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Abstrakt.

Diese Arbeit erforscht die Jeans Instabilität einer Galaxienscheibe in
einem dynamisch reagierenden Dunkle-Materie-Halo. Auf kleinen Skalen
wird die Instabilität unterdrückt, wenn der Index QT der Toomre Insta-
bilität grsser ist als ein bestimmter Grenzwert, aber auf grsseren Skalen
tritt die Jeans Instabilität beständig ein. Trotzdem wurde unter Verwen-
dung eines selbstkonsistenten ’disk-halo’ Modell gezeigt, dass dies auf Skalen
passiert die grösser als das System selbst sind, so dass es als ein nomineller
Effekt betrachtet werden kann. Es folgt eine genaue Berechnung der Kraft
der dynamischen Reibung in einer Plummer- oder Hernquist-Sphäre, die sich
durch ein unendliches homogenes Sternsystem bewegt. Unter Verwendung
einer Methode mechanischer Schwingung, erhalten wir Chandrasekhar’s Rei-
bungskraftgesetz mit einem modifizerten Coulomblogarithmus, der von der
Form der Störung abhängt. Wir erweitern diese Analyse auf anisotrope
Geschwindigkeitsverteilungen der Feldsterne. Wir zeigen leicht verwendbare
Formeln der Kräfte der dynamischen Reibung, angewandt auf einen Punkt-
massensatellit fr den Fall wenn das Geschwindigkeitsellipsoid abgeflacht und
gestreckt ist (für verschiedene Werte der effektiven Geschwindigkeitsdisper-
sion σeff ) unter Bestimmung der Anisotropie des Systems.

Abstract.

The Jeans instability of a galactic disk embedded in a dynamically re-
sponsive dark–matter halo is investigated in this work. On small scales the
instability is suppressed, if the Toomre stability index QT is higher than a
certain threshold, but on large scales the Jeans instability sets invariably in.
However, using a simple self–consistent disk–halo model it is demonstrated
that this occurs on scales which are much larger than the system so that
this is indeed only a nominal effect. Also, a rigorous calculation of the dy-
namical friction (DF) force exerted on a Plummer and a Hernquist sphere
moving through an infinite homogenous system of field stars is presented. By
using a wave–mechanical treatment, we recover Chandrasekhar’s drag force
law with a modified Coulomb logarithm that depends on the exact shape
of the perturber. We then extend this mode analysis to anisotropic velocity
distributions of the field stars. We present easy-to-use handy formulae of the
DF force exterted on a point–mass satellite for the cases when the velocity
ellipsoid is either oblate or prolate for different values of the effective velocity
dispersion σeff determining the anisotropy of the host system.
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Chapter 1

Introduction

Since its discovery more than one and a half centuries ago [Ros50], the struc-
ture of spiral galaxies has remained to some extent unexplained due mainly
to the constant use of oversimplifications held by earlier observers. The diver-
sity among spirals is considerably: there are large lenticular galaxies, normal
spirals such as our own Galaxy and M31, and dwarf magellanic–type galax-
ies, all of which can have a bar or not. The common way of studying how the
presence of a sudden perturbation affects the stability of these systems two
effects are usually taken into account: the Jeans mass and the phase–space
density.

The random velocities of their constituents define the Jeans mass, pre-
venting the collapse of the perturbations on small scales. This means that for
the same random velocities, smaller densities must necessarily be correlated
to larger Jeans masses. In the other case, models with a higher phase–space
density will result in a more compact, denser central region, thus being sim-
ilar to the effect described by the Jeans mass. The Jeans mass is related
to the Jeans lenght which defines the boundary between the gravitational
collapse and the stability of the system. It has been constantly argued that
in galactic disks, the Jeans length is usually larger than the radial extent of
the disk, making this one safely stable.

On the basis of that argument, the continuing increase of our knowledge
about galactic systems and the ingredients that compose them has shaped
the way in which the theorists work culminating with the discovery in the
60’s of dark matter haloes surrounding these spiral configurations. Since
inclusion of the dark–matter component complicates considerably the mod-
eling of astrophysical systems, to this day, most of the study on the stability
and dynamical evolution of self–gravitating astrophysical configurations, for
instance a galactic disk, has been carried out with the use of numerical cal-

1



culations.

However, the role a dark–matter halo could have on the stability of the
disk had not yet been stablished on theoretical grounds. Recent numerical
simulations hinted at the fact that the halo supports small perturbations in
the disk to grow although no analytical study had corroborated this effect.
We start our work in chapter 2 by looking through Toomre’s original work
[Too64] in detail and establishing the role played by rotation and random
motion of the particles in the disk. Using a formal approach, which con-
sists of solving both the collisionless Boltzmann equation that determines
the distribution function of the stars in phase space and the Poisson equa-
tion which takes into account the self–gravity of the disk, we consider the
orbits of the stars in the epicyclic approximation and extend in chapter 3
the current study of the stability of the disk by placing it inside a responsive
dark–matter halo.

Also, other dynamical phenomena are important in the evolution of of
galactic systems. In this context, the process of dynamical friction (DF)
is one of the most classical and fundamental problems encountered in the
description of the evolution of almost all astrophysical systems. From the
critical momentum exchange in a protoplanet–protoplanetary disk set up,
passing through the problem of satellites in galaxies to galaxies in large clus-
ters, proper understanding of DF is a prerequisite to more ambitious attempts
at constructing physically justified models.

Chandrasekhar’s classical formula of DF [Cha43] has been extensively ap-
plied to many different situations with relative success even if as originally
derived the formula has a lot of caveats. This treatment considers various
oversimplifications of real astrophysical systems such as the inclusion of an
infinite homogenous distribution of background stars with an isotropic veloc-
ity distribution, and, moreover, the extension of the perturbing body is not
considered. In chapter 4 we follow Chandrasekhar’s original work in detail.

With mathematical rigor we calculate in chapter 6 the DF force exerted
on several extended bodies following the existing mode analysis developed by
Marochnik [Mar68] and Kalnajs [19772]. The collisionless Boltzmann equa-
tion is solved self–consistently with the use of Poisson equation. A brief
description of the different density profiles is given in chapter 5.

Another concern for the theorists that model the evolution of satellites
under the effect of DF is the role played by an anisotropic velocity (and
mass) distribution of the host system. In chapter 7 we extend the mode
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analysis used in chapter 6 to include an anisotropic velocity distribution of the
background particles in the unperturbed distribution function. We show that
the contribution from the anisotropic distribution is taking into account by
considering an effective velocity dispersion. The precise form of the velocity
ellipsoid is determined by the components of the velocity dispersion. Several
cases are studied: whether the velocity ellipsoid is prolate or oblate the
particle is considered to travel at different angles through the ellipsoid. The
value of the force with the inclusion of the anisotropic distribution tends to
be bigger than its corresponding value when an isotropic velocity distribution
is considered. The conclusions are given in chapter 8.
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Chapter 2

On the stability of a galactic

disk

As said in chapter one, the complexity of the spiral structure of some galaxies
made it evident since the beginning that some f undamental equations were
necessary in order to deal with both the stellar and gas components. First
derived by Maxwell, the first application of the moments of the Boltzmann
equation (which can be simply understood as the equation of continuity in
phase space) to stellar–dynamical problems is due to Jeans [Jea19]. The
suggestion given by him about the stability of such systems failed because he
envisaged a galaxy to be a uniformly–rotating, pressure-supported gaseous
configuration; in that way oversimplifiying the more physical situation of
a mixture of gas and stars in which the stability is due to the rotation of
both components and/or due to the motion of the stars. However, a major
contribution of his study was to give an order of magnitude estimate for the
boundary that defines stable from instable regions known as the Jeans length

λJ ≡ 2π

kJ

=

√

π

Gρ0

σ , (2.1)

where kJ is the wavelength of the perturbation, G is the gravitational con-
stant, ρ0 is the density of the system, and σ is the radial velocity dispersion of
the stars. In the case of gaseous systems, for example, Eq. (2.1) tells us that
a cloud that is smaller than its Jeans length will not have sufficient gravity
to overcome the repulsive gas pressure forces and condense to form a star,
whereas a cloud that is larger than its Jeans length will collapse. In the con-
text of a differentially–rotating disk of gravitating matter, Toomre [Too64]
was the first to point out that Coriolis or centrifugal forces stemming from
the disk’s rotation were not on their own sufficient to overcome gravitational
collapse due to the presence of a small axisymmetric perturbation and that
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is the action of the random motion of its constituent particles that provides
the stabilizing pressure required for the equilibrium of the system. In order
to aim at understanding the evolution of a disk surrounded by a dark–matter
halo we need first to pay attention to the work done by Toomre, which we
outline in this chapter.

2.1 The role of rotation

In this section we discuss the importance of the inclusion of the random
motions of the stars, by first considering rotation as the sole stabilizing ef-
fect against a small disturbance. Let us follow then the treatment made
by Toomre [Too64] in his work, we consider an infinitely–thin differentially–
rotating disk where both centrifugal and gravitational forces are in equilib-
rium. In the presence of a sudden change in the disk structure, for instance
a contraction, Coriolis or centrifugal forces will respond to the small pertur-
bation trying to damp the resulting excess of gravitational attraction. Using
polar coordinates (r, θ, z) such the plane z = 0 coincides with the midplane
of the disk, the line r = 0 denotes the disk’s axis of rotation, and the di-
rection of rotation is given by θ, we can denote unperturbed quantities for
the surface density of the disk as µ0, its angular velocity as Ω0, its radial ex-
tension r0, and the potential as Φ0(r, z). Then we cast the governing Jeans
equations in a corotating frame (following Toomre) for the disturbances of
the radial u1(r, θ, z) and cimcurferential v1(r, θ, z) velocity components, the
surface density µ1(r, θ, z) and potential Φ1(r, θ, z) as

∂u1

∂t
+ Ω0

∂u1

∂θ
− 2Ω0v1 −

∂Φ1

∂r
= 0 , (2.2)

∂v1

∂t
+ Ω0

∂v1

∂θ
− 2Bu1 −

1

r

∂Φ1

∂θ
= 0 , (2.3)

∂µ1

∂t
+ Ω0

∂µ1

∂θ
− 1

r

∂

∂r
(rµ0u1) +

µ0

r

∂v1

∂θ
= 0 , (2.4)

and
∇2Φ1 = −4πGµ1δ(z) , (2.5)

where B is Oort’s second constant

B = A− Ω0 , (2.6)

and is related to the first one via

A = −1

2
r0

(

dΩ

dr

)

r0

. (2.7)
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The set of Eqs. (2.2), (2.3), (2.4), and (2.5) has been linearized, i. e., second-
order terms have been dismissed and Poisson equation for the gravity–mass
pair of the disk (2.5) has to fulfill Dirac’s delta function δ(z). The poten-
tial is assumed to be axisymmetric, and so it is its associated perturbance.
Non–axisymmetric, spiral–like perturbations have been taken into account in
the theoretical study made by Fuchs [Fuc01]. However, to gain insight into
the stability on physical grounds it suffices to consider only axisymmetric
perturbances. Therefore, we take into account perturbations of the type

u1, v1, µ1 = uA, vA, µA × expi(kr0+ωt) , (2.8)

where the uA,vA,µA denote constants and the local wavelength 2π/k is as-
sumed to be much shorter that the disk extension, i. e. kr0 ≫ 1. For
Poisson’s equation we also have

Φ1 = ΦA × expi(kr0+ωt) , (2.9)

while
△Φ1 = 0 , (2.10)

must hold for z 6= 0; this is achieved by

Φ1 = ΦA × expi(kr0+ωt)−|kz| . (2.11)

The next step is to integrate Eq. (2.5) over an interval (−ǫ,ǫ) and then to
take the limit ǫ→ 0, thus arriving at

lim
ǫ→0

∫ ǫ

−ǫ

dz ∇Φ1 = lim
ǫ→0

∂Φ1

∂z

∣

∣

∣

∣

ǫ

−ǫ

= 4πGµ1 , (2.12)

but we also have

lim
ǫ→0

∂Φ1

∂z

∣

∣

∣

∣

ǫ

−ǫ

= −2|k|ΦA expi(kr0+ωt) , (2.13)

and so the constants ΦA and µA are related to each other through

−2|k|ΦA = 4πGµA. (2.14)

Solving for Φ1 we then get

Φ1 = −2πGµA

|k| expi(kr0+ωt)−|kz| , (2.15)

and the corresponding force

∂Φ1

∂r
= 2πGµA expi(kr0+ωt)−|kz| . (2.16)
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Table 2.1: Local parameters of the Milky Way
Σd 38 M⊙/pc

2 (Holmberg & Flynn [HF04])
σd 40 km/s (Jahreiß & Wielen [JW97])

κ
√

2 · 220 km/s/8.5 kpc (flat rotation curve)
λcrit 4.8 kpc

Putting Eqs. (2.15), (2.16), and (2.8) into Eqs. (2.2), (2.3), (2.4), and (2.5),
we get after some algebra the next condition for the local wavenumber k and
the oscillatory frequency w,

2πGµ0k = κ2 − w2 , (2.17)

where κ is the epicylic frequency

κ =
√

−4Ω0B. (2.18)

The above dispersion Eq. (2.17) defines a line (w2 = 0) that divides expo-
nentially unstable modes (w2 < 0) which occur when the local wavenumbers
exceed a certain critical value

kcrit =
κ2

2πGµ0

, (2.19)

and stable perturbances (w2 ≥ 0) which take place otherwise. In effect, for
most plausible models for spiral galaxies the critical wavelength associated
to Eq. (2.19),

λcrit =
2π

kcrit

=
4π2Gµ

κ2
(2.20)

happens to be of the order of the radial scale length of the system, thus
implying that the rotation of the disk cannot alone stabilize the disk against
small–scale perturbations. For the sake of the discussion we can calculate this
critical wavelenght using typical values assigned to our own Milky Way listed
in Table 1. Due to this short wave lenght, rotation could only stabilize the
disk of the Milky Way at large scales, giving place recently to ideas pointing
the possible role of disks in the formation of massive clusters of stars in our
galaxy [EL08]. In the next section we brifely discuss what happens to the
stability of a galactic disk when the root-mean-square random velocities of
its constituent stars cannot longer be ignored.

2.2 On the stability of the shearing sheet

The treatment developed in Toomre’s original paper would have to be mod-
ified was it to be applied to stellar disks whose thicknesses are not negli-
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gible, which is the case of isolated galaxies whose scale–hights are consid-
erably bigger than those of spiral galaxies [FCT08, and references therein],
altough from a practical point of view, the basic argument that it is the inclu-
sion of the random motion of the stars which stabilizes the system remains
applicable [ZMKS08]. Moreover, the simpler theory of a self–gravitating,
infinitely–thin shearing sheet has succesfully reproduced the dynamical evo-
lution of a galactic–disk system, accounting for the spiral arms ([Fuc04];
[GL65]; [JT66]), and we continue here under its assumptions.

The trajectories of the particles in the disk will be derived from the con-
straint imposed by the Lagrangian

L =
1

2
(ṙ2 + rθ̇2) − Φ(r, θ, z) , (2.21)

where Φ(r, θ, z) denotes the disk’s gravitational potential. In this scenario
(see Fig. 2.1) polar coordinates can safely be rectified to pseudo–Cartesian
coordinates and the differential rotation is accounted for by a linear shear
flow. Therefore for spatial coordinates (x, y) defined by

x = r − r0 and y = r0(θ − Ω0t) , (2.22)

where r0 is the distance between the center of the disk and the center of the
patch, y points in the direction of rotation and the mean angular velocity of
the patch around the galactic center is

Ω0 =

[

1

r0

(

dΦ

dr

)

r0

]
1
2

, (2.23)

we can make use of the epicyclic approximation [Lin59], which considers that
the radius of the epicyclic orbits is perturbed. This remains a valid approach
as long as the amplitude of the radial oscillation is small compared with the
mean radius, i. e.

|x| ≪ r0 and |ẋ|,|ẏ| ≪ Ω0r0. (2.24)

We can then make a Taylor expansion of Eq. (2.21) around x; thus obtaining

L ≈ 1

2
(ẋ2 + (r2

0 + 2r0x+ x2)(Ω2
0 + 2Ω0

ẏ

r0
+
ẏ2

r2
0

))

−Φ(r0) − Φ(r0)
′x− 1

2
Φ(r0)

′′x2. (2.25)
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Figure 2.1: A patch of a galactic disk in the shearing sheet model. Due
to the small dimension of the region considered the uniform shear can be
approximated by considering rectangular coordinates in the Eulerian frame
of reference.
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We can also rearrange terms by considering appropriate susbtitutions

Φ(r0)
′ = r0Ω

2
0 and Φ(r0)

′′x = Ω2
0 − 4AB , (2.26)

where we have made use of Oort’s constants (Eqs. (2.6), (2.7)). The final
version of the Lagrangian will have the form

L =
1

2
[r2

0Ω
2
0 − Φ(r0) + ẋ2 + ẏ2 + 4Ω0xẏ + 4AΩ0x

2]. (2.27)

The first–order equations of motion can thus be derived by substituting ex-
pression (2.27) into the Euler-Lagrange equation, in this way getting

ẍ = 2Ω0ẏ + 4AΩ0x (2.28)

ÿ = −2Ω0ẋ. (2.29)

In epicyclic theory, it is costumary to accept solutions of the form x, y =
x, y(Ω, κ, cos(κt), sin(κt)) ([FFT79]; [Van75]), where κ is the epicyclic fre-
quency (Eq. (2.18)) and the trigonometric terms describe the oscillation of
disk stars around the mean motion with frequency κ. Therefore, for spa-
tial coordinates (x, y) there are corresponding velocity components (u,v),
respectively given by

u = ẋ and v = ẏ + 2Ax. (2.30)

The Hamiltonian of the system can readily be obtained from the Lagrangian
(Eq. (2.27)) via

H = ẋpx + ẏpy − L , (2.31)

to be expressed as

H =
1

2

(

u2 +
κ2

4B2
v2

)

+
A

2B
(py − Ω0r0)

2 − 1

2
Ω0r

2
0. (2.32)

It is advantegeous to consider from now on action variables, defined as

J1 =
1

2π

∮

pxdx =
1

2κ

(

u2 +
κ2

4B2
v2

)

(2.33)

and

J2 =
1

2π

∮

pydy =
∂L

∂ẏ
= Ω0r0 + 2Ω0x+ ẏ. (2.34)

Since the actual motion is not involved in this integration, these generalized
momenta are constants of motion, the first being the radial action and the
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second associated to the angular momentum. The Hamiltonian takes now
the form

H = κJ1 +
A

2B
(J2 − Ω0r0)

2 − 1

2
Ω2

0r
2
0. (2.35)

To the momenta J1, J2 correspond conjugate generalized coordinates w1,w2,
named “angle–coordinates”, whose dynamics is dictated by Hamilton’s equa-
tions

ẇ1 =
∂H

∂J1

=
κJ1

J1

= κ = Ω1 (2.36)

and

ẇ2 =
∂H

∂J2
=
A

B
(J2 − Ω0r0). (2.37)

Equations (2.29) can then be solved in terms of angle-action coordinates

x =
J2 − Ω0r0

−2B
+

√

2J1

κ
sinw1 , (2.38)

y = w2 −
√

2κJ1

2B
cosw2 (2.39)

Their associated velocity variables read

u =
√

2κJ1 cosw1 , (2.40)

v =
2B

κ

√

2κJ1 sinw1. (2.41)

We are now in the position to carry out a linear perturbation analysis to
study the stability of a disk whose Hamiltonian is assumed to be composed
of an axisymmetric part H0, and a small axisymmetric perturbance Φ1. The
governing equation describing the dynamical response of the ensemble of
disk stars, having an unperturbed distribution function f0, due to a small
perturbation f1 in the distribution function is the Boltzmann equation, which
has the general form

∂f

∂t
+ [f,H ] = 0 , (2.42)

where the square brackets are the Poisson brackets expressed as

[f,H ] =
∂f

∂w1

∂H

∂J1

+
∂f

∂w2

∂H

∂J2

, (2.43)

because terms ∂H/∂w1 and ∂H/∂w2 are zero due to the form of Eq.(2.35).
The choise of a small perturbation f1 could seem to be an imposed over-
simplification in this treatment, however, spiral arms are most of the time
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considered to be only minor disturbances of galactic disks. Eq. (2.42) can
be cast in the form of

∂f0

∂t
+
∂f1

∂t
+ [f0, H0] + [f0,Φ1] + [f1, H0] = 0. (2.44)

Since we are interested in the linear evolution of the system in the presence
of a perturbation, we can dispose of second-order terms, retaining only a
linearized Boltzmann equation

∂f1

∂t
+ [f0,Φ1] + [f1, H0] = 0. (2.45)

Assuming that the velocity dispersion is relatively small, we next consider
an unperturbed Maxwellian distribution for the disk particles

f0 =
−κ
B

Σ0

4πσ2
exp

κ
σ2 J1 , (2.46)

where σ2
u denotes the radial velocity dispersion and is related to the circum-

ferential veolcity dispersion through

σv

σu

= 4
B2

κ2
(2.47)

Because the equations are easier to handle, we transform quantities to Fourier
space with respect to the spatial coordinates. The Fourier transform of the
potential perturbation is

Φ1,k = Φk exp ikxx. (2.48)

The Poisson brackets are then found to be

[f0,Φ1] =

√
2κJ1

σ2
u

(ikx cosw1)f0Φ1,k (2.49)

and

[f1, H0] = κ
∂f1

∂w1
, (2.50)

leading to the linearized Boltzmann equation

∂f1

∂t
+

√
2κJ1

σ2
u

(ikx cosw1)f0Φ1 + κ
∂f1

∂w1

= 0 (2.51)

To analise the behavior of time-dependent disturbances we consider a per-
turbance of the type

f1(u, v, t) = f0(u, v)δf(u, v) exp(ωt) , (2.52)
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where we have introduced a function δf(u, v) which comes in handy since
we can then split off the unperturbed function f0 and momentarily deal with
the part of the Boltzmann Eq. (2.51) that looks like

iωδfω + κ
dδfω

dw1

+

√
2κJ1

σ2
u

(ikx cosw1) Φk,ω

× exp

[

ikx

(

J2 − Ω0r0
−2B

+

√

2J1

κ
sinw1

)]

= 0. (2.53)

The standard way of getting a general solution to Eq. (2.53) is to consider
first particular solutions that are basically solutions of the homogeneous part
of this equation multiplied by a constant C that depends upon the angle
variable w1, i. e. solutions of the form

δfω = C(w1) exp−i
(ω

κ
w1

)

. (2.54)

It is straight forward to find the explicit form of the constant C(w1) by
putting Eq. (2.54) into Boltzmann’s equation (2.53),

C(w1) =
i

σ2
u

√

2J1

κ
kx exp

(

ikx
J2 − Ω0r0

−2B

)

Φk,ω

×
∫ w1

0

dw′
1 cosw′

1 exp i

(
√

2J1

κ
kx sinw′

1 +
ω

κ
w′

1

)

(2.55)

Then the general solution to Eq. (2.53) is found by the sum of the particular
solution (Eq. (2.54)) and a solution that is also composed of the solution to
the homogeneous part of Eq. (2.53) but multiplied by an integration constant
D,

δfω =
Φk,ω

σ2
u

exp

(

ikx
J2 − Ω0r0

−2B

)

[

D − i

√

2J1

κ
kx

∫ w1

0

dw′
1 cosw′

1

× exp i

(
√

2J1

κ
kx sinw′

1 +
ω

κ
w′

1

)]

exp−i
(ω

κ
w1

)

(2.56)

To determine this last constant D, we apply the condition of periodicity,

δfω(w1) = fω(w1 + 2π) , (2.57)

and consider the integral in fω(w1 + 2π) in its alternative form given by the
right-hand side of the identity

∫ w1+2π

0

=

∫ 2π

0

+

∫ w1+2π

2π

. (2.58)
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Then by taken appropriate substitutions and solving for D we find

D = − 1√
2κJ1

exp−i(πω/κ)
2i sin(πω/κ)

[(exp(2πω/κ) − 1)

− i
ω

κ

∫ 2π

0

dw′
1 exp

(
√

2J1

κ
sinw′

1 +
ω

κ
w′

1

)]

(2.59)

By inserting this expression into Eq. (2.56) and after doing some algebra we
arrive at the final result

δfω = −Φk,ω

σ2
u

exp

(

ikx
J2 − Ω0r0

−2B

)

exp i

(
√

2J1

κ
kx sinw1

)

[

1 − ω/κ

2 sin(πω/κ)

×
∫ +π

−π

dw′
1 exp i

(

ω

κ
w′

1 −
√

2J1

κ
kx sinw′

1 cosw1 −
√

2J1

κ
kx(1 + cosw′

1) sinw1

)]

.(2.60)

Now, looking again for vanishing (neutral) disturbances ω = 0, we get the
perturbed density distribution f1 by putting Eq. (2.60) into Eq. (2.52)

f1 =
Σ0

−B
Φ1κ

4πσ4
u

exp−
(

κJ1

σ2
u

)

exp ikx

(

J2 − Ω0r0
−2B

−
√

2J1

κ
sinw1

)

×
[

1 − 1

2π

∫ +π

−π

dw′
1 exp −i

(
√

2J1

κ
kx {sinw′

1 cosw1 + (1 + cosw′
1) sinw1}

)]

.(2.61)

where we have taken the explicit form of the equilibrium distribution function
f0 (Eq. (2.46)) and used the limit of (ω/κ)/sin(πω/κ) = 1/π as ω → 0. The
trigonometric terms that appear in the exponential function inside the square
brackets can be rearranged and we consider the Bessel function of the first
kind in its integral form

1

2π

∫ +π

−π

dw′
1 exp −i

(
√

2J1

κ
kx sin(w′

1 + w1)

)

= J

(
√

2J1

κ
kx

)

(2.62)

In order to calculate the disk response to the perturbation given by Eq. (2.61)
we return to (x,y,u,v) coordinates via Eqs. (2.39), (2.41), and integrate over
(u,v)

Σ1 = −2B

∫ ∞

0

dJ1

∫ 2π

0

dw1 f1 , (2.63)

noting that dudv = −2BdJ1dw1. Integration over dw1 follows in a straight-
forward manner, and with the use of Eq. (2.62) we can express the disk
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response as

Σ1 = −κΣ0

σ4
u

Φ1 e
(iωt+kxx)

∫ ∞

0

dJ1 exp −i
(
√

κJ1

σ2
u

)[

1 − J2
0

(
√

2J1

κ
kx

)]

(2.64)
The first of the two integrals over dJ1 is trivial; the second is recognized with
the help of a list of integrals to be a modified Bessel function of first kind I0,
and so the final expression for the disk response will read

Σ1 = −Σ0

σ2
u

Φ1 e
kxx

[

1 − I0

(

σ2
u

κ2
k2

x

)]

. (2.65)

The radial perturbance of the potential has a simple form (cf. Eq. (2.15))

Φ1 = −2πGµA

kx
expi(kxx+ωt) , (2.66)

which we introduce into Eq. (2.65) with the condition ω → 0. Following
Toomre we express the result as

|kx|σ2
u

2πGΣ0
= 1 − exp

(

−σ
2
u

κ2
k2

x

)

I0

(

σ2
u

κ2
k2

x

)

. (2.67)

It is easy to see that we recover Eq. (2.19) by considering σu → 0 while
keeping both kx and κ finite. In the other limiting case, that is to say when
(σ2

uk
2
x/κ

2) tends to infinity, Eq. (2.67) will be approximated by

kx ≈ 2πGΣ0

σ2
u

, (2.68)

We illustrate the behaviour of Eq. (2.67) for the complete range of wave-
lenghts in terms of its critical value λcrit (Eq. (2.20)) in Fig. (2.2). Figure
(2.2) shows the neutral stability curve which devides the region where the
perturbances will remain bounded at all times and the unbounded region. It
is worth–mentioning however, that the perturbations will not exponentially
with time if the root-mean-square radial velocities of the disk stars exceed

σu,min =
√

0.2857
κ

αcrit
, (2.69)

where αcrit = 1/λcrit.
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Figure 2.2: Figure 5 of [Too64] showing the neutral stability curve which
devides the region where the perturbances will remain bounded at all times
and the unbounded region.
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Chapter 3

An astrophysical disk

embedded in a responsive

dark–matter halo

Instabilities of gravity perturbations, such as those produced by a spon-
taneous disturbance, seriously affect the evolution of astrophysical disks.
While being an unsolved problem still, the formation of protoplanets might
be due to rapidly disk instabilities, where formation of clumps of gas in
a marginally gravitationally-unstable disk leads to contraction to planetary
densities ([Bos97]; [Bos03]). Also, the classical Jeans instability of gravity
perturbations is present in a local treatment of the kinetic stability of a
gaseous disk that describes the fine-scale spiral structure present in Saturn’s
rings ([GG03]; [PS91]), and unstable modes may be crucial in driving mass
accretion onto central massive black holes [Too77]. Contrary to gravitation-
ally unstable scenarios which appear to successfully reproduce some of the
above mentioned situations, it is the dynamical response of a dark–matter
halo that is of crucial importance for the stability of a galactic disk in order
to match the local disk properties. This latter case has been modeled with
the use of numerical calculations in a number of situations starting with the
pionnering work of [OP73] where a non-axisymmetric perturbation (a bar)
was damped by the inclusion of the halo’s gravitational potential. However,
Athanassoula showed that due to the exchange of angular momentum within
the system it is the bar that grows stronger if it is embedded in a responsive
rahter than a static halo poltential ([Ath03]; [Ath02]).

More recently, more elaborated models have emerged considering not only
the stellar but also the gaseous-disk component, both within the framework
of classical Newtonian dynamics (CND) and modified Newtonian dynamics
[MOND, cf. TC08], and references therein), with basically the same result
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that the bar grows stronger in the presence of a dark–halo in the case of
CND. On the other hand, scarce improvement on the subject has been made
analitycally and one can highlight the work of Fuchs ([Fuc04] ;[FA05]) which
verifies the above-mentioned results.

In this chapter we study the dynamical stability of a self-gravitating disk
surrounded by a responsive dark–matter halo by extending the work done by
Toomre for a stellar disk described in the previous chapter and by considering
the formalism derived by Fuchs [Fuc04] who investigated the interaction of
the shearing sheet with a live dark halo. We describe in detail the work done
in [EF07b].

3.1 Response of the halo

In this section we follow the analysis that is strictly due to Fuchs [Fuc04],
but we apply it to the simpler case of a radial perturbation in the disk. In
this scenario, the changes of the distribution function of disk-halo particles
in phase space will be dictated by a linearized Boltzmann equation that has
a general form

∂f1

∂t
+

3
∑

i=1

vi
∂f1

∂xi
− ∂Φ0

∂xi

∂f1

∂vi
− ∂Φ1

∂xi

∂f0

∂vi
= 0 , (3.1)

where the sum is considered over spatial coordinates (x,y,z) and their cor-
responding velocity components (u,v,w) with v lying along the direction of
galactic rotation. This time the terms denoting the unperturbed potential
Φ0 and the zeroth-order distribution function of the system f0 in Eq. (3.1),
as well as their respective associated perturbed terms f1, Φ1 will comprise
both the disk and the halo contributions

f0 = fd0 + fh0 , f0 = fd1 + fh1 ,Φ0 = Φd0 + Φh0 and Φ1 = Φd1 + Φh1. (3.2)

We can inmediately neglect the force terms −∂Φd0/∂x, −∂Φh0/∂x since we
are assuming a homogeneous background of particles. In the context of the
shearing sheet particles follow straight-line orbits. Due to the fact that Eq.
(3.1) is a linear partial differential equation, we can analyse the evolution,
for the moment, of the distribution of the disk stars and the halo particles
separetely. We start by writting explicitly the Boltzmann equation for the
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halo particles

∂fh1

∂t
+ u

∂fh1

∂x
+ v

∂fh1

∂y
+

w
∂fh1

∂z
− ∂(Φd1 + Φh1)

∂x

∂fh0

∂u
−

∂(Φd1 + Φh1)

∂y

∂fh0

∂v
− ∂(Φd1 + Φh1)

∂z

∂fh0

∂w
= 0 , (3.3)

and recognizing that the part of it that describes the halo response to a
perturbance in the halo

∂fh1

∂t
+ u

∂fh1

∂x
+ v

∂fh1

∂y
+ w

∂fh1

∂z

−∂Φh1

∂x

∂fh0

∂u
− ∂Φh1

∂y

∂fh0

∂v
− ∂Φh1

∂z

∂fh0

∂w
= 0 , (3.4)

just describes the Jeans collapse of the halo as was pointed out by Fuchs
([Fuc04]). The instability regime sets in for wave-lenghts larger than the
Jeans lenght (Eq. (2.1)), however, typical values for dark–matter haloes as-
sign them large Jeans lenghts, of the order of their extension, thus making
this result of little importance for the dynamics of the system under con-
sideration and we disregard it. We now move to the part of Eq. (3.3) that
includes the halo response to a perturbation in the disk,

∂fh1

∂t
+ u

∂fh1

∂x
+ v

∂fh1

∂y
+ w

∂fh1

∂z

−∂Φd1

∂x

∂fh0

∂u
− ∂Φd1

∂y

∂fh0

∂v
− ∂Φd1

∂z

∂fh0

∂w
= 0. (3.5)

Similarly as in section (2.1), a radial perturbation for the disk potential
(cf. Eq. (2.9)) is Fourier transform

Φd1 =

∫ +∞

−∞

dx Φdω,kx
exp [i(kx + ωt) − |kxz|]

=

∫ +∞

−∞

dx

∫ +∞

−∞

dz Φdω,k exp [i(kxx+ ωt) + kzz]. (3.6)

To find the full perturbed Fourier component Φdω,k in terms of the disk
component Φdω,kx

, Fourier coefficients are considered

Φdω,k =
1

2π

∫ +∞

−∞

dz Φdω,kx
exp−[i(kzz + ωt) − |kxz|] =

1

π

kx

k2
x + k2

z

Φdω,kx
.

(3.7)
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The perturbation of the distribution function is also Fourier transformed

fh1 =

∫ +∞

−∞

d3k fhω,k exp i[(k,x) + ωt]. (3.8)

A major step in finding a solution to the Boltzmann equation is taken by in-
troducing orthogonal coordinates (ξ,η,ζ) and aligning ξ with the wave vector
k. This will considerably ease the calculations at no loss of generality. Eqs.
(3.7), (3.8) will have a dependence on the term eikξ and Eq. (3.5) will have
the form

iωfhω,k + υikfhω,k − ikΦdω,k
∂fh0

∂υ
= 0 , (3.9)

where υ is the velocity component parallel to the ξ-axis. Eq. (3.9) has
been integrated over the velocity components perperdicular to υ. Adopting
Gaussian distribution function for the sea particles,

fh0 =
ρb√
2πσh

exp− υ2

2σ2
h

, (3.10)

where σ2
h denotes the velocity dispersion of the halo particles and ρb their

matter density, we can solve Eq. (3.9),

fhω,k = −kΦdω,k
υ

σ2
h

eiωt

ω + kυ

ρb√
2πσh

exp− υ2

2σ2
h

. (3.11)

The Fourier term of the density perturbation is just obtained from Eq. (3.11)
by integrating over υ-space,

ρhω,k = −Φdω,k
ρb√
2πσ3

h

eiωt

∫ +∞

−∞

dυ
υ exp− υ2

2σ2
h

ω
k

+ υ
. (3.12)

From now on we split off the term eiωt for practical reasons. To be self-
consistent, Eq. (3.12) must obbey Poisson’s equation

∇2Φ1 = −4πGρ1 , (3.13)

whose representation in Fourier terms is

k2Φhω,k = 4πGρhω,k. (3.14)

Finally, we are able to explicitly relate the response of the halo due to per-
tubances in the disk; inserting Eq. (3.12) into Eq. (3.14) gives

Φhω,k = Φdω,k
4πGρb√

2πσ3
h

1

k2

∫ +∞

−∞

dυ
υ exp− υ2

2σ2
h

ω
k

+ υ
. (3.15)
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This equation has a singularity at υ = ω/k, and the usual technique of
Landau’s “rule around the poles” is applied in order circumvent this apparent
break-down of the formula. The basic idea is to extend the integral to the
imaginary plane to be able to get the contribution of the pole [cf. Keg98].
But first we calculate the real part of Eq. (3.15) by evaluating the principal
value integral that will give the contribution of the non–resonant particles

I =P

∫ +∞

−∞

dυ
υ

ω
k

+ υ
exp− υ2

2σ2
h

=
√

2σh

∫ +∞

−∞

dη
η

η − η0
exp−η2 , (3.16)

where η = υ/
√

2σh and η0 = −ω/k. Now with the substitution ξ = η − η0,
the integral can be easily calculated by integrating by parts

P

∫ +∞

−∞

dξ
ξ + η0

ξ
exp−(ξ + η0)

2

=
√

2πσh

[

1 +
η0√
π

P

∫ +∞

−∞

dξ
exp−(ξ2 + 2ξη0 + η2

0)

ξ

]

, (3.17)

where we have employed
∫ +∞

−∞
dξ e−(ξ+η0)2 =

√
π. Next we observe that

e−η2
0P

∫ +∞

−∞

dξ(cosh 2η0ξ − sinh 2η0ξ)
e−ξ2

ξ

= −e−η2
0P

∫ +∞

−∞

2

∫ η0

0

cosh 2xξe−ξ2

dξ , (3.18)

and use formula (3.546) of [GR00] we perform the integral over ξ

∫ +∞

−∞

dξ cosh 2xξe−ξ2

dξ =
√
πex2

. (3.19)

The perform the integral over x
∫ η0

0

ex2

= eη2
0F (η0) = i

√
π(1 − erfc(−iη0)) = −i

√
πerf(η0). (3.20)

So we finally find the contribution of the principal value of Eq. (3.15)

Φnr
hω,k = Φdω,k

4πGρb

σ2
h

1

k2

[

1 − i

√

π

2

ω

kσh
erf

( −iω√
2kσh

)

exp

( −ω2

2k2σ2
h

)]

. (3.21)
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Following Kegel [Keg98], Landau’s rule (η0 = −ωr/k−iωi/k, with ωi < 0,
η0i > 0, ti < 0) will give the extra term (cf. Eq. (3.17)

√
2πσh

[

1 +
η0√
π

P

∫ +∞

−∞

dξ
exp−(ξ2 + 2ξη0 + η2

0)

ξ
+

η0√
π
e−η2

0 iπ

]

. (3.22)

And so for the particles in resonance in Eq. (3.15) we have

Φres
hω,k = Φdω,k

4πGρb

σ2
h

1

k2

[

1 − i

√

π

2

ω

kσh

exp

( −ω2

2k2σ2
h

)]

. (3.23)

By comparison we see that this last equation does not contain the error
function due to extra term e−η2

0 in Eq. (3.22) which makes vanish the error
function in Eq. (3.20).

Now we can calculate the disk response by solving the part of Boltzmann
Eq. (3.3)

∂fd1

∂t
+ u

∂fd1

∂x
+ v

∂fd1

∂y

+ w
∂fd1

∂z
− ∂(Φd1 + Φh1)

∂x

∂fd0

∂u

−∂(Φd1 + Φh1)

∂y

∂fd0

∂v
− ∂(Φd1 + Φh1)

∂z

∂fd0

∂w
= 0. (3.24)

Due to the fact that for the distribution function of disk stars there is a delta-
function dependence on the vertical components (z,w), we can integrate Eq.
(3.24) with respect to them, leaving a Boltzmann equation for the midplane
(z = 0),

∂fd1

∂t
+ u

∂fd1

∂x
+ v

∂fd1

∂y

− ∂(Φd1 + Φh1)

∂x

∂fd0

∂u

− ∂(Φd1 + Φh1)

∂y

∂fd0

∂v

= 0. (3.25)

Eqs. (3.24),(3.25) have also to be considered at the midplane, so we bring
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them in the form

Φnr
hω,kx

(z = 0) =

∫ +∞

−∞

dkz
kx

(k2
x + k2

z)
2
Φdω,kx

4Gρb

σ2
h

1

k2

×
[

1 − i

√

π

2

ω

kσh

erf

( −iω√
2kσh

)

exp

( −ω2

2k2σ2
h

)]

, (3.26)

and

Φres
hω,kx

(z = 0) = −
∫ +∞

−∞

dkz
kx

(k2
x + k2

z)
2
Φdω,kx

4πGρb√
2πσ3

h

iω

k

×
[

1 − i

√

π

2

ω

kσh

erf

( −iω√
2kσh

)

exp

( −ω2

2k2σ2
h

)]

. (3.27)

Following Fuchs we formally express the contributions of both the real and
imaginary parts in a function Υ

Φhω,kx
(z = 0) = Υ(ω, kx)Φdω,kx

. (3.28)

3.2 Stability of the disk

In this section we study the stability of the disk and in particular we are
interested in neutral stable solutions to the set of Eqs. (2.65), (3.25), (3.28)
that describe the influence the halo has on the disk’s stability. Thereby
taking the limit ω → 0, we find the contribution from the real part of the
potential’s perturbation

Φres
hkx

(z = 0) =

∫ +∞

−∞

dkz
kx

(k2
x + k2

z)
2
Φdkx

4Gρb

σ2
h

. (3.29)

The contribution from its imaginary part is zero

Φres
hkx

(z = 0) = 0 , (3.30)

which is evident since the phase velocity of the perturbation is zero (ω/k = 0).
Due to the simmetry in kz, we integrate Eq. (3.29),

Φhkx
(z = 0) = Φdkx

4Gρb

σ2
h

kx2

[

2kx

4k2
x(k

2
x + k2

z)

∣

∣

∣

∣

∞

0

+
2

4k2
x

∫ ∞

0

dkx

k2
x + k2

z

]

= Φdkx

4Gρb

σ2
h

1

k2
x

[

arctan

(

kz

k2
x

)]∞

0

=
2πGρb

σ2
h

1

k2
x

Φdkx
. (3.31)
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By comparison with the formal solution (Eq. (3.28)), we distinguish the
function Υ

Υ(ω = 0, kx) =
2πGρb

σ2
h

1

k2
x

. (3.32)

The total induced perturbation in the disk is the linear superposition of the
halo and disk isolated contributions

Φk → Φdk + Φhk ∝ Φdk , (3.33)

which is proportional to the disk perturbance. Due to this convinient condi-
tion, we can insert

Φdk = (1 + Υ)Φdk (3.34)

into the right-hand side of Toomre’s stability Eq. (2.67). First we rewritte
its argument here using Eqs. (2.20), as

kxσ
2
u

2πGΣ0

=
σ2

uk
2
crit

κ2

(

κ2

2πGΣd

)2
κ2kx

2πGΣd

=
σ2

u

κ2
k2

crit

2πGΣd

κ2
kx

=
σ2

u

κ2
k2

crit

λcrit

λ

=

(

3.36

2π

)2

Q2
T

λcrit

λ
. (3.35)

Eq. (2.67) then takes the form
(

3.36

2π

)2

Q2
T =

[

1 − exp

(

−(3.36/2π)2Q2
T

(λ/λcrit)2

)

· I0
(

(3.36/2π)2Q2
T

(λ/λcrit)2

)]

λ

λcrit

.

(3.36)
Accordingly, we rewritte the function Υ (Eq. (3.32)),

Υ =
2Gρb

σ2
h

1

k2
x

=
2Gρb

σ2
h

λ2

4π2

(2πGΣd)
2

κ4

4π2

λ2
crit

=
2Gρb

σ2
h

(2πGΣd)
2

κ4

(

λ

λcrit

)2

. (3.37)

And we insert it into Eq. (3.36),

αQ2
T =

[

1 − exp

(

− αQ2
T

(λ/λcrit)2

)

· I0
(

αQ2
T

(λ/λcrit)2

)]

λ

λcrit

×
(

1 + β

(

λ

λcrit

)2
)

, (3.38)
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Table 3.1: Local parameters of the Milky Way
Σd 38 M⊙/pc

2 Holmberg & Flynn [HF04]
σd 40 km/s Jahreiß & Wielen [JW97]

κ
√

2 · 220 km/s/8.5 kpc flat rotation curve
ρh 0.01 M⊙/pc

3 Bahcall & Soneira [BS80]

σh 220 km/s/
√

2 isothermal sphere
λcrit 4.8 kpc
λJ 39 kpc β = 0.0078

where α = (3.36/2π)2 = 0.286, and β = (2πGρh/σ
2
h)(2πGΣd)

2/κ4.

3.3 Discussion and Conclusions

Due to the linear treatment we have carried out, we have managed to extend
Toomre’s stability Eq. (2.67) by inserting the function Υ that comprises
the parameter β which explicitely describes the effect the halo has on the
stability of the disk. As a partial check on Eq. (3.38) we see that for the
case β → 0, there is correspondingly a neutral stable line (ω → 0) that
divides perturbations that are unbound (ω < 0) and will grow with time
and a region of stable perturbances (ω ≥ 0) in this way reproducing Eq.
(2.67). The most interesting case though, occurs when we consider finite
values of β. One thing natural to explore is to check on the stability of
our own Milky Way. First, we extend Table (2.1) by including the most
accepted value for the matter density in the halo (ρh) and the isotropic
velocity dispersion of the halo particles according to the isothermal sphere
(σh). The parameters given in Table (3.1) imply QT = 2.8 and β = 0.0057,
respectively. Next, the behaviour of Eq. (3.38) is shown in Fig.(3.1) for
different values of β, including for reference Toomre’s case (β → 0). We see
that the solutions of Eq. (3.38) always turn upwards, becoming unbound
and growing exponentially at all times. This behaviour bears resemblance
to the Jeans collapse of the halo component. Its Jeans length is given by
λJ = πσh/Gρh or

λJ

λcrit
=

1√
2β

. (3.39)

Therefore the stabilizing effect provided by the inclusion of the velocity dis-
persion components of both the halo as well as the disk particles is valid
only at small scales. However, even if we include in our estimate the cold
interstellar gas with a local surface density of 4M⊙/pc2 [Dam93] and assume
a velocity dispersion of the interstellar gas of σg = 5 km/s, which leads to
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Figure 3.1: Separation of stable from unstable perturbations of a self-
gravitating disk embedded in a live dark halo. QT denotes the usual Toomre
stability index and λ is the wavelength of the perturbation measured in units
of λcrit. Unstable perturbations are located in the parameter space below
the dividing lines. Lines are shown for values of the β parameter, which
describes the dynamical responsiveness of the dark halo, β = 0, 0.2, 0.25,
and 0.3, respectively.
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a reduced mass weighted effective velocity dispersion of the combined stellar
and gaseous disks, the parameter values change to QT = 2.2 and β = 0.0078,
respectively. Equation (3.39) implies that λJ = 8 λcrit = 39 kpc. Thus the
Milky Way disk and halo system seems to be very stable.

In order to explore in what range the β-parameter of spiral galaxies is to
be expected, we consider the model of a Mestel disk with the surface density
Σd = Σ0R

−1 embedded in a singular isothermal sphere representing the dark
halo with the density distribution ρh = ρ0R

−2. The rotation curve of the
model galaxy is given by

υ2
c (R) = υ2

d(R) + υ2
h(R) (3.40)

with the disk contribution υ2
d(R) = 2πGΣdR = const. and the halo con-

tribution υ2
h(R) = 4πGρhR

2 = const. [BT87]. Assuming isotropic velocity
dispersions of the dark matter particles it follows from the radial Jeans equa-
tion,

1

ρh

dρhσ
2
h

dR
= −v

2
c

R
, (3.41)

that their velocity dispersion is given by

σ2
h =

1

2
(υ2

d + υ2
h) , (3.42)

because the particles are bound by both the gravitational disk and halo
potentials. We find then

β =
υ2

h

R2

1

υ2
d + υ2

h

R2

4

υ4
d

(υ2
d + υ2

h)
2

=
1

4

υ2
hυ

4
d

(υ2
d + υ2

h)
3
, (3.43)

which implies the maximal value

β ≤ βmax(υ
2
d = 2υ2

h) = 0.037 . (3.44)

This means that in realistic halo models its density cannot be increased, on
one hand, and the velocity dispersion of the halo particles lowered, on the
other hand, indiscriminately, because the halo model has to stay in radial
hydrostatic equilibrium. Equation (3.44) implies λJ = 3.7 λcrit. In order to
ensure stability at smaller wave lengths the Toomre stability index must be
larger than QT ≥ 1.02. We conclude from this discussion that embedded
galactic disks are not prone to Jeans instabilities, provided their Toomre sta-
bility index is a few percent higher than QT = 1.
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As a second example the dynamics of the low surface brightness galaxy
F568-1 is analysed. After observing its rotation curve, De Blok et al. [dMR01]
have constructed several concurring mass models for the galaxy, which all fit
the rotation curve equally well. Using the parameters of the models with
isothermal haloes and with either a ‘realistic’ M/L-ratio of the disk or a
‘maximum-disk’ we have solved numerically the radial Jeans equation (3.41)
for the dark matter particles,

σ2
h(R) =

1

ρh(R)

∫ ∞

R

dR
ρh(R)v2

c

R
. (3.45)

The resulting β-parameters of both models are shown in Fig. 3.2. As can be
seen from Fig. 3.2 the β-parameters are of the same small order of magnitude
as in the Milky Way or the simple disk – halo model described above. We
conclude from this discussion that embedded galactic disks are not prone
to Jeans instabilities, provided their Toomre stability index is a few percent
higher than QT = 1. From a practical point of view the destabilizing effect of
the surrounding dark halo on the Jeans instability of the embedded galactic
disks seems to be negligible.
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Figure 3.2: β-parameters of mass models of the low surface brightness galaxy
F568-1.
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Chapter 4

Dynamical friction

Chandrasekhar’s formula of DF [Cha43] has become a cornerstone of theoret-
ical physics and nowadays continues to be included in studies of the evolution
of many different astrophysical systems. This original work was selected as
part of a collection of fundamental papers published during the XX century,
and was reprinted in the centenial issue of ApJ [Abt99].

The phenomenon is that of a moving star that is entering a system com-
posed of stars (Fig. (4.1)). Due to the gravitational interaction with the
surrounding matter, the star will exchange linear momentum and kinetic en-
ergy with the background particles. The value of the drag will depend on
the velocity of the body and on the square of the body’s mass, which can be
intuitively infered since the wake created will be proportionate to its mass
and therefore in its direction of motion the star will be decelerated by this
quadratic term.

Inspired by the existing physical theories of Brownian motion of gaseous
systems, Chandrasekhar was convinced that the diffusion equation of the
background stars in phase space, related to the descrete increments in the
mean square velocity of the background stars, should be compensated for by
a dynamical friction term associated to the deceleration of the test particle in
order to leave the Maxwellian distribution unchanged. Such a conservative
stochastic process is expected on quite general grounds, one of these being
the fact that the effect the test star has on the overall characteristics of the
system can be regarded as a small perturbation to the equilibrium state.
To explicitly find the fluctuations in the decelerating force, Chandrasekhar
idealized the stellar encounters between the stars as an independent two–
body problem, and considered that the stars are homogenously distributed
and possess a Maxwellian velocity distribution function. In this chapter we
rewritte Chandrasekhar’s original treatment of the effect, and the following
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Figure 4.1: Sketch depicting the dynamical friction exerted on the massive
moving body. As the body moves through the system, a wake will form
behind it pulling it back, and as result the body will be decelerated.

work is sctrictly due to the work presented in ([Cha42] ; [Cha43]).

4.1 The geometry of the two-body approxi-

mation

Let us consider the motion of a field star of mass m1 that is moving at velocity
v1, in an chosen fixed frame of reference, and the motion of a test star of
mass m2 moving at velocity v2; their respective equations of motion satisfy
the condition

m1
dv1

dt
+m2

dv2

dt
= 0. (4.1)

The situation is depicted in Fig. (4.2). V represents the relative velocity
V = v2 − v1 between the stars. It can also be seen that θ defines the
angle between the vectors v1 and v2, and δ the angle between the center of
gravity vector Vg and the vector v2. If we define an orbital plane containing
the deflection of the relative velocity vector V′ and a fundamental plane
comprising the the vectors v1, v2, then Θ denotes the angle between these
two planes, which can be seen directly from Fig. (4.3). In Fig. (4.2), π− 2ψ
is the angle of deflection that suffers the relative velocity V in the orbital
plane after the encounter. Eq. (4.1) implies that the motion of the center of
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Figure 4.2: Illustration showing two-body hyperbolic, Keplerian encounters.

gravity
m1v1 +m2v2 = (m1 +m2)Vg , (4.2)

is constant at all times. Their relative motion can be cast in the form of

dV

dt
= G(m1 +m2)∇

1

r
, (4.3)

where r = r1 − r2 is their relative position vector.
Now, considering polar coordinates (r,θ), the Lagrangian function will

look like

L =
1

2
(ṙ2 + r2θ̇2) +

G

r
(m1 +m2) , (4.4)

and their corresponding Lagrangian equations are

r̈ = rθ̇2 − G

r2
(m1 = m2) , (4.5)

and
d

dt
(r2θ̇) = 0. (4.6)
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Figure 4.3: Illustration that shows the fundamental and orbital planes as
well as the angle Θ and the impact parameter b.
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First, we can identify Eq. (4.6) as the usual expression for the conservation
of angular momentum

l = r2θ̇ = constant , (4.7)

and we use it to rewrite Eq. (4.5) as

d2(1/r)

dθ2
= −1

r
+
G

l2
(m1 +m2). (4.8)

The solution to Eq. (4.8) is conveniently written in terms of a cosine function

1

r
=

1

r0
cos(θ + θ0) +

G

l2
(m1 +m2) , (4.9)

with r0 and θ0 are the constants of integration. Eq. (4.9) can be conveniently
expressed if we consider the direction of minimum r as the origin of the angle
θ, thus obtaining

r =
l2

G

1

(m1 +m2)

1

1 + e cos θ
, (4.10)

where e is the eccentricity of the trajectory,

e =
ra − rp

ra + rp
, (4.11)

defined by the farthest distance of approach ra (apoapsis) and the closest
distance rp (periapsis). Solutions of the form of Eq. (4.10) will dictate
parabolic orbits if e = 1 and hyperbolic trajectories if e > 1.

As for the conservation of energy, we write it at the point r = rp, as

1

2

1

r2
p

(r2
pθ̇)

2 − G

rp

(m1 +m2) =
1

2
V 2 , (4.12)

we then introduce the explicit form of rp by noting that r = rp for the case
cos θ = 1 in Eq. (4.10), and solve for the eccentricity e,

e2 = 1 +
b2V 4

G2(m1 +m2)2
, (4.13)

where we have expressed the angular momentum in terms of the impact pa-
rameter, l = bV .

The angle 2ψ between the asymptotes of the relative orbit is readily obtain
from Eq. (4.10), since r → ∞ for

θ = cos−1

(

−1

e

)

, (4.14)
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but the angle we are looking for is π − 2ψ (see Fig. (4.2)), or

cosψ =
1

e

=
1

√

1 + b2V 4

G2(m1+m2)2

. (4.15)

The true deflection suffered by the test star, i. e. the deflection in a fixed
frame of reference, can be formally written as

cos(π − 2Ψ) =
v2 · v′

2

v2v′2
(4.16)

but in the reference frame in which the center of gravity is at rest, where the
velocity of the star before v2g, and after the encounter v′

2g are related to v2

through
v2g = v2 − V and v′

2g = v′
2 − V , (4.17)

or using Eq. (4.2), via

v2g =
m1

m1 +m2
V; v2g′ =

m1

m1 +m2
V′ (4.18)

so that the deflection can be expressed, after some rearrangement of terms,
as

v2v
′
2 cos(π − 2Ψ) = v2 · v′

2g + v2 · Vg. (4.19)

From Fig. (4.2) the direction cosines of v2 with respect to V, to a direction
in the orbital plane perperndicular to V, and to a direction perpendicular to
the orbital plane are

cos(Φ − δ) , − sin(Φ − δ) cosΘ , and sin(Φ − δ) sin Θ. (4.20)

Due to the fact that v′
2g lies in the same direction as V′, the direction cosines

with respect to the same three directions are

cos(π − 2ψ) , sin(π − 2ψ) , and 0. (4.21)

Therefore we have

v2 · v′
2g = v2 · v′2g[cos(π − 2ψ) cos(Φ − δ) − sin(π − 2ψ) sin(Φ − δ) cos Θ]

+ Vg cos δ , (4.22)

which can de rewritten by using Eq. (4.18), as

cos 2Ψ =
1

(m1 +m2)2v′2
[2m1(v2 − v1 cos θ) cos2 ψ

+ 2m1v1 sin θ cos Θ sinψ cosψ − (m1 +m2)v2]. (4.23)
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Since the change in the velocity parallel to and perpendicular to the
original direction of the test star are (cf. Fig. (4.2)),

△v‖ = v′2 cos(π − 2Ψ) and △v⊥ = v′2 sin 2Ψ , (4.24)

we are now able to express the velocity components explicitly in terms of
their direction cosine. Inserting Eq. (4.23) into Eq. (4.24) we get

△v‖ = − 2m1

m1 +m2

[(v2 − v1 cos θ) cosψ + v1 sin θ cos Θ sinψ] cosψ , (4.25)

and also

△v⊥ = − 2m1

m1 +m2
[v2

1 + v2
2 − 2v1v2 cos θ − {(v2 − v1 cos θ) cosψ

+ v1 sin θ cos Θ sinψ}2]1/2 cosψ. (4.26)

This last equation could be comparable to the parallel component (Eq.
(4.25)) for an isolated two-body encounter, however, as more and more such
isolated encounters with different parameters are summed up, Eq. (4.26)
vanishes identically.

4.2 The net dynamical drag

In order to formally obtain the net change the test star’s velocity experiences
we need to integrate Eq. (4.25) over the several parameters involved in the
encounters, namely the angles (θ, δ, Θ), the impact parameter b (cf. Fig.
(4.3)), and the velocity of the background stars v1; the intervals of integration
encompass all possible parameter combinations. The net velocity change
during a time △t is

v‖ = △t
∫ ∞

0

dv1

∫ π

0

dθ

∫ 2π

0

dδ

∫ infty

0

∫ 2π

0

dΘ

2π
[2πN(v1, θ, δ)V b△v‖]. (4.27)

The integration over Θ is trivial. To make the integration over the impact
parameter b, we need to introduce Eq. (4.15) into the equation,

v‖ = − 4πm1

m1 +m2
△t
∫ ∞

0

dv1

∫ π

0

dθ

∫ 2π

0

dδ

∫ ∞

0

N(v1, θ, δ)

×V (v2 − v1 cos θ)
b

1 + b2V 4

G2(m1+m2)2

. (4.28)
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We can inmediately see that the integration over b diverges; the problem is
avoided by considering a finite, maximum impact parameter bmax as the end
of the range of integration. The resulting integration will include the famous,
so-called Coulomb logarithm log(1 + CV 4), where C = b2max/G

2(m1 + m2)
2

and which we will discuss in further detail in the next section. We thus
obtain

v‖ = −2πm1(m1 +m2)G
2△t

∫ ∞

0

dv1

∫ π

0

dθ

∫ 2π

0

dδ

∫ ∞

0

N(v1, θ, δ)

× 1

V 3
(v2 − v1 cos θ) log(1 + CV 4). (4.29)

To continue with the integration, the simplest distribution of the velocities
of the backgroung stars is considered, i. e. a spherical distribution

N(v1, θ, δ) = N(v1)
1

4π
sin θ , (4.30)

and the result of the integration over δ reads

v‖ = −πm1(m1 +m2)G
2△t

∫ ∞

0

dv1

∫ π

0

dθN(v1)

×sin θ

V 3
(v2 − v1 cos θ) log(1 + CV 4). (4.31)

Since θ is the angle between the vectors v1 and v2, the natural way to carry
out the integration is to change this variable for the relative velocity V, or
by taking

V 2 = v2
1 + v2

2 − 2v1v2 cos θ , (4.32)

we obtain
V dV = v1v2 sin θdθ , (4.33)

and

v2 − v1 cos θ =
1

2v2
(V 2 + v2

2 − v2
1). (4.34)

Substituing Eqs. (4.33) and (4.34) into Eq. (4.31) and integrating by
parts, we get

v‖ = −π
2
m1(m1 +m2)

G2

v2
2

∫ ∞

0

dv1N(v1)

{

(

V − v2
2 − v2

1

V

)

log(1 + CV 4)

∣

∣

∣

∣

v1+v2

|v1−v2|

− 4

∫ v1+v2

|v1−v2|

dV

(

1 − v2
2 − v2

1

V 2

)

CV 4

1 + CV 4

}

△t. (4.35)
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Since the assumption is that CV 4 ≫ 1 (see next section), then the second
integral can be easily performed; Eq. (4.35) reduces to

v‖ = −π
2
m1(m1 +m2)

G2

v2
2

∫ ∞

0

dv1N(v1)△t
{(

V − v2
2 − v2

1

V

)

log(1 + CV 4)

− 4

∫ v1+v2

|v1−v2|

dV

(

V − v2
2 − v2

1

V

)}v1+v2

|v1−v2|

. (4.36)

The different evaluations of Eq. (4.35) depend on the relative value of the
velocities v1 and v2. After keeping the leading terms of Eq. (4.35), it can be
seen that for the case v1 > v2 the contribution to the equation is negligible,
and so the case where the test star moves faster than the see stars (v2 ≥ v1),
we have

v‖ = −4πm1(m1 +m2)
G2

v2
2

log(Λ)△t
∫ v2

0

N(v1)dv1 , (4.37)

where the Coulomb logarithm now takes the form log(Λ) = (bmax/bmin),
which includes the minimum value the impact parameter can have, bmin =
Gm/V 2. To continue further, we need to explicitly write the Maxwellian
distribution of velocities for the stars of the system

N(v1) =
2N√
2πσ3

v2
1 exp

(

− v2
1

2σ2

)

, (4.38)

where σ is the isotropic, velocity dispersion of the stars and N is just the
spatial density of the stars. Chandrasekhar’s classical formula is expressed
in terms of the error integral

Φ(x) =
2√
π

∫ x

0

e−x2

dx, (4.39)

which is inserted into Eq. (4.38) and so we find

v‖ = −4πm1(m1 +m2)
G2

v2
2

log(Λ)△t
[

Φ
( v2

2σ2

)

− v2

2σ2
Φ′
( v2

2σ2

)]

. (4.40)

Technically, the approximation that led to the derivation of Eq. (4.40),
which relies upon the background being homogeneous, isotropic, and infinite,
is safely valid since the extension and internal evolution of the perturber is not
considered. The collisional treatment used by Chandrasekhar in finding this
expression for the dynamical drag on a test particle is not the only one way
to calculate such effect. Another method based on a more wave-mechanical
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approach will be discussed in the next chapter, such a method will help us
to formally calculate the DF on extended test particles, but first we end
this chapter with a brief discussion on the rather intriguing, so-far-not-yet
completely understood Coulomb logarithm log(Λ)

4.3 The Coulomb logarithm.

Although the physical concept behind the DF effect seems simple, Chan-
drasekhar’s formula has not been fully understood and discrepancies between
different numerical and analytical studies are abundant in the literature. As
said in the previous section, the inclusion of the Coulomb logarithm was
necessary in order to avoid the formula to diverge to infinity. However, as-
signing appropiate values to both limits bmin and bmax is not an easy task
and depends on the particular situation under consideration. Values in the
literature could be found in the range 1 ≤ log(Λ) ≤ 20. As for the min-
imum impact parameter, bmin, many have followed White [Whi76] and set
this lower cutoff to be of the order of the virial radius of the system, meaning
that the relative velocity at infinity is approximated by its root-mean-square
(rms) value < V 2 >1/2. This choice makes apparently more sense than pre-
vious choices for bmin that considered it to be of the order of the size of the
core of the background system, since for a lot of situations the test particle’s
internal rms motion is less than the magnitude of the velocity with which it
moves through the parent system. However, the choice of the upper cutoff
is even trickier, some times it is set as the size of the system ∼ R ([JB00];
[HWdZ99]; [JSH95]), but in case there is an important central concentration
this is not a good choice since the density at large radius will be much less
than, for example, at half the radius of the system. In this case an effective
bmax must be selected, and some numerical studies have used the Coulomb
logarithm as a fitting parameter [VW99], however, this is not correct since
the mass distribution of the parent galaxy should be used to determine its
value.

In more sofisticated numerical calculations [HFM03] the Coulomb loga-
rithm was set to vary radially in order to match their results and the analyti-
cal predictions of Eq. (4.40). Whether the Coulomb logarithm is constant or
varies at all scales, it is clear that is its value can be regarded as a fine–tuning
to the system’s DF formula.

39



Chapter 5

Density profiles

According to hierarchical cosmologies, large galaxies are the result of the
aggregation of smaller subunits. While some substructures may have been
entirely destroyed in the course of time (contributing in this way to the
field), some of these may have survived until the present day in the form of
satellites. Chandrasekhar’s Eq. (4.40) was derived considering a point-mass
test particle. However, this is a major oversimplification of realistic systems.
That is why we mention here some density profiles that we will later consider
in order to extend the current analitical treatment of DF.

As said in previous chapters, the dynamical evolution of astrophysical
systems is determined by solving the Boltzmann equation that determines
the distribution function f of the constituent particles in phase space, and
the Poisson equation which allows a self-consistent treatment of the system’s
gravity. However, it is practically imposible to find an analytical distribution
function–density pair, implying that N-body methods are required to explic-
itly follow the evolution of the distribution function f . Due to the power of
the Jeans theorem, which states that the distribution function of a system
that is in equilibrium can be expressed in terms of integrals of motion, some
analytic steady state models have been obtained. We enumerate here two
benchmark density profiles: the Hernquist profile [Her90] and the Plummer
sphere [Plu15], which have been extensively used in the literature.

By reference we mention first the associated potential to a point–mass
profile

Φ(r) = −GM
r

, (5.1)
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which moves with a keplerian circular velocity

vc =

√

GM

r
. (5.2)

5.1 The Hernquist profile

The Hernquist profile has received considerable attention, specially in the
study of elliptical galaxies and self-interacting dark matter in isolated galactic
haloes. It was originally proposed [Her90], as an alternative to the already
existing Jaffe profile for spherical galaxies [Jaf83],

ρJ (r) =
ρ0rJ

4πr2(r + rJ)2
(5.3)

where rJ is a scale length. Due to its analytical form, the Jaffe profile was
widely used in numerical calculations. However, the Jaffe profile presents
deviations from the de Vaucouleurs profile [de 48],

log10

[

I(R)

I(Re)

]

= −3.331

[

(

R

Re

)1/4

− 1

]

, (5.4)

which is the most widely used empirical law to describe the surface brightness
profiles of elliptical galaxies and bulges. I denotes the surface brightness at
the projected radius on the plane of the sky R and at the Re the effective
radius of the isophote enclosing half of the light.

The deviation of the Jaffe profile from the de Vaucoulers profile (also
known as the R1/4 law), is evident in limit of small radii (r → 0), since
ρJ ∼ r−2 for the first profile while ρR1/4 ∼ r−3/4 for the second. The Hernquist
density profile

ρ(r) =
M

2π

r0
r

1

(r + r0)3
, (5.5)

where M is the total mass and r0 is again a scale length, is similar to that
described by Eq. (5.3) but its behaviour as r → 0, ρ(r) ∼ r−1, follows
closer the de Vaucoulers profile. Figs. (5.1) and (5.2) [Figs. (2) and (3) of
Her90, , respectively], illustrate this fact. For a spherical, isotropic model
the distribution function that corresponds to Eq. (5.5) depends solely on the
total specific energy, f = f(E). In Fig. (5.1) the distribution function is
plotted as a function of energy for different values of the scaling factor r0, in
units such that G = 1 and M = 1. The distribution function corresponding
to the de Vaucoulers Eq. (5.4) is also shown.
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Figure 5.1: Fig 2. of [Her90]. The distribution function for the R1/4 law
Eq. (5.4), has been numerically integrated and it is shown here (solid curve).
Various values of the scaling factor r0 for the Hernquist model are show:
r0 = 0.55 (dotted), r0 = 0.5 (short-dashed), r0 = 0.45, and r0 = 0.4 (dashed-
dotted).
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Figure 5.2: Fig. 3 of [Her90]. The differential energy distributions corre-
sponding to the de Vaucoulers (solid curve) and to the Hernquist profile for
the same values for the scale factor considered in Fig. (5.1) are plotted.

Because the unique dependence of the distribution function on energy,
Hernquist calculated in a simpler manner, following a standard procedure [cf.
Jaf83, for a full description of the method], the differential mass distribution
dM/dE, Fig. (5.2). From both figures one can observe that the Hernquist
models mimic to a really good extent the behaviuor of the R1/4 law, specially
the case r0 = 0.45, for which the distribution function and the differential
energy distribution agree to ∼ 35% in the energy range (−2.0 ≤ E ≤ −0.03).
It can be fairly said that the Hernquist profile is a reliable tool at modeling
elliptical and bulge systems.

In the dark–matter context, however, the results are apparently not so
acurate. Let us consider a general fitting formula [KKBP98], for the cuspy
density profile of dark–matter haloes of the form

ρ =
Cρ0

(r/a)γ[1 + (r/a)α](β−γ)/α
, (5.6)
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where ρ0 is the total mass, C is a constant, and a is a scale length. The
index γ controls the slope of the inner profile, β that of the outer profile, and
α the sharpness of the transition. Depending unpon the indices considered,
one obtains from Eq. (5.6) different distribution functions. Although we are
not interested in this work in the profile dark–matter haloes follow, Eq. (5.6)
shows directly that of all possible combinations of indices with the restric-
tion imposed by the observations, only Eq. (5.5) can provide an analytical
distribution function-density pair. However, the Hernquist profile arises a
special case of Eq. (5.6) in the sense that it falls off as ρ(r) ∼ r−4 at large
radii, contrary to what is found in high-resolution numerical simulations, for
example, the NFW profile [NFW97],

ρNFW =
ρ0

(r/a)(1 + r/a)2
, (5.7)

where a is its scale length, and ρ0 its total mass, has a more gradual falloff
than r−4.

Finally, by integrating Poisson equation (cf. 3.13) the potential associated
to Eq. (5.5) has the form

Φ(r) = − GM

r + r0
. (5.8)

5.2 The Plummer sphere

The Plummer sphere [Plu15],

ρ(r) =
ρ0

[1 + r2/r2
0]

−5/2
, (5.9)

where ρ0 is the total density, and r0 is a scale factor, can be thought of as the
profile of an extended body with a central core. Its associated potential is
often used in numerical simulations to soften gravity at small scales. Altough
this model is not a good fit to simulate cold-dark-matter (CDM) haloes, this
profile is necessary to prevent point particles from scattering too hardly off
one another on close approximation, and is commonly used in the study of
star clusters. In addition, its very rapid fall off at large radii, ρ(r) ∼ r−5,
makes it natural to impose a truncation radius, as opose to other models
that need somewhat unjustified truncation radii. Usually the factor r0 is
considered to be of the size of the body itself as its potential approaches that
of a point mass beyond that radius. The integration of Poisson equation
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is best done if we consider the contribution of the density to the potential
inside the sphere of radius r̄, and outside of it

Φ = −4πG

r

∫ r

0

dr̄
ρ0r̄

2

[1 + r̄2/r2
0]

5/2
− 4πG

∫ ∞

r

dr
ρ0r̄

[1 + r̄2/r2
0]

5/2

= −4πG

r
ρ0r

3
0

[

x3

3(1 + x2)3/2

]r/r0

0

− 2πGρ0r
2
0

[

− 2/3

(1 + r)3/2

]∞

r2/r2
0

= −4πGρ0

3

r2
0

√

1 + r2/r2
0

. (5.10)

In Fig. (5.3) we plott a comparison between the different analytical models
disscused so far, for reference reasons we inlcude the isothermal sphere,

ρ(r) = ρ0

(r0
r

)2

, (5.11)

which corresponds to an unrealistic configuration of infinite radius and mass.
Nontheless, the isothermal sphere has been usually applied to the study of
stellar cores with no nuclear burning and star clusters [VB05].

We can conlude that the Plummer sphere is a also convenient choice
for testing the impulse approximation against N-body calculations, since it
possesses a simple form.
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Figure 5.3: Several density profiles as function of radius are plotted. It can
be seen the similar behaviour between the Jaffe and Hernquist models. This
contrasts with the soft behaviour of the Plummer sphere near the center.
The isothermal sphere is included for reference. The units are so that G =
M = r0 = 1.
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Chapter 6

Dynamical friction force

exerted on spherical bodies

The applications of Chandrasekhar’s formula covered a wide field, ranging
from calculations of the DF and diffusion coefficients of the Fokker-Planck
equation, which is used to describe the internal dynamics of star clusters, to
determinations of the sinking rates of satellite galaxies which are accreted
by massive galaxies. Specially this last point has received a lot of attention.
However, let us remember that the basic assumptions behind the derivation
of Chandrasekhar’s Eq. (4.40), are that the stars are distributed homoge-
neously, that they possess an isothermal Gaussian velocity distribution, that
the system they form has infinite extension, and that the extension of the
massive test star is not taken into account. These could be regarded as a se-
ries of oversimplifications that do not represent realistic physical situtations.
Concerning the possible inhomogeneity of the self-gravitating system, it has
been shown that for such system, whose density falls off radially, the large
scales perturbations the test star creates as it moves through it will have a
relatively small contribution to the DF exerted on it [cf. CMG99], so we can
be confident that the assumption of homogeneity is reliable to first order.

As for the extension of the system, if a finite extension of the system is
considered second-order terms will appear and the transfer of angular mo-
mentum will play also a role in decelerating the perturber [Ath03]. However,
if the test star’s orbit decays sufficiently rapid, Eq. (4.40) remains approxi-
mately valid. Cora et al. [CVM01] investigated on the effect chaotic orbits
for the background stars could have for DF and came to the conclusion that
the inclusion of such orbits do not affect significantly the orbital decay of
the test star and that the local description given by Eq. (4.40) remains also
accurate. Also, Zaristky & White [ZW88], as well as Bontekoe & Van Albada
[Bv87], found that the global responses in a large galaxy which are induced
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by the presence of the test star are not dynamically important and that the
decay of the orbit of the perturber can be adequately described by Eq. (4.40).

Altough Chandrasekhar’s formula seems to work remarkably well in dif-
ferent situations, one major oversimplification is that it does not include
the extension of the test particle. In this chapter we investigate the current
analytical understanding of DF by including the extension of the perturber.

6.1 A wave-mechanical treatment

In this paper we present a rigorous calculation of the dynamical friction force
exerted by an infinite homogenous background on a spherical massive body
using the wave–mechanical method of [Mar68] and [19772]. We will present in
more detail the work of Esquivel & Fuchs [EF07a]. This approach is topically
closely related to studies of the exchange of angular and linear momentum
in stellar systems ([LK72]; [Dek76]; [TW84]; [Fuc04]) or in plasmas [Sti62].

We assume an infinite homogenous distribution of field stars on isotropic
straight–line orbits. The response of the system of background stars to the
perturbation due to a massive perturber is determined by solving the lin-
earized Boltzmann equation

∂f1

∂t
+

3
∑

i=1

vi
∂f1

∂xi

− ∂Φ1

∂xi

∂f0

∂vi

= 0 , (6.1)

where Φ1 denotes the gravitational potential of the perturber and f1 is the
induced perturbation of the distribution function of the field stars in phase
space. The unperturbed distribution function is described by f0.

The solution of the Boltzmann equation is greatly facilitated by consider-
ing Fourier transforms of the perturbations of the distribution function and
the potential, respectively,

fω,k Φω,k exp i[ωt+ k · x] , (6.2)

where ω and k denote the frequency and wave vector of the Fourier com-
ponents. Without loss of generality the spatial coordinates xi and the cor-
responding velocity components vi can be oriented with one axis parallel to
the direction of the wave vector. This treatment bears resemblance to the
one described in chapter three where the response of a dark–matter halo to
a small perturbation in the disk was tested. The Boltzmann equation (6.1)
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takes then the form

ωfω,k + υkfω,k − kΦω,k
∂f0

∂υ
= 0 (6.3)

with k = |k| and υ denoting the velocity component parallel to k. Equation
(6.3) has been integrated over the two velocity components perpendicular to
k. In the following we assume for the field stars always a Gaussian velocity
distribution function, or specifically in eq. (6.3)

∂f0

∂υ
= − υ

σ2

nb√
2πσ

e−
υ2

2σ2 , (6.4)

where nb denotes the spatial density of the field stars. We find then the
solution of the Fourier transformed Boltzmann equation

fω,k = − kv

ω + kυ

nb√
2πσ3

e−
υ2

2σ2 Φω,k . (6.5)

Integrating Eq. (6.5) over the υ–velocity leads to the density distribution of
the induced polarization cloud. This has been calculated here without taking
into account the self–gravity of the background medium. [Fuc04] has shown
that in linear approximation the effects of self–gravity can be described by
another linearized Boltzmann equation of the form of Eq. (6.1) where Φ1

denotes then the gravitational potential of the density perturbation of the
background medium. In a self–gravitating system the density perturbations
are the sources of the potential perturbations so that the density - potential
pair has to fulfill the Poisson equation.

The solution of the combined Boltzmann and Poisson equations describes
simply the Jeans collapse of the background medium on scales larger than
the Jeans length. In real stellar systems or dark haloes their Jeans length
will be always larger than the size of the system, because otherwise the
system would have collapsed to smaller sizes. Since the polarization cloud is
contained within the system, self–gravity is not important for its dynamics.

6.2 Potentials of the perturbing bodies

For reference reasons we include in our analysis also the potential of a point
mass (Eq. (5.1)), which moves with the velocity v0 along the y–axis,

Φ1 = − Gm
√

x2 + (y − v0t)2 + z2
. (6.6)
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Then we calculate its Fourier-Transform,

Φk = − 1

(2π)3

∫ +∞

−∞

dx

∫ +∞

−∞

dy

∫ +∞

−∞

dz
Gm

√

x2 + (y − v0t)2 + z2
exp−i[k · x]

= − 1

(2π)3

∫ +∞

−∞

dx

∫ +∞

−∞

dy

∫ +∞

−∞

dz
Gm

√

x2 + y2 + z2
exp−i[kxx+ ky(y + v0t)kzz]

= − 1

(2π)3

∫ +∞

−∞

dξ

∫ +∞

−∞

dη

∫ +∞

−∞

dζ
Gm

√

ξ2 + η2 + ζ2
e−i|k|ξe−ikyv0t

= − 1

(2π)3

∫ +∞

−∞

dη

∫ +∞

−∞

dζ2GmK0(|k|
√

η2 + ζ2)e−ikyv0t , (6.7)

where we have used formula (3.754) of Grandshteyn & Rhyzik [GR00] in the
last step and where K0 is a modified Bessel function of the second kind. We
furhter reduce Eq. (6.7) by introducing polar coordinates (r, θ) and using
formula (6.561) of the same book we obtain

Φk = −2Gm

2π2

1

k2
e−ikyv0t. (6.8)

Next, we rewrite the potential of the Plummer sphere Eq. (5.10) as

Φ1 = − Gm
√

r2
0 + x2 + (y − v0t)2 + z2

, (6.9)

which now includes the motion of the parturber along the y–axis. The Fourier
transform of a moving Plummer sphere is given by

Φk = − 1

(2π)3

∫ +∞

−∞

dx

∫ +∞

−∞

dy

∫ +∞

−∞

dz
Gm

√

r2
o + x2 + (y − v0t)2 + z2

exp−i[k · x]

= − 1

(2π)3

∫ +∞

−∞

dη

∫ +∞

−∞

dζ 2GmK0(|k|
√

r2
0 + η2 + ζ2e−ikyv0t)

= − 2Gm

(2π)2

∫ +∞

0

drK0(|k|
√

r2
0 + r2)e−ikyv0t

= − 2Gm

(2π)2

{

1

k2
− r2

0

Γ(1)

r2
0k

2
+ r2

0

K1(r0|k|)
r0|k|

}

, (6.10)

where K1(r0|k|) denotes another modified Bessel function the second kind.
The final form of the Fourier-Transform will be

Φk = −2Gm

2π2

r0
k

K1(kr0)e
−ikyv0t. (6.11)
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As third example we consider a perturber which has the mass density
distribution of a profile, whose gravitational potential is (cf. Eq. (5.8)),

Φ(r) = − Gm

r0 +
√

x2 + (y − v0t)2 + z2
. (6.12)

We Fourier-Transform Eq. (6.12),

Φk = − 1

(2π)3

∫ +∞

−∞

dx

∫ +∞

−∞

dy

∫ +∞

−∞

dz
Gm

r2
o + x2 + (y − v0t)2 + z2

exp−i[k · x]

= − Gm

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ

∫ ∞

0

dr
r2

r + r0
exp−i[k cosφ] sin φ exp−i(kyv0t)

= − 2Gm

(2π)2

1

k

∫ ∞

0

dr
r

r + r0
sin(kr) exp−i(kyv0t)

= − 2Gm

(2π)2

1

k

(

− ∂

∂k

)
∫ ∞

0

dr
1

r + r0
cos(kr) exp−i(kyv0t)

=
2Gm

(2π)2

1

k

∂

∂k
[− sin(kr0)si(kr0) − cos(kr0)ci(kr0)] exp−i(kyv0t) , (6.13)

where si and ci denote the sine- and cosine-integrals, respectively and in the
last step use of Eq. (3.722) of Grandshteyn & Rhyzik [GR00] has been made.
After some rearrengment of terms, we write the potential as

Φk = − 2Gm

(2π)2

1

k2
[1 + kr0 cos(kr0)si(kr0) − kr0 sin(kr0)ci(kr0)] exp−i(kyv0t).

(6.14)
As stated in the previous chapter Plummer spheres have constant density
cores, whereas numerical simulations of the formation of galactic haloes in
cold dark matter cosmology show that dark haloes may have a central density
cusp [NFW97]. Thus models of a Plummer or a Hernquist sphere should
encompass the range of plausible models for satellite galaxies. The density
in both models falls off radially steeper than found in the cold dark matter
galaxy cosmogony simulations. The density in both models falls off radially
steeper than found in the cold dark matter galaxy cosmogony simulations.
This mimics the tidal truncation of satellite galaxies in the gravitational field
of their parent galaxies.
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6.3 Dynamical friction

In this section we follow the concept of Dekker [Dek76]. The ensemble of
stars is accelerated by the moving perturber as

< v̇ >= −
∫ +∞

−∞

d3x

∫ +∞

−∞

d3v f(x,v)∇Φ1 , (6.15)

where f denotes the full distribution function f = f0 + f1. The contribution
from the unperturbed distribution f0 cancels out, and introducing the Fourier
transforms (6.2) we find

< v̇ >= −
∫ +∞

−∞

d3x

∫ +∞

−∞

d3v

∫ +∞

−∞

d3k ikΦk exp i(ωt+ k · x)

×
∫ +∞

−∞

d3k′fk′ exp i(ω′t+ k′ · x). (6.16)

From symmetry reasons the acceleration vector < v̇ > is expected to be
oriented along the y–axis.

Then, using the definition of the delta function
∫ +∞

−∞

d3x exp x(k + k′) = δ(k + k′)(2π)3 , (6.17)

Eq. (6.16) takes the form

< v̇ >= (2π)3

∫ +∞

−∞

d3v

∫ +∞

−∞

d3k ikΦ−kfk′. (6.18)

The best way to find the solution is to express the potential as real compo-
nents of the type Φ : 1/2[(Φke

iωt,Φ−ke
−iω∗t) + (Φ∗

ke
−iω∗t,Φ∗

−ke
iωt)], and so

with the solution of the Fourier–transformed Boltzmann Eq. (6.5) we will
get

Φke
iωt ⇒ − f0

σ2

υk

ω + kυ
Φke

iωt (6.19)

and

Φ∗
ke

−iω∗t ⇒ +
f0

σ2

υk

−ω∗ − kυ
Φ∗

ke
−iω∗t. (6.20)

With Eqs. (6.19), (6.20) at hand, we bring the force formula in the form of

< v̇ >= (2π)3

∫ +∞

−∞

dυ

∫ +∞

−∞

d3k ik
f0

σ2
(Φ−ke

−iω∗t + Φ∗
−ke

iωt)

×1

4

[

− υk

ω + kυ
Φke

iωt − υk

−ω∗ − kυ
Φ∗

ke
−iω∗t

]

(6.21)
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In Eq. (6.21) the frequency ω is given according to Eqs. (6.8), (6.11) and
(6.14) by ω = −kyv0 − iλ (ωr = −kyv0), where we follow Landau’s rule, and
introduce a negative imaginary part (λ > 0), which we will let go to zero
in the following. We note that Φ−k = Φ∗

k must hold, so that the potential
is a real quantity. The sum of the mixed terms Φ−ke

−iω∗tΦke
iωtυ/(ω + kυ)

and Φ∗
−ke

iωtΦ∗
ke

−iω∗tυ/(ω∗ + kυ) gives only the real term which is antisym-
metric with respect to the integral over k and so this term vanishes. For the
remaining two terms we have

Φ−ke
−iω∗tΦ∗

ke
−iω∗t υ

ω∗ + kυ
= |Φ−k|2

υe−i2ω∗t

ω∗ + kυ
= |Φ−k|2

υe2λt

ω∗ + kυ
(6.22)

and

Φ∗
−ke

iωtΦke
iωt υ

ω + kυ
= |Φk|2

υei2ωt

ω + kυ
= |Φk|2

υe2λt

ω + kυ
. (6.23)

Proceeding further, we multiply by 1 both equations

|Φ−k|2
υe2λt

ω∗ + kυ

ω + kυ

ω + kυ
= |Φ−k|2

−υ(ωr − iλ + kυ)

(ωr + kυ)2 + λ2
(6.24)

and

|Φk|2
υe2λt

ω + kυ

ω∗ + kυ

ω∗ + kυ
= |Φk|2

υ(ωr + iλ+ kυ)

(ωr + kυ)2 + λ2
(6.25)

and since the real part of these equations are antisymmetric with respect
to the integral over k, only the imaginary part contribute with the term
2|Φk|2e2λtiυλ/(ωr + kυ)2 + λ2.

Next we observe that when we let it go to zero, the imaginary part satisfies

lim
λ→0

e2λt λ

(kyv0 − kυ)2 + λ2
= πδ(kυ − kyv0) , (6.26)

so that with the use of Eqs. (6.24), (6.25), and (6.26), Eq. (6.21) will look
like

< v̇ > =
(2π)5/2nb

σ3

∫ +∞

−∞

d3k

∫ +∞

−∞

dυ|Φk|2k2e−
(kyv0)2

2k2σ2 2πυδ(kyv0 + kυ)

=
(2π)5/2πnb

σ3

∫ +∞

−∞

d3k|Φk|2kyv0e
−

(kyv0)2

2k2σ2 . (6.27)
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The Fourier transform of any potential with spherical symmetry depends
only on k = |k|. Thus it follows immediately from eq. (6.27) that indeed the
two acceleration components

< v̇x > = < v̇z > = 0 (6.28)

as anticipated from symmetry reasons. Only in the direction of motion of
the perturber there is a net effect.

We now evaluate the integrals over the wave vector components starting
with the potential generated by a point mass. Inserting Eq. (6.8) into Eq.
(6.27),

< v̇y >=
(2π)5/2πnb

σ3

∫ +∞

−∞

dkx

∫ +∞

−∞

dky

∫ +∞

−∞

dkz
4G2m2

(2π)4

1

k5

×(kx, ky, kz)kyv0e
−

(kyv0)2

2k2σ2 . (6.29)

Next we introduce polar coordinates (θ,r), and so we obtain

< v̇y >= 2
G2m2nb√

2πσ3

∫ +∞

−∞

dky k
2
yv0

∫ +∞

0

dr 2πr

× 1
√

k2
y + r25 exp

(

− (kyv0)
2

2(k2
y + r2)σ2

)

, (6.30)

and we make an appropriate substitution of variables,

x2 =
1

k2
y + r2

, 2xdx = − 2rdr

(k2
y + r2)2

. (6.31)

And we substitute for x,

< v̇y >= −2

√
2πG2m2nb

σ3

∫ +∞

−∞

dkyk
2
yv0

∫ 0

1/|ky|

dx
x

√

k2
y + r2

× exp

(

−(kyv0)
2x2

2σ2

)

. (6.32)
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To carry out the integration over x we integrate by parts,

< v̇y > = 2

√
2πG2m2nb

σ3

∫ +∞

−∞

dky k
2
yv0

[

x

(

− 2σ2

2k2
yv

2
0

)

exp

(

−(kyv0)
2x2

2σ2

)]1/|ky|

0

−
∫ 1/|ky |

0

dx

(

− 2σ2

2k2
yv

2
0

)

exp

(

−(kyv0)
2x2

2σ2

)

= −4

√
2πG2m2nb

σ3

(

σ2

k2
yv

2
0

)
∫ +∞

0

dky k
2
yv0

{(

1

|ky|

)

exp

(

− v2
0

2σ2

)

−
√

2σ

|kyv0|

∫

√
2σ|ky|
|kyv0|

0

dxe−x2







= −4

√
2πG2m2nb

v0σ

∫ +∞

0

dky

{

1

|ky|
exp

(

− v2
0

2σ2

)

−
√

2σ

|kyv0|

√
π

2
erf

(

v0√
2σ

)

}

,

(6.33)

where we erf denotes the usual error function.
Next we observe that

< v̇y >= 4
√

2πG2m2nb

√

π

2

1

v2
0

[

erf

(

v0√
2σ

)

−
√

2

π

v0

σ
exp

(

− v2
0

2σ2

)

]

∫ +∞

0

dky
1

ky
, (6.34)

the integral over ky diverges, showing the same behaviour as Chandrasekhar’s
Eq. (4.40). If we consider then a bit different Coulomb logarithm ln(Λ), we
can rewritte Eq. (6.33) as

< v̇y >=
4πG2m2nb

v2
0

[

erf

(

v0√
2σ

)

− 2√
π

v0√
2σ

exp

(

− v2
0

2σ2

)]

ln

(

kymax

kymin

)

.

(6.35)
According to Newton’s third law the drag force exerted on the perturber is
given bymv̇ = −mb < v̇y > wheremb is the mass of a background particle, so
that the drag force is anti–parallel to the velocity of the perturber. Therefore
the drag experienced by the perturber is

< v̇ >= −4πG2m2nb

v2
0

ln

(

ky,max

ky,min

)[

erf

(

v0√
2σ

)

− 2√
π

v0√
2σ

exp

(

− v2
0

2σ2

)]

.

(6.36)
This result was first obtained in this form by Kalnajs [19772] and is identical
to Chandrasekhar’s formula (4.40), if m+mb ≈ m. The Coulomb logarithm
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diverges in the familiar way both on small and large scales, i.e. at k−1
max and

k−1
min, respectively.

Now we evaluate the case of the Plummer sphere. We put Eq. (6.11) into
Eq. (6.27) and obtain

< v̇y >=
(2π)5/2πnb

σ3

∫ +∞

−∞

dkx

∫ +∞

−∞

dky

∫ +∞

−∞

dkz
4G2m2

(2π)4

r2
0

k3
K2

1(kr0)

×(kx, ky, kz)kyv0e
−

(kyv0)2

2k2σ2 , (6.37)

we then introduce polar coordinates as done before and we find

< v̇y >=
2G2m2nb√

2πσ3

∫ +∞

−∞

dky k
2
yv0

∫ +∞

0

dr2πr
r2
0

√

k2
y + r23K2

1(kr0)

× exp

(

− (kyv0)
2

2(k2
y + r2)σ2

)

. (6.38)

The solution of the two remaining integrals is best done by making the
transformation of coordinates k′y = ky, k

′ =
√

k2
y + r2 = k, with dk′ydk

′ =

rdkydr/
√

k2
y + r2. Eq. (6.38) takes the form

< v̇y > = 4
√

2π
G2m2nbr

2
0

σ3
v0

∫ +∞

0

dky k
2
y

∫ +∞

ky

dk

√

k2
y + r2

√

k2
y + r23K2

1(r0

√

k2
y + r2)

× exp

(

− (kyv0)
2

2(k2
y + r2)σ2

)

.

= 4
√

2π
G2m2nbr

2
0√

2πσ3
v0

∫ +∞

0

dky k
2
y

∫ +∞

ky

dk
1

k2
K2

1(r0k)

× exp

(

−(kyv0)
2

2k2σ2

)

. (6.39)

One can see that the Bessel function depends only on the variable k; having
this in mind Eq. (6.39) takes a simpler form if we change the limits of
integration

< v̇y > = 4
√

2π
G2m2nbr

2
0√

2πσ3
v0

∫ +∞

0

dk
1

k2

∫ k

0

dkyk
2
yK

2
1(r0k)

× exp

(

−(kyv0)
2

2k2σ2

)

, (6.40)
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and integrate by parts, obtaining

< v̇y > = 4

√
2πG2m2nb

σ3
v0

∫ +∞

0

dk

[

ky

(

− 2σ2

2k2v2
0

)
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2
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)]k

0

−
∫ k

0

dky
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− 2σ2

2k2v2
0

)
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(

−(kyv0)
2

2k2σ2

)

K2
1(r0k)

= −4
√

2πG2m2nb

σ3

(

σ2
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0
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)

−
√
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2
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(
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2σk

)}

K2
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=
4
√
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σ3

(

σ2
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){
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(

v0√
2σ

)
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π

v0√
2σ
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(
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0
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)}
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0

∫ +∞

0

dk kK2
1(r0k)

= 4
√

2πG2m2nbr
2
0

√

π

2

1

v2
0

{

erf

(

v0√
2σ

)

−
√

2

π

v0

σ
exp

(

− v2
0

2σ2

)

}

r2
0

∫ +∞

0

dk kK2
1(r0k). (6.41)

The DF force for exerted on a Plummer sphere has the final form

< v̇ >= −4πG2m2nb

v2
0

[

erf

(

v0√
2σ

)

− 2√
π

v0√
2σ

exp

(

− v2
0

2σ2

)]

×r2
0

∫ +∞

0

dk kK2
1(r0k). (6.42)

And we identify the Coulomb logarithm of the dynamical friction force ex-
terted on a Plummer sphere as

ln(Λ) = r2
0

∫ ∞

kmin

dk k K2
1(r0k) . (6.43)

If the Plummer radius r0 shrinks to zero, expression (6.44) changes smoothly
into the Coulomb logarithm of a point mass, because limr0→0 r0K1(r0k) =
k−1. The integral over the square of the Bessel functions in Eq. (6.44) can
be evaluated using formula (5.54) of Gradshteyn & Ryzhik [GR00].

ln(Λ) = −r
2
0k

2
min

2

[

K2
1(r0kmin) − K0(r0kmin)K2(r0kmin)

]

(6.44)

57



which is approximately

ln(Λ) ≈ −1

2
− ln(r0kmin) , (6.45)

in the limit of r0kmin ≪ 1. This modified Coulomb logarithm converges on
small scales precisely as found by [Whi76], but still diverges on large scales. A
natural cut–off will be then the size of the stellar system under consideration.

Finally, as a third example we insert the potential given by Eq. (6.14)

< v̇y >=
(2π)5/2nb

σ3

∫ +∞

−∞

dkx

∫ +∞

−∞

dky

∫ +∞

−∞

dkz
4G2m2

(2π)4

1

k3

×k2
yv0[

1

k
+ r0 cos(kr0)si(kr0) − r0 sin(kr0)ci(kr0)]

2e−
(kyv0)2

2k2σ2 . (6.46)

Introducing polar coordinates (θ,r) we get Eq. (6.46) into the form

< v̇y > =
2G2m2nb√

2πσ3

∫ +∞

−∞

dky k
2
yv0

∫ +∞

0

dr2πr
1
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[
1

k
+ r0 cos(kr0)si(kr0)

− r0 sin(kr0)ci(kr0)]
2 exp

(

− (kyv0)
2

2σ2(k2
y + r2)

)

(6.47)

And we use again the transformation k′y = ky, k
′ =

√

k2
y + r2 = k, with

dk′ydk
′ = rdkydr/

√

k2
y + r2, and the formula will look like

< v̇y > = 2
√

2π
4G2m2nb

σ3

∫ +∞

−∞
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2
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ky

dk

√

k2
y + r2

√

k2
y + r23 [

1

k
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2
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)
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√
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2
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2πσ3
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∫ +∞
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2
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1
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2
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. (6.48)

Changing the limits of integration we find

< v̇y > = 4
√

2π
G2m2nbr

2
0√

2πσ3
v0

∫ +∞

0

dk
1

k2
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2
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1

k
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2
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)

. (6.49)
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The solution is found by integrating by parts, thus obtaining

< v̇y > = 4

√
2πG2m2nb

σ3
v0

∫ +∞

0

dk

[
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− 2σ2

2k2v2
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)]k

0

−
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(
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√
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√
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√
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2 (6.50)

The drag on a body having a density distribution of a Hernquist profile is

< v̇ >= −4πG2m2nb

v2
0

[

erf

(

v0√
2σ

)

− 2√
π

v0√
2σ

exp

(

− v2
0

2σ2

)]

×r2
0

∫ +∞

0

dk [
1

k
+ r0 cos(kr0)si(kr0) − r0 sin(kr0)ci(kr0)]

2. (6.51)

Accordingly, we identify its Coulomb logarithm

ln(Λ) = r2
0

∫ ∞

kmin

dk
1

k
[1 + r0k cos(kr0)si(kr0) − r0k sin(kr0)ci(kr0)]

2. (6.52)

Using the asymptotic expansions of the sine– and cosine–integrals (5.2.6)
given by Abramowitz & Stegun [AS72] the integrand in expression (6.52)
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takes the form

1

k
[1 − r0k

1

r0k
(1 − 2

r2
0k

2
]2

⇒ 1

k

(

2

r2
0k

2

)2

=
4

r4
0k

5

⇒
∫

dk
1

k5
→ 0. (6.53)

at large k. Thus the Coulomb logarithm converges at small scales. This
is expected because, although the density distribution has an inner density
cusp, the deflecting mass ‘seen’ by a field star with a small impact parameter
scales with square of the impact parameter.

At small wave numbers a Taylor expansion shows that

1

k
[1 + r0k(1 − k2r2

0

2
)(−π

2
+ r0k) − r0k(1 − ln(r0k) −

r2
0k

2

4
)]2 ⇒ 1

k
→ ∞

which implies
∫

dk
1

k
= ln(k)(6.54)

so the square bracket in expression (6.52) approaches 1 so that we find a log-
arithmic divergence of the Coulomb logarithm as in the case of the Plummer
sphere.

6.4 Discussion and Conclusions

In Fig. (6.1) we illustrate the Coulomb logarithms of the Plummer sphere
and a sphere with a Hernquist density distribution according to Eqs. (6.43)
and (6.52) as function of r0kmin. Fig. (6.1) shows clearly that at given mass
small sized perturbers experience a stronger dynamical friction force than
larger ones. Since the cut-off of the wave number at kmin is determined by
the radial extent of the stellar system, which corresponds roughly to one
half of the largest subtended wave length λmax = 2π/kmin, we use actually
r0/(λmax/4) as abscissa in Fig. (6.1). For comparison we have also drawn
−ln(r0kmin) in Fig. (6.1). The insert shows the cumulative mass distributions
of both mass models. The half mass radius of the Hernquist model measured
in units of r0 is about twice as that of the Plummer sphere. Thus for a
proper comparison of the drag forces exerted on a Plummer sphere and a
sphere with a Hernquist density profile the dashed line in Fig. (6.1) should
be stretched by a factor of about 2 towards the right. But it is clear from
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Figure 6.1: Coulomb logarithms of the Plummer sphere (solid line), and
a sphere with a Hernquist density profile (dashed line). The dotted line
indicates −ln(2πr0/λmax). r0 denotes the radial scale lengths of the spheres
and λmax is the upper cut–off of the wavelength of the density perturbations
(see text). The inlet shows the cumulative mass distributions of the Plummer
and Hernquist models.
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Fig. (6.1) that the drag force exerted on a Plummer is always larger that
the drag on a sphere with a Hernquist density profile. This is to be expected
because of its shallower density profile. The logarithm −ln(r0kmin), although
being the asymptotic expansion of the Coulomb logarithms (6.43) and (6.52)
for r0kmin → 0, is not a good approximation at larger r0kmin. There is a
systematic off–set relative to the true Coulomb logarithms which is given
explicitely in Eq. (6.45) for the case of the Plummer sphere.

So far we have treated the moving perturbers as rigid bodies. In reality,
perturbers can be deformed by tidal fields. One source of the tidal field is
the induced polarization cloud itself. However, its effect is expected to be
small. The moving perturber induces the polarization cloud in the back-
ground medium which reacts back on the perturber. Thus the dynamical
friction force and any tidal fields exerted by the polarization cloud is of the
order G2 (cf. Eq. 6.36). The deformation of the perturber can be viewed
as mass excesses and deficiencies. The momentum imparted by these ‘extra’
masses to the particles of the background medium will be of the order of G3

and can be safely considered as a higher order effect.
There is a further effect if the perturbers are gravitationally bound sys-

tems themselves like globular clusters or dwarf satellite galaxies. Such ob-
jects can and do loose mass due to tidal shocking. This mass loss is primarily
driven by tidal shocking due to the shrinking of the tidal radii at the inner
pericenters of the orbits of the perturbing objects or by disc shocking when
they pass through the galactic disc ([GO97]; [GHO99]). Many studies, which
cannot be all enumerated here, have shown that mass loss, which reduces
dynamical friction, plays thus an important role for the evolution of the or-
bits of the satellite galaxies. In order to illustrate the effect of mass loss, on
one hand, and the effect of a finite size of the perturber, on the other hand,
we show in Fig. (6.2) the variation of the deceleration by dynamical friction
exerted on a Plummer sphere as function of the mass m and the radial scale
length r0. As can be seen from the contour plot in Fig. (6.2) both effects can
be of comparable magnitude. If one considers, for example, a perturber with
a scale length of 0.01 (λmax/4), a doubling of its size has the same effect as
a mass loss of 18 percent of the original mass.
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Figure 6.2: Contour plot of m · lnΛ for a Plummer sphere. The mass m is
given in arbitrary units. The contour levels span the rnage from 0.5 to 4 at
equidistant intervals of 0.5.
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Chapter 7

The role of an anisotropic

velocity distribution in DF

The linear momentum exchange with DF has been studied in a vast literature
on many aspects of it. However, analytical progress on the subject has been
scarce ([Mar68]; [19772]; [Bin77]), with the recent calculation of the drag
force exerted on extended bodies [EF07a], explained in the previous chapter.

In the begining of chapter six it was mentioned that although the DF for-
mula (4.40) suffers from a lot of oversimplifications such as the homogeneity
of the distribution of the sea of particles and the infinite extension of the
system they form, these assumptions remain valid to first order. However,
since observational studies suggest that systems such as elliptical galaxies
and clusters of galaxies have a non–spherical shape, it becomes important to
ask what is the effect behind this non–sphericity. One physical explanation
could be the rotation of the system itself, although obeservational and theo-
retical studies of many elliptical systems have shown that theses systems are
not supported by rotation ([BC75]; [Ill77]; [Bin78]; [Bin05]; [KBC+08]). An
alternative explanation is due to orbital anisotropy [Bin76]. Which seems to
be the correct explanation due to the recent study of lenticular galaxies con-
ducted by the SAURON project [CEB+07]. The non–spherical appearance
of the system is due to the flattening of the velocity ellipsoid.

Also, in the dark–matter context, it is believed from state-of-the-art nu-
merical simulations of dark–halo formation that the velocity distribution of
the particles in the halo is anisotropic [cf. KAPG08]. Actually, the degree
of anisotropy could be moderate [ANS06] or significant [TB05]. Having this
in mind, we explore in this chapter the role this anisotropic equilibria could
have on the dynamical evolution of the satellites orbiting the system.

In this respect, Binney [Bin77] has been the only one to take one step
further the treatment to have obtained an analytical expression for DF that
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incorporates an anisotropic velocity distribution function for the field par-
ticles; having been tested numerically to work remarkably well in flattened
systems [PJK04], altough it is observed a progressive reduction of the orbit’s
ellipticity not found in the N-body calculations.

The mode analysis applied in the previous chapter is now used to ex-
plore the effect an anisotropic velocity distribution has on the net dynamical
drag exerted on a point–mass satellite. Fuchs & Athanassoula [FA05] have
shown that, if the velocity ellipsoid is either prolate or oblate, the velocity
dispersion in the solution of the Boltzmann equation (6.5) is replaced by an
effective velocity dispersion which depends on the semi–axes of the velocity
ellipsoid and its orientation relative to the wave vector k. This complicates
the evaluation of the integrals with respect to the wave numbers in eq. (6.27)
considerably.

7.1 The effective velocity dispersion

Let us start by writting the Gaussian velocity distribution function for the
sea particles

f0 =
nb√
2π

3
σ3

exp−
(

u2

2σ2
+

v2

2σ2
+
w2

2σ2

)

, (7.1)

which for an anisotropy distribution will take the form (see Figs. (7.1), (7.2)),

f0 =
nb√

2π
3
σuσvσw

exp−
(

u2

2σ2
u

+
v2

2σ2
v

+
w2

2σ2
w

)

, (7.2)

where v and w are the planar velocity components of the system, for example,
a galaxy, cluster or halo. The velocity component perpendicular to this plane
is denoted by u. We introduce again Cartesian coordinates (ξ, η, ζ) and align
the ξ–axis with the wave vector k of the Fourier–transformed distribution
function fhk.

For technical reasons we assume σv = σw, which will leave Eq. (7.2)
with a symmetry on v. With this choice we can now align, without loss of
generality, one of the coordinates perpendicular to k with the v component
that is parallel to the ky–axis along which the particle travels with velocity
v0. Therefore, if we carry out the integration of Eq. (7.2) over v we obtain

∫ +∞

−∞

f0dv = f0(u, w)
1√

2πσv

∫ +∞

−∞

exp−
(

v2

2σ2
v

)

dv = f0(u, w). (7.3)
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Figure 7.1: Velocity ellipsoid describing an anisotropic velocity distribution.
Following the treatment developed in chapter 6, the particle is traveling with
velocity v0 along the ky–axis which is parallel to the v–velocity component.

And so the contribution from the v component has been taken into account.
Next, based on the geometry of the problem (cf. Fig. (7.2)), we express the
distribution function as

f0 =
nb

2πσuσw
exp−

(

(v‖ cosα+ v⊥ sinα)2

2σ2
u

+
(v‖ sinα + v⊥ cosα)2

2σ2
w

)

,

(7.4)
where v⊥ is the second velocity component perpendicular to the wave vector
k and v‖ is the velocity component parallel to it. The angle between the
wave vector and the u–axis is denoted by α (Fig. (7.2)). We rewritte Eq.
(7.4) as

f0 =
nb

2πσuσw
exp−

(

v2
‖ cos2 α− 2v‖v⊥ cosα sinα + v2

⊥ sin2 α

2σ2
u

)

× exp−
(

v2
‖ sin2 α+ 2v‖v⊥ cosα sinα + v2

⊥ cos2 α

2σ2
w

)

, (7.5)

and we rearrange terms to carry out the integration over the second velocity
component perpendicular to k,

f0 =
nb

2πσuσw
exp−

(

v2
‖ sin2 α

2σ2
w

−
v2
‖ cos2 α

2σ2
u

)

∫ +∞

−∞

d v⊥
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[

v⊥

(

2v‖ cosα sinα

2σ2
w

− 2v‖ cosα sinα

2σ2
u

)

+ v2
⊥

(

cos2 α

2σ2
w

+
sin2 α

2σ2
u

)]

.(7.6)
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Figure 7.2: Geometry of an anisotropic velocity distribution. For simplicity,
the magnitude of the velocity dispersion σv of the velocity component v, is
equal to the velocity dispersion σw that corresponds to the velocity compo-
nent w. α describes the angle between the wave vector k and the u–axis.
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With use of the formula
∫ +∞

−∞

dx exp−(px2 ± qx) = exp

(

q2

4p

)√

π

p
, (7.7)

we can carry out the integration, thus obtaining
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(7.8)

We rearrange the terms in the exponential function
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‖
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‖

2

[

(cos2 α + sin2 α)2

σ2
u cos2 α + σ2

w sin2 α

]

= exp−
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1

σ2
u cos2 α + σ2

w sin2 α
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,(7.9)

and then rewritte Eq. (7.8) as

f0 =

√
πnb

2πσuσw

√
2σuσw

√

σ2
u cos2 α+ σ2

w sin2 α
exp

(

v2
‖/2

σ2
u cos2 α + σ2

w sin2 α

)

=
nb√

2π
√

σ2
u cos2 α + σ2

w sin2 α
exp

(

v2
‖/2

σ2
u cos2 α + σ2

w sin2 α

)

(7.10)

If we compare the isothermal velocity distribution function (Eq. (7.1))
and the anisotropic distribution function (Eq. (7.10)) that has been inte-
grated over the two velocity components perpendicular to k, we can see that
net the effect of the anisotropy can be associated with an effective velocity
dispersion

σeff =
√

σ2
u cos2 α + σ2

w sin2 α (7.11)

This effective velocity dispersion was first obtained by Fuchs & Athanassoula
[FA05]. In the next section σeff will be inserted in the formula of dynamical
friction to see what is the role played by the anisotropy of the system.
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7.2 The dynamical drag

7.2.1 First case: σv = σw 6= σu

Taking up again the method we used previously, we calculate the DF force
exerted on a point-mass particle. With the inclusion of the effective velocity
anisotropy, Eq. (6.29) now takes the form

< v̇y >= 2
G2m2nb√

2πσ3
eff

∫ +∞

−∞

d3k k2
y

v0

k5
exp

(

−(kyv0)
2

2k2σ2
eff

)

, (7.12)

and we recognize that the trigonometric terms in Eq. (7.11) have the form
(see Fig. (7.2))

cosα =
kx

k
and sinα =

√

ky
2 + kz

2

k
(7.13)

with this at hand we explicitly cast Eq. (7.12) in the form of
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and we normalize the wave vector components with respect to their associated
velocity dispersion components, i. e. k′x,y,z = kx,y,z ·σu,v,v = kx,y,z. Eq. (7.14)
now reads
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and introduce polar coordinates (r,θ),
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We now concentrate on solving the integral over the angle θ. We rewritte
this integral as

I =
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and split off the limits of integration in intervals (0, 4π) = (0, π) + (π, 2π) +
(2π, 3π)+(3π, 4π) to be able to use formula (3.613) of Gradshteyn & Ryzhik
[GR00]

∫ π
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2

1
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, (7.18)

and find the result
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We make the change of variables u =
√

k2
y + r2; r =

√

u2 − k2
y; dr =

udu/
√

u2 − k2
y and bring Eq. (7.19) in the form of
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By choosing k∗y = ky/u = ky, k
∗
y ǫ [0, 1], Eq. (7.20) now looks like

< v̇y >= 8π
G2m2nb√
2πσuσ4

v

∫ +∞

0

du u

∫ 1

0

dky

v0k
2
y

√

k4
yu4

σ4
v

+
k2

yu2

σ2
v

(u2 − k2
yu

2)
(

σ2
u+σ2

v

σ2
uσ2

v

)

+
(u2−k2

yu2)2

σ2
uσ2

v

× exp

(

−(kyv0)
2

2σ2
v

)

,(7.21)

70



where we have used the symmetry of the integral over ky. Next we observe
that
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Inserting Eq. (7.22) into Eq. (7.21) we obtain
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(7.23)
The integral over u diverges just as the Coulomb logarithm of Chandrasekhar’s
formula. We denote this integral as ln(Λ). Then, in order to be able to
properly interpret Eq. (7.23), we introduce the total velocity dispersion
σ2

T = σ2
u + 2σ2

v , and we make the change of variables k∗y = k2
y; ky ǫ [0,∞);

dky = dk∗y/2
√

k∗y to find from Eq. (7.23) the drag on the pertuber
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7.2.2 Second case: σv 6= σu = σw

The velocity ellipsoid corresponding to the choice σv 6= σu = σw is shown
in Fig. (7.3), we follow again the trajectory of a point–mass particle that
travels along the ky–axis, but in this case the trajectory of the massive body
goes along the symmetric axis of the ellipsoid. In this case, the angle α in
Eq. (7.11) will be determined by (see Fig. (7.4))

cosα =
ky

k
and sinα =

√

kx
2 + kz

2

k
. (7.25)

71



Figure 7.3: Velocity ellipsoid corresponding to the case σv 6= σu = σw. A
particle traveling along the ky–axis sees an anisotropic velocity ditribution
since the magnitude of the velocity dispersion components u,w perperdicular
to the parallel component v is not the same.

With the inclusion of the trigonometric terms (7.25), Eq. (6.29) is rewritten
as
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Considering k′x,y,z = kx,y,z · σu,v,u = kx,y,z, the equation now reads
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Using polar coordinates we get
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Figure 7.4: Schematic representation showing the angle between the wave
vector k and the component ky along which the perturber is flying.
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and making the substitution u =
√
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we find
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Changing the limits of integration we obtain
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and we make the choice k∗y = k2
y ; dk

∗
y = 2kydky, obtaining
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where we have used the notation ln(Λ) for the divergent integral. Introduc-
ing the total velocity dispersion for this case σ2

T = 2σ2
u + σ2

v , we write the
dynamical drag as
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7.3 Discussion and Conclusions

In the previous section we have carried out the formal calculation of the
DF force exerted on a point–mass particle as it moves through the vel-
locity ellipsoid of the background particles. It must be said that Binney
[Bin77] has been the only one to consider such a situation, although our
results are valid not only for a disk–like oblate ellipsoid, but also for a cigar–
shaped prolate ellipsoid. We start the discussion by plotting the behaviour
of Eq.(7.24) in Fig. (7.5). Eq.(7.24) describes the drag force on a satellite
that is traveling through a velocity ellipsoid at angle α (see Fig. (7.2)). The
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Figure 7.5: DF force’s Eq. (7.24) plotted for three different choices: σv =
σw > σu corresponding to an oblate velocity ellipsoid, σv = σw < σu gives the
contribution from an prolate ellipsoid, and the isotropic velocity dispersion
contribution is also included for reference.

factor 2
√

2πG2m2nbln(Λ)/σ2
T is not plotted. By plotting the force given by

Eq.(7.24) in terms of the total velocity dispersion σT , we can maintain its
total value constant, letting us then see directly the relative contribution of
every choice of σv.

Let us start describing the situation corresponding to the choice σv > σu.
One can immediately see from Fig. (7.5) the dual behaviour of DF: on the
one hand, in the regime of low velocities (v0 < σT ), the distribution function
(Eq. (7.2)) is approximately constant, which means that the force goes as v0

and therefore the effect of the anisotropy is not present, this DF dependence
on v0 bears ressemblance with the deceleration a moving body experiences
inside a viscous fluid according to Stokes’s formula. On the other hand, for
dynamically warm particles (v0 > σT ), the effect of the anisotropic terms
arises, resulting in a net increase of the drag force as compared with the
isotropic case.
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As for the prolate–spheroid case (σv = σw < σu), due to the interplay
between the exponential and the square–root terms in Eq.(7.24), the force is
always bigger than the isotropic force, although symmetric, thus ressembling
the behaviour of the isotropic case, regardless of the precise value of σv, as
long as the condition σv < σu is satisfied.

Following the standard procedure [cf. BT87], we can give a time unit of
the process if we loosely consider that Eq.(7.24) can be written as kv0 =∝ v0,
and if we choose v0 = σv as well as σv = 2σu for simplicity. We obtain from
Eq.(7.24) the decay time for a satellite orbiting the system

1

k
≡ tdec = 0.289

σ3
v

G2mρbln(Λ)

=
1.53 × 1010yr

ln(Λ)

( σv

10 kms−1

)3
(

1 M⊙

m

)(

103 M⊙pc−3

ρ

)

. (7.33)

Next, we show the behaviour of the DF formula (7.32) by plotting it. This
again means that the factor 2

√
2πG2m2nbln(Λ)/σ2

T is not taken explicitely
into account. We would like to highlight first that, as long as the condition
σv > σu is satisfied, the anisotropic terms in the force term of Eq. (7.32)
will tend to widen (with respect to the isotropic case) the drag force for in-
creasing values of σv with respect to σu in the v0 > σT velocity regime; in
the regime v0 < σT the distribution function remains constant regardless of
the value of σv, and it closely follows the isotropic case. In Fig. (7.6) we plot
the situation for a particular choice of σv.

Also in Fig. (7.6), it is shown the force contribution for the case σv < σu.
As expected, due to the exponential term in Eq. (7.32), the force will increase
with decreasing σv in the regime v0 < σT . Certainly the exponential term
is the leading term in this case, since once values v0 > σT are spanned, the
force will drop precipitately.

We also give an order of magnitude estimate of the decay time of the
process in this case. Taking again simple assumptions v0 = σv, σu = 2σv, we
obtain find from Eq.(7.32)

1

k
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v
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ln(Λ)

( σv

10 kms−1

)3
(

1 M⊙

m
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ρ

)

. (7.34)
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Figure 7.6: DF force for the case: σv 6= σu = σw. In this case the particle
travels right in the middle of the velocity ellipsoid. The drag experienced by
the massive body is weaker than in the previous case (σv = σw 6= σu).
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To finish the discussion, it must be said that one could relate the force
term in the case (σv = σw > σu), to Binney’s parallel force component [F‖

of Bin77], which is the force a particle traveling along a coplanar orbit (in
our more general treatment along the ky–axis) with velocity v‖ = v0 and
velocity dispersion σ‖ = σv experiences when the magnitude of the parallel
velocity dispersion component is equal to the other coplanar component σw

(cf. Fig. (7.2)). In fact, if we make the substitution of variables k∗y = 1/1+q;
dk∗y = −dq/(1 + q)2; q ǫ [∞, 0], from Eq.(7.24) we recover Binney’s Eq. (3)
of [Bin77]
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(

− v2
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‖

)

= −2
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2πG2m2nb
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σ2
‖σ⊥
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0

dq
1

√

1 − e2 + q

1

(1 + q)2

× exp

(

− v2
0

2(1 + q)σ2
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)

, (7.35)

where e =
√

1 − σ2
⊥/σ

2
‖ is the eccentricity. Eq. (7.35) differs from Eq. (3)

of [Bin77] in the Coulomb logarithm which is written in terms of the wave
vector and not in terms of the impact parameter, its evaluation is open to a
lot of interpretation as we had already discussed in section (4.3), and in prin-
ciple one could argue that ln(kmax/kmin) could be similar to ln(bmax/bmin).
However, the major difference between our treatment and that of Binney’s
is the explicit dependence of the perpendicular component v⊥ in Eq. (3) of
[Bin77], component that by construction of our model it had already been
integrated over. Binney compared the contribution from the perpendicular
component with the parallel component (Eq. (7.35)) to explain the flattening
observed in some clusters of galaxies. Since his perpendicular force is bigger
than the force exerted on a massive galaxy along the plane of the system, its
trajectory will be confined to this plane, thus flattening the distribution of
the massive bodies in the system. Here we have calculated the force exterted
on a massive body as it moves at different angles through a velocity ellipsoid.
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Although the situation treated here is not the same as that considered in
[Bin77], for illustration purposes we compare here the contribution between
the two cases σv = σw 6= σu and σv 6= σw = σu, by plotting the function
β = 1 − Fv 6=w/Fv=w which bears resemblance to Binney’s β = 1 − F‖/F⊥

function which gives the degree of the flattening. It is evident from Fig.
(7.7) that the contribution from the case σv = σw 6= σu (Fv=w) dominates
over the contribution for the case σv 6= σw = σu (Fv 6=w), for both regimes
σv > σw and σv < σw. This is intuitively expected since a particle traveling
along the ky–axis will see a net anisotropic component of the velocity ellipsoid
in the case σv = σw 6= σu, whereas in the case σv 6= σw = σu the particle will
see a symmetric velocity ellipsoid.

7.4 The role of a missaligned velocity ellip-

soid

7.4.1 First case: σv = σw 6= σu

In this section we extend our analysis to include an angle dependence in the
trajectory the satellite follows as it travels through the background system.
From Fig. (7.8) we can see that the velocity plane defined by the velocity
components v, u, is not longer aligned with the plane defined by the wave
vector components ky, kx. We assume there exists an opening angle β be-
tween the axis u and kx. In this situation the angle described by Eq. (7.11)
has the form

cosα =
kx cosβ + ky sin β

k
. (7.36)
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We then introduce this equation into the effective velocity dispersion Eq.
(7.11), to obtain

σ2
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u cos2 α + σ2
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It is adventageous to express Eq. (7.37) as

σ2
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k2
, (7.38)
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x(σ

2
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2
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y(σ

2
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σ2
v cos2 β). Inserting Eq. (7.38) into Eq. (6.29) we find
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Note that due to the missalignment of axis the kxky–component of < v̇y >
is present (cf. Eq. (6.29)). We continue further by taking the substitutions
κ∗ = κ/σv, and r = 1/

√

κ∗ + k2
z ; dr = −kz/(κ

∗ + k2
z)

3/2; r ǫ [1/κ∗, 0], with
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Figure 7.8: Sketch showing the angle β that accounts for the missalignment
between the velocity axes u, v and the wave vector components kx, ky. In
this situation the contribution from the component < v̇x > is not longer
zero.
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which Eq. (7.39) takes the form

< v̇x,v̇y > = 4
G2m2nb√

2πσ3
v

∫ +∞

−∞

d2k

∫ 1/κ∗

0

dr
v0(kxky,k

2
y)

k2
x + k2

y + k2
z

exp−
(

(kyv0r)2

2σ2
v

)

kz

= 4
G2m2nb√

2πσ3
v

∫ +∞

−∞

d2k

∫ 1/κ∗

0

dr
v0(kxky,k

2
y)

k2
x + k2

y + 1
r2 − κ∗2

exp−
(

(kyv0r)2

2σ2
v

)

√

1
r2 − κ∗2

= 4
G2m2nb√

2πσ3
v

∫ +∞

−∞

d2k

∫ 1/κ∗

0

dr r
v0(kxky,k

2
y)

r2(k2
x + k2

y − κ∗2) + 1

exp−
(

(kyv0r)2

2σ2
v

)

√
1 − κ∗2r2

.

(7.40)

We make the susbtitution r =
√
s; dr = ds/2

√
s; r ǫ [0, 1/κ∗2], to get

< v̇x,v̇y >= 2
G2m2nb√

2πσ3
v

∫ +∞

−∞

d2k

∫ 1/κ∗2

0

ds s
v0(kxky,k

2
y)

s(k2
x + k2

y − κ∗2) + 1

exp−
(

(kyv0)2s
2σ2

v

)

√
1 − κ∗2s

.

(7.41)
To proceed further we consider the change of variables t = κ∗2s; dt = κ∗2ds;
t ǫ [0, 1], and obtain

< v̇x,v̇y >= 2
G2m2nb√

2πσ3
v

∫ +∞

−∞

d2k

∫ 1

0

dt
t

κ∗4
v0(kxky,k

2
y)

1 + t
(

k2
x+k2

y−κ∗2

κ∗2

)

exp−
(

(kyv0)2t

2σ2
vκ∗2

)

√
1 − t

.

(7.42)
One of the two remaining integrals can be solved by taking the substitu-

tion k∗x = kx/ky; dk
∗
x = dkx/ky. κ

∗ will now read 1/κ∗2 = σ2
v/k

2
y[k

∗2
x (σ2

u cos2 β+
σ2

v sin2 β) + 2k∗x(σ
2
u − σ2

v) sin β cosβ + σ2
u sin2 β + σ2

v cos2 β].
From Eq. (7.42) we find

< v̇x,v̇y >= 2

√

2

π
G2m2nbσv

∫ +∞

0

dky
1

ky

∫ +∞

−∞

dk∗x

∫ 1

0

dt
v0(k

∗
x,1)

(Ak∗2x +Bk∗x + C)2

× t√
1 − t

exp−
(

v2
0t

2(Ak∗2
x +Bk∗

x+C)

)

1 + t
(

σ2
v(1+k∗2

x )
(Ak∗2

x +Bk∗
x+C)2

− 1
) ,(7.43)

where A = σ2
u cos2 β+σ2

v sin2 β, B = 2(σ2
u−σ2

v) sin β cosβ, and C = σ2
u sin2 β+

σ2
v cos2 β. Using again the notation ln(Λ) for the integral that diverges and

introducing the total velocity dispersion σ2
T = σ2

u + 2σ2
v , we obtain the DF
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Figure 7.9: Now we consider the missalignment between the plane described
by the u,v components and the kx,ky axes in the case σv 6= σw = σu.

formula

< v̇(x,y,0) >= −2

√

2

π

G2m2nb

σ2
T

σv

σT

v0

σT
ln(Λ)

∫ +∞

−∞

dk∗x

∫ 1

0

dt
v0(k

∗
x,1)

(A′k∗2x +B′k∗x + C ′)2

× t√
1 − t

exp−
(

t(v2
0/σ2

T )

2(A′k∗2
x +B′k∗

x+C′)

)

1 + t
(

(σ2
v/σ2

T )(1+k∗2
x )

(A′k∗2
x +B′k∗

x+C′)2 − 1
) ,(7.44)

where now A′ = (1 − 3 σ2
v

σ2
T
) cos2 β + σ2

v

σ2
T
, B′ = 2(1 − 3 σ2

v

σ2
T
) sin β cosβ, and

C ′ = (1 − 3 σ2
v

σ2
T
) sin2 β + σ2

v

σ2
T
.

7.4.2 Second case: σv 6= σw = σu

In this case the missalignment between the the velocity components u, v,
and the wave vector components kx, ky is described in Fig. (7.9). In this
situation the angle in Eq. (7.25) is modified and replace by the term

cosα =
ky cosβ + kx sin β

k
. (7.45)

84



And put this equation into the effective velocity dispersion Eq. (7.11), to get

σ2
eff = σ2

v cos2 α + σ2
w sin2 α

=
σ2

v

k2
(k2

y cos2 β + 2kxky sin β cosβ + k2
x sin2 β)

+
σ2

w

k2
(k2 − k2

y cos2 β − 2kxky sin β cosβ − k2
x sin2 β)

=
k2

y

k2
(σ2

v cos2 β + σ2
w − σ2

w cos2 β)

+
2kxky

k2
(σ2

v sin β cosβ − σ2
w sin β cosβ)

+
k2

x

k2
(σ2

v sin2 β + σ2
w − σ2

w sin2 β) + σ2
wk

2
z

=
k2

y

k2
(σ2

v cos2 β + σ2
w sin2 β)

+
2kxky

k2
(σ2

v − σ2
w) sin β cosβ

+
k2

x

k2
(σ2

v sin2 β + σ2
w cos2 β) + σ2

wk
2
z (7.46)

Following the method explained in the previous subsection, we rewritte Eq.
(7.46) as

σ2
eff =

κ2 + σ2
wk

2
z

k2
, (7.47)

where κ2 = k2
y(σ

2
v cos2 β+σ2

w sin2 β)+kxky(σ
2
v−σ2

w) sin β cos β+k2
x(σ

2
v sin2 β+

σ2
w cos2 β). Now we insert this equation into the general formula (6.29) and

obtain

< v̇x,v̇y >= 4
G2m2nb√

2π

∫ +∞

0

dkz

∫ +∞

−∞

d2k
(kxky,k

2
y)

(κ2 + σ2
wk

2
z)

3/2

v0

k2
x + k2

y + k2
z

× exp−
(

(kyv0)
2

2(κ2 + σ2
wk

2
z)

)

.(7.48)

We make the substitutions κ∗ = κ/σw, and r = 1/
√

κ∗ + k2
z ; dr = −kz/(κ

∗+
k2

z)
3/2; r ǫ [1/κ∗, 0], and rewritte Eq. (7.48) as

< v̇x,v̇y > = 4
G2m2nb√

2πσ3
w

∫ +∞

−∞

d2k

∫ 1/κ∗

0

dr
v0(kxky,k

2
y)

k2
x + k2

y + k2
z

exp−
(

(kyv0r)2

2σ2
w

)

kz

= 4
G2m2nb√

2πσ3
w

∫ +∞

−∞

d2k

∫ 1/κ∗

0

dr r
v0(kxky,k

2
y)

r2(k2
x + k2

y − κ∗2) + 1

exp−
(

(kyv0r)2

2σ2
w

)

√
1 − κ∗2r2

,

(7.49)
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and with the change of variables s = r2; ds = 2rdr; r ǫ [0, 1/κ∗2], to get

< v̇x,v̇y >= 2
G2m2nb√

2πσ3
w

∫ +∞

−∞

d2k

∫ 1/κ∗2

0

ds s
v0(kxky,k

2
y)

s(k2
x + k2

y − κ∗2) + 1

exp−
(

(kyv0)2s

2σ2
w

)

√
1 − κ∗2s

.

(7.50)
Next, from the substitution t = κ∗2s; dt = κ∗2ds; t ǫ [0, 1], we find

< v̇x,v̇y >= 2
G2m2nb√

2πσ3
w

∫ +∞

−∞

d2k

∫ 1

0

dt
t

κ∗4
v0(kxky,k

2
y)

1 + t
(

k2
x+k2

y−κ∗2

κ∗2

)

exp−
(

(kyv0)2t
2σ2

wκ∗2

)

√
1 − t

.

(7.51)

As before, with the substitution k∗x = kx/ky; dk
∗
x = dkx/ky, we rewritte

κ∗ as

1/κ∗2 =
σ2

w

k2
y

[k∗2x (σ2
v sin2 β+σ2

w cos2 β)+2k∗x(σ
2
v−σ2

u) sinβ cosβ+σ2
v cos2 β+σ2

u sin2 β]

(7.52)
And Eq. (7.51) will look like

< v̇x,v̇y >= 2

√

2

π
G2m2nbσwln(Λ)

∫ +∞

−∞

dk∗x

∫ 1

0

dt
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× t√
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(

v2
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2(Ak∗2
x +Bk∗

x+C)

)

1 + t
(

σ2
w(1+k∗2

x )
(Ak∗2

x +Bk∗
x+C)2

− 1
) ,(7.53)

where in this case A = σ2
v sin2 β + σ2

w cos2 β, B = 2(σ2
v − σ2

w) sin β cosβ, and
C = σ2

v cos2 β+σ2
w sin2 β, and where ln(Λ) is the Coulomb logarithm. A total

velocity dispersion of the form σ2
T = 2σ2

w + σ2
v is considered when writting

the DF formula
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√
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−∞

dk∗x

∫ 1

0
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(A′k∗2x +B′k∗x + C ′)2

× t√
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exp−
(
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x+C′)
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„

σ2
T
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«
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,(7.54)

86



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10

fr
ic

tio
n 

fo
rc

e 
[A

. U
.]

V0/σT

Profile: A point mass. [Anisotropic Case β = 0]

Case σw=σv > σu
Case σw=σv = σu
Case σw=σv < σu

Figure 7.10: Plot of Eq. (7.44) for β = 0. This choice reproduces exactly the
behaviour of Eq. (7.24).

where now

A′ =

(

σ2
v

σ2
T

)

sin2 β −
(

σ2
T − σ2

v

2σ2
T

)

cos2 β

B′ =

(

3
σ2

v

σ2
T

− 1

)

sin β cos β

C ′ =

(

σ2
v

σ2
T

)

cos2 β +

(

σ2
T − σ2

v

2σ2
T

)

sin2 β. (7.55)

7.5 Discussion and Conclusions

We now present a series of plots showing the behaviour of the inner part of Eq.
(7.44) for different choices of the angle β. The factor 2

√

2/πG2m2nb/σ
2
T ln(Λ)

in not plotted. As expected, the case β = 0 is nothing but the case described
by Eq. (7.24) (see Fig. (7.5)).

As one starts to look at the plots corresponding to different choices of the
missalignment–angle β = π/4, π/3, π/2 (Figs. (7.11), (7.12), (7.13)), one can
see the progressive increase of the DF force for increasing values of β in the
case σv > σu. The increment in the force when β = π/2 can be as high as
30% with respect to the choice β = 0. When β = π/2 is chosen the massive
body will find itself traveling with velocity v0 along the ky–axis that is ori-
ented with the velocity ellipsoid–component u. In such a situation the degree
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Figure 7.11: Plot of the kernel of Eq. (7.44) for the choice β = π/4. Even
for this modest non–zero value of the missalignment–angle β, the increment
in the force is considerable when an oblate–ellipsoid is considered (σv > σu).
For a prolate spheroid (σv < σu) the value of the force also starts to drop
drastically.

of anisotropy of the distribution function is maximum and the value of the
force changes drastically for relative values of σv and σu. When σv < σu, the
force drops considerably for the choice β = π/4 with respect to the aligned
case β = 0. For β = π/3 the situation is pretty similar to the isotropic case
and for β = π/2 the force will be weaker than the isotropic force although it
will not fall off so fast as in this case.

Contrary to previous cases, there will be a second contribution from Eq.
(7.44) to the drag, since the velocity component < v̇x > is not longer zero. In
Figs. (7.14) and (7.15) we show the most interesting cases, one can note first
that the isotropic case is zero as expected due to symmetry (cf. Eq.(7.44)).
Although the contribution to the drag is not as important as it is for the
< v̇y > component, we can see the opposite contributions from the cases
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Figure 7.12: Behaviour of Eq. (7.44) for the choice β = π/3. A particle
traveling at this angle through a prolate ellipsoid (σv < σu) will experience a
drag very similar to the force exerted by a sea of particles with an isotropic
velocity distribution. On the other hand, when an oblate ellipsoid is included
(σv > σu), the force exerted on the perturber continues to rise with respect
to the case when the angle is zero.
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Figure 7.13: Behaviour of Eq. (7.44) for the choice β = π/2. The force
exerted by an oblate–ellipsoid (σv = σw > σu) is highest in this case. The
opposite effect arises for the σv = σw < σu.

90



-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10

fr
ic

tio
n 

fo
rc

e 
[A

. U
.]

V0/σT

Profile: A point mass. [Anisotropic Case β = π/3]

Case σw=σv > σu
Case σw=σv = σu
Case σw=σv < σu

Figure 7.14: Behaviour of the velocity component < v̇x > of Eq. (7.44) for
the choice β = π/3. Due to the changing sign of the formula, two opposite
contributions will appear. Whether an oblate or an prolate ellipsoid is con-
sidered the net contribution from this component will be much smaller than
the contribution from the term < v̇y >.

σv > σu and σv < σu; due to the fact that the < v̇x > term depends on
the mixed term kxky (see the general formula (6.29)), the change of sign in
Eq. (7.44) will make both a negative and a positive drag force to appear,
meaning that the particle will experience a net acceleration and deceleration
depending upon the sign of the terms. In any case, the contribution from
the < v̇y > component to the force is at least two times bigger than that
from < v̇x > and could even be bigger for different values of the velocity–
dispersion components.

For comparison with Eq. (7.33), we give an estimate of the time it would
take a satellite to decay for the case β = π/2 and by taking into account the
simplifications v0 = σv, σv = 2σw, and choosing β = π/2. We find

1

k
≡ tdec = 0.118

σ3
v

G2mρbln(Λ)

=
6.24 × 109yr

ln(Λ)

( σv

10 kms−1

)3
(

1 M⊙

m

)(

103 M⊙pc−3

ρ

)

. (7.56)

Now we turn our attention to Eq. (7.54) that describes the DF exterted
on a particle as this makes its way through a velocity–ellipsoid such that
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Figure 7.15: Plot of the force term < v̇x > of Eq. (7.44) for the choice
β = π/4. The force exerted by an oblate–ellipsoid (σv = σw > σu) is two
times bigger, but of opposite sign, than the σv = σw < σu case.
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Figure 7.16: For the choice β = 0, Eq. (7.54) will reproduce the situation
described in Fig. (7.6).

(σv 6= σw = σu). Its behaviour can be understood by looking at Figs. (7.16),
(7.17), and (7.18). As expected, the choice β = 0 (Fig. (7.16)) reproduces the
case plotted in Fig. (7.6). Although in this case the changes in the force are
not so notorious as in the previous situtation (σv = σw 6= σu), the anisotropy
also plays an important role here. For β = 0, due to the fact that σw = σu the
difference in the distribution function (with respect to the isotropic case) will
be maximum when σw > σv, however, if β = π/2 is chosen, the satellite will
travel with velocity v0 along the ky–axis which is oriented with the velocity
component u of the ellipsoid, and so for σu > σv the force felt by the particle
will not be so different than that produced by an isotropic velocity spheroid.
The change between the isotropic case and the cases with β = π/4, π/3 are
minimum.

For comparison with Eq. (7.33), which was derived for the case β = 0,
we give an estimate of the time it would take a satellite to decay for the case
β = π/2 and by taking into account the simplifications v0 = σv, σv = 2σw.
We find

1

k
≡ tdec = 1.4

σ3
v

G2mρbln(Λ)

=
7.4 × 1010yr

ln(Λ)

( σv

10 kms−1

)3
(

1 M⊙

m

)(

103 M⊙pc−3

ρ

)

. (7.57)

By comparing Eqs. (7.33), (7.34), (7.56), and (7.57), one can see how big
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Figure 7.17: Behaviour of Eq. (7.54) for the choice β = π/3. Due to the fact
that the particle’s trajectory is no longer aligned with the velocity component
v of the velocity ellipsoid, the effect of the anisotropy will be reduced and
the force contribution will be similar to that given by the isotropic term

the differences in the decay time can be depending on the situation consid-
ered. We conclude that the anisotropy of the host system can considerably
alter the value of the drag exerted on a body flying through it. Therefore
the equations derived here should be helpful in determining better estimates
of the DF process.

The contribution from the velocity component < v̇x > is plotted in Figs.
(7.19) and (7.20). The behaviour of this component will be similar to the
previous case described by Eq. (7.44): there is a deceleration and accelera-
tion of the particle depending on the value of the effective velocity dispersion.
However, the net contribution in both cases will be smaller than the contri-
bution from the term < v̇y >. Due to symmetry, the contribution from the
isotropic case vanishes.
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Figure 7.18: Eq. (7.54) for β = π/2. In this situation the ky–axis is oriented
with the velocity–ellipsoid component w and σ2

T = 2σ2
w+σ2

v . The distribution
function will remain almost constant in the range σv < σw and will has its
maximum change when σv > σw.
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Figure 7.19: Behaviour of the velocity component < v̇x > of Eq. (7.54) for
the choice β = π/3. The force exerted by an oblate–ellipsoid (σv > σw = σu)
is positive. The opposite effect arises for the case of a prolate ellipsoid (σv <
σw = σu). The isotropic case is zero due to the symmetry in Eq. (7.54).

96



-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2  4  6  8  10

fr
ic

tio
n 

fo
rc

e 
[A

. U
.]

V0/σT

Profile: A point mass. [Anisotropic Case β = π/4]

Case σv > σw = σu
Case σv = σw = σu
Case σv < σw = σu

Figure 7.20: When the choice β = π/4 is made the velocity component
< v̇x > of Eq. (7.54) will have two contributions of opposite sign but of the
same magnitude. The force exerted by an oblate–ellipsoid (σv = σw > σu)
represents a deceleration of the particle and in the case σv = σw < σu there
will be an acceleration although these contributions will be smaller than that
from the < v̇y > case.
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Chapter 8

Conclusions

We started this work by investigating the Jeans instability of a galactic disk
embedded in a dynamically responsive dark halo [EF07b]. This became re-
cently important as physical reasoning was that the self–gravity of the disk,
which has a destabilizing effect, was reduced by the surrounding halo. Sim-
ilarly the onset of non-axisymmetric coherent large-scale instabilities of the
entire disk such as the bar-instability was thought to be damped by a sur-
rounding halo.

However, modern high-resolution simulations in which the surrounding
halo is treated as a dynamically responsive system, have shown that actually
the opposite is true.

We studied then the dynamical stability of an infinitesimally thin galac-
tic disk using the model of a patch of the galactic disk developed by Toomre
[Too64], Goldreich & Lynden-Bell [GL65], Julian & Toomre [JT66] and Fuchs
[Fuc01]. The patch is assumed to rotate around the galactic center and the
differential rotation of the stars is approximated as a linear shear flow. The
surface density is assumed to be constant over the patch. Polar coordinates
are approximated by pseudo Cartesian coordinates (x, y) with x pointing in
the radial direction and y in the direction of rotation, respectively. We calcu-
lated the dynamical response of the disk to a small ’ring-like’ perturbations
of the gravitational disk potential by solving the linearized Boltzmann equa-
tion. In deriving the induced density perturbation we considered a Gaussian
velocity distribution of the stars with a velocity. By assuming the disk to be
self–gravitating, we consider a self-consistent treatment that satisfies Poisson
equation.

After this standard procedure, we included then a living halo by consid-
ering dark matter particles to follow straight–line orbits with an isotropic
velocity distribution modelled also by a Gaussian distribution and by ne-
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glecting all density gradients in the halo so that the halo density distribution
is assumed to be homogeneous.

We apply directly the results of Fuchs [Fuc04] who extended the model of
a local patch of a galactic disk by embedding it into a dark halo. The dark–
matter halo responds to the potential perturbation in the disk and develops
potential perturbations which have the same radial structure exp(ikx) as in
the disk. In this way we calculated the induced perturbation of the gravi-
tational potential of the dark halo, which means that the halo supports the
perturbation in the disk and therefore the density perturbation in the disk
is stronger than in an isolated disk.

We get an equation that describes the line of neutrally stable (ω = 0)
perturbations in the space spanned by QT and λ/λcrit as in the case of an
isolated disk, but now modified by an extra term. It is shown that the
disk-halo system becomes nominally Jeans unstable. On small scales the
instability is suppressed, if the Toomre stability index QT is higher than a
certain threshold, but on large scales the Jeans instability sets invariably in.

However, by using this simple self-consistent disk-halo model it is demon-
strated that this occurs on scales which are much larger than the system so
that this is indeed only a nominal effect. From a practical point of view the
dynamical stability of galactic disks is not affected by a live dark halo.

Since the determination of the dynamical friction force exerted by a grav-
itating system of background stars on a test star moving through the system
is one of the classical problems of stellar dynamics, as part of the second
project of this doctoral thesis, we followed a wave-mechanical treatment to
calculate the drag force exerted by an infinite homogeneous background of
stars on a perturber as this makes its way through the system. This is an
alternative approach as that developed in Chandrasekhar’s seminal paper of
dynamical friction [Cha43], where he envisaged the scenario of a sequence
of consecutive gravitational two–body encounters of test and field stars. We
calculate the drag force exerted on a Plummer sphere and a sphere with the
density distribution of a Hernquist profile.

We rigorously calculated the drag force exerted on these bodies following
the approach of both Marochnik [Mar68] and Kalnajs [19772] who determined
the polarization cloud created in the background medium as a massive object
was making its way through the system. This mode analysis can be simply
understood as linear and angular momentum exchange in stellar systems (
[TW84]; [Fuc04]), and has been extensively used in plasma physics [Sti62].

We assume an infinite homogenous distribution of field stars on isotropic
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straight–line orbits. The response of the system of background stars to the
perturbation due to a massive perturber is determined by solving the lin-
earized Boltzmann equation. Then, by Fourier-transforming both the pertur-
bations of the distribution function and the potential we solved Boltzmann’s
equation in an easier way. In the process of doing so, we consider, without
loss of generality, the spatial coordinates xi and the corresponding velocity
components vi to be oriented with one axis parallel to the direction of the
wave vector. We integrate over the two velocity components perpendicular to
k, and we assume for the field stars always a Gaussian velocity distribution
function.

Once the general solution is found, we moved onto calculating the corre-
sponding Fourier-transform potentials of different perturbing bodies, such as
a extended body having a density profile of the Hernquist type, a Plummer
sphere, and a point mass (for comparison with the other two). It is worth
saying that Plummer spheres have constant density cores, whereas numerical
simulations of the formation of galactic haloes in cold dark matter cosmol-
ogy show that dark haloes may have a central density cusp. Thus models of
a Plummer or a Hernquist sphere should encompass the range of plausible
models for satellite galaxies.

Because only in the direction of motion of the perturber there is a net
effect, we carry out our development making use of all possible symmetries
to compute all integrals over phase space and we get a general DF formula
in terms of an error function and on a Coulomb logarithm that depends on
the specific potential of the perturber under consideration.

Next, we computed the exact form of the Coulomb logarithm associated
to a Herquist, Plummer and a point mass profile. In this way it is shown
that the shape of the perturber affects only the exact form of the Coulomb
logarithm. The latter converges on small scales, because encounters of the
test and field stars with impact parameters less than the size of the massive
perturber become inefficient. We confirm this way earlier results based on
the impulse approximation of small angle scatterings.

Also worth noting is the fact that we also discuss, first, on the more real-
istic escenario where perturbers can be deformed by tidal fields. One source
of the tidal field is the induced polarization cloud itself. However, we found
that this effect is expected to be small. And second, we also discuss on effect
present if the perturbers were gravitationally bound systems themselves like
globular clusters or dwarf satellite galaxies. Such objects can and do loose
mass due to tidal shocking, and such effect both effects could be of compa-
rable magnitude as the one caused by DF.
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Finally, as part of the third and final PhD thesis’ project, we extended
our analysis of DF, in a straightforward way, to include anisotropic velocity
distributions of the field stars. Based on the fact that Fuchs & Athanassoula
[FA05] showed that if the velocity ellipsoid is either prolate or oblate, the
velocity dispersion in the solution of the Boltzmann equation is replaced
by an effective velocity dispersion which depends on the semi–axes of the
velocity ellipsoid and its orientation relative to the wave vector k. This
complicated the evaluation of the integrals with respect to the wave numbers
considerably. Nonetheless, we managed to get handy, easy-to-use formulae of
DF for a point mass for different orientations of the trajectory of the massive
body with respect to the velocity ellipsoid. Whether the ellipsoid was prolate
or oblate, the value of the force could change drastically from the isotropic
case. Although in this last case there will be a non–zero contribution from
the < v̇x > component of the force, its contribution will in general be smaller
than the contribution from the < v̇y > component.

The ability of satellites to alter the phase space distribution of the back-
ground system in such a situation is of great importance for its dynamical
evolution and the DF force formulae derived here could be a useful tool to
constraint on physical grounds the evolution of such systems.
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