the results for the long term
evolution.

The SMBH is included as an external point-mass potential with initial mass of
10% of the total stellar mass of the system (given the initial NSC mass of 4.0 ×
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107M�). The SMBH can grow via stars accretion if a star’s orbit intersect the re-
gion encompassed by the accretion radius, racc. In our model, we assume racc =
4.2× 10−4 pc = 103RS, being RS the SMBH’s Schwarzschild radius. In the case of an
SMBH with mass MSMBH = 4.3× 106 M�, a Sun-like star undergoes disruption at
a distance larger than the Schwarzschild radius, and it can appear observationally
as a TDE. Compact remnants (WDs, BHs and NSs) disruption radius falls inside RS
and their accretion onto the SMBH is likely not associated to any electromagnetic
counterpart. On the other hand, compact remnants can tightly bind to the SMBH
and undergo slow inspiral through low-frequency GWs emission. These so-called
EMRIs represent a class of promising sources to be detected with space-borne de-
tectors like LISA (e.g. Amaro-Seoane et al., 2007), or TianQin (Luo et al., 2016a). We
note that due to the limit of resolution in the number of particles we increase rt for
all stars so that it equals to racc

1. In this simulation we analyse number counts for
extreme mass ratio inspirals (accretion of compact objects onto the SMBH) as well as
the TDEs by scaling rt and the number of events to real values as shown in Sec. 5.3.1.

5.1.1 Initial conditions

To initialise our model, we construct a Plummer, 1911 equilibrium model immersed
in a point-mass external potential (see McMillan and Dehnen 2007), assuming N =
950k single stars and Nb = 50k binary stars. The point-mass potential represents the
SMBH which is fixed at the origin. We let the Plummer model adjust to the presence
of the central potential and we start the modelling after this adjustment. Since this
paper focuses on the inner part of the NSC, the effects from bulge, Galactic disc and
dark matter halo are ignored.

We assumed a Kroupa, 2001 initial mass function, selecting masses in the range
0.08 − 100 M�. The initial binaries are paired with mass ratios f (q) ∝ q−0.4 mo-
tivated by observed values of the Scorpios OB2 association (Kouwenhoven et al.,
2007), log-uniform distribution in semi-major axis with minimum and maximum
values of 0.005 and 50 astronomical units2 (AU) and thermal eccentricity distribu-
tion: f (e) = 2e.

Single and binary stars are evolved using the stellar evolution packages SSE
(Hurley, Pols, and Tout, 2000) and BSE (Hurley, Pols, and Tout, 2002). We assume
that NSs at formation are subjected to a natal kick, whose amplitude is drawn ac-
cording to a Maxwellian distribution with 1D velocity dispersion of σ = 265 km s−1

(Hobbs et al., 2005). For BHs, the kick is calculated following the fallback prescrip-
tion (see Belczynski, Kalogera, and Bulik 2002 for further details). The population of
WDs, instead, is assumed to receive no kick at formation. The initial parameters are
chosen to be as close as possible to those of the DRAGON simulations (Wang et al.,
2016).

The star formation in the MW NSC is still ongoing and has complex history (see
e.g. Mapelli and Gualandris 2016 for a recent review), but for simplicity we represent
the NSC by a single stellar population of solar metallicity stars.

1Note that the scheme we adopt for modelling stellar accretion leads the SMBH to consume more
stars than in reality.

2Since we want to cover the full possible range of binary parameters, some of them are overlapping
at the initial moment. But they are merged at the next time-step, their number is very small and they
do not affect the results discussed in this paper.
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5.1.2 Scaling

In order to convert the original scale-free simulation of 106 particles in N-body
units to the real system in physical units, we assume the MW NSC mass to be
MNSC = 4.0× 107M� = 10MSMBH. The Kroupa, 2001 initial mass function gives
the simulated mass of Mtot = 6.18× 105M�, thus one particle in the simulation rep-
resents a group of 65 stars. Therefore, stellar number counts are multiplied by 65 to
be converted into real values.

For the radial scaling, we measure the influence radius of the SMBH at t = 0 to
be 0.66 N-body units and equate it to the value of the influence radius for the MW
which is calculated using the central velocity dispersion taken from Gültekin et al.,
2009, rinf = GMSMBH/σ2 = 1.4 pc. Assuming that half-mass radius rhm = 3rinf, we
can calculate the half-mass relaxation time (Spitzer, 1987)

trel =
0.14N

ln(0.4N)

(
r3

hm
GMtot

)1/2

(5.1)

for the MW NSC in physical units (' 11 Gyr) and for the model in N-body units
and scale the time accordingly. By equating the relaxation time of the model with
the relaxation time of the real system we can set the stellar evolution time in corre-
spondence with the dynamical time of the system by

t′rel
t′stev

=
trel

tstev
, (5.2)

where the prime denotes the modelled system and tstev can be any stellar evolution
time-scale.

The simulation was evolved up to 5.5 Gyr, which corresponds to a half of the ini-
tial half-mass relaxation time, but covers a few relaxation times inside the influence
radius of the SMBH.

All values discussed below in the paper (densities, number counts, etc.) are given
in physical units (except stated otherwise) for the realistic MW NSC.

5.2 General evolution of the system

Throughout the simulation, the NSC lost roughly half of its initial mass mostly ow-
ing to stellar evolution with small contribution from the accretion of stars onto the
SMBH (see Sec.5.3). The final mass of the NSC is consistent with its present-day
mass inferred from observations (Schödel et al., 2014).

The NSC overall evolution can be monitored through the time evolution of the
Lagrangian radii, which are the radii containing a certain fraction of the total stellar
mass. As seen in Fig. 5.1, the stellar system experiences an initial adjustment to the
SMBH potential, explained by the fact that the binaries are not taken into account for
the generation of initial conditions. Also, there is a strong mass-loss rate during the
first tens of Myr. Overall, the expansion of the NSC is driven by the stellar evolution
mass-loss (the magenta line in Fig. 5.1 clearly shows the expansion), but the Galactic
bulge would keep the outer Lagrange radii at roughly a constant value. The small
expansion of the inner Lagrange radius (0.1%) is driven by the accretion of stars onto
the SMBH.

The time evolution of the average stellar mass, in Lagrangian shells, reveals mass
segregation, as shown in Fig. 5.2. After all the heavy stars lost most of their mass (∼
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300 Myr), the mass segregation overtakes the time evolution of the average masses
in Lagrangian shells. After ∼ 3 Gyr of evolution, a quasi-steady state is established
for the innermost regions. The total number of stars in terms of different stellar
evolution components3 and their properties are described in subsequent sections
and summarized in Table 5.1.

5.2.1 Density profiles

Typically the 3D stellar density (as well as the surface density) is described by a
power law of the form ρ(r) ∝ rγ, where r is the distance from the SMBH. For the
case of equal mass solar type stars the slope becomes γ = −1.75 inside the influence
radius of the SMBH (Bahcall and Wolf, 1976). For the case of a mass spectrum the
dominant component obtains the -1.75 slope (Bahcall and Wolf, 1977).

In Fig. 5.3 we present 3D stellar density profiles for various stellar types. In
order to get a better accuracy, we measured the density profile power-law slopes for
10 snapshots around t = 5 Gyr and averaged the results. Due to the low particle
number in the inner part, we required at least 3 particles for the calculation of the
density. Stellar mass BHs have the steepest slope of γ = −1.72 ± 0.04 while the
low mass and high mass main sequence (MS) stars are characterized by a shallower
slope, being γ = −0.87± 0.01 and γ = −0.96± 0.02, respectively, calculated at 5 Gyr.
The slopes are measured inside the SMBH influence radius. White dwarfs (WDs)
have a similar slope (γ = −1.00± 0.02), but red giants (RGs) are slightly steeper with
γ = −1.22± 0.12. Comparison with BAS2018 (see their Fig. 2) yields very similar
slopes for the giants, although, for the upper and lower MS stars their simulations
show steeper slopes. In principle, the results are consistent with each other since
BAS2018 use slightly different definitions for lower and upper MS stars, and they
show the results at t = 13 Gyr. Another point is that BAS2018 have exponentially
declining star formation rate, they implement it by adding new stars every Gyr. The
power law slope for the BHs is remarkably consistent with the analytical prediction
of Bahcall and Wolf (1977) and with a recent study based on Fokker-Planck approach
(Vasiliev, 2017). The cusp is already formed at t < 2 Gyr, less than one NSC half-
mass relaxation time. However, as shown by Amaro-Seoane and Preto (2011), the
cusp regrowth time is 1/4 of the relaxation time, thus our results are consistent with
the assumed initial half-mass relaxation time.

Due to stellar mass-loss the influence radius of the SMBH expanded from 1.4 to
2.8 pc and we present the linear fitting for the density slopes for the region r < 2.8
pc as well (see columns 4-5 of Table 5.1). The power-law indices for the influence
radius at 5 Gyr are more consistent with the strong mass segregation solution, but
are still shallower than the values proposed by Alexander and Hopman, 2009 and
Preto and Amaro-Seoane, 2010. They claimed that in the case when the number of
lower mass objects (stars with masses up to 1M�) is much higher than that of heavy
objects (stellar BHs with masses of 10M�) the heavy objects obtain a power-law
density slope γ of -11/4 while the light ones have γ = −3/2. They parametrized
the solution by ∆ = Nh M2

h/(Nl M2
l )4/(3 + Mh/Ml), where N and M denote the

numbers and masses of light and heavy objects. In our simulation the value of ∆
approaches zero (∆ ∼ 5× 10−8) meaning that we are in the strong mass segregation
regime, although the density slopes in our simulation are shallower than predictions.

3The stellar types are defined as in Hurley, Pols, and Tout, 2000, but for simplicity we combine
different types of RGs in one stellar type.
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As seen in Fig. 5.3, low-mass MS stars dominate at r > 0.1 pc and low-number
statistics at smaller radii does not allow us to study the details of stellar density
distribution there. We leave this analysis for future work.

5.2.2 Stellar mass black holes and other compact objects

Compact objects may play an important role in the evolution of the NSC. Fig. 5.4
shows the time evolution of compact objects divided by type: carbon-oxygen white
dwarfs (COWD), oxygen-neon white dwarfs (ONeWD), NSs and BHs. After 5 Gyr,
the population of COWDs is still growing due to stellar evolution, while the forma-
tion of ONeWDs already ceased after 100 Myr, although ∼ 1.4× 105 (∼ 1.3× 105) of
them are still retained at 2 (5) Gyr. While WDs represent still a noticeable population
after 5 Gyr, almost all the NSs are ejected, due to the high natal kick received con-
sequently to supernova explosions. We have to note that in a real galactic nucleus
the NSs may be still bound to the system under the influence of the potential from
the galactic bulge and dark matter halo, that becomes more important at the outer
boundaries of the NSC. Fig. 5.5 shows the normalized distribution of velocities for
the escaped NSs and BHs calculated at 100 pc. Assuming that the MW bulge poten-
tial is reasonably represented by a standard Plummer sphere Φ = −GMtot/

√
r2 + b2

with total mass Mtot = 2.0 × 1010M� (Valenti et al., 2016) and the scale length
b = 350 pc (Dauphole and Colin, 1995), we found that ∼ 60% of escaped NSs have
velocities lower than the bulge escape velocity calculated at 100 pc. This suggests
that as many as 8× 105 NSs might be still wandering in the galactic bulge, and pos-
sibly can come back to the NSC. For the stellar-mass BH population the situation is
different in a way that their kick velocity depends on the fallback factor (Belczynski,
Kalogera, and Bulik, 2002). This explains the initial peak in the number of stellar
BHs (dash-dotted line of Fig. 5.4): more than half of them escaped but after that the
number of BHs declines slowly and we expect ∼ 2.2× 104 (∼ 1.8× 104) stellar-mass
BHs after 2 (5) Gyr. The black line in Fig. 5.5 shows that ' 95% of all escaped BHs
would be still bound to the system, increasing their total number.

Fig. 5.6 shows the number of stellar-mass BHs in the inner part of the NSC as a
function of time. Since the BHs are the heaviest objects in the NSC, they experience
the strongest mass segregation. The number of BHs in the inner 0.5 and 0.3 pc in-
creased significantly over time. We expect ∼ 2000 and ∼ 1000 BHs inside central 0.5
and 0.3 pc respectively and ∼ 6000 inside the initial influence radius of the SMBH
(1.4 pc) at 5 Gyr. Having in mind Fig. 5.5, we note that the numbers of BHs above
have to be treated as lower limits.

5.3 The supermassive black hole

Close stellar passages around the SMBH may result either in the star disruption, a
phenomenon called TDE, or in its gravitational wave (GW) induced inspiral/plunge.
In the latter case, the tight SMBH-star binary evolve mostly through GW emission,
possibly resulting in a so-called extreme mass ratio inspiral (EMRI).

In this section, we try to quantify the amount of TDEs and EMRIs expected to
form over the whole NSC lifetime.
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TABLE 5.1: Properties of different stellar types at t = 5 Gyr.

Stellar type Ntot <m> γ(r < 1.4pc) γ(r < 2.8pc) <rt> Ṅacc ṄEMRI
(M�) pc (Gyr−1) (Gyr−1)

Low-mass main sequence 5.0× 107 0.25 −0.87± 0.01 −1.11± 0.03 1.5× 10−6 3278 -
Main sequence 4.3× 106 0.92 −0.96± 0.02 −1.21± 0.05 4.0× 10−6 658 -
Red giant 1.5× 105 1.24 −1.22± 0.12 −1.34± 0.15 4.9× 10−5 39 -
White dwarf 1.6× 106 0.71 −1.00± 0.02 −1.23± 0.03 1.6× 10−6 255 2
Black hole 1.8× 104 10.05 −1.72± 0.04 −1.98± 0.07 1.6× 10−6 4 2
All stars 5.8× 107 0.33 −1.02± 0.02 −1.23± 0.03 - 4120 -

Notes. Column 1 is the name of the stellar type, columns 2 and 3 show the total
number of stars at 5 Gyr and the average stellar mass in solar masses, columns 4
and 5 represent the 3D density power-law indices inside 1.4 and 2.8 pc respectively,
column 6 shows the average tidal disruption radius that was used in Eq. 5.5 (for
compact objects we used the value of 4RS as described in Sec. 5.3.2), column 7 gives
the number accretion rate per Gyr derived over the period of 5 Gyr and column 8
shows the EMRI rate per Gyr for BHs and WDs. Numbers in columns 7 and 8 are
rescaled using Eq. 5.5.
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5.3.1 Tidal disruption events

A star with mass m∗ and radius r∗ can get tidally disrupted if the SMBH tidal forces
overcome the star self-gravity. The resulting stellar debris distribute in a disc, feed-
ing the SMBH while emitting X-ray radiation, giving rise to an observable phe-
nomenon called TDE (Hills, 1975; Frank and Rees, 1976). Equating the gradients of
these two competing forces allows us to calculate the tidal disruption radius, which
is given by

rt ' r∗

(
MSMBH

m∗

)1/3

. (5.3)

In our model, we assumed that a star passing sufficiently close to the SMBH is com-
pletely accreted, without any mass left. Since the number of particles used to model
the NSC is 65 times smaller than in the real NSC, the number of possible TDEs is lim-
ited by low-resolution in the SMBH vicinity. To deal with this problem, we initially
set a large tidal radius, rt = 4.2× 10−4 pc (the same for all objects), scaling down
a posteriori to the actual rt (computed using stellar radius and mass at the moment
of accretion) values. In particular, we scale the number of events using the relation
obtained from loss-cone theory, according to which the number of stars accreted
through tidal disruption depend on the stellar tidal radius and the total number of
stars in the system,

Nacc ∝ r4/9
t × (N/ ln(0.4N))4/9 (5.4)

(Baumgardt, Makino, and Ebisuzaki, 2004a; Kennedy et al., 2016). Therefore, the
number of accreted stars in the real system can be estimated using the above scaling
relation

Nreal
acc =

(
rreal

t

rsim
t

)4/9

×
(

Nreal

Nsim

)4/9 ( 1
ln(0.4Nreal/Nsim)

)4/9

× Nsim
acc . (5.5)

For each of the 5 star groups summarized in Table 5.1, we calculated the corre-
sponding average tidal radius through Eq. 5.3 using the values for stellar mass and
radius at the moment of accretion (see column 7 of Table 5.1), and the number of
stars passing closer than rt in our simulation, namely Nsim

acc . This quantity is then
used in Eq. 5.5 to scale our results to the real NSC.

Table 5.1 (columns 7 and 8) lists the number of tidally disrupted (or accreted)
stars per Gyr derived from the total number in 5 Gyr (scaled using Eq.5.5). The ma-
jority of TDEs are due to low-mass MS stars, while the SMBH growth is mostly due
to MS stars. As shown in Fig. 5.7, the time evolution of the accreted mass saturates
to a nearly constant value in 2.8 Gyr, allowing us to provide an upper limit to the
SMBH accreted mass by 5 Gyr as ∆MSMBH ' 104M� or ' 0.23% of the initial SMBH
mass. This implies a mass accretion rate Ṁ = 2.0× 10−6M�yr−1 and a TDE rate
ṄTDE ' 4.1× 10−6 yr−1 which is consistent with the observed number of TDEs ob-
tained per MW-like galaxy (Stone and Metzger, 2016). We note that due to the initial
loss-cone depletion the accretion rate is higher in the beginning and is smaller at
later stages of evolution.

As stated above, we assume that a star undergoing a TDE in our model is com-
pletely disrupted and 100% of its mass is added to the SMBH. However, the tidal
disruption radius for a RG is large while its typical density is generally low, thus a
close encounter with the SMBH may lead to an envelope stripping (MacLeod, Guil-
lochon, and Ramirez-Ruiz, 2012; Bogdanović, Cheng, and Amaro-Seoane, 2014) and
the core will remain with the structure similar to a WD (e.g. Althaus and Benvenuto
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.

1997). These WDs are very hot (∼ 105K) and may be observable. Fig. 5.8 shows
possible locations of these objects, the radii at which the RGs were stripped (column
7 of Table 5.1 gives numbers of such events), but we do not follow the dynamics of
the survived core after the disruption. The detection of the survived cores in the GC
may give constrains on the number of giant disruptions. The remnant WDs may
also increase the fraction of EMRIs (see next subsection), but these effects will be
explored in future work.

5.3.2 Gravitational waves

In general, compact objects (WDs, NSs or BHs) can survive tidal disruption due to
their compact sizes and can lead to the formation of an EMRI, a tight binary emitting
GWs in the LISA (e.g. Amaro-Seoane et al., 2007) and TianQin (Luo et al., 2016a)
expected observational bands. In our models, we consider the accretion of a compact
object if it gets inside the last parabolic stable orbit, 4RS (Amaro-Seoane et al., 2007;
Amaro-Seoane, Sopuerta, and Freitag, 2013). Objects scattering directly into the 4RS
are direct plunges, they emit a burst of gravitational radiation, but are difficult to
detect even for the GC since they do not spend much time in the LISA band. The
number of direct plunges can be calculated using the loss-cone theory, applying the
same procedure as in previous subsection. Column 7 of Table 5.1 lists the numbers
for WDs and BHs which we classify as direct plunges. The subclass of these objects
would ’plunge’ into to the region between 1RS and 4RS, we call them semi-plunges.
The semi-plunges may still make a couple of orbits (depending on the spin of the
SMBH) and produce very different gravitational wave signal, but it is still difficult
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FIGURE 5.8: Histogram of the locations where the red giants were
stripped by the SMBH.

to detect them. We find the rate of semi-plunges to be 2 (117) for BHs (WDs) per Gyr.
The electromagnetic counterpart will also be different for plunges and semi-plunges
for the case of inspiralling WDs or NSs (see e.g. Belczynski et al. 2018 where the
authors study double NS mergers).

On another hand, EMRIs evolution is a process that the compact object under-
goes a large number of close encounters with the SMBH (Alexander and Hopman,
2003; Amaro-Seoane et al., 2007) that causes energy loss due to gravitational wave
emission and, thus, may be detectable by LISA. To verify that its orbit is not affected
by two-body relaxation, Amaro-Seoane et al., 2007 define a critical semi-major axis
below which GW emission dominates orbital evolution as:

aEMRI = 5.3× 10−2pc× C2/3
EMRI

(
trc

Gyr

)2/3 ( m
10M�

)2/3 (MSMBH

106M�

)−1/3

(5.6)

where CEMRI ' 1 and trc is the local relaxation time. The latter is given by (Spitzer,
1987; Binney and Tremaine, 2008b):

trc =
18Gyr
ln Λ

1M�
mbh

103M�pc−3

ρ(r)

(
σ(r)

10km/s

)3

, (5.7)

where ln Λ is Coulomb logarithm, mbh is the mass of a stellar BH, ρ and σ are the
stellar density and 1D velocity dispersion respectively. Assuming ln Λ ' 10, σ =√

GMSMBH/3r, measuring the BH mass to be mbh= 10 M� and the density of stellar
BHs ρ = 4× 104 M�pc−3 (see Fig. 5.4), we get trc ' 6.2 Gyr at r = 0.5 pc. Thus, for
a typical BH in our simulation with m = 10 M�, the critical semi-major axis equals
to aEMRI = 0.11 pc. The late evolution of an EMRI is determined by GW emission,
leading eventually to the SMBH - compact remnant coalescence over the merging
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time due to the gravitational radiation given by (Peters, 1964)

tGW ≈
768
425

5
256

c5

G3
a4

m1m2(m1 + m2)

(
1− e2)7/2

(5.8)

(here we use an approximation where e ∼ 1). If we take the eccentricity to be e =
0.9999, then for a BH with typical mass m = 10 M� and the critical semi-major axis
a = 0.11 pc orbiting the SMBH of 4.3 × 106M� the merging time equals 94 Myr
which is much shorter than the relaxation time. The chosen eccentricity corresponds
to the pericentre distance rperi ' 27RS. Thus, we define the criterion for an EMRI as:

a < aEMRI;
4RS < rperi < 27RS (5.9)

Now we can use the classical loss-cone theory to calculate the number of EMRIs.
First, we obtain amount of ‘loss-cone’ orbits with rperi < 4RS then with rperi < 27RS
and take the difference between former and latter, finally we exclude the objects
with a > aEMRI. The same procedure can be applied to calculate number of EMRIs
originating from a WD - SMBH binary coalescence. In this case aEMRI = 0.02 pc
and rperi ' 5RS (we used mean mass of accreted WD from our simulation mWD=
0.7M�). The last column of Table 5.1 provides the EMRI rates of compact objects
in our simulation. Our results suggest that ' 2 WDs and ' 2 BHs are expected
to undergo an EMRI over each Gyr. The derived EMRI rates are lower than the
previous estimations (e.g. Arca-Sedda and Gualandris, 2018), likely due to the low
fraction of retained NSs and BHs in our model. We can conclude that WDs are the
main sources of direct plunges in the GC with a minimum rate of more than 250
events per Gyr, we found few BHs and no NS.

We note that here we do not follow the accreted object after it is gone inside 4RS
or classified as an EMRI.

5.4 Binaries

Although the GC environment is very extreme, some binaries have been detected
there (Muno et al., 2005a; Pfuhl et al., 2014). In this section we analyse the number
of GC binaries obtained from our simulation. The upper curve in Fig. 5.9 shows
the total number of binaries as function of time. We start the simulation with 5%
of binaries and roughly half of them survive till t = 5 Gyr of evolution. The two
lower curves in the same figure show the number of binaries inside 1 and 0.1 pc, re-
spectively, meaning that after 5 Gyr we expect 100-1000 of them inside 0.1 pc and
' 5.0 × 104 in the inner parsec. These binaries are characterized by an average
total mass of 1.0 and 0.69M� and a binary fraction of ∼ 2% and ∼ 2.5% respec-
tively. The initial distribution of the binary semi-major axis (SMA) was assumed
log-uniform between a = 0.005 and 50 AU. The SMA defines the binary binding en-
ergy (Eb ∝ 1/a), and allows to determine whether a binary is ‘hard’ or ‘soft’ (Heggie,
1975). A sizeable number of ‘soft’ binaries are quickly destroyed because of the re-
peated interactions with the surrounding dense environment, leading to a strong
decrease of the number of binary systems having initial SMA values larger than 1
AU (compare blue and green lines in Fig. 5.10).

On the other hand, the number of systems with smaller SMA increase in time,
thus implying a growing number of ‘hard’ binaries. Fig. 5.10 compares the SMA
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FIGURE 5.9: Number of binaries as function of time. The blue line
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the number of binaries inside 0.1, 1 and 5 pc correspondingly.

distribution at a time t = 2 Gyr in our simulation (the peaked brown line) with the
SMA distribution obtained evolving all the binaries in isolation. This comparison
shows the effect of the dense environment on the binary stellar evolution. Thus,
the systems with small separations are getting higher in number and their orbits
shrink. As opposite to this, the standalone binary evolution code results show that
the number of binary systems with smaller separations will decrease (some of them
will merge and some of them will get wider orbits after the supernovae explosions).
Step-filled histograms on Fig. 5.10 show that the low-separation binaries are domi-
nated by low-mass MS stars and some WDs. Fig. 5.11 shows the distribution of the
binding energies of the binaries and their distances to the SMBH at 100 Myr, 1 Gyr
and 5 Gyr. As we can see, the number of binaries with binding energies below 10−8

N-body units decreases with time, especially in the central part.
The total mass of a binary system is typically twice larger than that of a single

star, thus implying that most of the binaries will be subjected to mass segregation.
While mass segregation brings the binaries to the centre, the soft ones are being de-
stroyed and hard ones survive, but even a very hard binary can be tidally disrupted
by the SMBH. Fig. 5.12 illustrates how the binary fraction changes with the distance
from the SMBH for initial moment (blue curve), 100 Myr (green), 1 Gyr (red) and 5
Gyr (cyan). Initially, the binaries were distributed uniformly but already after 100
Myrs the central binary fraction (r < 1 pc) dropped from 5% to ∼ 2.5 %. Compar-
ison of the red and cyan lines yields that the total number of binaries drops but in
general the shape of the curve is established.

Our simulation suggests that the NSC contain a substantial number of WD bina-
ries (Fig. 5.13). These binary systems are of particular interest since they can give rise
to supernovae Ia events or, in some cases, they can even form a millisecond pulsar
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(c) t = 5 Gyr
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FIGURE 5.11: 2D histogram of binding energies of binaries versus
their distances to the SMBH (all values are given in N-body units),

colour-coding shows the number of binaries in each bin.
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(MSP) through matter accretion from a companion star onto a highly spinning mas-
sive WD (Freire and Tauris, 2014). Double degenerate WD - WD binaries can be the
progenitor of supernovae Ia explosions, provided that their total mass exceeds the
Chandrasekhar limit (note that there are also sub and super Chandrasekhar models,
see review by Maoz, Mannucci, and Nelemans 2014). On the other hand, binary
systems containing a NS are almost absent in the system (Fig. 5.14). These types
of binaries are possible progenitors of MSPs, which are thought to be recycled NSs
spun up by matter accretion from a stellar companion, according to the standard
scenario. After the natal kick the NS binaries become very wide (if they survive the
supernova explosion) and eventually are ionized. We find that 1000 and ≈ 3000 of
double and single degenerate pairs are expected to populate the central parsec of the
MW galactic nucleus.

5.5 Summary and discussion

We performed a high resolution direct N-body simulation of the GC starting with ∼
106 particles with 5% of initial binaries taking into account single and binary stellar
evolution. This is the largest simulation of this kind so far. We showed that the
stellar component forms a cusp with the highest power-law index for the stellar mass
BHs γ ' −1.72. Then we demonstrated how mass segregation occurs by analysing
average masses between Lagrangian shells. When the stars happen to come very
close to the SMBH they are disrupted with a total rate of ∼ 4× 103 stars per Gyr.
The number of accretion events for compact objects is ∼ 270 per Gyr with few of
them being possible EMRIs. About half of the initial binaries survived until 5 Gyr of
the evolution. Most of the binaries are destroyed due to dynamical interactions with
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single stars. The increasing number of WD binaries could imply a high supernovae
Ia rate. Once the rotation and non-sphericity of the NSC is taken into account, the
amount of TDEs/EMRIs could increase, and the evolution of the system may differ.
These effects are to be studied in follow-up papers.

The absence of NSs in the NSC after 200 Myr of evolution is due to high velocity
kicks (the velocity distribution of such kicks is still highly debated, see e.g. Beni-
amini, Hotokezaka, and Piran 2016) at the moment of formation of a NS. This lets
them escape from the system. In case of a binary, if the latter survives the supernova
explosion, the binary gets a very wide orbit and eventually is destroyed by interac-
tion with single stars in the dense stellar environment. Thus, postulating that all NSs
have velocity kicks with 1D dispersion of 265 km s−1, makes the formation of a close
binary with a NS unlikely. Therefore, the standard scenario for formation of MSPs
fails due to a lack of NSs. In this sense our results are consistent with the more sim-
plistic approach by Bortolas, Mapelli, and Spera, 2017 where the authors claim that
most of the NSs progenitor binaries do not survive the supernova explosion. But
in reality MSPs are observed even in globular clusters (e.g. Manchester et al., 1991)
where the escape velocity is much smaller than for a NSC. It means that MSP can
form in an alternative scenario, for example from the accretion induced collapse of
a WD e.g. Hurley et al., 2010; Taani et al., 2012; Tauris et al., 2013; Freire and Tauris,
2014. If a MSP is detected in the close vicinity of a SMBH it can be used to test gen-
eral relativity in the strong regime e.g. Psaltis, Wex, and Kramer, 2016. Moreover,
the spatial distribution of MSPs in the NSC can give hints on the formation scenario
of the NSC (Arca-Sedda, Kocsis, and Brandt, 2017; Abbate et al., 2018). We note that
the estimation of number of MSPs in the GC is still to be analysed in more detail.
We aim to start several new runs taking into account the MW bulge as an external
potential and investigate how many NSs would be bound to the NSC. We expect
that the bulge will prevent NSs from escaping and lead to an increase in number of
progenitors of MSPs.

A 3-body interactions involving a binary star and the SMBH can result in the
binary break up, with one component being captured by the SMBH and the other
ejected away with velocities up to 1000 km s−1 (Hills, 1988). This mechanism is one
of the possible scenarios that can explain the observed population of hypervelocity
stars (Brown, 2015). Indeed, if a binary with mass 1 M� and semi-major axis of 0.1
AU approaches to the MW SMBH as close as its disruption radius rbt ' 10−6 pc,
then it may lead to the formation of a hypervelocity star with v ' 1370 km s−1 (Eq.
2 in Brown 2015). As we have seen from Fig. 5.10, the NSC is completely dominated
by binaries with small separations at 5 Gyr, meaning that it is likely to expect hyper-
velocity stars with velocities above 1000 km s−1. Our results suggest the majority of
the ejected objects are low-mass MS stars or, more rarely, WDs. Since the accretion
radius in our simulation exceeds rbt for most of the remained binaries, we leave the
detailed analysis of the 3-body interactions that potentially involve them and the
SMBH to a forthcoming work.

In this simulation we constructed the initial conditions assuming the in-situ for-
mation of the NSC, but its formation is likely due to star cluster inspiral, at least in
part, as firstly suggested by Tremaine, 1976 and Capuzzo-Dolcetta, 1993, although a
fraction is likely due to in-situ star formation (King, 2003; King, 2005). Antonini et al.
(2012) provided the first self-consistent simulation tailored to reproduce the MW ob-
servational properties. Later on, Arca-Sedda et al. (2015) showed that the formation
of a NSC around an SMBH weighing a few 106 M� is extremely rapid, lasting 0.1-1
Gyr, thus implying that the contributing clusters still are “dynamically young" when
arrive to the GC. Moreover, Arca-Sedda et al. (2015) presented the first simulations
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to model self consistently a whole galactic nucleus and 11 star clusters using, for the
whole system, more than 106 particles. More recently, Tsatsi et al. (2017) pointed out
that the MW NSC rotation can be reproduced by the “star cluster inspiral" scenario.
Taking into account these facts, our follow-up simulations may be started with the
initial stellar distribution according to the “star cluster inspiral" scenario with some
initial rotation.

We note that the rate of TDEs may be enhanced in the presence of an accretion
disc (Just et al., 2012; Kennedy et al., 2016). The same is true for the gravitational
waves: the drag force of the accretion disc may bring compact objects close to the
SMBH resulting in the enhancement of the EMRI rates detectable by LISA, moreover,
the gaseous disc may significantly reduce the SMA of stellar binary BHs boosting
their merging time (Bartos et al., 2017; Stone, Metzger, and Haiman, 2017; McKernan
et al., 2017). In case of NS or WD binaries this mechanism may lead to an enhanced
rate of supernovae Ia explosions and gamma-ray bursts. Stellar binaries may merge
in the close vicinity of the SMBH due to “eccentric Kozai-Lidov" mechanism (An-
tonini and Perets, 2012; Prodan, Antonini, and Perets, 2015; Stephan et al., 2016).
The Kozai-Lidov oscillations can be studied via the direct N-body modelling with
one-to-one particle resolution or by approximating outer stars as a smooth poten-
tial. Panamarev et al. (2018) showed that the interaction of stars with the accretion
disc may lead to formation of a nuclear stellar disc in the inner part of the galactic
nucleus. Such stellar discs may serve as environment for dynamical formation of
compact binaries.
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Chapter 6

A million–body simulation of the
Galactic centre II: observational
features

The results presented in this chapter are to be submitted as a peer-reviewed article
entitled “Direct N-body simulation of the Galactic centre, part II.” with Panamarev,
Taras as the first author, Just, Andreas; Spurzem, Rainer; Arca Sedda, Manuel; Berczik,
Peter; Wang, Long as co-authors to the journal Monthly Notices of the Royal Astro-
nomical Society. T. Panamarev performed the simulation, analysed the output data,
wrote the text. The co-authors contributed by ideas, comments, support with the
code development and supervision.

6.1 Method and initial conditions

We simulate stellar dynamics in Milky Way nuclear star cluster will a million parti-
cles using direct N-body method see Sec. 5.1. We reach the highest to-date particle
number resolution of 65 real stars per one simulated particle. The spatial resolution
is down to racc = 4.2 × 10−4 pc. We keep track of single and binary stellar evo-
lution. The number of fraction of primordial binaries is set to be 5% of the total
particle number. When a binary reaches the inner resolution radius (racc), we record
its parameters at this moment and do not follow its dynamics any more. Since the
number of particles still does not correcpond to the realistic number of stars in the
MW NSC, we use scaling methods (described in Sec. 4.4) to apply for the Galactic
centre: we synchronize stellar evolution time to correspond to the relaxation time of
the NSC. This time-synchronization does not allow to synchronize periods of binary
stars with binary stellar evolution at the same time. Thus, the relative velocities of
binary companions are slightly larger than they would have been in reality. This
drawback does not strongly influence the results derived in this chapter since we do
not follow the detailed physics of binary evolution: we ignore gravitational radia-
tion, magnetic braking and use basic approximation for the common envelope phase
evolution. We start the simulation with stellar mass spectrum according to Kroupa,
2001 initial mass function. The primordial binaries are drawn in log-uniform distri-
bution of semimajor axis in range between 0.005 and 50 AU with thermal eccentricity
distribution.

6.2 Kinematics of the NSC

We start the MW NSC simulation assuming spherically symmetric and isotropic dis-
tribution of stars hosting central massive black hole. The evolution of such a system
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FIGURE 6.1: Position-velocity diagram for various stellar types at t =
5 Gyr. Blue colour represents low-mass main sequence stars, green
- main sequence, yellow - white dwarfs, red - red giants and black -

black holes. The plot shows data only for singe particles.

with equal masses, without stellar evolution and binaries is well understood. We
do not expect any deviations of the spherical and isotropic distribution. Although,
in more realistic case, taking into account single and binary stellar evolution, accre-
tion of stars onto the SMBH, one may expect that subsystems of stellar objects may
behave in different fashion.

Fig. 6.1 shows that overall dynamics (dominated by low-mass main sequence
stars) retains isotropy throughout the evolution. The data for different stellar types
are plotted on top of each other from low-mass MS stars to BHs in the order accord-
ing to the legend. The only noticeable feature is the central concentration of stellar
BHs, but it is a consequence of the mass segregation as we showed in Sec. 5.2. We
observe the same behaviour in the central parsec as well, but now in terms of 3D
velocity versus distance to the SMBH (see Fig. 6.2).

Observations of the Galactic centre show that the NSC rotates and is oblate (Feld-
meier et al., 2014). Fig. 10 of (Feldmeier et al., 2014) shows anisotropic features. The
contradiction of our results with the observations gives another confirmation of the
complexity of the system. Anisotropy may arise from axisymmetric potential, initial
cluster rotation and several star formation episodes.

Another assumption of our model is the in-situ star formation. Presence of young
massive stars in the nearest vicinity of the SMBH (Paumard et al., 2006) points to the
ongoing star formation, but it is still debated whether the NSC formation scenario
suggests the in-situ formation, migration and merging of globular clusters or com-
bination of both (Antonini, 2013). One of the observational outcomes of the in-situ
formation is number and spatial distribution of RRLyrae variable stars. The stars are
relatively easy to observe and hence, the comparison with observations may provide
a link to the NSC origin. Fig. 6.3 shows histogram of positions of potential RRLyrae
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FIGURE 6.2: Radius-velocity diagram for various stellar types at t = 5
Gyr inside the central parsec. Colour coding is the same as in Fig. 6.1.

The plot shows data only for singe particles.

candidates - stars with main sequence masses of ∼ 0.8M�. The figure indicates that
RRLyrae are concentrated around 8 pc and are shifted in the direction opposite to
the SMBH compared with the initial distribution of the possible progenitors. Thus,
if a similar pattern is observed in the Galactic centre, it would serve as an indication
for the in-situ formation of the NSC.

6.3 Hypervelocity stars

When a binary star approaches a massive black hole, the tidal forces from the hole
may disrupt the binary. This process results in ejection of a lighter binary component
with high velocity – above the escape speed of the galaxy – and capture of the heavier
component on close orbit to the SMBH (Hills, 1988; Brown, 2015).

Our full direct N-body simulation resolves the Galactic centre region down to
∼ 4.0× 10−4 pc. In this section we estimate number and properties of binary en-
counters with the SMBH that may lead to ejections of hypervelocity stars. We use
data for all binaries that crossed the inner radius and extrapolate the results to actual
binary disruption radii using the loss-cone theory.

We use the same scaling procedure as we did for the case of tidal disruption
events (Sec. 5.3.1). The loss-cone theory suggests number rate of particles falling to
specified radius scales with particle number and distance to the SMBH as:

Nacc ∝ r4/9
t × (N/ ln(0.4N))4/9 (6.1)
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FIGURE 6.3: Number of potential RRLyrae variables (stars with initial
masses in range 0.75-0.85 M�) vs distance from the SMBH in 100 log-
arithmic bins between 0.1 and 100 pc. Blue and red lines correspond

to initial distribution and that at 5 Gyr respectively.

FIGURE 6.4: Number of hypervelocity stars as function of time.
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FIGURE 6.5: Distribution of binary disruption radii.

(Baumgardt, Makino, and Ebisuzaki, 2004a; Kennedy et al., 2016). Hence, we can
estimate the real number of disrupted binaries as:

Nreal
acc =

(
rreal

bt
rsim

acc

)4/9

×
(

Nreal

Nsim

)4/9 ( 1
ln(0.4Nreal/Nsim)

)4/9

× Nsim
acc . (6.2)

where Nreal
acc is the number of disrupted binaries in the realistic NSC, < rbt > is the

binary disruption radius. Nreal is the total number of particles in realistic system
and Nsim is the total number of simulated particles. In the equation above we use
the average binary disruption radius that we calculate to be < rbr >= 4.5× 10−5 pc.
Given that the total number of disrupted binaries in the simulation by 5 Gyr we
measure to be Nsim = 1359, then the total number of binaries in the simulation is
Nreal

acc = 1741 giving rate of binary disruption:

Ṅacc ' 3.48× 10−7yr−1 (6.3)

Fig. 6.4 shows the cumulative number of disrupted binaries as function of time. The
picture indicates that the disruption rate is higher in the beginning especially during
first ' 200 Myr. This is explained by 2 processes: initial loss-cone depletion and
large number of binaries with large separations. During first hundreds of Myr the
simulation features high number of HVS ejections with low velocities (due to large
separations). For this reason, we restricted out analysis only for the case when the
ejection velocity is higher than 500 km s−1.

Fig. 6.5 justifies our choice to use the average value for rbt: most of the particles
have similar binary disruption radius.

Thus, the measure of binary disruption rate is quite robust and the uncertainty
given by different values of rbt is low. The calculated rate is smaller by 3–4 or-
ders of magnitude than theoretically calculated rate in the case of the full loss-cone
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FIGURE 6.6: Ejected velocities of hypervelocity stars as function of
time. Colour coding represent stellar types of the ejected particles

according to the legend.

(Hills, 1988) and by 1 order of magnitude for the case of the empty loss-cone (Yu and
Tremaine, 2003). We explain the discrepancy by the fact that the authors relied on
uncertain value of binary fraction with semimajor axis in range 0.01− 0.3 AU. Our
simulation shows that most binaries approach the SMBH with semimajor axis close
to 0.01 AU. The distribution of disrupted binaries reflects their general distribution
as we show in Fig. 5.10. Number of the observed B-type stars in the S-star cluster
provides the HVS ejection rate of 2× 10−7yr−1 (Bromley et al., 2012).

Fig. 6.6 indicates the time–evolution of ejection velocities for the hypervelocity
stars. The ejections are dominated by low-mass MS stars. The figure provides evo-
lutionary constrains on the ejection rate and the ejected velocities. Thus, up to ' 1.5
Gyr the stars are ejected with the range of velocities from 500 to 6400 km s−1, but af-
ter 1.5 Gyr the mechanism leads to preferential ejection of HVS in the velocity range
between 2700 and 4000 km s−1 with outliers down to 1500 and up to 5500 km s−1.
This feature is dictated by the established value for semimajor axis of binaries close
to 0.01 AU. The establishment lasts for ' 1.5 Gyr and is a consequence of dynamical
interactions of binaries with single stars in the dense stellar environment. Physical
origin of the ‘special’ value of a = 0.01 AU is the minimal separation of binaries
given by sizes of stars: a = 0.01 AU ' 2R�. Low-mass main sequence stars may
overcome this distance, but this process is slow since the encounter cross-section in
not large enough to allow for frequent close encounters.

Despite the low-mass MS stars, we also observe ejections of MS stars (with m >
0.7M�) and white dwarfs. The MS stars are ejected throughout the evolution, but
with prevalence during the first 1 Gyr. The remarkable feature of the MS ejections
is that their ejected velocities after 1.5 Gyr may reach the values of more than 4000
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TABLE 6.1: Types of the ejected stars and their bound companions at
t = 5 Gyr.

Stellar type
of the ejected HVS MS0 MS WD

hhhhhhhhhhhhhhhhhCompanion
Total number

1090 94 55

MS0 885 0 0
MS 180 85 25
RG 3 6 1
WD 21 3 27
NS 0 0 1
BH 1 0 0

Notes. Total number of ejected stellar types in 5 Gyr and their companions that are
captured by the SMBH.

km s−1, again, explained by small separation approaching the limiting value dic-
tated by their sizes. The WDs are being ejected after ' 1.2 Gyr (for stellar evolu-
tional reasons) with velocities above 3000 km s−1. This is explained by the fact that
total masses of binaries with WDs are larger than that for low-mass MS stars.

Our model disfavours WD ejections with velocities less than 3000 km s−1 that
makes their detection unlikely. Given that 1000 km s−1 ≈ 1kpc[Myr−1], the ejected
WDs are wandering in the intergalactic space.

In Tab. 6.1 we show the total numbers of ejected stars classified by their evolu-
tionary types and their companions that remain bound to the SMBH: ∼ 88% of low-
mass MS stars, ∼ 7.5% and ∼ 4.5% of MS and Wds respectively. Lower part of the
table shows number of former companions of the ejected star: high mass MS stars
are twice larger captured than ejected. Also, in the list of captured stars we see some
giants, neutron star and black hole. We do not have enough particle number resolu-
tion to study ejection/capture rate for these objects, but their presence itself tells us
about the possibility of binary encounter with the SMBH that leads to capture of BH
or NS on a tight orbit. The former companions of HVS become bound to the SMBH
with semimajor axis of the orbit around the SMBH equal to the binary disruption
radius. Thus, Fig. 6.5 gives constrains on orbits of the captured companions. The
fact that the captured stars obtain similar semimajor axis (which are relatively small
by value) drives promising conditions for contact stellar collisions and mergers, but
we need to run more sophisticated simulations to study these processes.

Spectral classification of the ejected stars (see Tab. 6.2) reveals dominance of M-
dwarfs followed by K-type stars; F-type stars are ejected twice more frequently than
A and G-type stars. The absence of O-type stars is explained by their short lifetimes
and sizes. Low number of B stars is due to the selected IMF and particle num-
ber resolution. All properties of the ejected/captures stars are highly sensitive to
the IMF and initial binary fraction. Numbers obtained from our simulation rely on
Kroupa 2001 IMF and initial binary fraction of 5%. But IMF in the Galactic centre
appears to be extremely top-heavy (Bartko et al., 2010).
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TABLE 6.2: Spectral types of the ejected main sequence stars and their
total number in 5 Gyr.

O B A F G K M
0 4 15 27 17 149 972

Notes. The spectral types are derived from the effective temperature provided by
the binary stellar evolution package BSE.

FIGURE 6.7: Semimajor axis ratio at 5 Gyr to the initial for white
dwarf – normal star binaries vs centre of mass positions. Grey points

show the initial distribution of these binaries.

6.4 Possible nature of the X-ray excess

White dwarf and main sequence star binary systems may be responsible for X-ray
emission. The emission originates from mass transfer of a (usually) late-type main
sequence star to a white dwarf. These binaries are called cataclysmic variables (CVs)
and feature short periods of the order of hours (e.g. Hellier, 2001; Szkody and Gaen-
sicke, 2012). In the simulation we do not follow the details of binary evolution on
such timescales, but we can analyse the distribution of the potential CV candidates.
By candidates we mean all ‘hard’ WD-MS binaries.

General outcome of the binary – single star interactions (assuming that binaries
are initially ‘hard’) in a dense stellar environment is hardening of semimajor axis.
Fig. 6.7 shows the ratio of semimajor axis of WD-MS binaries at 5 Gyr to the initial
SMA as function of distance: binary systems that with reduced SMA segregate to
the centre, while binaries with increased SMA tend to move in the direction oppo-
site to the SMBH. These two groups of binary systems are seen on the Fig. 6.7 as two
‘clouds’ with clear transition radius at 2–3 pc. We connect this transition distance
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FIGURE 6.8: Position-velocity diagram for WD binaries.

with the influence radius of the SMBH. rinf is inversely proportional to velocity dis-
persion, while the dispersion drives the boundary between ‘hard’ and ‘soft’ binaries
is a stellar system (Heggie, 1975).

Fig. 6.8 reflects the position-velocity diagram for WD-MS, WD-WD and BH-star
binaries. WD-MS binaries are quite abundant in the central 10 pc region and may
be possible sources of the observed X-ray excess. Fig. 6.9 gives hints on possible CV
numbers. It shows the relation between Roche-lobe radius of a normal star compan-
ion in MS-WD system versus distance to the SMBH. The Roche-lobe radius is given
by (Eggleton, 1983) :

rL =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (6.4)

where q is the mass ratio of the binary system; rL is given in units of the binary
separation. We do not discuss how many of these binaries may become CVs since
we do not track all relevant physics in such binary system, but the their presence
indicates that in principle the Galactic centre environment favours formation of CVs.

Another source of X-ray excess may come from X-ray binaries. The radiation is
produces in similar way as for the case of CVs, but here the donor is a neutron star of
a black hole (e.g. Tauris and van den Heuvel, 2006). Our simulation features 6 bina-
ries with black holes (the number is not scaled to realistic NSC), 4 of the companions
are MS stars, one WD and one BH. 5 of this systems are long-lived binaries, but one
is short-lived wide dynamically formed BH-MS binary. Fig. 6.10 shows evolution
and fate of all (long-lived) binaries with black holes. Three of these systems formed
dynamically (lines start not from zero). One of primordial binaries (BH-MS0, up-
per curve on the lower panel) born ‘soft’, experienced a number of encounters and
has been ionized in about 2.5 Gyr. Other examples include: initially relatively wide
BH-MS binary was born at distance of ∼ 30 pc, experienced a number of encounters
that lead to dynamical hardening; initially hard BH-BH binary quickly reduced the
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FIGURE 6.9: Roche lobe radius for WD-MS (in blue) and WD-RG (in
red) binaries versus distance to the SMBH.

FIGURE 6.10: Upper panel. Evolution of distance to the SMBH for
stellar black hole binaries. Lower panel. Evolution of semimajor axis
of these binaries. Colour coding shows the black hole’s companions

according to the legend.
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TABLE 6.3: Number of binary companions at t = 5 Gyr (NOT scaled
to realistic values).

Main sequence Red giant White dwarf Neutron star Black hole
Main sequence 23553 58 1033 0 4
Red giant 58 1 24 0 0
White dwarf 1033 24 488 0 1
Neutron star 0 0 0 0 0
Black hole 4 0 1 0 1

semimajor axis and segregated to inner 0.1 pc. At the end our simulation features 2
dynamically formed BH-MS binaries and one primordial BH-BH binary in the cen-
tral parsec, one primordial BH-WD binary and one dynamically formed BH-MS0 at
distance r ∼ 10 pc. All the remaining BH binaries have the SMA values close to 0.01
AU. Thus, our simulation favours ‘hard’ black hole binaries, which may provide a
plausible explanation for the X-ray excess origin.

Tab. 6.3 provides more detailed picture of binary stars in the Galactic centre by
showing numbers of companions. In total, double MS pairs dominate the overall
binary population (∼ 93%), the second place take WD-MS binaries (∼ 4%), on the
third place are double WD systems (∼ 2%). The remaining 1% constitute mostly
binaries with red giants. Small fraction of binaries with black holes does not tell that
they are very rare, it means that they may exist in principle, but, first of all we need
to have enough particles to study them in more detail and second of all their final
number is very sensitive to the IMF.

6.5 Summary

We analysed data from a realistic million-body simulation of the Galactic centre and
showed that:

- initially isotropic and spherically symmetric stellar distribution of the NSC re-
tains the anisotropy.

- concentration of RRLyrae variables at 8 pc (if observed) would indicate for the
in-situ formation scenario of the NSC.

We analysed dynamics of binaries that encounter the SMBH leading to ejection of
HVS. We obtained the HVS rate to be ∼ 2× 10−7 yr. For the first time, we described
properties of the ejected stars including their spectral types.

We showed that the MW NSC provides a good environment for the formation of
cataclysmic variables and X-ray binaries which may be responsible for the observed
Galactic centre X-ray excess.
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Part IV

CONCLUSION
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Chapter 7

Summary and future directions

7.1 Summary

We presented the analysis of stellar dynamics in close vicinity of a supermassive
black hole (few influence radii) by means of direct N-body simulations. In the first
part (Ch. 5 and Ch. 6), we focused on the dynamics and evolution of a NSC of
the Milky Way galaxy performing high resolution direct million-body simulation.
We verified for the first time in a fully astrophysical simulation (with binaries, stel-
lar evolution, compact remnants) that the density distribution of stellar mass black
holes after 5 Gyr is fully consistent with the expected Bahcall-Wolf power law slope
of -1.75. We obtained the rate of tidal disruption events to be 4 per million year
and the number of objects emitting gravitational waves during the accretion onto
the SMBH to be 230 per Gyr with 100 of them being possible extreme mass ratio
inspirals. We computed the ejection rate of hypervelocity stars produced by Hills
mechanism (Hills, 1988) to be 3.5× 10−7 yr. The examined binary fraction dropped
by less then a half from the initial value of 5% with the final value of 3% with 2.5% in-
side the inner parsec. We discussed the contribution of binaries with compact objects
in presence of pulsars and Supernovae Ia rates. We showed that cataclysmic vari-
ables and X-ray binaries are likely candidates to explain the observed X-ray excess
in the Galactic centre. One paper describing the results is published in the Monthly
Notices of the Royal Astronomical Society (Panamarev et al., 2019). Another paper
is to be published. The second part of the study (Ch. 4) was to investigate the effect
of an accretion disc on stellar dynamics in an AGN. We showed that the interaction
of the NSC with the gaseous disc leads to formation of a stellar disc in the central
part of the NSC. The accretion of stars from the stellar disc onto the SMBH is bal-
anced by the capture of stars from the NSC into the stellar disc, yielding a stationary
density profile. We derived the migration time through the AD to be 3% of the half-
mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7% of the
mass and 5% of the influence radius of the super-massive black hole. An AD lifetime
shorter than the migration time would result in a less massive nuclear stellar disc.
The detection of such a stellar disc could point to past activity of the hosting galactic
nucleus. The article describing the results is published in the Monthly Notices of the
Royal Astronomical Society (Panamarev et al., 2018).

7.2 Future work

High interest to the direct N-body simualtion of the Galactic centre (Bar-Or and Fou-
vry, 2018; Emami and Loeb, 2019; Yang et al., 2019; Barack et al., 2019) gives moti-
vation to improve our models even further. One of the main simplifications of the
Galactic centre simulation was the fixed (same for all stars) accretion radius. Thus,
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the next step is to implement tidal disruption according to realistic disruption radius
for each star depending on its size. This step will also allow for dynamical formation
of hypervelocity stars (since the binary disruption radius is large than that for single
stars). Another important feature to improve is taking into account for the Galactic
potential: neutron stars and some stellar black holes after getting high velocities at
the formation time (due to asymmetry of the Supernova explosion) escaped from the
system, but the Galactic potential would keep them bound to the centre. It is also
important to account for alternative formation scenario of neutron stars and mil-
lisecond pulsars to give better quantities of their numbers and spatial distribution.
Our more distant goal is to perform one-to-one simulation of the galactic nuclei.

The main limitations of our study of star–disc interactions are: absence of stellar
mass spectrum (all stars have the same mass) and treatment of the accretion disc as a
static density function that acts as a drag force. Implementation of single and binary
stellar evolution would allow to study the effect of the gaseous disc on the rate of
binary black hole mergers. There is a number of studies that addressed this issue
using semi-analytic or numerical (Monte Carlo simulations) treatment (Yang et al.,
2019; McKernan et al., 2017; Bartos et al., 2017; McKernan et al., 2019a; McKernan
et al., 2019b). But we need large-scale direct N-body simulations to give the precise
estimates. The improving sensitivity of LIGO and VIRGO detectors will result in
more GW detections providing better statistics of black hole mergers to compare
with simulation results.
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Appendix A

Towards modelling galactic centres
with NBODY6++GPU

A.1 Testing performance and consistency of the code.

First, we test performance of the Nbody6++GPU with the central massive black hole
by running test simulations using different GPU and CPU combination to find the
most optimal configuration for the million-body run (Fig. A.1). Due to the fact that
NBODY6++GPU calculates the total force acting on a star as a sum of regular and
irregular components, it is not straightforward to scale the performance of the code.
For this reason we start several numerical simulations to study the performance scal-
ing with particle number and parameters of the supercomputer.

The computing cluster provided by Jülich supercomputing centre features 4 GPU
devises per one computing node with total number of 75 computing nodes. Since
we have a computing quota, we can not use as many nodes as possible. Fig. A.1
suggests the fastest configuration of using 1024K particles with 64 GPUs and 2 GPUs
per one MPI process. It means that we need 2000 seconds to simulate the system for
1 N-body unit, thus the full simulation (up to 6000 units = 1 relaxation time) would
take ' 139 days. In case of using 16 GPUs it would take 250 days. Thus, increasing
number of GPUs by a factor of 4, reduces the total computational time by a factor of
' 1.8. Therefore, the optimal configuration is 1024K particles on 16 GPUs and 1 MPI
process per 2 GPU devices.

Another important task before starting the large-scale simulation is to check the
consistency of the code. We do it by comparison with analogous test simulations
with Phi-Grape/GPU - the software that was used for studying star-disc interactions
(Just et al., 2012; Kennedy et al., 2016). To reduce the timings and usage of the
resources, we set the particle number to minimum quantity that is still appropriate.
One of the direct comparable measures of the dynamics of the system as a whole is to
measure the evolution of half-mass radii. In Fig. A.2 we compare half-mass radii as
function of time for identical simulations with Nbody6++GPU and Phi-Grape/GPU
and see the consistency.

Another feature implemented in Nbody6++GPU is the stellar accretion onto the
SMBH. Since Nbody6++GPU treats close encounters using KS-regularization method
(see Sec. 3.5) instead of introducing a softening parameter (like in Phi-Grape/GPU),
we expect more accurate determination of orbital parameters of the captured stel-
lar objects by SMBH. Fig. A.3 shows eccentricity distribution for 2 various models
of the accretion disc in Phi-Grape (upper panel) and Nbody6++GPU (lower panel).
The comparison yields that for the case of Nbody6++GPU the eccentricity distribu-
tion of captured particles have larger widths which is explained by more accurate
treatment of close two-body encounters.



90 Appendix A. Towards modelling galactic centres with NBODY6++GPU

FIGURE A.1: Performance tests for large–N runs. X-axis corresponds
to number of graphical processing units (GPUs), Y-axis shows value
of real time in seconds needed to perform 1 time-unit in simulating
system. Different colours represent particle number from 512K in red
up to 3072K in blue. Filled circles denote the case of using 4 GPUs per
one MPI process, filled stars show the case of using 2 GPUs per one

MPI process.
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FIGURE A.2: The half-mass radius comparison. Nbody6++GPU and
phiGPU.

In conclusion we can claim that Nbody6++GPU shows good performance and is
properly extended for the case of galactic nuclei simulations.
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(a)

(b)

FIGURE A.3: Orbital eccentricities of accreted stars at the moment of
accretion.
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