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Abstract

Intermediate-mass black holes (IMBHs) with masses between 10? to 10° solar masses
could be the key to explaining the formation of supermassive black holes in the centre of
galaxies at high-redshift. The possible formation scenarios of IMBHs point towards dense
stellar systems as favoured birthplaces. If an IMBH resides at the centre of such dense
stellar systems, the surrounding stars under the IMBH’s dynamical influence will show
characteristic kinematic signatures. During the last two decades, the community has
made significant efforts to find IMBHs through these kinematic signatures, particularly
in the centre of the Milky Way's globular clusters (GCs). To date, however, no robust
detection has been made.

In this thesis, we explore the internal dynamics of GCs to understand the current limi-
tations for detecting IMBHs and propose alternative lines of evidence of their presence.
With this purpose, we use numerical simulations of GCs with and without a central
IMBH and apply commonly used dynamical models to estimate the mass of the possible
central IMBH. We focus on the limitations of the dynamical modelling itself, partic-
ularly those due to common assumptions such as a constant velocity anisotropy and
mass-to-light ratio. From an observational viewpoint, we explore the role of binaries in
the observed kinematics and the connection between the ohserved binary fraction and
the presence of an IMBH. Finally, we study the implications of the dynamical modelling
limitations and the effects of binary systems on the scaling relations, which connect the
mass of the central IMBHs with their host stellar system properties.






Zusammenfassung

Intermedi&re Schwarze Lcher (IMBHs) mit Massen zwischen 102 bis 10° Sonnenmassen
kénnten der Schliissel zur Erklirung der Entstehung von supermassereichen Schwarzen
Lichern im Zentrum von Galaxien bei hoher Rotverschiebung sein. Die miglichen
Entstehungsszenarien von IMBHs deuten auf dichte stellare Systeme als bevorzugte
Geburtsorte hin. Befindet sich ein IMBH im Zentrum eines solchen dichten Stern-
systems, zeigen die umgebenden Sterne unter dem dynamischen Einfluss des IMBHs
charakteristische kinematische Signaturen. Wiahrend der letzten zwei Jahrzehnte hat
die Gemeinschaft erhebliche Anstrengungen unternommen, IMBHs durch diese kinema-
tischen Signaturen zu finden, insbesondere im Zentrum von Kugelsternhaufen (GCs) der
Milchstrafie. Bis heute ist jedoch noch kein robuster Nachweis gelungen.

In dieser Arbeit erforschen wir die interne Dynamik von GCs, um die derzeitigen Lim-
itationen fiir die Detektion von IMBHs zu verstehen und schlagen alternative Nach-
weismdglichkeiten vor. Zu diesem Zweck verwenden wir numerische Simulationen von
GCs mit und ohne zentrale IMBH und wenden herkémmliche dynamische Modelle an,
um die Masse des miglichen zentralen IMBH abzuschétzen. Wir konzentrieren uns
dabei auf die Grenzen der dynamischen Modellierung selbst, insbesondere auf die, die
durch géngige Annahmen wie eine konstante Geschwindigkeitsanisotropie und ein Masse-
zu-Licht-Verhéltnis entstehen. Wir untersuchen die Rolle von Doppelsternen in der
beobachtbaren Kinematik und den Zusammenhang zwischen dem Anteil der Doppel-
sternsysteme und der Anwesenheit eines IMBH. Schliefillich untersuchen wir die Kon-
sequenz der Limitationen der dynamischen Modellierung und die Auswirkungen von
Doppelsternsystemen auf die Skalierungsrelationen, die die Masse des zentralen IMBHs
mit den Eigenschaften ihres Hauptsternsystems verbinden.
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Chapter 1

Introduction

Like many of the billions of stars in the Milky Way, the Sun travels following the ro-
tational movement of our Galaxy. At roughly 8 kpc from us, at the very centre of the
Milky Way, resides a supermassive black hole (SMBH) called Sagittarius A*. This mas-
sive point-like object, weighing 4 million times the mass of the Sun, is virtually invisible,

however, we can observe its effects on the surrounding gas or stars.

Stars near the SMBH follow an orbital motion that can be approximated to first order
by a Keplerian potential, such as the Earth moving around the Sun but with additional
effects of general relativity. In the last two decades, the observation of stars orbiting
the SMBH in the centre of the Milky Way has allowed us to measure its mass, con-
firm its point-like nature and even successfully test general relativity. These efforts to
characterize the orbits of the stars surrounding the SMBH in the centre of our Galaxy,
in particular by the researchers around Andrea Ghez and Reinhardt Genzel, have been
awarded the Nobel prize in physics for the year 2020.

Not only the Milky Way has a SMBH in its centre: many other galaxies also host
one. While only in the Milky Way we can observe individual stars orbiting the SMBH,
the gravitational effect of the SMBH also modifies the movement of stars further away.
Observations of the bulk motion of stars in the centres of other galaxies allow us to find
a large number of these objects with masses beyond a billion times the mass of the Sun.
We can also detect SMBHs via the signatures of gas accretion: infalling gas heats up
and becomes extremely bright. These so-called active galactic nuclei also enable us to
discover SMBHs at great distances, or early in the universe.

‘While we can detect SMBHs and measure their masses, the origin and growth of SMBHs
is still not well understood. We know that massive stars can end their lives as a stellar
mass black hole of a couple to tens of times the mass of the Sun, but growing such black
holes to billions of solar masses is not straightforward, and requires extreme amounts of

mass accretion. However, if black holes of a thousand to tens of thousands solar masses
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exist, these black holes, or intermediate-mass black holes (IMBHs), can potentially serve

as a seed for their supermassive counterpart.

In the last decades, significant efforts to detect IMBHs were undertaken. Whereas a
few candidates have been identified, there is no clear evidence for them. Thanks to the
many SMBHs observed up to today, it has become clear that there is a relation between
their mass and the mass of its surrounding stellar system. This relation has served as
a hint that IMBHs might exist in lower mass stellar systems such as dwarf galaxies or
globular clusters.

Globular clusters (GCs) are dense and compact stellar systems that can be found in
almost all galaxies. The GCs in the Milky Way have been the target for many studies
trying to find an IMBH at their centres. While many candidates have been brought to
light, there is no definitive evidence of the presence of an IMBH in any of them. Finding
these elusive objects will help to better understand the formation and growth of their
supermassive counterpart, while also bringing answers to the connection between the
SMBH and its surrounding stellar system.

In this thesis, I will discuss the efforts taken towards finding IMBHs in the centres of
GCs, while also exploring alternatives and improvements for their robust detection or
ruling out their presence. But first, in the following pages. I will introduce many of the
concepts and ideas I have touched in this brief motivation to my research.

1.1 Intermediate-mass Black Holes

Intermediate-mass black holes (IMBHs), with masses between 10° to 10° Mg, sit between
the two known populations of black holes (BHs): stellar-mass and supermassive BHs.
Since there is no exact definition for the corresponding mass limits, Table 1.1 shows the
mass ranges assumed in this thesis for the different black hole populations.

While these are the commonly assumed limits, they are not strict and as it will he
discussed in Section 1.1.2, BHs which are the remnants of massive and metal-free stars
can have masses larger than 100 M (see discussion in Section 1.1.2).

Despite the scarce observational evidence of IMBHs, there are many physical motivations
for their existence. This Section will discuss the motivations and possible formation

scenarios for the existence of IMBHs.

TaBLE 1.1: Mass ranges for black holes.

Population Mass range [Mg]
stellar-mass 3 — 60
intermediate-mass 102 — 10°

supermassive > 10°
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1.1.1 IMBEHs as seeds of Supermassive Black Holes

All massive galaxies have a supermassive black hole (SMBH) with masses between
10° M, and 10° M, at their centres (see e.g., Kormendy & Ho, 2013; van den Bosch,
2016; Dullo et al., 2021). The first hints of their presence at the centres of galaxies date
back to AGN observations in the 1960s, as gas accretion into a massive compact object
was thought as the reason behind the short variability and high luminosity of AGNs.
From the mid-1980s, the improvement in observational techniques allowed the search for
SMBHs in nearby galaxies, with Messier 32 being the first one to be suggested to have
a SMBH from its kinematics (Tonry, 1984, 1987). Since then, many SMBHs have been
found using kinematic as well as their accretion signatures in AGNs (Kormendy & Ho,
2013).

The Milky Way is no exception, with a SMBH of ~ 4 x 10° My, in its centre and located
at a distance of ~ 8 kpc from the Sun (Ghez et al., 2008), making it the nearest SMBH.
The first detections of the radio source known as Sgr A* at the Galactic centre (Balick
& Brown, 1974; Brown & Liszt, 1984) were followed by different studies characterising
the radio source, which first suggested a massive BH as the origin for the radio source
(Rogers et al., 1994; Beckert et al., 1996). The kinematics of stars near Sgr A* provided
the first evidence of a SMBH (Genzel et al., 1997; Ghez et al., 1998). Later on, the
precise astrometric measurements of stellar orbits around the SMBH provided definitive
proof (Ghez et al., 2000; Eckart et al., 2002). Sgr A* has become the single most studied
SMBH, where recent observations of the orbits of stars around Sgr A* (in particular the
second pericentre passage of the 52 star) precisely proved general relativity effects on
their orbits (Gravity Collaboration et al., 2018a,b). As it is the case in many other
galaxies as well (e.g., Georgiev & Boker, 2014), the Milky Way’s central SMBH is sur-
rounded by a nuclear star cluster, a dense cluster of approximately tens of million stars

(see Neumayer et al., 2020, for a review).

Despite the many SMBHs discovered at the centres of galaxies and the unique laboratory
that is provided by Sgr A¥*, there is little we know about the origin and growth of SMBHs.
How fast SMBHs grow in the early universe is particularly relevant due to observations of
ultraluminous AGNs at redshifts of z > 6 that could host SMBHs of ~ 107 M (see e.g.,
Mortlock et al., 2011; Wu et al., 2015; Bafiados et al., 2018). Whereas these observations
are just the tip of the iceberg, as they are biased towards to the most massive BHs, their

existence implies strong constraints on the formation scenarios and growth of SMBHs.

The question is, then, how fast can a seed BH grow in the early universe? If we take
a 100 My black hole as an example and leave it to accrete at the Eddington limit!
continuously, it will grow to a mass of M, = 10° M in about 0.7 — 0.8 Gyr (Haiman,
2013; Inayoshi et al., 2020). Under these conditions, it would be possible to have a large

'The Eddington limit is the maximum luminosity at which the outwards radiation pressure and
inwards gravitational force are in equilibrium.
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SMBH at z ~ 6. However, Bafiados et al. (2018) show that for the highest redshift
SMBH found so far (J134240928, with a mass of M, = 8 x 10® My and at z = 7.54,
which corresponds to an age of the univers about ~ 0.6 Gyr), accretion at the Eddington
rate requires a seed BH of ~ 2000 M, already in the first T0 Myr of the universe (roughly
z ~ 38). Both cases assume a continuous accretion at the Eddington limit during the
whole time of growth; however, this might not necessarily be the case, as the accretion
rate can also vary over time (Haiman, 2013; Inayoshi et al., 2020). While episodes of
super- and hyper-Eddington accretion may happen during the BH growth (Haiman,
2013; Inayoshi et al., 2020); these also require specific conditions beyond the focus of
this thesis.

The alternative is to start with a more massive seed. Whereas the 100 Mz black hole
from the previous example is a possible remnant of the first stars, more massive black
holes could have formed (Volonteri, 2010; Haiman, 2013; Inayoshi et al., 2020). The
formation of IMBHs with masses of 1000 Mg, in the early universe provides an alternative

solution for the SMBH growth’s timing problems.

1.1.2 Formation scenarios for IMBHs

There are different paths for the formation of BHs with masses larger than 100 Mg.
Some are only possible under the early universe’s conditions, whereas others could still

happen later on or within the local universe's conditions.

The pristine conditions of the primordial gas help form massive and metal-free stars
called Population III stars. Pop III stars in the range of 25 < M, /My < 140 can leave
a remnant BH of masses 10 < M,/Mgz < 100 (Zhang et al., 2008; Volonteri, 2010). For
Pop III stars in the range of 140 to 260 Mg, pair-instability supernovae can entirely
disrupt the star without leaving any remnant (Volonteri, 2010). On the other hand,
higher masses stars can directly collapse into a BH (Madau & Rees, 2001; Volonteri,
2010). In particular, if the fragmentation of the collapsing primordial gas is halted, a
supermassive star could form and directly collapse into an IMBH of 10 Mg; however,
the conditions for suppressing fragmentation are rare (see, Inayoshi et al., 2020). Note
that the initial formation of a supermassive star is an intermediate step of the “direct

collapse” scenario of a massive gas cloud (see Greene et al., 2020, and references therein).

A more promising path for forming an IMBH is through a runaway collision (or col-
lapse) in the centre of dense stellar systems, such as GCs and nuclear star clusters. In
these systems, collisions are common due to their high stellar density (Portegies Zwart
et al., 1999; Portegies Zwart & McMillan, 2002, and references therein). Furthermore,
simulations of dense young clusters (see e.g., Portegies Zwart et al., 2004; Giirkan et al.,
2004; Rizzuto et al., 2021) show that stellar collisions can build a very massive star
(M, ~ 500 — 1000 M) in ~ 10 — 50 Myr, a star that can ultimately end in an IMBH of
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M, ~ 100—500 M. For this process to ocurr, it is necessary to achieve central densities
of p > 108 M@fpcg (Giersz et al., 2015; Rizzuto et al., 2021). The presence of primordial
binaries can enhance the build-up of the very massive star or subsequent IMBH (Giersz
et al., 2015), in particular binaries of massive stars (M, > 15 M) (Gonzilez et al.,
2021). Mapelli (2016) and Spera & Mapelli (2017) show that it is impossible to form an
IMBH at solar metallicity through runaway collapse; however, it can happen at lower
metallicities of Z < 0.02Z, which is a metallicity that many Galactic GCs have (Harris,
1996, 2010 edition). This is also true at the metal-free conditions of the first Myrs of
the universe (Inayoshi et al., 2020).

Alternatively, Giersz et al. (2015) show that the runaway process can happen without the
need of forming a very massive star. Instead, a series of collisions and mergers of stellar
remnants, mainly stellar-mass black holes, can drive the build-up of an IMBH. This
process begins after the first supernovae and requires forming a BH subsystem within
the dense stellar system. Moreover, this process requires densities of p > 10° M@fpca.
In the simulations done by Giersz et al. (2015), 20% of their simulated clusters had
significant BH growth and formed an IMBH via this process.

If the stellar system is not dense enough at the core or if the runaway process was not
efficient enough to grow an IMBH, a single BH could grow over time through mass
transfer from a binary companion and dynamical encounters (Miller & Hamilton, 2002;
Giersz et al., 2015). This so-called “slow” scenario happens later on in the stellar system
evolution and becomes important once the dense stellar system undergoes core-collapse
(Giersz et al., 2015).

The recent observation of the gravitational wave signal GW190521, from a binary BH
merger that resulted in a BH of M, = 142 M, (Abbott et al., 2020a,b), gives additional
support for the “fast” (runaway) and “slow” scenarios. Ome, if not both, progenitors
with estimated masses of M, = 85 M and M, = 66 M, fall in the BH mass gap of
pair-instability supernovae (50 — 135 Mz Belczynski et al., 2016). These BHs could have
formed via previous mergers, which has motivated a new look on the runaway collision
scenario in star clusters (Fragione et al., 2020; Gonzilez et al., 2021; Rizzuto et al., 2021;
Liu & Lai, 2021).

1.1.3 Scaling relations at lower BH masses

The masses of SMBHs appear to follow a correlation with their host galaxies’ different
properties, particularly with the host galaxy’s central velocity dispersion. Ferrarese &
Merritt (2000) and Gebhardt et al. (2000) first showed that SMBHs ranging from 10°
to 10° M, follow a tight correlation with the host galaxy’s central velocity dispersion,
known as the M, — o relation. The correlation is indeed remarkable as the sphere of
influence of the SMBH, which is the region where the central black hole dominates the
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Figure 1.1: M, — o and M, — M, scaling relations. This Figure, adapted from

Lutzgendorf et al. (2013b), show the mass of the central BH for galaxies (McConnell &

Ma, 2013) and globular clusters (Litzgendorf et al., 2013b), with respect to their central

velocity dispersion (o, left panel) and stellar mass (M, right panel). The dashed lines

represent the scaling relation, whereas the shadowed regions show the scatter of each

correlation. GCs do not follow the scaling relation for galaxies, the significant mass loss
of GCs during their evolution could be responsible for this effect.

stellar dynamics, is significantly smaller (< 10 pc) than the region represented by the
central velocity dispersion (< 1kpc).

The physical phenomena behind the M. — o and other scaling relations are still unclear,
as it could be a combination of co-evolution (for example, due to AGN feedback) and
mergers (e.g., Kormendy & Ho, 2013). Furthermore, the correlation and scatter changes
depending on the type of galaxy and the method used to measure the SMBH's mass.
Jahnke & Maccio (2011) show that simulations of consecutive mergers of less massive
stellar systems with central black holes in the mass range of IMBHs can reproduce the
observed scaling relation and scatter, without requiring AGN feedback. Extending the
M, — o and other scaling relations to the range of IMBH masses (M, < 10° Mgz) could
help to further understand the origin of the scaling relations.

The search for IMBHs in dwarf galaxies and globular clusters has pushed forward the
lower limits of these scaling relations. Liitzgendorf et al. (2013b) used their and lit-
erature values of estimated masses for Galactic GCs to analyse the scaling relations’
behaviour at lower masses. Figure 1.1 shows M. — ¢ and M. — M, scaling relations
for candidate IMBHs in Galactic GCs and SMBHs in nearby galaxies (adapted from
Figure 2 of Liitzgendorf et al., 2013b). The difference in the slope between GCs and
galaxies may indicate that different effects are causing the scaling relations. However,
GCs undergo significant mass loss during their evolution. Consequently, their current
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mass and velocity dispersion might not represent their initial conditions, which would
move the points towards the left of the scaling relations for galaxies.

1.1.4 Connection with Globular Clusters

As mentioned at the beginning of this section, there is scarce evidence for the existence
of IMBHs. The accretion signatures by an ultraluminous X-ray source known as ESO
243-49 HLX-1 suggest an IMBH with a lower mass limit of M, ~ 500 Mg (Farrell et al.,
2009). A more recent candidate from the gravitational wave signal, GW190521, puts
the resulting merger product at M, ~ 140 M ;. Whereas other studies in extragalactic
systems find central BHs in the range of M, ~ 10° My (see, Greene et al., 2020), not
many fall within the 10° — 10* M, range. A few recent candidates at the centre of dwarf
galaxies with masses of M, ~ 10° Mg, have been suggested by Nguyen et al. (2019); Woo
et al. (2019).

From the formation scenarios discussed in Section 1.1.2, it is natural to search for IMBHs
at the centre of dense stellar systems, such as low-mass NSCs and GCs. Furthermore,
if the scaling relations connecting the central BH and the stellar system masses hold at
lower stellar system mass, GCs could host IMBHs on the 10° — 10 My range. IMBHs
born at the centre of young CGs could have sinked along with their host GC to the
galaxy centre and become the seed for a SMBH (Ebisuzaki et al., 2001; Portegies Zwart
et al., 2006; Mastrobuono-Battisti et al., 2014; Petts & Gualandris, 2017; Askar et al.,
2021).

The following Section 1.2 provides a description of GCs and their internal dynamics,
and then Section 1.3 covers the many efforts to detect IMBHs in GCs.

1.2 Globular clusters

In the previous section, we have discussed the physical motivations for the existence
of IMBHs. These objects might have formed in dense stellar systems such as globular
clusters (GCs). Finding IMBHs in GCs could support the proposed formation scenarios
of IMBHs, and also provide a better understanding of the growth of SMBHs and their
connection with the host galaxy. This Section introduces GCs and their properties, fol-
lowed by a description of the GCs internal dynamics and evolution. Finally, it discusses

the multiple signatures that an IMBH can produce in a GC and previous work to search
for IMBHs in them.
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FIcuRrE 1.2: Image of the GC NGC 6121 or Messier 4. Composite image created with
opical and infrared filters from the Wide Field Imager in the MPG/ESO 2.2-metre
telescope at ES(0’s La Silla Observatory. Credits: ESO.

1.2.1 What is a globular cluster?

(GCs are dense stellar systems with a characteristic spherical shape (and so their name);
although, some also show flattening (van den Bergh, 2008). Figure 1.2 shows an image
of the globular cluster NGC 6121 (Messier 4). They are commonly found in galaxies
and, as a population, GCs can trace the build-up of their host galaxy (Brodie & Strader,
2006). Our Galaxy hosts approximately 150 GCs discovered so far, with new candidates
towards the Galactic bulge (Minniti et al., 2017) just recently discovered. GCs are quite
old: many of the MW’s GCs have ages around 10 — 12 Gyrs (VandenBerg et al., 2013),

thus representing the relics of early star formation and merging history of the Galaxy.

GCs are composed of hundreds of thousands up to a few million stars, with a half-light
radius of Ry, ~ 3 pc and masses between 10* — 10° My, Figure 1.3 shows the distribution
of half-light radii Ry, in panel (a), metallicities [Fe/H] in panel (b), central density p.
in panel (c) and masses log(Mgc) in panel (d) for Galactic GCs. Given their sizes and
masses, GCs have high central densities p. ~ 10* Mz /pc®. Many of them reach central
densities of p. ~ 10° — 108 My fn"ptg_, values at which IMBH formation and growth can
happen (as discussed in Section 1.1.2). Furthermore, GCs are usually metal-poor with


https://www.eso.org/public/images/eso1235a/
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FigurE 1.3: Main properties of Galactic globular clusters. Panel (a) shows the half

light radius Ry, and panel (b) the metallicity [Fe/H| of the clusters, both from Harris

(1996) (2010 edition). Panel (c) show the estimated central density log(p.), while panel

(d) the estimated total mass Mg of the Galactic GCs, both properties estimated from

N-body models by Baumgardt & Hilker (2018). For all panels, n is the number of GCs
per bin.

many Galactic GCs in the range of metallicities where the formation of a very massive
star through runaway collisions was possible in the early evolution (see Section 1.1.2),
namely [Fe/H| < —1.7.

GCs have a characteristically well-defined colour-magnitude diagram® (CMD). Figure
1.4 shows the CMD for the globular cluster NGC 6121 (as in Figure 1.2), which follows
the main-sequence (MS) until the turn-off point (MSTO) to the subgiant (SG) and
red giant branch (RGB). The simplicity of the CMD of GCs is only apparent, as they
are more complex than initially thought. Improved photometry showed that GCs have
multiple parallel main-sequences (see, e.g., Piotto et al., 2007; Bellini et al., 2010;
Milone et al., 2012b) and that some stars in GCs have enhanced element abundances
(Carretta et al., 2009). Most old GCs have multiple populations (see Bastian & Lardo,
2018; Gratton et al., 2019, for a review) that show different spatial distributions and

The CMD is also known as the Hertzsprung—Russell (H-R) diagram, which compares the luminosity
and the temperature (or spectral type). These diagrams show the different steps of stellar evolution,
where a population of stars with the same age is characterized by a single curve called isochrone.
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Figure 1.4: Color-magnitude diagram for the globular cluster NGC 6121 (Messier 4),
using Gaia colors (Gala Collaboration et al., 2016, 2018). The highligthed region repre-
sent different stellar evolutionary stages: main-sequence (MS), main-sequence turn-off
point (MSTO), subgiant (SG), red giant branch (RGB) and the horizontal branch (HB).

kinematics (Cordero et al., 2017; Kamann et al., 2020a). However, despite the different
element abundances, the multiple populations still share a narrow metallicity spread and
only slight age differences (Martocchia et al., 2018; Saracino et al., 2020). The latter
means that most stars in a GC were born roughly at the same time, and their position

in the CMD can be linked to their mass as more massive stars evolve faster.

GCs have a non-negligible fraction of binary stars f;, ~ 10% (Sollima et al., 2007;
Milone et al., 2012a), with fuin = ns/(ns + np) where n, refers to the number of single
stars and np the number of binary stars. Whereas this amount is low compared to
the binary fraction of field stars of fuin > 50% (Duquennoy & Mayor, 1991), binaries
have an essential role in the evolution of GCs. In the CMD), binaries add to the colour
scatter along the MS and move in the upward-right direction from the MS, depending
on the binary components’ mass ratio (Milone et al., 2012a). Alternatively, multi-epoch
observations provide another way to identify binaries using their orbital motions and
variability in their line-of-sight velocities (Pryor et al., 1988; Cote & Fischer, 1996;
Giesers et al., 2019), see also discussion in Section 4.2.2. The presence of blue straggler
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stars and millisecond pulsars also provides indirect evidence for binaries in GCs. The
binary stellar evolution and (or) dynamical interaction of binaries can produce blue
stragglers stars (Mapelli et al., 2006). As it is discussed further in Section 1.2.2 and
Chapter 4, binaries have a crucial role in the dynamical evolution of GCs. In particular
in the late stages of the GC’s dynamical evolution.

GCs also have a significant component of stellar remnants. Deep observations of GCs
show the white dwarf sequence (see, e.g., Richer et al., 1997; Monelli et al., 2005; Moehler
& Bono, 2008), while the detection of pulsars and millisecond pulsars in GCs show that
they also host neutron stars (see, e.g., Anderson et al., 1990; Camilo et al., 2000; Ransom,
2008; Freire, 2013). Furthermore, GCs host not only white dwarf and neutron stars but
also stellar-mass BHs. The first detections of X-ray signatures produced by accreting
stellar-mass BHs (Maccarone et al., 2007; Strader et al., 2012a) opened the window for
many more studies searching for stellar-mass BHs (Miller-Jones et al., 2015; Bahramian
et al., 2017). Whereas most candidate stellar-mass BHs in GCs originates from X-ray
signatures, another detection method uses kinematic evidence of binary stars where
one components is a BH (Giesers et al., 2018, 2019). Both ways identify BHs with a
companion star in a binary system; this is not necessarily the case for all BHs in a GC,
and the cluster could still retain many more BHs. As discussed in Section 1.1.2, the

presence of stellar-mass BHs plays a role in forming IMBHs, particularly for the slow
formation channel.

1.2.2 Internal dynamics and evolution of globular clusters

The internal dynamics and dynamical evolution of GCs have been studied thoroughly in
the last since the early-1960s (Michie, 1961; King, 1966). The development of numerical
simulations have pushed even further the understanding of the dynamical evolution
of GCs (Aarseth, 1999). This Section introduces the main elements of the dynamical
evolution of GCs based on the descriptions by Heggie & Hut (2003); Binney & Tremaine
(2008). Further readings on the topic include Spitzer (1987); Meylan & Heggie (1997).

The description of the internal dynamics of any stellar system depends on how relevant
the stellar encounters and interactions are for the overall dynamical evolution of the
stellar system. At a first-order, the dynamical state of a stellar system is given by the
velocity distribution of stars and the gravitation potential given by the mass of the
whole stellar system; stars will follow the orbit defined by the gravitational potential,
their position and velocity (or the total energy they have). However, encounters between
stars will alter their initial orbital motion, and after many subsequent interactions, stars
will eventually “forget” their original orbit.

The diffusive process behind the alteration of a star’s orbit by encounters is known as

two-body relaxation, as it is driven by an accumulation of many interactions between
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FigUurE 1.5: Velocity dispersion o for stars with similar mass ranges within the MS,

given by their mean mass {(m), for a 12Gyr old simulated GC. Due to the cluster's

evolution towards (partial) energy equipartition, massive stars transfer kinetic energy

to low-mass stars, the higher values of velocity dispersion show the increase in kinetic
energy of low-mass stars.

two stars. The relaxation time is the required time for the encounters to change the

original orbit significantly, and it is approximately given by:

0.1N

Lrelax ™~ W cToss 5 (1.1)
where N is the number of stars in the stellar system. and tepes is the time for a star
to cross the stellar system (Binney & Tremaine, 2008). GCs containing N ~ 108 stars,
with velocity dispersions of ¢ ~ 10km/s and sizes in the order of Ry, ~ 10 pc, will have
a crossing time around t..... ~ 1Myt and a relaxation time in the order of #. .. ~
0.8 — 1 Gyr. For a given stellar system, the relaxation time changes with radius, as the
velocity dispersion, sizes and number of stars also change; the usual value used is the
relaxation time within the half-mass radius, #;5. In the case of the Milky Way's globular
clusters, the median relaxation time is t, = 1.5 Gyr (Baumgardt & Hilker, 2018). As the
GCs’ ages are in the range of 10— 12 Gyr (VandenBerg et al., 2013), they had undergone
multiple relaxation times, making two-body interactions the dominant driver for their
dynamical evolution.

During the two-body interactions, stars interchange kinetic energy evolving towards a
state of energy equipartition. The difference in masses of the interacting stars drives the
energy transfer, where more massive stars lose kinetic energy and transfer it to lower
mass stars Spitzer (1969). GCs do not achieve full energy equipartition during their
dynamical evolution; however, even a partial level of energy equipartition has an effect
on the internal dynamics of GCs (Trenti & van der Marel, 2013; Bianchini et al., 2016b).

At a local level (i.e., at any given region of a GC), populations of stars with different



Chapter 1 Introduction 13

2.1]:—'.I I I I {3:_"

15F

() (r) / {(m) (rep )
:}"‘f
T(r) /T (rsem)

= 1.u:—-—"'\.._,-v-'h-q-...r-""\.--

; Ny

_— — 1 r L o
= = 0F x E
= = E 3
E B oy 3
S = é
— — -1L «
B =
= gg-zfoee e =00 Gyr Aol o= w2k 1
F o= = 1=18 Gyr
10_1[ 1=2.7 Gyr 1 132 . .
02 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Tlagrangian Tlagrangian

FIGURE 1.6: Mean mass {m)(r), mass-to-light ratio T(r), luminosity density j(r) and
mass density p(r) of a simulated GC at different evolutionary times. In grey the initial
condition at £ = 0 Gyr 1= given, in red condition after ¢ = 0.9 Gyr, in blue after ¢t =
1.8Gyr and in green after ¢ = 2.7Gyr. Each profile normalized to their respective
values at the half mass radius (rsp5) and in function of the Lagrangian radius of the
cluster. A consequence of energy equipartition is mass segregation (panel a), where
massive stars populate the cluster centre and low mass stars the outer layers. With
mass segregation, the mass-to-light ratio also changes (panel b) increasing with radius
as low-mass and fainter stars accumulate in the outer layers. Stellar remnants such as
white dwarfs, neutron stars and stellar-mass black holes can also increase the mass-to-
light ratio at the GC’s centre. Panels (¢) and (d) show that as the cluster evolves, both
the luminosity and mass density form a cusp as the GC's core becomes more dense.

stellar masses will have different velocity dispersions. Figure 1.5 shows the velocity
dispersion and average masses for stars along the stellar MS within the GC’s half-light
radius. As mass increases, the velocity dispersion of each mass population decreases.
Whereas Figure 1.5 shows the case for a simulated cluster, observations of faint stars
along the main sequence show the same behaviour (Bellini et al., 2014; Heyl et al., 2017).

As massive stars lose kinetic energy, their orbits shrink and sink towards the GC's
centre. On the other hand, low mass stars expand their orbits, moving outwards. The
consequence of this process is mass segregation, where massive stars accumulate towards
the centre and the low mass stars populates the outer layers of the cluster. Panel
(a) of Figure 1.6 shows the evolution of the mean mass (m) of a simulated cluster
with time, tracing the mass segregation as the cluster’s centre increases its mean mass,
pushing low-mass stars outside. Mass segregation also affects the mass-to-light ratio
T. Panel (b) of Figure 1.6 shows that as the cluster evolves, the mass-to-light ratio T
increases with radius as low-mass stars have a larger mass-to-light ratio than massive
stars. Although this simulated cluster only had five neutron stars at ¢t = 2.7 Gyr, the
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presence of massive remnants, in particular stellar-mass black holes, will increase the
mass-to-light ratio at the cluster’s centre (see discussion in Section 3.4.2). Bianchini
et al. (2017) show that it is possible to infer the shape of the mass-to-light profile by
knowing the cluster’s dynamical age, which can be estimated by either the level of energy
equipartition (Bianchini et al., 2016a) or the amount of mass segregation in the GC, in
particularly using the distribution of blue-straggler stars (see, e.g. Ferraro et al., 2012;
Hypki & Giersz, 2017; Ferraro et al., 2018; Pasquato & Di Cintio, 2020).

Panels (c) and (d) in Figure 1.6 show that the luminosity j(r) and mass density p(r)
of a GC form a central cusp. As the cluster evolves, the accumulation of massive stars
increases the central density of the cluster, while ejecting most low-mass stars from the
core. Once the core does not have enough energy to support the gravitational potential, it
contracts in a process known as “gravothermal catastrophe” or “core collapse” (Lynden-
Bell & Wood, 1968; Spitzer, 1969). The core collapse marks the start of the final stages
in the dynamical evolution of a GC, which end with decoupled core and a sparse halo
of stars. During the core collapse, as the core density increases, the formation and
hardening of binaries provides an additional source of energy to the core, expanding it.
The core expands until it cannot support the gravitational push and contracts again.
After the initial core collapse, the cluster’s core undergoes several cycles of expansions
and contractions known as “gravothermal oscillations” (Heggie, 1984; Makino, 1996).

Whereas more massive stars accumulate towards the cluster centre, low-mass stars form
a dispersed halo surrounding the core. If the GC is isolated, its final fate is to dissipate
as stars become unbound. This process accelerates with the presence of an external
tidal field, and GCs can lose a significant fraction of their initial mass during their
evolution (see e.g., Heggie, 2001; Heggie & Hut, 2003). Many Milky Way’s GCs show
tidal tails formed by stars that have been lost due to this dissipation process (Grillmair
et al., 1995; Chun et al., 2010; Leon et al., 2000; Odenkirchen et al., 2001, 2003; Jordi
& Grebel, 2010; Sollima, 2020), the dynamical modelling of these tidal tails provide an
alternative method to study the Milky Way's potential and dark matter content (Kiipper
et al., 2010; Mastrobuono-Battisti et al., 2012; Bonaca et al., 2019).

Primordial binary stars in GCs play a significant role as a non-renewable source of
energy. As mentioned before, the formation and hardening of binaries during core-
collapse provide an additional energy source to the core of the GC. Primordial binaries
will segregate faster to the cluster’s core, as binaries are more massive than single stars
on average. As they populate cluster core, encounters between binaries and single stars
(or other binary stars) will heat the core by two processes. The first process is the
so-called ‘hardening’: that happens when the binding energy of a binary is larger than
the kinetic energy of the surrounding stars; during an interaction with a third star, the
binary will transfer energy while becoming more gravitationally bound. On the other
hand, if the binding energy is lower than the kinetic energy of the surrounding stars,
the binary will transfer energy through the destruction of the initial binary and the
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subsequent formation of a new binary. Through these processes, primordial binaries
can delay the time of core-collapse and provide energy during the following post-core
collapse period until the binary population is depleted (McMillan et al., 1990; Heggie
& Aarseth, 1992; Giersz, 2001; Fregeau et al., 2003; Heggie & Hut, 2003; Heggie et al.,
2006; Trenti et al., 2007a).

In a similar way to binaries, if the GC retains a significant fraction of stellar-mass BHs,
they will also work as a source of energy. As stellar-mass BHs segregate to the cluster
centre, they halt core-collapse and quench mass segregation (Mackey et al., 2008; Breen
& Heggie, 2013a.b; Sippel & Hurley, 2013; Morscher et al., 2013, 2015; Weatherford
et al., 2018). This translate to more extended cores. The presence of an IMBH in
the centre of a GC will have a similar effect, halting core collapse and quenching mass
segregation with the subsequently extended core. This is a consequence of the higher
stellar densities surrounding the IMBH, where the encounters and scattering of stars
become more efficient (Baumgardt et al., 2004; Trenti et al., 2007h; Gill et al., 2008a).

1.3 Searching IMBHs in GCs

As mentioned in Section 1.1.4, GCs are good candidates where to search for IMBHs,
and as such, many studies have focused on finding signatures of IMBHs within Galactic
GCs within the last two decades. However, no clear evidence has been found so far,
and the discussion is still as open as ever. This section will introduce the different
signatures indicating the presence of an IMBH while discussing the main candidates
and the limitations behind the lack of clear evidence.

1.3.1 Signatures of IMBHs

Similarly to supermassive black holes, the two main ways to detect and measure the
mass of an IMBH are accretion and dynamical signatures. If gas is accreted into the
IMBH, it will heat up and can be observed in either X-ray or radio emission (Pooley
& Rappaport, 2006). However, there is no detection of accretion signatures in GCs
consistent with an IMBH (Strader et al., 2012b; Tremou et al., 2018), and radio data
puts upper limits for IMBH masses in Galactic GCs of M, < 1000 My (Tremou et al.,
2018). Whereas the lack of radio signals could indicate that IMBHs are rare or non-
existent, IMBHs with masses up to a few hundreds M are not massive enough to have
a radio signature (Tremou et al., 2018).

The second way to detect an IMBH comes from their dynamical interaction with the
surrounding stars in the cluster’s centre. GCs with a central IMBH will show three
main signatures: a shallow cusp in the surface brightness, a rise in velocity dispersion
towards the cluster’s centre and an extended core (see, Baumgardt et al., 2005; Trenti
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FICURE 1.7: Surface brightness I and velocity dispersion o for simulated clusters with

and without an IMBH from the MOCCA-Survey I { Askar et al | 2017). Both normalized

to the values at the scale radius for the central cusp R;. The presence of an IMBH (blue

circles) will produce a characteristic cusp in both the surface brightness and velocity

dispersion. Signatures that contrast the fat profiles of a cluster without an IMBH (red
diamonds).

et al., 2007h; Noyola & Baumgardt, 2011). The left panel of Figure 1.7 shows the
surface brightness (L) for a simulated cluster with (blue-continuous line) and without
and IMBH (red-dashed line). As expected, the simulated GCs hosting an IMBH has
a steeper central profile compared to the one without an IMBH. Noyola & Baumgardt
(2011) explore a sample of simulated GCs with and without a central IMBH, finding that
those hosting an IMBH have a shallow cusp in their surface density, with a logarithmic
slope between —0.1 and —0.4 have an IMBH. However, clusters undergoing core collapse
might have similar central slopes (Vesperini & Trenti, 2010). As IMBHs can halt mass
segregation and the subsequent core collapse (Trenti et al., 2007Th; Gill et al., 2008a),
it is unlikely for clusters that show an advanced stage or have already undergone core
collapse to host any IMBH (Noyola & Baumgardt, 2011).

The right panel of Figure 1.7 shows line-of-sight velocity dispersion (o) for a cluster
with and without an IMBH; the former has a characteristic rise in velocity dispersion
towards the centre due to the presence of an IMBH. This rise in velocity dispersion
is a consequence of stars following the Keplerian potential of the IMBH. Modelling the
velocity dispersion is a valuable method to determine the mass of a central black hole, and
many studies searching for a central IMBH in GCs have used this approach to estimate
the mass of a possible IMBH. However, no clear kinematic evidence has been found yet,
and most cases only find upper limits. Table 1.2 summarises the estimated masses for
IMBH candidates in GCs from an extensive list of studies in the last 20 years using
kinematic signatures, indicating the type of data used and the alternative possibilities
that can explain the observed kinematics. The diversity of kinematic data (line-of-sight
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TaBLE 1.2: Summary of IMBH studies in the literature. This table compiles the many
studies searching IMBHs in Galactic and nearby clusters using kinematic signatures. It
includes the GC's name, the type of data used, the estimated mass or upper limit M,
the alternative explanation for cases when no IMBH is claimed and their respective

references.
GC Name Data M, [Mg] alternative Ref.
G1 RV 2.0755 x 10° 1
RV no IMBH 2
RV 1.84+0.5 x 104 3
NGC 104 (47 Tuc) RV < 1.5x 107 4
PMs=s No IMBH stellar-mass BHs 5
NCG 1851 RV < 2.0 x 107 6
NGC 1904 (M 79) RV 3.0+ 1.0 x 103 6
NGC 2808 RV < 1x 104 7
NGC 5139 (w Cen) RV 40757 x 104 8
PMs < 1.8 x 10* 9
RV 4.7+ 1.0 x 104 10
RVs + PMs no IMBH anisotropy 11
RVs 4+ PMs 4.0 x 104 12
RVs 4+ PMs no IMBH stellar-mass BHs 13
RVs 4+ PMs no IMBH stellar-mass BHs 14
NGC 5272 (M 3) RV < 3.0x10° 15
NGC 5286 RV 1.5+ 1.0 x 10° 16
NGC 5694 RV < 8.0 x 103 6
NGC 5824 RV < 6.0 x 103 6
NGC 6093 RV < 8.0 x 10° 6
NGC 6205 (M 13) RV < 8.6 x 10° 15
NGC 6266 (M 62) PMs < 4.0 x 107 17
RV 2.0+ 1.0 x 10?
NGC 6341 (M 92) RV < 0.8 x 107 15
NGC 6388 RV 1.7+9.0 x 104 18
RV < 2.0 x 10° 19
RV 2.8+ 0.4 x 104 20
NGC 6397 RV 6.0+ 2.0 x 102 21
RVs 4+ PMs no IMBH stellar-mass BHs 22
NGC 7078 (M 15) RV 3.3+22x 10° 23
PMs=s no IMBH stellar remnants 24
RV no IMBH stellar remnants 25

RVs 4+ PMs no IMBH extended dark mass 26

References: (1) Gebhardt et al. (2002); (2) Baumgardt et al. (2003); (3) Gebhardt et al. (2003); (4)
MecLaunghlin et al. (2006); (5) Mann et al. (2019); (6) Litzgendorf et al. (2013a); (7) Liitzgendorf et al.
(2012); (8) Noyola et al. (2008); (9) van der Marel & Anderson (2010); (10) Noyola et al. (2010); (11)
Zocchi et al. (2017); (12) Baumgardt (2017); (13) Baumgardt et al. (2019b); (14) Zocchi et al. (2019);
(15) Kamann et al. (2014); (16) Feldmeier et al. (2013); (17) McNamara et al. (2012); (18) Litzgendorf
et al. (2011); (19) Lanzoni et al. (2013); (20) Litzgendorf et al. (2015); (21) Kamann et al. (2016); (22)
Vitral & Mamon (2021); (23) Gerssen et al. (2002); (24) McNamara et al. (2003); (25) Baumgardt et al.
(2003); (26) den Brok et al. (2014).
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radial velocities or proper motions) and the variety of modelling methods (dynamical
models, distribution function models or numerical simulations) further complicate the

picture.

The rise in velocity dispersion expected from an IMBH might also be a consequence
of other dynamical effects. For example, a bias towards radial orbits in the velocity
distribution of stars, can increase the observed velocity dispersion towards the centre
and reduce the estimated mass of the possible IMBH (van der Marel & Anderson, 2010;
Zocchi et al., 2017). Similarly, an extended dark mass due to the presence of stellar-
mass black holes could produce a similar signature in the velocity dispersion as the
one from an IMBH (Zocchi et al., 2019; Baumgardt et al., 2019b; Mann et al., 2019;
Vitral & Mamon, 2021), in particular for IMBHs with a low mass fraction compared to
the cluster mass. Chapter 3 focuses on the aforementioned dynamical effects and their
consequences on the detection of a central IMBH.

1.3.2 Observational limitations for the detection of an IMBH

The prominence and extent of the cusp in velocity dispersion depend mainly on the
IMBH's mass fraction with respect to the GC’s mass and its radius of influence. The
radius of influence (riyf) is the radius where the circular velocity due to the IMBH's
Keplerian potential is equal to the velocity dispersion:

GM,

Tinf =

= o) (12)

where M, is the mass of the IMBH and ¢ is the velocity dispersion of the stars, which
in turn depends in the velocity distribution of stars and the mass of the GCs (Binney
& Tremaine, 2008). The main observational limitation for the detection of an IMBH is
the small sizes of the radius of influence. For example, mass estimations on the possible
IMBH at the centre of NGC 5139 (wCen), in the order of M, ~ 4 x 10* M, define a
projected radius of influence of Rips ~ 5" (or 0.1 pc) at a distance of d = 4.8 kpe from
the Sun (Noyola et al., 2010}, which is considerably small compared to its core radius
of H. = 2.37' (3.4pc) and half-light radius of and Ry, =5’ (7.0pc) (Harris, 1996, 2010
edition).

The determination of the kinematic centre of a GC is essential for the identification of
an IMBH. In the case of NGC 5139, van der Marel & Anderson (2010) pointed out that
with a different kinematic centre, 12" from the previously used by Noyola et al. (2008),
the previous estimated mass for the central IMBH of M, = 4.Dﬂ:55 x 10* M, (Noyola
et al., 2008) changes to an upper-limit of M, < 1.8x 10! M, (van der Marel & Anderson,
2010). However, further analysis by Noyola et al. (2010) show that the estimated masses
do not change significantly for both centres. The kinematic data used by both studies
could hide a possible explanation for this discrepancy. Noyola et al. (2008, 2010) use
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line-of-sight radial velocities, whereas van der Marel & Anderson (2010) use proper
motions. Chapter 3 explores the different constraints on the dynamical modelling of
a GC with a central IMBH. As discussed later in Chapter 4, the presence of binary
stars can increase the observed velocity dispersion of line-of-sight velocities; this is not
the case for proper motions that remain mainly unaffected. The presence of binaries,
therefore, could explain the difference between line-of-sight and proper motion velocity
dispersion in NGC 5139.

Given the high stellar density at the centre of GCs, the crowding of stars limits the ob-
servations around the cluster’s centre. A single bright star could dominate the observed
kinematics of integrated spectra or line-of-sight velocities (de Vita et al., 2017). An inter-
esting example is the case of NGC 6388, where different observations put the central ve-
locity dispersion of the cluster at ¢ = 25km/s (Liitzgendorf et al., 2011) or o = 13km/s
(Lanzoni et al., 2013), which implies the presence of an IMBH of M, = 1.7 x 10* Mg, or
an upper limit of M, < 2.0 x 10° M, respectively. Follow up analysis by Liitzgendorf
et al. (2015), shows that the lower velocity dispersion measured by Lanzoni et al. (2013)
could have been dominated by scattered light and represent the mean velocity field. The
development of new analysing techniques improved the management of crowded areas
in GCs (see, Kamann et al., 2014, 2016), and the enhanced resolving power of the next
generation of instruments at E-ELT and JWST will further improve the observation of
crowded areas.

The presence of binaries might also be relevant for the detection of IMBHs. As discussed
thoroughly in Chapter 4, binaries can increase the observed line-of-sight velocity disper-
sion, particularly towards the cluster centre. This increase results in overestimations for
the IMBH mass and larger upper limits when an IMBH is not detected (see discussion
in Section 5.4).

1.4 Outline of the thesis

This thesis will follow up in the vast diversity of IMBH searches in GCs, pointing to
areas that require improvement and seeking alternative indications for the presence of
an IMBH. The research work in this thesis also aims to motivate the connection between
dynamical modelling and simulations as a powerful way to improve the dynamical mod-
elling of GCs and better understand their observed properties.

Chapter 2 introduces the main methods used in this thesis: dynamical modelling and
simulations. For the dynamical modelling, the Chapter briefly builds into basic dynami-
cal knowledge to describe some of the techniques used in the literature, with a particular
interest in the Jeans Equations, providing a simple example of how to model a simple
globular cluster. Concerning simulations, this Chapter introduces the importance of

numerical simulations to understand the evolution of GCs and the development of such
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simulations. It compares the direct N-body and the Monte Carlo methods, focusing on

the latter one as all simulations used in this thesis come from Monte Carlo models.

Chapter 3 discuss the dynamical limitations of the Jean Equations modellings. This
Chapter follows the published work by Aros et al. (2020). We use Jean Equations in
five simulated GCs with and without an IMBH to test the reliability of the dynamical
modelling. To do so we also consider almost perfect data and do not include any of the
observational limitation mentioned in section 1.3.2. Furthermore, we do not consider
kinematic errors in the data and only account for the effects of stochasticity. This allows
us to only focus on the limitation of the dynamical models. Whereas we can easily find
the mass of a high-mass IMBH with a mass fraction with respect to the cluster mass
of My/M, = 4.0%, the same cannot be said of a low-mass IMBH (M, /M, = 0.3%) for
which only upper limits are found. Cases without an IMBH also show large upper limits
that are still consistent with IMBHs of M, ~ 10° M. We suggest that the main effect

behind this is the lack of constraints on the mass profile of the clusters, in particular on
the one with a large fraction of stellar-mass black holes.

Chapter 4 analyses the effect of undetected binaries in the kinematic data of GCs. The
results of this chapter have been submitted for publication. We find that the presence
of binaries increases the observed line-of-sight velocity dispersion up to ~ 60% of the
actual velocity dispersion (in the most extreme case). However, in simulated GCs with
a central IMBH, the fraction of retained binaries decreases significantly. On average,
they have 67% fewer binaries within their core radius than clusters without an IMBH.
We use these results to suggest that the retained binary fraction will help identify GCs
with a central IMBH.

In Chapter 5, we further analyse the results presented in Chapters 3 and 4. The Chapter
describes work in progress at the time of this thesis. We extend the dynamical modelling
to a much larger sample and place them in the context of the scaling relations introduced
in Section 1.1.3. We find that GCs hosting IMBH with a low mass fraction M, /M- <
2.0% are harder to identify and our models can only account for upper limits. In the
M, — o relation, we find that GCs with a significant retained fraction of stellar-mass
black holes have similar behaviour to clusters with an IMBH. Finally, we discuss the
effects of the binaries in the estimated masses of IMBHs and their effect on the M, — o
relation.

Finally, Chapter 6 summarises the main results from Chapters 3, 4 and 5, putting them
in the broad context presented in the introduction. Chapter 6 also includes follow-up
research that could further improve the results presented in this thesis.



Chapter 2

Methods: Stellar dynamics and

numerical simulations

This thesis explores the limitations of dynamical models when measuring the mass of a
central intermediate-mass black hole (IMBH) in globular clusters (GCs). To do so, we
apply dynamical models to mock data obtained from numerical simulations of GCs. This
Chapter discusses the two main methods used in an introductory and broader manmner.
Chapters 3, 4 and 5 contain their own “methods” sections that focus on their respective
specific objectives.

2.1 Stellar dynamics

As discussed in Section 1.3.1, if an IMBH is present in the centre of a GC, the surrounding
stars will follow the gravitational potential of the IMBH and show a characteristic rise in
the observed velocity dispersion. Through this kinematic signature, one is able to infer
the possible mass of the central IMBH. To do so, we need to model the GC’s dynamical
state. This section provides a general overview of the dynamical models used throughout
the thesis; for further details, refer to Binney & Tremaine (2008).

There are two regimes in which we can model the dynamics of a stellar system: collisional
and collisionless. The orbit of a star will follow the overall potential of the stellar system.
However, as mentioned in Section 1.2.2, encounters between stars can perturb the initial
orbit of the star. If many encounters follow, the star will eventually “forget” its initial
orbit due to the gravitational potential. If the encounters dominate the dynamics of the
system, then the stellar system is collisional. On the other hand, if the encounters are
not relevant, the stellar system is collisionless. We can assume that the stellar system
remains collisionless if the dynamical time scales that we are modelling are significantly
smaller than the relaxation time (see Section 1.2.2). If, however, the time scales are

21
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longer than the relaxation time, then we must consider the diffusive effects of the stellar

encounters.

Stellar encounters and the two-body relaxation process dominate the dynamical evolu-
tion of GCs (see Section 1.2.2). If we want to follow the overall dynamical evolution of
GCs then we should follow the collisional dynamics regime. However, here we are inter-
ested primarly in the instantaneous dynamical state of the GCs, given by their observed
stellar distribution and kinematics. In this case, we can assume that the collisionless dy-
namics regime provides a sufficient representation of the current dynamical state, while

at the same time allowing for significant computational simplifications.

Whereas some of the concepts presented in the following apply both dynamical regimes,

this introductory description is provided assuming the system is indeed collisionless.

2.1.1 Basic concepts

The motion of stars follows the gravitational interaction due to a single mass or a
mass distribution through the well known gravitational force. A more straightforward
representation of this mutual interaction comes from considering the gravitational
potential &, in which case stars move following:

d*x

=7 = Vo). (2.1)

The gravitational potential will depend on the mass distribution acting on the star. It
can be due to a point-like mass, in which case the gravitational potential has the form:

B(r) = —¥= (2.2)

where G is the gravitational constant, M is the point-like mass, and r is the distance
between the point-like mass and the star; this is the so-called Kepler potential. On
the other hand, if we have an extended mass distribution as is the case for any stellar

system, the Poisson equation gives us the gravitational potential:
V2B (x) = 4nGp(x) , (2.3)
where p(x) is the mass density of the stellar system.

The path which a star follows, given the gravitational potential, is the stellar orbit.
Periodic solutions of Equation 2.1 are known as bound orbits and for spherical potentials
they will resemble an elliptical shape that can be closed as in the case of the Keplerian
potential or open for most other potentials. The eccentricity of the orbit indicates how
elongated the orbit is. Section 2.2.3 discusses the Keplerian orbit case, particularly when

characterizing binary stars.
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The different positions and velocities that any given star has during its orbital motion
form the 6-dimensional phase space containing the position and velocity (x,v) of the
star. During the orbital motion, there are functions of the phase space variables that stay
constant with time: the integrals of motion. The dynamical models used throughout
this thesis follow spherical potentials, these potentials have only two integrals of motion:
the Hamiltonian H(x,v) = %vz + ®(x), which is linked to the energy, and the angular

momentum L =1 = v.

The distribution function f(x,v) (DF) provides the probability of finding any given
star in the phase space of position and velocity, which allows us to describe the dynamical
state of any stellar system. Whereas the DF is not directly observable, the different
velocity moments of the DF can provide us with the observable properties of the stellar
system.

The zero-order velocity moment provides the probability of a star to be at a certain

position x, v(x):
v[x}=ff|:x?v}dv. (2.4)

Whereas this quantity cannot be directly observed, it is related to different observables.
For a system with N stars, the number density is given by n(x) = Nv(x). Further-
more, if all stars have the same mass and luminosity, we can define the mass density
p(x) = Mioev(x) and the luminosity density j(x) = Liot(x), where My and Lig
are the total mass and luminosity of the stellar system. In practice, as stars will have
different masses and luminosities, the observed luminosity and mass densities (if the

latter is available) will only provide an approximation to v(x).

The first velocity moment is given by :

)69 = [vfxviav. (2:5)

and provides the mean velocity of the stellar system. The second velocity moment:
() = [fexviv, (26)

is also kmown as the mean-squared welocity and relates with the root-mean-squared
velocity as Vipe = 1/ (vZ). A more commonly used observable is the velocity dispersion
o, which is given by:

o = (v¥) — (v)2. (2.7)

In general, a stellar system will have a velocity dispersion tensor that collects the
different velocity components for each coordinate c.rf and the cross-terms between coor-
dinates a?d. The ratio between the diagonal elements of the velocity dispersion tensor
is known as the velocity anisotropy of the stellar system. For example, in a spherical
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system with coordinates (r, #, ¢), the velocity anisotropy S is given by:

2 2
T+ T
f=1--2_2¢ (2.8)

202
Where o2, crg and ag are the diagonal components of the velocity dispersion tensor.
For 8 = 0, the stellar system is isotropic, which means o2 = ag = G’i. If3=o0,
then the stellar system is radially anisotropic, which means that stellar orbits will he
preferentially radial (i.e. the orbits will be more eccentric). On the other hand, if 8 < 0
the stellar system is tangentially biased, and most stars follow less eccentric or circular

orbits.

A stellar system that is collisionless and is in dynamical equilibrium will follow the

collisionless Boltzmann equation:

af af ob of
otV ax ax v (2.9)
which describes the conservation of the probability for finding a star at a given position
in the phase space (x,v). In the steady-state case, the DF does not implicitly depend
on time and 3f /dt = 0.

The Jeans theorem (Jeans, 1915) indicates that steady-state DFs, which are functions
solely of integral of motions, are solutions to the collisionless Boltzmann equation. For
spherical systems, we can build isotropic DFs that are functions of the energy through
the Hamiltonian f(H) or anisotropic DFs that also depend on the angular momentum
f (H E L}‘

2.1.2 Modelling approaches

As we mentioned in Section 2.1.1, the DF defines the dynamic state of a stellar sys-
tem; therefore, it is only natural to find its underlying DF. One of the simplest DFs
for GC-like stellar systems is the Plummer model (Plummer, 1911), which is frequently
used as an approximated representation of the initial state of a cluster in mumerical
simulations. This choice is partly due to their straightforward mathematical form. A
different family of DFs models, known as lowered isothermal models, allows for lower
stellar densities at larger radius making them finite, as is the case for GCs. Further-
more, the velocity distribution of the lowered isothermal models resembles a Maxwellian
velocity distribution, which is expected for relaxed stellar systems such as GCs. The
King model (King, 1966) is one of the most well-known lowered isothermal models and
provides a good fit to the surface luminosities of GCs, particularly for more relaxed
GCs (Zocchi et al., 2012). Whereas both the Plummer and King models have isotropic
DFs, the Michie models (Michie, 1963) have a DF of the form f{H,L) that allows for
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velocity anisotropy. Further development of DF models have focussed on the inclusion
of multi-mass components (Da Costa & Freeman, 1976; Gieles & Zocchi, 2015; Zocchi
et al., 2016; Peuten et al., 2017), the effects of mass segregation and dissolution (Claydon
et al., 2019; Gomez-Leyton & Velazquez, 2019) and the internal rotation of GCs (Varri
& Bertin, 2012; Bianchini et al., 2013).

Finding the underlying DF of a given stellar system is not straightforward, and it is
limited to cases where the appropriate family of functions is known, which is the case of
the lowered isothermal models and GCs.

An alternative is to bypass the DF and focus on its velocity moments. The Jeans
equations (Jeans, 1922) allow us to model the observed kinematics of a stellar system
without relying on the DF and, in the process, to estimate the mass distribution of the
stellar system. The Jeans equations have been highly successful to model a variety of
stellar systems from GCs to galaxies. Particularly for GCs, many of the studies searching
for IMBHs used the Jeans equations (see Section 3.1). The dynamical models used
thorough this thesis follow the Jeans equations. Further details on the implementation
of the Jeans equation follow in Sections 2.1.3 and 3.2.3. Although their success in

modelling the stellar system dynamics, the Jeans equations have two main caveats:

(a) They act solely on the DF’s velocity moments and the gravitational potential, and
we do not know the DF behind them. Therefore, it is not trivial to prove that the
model follows a physical DF.

(b) As they are not closed, further assumptions, such as the velocity anisotropy of
stellar systems, are necessary to solve them.

A possible way to overcome the main limitations and assumptions of the Jeans equation
models is to build orbit based models. These models follow the so-called Schwarzschild’s
method (Schwarzschild, 1979) in which bundles of stellar orbits, with different integrals
of motion, are evolved under a given potential. The combination of orbits that better
represents the observed kinematics of the stellar system constrains the mass distribution
of the stellar system and its underlying DF. Orbit based models do not need any as-
sumption for the velocity anisotropy as this is a byproduct of the sampled orbital library.
Some of the applications of orbit based models to GCs include the works by Gebhardt
et al. (2005); van de Ven et al. (2006); van den Bosch et al. (2006); Noyola et al. (2008).

2.1.3 The Jeans equations

In this thesis, we use dynamical models based on the Jeans equations, which allow us
to model the velocity moments rather than the DF directly. This section will briefly
describe how to measure the mass of central IMBH through the Jeans equations by
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applying the method to mock data sampled from a Plummer model with a central
IMBH.

The Jeans equation for a steady-state spherically symmetric stellar system is given by:

2(v2) — (v3) — (v2
2, (52) + v }(@ 08) ~ () m) o 210

where @®(r) is the gravitational potential, i#(r) is the zeroth order velocity moment given
by Equation 2.4, and (VEL (v%},and {vi} are the second velocity moments. For a given
v(r) and ®(r) we can solve the Jeans equation to find the second wvelocity moments.
However, as we only have one equation for three unknowns, the Jeans equation requires
additional assumptions on the velocity anisotropy of the stellar system to solve it. In
this case, for simplicity, we assume that the underlying DF is isotropic and of the form
f(H). In Section 3.2.3 we will deal with the anisotropic case. Under this assumption,
the Jeans equation simplifies to:

d d®
E( ){v2 )+v{rd—={], (2.11)

and the second velocity moment is:

1
2
= — —d"r"r 212
=5 [ v (212
In practice, we use observable stellar tracers such as the number density n(r) or the
luminosity density j(r) instead of v(r).

The first step is. of course, to define which type of data we need. In general, for any
stellar system besides our Galaxy we only have the positions of the stars in the sky
and the observed velocities which can be radial velocities along the line-of-sight (i.e.
spectroscopic data) or proper motions, which are the movement of stars in the plane of
the sky (i.e astrometric data). Note that for stellar systems that are not resolved due to
their distance, we will only have integrated spectroscopic data. As we are missing one
positional coordinate, we can only compare the observed kinematics with a weighted
average of the second velocity moment along the line of sight, which in our simple case
is given by:

(B = 577 . g (213)

As we are working under the assumption of spherical models, the mean wvelocities are
all zero. Furthermore, we can assume that the observed velocity dispersion is a good

representation of the second velocity moment, so that o, = {v Y12,
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FicurE 2.1: Surface number density (a) and welocity dispersion (b) for mock data
sampled form a Plummer model with M, , = 105 M and an IMBH of M, = 104 M.

For this introductory example, we will use mock data sampled from a Plummer model®
with a central IMBH and a mass density profile that is given by:

1 1

plr) = Pﬂm—“ + (r/a))52 " (2.14)

with a central density py = 143.2 Mgpc? of and scale radius a = 3.13pe. The total
mass of the mock stellar system is M, = 108 M, and the IMBH corresponds to 1% of
the total mass (i.e. M, = 10* M). Figure 2.1 shows the surface number density N(R)
and line-of-sight velocity dispersion gy, for the mock data. These two are the main
ingredients required to model and estimate the mass of the central IMBH.

The text step is to deproject the tracer density. In this case, we use the number density,
whereas in Chapter 3 and 5, we use the surface luminosity. We deproject the number

density using the following formula:
n(r) = -1 f = dR dN
o r 1,.|'R2 _r2dR !
which is the solution for the Abel integral equation. Figure 2.2 shows the initial surface
number density (solid line) and the resulting 3D number density (dashed line).

(2.15)

Once we know the tracer density, the next ingredient for finding the second wvelocity
moment is the gravitational potential. For spherically symmetric potentials, we can find

that
GM(r)

dd/dr = ——5—.

(2.16)

The mock data is part of the models developed by Eugene Vasiliev for the 5th Gaia Challenge and
are available on http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku . php?id=gch_mocks


http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php?id=gc5_mocks
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FiGurE 2.2: Tracer densities for the mock data. We deproject the observed surface

number density N(R) (solid lines) to find the 3D number density n(r) (dashed lines).

We see that the deprojected number density is a good representation of the 3D number
density directly measured form the mock data (black crosses).
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FigurE 2.3: Mass and velocity dispersion models for different central IMBHs. As the
mass of the central IMBH increases, we see that it rapidly dominates the stellar system
mass in the centre (panel a). In the same way, as the IMBH mass increases, the central
cusp in velocity dispersion becomes more clear (panel b). This feature allows us to
constrain the mass of the central IMBH with the ohserved velocity dispersion.
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FIGURE 2.4: Results of the y? fit. Given the models in Figure 2.3, we can compare to
the data to find the best fit model. Panel (a) shows the observed velocity dispersion and
the regions defined by the 68%, 95% and 99.7% confidence regions. Panel (b) shows the
resulting best-fit (cross) and confidence regions for the fit, along with the known values
(dotted red lines). The expected values are consistent within the lsigma confidence

region.

Therefore, we can use the cumulative mass profile instead of ®. We build mass profiles
of the form:

M(r) = Ma + M,(r), (2.17)

where M, (r) is the mass of the stellar component and is given by:
M,(r) = 4r f p(r')rdr' . (2.18)
0

In practice, we can add as many mass components as we need. In this case, we will
assume that the mass density is proportional to the number density and use the total
mass as a scalling factor:

p(r) = Mot zf: : (2.19)

In Chapters 3 and 5 we use the mass-to-light ratio instead to convert from the tracer
luminosity density to the mass density. Panel (a) of Figure 2.3 shows the mass profiles
for IMBHs with different mass fractions.

For the mass model, we can now obtain the second velocity moment using Equation 2.12
and then use Equation 2.13 to find a comparable value to the observations. Panel (b)
of Figure 2.3 shows the line-of-sight velocity dispersion for IMBHs with different mass
fractions, from 0% up to 4%. As the mass of the central IMBH increases, the central rise
in velocity dispersion becomes steeper. By using these dynamic models, we can build
velocity dispersion profiles that can match the effect of an IMBH., as discusses in section
1.3.1 (see also Figure 1.7).
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The last step is to compare the models with observations. In this case, we minimize the
residuals by calculating the y? for each model given by:

2
=y = T Ce) (220

5010s)°

where oy, is the observed velocity dispersion, o), is the observational error and (vy,.)
is the second velocity moment given by Equation 2.13. Alternatively, we can use the
velocities of individual stars in a discrete manner and calculate the likelihood of each
model. Figure 2.4 shows the results of the fit, where the grey areas and contours represent
the 1,2 and 3-sigma levels of the fit. We find that our estimation of the masses is
consistent with the real values within errors.

In Chapters 3 and 5, we follow a similar approach to estimate the masses of IMBH in
simulated data.

2.2 Numerical simulations

As discussed in Section 1.2.2, the dynamical evolution of GCs is dominated by two-body
interactions. Whereas the dynamical models presented in Section 2.1 provide a good
representation of the stellar system at a given time, numerical simulations prove to be
a more helpful method to study the evolution of GCs.

This Section introduces two commonly used numerical approaches to simulate GCs:
direct N-body and Monte Carlo (MC) simulations. The analysis presented in this thesis
uses simulated GCs evolved with the Monte Carlo method. However, a broad description
of the direct N-body method helps to better understand the MC models.

2.2.1 Direct N-body simulations

Direct N-body simulations are used for various astrophysical problems and different
spatial scales: from planetary systems, stellar systems, galaxies to galaxy clusters scales.
The main advantage is that N-body simulations do not assume any particular dynamical
evolution and instead directly follow the gravitational interactions between the particles
(e.g. planets, stars, dark matter). The direct N-body method follows each particle by
solving the gravitational force equation, which corresponds to a system of N equations:

N
) M (221)

where x; is the position vector of the i-th particle in the system, m; its mass and G the
gravitational constant. The direct N-body method evolves the position and velocities
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of each particle given a short time step Af. An important component in the precision
of the simulated system is the size of the time step, particularly for GC like systems
where close encounters between stars are dominant and the presence of binaries plays
a significant role. The implementation of variable time-steps and high-order integrators
helped to reduce their computational cost (Makino, 1991).

The first algorithms for solving the N-body problem appeared in the early 1960s (von
Hoerner, 1960; Aarseth, 1963) with up to a few tens of stars. The development of
more extensive simulations, particularly for GC-like systems, has continued on par with
the improvement of computational power, in particular for simulations evolved using
software libraries such as the nbody code (see Aarseth, 1999, for a review up to its
6th iteration, nbody6) and Starlab (Hut, 2003). The need for more computational
power pushed for creating specific machines like GRAPE (Sugimoto et al., 1990) and HARP
(Makino et al., 1993), and the development of highly parallelisable codes that currently
run on graphic processing units (GPUs, Berczik et al., 2011; Nitadori & Aarseth, 2012;
Wang et al., 2015). The largest direct N-body simulation today contains 10° stars
(Wang et al., 2016).

Direct N-body simulations have been instrumental for understanding the dynamical
evolution of GCs. From exploring the evolution of binaries (McMillan et al., 1990; Trenti
et al., 2007a), core-collapse and post core-collapse evolution (Spurzem & Aarseth, 1996),
mass loss under realistic tidal fields (Fukushige & Heggie, 2000; Baumgardt & Makino,
2003; Ernst et al., 2009), internal rotation (Ernst et al., 2007; Tiongco et al., 2017,
2018), the retention of stellar mass BHs (Breen & Heggie, 2013a.b; Sippel & Hurley,
2013; Wang et al., 2016), formation of IMBHs (Portegies Zwart et al., 2004; Rizzuto
et al., 2021) and their effects (Baumgardt et al., 2005; Trenti et al., 2007b; Noyola &
Baumgardt, 2011; Liitzgendorf et al., 2013c), to multiple stellar populations (Vesperini
et al., 2013; Mastrobuono-Battisti & Perets, 2013; Hong et al., 2015; Hénault-Brunet
et al., 2015; Gavagnin et al., 2016; Mastrobuono-Battisti & Perets, 2016; Tiongco et al.,
2019) and their possible origin through mergers between GCs (Amaro-Seoane et al.,
2013; Hong et al., 2015; Mastrobuono-Battisti et al., 2019), to name some examples.
N-body simulations aiming to represent specific GCs (e.g., Hurley et al., 2008; Heggie &
Giersz, 2014, for M4) have also motivated the development of large libraries to constraint
structural parameters and dynamics of GCs (Baumgardt, 2017; Baumgardt & Hilker,
2018; Baumgardt et al., 2019a).

2.2.2 Monte Carlo simulations

In the same way that the collisionless Boltzmann equation describes the evolution of the
DF for collisionless systems, the Fokker-Plank equation describes the temporal evolution
of a DF when diffusive effects, such as two-body encounters, are significant. By solving
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the Fokker-Plank equation, it is possible to follow the evolution of stellar systems dom-
inated by relaxation processes. The Monte Carlo (MC) approach provides a statistical
way to solve the Fokker-Plank equation (Hénon, 1971b; Spitzer & Hart, 1971).

First, we assume that the stellar system is spherically symmetric and that for time-
steps At larger than the crossing time and much smaller than the relaxation time,
perturbations due to two-body interactions are not relevant. Only their cumulative
effect over the relaxation time will significantly change the DF and the gravitational
potential. The MC method consists in applying random perturbation to the orbits of
tests stars during the time-step At. Two main ways have been developed over the years:
the first is to follow the orbit of the test stars continuously while the perturbation is
applied (Spitzer & Hart, 1971), the second consists in randomly choosing positions on
the orbital path of the test stars t then calculate the average perturbation over the orbit
(Hénon, 1971b,a).

Although direct N-body and MC approaches are intrinsically different, the later has
been developed tested to resemble GCs evolved via direct N-body simulations (see,
eg., Giersz et al., 2008, 2013). The main advantage of MC simulations over N-body is
that they are comparatively inexpensive in terms of computational requirements, which
permits evolving more extensive simulations (N ~ 10° — 10° stars) in a shorter time and

exploring a broader sample of initial conditions.

MC simulations have also been developed to study the dynamical evolution of GCs
(Giersz, 1998, 2001), exploring the presence of binaries and formation scenarios for blue-
stragglers stars (Giersz & Spurzem, 2000; Fregeau et al., 2003; O’Leary et al., 2006; Hypki
& Giersz, 2013) and, more recently, multiple stellar populations in GCs (Vesperini et al.,
2021; Sollima, 2021). MC simulations have been particularly successful in exploring the
retention and subsequent evolution of stellar-mass black holes in GCs (Morscher et al.,
2013, 2015). This has allowed different works comparing MC simulations to observable
properties of Milky Way's GCs to estimate the retained fraction of stellar-mass BHs
(Askar et al., 2018b; Weatherford et al., 2020). Furthermore, MC simulations have
been very successful to follow up the dynamical formation channels for binary black
hole mergers and observation rates (O'Leary et al., 2006; Rodriguez et al., 2016; Askar
et al., 2017; Hong et al., 2018). MC simulations have also explored different formation
scenarios for IMBHs (Giersz et al., 2015; Gonzalez et al., 2021) and binary black hole
mergers rates under the presence of a central IMBH (Hong et al., 2020).

The MC simulations used throughout this thesis are part of the MOCCA-Survey I (Askar
et al., 2017), which is a collection of around 2000 simulated GCs with different ini-
tial conditions and evolved with the "MOmnte Carlo Cluster simulAtor” (MOCCA) code.
The MOCCA code, developed by Giersz et al. (2013); Hypki & Giersz (2013), follows the
orbit-average implementation first described by Hénon (1971b) and further improved by
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FicurE 2.5: Spherical (a) and sky (b) coordinate systems used throughout this thesis.

Stodolkiewicz (1986). In Sections 3.2.1 and 4.2.1 specific implementations of the code

and their importance for the research presented in this thesis are discussed further.

2.2.3 From simulations to observed kinematics

The analysis presented in Chapters 3, 4 and 5 requires the positions and velocities of each
single and binary star in sky coordinates, that is defined by the position (z', y') in the sky,
the line-of-sight velocity vies (or radial velocity, RV) and the radial vpm, and tangential
Vpmt proper motions (see panel (b) of Figure 2.5). Clusters evolved with MOCCA have
spherical symmetry, so single and binary stars have only (r, v, v¢). Therefore, we need to
randomly sample the missing spherical coordinates (¢, ¢, vy, v;) before transforming the
positions and velocities into cartesian coordinates and subsequently to sky coordinates.

First we randomly sample values of # and ¢, uniformly over a sphere. This is done by

sampling values from a uniform distribution, so that:

¢ =U(0,2n) (2.22)
cos(f) =U(—1,1) (2.23)

Then we sample vy and v, so that vi = v% - vg and:

vg =V¢ cos(w) (2.24)
Vg =V sin(w) (2.25)

where w is sampled form an uniform distribution between 0 and 2w.
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With the full spherical coordinates for each single and binary star, we transform into

cartesian coordinates following:

x =r cos(¢) sin(f) (2.26)
y =r sin(¢) sin(#) (2.27)
z =7 cos(f) (2.28)
vy =V, cos(¢) sin(#) — v sin(@) + vg cos(d) cos(#) (2.29)
vy =V, sin(¢) sin(f) + vy cos(p) + ve sin(@) cos(#) (2.30)
vz =V, cos(#) — v sin(f) (2.31)

Equations 2.26 to 2.31 give us the positions and velocities for every single star and the
centre of mass of binary stars. In Chapter 4, we study the effects of binary stars in
the observed kinematics and their behaviour under the presence of an IMBH. For this
analysis, we need the individual velocities for each component of the binary star. In ad-
dition to the positions and velocities for the centre of mass of binary stars and the stellar
parameter for each component (mass, luminosity, size, stellar types and magnitudes),
the semi-major axis a and eccentricity e for each binary orbit are directly obtained as
output of the MOCCA simulation.

If no external forces are acting on the binary, the motion of each binary component
reduces to a single Keplerian orbit? with period T and angular momentum L given by:

113
T =2m|/m, (2.32)

2ma?
L= T

1—¢€?, (2.33)

where m and ms are the masses of each binary component, while the semi-major axis a
and eccentricity e are known from the simulation. Then, the position and velocity along

the Keplerian orbit in polar coordinates (r, ) is given by:

a(l —e?)
1 + ecos(y — @)
esin(p—yo) L

") = ecos(e — vo) 7(9) (239

r(p) = (2.34)

where g is the orbital phase that, for simplicity, we set g = 0. We find the radial
position and velocity at a given time t using ¢(t) = (2w /T')t, and select a random position
along the orbit by sampling from a uniform distribution between 0 and T for each binary
star. Note that due to our assumption on the orbital phase, the two binary components

*This is the well-known two-body problem, in which the equations of motion for each component
combine into a single equation, where the positions are measured with respect to the binary centre
of mass and the binary components are represented by a single object with reduced mass of p =
{mlmg}f{mi +m3}.
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will be at their closest distance at t = 0. In Chapter 4, we evaluate the positions and
velocities of the binary at different epochs, starting from the initially randomly sampled
time.

We transform the position and velocity from polar coordinates to cartesian coordinates

(x,v) and obtain the position and velocities of each component of the binary:

ma ma
X =———X, Vi=—V (2.36)
my + ma My + ma3
m m
Xg=—X, Vg=—V (2.37)
my + ma My + ma3

During this process, the orbital plane was constrained in the z-y plane. As a last step,
we randomly orientate the orbital plane by selecting two angles sampled uniformly over
a sphere (as in equations 2.22 and 2.23) and rotating the orbital plane given those angles.
Each binary component’s final position and velocity is added to the binary’s centre of

mass position and velocity.

Once all positions and wvelocities for single and binary stars are sampled in cartesian
coordinates, we transform into sky coordinates. To do so, we take (z,y) as the sky
coordinates (z',y'), —z as the line-of-sight direction 2/, and —v. as the line-of-sight
velocity vigs. For the radial and tangential proper motions, we transform (v.,v,) into

Vpmr and Vpme with:

Vpmr =Vz C08(i2) — Vy sin(p) (2.38)
Vpmt =V 8in(y) + vy cos(yp) (2.39)

where ¢ is given by = arctan(y'/z').

In Chapter 3 and 5 we use the positions and velocities in sky coordinates to construct
radial profiles for the kinematics. We use the luminosity of each star also to generate
surface luminosity profiles. Section 3.3.1 describes the process to get the radial profiles.
In both Chapters, we either exclude the binary stars or use their centre of mass velocity
for the kinematics. On the other hand, in Chapter 4, we obtain the observed velocities
for binaries by considering a luminosity-weighted velocity combining both components.
Section 4.2 describes how we treat the observed kinematics for binary stars.

*Please note that for most numerical methods arctan() is defined between —m and +m, we change
the range to (0, 27) by adding 27 to the angles with ¢ < 0.






Chapter 3

Dynamical modelling of globular
clusters: challenges for the robust
determination of IMBH

candidates

This chapter is in press as "Dynamical modelling of globular clusters: challenges for the
robust determination of IMBH candidates” by F.I. Aros, A. C. Sippel, A. Mastrobuono-
Battisti, A. Askar, P. Bianchini and G. van de Ven. Monthly Notices of the Royal
Astronomical Society, Volume 499, Issue 4, December 2020, Pages {646—4665, hitps:
//doi. org/10. 1093/ mras/ staa2821. The labels of a few variables were changed
from the original to be consistent with the full thesis.

3.1 Introduction

With masses between 102 Mz and 10° M, intermediate-mass black holes (IMBHs) are
still an elusive population. Ultra-luminous X-ray sources are thought to be accretion
signatures of IMBHs, ESO 243-49 HLX-1 being one of the most promising candidates
with a minimum mass of 500 Mg (Farrell et al., 2009). Recently the gravitational wave
observatories LIGO and Virgo detected a ~ 140 M, black hole (Abbott et al., 2020a,b).
In the local neighbourhood a few candidates have been suggested through dynamical
analysis of nearby globular clusters (GCs) (see e.g. Noyola et al., 2008; van der Marel
& Anderson, 2010; Liitzgendorf et al., 2013a, 2015). Despite their scarce evidence,
IMBHs are thought to be the missing link between stellar mass black holes (BHs, with
masses of ~ 10 M) and supermassive black holes (with masses larger than ~ 10° Mgz).
Furthermore it has been suggested that IMBHs could be the seeds for supermassive
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black holes observed at high redshifts in the early universe (see e.g. Haiman, 2013, for a
review). Possible paths for the formation of IMBHs are the direct collapse of a massive
star (Madau & Rees, 2001; Spera & Mapelli, 2017) and the runaway merger of stars in
dense stellar systems (Portegies Zwart et al., 2004), which happens early in the evolution
of the stellar system (see also Giersz et al., 2015). A third path may occur later in the
evolution of dense stellar systems, where an IMBH can grow from dynamical interactions
(Giersz et al., 2015). The latter two scenarios suggest that a dense stellar systems, such
as GCs, could host a central IMBH.

GCs are bound stellar systems of ~ 10° — 109 stars, with total masses around 5 x
10°M;. As their name suggests, most of them have a characteristic spherical shape.
CGCs are compact stellar systems with half-light radii! of the order of a few parsecs.
Their compactness and high stellar density make them bright enough to be observed,
not only in our galaxy or the local group but also beyond (Harris & van den Bergh,
1981; Brodie & Strader, 2006). Given their relatively high ages, bigger than ~ 10Gyr,
GCs are considered the relics of the formation epoch of galaxies (Vandenberg et al.,
1996; Carretta et al., 2000). The Galactic GCs half-mass relaxation times range from
~ 100 Myt to ~ 10Gyr (Harris, 1996, 2010 edition), making them unique systems for
dynamical studies. The short relaxation times allow for mass segregation, i.e. the sorting
of higher mass stars towards the cluster centre (Spitzer, 1987), while evolving towards
a state of partial energy equipartition (see Spitzer, 1969; Trenti & van der Marel, 2013;
Bianchini et al., 2016b).

Different methods have been utilized to find IMBHs in GCs, each relying on two types
of signature: accretion of gas by the IMBH or dynamical effects due the presence of
the IMBH. On one hand, the accretion signatures in Galactic GCs are dim or non-
existent, pointing towards possible IMBHs masses lower than 1000 Mg or no IMBHs at
all (Tremou et al., 2018). On the other hand, (most of) the IMBH candidates in Galactic
GCs have been suggested using dynamical signatures. Stars under the direct influence
of the central IMBH will follow a Keplerian potential producing a central cusp in the
velocity dispersion profile of the GC (Gebhardt et al., 2002; Noyola et al., 2008, 2010;
van der Marel & Anderson, 2010; Liitzgendorf et al., 2011, 2012, 2013a, 2015; Kamann
et al., 2014, 2016, to name a few).

Even with the vast literature analyzing the dynamical signatures at the centres of GCs,
there is still no consensus regarding the presence or absence of IMBHs in Galactic GCs.
The central cusp in velocity dispersion is limited to stars within the radius of influence?

of the IMBH (rin¢), which is typically just a fraction of the core radius. Due to the small

Unless mentioned otherwise we refer to half-light radius as the the projected radius containing half
of the light in the GC (Ry), while the half-mass radius is the 3D radius containing half of the mass in
the GC (rao).

*The radius of influence rizs is the distance from the centre of the GC where the cumulative mass of
stars (and stellar remnants) is equivalent to the mass of the central IMBH, and hence depends crucially
on the mass of the IMEH.
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size of the radius of influence, errors in the determination of the kinematic centre or
contamination by bright stars due to crowding in the centre of the GC might hamper
the dynamical analysis. Using IFU data of the central region of NGC 5139 (w Cen),
Noyola et al. (2008) find evidence of a ~ 40000 M;, IMBH. For the same cluster, using a
sample of proper motion from HST, van der Marel & Anderson (2010) only find an upper
limit of 18000 Mg, for the possible IMBH. Both studies have a difference in the position
of the kinematic centre, separated by 12" (or ~ 0.3pc at the distance of NGC 5139),
which corresponds to 1 ~ 2 times the riyf, depending on the inferred IMBH mass as given
above. However, using another sample of radial velocities, Noyola et al. (2010) show that
the detection of the IMBH holds for the different kinematic centres. The discrepancy
between both estimates could arise from either the different kind of kinematic data or
modeling technique applied. Similarly in the case of NGC 6388, where Liitzgendorf et al.
(2011, 2015) find evidence for an IMBH using velocity maps from integrated spectra,
while Lanzoni et al. (2013) do not observe the central velocity dispersion cusp when
using the radial velocities of individual stars. More recent observations from IFU with
MUSE by Kamann et al. (2018) further support the presence of a central cusp in velocity
dispersion. No matter which observational technique is used, the highly crowded centres
of GCs add a complex observational challenge.

In addition to the observational limitations due to a small iy, the detection of an
IMBH is also made difficult by the limitations in the dynamical models, used to actually
identify an IMBH in the observational data. While usually a constant (global) mass-
to-light ratio and velocity anisotropy (see Section 3.2.3) are assumed for the dynamical
models, these quantities can vary significantly in a GC. For NGC 5139 van der Marel &
Anderson (2010) show how an extended dark mass due stellar remnants is also consistent
with the observed velocity dispersion profile. This possibility was also recently explored
by Zocchi et al. (2019) who uses a multi-mass dynamical model, based on distribution
functions, to include a central cluster of stellar-mass black holes, proving that this dark
extended population could also produce the central rise in velocity dispersion in NGC
5139. Using a library of N-body simulations, Baumgardt et al. (2019b) also showed
that a cluster of stellar-mass black holes at the centre of NGC 5139 was favoured over a
central IMBH, in particular due to their distinctive effect on the high velocity stars at
the centre of the GC. A similar case was shown by Mann et al. (2019) for 47 Tuc, where
a multi-mass dynamical model with a central cluster of black holes was consistent with
the kinematic data, ruling out the necessity for a central IMBH suggested by Kimltan
et al. (2017). This has been confirmed by Hénault-Brunet et al. (2019a) with a different
type of multi-mass models.

Simulations of GCs with a central IMBH provide us with a benchmark to study the
observational and dynamical modelling limitations which hinder a robust detection of
an IMBH via its dynamical signatures. Work in this direction has been done by de Vita
et al. (2017). In their work, the authors explore the recovery of IMBH masses in GCs
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combining Monte Carlo simulations of GCs with a central IMBH (Askar et al., 2017)
and mock IFU observations from SISCO (Bianchini et al., 2015), addressing the effects
of crowding, contamination due bright stars and the cluster center. They find that, even
when the actual mass profile is fully known, it is challenging to detect low-mass IMBH
or rule out the IMBH solution in cases without a central IMBH. In addition, they show
that when the IMBH is detected, the inferred mass is systematically underestimated.
They suggest that the reason could be unquantified effects due energy equipartition and

binaries.

In this work we explore the limitations of dynamical modelling based on Jeans equations
to detect a central IMBH and the feasibility of rejecting an IMBH solution when it is
truly absent. For this, we will assume rather perfectly sampled observational data from
realistic simulations of GCs and analyse it with simple, but commonly used. dynamical
models. We introduce a set of Monte Carlo simulations in Sections 3.2.1 and 3.2.2
and analyze them with Jeans models® described in Section 3.2.3. We focus on the
limitations in the dynamical modelling itself, which assumes constant mass-to-light ratio
and velocity anisotropy (see Section 3.2.3), we apply the same modelling pipeline to the
simulated GCs in Section 3.3.1 and then analyse the result of the fittings in Section
3.3.2. In Section 3.4 we discuss the reliability of our dynamical models and we conclude

with our summary in Section 3.5.

3.2 Methods and Model Setup

We investigate the kinematic signatures of the presence of an IMBH using Monte Carlo
N-body models, evolved to 12 Gyr, to analyze and understand the dynamical signatures
of the presence of an IMBH, as described in the following sections.

3.2.1 MoCCA and the Monte Carlo method

The MOCCA-Survey Database I (Askar et al., 2017) is a collection of about 2000 simu-
lated star clusters with different initial conditions that were evolved using the MOCCA
code (MOnte Carlo Cluster simulAtor, Hypki & Giersz, 2013; Giersz et al., 2013). The
MOCCA code is a ‘kitchen sink’ package that combines treatment of dynamics with pre-
scriptions for stellar/binary evolution and other physical processes that are important

in determining the evolution of a realistic star cluster.

Dense star clusters are collisional systems and their evolution is governed by 2-body
relaxation. In MOCCA, the treatment for relaxation is based on the orbit-averaged Monte
Carlo method (Hénon, 1971b,a) for following the long term evolution of spherically sym-
metrical star clusters. This method was subsequently improved by Stodolkiewicz (1982,

}Hereafter we refer as ‘models’ exclusively to the dynamical models.
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1986) and Giersz (1998, 2001). In this approach, relaxation is treated as a diffusive
process and velocity perturbations are computed by considering an encounter between
two neighboring stars. Energy and angular momentum of stars are perturbed at each
timestep to mimic the effects of two-body relaxation. The Monte Carlo method com-
bines the particle based approach of N-body methods with a statistical treatment of
relaxation. This allows for inclusion of additional physical processes that are important
when simulating the evolution of a realistic star cluster. In MOCCA, stellar and binary evo-
lution are implemented using the prescriptions provided by the single (SSE) and binary
(BSE) codes (Hurley et al., 2000, 2002). For computing the outcome of strong dynam-
ical interactions involving binary-single stars and binary-binary stars, MOCCA uses the
FEWBODY code (Fregeau et al., 2004) which was developed to carry out small- N scatter-
ing experiments, in which case, the timestep for FEWBODY is set to resolve the interaction.
Within one MOCCA timestep, many of such interactions can occur and it is also the case
for binary systems interacting with an IMBH. MOCCA also includes a realistic treatment
for the escape process in tidally limited star clusters as described by Fukushige & Heggie
(2000). In this treatment, the escape of an object from the cluster is not instantaneous
but delayed, and some potential escapers can get scattered to lower energies and become
bound to the cluster again (Baumgardt, 2001).

The main advantage of using the Monte Carlo method to simulate the dynamical evolu-
tion of a realistic star cluster is speed. MOCCA can compute the evolution of a million-body
star cluster within a week. This advantage makes Monte Carlo codes suitable for probing
the influence of the initial parameter space on the dynamical evolution of GCs. Given
its underlying assumptions, the Monte Carlo method is limited to simulating spherically
symmetric clusters with a timestep that is a fraction of the relaxation time. There-
fore, it is well suited for following the long term evolution of a GC, but is not ideal
for following the evolution on dynamical timescales. Results from MOCCA have been ex-
tensively compared with the results for direct N-body simulations (Giersz et al., 2008,
2013; Wang et al., 2016; Madrid et al., 2017). The evolution of global GC parameters
and the number of specific objects in MOCCA and direct N-body simulations are in good
agreement (Wang et al., 2016; Madrid et al., 2017). These comparisons also serve to
calibrate free parameters in the MOCCA code connected with the escape processes and
interaction probabilities (Giersz et al., 2013).

3.2.2 The Monte Carlo simulations

We analyze five simulated GCs with and without IMBHs, taken from the MOCCA-Survey
Database I (Askar et al., 2017). Their initial conditions are given in Table 3.1 and each
is named to indicate the type of central object they contain at 12 Gyt (see also Table
3.2). The no IMBH/BHS simulation does not contain an IMBH or a significant number
of BHs at 12 Gyr. The no IMBH+BHS contains 148 stellar remnants BHs (of the order
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of ~ 10 Mg each) at at 12 Gyr. The high-mass IMBH cluster hosts a central IMBH of
~ 13000 Mz at 12 Gyr, while the low-mass IMBH contains an IMBH of ~ 500 Mz at
12 Gyr. The simulated cluster labeled post core-collapse has reached core-collapse at 12
Gyr and does not contain an IMBH or a significant number of stellar mass BHs.

All these GCs initially followed a King (1966) profile and had 1.2 x 10° stellar systems?,
except for the low-mass IMBH which initially had 7 x 10° stellar systems. In all cases,
a metallicity of Z = 0.001 (corresponding to [Fe/H] ~ —1.3) was used for the stars.
The initial binary fraction for these simulated GCs is indicated in the third column in
Table 3.1, their initial binary properties assume a thermal eccentricity distribution, a
uniform mass ratio distribution and a semi-major axis distribution which is uniform
in logarithmic scale (between 2(H; + H2) and 100 AU, where H; and K2 are the zero-
age main sequence stellar radii of the binary components). The simulated GCs had an
initial tidal radius of 60 pc and are assumed to have a circular orbit with a velocity of
220km/s around a point mass like potential for the galaxy, which total mass is equal
to the enclosed mass inside the Galactocentric radius of each simulated GC (see Table
3.1).

In all simulated GCs, except the no IMBH+BHS, BHs were given the same natal kicks as
neutron stars at the moment of formation. The natal kick velocity follows a Maxwellian
distribution with ¢ = 265km/s (Hobbs et al., 2005). For the no IMBH+BHS cluster,
BH masses and natal kicks were modified according to the mass fallback prescription
provided by Belczynski et al. (2002). This mass fallback prescription introduces a “fall
back’ factor which gives the fraction of the stellar envelope that falls back on the remnant
following its formation. This factor can significantly reduce natal kicks for BHs that have
progenitors with zero-age main sequence masses between 20 to 50 Mg. The reduced
natal kicks for BHs allows the no IMBEH+EHS cluster to retain about 1300 BHs after
50 Myr of evolution. It had long been thought that BHs that are retained in GCs would
efficiently eject themselves through strong dynamical interactions leaving behind at best
1 or 2 BHs up to a Hubble time (Sigurdsson & Hernquist, 1993; Kulkarni et al., 1993).
However, recent theoretical and numerical works have shown that BH depletion might
not be so efficient and GCs with moderately long relaxation times that are dynamically
young could contain a sizeable number of BHs up to a Hubble time (Morscher et al.,
2013; Sippel & Hurley, 2013; Breen & Heggie, 2013a.b; Heggie & Giersz, 2014; Morscher
et al., 2015; Wang et al., 2016; Arca Sedda et al., 2018; Askar et al., 2018b; Weatherford
et al., 2018, 2019; Kremer et al., 2019). In the same way, the presence of BHs in
globular clusters has been sugested by the combination of radio and X-ray observations
(Maccarone et al., 2007; Strader et al., 2012a; Chomiuk et al., 2013; Miller-Jones et al.,
2015; Bahramian et al., 2017; Shishkovsky et al., 2018; Dage et al., 2018), and kinematics
(Giesers et al., 2018, 2019). These observation suggest the posibility of multiple BHs in

4In this context, single and binary systems are understood as ‘stellar systems’. The simulated clusters
start with 1.2 » 10% gingle+hbinary systems, rather than 1.2 x 10° stars.
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GCs. At 12Gyr, the no IMBH+BHS model has lost a significant fraction (~ 90%) of
its retained BHs as the cluster evolves, but still retains about 148 of them.

The two simulated clusters that include a central IMBH are called high-mass IMBH and
low-mass IMBH. Both follow the formation scenarios and growth of IMBHs in GCs as
seen in MOCCA simulations, which are described in Giersz et al. (2015) and summarized in
the following (see also Arca Sedda et al., 2019, for an analysis on all MOCCA simulations
that include an IMBH). The high-mass IMBH cluster had initially a central density of
3.5 x 10" Mgpc—>. Typically, for simulations with such high central densities, runaway
mergers of main sequence stars in the first 50 Myr lead to the formation of massive main
sequence stars which can then form an IMBH seed either through a merger or collision
with a stellar mass BH or through direct collapse (see e.g. Portegies Zwart et al., 2004;
Spera & Mapelli, 2017). This formation scenario occurs early in the evolution of the
GC and is described as the ‘FAST" scenario in Giersz et al. (2015). On the other hand,
in the model low-mass IMBH model, the IMBH forms after more than 9 Gyr of cluster
evolution via the ‘SLOW’ scenario described in Giersz et al. (2015). In this scenario,
the IMBH forms from the growth of a stellar mass BH by mergers and collisions during
the core collapse stage of cluster evolution. The IMBH formed via the *SLOW’ scenario
have masses in the range of 10> — 10° Mg at 12 Gyr. Both simulations with a central
IMBH do not have any stellar BHs within rgpe;, because the IMBH efficiently ejects or
merges with stellar mass BHs in the cluster (Leigh et al., 2014; Giersz et al., 2015).

The channel of formation also has an impact on the interaction between the IMBH and
the surrounding stars. IMBHs formed early on through the ‘FAST’ scenario produce a
more clear central rise in velocity dispersion, while an IMBH formed via the ‘SLOW’
scenario could lack such clear features at 12 Gyr, as it forms later on during the evolution
of the GC (Giersz et al., 2015). In principle, in MOCCA simulations, a low-mass IMBH
can wander around the centre of the cluster, which in turn can hamper the formation
of the velocity dispersion cusp. As the IMBH mass grows its movement around the
center decreases, and it should stay fixed for IMBHs with M, = 1000 M. In MOCCA
simulations, IMBHs with M, > 1000 ~ 2000 M should produce a clear central rise in
the velocity dispersion and surface brightness profiles (Giersz et al., 2015).

At 12Gyr the IMBH in the low-mass IMBH simulation is almost the innermost ob-
ject, however, its displacement with respect to the cluster centre is small (2 x 104 pc or
~ 10mas at 5 kpc) and it should not have an effect in the dynamical models. However, as
pointed out by de Vita et al. (2018), through direct N-body simulations, large displace-
ments of an IMBH with respect the cluster centre will require tailored data-modelling
comparisons and dynamical models under the assumption of spherical symmetry (as the
one used in this work and described below in Section 3.2.3) might introduce a bias on
the estimated masses of the IMBH.
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The post core-collapse simulation starts out as tidally-filling, with a half-mass radius of ~
7 pc. The cluster undergoes stronger mass loss due to tidal stripping which decreases the
number of stars and shortens its relaxation time. Therefore, the cluster is dynamically

older and has evolved to a post core-collapse phase at 12 Gyr.

For all the five simulated GCs, we extracted the 12 Gyr MOCCA snapshot which contains
the radial position, radial velocity, tangential velocity and stellar parameters of each
star. The details of how the snapshot was used for our dynamical modelling is provided
in subsequent sections. In Table 3.2, we provide the 12 Gyr properties of each of the
five simulated clusters. We have included in this table, the total mass of the cluster
(M), its half-mass (rgge) and half-light radii (Hj), total luminosity (L), binary
fraction ( fi;, ), mass-to-light ratio within the half-mass radius (Tgge ), the inner (Bzge;)
and outer velocity anisotropy (Bout. see Equation 3.3), the mass of the central IMBH
(M,) and the total mass in stellar BHs (Mpy) within the half-mass radius.

3.2.3 Dynamical modelling

We build dynamical models to characterize the 3D mass profile of the simulated GCs.
Our models are built by solving the Jeans equations (Jeans, 1922), which allows us to
characterize the internal dynamical state of a stellar system via the velocity moments of

its distribution function (DF) f(x,v). The following description of the Jeans equations
is based on Chapter 4 of Binney & Tremaine (2008) and Section 2 of van der Marel &
Anderson (2010).

The dynamical state of a collisionless system is fully determined by the Collisioneless

Boltzmann Equation:

af </ af o af
<253 (wi - 522) =0, 3.1)

i=
which represents the conservation of the probability of finding a star within the phase-
space of position x and velocity v given the DF f(x, v) and the potential ®. However,
solving and relating Equation 3.1 to observable quantities is not trivial. A simpler
approach is to integrate Equation 3.1 over the velocity space assuming the system is in
equilibrium (2f /0t = 0). This provides a set of equations, known as Jeans equations,
depending only on the velocity moments, rather than on the more complex DF. The
zeroth velocity moment will correspond to the probahility of finding a star at a certain
position (x). This is not a direct observable and it has to be evaluated using either the
number density n(x) = Niot/(x) or the luminosity density j(x) = Liot/(x) as proxies
(where Ny, and L, are the total number of stars and total luminosity). Here we use
the latter as proxy of the zeroth velocity moment and express all the equations below

in terms of j(x) rather than v(x). The first velocity moment is the mean velocity (v},
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TaABLE 3.2: Summary of the properties of the simulated GCs at 12 Gyr. These values were measured directly from the simulations. The first column

indicates the simulation name, given by the central object at 12Gyr, while the second column indicates the symbol used for refer each simulation

in all figures. The number of stellar systems (N) includes single and binaries stars, My is the total mass of the eluster and rgye is the half-mass

radius, while Ly is the total cluster luminosity and Ry, is the projected half-light radius. The binary fraction { fun) represent the global fraction

including all stellar systems in the simulation. The half-mass mass-to-light ratio (T gy ) and the halFmass veloeity anisotropy (Fgne) were measured

including all stellar systems within the half-mass radius (rege), while the outer velocity anisotropy (Houe) ineludes all stars with radii larger than
reon. M, is the mass of the central IMBH, while My, is the total mass of stellar black holes within rgge.

Simulation Symbol N Mg T50% Lot Ry foin Teom Beom  Bouwt M, My
[x10°Mg] [pc] [x10°Lo| [pe] [%] [Mo/Le) [Mg]  [Mg]
no IMBH/BHS = 1048918 3.56 5.20 1.99 2.50 6.8 138 003 012 00 39.98
no IMBH+BHS 971004 3.29 4.99 1.51 2.84 b.7 1.39 0.11  0.37 0.0 1437.61
high-mass IMBH 042585 3.07 5.50 151 2.63 2.0 1.26 0.10  0.30 12883.4 0.0
low-mass IMBH 496159 1.70 6.13 (.95 202 3.0 1.40 0.04  0.08 519.3 (0.0
post core-collapse + 388631 1.42 5.14 (.83 1.91 3.7 1.24 0.00  -0.03 0.0 15.60
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while the second velocity moment (v?) = o2 4 {V}2 includes the effects of the velocity
dispersion o and the mean velocity (v).

‘We build spherically symmetric dynamical models by assuming a DF that depends only
on the Hamiltonian H(x,v) and the total angular momentum L. For these models,
the first velocity moments are (v,) = 0, (v} = 0 and (vy) = 0, while for the second
velocity moments (V?E} = {x'g} holds. This allows to define a tangential component as
(v3) = (v3) + {vi} and have an expression for the Jeans equation, which depends only

of two unknowns variables (v2) and (v}):

v2) _ (v2
% (G(rv2)) +3(r) (% - M) =0. (3.2)

The dependency of the second velocity moments (v2) and (v}) is usually described by

the velocity anisotropy S as:

_ D)
2(v7)’

(see Binney & Tremaine, 2008) which could take any functional form and allows us to

rewrite Equation 3.2 as follows:

B= (3.3)

2 ) + (o) (£) = -5 3.0

In our case, we assume a constant velocity anisotropy through the stellar system, under

this condition the second velocity moment (v2) is:

(vi)(r) = ﬁ ] B dr’j{r’}r"[_gﬁ};{r’j. (3.5)

The expression for (v2) is embedded into the coordinate system centred in the stellar sys-
tem, but as external observers we usually do not have the full 6-dimensional information
(i.e. the three position and three velocities). At most we have available the individual
position of each star projected in the sky (z',y'), the line-of-sight velocity (viLos), the
radial (vpymg) proper motion and the tangential (vparr) proper motion. These are shown
in Figure 3.1.

To relate (v2) with the observations we integrate it along the line-of-sight to get a
weighted average for the second velocity moments:
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Ficure 3.1: Sky coordinates for the projected veloecity components. The star is located
at a projected distance R from the cluster contre in the plane of the sky (r'y" plane).
The line-of-sight velocity (vipos) i1s perpendicular to the plane of the sky, while the
radial proper motion (vpygr) follows the direction of the radial vector defined by R,
and the tangential proper motion (vpyr) follows the direction of the £ angle between

R and '
(Ros) (B) = 7 [~ -"'“_“ (1-5(5)") e, (3.5)
(b (B) = o [ (1-8+8(5)) o, 3.7

= j(r)dr
(v (B) = 175 [ EEm (- ) (4,

where R = W is the radial distance projected in the sky from the centre of the
GC to the star and I(R) is the surface brightness of the GC. We model the surface
brightness in a similar way as (van der Marel & Anderson, 2010), using the following
function:

(3.8)

I(R) =Io x (R/ao)™™ x (1+ (R/a0)™)~"/** x (1+ (R/ay)*?)~=/**, (3.9)

where, Ij; is a scaling factor, ag and a; are the inner and outer scale radii, sy gives the
slope of a possible central cusp, while s, s2 and @1, a9 control the mid and outer slopes.
This parametric form allows us to to explore a broad range of surface luminosity profiles
and easily perform a deprojection to get the luminosity density:

1 drR dI
J{f‘}—? i .I'Rz_rgﬁ‘

(3.10)

To determine the internal mass density profile, we assume a constant mass-to-light ratio
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Tp and define the stellar mass density profile as p,(r) = YTpj(r). This simplification is
commonly adopted. The total mass of the GC contained within the radius » is then
M(r) =M, + M,(r), where M, is the mass of the possible central black hole and M, (r)

is the stellar mass given by:
M, (r) = 4m ] pa ()" 2dr’ . (3.11)
0

We express the derivative of the potential & as:

b GM,  GM,(r)
dr 12 + r?

, (3.12)

where the potential will have a Keplerian component given by the central black hole
mass (M,) and an extended component given by the mass distribution of stars (M.).

3.3 Analysis and Results

3.3.1 Pipeline

For all the different data sets mentioned in Section 3.2.1 and Table 3.2, we have applied
the following blind approach, also summarized in Figure 3.2:

(1) For each GC we select a subsample of stars as our kinematic tracers. The selection,
which is the same for each of the GCs, impose a luminosity cut and the exclusion
of all binary systems.

We selected all stars brighter than one magnitude below the main sequence turn-
off as kinematic tracers, which is equivalent to select stars brighter than my =
18.5 mag at a distance of I) = 5kpe (without extinction). As shown in Figure 3.3
for the no IMBH/BHS simulation, this selection excludes most of the stellar main-
sequence along with the white dwarf sequence and fainter remnants (neutron stars
and stellar black holes). Our magnitude cut resembles the fainter limit adopted by
Watkins et al. (2015) for HST proper motions of galactic GCs, however, astrometric
catalogs can achieve even fainter magnitudes at the central (see Anderson & van
der Marel, 2010; Libralato et al., 2018, for HST proper motions) and outer regions
of GCs (Heyl et al., 2017; Bianchini et al., 2019a, for HST and Gaia proper motions
respectively). On the other hand, while state-of-the-art line-of-sight observations
are pushing towards fainter magnitudes, below the main sequence turn-off (e.g.
MUSE Giesers et al., 2019), their observational errors are still large compared to
the typical velocity dispersion of GCs. The magnitude cut is agreement with such
limitations and allows us to compare line-of-sight velocities and proper motions of
our selected kinematic tracers. We have included in Figure A.1, in the appendix,
the color-magnitude diagrams for all five simulated GCs.
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Figure 3.2: Pipeline for the dynamical analysis of the simulated GCs as described

in Section 3.3.1. We start by extracting the required data from to simulated GCs,

projected in the sky, from which we generate surface brightness and kinematic radial

profiles. The surface brightness profile is used as an input for the dynamical models,
which in turn are fitted to the kinematic profiles.

Within the selected sample of stellar systems in each simulation, a fraction of
them will correspond to binary systems (as shown by the open squares in Figure
3.3). Binary stars will have different effects in the measured velocity dispersion
depending on the type of kinematic sample. For line-of-sight velocities the observed
radial velocity will be dominated by the orbital velocity of the brightest component
rather than their centre of mass velocity, this additional velocity will increase the
measured velocity dispersion. Panel (a) of Figure 3.4 shows the effect of the binary
systems (open squares) in the line-of-sight velocity dispersion compared to a sample
that exclude all binaries (filled squares). The individual velocities of each binary
component were projected using the COCDA® code (Askar et al., 2018a), then we
used the luminosity weighted velocity for each binary system. The bias produced
by the orbital velocities of each binary system increases towards the centre of the

cluster where binaries become harder.

*https://github. com/abs2k12/COCOA
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Figure 3.3: Color-Magnitude diagram for the ne IMBH/BHS simulation. Single stars
are represented by filled symhbols, while binary systems are represented by open symhbols.
We impose a luminosity cut by selecting all stars brighter than one magnitude below
the main sequence turn-off (or an apparent magnitude of my ~ 18.5 mag at a distance
of I} = 5 kpe, without extinction). This limit 1= consistent with current observations of
line-of-sight velocities and it excludes the most main-sequence stars, the white dwarf
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sequence, neutron stars and stellar black holes in the cluster.
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Panel (b) in Figure 3.4 shows the effects in the line-of-sight velocity dispersion for
different populations of binary systems, the short period binaries (P < 30days)
dominates the rise in velocity dispersion observed in panel (a), while the long
period binaries (P = 1year), which do not have a large amplitude in their orbital
velocity, have a shallower effect. On the other hand, proper motion velocities will
not be significantly affected by the orbital motion of the binary system, as the
observations will follow the velocity of the centre of mass.

However, as binary system are more massive than single stars, they will have a
systematically lower velocity dispersion than single stars because of partial energy
equipartition effects (see Bianchini et al., 2016a, for a discussion). As we expect
a larger fraction of binaries towards the centre due mass segregation, the binary
systems will bias the measured velocity dispersion to a lower value (see Figure
A.2). This will equally affect line-of-sight velocities and proper motions.

Identifying all binaries and excluding them is not usually possible and a few con-
taminants might remain in real observational samples, even more given our lumi-
nosity cut. However, efforts in the direction to identify binary systems in GCs
have been done (see for example Milone et al., 2012a; Giesers et al., 2019; Be-
lokurov et al., 2020). The different effects of binaries on the measured velocity
dispersion are highly non-trivial and might play against a robust determination of
the presence of an IMBH. In this work we explicitly focus on the limitation intro-
duced by the dynamical modelling in the IMBH mass assessment. and we leave
for a follow up contribution the detailed study of the complex interplay between
presence of binaries and observational biases. Furthermore, the sample without
binaries is, within errors, still consistent with the sample that only includes long
period binaries, which are more likely to be misidentified with line-of-sight multi
epoch observations. For this reason we have excluded all binary systems from our

kinematic sample in the current analysis.

Crowding and the determination of the kinematic centre are two obhservational
effects that have played against the robust determination of IMBHs in GCs (Noyola
et al., 2008; van der Marel & Anderson, 2010; Liitzgendorf et al., 2013a; Lanzoni
et al., 2013; de Vita et al., 2017). In the case of the former we assume that we can
resolve all stars in the selected sample, while for the centre we use the same centre
for the luminosity and kinematics. The grey shaded area in panel (a) of Figure 3.4
shows the effects in the measured velocity dispersion due an error in the kinematic
centre determination up to 0.15 pe, approximately 20% of the GC core radius (see
de Vita et al., 2017). In comparison the determination of the centre in NGC 5139
is ~ 10% of its core radius (Noyola et al., 2010).

With the selected sample we generate radial profiles using the projected data in
the (z,y) plane. The profiles follow fixed logarithmic radial bins, which allow us

to have information in the central region without requiring an excessive number
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Figurk 3.4: Line-of-sight velocity dispersion for the no IMBH/BHS simulation. The
simulated GCs have a non-negligible fraction of binary systems which can increase
the ohserved line-of-sight velocity dispersion, as their measured radial velocity will be
dominated by their orbital velocity rather than their centre of mass velocity. The binary
systems become harder as their sink towards the centre of the GC. Their intrinsic
orbital velocity get larger and its effect in the observed velocity dispersion becomes
more significant. Panel (a) shows the measured welocity dispersion for the selected
stellar systems (as in Figure 3.3). The sample with binary systems (open squares)
has a systematically larger velocity dispersion than the sample which only considers
single stellar systems (solid squares), this difference increases towards the center where
it becomes ~ 2km/s. The gray shaded areas show the effect on the velocity dispersion
caused by an error in the kinematic centre up to B = 0.15pec (or ~ Garcsec at a
distance of 5 kpc), this is equivalent to 20% of the core radius of the GC. Not all hinary
system have the same influence in the measured velocity dispersion, this iz shown in
panel (b). Short period binaries (with P < 30 days, left-side triangles) dominate the
increase in velocity dispersion, while binaries with longer periods (P > 1 year, right-
side triangles) do not add a significant bias into the velocity dispersion, being similar
to the case without binaries. The binary fraction in the selected sample is fyin = 7.8%
while the fraction of binary stellar system that fall into the short period binaries is
only fhin = 2%. The shaded areas in panel (b) represent the error bars for the samples

without binaries and with all binaries.
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of bins. Using a fixed binning, and therefore having a varying number of tracers
per bin, could potentially lead to low statistics, especially in the central bins. We
manage the effect of low statistics by observing the GC from different line-of-sights.
As the simulations have spherical symmetry, this approach allows us to have a
distribution of values for each bin without altering the intrinsic radial profiles. We
sampled 1000 different line-of-sights uniformly distributed in a spherical shell, then
for each bin we adopt the median to build the radial profiles and the 16", and 84"
percentiles as an error bar (as the distribution is not necessarily symmetric). Our
approach is a simplified version of the projection method described by Mashchenko
& Sills (2005), where the probability of each particle to be found in a given bin is
calculated as if it were observed from all line-of-sights.

Figure 3.5 shows the luminosity surface density L(R), mass surface density E(R),
the mean line-of-sight velocity ¥(R) and line-of-sight velocity dispersion o(R) pro-
files for the no IMBH/BHS simulation (pink squares). As a comparison we also
include the profiles when all single stars are considered (black diamonds). No
major differences are observed regarding the luminosity surface density, as both
samples are dominated by the same bright stars (panel (a) in Figure 3.5). The
mass surface density of the selected sample is significantly lower than the full sam-
ple of single stars, as our selected sample only adds up to the 4.2% of the total
mass of the simulated no IMBH/EHS cluster. The velocity dispersion is lower in
our selected sample within R, which is an expected effect of energy equipartition
(see e.g. Trenti & van der Marel, 2013; Bianchini et al., 2016b). It is important
to be aware of these differences, as our tracers do not provide the full information

about the mass profile of the cluster.

We fit the luminosity surface density profile given by the functional form defined in
Equation 3.9. This allows us to cover different types of luminosity surface density
profiles and deproject them for the dynamical models. We fit the luminosity surface
density with EMCEE (Foreman-Mackey et al., 2013), a Monte Carlo Markov Chain
(MCMC) sampler, which allows us to explore the multi-parameter space. From the
fitting we save the best-fit parameters as input for our dynamical models. Figure
3.6 shows the luminosity surface brightness profiles and the fit from our MCMC
approach for all the different simulations.

We build a grid of dynamic models via the Jeans equations as described in Section
3.2.3, based on the best-fit parameters to the surface brightness profile. Each
model is defined by three parameters: the mass-to-light ratio (Tg), the velocity
anisotropy () and the mass of the central IMBH (M,). The grid is given by the
parameter space: 0.5 < Ty < 3.5, —1.0 < log (M,/M;) <5.0and —1.0< 8 < 1.0.
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FicurE 3.5: Radial profiles projected in the sky for the no IMBH/BHS simulation.
In panel {a), we observe no major difference on the luminosity surface density (L(R))
between all the stars and the selected sample, this is expected as the luminosity surface
density is dominated by the bright stars. This is not the case for the mass surface
density (E(R)) in panel (b) where the selection is approximately ~ 13 times lower than
the full sample. Panels (¢) and (d) shows the line-of-sight mean velocity and velocity
dispersion, only in the latter we observe a ~ 10% difference within 1 By due energy

equipartition effects.
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Ficurg 3.6: Surface brightness profile and best fit model. For each GC we fit a

functional form for the luminosity surface density as given by Equation 3.9. The best

fit in each case (black line) will serve as the main ingredient to our dynamical models,
as we assume a constant mass-to-light ratio.
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For each model we calculate the Chi-square (y3) as:
1/2 /2 \?2
(V&) sl — (Ve) o)
1/2 \2 ’
(J{:Vk}dita)

where k represent each of the observed wvelocities (LOS, PMR and PMT). We
explore the best fit parameters first with only line-of-sight velocities, then with

(3.13)

k=)

only proper motions and finally with all of them.

3.3.2 Results

We applied the pipeline described in Section 3.3.1 to all simulated GCs introduced in
Section 3.2.2 and Tables 3.1 and 3.2. Figure 3.7 shows our fitted dynamical models
when only line-of-sight velocities (LOS) are used, while Figure 3.8 shows the case when
radial (PMR) and tangential (PMT) proper motions are used together to constrain the
best-fit parameters. Figure 3.9, on the other hand, shows the results when LOS and
proper motions are used together to constrain the parameters. In each figure we show
the respective second velocity moment profiles ((v?)1/2) used in the y? minimization on
the left-side panels and the parameter space on the right-side panels. We adopt three
relative Ay? regions® given by Ax? = 3.5, Ax? = 7.8 and Ay? = 11.3 as a guide to our
dynamical model and parameter distribution from the 2 minimization. We included the
best-fit parameters as an open circle on the right-side panels, while the expected values
from the simulation are included as an ‘x’ (see Table 3.2). For the no IMBH+BHS
simulation, we indicate with an arrow the total mass in stellar black holes within the
central parsec of the cluster. Table 3.3 summarizes the best-fit parameters for all models
and kinematic data, the errors in each parameter are given by the Ay2 = 7.8 region in

the Figure (approximately 2a).

3.3.2.1 Constraints from line-of-sight velocities (LOS) only

Our models can identify the presence of a central IMBH inside the two GCs which do
indeed contain one (see the right side panels of Figure 3.7). In the case of the high-mass
IMBH GC, our best fit value is M, ~ 2+2x10* M. While we obtain a detection within
the Ayx? = 3.5 region (~ 1¢) which also contains the real value (M, = 12883.4 M),
we cannot fully exclude a lower mass IMBH nor the no IMBH solution with larger
confidence levels. This is likely due the lacks of constrains in the velocity anisotropy,

EThe non-linearity and complexity of our model does not allow us to have a clear value for the degrees
of freedom in our ¥® minimization. The three values adopted here represent the 1o, 20 and 3o for a
)("1= distribution with 3 degrees of freedom. This is the case for the x‘lxz of a linear model with 3 free
parameters.

"The quoted error bars represent the x® < 7.8 confidence region.



58 Chapter 3 Intermediate-mass black holes in globular clusters

TaBLE 3.3: Best-fit parameters for all the simulated GCs and velocity data used for
the fits. The error bars represent the region defined by Ay? < 7.8 (approximately 2,
see footnote 6). The first row for each GC indicates the expected values as indicated

in Table 3.2,
Model Data To log(M./Mg) A
no IMBH/BHS 1.38 — 0.03
RVs L4+ﬂ.d5 3_3+E.'F5 _D‘4+ﬂ.55

PMs 14708  _jgtils 048

* * —0.3*
ALL 14@% _poHB 578

a —0.0& —0.45

no IMBH+BHS 1.39 - 0.11
RVs 1‘54.1]_35 3['+ 1.25 —D.ﬂ+u'35
PMs 1.57%3% 2.?1%% —n.ﬁﬂg

. s +0.
ALL 1.5%5%: 2.8 g —0.00g 75

high-mass IMBH 1.26 411 0.10
RVs 1.1;%;% 4.3%%% —D-E-j’:é:%

PMs 1.3*2 4.1%2 —0.0*%
045 035 = _0.85

low-mass IMBH 1.40 2.72 0.04
RVs 14702  3270%  _08*)%
PMs 1.4}%;% 2.5;%:5% _D'ﬂj‘ﬁ:“g
ALL 1.4f0% 2815 —0.37g65

post core-collapse 1.24 - 0.0
RVs 1.1tﬁ% 3.0’_'5’-33;5 —Lﬂfﬁ%
PMs 1. 1__‘-1]:15 —1 Dt[][lﬁ _Dﬂ_—‘-ﬂﬂﬁ
0.15 1.75 0.25
A]-_J]_J 1. 1__‘-1]_15 1 -Dtj_l}s _D‘g_—‘-ﬂ.dﬁ

as the parameter region with lower mass IMBHs is dominated by highly radial velocity
anisotropy (3 = 0.5). For the low-mass IMBH we find a detection at Ay? = 7.8 level
(~ 20), where the IMBH best fit value is M, ~ 1.5+ 1.4 % 10* M, around 3 times the
mass of the actual IMBH (M, = 519 M@). This overestimation goes in hand with the
high tangential anisotropy of 8 = —0.8, inferred from the best fit model (see discussion
in Section 3.4.1 below).

For the no IMBH/BHS and no IMBH+BHS GCs we obtain upper limits of M, <
11000 Mz and M, < 17000 Mz, respectively. While the whole mass range from the
correct solution (M, = 0Mg) to the just mentioned upper limits is allowed by the
model within the ¥ < 7.8 confidence region, the best fit models indicates a central
IMBH of M, ~ 21! x 10 M, for the no IMBH/BHS and M, = 117 x 103 M, for
the no IMBH+BHS. Finally, although the post core-collapse GC does not have a central
IMBH, the best fit model suggests a central IMBH of M, = 1*15 x 10* My, which is
detected within 1. In a similar fashion than for the low-mass IMBH, the inferred mass
of the IMBH is bound to a tangential anisotropy (5 = —1.0, at the edge of our parameter

space).

As expected, we cannot constrain the velocity anisotropy with only LOS wvelocities.
Figure 3.7 shows the existence of a correlation between the mass of the possible IMBH
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and the velocity anisotropy for each of the five analyzed GCs. Dynamical models with
a significant tangential anisotropy allow for a larger central IMBH mass (commonly
refered to as mass-anisotropy degeneracy, see Section 3.4.1). Note that for all GCs, the
correlation becomes stronger for dynamical models with central IMBH masses higher
than 1000 Mz. In all simulated GCs, we observe that our models are consistent with
the observed kinematics. For the case of the no IMBH+BHS simulation, we notice that

our models overestimate the second velocity moment at R = 2Ry (or R = 6pc).

3.3.2.2 Constraints from proper motions (PMs) only

The second velocity moments for the proper motions have a different parametric depen-
dency with the velocity anisotropy (see Equations 3.7 and 3.8), adding an additional
constraint. This improves the constraints for our models when compared with the case
with only line-of-sight velocities, as the degeneracy between the velocity anisotropy and
the mass of the central IMBH is reduced. Our models, however, show some limitations
as when using proper motions, they become less consistent with the observed kinematics.
For the no IMBH/BHS, low-mass IMBH and post core-collapse GCs, the models fail to
mutually fit the radial (PMR) and tangential (PMT) proper motions.

With the additional constraints provided by proper motions, we find a clear 3¢ detection
for the high-mass IMBH GC and a best fit value of M, ~ 1.2752 x 10* Mg, which is
consistent with the real mass of the central IMBH.

The best fit for the low-mass IMBH reduces to M, ~ 0.3*53 x 10° Mg, which slightly
underestimates the mass of the central IMBH. While we recover a best fit value which
is more consistent with the real IMBH mass, we do not find a clear detection at 1o nor
20, the 2o errors allow for a range of masses of [0 My, 1584 Mg] for the central IMBH.

The constrains for the no IMBH/BHS and no IMBH+BHS GCs also improve. The
upper limits reduces to M, < 3100 Mgz and M, < 9900 Mz, respectively. The best fit
value for the no IMBH/BHS is M, ~ 0%3-1 x 10* M, which is consistent with no central
IMBH. For the no IMBH+BHS GC simulation, the best fit is now M, ~ 0.510x103 M,
more consistent with the no IMBH solution. However, within 2 it is not possible to

fully rule out a higher mass IMBH.

The post core-collapse GC also shows an improvement with a best fit IMBH mass which
is consistent with zero (M, ~ 0.0%%8 x 10° Mgz). The upper limit reduces to M, =
630 M, given the additional constraints on the velocity anisotropy with a recovered
value of 3 = —D.?.'_"gﬁ, which is closer to the actual value obtained from the simulation

(Bsow = 0.0).
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Ficurg 3.7: Fitted dynamical models and parameters space when only line-ofsight
velocities (LOS) are used for the fit. The left panels show the measured second velocity
moment projected in the sky (colored symbols), while the shaded are represent the
Ay? = 35, Axy? = 7.8 and Ay? = 11.3 regions (from darker to lighter grey). The
right panels shows the parameter space, whereas the circles mark the hest-fit values
(as in Table 3.3) and the ‘%’ marks the expected value measured directly from the
simulations (as in Table 3.2), the contours represent the Ay? = 3.5, Ay® = 7.8 and
Ay? = 11.3 regions. For the no IMBH+BHS cluster, we indicate with arrows the total
mass 1n stellar black holes (BHS) within the central 1 pe of the cluster. Ower all the
mass-to-light ratio Ty i1s well constraint by only using LOS velocities. This 1= not the
case for the velocity anisotropy, as the lack of constraints allows the models to have
higher masses for the central IMBH at the cost of more tangential orbits. In the case
of the high-mass IMBH, the cusp in {v®)!/? is significant enough to detect the IMBH
at its centre.
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FIcURE 3.8: As in Figure 3.7, but when only the proper motions (PMR and PMT) are

used for the fit. The additional data allows to have a better constraint in the velocity

anisotropy, excluding all the models with significant tangential orbits. Although, the

constraints for the mass of the possible central IMBH are similar to when only LOS are
used in the fit.

3.3.2.3 Constraints from the full kinematic sample (LOS+PMs)

When the full kinematic sample is used to constrain the parameter space, as shown in
Figure 3.9, we observe similar constraints on the different Ay? confidence regions as in
the only proper motions case. The IMBH in the high-mass IMEH GC is again clearly
identified with an inferred mass of M, ~ 1.5+0.9 x 10* Mz, while for the central IMBH
in the low-mass IMBH simulation we find M, ~ 0.67):d x 10° M and its presence is
recovered within 1o level. However, for larger confidence regions, we have models that

still are consistent with a lower mass or no IMBH solution.

As in the case with only proper motions, the best fit value for the no IMBH/BHS GC
is consistent with not having an IMBH (M, ~ 032 x 10® M), while still allowing a
large upper limit (M, < 2800 My). Similarly, for the no IMBH+BHS GC, we obtain
an upper limit of M, < 7900 Mz which has improved from the only proper motion case.
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The best fit value is now M, ~ ﬂ.ﬁ'_"g:g % 10° Mg, the range of masses covered by the 20
level goes from 0 Mg to 7900 M. Also for the post core-collapse GC, we find a similar
result as when only proper motions are used with an upper limit of M, ~ 630 M, while
the best fit value of M, = lﬂﬁ'gﬂ M, is consistent with not having an IMBH.

For all clusters the global mass-to-light ratio (To) is well constrained, while the velocity
anisotropy (/) shows a significant improvement for all clusters with the exception of
the high-mass IMBH, once the proper motions are considered (see Figure A.3). In
the case of the high-mass IMBH, the velocity anisotropy does not show the same level
of improvement after including the proper motions, as the Keplerian rise in velocity
dispersion dominates over the velocity anisotropy in the inner kinematics. However,

their inclusion allows the exclusion of highly radial anisotropic models.

As in the case when only proper motions are considered, we notice that our models
are not fully consistent with the kinematic data, this is particularly true for the post
core-collapse GC. These discrepancies are originating in the assumptions of our models
and show the limitations they bring into the fitting. In the following section we discuss
further how the assumptions of constant velocity anisotropy and mass-to-light ratio
affect the modelling and the detection of a possible IMBH.

3.3.2.4 Additional kinematic samples

To explore the effects of our selection criteria (as described in Section 3.3.1) we applied
the dynamical models to three additional kinematic samples. Figure A5, in the ap-
pendix, shows the constraints in the parameter space for the mass-to-light ration and
mass of the possible central IMBH for two fainter magnitude cuts: 4.6 mag below the
main sequence turn-off, following current lower limits for precise proper motions at the
cluster center (Anderson & van der Marel, 2010; Libralato et al., 2018), and 7.5 mag be-
low the main sequence turn-off (Heyl et al., 2017), which is still only possible for proper
motions outside the cluster’s Ry, but works as an extreme hypothetical case. We do not
observe any significant difference with our results for the brightest selection. We notice,
though, that for the fainter magnitude cuts the best fit value for Tp increase, this is
expected due to the larger fraction of low-mass stars which have a systematically larger
velocity dispersion (as in Figure 3.5). The third case we explored includes long period
binaries (P > 1yr) as in panel (b) of Figure 3.4. The comparison with our main results
is illustrated in Figure A.6 and we, once again, do not observe any significant difference
between our main results and the sample including long period binaries, which is also
expected as both kinematic samples are similar (see Figure A.2).
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Ficure 3.9: As in Figure 3.7, but when all velocities (LOS+PMs) are used for the

fit. Compared to the constraints from the only PMs case, the fits does not improve

significantly when using the full 3D kinematic data. Now we have a detection for the

low-mass IMBH within the Ay? < 3.5 level (~ lo). However, models without an

IMBH are still allowed within the uncertainties (Ayx? < 7.8 level, ~ 2¢). The upper

limit= on the inferred mass of the possible IMBH in the cases without one are still in
the M, < 1000 M range.

3.4 Mass constraints from the Jeans models

The two main assumptions in our dynamical models, which could impact in the deter-
mination of the presence of an IMBH and its mass, are firstly the constant mass-to-light
ratio and secondly the constant velocity anisotropy (see Section 3.2.3). As shown in
Figure 3.11, the internal velocity anisotropy and mass-to-light ratio vary for all five GC
simulations. The velocity anisotropy increases at large radii for all GCs, other than
the post core-collapse. The mass-to-light ratio increases towards the centre and at large
radii. While the central mass-to-light ratio depends on the type of central object in the
cluster, the rise at large radii is similar for all simulations. In this section we explore in
detail the effects of these factors on our dynamical models.
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Figcure 3.10: Recovered IMBH:s masses from the full 3D kinematic sample

(LOS+PMs). Our dynamical models robustly identify the IMBH in the high-mass

IMBH simulation (M,/Mgc = 4.1%). However, lower masses or the absence of the

central IMBH cannot be excluded for the low-mass IMBH case (M,/Mgc = 0.3%).

The three simulations without a central IMBH show large upper limits (with an offset
from M, sm = 0.0 My for visibility).

3.4.1 Velocity anisotropy

The amount of velocity anisotropy in the central region of the GC can affect the measured
mass of the possible central IMBH. A radial velocity anisotropy (8 > 0) at the centre
can reproduce an increase of the velocity dispersion without requiring additional mass
(i.e. an IMBH). On the other hand if the central anisotropy becomes more tangential
(8 < 0) the model will require an additional mass in the centre of the GCs. This mass-
anisotropy degeneracy is well known in dynamical models based on Jeans equations (see
Binney & Mamon, 1982, for example).

The wvelocity anisotropy can be constrained by including 3D kinematic data namely
proper motions, as discussed in Section 3.3.2. However, how strongly the anisotropy
can be constrained will depend on the quality of the available proper motions. In the
case of NGC 5139, van der Marel & Anderson (2010) show that anisotropic models
are necessary to describe its observed kinematics and provide good fits to the observed
proper motions without the need for a central IMBH, when using models based on
Jeans equations. More recently, Zocchi et al. (2017) also show that models based on
anisotropic distribution functions are consistent with the available kinematics of NGC
5139, while their models do not rule out a central IMBH, they put a cautionary note
on the estimated mass of the central IMBH. Both works find a velocity anisotropy

profile which is (or close-to) isotropic in the centre. However, while van der Marel &
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Ficurg 3.11: Velocity anisotropy (a) and mass-to-light ratio (b) profiles for each
simulation. All simulated clusters, with the exception of the post core-collapse, have
central velocity anisotropies consistent with being isotropic (8 = 0) and become more
radially anisotropic at large radii. The post core-collapse cluster is fairly 1sotropic at all
radil. The stellar mass-to-light ratio (T) in the simulations varies with radius, increasing
towards the centre and the outer regions of the cluster. The central slope of T varies
with each cluster, where the no IMBH+BHS shows the most significant increase due
the stellar black holes subsystem at is centre. On the other hand all simulated GCs
shows the same behaviour at large radn.
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Anderson (2010) find a tangential anisotropy at large radii, Zocchi et al. (2017) find a
radially biased anisotropy profile at large radii (before becoming once again isotropic at
the tidal radius). The latter is consistente with Watkins et al. (2015), who show that
most galactic globular clusters in the HSTPROMO sample are isotropic towards the
centre and become radially anisotropic at large radii. The upper limit on the possible
IMBH mass in NGC 5139 suggests a mass-fraction of M, /Mg < 0.43% (van der Marel
& Anderson, 2010) similar to our low-mass IMBH case (M, /Mgc = 0.30%). In this
regime, the kinematic signature of the IMBH on the observed velocity dispersion profile
is not strong enough for a clear detection and it can be reproduced as well by mildly
radial anisotropic models (3 ~ 0.1).

Panel (a) of Figure 3.11 shows the velocity anisotropy for all five GCs measured directly
from the simulations. The low number of stars in the central bins is accounted for with
the error bars (through bootstrapping in each bin). All GCs except for the post core-
collapse are consistent with being isotropic at their centre and become more radially
anisotropic at larger radii, while the post core-collapse is consistent with being isotropic
at almost all radii. Once we include the proper motions in our dynamical models, the fits
become consistent with an isotropic velocity anisotropy (3 = 0, see Figures 3.8 and 3.9),
while still allowing for models with a more tangential anisotropy (within our error bars).
The bias toward tangential anisotropy seems to be a common limitation of standard
Jeans modelling approaches (e.g. see Read & Steger, 2017).

Figure 3.12 shows the effects of anisotropy in the upper limits of the inferred mass of
the central IMBH. Models with a fixed tangential anisotropy (3 = —0.1) increase the
inferred IMBH mass, while models with radial anisotropy (§ = 0.1) reduce the upper
limit. However, given the constraints from the proper motions, the variation on the
upper limit of the inferred IMBH mass due anisotropy is not able to exclude the IMBH
solution for the cases without one. The upper limits are still above M, ~ 1000 M
(M, < 630 M for the post core-collapse GC).

3.4.2 Mass-to-light ratio

As shown in panel (b) of Figure 3.11, the mass-to-light ratio of all simulations is gen-
erally not constant. The variation with radius is a direct consequence of the two-body
relaxation process of collisional systems such as GCs and it has been systematically
observed in simulations (Bianchini et al., 2017; Baumgardt, 2017), which in turn has
an impact on the mass profiles of our simulated clusters and the constrains from our
maodels.

Figure 3.13 shows the cumulative mass profiles (M (< r), left side panels) and mass-
to-light ratios (T, right panels) for all five simulated GCs. The shaded area represents
the models with Ay? < 7.8, while the black line represent the best fit model (for the
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FIGURE 3.12: Upper limits of the ¥ < 7.8 region for the central IMBH mass given

different velocity anisotropies for the full kinematic data case (LOS+PMs). The tan-

gentially anisotropic case (3 = —(0.1, up-red arrow) gives systematically higher upper

limits than the sotropic case (§ = (0.0, black crosses) for the inferred mass of the IMBH.

On the other hand the radial anisotropic case (F = +0.1, down-blue arrow) has sys-

tematically lower upper limits, as radial anisotropy can mimic an increase of velocity
dispersion in the centre (mass-anisotropy degeneracy).

full kinematic sample, i.e. LOS4+PMs as in Section 3.3.2.3); the symbols correspond to
the measured values from each simulation. For the no IMBH/BHS and no IMBH+BHS
simulations, the central mass of the GC is poorly constrained. The value of Ty under-
estimates the central mass-to-light ratio of the cluster as shown in the right side panel
of Figure 3.13. The dynamical model then requires additional mass to generate the
observed velocity dispersion towards the centre, allowing for the presence of an IMBH.
This effect is evident in the no IMBH+BHS case, as the cluster of stellar mass black
holes increases drastically the mass-to-light ratio toward its centre. For this case the
inferred mass of the central IMBH is M, = 63173]° My when using the full kinematic
sample. While no false central IMBH is detected. we cannot exclude it either, as the
upper limit for such an inferred central IMBH is M, < 7943 M;. On the other hand,
the presence of a central IMBH will quench mass segregation (see Gill et al., 2008a)
and in turn change the shape of the mass-to-light ratio profile. This is the case of the
high-mass IMBH simulation, where the central mass-to-light ratio is well represented
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FigurE 3.13: Mass profiles for all the simulated GCs. In the right column we include
the cumulative mass profiles for each simulated GCs as coloured symbols. The black line
represents the best-fit model, when all the velocity data are included in the fit. While
the grey shaded area represents the Ay? < 7.8 region. The models tend to be less
constrained towards the centre, in particular for the no IMBH/EHS, no IMBH+BHS
and low-mass IMBH cases. The right panels show the massto-light ratio for each
simulation. These profiles differ significantly from the assumption of a constant mass-
to-light ratio. The case of the no IMBH+BHS simulation is quite extreme as the cluster
of stellar-mass IMBH significantly increases the central values of the mass-to-light ratio
profile. This 15 also shown in the cumulative mass profile, where it rises towards the
centre instead of declining as in the no IMBH/BHS or post core-collapse simulations.

by the assumption of a constant mass-to-light ratio (see Figure 3.13).

The assumption of constant mass-to-light ratio is not only relevant for the central region
of the simulated GCs. As massive particles sink towards the centre, the lighter ones
populate the outer regions of the GC. This process also increases the mass-to-light ratio
at larger radii, as faint low-mass stars dominate the exterior regions of the cluster. In

panel (b} of Figure 3.11 we can see that all five simulated GCs have a similar increase in
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their deprojected mass-to-light ratio profiles at larger radii. In the same way as for the
centre of the cluster, our models underestimate the mass-to-light ratios and therefore
the mass profiles (see Figure 3.13), which in turn could bias the estimates on the cluster
mass. Panel (a) of Figure 3.14 shows the recovered enclosed mass within the deprojected
half-light radius rj, from our dynamical models. For all five simulations our estimated
mass within ry is consistent with the mass measured directly from the simulation, our
fitted values for Tp are in agreement with the expected mass-to-light ratio within rgge;
(Tsgs;, see Tables 3.3 and 3.2 respectively). However, this is not the case at larger radii;
panel (b) in Figure 3.14 shows that for all simulated GCs their total masses are within
20% and 40% lower than the expected one. This is in agreement with other works: the
effect of mass segregation on the recovering of global properties of GCs was discussed
previously by Sollima et al. (2015), where they applied different modelling techniques
from multi-mass distribution functions to N-body simulations of GCs. They show that
single mass models systematically underestimate the total mass of the cluster, and found
that the global parameters are well constrained within the radial range r, /2 < r < rp,.
In agreement with this, our models have a lower discrepancy on the recovered mass for
radii close to ry (see Figure A.4).

From the discussion above, one can infer that the assumption of a constant mass-to-
light ratio has a larger impact on the constrains for the mass profiles, and in turn on
the IMBH masses, than the assumption of constant velocity anisotropy. To characterize
the real effect of these assumptions it is necessary to design a model which includes the
variations on the mass-to-light ratio and velocity anisotropy profiles, which is beyond

the scope of this paper.

3.5 Summary

The presence of IMBHs at the centre of galactic GCs is still an ongoing debate. Even
with the diverse literature available on the topic (Noyola et al., 2008; van der Marel &
Anderson, 2010; Liitzgendorf et al., 2011; Kamann et al., 2014, 2016; Kiziltan et al.,
2017, to name a few), a robust evidence is still missing. Limitations on the observations
(such as kinematic centre and crowding, see Noyola et al., 2010; Lanzoni et al., 2013; de
Vita et al., 2017) or in the modelling (due to anisotropy or a dark component, see van der
Marel & Anderson, 2010; Zocchi et al., 2017, 2019; Mann et al., 2019; Baumgardt et al.,
2019b) make the detection of IMBHs challenging. Here we explored the limitations of the
dynamical model commonly used, namely models based on the Jeans equations. Using
five Monte Carlo simulations of GCs with and without central IMBH from the MOCCA-
survey (see Section 3.2.2), we have analyzed the reliability and limitations of spherically
symmetric Jeans models (see Section 3.2.3) under the assumption of constant mass-to-
light ratio and velocity anisotropy. We extracted a kinematic sample from the simulated
GCs, excluding all binary systems and selecting stars brighter than 1 magnitude below
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Ficure 3.14: Recovered enclosed mass for the five simulated GCs. Panel (a): the mass

within deprojected halflight radius ry is recovered for all GCs (less than 20% error).

On the other hand, in panel (b), the total mass of the simulated GCs is systematically
underestimated.
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the main sequence turn-off (see Section 3.3.1). We fit the Jeans models to the second
velocity moment profiles, varying the mass-to-light ratio (Yg), the mass of the central
IMBH (M,) and velocity anisotropy (3); we do so for only line-of-sight velocities (LOS,
Section 3.3.2.1), only proper motion velocities (PMs, radial and tangential on the sky,
see Section 3.3.2.2) and the full kinematic sample (i.e. LOS+PMs, in Section 3.3.2.3).

Our dynamical models can recover the mass of the high-mass IMBH (M, /Mcc = 4.1%)
quite well (see Section 3.3.2). The kinematic signature of such an IMBH is strong and
the rise in velocity dispersion cannot be explained otherwise. On the other hand for the
low-mass IMBH (M, /Mg = 0.3%) we can identify the central IMBH only within 1o
(i.e. Ax? < 3.5) level, and while the best fit model is consistent with the actual mass
of the central IMBH (M, = 519.3 M), models with no IMBH are possible within the
errors (note that we only consider kinematic errors due to stochasticity of low numbers
of stars per bin, ohservational errors could increase the uncertainty of the central IMBH
mass). For all three simulations without a central IMBH we only get upper limits and
while the no IMBH solution is within the range of masses, such upper limits allow for a
possible IMBH in their centres.

The dynamical models are limited by two main assumptions: constant velocity anisotropy
and constant mass-to-light ratio. Both have different consequences on the upper limits
and detection of the central IMBH (see Section 3.4). Depending on the inferred amount
of velocity anisotropy at the centre of the cluster, the dynamical model can slightly
change the required IMBH mass to match the observed kinematics. This is relevant
for identifying low-mass IMBHs. The upper limits for the inferred mass of the possi-
ble IMBH in NGC 5139 (van der Marel & Anderson, 2010) suggest a mass fraction of
M, /Mge < 0.43%, which is close to our low-mass case (M, /Mo = 0.3%). While both,
van der Marel & Anderson (2010) and Zocchi et al. (2017) find that anisotropic models
are better when compared to the observed velocity dispersion of NGC 5139, the models
by van der Marel & Anderson (2010) do not require a central IMBH to explain its ob-
served kinematics. On the other hand, Zocchi et al. (2017) suggest strict upper limits,
but do not rule out a central IMBH. Better understanding of the velocity anisotropy
profiles and the effects of velocity errors on the analysis are necessary to fully disen-
tangle the effects of anisotropy on the inferred mass of low-mass IMBHs. For the cases
without an IMBH, we observe that anisotropy alone cannot reduce the upper limits as
including the full kinematics sample (LOS+PMs) limits the range of anisotropy that the
data allows (see Figure 3.12 and Section 3.4.1).

The assumption of constant mass-to-light ratio has a more significant impact on our
analysis, as the mass-to-light ratio increases towards the centre and at larger radii (see
panel (b) of Figure 3.11). For the cases without IMBH we underestimate the central
mass due to mass segregation effects (i.e. rise in mass-to-light ratio), which allows the
dynamical model to include a central IMBH to recover the observed velocity dispersion.
This is even more relevant when the stellar black hole retention is higher, such as the
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case of the model with a stellar black hole subsystem (no IMBH+BHS). By applying
a multi-mass model which allows for a population of stellar mass black holes at the
centre of NGC 5139, Zocchi et al. (2019) show that the population of black holes can
reproduce the observed kinematic data, although it cannot discard completely a less
massive IMBH. Using a different approach, Baumgardt et al. (2019b) also show that the
presence of a cluster of stellar mass black holes can explain the observed kinematics of
NGC 5139. In their case, they compare the observed kinematics to a library of N-body

simulations, which intrinsically include a variable mass-to-light ratio.

The assumption of constant mass-to-light ratio not only limits our knowledge of the cen-
tral mass of the GCs, but also its total mass. As two-body relaxation pushes outwards
the faint low-mass stars, the mass-to-ligth ratio increases at large radii. We system-
atically underestimate the mass-to-light ratio in the cluster outskirts and therefore its
total mass, as shown in Figure 3.14, is systematically underestimated with a difference
of ~ 40% with respect to the expected mass for all simulated clusters. We are able to
recover the mass enclosed within the half-light radius, which is consistent with the ra-
dial range proposed by Sollima et al. (2015) for estimating global properties of GCs with
multi-mass distribution functions. Further improvements to our Jeans code are neces-
sary to investigate if we can solve these issues by relaxing the constant mass-to-light

ratio assumption.

GCs are collisional systems and their dynamical evolution is tied to the two-body re-
laxation process. Therefore, it is necessary to include the effects of collisionality in the
dynamical models to be able to explain the observed kinematics, even more to robustly
identify IMBHs at the centre of GCs. The results of applying our models to the high-
mass IMBH (M,/Mgcc = 4.1%) suggest that there is a mass-fraction limit where the
effects of collisionality can be excluded from the analysis, finding this limit requires
further investigation beyond the scope of this paper. Ultimately, this will help to under-
stand where we must improve the dynamical models. Most GC candidates for having
an IMBH are in the low-mass range with M, /Mgc < 1.0% (van der Marel & Anderson,
2010), where the kinematic signature can also be explained by the effects of collisionality
such as mass segregation, energy equipartition and a variable mass-to-light ratio. To
be able to disentangle the different sources of a velocity dispersion rise in the centre of
GC, models that can describe properly the mass profile of a GCs are a must. Recently,
Hénault-Brunet et al. (2019b) provide a compilation of different dynamical methods and
their reliability for recovering GC properties. Methods with multiple mass populations
and variable mass-to-light ratio significantly improve the recovery of the mass profiles
of GCs, although are still limited by observational constraints and large error bars.

While observational limitations will further complicate the detection of IMBHs in GCs,
we have taken the first step in better understanding the ability to recover an IMBH
from data with models based on the Jeans equation. The limitations presented here

are identical for any such model under the same assumptions, not just ours. While
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the dynamical models studied here do not lead towards a biased solution, they lack the
sensitivity to robustly infer the presence or absence of a low-mass IMBH. Improving
a model's ability to recover the mass profiles of GCs, and further understanding how
the constant mass-to-light and velocity anisotropy assumptions along with the observed
kinematics influence a model is crucial towards robustly identifying or rule out the
presence of IMBHs in galactic GCs. We will further address observational challenges

such as binaries in a subsequent paper.






Chapter 4

Using Binaries in Globular
Clusters to Catch Sight of

Intermediate-Mass Black Holes

This chapter has been submitted for publication to Monthly Notices of the Royal Astro-
nomical Society under the title "Using Binaries in Globular Clusters to Catch Sight of
Intermediate-Mass Black Holes” by F.I. Aros, A. C. Sippel, A. Mastrobuono-Battisti,
P. Bianchini, A. Askar and G. van de Ven.

4.1 Introduction

Intermediate-mass black holes (IMBHs) with masses of 102 — 10° M, are one of the
missing links in the formation and growth of the supermassive black holes found at the
centre of massive galaxies; the early formation of IMBHs can serve as seeds capable of
growing up to the masses of supermassive black holes supporting the quasars observed
at high-redshift (Haiman, 2013). The possible formation scenarios of IMBHs (Portegies
Zwart et al., 2004; Giersz et al., 2015; Gonzailez et al., 2021; Rizzuto et al., 2021) point
to dense stellar systems as their place of origin and therefore many studies have searched
for IMBHs in the centres of globular clusters.

Globular clusters (GCs) are dense stellar systems with up to a few million stars and
half-light radii of 2-5 pc (Harris, 1996, 2010 edition). In the last two decades, many
studies have looked at the centres of Galactic GCs to search for kinematic evidence
for the presence of an IMBH (Noyola et al., 2008; van der Marel & Anderson, 2010;
McNamara et al., 2012; Liitzgendorf et al., 2013a; Lanzoni et al., 2013; Kamann et al.,
2014, to name a few). However, limitations on the observed kinematics (de Vita et al.,
2017) and dynamical modelling (Aros et al., 2020) may hinder the robust detection of an
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IMEBH. No clear evidence for an IMBH has been found so far within Galactic GCs. The
possible presence of a black hole system (BHS, see Section 4.4) in the cluster centre that
add to this complex scenario, as it can produce similar velocity dispersions in the cluster
core as a central IMBH (Zocchi et al., 2019; Baumgardt et al., 2019b; Mann et al., 2019;
Vitral & Mamon, 2021).

Binary stars play a crucial role in the evolution of GCs. The dynamical evolution of GCs
is driven by two-body relaxation that triggers mass segregation (Spitzer, 1987). Binaries,
being more massive than single stars (two stars instead of one), segregate earlier to the
cluster centre. Simulations of GCs with primordial binaries (Heggie et al., 2006; Hurley
et al., 2007; Chatterjee et al., 2010; Wang et al., 2016) show how binaries segregate
towards the cluster centre while becoming harder or getting disrupted by encounters
with other stars in the dense core. These two processes provide energy to the cluster

and play a significant role during the core-collapse period of the GCs’ evolution.

Observations of binaries in Galactic GCs show that binaries follow the behaviour de-
scribed in simulations. Measurements of the binary fraction at different radii show a
decreasing gradient with radius (see Sollima et al., 2007; Milone et al., 2012a; Ji &
Bregman, 2015) and serve as proof for the mass segregation of binaries in GCs. The
connection between binaries and the dynamical evolution of the GC has also been ex-
plored with specific types of binaries and products of binary evolution. Ferraro et al.
(2012, 2018) used the distribution of blue-straggler stars (BSS) to study the dynamical
age of GCs. As formation channels of BSS include binary interactions (Mapelli et al.,
2006; Chatterjee et al., 2013), the tracing of BSS stars is linked to the overall process
of mass segregation. In a similar way, the distribution of X-ray binaries in GCs also
describes the same process (Cheng et al., 2019a.b). The mass segregation driven by two
body relaxation not only brings binary systems closer to the cluster centre, but it also
efficiently accumulates more massive stars and massive stellar remnant such as stellar
mass black holes.

A massive object in the cluster centre such as an IMBH will alter the dynamical evolution
of the GC. The IMBH hampers mass segregation by working as a source of energy for the
cluster (Baumgardt et al., 2004; Trenti et al., 2007b; Gill et al., 2008b) and in the process
altering the distribution of binaries within the cluster core. Moreover, simulations of GCs
with a central IMBH and primordial binaries show that binaries in the core are disrupted
more efficiently than in the case without an IMBH (Trenti et al., 2007b). Whereas this
is more likely to happen due to the high density of stars near the IMBH, some binaries
could strongly interact with the IMBH. The strong interaction with the IMBH breaks
the binary producing high-velocity stars (see Hills, 1988; Fragione & Gualandris, 2019;
Subr et al., 2019, for example).

In this work, we study the effects that the presence of an IMBH has on the binary pop-
ulation of its host GC. Motivated by the recent observations of binaries in NGC 3201
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with VLT /MUSE by Giesers et al. (2019), we use a sample of simulated GCs from the
MOCCA-Survey database I (Askar et al., 2017) with two goals: (1) explore the contamina-
tion of binaries in the line-of-sight velocity dispersion and (2) to use the detected binary
sample to study the binary fraction in GCs with and without an IMBH. The first point
is effectively extending the discussion of Figure 4 in Aros et al. (2020) where we show
that binaries can systematically increase the observed line-of-sight velocity dispersion.

In Section 4.2 we describe the sample of simulated GCs and the detection method for
binary stars. In Section 4.3 we explore the contamination of binaries in the observed
line-of-sight velocity dispersion and its implication for current observations. In Section
4.4 we analyze the relation of binaries with the central IMBH and discuss how we could
use their co-evolution as an indication for the presence of an IMBH. Finally, in Section

4.5 we summarize our findings and motivate future work.

4.2 Simulations and binary identification

The dynamical evolution of GCs is determined by two-body interactions leading towards
partial energy equipartition (see e.g. Spitzer, 1969; Trenti & van der Marel, 2013;
Bianchini et al., 2016a). A consequence of the drive towards energy equipartition is
mass segregation, where more massive stars sink towards the centre of the GC. Binaries
being on average more massive than single stars (two stars instead of one) segregate
faster to the centre, ultimately increasing the binary fraction towards the cluster core.
To study the general behaviour of binaries under the presence of an IMBH, we identify

binaries in mock data from simulated GCs as described in the following sections.

4.2.1 Simmlations and mock data

We have selected a sample of 143 simulated GCs from the MOCCA-Survey Database 1
(Askar et al., 2017) to study the effects of binaries in the observed kinematics and the
interaction of binaries with a central IMBH. These simulations were evolved to 12 Gyr
using the MOCCA code (Hypki & Giersz, 2013; Giersz et al., 2013), which follows a state-of-
the-art implementation of the Monte Carlo method first proposed by Hénon (1971b.a).
All 143 simulations have different initial conditions, but share the same initial binary
fraction fuin = 10%,consistent with observations (Sollima et al., 2007).

As described in detail by Giersz et al. (2015), IMBHs in MOCCA simulations form via dy-
namical interactions in two kinds of scenarios. The “FAST™ scenario starts from the be-
ginning of the simulation and requires an extremely high initial density (= 10° M /pc®,
see also Hong et al., 2020), where a BH system can form early in the star cluster evo-
lution and drive the formation of an IMBH by the dynamical interactions of single and
binary BHs (similar to the runaway collapse proposed by Portegies Zwart et al., 2004).
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The “SLOW” scenario, on the other hand, happens at later stages in the cluster evolu-
tion and in less dense systems {1[)5 M@fpca}. The mass of a single BH can grow through
dynamical interactions and mass accretion from a binary companion.

The binary-star evolution code (BSE, Hurley et al., 2002) models the binary stellar
evolution in MOCCA, while the FEWBODY code (Fregeau et al., 2004) drives the dynamical
interactions of binaries with single or binaries stars. The interplay of both codes allows
MOCCA to follow the evolution of binary stars in a realistic way, while also keeping short
simulation times. Hypki & Giersz (2013) describes the interplay of both codes within
MOCCA extensively.

MOCCA simulations are spherically symmetric and only have three coordinates for each
star: the radial position r, and the radial v, and tangential v; velocies. Therefore, we
project each simulated GC into cartesian coordinates by randomly sampling the missing
coordinates. We then project the simulated GC into the sky to get the position of each
single and binary star, along with their radial velocity (RV) along the line-of-sight and
the proper motions. We follow the same projection as in Aros et al. (2020).

For every binary system in the cluster, we obtain each component’s relative velocity
with respect to their centre of mass, drawing the orbit from the known eccentricity,
semi-major axis and masses of each star in the binary. From these orbital parameters,
we can obtain the individual positions and velocities of both components of the binary,
the period and angular momentum. We randomly select the current position of the
binary by selecting a fraction of the orbital period. In the same way, we randomly
orientate the binary’s orbital plane. Whereas this approach is similar to the projection
described by Askar et al. (2018a), we use the direct solution of the Kepler orbit rather
than the parameterization of the orbit using the eccentric anomaly.

We generate mock data for each cluster by adding errors to the velocities that are
consistent with current observations. For line-of-sight radial velocities, we use the error
distribution by magnitude from MUSE data (Giesers et al., 2019), with a median value of
3km/s at my ~ 18mag at a distance of ~ 5kpe (see Figure B.1). For proper motions,
we assume the median error from Libralato et al. (2018), which is 0.1 mas/yr, which
corresponds to 2km/s at 5kpc (see also Appendix B.1). In both cases, we add noise to
the simulation’s velocities by sampling the noise from a Gaussian distribution centred
in zero with a dispersion given by the assigned error. Whereas we have assumed that all
the clusters are at a distance of 5 kpc to have a comparable sample of stellar masses and
observed stars, the simulated clusters have different Galactocentric distances ranging
within 1 — 15 kpc.

We have limited the “observed” stars within each cluster to those with line-of-sight RV
errors smaller than 3km/s. This set a lower limit in magnitude around 1mag below
the main-sequence-turn-off (or ~ 18 mag), similar as used by Aros et al. (2020). From
the sample of 143 simulated GCs in the MOCCA-Survey database I with an initial binary
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Figurg 4.1: Core H, and half-light Ry radi for simulated GCs. We have selected
a sample of 65 simulated GCs with and without a central IMBH, with initial binary
fraction of 10% (light-blue squares) and additional requirements on the quality of the
data as described by Section 4.2.1. As a reference we show Galactic GCs from Harris
(1996) (2010 edition). Our selected sample has comparable sizes as real GCs.

fraction of 10%, we selected a subsample of clusters that have: (a) more than 1000 stellar
systems (binary and single) within the selected sample of bright stars, and (b) their
intrinsic velocity dispersion is higher than 4km/s, which is twice the median velocity
error in line-of-sight velocities and proper motions at the assumed distance of 5kpe.
These two criteria help to reduce the stochasticity due to low numbers (binary fraction),
and to measure velocity dispersion values that are not dominated by observational errors.

Our sample then decreases to 65 GCs.

In the following sections of this work, we refer to the projected core (R.) and half-light
radii ( Ry ) of each cluster. Both radii are extracted from Arca Sedda et al. (2019), who
fitted a King profile (King, 1962) to the cumulative surface brightness profile, following
the method described by Morscher et al. (2015). Figure 4.1 shows the core and half-light
radii for the subsample of 65 simulated GCs and for Galactic GCs from Harris (1996)
(2010 edition). The sizes of our selected sample are comparable to observed GCs.

4.2.2 Identification of binaries

We identify binaries in the mock data by measuring the observed RV for each star
at different observational epochs, i.e. different observations with time scales of hours,
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weeks or months!. We do not evolve the simulations between epochs; therefore, the
positions and wvelocities of single stars, and the centre of mass position and velocity
of binary stars remain fixed?. Any variation on the RV of single stars is only due
to observational errors. For binary stars, while the center of mass remains fixed, we
update the position and velocities of both component at each epoch. We use the orbital
parameters and subsequent orbit to follow the binary components relative positions and
velocities around the binary centre of mass. The “observed” RV for the binary star is
given then by the luminosity weighted velocity along the line of sight:

vili + volsa

s e e 4.1
Ll — Lg ! l: }

Vles = Vem +
where v is the centre of mass velocity of the binary, and v; and L; are the velocity

and luminosity of each component.

Once we calculate the RVs for all epochs for single and binary stars in the simulated
cluster, we proceed to assign a probability of variability. To do so, we follow the approach
of Giesers et al. (2019), described in the following. The probability of variability is
defined by analysing the RV curve and the scatter around the mean wvelocity for all
epochs. For each star with n different epochs, the scatter in RV can be described by

2 —y (i-7) (4.2)

In a GC with only single stars, the scatter is dominated by errors only, and the distri-
bution of observed y? resembles a theoretical y? distribution with ¥ = n — 1 degrees of
freedom. Variability due to the motion of binaries would show as an extended tail in
the observed y? distribution or a change in the slope of the cumulative distribution, as
the scatter will be dominated by the orbital motions rather than observational errors.

Using this idea, Giesers et al. (2019) define the probability of a star to have a variable

RV as ) \
FEXi 3 pi}thﬂﬂ — FEXi B Vi}uba
1— FEX?? Vi}uba

where F' [x?? v;) is the cumulative x? distribution given v; degrees of freedom, evaluated

P(xi,vi) =

: (4.3)

at the measured y? value of the i-th star. In our case, we use the same number of
epochs for each star and cluster, a version which considers a different number of epochs
is described in Giesers et al. (2019). In the case of the simulated clusters, we can link
the probability of variable RV to a being a binary star, as no other effect could produce
the same signature; therefore, we will use F,;, = P{X?: ;).

"We use 19 epochs given by fapoce = [0, 6, 15, 24, 33, 360, 375, 384, 384.03, 384.06, 384.00, 384.12,
384.15, 384.03, 384 .96, 384.90, 385.02, 385.05, 393] days.
2Stars would not gignificantly move in this time range since it is much lower than the dynamical time.
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FicurE 4.2: Color-magnitude diagram for single (left panel) and binary (right panel)
stars in a simulated GC at 12 Gyr. The points are colour coded by the probability
of being a binary with lighter colours corresponding to single stars. We can see in
the left panel that most single stars have a low probability for being a binary. On
the other hand, in the right panel not all binaries are identified, this iz due either to
having long periods or very face-on orbital planes. The size of the symbols on the right
panel indicates the mass ratio between the binary components. We do not observe

any particular trend with magnitude for the binary detectability. Binaries in the blue-
stragglers branch are likely to be detected (close binaries).

Figure 4.2 shows the colour-magnitude diagram for a simulated GC with a binary fraction
of fyin = 7.8% at 12Gyr. Each star is colour coded by its probability of being variable
in RV given by B,,. The left panel shows all single stars in our luminosity selection,
the large majority of single stars have a low probability of being variable in RV and
are unlikely to be binaries. On the right panel of Figure 4.2, we show all binaries in
the simulated cluster also colour coded by their probability of being variable in RV, the
sizes of the symbols represent the mass ratio between components. While many binaries
have indeed a high probability of being variable in RV, a significant fraction does not
and therefore are not identified as binaries. If the velocity amplitude of the binary in
the RV curve is not large enough, it will not show as having a high scatter in ¥? and
will be assigned a low probability of variability in RV.

Three main effects play against the detection of binaries using this approach. The first
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FiGURE 4.3: Period, semi-major axis and orbital plane inclination for all binaries in
a simulated GC (the same as the cluster in Figure 4.2). Binaries that have short
periods (top panel) and that have a small semi-major axis (middle panel), 1.e. hard
hinaries, are robustly detected with variations in BVs, as the frequency and amplitude
of such variations are higher. The inclination (bottom panel), on the other hand, adds
a complexity as it limits the detection for any type of binary. As expected, we can
see that binaries which are close to edge-on are more easily detected than the ones at
face-on.
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one is the luminosity ratio between the components. If both stars have similar luminosi-
ties, then the observed line-of-sight velocity given by Equation 4.1 will be dominated by
the centre of mass velocity rather than for their orbital motion. In the right panel of
Figure 4.2, we can see than many of the binaries with a low probability of variable RV
have similar masses (M; /M3 ~ 1). While the mass ratio affects the orbital parameters,

it also serves as a proxy for the luminosity ratio of binaries.

The second effect comes from the orbital parameters of the binary, which also have a
role in their detection. In Figure 4.3 we ilustrate a selection of orbital parameters that
have an impact on the probability of being variable in RV, and therefore on identifying
binaries. We see that most of the binaries with a high probability F,;, > 0.5 of being
variable in RV have short periods and are close binaries, as shown in the top two panels
of Figure 4.3. Short period binaries orbit faster around their centre of mass, increasing
the amplitude of the variability in RV. All of the binaries detected in this simulated GC
have periods below 1yr. The length of the semi-major axis a goes in hand with the
period, as binaries which survive sinking to the centre of the cluster become tighter and
have shorter periods.

The third effect on the detectability of binaries comes from the inclination of the orbital
plane. The orientation of the orbital plane is randomly chosen, therefore it is not directly
related to other orbital parameters of the binaries. In the bottom panel of Figure 4.3, all
binaries in the sample have an inclination angle i which follows a uniform distribution
(over a sphere and therefore is uniform in cos(i)). We can see that for a significant
range of inclinations, most of the binaries have a high probability of being variables in
RV (Puin > 0.5). However, this changes once the orbital plane becomes closer to be
face-on, where the undetected binaries dominate the sample. This is expected as when
the orbital plane becomes face-on, the line-of-sight velocity will be perpendicular to the
orbital motion of the binary.

Using this approach we can identify binaries in each mock data set, corresponding to
each simulated globular cluster. In the following sections, we will discuss the effects of
the binaries on the kinematics of a cluster (Section 4.3) and their interaction with an
IMBH (Section 4.4).

4.3 Kinematic effects of binaries

As we previously discussed in Aros et al. (2020), binaries have two main effects on the
observed velocity dispersion of GCUs. First, as binaries are more massive than single stars,
they have, as a population, a different level of energy equipartition and hence spacial
distribution. As this affects the centre of mass velocities of the binaries, both the line-
of-sight velocity and the proper motions will show a lower velocity dispersion than what
is expected for a cluster populated by single stars only. This effect has been studied for
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F1GURE 4.4: Line-ofsight velocity dispersion for a simulated GC with binaries (same
cluster as in Figures 4.2 and 4.3). The dark-orange circles shows the velocity dispersion
when all stars are considered for the kinematies, this includes all binaries in the sample.
Once we use the probability of being a binary assigned to each star, we can select stars
that have a low probahility Pyyn < 0.3. The light-orange diamonds show the velocity
dispersion profile when most binaries are excluded. We can see that once the sample
i1s "cleaned” from binaries, the line-of-sight velocity dispersion is consistent with the
proper motion velocity dispersion (gray triangles and squares).

proper motions by Bianchini et al. (2016b), while they find that in simulations there is a
colour bias in the velocity dispersion due to the presence of binaries, i.e. the redder edge
of the main sequence (binary stars) has a lower velocity dispersion than the blue edge
(single stars). However, they do not detect this on HST observations for NGC T078. In
general, it is challenging to disentangle this effect, as it depends on the binary fraction
and level of energy equipartition in the cluster.

Figure 4.4 shows the observed velocity dispersion for the same cluster used as in Figure
4.2 and 4.3. The dark orange circles show the line-of-sight velocity dispersion for all
stars in the sample (single+binaries), while the ligh orange diamonds show the velocity
dispersion when only stars with Fyin, < 0.3 (i.e. with a low probability of being variables
and therefore mostly singles) are selected. The difference between the whole sample and
the selection with B,;, < 0.3 is a consequence of the scatter introduced by the orbital
motion of binaries. For comparison, the radial (grey triangles) and tangential (grey
squares) proper motions are also included. Both proper motions behave similarly to the
sample with Fhi, < 0.3,
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While the previous example comes from mock data of a simulated globular cluster, it

is also possible to observe this effect in current observations of GCs. Using multi-epoch
observations of VLT /MUSE data, Giesers et al. (2019) identified binaries in NGC 3201

using the variations in radial velocity (RV). We use the available RV data from their
work to analyse the kinematic effect of the binaries in their sample. Figure 4.5 shows
the line-of-sight velocity dispersion for the sample in Giesers et al. (2019), with the same
approach as in Figure 4.4 we show the velocity dispersion for all stars (red circles) for
and a sample of the stars with a probability of being variable in RV of R, < 0.3 (blue
squares). Each data point is calculated from approximately 150 stars for the two epochs
that have the large sample of observations (~ 3000 stars, upper and lower panel). Note
that we only select stars with velocity errors smaller than 3km/s.

From Figure 4.5, we can see that for both epochs the sample with H,i, < 0.3 indeed has
a lower velocity dispersion and the difference increases towards the centre. For reference,

we have also included previous measurements of the line-of-sight velocity dispersion from
Kamann et al. (2018) who use VLT /MUSE data and from Baumgardt & Hilker (2018)

for which their radial velocities come from RAVE (Kunder et al., 2017). It is important
to highlight that the data from Giesers et al. (2019) are an extension of the data of
Kamann et al. (2018), which increases the number of average epochs from 7 to 12.
Kamann et al. (2018) already discussed the differences between their velocity dispersion
profile and the one from Baumgardt & Hilker (2018), pointing to two probable sources,
binaries or energy equipartition. For binaries, they excluded stars which were likely to
be binaries based on RV variations between epochs, however, the additional epochs in
Giesers et al. (2019) might have helped in detecting binaries which reminded undetected
by Kamann et al. (2018), in particular short-period binaries.

The different effects of binaries in line-of-sight velocities and proper motions can help
as a pointer of the level of contamination by binaries and the binary fraction of the
cluster. If, as in Figure 4.4, a significant difference in the velocity dispersion between
single epoch line-of-sight observations and proper motions is observed, then follow up
line-of-sight velocity observations will be necessary to identify binaries and to clean up
the kinematics. In other words, cleaning up the kinematics would be crucial for a 3D
kinematic analysis of the cluster.

4.4 Binary fraction and IMBHs

As discussed in the previous section, binaries leave a clear signature on the observed
velocity dispersion. Dynamical analysis that considers line-of-sight velocities needs to
take into account their presence. While it is possible to clean the kinematic sample by
multi-epoch observations, the identified binaries can also be used to help understand the
dynamical state of a GC.
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FicurE 4.5: Line-of-sight velocity dispersion for NGC 3201. We include the data from
Kamann et al. (2018) (green hexagons) and Banmgardt & Hilker (2018) (black squares),
as well as the observations from Giesers et al. (2019) (red circles) in two different epochs
(top and bottom panel). Once we exclude stars that have a high probability of being
a binary (blue diamonds) we observe a drop in the velocity dispersion similar as in
Figure 4.4. This i= consistent for both epochs and shows the importance of multi-epoch
observations to detected binaries in GCs. The Figure also shows the core and half-light
radii of NGC 3201 from Harris (1996) (2010 edition).
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4.4.1 Radial distribution of binaries

The binary distribution changes during the dynamical evolution of a GC, mainly as they
segregate towards the cluster’s centre and the formation and destruction of binaries by
their interaction with surrounding stars. Consequently, the cluster’s binary fraction
increases towards the centre while decreasing at larger radii (see Figure 4.6). Early
N-body simulations of GCs with binaries by Heggie et al. (2006) already show how the
half-mass radius of the binary population is indeed smaller that of single stars.

The presence of a central IMBH affects particularly the surviving fraction of binaries
in the cluster centre, as the rate of disrupted binaries increases significantly under the
presence of a central IMBH. While the increased demsity of stars around the IMBH
mainly drives the disruption of binaries that segregate towards the cluster centre by
interactions with other stars (Trenti et al., 2007b), close encounters of a binary with the
IMBH can also break the binary producing high-velocity stars (see Hills, 1988; Fragione
& Gualandris, 2019; Subr et al., 2019, for example). This implies that clusters with a
central IMBH have a reduced binary fraction towards the centre of the cluster.

Using the detected binaries in the sample of simulated GCs, we have constructed binary
fraction profiles to analyse the behaviour of GCs with and without IMBH. The top panel
of Figure 4.6 shows the binary fraction profiles of our sample of 65 simulated GCs, and
each profile is colour-coded by the most massive object in the cluster (from a star of
1 M, in dark blue to an IMBH of 10* M, in red).In clusters without an IMBH, the most
massive object is in most cases a stellar mass black hole with on average ~ 20 Mz. While
all clusters started with the same fraction of 10% for primordial binaries, we can observe
a large variety of radial distributions. However, a significant difference is the presence
of an IMBH., as clusters with one clearly show a lower binary fraction at all radii as
well as a flatter profile. To have more clarity in the differences of both populations of
GCs (with and without IMBH), we show in the bottom panel of Figure 4.6 the median
profile for each population. We find that median distribution are well represented by a
power-law ( fuin o< (R/Rp) ™), and that clusters without an IMBH have a steeper profile
(k = 0.34) compared to those with one (k = 0.19).

An alternative way to observe the binary fraction profile behaviour is to focus on specific
regions of the GCs. From Figure 4.6, we can see that the binary fraction at the centre
and around the half-light radius matches more on clusters with an IMBH than for GCs
without one. We now focus only on those two regions and measured the binary fraction
within the GC’s core radius and the area within one and two half-light radii. Figure
4.7 shows the binary fractions for all clusters in our sample, once again colour-coded by
the most massive object in the GC. We can see that GCs with a central IMBH (in red)
have a lower binary fraction and populate the fisure’s bottom-left region; furthermore,
most of these clusters are close to the 1-to-1 relation (dashed line). Clusters without an
IMBH have a higher binary fraction, particularly in the core, and move away from the
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FiGURE 4.6: Radial distribution of binaries. The top panel shows the binary fraction
Suin profile for each simulated GC in our sample, colour-coded by the mass of the most
massive object (stars in dark blue and IMBHs in red). The symbols mark the binary
fraction using B, = 0.5 as a delimitter for binaries and non-binaries (i.e. stars with
FPrin > 0.5 are binaries, while stars with Fyyn < 0.5 are single stars); the error bars
represent the binary fraction by separating binary and non-binary stars at Py, = 0.3
(top error bar) and Py = 0.7 (bottom error bar). The bottom panel shows the median
binary fraction profile for both types of GCs, with and without and IMBH. We fitted
a power-law to the median distributions (dashed lines) and show that clusters with an
IMBH have a Hatter profile and a lower binary fraction than GCs without one.
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FiGURE 4.7: Binary fractions around halflight radins By and within the core radius

H.. Each GC is colour-coded by its most massive object. Clusters with an IMBH

stay near the dashed line showing the 1-to-1 ratio between the binary fractions, iLe.

less mass segregated than above the line. These clusters also populate the left side of

the fizure as they have systematically fewer binaries, a difference with respect to GCs

with a BHS (magenta diamonds) that are near the 1-to-1 line, but have retained more
binaries overall.

1-to-1 line, which shows the expected effects and consequences of mass segregation in the
binary population. On average, clusters with an IMBH have 67% fewer binaries in their
core than cluster without one. A group of GCs without an IMBH is also located close
to the 1-to-1 line. These clusters have retained many stellar-mass black holes instead
of an IMBH, and to identify them. we have marked with a magenta diamond all GC
with more than 50 stellar remnant black holes (i.e. a black hole system, BHS) within
the half-mass radius. While they are closer to the 1-to-1 line with respect to clusters
without a BHS, they still have a higher binary fraction within the core than clusters
with an IMBH. On the other hand, they have a lower binary fraction than GCs without
so many central black holes or an IMBH. Whereas the BHS works as an energy source
for the cluster to halt mass segregation, the density within the core is not high enough to
trigger an efficient disruption of binaries (see e.g. Mackey et al., 2008; Sippel & Hurley,
2013; Breen & Heggie, 2013b; Morscher et al., 2015; Weatherford et al., 2018).

The advantage of using integrated quantities over different regions of the cluster is that
we can explore the behaviour of observed GCs. Milone et al. (2012a) surveyed the
binary fraction of GCs using HST photometry along the main sequence. While there
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are intrinsic differences in the detected binaries from their method and the one described
here, this is a first-order approach to show that it is possible to test our results with
photometric data. Figure 4.8 shows the binary fraction within the core radius and the
region outside the half-mass radius, as given by Milone et al. (2012a). We see that almost
all clusters are near or above the 1-to-1 relation (dashed line). Only NGC 288 falls clearly
below the 1-to-1 line. While the error bars are big enough to include the 1-to-1 line, it
is essential to keep in mind that this cluster has tidal tails (see Kaderali et al., 2019;
Sollima, 2020, for the latest discussion using Gaia data) and could have a more complex
dynamical evolution than other clusters in the sample. We compared the clusters in
Milone et al. (2012a) sample with two studies that estimate the number of remaining
stellar mass black holes (BHs): Askar et al. (2018b) (red diamonds) use properties such as
the core radius and the central density to estimate the number of retained BHs, whereas
Weatherford et al. (2020) (green squares) use the mass segregation of the clusters as an
indicator for the remaining BHs. Although both studies estimate different numbers of
BHs (see Table B.1 in the Appendix), the clusters with retained BHs are near the 1-to-1
line. Most clusters with candidate IMBHs do not have measured binary fraction within
the core and have been excluded from Figure 4.8.

4.4.2 Kinematic effects due to binaries

We discussed how the binary fractions can point to GCs that could host an IMBH or
a BHS. However, the observed kinematics are another piece of information that could
also show the binaries interaction with a central IMBH. As we discussed in Section 4.3,
binaries affect the line-of-sight and proper motion velocity dispersions differently. Figure
4.4 shows that the difference between line-of-sight and proper motion velocity dispersions
increases significantly towards the centre, which goes in hand with the increase in the
binary fraction in the cluster centre. To analyse this effect, we have measured the
velocity dispersion within the core radius of each GC. We define a percentual difference
for the velocity dispersion given by (0les — Oref)/Oref, Where oref is a reference velocity
dispersion, which can be either from proper motions or a clean sample of line-of-sight
velocities.

The top panel of Figure 4.9 shows the case when we compare the single epoch line-of-
sight velocity dispersion (i.e. including the effect of binaries) with the radial proper
motion. We observe that as the binary fraction increases, the difference between the
velocity dispersions becomes larger. As discussed before, clusters with an IMBH have
a lower binary fraction, and now we can see that they also have a smaller difference
between the line-of-sight and proper motion velocity dispersions. GCs with a BHS (ma-
genta diamonds) populate the region between the clusters with an IMBH and those
without one. Obtaining comparable observations for line-of-sight velocities and proper

motions is not straight forward, as not many cover the same region of the cluster or even
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FiGurE 4.8: Binary fraction within the core radius K, and outside the half-mass
radius Hyyp for Galactic globular clusters. The hinary fractions measured by Milone
et al. (2012a) show the same behaviour as Figure 4.7, almost all GCs are above the
1-to-1 dashed line, following the expected effect of mass segregation with the exception
of nge 288, see Section 4.1 for more details. We have marked GC candidates that may
be hosting a BHS as given by Askar et al. (2018b) (red diamond) and Weatherford
et al. (2020} (green squares). Most of the candidate GCs are located near the 1-to-1
line, in a similar way as in Figure 4.7.

the same stellar mass range. Due to the GC’s evolution towards energy equipartition,
it is crucial to sample the same stellar mass range for both velocities. A way to move
around this issue is to only focus on the line-of-sight velocities, given multi-epoch obser-
vations to identify binaries. The difference between the line-of-sight velocity dispersion
that includes all binaries and the cleaned sample will play the same role as the proper
motion data. The bottom panel of Figure 4.9 shows the case when the reference velocity
dispersion for Ac is the line-of-sight velocity dispersion after cleaning the binaries as
described in Section 4.3. The GCs’ behaviour is similar to the previous case, but it only
depends on one observational data type, which is the EVs. We can now also include
the kinematic data for NGC 3201 from Giesers et al. (2019). While this cluster has a
higher binary fraction ( fi,;;, = 17.1+£1.9) than our sample of simulated clusters, it follows
the simulated clusters’ trend. This approach could be more accessible as more GCs get
observed in the same way as done by Giesers et al. (2019).
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Ficure 4.9: Difference in velocity dispersion and binary fraction within the core radius.
By using the differences in velocity dispersion between the full line-of-sight contami-
nated sample and the proper motions (top panel} or the clean sample with B, < 0.3
(bottom panel). All clusters are again colour-coded by their most massive object. In
both panels, as the binary fraction within the core increases also does the difference
in velocity dispersion, for some clusters the measured velocity dispersion with binaries
overestimates up to 60% the core velocity dispersion. Using proper motions as a refer-
ence adds and additional scatter due to variations in the central velocity anisotropy, but
when available could provide a first constraint on the velocity difference (in particular
when multi-epoch observations are not available). A more self-consistent approach, once
multi-epoch observations 1s to compare the contaminated velocity dispersion with the
clean one as in the bottom panel. This approach is not affected by velocity anisotropy
and can be used right away for current and upcoming MUSE data, such as for NGC
3201 (Giesers et al., 2019) marked as a star.
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4.5 Summary

In this work, we explored the dynamical effects of a central IMBH on the binary popu-
lation of GCs. We used a sample of simulated GCs from the MOCCA-Survey Database 1
(Askar et al., 2017) and applied the method proposed by Giesers et al. (2019) to identify
binaries through multi-epoch radial velocity (RV) observations. We have produced mock
observations for each cluster considering velocity errors in RVs and proper motions; for
these mock observations, we follow the radial velocities during many epochs, considering
long-term observations spanning over months as well as multiple observations during a
single night. This approach allows us to identify binaries in the simulated GCs in the

same manner as done for real observations.

Two-body relaxation drives the dynamical evolution of GCs; a consequence of this pro-
cess is mass segregation. Binaries are on average more massive than single stars and
segregate quickly towards the centre of the cluster. This phenomenon changes the dis-
tribution of binaries and the radial binary fraction. Early N-body simulations of GCs
with primordial binaries show binaries migrate towards the cluster core while becoming
harder (Heggie et al., 2006). Observations of main-sequence star binaries also show this
trend (Sollima et al., 2007; Milone et al., 2012a; Ji & Bregman, 2015), as the binary frac-
tion is smaller in regions outside the core radius. The higher fraction of binaries within
the cluster core affects the observed line-of-sight kinematics, as the relative velocity of
hard binaries dominates over their centre of mass velocity, increasing the observed veloc-
ity dispersion along the line-of-sight (see Figure 4.4 and discussion therein). While this
effect does not affect proper motions, to take full advantage of proper motions and radial
velocities, the identification of binaries is crucial. Whereas the effects on the dynamical
modelling are beyond this work, we expect that due to the increase in the observed line-
of-sight velocity dispersion, dynamical models will overestimate the cluster mass (larger
mass-to-light ratio) and (or) the mass of a possible IMBH.

An IMBH in the cluster centre acts as an energy source, extending its dynamical life. It
halts mass segregation, and therefore, fewer binaries move to the cluster centre, which
reduces the binary fraction in the cluster core. Furthermore, the binaries that do segre-
gate encounter a dense environment where interaction with other stars can disrupt them;
if a binary manages to get close enough to the IMBH, this could also break the binary
and one of the components might be ejected at high velocities (Hills, 1988; Fragione &
Gualandris, 2019; Subr et al., 2019). Given this more efficient break down of binaries,
GCs with a central IMBH have a significantly lower binary fraction than clusters with-
out one (see Figure 4.6). In average, GCs with an IMBH have 67% less binaries that
those without an IMBH. We find that clusters that host a black hole system behave in a
similar way as those with an IMBH and also show a flat binary fraction profile. However,
as binary disruption is less effective than in clusters with a central IMBH, GCs with a
BHS have on average higer binary fractions in their cores. This is in agreement with
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previous simulations of GCs with BHS (see, e.g., Mackey et al., 2008; Sippel & Hur-
ley, 2013; Morscher et al., 2015). The comparison of integrated quantities, such as the
binary fraction within the central and outer regions of the GCs, serves as an indication
for which cluster may host an IMBH or a BHS (see Figure 4.7). We find a handful of
Galactic GCs are promising candidates, as they have a similar binary fraction within the
cluster’s core and outside of the half-mass radius (see Figure 4.8). A list of the names
and properties of these clusters can be found in the appendix (see Table B.1)

By also taking into account the kinematic data, we can have a similar picture of the
dynamical effect of an IMBH on the binary population of a cluster. Due to the lower
binary fraction in clusters with a central IMBH, and in particular within the cluster core,
we expect that the difference between line-of-sight and proper motion velocity dispersion
will be small. We show that this is the case in Figure 4.9. However, comparing line-of-
sight velocities and proper motions is not trivial. Different effects such as the intrinsic
velocity anisotropy, the cluster regions covered by different observations, the magnitude
range that translate in different masses for different observations, and precise distances;
could add a systematic bias in the observed difference between line-of-sight and proper
motion velocity dispersion.

A solution to these limitations will be to use only line-of-sight velocities once multi-
epoch observations will be available as shown in the bottom panel of Figure 4.9. This
approach will not only help as a method to identify systems that may host an IMBH or
a BHS, but by knowing the binary fraction it will be possible to estimate the increase in
velocity dispersion due to the effect of binaries; this is crucial for dynamical modelling

that uses line-of-sight velocity as a tracer.

We have focused only on binaries brighter than one magnitude below the main-sequence
turn-off (my < 18 mag at 5kpc). The different mass range and binary detection biases
limit the comparison with photometric studies (such as Sollima et al., 2007; Milone et al.,
2012a; Ji & Bregman, 2015) that typically focus on the main-sequence. Extending or
analysis to other detection techniques for binaries will provide a better link between
the estimated binary fraction and kinematics effects of binaries. To do so, we first
need to consider first multiple populations in the simulations (Hong et al., 2015) as
they play a relevant role in the photometric binary detection (Milone et al., 2020). At
the same time, it is necessary to check the different biases in the detection methods:
radial velocity methods mainly detect binaries with short periods, whereas photometric
methods depend on the mass ratio of binaries (Milone et al., 2012a).

We analysed simulations with initial binary fractions of fyi, = 10%. These clusters
have total binary fractions of fyin ~ 4% at 12 Gyr. Whereas our initial binary fraction is
consistent with observations, clusters that have higher binary fractions exist (see Figures
4.8 and 4.9). To compare with these observations, we need to study simulations with



Chapter 4 Binaries and intermediate-mass black holes a5

higher binary fractions. We expect that the overall trends shown in this work will stay
the same, but scaled up to higher binary fractions.

Here we presented the properties of the whole detected binary population. The next step
will be to study how the relations described here connect with specific types of binaries or
binary products. The distribution of blue-straggler stars traces the dynamical evolution
of GCs Ferraro et al. (2012, 2018). By analysing the distribution of BBS and their
relation with the binary fraction, it will be possible to study another tracer for the
dynamical effects of a central IMBH. Similarly, the distribution of X-ray binaries could
help separate clusters with a central IMBH from those with a BHS.






Chapter 5

Black hole scaling relations at

lower masses

The following chapter describes work in progress aiming to apply dynamical models to a
large sample of simulated globular clusters. The results presented here consider an initial
sample of of approrimately 10% of all simulated GCs in the MOCCA-Survey I.

5.1 Introduction

As introduced in Section 1.1.3, the mass of supermassive black holes correlates with their
host galaxy properties. Two of these correlations are the My, — o and M, — M, scaling
relations (Kormendy & Ho, 2013), with the M, — o being initially described 20 years ago
(Ferrarese & Merritt, 2000; Gebhardt et al., 2000). However, so far, the origin of such
scaling relations are still an open question. Jahnke & Maccio (2011) suggested that the
observed scaling relations could be a consequence of multiple mergers between galaxies.
On the other hand, the scaling relations could have a physical origin and indicate a
co-evolution between the central massive BH and the host galaxy (Kormendy & Ho,
2013). If the latter is true, then these scaling relations should hold even at lower BH
masses, like in the case of IMBHs and their host GCs.

The first effort by Liitzgendorf et al. (2013b) to analyse the scaling relations for IMBHs
in GCs shows that for Galactic GCs, the estimated masses for their central IMBH
do follow a scaling relation. However, the slope of such relation is different than for
Galaxies. Moreover, the difference is more significant for the M, — o relation than
for the M, — M, relation (see Figure 1.1). Liitzgendorf et al. (2013b) suggested that
the discrepancy might be due to the continuous mass loss that GCs suffer during their
evolution: the current masses and velocity dispersion of GCs do not represent their initial

conditions. If the scaling relations have a physical origin, then the initial masses of GCs
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should correlate with their central IMBH following a similar scaling relation than as
galaxies. Following this idea, Kruijssen & Lutzgendorf (2013) used semi-analytic models
to estimate the initial masses and velocity dispersions of Galactic GCs. Their models
show that once they take into account the mass-loss and probable initial conditions,
Galactic GCs do follow the same scaling relations as galaxies.

With the variety of simulations forming IMBHs in GCs (e.g., Gieles & Zocchi, 2015;
Rizzuto et al., 2021; Gonzalez et al., 2021), it is now possible to analyse if the different
formation scenarios produce IMBH consistent with the scaling relations. In this chapter,
we analyse a sample of simulated GCs with and without a central IMBH, first to test how
the limitations of the dynamical models discussed in Chapter 3 and the kinematic effects
of binaries discussed in Chapter 4 affect the estimation of putative IMBHs. Finally, we
use the estimated IMBH masses to verify if our sample of simulated IMBHs is consistent
with the scaling relations.

5.2 Methods

5.2.1 Simulations

We analyse a sample of simulated GCs from the MOCCA-Survey I (Askar et al., 2017).
These clusters were evolved for 12 Gyr using the MOCCA code (Hypki & Giersz, 2013;
Giersz et al., 2013), which follows the Monte Carlo method first described by Hénon
(1971a.b). MOCCA includes single (SSE, Hurley et al., 2000) and binary (BSE, Hurley
et al., 2002) stellar evolution. Dynamical interactions of binary stars with single or
other binaries are followed with the FEWBODY code (Fregeau et al., 2004), which allows
for the direct N-body integration of the dynamical formation, hardening and disruption
of binaries. MOCCA includes different implementations for the natal-kicks of supernova
remnants, which allows for a large retention fraction of stellar-mass black holes, as further
described in Section 3.2.2. Furthermore, in MOCCA is possible to form IMBHs through
runaway collisions of stellar-mass black holes during the first 100 Myr, a process called
the ‘FAST" scenario (Giersz et al., 2015). IMBHs can also form later in the GC evolution
by the growth of a single stellar-mass BH through mergers with stars and other stellar-
mass BHs, which is known as the ‘SLOW" scenario (Giersz et al., 2015). Further details
on the MOCCA code are described in Sections 3.2.1 and 4.2.1 and in detail in Hypki &
Giersz (2013) and Giersz et al. (2013).

The MOCCA-Survey I (Askar et al., 2017) collects around 2000 star clusters composed by
10* to 10° stars, covering a broad range of parameters such as densities, metallicities,
and binary fractions. From this collection, we select 274 GCs with masses between
5x 10* and 2 x 10° M; this is a preliminary selection which will be broadened in a more
extensive analysis. The simulated clusters have initial binary fractions of fi;, = 10%
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(143 clusters), fuin = 30% (18 clusters) and fuin = 95% (113 clusters). At 12 Gyr, the
largest binary fraction observed is fin ~ 35%. Whereas the latter binary fraction is still
an extreme case for observed GCs with binary fractions around 10% (see discussion in
Section 1.2.1), it provides an opportunity to explore the effects of such binary fractions in
our dynamical models. We select only bright stars in the range of (—3,+1) magnitudes
for each cluster with respect to its MSTO, similarly as done in Chapter 4. We limit our
sample to GCs that have more than 2000 stars in the luminosity selected sample, which
reduces our selection to 230 clusters. We do not distinguish if a GC hosts an IMBH or
not, or if any BHS might be present in the cluster.

For each of the 230 simulated clusters in our sample, we build surface brightness and
kinematic profiles by averaging multiple viewing angles to reduce stochasticity. To anal-
yse the effects of the kinematic bias produced by binary stars, we produce two sets
of profiles for each cluster: one with and another without binaries. The profiles with
binaries follow the description presented in Sections 2.2.3 and 4.2.2 to project the lumi-
nosity weighted velocity of the binary components. While constructing the profiles, we
also include a 3o clipping, excluding stars (single or binaries) with an extremely high
line-of-sight velocity and that can single-handedly bias the measured velocity dispersion.

5.2.2 Dynamical models

For each cluster, we build dynamical models based on the Jeans equation (Jeans, 1922)
that for spherical coordinates (r, 8, ¢) is given by:

(5.1)

VE —(v2) — (v2
%{V{"“}{‘E}] +u(r) (§+ 2vr) (rd‘} ( a)) o,

where (v2), (v3), (vi) are the second velocity moments, (r) is the tracer density which in
this case we assume follows the luminosity density j(r) as v(r) o j(r) (for further details
on the Jeans equations see Sections 2.1.3 and 3.2.3). & is the gravitational potential,
which for a spherically symmetric system is given by:

GM(r)

o= ———. (5.2)

We simplify Equation 5.1 by assuming that the GCs are isotropic and hence (v2) =
{vg} = (vg} GCs usually have a nearly isotropic velocity dispersion towards the cluster
centre and become more radially anisotropic towards their outskirts (Watkins et al.,
2015). As we are interested mainly in the cluster centres where an IMBH resides, this
assumption will not significantly affect the results. We show in Section 3.4.1 that velocity
anisotropy alone cannot significantly bias the estimated mass for the IMBHs.
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Following the approach described in Sections 2.1.3 and 3.3.1, we start with the surface
brightness profile L(R) to find the deprojected luminosity density j(r):

="[
== JB_r2dR’

which we use as a proxy for the tracer density v(r) and the mass density p(r) through

(5.3)

a mass-to-light ratio vy, p(r) = Tyj(r). The cumulative mass of the GC is given by:
M(r) = M, + 4w f p(r"yr2dr (5.4)
0

where M, is the mass of the putative IMBH.

We accelerate the fitting by defining fin, = M, /M., as the fit parameter instead of M,,
the cumulative mass redefines to:

M(r) =fth,,+4;rrfDr p(r)rdr' (5.5)

where M, is the total stellar mass given integral of the the density p(r). This redefinition
of parameters allows us to build a small number of models that are later scaled using Tg

to compare to the observed kinematics. For each cluster, we explore a parameter space
defined by 0 < fy, <1 and 0.4 < Ty < 20.

We find the best fitting values through a y? minimisation, as described in Sections 2.1.3
and 3.3.1, following:

(42— 922)”
(s2)

where {:V};ﬁa is the observed second velocity moment profile and (V}Llfdal is the model

, (5.6)

=)

given by:

(o) = 775 [~ (). 5.7

5.3 Results

‘We obtain best-fit models for 230 simulated GCs with and without an IMBH, estimating
the mass of the putative IMBH and the cluster mass-to-light ratio. From this sample,
we only focus on clusters with a measured velocity dispersion within the half-light radius
above 4km/s and that have a reduced y? below 2. The first criterion excludes GCs with
low velocity dispersion, potentially dominated by binary stars (this happens at all initial
binary fractions). The second criterion excludes dynamically old GCs with a significant
degree of energy equipartition that our models describe insufficiently. Therefore, the
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FiGURE 5.1: Best-fit mass-to-light ratio Ty in our sample of simulated GCs. Left:
without the effect of binaries. Right: with the effect of binaries. The estimation was
carried out using kinematic constraints from line-of-sight (LOS) velocities or proper
motions (PMs). The dashed line represents the one-to-one ratio. We can see that if
we include the kinematic effect of binaries, the estimated mass-to-light ratio could be
significantly overestimated for constraints given by line-of-sight velocities.

original sample reduces to 111 GCs, where 93 have an IMBH, and 16 do not have an
IMBH, but have retained stellar-mass BHs.

Figure 5.1 shows the estimated mass-to-light ratios for the samples with and without
binaries. We see that when binaries are excluded, the estimated mass-to-light ratios are
consistent for fits using line-of-sight velocities (LOS) and proper motions (PMs). This is
not the case when binary stars contaminate the line-of-sight velocities. We notice that for
many GCs the estimated mass-to-light ratios when using line-of-sight velocities are much
larger than for the estimates obtained using proper motions only. The overestimation of
the mass-to-light ratio confirms the discussion presented in Section 4.5, where we first

speculated on this consequence.

Figure 5.2 shows the case for the estimated IMBH masses. The samples that exclude
binaries have similar estimates for both line-of-sight and proper motion velocities. Only
at lower IMBH masses, we observe a significant scatter from the one-to-one relation;
we will discuss this further in Section 5.4.1. On the other hand, when we allow for
binary contamination, we see that the scatter extends to larger IMBH masses. As
discussed in Section 4.4.2, GCs with an IMBH have lower binary fractions; therefore, the
contamination is less significant than for GCs without an IMBH. However, the retained
binaries still can affect the dynamical modelling. We note that for the high-mass IMBH
cases, we systematically underestimate the IMBH mass using LOS velocities, which could
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F1GURE 5.2: Best fit IMBH masses in our sample of simulated GCs. As in Figure 5.1,

for cases with and without binary stars and constraints from two kinematic samples:

line of sight wvelocities (LOS) and proper motions (PMs). Binary stars enhance the
scatter at all masses, and particularly at low IMBH masses.

potentially be a consequence of the 3¢ clipping that excluded some of the high-velocity
stars that were not binaries, particularly for the innermost region of the clusters.

With the estimated IMBH masses, mass-to-light ratios and measured velocity disper-
sions, we include the simulated clusters into the M. — o and M. — M, scaling relations,
as shown in Figure 5.3. Note that the simulated GCs have lower masses and velocity
dispersions than the GCs from the Milky Way (Liitzgendorf et al., 2013b); however, the
IMBHs of the simulated GCs have larger masses than predicted by the scaling relations,
locating them further away from the scaling relations estimated by Liitzgendorf et al.
(2013b). The IMBHs formed within MOCCA do not have any a priori description for the
formation scenario; they mostly form due to runaway collisions in highly dense stellar
systems (see discussion in Sections 3.2.1 and 4.2.1). The results presented in Figure 5.3

open a series of questions that we will further discuss in Sections 5.4.2 and 5.4.3.

5.4 Analysis

5.4.1 IMBH mass recovery

As pointed out in the discussion of Figure 5.2, low-mass IMBHs show an increased
scatter and large error bars for both the sample with and without binary stars. In
Chapter 3, we show that our dynamical models are able to robustly detect an IMBH
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Figure 5.3: M, —o and M, — M, scaling relations, as shown in Figure 1.1. We include

the estimated IMBH masses, velocity dispersions and total masses of the simulated GCs

(teal dots). The scaling relations as given by Galactic GCs (Lutzgendorf et al., 2013b)
and galaxies (McConnell & Ma, 2013) are also included for comparison.
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FigurE 5.4: Estimated IMBH mass given the IMBH’s mass fraction (M, /M,) for the
sample with (right) and without (left) binaries. In both cases we can see that for low
IMBH mass fractions, the constraints are less robust, with large error bars and upper
limits, particularly for M, /M, < 2%. We include a sample of estimated IMBH masses
from the hiterature (Lutzgendorf et al., 2013b). The grey diamonds represent the real
IMBH masses obtained from the MOCCA-Survey I rather than our calculations.
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with a mass fraction of M, /M, = 4.1% but struggle with an IMBH with a mass fraction
of M, /M, = 0.3%. Figure 5.4 shows the estimated IMBH masses with errors for all GCs
with respect to the IMBH mass fraction, which was measured using the real IMBH and
GC masses (teal dots). The real IMBH masses taken from the simulations are shown as
open diamonds. It is immediately clear that for higher-mass IMBHs, the constraints are
better and, for the sample without binaries, consistent with their real values. For the case
that includes the effects of binaries, we notice an underestimation, which, as discussed
in Section 5.3 could potentially be a consequence of the method used for making the
kinematic profiles. On the other hand, at the low-mass end, we observe that we only
obtain upper limits and large error bars in many cases. Given the current sample, we
can infer that IMBHs with mass fraction below M, /M, < 2.0% are harder to constrain.
The lack of constraints could be because low mass fraction IMBHs do not produce a
clear kinematic signature or because the assumption of constant mass-to-light ratio does
not provide an adequate model for the stellar mass distribution. Further analysis is
required to disentangle these effects.

The lack of constraints for low mass fractions serves as an attention call for the IMBH
mass estimates for the Milky Ways GCs. Figure 5.4 also shows the estimated masses for
a sample of Galactic GCs (Liitzgendorf et al., 2013b). Many of these clusters are located
in the low mass fraction end, showing upper limits and large error bars. As discussed
in Section 1.3.2, many observational limitations make it difficult to detect an IMBH
robustly. NGC 5139 (w Cen) is an interesting case, as it has been analysed repeatedly
with no robust IMBH estimate so far (see Table 1.2). In Figure 5.4, the IMBH mass
and mass fraction for NGC 5139 are based on line-of-sight velocities by Noyola et al.
(2010) with an IMBH mass of M, = 4 x 10 My and mass fraction of M, /M, = 1.87%
(pentagon in Figure 5.4). In contrast, estimates with proper motions by van der Marel
& Anderson (2010) put the mass at an upper limit of M, < 1.8 x 10! M, with a mass
fraction of M, /M, ~ 0.43% (black triangle in Figure 5.4). If line-of-sight velocities are
contaminated by binary stars, they may increase the estimated mass of the putative
IMBH up to a factor 4, as shown in Figure 5.2.

5.4.2 Stellar-mass black holes

We have earlier discussed how GCs that have retained a significant fraction of stellar-
mass black holes (BHS) might have similar dynamical and kinematical properties (see
Sections 3.4.2 and 4.4.1). We note that this is also the case for the scaling relations, as
BHSs can be confused for IMBHs (or at least create significant upper IMBH mass limits).
Figure 5.5 shows a close-up of the M, — ¢ relation presented in Figure 5.3, focussing
only on the simulated clusters. We see that GCs that have retained stellar-mass BHs
are consistent with the population of simulated clusters with a central IMBH.
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FIGURE 5.5: Zoom-in of the M, — o relation as shown in Figure 5.3. We have identified

the simulated GCs with a central IMBH (orange diamonds) and those with retained

stellar-mass BHs (BHS). Due to the limitations of our assumption on the constant

mass-to-light ratio, GCs with a BHS can be confused with hosting a central IMBH. We

see that the estimated masses for such cases are consistent with the masses of the real
IMBHs.

Whereas the measured IMBH masses are a consequence of our models not being able
to account for extended dark masses and variable mass-to-light ratio, it is important
to highlight that under these conditions, it would be possible to mistake a BHS for an
IMBH, and that they will still follow the scaling relations. This motivates the need for

models that can take into account variable mass-to-light ratios.

5.4.3 Initial GC masses

A crucial difference between GCs and the centres of galaxies is that while GCs lose mass
during their evolution, galaxies keep growing their central masses, questioning if GCs
should follow the same scaling relations as galaxies. As suggested by Liitzgendorf et al.
(2013b) and followed up by Kruijssen & Lutzgendorf (2013) with semi-analytic models,
the initial mass of the cluster could be closer to the scaling relation for galaxies. For the
first time, thanks to our simulation catalogue and modelling technique, we can test this
point directly.

Figure 5.6 shows the M, — M, scaling relation for our simulated clusters, where we
consider each cluster’s current and initial mass. The estimated scaling relations by the
Miky Way GCs (dashed line, Liitzgendorf et al., 2013b) and galaxies (dot-dashed line,
McConnell & Ma, 2013) are shown as a reference. We see that with the initial mass,
GCs move to the right and overlap with both scaling relations. However, it is not clear
if they follow either of them. As mentioned before in Section 5.3, the IMBHs in MOCCA
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Ficure 5.6: M, — M, scaling relation for the simulated GCs. When we consider
the initial mass of GCs (grey diamonds) instead of the current mass (teal dots), we
see that the simulated GCs are more consistent with the scaling relations estimated
from Galactic GCs (Lutzgendorf et al., 2013b) and galaxies (McConnell & Ma, 2013).
However, we cannot disentangle which scaling relation they initially follow.

form trough runaway mergers early in the GC’s evolution or later by many mergers
through the GC’s evolution. Furthermore, the treatment of the recoil after a merger
of two stellar-mass black holes in MOCCA might produce a bias towards more massive
IMBHs (Giersz et al., 2015).

5.5 Summary

In this chapter, we built dynamical models to estimate the mass of a putative IMBH
and the mass-to-light ratio of 230 simulated GCs. We analysed the limitations of our
dynamical model presented in Chapter 3 in a much larger sample of GCs and include
the contamination of binary stars in the line-of-sight velocity dispersion discussed in
Chapter 4.

We find that when we include the effects of binaries in the line-of-sight velocity disper-
sion, the estimated mass-to-light ratios systematically overestimate those obtained from
proper motions, which could translate to an overestimation of the cluster mass. For
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the estimated IMBH masses, we first find that those with a lower mass fraction either
have large error bars or only have upper limits, which confirms the results of Chapter 3.
When the kinematic effects of binaries are taken into account, we observe a larger scat-
ter for low-mass IMBH, so mass estimates coming from line-of-sight and proper motions

velocities are less consistent with each other.

With the estimated IMBH masses, we analyse the behaviour of the simulated GCs in
the M, — o and M, — M, scaling relations. In both cases, we find that the simulated
GCs follow neither of the scaling relations for Galactic GCs (Liitzgendorf et al., 2013b)
or galaxies (McConnell & Ma, 2013). GCs in our current sample are less massive than
Galactic GCs, but many have more massive INBHs than expected by comparing with the
scaling relations from Galactic GCs. As discussed by Giersz et al. (2015), the treatment
in MOCCA for the recoil after a BH-BH merge could have allowed for a more efficient
growth of the final IMBH masses.

We also show that a retained population of stellar-mass black holes could be confused
for an IMBH, and the estimated masses are consistent with the cases for real IMBHs
(in agreement with, wvan der Marel & Anderson, 2010; Zocchi et al., 2019; Baumgardt
et al., 2019b; Vitral & Mamon, 2021). Finally, we tested if our sample of simulated
GCs follows the scaling relations once we consider their initial conditions. While the
comparison improves from when the current GC’s properties are considered, they still
do not appear to follow the scaling relation for galaxies.

Through the dynamical analysis of simulated GCs, which form an IMBH, we can, for the
first time, test if the formation scenarios are consistent with the scaling relations. While
the results presented here are just the initial step, it will be possible to understand the
origin of the scaling relations better by expanding our sample.






Chapter 6

Conclusions and outlook

This thesis explores the limitations due to the assumptions in the dynamical models
commonly used to determine the masses of IMBHs in GCs. By applying models based
on the Jeans equations (Section 2.1.3 and 3.2.3) to simulated GCs (Sections 2.2, 3.2.1
and 5.2), we analysed the recovery of putative IMBHs in GCs (Chapter 3). We suggest
new paths of evidence for the presence or absence of an IMBH through its interaction
with the binary population of GCs (Chapter 4). Finally we explore the consequences of
the results linked to the M, — ¢ and M, — M, scaling relations, between the black hole
mass M, and the velocity dispersion o or mass M, of their host stellar system (Chapter
5). The following section summarises the main results presented in these chapters and
provides a series of follow-up ideas to further constrain the presence or absence of IMBHs
at the centre of GCs.

6.1 Summary and conclusions

Intermediate-mass black holes with masses between 102 — 10° M, are an elusive pop-
ulation, with only a couple of promising candidates (Section 1.1.4). They have been
proposed as possible seeds for the supermassive black holes observed at high redshifts
(Section 1.1.1). Dense stellar systems such as nuclear star clusters and globular clusters,
where runaway collisions are likely to happen, are the possible birthplaces of IMBHs
(Section 1.1.2). The extrapolation of the M, — 7 relation points towards GCs as the
systems where an IMBH of masses 10> — 10* My, can be found (Section 1.1.3). Con-
sidering both premises, many studies have looked into the centres of the Milky Way's
GGCs to find IMBHs (see Table 1.2); however, no robust evidence exists so far. Multiple
observational limitations could be behind the lack of robust constraints (Section 1.3.2).

109
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FIGURE 6.1: Primary result of Chapter 3. Inferred mass of a central IMBH in different

GCs. Whereas dynamical models can easily detect a high-mass IMBH (with M, /M, ~

4%), it is challenging to detect a low-mass one (M, /M, ~ 0.3%) or rule out IMBH
candidates. This 1s a repetition of Figure 3.10, for further detail see Section 3.3.2

6.1.1 Dynamical constraints of IMBHs

Chapter 3 discusses the reliability of the commonly used dynamical modelling tech-
niques to find IMBHs at the centres of GCs. For the first time, we take an independent
approach to analyse GCs with an IMBH and GCs with features that could be misinter-
preted as dynamical effects due to a central IMBH. We applied dynamical models based
on the Jeans equations (Sections 2.1.3 and 3.2.3) to a sample of five selected Monte
Carlo simulations from the MOCCA-Survey Askar et al. (2017), with similar masses
and observed properties but different central central object: a cluster without an IMBH
or significant fraction of stellar-mass black holes, a cluster with ~ 140 stellar-mass black
holes (BHS), a cluster with a high-mass IMBH (M, = 1.2 x 10' M), a low-mass IMBH
(M. = 5.2 x 102 M) and a cluster without an IMBH but after core-collapse.

We find that dynamical models are reliable to detect a high-mass IMBH (M, /Mgc ~
4%), but struggle to robustly detect a low-mass IMBH (M, /Mgc ~ 0.3%) and to rule
out the presence of an IMBH when it is not there (see Figure 6.1). We also show that
the presence of a stellar black hole subsystem in the GC makes it even more challenging
to rule out the presence of an IMBH.

We speculate that the reason behind this is the additional complexity caused by the
collisional nature of the GC (see Section 1.2.2 and discussion in Section 3.4.2). Due to the
two-body relaxation process, more massive stars in a GC segregate faster to the centre
producing a mass-to-light ratio that varies with radius (see Figure 3.11). While the
assumption of a constant mass-to-light ratio is suitable for estimating general properties
like the mass within the half-light radius, it does not provide sufficient constraints for
the central mass distribution or the cluster’s total mass (for the latter, see Figure 3.14).
It is necessary then to develop models that go beyond these assumptions and produce
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FIGURE 6.2: Primary results of Chapter 4. Panel (a): Binary fractions within the core

radius and at the half light radius. Panel (b): line-of-sight velocity dispersion difference

for samples with and without binaries and binary fraction within the core radius. Both

panels colour coded by the mass of the central object. The low hinary fraction and

velocity dispersion difference provide indirect evidence for the presence of an IMBH in

GCs. Panel (a) is a repetition of Figure 4.7 while panel (b) corresponds to the bottom
panel of Figure 4.9, for further details see Section 4.4.

a better representation of the mass distribution and kinematics of GCs. Improvements
to the dynamical models presented in this thesis are described in Section 6.2.1.

6.1.2 Binary stars and IMBHs

In Chapter 4, we analyse the kinematic and dynamical effect of a central IMBH on the
binary population of GCs. GCs have a non-negligible fraction of binary stars of around
10% (Sections 1.2.1 and 4.1). The interaction between binaries and a central IMBH can
produce indirect evidence for the presence of an IMBH, as it can quench the segregation
of binaries towards the centre and disrupt the binary systems that do segregate, leading
to a lack of binaries around the IMBH (Section 4.4). We show for the first time that this
lack of binaries can be interpreted as indirect evidence for the presence of an IMBH.

We study the lack of binary stars towards the cluster centre due to an IMBH by com-
paring the binary fractions within the GC’s core radius for a sample of 65 simulated
clusters. The simulations are part of the MOCCA-Survey and were evolved to 12 Gyt us-
ing the MOCCA code (Sections 2.2.2 and 4.2.1). All clusters have identical initial binary
fraction of fi;, = 10%, but different central objects at 12 Gyr: an IMBH, a stellar-mass
black holes system or neither of them (Section 4.2.1).

The left panel of Figure 6.2 shows the binary fraction for the GC sample within the core
radius and at the half-light radius. Clusters with a central IMBH have fewer binaries
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than clusters without one, given the same initial binary fraction; moreover, GCs with
a central IMBH also stay near the one-to-one relation, consistent with a flatter radial
profile for the observed binary fraction (see Figure 4.6). Clusters with retained stellar-
mass black holes also show a flatter profile while still having a higher binary fraction
than GCs with an IMBH. On the other hand, GCs without an IMBH or stellar-mass
black holes have a much higher binary fraction within the core radius (Section 4.4.1).

The presence of binaries can increase the observed line-of-sight velocity dispersion, which
is due to the binary components intrinsic orbital motion around their centre of mass
(Section 4.3). The right panel of Figure 6.2 shows the difference between the observed
line-of-sight velocity with and without binaries and the binary fraction, both within
the core radius. Cluster with more binaries will have a larger increase in the observed
line-of-sight velocity dispersion. As the intrinsic motion of binaries mainly affects the
line-of-sight velocities, discrepancies between line-of-sight velocity dispersion and proper
motions can provide an indirect detection for the presence of an IMBH, as a cluster with
an IMBH will have similar velocity dispersions (see Figure 4.4 and discussion in Section
4.4.2).

Follow up ohservations such as the carried out by Giesers et al. (2019) in other Milky
Way's GCs will open opportunities to study the binary fraction of GCs and directly

analyse the kinematic effects of binaries, leading to new evidence for the presence of
IMBHs in GCs.

6.1.3 IMBHSs and scaling relations

In Chapter 5 we apply the dynamical models presented in Sections 2.1.3 and 3.2.3 to a
selection of 230 simulated GCs. For each cluster, we use velocity dispersion profiles with
and without the effects of binaries to constrain the mass-to-light ratio of the GCs and the
mass of a possible central IMBH. We find that when the impact of binaries in the line-of-
sight velocity dispersion discussed in Chapter 4 is considered, the best-fit models from
line-of-sight velocities systematically overestimate those from proper motions alone. We
also find that binaries make the estimated IMBH masses less consistent between line-of-
sight and proper motion velocities, particularly at the low IMBH masses.

Figure 6.3 shows the primary result from the dynamical modelling on this larger GCs
sample. Whereas the high-mass IMBHs are robustly detected, our models struggle to
constraint the mass of low-mass IMBHs, particularly for those with a mass fraction
below 2%. The lack of constraints could be due to our model assumptions (i.e. constant
mass-to-light ratio) or be caused by the fact that these IMBHs do not produce clear
enough kinematic signatures. Further analysis is necessary to disentangle both effects;
however, this puts a cautionary note for the dynamical modelling of GCs with a possible
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FIGURE 6.3: Primary result of Chapter 5. Estimated IMBH masses given the IMBH's

mass fraction M, /M, . Our models {teal dots) struggle to constrain the mass of IMBH=

with lower mass fraction, particularly for those below 2%. As Galactic GCs (red stars,

Lutzgendorf et al., 2013b) also fall within this region, it is necessary to be aware of the

model limitations. The real IMBH masses are included as grey diamonds. This figure

corresponds to a repetition of Figure 5.4, and further details can be found in Section
5.4.1.

IMBH. Furthermore, we notice that a sample of Galactic GC candidates to host an
IMBH fall within this region (red stars).

We compare the estimated IMBH masses of our sample with previous estimates for
the M, — o and M, — M, scaling relations, comparing the mass of the central IMBH
and properties of their host stellar system. The simulated GCs in our sample hosting an
IMBH appear to follow the scaling relations for Galactic GCs (Liitzgendorf et al., 2013b)
or galaxies (McConnell & Ma, 2013). While the situation improves once we consider
the initial conditions of our sample of simulated GCs, the IMBHs do not clearly follow
the scaling relations. While further analysis is necessary, for the first time, we use
dynamical models of simulated GCs hosting IMBHs to better understand the origin of
scaling relations. If any of the formation scenarios discussed in Section 1.1.2 produce
IMBHs that follow the scaling relations, it will help to clarify the physical origin of these
relations.

6.2 Future projects

We are in a golden age for the study of the dynamical state of GCs. Current observations
have unveiled the rotation of GCs (Ferraro et al., 2018; Bianchini et al., 2018; Kamann
et al., 2018; Sollima et al., 2019), the characterization (Alfaro-Cuello et al., 2019) and
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the distinct kinematics of multiple stellar populations in GCs (Dalessandro et al., 2018;
Alfaro-Cuello et al., 2020; Kamann et al., 2020a), and the distribution of binary stars in
GCs (Giesers et al., 2019; Milone et al., 2020). HST observations have allowed for the
analysis of the energy equipartition in GCs (Heyl et al., 2017), and Gaia observations
have been crucial for the identification of stars close and beyond the tidal radius of GCs
(Bianchini et al., 2019b; Kundu et al., 2021). By combining these different pieces of the
puzzle, one finds a unique opportunity to build an exhaustive view of the dynamical
state of GCs.

6.2.1 Improvement of dynamical models

Chapter 3 described the dynamical model limitations produced by assuming a constant
mass-to-light ratio. As observations keep improving it has become necessary to advance
our dynamical models, as they are necessary to create a link between simulations and

observations and to interpret these observations in the first place.

Dynamical models which allow for a non-parametric variable mass-to-light ratio have
taken the first step forward towards improvement, but still, struggle to constrain the
mass profiles (Liitzgendorf et al., 2013a; den Brok et al., 2014; Hénault-Brunet et al.,
2019b). An alternative is to instead represent the clusters as a collection of different mass
populations, work in this directions has been carried out by van der Marel & Anderson
(2010) who added an extended “dark-mass” component to their Jeans models. A similar
approach has been followed by Vitral & Mamon (2021) which also included an extended
“dark mass” to their Jeans model implementation and compared the models with a
bright and faint stellar sample. The new implementation presented here will not only
consider the effects of mass segregation through multiple-mass components as done by
(Vitral & Mamon, 2021), but will also consider the direct effects of energy equipartition
on the observed velocity dispersions.

The dynamical evolution of a GC follows the two-body relaxation, which produces two
primary effects: mass segregation and energy equipartition (Section 1.2.2). A direct
consequence of mass segregation is a variable mass-to-light ratio. If we constrain the
variable mass-to-light ratio, it is possible to generate a dynamical model which represents
the cluster. However, depending on the degree of energy equipartition of a given GC has,
the observed velocity dispersion will differ from the expected one. In other words, above
the velocity dispersion due to the overall gravitational potential, the velocity dispersion
of each mass population changes depending on the kinetic energy interchange between

more massive and less massive stars.

Now, if we represent the cluster with multiple single-mass stellar populations with con-
stant mass-to-light ratio, as shown in Figure 6.4, the observed velocity dispersion for a



Chapter 6 Conclusions 115

6.0} e 1 - Simulated GC |
80F m E
[ ' L &— at 12Gyr
S 4 i 70F |
Z ' @ -
= 20k b L fh — E
& 0820, | € OO 4 =082
| 00 =, H— iy = 0.80 M.
Ar e T 50t - _ .
é I 0.80 M| 1 B {my = 0.73 M
0.73 M ! —
= o0t ,.j 2 40k #— () = 0.65 M i
0.65 Mo | | —&— (m) = 0.57 My
0.57 M
| 4 . b = 0.49 M, i
e , A (.49 M. sor 7 .{T”' N
0.0 1.0 2.0 3.0 1.0
mp — my R [pc]

FicurE 6.4: Color-magnitude diagram (left) and lineof-sight wvelocity dispersion

(right) of a simulated globular cluster at an age of 12 Gyr. Different mass-populations

in GCs will have a systematically different velocity dispersion due to mass segregation
and energy equipartition, whose effects are stronger towards the cluster centre.

given single-mass population m; will be:

Om; obs = (T, M) X Om, & (6.1)

where o, ¢ is the velocity dispersion implied by the overall potential @ which includes
the information of the variable mass-to-light ratio and e(r) that represents the radial
effect of energy equipartition.

Whereas disentangling the effects of the energy equipartition and the variable mass-to-
light ratio is not trivial, we know that both are dependant on the dynamical age of the
(GCs (Bianchini et al., 2016a, 2017), and therefore, it should be possible to aim for self-
consistent models that constrain the effects of both. As observations expand to lower
mass stars, constraints on the level of energy equipartition will become available (Heyl
et al., 2017).

Having a large set of populations can systematically increase the number of free pa-
rameters in the models, making them more challenging to constrain. For this reason,
simulations will have an essential role to define the necessary ohservations for constrain-
ing the data. In particular, for defining which tracer for mass segregation or energy
equipartition can work best along with the observed kinematics. This approach can
also put constraints on the presence of stellar-mass black hole systems within the GCs
as well as improve the ability to detect the presence of IMBHs. This is also relevant
for gravitational wave studies, as it can provide upper limits on how many stellar-mass
black holes could still exist in GCs, as well as predict their distribution.
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6.2.2 Dynamics of multiple stellar populations

As discussed in Section 1.2.1, GCs have multiple stellar populations, characterized by
different abundance ratios of light elements. The different populations also show unique
kinematic features that not only can provide additional constraints for the dynamical
modelling of the GC, but also could provide constraints for their origin. As the kine-
matics of these different populations could still have imprints from their formation time,
they can be used to test different formation scenarios (Mastrobuono-Battisti & Perets,
2013; Hénault-Brunet et al., 2015; Tiongeo et al., 2019).

One intriguing point is the difference in rotation (Cordero et al., 2017; Kamann et al.,
2020a) that are expected from scenarios with extended or bursts of stellar formation,
which, however, is disfavoured by the lack of an age difference between the stellar pop-
ulations observed in young clusters (Martocchia et al., 2018; Saracino et al., 2020).

The dynamical models used throughout this thesis can also be adapted to consider
different stellar populations, by adding chemical tags for each star. Moving forward to
implement chemo-dynamical models of GCs will be the path to a better understanding
of the different properties of the stellar populations. To do so, we can build on the tools
developed here to analyse numerical simulation with dynamical models. By integrating
simulations that follow the evolution of multiple populations (ref) with the chemical
tagging described before.

In the same way, the methods discussed previously for binary stars (Chapter 4) can be
extended to multiple populations, as more kinematic data for binaries becomes available
(Kamann et al., 2020b). As the binary fraction in first and second-generation stars
is different (Hong et al., 2015, 2016; Milone et al., 2020), the question that follows
is: how does it affect the observed kinematics of each population and the difference in
velocity dispersion? Also, do mixed population binaries have any impact on the observed
kinematics? Simulations of GCs with multiple stellar populations with binaries (Hong
et al., 2015, 2016) will be crucial for answering these questions.

* & &k & &k ¥

To conclude, I have for the first time carried out an independent analysis to quantify
the reliability of dynamical models based on the Jeans equation to discover IMBHs in
GCs and describe the cases when this method works efficiently. Furthermore, I have
introduced a new method to utilise binaries in GCs to discover IMBHs. This approach
allows us to distinguish between clusters that might or might not harbour an IMBH.
Additionally, I have studied the effect of the overall binary population, finding that
contamination by unknown binary stars can overestimate IMBH masses. Finally, I show
that by using the dynamical modelling as it exists today (with constant mass-to-light
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ratio) and taking care of the treatment of binaries, only IMBHs with mass fraction larger
than 2% can robustly be detected. All these results are crucial in understanding current
and upcoming observations in the centres of GCs. Finally, I have introduced a selection
of possible follow-up projects.
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A.1 Additional figures
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Ficurge A.1: CMD for all five GC simulations, each of them centred at their respective

MSTO magnitude. Our selection on magnitude is represented by the dot-dashed line

and it is equivalent to select all stars brighter than my- ~ 18.5 at a distance of 5 kpe (as

described in Section 3.3.1) and follows the magnitude limit in Watkins et al. (2015) for

HST proper motions. For comparison we include limits from HST data for the central

(Libralato et al., 2018, for NGC 362) and outer (Heyl et al., 2017, for NGC 104) regions
of a GC.

119



120 Appendix A Additional material for Chapter 3
SR I N NI {:
2 400 o SR S SN S S ST Y S O S, S
b r ]
< -a00 _ b with binaries { T < 30 days b T =1 year
g +1{].ﬂ-— —:
= ooff--—4-- ---f--f--¢--¢--u--+-+-+-—t--+-§
3 3 ]
< -10.0 -
— +10.0 .
X, l _
H r m
= +oof T*-*f,¢++4-;+-_
S I ]
< -1u_n_—T ]

T,
R [pd]

Ficure A.2: Difference in velocity dispersion for different binary populations relative
to the sample without binaries, for the no IMBH/BHS simulation (as in Figure 3.4).
Binary systems have different effects in the velocity dispersion for each type of kinematic
data. The observed line-of-sight (LOS) velocity of binary systems 1z mostly dominated
by their internal orbital velocity, which translate in a increase in the measured velocity
dispersion and it is mostly dominated by short period binaries (T < 30 days). On the
other hand, proper motions (radial (PMR) and tangential (PMT) components) are not
affected by the internal orbital motion of each component, rather the measured velocity

dispersion will be affected by the level of energy equipartition of the binary systems.
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FicURE A.3: Parameter space for the mass-to-light ratio and velocity anisotropy, for all
simulations and kinematic data used for the fit. The contours represent the confidence
regions we defined to trace the errors, while the open circle represent the best-fit value in
each case and the x represent the value masured directly from the simulations within the
half-mass radius. For most of the simulations the constraints improve while including
more kinematic data. This is not the case for the high-mass IMBH model, where the
constraints in the velocity anisotropy do not improve when including proper motions.
The central shape of second velocity moment is significantly dominated by the IMBH,
the changes due different velocity anisotropy values are watered-down by the presence
of the high-mass IMBH.
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FICURE A.4: Mass and mass-to-light error per radius for all simulated GCs. For all
plots, the x-axis is in mass-fraction of the cluster from the centre (langrangian radi).
The halfmass radius is marked as a vertical dashed line, the deprojected halflight
radius is marked as a dotted line. The gray area represents the range of models with
Ay? < 7.8 and the coloured line represent the best fit model. On top we illustrate
the values in parsec for three langrangian radii as reference. In the top panels we see
that for all five simulated GCs we systematically underestimate the total mass, while
overestimating the inner regions (as we represented the profiles in mass-fraction, we are
unahle to ohserve the innermost region where the IMBH is relevant). The mass profile
errors behavior by radius is tightly correlated to the difference between our assumed
constant mass-to-light ratio and the one from the simulation (bottom panels). In all
simulated GCs, the models and the simulations are in agreement (low relative error)

around the half-light radius.
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FIcURE A.5: Constraints on the mass-to-light ratio and mass of the possible central
IMBH for all simulated GCs (each column), considering the full kinematic sample (as
in Figure 3.9). Each row indicate a different selection sample in magnitude following
the limits in Figure A.1. The constraints are consistent for all cases. Although the
second and third row are beyond the current limits for line-of-sight velocities, while
the third 1= only possible outside Rj, this comparison shows that the limitations in the
modelling described in this work are intrinsic to the model and do not depend on the
selected sample. For the high-mass IMBH and low-mass IMBH, the best-fit values are
consistent with the expected values. On the other hand, for the three GCs without a
central IMBH the best-fit values of the possible central IMBH do not converge. Once
deeper observations are available allowing for a fainter limit in the luminosity cut,
the Jeans modelling will antomatically produce better results as our stochastic errors
decrease with more stars in each bin.
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FICURE A.6: As in Figure A.5, but considering different binary samples. The first row

corresponds to the case without binaries as in our main analysis, while the bottom row

shows the case when long period binaries (T' > 1yr) remains in the kinematic sample.

The constraints from both cases are similar. As shown in panel (b) of Figure 3.4, the

sample with contamination from long period binaries is consistent with the case without
binaries (within errors), which is reflected on the parameter space.
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Additional material for Chapter 4

B.1 Observational errors

In this study we have included observational errors and noise to the kinematics. For
each simulated cluster we have the 3-dimensional velocities to which we add a noise
accordingly the observational error expected for either the line-of-sight velocity or the
proper motions. In both cases the observed velocity will be given by:

Vobs = Vaim + N (0,47) (B.1)

where v, is the velocity from the simulation and N (0,4?) is a value randomly sampled
form a Gaussian distribution centred in 0 with dispersion given by the observational

error 4. The later serve as a noise due the observational errors.

In the case of the line-of-sight velocities we use the observational errors of MUSE/VLT
data from Giesers et al. (2019). We bin the observed stars by magnitude and get the
median error in each magnitude bin, Figure B.1 shows the distribution of errors and
their median value. We use the V magnitude of each star in the simulation to assign an

error and scatter, assuming the cluster is at a distance of 5kpc.

We use a fix error of dym = 0.1mas/yr, taken from Libralato et al. (2018) for improved
HST astrometry. We transform this value to km /s assuming the clusters are at a distance
of 5kpe.

As we added a noise to the observed kinematics we use the following likelihood approach

to obtain the intrinsic velocity dispersion ¢ and mean velocitiy ¥

N

. B 1 ox (Vuba,i - ?}2
ﬁ{ﬂ}VlVﬂbﬁ} = g m p( E{UE-F*E?} ) {Bﬂ}
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Ficure B.1: Observational errors of line-of-sight radial velocities for NGC3201 from

Giesers et al. (2019). The red line represent the median error value at different magni-

tude bins. The vertical dash line represent the error imit for kinematics in this work,
assuming a maximum error of & ~ 3 km/s.

B.2 Gobular clusters hosting a black hole subsystem

In Figure 4.8 we show the binary fraction within the core radius and outside the half-
mass radius for a sample of Galactic GCs (Milone et al., 2012a). We have cross-matched
these clusters with the list of candidate Galactic GCs from Askar et al. (2018b) and
Weatherford et al. (2020) to find those which have retained stellar mass black holes
(BHs). We notice that indeed the candidate GCs fall closer to the 1-to-1 ratio of binary
fractions (see Figure 4.8). We define an orthogonal distance to the 1-to-1 line, for each

cluster in the sample, as:

_ foin(R < Re) = foin(R > Rim)

A 72

(B.3)

In Table B.1 we summarize the clusters used in Figure 4.8, indicating their names,
binary fractions (core f. and half-mass fi,;,,) from Milone et al. (2012a), the distance
from the 1-to-1 relation A. We have highlighted in bold face the clusters that have an
off-set of A < 5, which is below the median value for the distances to the 1-to-1 relation.
We also include the number of retained BHs (Npps) and the total mass of the retained
BHs (Mgpns) from both Askar et al. (2018b) and Weatherford et al. (2020). We include
estimated mass of a central IMBH for three GCs in the sample with possible IMBHs in
their centre.
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