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Abstract

The goal of this work is to gain a better understanding of the processes that lead to the
formation of massive black hole seeds in the early Universe, in order to provide insights
into the rapid emergence of the highest redshift quasars. Two different seeding mechanisms
were studied via numerical simulations. The first mechanism explores the onset of runaway
stellar collisions in dense clusters of Population III stars, focusing on understanding the role
of an external potential for modelling the gas during the embedded phase. Stellar collision
rates were also explored in a similar environment with the goal of confronting analytic es-
timates with numerical simulations. The study of this seeding mechanism demonstrates the
plausibility of forming black hole seeds with> 1000M⊙ through runaway stellar collisions
that produce very massive stars. Furthermore, an analytic model for estimating the num-
ber of collisions in dense star clusters is presented, and the identification of a new collision
channel involving perturbations on binary stars is reported.

The second seedingmechanism explored in this work deals with the emergence of super-
massive stars through the interplay of gas accretion and stellar collisions in environments
resembling collapsed gas clouds in atomic cooling halos. The numerical implementation
developed in this work allowed for a self-consistent treatment of stellar and gas dynamics
for the exploration of this mechanism. The results show that the emergence of supermassive
stars with 104 M⊙ is inevitable and a binary system of supermassive stars is the outcome in
one third of the cases.

This thesis concludes by summarizing and discussing the results found in these studies
and commenting on the future work needed to improve the models presented here.
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Zusammenfassung

Das Ziel dieser Dissertation ist es, ein besseres Verständnis der Prozesse zu erlangen, die
zur Entstehung massiver Schwarzlochkeime im frühen Universum führen, um Einblicke in
die schnelle Entstehung des Quasars mit der höchsten Rotverschiebung zu geben. Mittels
numerischer Simulationen wurden zwei verschiedene Seeding-Mechanismen untersucht.
Der erste Mechanismus untersucht den Beginn sehr effizienter Sterkollisionen in dichten
Clustern von Sternen der Population III und konzentriert sich dabei auf das Verständnis
der Rolle eines externen Potenzials für die Modellierung des Gases. In einer ähnlichen
Umgebung wurden auch die Kollisionsraten von Sternen untersucht, mit dem Ziel, ana-
lytische Schätzungen mit numerischen Simulationen zu vergleichen. Die Untersuchung
dieses Seeding-Mechanismus zeigt die Plausibilität der Bildung von Schwarzer Löcher mit
> 1000 M⊙ durch Sternkollisionen. Darüber hinaus wird ein analytisches Modell zur
Schätzung der Anzahl von Kollisionen in dichten Sternhaufen vorgestellt und über die Iden-
tifizierung eines neuen Kollisionskanals berichtet, der Störungen an Doppelsternen beinhal-
tet.

Der zweite untersuchte Seeding-Mechanismus befasst sich mit der Entstehung super-
massereicher Sterne durch das Zusammenspiel von Gasakkretion und Sternkollisionen in
Umgebungen, die kollabierten Gaswolken in Halos mit metallfreier atomarer Kühlung. Die
entwickelte numerische Implementierung ermöglichte eine selbstkonsistente Behandlung
der Stern- und Gasdynamik zur Erforschung dieses Mechanismus. Die Ergebnisse zeigen,
dass die Entstehung supermassereicher Sterne mit 104 M⊙ unvermeidlich ist und in einem
Drittel der Fälle ein Doppelsystem supermassereicher Sterne entsteht.

Die Dissertation schließt mit einer Zusammenfassung und Diskussion der Ergebnisse
dieser Studien und einem Ausblick auf zukünftige Arbeiten, die zur Verbesserung der hier
entwickelten Modelle erforderlich sind.
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Chapter 1

Introduction

The existence of quasars at very high redshifts (z > 6) poses a challenge to our understand-
ing of black hole formation and growth. More specifically, when we observe objects at red-
shifts of z = 6 we are observing an epoch when the Universe was only 918.000 years old1,
which is less than 10% its current age (assuming a Λ-CDM cosmology with Planck Collab-
oration et al. (2020) parameters H0 = 67.4 km s−1 Mpc−1, Ωm = 0.321 and ΩΛ = 0.679).
The fact that the light emitted by those objects can make it all the way to the Earth and be
bright enough as to be detected by our instruments is remarkable, and implies that quasars
are incredibly luminous. This brightness can be explained if the light emitted by these ob-
jects originates in the accretion disk around a supermassive black hole (SMBH). With this
picture in mind comes one of the big questions that has so far eluded a definitive answer:

How did the supermasive black holes powering the highest redshift quasars formed
within such a short time-span?

This works presents a research carried-on to help elucidate this interrogative by studying
the formation of massive black holes in the early Universe through numerical simulations.

The first chapter of this thesis is an introduction to black holes, their supermassive coun-
terparts and quasars, followed by a short story of their discovery and characterization. Chap-
ter 2 presents a brief description of high redshift quasar properties and the methods used to
measure their masses. The subject of Chapter 3 is oriented towards presenting the hypothe-
ses proposed to explain the rapid emergence of supermassive black holes in the early Uni-
verse, focusing on the seeding mechanisms and followed by a condensed description of their
growth for completeness. Chapter 4 describes the methods used to produce the numerical
simulations used to investigate the black hole formation channels explored in this thesis.
Chapters 5, 6, and 7 contain the scientific publications produced during this research. Fi-

1https://www.astro.ucla.edu/ wright/CosmoCalc.html
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2 Black holes, supermassive black holes, and quasars

nally, Chapter 8 presents a summary and the conclusions, including comments about future
studies in the field of massive black hole seed formation in the early Universe.

1.1 Black holes, supermassive black holes, and quasars

A black hole is an object with an escape velocity vesc higher than the speed of light

vesc =

√
2GM

r
, (1.1)

whereG is the gravitational constant,M the mass of the object, and r the size of the object.
Black holes are a consequence of extreme space-time curvature in Einstein’s field equa-

tions. One of the earliest suggestions of the existence of black holes came from the mind
of Karl Schwarzschild in 1916 during his time in the army (Elizalde, 2020). He published
a solution to Einstein’s field equations for the gravitational field of a spherical non-rotating
body of massM (Schwarzschild, 1916). He showed that the escape velocity is equal to the
speed of light for an object with a size

rs =
2GM

c2
, (1.2)

where c is the speed of light, and rs is known as the Schwarzschild radius. This radius marks
the position of the event-horizon for a non-rotating black hole, a boundary beyond which
events cannot affect an observer.

The idea of an object with this characteristics remained as a mathematical curiosity until
the discovery of the X-ray source Cygnus-X1, which provided the necessary evidence to
conclude that black holes indeed exist. X-ray detection from outside the Earth’s atmosphere
became possible in 1959 (Lewin and Goldstein, 2011). Among the X-ray sources discovered
and presented in Bowyer et al. (1965), the Cygnus-X1 source revealed a rapid variability,
implying that the X-ray emission originated in a region smaller than the Sun. Subsequent
radio observations allowed an accurate determination of the source location, discovering that
it was part of a binary system with a supergiant star as a companion (Bolton, 1972), which
in turn opened up the possibility of calculating the mass of the X-ray source from orbital
parameters. This ultimately led to the characterization of the source as non-detectable in the
visible part of the electromagnetic spectrum, compact, and massive (> 2 M⊙), suggesting
that the source was indeed a black hole (Webster andMurdin, 1972). The accepted paradigm
is that the X-ray emission of Cygnus-X1 originates in the accretion disk around a ∼ 14M⊙

black hole (Orosz et al., 2011; Rothschild et al., 1974).
Black holes can be formed when an object exceeds the Tolman–Oppenheimer–Volkoff

limit (Oppenheimer and Volkoff, 1939), a mass above which a neutron star inevitably col-
lapses into a black hole. The current value of this limit is in the range of 2.01 − 2.16 M⊙
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(Rezzolla et al., 2018). This limit can be surpassed in processes involving stellar evolution
and mass transfer in binary systems. Our current understanding of stellar evolution for iso-
lated stars predicts maximum black hole masses in the range of 20 − 30 M⊙ (Belczynski
et al., 2010), however we know of the existence of black holes with 106 M⊙, like Saggitarius
A∗ at the center of the Milky Way, and even 109 M⊙ like M77∗ in the M77 galaxy. Because
of their immense masses these black holes receive the prefix “supermassive”.

Supermassive black holes are believed to play an important role during the formation
and evolution of their host galaxy. The discovery of correlations between black hole mass
and velocity dispersion of stars in the bulge of spiral galaxies could be an indication of
feedback effects that quench or trigger star formation in their vicinity, this would be of
utmost importance during some galactic processes.

In the recent past the study of black holes has seen the emergence of opportunities to
investigate these enigmatic objects with new techniques, as demonstrated by the detection of
the signal GW150914 in 2015 by the Laser Interferometer Gravitational-Wave Observatory
(LIGO). The signal originated from the merger of a pair of black holes with masses around
29 and 36 M⊙ (Abbott et al., 2016). We are just seeing the beginning of gravitational-
wave astronomy. Future interferometers like LISA2 will extend the detection range up to
the elusive intermediate mass black holes (1000 ≲ M ≲ 105 M⊙), whose existence has
not been unequivocally confirmed yet although several candidates exist (Chilingarian et al.,
2018).

It is also imperative to mention the important achievement of the Event Horizon Tele-
scope collaboration that produced the very first image of the shadow of a black hole (Event
Horizon Telescope Collaboration et al., 2019a) presented in Fig. 1.1. The target was the
supermassive black hole at the center of the closest elliptical galaxy, M87, which lies at a
distance of 16 Mpc (Tonry et al., 2001). This was followed by the release of an image of
the supermassive black hole Saggitarius A∗ in 2022, which inhabits the center of the Milky
Way.

An interesting phenomena associated to supermassive black holes is the existence of
quasars. According to our current understanding quasars are supermassive black holes sur-
rounded by an accretion disk that emits copious amounts of light due to the friction produced
as the gas in the disk orbits the SMBH at immense velocities. Quasars are observed at ex-
tremely large distances and early in the history of the Universe, and their existence challenge
our models for their formation and growth.

The next sections present part of the history of the discovery of some of the most distant
quasars known to date, describing the observations that led to their identification and the
techniques used to measure their masses.

2Laser Interferometer Space Antenna (Amaro-Seoane et al., 2023)



4 Brief history of quasars

Figure 1.1. Image of the shadow of the supermassive black hole M87∗ published in April
2019 by the Event Horizon Telescope Colaboration (Event Horizon Telescope Collaboration
et al., 2019b). The top image is the average of the three images presented at the bottom. The
white circles show the size of the Gaussian kernel used to convolve the images. The color
of the image is presented in units of the brightness tempertaure defined as Tb = Sλ2/2κbΩ,
where S is the flux density, λ is the observing wavelength, κb is Boltzmann’s constant, andΩ
is the solid angle of the resolution element. Credits: Event Horizon Telescope Collaboration
et al. (2019b).

1.2 Brief history of quasars

Quasars are the most luminous individual, non-transient objects known in the Universe,
with measured luminosities as high as 4 × 1013 L⊙ (e.g. Bañados et al., 2018), capable of
outshining their host galaxy and allowing us to detect them at incredibly large distances. A
brief history of the discovery and characterization of these objects is presented here. A more
complete narrative is presented in Shields (1999).

The history of quasars beganwith the first observations that showed - what we now know
are - the first hints of accretion-powered light emission from galactic nuclei. A study of the
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spectra of M77 (also known as NGC 1068 and shown in Fig. 1.2) revealed the presence of
prominent lines both in absorption and emission (Fath, 1909). These lines were then also
detected in in the spectra of other galaxies (Hubble, 1926; Slipher, 1917). The question at
that time was: If the light emitted by a Galaxy is the combined light of all its stars, why do
we see prominent emission and absorption lines?

Figure 1.2. M77 as seen by the Hubble Space Telescope. Image created by a combination
of 8 HST images taken by different instruments and in different wavelengths. A supermas-
sive black hole resides at the center. This image obtained the second place in the Hubble’s
Hidden Treasures initiative (https://esahubble.org/news/heic1305/#1). Credits: Andre van
der Hoeven (https://www.flickr.com/photos/avdhoeven/).

In 1943 Carl Seyfert published a work describing the study of six galaxies that showed
forbidden emission lines. Some of them corresponded to Oxygen ([OII], [OIII]), Nitrogen
([NI], [NII]) and Iron ([FeVIII]), as well as emission lines of Hydrogen (Hα, Hβ) and He-
lium (HeI). He reported wide profiles for some of these lines, in particular for the hydrogen
lines these values were as high as 7000 − 8000 km s−1 (Seyfert, 1943). The mechanism
responsible of producing the lines was not identified, but this provided important clues to-
wards solving the puzzle. Nowadays galaxies showing bright high-ionization emission lines
in their nuclei are named Seyfert Galaxies and sublcassified into Type I or Type II depending
on the presence of both wide and narrow (Type I) or only narrow (Type II) emission lines in
their spectra. Seyfert galaxies are a type of active galactic nuclei (AGN), a type of galaxy in
which the nuclei has a high surface brightness and presents high-ionization emission lines.

The serendipitous discovery of a strong radio signal originating in the Milky Way by
Karl Jansky in 1932 paved the way for the birth of Radioastronomy and provided a cru-

https://esahubble.org/news/heic1305/#1
https://www.flickr.com/photos/avdhoeven/
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cial tool for investigating AGNs. The work of Grote Reber produced the first sky survey
in radio wavelengths (Reber, 1944), and after World War II, Radioastronomy became an
increasingly popular field, with many groups gathering data and trying to understand the
physical process that give origin to the radio emission from these galaxies. During this task
variable radio sources were identified, for example in the Cygnus constellation (Hey et al.,
1946). Subsequent observations started to reveal the strange morphology of some of these
sources (Hanbury Brown et al., 1952) and the identification of forbidden emission lines like
[OIII] and [NII], and a total energy emitted in radio even higher than the energy emitted
in the optical (Baade and Minkowski, 1954). Eventually Kiepenheuer (1950) denomstrated
that the radiation came indeed from electrons being accelerated in galactic magnetic fields,
i.e., synchrotron radiation.

New catalogs in radio wavelengths were produced afterwards (Bennett, 1962; Edge
et al., 1959). The improved position determinations allowed the optical identification of
the source 3C 295 with a member of a cluster of galaxies, and the spectroscopic data re-
vealed its enormous redshift z = 0.4614 tagging it as the most distant object discovered at
that time (Minkowski, 1960). Continuing with the attempts to determine precise positions of
additional radio sources, Hazard et al. (1963) took advantage of the lunar occultation of the
source 3C 273 and observed it with the Parkes telescope in Australia. The precise measure-
ments delivered by this technique resulted in the characterization of this source as a two com-
ponent emitter separated by 19.5 arcsec and the identification of one of these components
with a 13 mag star as the optical counterpart. Spectroscopic observations showed unusual
emission lines that could be satisfactorily explained as redshifted Balmer lines, [OIII], and
MgII (Schmidt, 1963), with a redshift of z = 0.158. This interpretation would be supported
by the identification of the Hα line at infrared wavelengths (Oke, 1963). Additionally, spec-
trscopic observations of 3C 48 by Greenstein (1963) also detected the presence of MgII and
[OIII] with an associated redshift of z = 0.16. This new class of radio sources were similar
to AGNs, but with star-like appearances and highly redshifted spectral lines. These objects
were later named quasars (Chiu, 1964).

1.3 Towards a physical understanding of quasars

Having identified this new class of objects the next natural step was to propose models
that could explain all the features observed. In this line of reasoning the excellent work of
Greenstein and Schmidt (1964) discussed the problems of the hypothesis that 3C 48 and
3C 273 were massive, distant stars, whose observed redshift was of gravitational origin,
and that were surrounded by a gas cloud in which the emission lines were produced. They
also considered the hypothesis that the redshift was of cosmological origin, concluding that
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“The simplest model of the quasi-stellar sources is one in which a small mass of 109 M⊙

is surrounded by shells of increasing radius in which the optical continuum, the emission
lines, and the radio continuum, respectively, originate.”.

The sample of quasars then began to increase as Schmidt andMatthews (1964) published
redshifts of z = 0.425 for 3C 47, and z = 0.545 for 3C 147. Aided by accurate positions
from Radio observations, optical positions, and photometry, 21 new quasi-stellar sources
were identified and described in Sandage et al. (1965). Additionally, sources with redshifts
as high as z = 1.2410 started to emerge (Sandage, 1965), and the possibility to detect
absorption lines associated to high-redshift atomic Hydrogen in the intergalactic space (the
Lyman-α forest), were recognized (Gunn and Peterson, 1965; Scheuer, 1965).

Nowadays the accepted paradigm is that quasars are a type ofAGN that can be detected at
high redshifts. Their high luminosities are a consequence of accretion-powered continuum
emission from an accretion-disk orbiting a central supermassive black hole. This region is
in turn surrounded by a thick dusty torus that can hide part of the light emitted from the
very center and thus the differences between observed AGNs depend on how much of the
central region is hindered from us by this torus and if we observe the jet that emerges from
the central region. This is illustrated in Fig. 1.3

Figure 1.3. Illustration of the unified AGN theory showing the black hole at the very
center surrounded by an accretion disk. The clouds closest to the BH orbit very fast and
thus produce the broad emission lines. On the other hand, the clouds further away move
much more slowly and the emission lines are not broadened. Black arrows represent differ-
ent viewing angles and the classification given accordingly. Credits: Emma L. Alexander
https://emmaalexander.github.io/resources.html .

https://emmaalexander.github.io/resources.html




Chapter 2

High redshift quasars and supermassive
black holes

The existence of the z = 7.54 quasar J1342+0928 in 2018 by Bañados et al. (2018), among
others, demonstrates that gigantic black holes were formed early on in the history of the
Universe. In fact, the observation implies that the mass of this black hole was already 8 ×
108 M⊙ when the Universe was only 690 million years old. This is only one of the more
than 200 quasars known at redshift z > 5.7 (Fan, 2006). Explaining the huge black hole
masses measured for these objects at such early times is difficult.

This chapter presents, for completeness and rather briefly, some of the techniques em-
ployed for discovering high redshift quasars and the methods used to measure the masses of
the black holes that power them. The combinations of these techniques ultimately led to the
discovery and characterization of the most distant and most massive black holes that still
challenge our understanding of their formation and growth.

2.1 The search and study of high redshift quasars

Along with an increase in the number of detected quasar candidates from catalogues in radio
wavelengths (Sandage et al., 1965; Schmidt and Matthews, 1964), and understanding that
their luminosity originates in the accretion disk around supermassive black holes (Shakura
and Sunyaev, 1973), it was understood that the study of these objects would provide an
indirect method for studying the early Universe and galaxy formation. Subsequent efforts
were focused on finding the highest redshift quasars.

Thanks to the emergence of digital large sky surveys, the first techniques used to de-
tect high redshift quasars were developed, and relied on detecting outliers in color-color
diagrams. These sources would then be analyzed spectroscopically to confirm their nature.
The plausibility of this method was demonstrated by the detection of a z > 4.3 quasar from a

9
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survey recorded with the UK schmidt telescope (UKST) using five different filters U,J,V,R,I
(Warren et al., 1987). The outliers in color-color diagrams can be clearly seen in Fig. 2.1.

Figure 2.1. Color-color diagrams showing the sources detected in the UKST survey. Known
quasars are represented by triangles and the two new confirmations of the study are repre-
sented by black circles. Credits: Warren et al. (1987).

Thanks to the advent of the Sloan Digital Sky Survey (SDSS), a survey dedicated to
map the sky in five photometric filters in the range 3551− 8932 Å; as well as spectroscopic
follow-up of selected candidates, a large number of quasars were progressively discovered
and studied.
Fig. 2.2 presents another example of a color-color diagram constructed with SDSS data in
which quasars are separated from stars.
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Figure 2.2. Quasar selection technique based on SDSS photometric colors. Nearby quasars
(z < 2.2) have bluer u − g colors than stars, whereas high redshift quasars (z > 3) have
redder u− g colors. Credits: Ivezić et al. (2014).

A clear demonstration of this technique is presented by Fan et al. (2001a) who searched
for “i-dropout quasars”, i.e., quasars in which the Lyman break falls entirely in the i band
of the SDSS. This occurs for quasars at z > 5.8. They also included longer wavelength
observations from the 2MASS catalog (Skrutskie et al., 1997) to help discriminate cool
dwarf stars from their candidate sample, the main contaminant when using the i and z pho-
tometric filters from the SDSS data as shown in Fig. 2.3. In this work they describe the
discovery of three new quasars, SDSS 0836+0054 (z = 5.82), 1306+0356 (z = 5.99), and
1030+0524 (z = 6.28). This last object is particularly interesting, and in the words of Xi-
aohui Fan “For the z = 6.28 quasar SDSS 1030+0524 the flux is consistent with zero in a
region of 300 Å immediately blueward of Lyα emission. It suggests a tentative detection
of a complete Gunn-Peterson trough, indicating that at z ∼ 6 the universe is close to the
reionization epoch”.

Additionally the authors estimate the masses of the BHs powering those quasars. For
this they first obtain their bolometric luminosity assuming no lensing effects and that the
continuum spectrum of the quasars is the same as the mean obtained by Elvis et al. (1994).
Furthermore, they assume that the quasar bolometric luminosity equals the Eddington lumi-
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nosity. Under these assumptions they derive BH masses of 4.82 × 109 M⊙, 2.0 × 109 M⊙

and 1.9× 109 M⊙ for SDSS 0836+0054, 1306+0356, and 1030+0524, respectively.

Figure 2.3. z∗−J as function of i∗−z∗ colors for the i-dropout sample obtained by Fan et al.
(2001a). The circles represent T dwarfs, triangles for L dwarfs, stars for z > 5.8 quasars,
squares for BAL quasar. Filled symbols for S/N in the i band higher than 4, otherwise empty
symbols were adopted.The i∗ and z∗ notation was used because the u, i, g, r, z photometric
system was still being calibrated. The black line and crosses show the median track of
simulated quasar colors. Credits: Fan et al. (2001a).

Thanks to subsequent efforts by Fan et al. (2004, 2001a, 2002, 2003, 2001b), by the
year 2006 a total 19 quasars detected from the SDSS had been reported and some impor-
tant characteristics were recognized. One of the most important was the strikingly similar
Spectral Energy Distribution (SED) among the high- and low-redshift quasar population. It
is evident from Fig. 2.4 that the SED of high redshift quasars is very much the same ignor-
ing the effects of the Lyman-α forest at shorter wavelengths, which eventually turns into
a Gunn-Peterson trough for z ≳ 6, marking the transition to a largely ionized IGM (Fan,
2006). The last imaging data release of the SDSS (DR9) in 2012 covers more than 35% of
the sky, including new spectra for > 100.000 quasars with a median redshift of z ∼ 2.32

(Ahn et al., 2012).
Following the success of quasar identification efforts, the limitations of the color-color
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Figure 2.4. The spectra of 19 z > 5.7 quasars detected from the SDSS data. Strong Lyman-
α absorption is seen blueward of the Lyman break. Credits: Fan (2006).

selection technique were rapidly identified, in particular, for the SDSS survey, which could
only detect quasars up to z ∼ 6.5 (Fan et al., 2000). This comes from the criteria used to
detect the candidates and the redshift of distant objects. Because of the absorption of photons
with wavelengths shorter than the Lyman limit and the Lyman-α forest, high redshift quasars
show a close to zero emission bluewards of the Lyman-α line. At higher redshifts this break
in luminosity moves to increasigly longer wavelengths as depicted in Fig 2.4. For the z filter
of the SDSS centered at 8932 Å, the redshift at which the emitted Lyman-α line photons
(λ = 1215.67 Å) fall into this filter is

z =
λobs − λemit

λemit

∼ 6.4,

imposing a limit to the redshift of the quasars that can be identified with the dropout method.
It is then evident that surveys at longer wavelengths are required if the z = 7 limit is to be
surpassed.
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Precisely this was one of the objectives that impulsed the creation of the UKIRT In-
frared Deep Sky Survey (UKIDDS). This survey is a seven-year observing campaign that
made use of the Wide Field Camera of the United Kingdom Infrared Telescope (UKIRT)
on Mauna-Kea in Hawaii (Lawrence et al., 2007) to observe 7500 deg2 of the northern sky.
The survey was conducted making use of five filters Z, Y, J,H,K with a wavelength range
in between 0.836−2.380 µm, which is equivalent to 8360−23 800 Å, making it an infrared
counterpart to the SDSS. It was the combination of UKIDSS data with SDSS that allowed
the identification of a quasar candidate that would later be confirmed via spectroscopic ob-
servations with the Gemini North telescope to be a z = 7.085 quasar (Mortlock et al., 2011).

Seraching for quasars at even higher redshifts is a difficult task. On one side they appear
less bright, so deeper surveys are needed and only the brightest ones can be detected. The
final SDSS z ∼ 6 quasar sample covers more than 11.000 deg2, yet only 52 quasars have
been detected (Fan et al., 2023). On the other side, Lyman break dropout techniques that use
optical and NIR photometric data will encounter objects that display similar colors to high
redshift quasars, with these objects being dwarf stars of type M, L, and T, and early-type
galaxies, as illustrated in Fig.2.5.

Figure 2.5. Color-color diagram used to identify high redshift quasars with the inclusion
of MIR photometric data from the WISE survey (W1 band). Orange stars represent known
quasars at 6.5 < z < 7, red stars are known quasars at z > 7.0 and black symbols represent
M, L, and T dwarfs. The cyan line represents the color-redshift relation based on simulated
quasar spectra. Credits: Fan et al. (2023) and Wang et al. (2019).

A strategy to help overcome this last difficulty is the inclusion of MIR photometric data,
in particular from theWISE survey (Wright et al., 2010), since it helps to separate quasars at
6 < z < 7 from M,L, and T dwarfs in color-color plots. In fact, the highest redshift quasars
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known to date have been detected thanks to a combination of NIR, optical, and MIR pho-
tometry, and are: J1342+0928 at z = 7.54 (Bañados et al., 2018) ; J1007+2115 at z = 7.52

(Yang et al., 2020); and J0313-1806 at z = 7.64 (Wang et al., 2021). In addition, proba-
bilistic methods have been applied to help discriminate contaminants. One of such methods
consist on a Bayesian model comparison, where given a photometric measurement, a poste-
rior probability is computed taking into account the surface density distribution of quasars,
brown dwarfs, and galaxies. This method was applied by Mortlock et al. (2011). Another
strategy presented in Reed et al. (2017) consists in comparing the photometric data of a can-
didate to modelled SEDs of quasars, brown dwarfs, and early-type galaxies. By calculating
reduced χ2 values one can then narrow down the number of candidates to the ones that most
likely are quasars. These are only two of many methods utilized to help with contaminant
discrimination in quasar selection techniques. A good summary of more strategies can be
found in the review by Fan et al. (2023).

In the future, deeper surveys at optical and NIR wavelengths will certainly increase the
number of known high-redshift quasars. The sensitivity of the Vera Rubin observatory will
allow the detection of 25−26mag sources thanks to The Legacy Survey of Space and Time,
which will map the southern sky during 10 years in optical wavelengths. Complementary to
this, the Euclid mission will obtain photometric data at NIR wavelengths (as well as optical)
by mapping 15000 deg2 of the sky, reaching magnitudes as faint as 24 in the Y, H, and J
bands. The combination of data from these telescopes is expected to provide thousands of
AGN detections at z ∼ 6.5 − 7 and 25 quasars at z > 7, with up to 8 at z > 8 (Euclid
Collaboration et al., 2019). The faint sources detected in this way will need to be further
studied by more powerful spectrographs, like those on-board the JWST and in future 30-m
telescopes.

2.2 Measuring black hole masses

Having presented the methods used to detect quasars at high redshift (z > 4) it is then
important to understand themethods used tomeasure themasses of the BHs that power them,
and that together with the tools previously presented, have ultimately led to the problem of
rapid supermassive black hole formation and growth.
The methods used for determining the mass of a black hole can be broadly classified in
two categories. The first one relies on measuring the dynamical effects of the black hole
on surrounding stars. The second method consists in measuring the properties of the gas
surrounding the black hole. This section aims to briefly introduce some of these techniques.
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2.2.1 Stars orbiting the black hole

The most reliable method for measuring black holes masses consists in resolving the scales
at which stars orbit around them, as done for Sgr A∗, the BH in the center of the Milky Way.
By measuring the position of the S-stars orbiting the BH, in particular, of the S2 star, at
different epochs as illustrated in Fig. 2.6, in combination with Kepler’s third law we know
that Sgr A∗ has a mass of 4.148± 106 M⊙(GRAVITY Collaboration et al., 2019). However
this method cannot be used for high-redshift quasars since at these distances, these scales
are impossible for us to resolve.

Figure 2.6. Orbit of the S2 star as seen on the sky by interferometric data from the Very
Large Telescope and Keck observatories. The blue dots mark the position of the S2 star
at different epochs, whereas the black circle marks the position of Sgr A∗, which agrees
with the position of flares seen by Adaptive Optics observations (grey crosses). Credits:
GRAVITY Collaboration et al. (2019).

Another approach that relies on stellar kinematics consist in measuring the velocities of
stars that are within the radius of influence rinfl of the black hole. This radius delimits the
region inside which the gravity is dominated by the BH mass, and is approximately given
by

rinfl =
GMBH

σ2
≈ 13

(
MBH

108 M⊙

)0.5

pc, (2.1)

whereMBH is the mass of the BH, and σ is the velocity dispersion of the stars. One example
of the application of this method can be found in the work by Kormendy and Richstone
(1992). They present a set of spectroscopic measurements at different positions along the
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semi-major axis of the galaxy NGC 3115, including photometric measurements as well.
Velocity dispersion were measured by the width of stellar absorption spectral lines, whereas
rotation was measured from doppler shifts of the lines. By using the second moment of
the collisionless Boltzmann equation to fit the kinematic data (as illlustrated in Fig. 2.7),
combined with models for the brightness profile of the central parts of the galaxy they were
able to demonstrate high mass-to-light ratios (> 50) consistent with the presence of a 2 ×
109 M⊙ SMBH at the center.

Figure 2.7. Stellar velocity dispersion and rotation along the semi-major axis of NGC 3115.
Solid and dashed lines show the fits to the data for different models. Credits: Kormendy
and Richstone (1992).

2.2.2 Reverberation mapping

Another approach consists in observing the properties of the gas orbiting the central BH
in AGNs. Assuming that the motion of the gas around the BH is dominated by the BH’s
gravity one can use Newton’s law of gravitation to derive another method for measuring the
BH mass. Let us assume a circular motion of a test mass m orbiting a point mass MBH at
distance R with velocity v. Equating the gravitational force and the centrifugal force we
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obtain

G
mMBH

R2
= m

v2

R2
R,

MBH =
v2R

G
,

where G is the gravitational constant. It is then evident that one just needs a measure of the
orbital velocity of the gas and its orbital distance in order to calculate the mass of the central
BH. In practice the equation employed is given by

MBH = f
(∆V )2RBLR

G
, (2.2)

where (∆V )2 is the velocity dispersion squared of the gas in the Broad Line Region (BLR),
RBLR is its orbital distance, and f is a correction factor that accounts for the shape of the
BLR.

The BLR is the place where the broad emission lines observed in AGNs are produced.
By taking a spectra of the gas in this region one can obtain the orbital velocity of the gas
given that the broadening is caused by Doppler shifts of the rapidly orbiting material. The
technique for measuring RBLR was reported by Blandford and McKee (1982) who named
it Reverberation Mapping. The idea behind is that luminosity variations in the continuum
(produced in the accretion disk that orbits the BH) will travel to the BLR and produce a
change in the flux of the emission lines. Then the time-delay between the variations in the
continuum and in the flux of the broad lines is equal to

tdelay =
RBLR

c
, (2.3)

where c is the speed of light.
Having obtained (∆V )2 from spectroscopy and RBLR with the reverberation mapping

technique, the mass of the black holeMBH can be computed with Eq.(2.2).

2.2.3 The R-L relation

The success of the Reverberation Mapping technique is elegantly presented in the work
of Peterson and Wandel (1999). By gathering 8-year observational data of the Seyfert I
Galaxy NGC 5548, the time-delay and width of several emission lines could be measured,
yielding consistent estimates of a 7× 107 M⊙ BH at its center and confirming the expected
RBLR ∝ V −2

FWHM relation expected for virialized motions of the BLR around a point-mass.
This study also pointed at a possible correlation between the luminosity of the continuum
emission of the AGN and the emission-line flux for broad emission lines.

By using a large sample consisting of a combination of 17 quasars plus several Seyfert I
AGN from the literature, Kaspi et al. (2000) also demonstrated a correlation between the
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time-delay and the width of different emission lines, consistent with previous similar studies.
Moreover they expanded on the RBLR-Luminosity relation, including a sample of AGNs that
varies by over 2 orders of magnitude in luminosity. They found that the size of the BLR
scales with the 5100 Å Luminosity as R ∝ L0.7.

One of the latest studies of this correlation was carried on by Bentz et al. (2009), who
put additional efforts on modelling the host galaxy contribution to the Hβ line as well as to
the 5100 Å luminosity. They found the relation

log (RBLR) = −21.3 + 0.519 log (λLλ,5100), (2.4)

with RBLR in light-days and λLλ,5100 being the luminosity at 5100 Å in units of erg s−1.

It is then clear that the R-L relation provides a convenient way for determiningRBLR as an
alternative to the expensive ReverberationMapping technique, since it does not require long
monitoring campaigns, and thus can be applied to quasars, for which direct measurements
using stellar or gas kinematics is impossible. The method for weighing BHs with the R-L
relation is also known as single-epoch method.

The determination of the size of the BLR obtained from the AGN luminosity can there-
fore be combined with the width of a broad line to yield a BH mass. Not only the Hβ line
can be used but also CIV and the MgII line. In particular Vestergaard and Osmer (2009)
derive a BH mass estimator using the MgII line of the form

MBH = 10zp(λ)
[
FWHM(MgII)
1000 km s−1

]2 [
λLλ

1044 erg s−1

]0.5
, (2.5)

where the the value of the zero point zp(λ) depends on the observed wavelength.

It was the use of this relation that delivered a BH mass of 2× 109 M⊙ by using the MgII
line and the 3100 Å luminosity for the z = 7.085 quasar reported in Mortlock et al. (2011),
and a mass of 7× 108 M⊙ for the BH powering the quasar ULAS J1342+0928 at z = 7.54

(Bañados et al., 2018).

The choice of the emission line to be used for the BH mass computation depends on
whether the line is available in the observed spectral region, and whether the line is affected
by absorption lines or blending with other lines such as FeII or HeII (Vestergaard, 2002).
While the most used estimators are the Hα and Hβ lines that fall on the optical for low
redshift quasars, one has to rely on the detection of lines that fall on the rest-frame UVwhen
observing quasar spectra with optical telescopes for the high redshift quasar population.
Two other lines are typically employed, the CIV λ1549 Å and MgII λ2798 Å, with the latter
presenting less scatter when correlated with the luminosity at 5100 Å (Shen and Liu, 2012).
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2.2.4 Mega-Masers

This is a method based on the dynamics of gas orbiting a black hole at sub-parsec scales.
The word MASERS stands for Microwave LASERS, and just like LASERS they are pro-
duced when a population inversion is present, with the difference being in the wavelength
of the amplified light. Masers are known to exist in young star-forming regions, in molec-
ular envelopes of evolved stars and in the nuclei of galaxies (Reid, 2002; Reid and Moran,
1981). The most common type are the OH and H2O masers that emit at λ = 18 cm and
λ = 1.35 cm. The prefix “Mega” simply indicates that the luminosity derived for this type
of masers is ∼ 6 orders of magnitude higher than typical luminosities of masers found in
star-forming regions.

The galaxy NGC 4258 displays the archetypal circumnuclear H2O maser. Since masers
are detected at radio wavelengths, Very Long Baseline Interferometry (VLBI) observations
allowed high-resolution measurements for the positions and velocities of these sources. The
data clearly showed a spatial velocity gradient, velocity variations with time, and high-
velocity sources differing up to 1000 km s−1 from the systemic velocity (Greenhill et al.,
1995; Miyoshi et al., 1995; Moran et al., 1995), all of them nicely explained by maser emis-
sion in a thin Keplerian disk around an SMBH. This is illustrated in Fig. 2.8. The mass can
be then calculated by fitting a keplerian rotation curve to the maser data as shown in panel
(c) of Fig. 2.8. With this method Miyoshi et al. (1995) estimated a mass of 3.6 × 107 M⊙

for the central SMBH in NGC 4258.

2.2.5 TheM − σ relation

Armed with a set of measured BH masses with the methods mentioned previously, in par-
ticular with the stellar kinematic methods presented in Sec. 2.2.1 and the gas dynamical
methods of Sec. 2.2.2 and 2.2.4, Ferrarese and Merritt (2000) showed that a correlation ex-
ists between the mass of the BH and the velocity dispersion of the stars in the bulge of their
host galaxy. This relation was also independently found by Gebhardt et al. (2000). This
is know as the M − σ relation and can be seen in Fig. 2.9. The existence of this relation
implies the presence of a mechanism responsible for maintaining the correlation (see e.g.
King, 2003; Silk and Rees, 1998).

Irrespective of the ultimate cause behind this relationship, this tight correlation (with
a scatter < 0.3 dex as estimated by Tremaine et al. (2002)) provides the opportunity to
estimate the mass of a BH, provided one can obtain the velocity dispersion of the stellar
component in the central region of a galaxy, for example, with integral field spectroscopy
(McConnell et al., 2011).
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Figure 2.8. Illustration of mega-masers originating in the accretion disk around the SMBH
in NGC 4258. Panel (b) shows the spatial distribution of the maser sources. Panel (c) shows
the rotation curve of the maser emission. Panel (d) shows an illustration of a warped disk
model fitted to the spatial distribution of the maser emission. Credits: Lo (2005).

Figure 2.9. The M − σ relation. This figure shows a correlation between the mass of the
BH (y-axis) and the velocity dispersion of the stars (x-axis) that inhabit the centers of many
galaxies. Credits: Ferrarese and Merritt (2000)





Chapter 3

Explaining the rapid emergence of
supermassive black holes

After a description of high redshift quasars, the methods employed for their discovery and
study, and the techniques used to measure their masses, it is now time to present some of
the hypotheses developed to explain their rapid emergence.

The supermassive black holes that power the highest redshift quasars were formed during
the dark ages of the Universe, and their rapid assembly can be explained by a combination
of black hole seed formation and subsequent growth.

This chapter begins by presenting the cosmological model that sets the ground for char-
acterizing the epoch of massive black hole seed formation. Then the seed formation mech-
anisms are presented, focusing on the three main hypotheses studied by the astronomical
community in this context. These mechanisms are classified depending on their potential to
form light seeds (< 1000M⊙) or heavy seeds (≥ 1000M⊙). Towards the end of the chapter
a brief introduction to black hole growth is presented for completeness.

3.1 The cosmological model

Our universe and its evolution on large scales is described by a cosmological model. Such a
model makes use of Einstein’s field equations and the cosmological principle, which states
that the Universe is homogeneous and isotropic on large enough scales. The combination of
these ideas ultimately results in the Friedmann equations, one of which is frequently written
as

H2 = H2
0

(
Ωm a−3 + Ωr a

−4 + ΩΛ + Ωk a
−2
)
, (3.1)

where a is the scale factor, a time-dependent dimensionless quantity that parameterizes the
expansion of the Universe. By definition, the value of the scale factor at present time is
a0 = 1, with decreasing values for earlier times and increasing values for future times. H
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is the Hubble parameter defined as

H ≡ ȧ

a
, (3.2)

and H0 is its value at present time, i.e., when a = a0 = 1. H0 is also known as the Hubble
constant and quantifies the expansion rate of the Universe. The density parameter Ω is
defined as

Ω ≡ ρ

ρc
, (3.3)

and is used to express the contribution of different types of matter and energy. These con-
tributions come from matter ρm, radiation ρr, the geometry ρk, and a cosmological constant
ρΛ. The critical density ρc is defined as

ρc ≡
3H2

8πG
. (3.4)

Therefore Eq.(3.1) takes into consideration the effects of radiation, matter, the geometry
of the Universe and a cosmological constant through the parameters Ωr, Ωm, Ωk, and ΩΛ

respectively.

Several observational probes are used to constraint these parameters. In particular the
observation of anisotropies in the Cosmic Microwave Background (CMB) presented in
Fig. 3.1 reveals that the Universe has a flat geometry, so that Ωk = 0 (Bennett et al.,
2013). On the other hand, the supernova cosmology project provided evidence that supports
the need for a positive value of the cosmological constant (Riess et al., 1998). At present,
manymethods have been combined for measuring the parameters in Eq.(3.1), some of which
are: CMB anisotropies, Supernovae, gravitational lensing, Big Bang Nucleosynthesis, and
Baryon Acoustic Oscillations (BAO). The data of Planck Collaboration et al. (2020) is con-
sistent with a flat Universe containing 67.9% of the matter-energy density in the form of
dark energy (ΩΛ = 0.679), and 32.1% in the form of matter, (Ωm = 0.321, with 4.9% bary-
onic matter plus 27.2% cold dark matter). Additionally the density parameter for radiation
has been found to be Ωr ∼ 10−5 (Tanabashi et al., 2018).

At the moment of writing this thesis there is an important discrepancy in the value of the
Hubble constantH0 obtained from the cosmological parameters constrained by the CMBand
BAO data (early Universe), and the value of H0 measured via Type Ia SNe, strong lensing
time delays of quasar images, and VLBI observations of water masers (late Universe). The
values delivered by these methods are H0 = 67.4+1.1

−1.2 (early Universe) and H0 = 73.3+0.8
−0.8

(late Universe), discrepant at a significance of > 4σ (Verde et al., 2019), with a growing
number of observations that rule out the possibility of systematic errors in the distance lad-
der (late Universe method) (Riess et al., 2023, 2019), while at the same time making very
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Figure 3.1. The cosmic microwave background as observed by the Planck satel-
lite. Colors represent temperature, with orange being at higher temperature than blue.
The maximum difference in temperature is in the order of 10−5 K, demonstrating the
homogeneity of the Universe at recombination. Credits: ESA Planck collaboration
(https://sci.esa.int/s/WLGmGdw ).

difficult to change the model without degrading the extremely well fitted CMB data. There
are possible routes for solving the problem. Some of these rely on decreasing the sound
horizon scale at recombination, for example by invoking self-interacting neutrinos (Kreisch
et al., 2020) or energy injection by a scalar field (Agrawal et al., 2023), both acting before
recombination.

Despite the current conflicts that this cosmological model faces and the possibility of
revision in the near future, the Λ-CDM model is the current best cosmological model. It in-
cludes a cosmological constant Λ and cold dark matter, and is able to account very well for
the existence of the CMB, the large scale structure of the Universe as mapped by galaxy sur-
veys, the abundance of Hydrogen andHelium, and an accelerated expansion of the Universe.

As mentioned in the introduction of this chapter, the emergence of the SMBHs powering
the highest redshift quasars occurred during the dark ages of the Universe, an epoch that be-
gan after recombination and that ended with the reionization of the Universe. The formation
of the first stars and galaxies took place during that time as well. Understanding how the
Universe transitioned from such a homogeneous state as indicated by the CMB (see Fig. 3.1),
to a more heterogeneous disposition is the goal of structure formation studies. These studies
show that the small inhomogeneities present in the CMB were amplified by gravity, creat-
ing dark matter halos that contained baryonic matter out of which the first stars and galaxies
formed. Analytic studies are useful for gaining a better understanding of the physics of
structure formation (Press and Schechter, 1974). However the best tool for studying the

https://sci.esa.int/s/WLGmGdw


26 Light Seeds: Stellar mass black holes from the first stars

Figure 3.2. Large scale structure formation with numerical simulations. The figure presents
three snapshots of the Illustris TNG simulations showing the distribution and density of dark
matter. Credits: Vogelsberger et al. (2014).

conditions in which the first stars, galaxies, and black hole seeds were formed are provided
by computer simulations, with one of the primal examples being the Millenium Simulation
(Springel et al., 2005), and more recently, the Illustris project (Vogelsberger et al., 2014).
The large scale structure produced by the Illustris TNG simulations is presented in Fig. 3.2.

3.2 Light Seeds: Stellar mass black holes from the first
stars

The first stars in the Universe were formed during the dark ages at redshift z ≳ 30 from pri-
mordial gas, i.e., gas with abundances set by Big Bang Nucleosynthesis. Such gas contained
25% of Helium-4 by mass, trace amounts of deuterium (10−5), Helium-3 (10−5), Lithium-7
(10−10), and the rest (almost 75%) in the form of Hydrogen (see Perlov and Vilenkin, 2017,
Ch.13.2). Star formation occurred in this zero-metallicity gas and produced the very first
generation of stars, the so-called Population III (Pop. III) stars (Partridge and Peebles, 1967).

As the first studies attempting to characterize these objects were conducted, a first pic-
ture emerged in which these stars were born in isolation and were much more massive than
present day stars (Abel et al., 2000; Bromm et al., 1999). Subsequent studies were conducted
but using more sophisticated numerical algorithms that were capable of studying gas frag-
mentation at small scales, providing a picture in which not only one but several stars with
lower masses would be formed because of disk fragmentation (Latif and Schleicher, 2015),
or due to turbulence in star forming clouds (Clark et al., 2011b; Prieto et al., 2011). The
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most recent studies on the subject include numerical simulations that include more physical
processes, exploring the effects of an improved thermodynamic treatment of the gas by fol-
lowing the evolution of different chemical species, including the effects of magnetic fields,
and initial explorations of the effects of luminosity feedback (Latif et al., 2022; Riaz et al.,
2018, 2023; Sharda et al., 2020, 2021; Wollenberg et al., 2020). It is now well established
that primordial star formation is as complicated as present-day star formation. Sufficiently
detailed numerical simulations can only probe the initial stages of this process. This limita-
tion combined with a lack of observational constraints makes a proper characterization of the
first stellar systems very complicated. Nevertheless, although the exact shape of the IMF is
still under debate, the general consensus is that the shape is logarithmically flat in mass and
peaking at higher stellar masses than the present-day IMF (see Klessen and Glover, 2023,
for a comprehensive review).

The next section introduces the physics of the formation of Pop. III stars and the black
hole masses expected at the end of their lives.

3.2.1 Primordial star formation

The very first studies attempting to understand the formation of the first stars pictured a
very simple scenario. The initial conditions for this problem are easily set by knowing the
density perturbations in the primordial material of the Universe at very early times. The
phenomenon that gives rise to the first stars is the gravitational collapse of primordial gas
clouds. On large scales the baryonic component of the Universe follows the evolution of the
dark matter component, which can be approximated as a pressure-less and zero-temperature
fluid. On smaller scales however, the effects of pressure become important on the baryonic
component.

The thermodynamics of the gas in dark matter halos thus plays a major role during the
collapse of the gas which gives origin to the first stars. The cooling processes in zero-
metallicity gas are dominated by Hydrogen. The first halos in which the gas will undergo
gravitational collapse are the ones in which the virial temperature reaches values higher than
the temperature set by gas cooling. Because of the hierarchical nature of structure formation
in the Universe, this occurs first for the smaller halos, the ones with masses in the order of
106 M⊙. In these dark matter halos, the collapse is triggered by the presence of H2. At the
initial low densities of the primordial gas in these dark matter halos, the hydrogen molecule
is formed through a process that involves H− which is in turn created by free electrons
reacting with hydrogen atoms via

H+ e− −→ H− + γ, (3.5)

H− + H −→ H2 + e−, (3.6)
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and contribution from the interaction with H+ is also possible via

H+ H+ −→ H+
2 + γ, (3.7)

H+
2 + H −→ H2 + H+. (3.8)

Simple estimates for the abundance of H2 at this stage lie in the range of fH2 = 10−4− 10−2

(Nishi and Susa, 1999).
The collapse of primordial gas due to H2 cooling was investigated by Palla et al. (1983)

by means of a one-zone model, in which a pressure-free collapse is modelled with the equa-
tion

dρ

dt
=

ρ

tff
, (3.9)

where ρ is the average gas pressure and tff is the free-fall timescale given by

tff =

√
3π

32Gρ
. (3.10)

Eq.(3.9) is then combined with the heat equation

dϵ

dt
=

P

ρ2

(
1

tff

)
− Λ, (3.11)

where P is the gas pressure, Λ is the cooling rate per unit mass, and ϵ is the specific energy.
Three-body reactions for H2 formation were also included. These reactions are

H+ H+ H −→ H2 + H, (3.12)

H+ H+ H2 −→ H2 + H2, (3.13)

which become important at n ≥ 108 cm−3. This study showed that at high densities the gas
becomes fully molecular, lowering the temperature to the point at which the Jeans mass falls
below 0.1 M⊙.

Three-dimensional hydrodynamic calculations were later performed. Among these was
the research by Bromm et al. (2002) who simulated the DM component and the gas bymeans
of the SPH technique and including a primordial chemistry network that tracked the abun-
dance of H2. They found that the gravitational instability results in gas clumps with high
densities (n ∼ 108 cm−3) and typical masses of 1000M⊙, suggesting a high mass reservoir
from which protostars would accrete gas to become ∼ 100 M⊙ Pop. III stars. Subsequent
studies improved upon the treatment of cooling at high densities by implementing optically
thick line cooling and collision-induced continuum emission. The spherical collapse test
performed by Yoshida et al. (2006) showed the characteristic features of cooling and heat-
ing of primordial gas during gravitational collapse. These are illustrated in Fig. 3.3. The
first phase (point A in the top panel of Fig. 3.3) consist in a virialization of the gas cloud,
which brings the temperature to ∼ 1000 K while two-body reactions work to increase the
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H2 abundance via the processes described in Eq.(3.5)-(3.7). The increased abundance of
H2 brings the gas temperature down to 200 K, promoting the cloud collapse and eventually
reaching the high density needed to boost the H2 abundance through the three-body reactions
presented in Eq.(3.12) and (3.13) (point D in top panel of Fig. 3.3).

The gas heats due to compressional heating, inefficient cooling, and increased opacity,
until the steep decline of the H2 line-cooling rate at 1016 cm−3 (point G in Fig. 3.3). An
accretion rate of Ṁ ∼ 10−3 M⊙ yr−1 was reported within a 10M⊙ region around the formed
protostar in agreement with previous research (Omukai and Yoshii, 2003).

More recent studies that incorporate detailed chemical and radiative processes (includ-
ing chemical reactions that involve C and O), were able to follow the gas density up to
n = 1021 cm−3 when a hydrostatic core is formed (Omukai et al., 2010), confirming the
findings of Yoshida et al. (2006) (see Fig.3.4). Also different values for the metallicity
were explored. The results showed that at high densities the temperature increases adia-
batically and a prestellar core of ∼ 0.001 M⊙ is formed. Interestingly accretion rates of
Ṁ = 10−3 M⊙ yr−1 were also reported in the low metallicity case.

The first three-dimensional studies of cloud collapse in the primordial gas typically as-
sumed spherical symmetry and stopped once the gas density reached values ofn ∼ 1016 cm−3

(see e.g. Yoshida et al., 2008) due to prohibitively small timesteps. The inclusion of the sink
particle technique (Bate et al., 1995), along with the particle splitting technique for SPH
(Kitsionas and Whitworth, 2002) allowed Clark et al. (2011b) to perform zoom-in simula-
tions of primordial star formation focusing on the evolution of the accretion disk formed
around the prestellar core, showing that the gaseous disk is prone to fragmentation because
of the Toomre’s instability that arises due to rapid mass load onto the disk (see Fig. 3.5).
Fragmentation during the formation of the first stars has been reported by numerous stud-
ies (see e.g. Clark et al., 2011a,b; Greif et al., 2011; Hosokawa et al., 2016; Jaura et al.,
2022; Machida et al., 2008; Riaz et al., 2018, 2023; Sharda et al., 2021; Smith et al., 2011;
Turk et al., 2009; Wollenberg et al., 2020) and it is now understood that star formation in
minihalos can be as chaotic as in the present day Universe. Apart from the small scale
fragmentation process of the accretion disk around Pop. III protostars, large scale effects
can also induce fragmentation. This is the case when including streaming velocity effects
which arise because of the relative velocity of baryons and dark matter caused by baryonic
acoustic oscillations prior to the moment of decoupling (Tseliakhovich and Hirata, 2010).
This relative velocity increases the minimummass of dark matter halos that contain cold gas
(Schauer et al., 2019) and also increases the spin of the gaseous component (Chiou et al.,
2018). Large streaming velocities cause more turbulence, and the resulting density pertur-
bations are amplified during the gravitational collapse. The combination of turbulence and
rotation can lead to the formation of a small cluster of a few tens Pop. III stars (see Fig 3.6),
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Figure 3.3. Top panel: Gas temperature plotted against density for a spherical collapse
problem. Characteristic features are marked by capital letters and are explained as follows:
(A) Gas temperature reaches 1000 K due to virialization while H2 molecules form due to
two-body reactions; (B) cooling due to molecular hydrogen brings the temperature down to
200K; (C) H2 cooling rates saturates as LTE is reached and cooling becomes ineffective; (D)
H2 is formed by three-body reactions and gas becomes fully molecular; (E) cloud opacity
increases and cooling becomes less effective; (F) the dominant cooling process becomes
collision-induced emission; and (G) H2 dissociation begins at T ∼ 2000 K. Bottom panel:
Fraction of molecular hydrogen as function of the gas density. The increase at points A,D
and plateau between C and D are clearly visible, along with the H2 dissociation at G. Credits:
Omukai et al. (2010).
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Figure 3.4. One-zone model calculations of the temperature evolution in prestellar cloud
cores at different metallicities. The dashed black lines indicate the constant Jeans masses.
Credits: Omukai et al. (2010).

Figure 3.5. Fragmentation of the accretion disk around a Pop. III protostar. 110 years after
the formation of the first protostar a total of 3 protostars have been formed, with the primary
having a mass of 0.5 M⊙ at this point. Credits: Clark et al. (2011b).
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including binary systems as found by Riaz et al. (2018). Many of the studies addressing
Pop. III star formation typically perform one simulation for a given combination of initial
conditions. The recent work by Wollenberg et al. (2020) overcomes this issue by perform-
ing a total of 45 numerical simulations with the AREPO code, including detailed chemistry
networks, sink particle formation, and accretion luminosity from the protostars. Their re-
sults indicate that significant scatter exist between different realizations of simulations with
the same initial conditions, however the resulting Initial Mass Function (shown in Fig. 3.7)
agrees well with previous studies in that the IMF is logarithmically flat and top-heavy com-
pared to the present-day IMF (Clark et al., 2011a; Riaz et al., 2018; Sharda et al., 2020;
Stacy et al., 2016; Susa et al., 2014).

Figure 3.6. Formation of a small cluster of Pop. III stars following fragmentation of a
collapsing primordial cloud including Mach equal 1 turbulence and a ratio of rotational to
gravitational potential energy equal to 0.1. Credits: Riaz et al. (2018).

Figure 3.7. Mass distribution of Pop. III stars after 2000 yr of the formation of the first
protostar. From left to right the first 5 panels present the mass distribution of individual
simulations that include a rotation of 1%. The rightmost panel presents a combination of
these 5 mass functions. Credits: Wollenberg et al. (2020).

Although a general consensus exists regarding the shape of the IMF, more work is
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needed as to place stronger constraints on the mass limits. This is no easy task since one
needs to consider additional effects that are difficult to model. One example of this is ra-
diation feedback from the stars, which should impact the final masses and creation of new
protostars. Three-dimensional radiation hydrodynamics simulations are expensive though,
and it is usually prohibitive to follow the evolution of the system up to the point at which
most of the mass has been accreted, or the gas has been evacuated due to radiation pressure.
Recently Jaura et al. (2022) has identified a problem in previous treatments of radiation feed-
back in such simulations. The problem concerns the distance from the star at which ionizing
photons are injected. When injected too far away, photons effectively bypass high-density
regions in the accretion disk, thus artificially enhancing the effects of ionizing radiation
feedback. When correctly modelled, the forming HII region could remain trapped at small
scales, with no significant impact on fragmentation or mass accretion for longer times. A
comparison of the IMF of Pop. III stars when including radiation feedback has been pre-
sented in Klessen and Glover (2023) (see Fig. 3.8). The low mass limit of the IMF obtained
in numerical simulations is also influenced by the resolution, with higher resolution able to
resolve the formation of smaller fragments.

Figure 3.8. Impact of radiative feedback on the IMF of Pop. III stars produced in numerical
simulations. Panel a shows different IMFs obtained in previous studies (Hirano et al., 2015,
2014; Jaura et al., 2022; Prole et al., 2022; Stacy and Bromm, 2013;Wollenberg et al., 2020),
whereas the Panel b presents the cumulative IMF. Credits: Klessen and Glover (2023).
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3.2.2 The evolution of Pop. III protostars

Following the formation of a prestellar core in an atomic cooling halo, its evolution and final
mass will mainly depend on the accretion rates experienced by the object and the moment
at which radiation feedback is able to prevent further growth.

A set of articles describing the early evolution of the protostars that gave origin to main
sequence low metallicity stars were published in the last decade (see e.g. Hosokawa and
Omukai, 2009; Hosokawa et al., 2012, 2013). It has been demonstrated through numerical
simulations and analytic estimates that the accretion rates experienced by primordial pro-
tostars were much higher than in present day star formation. This can be understood by
considering that the accretion rate onto prestellar cores is given (in the absence of turbu-
lence) by

Ṁ∗ ∼
c3s
G

≈ 10−3 M⊙ yr−1
(

T

500 K

)3/2

, (3.14)

with cs being the sound speed and T the temperature of the gas. The gas temperature during
primordial star formation was in general much higher than in present-day molecular clouds
because of the lack of efficient coolants, and thus the expected accretion rates were in general
higher.

The evolution of a protostar can be understood by taking into account the mass accretion
timescale and the Kelvin-Helmholtz (thermal) timescale, which are given by

tacc =
M∗

Ṁ
, (3.15)

tKH =
GM2

∗
R∗Lint

, (3.16)

where M∗ and R∗ are the protostellar mass and protostellar radius respectively, Ṁ is the
accretion rate, and Lint is the internally generated luminosity. As long as tKH > tacc the
radiative energy loss is not important as to affect the evolution of the protostar, and so the
evolution is mainly dictated by the effects of mass accretion. On the other hand when tKH <

tacc the evolution is mainly dictated by radiative energy loss.
The evolution of protostars under high accretion rates of up to 6× 10−3 M⊙ yr−1 were

studied by Hosokawa and Omukai (2009) by numerically solving the equations of stellar
structure, as outlined in Stahler et al. (1986) and Palla and Stahler (1991). An illustration of
the situation modelled in Hosokawa and Omukai (2009) is presented in Fig. 3.9.

The evolution of a protostar accreting at 10−3 M⊙ yr−1 is better understood by dividing
the process in four stages: (I) the adiabatic accretion phase, (II) the swelling phase, (III)
the Kelvin-Helmholtz contraction phase, and (IV) the main sequence phase. The evolution
of the structure of a protostar accreting at 10−3 M⊙ yr−1 is presented in Fig. 3.10. A brief
description of these phases is presented below.
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Figure 3.9. Illustration of the accreting protostar model investigated by Hosokawa and
Omukai (2009). The situation considered assumes a surrounding accretion flow and dust
cocoon in which the high energy radiation produced at the accretion shock is reprocessed
into IR light. The model considered solves the detailed structure of the protostar and the
accretion flow, enclosed by the dashed yellow line. This region contains the optically thick
part of the accretion flow called the radiative precursor. The boundary between the protostar
and the radiative precursor is the accretion shock which forms at the stellar surface. Credits:
Hosokawa and Omukai (2009).

• (I) Adiabatic Accretion Phase: During this phase, the entropy generated at the accre-
tion shock front is transported and embedded in the stellar interior with no entropy
loss due to short cooling time-scales and long accretion time-scales. The entropy
generated at the accretion shock slowly increases with mass and the radius gradually
grows according to

R∗ ∼ 26 R⊙

(
M∗

M⊙

)0.27
(

Ṁ∗

10−3M⊙ yr−1

)0.41

, (3.17)

which was derived in Stahler et al. (1986) for a radiative precursor with opacity dom-
inated by H− bound-free absorption. Unlike for protostars experiencing lower accre-
tion rates, the temperatures reached in this phase are lower due to the increased radius
of the protostar, and not high enough as to exceed to threshold for deuterium burning.
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Figure 3.10. Stellar structure of a protostar accreting at 10−3 M⊙ yr−1. The upper panel
shows the evolution of the radius as function of the mass. From left to right the four evolu-
tionary phases are shown. The adiabatic accretion phase in white, the swelling in gray, the
KH contraction in white and the MS phase in white. Gray areas inside the star indicate the
convective regions, whereas white areas indicate the radiative regions. The hatched areas
indicate regions of active nuclear burning for deuterium (D) and for hydrogen (H). The thin
dotted curves represent loci of mass coordinatesM = 0.1, 0.3, 1, 3, 10 and 30M⊙. The lower
panel shows the mass-averaged deuterium concentration fd,av (solid line) and the maximum
temperature within the star Tmax (dot-dahsed line). Credits: Hosokawa and Omukai (2009).

The temperature increases with stellar mass and affects the opacity which is given by
Kramer’s law κ ∝ T−3.5, so that the maximum luminosity within the star increases as

Lmax ∼ 0.2 L⊙

(
M∗

M⊙

)11/2(
R∗

R⊙

)−1/2

. (3.18)

Eventually the opacity decreases in such a way that radiative heat transport becomes
important even in the deep interior of the protostar, and this leads to an altered entropy
distribution and stellar structure, leading to the next phase.

• (II) Swelling Phase: As the outward heat flux begins to increase at the end of the pre-
vious phase, the entropy redistribution causes an expansion of the outer layers of the
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protostar. While the entropy decreases in the deep interior (as the interior becomes
less opaque), it increases in the outer layers. The boundary between the entropy-losing
region and the outer absorbing layer is called the luminosity peak. This luminosity
peak propagates outward and causes a swelling of the radius. This occurs at approxi-
mately 6M⊙ and the stellar radius exceeds 100 R⊙. During the expansion only a tiny
mass fraction of ∼ 0.03% is contained at radii larger than 70 R⊙.

• (III) Kelvin-Helmholtz Contraction: As the luminosity peak approaches the stellar
surface, an increasing amount of energy flux escapes the protostar without being
absorbed. Therfore the luminosity increases and causes a decrease in the Klevin-
Helmholtz timescale. The protostar then begins to lose heat faster than it receives
entropy from the accreted material, so it turns to contraction. The moment at which
the star begins to contract is dictated by the accretion rate as

M∗,rmax = 10.8M⊙

(
Ṁ∗

10−3 M⊙ yr−1

)2/9

, (3.19)

which is also the moment at which the stellar radius reaches its maximum.

• (IV) Main Sequence Phase: With the Kelvin-Helmholtz contraction, the temperature
begins to rise, eventually reaching 107 K when the protostellar mass is 20 M⊙, and
igniting hydrogen at the center of the protostar. The mass radius relation that the star
follows now corresponds to the one for main-sequence stars.

3.2.3 Remnants of the first stars

We are particularly interested here in the remnants of the first stars of the Universe, given
their potential to produce massive black holes. So far this chapter has described the for-
mation and evolution of protostars that eventually become the first stars of the Universe.
However, characterizing the typical masses of these stars is still a challenging task.

Moreover, it is also challenging to predict the final fate of a star given the many variables
involved. This process can be made easier by considering the evolution of isolated stars, i.e.,
those who do not form part of a binary or multiple system. Even then, many assumptions
need to be made in order to get an idea of the end products.

Heger et al. (2003) made the attempt of predicting those end products by considering
the evolution of isolated and non-rotating stars including the effects of mass loss. Mass loss
was assumed to be mass dependent for Wolf Rayet stars, and wind-driven mass loss was
assumed to depend on the metallicity of the star, also the κ and η pulsational mass loss were
considered for very massive stars. They presumed that the explosion mechanism (when it
occurs), and the remnant properties, are determined by the mass of the helium core when
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the star dies. Their results are summarized in Fig. 3.11 which shows the fate of stars as
function of their initial mass and metallicity. In the models it was assumed that stars with
initial mass < 9 M⊙ end their lives as white dwarfs as they do not form massive enough
cores to collapse. In the narrow range between 9 − 10 M⊙ the final outcome was either a
neutron star or a white dwarf. These limits are not affected by metallicity.

At higher initial masses a type II supernova occurs leaving a neutron star as remnant
(up to ∼ 25 M⊙ for low metallicity stars). For initial masses in between 25 − 40 M⊙

the formation of a BH by fallback occurs, this is, the supernova explosion is not energetic
enough for expelling the stellar atmosphere and this atmosphere eventually falls back onto
the remnant neutron star, causing its collapse into a BH. At high metallicities, stellar winds
remove enough mass so that no BH by fallback is formed. For higher masses (40− 140M⊙

at low metallicity) no supernova explosion occurs and the helium core is massive enough
to produce a BH, this is called a direct black hole. For even higher masses a pair-instability
supernova (PISN) occurs and leaves no remnant. In this case, in a very massive helium core,
the high temperatures reached produce energetic gamma ray photons, which in turn can
produce electron positron pairs (Hubbell, 2006) effectively reducing the radiation pressure
in the core of the star. Further compression causes a runaway thermonuclear explosion that
completely disrupts the star (Fryer et al., 2001). At masses higher than∼ 260M⊙ the energy
released by these thermonuclear reactions is not enough to counteract the gravitational force
of the star and a direct black hole is formed instead.

Because of the low mass-loss rates expected for low metallicity stars, the separations
between different final outcomes are nearly perfect vertical lines in Fig. 3.11. On the other
hand, at higher metallicities mass loss becomes important, changing the final outcome.

For very low metallicities, adequate for the first generation of stars, line-driven winds
are not efficient since metal-poor material presents only very few absorption lines, so that
radiative pressure is weaker at the stellar envelope (Kudritzki, 2002). Therefore, under the
assumption of no rotation, and for stars evolving in isolation, we can predict themasses of the
black holes formed by the first stars of the Universe, provided that the high mass end of the
IMF is also constrained. From previous studies it is reasonable to expect BHs with masses in
the order of several 10M⊙(Heger and Woosley, 2010), and potentially ≳ 100M⊙(Ohkubo
et al., 2009).

Note however that these assumptions might be too extreme. In fact, when considering
stellar rotation, line-driven mass loss can still occur due to efficient mixing of nuclear fu-
sion products, or due to a reduction of the Eddington limit, or because of the pulsational
pair-instability, reducing the final masses of Pop. III stars (see e.g. Liu et al., 2021). In this
regard Spera and Mapelli (2017) investigated the effects of pulsational pair-instability su-
pernova (PPISN) for different metallicities (Z ≥ 2× 10−4 Z⊙) with the SVEN code (Spera
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Figure 3.11. The fate of massive stars as a function of their initial mass and metallicity.
The green solid lines separates the regimes in which the star keeps its hydrogen envelope
or loses it. Green areas show the conditions under which a neutron star is the remnant,
whereas red areas indicate the conditions under which a BH by fallback is formed. The
black areas indicate regions in which a direct black hole is formed. The white zone between
140 and 260M⊙ indicates the conditions at which pair-instability supernovae occur, leaving
no remnant. For masses < 9 M⊙ white dwarfs are assumed to be the remnants. Credits:
Heger et al. (2003).

et al., 2015) which interpolates on pre-calculated stellar evolution tracks to obtain physical
properties of stars. An updated version of Fig. 3.11 is obtained form this study and shown
in Fig. 3.12. The main effect of PPISNe and PISNe is to enahnce the formation of BHs with
masses in the range 30 ≤ MBH ≤ 50 M⊙, while preventing their formation in the range
60 ≤ MBH ≤ 120M⊙.

This picture is even more complicated when considering the effects that a binary com-
panion has on the evolution of a star because of effects like mass transfer or stellar mergers
(Sana et al., 2012; Schneider et al., 2015). In fact, some studies of Pop. III star formation pre-
dict that binary systems are a frequent outcome during the star formation in mini-halos (Riaz
et al., 2018; Stacy and Bromm, 2013; Sugimura et al., 2020). In the context of gravitational
wave detection, binary black hole merger rates have been calculated for black holes formed
from the first stars by Santoliquido et al. (2023), using a semi-analytic method including
stellar evolution in binary systems with an updated version of the SVEN code, predicting
black hole masses of 30− 40M⊙.
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Figure 3.12. The fate of stars as function of their ZAMS mass and metallicity including the
effects of PPISNe. Credits: Spera and Mapelli (2017).

Overall, when considering the black holes produced by the very first stars we might
expect typical masses of 30 − 50 M⊙, and maybe ≳ 240 M⊙. Multiple black holes with
these masses would be probably born per minihalo, and a fraction of them in binary systems.

3.3 Heavy seeds: Runaway collisions in dense star clusters

Black Hole seeds with larger masses than the remnants of Pop. III stars can be produced
when a very massive star is formed in a dense star cluster due to repeated collisions with
other stars.

Stellar collisions in dense star cluster have been extensively studied through N -body
(Portegies Zwart et al., 2004; Portegies Zwart and McMillan, 2002; Portegies Zwart and
van den Heuvel, 2007), Monte Carlo (Freitag et al., 2006; Gürkan et al., 2004), or Fokker
Planck modelling (Lee, 1994; Spurzem and Kamlah, 2023).

In order to understand how this mechanism is triggered, it is necessary to study the
dynamical evolution of a star cluster. For this it is convenient to define the crossing time
tcross, which is the time taken for a star with the typical velocity to cross the cluster. For a
star cluster in virial equilibrium, the crossing time is given by

tcross =

√
R3

GM
, (3.20)

where R is the radius of the cluster and M its mass. The cluster evolution is driven by
close stellar encounters between its constituent stars. The gravitational interactions resulting
from these events cause a change in the velocity of the stars. The large number of stars in
those systems results in a large number of close encounters, gradually changing their initial
velocities.
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An essential timescale associated to this process is the relaxation timescale, defined as
the time needed for such encounters to produce a cumulative 90 degree deflection on the
velocity. For a system containing equal mass particles, the half-mass relaxation time is
defined as (Spitzer, 1987)

trh = 0.138
N

ln (γN)
tcross, (3.21)

where N is the number of stars and γ is an order-unity factor with value γ = 0.11 for a
system of equal mass particles (Spitzer, 1987) (for a derivation see the book by Binney and
Tremaine (1987)).

A natural consequence of star cluster evolution is the so-called core collapse. This is
a process that consist in the contraction of the central portion of a stellar system while the
outer parts expand. It is caused by a redistribution of the kinetic energy mediated by the stars
comprising the system. Stellar encounters can result in the speed-up of one star while the
other is decelerated and falls deeper in the potential well. As time passes, stars that are sped-
up will be sent to the outskirts of the cluster whereas the decelerated population will be left
with less kinetic energy at the cluster center, causing a contraction of the inner parts. This
process has been investigated and confirmed with numerical simulations (see e.g. Aarseth
et al., 1974; Lynden-Bell and Eggleton, 1980). The process of core collapse as computed
by means of N -body simulations can be seen in the middle panel of Fig. 3.13 in which the
10%, 50% and 90% lagrangian radii are plotted as function of time in units of the crossing
time (Reinoso et al., 2018). It is evident that the 10% lagrangian radius dramatically drops
at ∼ 40 crossing times, marking the moment of core collapse, while the 90% lagrangian
radius is gradually increasing.

For a cluster of equal mass stars, the time of core collapse is 15−20 times the half-mass
relaxation time (Spitzer, 1987), but this is reduced when a stellar mass function is included,
as reported in Portegies Zwart and McMillan (2002) and later confirmed with Monte Carlo
andN -bodymodels (Fujii and Portegies Zwart, 2014; Gürkan et al., 2004). This acceleration
of the core collapse is understood as a consequence ofmass segregation caused by dynamical
friction, resulting in a central concentration of the most massive objects of the cluster at its
center. This situation is then very favourable for stellar collisions since the most massive
stars are concentrated at the cluster center.

This process opens up the possibility of forming very massive objects at the central parts
of a star cluster due to repeated stellar collisions, the so-called runaway collision scenario,
in which a single star experiences most of the collisions, thus growing rapidly in mass. This
has been explored by means ofN -body simulations of dense star clusters in which the stars
are allowed to merge. These simulations show that it is possible to form an intermediate
mass black hole (IMBH) through runaway collisions. This is proposed as an alternative
to explain Ultra-Luminous X-ray (ULX) sources in young star clusters (Portegies Zwart
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Figure 3.13. Dynamical evolution of a star cluster including stellar collisions. The top panel
shows the number of collisions normalized by the initial number of stars. The middle panel
shows the 10%, 50%, and 90% Lagrangian radii. The bottom panel shows the mass of the
most massive object formed by runaway collisions, normalized by its initial mass. Credits:
Reinoso et al. (2018).

and McMillan, 2002), showing that the formation of a 1000 M⊙ BH is possible through
this channel. Subsequent studies explored the conditions needed for the runaway growth to
occur, recognizing that dynamical friction must be able to drive the most massive stars to
the cluster center before they explode as supernova (Freitag et al., 2006; Portegies Zwart
et al., 2004), suggesting that 3-4 Myr old, dense star clusters, could harbour IMBHs.

Having an understanding of the runaway collision growth of stars in dense star clus-
ters, and supporting evidence from N -body simulations, it is then natural to explore this
scenario in the context of massive black hole seed formation in the early Universe. One
such attempt was followed by Katz et al. (2015), who put a big effort in obtaining the initial
conditions from cosmological hydrodynamics zoom-in simulations. They identified a pair
of mini-halos that remain at a close distance (∼ 117 pc) such that one of them will first
collapse and form Pop. III stars (see Fig. 3.14). These stars will then pollute the second
minihalo to an assumed metallicity of 10−4 Z⊙, a threshold metallicity above which a dense
cluster of Pop. II stars should emerge (Omukai et al., 2008). The central dense region of
the second collapsed minihalo was then mapped into a large set of initial conditions for the
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Figure 3.14. A pair of close minihalos from a cosmological hydrodinamical zoom-in sim-
ulation. The halo at the top right collapses first and triggers the formation of a Pop. III
star cluster. The minihalo at the center collapses 12 Myr later and is assumed to produce a
Pop. II star cluster following metal enrichment from the death of the Pop. III stars formed
in the first collapsing minihalo. Credits: Katz et al. (2015).

GPU-accelerated version of the NBODY6 code (Nitadori and Aarseth, 2012). Their results
show that the formation of a very massive star (VMS) with a mass 600 ≤ M ≤ 1000 M⊙

formed through runaway stellar collisions is a typical outcome in those environments and
robust against changes in the IMF, the initial binary fraction, initial degree of mass segre-
gation, and initial density profile.

A similar approach was followed by Sakurai et al. (2017) by identifying collapsing halos
with massesM ∼ 107−108 M⊙ in a cosmological box and resimulating their collapse with
higher resolution up to a number density of nH = 107 cm−3. The resulting SPH distribution
was then mapped into a stellar distribution (see Fig. 3.15) assuming virial equilibrium and
adopting a power-law IMF. The evolution of the star clusters was then followed by means of
N -body simulations including stellar collisions, and the process of core collapse was iden-
tified as the precursor to runaway stellar collisions that ultimately resulted in the formation
of a very massive star with 400− 1900M⊙ in less than 3 Myr, as depicted in Fig. 3.16. The
authors showed that the mass growth is the same as encountered in simulations of runaway
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Figure 3.15. Initial conditions forN -body simulations of low-metallicity star clusters. The
collapse of gas clouds is followed by means of cosmological hydrodynamical zoom-in sim-
ulations until reaching a central gas density of nH = 107 cm−3, at which point a fraction of
the gas mass is transformed into stars. Credits: Sakurai et al. (2017).
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Figure 3.16. Mass growth of a very massive star through runaway stellar collisions in a
dense star cluster. Each combination of line-colour and line-style represents a simulation
with different initial conditions. A total of 3 realizations per set of initial conditions was
performed. The rapid growth of the very massive star occurs when the clusters experience
core-collapse. The solid black line shows the analytic expression of Eq.(3.22). Credits:
Sakurai et al. (2017).

growth in young massive clusters, and is given by (Portegies Zwart and McMillan, 2002)

m = mseed + 4× 10−3 Mcl fc lnΛ ln
(

t

tcc

)
, (3.22)

where mseed is the mass of the star that begins the runaway growth, fc is the fraction of
binaries that contribute to collisions, lnΛ is the Coulomb logarithm, and tcc is the time of
core collapse. The authors later expanded on this work to study the subsequent growth of the
resulting BH through gas accretion following tidal disruption of the remaining stars in the
cluster. Their findings show that a growth up to 2500M⊙ is possible after 15 Myr (Sakurai
et al., 2019).

These studies demonstrate that intermediate mass black holes can be formed in dense
star clusters in the early Universe, provided the gas out of which these stars form is polluted
to a metallicity ofZ ∼ 10−4 Z⊙, which allows the gas to undergo dust-cooling and fragment
at high densities (Omukai et al., 2008).

The runaway growth scenario has also been explored in a slightly different environment,
considering the very first star clusters in the Universe formed out of gas that has not been
previously polluted by exploding stars. From the mean-free path approximation one can see
that the frequency of stellar collisions is given by

fcoll = σnv, (3.23)
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where n is the number density of stars, v is the typical stellar velocity and σ is the cross-
section for collisions. The cross-section is proportional to the square of the stellar radius
σ ∝ R2, therefore when considering a cluster of stars that are inflated in radius, such as
protostars accreting at high rates as expected during the formation of the first stars (see
Sec.3.2.2), it is possible that runaway stellar collisions become important. This has been
explored by Reinoso et al. (2018) by considering a small stellar systems containing N =

100− 5000 stars with radii varying between R = 20 R⊙ and R = 5000 R⊙ as expected for
massive main sequence stars or accreting Pop. III stars. Their results show that a moderate
enhancement of the mass of a star is possible, reaching values of 100 M⊙ in a low mass
(M ∼ 1000 M⊙) Pop. III star cluster formed in a minihalo. In a more massive cluster
of 104 M⊙ the mass enhancement is higher and a BH with a mass of 600 M⊙ might be
formed. The authors however only considered equal mass and equal size stars in a gas-free
star cluster. A similar study explored the effects of a different morphology of the stellar
systems, considering inflated Pop. III stars as well. It was shown by Vergara et al. (2021)
that rotation and flattening of a stellar system (as expected during the fragmentation of a
gaseous disk) does not significantly impact the runaway growth of a star, which can still
reach > 1000M⊙.

In the same context of collisions among inflated protostars, Boekholt et al. (2018) con-
sidered a system of Pop. III protostars embedded in gas, which was modelled as a back-
ground potential from which the particles accrete mass. Considering more massive clusters
of 104 − 106 M⊙ their results show that the formation of massive BHs with up to 105 M⊙ is
possible due to the combined action of stellar collisions and gas accretion.

Another variation of the runaway growth mechanism consist in considering the evolu-
tion of a Nuclear Star Cluster (NSC). Although too difficult to simulate at the moment with
direct N -body simulations because of their huge masses (≥ 106 M⊙) and therefore high
number of stars (N > 106), there might be observational evidence showing that above a
certain density such clusters are unstable against stellar collisions and their fate is to pro-
duce a massive BH (Escala, 2021). This scenario would be consistent with the coexistence
of massive BHs and NSCs. A first attempt to numerically test this hypothesis was pursued
by Vergara et al. (2023). Their findings suggest a clear mass threshold for NSCs above
which the efficiency of BH formation greatly increases, as shown in Fig. 3.17. The stellar
systems modelled are still far away from resembling NSCs and the results must be taken
with caution but at the same time as promising. Runaway collisions in embedded NSCs
of 105 M⊙ were also investigated by Das et al. (2021), although employing a more limited
number of particles compared to the work of Vergara et al. (2023) due to differences in
the software used. The results of this work however align with previous studies, finding fi-
nal BHmasses of 104−105 M⊙ due to a combination of stellar collisions and gas accretion.
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Figure 3.17. Black hole formation efficiency ϵBH = MBH/M as function of the mass of a
nuclear star cluster in the left panel. The right panel presents the same information but with
the mass of the NSC normalized by the critical mass Mcrit, a mass above which the cluster
is unstable against stellar collisions. Different symbols represent different NSC models.
Credits: Vergara et al. (2023).

Summarizing, so far it seems that the formation of 1000M⊙ BH through runaway stellar
collisions is a natural outcome of very dense stellar systems, for either Pop. III or Pop. II
star clusters, and it might even occur in dense nuclear star clusters. More elaborated models
for Pop. II star clusters at high redshift have been explored (Katz et al., 2015; Sakurai et al.,
2015, 2017), yielding consistent results among them and predicting the formation of a 600−
2500M⊙ BH as a consequence of repeated stellar collisions.

The conditions are different when considering Pop. III star clusters since less efficient
fragmentation yields a lower number density of stars, but it might be compensated when
considering the inflated radii of protostars accreting at high rates. Gas depleted models sug-
gest the formation of ∼ 1000 M⊙ BHs in this case (Reinoso et al., 2018; Vergara et al.,
2021). The final masses might be highly boosted when the effects of gas are included, po-
tentially reaching 105 M⊙ due to the interplay of gas accretion and stellar collisions (Alister
Seguel et al., 2020; Boekholt et al., 2018). Further improvement of the numerical models is
still needed. It is important to model the gas in the cluster with a hydrodynamics code in-
stead of a spherically symmetric analytic potential. Furthermore, no IMF has been included
in models of Pop. III star clusters so far, being thus unable to capture the effects of mass
segregation.

Finally, the runaway collision scenario has also been explored in nuclear star cluster
environments, also suggesting the formation of 104 − 105 M⊙ BHs as a result (Das et al.,



48 Heavy seeds: Direct collapse black holes

2021; Escala, 2021; Vergara et al., 2023). Those simulations however are still too far from
reaching the high number of particles needed to realistically model these systems.

A caveat shared by all the previously mentioned models pertains to the treatment of
stellar collisions, specifically the recipes for mass loss. While some analytic prescriptions
have been employed in some of them, they depend only on the mass ratio of the colliding
stars. This might yield acceptable results when considering Pop. II main sequence stars,
but it has been shown that the stellar structure also plays a role in determining the mass
loss of the collision product (Glebbeek et al., 2013), which might certainly be important
for the very massive star formed or the inflated Pop. III protostars. Moreover, other factors
such as the relative velocity between the colliding stars and the impact parameter have not
been taken into account so far. The work by Freitag and Benz (2005) demonstrates the
difficulty of finding analytic formulae that can predict the rate of mass loss based on those
three parameters, but at the same time they identify cases in which a high fraction of mass
(> 10%) is lost. More work in this area is necessary to place strongest constraints on the
final masses expected for BHs formed through runaway stellar collisions.

3.4 Heavy seeds: Direct collapse black holes

This section beings by clarifying what is referred to when writing Direct Collapse Black
Hole (DCBH) since this term is usually adopted in the literature to specify objects of slightly
different nature. As noted in Sec. 3.2.3, specifically in Fig. 3.11, a direct black hole (also
sometimes referred to as direct collapse black hole in the literature) forms when the core
of a massive star is so heavy that it inevitably collapses to a BH. This occurs for stars with
initial masses of 40M⊙ ≤ M ≤ 140M⊙ orM ≥ 260M⊙. Under these considerations the
massive stars produced in the runaway collapse scenario are technically also direct collapse
black holes, however this term is usually reserved in the literature for BHs formed out of
stars with ≳ 104 M⊙, and for BHs born due to the general relativistic instability that causes
the collapse of a supermassive star (SMS) with M ≥ 105 M⊙. This is further explained in
Sec. 3.5. This section describes the conditions needed to produce supermassive stars with
> 104 M⊙ that will later produce DCBHs.

3.4.1 Conditions for DCBH emergence

The conditions for the formation of a DCBH as explored here, are subject to the conditions
that allow the formation of supermassive stars (SMS). While in Sec. 3.2.1 the formation of
Pop. III stars in minihalos was discussed showing that they can become much more massive
than present-day stars, they are still orders of magnitude lighter than SMSs. The typical
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conditions for the formation of Pop. III stars do not suffice for SMS formation, and one
needs to consider a slightly modified scenario.

The work by Loeb and Rasio (1994) considered the collapse of protogalactic gas clouds
as a pathway for quasar formation. By means of SPH simulations they followed the collapse
of rotating gas clouds that ultimately form a spherical configuration that resembles a galactic
bulge, in which an SMBH could be formed. This study thus hinted at the possibility that
gas collapse in protogalactic clouds could provide the conditions needed for the formation
of very massive objects. Along this same line Bromm and Loeb (2003) studied gas collapse
in the first galaxies, focusing on clouds in which gas cooling through H2 is suppressed, thus
maintaining temperatures of 104 K, increasing the Jeans mass and thus providing a massive
self-gravitating cloud with enough mass to produce supermassive stars. A key ingredient in
this recipe is therefore the suppression of H2 cooling following its destruction. Molecular
hydrogen can be destroyed by photons in the Lyman-Werner bands, whose energy range is
11.2− 13.6 eV, via the Solomon process

H2 + γ −→ H∗
2 −→ 2H, (3.24)

in which the molecule in an excited electronic state H∗
2 can decay to the vibrational con-

tinuum of the ground state, resulting in a dissociation (Stecher and Williams, 1967). The
destruction of molecular hydrogen in protogalactic clouds can thus be achieved under the
presence of a sufficiently intense Lyman-Werner radiation field. This intensity is denoted
by JLW. This radiation will not only destroy H2, but will also suppress its formation through
H− photodissociation (which allows H2 formation as shown in Eq.(3.5)).

In the absence of molecular hydrogen the next efficient coolant is atomic hydrogen. In
this case, collisions between these atoms can transfer part of the collision energy by bringing
them to an excited electronic state. The de-excitation occurs when the atom decays to the
ground electronic state, emitting photons that take this energy away. This process therefore
cools the gas and causes the collapse of clouds whose virial temperature is Tvir ∼ 104 K.
The mass of those gas clouds is given by (Glover, 2013)

Matom = 5× 107h−1
( µ

0.6

)−3/2

Ω−1/2
m

(
1 + z

10

)−3/2

M⊙, (3.25)

where h is the reduced hubble constant, µ is the mean molecular weight, Ωm is the matter
density parameter and z is the redshift. The dark matter halos in which this condition is
fulfilled are usually called atomic-cooling halos, and they typically acquire enough mass by
redshift z ≳ 10. Here the prevention of both H2 cooling and metal pollution are crucial
for this channel to operate, as otherwise the normal galaxy-formation scenario is expected
(Greif et al., 2008).
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Figure 3.18. One-zone model calculations of the collapse of an atomic-cooling halo irra-
diated by a background radiation field. The field is modelled as thermal radiation at 104 K
with zero intensity at frequencies higher than the Lyman-limit. The intensity is presented in
units of J21 = 10−21 erg cm−2 s−1 sr−1 Hz−1. Credits: Omukai (2001).

By employing a similar method to the one described for the collapse of primordial gas
clouds (see Sec.3.2.1), one-zone models provide an insight into the thermodynamical evolu-
tion during cloud collapse in metal free atomic-cooling halos, showing that the gas evolves
isothermally over more than 13 orders of magnitude in density (Omukai, 2001), provided
that the intensity of the background LW radiation field is high enough (see Fig. 3.18).

How intense the background radiation must be has been the focus of several studies.
The radiation intensity above which H2 formation remains suppressed is usually denoted by
J crit
LW . Typically this intensity is measured in units of J21 which is the specific intensity at
the Lyman-limit and its value is

J21 = 10−21 erg s−1 cm−2 sr−1 Hz−1. (3.26)

Two different radiation spectra are usually considered, modelled as black bodies with differ-
ent temperatures. Mimicking a Pop. III stellar population as a black body radiation source
with effective temperature of 105 K yields J crit

LW ≳ 105, whereas when mimicking a Pop. II
stellar population as a black body with 104 K yields slightly lower values J crit

LW ≲ 103, with
both values obtained from one-zone models (Omukai, 2001; Schleicher et al., 2010).

The studies that employed three-dimensional hydrodynamical simulations including chem-
ical networks obtained a more accurate value for J crit

LW . Along this line, AMR simulations
with the ENZO and FLASH code were performed, finding somewhat lower but more variable
values 30 < J crit

LW ≲ 1000 (Latif et al., 2014a, 2011; Regan et al., 2014; Shang et al., 2010).
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The situation is further complicated when considering the gas ionization which boosts H2

formation when including the effects of X-ray radiation, raising the value of J crit
LW by an or-

der of magnitude (Glover, 2016; Inayoshi and Tanaka, 2015; Latif et al., 2015).

The evolution of atomic-cooling halos that remain metal free and are exposed to JLW ≥
J crit
LW has been followed by means of numerical simulations by several groups, employing
hydrodynamical simulations with chemical networks that do not include H2, assuming that
it is efficiently destroyed by the background radiation field. The results of these studies
demonstrate the plausibility of forming massive BHs that can grow to 109 M⊙ by z ∼ 6

(Latif et al., 2016a, 2014b, 2016c, 2014c, 2013; Regan and Haehnelt, 2009a,b).

Nevertheless, it is not only important to identify this channel as a possible route to SMBH
formation in the early Universe, nor to characterize the radiation source needed to achieve
the isothermal collapse. It is also important to asses whether the required conditions can
actually be fulfilled during the evolution of the Universe, specially considering that the ex-
pected mean UV background radiation produced by the first stars is ≲ 0.1 J21 (Johnson
et al., 2008). In this regard the work by Dijkstra et al. (2008) shows that a small fraction
(10−8 − 10−6) of DM halos with Tvir ≳ 104 K have a close luminous neighbour within
10 kpc, being exposed to a background LW radiation intensity of JLW > 1000 J21. This sit-
uation has been called the “synchronized pair” scenario (Dijkstra et al., 2014; Visbal et al.,
2014).

The occurrence of the right conditions for isothermal collapse of atomic-cooling ha-
los has also been investigated via radiation hydrodynamical simulations of cosmological
volumes. In this case, a nearby starburst galaxy is identified as crucial for providing the
necessary J crit

LW (Chon et al., 2016; Regan et al., 2017). However this might still promote
fragmentation due to tidal forces (Chon et al., 2016). A snapshot of one of these simulations
is presented in Fig. 3.19. In this case the gas collapse has been followed with numerical
simulations for up to 0.1Myr (Chon et al., 2018), demonstrating that the formation of SMSs
and subsequent DCBH is possible under these conditions.

At this point, the conditions required for the DCBH channel are very special and proba-
bly very rare. First, the gas that makes up the atomic-cooling halos must remain metal-free
to prevent efficient cooling and fragmentation. Second, this gas must be exposed to an in-
tense Lyman-Werner radiation field in order to dissociate and prevent the formation of H2,
otherwise a normal mode of Pop. III star formation is expected (see Sec. 3.2.1). This last
requirement can be fulfilled in halos that are close to a star-forming galaxy, but not so close
as to be metal-polluted or tidally deformed/disrupted. How rare these conditions are in the
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Figure 3.19. Identification of the sites for DCBH formation. In this snapshot of a cosmo-
logical simulation by Chon et al. (2016), two atomic-cooling halos are identified close to
star-forming galaxies that provide the required radiation intensity that prevents H2 forma-
tion. Credits: Chon et al. (2018).

early Universe has been investigated by Habouzit et al. (2016). Their study study compared
results from analytical, semi-analytical, and hydrodynamical simulations, finding a wide
range of predicted abundances of the sties in which DCBHs might emerge, with values for
the number density in the range ∼ 10−9 − 10−1 per cMpc3 (see Fig. 3.20) . The number
density sensitively depends on the adopted critical intensity of the Lyman-Werner radia-
tion, as well as on the supernova prescription adopted since it will impact metal pollution,
star-formation, and hence LW background.

A new variation of the DCBH scenario was identified recently in cosmological radiation



Heavy seeds: Direct collapse black holes 53

Figure 3.20. Number density of possible DCBH formation sites as function of redshift for
different models. Different symbols represent different values of the critical LW intensity.
Dark gray symbols were obtained from (Dijkstra et al., 2014). The light gray square with a
cross inside at z = 10.5 is from Agarwal et al. (2014), whereas the light gray squares in the
range z = 10− 7 are from Agarwal et al. (2012). The coloured symbols are from Habouzit
et al. (2016) and show the values obtained from cosmological simulations in which the halos
are irradiated for 10 Myr (purple), for a cloud free-fall time (orange), and for a simulation
with no AGN feedback. Credits: Habouzit et al. (2016).

hydrodynamical simulations reported by Wise et al. (2019). In this case, even when the
Lyman-Werner intensity is far below J crit

LW , a value of JLW = 3 J21 is sufficient, provided
the atomic-cooling is assembled through periods of major mergers, dynamically heating the
gas as it virializes and preventing its early collapse (Regan et al., 2020). These conditions
are expected in overdense regions of the Universe, and the authors provide an estimated
abundance of 10−6 − 10−7 per cMpc3.

3.4.2 The fate of gas clouds that are candidates for DCBH formation

Overall although the right conditions for DCBH formation can be rare, and expected to be
found in overdense regions of the Universe (Lupi et al., 2021; Regan et al., 2020; Wise
et al., 2019), it has been shown that once the conditions are met, high accretion rates of
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Ṁ ≳ 0.1M⊙ onto massive gas clumps (∼ 104 M⊙) are always found in three-dimensional
(radiation-) hydrodynamical simulations (Chon et al., 2018; Latif et al., 2015, 2014a, 2016a,b;
Latif and Schleicher, 2015; Latif et al., 2014b, 2016c, 2014c, 2013, 2011; Latif and Volon-
teri, 2015; Latif et al., 2022; Regan et al., 2019; Regan and Haehnelt, 2009a,b; Regan et al.,
2017; Wise et al., 2019). This however is not definitive evidence that a supermassive star
that later collapses to a massive BH will be actually formed. In fact, these studies are unable
to follow the gas cloud collapse to scales at which a protostar will form and subsequently
grow to become an SMS (this is further explained in Sec. 3.5).

Still some hurdles at small scales could prevent the formation of an SMS, and certainly
will impact the final masses expected for these objects, and probably also their multiplicity.
Star formation in the early Universe has been shown to be affected by turbulence in the gas,
and fragmentation at small scales is always present in high resolution simulations (Becerra
et al., 2018; Greif et al., 2012; Jaura et al., 2022; Patrick et al., 2023; Suazo et al., 2019;
Wollenberg et al., 2020), specially when an accretion disk is formed around growing proto-
stars (Clark et al., 2011b). Fragmentation of an accretion disk around a forming SMS might
reduce the accretion rate onto the central object. This could cause the emission of ionizing
UV radiation from the SMS, thus halting gas accretion and further growth (Sakurai et al.,
2015), or even their formation.

The assembly of SMSs from embryonic protostars following gas fragmentation during
atomic-cooling halos must be further investigated. This was the aim of the research pre-
sented in Chap. 7 which reports the results of numerical simulations that self-consistently
treat stellar and gas dynamics during the formation of SMSs from their birth as protostars
until they become 104 M⊙ supermassive stars.

3.5 Supermassive stars as embryos of supermassive black
holes

Supermassive stars were originally conceived to explain strong radio emission in the center
of Seyfert galaxies (Hoyle and Fowler, 1963a,b), as models of quasars with objects reaching
masses of 105 M⊙. In subsequent analytic studies that included General Relativity effects
it was found that objects with these masses are unstable above ∼ 105 M⊙(Chandrasekhar,
1964), and thus they became interesting objects for explaining the formation of supermassive
black holes powering galactic nuclei as presented in the seminal paper by Rees (1984).

What is a supermassive star depends on the definition adopted. Typical definitions
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are based on the mass of the star, frequently defining a supermassive star as a star with
> 1000 M⊙ (Gieles et al., 2018; Martins et al., 2020; Schleicher et al., 2013; Yungelson
et al., 2008), or with a mass M > 105 M⊙ (Fuller et al., 1986) . Alternatively, in the re-
view by Woods et al. (2019a), they define a supermassive star as a star with a mass so large
that it inevitably collapses to a black hole due to the Chandrasekhar (also Post-Newtonian,
Chandrasekhar-Feynman, or GR) instability. This mass is given by

MSMS ≈
(
0.32

Rc2

µGM⊙

)2/3

M⊙ ∼ 105M⊙, (3.27)

where R is the radius of the star, c is the speed of light,G is the gravitational constant and µ
is the mean molecular weight of the gas comprising the star. This is valid for non-rotating
stars modelled as an n = 3 polytrope. Detailed stellar evolution codes that include post-
Newtonian approximations to general relativistic gravity, and hydrodynamics, confirm that
such stellar models inevitably collapse to a black hole at massesM > 105 M⊙(Fuller et al.,
1986). Some of the most recent calculations have explored the final fates of the so-called
monolithic supermassive stars, objects with 104 − 108 M⊙ in the idealized case of wholly
thermally relaxed objects, which are typically assumed to have been formed instantaneously
(Hoyle and Fowler, 1963b), as opposed to supermassive stars formed from rapid gas ac-
cretion starting from ebryonic protostars (Regan et al., 2017) which have a very different
internal structure (Hosokawa et al., 2013).

The fate of suchmonolithic supermassive stars depend onwhether released nuclear burn-
ing energy is sufficient to halt the contraction before the Chandrasekhar instability causes
runaway dynamical collapse. In a recent study, Woods et al. (2020) used the KEPLER stel-
lar evolution code (Weaver et al., 1978; Woosley et al., 2002) that includes one-dimensional
Lagrangian hydrodynamics, first order post-Newtonian corrections via a modified gravita-
tional constant, and updated nuclear burning networks implicitly coupled to hydrodynamics
(Woosley et al., 2004). They conclude that supermassive stars of primordial composition
can survive past the core helium burning phase for masses M ≲ 6 × 104 M⊙, otherwise
they only survive until hydrogen in the core is exhausted after ∼ 106 yr up to masses of
∼ 1.55 × 105 M⊙, and for larger masses they collapse before reaching the core hydrogen
burning phase. This is illustrated in Fig. 3.21.

Therefore, the fate of non-rotating supermassive stars of primordial composition with
masses greater than 6 × 104 M⊙ is the collapse to a black hole due to the Chandrasekhar
instability. Survival until the core hydrogen burning phase is possible for masses M <

1.55 × 105 M⊙, and above that limit a dark-collapse occurs in which no hydrogen ignition
at the core is possible before dynamical collapse.

It has been argued that monolithic supermassive stars are a good model for stars formed
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Figure 3.21. Lifetimes of non-rotating monolithic supermassive stars of primordial com-
position. Black dots mark the lifetime of the supermassive stars at different masses. The
solid black line marks the hydrogen-burning lifetime. The dashed black line denotes the
time-scale for thermal contraction. The vertical gray band at ∼ 0.6 × 105 M⊙ marks the
limit between supermassive stars that survive beyond core helium burning and supermas-
sive stars that survive until core hydrogen burning exhaustion. The vertical gray line at
∼ 1.5× 105 M⊙ marks the limit between supermassive stars that survive until core hydro-
gen exhaustion and supermassive stars that collapse before core hydrogen ignition. Credits:
Woods et al. (2020).
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through runaway stellar collisions as presented in Gieles et al. (2018), in which a high num-
ber density of stars combined with high accretion rates ≳ 105 M⊙ Myr−1 work together to
induce a high stellar collision rate resulting in supermassive stars withM > 1000M⊙.

Even higher accretion rates have been explored in the context of (super) massive star
formation. In sufficiently massive dark matter halos (≳ 107 M⊙) if molecular hydrogen
is dissociated, the gas cools via electronic transitions in the hydrogen atom, the so-called
atomic cooling halos, producing an isothermal collapse at T ∼ 8000 K (Becerra et al.,
2015; Omukai, 2001; Prieto et al., 2013; Regan et al., 2020; Safranek-Shrader et al., 2012;
Volonteri et al., 2021a) as explained in Sec. 3.4.1. The accretion rates in those environments
can easily exceed 10−1 M⊙ yr−1, and have the potential to produce supermassive stars with
105 M⊙. Understanding the evolution of protostars that experience these high accretion
rates has been important to understand the possible hurdles during their formation. In this
context at least two different groups have studied the evolution of protostars under these
conditions (Haemmerlé et al., 2018; Hosokawa et al., 2012). Here a summary of the main
results obtained from these studies is presented, focusing on the work by Hosokawa et al.
(2012).

In the work by Hosokawa et al. (2012) accretion rates up to 1 M⊙ yr−1 are considered,
and the equations for stellar structure solved as described in Hosokawa and Omukai (2009).
The fiducial case of accretion at 0.1 M⊙ yr−1 is considered here, and the evolution of a
star under this condition is illustrated in Fig. 3.22. For such high accretion rates the KH
timescale becomes shorter than the accretion timescale at M∗ ≈ 40 M⊙, and the extent of
the stellar radius is well described by

R∗ ∼ 26 R⊙

(
M∗

M⊙

)0.27
(

Ṁ∗

10−3 M⊙ yr−1

)0.41

. (3.28)

Thus for a given stellar mass, the radius is larger the larger the accretion rate is, so that
at the same stellar mass, a protostar accreting at a higher rate is more extended and has
a lower interior temperature. This reduced temperature results in reduced opacity which
prolongs the adiabatic accretion phase, even when tKH < tacc. At this point the stellar
interior is contractingwhile the stellar radius is increasing, the bloated surface layer occupies
only a small fraction of the total mass, and this layer absorbs the energy coming from the
radiative interior, further expanding the outer layer as the interior contracts. Deuterium
burning is ignited at ∼50 M⊙ but its influence on subsequent evolution is negligible for
accretion rates Ṁ∗ > 10−4 M⊙ yr−1 (Hosokawa and Omukai, 2009). Eventually the interior
temperature reaches the threshold for hydrogen burning at T ∼ 108 K when the protostar
reaches 600 M⊙. The protostar maintains a bloated envelope with a compact core and a
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constant surface temperature of ∼ 5000 K, unable to produce ionizing photons that could
terminate accretion due to radiative feedback (see Fig. 3.22).

Important for the work presented in this thesis is the derivation of themass radius relation
that these accreting protostar follow during their evolution. The luminosity reaches the
Eddington luminosity for M∗ ≳ 100 M⊙. This combined with the fact that the surface
temperature remains at ∼ 5000 K, and using the expression for the luminosity of a black
body

L∗ = 4πR2
∗T

4
eff, (3.29)

results in a mass radius relation of the form

R∗ ≈ 2.6× 103 R⊙

(
M∗

100M⊙

)1/2

. (3.30)

The work by Hosokawa et al. (2012) confirmed that for sufficiently high accretion rates
this relation holds at least until 1000 M⊙, and then extended this range and confirmed the
validity of Eq.(3.30) up toM ≳ 104 M⊙ at which point the star reaches a size of∼100 AU,
and the surface temperature never exceeds 104 K (Hosokawa et al., 2013). Although these
studies did not include GR effects, subsequent studies that included post-Newtonian correc-
tions confirm these results (Haemmerlé et al., 2018). The exact accretion rate above which
a protostar evolves as an inflated supermassive star with a radius given by Eq.(3.30) seems
to lie in between 0.01− 0.06M⊙ yr−1 (Herrington et al., 2023; Hosokawa et al., 2012).

The ultimate fate of accreting supermassive stars depends on the accretion rate. In the
work by Schleicher et al. (2013) it is suggested that as long as a supermassive star keeps
accreting at Ṁ >> 0.14M⊙ yr−1 the core of the star will collapse due to the GR instability
giving birth to a quasi-star, i.e., a star whose gravity pull is counteracted by radiation from
an accreting BH rather than nuclear fusion (Begelman et al., 2008). The work by Umeda
et al. (2016) confirms that SMSs can reach higher masses when accreting at higher rates,
in particular for accretion rates of 0.3 − 1 M⊙ yr−1 the SMS encounters the GR instability
during helium burning in the core at 2.3− 5× 105 M⊙, and for even higher accretion rates
of Ṁ = 10M⊙ yr−1 the star collapses at 8× 105 M⊙ while hydrogen is being burned at the
core. While different authors have found similar results for the final masses of supermassive
stars at Ṁ ≲ 1 M⊙ yr−1, uncertainties remain for higher rates with values differing by a
factor 2− 4 (see Fig. 3.23).

The studies mentioned before assumed constant accretion rates throughout the whole
process of supermassive star formation. This is in reality most likely not the case. So what
are the effects of a variable accretion rate during supermassive star assembly?. This ques-
tion has been addressed by Sakurai et al. (2015) by solving the equations of stellar structure,
similarly as done in Hosokawa et al. (2013) but including quiescent phases in which the
accretion rate is set to zero. The results indicate that quiescent periods of ∼ 1000 yr are
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Figure 3.22. Structure of protostars evolving under very high accretion rates. The figure
shows the stellar radius as a function of stellar mass for accretion rates of 0.1 M⊙ yr−1

(solid black line) and 10−3 M⊙ yr−1 (solid blue line) for comparison. Convective layers are
indicated by shaded gray areas whereas white areas indicate radiative layers. The dot-dashed
black line indicates the position at which 70% of the stellar mass is enclosed. Dashed lines
indicate loci of constant mass ofM = 3, 10, 30, 100, and 300 M⊙. Hatched areas indicate
layers of active nuclear burning of deuterium (D) and hydrogen (H). Credits: Hosokawa
et al. (2012).

long enough as to allow a contraction of the supermassive star and trigger the production
of ionizing photons that could be able to terminate further accretion. This indicates that it
is not sufficient to just assume that accretion rates of Ṁ > 0.01 M⊙ yr−1 will inevitably
lead to the formation of an SMS, but emphasizes the need to resolve the assembly of SMSs
including the possibility of fragmentation of the accretion disk as found for studies about
the formation of Pop. III stars (Clark et al., 2011b). A study along this line was pursued
by Tagawa et al. (2020) which considered the possibility that frequent mergers of an SMS
with surrounding fragments can keep the SMS inflated preventing ionizing radiation feed-
back. Complementing this semi-analytic method with detailedN -body plus Hydrodynamic
simulations was one of the goals of the study presented in Chap. 7.
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Figure 3.23. Final mass of accreting supermassive stars for different accretion rates. Cred-
its: Woods et al. (2019b).

3.6 The growth of black hole seeds

Explaining the emergence of the massive, high redshift (z ≥6) quasars observed to date
inevitably requires a period of black hole growth. The growing BH will start as a seed
formed through one of the channels mentioned before, and it must reach 109 M⊙ before the
Universe reaches an age of 1 billion years.

The classic argument for BH growth is that they typically acquire mass by accreting the
surrounding gaseous matter. As a black hole accretes matter, an accretion disk is formed
around it. The high density and velocities reached by the material orbiting the central BH
implies frequent and energetic collisions between its constituent particles. This in turn heats
up the accretion disk which then emits light, typically peaking in the X-ray range of the elec-
tromagnetic spectrum. Inside the gaseous accretion disk the material is transported inwards
as angular momentum is transported outwards via viscous forces. The gas gradually moves
closer to the BH and ultimately reaches the innermost stable circular orbit (ISCO). The
amount of energy that can be released by accretion is given by the amount of energy that the
orbiting material must lose in order to reach the ISCO. A fraction of the rest-mass energy of
the accreting gas will be emitted as radiation, this is referred to as the radiative efficiency
ϵ. In cosmological simulations a constant value of ϵ = 0.1 is typically assumed (Booth and
Schaye, 2009; Di Matteo et al., 2008). This value comes from a comparison between the
quasar/AGN luminosity function and the local population of SMBHs (Shankar et al., 2004;
Soltan, 1982; Yu and Tremaine, 2002). The mass lost by the disk is then related to the mass
gained by the BH as

ṀBH = (1− ϵ)Ṁdisk. (3.31)
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The radiative luminosity L of a black hole accreting at ṀBH is therefore

L = ϵṀdiskc
2, (3.32)

L = ϵ
ṀBHc

2

(1− ϵ)
, (3.33)

where c is the speed of light. Therefore the black hole growth rate has an associated lumi-
nosity

ṀBH =
(1− ϵ)

ϵc2
L. (3.34)

This luminosity injects momentum into the surrounding gas, acting as a force opposite to
the gravitational attraction of the BH. The Luminosity at which these two forces balance is
called the Eddington Luminosity and is given by

LEdd =
4πGMBHc

κ
, (3.35)

where κ is the opacity of the gas. For purely ionized hydrogen, opacity comes from Thomp-
son scattering and in this case the Eddington Luminosity is

LEdd =
4πGMBHmpc

σT

, (3.36)

wheremp is the proton’s mass and σT is the Thompson scattering cross-section.
The maximum accretion rate at which hydrostatic equilibrium can be maintained is ob-

tained by setting L = LEdd in Eq.(3.34) which leads to

ṀBH =
(1− ϵ)

ϵc2
LEdd. (3.37)

The accretion rate at which the radiative force produced as a consequence of gas accretion
balances the gravitational force produced by the BH is called the Eddington accretion rate.
When this accretion rate is surpassed, the radiative force stops further accretion onto the BH.
This is however valid only under the assumption of spherically symmetric accretion, and
in reality the radiative luminosity can surpass the Eddington luminosity without quenching
accretion onto the BHwhen considering accretion through a gaseous disk. In general one can
define the Eddington ratio fEdd as the ratio of radiative luminosity to Eddington luminosity
such that the accretion rate onto a BH can be described by

ṀEdd =
(1− ϵ)

ϵc2
fEddLEdd. (3.38)

The final mass of a BH can then be found by integrating Eq.(3.38) as (Johnson et al., 2013)

MBH,final = MBH,ini × exp
[
fEddfduty(1− ϵ)

ϵ

(
tfin − tini
tEdd

)]
, (3.39)
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where fduty is the duty cycle defined as the fraction of time that the BH spends accreting
mass. tini and tfinal are the times at which the BH starts and stops growing by accretion.
tEdd = 450Myr is the Eddington time which follows from Eq.(3.36)

LEdd =
MBHc

2

tEdd
,

MBHc
2

tEdd
=

4πGMBHmpc

σT

,

tEdd =
σT c

4πGmp

. (3.40)

One can then infer and put constraints on the masses of the BH seeds that are capable of
growing into the quasar population observed at high redshift, under the assumption of dif-
ferent radiative efficiencies, Eddington ratios, and duty cycles. For the case of low mass BH
seeds as expected for the remnants of Pop. III stars, uninterrupted accretion at the Eddington
rate (fdutyfEdd = 1) is required to grow these seeds into 109 M⊙ BHs by z = 7 (Johnson
et al., 2013; Smith et al., 2017; Wise, 2023), as depicted in Fig. 3.24.

Figure 3.24. Masses and redshift of known quasars at z ≥ 6 from different surveys marked
with coloured dots. Solid black lines indicate the growth of BH seeds formed at z = 35 and
considering a radiative efficiency of ϵ = 0.1, assuming fEddfduty = 1, and for seeds with 10
and 100M⊙ as initial mass. Credits: Inayoshi et al. (2020).

The situation is more complicated when considering the environments in which these
seeds are expected to be born, i.e., a star cluster with high mass stars whose radiation and
SN explosions are very effective in removing the gas from minihalos (Johnson and Bromm,
2007; Smith et al., 2018). In the model of Johnson et al. (2013) the growth of seeds from
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Pop. III remnants is modelled with a delay of 100 Myr for the onset of accretion, the typical
timescale for mergers of minihalos at z ∼ 30, since mergers can deliver cold gas to the
remnant BH, as found in cosmological simulations (Johnson and Bromm, 2007). A BH seed
with∼ 10M⊙ is capable of growing to 109 M⊙ by redshift 7 only if it accretes continually at
the Eddington rate with a low radiative efficiency of ϵ = 0.07 (see bottom panel in Fig. 3.25).
It is important to note that such low radiative efficiencies are indeed possible in the slim disk
solution for non-rotating BHs at fEdd ≤ 1, or independent of BH spin at higher fEdd (Madau
et al., 2014), thus suggesting that super-Eddington accretion is needed in this case. Invoking
super-Eddington rates does however not solve the problem because of the feedback effects
associated, such as the launching of jets that can quench further accretion by evacuating
the surrounding gas (Regan et al., 2019), although some authors argue that for sufficiently
massive halos (> 1010 M⊙) the associated feedback would be inefficient (Mayer, 2019).

On the other hand, when considering more massive black hole seeds born as remnants
of SMSs formed in atomic cooling halos, or formed through runaway stellar collisions in
dense star clusters the parameter space of radiative efficiencies, Eddington ratios, and duty
cycles is broader. In fact, for seeds as massive as 104 M⊙, the combination fEddfduty = 0.5

can still produce a 109 M⊙ SMBH by z = 7 provided the radiative efficiency is low (ϵ =

0.07), otherwise continuous accretion at the Eddington rate is required, but with radiative
efficiencies that can be as high as ϵ = 0.15 (see Fig. 3.25). Such a high ϵ is indeed expected
for BHs with a spin of a ∼ 0.5 (Madau et al., 2014).

While the formation of massive black hole seeds is important for providing a head-start
during rapid SMBH assembly, the problem of subsequent growth through gas accretionmust
also be solved. In this regard the light seeds produced as remnants of Pop. III stars face two
important hurdles: the evacuation of gas from the minihalos in which they are born, and
the need to invoke super-Eddington rates or radiatively inneficient accretion. On the other
hand, heavy seeds formed from the death of SMSs do not necessarily need to invoke super-
Eddington rates as long as they accrete continuously. Continuous accretion (fduty = 1) was
found to be possible for the most massive halos at high redshift, since they experience a high
number of major mergers (∼ 10) (Tanaka, 2014), with the assumption that the gas can be
brought to the BH with no interruptions.

Finally, it is iportant to note that while the presence of quasars at the highest redshifts
need to invoke the emergence of massive seeds and a combination of continuous gas accre-
tion (or intermittent super-Eddington accretion), this is probably just the tip of the iceberg.
The entire BHmass distribution at low redshift probably requires a combination of light and
heavy seeds. Constraining the different seeding mechanisms requires the combination of di-
verse methods that compare model predictions with observations such as the BH luminosity
function, BH abundance, and GW detections (Natarajan, 2014; Natarajan and Volonteri,
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Figure 3.25. Initial BH seed mass as function of the redshift at which it grows to a 109 M⊙

SMBH. The top panel considers BHs born in 107 M⊙ halos, while the middle and lower
panel consider BHs born in minihalos of 105 M⊙. Additionally, the lower panel considers a
100 Myr delay between the BH formation and the onset of accretion, as could be expected
for BH seeds from Pop. III stars. Credits: Johnson et al. (2013).
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2012; Volonteri et al., 2021b; Volonteri and Rees, 2005).





Chapter 4

Methods

This thesis contains three scientific articles. In those articles the formation of massive black
hole seeds in the early Universe was explored by means of numerical simulations. The
article presented in Chap. 5 addresses the problem of runaway stellar collisions in dense star
clusters embedded in gas. The article presented in Chap. 6 focuses on gas-free clusters and
in comparing analytic collision rates with numerical simulations. In those works a suite of
N -body simulations was presented and analyzed. All the simulations were performed with
the NBODY6 code.

The article presented in Chap. 7 focuses on the formation of massive stars through the
combined action of gas accretion and stellar collisions. The simulations treat the gas and
stellar dynamics self-consistently and include sink particle formation, stellar collisions, and
gas accretion, in an environment resembling a dense gas cloud formed in ametal free atomic-
cooling halo. For the development of this work it was necessary to couple an N -body and
an SPH code by utilizing the AMUSE interface.

The subject of this chapter focuses on complementing the articles included in this thesis
by expanding on the description of the software utilized for running the simulations, as well
as on additional algorithms included, and on the preparation of the initial conditions for the
simulations presented in Chap. 7.

4.1 Nbody6

The research presented in Chap. 5 and Chap. 6 required the modelling of dense star clusters.
The evolution of those systems was simulated with the code NBODY61 (Aarseth, 2000;
Nitadori and Aarseth, 2012). This section presentes a brief description of the code, the
algorithms included in these simulations, and the modifications required.

1NBODY6 can be obtained at: https://people.ast.cam.ac.uk/ sverre/web/pages/nbody.htm
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4.1.1 The Hermite integrator

The NBODY6 code utilizes a fourth order Hermite integrator, which is a predictor-corrector
method. In the Hermite integration method, the acceleration and the jerk are computed
according to

a0,i = −
∑
i ̸=j

Gmj
R

R3
, (4.1)

ȧ0,i = −
∑
i ̸=j

Gmj

[
V

R3
+

3R(V ·R)

R5

]
, (4.2)

which are the acceleration a and jerk ȧ vectors for particle i at time t0 due to the contribu-
tions of all other particles j with massmj , relative positionR, and relative velocity V .
With these quantities a predicted position rp and velocity vp for particle i are obtained from
a Taylor expansion. The expressions for rp and vp are given by

rp,i(t) = r0,i + v0,i∆t+ a0,i
∆t2

2
+ ȧ0,i

∆t2

6
, (4.3)

vp,i(t) = v0,i∆t+ a0,i∆t+ ȧ0,i
∆t2

2
, (4.4)

where r0,i and v0,i, are the position and velocity at time t0, and ∆t is the timestep.
Additionally, a Taylor expansion for the acceleration and the jerk yields

ai(t) = a0,i + ȧ0,i∆t+
1

2
a
(2)
0,i∆t2 +

1

6
a
(3)
0,i∆t3, (4.5)

ȧi(t) = ȧ0,i + a
(2)
0,i∆t+

1

2
a
(3)
0,i∆t2. (4.6)

So, at time t0, the predicted position and velocity for particle i are computed from equa-
tions (4.3) and (4.4). With the new position and velocity, a predicted acceleration ap,i and
jerk ȧp,i are computed from Eq.(4.1) and (4.2). These quantities can then be inserted on the
left-hand side of Eq.(4.5) and (4.6). Then by solving for a(2)

0,i in Eq.(4.6) one obtains

a
(2)
0,i =

(ȧp,i − ȧ0,i)

∆t
−

a
(3)
0,i

2∆t
. (4.7)

If one then inserts Eq.(4.7) into Eq.(4.5) and solves for a(3)
0,i one obtains

a
(3)
0,i =

12(a0,i − ap,i)

∆t3
+

6(ȧ0,i + ȧp,i)

∆t2
. (4.8)

Subsequently, the expression for a(3)
0,i can be inserted into Eq.(4.7) to obtain

a
(2)
0,i = −6(a0,i − ap,i)

∆t2
− 2(2ȧ0,i + ȧp,i)

∆t
. (4.9)
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Furthermore, by expanding the Taylor series for position and velocity by two orders, one
obtains new expressions for the corrected position rc and velocity vc of particle i after a
time ∆t. These expressions are given by

rc,i = rp,i + a
(2)
0,i

∆t4

24
+ a

(3)
0,i

∆t5

120
, (4.10)

vc,i = vp,i + a
(2)
0,i

∆t3

6
+ a

(3)
0,i

∆t4

24
. (4.11)

In this way, by employing the fourth order Hermite integrator, the local error in r and
v after a timestep∆t is expected to be of the order O(∆t5), and the global error for a fixed
timestep of the order of O(∆t4).

4.1.2 Block and individual timesteps

The main goal of NBODY6 is an adequate modelling of stellar systems containing a large
number of particles. In N -body simulations the gravitational force calculation scales with
the number of particles as ∝ N2 and the modelling of large N systems becomes expensive
very quickly.

Reducing the frequency of the force computation is the goal of the individual timesteps.
This is justified by noting that the stars in the outer parts of a star cluster feel a gravitational
force that is slowly changing in time. On the other hand, the stars inhabiting the center of the
cluster experience a force that is changing much more rapidly in time, compared to the most
distant particles. The idea behind the block and individual timesteps scheme is to reduce the
computational cost by recalculating the gravitational force only for the particles for which
this is necessary. This is achieved by allowing each particle to have its own timestep, the
individual timestep. This timestep must be a factor 2 commensurate with a global timestep,
as this ensures that all the particles will eventually reach the same time. This is the block
timestep.

An illustration of the individual and block timestep scheme is shown in Fig. 4.1. In
this figure each particle m, l, k, i, has a different timestep, and the force on each of them is
updated at the timesteps marked with an arrow. Therefore, up to a timestep of 8, only one
force update has been applied to particlem, whereas two have been applied to particle l.

The value of the timestep must be adequately chosen and adjusted in order to avoid
unphysical behaviour of the particles. The adjustment is done by taking into account the
acceleration of the particles. In NBODY6 the higher order acceleration terms calculated as
described in Sec.4.1.1 are used to obtain the timestep as

∆ti =

√√√√η
|ai||a(2)i |+ |_ai|2

|_ai||a(3)i |+ |a2i |2
, (4.12)
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Figure 4.1. Individual and block timestep scheme for four particles. Credits:
NBODY6++GPU user manual (https://github.com/nbodyx/Nbody6ppGPU).

with ∆ti being the timestep for particle i. This expression also depends on η, an accuracy
parameter set typically to η ≈ 0.01 to 0.02.

4.1.3 The Ahmad-Cohen scheme

Another way of reducing the amount of force computations per timestep is to consider only
the closest neighbours to each particle. These neighbouring particles will change their rela-
tive positions more rapidly compared to the most distant ones. One can then consider, given
a certain period of time, that the gravitational force exerted by the most distant stars re-
mains constant, and only the gravitational force of the closest stars must be updated in each
timestep. This is the idea behind the Ahmad-Cohen scheme (also referred to as neighbour
scheme).

In order to achieve this, NBODY6 separates in two the net acceleration of a particle, i.e.,
F = Freg + Firr, a regular force and an irregular force respectively. This means that the
acceleration of a particle is divided in two: a = areg + airr. The regular force is the force
exerted by distant particles, and is updated after a time∆treg. The irregular force is the force
exerted by the closest particles, and is updated after a time ∆tirreg.

In practice this means that at time t0 an irregular acceleration and its first derivative are
computed considering the closest neighbours of a particle using Eq.(4.1) and (4.2). Also a
regular acceleration and its first derivative is computed considering the rest of the particles
with Eq.(4.1) and (4.2). The full predictor correctror hermite scheme is applied using the

https://github.com/nbodyx/Nbody6ppGPU
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Figure 4.2. Regular and irregular time steps. Credits: NBODY6++GPU user manual
(https://github.com/nbodyx/Nbody6ppGPU)

irregular and the regular acceleration. Then, at time t1,irr, the irregular component of the
acceleration and its first derivative are recalculated. The full predictor corrector Hermite
scheme is applied only for the irregular acceleration, whereas no corrector is applied for
the regular acceleration. This is illustrated in Fig. 4.2. To decide which particles are close
enough as to be taken into account when calculating the irregular force, NBODY6 utilizes a
sphere of variable radius. This radius is controlled by requiring that the number of particles
is kept close to an optimal number of neighbours NNBOPT (an input parameter) with typical
values in between 50 and 200 particles. The neighbour list is constructed at each regular
timestep. The timestep for the regular and irregular force computation is given by Eq.(4.12),
with independent and adjustable accuracy parameters ηirr ≈ 0.01 and ηreg ≈ 0.02.
This scheme results in a significant gain in efficiency provided that the size of the neighbour
list is Nnb << N .

4.1.4 KS regularization

The simulation of a star cluster involves a wide range in spatial scales. From the typical size
of a globular cluster of∼2 pc all the way down to the separation of binary stars, in the order
of AU. It also involves a wide range in temporal scales, from times comparable to the age
of the Universe all the way down to the orbital period of binary stars, which can be in the
order of days. The coexistence of such wildly different scales makes the simulation of these
systems impractical and sometimes impossible for the standard N -body integrators.

The smallest temporal and spatial scales are found when close encounters between par-
ticles occur. Moreover, during close encounters one must deal with very small numbers
which can lead to numerical artifacts. Additionally, the large accelerations reached during
close encounters cause the particles to acquire timesteps that are too small. This makes im-

https://github.com/nbodyx/Nbody6ppGPU
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possible to follow the evolution of the entire system for scales of Gyr or sometimes even
Myr.

It is inevitable to encounter such problems in the field of gravitational dynamics applied
to dense stellar systems if one wishes to accurately follow their evolution. Fortunately, the
development of a particular algorithm came into help, being capable of greatly increasing the
performance of theNBODY6 code (and theNBODY code series presented inAarseth (1999)).
This algorithm is known as the Kustaanheimo-Stiefel (KS) regularization (Kustaanheimo
and Stiefel, 1965).

Dealing with binary systems and close encounters is the main goal of the KS regulariza-
tion. For this, when a close encounter is detected, the particles involved are replaced by a
center of mass particle, and the internal motion of the regularized particles is calculated in a
new coordinate system. The advantage is that in this new coordinate system an unperturbed
binary system is mapped into an harmonic oscillator with double the frequency, greatly re-
ducing the computational cost and numerical errors. For a pair of particles to be regularized
they need to fulfill a series of criteria. First the impact parameter must be smaller than the
impact parameter for a 90 degree deflection given by

p90 = 2G
(m1 +m2)

v2∞
, (4.13)

where G is the gravitational constant,m1 andm2 are the masses of the particles, and v∞ is
their relative velocity at infinity. In NBODY6 the parameter RMIN is used to define the dis-
tance of a close encounter and is adjusted to the value of Eq.(4.13) if the option KZ(16)>0.

Second, their timestep must be sufficiently small, as estimated from

dtmin = κ
[ η

0.03

]( r3min
< m >

)1/2

, (4.14)

where κ is a free numerical factor, η is the general timestep factor, and < m > is the
average stellar mass. In practice this limiting timestep is defined for every simulation with
the parameter DTMIN.
Once the particles fulfill these two conditions, i.e., that their relative distance is smaller
than RMIN and their timestep smaller than DTMIN they are candidates for regularization.
However, in order to be actually regularized they need to fulfill two additional criteria. They
must be approaching each other and theirmutual force be dominant. These additional criteria
are defined as

R · V > 0.1
√

G(m1 +m2)R, (4.15)

γ ≡ |apert ·R2|
G(m1 +m2)

< 0.25, (4.16)

where apert is the differential acceleration due to other perturbing particles onto the two can-
didates, R, R and V, are the relative distance and relative position and velocity vectors



Nbody6 73

between the two candidates respectively. A system of two bodies that fulfill these condi-
tions is regularized, with an internal timestep that is independent of the orbital eccentricity,
but dependent of the user defined parameter ETAU, resulting in a total of 50−100 steps per
orbit. Once the perturbation parameter defined in Eq.(4.16) falls below a minimum value
GMIN (defined by the user, with a typical value equal to 10−6), a KS-pair is considered
unperturbed and the analytical solution corresponding to a keplerian orbit is adopted instead
of doing a numerical integration. In practice the KS regularization occurs for short-lived
hyperbolic encounters and for persistent binaries.

The KS-regularization was later expanded to the isolated 3- and 4-body problem, and
finally to the N -body problem. The occurrence of stable triples and quadruples is rare in
a simulation, but interactions between single and binaries or binary-binary are common.
These interactions are treated with the chain regularization. A typical procedure when a
regularized pair encounters a single particle is to consider the regularized pair as a single
particle at the center of mass of the pair, and set the mass of these particles to zero. This
will define a new KS-regularization with a single particle and a pseudo particle (the center
of mass of the previously regularized pair). For encounters of two KS-pairs the procedure
is analogous.

4.1.5 Modification of the code

The articles in Chap. 5 and Chap. 6 present an investigation of stellar collisions in dense
star clusters. While in NBODY6 the collision between two stars is naturally included when
the stellar evolution routines are activated, these were not well suited for the systems under
investigation. For this reason a modification of the code was required. This section presents
the procedure followed to adopt the necessary changes.

Deactivating the stellar evolution routines

The stellar evolution routines included inNBODY6 are based on a parametrization developed
by Hurley et al. (2000) which are in turn based on stellar evolution calculations covering the
range of metallicitiesZ = 10−4−0.3 and stellar masses in the rangeM = 0.5−50M⊙. This
is inadequate for the scenarios explored here, in the context of the first star clusters contain-
ing Pop. III stars, since their properties are different specially in the protostellar evolutionary
phase (see Sec. 3.2.1). For this reason stellar evolution routines were deactivated.

The stellar evolution routines are in charge of initializing the radii of the particles. By
deactivating these routines one needs to explicitly define the radius of each particle. For this
one can reactivate an old NBODY6 routine contained in the file intide.f, which initializes
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two stellar populations. To achieve this is necessary to erase a few comments in the routine
start.f. In this file the lines 60− 62 were initially commented, so one just needs to erase
the comments such that these lines now read:

IF (KZ(27).GT.0) THEN
CALL INTIDE

END IF

Once the routine INTIDE is activated it needs to be modified as follows:

* Assign individual radii for main-sequence and evolved stars.
DO 30=1,N

* Adopt a primitive scheme in case of no stellar evolution.
IF (I.LE.IMS) THEN
RADIUS(I) = RMS*RSTAR
TEV(I)=10D+10
SPIN(I)=0
KSTAR(I)=1

ELSE
TEV(I)=10D+10
SPIN(I)=0
KSTAR(I)=1
RADIUS(I) = REV*RSTAR

END IF
30 CONTINUE

The parameters TEV(I)=10D+10, SPIN(I)=0 and KSTAR(I)=1 for the two stellar popu-
lations are defined in this routine. These new parameters describe the evolutionary epoch
of the stars, the rotation, and the stellar type chosen to be 1 here (main-sequence stars) just
for initialization purposes.

For deactivating the stellar evolution routines one can simply include a return in each
of the associated files. These files are: star.f and hrdiag.f. This will prevent these
routines from modifying the properties of the particles such as mass and radius during the
evolution of the system.
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Detecting stellar collisions

In NBODY6 stellar collisions are detected in the regularization routines, specifically in the
file ksint.f. In this file, the collision criteria is defined based on the paper by Kochanek
(1992) who studied the tidal capture process and tidal circularization of binary systems. The
criteria for collisions is

Rcoll = 1.7

(
m1 +m2

2m1

)1/3

R1, (4.17)

where m1 and m2 are the masses of the regularized particles and R1 is the radius of the
particle with massm1. In this routine, if the distance between the particles at pericenter Rp

is smaller thanRcoll, the routine cmbody.f is called for treating the collision of the particles.
For the articles presented in Chap. 5 and Chap. 6 a different criteria for detecting stellar

collisions was adopted. This new condition requires that the separation of the two particles
be equal to, or smaller, than the sum of their radii, i.e.,

d ≤ R1 +R2, (4.18)

where d is the separation between the particles, andR1,R2, their radii. Therefore the criteria
for Rcoll was changed to

Rcoll = R1 +R2. (4.19)

For this it was necessary to modify the file ksint.f by commenting the line 470 and
including a new line such that the file now reads

* RCOLL = 1.7*FAC**0.3333*RADIUS(J1)
RCOLL = RADIUS(J1) + RADIUS(J2)

Outcome of a stellar collision

When the distance between two particles becomes smaller than the distance for a stellar
collision defined in Eq.(4.19), the routine to handle the collision cmbody.f is called. Here
the new mass of the resulting particle is calculated (assuming no mass loss) as

Mnew = m1 +m2. (4.20)

The new particle is placed at the center of mass of the previous configuration and the velocity
is calculated as

vnew =
m1v1 +m2v2
m1 +m2

. (4.21)

After switching off the stellar evolution routines the new radius of the star needs to be cal-
culated in a different way. For doing that one can impose the condition that the density of
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the stars remains constant, thus the radius of the new star is given by

Rnew = R1

(
M1 +M2

M1

)1/3

. (4.22)

These equations must be included in the file cmbody.f. The conditions are written in line
308 as:
* Define global c.m. coordinates & velocities from body #I1 & I2

ZM = BODY(I1) + BODY(I2)
DO 12 K=1,3
CM(K) = (BODY(I1)*X(K,I1) + BODY(I2)*X(K,I2))/ZM
CM(K+3) = (BODY(I1)*XDOT(K,I1) + BODY(I2)*XDOT(K,I2))/ZM

12 CONTINUE
The new radius for the particle must be calculated here. This is done by including in the line
365 of this file the next line:

RADIUS(I1)=(ZM/BODY(I1))**0.3333*RADIUS(I1)
Effectively, this assumes that the collision product quickly settles into a new equilibrium
configuration in which the density corresponds to that of an unperturbed star of the same
mass. Different parameterizations are also possible to include by modifying this line.

Finally, the last step is to make sure that a collision can still be detected provided that
the stellar evolution routines were deactivated. Stellar collisions are detected in the file
ksint.f. The user must therefore ensure that the parameter regulating the minimum dis-
tance for regularization is set accordingly, i.e., RMIN> R1 + R2 for typical stellar radii in
the simulation. The file ksint.f was modified at lines 439 and 568 as:

“IF(KZ(19).GE.3....”—–>“IF(KZ(19).GE.0....”
This last change results in the routine cmbody.f being called even if the stellar evolution
package is not activated (KZ(19) = 0).

4.1.6 Input files

The research paper included in Chap. 5 presents the results of simulations of dense star
clusters including stellar collisions and an external potential that follows a Plummer density
profile. A template of the input file used to reproduce the results of these simulations is
presented here:

1 10000.0
1000 1 10 2390 67 1
0.02 0.01 0.28 1.0 1.0 3000.0 2.0E02 0.14 10.0
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1 1 1 0 1 0 2 0 2 0
0 0 0 4 1 0 0 0 0 0
1 1 2 0 0 1 2 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0
1.0E-03 0.001 0.1 1.0 1.0E-06 0.001
1.0 10.0 10.0 0 0 0.0001 0.0 0.0
0.5 0.0 0.0 0.0 0.125
1.0 0.59 10000 10000
1.0 1000 0 100.0 1.0

This input file was used to perform a simulation with 1000 particles, each of them with
an initial mass of 10 M⊙ and initial radius of 100 R⊙. The last line in this input file contains
the parameters required by intide.f, and includes the radius of a typical star in solar units
RSTAR, the number of idealized main-sequence stars IMS, the number of idealized evolved
stars IEV, the scale factor for main-sequence stars RMS and the scale factor for evolved stars
REV. These scale factors are used to set the radius of these stellar populations as

R = RMS× RSTAR,

R = REV× RSTAR.

The velocities of the stars are adjusted so that the system is in virial equilibrium. An
external potential which follows a Plummer density distribution is included by setting the
option KZ(14)=4. The properties of the external potential are defined in the line number
12, which specifies the mass of the external potential in N -body units, the scale length of
the Plummer potential in N -body units, and two timescales related to gas expulsion also
in N -body units. These timescales are set to a value much larger than the final time of the
simulations so that no gas expulsion takes place. A rather high value for RMIN is set to
make sure that particles are regularized before their mutual distance becomes smaller than
the sum of their radii.

For the research paper presented in Chap. 6, the simulations did not include an external
potential and the effects of tidal circularization were deactivated. The input file for one of
the simulations with 5000 particles, each with a radius of 20 R⊙ is:

1 10000.0
5000 1 10 9683 140 1
0.02 0.01 0.27 1.0 1.0 2000.0 2.0E02 0.14 2.0
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1 1 1 0 1 0 2 0 2 0
-1 0 0 0 1 0 0 0 0 0
1 1 2 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0
1.0E-03 0.001 0.05 1.0 1.0E-06 0.001
1.0 2.0 2.0 0 0 0.0001 0.0 0.0
0.5 0.0 0.0 0.0 0.125
1.0 5000 0 20.0 1.0

4.2 The AMUSE framework

For the third article included in this thesis, the cornerstone of the methodology was the use
of the Astrophysical Multipurpose Software Environment (AMUSE2) (Portegies Zwart and
McMillan, 2018), which is a PYTHON interface specially designed with the aim of allowing
an easy coupling of existing astrophysical simulation codes.

The existing codes included in AMUSE are called community codes, and can be gener-
ally (but not always) classified into four main domains : Gravitational dynamics, Hydrody-
namics, Stellar evolution, and Radiative transport (see Fig. 4.3). One can argue that some
of the codes that exist in AMUSE cover more than one of these domains, as is the case
of GADGET-2 (Springel, 2005a) which covers gravitational dynamics and hydrodynamics.
Another example is the code NBODY6 (Aarseth, 1999; Nitadori and Aarseth, 2012), which
covers gravitational dynamics and stellar evolution. However, one can recognize that while
these codes are designed to tackle specific problems (Galaxy formation at cosmological
scales in GADGET-2, or star cluster evolution in NBODY6), the numerical implementation
that they offer can be combined with others in order to investigate new problems.

The AMUSE interface is written in PYTHON because of its flexibility and widespread
use in the scientific community. This choice enables easy access to the community codes
and relatively easy development of new software and simulation scripts. On the other hand,
the community codes encompass a diverse set of programming languages that includes FOR-
TRAN, C, CUDA and JAVA.

The structure of AMUSE can be divided into three main parts, as illustrated in Fig. 4.4.
The first one is the top layer, where the user writes a PYTHON script. This script contains all
that is needed to run a simulation and is usually specific to a single problem. In this script the
user defines the initial conditions, manages unit conversion, and develops the coupling of

2AMUSE can be obtained from github: https://github.com/amusecode/amuse
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Figure 4.3. The main four domains into which most of the astrophysical codes contained in
AMUSE can be classified. Credits: AMUSE user manual (Portegies Zwart and McMillan,
2018).

the different codes needed for the problem under investigation. In this layer, also a manager
is present, which takes care of unit conversion between the user input data and the data
passed to the community code. The manager also takes care of the data structure before
passing it to the community code.

The second layer (middle blue layer in Fig. 4.4) is where the interface between the
AMUSE framework and the community codes lies. The AMUSE interface for each code
consists of two parts, one being a PYTHON file, called the proxy, that contains all the func-
tions needed to use a given community code. The other file is called the partner and is
written in the native language of the community code. These two interfaces communicate
via the Messaging Passing Interface (MPI) whether or not they reside on the same node as
the PYTHON script.

The third layer (bottom green layer in Fig. 4.4) is where the community code resides, in
its native language. Here is where all the files specific to every code are contained. In an
ideal AMUSE simulation, the user would never dig into the deepest layer of the framework,
but it is strictly necessary sometimes, as it was for the work presented in Chap. 7. Note that
the user is capable of easily utilizing any of the codes contained in the AMUSE framework
with little to no knowledge of the code, which can be catastrophic. An adequate previous
research of the codes needed is always advised.
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Figure 4.4. Illustration of the basic structure of AMUSE. The top red layer contains the
PYTHON script written by the user. The middle blue layer represents the interface to
the community codes. The bottom green layer is where the communication between the
AMUSE framework and the community codes happen. The information flows as indicated
by the red arrows from the user script down to the community codes, and also backwards to
the Python script. Credits: AMUSE user manual (Portegies Zwart and McMillan, 2018).

With the help of the AMUSE interface the emergence of supermassive stars following
the fragmentation of a gas cloud at sub-parsec scales was studied. Supermassive stars can
reach extremely large sizes of up to 104 R⊙ (Hosokawa et al., 2013). However, Before
reaching that point a protostar is formed with only 0.1 M⊙ initially (Becerra et al., 2018).
Depending on their mass accretion rate they might or not reach the supermassive state, and,
depending on the level of fragmentation of the cloud, not only one but many protostars might
end up evolving as SMSs.

Therefore, the possibility of creating such big objects in a small space implies the pos-
sibility of frequent collisions, which in turn requires including an accurate dynamical treat-
ment that is able to precisely capture the close encounters among these objects. For this
reason, a pure N -body code is a good choice for dealing with this problem. Moreover, the
gas must be also accurately modelled since the accretion rate of the protostars and their
subsequent evolution will depend on the dynamics of this fluid as well. A straightforward



The AMUSE framework 81

choice for this is a particle code for the hydrodynamics because it can be coupled to the
N -body code more easily, therefore an SPH code was the natural choice for this problem.

The main idea of this section is to provide an insight into the codes utilized for running
the simulations that produced the results presented in Chap. 7. For this end, the next sec-
tions introduce some of the most important characteristics of the numerical implementation
developed for this work.

4.2.1 The N -body code PH4

The N -body code PH4 is a pure N -body code, which means that it calculates the gravita-
tional force between the particles without approximations like the Neighbour scheme (or
Ahmad-Cohen scheme) of the last versions of the NBODY code series (Aarseth, 1999), or
the grouping of distant particles like Tree codes (Barnes and Hut, 1986).

Just like NBODY6, this N -body code makes use of the fourth order Hermite integra-
tor described in Sec. 4.1.1. In the following the treatment of stellar collisions with PH4 is
presented, followed by a description of the softening length adopted and the calculation of
timesteps for the particles.

Stellar collisions

Each particle in PH4 has an attribute called radius. After every integration step, a function
is called to detect particles whose radii overlap in space. In the AMUSE implementation of
PH4, a stopping condition can be activated. This stopping condition interrupts the integration
of PH4 once a radii overlap has been detected. Then, at the AMUSE level, one can decide
the faith of the colliding particles. For this work the “sticking star” approximation was
adopted, i.e., once the radii of two particles overlap, they are replaced by a single particle
at the center of mass of the previous configuration. Therefore the position for the resulting
particle is given by

rnew =
m1r1 +m2r2
m1 +m2

, (4.23)

and no mass loss during the collisions is assumed, so the new mass is

mnew = m1 +m2. (4.24)

The new velocity of the resulting particle is calculated assuming linear momentum conser-
vation as

vnew =
m1v1 +m2v2

m1 +m2

. (4.25)
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Softening length and timestep

PH4 makes use of a softening length ϵ. The objective of introducing ϵ is to prevent extreme
values of the gravitational force when the separation between two particles is very small.
The magnitude of the gravitational force between two particles is calculated as

F = G
m1m2

( |r1,2|2 + ϵ2 )3/2
, (4.26)

wherem1 andm2 are the masses of the particles and |r1,2| is their separation. In this study it
was necessary to accurately resolve close encounters between the particles given the colli-
sional nature of the system under investigation. For this reason the use of a small smoothing
length of ϵ = 1 R⊙ was the choice.
Given that most of the close encounters involve a supermassive star with a radius of roughly
104 R⊙, no long-lived hard binaries are present in the simulations, and the problem of pro-
hibitively small timesteps is not encountered, despite the choice of ϵ.

In PH4 the timestep calculation makes use of the higher-order derivatives of the accel-
eration used in the Hermite integrator scheme presented in Sec. 4.1.1. The equation used
is

dtnew = η dt

(
aa(2) + ȧ

[ ȧa(3) + a(2) ]dt2

)1/2

, (4.27)

where dt is the old timestep, η is a parameter that controls the value of the new timestep and
the acceleration terms are the ones descirbed in Sec. 4.1.1. The default value of η = 0.14

was adopted.

4.2.2 The SPH code FI

For the simulations presented in Chap. 7, the code FI (Gerritsen and Icke, 1997) was used.
This code was designed for studies of the Interstellar Medium on galactic scales and was
largely inspired by GADGET-2 code (Springel, 2005a). FI is a Smoothed Particle Hydrody-
namics (SPH) code and is described in more detail in Pelupessy (2005).

Smoothed Particle Hydrodynamics (SPH) is a technique that was invented in 1977 (Gin-
gold and Monaghan, 1977; Lucy, 1977). This method solves the equations of hydrodynam-
ics in a Lagrangian approach by using a set of discrete points that move with the fluid ve-
locity and map it during its evolution. A smoothing is applied to every SPH particle through
a kernel function which can be thought of as if the particle was extended in space, and its
properties determined by the contribution of all the particles that fall within its smoothing
volume as illustrated in Fig. 4.5.

The SPH technique has found wide application across important areas of astrophysics,
being employed in studies of turbulence (Kitsionas et al., 2009; Price et al., 2011), star (clus-
ter) formation (Bate et al., 2003; Bonnell et al., 2003; Wurster et al., 2017), stellar collisions
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Figure 4.5. Illustration of the SPH smoothing kernel. Credits:
https://commons.wikimedia.org/wiki/File:SPHInterpolationColorsVerbose.svg

(Freitag and Benz, 2005; Laycock and Sills, 2005), and for cosmological simulations of
structure formation (Springel, 2005b), just to name a few.

Still the gravitational interactions must be calculated for the set of SPH particles when
self-gravity cannot be neglected. The long range nature of this force poses an obstacle to
the performance of an SPH code if every pair of particle-particle interaction is to be com-
puted. Fortunately this problem is solved by employing a hierarchical multipole expansion,
for example with the popular Tree algorithm (Barnes and Hut, 1986). The idea consist in
grouping distant particles together into a single one for calculating the gravitational force,
reducing the cost fromN2 toN log(N). Such a combination of Tree and SPH codes is also
called a TREESPH code (Hernquist and Katz, 1989).

Self-gravity

FI includes self-gravity by employing a Barnes-Hut Tree algorithm (Barnes and Hut, 1986)
for computing the gravitational forces. This method relies on a recursive division of the
space, starting from a cubical root-node that encompasses the entire mass distribution and
further dividing each node into eight daughter-nodes (an oct-tree) until every particle is
enclosed by a single node. The gravitational force for each particle is then computed by
walking the tree, starting from the root-node andmaking a decision on whether the multipole
approximation provides a force that is sufficiently accurate. If accuracy is good enough, then
the force is used and the walk along the current branch can be terminated, on the contrary if
the accuracy is not sufficient, the node is opened and the process is repeated for each of its
daughter-nodes. The required accuracy is controlled by an input parameter α, and depends
on the calculated acceleration at the previous time-step |a| , the mass of the node M , the

https://commons.wikimedia.org/wiki/File:SPHInterpolationColorsVerbose.svg
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side-length of the node l, and the distance to the node r in the form

GM

r2

(
l

r

)2

≤ α|a|. (4.28)

If this condition is fulfilled, the node is used for the force calculation. The default value of
α = 0.5 was adopted here.

Hydrodynamics

An important aspect of every SPH code is the kernel function employed. FI makes use of
the popular cubic spline kernel (Monaghan and Lattanzio, 1985a) just like many other SPH
codes in astrophysics (GADGET-2, PHANTOM, SEREN). The cubic spline kernel is given by

W (r, h) =
8

πh3


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( r
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( r
h
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(4.29)

where h is the smooting length of the SPH particle and r a distance to another point in space.
Of fundamental importance in every SPH code is the computation of the density for

every particle, which in FI is calculated as

ρi =
N∑
j=1

mjW (|rij|, hi), (4.30)

where mj is the mass of particle j, W (|rij|, hi) is the kernel function that depends on the
distance between particle i and particle j, |rij|; and the smoothing length of particle i, hi. The
sum is over all the neighbours j of i. The dynamic range of conventional SPH is improved
here by the use of adaptive smoothing lengths. The smoothing length for each particle is
obtained by requiring a constant mass inside the smoothing volume. This is mathematically
written as

4π

3
h3
i (ρi + ρ̃) = Nm, (4.31)

slightly different to the approach adopted inGADGET-2 since an additional term ρ̃ is included
in order to put an upper limit to the smoothing length hi.

The equation that determines the acceleration of particle i given the contribution to the
pressure gradients and viscous forces from all its neighbours j is given by

dvi
dt

= −
N∑
j=1

mj

[
fi
Pi

ρ2i
∇iWij(hi) + fj

Pj

ρ2j
∇iWij(hj) + Πij∇iW ij

]
, (4.32)



The AMUSE framework 85

where Pi and ρi are the pressure and density of particle i. The notation used by Pelupessy
(2005) was adopted so thatWij(hi) = W (|ri− rj|, hi). The term∇iWij(hi) is computed as

∇iWij(hi) =
ri − rj
|ri − rj|

∂iW (r, hi)

∂r
. (4.33)

The termW ij =
1
2
[Wij(hi) +Wij(hj)] is a symmetrized form of the kernel function, and fi

is given by

fi =

(
1 +

hi

3(ρi + ρ̃)

∂ρi
∂hi

)−1

. (4.34)

The term Πij is an artificial viscosity term which in SPH codes is necessary for capturing
shocks. This term is given by

Πij =


−αcijµij + βµ2

ij

ρij
if vij · rij < 0

0 otherwise ,
(4.35)

with
µij =

hijvij · rij
(r2ij + ϵh2

ij)
. (4.36)

Here hij is the arithmetic mean of the smoothing lengths of particles i and j. In FI, cij is
taken to be the maximum sound speed among particles i and j, and ρij is the minimum
density among them. Note that a smoothing term ϵh2

ij is introduced in Eq.(4.36) in order to
prevent a divergence of the viscous force for very small particle separations, with ϵ = 0.01.
The parameters α and β regulate the strength of the viscosity and in FI are set to α = 0.5,
β = 1.0.

Finally, the energy equation in FI is given by

dui

dt
=

1

2

N∑
j=1

mj

[
fi
Pi

ρ2i
vij · ∇iWij(hi) + fj

Pj

ρ2j
vij · ∇iWij(hj) + Πijvij · ∇iW ij

]
. (4.37)

There exists the possibility to follow the entropy evolution rather than the internal energy
evolution, just like is done inGADGET-2 (Springel, 2005a), and to include additional heating
and cooling terms. The internal energy formulation was adopted here and no heating or
cooling terms were included in the simulations presented in Chap. 7.

Necessary modifications

In order to carry-on the simulations presented in Chap. 7 it was necessary to modify the
code. The first modification described here is related to the adaptation of the momentum
equation in order to include the effects of an external pressure. This is necessary to prevent
the evaporation of the cloud when using vacuum boundary conditions. Inspired by the work
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of Clark et al. (2011b) an additional pressure was included. This pressure effectively acts
upon SPH particles that are not surrounded by neighbouring SPH particles, i.e., the particles
at the border of the cloud. For this end an additional term Pext was included in Eq.(4.32) as

dvi
dt

= −
N∑
j=1

mj

[
fi
(Pi − Pext)

ρ2i
∇iWij(hi) + fj

(Pj − Pext)

ρ2j
∇iWij(hj) + Πij∇iW ij

]
.

(4.38)
These changes must be included in the file entdot.f90, which is inside the folder
.../amuse/src/amuse/community/fi/src/.

The second necessary modification is related to the equation of state adopted by FI. The
default values for the AMUSE version of FI are set in such a way that the equation of state is
adiabatic with γ = 5/3, and the entropy evolution is followed instead of the internal energy
evolution. The equation of state that needs to be included for this work has the form

T = T0

[
1 +

(
ρ

ρc

)γ−1
]
, (4.39)

so that it is isothermal but changes to an adiabatic EOS for densities higher than ρc. As
discussed in Sec. 4.3.2 the values ρc = 1015 g cm−3, and T0 = 8000 K were used. In order
to include this modification in FI it was necessary to modify the subroutines that extrapolate
the specific thermal energy of the SPH particles.

This modification is particularly easy as one only needs to modify the file ethstep.f90.
Here, in the subroutines extrapeth and exstep2, right after the line

call exstepp(p,dt,eth,deth,drad,lerad,lhe,imax,jmax)

one needs to include the next line

eth=a*(1. + (rho(p)/b)**gamma1)

where a and b are the thermal energy per unit mass and critical density, in code units.

4.2.3 SPH and N -body coupling

For the set of simulations presented in Chap. 7 the coupling of an SPH and anN -body code
was required. The coupling is easier since both are particle codes, and although the script
examples included in AMUSE are a good starting point, adequate numerical modelling of
this problem requires extra effort. This section describes the procedure followed for the
coupling of the N -body code PH4 and the SPH code FI, using the BRIDGE method.



The AMUSE framework 87

Coupling strategy

Just like in the classical BRIDGE described in Fujii et al. (2007) one first needs a way of
calculating the gravitational interaction between the different particles, in this case the N -
body and the SPH particles. AMUSE includes an example script in which a hydrodynamics
code is coupled with an N -body code. This example can be found in

amuse/examples/simple/gas_in_cluster.py

and it models the evolution of an embedded star cluster by coupling the SPH code GADGET-
2with theN -body codeHERMITE. The coupling is realized by utilizing the BRIDGEmethod
of AMUSE. This works as follows

• At t0 calculate the acceleration on each N -body particle due to all SPH particles us-
ing the function get_gravity_at_point(eps,x,y,z) of the SPH code, with the
gravitational softening length eps, and the position of each N -body particle.

• At t0 construct a tree for theN -body particles, and use it to calculate the acceleration
on every SPH particle due to all N -body particles by utilizing the function
get_gravity_at_point(eps,x,y,z), and setting eps to be equal to the smoothing
length of each SPH particle.

• Kick the velocity of every particle with the calculated acceleration during half a time-
step.

• Drift the particles during a full timestep by updating their positions and velocities with
the corresponding code, i.e., the leapfrog algorithm of GADGET-2 for the SPH parti-
cles, and the fourth order Hermite algorithm of HERMITE for the N -body particles.

• At t0 + δt calculate the acceleration on each N -body particle using the function
get_gravity_at_point(eps,x,y,z) of the SPH code with the softening length
eps, and updated position of every N -body particle.

• At t0 + δt construct a tree for the N -body particles, and use it to calculate the accel-
eration at the updated position of every SPH particle with the function
get_gravity_at_point(eps,x,y,z) by setting eps equal to the updated smooth-
ing length of the SPH particles.

• Finish the timestep by kicking the particles of each code during a half-timestep with
the new accelerations.

The problem with this procedure lies in the method used for the calculation of gravita-
tional interactions between the particles of different codes. When particles have different
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gravitational softening lengths an effective softening length should be considered. This
effective softening length must maintain a symmetry of the calculated forces and the con-
servation of momentum.

To better understand the problem introduced by this method consider a pair of point
masses, one SPH particle and one N -body particle, with gravitational softening lengths h
and ϵ respectively. Consider also the calculation of the gravitational force with Plummer
softening. When calculating the force on the N -body particle due to the SPH particle one
obtains a force with magnitude

FSPH,N−body =
GmSPHmN−body(

r2SPH,N−body + ϵ2
)3/2 |rSPH,N−body|. (4.40)

On the other hand, when calculating the force on the SPH particle due to theN -body particle,
the magnitude of the force is

FN−body,SPH =
GmN−bodymSPH(

r2SPH,N−body + h2
)3/2 |rSPH,N−body|. (4.41)

When h ̸= ϵ it is evident that

FSPH,N−body ̸= FN−body,SPH. (4.42)

This problem is illustrated in Fig. 4.6.
Employing the same gravitational softening length for all the particles would not solve

the problem if the codes make use of different softening algorithms for the force calculation.
For many SPH codes it is frequent to employ a cubic spline smoothing, whereas forN -body
codes the Plummer softening is the preferred choice. The difference in the magnitude of the
gravitational force calculated with Plummer softening and a cubic spline kernel is shown in
Fig. 4.7.

This problemwas tackled by using another code for calculating the gravitational interac-
tions between the SPH and N -body particles. The code chosen is FASTKICK and utilizes a
particle-particle force calculation with Plummer softening. For the force calculation a con-
stant softening length of ϵ = 0.5 AU was set, which is equal to the minimum smoothing
length among the SPH particles. The new force calculation scheme is illustrated in Fig. 4.8.
This constant softening length for the gravitational force calculation is adopted only for the
gravitational interaction between N -body and SPH particles. Inside the N -body code PH4,
the force between the N -body particles is calculated using Plummer softening with a con-
stant softening length of ϵ = 1 R⊙, which provides the necessary accuracy for treating close
encounters between all the particles. On the other hand, the gravitational force calculation
in the SPH code (due to self-gravity) is done via a Tree algorithm and employing the cubic
spline smoothing as explained in Sec. 4.2.2.
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Figure 4.6. Illustration of the usual coupling strategy between SPH and N -body codes
employed in AMUSE. Black dots represent the point masses. The blue circle represents the
smoothing volume of the SPH particle, with a smoothing length h. The red circle represents
the softening volume of the N -body particle, with a softening length eps. The difference in
the softening lengths of SPH and N -body particles poses a problem of force asymmetry in
the standard AMUSE coupling.

Figure 4.7. Illustration of the difference in the magnitude of the gravitational force between
two particles when using a Plummer softening kernel (orange line), a cubic spline (blue
line), or no softening at all (green dashed line). The x-axis shows the particle separation in
units of the smoothing length. The force in the y-axis is shown in arbitrary units.
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Figure 4.8. Illustration of the new coupling strategy adopted in this work. The black dots
represent the point particles. The blue circle represents the smoothing volume of the SPH
particle for the force calculation. The red circle represents the softening volume of the N -
body particle for the force calculation. A constant softening length eps was adopted for
every particle.

The integration scheme

After presenting the improved N -body-SPH coupling described in Sec. 4.2.3, this section
continues with a description of the integration scheme adopted in the simulations. The sys-
tem modelled approximates an embedded star cluster during the early stages of formation,
when protostars are still being formed. The system is therefore comprised of a gas cloud
(mapped with SPH particles), and a small star cluster of N -body particles, which are called
protostars here. One integration step from time t0 to time t0 + δt is based on the BRIDGE
method and therefore consists of a Kick-Drift-Kick scheme that proceeds as follows:

• Kick the particles: Calculate the gravitational acceleration aSPH,N−body on each SPH
particle due to all protostars bymaking use of the FASTKICK codewith a constant soft-
ening length of ϵ = 0.5 AU. Calculate also the gravitational acceleration aN−body,SPH

on each protostar due to all SPH particles by making use of the FASTKICK code with
a constant softening length of ϵ = 0.5 AU.
Kick the velocity of each SPH particle for half a timestep by doing vSPH = vSPH +

0.5× aSPH,N−body × δt. Kick also the velocity of each protostar for half a timestep by
doing vprotostar = vprotostar + 0.5× aN−body,SPH × δt.

• Drift the particles: For the SPH set, drift the particles for a full timestep with the FI
code (see Sec.4.2.2). For the protostar set, drift the particles for a full timestep with
the PH4 code (see Sec.4.2.1). During this step, stellar collisions can occur and are
solved as described in Sec. 4.2.1.
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• Kick the particles: Calculate the gravitational acceleration aSPH,N−body on each SPH
particle due to all protostars bymaking use of the FASTKICK codewith a constant soft-
ening length of ϵ = 0.5 AU. Calculate also the gravitational acceleration aN−body,SPH

on each protostar due to all SPH particles by making use of the FASTKICK code with
a constant softening length of ϵ = 0.5 AU.
Kick the velocity of each SPH particle for half a timestep by doing vSPH = vSPH +

0.5× aSPH,N−body × δt. Kick also the velocity of each protostar for half a timestep by
doing vprotostar = vprotostar + 0.5× aN−body,SPH × δt.

4.2.4 Additional algorithms

Given that the goal of the research presented in Chap. 7 was the modelling of a cluster
of accreting protostars while capturing the collisions between them, it was of fundamental
importance to include a physically motivated recipe for gas accretion, since the high accre-
tion rates found in that environment have a crucial impact on the size of the protostars as
explained in Sec.3.2.2 and 3.5. An adequate treatment of gas accretion, mass-radius rela-
tions and collisions was therefore essential. This section describes the additional algorithms
employed that allow an adequate treatment of the evolution of this system including these
effects.

Gas accretion

An adequate treatment for the mass accretion onto the protostars is crucial when their radii
depend on this, which in turn directly affects the collision probability between accreting
protostars. Recently Hubber et al. (2013b) developed an algorithm for sink particle creation
and gas accretion, which is specially suited for SPH codes. This novel accretion recipe in-
troduces an interaction zone which is the main difference with previous algorithms. This
interaction zone consist of a spherical volume around the accreting sink particle. We will
refer to the radius of this interaction zone as interaction radius. Inside the interaction zone,
the SPH particles contribute to the calculation of two important timescales for mass accre-
tion, namely the radially symmetric accretion timescale trad and the disk accretion timescale
tdisk. Each of these timescales is calculated as a weighted mean of the contribution of each
SPH particle inside the interaction zone, and the weights are obtained with a kernel func-
tion which was chosen here to be the cubic spline fromMonaghan and Lattanzio (1985b) as
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implemented in FI, and given by
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(4.43)

In the following a detailed description of the gas accretion algorithm is presented, as imple-
mented in the simulations.

Spherically symmetric accretion

The mass inflow rate inside a volume delimited by the surface S can be calculated as:

dm

dt
= −

∫
S

ρv · dS, (4.44)

where dm
dt

is the mass inflow rate and ρ is the density of the mass element passing through
the surface element dS with velocity v. Spherical symmetry is assumed in order to derive
the expression

Ṁ(r) = −4πr2ρ(r)vrad(r). (4.45)

Now following Hubber et al. (2013b), one can compute a weighted mean accretion rate from
the SPH particles that lie inside the interaction zone of sink s as

Ṁs = −4π
∑
j

|∆rjs|∆rjs ·∆vjsmjW (|∆rjs|, Rs), (4.46)

where ∆rjs = rj − rs is the relative position of the SPH particle j with respect to the sink
s, ∆vjs = vj − vs their relative velocity, and Rs is the interaction radius of the sink s.
If one now computes the total massMint of all the SPH particles inside the interaction zone
and divide it by Eq.(4.46), one obtains the timescale inwhich all thatmasswould be accreted.
The spherically symmetric accretion timescale is then computed as

⟨trad⟩ = −
∑

j{mj}Wnorm

4π
∑

j |∆rjs|∆rjs ·∆vjsmjW (|∆rjs|, Rs)
, (4.47)

with

Wnorm =

∑
j mjW (|∆rjs|, Rs)

ρj
. (4.48)

Disk accretion

One can also calculate a disk accretion timescale using the prescription for viscous disks
developed by Shakura and Sunyaev (1973) which is based on the parametrization of the
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angular momentum transport mechanisms in a gaseous thin disk by a single parameter αSS.
Following Hubber et al. (2013b), one can compute a weighted mean disk accretion timescale
form the contribution of all the SPH particles inside the interaction zone and using the kernel
function defined in Eq.(4.43). This disk accretion timescale is given by

⟨tdisk⟩ =
(GMs)

1/2

αSSWnorm

∑
j

{
|∆rjs|1/2mjW (|∆rjs|, Rs)

ρjc2s,j

}
, (4.49)

whereMs is the mass of the sink particle, ρj is the density of the SPH particle j, and cs,j its
sound speed. As in Hubber et al. (2013b) the default value of αSS = 0.01 was used.

Timescale for accretion

Once the two timescales have been computed, it is necessary to decide the timescale that will
be actually employed for the gas accretion. The timescale is chosen based on a comparison of
the rotational energy and the gravitational energy of the SPH particles inside the interaction
zone. The timescale for accretion is finally given by

tacc = ⟨trad⟩(1−f)⟨tdisk⟩f , (4.50)

f = min
(

2Erot

|Egrav|
, 1

)
. (4.51)

In this caseErot andEgrav are the net rotational and gravitational energy of the SPH particles
inside the interaction zone, relative to the point mass. These energies are calculated as

Erot =
|Lint|4

2
∑

j mj|∆rjs · Lint|2
, (4.52)

Egrav =
GMs

2

∑
j

mj

{
ϕ (|∆rjs|, Rs) + ϕ (|∆rjs|, hj)

}
+
G

4

∑
j

∑
j′ ̸=j

mjmj′

{
ϕ (|∆rjj′ |, hj) + ϕ (|∆rjj′ |, hj′)

}
, (4.53)

whereLint is the total angular momentum of the the SPH particles inside the interaction zone
with respect to the point mass s, and ϕ(|r|, h) is the kernel function for the gravitational
potential.

The first term of the gravitational energy makes use of an average of the potential con-
sidering two softening lengths, the one of the sink particleRs and the one of the SPH particle
hj . The same applies to the second term, which takes into account the interaction among all
the pairs of SPH particles j and j′ inside the interaction zone. The potential is calculated
with a formula derived from the kernel function. For the kernel defined in Eq.(4.43), the
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gravitational potential is given by (see derivation in Apendix A)
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(4.54)
The total angular momentum of the SPH particles inside the interaction zone with respect
to the point mass s is obtained as

Lint =
∑
j

mj∆rjs ×∆vjs. (4.55)

Taking mass from SPH particles

After the accretion timescale has been defined one can calculate the total amount of mass
that must be transferred to the point particle s. At the end of the current timestep, i.e., at
time t+ δt, the mass that will be transferred to the point mass is

δMacc = Mint

[
1− exp

(
− δt

tacc

)]
. (4.56)

First, the mass is taken from the SPH particle that is closest to the point mass. If the mass is
less than δMacc, the remaining is taken from the next SPH closest to the point mass and so
on until a total of δMacc is taken or all the mass of the interaction zone has been consumed.

Unlike in Hubber et al. (2013b) an additional parameter mSPH,min was introduced here.
The aim of this parameter is to prevent ending up with SPH particles with tiny masses com-
pared to the rest. Therefore, if an SPH particle were going to be left with a mass equal to
or less than mSPH,min, the mass of the SPH particle is instead set to zero, and all its mass is
transferred to the accreting sink. The value mSPH,min = 10−4 was adopted so that the SPH
particles cannot have masses that are less than 10−4 times their initial mass.

Note also that Hubber et al. (2013b) describe two instances in which the procedure of
mass removal is superseded. In the work presented in Chap. 7 only the first instance was
included but in a slightly modified way. The procedure included is:

• If the total mass of SPH particles inside the interaction zone of a sink s exceeds a
maximum valueMmax, then tacc is decreased artificially by a factor (Mint/Mmax)

2, in
order to accrete the excess mass more rapidly.

The adopted value wasMmax = 2×Mini,IZ, whereMini,IZ is the initial gas mass contained in
the interaction zone for each sink, which was set to be equal to the mass of 50 SPH particles,
i.e.

Mmax = 2×Mini,IZ = 100
Mgas

NSPH
. (4.57)
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Interaction radius

In themass accretion formulation of Hubber et al. (2013b) the interaction radiusRs is chosen
at the moment of sink particle creation and remains fixed throughout the simulation. In this
work a variable interaction radius was employed. The radius is adjusted at the beginning of
every accretion step in such a way that the amount of mass contained inside the interaction
zone remains close to Mini,IZ. A tolerance of 10% around this value is allowed, and the
interaction radius is recalculated iteratively (50 iterations maximum) until the enclosed mass
falls within the allowed values. In order to prevent extreme values for the interaction radius
two limits were imposed. An upper limit of 2000 AU and a lower limit of 10 AU.

Particle ejections

In a dense stellar system as the one modelled in this work, close encounters between pro-
tostars can result in strong gravitational kicks that can ultimately eject individual or bi-
nary stars. Additionally, studying the ejection of low mass protostars during primordial
star formation has important implications for constraining models of Pop. III star formation
(Schlaufman et al., 2018), and thus an adequate treatment of these events was necessary.

The simulations keep the record of N -body particles ejected during the evolution of
the system by storing the masses and velocities at the moment of ejection. A particle is
considered ejected from the system when it fulfills the next three criteria:

• The distance between the particle and the center of mass of the system is d ≥ 10 Rgas,
with Rgas being the virial radius of the gas cloud at t = 0.

• The particle is moving away from the system, i.e., vparticle,COM · rparticle,COM > 0, where
vparticle,COM is the relative velocity between the particle and the center of mass velocity
of the system, and rparticle,COM is the relative position between the particle and the
center of mass of the system.

• The particle is unbound, i.e., the gravitational potential energy plus the kinetic energy
of the particle with respect to the center of mass of the system is positive.

Once these criteria are fulfilled, the particle is removed from the simulation and its properties
at the time of removal are stored in a file.

4.2.5 Sink particle creation

During the evolution of the system the gas cloud collapse leads to extremely high densities
(ρ ∼ 10−6 g cm−3) reached primarily at the cloud center. Such high density results in SPH
particles that are assigned with extremely small timesteps in the order of∆t ∼ 10−4 yr due
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to the courant condition for SPH. These small timesteps make the simulation very expensive
and in most cases impractical. A solution to this problem is to employ sink particles.
Initially invented by Bate et al. (1995) for modelling the formation of binary stars from a
collapsing gas cloud, sink particles are meant to represent either individual stars or a collec-
tion of stars. A sink particle is created by replacing one (or several) SPH particles by a new
particle that interacts only through gravity.

Sink particles are nowadays widely extended in the astrophysical community and have
been employed for studies of present-day and primordial star formation. Algorithms for sink
particle creation and evolution have been implemented in a diverse set of numerical codes
like the RAMSES code (Bleuler and Teyssier, 2014), the SEREN code (Hubber et al., 2011),
the ATHENA code (Gong and Ostriker, 2013), the AREPO code (Weinberger et al., 2020),
the PHANTOM code (Price et al., 2018), and the GIZMO code (Hopkins, 2015), just to name
a few.

The implementation of sink particles differ among the codes, in particular betweenMesh
codes (like ATHENA or RAMSES), SPH codes (like SEREN or PHANTOM), and hybrid
moving-mesh codes (like AREPO or GIZMO). In this work the sink particle formulation
introduced by Hubber et al. (2013b) was adopted, which is specially suited for SPH codes.

Conditions for sink particle creation

AnSPH particle whose density exceeds a user-defined threshold ρsink becomes a sink particle
candidate. In the work presented in Chap. 7 the adopted value was ρsink = 1016 cm−3 ≃
2 × 10−8 g cm−3(Becerra et al., 2015). SPH particles with a higher density criterion are
considered sink candidates.

A sink candidate i is assigned a radius for its interaction zone of

Rs = Xsinkhi, (4.58)

where Xsink is a user-defined value that was set to Xsink = 2. hi is the smoothing length.

Another criteria to be met by the sink candidate is a no-overlap condition at the moment
of creation. The interaction zone of sink particles cannot overlap at the moment of creation,
this is

|rij| > Rs,i +Rs,j, (4.59)

for all existing sinks j. Here |rij| is the distance between sink candidate i and sink j, Rs,i

is the radius of the interaction zone for sink candidate i. Rs,j is the radius of the interaction
zone of the sink j.
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The next criterion is that the candidate sink must be at a minimum of the gravitational
potential among its neighbours (Federrath et al., 2010), i.e.,

ϕi < min{ϕj}, (4.60)

for all neighbours j.

The final condition is that the candidate sink must be dense enough to dominate the
local gravitational potential. This is important when other sink particles are present. The
condition is

ρi > ρHill =
3XHill (−∆rij ·∆aij)

4πG|∆rij|2
, (4.61)

where XHill is a user-defined parameter with default value XHill = 4, ∆rij = ri − rj is
the relative position of candidate i with respect to existing sink j, and ∆aij is the relative
acceleration of candidate i with respect to sink j.

If all these criteria are met, the candidate sink is turned into a sink particle inheriting its
properties, with mass msink = mi, position rsink = ri, velocity vsink = vi, and a radius for
the interaction zone given by Eq.(4.58).

Angular momentum feedback

During mass accretion onto protostars, the inflowing material has high specific angular mo-
mentum and forms an accretion disk around an accreting central object. Angular momentum
is transferred in the disk, allowing the material to spiral inwards and finally reach the cen-
tral protostar. Such disks have been revealed with ALMA observations (Yen et al., 2017).
In order to prevent that sink particles act as sinks of angular momentum, and to model the
effects of an accretion disk around protostars, the angular momentum feedback recipe de-
scribed in Hubber et al. (2013b) is also included in the simulations. For this, at the end of
each timestep∆t, the angular momentum of the point mass is reduced and transferred to the
SPH particles existing in its interaction zone. The amount of angular momentum transferred
|δLs| is calculated as

|δLs| = |Ls|
{
1− exp

(
− ∆t

⟨tdisk⟩

)}
, (4.62)

where |Ls| is the angular momentum of sink s. This angular momentum is redistributed
among the SPH particles inside the interaction zone of sink s via an impulse-velocity given
by

δvj =
|δLs|Ls ×∆rjs

|
∑

j{mj∆rjs × Ls ×∆rjs}|
. (4.63)
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At the same time, the point mass s receives impulses of velocity and angular momentum
given by

δvs = −M−1
s

∑
j

mjδvj, (4.64)

δLs = −
∑
j

mj∆rjs × δvj. (4.65)

4.3 Generation of the initial conditions

Having described in Sec. 4.2.1 and 4.2.2 the community codes employed in this study, and
the coupling strategy adopted in Sec. 4.2.3, this section aims to present the procedure fol-
lowed in order to produce the initial conditions for the research article presented in Chap. 7.

4.3.1 A Plummer sphere of gas and stars

For generating the initial conditions the example scripts provided with the AMUSE interface
were utilized as reference. A convenient strategy is to define a converter first, a function
that will manage the conversion between different units in the AMUSE script, and that can
be passed to the function that generates the initial conditions. For creating the converter
one needs the total mass of the system and the virial radius of the Plummer distribution. In
particular, for generating a Plummer sphere in virial equilibrium consider the following. For
a Plummer model, the velocity dispersion is given by

σ2
p(r) =

GM

6
√
r2 + a2

, (4.66)

where M is the total mass and a is the Plummer radius. If we consider a position r much
larger than a we can simplify the previous relation to

σ2
p(r) =

GM

6r
. (4.67)

Therefore, the kinetic energy of a Plummer distribution is given by

K =
3

2
Mσ2

p =
3

12

GM2

r
. (4.68)

The potential energy of a Plummer distribution, again, for the limit in which r >> a is

U = −3π

32

GM2

a
. (4.69)

Consider now the virial theorem that relates the kinetic and potential energy of a particle
distribution as

2K = −U, (4.70)
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so that we can define a virial radius at which the virial theorem holds for a Plummer distri-
bution. This virial radius can be calculated as

1

2

GM2

r
=

3π

32

GM2

a
,

16

3π
a = rv, (4.71)

rv ∼ 1.7a. (4.72)

This virial radius is required for initializing the particle distribution with the function pro-
vided by AMUSE.

Define now the converter using the total mass of the system and the virial radius of
the Plummer distribution. The virial radius in this case is chosen such that the half-mass
radius of the system is 0.1 pc. The half-mass radius of a Plummer distribution is rh ∼ 1.3a.
Therefore the virial radius is

rv ∼
1.7

1.3
rh ∼ 0.14 pc. (4.73)

In AMUSE, the converter is initialized as

converter=nbody_system.nbody_to_si(Mtot, Rv),

where Mtot is the total mass of the system, i.e., gas plus protostars.
After this initialization one can easily generate the initial conditions for the simulations

presented in Chap. 7. This is rather straightforward for the N -body particles. The first step
is to import the required function into the script. This can be done by writing

from amuse.ic import plummer

and then generating a plummer distribution by doing

proto_stars=plummer.new_plummer_model(Nproto, converter, radius_cutoff=5.,
do_scale=True).

Here, Nproto is the number of particles to be created, the option radius_cutoff=5. is used
to truncate the distribution at 5a, and the option do_scale=True is used to scale the results
to N -body units in which the total mass is M = 1, the kinetic energy is K = 0.25 and the
gravitational potential energy is U = −0.25, all of them in N -body units.
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Note that since the converter is defined using the total mass of the system (not only that
of the N -body particles), the mass of each N -body particle will be set equal toMtot/Nproto.
By doing this the velocities of the N -body particles are set under the assumption of virial
equilibrium in a deeper gravitational potential. The only remaining step is to change the
masses of the particles as desired. In this case an initial mass of 0.1M⊙ was chosen for each
of them. This choice of the converter for generating the initial conditions and subsequent
change of the masses of the particles results in a set of 0.1 M⊙ particles that will remain in
virial equilibriumwhen the gas cloud is included. This was checked by running a simulation
in which only theN -body particles are evolved under the influence of the gravity of the gas
(see Fig. 4.11).

For the the set of SPH particles a Plummer profile was also used for producing the initial
conditions. Additionally, an option for including turbulence was set. For this, the AMUSE
script used to generate a turbulent uniform cloud was used as a template. The uniform SPH
distribution was replaced by a Plummer SPH distribution. In order to generate the turbulent
field it is necessary to specify the kinetic energy associated to the turbulent motions. More
specifically, one needs as input the ratio of the kinetic energy (associated to turbulence)
to the absolute value of the gravitational potential energy. It is customary to express the
velocity of the turbulent motions via the Mach numberM defined as

M =
σv

cs
, (4.74)

where σv is the velocity dispersion of the gas and cs is the sound speed. Therefore it is
convenient to express the ratio −K/U as a function of M. For this, consider first the
kinetic energy associated to turbulent motions for a gas cloud of massM , this is

K =
3

2
Mσ2

v , (4.75)

and express σv as a function ofM using Eq.(4.74) to obtain

K =
3

2
MM2c2s. (4.76)

Now, for modelling an isothermal cloud, consider the isothermal sound speed

cs =

√
γ
kT

µ
, (4.77)

where γ is the adiabatic index, k is Boltzmann’s constant and µ is the meanmolecular weight
of the gas. The expression for the kinetic energy associated to turbulent motions is given by

K =
3

2
MM2γ

kT

µ
. (4.78)
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Now, combine this equation with the expression for the gravitational potential energy of a
Plummer distribution (Eq. 4.69) to obtain

−K

U
=

16M2γkTa

πGMµ
. (4.79)

It is in principle also necessary to specify the ratio of thermal to gravitational potential
energy in order to set the temperature of the gas cloud. For the set of simulations presented
in Chap. 7 this was not necessary since the modified equation of state employed automati-
cally set the initial temperature to 8000 K (see Sec. 4.39). Therefore, only for initialization
purposes, a value of Eth/U = 0.5 is set here.

The method for generating turbulent initial conditions is similar to the one followed by
Dubinski et al. (1995) and consists in generating a total of (2nf )

3 shear waves with ran-
dom propagating directions in Fourier space, whose amplitude is A ∝ kp/2. The angular
wavenumber k spans a range of values between 10−15 and

√
3nf . In this work the value

nf = 32 was chosen. This yields a total of 262 144 waves. The script for injecting diver-
gence free turbulence is included in AMUSE and can be imported as

from amuse.ext.molecular_cloud import molecular_cloud

and then the particle set initialized by doing

gas = molecular_cloud(nf=32,power=-10./3.,targetN=Nsph,
convert_nbody=converter,ethep_ratio=ratio1,ekep_ratio=ratio2,
seed=turb_seed).result

where power sets the value of the exponent p and in turn sets the amplitude of the waves
in Fourier space (vk ∝ kp/2). targetN is the number of SPH particles, convert_nbody is
the converter defined previously, ethep_ratio and ekep_ratio are the ratios of thermal
to potential energy (which for initialization purposes we set to 0.5), and the ratio of kinetic
to potential energy defined in Eq.(4.79). Finally, turb_seed is the random seed number.

By combining the set of N -body and SPH particles a snapshot of the initial conditions
was produced. This is shown in Fig. 4.10.

4.3.2 Gas clouds resulting from the collapse ofmetal free atomic-cooling
halos

The research presented in Chap. 7 describes the results of simulations of the assembly of
SMSs in an spherically collapsed atomic cooling halo following fragmentation at sub-parsec
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Figure 4.9. Thermodynamical and physical properties of the gas in one of the halos simu-
lated by Latif and Volonteri (2015). From the top left, and in clock-wise direction the panels
present the total enclosed mass, the gas density, the H2 fraction, and the gas temperature, all
of them as function of the radius of the cloud. Credits: Latif and Volonteri (2015).

scales. For this end the central 0.14 pc of the collapsed cloud was modelled as a Plummer
sphere (Plummer, 1911) since this provides the nearly isothermal density profile (ρ ∼ R−2)
found in large-scale simulations (Chon et al., 2018; Latif et al., 2016a). The typical mass
enclosed within such volume was obtained from the work of Latif and Volonteri (2015)
who report values of ∼ 104 M⊙ as shown in Fig. 4.9. The values chosen were 104 M⊙ and
3× 104 M⊙ for the mass of the gas clouds.

The temperature of the gas was set to 8000 K and a modified equation of state was em-
ployed. This EOS is isothermal below a density of ρad and becomes adiabatic at higher
densities. The value ρad = 1016 cm−3 was adopted as informed by hydrodynamical nu-
merical simulations that employ chemical networks (Becerra et al., 2018). Therefore, the
equation of state employed has the form

T = T0

[
1 +

(
ρ

ρad

)γ−1
]
, (4.80)

with T0 = 8000 K and γ = 5/3.
Once the cloud has been relaxed in ten steps during a period of 10% the crossing time,

a total of 643 waves were injected, with a power spectrum such that E(k) ∝ k−5/3, corre-
sponding to a Kolmogorov spectrum. The velocities of the SPH particles were then scaled
in such a way that the total kinetic energy correspond to Mach=1 turbulence.

The external pressure Pext for the clouds with 104 M⊙ and 3 × 104 M⊙ are 7.45 ×
10−8 g cm−1 s−2, and 1.72 × 10−7 g cm−1 s−2 respectively. These were the values in-
cluded in the modified momentum equation for the hydrodynamics code as explained in
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Sec. 4.2.2.
Once the gas cloud was initialized, a total of 256 protostars distributed according to a

Plummer density distribution were inserted. A snapshot of the initial conditions is presented
in Fig. 4.10.

Figure 4.10. Initial conditions for the simulations presented in Chap. 7.

The velocity of the stars were adjusted so that they are in virial equilibrium at the start of
the simulation. This was checked by running a simulation evolving the stars only, under the
gravitational effects of the gas cloud, which in turn was static. As can be seen in Fig. 4.11,
the Lagrangian radii of the distribution of stars maintains a nearly constant value for half a
million years. The stars are thus in virial equilibrium.
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Figure 4.11. Lagrangian radii for a cluster of protostars evolved under the gravitational
potential of the gas cloud. The gas cloud remains static in order to check that the protostars
are in virial equilibrium.



Chapter 5

The effects of a background potential in
star cluster evolution: A delay in the
relaxation time-scale and runaway
collision processes

5.1 Statement about my contribution

For the research article presented in this chapter my contribution consisted in the modifica-
tion of the software employed. I also ran the numerical simulations and analyzed them. I
created all the tables and figures and wrote the manuscript. All the authors contributed to
the discussion and helped with the revision of the manuscript.

105



A&A 639, A92 (2020)
https://doi.org/10.1051/0004-6361/202037843
c© ESO 2020

Astronomy
&Astrophysics

The effects of a background potential in star cluster evolution

A delay in the relaxation time-scale and runaway collision processes

B. Reinoso1,2, D. R. G. Schleicher1, M. Fellhauer1, N. W. C. Leigh1,3, and R. S. Klessen2,4

1 Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio
Universitario, Casilla 160-C, Concepción, Chile
e-mail: breinoso@udec.cl

2 Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg,
Germany

3 Department of Astrophysics, American Museum of Natural History, New York, NY 10024, USA
4 Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Im Neuenheimer Feld 205, 69120 Heidelberg,

Germany

Received 27 February 2020 / Accepted 22 April 2020

ABSTRACT

Runaway stellar collisions in dense star clusters are invoked to explain the presence of very massive stars or blue stragglers in the
center of those systems. This process has also been explored for the first star clusters in the Universe and shown to yield stars that
may collapse at some points into an intermediate mass black hole. Although the early evolution of star clusters requires the explicit
modeling of the gas out of which the stars form, these calculations would be extremely time-consuming and often the effects of the gas
can be accurately treated by including a background potential to account for the extra gravitational force. We apply this approximation
to model the early evolution of the first dense star clusters formed in the Universe by performing N-body simulations, our goal is to
understand how the additional gravitational force affects the growth of a very massive star through stellar mergers in the central parts
of the star cluster. Our results show that the background potential increases the velocities of the stars, causing an overall delay in the
evolution of the clusters and in the runaway growth of a massive star at the center. The population of binary stars is lower due to
the increased kinetic energy of the stars, initially reducing the number of stellar collisions, and we show that relaxation processes are
also affected. Despite these effects, the external potential enhances the mass of the merger product by a factor ∼2 if the collisions are
maintained for long times.

Key words. galaxies: star clusters: general – galaxies: star formation – binaries: general

1. Introduction

The discovery of supermassive black holes (SMBHs) in the first
billion years of the Universe (Fan et al. 2006; Mortlock et al.
2011; Wu et al. 2015; Reed et al. 2019) has led to the study
of formation channels for massive black hole seeds early on
(z ∼ 10−20), following the collapse of molecular-cooling halos
(∼106 M�) or atomic-cooling halos (∼108 M�). The direct col-
lapse of protogalactic clouds exposed to a moderate Lyman-
Werner flux from neighboring star forming halos produced the
most massive seeds (103−5 M�) (Wise et al. 2019), and recent
numerical simulations suggest that contrary to what was previ-
ously thought, the UV flux is not that critical anymore in the case
of the efficient merger of fragments (Suazo et al. 2019). Another
promising mechanism to form massive seeds is the formation
of very massive stars (VMS) in the centers of dense stellar
systems through stellar mergers (Fujii & Portegies Zwart 2013;
Katz et al. 2015; Sakurai et al. 2017; Reinoso et al. 2018), pro-
ducing either VMSs with several 102 M� or intermediate mass
black holes with ∼103 M� and potentially up to 104 M�. Such
massive seeds could be present in the early Universe if accret-
ing population III (Pop. III) protostars can merge before enter-
ing the main sequence or if the remaining gas in the cluster can
be accreted by the central object (Boekholt et al. 2018). Fur-
thermore, after the formation of a BH in the center of a stellar

cluster, additional growth can be expected by tidal disruption
events of stars passing close to the black hole (Sakurai et al.
2019; Bonetti et al. 2020).

Although most of these previous studies have focused on
mergers in second generation star clusters, that is, clusters that
formed from molecular clouds that were polluted by stellar
winds or supernovae from the first generation of stars (Katz et al.
2015; Sakurai et al. 2017, 2019), we are mostly interested in the
very first star clusters of the Universe given the particular prop-
erties of these systems and these stars. Fragmentation occurs at
higher densities in primordial gas clouds (109 cm−3 or higher)
(e.g., Clark et al. 2011a; Greif et al. 2011, 2012; Smith et al.
2011, 2012; Latif et al. 2013a), with clusters potentially having
half-mass radii of 0.1 pc, especially if dust grains are present in
such clouds which trigger fragmentation at high densities (e.g.,
Omukai et al. 2005; Klessen et al. 2012; Bovino et al. 2016;
Latif et al. 2016).

In those environments, the protostellar radii could also be
enhanced due to the rapid accretion expected in primordial or
low-metallicity gas, which in turn are a consequence of much
higher gas temperatures than at present day star formation, and
so the protostellar radii are enhanced up to 300 R� (Stahler et al.
1986; Omukai & Palla 2001, 2003). Moreover, high accre-
tion rates of ∼0.1 M� yr−1 have been reported in several sim-
ulations for these protostars (Hosokawa et al. 2012, 2013;
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Schleicher et al. 2013; Haemmerlé et al. 2018; Woods et al.
2017), implying ∼500 R� for a 10 M� star and potentially
more than 1000 R� for a 100 M� star. While some models
already included the effects of an external potential in the evo-
lution of dense star clusters (e.g., Leigh et al. 2013a,b, 2014;
Boekholt et al. 2018; Sakurai et al. 2019) in order to mimic the
effects of gas during the embedded phase of the cluster or to
account for the dark matter halo, disentangling the effects of
the external potential can be tricky because these models also
include mass accretion recipes (Boekholt et al. 2018).

In this paper, we present a systematic investigation on how
the formation of very massive stars in dense star clusters and the
evolution of the clusters themselves are affected when including
a background potential in the evolution of the systems. Our work
can be used to constraint the parameter space that future, more
sophisticated simulations should focus on. Since each physi-
cal collision led to a merger in our runs, we use these terms
interchangeably. We describe our setup and initial conditions in
Sect. 2 and our results are presented in Sect. 3, including the
typical evolution of clusters under the influence of a background
potential and clusters without a background potential, the num-
ber of collisions, the mass of the resulting object, and our model
to estimate the number of mergers at different times. We apply
our model to population III (Pop.III) star clusters in Sect. 4. A
discussion about neglected effects and considerations for future
research on this subject is given in Sect. 5 and finally the conclu-
sions are presented in Sect. 6.

2. Simulation setup

To understand the impact of the gas potential on the num-
ber of mergers that occur in star clusters, we first performed
simulations in which we did not include stellar mergers, and
we compared the evolution of these systems without an exter-
nal potential and when placed in the center of a background
potential. Once we addressed the effects of the extra force on
the evolution of the clusters, we performed simulations that
include stellar mergers in clusters with and without an exter-
nal potential. To perform the calculations, we used a modified
version of NBODY61 (Aarseth et al. 2000) to treat collisions,
where we switched off the stellar evolution package and instead
explicitly specify the stellar radii to perform a parameter study.
NBODY6 is a fourth order Hermite integrator, and includes a
spatial hierarchy to speed up the calculations: This is referred
to as the Ahmad-Cohen scheme (Ahmad & Cohen 1973). It also
includes routines to treat tidal capture and tidal circularization
of binary systems (Mardling & Aarseth 2001) that we activated
in our simulations. Another important routine included is the
Kustaanheimo-Stiefel regularization (Kustaanheimo & Stiefel
1965), which is an algorithm that can be used to treat binaries
and close two-body encounters more accurately. We performed
a total of 344 N-body simulations.

2.1. Simulations without stellar mergers

In order to create a controlled experiment to which we can com-
pare our results including stellar mergers, we first investigated
the effects produced by the external potential on the evolution
of the star clusters in the absence of collisions. We specifically
explored how the mass of the external potential affects the core-
collapse, the formation of binary systems, and the evaporation of
the clusters. We modeled each cluster as a Plummer (Plummer
1911) distribution of N = 1000 and N = 10 000 equal mass par-
ticles with a total cluster mass of Mstars = 104 M�. Given that

Table 1. Simulations that do not include stellar mergers.

Numbers N Mstars [M�] Mext/Mstars Rv [pc] tcc/tcross

1 1000 104 0.0 1.0 456
2 1000 104 0.1 1.0 460
3 1000 104 0.5 1.0 1 820
4 1000 104 1.0 1.0 6 553
5 10 000 104 0.0 1.0 2 306(a)

6 10 000 104 0.1 1.0 3 377(a)

7 10 000 104 0.5 1.0 13 519(a)

8 10 000 104 1.0 1.0 51 889(a)

Notes. Summary of simulations that do not include stellar merg-
ers showing the number of particles, the cluster mass, the ratio of
external potential to cluster mass, the virial radius and the ratio
of core collapse time to crossing time in Cols. 1, 2, 3, 4, 5
and 6 respectively. (a)Crossing time calculated using Eq. (1) with
q = Mext/Mstars = 1.0.

we are interested in the overall evolution of the system, and in
order to save computational time, we modeled less dense clus-
ters than the ones presented in Sect. 2.2, with a virial radius of
Rv = 1.0 pc. We then included an analytic background potential
that also follows a Plummer density profile with the same virial
radius as the stellar distribution Rv,ext = 1.0 pc and the mass of
the potential was varied as Mext = 0.0, 0.1, 0.5 and 1.0 ×Mstars.
The clusters start in virial equilibrium. We performed a total of
eight simulations that do not include stellar mergers and which
are listed in Table 1.

2.2. Simulations that include stellar mergers

Our simulations that include stellar mergers aim to model the
first stages after the formation of Pop. III star clusters. We mod-
eled a compact cluster in virial equilibrium by also using a
Plummer distribution (Plummer 1911) for the stars that are all
equal in mass and radius at the beginning of the simulation. We
modeled dense clusters with a virial radius of Rv = 0.14 pc and
a total mass in stars of Mstars = 104 M�. We then performed the
same set of simulations including an external analytic Plummer
potential with Mext = 1.0 × Mstars with the same virial radius
of Rv,ext = 0.14 pc in order to consider at first order the effects
of the gas that remains in the cluster after the formation of the
stars. Taking the mass of the external potential into account, the
crossing time of the clusters were calculated as:

tcross =

√
R3

v

GMstars

1
1 + q

, (1)

with q =
Mext
Mstars

(see Appendix A); this gives a value of tcross =

0.0078 Myr and tcross,ext = 0.0039 Myr for clusters without and
with an external potential, respectively. We investigated how the
mass of the final merger product depends on the initial number
of stars in the cluster N, which we varied as N = 100, 500, 1000,
and 5000 stars. We also varied the initial stellar radius as Rstar =
20, 50, 100, 200, 500, 1000, and 5000 R� using equal radii stars
in each run. For each of these configurations, we performed sim-
ulations with Mext = 0.0 and 1.0×Mstars. Finally, we ran a total of
six random simulations per each configuration, which are listed
in Table 2. This gives a total of 336 N-body simulations that
include stellar mergers.
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Table 2. Simulations that include stellar mergers.

Number N Mstars [M�] Mext/Mstars Rv [pc] mstar [M�] Rstar [R�] Mmax [M�](a)

1 100 104 0.0 0.14 100.0 20.0 350± 164
2 100 104 0.0 0.14 100.0 50.0 466± 137
3 100 104 0.0 0.14 100.0 100.0 883± 237
4 100 104 0.0 0.14 100.0 200.0 1050± 274
5 100 104 0.0 0.14 100.0 500.0 1533± 413
6 100 104 0.0 0.14 100.0 1000.0 2083± 691
7 100 104 0.0 0.14 100.0 5000.0 2833± 516
8 500 104 0.0 0.14 20.0 20.0 390± 55
9 500 104 0.0 0.14 20.0 50.0 633± 120
10 500 104 0.0 0.14 20.0 100.0 937± 184
11 500 104 0.0 0.14 20.0 200.0 1390± 170
12 500 104 0.0 0.14 20.0 500.0 2056± 204
13 500 104 0.0 0.14 20.0 1000.0 2756± 463
14 500 104 0.0 0.14 20.0 5000.0 3013± 332
15 1000 104 0.0 0.14 10.0 20.0 430± 143
16 1000 104 0.0 0.14 10.0 50.0 747± 173
17 1000 104 0.0 0.14 10.0 100.0 1168± 132
18 1000 104 0.0 0.14 10.0 200.0 1748± 188
19 1000 104 0.0 0.14 10.0 500.0 2428± 150
20 1000 104 0.0 0.14 10.0 1000.0 2980± 243
21 1000 104 0.0 0.14 10.0 5000.0 3217± 162
22 5000 104 0.0 0.14 2.0 20.0 421± 263
23 5000 104 0.0 0.14 2.0 50.0 1005± 377
24 5000 104 0.0 0.14 2.0 100.0 1520± 284
25 5000 104 0.0 0.14 2.0 200.0 1912± 750
26 5000 104 0.0 0.14 2.0 500.0 3223± 305
27 5000 104 0.0 0.14 2.0 1000.0 3495± 146
28 5000 104 0.0 0.14 2.0 5000.0 4256± 366
29 100 104 1.0 0.14 100.0 20.0 683± 216
30 100 104 1.0 0.14 100.0 50.0 983± 293
31 100 104 1.0 0.14 100.0 100.0 1583± 581
32 100 104 1.0 0.14 100.0 200.0 2183± 382
33 100 104 1.0 0.14 100.0 500.0 2800± 316
34 100 104 1.0 0.14 100.0 1000.0 3367± 619
35 100 104 1.0 0.14 100.0 5000.0 3700± 820
36 500 104 1.0 0.14 20.0 20.0 683± 159
37 500 104 1.0 0.14 20.0 50.0 1180± 324
38 500 104 1.0 0.14 20.0 100.0 1653± 279
39 500 104 1.0 0.14 20.0 200.0 2287± 348
40 500 104 1.0 0.14 20.0 500.0 3310± 312
41 500 104 1.0 0.14 20.0 1000.0 3987± 208
42 500 104 1.0 0.14 20.0 5000.0 4027± 332
43 1000 104 1.0 0.14 10.0 20.0 645± 141
44 1000 104 1.0 0.14 10.0 50.0 1343± 215
45 1000 104 1.0 0.14 10.0 100.0 1785± 392
46 1000 104 1.0 0.14 10.0 200.0 2502± 166
47 1000 104 1.0 0.14 10.0 500.0 3622± 204
48 1000 104 1.0 0.14 10.0 1000.0 4092± 158
49 1000 104 1.0 0.14 10.0 5000.0 4317± 267
50 5000 104 1.0 0.14 2.0 20.0 181± 144(b)

51 5000 104 1.0 0.14 2.0 50.0 552± 71
52 5000 104 1.0 0.14 2.0 100.0 1497± 189
53 5000 104 1.0 0.14 2.0 200.0 2264± 765
54 5000 104 1.0 0.14 2.0 500.0 3630± 166
55 5000 104 1.0 0.14 2.0 1000.0 4084± 213
56 5000 104 1.0 0.14 2.0 5000.0 5185± 236

Notes. Summary of simulations that include stellar mergers showing the number of particles, the cluster mass, the ratio of external potential to
cluster mass, the virial radius, the initial stellar masses, the initial stellar radii and the average mass of the most massive star at the end of the
simulation. (a)Value obtained as the average from 6 simulations. (b)Simulation run until 5657 tcross = 22 Myr.

2.3. Stellar mergers

In our simulations, a merger occurs when two stars are separated
by a distance equal to or smaller than the sum of their radii, this
is:
r ≤ R1 + R2, (2)

with r being the distance between both stars center of mass, and
R1 and R2 are the radii of the stars. Given that the stars are phys-
ically in contact at this point, we also call this a stellar collision.
Additionally, since each collision in our runs led to a merger,
we then consider the terms merger and collision to be synony-
mous. Once this condition was fulfilled, we merged both stars
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replacing them by a new star whose total mass is the sum of
the masses of the merging stars. Furthermore, the radius was
calculated assuming that the star rapidly settles to a stable con-
figuration where the new star has the same density as the previ-
ously merging stars, which is consistent with the calculations of
Hosokawa et al. (2012) and Haemmerlé et al. (2018). Therefore
the new mass and radius of the merger product were calculated
as:

Mnew = M1 + M2, (3)

Rnew = R1

(
M1 + M2

M1

)1/3

. (4)

3. Results

First we present the results of the simulations that do not include
stellar mergers and describe the effects introduced by the addi-
tion of an external potential and the variation of the potential
mass. Then, we present the results of our simulations that include
stellar mergers and describe how their evolution and the for-
mation of massive stars due to the runaway merger process are
affected by the external potential.

3.1. Simulations without mergers

Here, we describe the main effects of including an external
potential on the evolution of our star cluster models in the
absence of stellar mergers. Due to the similarities between the
runs, here, we only present the results for simulations number
5 and 8 listed in Table 1 with the setup described in Sect. 2.1.
However, a description for the remaining simulations listed in
Table 1 is included in Appendix B.

The evolution of clusters with Mext = 0×Mstars is well under-
stood and consistent with the results of Spitzer (1987), where
the clusters evolve toward core collapse as a result of two-body
relaxation. The core then experiences core-oscillations, contract-
ing and expanding again due to the formation of hard binaries
that act as an energy source in the core. The core collapse is
expected to occur between 10 and 20 half mass relaxation times
trh that we calculated as (Spitzer 1987):

trh = 0.138
N

ln (γN)
tcross, (5)

with γ = 0.4 because we used equal mass stars and tcross was
calculated with Eq. (1) setting Mtot = Mstars. The half mass
relaxation time for the cluster with N = 10 000 stars and
Mext = 0 × Mstars is trh = 166.38 tcross and core collapse occurs
at 2306 tcross which is 14 trh. We found the core collapse time
by visual inspection and looking for the first drop and subse-
quent rise in the 10% Lagrangian radius as marked by the verti-
cal green line in Fig. 1.

At the moment of core collapse, the 10% Lagrangian radius
drops to 0.087 pc, yielding a mean density of 3.6× 105 M� pc−3.
After this phase, the entire cluster begins to expand and the
onset of ejections takes place with a total number of ejections
of about 1500 until a time of 10 000 tcross. A star is considered to
be ejected from the cluster if its distance to the center of mass
of the system is >20 Rv and its kinetic energy is higher than its
potential energy at this location.

When we included an external potential in our simulations,
we note first that, since the clusters start virialized, the velocities
of the stars are higher compared to clusters without the back-
ground potential. This compensates for the extra gravitational

Fig. 1. Evolution of a cluster with N = 10 000 stars with a total stellar
mass of Mstars = 104 M� and virial radius Rv = 1.0 pc. Top panel: frac-
tion of ejections from the cluster and bottom panel: Lagrangian radii of
the cluster. The vertical green line marks the moment of core collapse.

Fig. 2. Evolution of a cluster with N = 10 000 stars with a total stellar
mass of Mstars = 104 M� and a virial radius of Rv = 1.0 pc in the center
of an external analytic potential with Mext = 104 M�. Top panel: fraction
of ejections from the cluster and bottom panel: Lagrangian radii of the
cluster. The vertical green line marks the moment of core collapse.

force. Then we had to calculate the crossing time of the cluster
using Eq. (1) with Mtot = Mstars + Mext.

We find that all of the clusters behave in a similar way. All of
them evolve toward core collapse while there is little expansion
of the outer parts (>30% Lagrangian radii) compared to clusters
without an external potential (see Fig. 2).

For the case when the mass of the external potential is com-
parable to the total mass (Mext = Mstars), the core collapse
is delayed significantly, which occurs now at 51 889 tcross (see
green vertical line in bottom panel of Fig. 2). This is 23 times
(in units of the cluster crossing time) later than the core collapse
time for the cluster without a background potential. The 10%
Lagrangian radius at this moment drops to 0.073 pc, which yields
a mean density of 6.0×105 M� pc−3. For this simulation, the time
is not long enough to see the contraction expansion phase that
follows after core collapse. Finally, in this run, only one star is
ejected from the cluster due to the higher escape velocity com-
pared to the cluster without the external potential.
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Fig. 3. Core collapse time tcc divided by the crossing time tcross for clus-
ters with N = 1000 (blue circles) and N = 10 000 (red circles) as a
function of q = Mext/Mstars. We also plotted two relations that scale as
(1 + q)4 which fit our data and therefore suggest that if the core collapse
time is proportional to the relaxation time of the cluster, then the relax-
ation time scales as (1 + q)4, which is the same relation that we derive
in Appendix A.

Fig. 4. Number of binary systems as a function of time and for different
values for the mass of the external potential Mext for simulations with
N = 1000 and up to 8000 crossing times. The vertical lines mark the
moments of core collapse and coincides with the onset of the formation
of binary systems.

In order to understand the delay in the core collapse time
when including a background potential, we define the parameter
q = Mext/Mstars as the ratio between the mass of the external
potential and the total mass in stars, then we find that the core
collapse time scales as tcc ∝ (1 + q)4 tcross as presented in Fig. 3.
If we assume, as found by Spitzer (1987) that the core collapse
time is proportional to the relaxation time, then according to our
data the relaxation time is proportional to trh ∝ (1 + q)4, which is
consistent with Eq. (A.12) for which we derived the relaxation
time of a cluster in the center of an analytic external potential
(see Appendix A):

trh = 0.138
N(1 + q)4

log (γN)
tcross, (6)

where the crossing time must be calculated from Eq. (1) with
q = Mext/Mstars (see the Appendix in Leigh et al. 2013a and
Leigh et al. 2014 for similar derivations but slightly modified to
consider different cases).

A second important effect that we note is on the binary pop-
ulation. Our results show that in increasing the mass of the
background potential, the number of binary systems that form
decreases dramatically as shown in Fig. 4 due to the increased
mean kinetic energy of the stars. Consequently, we also find that
these binaries tend to be more tightly bound (see Fig. 5) given
that they form at the hard-soft boundary, which is smaller for
higher velocity dispersion (Leigh et al. 2015). This will certainly
have an impact on the growth of a massive star through stellar
mergers given that collisions are more likely to occur in binary
systems.

Fig. 5. Distribution of the semi-major axis of the binary population for
the set of simulations listed in Table 1. The data clearly shows that
increasing the mass of the external potential the formed binaries tend
to be more tightly bound. Despite the fact that a low mass of the exter-
nal potential (Mext < 1.0 × Mstars) may promote the formation of wider
binaries, these systems tend to be short-lived due to the higher veloc-
ities of all the stars. This figure is only intended to show the distribu-
tion of the semi-major axis and not the total number of binaries that
formed.

3.2. Simulations that include stellar mergers

In the following, we present the results that we obtained when
we included stellar mergers in the evolution of star clusters with
and without an external Plummer potential. Additionally, we
describe the effects introduced by this background potential on
the formation of massive merger products. These simulations are
listed in Table 2.

The first effect that we note is a delay in the runaway growth
of the central object, which is explained by the delay in the core
collapse time due to a larger relaxation time when increasing the
mass of the potential, as can be seen in Eq. (6). Moreover with
this external force, binary systems are harder to form, as shown
in Fig. 4 and these binaries tend to be more compact.

Here we describe the time evolution for two clusters with
N = 1000 stars, with and without an external potential, which
correspond to simulations number 17 and 45 in Table 2 and we
also present their evolution in Figs. 6 and 7, respectively. These
simulations serve as examples of the typical evolution of the runs
that include stellar mergers, given that all the simulated clusters
follow very similar patterns.

In our runs, we identify three types of mergers: namely
hyperbolic mergers, which are mergers that occur between stars
that are not gravitationally bound; binary mergers, which occur
between stars that are part of a binary system; and chain merg-
ers, which occur between stars that are part of a higher order
system, for example, triples. Before the onset of runaway merg-
ers occurs in all of the clusters, there is a nearly constant merger
rate for hyperbolic mergers which do not produce a single mas-
sive star, but instead several less massive stars that eventually
sink to the cluster center, thus finally contributing to the growth
of the most massive star. We note that the hyperbolic merger rate
in clusters that do not include an external potential is only main-
tained for short periods of time (see Fig. 6); whereas in clusters
that include the extra force, the hyperbolic merger rate is main-
tained until the end of the simulation (see Fig. 7). Chain mergers
are very rare with only a handful having been identified among
all of our simulations.

During the period before the rapid growth of the most mas-
sive star, relaxation processes drive an energy flow from the cen-
tral parts of the cluster (inside the half-mass radius) via high
velocity stars that migrate to the cluster halo and cause the
expansion of the outer parts. All of the clusters evolve toward
core collapse, but not all of them reach that stage because for
large stellar radii Rstar ≥ 100 R�, the growth of the central star
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Fig. 6. Evolution of a cluster with N = 1000 stars, total mass Mstars =
104 M�, Rv = 0.14 pc, and Rstar = 100 R�. Uppermost panel: number
of mergers as a function of time, the fraction of binary, hyperbolic, and
chain mergers in the second panel along with the fraction of stars that
escape from the cluster. Third panel: 10, 50 and 90% Lagrangian radii,
and bottom panel: mass growth of the most massive object that formed
through mergers in the cluster.

is fast and the drop in the 10% Lagrangian radius that we see
in Fig. 6 occurs because the central object has already gathered
10% of the cluster mass, and thus we see the position of the cen-
tral star rather than a collapsed core. The onset of growth for
the central star is also marked by a rapid increase in the merger
rate of stars in binary systems despite the presence of an external
potential.

An important difference that we note when including the
background potential is on the expansion of the clusters and the
fraction of escaping stars. In this sense we found that the exter-
nal potential prevents the evaporation of the cluster (see panel
2 of Fig. 7) and keeps it compact so the mergers can continue
for longer periods of time, potentially gathering up to 50% or
more of the cluster mass in the central object, as the third panel
of Fig. 7 suggests.

3.3. Formation and growth of the most massive star

One important goal of this research is to address the effect of the
external potential on the formation of a massive star by stellar
mergers. Thus, we present the results regarding the mass growth
of the most massive star in our clusters, along with a description
of the effects introduced by the background potential.

The first important effect is a delay in the formation of the
most massive star due to the increased stellar velocity, which in
turn causes relaxation processes to be slower. This then leads to
a reduction in the number of binary systems that form, at a given
time, if the mass of the external potential is comparable to the
total stellar mass. On the other hand, the external potential can
also favor the mass growth of the central star by preventing the
evaporation and expansion of the cluster.

In the following, we present a model that we used to estimate
the mass of the central object at different times for both a cluster
with and without an external potential. For this, we followed the
same method described in Reinoso et al. (2018).

In the lower panel of Fig. 8, we first present an example of the
mass growth of the most massive star, which undergoes a very
rapid growth at around 1000–1500 tcross. This coincides with the

Fig. 7. Evolution of a cluster with N = 1000 stars, stellar mass
Mstars = 104 M�, Rv = 0.14 pc, and Rstar = 100 R� in the center of
an external potential with Mext = 104 M�. Uppermost panel: number of
mergers as a function of time, the fraction of binary, hyperbolic, and
chain mergers in the second panel, along with the fraction of stars that
escape from the cluster. Third panel: 10, 50, and 90% Lagrangian radii,
and bottom panel: mass growth of the most massive object that formed
through mergers in the cluster. The drop in the 50% Lagrangian radius
toward the end of the simulation suggests that the central object may
grow up to 5000 M�.

Fig. 8. Example of a Gaussian fit to the number of mergers with the
central star for simulation number 45 listed in Table 2. Top panel: num-
ber of mergers with the most massive star as a function of time (black
solid line) along with the Gaussian function that we used to estimate
the total number of mergers at different times. The parameters tdelay and
tduration are also shown in the figure. Bottom panel: mass growth of the
central star whose rapid growth coincides with the peak in the number
of mergers.

peak in the number of mergers with the central object as shown
in the top panel of the same figure.

We fit the Gaussian function presented in Eq. (7) to the
combined data from the six random realizations for each
simulation setup presented in Table 2 in order to get an estimate
for the number of mergers with the central object during the
rapid growth. Thus, we define the delay time tdelay as the time at
which the peak in the Gaussian occurs, and the height A of the
Gaussian gives us an estimate for the number of mergers at tdelay.
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Additionally, we define the duration time tduration =

FWHM/
(
2
√

2 ln 2
)
, with FWHM being the full width at

half maximum of the Gaussian. An illustration of the fitting
formula and two parameters are shown in the top panel of
Fig. 8. By doing this, we were able to obtain an estimate for the
moment at which there is rapid growth of the most massive star
(tdelay) and an estimate for the duration of this period (tduration),
which we can later combine with A and a normalization factor
D to finally obtain the number of mergers experienced by
the central star using Eq. (8) and therefore an estimate for its
final mass at different times. Furthermore we determined D
by comparing our model to the results from our simulations.
We also show how well our model reproduces the data of our
simulations in Figs. 9 and 10. The total number of mergers at
time t can thus be calculated as:

Nmerger(t) = A exp
− (t − tdelay)2

2t2
duration

, (7)

and the total number of mergers until a time tend can be calculated
as:

Nmerger,total = AD
∫ tend

0
exp

− (t − tdelay)2)

2t2
duration

dt. (8)

Although the data is not a perfect Gaussian (see Fig. 8), we
only need an estimate for the delay time tdelay, the duration
time tduration, and an estimate for the number of collisions A at
tdelay. Following this procedure, we first combined the data of
the six random realizations per each of the configurations listed
in Table 2 and then applied the Gaussian fit of Eq. (7) to find
the values of A, tdelay, and tduration that we present in Figs. 11
and 12 for clusters with Mext/Mstars = 0.0 (simulations 1–28 in
Table 2) and in Fig. 13 for clusters with Mext/Mstars = 1.0 (simu-
lations 29–56 in Table 2). Then we fit these data using an imple-
mentation of the nonlinear least-squares Marquardt-Levenberg
algorithm in gnuplot and obtained Eqs. (9)–(11) for clusters
without an external potential and Eqs. (13)–(15) for clusters in
a background potential. Using these equations, we were able to
compute Nmerger,total assuming first D = 1 and we compared the
calculated values to the real values from the simulations to adjust
D and reproduce the results correctly. By doing this, we obtain
Eqs. (12) and (16):

log10 (A) = [0.104 log10 (Rstar) + 0.562] log10 (N)
+ 0.358 log10 (Rstar) − 1.011, (9)

log10 (tdelay[tcross]) = [−0.246 log10 (N) + 0.443] log10 (Rstar)
+ 0.954 log10 (N) + 0.077, (10)

log10 (tduration[tcross]) = 0.430 log10 (N) + 0.580, (11)
log10 (D) = −0.227 log10 (Rstar) − 1.791, (12)

and the parameters for clusters in an external potential:

log10 (Aext) = [3.975 × 10−5N + 0.606] log10 (Rstar)
+ 0.554 log10(N) − 1.510, (13)

log10 (tdelay,ext[tcross,ext]) = [−0.006 log10(N) + 0.240] log10(Rstar)
+ 0.064 log10 (N) − 1.170 + tdelay,

(14)

log10 (tduration,ext[tcross,ext]) = −0.178N0.119 log10 (Rstar)

+ 2.163N0.073 + 0.151, (15)
log10 (Dext) = 0.053 log10 (Rstar)

− 1.879 × 106.9N/106
− 0.778. (16)

Fig. 9. Mean mass of the most massive star normalized by its initial
mass, as a function of N and Rstar for clusters without an external poten-
tial evolved until 2000 tcross = 15.6 Myr. The symbols represent the
mean values obtained from six simulations and the solid lines show the
results of the calculations with our model presented in Eq. (8) using
t = 15.6 Myr and the parameters obtained from Eqs. (9)–(12).

Fig. 10. Mean mass of the most massive star normalized by its ini-
tial mass, as a function of N and Rstar for clusters without an external
potential evolved until 3000 tcross = 16.5 Myr, except for the point at
N = 5000 and Rstar = 20 R�, which are simulations that were evolved
until 4000 tcross = 22 Myr. The symbols represent the mean values
obtained from six simulations and the solid lines show the results of the
calculations with our model presented in Eq. (8) using t = 16.5 Myr
(t = 22 Myr for N = 5000 and Rstar < 50 R�) and the parameters
obtained from Eqs. (13)–(16).

It is important to note that in Eqs. (10) and (11), the delay
time tdelay and duration time tduration are expressed in units of the
crossing time of the cluster defined in Eq. (1) and consequently
when calculating the total number of mergers until a time tend
using Eq. (8), this time must also be expressed in units of the
crossing time tcross. The same principle applies for Eqs. (14)
and (15). That is, when calculating the number of mergers until
a time tend using Eq. (8), this time must be expressed in units of
the cluster crossing time that have been modified by the mass of
the external potential tcross,ext, which is defined in Eq. (1).

The delay time for clusters in a background potential is
defined in Eq. (14) as tdelay,ext = tdelay + tdelay,Mext=Mstars , which
is the delay time for clusters without an external potential tdelay
plus an additional term tdelay,Mext=Mstars = [−0.006 log10(N) +
0.240] log10(Rstar)+0.064 log10 (N)−1.170 that, in principle, may
depend on the mass of the potential. However we do not examine
this potential dependence here.

To help in the reading of the equations, we define a general
equation of the form:

log10(x) = α log10(Rstar) + β log10(N) + γ (17)

and present the parameters α, β, and γ in Table 3. They can be
used to recover Eqs. (9)–(16).

Now we can estimate the number of mergers with the central
star and thus the mass of this star up to a time t for clusters with
different initial conditions, including the presence of an external
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Fig. 11. Parameters of the Gaussian fit to the number of mergers with
the central star for simulations of clusters without an external potential.
The data points were obtained after the fit to the combined data of six
simulations. Upper panel: values of the normalization factor A for dif-
ferent values of N and Rstar along with our model from Eq. (9). These
data points show that the number of mergers increases with both N and
Rstar as expected. Bottom panel: different values of tdelay in addition to
the different values of N and Rstar along with the fitting function pre-
sented in Eq. (10). These points show that tdelay decreases with Rstar, but
it increases with N.

potential that is comparable to the total stellar mass in the clus-
ter. This can be used as a very simplified model of a star cluster,
which still contains gas during or shortly after the process of
star formation or a nuclear star cluster. In Fig. 14, we show the
expected fraction fmerger of the stars that merge with a single cen-
tral object in a cluster without an external potential. In Fig. 15,
this is shown for clusters in an external potential, for a broad
combination of N and Rstar after 1, 2, and 10 Myr assuming a
cluster with Mstars = 104 M�, a virial radius of Rv = 0.14 pc, and
a mass of the external potential Mext = Mstars for the second case.
We used Eq. (8) for these calculations along with the parameters
from Eqs. (9)–(12) to obtain the results presented in Fig. 14,
and Eqs. (13)–(16) to obtain the results presented in Fig. 15.
Our model gives the total number of stars Nmerger,total that merge
with the central object in a given time interval, and thus assum-
ing that all stars are equal during the time at which most of the
collisions occur, we can estimate the mass of the central object
as Mmax = Nmerger,totalm = Nmerger,totalMstars/N = fmergerMstars.
Our results indicate that when collisions are maintained for short
periods of time only, that is, 1 Myr, then the clusters without an
external potential form more massive central stars than clusters
with an external potential (see left panels of Figs. 14 and 15).
This is due to the fact that the external potential dramatically
increases the relaxation time of the cluster, as shown in Eq. (6).
In fact the relaxation time depends on the ratio of external poten-
tial mass to stellar mass q = Mext/Mstars as trelax ∝ q4.

As the time limit increases, we see that in both clusters with
and without an external potential a more massive star emerges in
the center. However, even more massive stars form in the clus-
ter without an external potential for most values of N. However,
there is an important difference in clusters that include a back-
ground potential, which is that the potential keeps the cluster
compact as previously found by Leigh et al. (2014), and thus
most of the cluster mass is able to eventually sink to the cen-
ter at later times. This effect is visible in the left part of the
middle panel in Figs. 14 and 15. We also note that for large
N and Rstar for clusters in a background potential and before
core collapse, we may also expect mergers with the central star,
not binary mergers but hyperbolic, given that in those cases
the cross section for collisions is very large and the probability

Fig. 12. tduration as a function of the number of stars N for clusters
without an external potential. We found no clear correlations between
tduration and Rstar. The solid blue line shows the fitting function from
Eq. (11).

Fig. 13. Parameters of the Gaussian fit to the number of mergers with
the central star for simulations of clusters with an external potential.
The data points were obtained after the fit to the combined data of six
simulations. Upper panel: values of the normalization factor Aext for
different values of N and Rstar along with our model from Eq. (8). These
data points show that the number of mergers increases with both N and
Rstar as expected. Middle panel: different values of tdelay,ext in addition
to the different values of N and Rstar along with the fitting function pre-
sented in Eq. (14). These points show that tdelay,ext decreases with Rstar,
but it increases with N. Additionally, these values are larger than the
values of tdelay for clusters without an external potential (see Fig. 11).
Lower panel: values of tduration,ext along with the fitting function from
Eq. (15). We clearly see a positive correlation with N and a negative
correlation with Rstar.

of hyperbolic collisions increases with stellar velocity, that is,
if there is an external potential. Finally when the time limit
is very long, that is, 10 Myr, we may expect final masses for
the central object in the order of 0.3–0.4 Mstars for most clus-
ters without an external potential and 0.4–0.7 for clusters in
a background potential because the compactness of the clus-
ter is maintained and collisions still occur at an approximately
constant rate after the stage of runaway growth of the central
star.

4. Implications for primordial clusters

In the following, we explore the implications of our results with
respect to primordial star clusters, including both embedded and
gas free. Here we particularly distinguish the case of standard
Pop. III clusters as expected in a typical minihalo with about
106 M�.
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Table 3. Parameters for Eq. (17).

x α β γ

A 0.358 0.140 log10(Rstar) + 0.562 −1.011
tdelay[tcross] −0.246 log10(N) + 0.443 0.954 0.077
tduration[tcross] 0 0.430 0.580
D −0.227 0 −1.791
Aext 3.975 × 10−5N + 0.606 0.554 −1.510
tdelay,ext[tcross,ext] −0.006 log10(N) + 0.240 0.064 −1.170 + tdelay[tcross]
tduration,ext[tcross,ext] −0.178N0.119 0 2.163N0.073+0.151
Dext 0.053 0 −1.879 × 106.9N/106

− 0.778

Notes. Parameters for Eq. (17) that can be used to obtain Eqs. (9)–(16).

4.1. Standard Pop. III clusters (minihalos)

For a typical Pop. III star cluster, we assume a mass of 1000 M�,
which is consistent with a baryon fraction of about 10% and
a star formation efficiency on the order of 1% in a 106 M�
minihalo. We adopt a virial radius for the cluster on the order
of 0.1 pc, which is consistent with the results from simula-
tions and semi-analytic models (Clark et al. 2011a,b; Greif et al.
2011, 2012; Latif et al. 2013b; Latif & Schleicher 2015). We use
a stellar radius of 100 R�, which is characteristic of primor-
dial protostars with accretion rates on the order of 10−3 M� yr−1

(Hosokawa et al. 2012). The crossing time of the cluster then
is 0.015 Myr. The number of stars that can be expected in such
a cluster is uncertain, but here we adopt an estimate of about
N = 100. Thus, a stellar mass of mstar = 10 M�. Using the rela-
tions that we found, we expect two collisions to occur within
1 Myr which correspond to a final mass of 30 M�. If we assume
now a lifetime of 10 Myr, we can expect a total of six collisions
with the central star which correspond to a final mass of 70 M�.

We consider now an embedded and accreting Pop. III star
cluster with a stellar mass of 1000 M�, a gas mass of 1000 M�, a
virial radius of 0.1 pc, and a mean stellar radius of 100 R�. The
crossing time of the cluster, according to Eq. (1), corresponds to
0.007 Myr. We also adopt a number of stars N = 100. Then our
model predicts that no collisions occur within 1 Myr, but for a
lifetime of 10 Myr we expect a total of 15 collisions and hence
a central star with 160 M�. We expect the lifetime of a mas-
sive primordial star to be in between this range, depending on
the precise mass, the amount of rotation, and the effects that the
collisions may have on the stellar evolution (Maeder & Meynet
2012). We therefore find that a moderate enhancement can be
achieved within a normal cluster. We note that the values given
here are the expected mean number of mergers. Individual clus-
ters can deviate from these, both towards lower and higher
fractions of mergers, potentially including clusters with zero
mergers. This is especially the case for typical Pop. III clusters
where the number of collisions can be expected to be comparable
to the mean value because it is a chaotic collisional dynamical
process.

4.2. Massive primordial clusters (atomic cooling halos)

As a next step, we address now the potential impact of colli-
sions in a more massive atomic cooling halo with a total mass of
108 M�. Under the right conditions and in particular if the cool-
ing on larger scales is regulated by atomic hydrogen (Latif et al.
2014), a rather massive cluster of 104 M� can form, which is then
exposed to larger accretion rates on the order of 10−1 M� yr−1.
We assume that the cluster consists of an initial number N =

1000 of stars, the virial radius is Rv = 0.14 pc, and that the
stellar radii are somewhat enhanced compared to the standard
Pop. III cluster due to the higher accretion rates, with a typical
radius of about 300 R�. The crossing time of the cluster accord-
ing to Eq. (1) with Mtot = 104 M� is then 0.0078 Myr. Using
our derived model we expect about 51 collisions in 1 Myr, and
about 168 within 10 Myr with a single central star. We again
expect the realistic lifetime of the resulting massive star to be
in between these extreme cases. In the case of an atomic cool-
ing halo, we thus conclude that a considerable enhancement is
possible as a result of stellar mergers. If we take the mean stel-
lar mass, then the expected masses are 520–1690 M� after 1 and
10 Myr, respectively.

If we now consider the same cluster configuration but dur-
ing the embedded phase, assuming a total mass in gas of
104 M�, the crossing time of the cluster according to Eq. (1)
with q = Mext/Mstars = 2 is then 0.0039 Myr, and we expect
a total of 16 collisions to occur within 1 Myr and a total of
199 mergers within 10 Myr. Again, by taking the mean stel-
lar, mass this corresponds to a mass of 170–2000 M� within 1
and 10 Myr, respectively. Also the reported values here corre-
spond to a mean, and there can be deviations to lower and higher
merger fractions. Regardless, we expect the number of collisions
and hence the final mass to remain within the same order of
magnitude.

5. Discussion

We modeled the runaway growth of stars through mergers in the
center of dense star clusters by including an analytic external
potential in our N-body simulations. Our model relies on com-
puting four parameters that depend on the number of stars N
and their stellar radii Rstar. These parameters are the delay time
tdelay, the duration time for the collision process tduration, and two
normalization factors A and D. We then used these four param-
eters to integrate a Gaussian function and estimate the mass of
the central object up to a time t. Although a Gaussian fit is a
good tool to estimate tdelay, tduration, and A (see Fig. 8), there is a
deviation from this function when we include an external poten-
tial. In fact, when we compare the mass growth of the central
object in clusters with and without an external potential (see,
e.g. Figs. 6 and 7), we see a delay for clusters in an external
potential and an initially less dramatic growth until the onset
of mergers of stars in binary systems. This growth continues
after the runaway growth and is seen as tails of a Gaussian in
a plot of Nmergers versus time (see top panel of Figs. 9 and 10).
This later growth is associated to hyperbolic mergers, that is,
mergers of stars that are not bound by gravity, and this type of
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Fig. 14. Fraction of stars fmerger that merge with the central star in a cluster with a total stellar mass of Mstars = 104 M� and a virial radius of
Rv = 0.14 pc after 1 Myr (left panel), 2 Myr (middle panel), and 10 Myr (right panel) for different combinations of the number of stars N and the
stellar radius Rstar calculated using our model presented in Eq. (8). We can see that when the collisions are maintained for short periods of time,
that is, 1 Myr, a massive object with ∼ fmerger Mstars = 0.15 × 104 M� = 1500 M� is formed in the cluster center only when N is small (given that
tdelay becomes larger than the integration time for large N) or large Rstar. If the time limit is long, that is, 10 Myr, most of the clusters will form stars
with ∼0.3 Mstars = 3000 M�.

merger becomes important when including an external potential
because the cluster remains compact for longer periods of times
(Leigh et al. 2014). The onset of collisions is delayed in simu-
lations with an external potential relative to simulations without
it.

We also have found a formula for the delay time when we
include an external potential tdelay,ext = tdelay + tdelay,Mext=Mstars ,
which is basically the same expression for clusters without the
external potential plus an additional term tdelay,Mext=Mstars pre-
sented in Eq. (14). We present this parameter in this way so that
we can investigate in the future if this can be used in a more
general way as a function of the mass of the external field Mext
and if it is related to a longer relaxation time by means of its
dependence on Mext as suggested by Eq. (6).

The model derived here can be used as a first approximation
to obtain the number of stellar mergers in embedded star clusters
or to understand the effects of an external potential on the for-
mation of massive merger products, which might also be impor-
tant for the modelling of nuclear star clusters. Future research in
this field will employ hydrodynamic modeling of the gas, which
may prevent a large delay in the onset of runaway growth for
the central star due to gas accretion and dissipative effects via
star-gas or binary-gas interactions. These simulations also need
to include realistic mass-radius relations for accreting protostars
when aiming for a realistic modeling of the first star clusters in
the Universe. By performing these suites of N-body simulations
we have covered a large parameter space, and this allows us to
provide hints as to which part of this parameter space the future,
more sophisticated simulations should be focused on and the

subsequent physics that becomes relevant and often even domi-
nant in these regimes.

Our simulations including mergers adopt a virial radius of
Rv = 0.14 pc and a total stellar mass of Mstars = 104 M�, but our
results can be rescaled for different sizes and masses by means
of the crossing time. In this work, we only consider for the ini-
tial conditions equal mass and equal radii stars but allow for the
mass and radius to vary due to the mergers according to Eqs. (3)
and (4), and in this sense our simulations represent an effec-
tive model where an average stellar radius is adopted over the
period of time considered. This effective stellar radius should
correspond to the typical radius when the majority of mergers
are expected to occur.

Our model still lacks a more realistic stellar population,
namely an initial mass function (IMF), which would naturally
lead to mass segregation and subsequent mergers of the most
massive stars in the cluster center. Moreover, we have not
included the dissipative effects expected for star-gas interactions
in our simulations that include an external potential, which could
lead to the formation of more binary systems and hence more
mergers (Leigh et al. 2014). In this sense, we do not expect a
significant variation in the final mass of the most massive stars
if the total mass in the most massive stars is comparable to the
final mass obtained in our models, around 30–2000 M�. Addi-
tionally, including an IMF, three-body encounters and two-body
relaxation would cause the ejection of the smallest stars in the
cluster, which could be an important source of stellar relics from
the first star clusters in the early Universe. Another important
way to proceed is a better modeling of the stellar mergers, in
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Fig. 15. Fraction of stars fmerger that merge with the central star in a cluster with a total stellar mass of Mstars = 104 M�, a virial radius of
Rv = 0.14 pc, and an external potential with a mass of Mext = Mstars after 1 Myr (left panel), 2 Myr (middle panel), and 10 Myr (right panel)
for different combinations of the number of stars N and the stellar radius Rstar calculated using our model presented in Eq. (8). We can see that
when the collisions are maintained for short periods of time, that is, 1 Myr, an object that is not so massive with ∼ fmerger Mstars = 0.1 × 104 M� =
1000 M� is formed in the cluster center only when N is very small (given that tdelay becomes larger than the integration time for large N) or when
Rstar is large. If the time limit is 2 Myr (middle panel), we expect that clusters with a small N experience core collapse and form a massive central
star. However, if the number of stars is large and Rstar is also large, given the higher velocity of the stars in those clusters compared to clusters
without the external potential, there is a larger probability for hyperbolic mergers to occur before core collapse, which we see on the right-hand
side of middle panel. If the time limit is long, that is, 10 Myr, most of the clusters form stars with ∼0.3−0.4 Mstars = 3000−4000 M� and even
0.7 Mstars = 7000 M� if N is large enough.

particular the mass loss during the stellar collisions which may
be up to 25% of the total mass (Gaburov et al. 2010) and the col-
lision product may even receive a kick velocity>10 km s−1. More
recent work on the effects of mass loss and its effect on runaway
growth of a central star in a cluster shows that considering 5%
mass loss in every collision produces objects which are 20–40%
less massive at the end of the runaway growth compared to mod-
els without mass loss (Glebbeek et al. 2009; Alister Seguel et al.
2020). Thus regarding this, the results presented here should be
taken as an upper limit on the mass of the merger product.

6. Conclusions

In this study, we have performed a set of 374 N-body simula-
tions of dense, virialized star clusters and clusters in the center of
an external potential including stellar mergers in order to under-
stand the effects of the background force on the formation of
massive stars and derive a model to estimate the mass enhance-
ment of these objects in embedded star clusters. We find that
the presence of an external potential delays the overall evolution
of the star cluster and the formation of a massive central star
through runaway collisions due to the increased kinetic energy
of the stars, which in turn increases the relaxation time. How-
ever, the merger products become more massive (if the collision
process is maintained for a long time) given that these clusters
expand less than clusters without an external potential and so
more stars are able to merge with the central star even after the
process of runaway growth.

We also find that the increased velocity dispersion for star
clusters in an external potential boosts the number of hyperbolic
mergers , that is, mergers of stars that are not part of a binary or
triple system, with up to 50–60% of the total number of merg-
ers being hyperbolic mergers. Whereas in clusters without an
external potential, this percentage is around 30%. This is due to
the fact that in presence of a background potential, the clusters
remain more compact (Leigh et al. 2013a, 2014) and hyperbolic
mergers still may occur. Stellar ejections are highly suppressed
in clusters in the center of an external potential.

We find a set of equations that can be used to estimate the
mass of the merger product at different times for both clus-
ters with and without an external potential, and we present an
example of such calculations in Figs. 14, 15, and in Sect. 4
proving that if the process is not interrupted for long periods
of time (≥10 Myr), the external potential enhances the mass of
the central object by a factor of ∼2. However, if the process
is interrupted at early times (∼1 Myr), the clusters in a back-
ground potential produce objects only half as massive com-
pared to objects formed in clusters without an external poten-
tial. When applied to Pop. III star clusters we find, for stan-
dard clusters formed in a minihalo, a moderate enhancement
for the mass of the most massive star in the range of 10–
160 M� within 1 and 10 Myr in embedded clusters. Whereas
for a massive Pop. III star cluster that formed in an atomic
cooling halo, we find that the mass of the most massive star
lies in the range of 170–2000 M� in embedded clusters within
1 and 10 Myr.
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Appendix A: Modification of the half-mass
relaxation time-scale

We have seen that when we include an external potential in a
star cluster, the overall evolution seems to be delayed, in par-
ticular the core collapse times-scale rapidly increases with the
mass of the external potential. Until now, we have used the usual
half-mass relaxation time-scale defined in Eq. (5) (Spitzer 1987).
However, this is probably not adequate when we include an
external potential because in that case, considering a virialized
cluster, the root mean square (rms) velocity of the stars is higher
due to the extra force exerted by the potential and this certainly
modifies the time-scale on which stellar encounters are going to
modify the higher velocity of the stars. In order to account for
this effect, here, we derive a modified relaxation time-scale with
the aid of a new parameter q = Mext/Mstars. We begin with the
usual derivation of the relaxation time assuming virial equilib-
rium, a similar derivation can be found in Binney & Tremaine
(1987):

2T + U = 0. (A.1)

We note that T = 1
2 Mstars〈v

2〉 is the kinetic energy and |U | = GM
2Rv

is the potential energy. In this case, Mstars is the total mass
in stars, 〈v2〉 is the mean velocity squared of the stars, M =
Mstars + Mext is the total mass, that is, the mass in stars plus the
mass of the external potential Mext, and Rv is the virial radius of
the cluster, which in this case is the same virial radius for the
external potential. Now we write the total mass as a function of
q:

M = Mstars + Mext,

M = Mstars

(
1 +

Mext

Mstars

)
,

M = Mstars(1 + q). (A.2)

We begin now with a derivation for the change of the velocity
of a star due to an encounter with another star. The force that one
star feels due to the other star is (see Fig. A.1):

F =
GMm

d2 =
GMm

b2 + V2t2 , (A.3)

where M is the mass of one star and m is the mass of the
other star, and d is the impact parameter or distance of closest
approach. Now we assume that the velocity change ∆V of the
star with mass M in the direction parallel to V is small, and only
the perpendicular component of the velocity is changed due to
the perpendicular force:

F⊥ = F sin φ = F ×
b
d

=
GMmb

(b2 + V2t2)3/2 , (A.4)

F⊥ = M
dV⊥
dt

. (A.5)

Next we want to know the time at which the perpendicular
velocity changes by an amount ∆V ∼ V , which is the relax-
ation time-scale. Therefore, we integrate Eq. (A.5) so the final

Fig. A.1. Trajectory of a star with mass M that passes close to another
star of mass m, which causes a small deflection on the velocity vector
V.

perpendicular velocity is:

∆V =

∫ ∞

−∞

dV⊥
dt

dt,

=

∫ ∞

−∞

F⊥
M

dt,

=

∫ ∞

−∞

Gmb
(b2 + V2t2)3/2 dt,

=
2Gm
bV

.

As the star receives many deflections in different directions, we
are interested in the mean value of the squares of the velocity
kicks 〈∆V2

⊥〉 that can be found integrating all the small deflec-
tions as:

〈∆V2
⊥〉 =

∫ bmax

bmin

(
2Gm
bV

)2

dN,

where dN is the expected number of encounters that occurs in a
time t between impact parameters b and b + db for a star with
typical velocity V , this is:

dN = n × Vt × 2πbdb,

where n is the number density of stars, then,

〈∆V2〉 =

∫ bmax

bmin

nVt
(

2Gm
bV

)2

2πbdb,

=
8πG2m2nt

V

∫ bmax

bmin

db
b
,

=
8πG2m2nt

V
ln

(
bmax

bmin

)
. (A.6)

After enough time, the perpendicular velocity of one star grows
to its original speed, this time is the relaxation time-scale that we
can derive using Eq. (A.6):

trelax =
V3

8πG2m2n ln
(

bmax
bmin

) . (A.7)

The term bmax
bmin

is often written as Λ and is the ratio of the size
of the system to the “strong encounter distance” bmin = 2Gm/V2,
which is the distance at which an encounter with another star
would result in a 90 degree deflection. This ratio bmax

bmin
, for a sys-

tem of identical N stars is found to be bmax
bmin

= γN (Spitzer 1987),
with γ = 0.4. This definition of the relaxation time-scale is use-
ful to estimate the core collapse time, which typically occurs
between 15–20 half-mass relaxation times. The problem comes
when we include an analytic external potential and evolve the
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cluster at the center of this potential. In this case, we have an
extra force acting on the stars, and therefore a virialized cluster
under the influence of this external potential has a larger poten-
tial energy and also a larger kinetic energy compared to a cluster
in which there is not an external potential. This should increase
the relaxation time-sale as the velocity of the stars increases and
the number and masses of stars is kept constant. We now derive
the relaxation time for a cluster under the influence of an external
potential, assuming that this potential follows the same mass dis-
tribution of the stars and with the same virial radius. In Recalling
the condition for virial equilibrium from Eq. (A.1) and the total
mass for the cluster from Eq. (A.2) we find that:

2T + U = 0,

2
(

1
2

NmV2
)
−

GM2
tot

Rv
= 0,

MstarsV2 =
GM2

stars(1 + q)2

Rv
,

V =

√
GMstars

Rv
(1 + q),

where V is the rms velocity of the stars, N is the number of stars,
m is the mass of a single star, M = Mstars + Mext is the total
mass, that is, the mass of the stars plus the mass of the external
potential, and q =

(
1 +

Mext
Mstars

)
and Rv is the virial radius of the

system. When q = 0, we get the typical velocity for stars in a
cluster which is in virial equilibrium:

V =

√
GMstars

Rv
, (A.8)

but for a cluster in virial equilibrium and with a background
potential, the typical velocity is modified as:

Vext =

√
GMstars

Rv
(1 + q),

Vext = V(1 + q), (A.9)

where Vext is the rms velocity of the stars in the presence of an
external potential and V is the rms velocity of stars without a
background potential.

The relaxation time is often expressed as a function of the
crossing time tcross of the cluster, which is simply the time it takes
for a star with the typical velocity V to cross the system:

tcross =
Rv

V
, (A.10)

then, combining Eqs. (A.7) and (A.10) the relaxation time for
clusters without an external potential is:

trelax =
V4

8πG2m2nRv ln
(

bmax
bmin

) tcross. (A.11)

Now, if we include an external potential, q , 0, and in sub-
stituting Eqs. (A.9) for (A.10), the crossing time for a cluster in
an external potential is:

tcross,ext =
Rv

V(1 + q)
,

tcross,ext =
tcross

(1 + q)
. (A.12)

Subsequently the relaxation time for clusters in an external
potential must be:

trelax,ext =
V4

ext

8πG2m2nRv ln
(

bmax
bmin

) tcross,ext.

Now we replace Eq. (A.9) for Eq. (A.13) and we find:

trelax,ext =
V4(1 + q)4

8πG2m2nRv ln
(

bmax
bmin

) tcross,ext, (A.13)

Now in recalling that from the usual definition of the relax-
ation time we can define the half-mass relaxation time for a clus-
ter of N equal mass stars as (Spitzer 1987):

trh = 0.138
N

ln (γN)
tcross

then, for comparison purposes, we define the half-mass relax-
ation time-scale for clusters in an external potential as:

trh,ext = 0.138
N(1 + q)4

ln (γN)
tcross,ext, (A.14)

with q =
Mext
Mstars

and γ = 0.4 for equal mass stars.

Appendix B: Evolution of clusters in a background
potential

In this section, we describe in more detail the results of our sim-
ulations that do not include stellar collisions and which are listed
in Table 1. We show the evolution of the clusters with and with-
out an external potential, and we find a delay in the overall evo-
lution when increasing the mass of the external potential.

All of the clusters evolve toward core collapse, which we
found upon visual inspection by looking for the first drop and
subsequent rise in the 10% Lagrangian radius. The core collapse
occurs for the clusters without a background potential at 456
tcross = 19.78 trh for the cluster with N = 1000 (see Fig. B.1),
and for the cluster with N = 10 000 at 2306 tcross = 13.85 trh (see
Fig. B.1).

As the clusters evolve toward core collapse, the outer parts
continually expand which leads, along with the onset of stellar
ejections, to the evaporation of the clusters. We also note that
the onset of ejections occur just after core collapse when binary
systems form in the core and three body interactions lead to the
ejection of stars. An ejection occurs if the distance from the cen-
ter of mass of the cluster to a star is larger than 20 times the
virial radius Rv and if the total energy of the star is greater than
zero, that is, Estar = Ekin + |Epot| > 0 with Ekin and Epot being
the kinetic and potential energy, respectively. These results are
shown in Figs. 1 and B.1.

When we include a background potential with a low mass
compared to the total mass in stars, Mext = 0.1 × Mstars in our
simulations with N = 1000, the core collapse time is 460 tcross,
which is similar to the core collapse time for the cluster without
the external potential in terms of the crossing time of the cluster.
However, this cluster show less expansion and only one star is
ejected (see Fig. B.2).

For the case when the mass of the background potential is
half the mass in stars, Mext = 0.5×Mstars the cluster evolves
toward core collapse, which now occurs at 1820 tcross = 16 trh
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Fig. B.1. Evolution of a cluster with N = 1000 stars, total mass Mstars =
104 M� and Rv = 1.0 pc. Top panel: fraction of stars that were ejected
from the cluster. Bottom panel: Lagrangian radius and the vertical green
line marks the moment of core collapse. The time is presented in units
of the crossing time of the cluster.

Fig. B.2. Evolution of a cluster with N = 1000 stars, total mass Mstars =
104 M� and Rv = 1.0 pc in a background potential with mass Mext =
103 M�. Top panel: fraction of stars that were ejected from the cluster.
Bottom panel: Lagrangian radius and the vertical green line marks the
moment of core collapse. The time is presented in units of the crossing
time of the cluster.

(calculated with Eq. (A.14)). The cluster again shows less expan-
sion than the cluster without the external potential (see Fig.B.1)
and only one single star is ejected.

For the case when the mass of the external potential is the
same as the total mass in stars Mext = Mstars, the cluster also
evolves toward core collapse. However, this is now delayed now
until 6553 tcross as shown by the green vertical line in Fig. B.4.

When the number of stars is N = 10 000, the behavior is
essentially the same when we include a background potential;
the global evolution is delayed due to the increased velocity of
the stars. First, we present the case when the mass of the exter-
nal potential is low Mext = 0.1 × Mstars compared to the total
mass in stars. The cluster also evolves toward core collapse,
which now occurs at 3377 tcross as indicated with a green vertical
line in the bottom panel of Fig. B.5, which is ∼14 trh (we used

Fig. B.3. Evolution of a cluster with N = 1000 stars, total mass Mstars =
104 M�, Rv = 1.0 pc in a background potential with mass Mext = 5 ×
103 M�. Top panel: fraction of stars that were ejected from the cluster.
Bottom panel: Lagrangian radius and the vertical green line marks the
moment of core collapse. The time is presented in units of the crossing
time of the cluster.

Fig. B.4. Evolution of a cluster with N = 1000 stars, total mass
Mstars = 104 M�, Rv = 1.0 pc in a background potential with mass
Mext = 104 M�. Top panel: fraction of stars that were ejected from
the cluster. Bottom panel: Lagrangian radius and the vertical green line
marks the moment of core collapse. The time is presented in units of the
crossing time of the cluster.

Eq. (A.14) to calculate the half mass relaxation time). The mean
density inside the 10% Lagrangian radius at this moment is of
4.4× 105 M� pc−3, which is higher than the mean density at core
collapse for the cluster without a background potential. More-
over the cluster in general shows less expansion when including
the external potential.

When the mass of the external potential is half the total mass
in stars, that is, Mext = 0.5 × Mstars, the core collapse is delayed
until 13 519 tcross as marked by the green vertical line in Fig. B.6
which is 16 trh (we used Eq. (A.14) again to calculate the half
mass relaxation time) and during this moment the mean density
inside the 10% Lagrangian radius is of 5.5 × 105 M� pc−3. Our
simulation is not long enough to see the expansion of the outer
parts. however we do expect even less expansion than for the
cluster with Mext = 0.1 × Mstars and again until this time only
1 star has been ejected from the cluster, this was also found in
Leigh et al. (2013a, 2014).
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Fig. B.5. Evolution of a cluster with N = 10 000 stars, total mass
Mstars = 104 M� and Rv = 1.0 pc under the influence of a background
potential with Mext = 103 Mext. Top panel: fraction of stars that were
ejected from the cluster, which is negligible since only one star escaped
the cluster. Bottom panel: Lagrangian radius and the vertical green line
marks the moment of core collapse. The time is presented in units of the
crossing time of the cluster.

Fig. B.6. Evolution of a cluster with N = 10 000 stars, total mass
Mstars = 104 M� and Rv = 1.0 pc under the influence of a background
potential with Mext = 5×103 Mext. Top panel: fraction of stars that were
ejected from the cluster, which is negligible since only one star escaped
the cluster. Bottom panel: Lagrangian radius and the vertical green line
marks the moment of core collapse. The time is presented in units of the
crossing time of the cluster.
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Chapter 6

The mean free path approximation and
stellar collisions in star clusters:
numerical exploration of the analytic
rates and the role of perturbations on
binary star mergers
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For the research article presented in this chapter my contribution consisted in the modifi-
cation of the software employed. I also ran the numerical simulations and analyzed them.
I gathered the observation data presented in the paper and modified the analytic collision
rates in order to include gravitational focusing effects. I created all the tables and figures
and wrote most of the article. All the authors contributed to the discussion and helped with
the revision of the manuscript.
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ABSTRACT
In this paper, we compute predictions for the number of stellar collisions derived from analytic models based on the mean free
path (MFP) approximation and compare them to the results of N-body simulations. Our goal is to identify the cluster conditions
under which the MFP approximation remains valid. Adopting a range of particle numbers (100 ≤ N ≤ 5000) and different
combinations of particle masses and radii, we explore three different channels leading to stellar collisions, all of which are
expected to occur in realistic stellar environments. At high densities, binaries form from isolated three-body interactions of
single stars. Hence, we consider collisions between single stars and collisions involving binary stars, after they form in our
simulations. For the latter, we consider two channels for mergers, namely direct stellar collisions during chaotic single–binary
interactions and perturbation-driven mergers of binaries due to random walks in eccentricity approaching unity. In the densest
systems considered here, a very massive object is formed at the cluster centre, causing local stellar orbits to become increasingly
Keplerian and the assumptions going into our analytic model to break down. Before reaching this limit, we obtain excellent
agreement between our theoretical predictions and the simulations: The analytic rates are typically accurate to within one
standard deviation for the entire parameter space considered here, but the agreement is best for short integration times. Our
results have direct implications for blue straggler formation in dense star clusters, and stellar mergers in galactic nuclei hosting
massive black holes.

Key words: methods: analytical – methods: numerical – globular clusters: general.

1 IN T RO D U C T I O N

The mean free path (MFP) approximation has been widely used
throughout the field of astrophysical dynamics for centuries. Simple
estimates based on the stellar number density, the collisional cross-
section, and the stellar velocities (‘nσv’) for the rate of direct
collisions between pairs of particles can be, and very often are,
applied to a wide variety of astrophysical problems (e.g. Binney
& Tremaine 1987), ranging from direct stellar collisions in star
clusters and galactic nuclei (e.g. Fregeau et al. 2004; Portegies Zwart
et al. 2004; Naoz et al. 2018), the growth of planetary embryos
in protoplanetary discs (e.g. Goldreich & Tremaine 1982), tidal
stripping during interactions between pairs of galaxies (e.g. Ogiya
2018), and even atoms and molecules colliding in gas clouds (e.g.
Spitzer 1941a,b, 1942). Typically, the ‘sticky-star approximation’
is adopted to compute the relevant rates and time-scales, where a

� E-mail: bastian.reinoso@uni-heidelberg.de

collision is defined as occurring when the radii of two or more stars
overlap in both time and space.

To date, few studies have considered the accuracy of analytic
methods for computing the rates of particle collisions in realistic
astrophysical environments (e.g. Hut 1983; Hut & Bahcall 1983;
Fregeau et al. 2004). Most of the work that has been done focused
on direct collisions between pairs of objects (galaxies, stars, planets,
etc.) during isolated small-number chaotic interactions mediated by
gravity. For example, Leigh & Geller (2012) studied the probability
of collisions occurring during gravitationally bound small-number
(N = 3, 4, 5, and 6) chaotic interactions involving identical finite-
sized particles. The authors showed that the collision probability
scales approximately as N2, as expected from combinatorics and
the MFP approximation (i.e. the collision probability should be
proportional to

(
N

2

)
). In subsequent studies Leigh & Geller (2015)

and Leigh et al. (2017, 2018) expanded the parameter space to
consider particles having different masses and radii. Eventually,
they were able to build from first principles, on a combinatorics-
based back bone, analytic predictions for the relative probabilities

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3724/6426207 by U
niversität H

eidelberg user on 30 O
ctober 2023



The MFP approximation and stellar collisions 3725

of different collision scenarios occurring (e.g. multicollision sce-
narios). Using numerical simulations, they confirmed the validity
of their method and demonstrated its robustness for any number of
interacting particles with any combinations of particle masses and
radii.

Other studies using numerical simulations of collisions involving
stars, typically focused on cross-sections, since these can be inserted
directly into the standard ‘nσv’ time-scales derived using the MFP
approximation (e.g. Hut 1983; Hut & Bahcall 1983; Fregeau et al.
2004; Fregeau, Chatterjee & Rasio 2006). But these too only
considered small numbers of particles, typically four or less. In a
recent study Barrera et al. (2020) compared analytic collision time-
scales to collision times obtained from N-body simulations. They
considered a range of particle numbers (N ∼ 103) and included
particles with different masses and radii. They showed that the
collision times typically agree to within one standard deviation with
the simulated results, and that the agreement is better for smaller N
and a narrow mass spectrum.

In astrophysics, runaway collisions have been first suggested to
be relevant in dense young star clusters and globular clusters (GCs;
Portegies Zwart & McMillan 2002; Portegies Zwart et al. 2004).
Baumgardt & Klessen (2011) explored them particularly in the
context of young clusters, as a potential origin of very massive stars.
In the early universe, runaway collisions in dense stellar clusters
have been considered as a potential origin of massive black hole
seeds, employing analytic relations (Devecchi & Volonteri 2009;
Devecchi et al. 2012) as well as numerical simulations (Katz, Sijacki
& Haehnelt 2015; Sakurai et al. 2017; Sakurai, Yoshida & Fujii
2019; Reinoso et al. 2018, 2020). Collisions in clusters of stellar-
mass black holes were suggested to be relevant for the formation of
massive black holes by Lupi et al. (2014). Furthermore, the interplay
between collisions and accretion appears as a particularly promising
mechanism for the formation of the first supermassive black hole
(SMBH) seeds (Boekholt et al. 2018; Alister Seguel et al. 2020;
Chon & Omukai 2020; Das et al. 2020; Tagawa, Haiman & Kocsis
2020). Stellar collisions are also invoked to explain the formation
of exotic stellar populations, such as blue stragglers (BSs) and the
S-stars, a group of high-mass stars distributed in a disc-like structure
very close (�0.04 pc) to Sgr A∗ in the Galactic centre (e.g. Eckart
& Genzel 1997; Ghez et al. 2003; Naoz et al. 2018). Both BSs and
the S-stars are thought to be products of stellar mergers between
main-sequence (MS) stars.

It is important to understand how good is the ‘nσv’ approxima-
tion in extreme environments where frequent stellar collisions are
expected to occur. The approximation may not be valid because
cluster conditions are not constant over time. Two-body relaxation
causes the core radius to shrink and the central stellar density to
increase, and the core velocity dispersion along with it. Slower
heavier stars that collide outside the core begin to drift into it via
two-body relaxation, populating the cluster centre and subsequently
transferring kinetic energy to other stars, having a direct impact
on the velocity distribution of stars in both the core and the halo.
If collisions are frequent, the mean stellar mass will also change,
and more massive collision products have larger cross-sections
for collisions. Furthermore, the hard-soft boundary varies as the
masses of the binary components change and the core contracts
to become hotter with a higher velocity dispersion, which would
modify the time-scale for single–binary interactions. It may not
be a good approximation to take then the average semimajor axis
when computing the single–binary collision time-scale, but the only
way to know for sure is to perform the numerical experiments and
compare to the analytic theory, as we do in this paper. The presence of

collision products will also change the properties of binary systems
since during interactions with single stars, they tend to retain higher
mass stars and eject the lightest one. This will cause rapid evolution
in the stellar mass function at both the high-mass and low-mass
ends.

In this paper, we present a comparison between the number of
stellar collisions obtained from N-body simulations of dense star
clusters and the predicted number of collisions from analytic collision
rates. We show that the predicted and simulated values agree to within
a factor of order unity. We identify in our simulations collisions of
binary stars that occur due to perturbations coming from single stars
that pass close to the binary on hyperbolic orbits. We discuss the
implications of this process for the formation of stellar exotica in
realistic stellar environments.

The manuscript is organized as follows. We describe our N-body
and analytic models in Section 2, and present the results of their
comparisons in Section 3. We discuss the applicability of our results
to the formation of stellar exotica in Section 4. A final discussion
and summary is presented in Section 5.

2 M E T H O D S

We present in this section the N-body models that served as initial
conditions for the numerical simulations used in this paper. We also
discuss how we count the number of collisions from our simulated
data. Then we present the analytic model and describe how we
compute the predicted number of stellar collisions. We focus our
analysis to the cluster core and thus all the collisions presented in this
paper (both from simulations and analytic rates) refer to collisions
occuring in the core.

2.1 Initial conditions

In our study, we model compact star clusters assuming a Plummer
distribution (Plummer 1911) with virial radius Rv = 0.14 pc. Every
system is composed of identical stars initially having the same masses
and radii, with a total stellar mass of Mcluster = 104 M�. With these
properties fixed, we vary the total number of stars N and the stellar
radius Rstar to produce 24 different N-body models, all of which are
listed in Table 1. The initial masses of the stars are decided as mini =
Mcluster/N. For each of the 24 models mentioned above, we run six
simulations varying the initial random seed, yielding a total of 144
N-body simulations.

Every cluster begins in a state of virial equilibrium, and is left
to evolve for 2000 N-body time units which equals 15.6 Myr in the
lifetimes of our simulated clusters. We are here interested only in the
first stages of the cluster evolution, as explained more clearly below
(see the fourth column in Table 2).

2.2 Numerical simulations

All the simulations presented in this paper were performed with
NBODY6 (Aarseth 2000), a direct N-body integrator which makes
use of the fourth-order Hermite method, block time-steps, KS
regularization for treating close encounters (Kustaanheimo & Stiefel
1965; Mikkola & Aarseth 1998), and a spatial hierarchy for the
force computation (Ahmad & Cohen 1973). Stellar collisions are
detected once the radii of particles overlap in both space and
time during the integration, and they are replaced by a new single
particle. This new particle is placed at the centre of mass of
the previous configuration. The mass and velocity are computed
assuming mass and linear momentum conservation. The new radius
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Table 1. Initial conditions for each N-body model. We perform six simula-
tions per model.

Model N mini Rstar rcore vrms ncore

(M�) (R�) (pc) (km s−1) (106 pc−3)

1 100 100 20 0.042 17.450 0.318
2 100 100 50 0.042 16.865 0.327
3 100 100 100 0.045 11.818 0.266
4 100 100 200 0.058 12.063 0.124
5 100 100 500 0.061 12.194 0.108
6 100 100 1000 0.054 13.017 0.152

7 500 20 20 0.040 16.618 1.930
8 500 20 50 0.042 15.804 1.579
9 500 20 100 0.045 15.501 1.320
10 500 20 200 0.050 15.673 0.967
11 500 20 500 0.047 15.553 1.126
12 500 20 1000 0.040 15.678 1.864

13 1000 10 20 0.039 15.037 3.886
14 1000 10 50 0.047 15.640 2.252
15 1000 10 100 0.045 15.926 2.550
16 1000 10 200 0.044 15.648 2.751
17 1000 10 500 0.048 15.099 2.190
18 1000 10 1000 0.040 14.941 3.780

19 5000 2 20 0.042 15.099 16.014
20 5000 2 50 0.042 15.120 16.014
21 5000 2 100 0.043 15.095 15.153
22 5000 2 200 0.043 15.116 15.258
23 5000 2 500 0.043 15.117 15.153
24 5000 2 1000 0.043 15.097 15.258

is calculated by assuming that the density of the progenitors and the
collision product are the same. For simplicity, we do not include
in our simulations stellar evolution nor tidal interactions between
stars.

2.3 Counting the number of collisions from the simulations

The majority of the collisions in our simulations happen in the
cluster core (see below), or very close to it, therefore we focus
our analysis on the central regions of our clusters. We extract the
required information about stellar collisions from the output files
and snapshots of NBODY6 and select only those collisions occurring
inside the 10 per cent Lagrangian radius, which we will henceforth
refer to as the core radius rcore. The snapshot output frequency is 1
N-body unit of time, which corresponds to 7800 yr.

We distinguish between two types of collisions here, ac-
cording to the classification given by NBODY6. First, we
have both hyperbolic collisions or, equivalently, collisions be-
tween stars that are not initially gravitationally bound. Sec-
ond, we have binary–mediated collisions or collisions be-
tween two stars that become gravitationally bound before the
collision event, and these mergers/collisions can be decom-
posed into two groups – mergers of the binary system medi-
ated by perturbations from bound single stars, and collisions
mediated by perturbations from unbound single stars (some-
times undergoing prolonged chaotic interactions, with the ec-
centricity doing a random walk to higher and higher val-
ues, before a merger occurs when the stellar radii overlap at
pericentre).

We present for each N-body model, the average number of
hyperbolic NHyp and binary-mediated NBin collisions in Table 2, as

well as the average total number of collisions Ncol,sim. The errors are
computed assuming Poisson statistics.

2.4 The analytic model

The analytic model that we use in this paper is constructed from the
mean times or rates between stellar encounters derived from the MFP
approximation. In a similar way to Leigh, Sills & Knigge (2011), we
include single–single and single–binary interactions via encounter
time-scales, but we include the gravitationally focused cross-sections
in the derivation (see Appendix A), which are applicable to the cores
of star clusters. Consequently, the mean time between single–single
encounters in the core is given by

τ1+1 = 8.3 × 1013 (1 − fb − ft )
−2

(
103 pc−3

2ncore

)2

×
(

1 pc

rcore

)3 (
5 km s−1

vrms

) (
0.5 R�
〈R〉

)2

×
[

1 + 7635

( 〈m〉
0.5 M�

) (
0.5 R�
〈R〉

) (
5 km s−1

vrms

)2
]−1

yr,

(1)

where fb is the fraction of binary systems in the core, defined as fb =
Nb/Ncore, where Nb is the number of binaries in the core and Ncore is
the total number of objects in the core (i.e. including both singles
and binaries), rcore and ncore are the core radius and core number
density, vrms is the root-mean-square velocity, 〈m〉 and 〈R〉 are the
mean stellar mass and mean stellar radius.

The mean time between single–binary interactions is given by

τ1+2 = 1.8 × 109 (1 − fb − ft )
−1 f −1

b

(
103 pc−3

2ncore

)2

×
(

1 pc

rcore

)3 (
5 km s−1

vrms

) (
1 AU

ab

)2

×
[

1 + 53

( 〈m〉
0.5 M�

)(
1 AU

ab

) (
5 km s−1

vrms

)2
]−1

yr,

(2)

where ab is the mean semimajor axis for binaries.
We note that binary–binary collisions can be ignored, due to

the very low binary fractions in our simulations and the fact that
single–binary interactions dominate over binary–binary interactions
for fb � 0.1 (Leigh et al. 2011).

We also attempted a different model in which we use equation (4)
to estimate the number of single–single collisions between equal
mass stars, combined with the gravitationally focused encounter rate
for unequal mass stars presented in Leigh et al. (2017). A similar
experiment was done in Barrera et al. (2020). This model, however,
overestimates the number of collisions between unequal mass stars
by a factor of ∼2.

2.5 Calculating the predicted number of collisions from the
analytic model

The quantities going into equations (1) and (2) are taken directly
from our N-body simulations. For this purpose, we first choose
a simulation time tsim during which the core radius is smoothly
decreasing over time, so we avoid going into the stage of core-
collapse. The simulation times tsim chosen for each model are listed
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Table 2. Numbers and types of collisions for each model. We perform six simulations for each model and calculate the mean
number of collisions within tsim, both from our simulations (column 5) and from our analytic model (column 6). The ratio between
the simulated and analytic number of collisions is presented in column 7 and plotted in Fig. 3. The number of hyperbolic and
binary collisions from the simulations are presented in columns 8 and 10. We also present the number of 1+1 and 1+2 collisions
derived from our analytic model in columns 9 and 11.

Model N Rstar tsim Ncol, sim Ncol,analytic
Ncol,sim

Ncol,analytic
NHyp N1 + 1 NBin N1 + 2

(R�) (Myr)

1 100 20 0.400 0.333 ± 0.236 0.077 4.308 0.000 0.026 0.333 0.052
2 100 50 0.400 0.333 ± 0.236 0.094 3.559 0.000 0.094 0.333 0.000
3 100 100 0.400 0.500 ± 0.289 0.145 3.439 0.333 0.145 0.167 0.000
4 100 200 0.300 0.667 ± 0.333 0.216 3.085 0.333 0.202 0.333 0.014
5 100 500 0.200 0.667 ± 0.333 0.855 0.780 0.167 0.351 0.500 0.503
6 100 1000 0.150 0.833 ± 0.373 0.579 1.439 0.167 0.544 0.667 0.035

7 500 20 0.500 0.667 ± 0.333 1.444 0.462 0.167 0.254 0.500 1.189
8 500 50 0.900 4.333 ± 0.850 3.292 1.316 1.833 1.323 2.500 1.968
9 500 100 0.600 2.000 ± 0.577 3.027 0.661 1.500 1.581 0.500 1.446
10 500 200 0.530 4.333 ± 0.850 6.302 0.688 3.000 2.637 1.333 3.666
11 500 500 0.400 9.333 ± 1.247 9.205 1.014 6.167 4.909 3.167 4.295
12 500 1000 0.370 11.333 ± 1.374 14.469 0.783 9.500 8.820 1.833 5.649

13 1000 20 1.349 2.667 ± 0.667 2.595 1.028 2.333 1.896 0.333 0.699
14 1000 50 1.349 7.833 ± 1.143 8.741 0.896 5.667 4.780 2.167 3.960
15 1000 100 1.000 7.000 ± 1.080 8.860 0.790 4.167 5.960 2.833 2.901
16 1000 200 0.900 12.000 ± 1.414 14.812 0.810 9.833 10.545 2.167 4.268
17 1000 500 0.700 22.667 ± 1.944 25.634 0.884 17.833 17.521 4.833 8.114
18 1000 1000 0.500 28.667 ± 2.186 45.490 0.630 22.333 27.668 6.333 17.822

19 5000 20 5.316 66.667 ± 3.333 52.655 1.266 55.167 45.064 11.500 7.591
20 5000 50 3.500 75.000 ± 3.536 81.020 0.926 65.333 60.352 9.667 20.668
21 5000 100 3.200 147.500 ± 4.958 113.954 1.294 120.500 105.549 27.000 8.405
22 5000 200 2.200 171.000 ± 5.339 153.362 1.115 148.333 137.331 22.667 16.031
23 5000 500 1.200 164.333 ± 5.233 194.490 0.845 152.667 178.430 11.667 16.060
24 5000 1000 0.700 205.667 ± 5.855 255.998 0.803 190.167 235.863 15.500 20.136

in the fourth column of Table 2. We partition this time into 10
successive intervals, each with a length �t = 0.1tsim over which
we compute the number of collisions expected from our analytic
predictions according to averaged cluster core and stellar properties
in that interval. This is illustrated for one of our simulations in Fig. 1
where we show in the top panel the evolution of the core radius and
the partitioning of the simulation time tsim into 10 smaller intervals
via vertical black lines. The horizontal green lines in each interval
mark the average core radius in the top panel and the mean binary
fraction in the bottom panel. The number of intervals is chosen in such
a way that we get representative values for the dynamical properties
of the stars in the core by averaging over simulation snapshots, but
avoiding large intervals over which the changing properties of the
cluster become significant. We check that using 20 intervals does
not change our results but using 5 or less intervals leads to lower
predicted collision rates.

The total number of collisions expected from our analytic rates
is calculated by summing over the number of collisions in each
interval i:

Ncol,analytic =
10∑
i=1

N1+1,i + N1+2,i , (3)

where we define the number of collisions due to single–single
interactions, occurring in the interval i, as

N1+1,i = �t

τ1+1,i

. (4)

Figure 1. Illustration of the calculation for the number of collisions from our
analytic model. We present, in the top panel, the evolution of the core radius.
The middle panel shows the number of calculated 1+1 and 1+2 collisions,
as described in Section 2.5. We also show the number of hyperbolic and
binary collisions counted from the simulation for comparison. The bottom
panel shows the fraction of binary systems in the core. The black vertical lines
show the partitioning of the simulation time tsim into 10 smaller intervals, each
of which contains, on average, 6.8 snapshots. This is one of the simulations
of Model 19.
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The number of binary mediated collisions, occurring in the interval
i, is

N1+2,i =
(

fdir + fpert

npert

)
�t

τ1+2,i

. (5)

We illustrate this calculation procedure in the middle panel of Fig. 1
by showing with dashed blue and dashed red lines the accumulated
number of 1+1 and 1+2 collisions respectively, calculated according
to equation (4) and (5). We also show for comparison the number
of hyperbolic and binary collisions counted from the simulations
with solid blue and solid red lines respectively. The mean fraction of
binaries in the core fb is presented in the bottom panel.

We note in equation (5) the presence of three correction factors.
These are included in order to account for two different merger
channels as described in Section 2.5.1 and 2.5.2.

We emphasize that, since we study binary interactions in the cluster
centre, these correction factors apply only to the core. In order to
obtain accurate correction factors outside of this region, we would
need to run many more simulations to build up the required statistics,
further justifying our choice to focus on the collision rates in the core.
The determination of these factors is described in Section 2.5.1.

For the calculation of the collision time-scale given by equation (1)
and (2), we compute the values for rcore, vrms, ncore, 〈m〉, 〈R〉, and fb in
every snapshot of our simulations. Then we take the average over the
number of snapshots in each interval. We illustrate this for the core
radius in the top panel of Fig. 1 and for fb in the bottom panel. The
semimajor axis ab is taken to be the mean semimajor axis per binary
in the core. Typical initial values for the above mentioned quantities
for each of our N-body models, are presented in Table 1 (except for
fb and ab).

2.5.1 Calculating the number of collisions due to (bound and
unbound) single–binary interactions

The total number of binary mediated stellar collisions is calculated
with equation (5) in which we introduce three correction factors.
We determine those factors by studying the evolution of the binary
systems in our simulations. We note however that studying binary
evolution requires very frequent snapshot output in order to capture
the chaotic and rapid perturbations that a binary experiences from the
moment of its formation until disruption or merger. In order to obtain
representatives values for the correction factors that we introduce,
but at the same time avoiding excessively large data outputs and long
computational runtimes, we re-simulate three sets of the 24 models
presented in Table 1, with a higher output frequency of 0.01 N-body
units of time or 78 yr. These new data are used to compute the
parameters fdir, fpert, and npert.

During a single–binary encounter, a stellar collision between two
gravitationally bound stars can occur. When the collision occurs
during a bound interaction with a third body we call this type of
event a direct binary collision. In order to account for this in our
model, we introduce the factor fdir, calculated as the number of direct
binary collisions divided by the total number of distinct binaries
formed in the considered time interval. The values of fdir for each
model are presented in Table 3.

2.5.2 Unbound or perturbative single–binary interactions

A total of 56 binary collisions in our sample are driven to merger
via the cumulative effects of many weak perturbative interactions
from passing single stars on hyperbolic orbits relative to the binary

Table 3. Correction factors for direct and perturbed binary collisions.

Model N Rstar fdir fpert npert

(R�)

1 100 20 0.006 0.000 –
2 100 50 0.000 0.000 –
3 100 100 0.000 0.000 –
4 100 200 0.000 0.007 3.000
5 100 500 0.122 0.000 –
6 100 1000 0.000 0.037 4.000

7 500 20 0.017 0.000 –
8 500 50 0.014 0.006 2.250
9 500 100 0.017 0.011 11.500
10 500 200 0.042 0.010 1.000
11 500 500 0.040 0.007 1.000
12 500 1000 0.071 0.026 3.75

13 1000 20 0.002 0.002 1.000
14 1000 50 0.016 0.002 2.000
15 1000 100 0.015 0.000 –
16 1000 200 0.017 0.003 1.000
17 1000 500 0.044 0.000 –
18 1000 1000 0.108 0.010 2.667

19 5000 20 0.006 0.001 1.500
20 5000 50 0.015 0.009 14.679
21 5000 100 0.008 0.008 14.382
22 5000 200 0.018 0.001 6.000
23 5000 500 0.020 0.010 16.578
24 5000 1000 0.028 0.005 6.667

centre of mass. This occurs via an exchange of orbital energy and
angular momentum with the binary, slowly driving it, via a random
walk, to smaller orbital separations and higher eccentricities. This
process has been studied by means of Monte Carlo methods and
simplified encounter rates with field stars (Krolik, Meiksin & Joss
1984; Portegies Zwart et al. 1997; Kaib & Raymond 2014).

In order to model the perturbation-driven mergers, we study the
eccentricity and semimajor axis evolution from the time of binary
formation until the time of collision/merger. We define a perturbation
as a close encounter in which the distance from the centre of mass
of the binary to the closest star is less than, or equal to, three times
the semimajor axis. Additionally, the close encounter should cause
an eccentricity change equal to or larger than 5 per cent.

We introduce the correction factor fpert, which accounts for the
efficiency of this merger channel, and is calculated as the number of
binary systems in which more than 50 per cent of the perturbations
are caused by an unbound star, divided by the total number of
distinct binaries formed in the considered time interval. For these
perturbed binary collisions, we define npert as the number of unbound
perturbations. We present the calculated values of fpert and npert for
each model in Table 3.

We show in Fig. 2 two examples of this perturbed binary collision
scenario, following the evolution from the time of binary formation
until merger. The left panels correspond to a binary with equal mass
components perturbed by passing unbound single stars, whereas the
right-hand panels correspond to a binary that involves the most
massive object in the cluster. In the top panels, we show the time
evolution of the eccentricity of the binary orbit. In the bottom panels,
we show the time evolution of the semimajor axis with a red line,
and the distance from the centre of mass to the closest third star with
a green line. We mark with black vertical lines the times at which a
perturbation is detected, as described in the previous paragraph. The
mean time between perturbations, in the left-hand panels, is 4074 yr.
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Figure 2. Perturbations to the eccentricity and semimajor axis of two binary
systems in our simulations, from the time of binary formation until merger
of the binary components. The left-hand panels correspond to a binary with
equal mass members whereas the right panels correspond to a binary with
the most massive object as a member. The masses are shown at the top of the
corresponding panels. We present in the upper panels the time evolution of
the eccentricity of the orbit. In the bottom panels, the red line represents the
semimajor axis of the binary system and the green line shows the distance
separating the binary centre of mass from the closest passing star. The dashed
black vertical lines in the left panels mark the perturbations caused by the
unbound passing star following the method described in Section 2.5.2. These
lines are omitted in the right-hand panels to avoid crowding.

In this case, perturbations are caused by passing stars that are not
bound to the binary. In the right-hand panels, perturbations are cause
by a third star bound to the binary and are more frequent, with a
mean time between perturbations of 367 yr. These perturbations are
not shown to avoid crowding of lines.

3 R ESULTS

In this section, we confront the predicted number of stellar collisions
derived from our analytic model with the simulated number of
collisions obtained from our N-body runs. Our results indicate that
the simulated and predicted numbers of collisions agree to within a
factor of �2 and to within one standard deviation for most of our
simulations, as shown in Fig. 3. The number of binary-mediated
collisions is not well reproduced at later times due to the formation
of a massive object at the cluster centre which tends to grow through
binary collisions. This is more important in our simulations with N =
5000, in which a very massive object is always present in the cluster
centre at late times.

3.1 Hyperbolic collisions

In Fig. 1, we illustrate the calculation procedure for one example
simulation. We compare the expected number of collisions over
a specified time interval. The middle inset shows the number of
simulated hyperbolic, and analytic 1+1 collisions calculated with
equation (4), over each time interval. We also present the ratio
between simulated and predicted number of single–single collisions
in Table 2 and Fig. 3. We find an excellent agreement between the
predicted and simulated number of collisions.

Despite the emergence of more massive and larger stars from
collisions, the single–single encounter rate is still able to account

Figure 3. Ratio of simulated to predicted number of collisions as a function
of stellar radius. The predicted number of collisions are obtained from our
analytic model described in Section 2.3. The simulated number of collisions
are obtained from our N-body simulations as described in Section 2.5. The
data plotted here correspond to the seventh column in Table 2.

for mergers involving unequal mass stars. When compared to the
number of single–single collisions only, the analytic model that we
use underestimates the simulations results by a factor of 1.04, with a
three sigma uncertainty of ±0.05

3.2 Binary-mediated collisions

We note that in our clusters the density is sufficiently high as to
activate the formation of binary stars via close interactions between
three isolated single stars. A pair of stars then remain bound in a
binary while the third star is ejected, typically taking away more
positive kinetic energy than it came in with. This sets the scene
for subsequent single–binary interactions to occur, in which three
stars undergo a chaotic gravitationally bound interaction within a
small volume with a correspondingly high probability of a collision
occurring (see Leigh & Geller 2012, 2015; Leigh et al. 2016, 2018,
for more details on the expected probabilities). If the collision occurs
during an interaction with a third bound star, we classify it as a
direct binary collision (see Section 2.5.1). Isolated binaries can also
be driven to merger due to perturbative encounters with bound or
unbound single stars. We present in Fig. 2 one example for each of
these two cases (see Section 2.5.2).

In Fig. 1, we revisit the example simulation considered in the
previous section. In the middle panel, the solid and dashed red
lines show the simulated and predicted numbers of binary mediated
collisions, respectively, as calculated with equation (5). We find that
the agreement is better when the number of stars is low N ≤ 1000,
except for N = 100 (see columns 10 and 11 in Table 2). For our
N = 100 simulations, nearly all of the collisions are binary mediated,
but there are very few of them. This low number statistics directly
impacts the determination of the correction factors fdir, fpert and npert

from our higher cadence runs (see Section 2.5.1), such that they
become unreliable for these models (see Table 3).

The better agreement for N = 500 and 1000 can be explained by
the almost unchanged stellar mass distribution. For larger particle
numbers (i.e. N = 5000), the amount of binary collisions increases
dramatically towards the end of the simulated time-span, as can be
seen in Fig. 1. We attribute this increased rate of binary mediated
collisions to the presence of a very massive object in the cluster core.
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Figure 4. Average stellar mass inside the core as function of the most massive
object mass. For low N and small Rstar, there is not a very massive object in
the cluster. For larger N and Rstar, the core always contains an object that is
much more massive than the rest at the end of the considered time-span. The
cumulative histograms at the top and to the right of each panel help to see the
widths in the distribution of the mean stellar mass in the core and the MMO
mass distribution, respectively.

Figure 5. Average kinetic plus potential energy of stars colliding with the
most massive object 〈E〉coll,MMO, as function of the most massive object mass,
for different N and Rstar. Hyperbolic collisions are above the dashed grey line
whereas binary collisions are below. For larger Rstar hyperbolic collisions
are preferred. Binary collisions are favoured for larger MMMO/mini, which is
specially important at late times for N = 5000. For N = 100, the rest of the
points are around −100 NB units, and thus are not shown here.

In Fig. 4, we plot the average stellar mass inside the cluster core
〈m〉 as function of the mass of the most massive object (MMO). We
exclude the MMO from the calculation of 〈m〉. We show that for N =
5000 there is always a single object in the core that is much more
massive than the rest.

In order to illustrate the tendency of the MMO to grow through
binary instead of hyperbolic collisions (i.e. single stars that become
bound to the MMO on quasi-Keplerian orbits, forming binaries with
it), we calculate the average energy of the stars that collide with the
MMO as function of its mass. This is done for different values of N
and Rstar and shown in Fig. 5. In this figure, hyperbolic collisions are
above the dashed grey line and binary collisions below. The energy
is presented in N-body (NB) units (Heggie & Mathieu 1986). This

figure shows that for N = 5000 and Rstar ≤ 200R� the most massive
object in the core preferentially grows via binary-mediated collisions.
This helps to explain the discrepancy seen in Fig. 1 and in columns
10 and 11 in Table 2.

Summarizing our results so far, the presence of a very massive
object in the core causes the assumptions and approximations going
into our analytic model to break down, such that the model should be
re-visited and re-constructed to account for these alternative collision
channels. For example, as the MMO grows in mass, we expect secular
analytic theories to agree better with the results of the simulations, as
perturbations become less important in the deep potential of a central
very massive object.

4 A PPLI CATI ONS TO OBSERV ED DATA AND
T H E FO R M AT I O N O F ST E L L A R EX OT I C A

In this section, we quantify what our results are telling us about the
dominant merger/collision channels as a function of environment.
We then go on to confront our results with observed data from Milky
Way GCs, to identify the dominant collision mechanism operating in
different star cluster environments. With this information in hand, we
move on to making predictions for the properties of stellar exotica that
are thought to be the products or progenitors of collisions/mergers,
specifically BSs stars and other potential merger products found in
galactic nuclei (e.g. the S-stars).

4.1 Collision time-scales and real GCs

We now proceed to compare three different collision rates in the
cores of GCs, namely the rate for single–single collisions, the rate
for direct single–binary collisions and the rate for binary formation
from encounters of three single stars. For the calculation of these
rates, we assume that the average mass and average stellar radius
correspond to Sun-like stars, and for the cluster core radius we take
the mean core radius from the GC sample.

All these rates depend on the number density of stars and on the
binary fraction, and we present in Fig. 6 the regions of this space
where each of these rates dominates over the others. The time-scales
for 1+1 and 1+2 interactions are obtained from equations (1) and (2),
whereas the rate for 1+1+1 interactions is obtained from equation
(7.11) in Binney & Tremaine (2008) including gravitational focusing.
The red line in Fig. 6 marks the limit in which the 1+1+1 and 1+2
rates are equal. The black line marks the limit in which the 1+1+1
and 1+1 rates are equal. The blue line marks the limit in which the
1+1 and 1+2 rates are equal. For computing the 1+2 rate, we use the
semimajor axis corresponding to the hard-soft boundary. We assume
a velocity dispersion of 5 km s−1.

The GC sample we take from Milone et al. (2012), which contains
information about the binary fractions in the cores of the clusters, and
we cross-correlate these clusters to the ones in the VizieR Catalogue
of Harris (1996). The latter catalogue contains information about the
cluster core radius and central luminosity per cubic parsec, which we
convert to a core number density ncore assuming a mass–luminosity
ratio of 1 M� L−1

� and mean stellar mass of 1 M�.
As can be seen in Fig. 6, the majority of the clusters in this

sample fall in the region where binary collisions dominate over
hyperbolic collisions. Hence, once binaries begin to form, they
become a significant contribution to the overall rate of collisions and
mergers. The presence of even a few binaries causes the rates for the
binary collision channels to dominate over the hyperbolic collision
rates. We also include in this figure the time evolution of two of our
simulations (shown by +the green and orange trajectories). For one
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Figure 6. Encounter rates, observed data for GCs and data from two of our simulations. The solid lines separate the regions where each encounter rate dominates
over the others, and the regions are labelled accordingly. We overplot real data for Milky Way GCs distinguishing core-collapsed clusters (red points) from the
rest (blue points). We also overplot data from one of our simulations for Model 19 and Model 13. The time-scales are calculated assuming a cluster core radius
of 2.6 pc (corresponding to the mean of our GC sample) and a mean stellar radius of 1R�.

of our Model 19 simulations, the cluster always remains in the region
dominated by single–single collisions.

For one of our simulations of Model 13, the cluster starts in
the region dominated by single–single collisions. Some binaries are
formed and fb increases, thus triggering binary collisions to dominate
for a brief time. These are, however, a factor ∼7 less numerous than
hyperbolic collisions. Once a binary forms, it merges or evaporates so
quickly that the single–single rate quickly goes back to dominating
over the single–binary rate.

Overall, the rate of hyperbolic collisions is higher than the rate
for single–binary collisions. Over time, however, the altered mass
function helps to promote the formation of binary systems between
the surrounding stars and the central most massive object, such that
binary collisions tend to involve a massive collision product residing
in the centre of the cluster. These binaries tend to merge quickly, due
to a perturbation-driven random walk in eccentricity, as shown in the
right-hand panel of Fig. 2.

4.2 Blue stragglers

BS stars appear in the cluster colour–magnitude diagram brighter and
bluer than the MS turn-off, where isolated stellar evolution predicts
that no stars should be present. Two main competing mechanisms
have been proposed for their formation, namely direct collisions
between MS stars and mass transfer on to an MS star in a binary star
system. If most BSs are formed from single–single collisions, then
this would predict a correlation between BS numbers and the collision
rate, as has been observed for low-mass x-ray binaries (Pooley & Hut
2006). However, there is no clear correlation between BS numbers or
relative frequencies, and the collision rate in the cores of GCs (Leigh,
Sills & Knigge 2007). This, combined with a correlation between
cluster core mass and BS numbers, is indirect evidence supporting a
binary evolution origin for BSs (Knigge, Leigh & Sills 2009; Leigh
et al. 2011, 2013). Our results suggest that the complexity in the
process of collisions/mergers could play an important role when
looking for correlations with collision rates.

The process of perturbative single–binary encounters that we see
in our simulations could be an important formation mechanism for

isolated BSs (i.e. without binary companions) in GC cores. This
motivates the development of analytic models like in Leigh et al.
(2011), but more complex as to realistically model the complicated
collisional and/or merger processes identified here in high-density
clusters with low binary fractions, as illustrated in this paper and
Barrera et al. (2020). Taken at face value, our results predict a higher
fraction of isolated BSs relative to BSs with binary companions in
clusters with high central densities and low binary fractions. This
is in contrast to both the binary evolution channel for BS formation
and the mechanism proposed in Perets & Fabrycky (2009) for BSs
forming from stable hierarchical triples, as they predict BSs with
binary companions.

Let the number of isolated BSs be denoted NBS, iso and the number
of BSs with binary companions be denoted NBS, bin. Our results
could predict a correlation between the ratio NBS, iso/NBS, bin and both
central density and core binary fraction, with this ratio increasing
in denser clusters with lower binary fractions. In principle, this
prediction is observationally testable. Recently, tentative evidence for
double BS sequences have been identified in the colour–magnitude
diagrams of Galactic GCs (Ferraro et al. 2009; Dalessandro et al.
2013; Simunovic, Puzia & Sills 2014). The authors propose that
one sequence is due to collisions/mergers which would produce
isolated BSs, whereas the other sequence is due to binary evolution
which would produce BSs with binary companions. If these double
BS sequences are confirmed to be statistically significant, then our
results naively predict that the ratio of these two populations should
also correlate with central density and core binary fraction. The
sample size for observing double BS sequences in GCs is currently
of order unity. Hence, a preliminary test of our hypothesis can be
done now, but more data would be needed to properly answer the
question with statistical significance. Using the WIYN data from the
WOCS collaboration (see Mathieu & WOCS Collaboration (2013),
for example, for more details) would be ideal for this experiment,
since it focuses on old open clusters and, at least for clusters like
NGC 188, M67 and a few others, extensive studies have been done
over the last several decades to thoroughly quantify the issue of
cluster membership, and even provide BS binary fractions in some
clusters (e.g. Mathieu & Geller 2009; Geller & Leigh 2015; Rain
et al. 2020; Jadhav & Subramaniam 2021). In order to increase
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the sample size for the number of clusters with known BS binary
fractions, these WIYN data can be combined with the GC data
coming from double BS sequences. Both individual samples continue
to grow slowly over time. The rate could be accelerated even further
by looking for double BS sequences in the WIYN data and using
speckle interferometry to search for binary companions to individual
BSs in open clusters. Ultimately, however, the data are coming from
studies of both open cluster and GC, and it will not be long before
we have a reasonable sample size of BS binary fractions to test our
prediction that more single BSs should be present in higher density
star clusters due to perturbative mergers of binaries. Performing a
more detailed comparison by confronting our theoretical predictions
with real astronomical data will be the focus of future work.

4.3 The Galactic Centre and the origins of the S-stars

The innermost parsec in the Galactic Centre contains a stellar disc
extending out to 0.5 pc (Støstad et al. 2015). This structure is formed
by massive young stars with an estimated age of 4–6 Myr and a
notably top heavy mass function (Bartko et al. 2010; Mauerhan
et al. 2010; Lu et al. 2013; Yelda et al. 2014). The presence of
binary systems in the disc whose components merge due to Lidov–
Kozai (LK) oscillations could potentially provide an explanation to
observed stellar properties and even the peculiar G2 object (Prodan,
Antonini & Perets 2015; Stephan et al. 2016). Following the same
approach adopted by Prodan et al. (2015), we consider a binary
system, which, in turn, is orbiting a central supermassive black hole
and we make a crude estimate of the time-scale for LK oscillations
to operate by using their equation (2):

TKozai ≈ 2.5 × 106

(
aout

0.5 pc

)3 (
1 AU

ab

)3 (
Mb

2 M�

)1/2

×
(

4 × 106 M�
M•

)( ab

1 AU

)3/2 (
1 − e2

out

)3/2
yr, (6)

where aout is the semimajor axis of the binary–SMBH system and
eout the eccentricity of the orbit. ab is the semimajor axis of the binary
that orbits the SMBH, Mb is the mass of the binary, and M• is the
mass of the SMBH.

In the Galactic Centre the stellar density follows a power law
given by ρ ∝ r−γ , and the gravitational potential is dominated by the
central SMBH, thus vrms = √

GM•/aout. With this, the single binary
collision time-scale from equation (2) can be expressed as

τ1+2,GC = 4.9 × 107(1 − fb)−1f −1
b
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)1/2+2γ

×
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( 〈m〉
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×
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5 km s−1
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)2
]−1

, (7)

where for simplicity, we set vrms,0 = √
GM•/0.5 pc. We use ρ0 =

5.2 × 105 M� pc−3, r0 = 0.5 pc and γ = 2 (Prodan et al. 2015).
We can now derive the distance from the SMBH at which the time-

scale for LK oscillations equals the time-scale for a perturbed binary
collision, for different values of ab. We estimate which time-scale

Figure 7. Dominant collisional time-scale for binaries in the central galactic
disc. aout is the distance from the Galactic Centre at which the binary orbits,
and ab is the semimajor axis of the binary. The solid coloured lines mark the
region where the time-scale for one LK oscillation is equal to the time for
perturbed single–binary encounters to produce a merger. Higher eccentricities
for the orbit of the binary around the central BH shortens the time-scale for
perturbed binary collisions compared to collisions from LK oscillations. The
regions where each time-scale dominates are labelled accordingly. The dashed
horizontal line marks the edge of the disc at 0.5 pc.

dominates by doing:

TKozai

0.55
= τ1+2,GCnpert

fpert
, (8)

where we introduced the factor 0.55 to account for the fact that the
LK mechanism operates for mutual inclinations � 40◦, that is, we
approximate the fraction of triple systems that are in the active LK
window as 100◦/180◦. We set fpert = 0.006 and npert = 1.500 that
correspond to our simulation with N = 5000 and Rstar = 20R� (see
Table 3).

As shown in Fig. 7, we find that perturbed binary collisions might
be more important than LK oscillation-driven collisions when the
binary orbits at a distance ≤0.5 pc of the central SMBH, for a
wide range of binary semimajor axes. The perturbed binary collision
scenario that we find in this work thus provides an alternative
merger channel that does not require inclined orbits as in the
KL case. This alternative channel requires further investigation
to characterize the number of perturbations and the frequency of
collisions expected in this environment, which depends sensitively
on the assumed density, the mass of the most massive central object
and the compactness of the binary. For example, it could occur that
only very compact binaries are able to form, and they are relatively
insensitive to perturbations. Indeed, the hard–soft boundary depends
on distance from the SMBH, when one is present (Leigh et al.
2016).

A more detailed parameter space exploration is required to
properly identify how these effects compete in dense environments.
Although in Section 3.2, we show that our model is not able to
correctly reproduce the number of collisions that involve a central
very massive object, we cannot conclude that the model does not
work for estimating the number of single–binary interactions for
binary systems orbiting such an object. We expect that equation (7)
is still able to capture these events, but we aim for a simplified model
here that needs to be tested with more sophisticated simulations in
the future.
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Here, we used the correction factors fpert and npert for our model
that matches better the stellar properties and number density of stars
in the Galactic Centre, however, the stellar radii are still too large. We
choose not to extrapolate the values of fpert and npert to smaller radii,
and limit ourselves to a very simplified comparison between the two
time-scales to avoid overstating the significance of our results (since
we have only explored a small subset of the total allowed parameter
space of initial conditions).

The take-away message from Fig. 7 is that the S-stars could
potentially be explained via three-body binary formation forming
binaries near to the central SMBH, which then merge due to
perturbations from the surrounding high-density N-body system.
Hence, Fig. 7 shows that the time-scale to drive a merger due to
perturbations could be shorter than the time-scale for Lidov–Kozai
cycles to operate, provided ab � 10 au and aout � 0.5 pc. In this
regime, this scenario predicts a top-heavy mass function for stellar
populations in the cores of very dense clusters not just due to mergers,
but also because it is usually the least massive object that is ejected
during three-body binary formation. The escaping single particle
must leave with more kinetic energy than it came in with, such
that three-body binary formation would contribute to depleting the
central regions of dense environments of lower mass stars. Naively,
however, this would not explain a disc-like configuration for the
orbits of the S-stars, unless star formation first occurred and only
formed isolated single stars, which then formed binaries later via
1+1+1 interactions. To constrain this mechanism, the distribution
of orbital eccentricities can be used, since the highly perturbative
environment should drive the eccentricity distribution of the S-stars
to become supra-thermal. But detailed N-body simulations would
first be required to properly quantify the predicted eccentricity
distributions for different initial conditions, combinations of BH
masses, and so on.

Performing a more rigorous parameter space exploration using
sophisticated N-body models to properly quantify the post-scattering
time evolution of the orbital diffusion in energy- and angular
momentum-space for the S-star population will be the focus of future
work. This will be necessary in order to use the observed orbital
parameters of the S-star population to test the predictions presented
in this section.

5 SUMMARY AND DIS C U SS I ON

In this paper, we perform a comparison between analytic calculations
for the rate of stellar collisions, to a set of N-body simulations
that include stellar collisions. Our goal is to test the validity and
extent of the MFP approximation, in a dense dynamically active star
cluster environment. Our simple numerical models initially consist
of equal mass and equal radii particles without stellar evolution,
and collisions are treated using the ‘sticky star approximation’. This
allows us to use simple ‘nσv’ rates for our analytic model and to
avoid complicating effects such as tidal capture, mass-loss and tidal
disruption. We focus our analysis to the cluster core, where most
simulated collisions occur, and take into account single–single and
single–binary collisions.

In general, our analytic model works better for larger N systems
where most of the collisions are due to hyperbolic encounters, but
worsens for longer evolution time-scales as shown in the middle
panel of Fig. 1. A longer evolution time produces a larger number of
collisions, which in turn promotes the formation of a very massive
object in the cluster centre. As this object grows (preferentially
through binary collisions, as we show in Fig. 5), our model begins
to break down. This should mark the transition from a chaotic

to a more deterministic dynamical evolution, as the contribution
from the most massive object to the total gravitational potential
increases and the local stellar orbits become increasingly Keplerian.
In the limit of large central object masses, the influence radius
becomes large (i.e. the distance from the cluster centre of mass
to the distance at which point the Keplerian velocity becomes on
the order of the local velocity dispersion) and the stellar orbits
are typically assumed not to be changing significantly over short
time-scales, as occurs for low-number chaotic systems. For our
simulations, however, we do not reach this limit, suggesting that
perturbative encounters remain important for a large fraction of
the parameter space relevant to very dense clusters hosting binary
stars (i.e. ncore � 106 pc−3; see Fig. 6). In this regime, a loss
cone formalism is likely more applicable, but would need to be
combined with the standard ‘nσv’ estimates further out in the cluster
where the density is lower and the relevant dynamical time-scales,
which cause the cluster structure and mass spectrum to change, are
longer.

We include two types of binary collisions in our analytic model,
namely direct binary collisions and perturbed binary collisions. The
first type of collision occur when all three stars become bound, and
two or more stars undergo a direct collision during the interaction.
The second type of collision requires that a binary first forms via
encounters involving three isolated single stars, but then later merges
due to perturbations from the surrounding stellar potential pumping
the binary eccentricity to near unity. For the latter type of collisions,
close passages of single stars drive the orbital eccentricity to e ∼
1 and cause the merger of the binary stars (see Section 2.5.2 for
details), as we show in Fig. 2.

A shortcoming of our model for binary mediated collisions comes
from the determination of the correction factors that we introduce to
account for direct and perturbed binary collisions. Specifically, for
our higher cadence simulations with N = 100 (see Section 2.5.1),
the number of runs is still so low that we have no binary collisions
at all, and hence the correction factors are mostly zero (see Table 3).
While this problem is most important for our smallest N simulations,
we still have to deal with low number statistics when computing
the correction factors for the rest of the models. This, combined
with a low cadence in snapshot outputs, prevents us from accurately
exploring the evolution of every binary system and developing a
complete understanding of the competition between the effects of the
stellar number density, the stellar radius and mass, and the properties
of the central MMO on the two binary collision channels that we
identify.

We use GC data taken from the literature to determine which of
our rates is dominating in which cluster environments. We obtain
core densities from the Harris GC Catalogue (Harris 1996) and
core binary fractions from Milone et al. (2012). We plot binary
fraction as a function of number density, and segment off those
regions of parameter space where each of the 1+1, 1+2 and 1+1+1
rates dominate in Fig. 6, as explained in Section 4.1. As is clear,
1+2 interactions dominate in all the GCs considered here. We also
overplot the time evolution of two of our simulations in this parameter
space. This indicates that in such dense environments with large radii
stars, the single–single collision rate always dominate. Nevertheless,
binaries are still created, but merge or are destroyed relatively
quickly without ever reaching a sufficiently high binary fraction
for a significant period of time such that single–binary collisions
dominate.

We suggest that the perturbed binary collisions identified in
our simulations could be an alternative merger channel operating
efficiently in dense stellar environments where no stable triples
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can form. This process would produce isolated BSs as opposed
to binary stellar evolution, which instead predicts a white dwarf
binary companion (e.g. Gosnell et al. 2014, 2015), potentially
producing a correlation between the number of isolated BSs and the
stellar density. Specifically, we predict that the ratio of BSs without
binary companions to the ratio of BSs with binary companions,
or NBS,iso/NBS,bin, should increase in denser clusters with lower
binary fractions, which offers a possible observational test for this
prediction. By means of a simplified comparison of time-scales, we
show that perturbed binary collisions could be more important than
LK induced collisions in the outer parts of the Milky Way central
stellar disc. This could have implications for the formation of the S-
stars in the Galactic Centre, which we quantify qualitatively, however,
more sophisticated models and simulations are needed to confirm or
reject this hypothesis.

Our results have important implications for performing accurate
and precise numerical simulations involving collisions and mergers.
Consequently, we caution against blindly using independent analytic
approximations in very dense stellar systems. For example, in
loss cone theory (see Merritt 2013b for a detailed review), an
analytic model (e.g. a Boltzmann-based diffusion model) is used to
compute the torques orbiting objects exert on each other’s orbits
and hence the time-scale for resonant relaxation to operate (see
Merritt 2013a for a review of resonant relaxation). The model
evolves those orbits by computing the rate of energy and angular
momentum exchanged between them, which can then be used to
compute the time-scale on which stellar orbits diffuse to high
eccentricities and pass very close to the system centre of mass,
where they would collide with any central massive object. Our
results suggest that this could be an oversimplified analytic model,
since it ignores perturbations, which become particularly important
when the orbiting bodies are at apocentre. At high densities, these
perturbations become stronger and more frequent. N-body codes
are capable of modeling the perturbations and can be used to
quantify the competing rates and parameter space. To the best
of our knowledge, however, perturbative effects are still not fully
included and any contribution from distant perturbers (e.g. stars in
the outskirts of a cluster) are entirely neglected in Monte Carlo
simulations for star cluster evolution. A detailed parameter space
study is needed to better understand when the perturbations can
be safely ignored, and when they must be included in any analytic
model.
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APPENDIX A : C OLLISION TIME-SCALES
W I T H G R AV I TAT I O NA L FO C U S I N G

For deriving the time-scales for single–single collisions (τ 1 + 1) and
single–binary collisions (τ 1 + 2), we use the next relations (Leonard
1989):

σi+j = πp2

[
1 + 2G(mi + mj )

pv2
rel

]
, (A1)

�i+j = Ninjσi+j vrel, (A2)

τi+j = �−1
i+j , (A3)

Ncore = 2

3
πn0r

3
core, (A4)

ncore = n0

2
. (A5)

Here, σ i + j, is the gravitationally focused cross-section for the
interaction between particles i and j, p is the pericenter distance
for a physical collision, mi and mj are the masses of the colliding
particles, Ni and nj are the core number and core number density of
particles i and j, respectively, vrel is the relative velocity at infinity,
n0 is the number density of particles in the cluster centre, rcore is the
core radius, ncore is the mean number density of particles in the core,
and Ncore is the total number of particles in the core.

A1 Single–single collision time-scale

Consider a physical collision between two single particles with the
same mass and radius, m and R, respectively. The gravitationally
focused cross-section for such an interaction as calculated with
equation (A1) is

σ1+1 = 4πR2

[
1 + Gm

Rv2
rms

]
, (A6)

where for a Maxwellian velocity distribution the relative velocity
between the two particles is equal to the square root of two multiplied
by the root mean square velocity of the particles, i.e, vrel = √

2vrms.
The number of single stars in the core is Ns = Ncore(1 − fb − ft),
where fb and ft are the fraction of binary and triple systems in the
core, i.e. the number of binary and triple systems in the core, divided
by the number of single stars, plus binary systems, plus triple systems
in the core. By using equations (A4) and (A5), we can show that

Nsns = N2
core(1 − fb − ft )

2 3

4πr3
core

,

Nsns = π

3
n2

0 r3
core (1 − fb − ft )

2. (A7)

Now, combining equation (A2), (A6), (A7), and setting vrel = √
2vrms

we obtain

�1+1 =
√

2
4π2

3
(1 − fb − ft )

2 n2
0 r3

core R2vrms

[
1 + Gm

Rv2
rms

]
. (A8)

Finally, inverting equation (A8), inserting some typical values for
star clusters, and using ncore instead of n0, we get

τ1+1 = 8.3 × 1013 (1 − fb − ft )
−2

(
103 pc−3

2ncore

)2

×
(

1 pc

rcore

)3 (
5 km s−1

vrms

) (
0.5 R�

R

)2

×
[

1 + 7635

(
m

0.5 M�

)(
0.5R�

R

) (
5 km s−1

vrms

)2
]−1

yr.

A2 Time-scale for single–binary collisions

Consider now an encounter between a single star and a binary
system, with all the stars having the same mass m and radius R.
The gravitationally focused cross-section for such an interaction,
assuming a pericenter distance equal to the semi major axis of the
binary p = ab, as calculated with equation (A1) is

σ1+2 = πa2
b

[
1 + 3Gm

abv2
rms

]
, (A9)
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where for a Maxwellian velocity distribution the relative velocity
between the two particles is equal to the square root of two multiplied
by the root mean square velocity of the particles, i.e, vrel = √

2vrms.
The number of single stars in the core is Ns = Ncore(1 − fb − ft) and
the number of binary systems in the core is Nb = Ncorefb, where fb

and ft are the fraction of binary and triple systems in the core. By
using equation (A4) and equation (A5), we can show that

Nsnb = N2
core(1 − fb − ft)fb

3

4πr3
core

,

Nsnb = π

3
n2

0 r3
core (1 − fb − ft)fb. (A10)

Now, combining equation (A2), (A9), (A10), and setting vrel =√
2vrms we obtain

�1+2 =
√

2
π2

3
(1 − fb − ft)fb n2

0 r3
core a2

bvrms

[
1 + 3Gm

abv2
rms

]
. (A11)

Finally, inverting equation (A11), inserting some typical values for
star clusters, and using ncore instead of n0, we get

τ1+2 = 1.8 × 109 (1 − fb − ft)
−1 f −1

b

(
103 pc−3

2ncore

)2

×
(

1 pc

rcore

)3 (
5 km s−1

vrms

) (
1 AU

ab

)2

×
[

1 + 53

(
m

0.5 M�

)(
1 AU

ab

) (
5 km s−1

vrms

)2
]−1

yr.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Chapter 7

Formation of supermassive stars in the
first star clusters

7.1 Statement about my contribution

For the research article presented in this chapter my contribution consisted in the develop-
ment of the numerical implementation used to run the simulations. I ran the numerical sim-
ulations and analyzed them. I obtained the parametrization of the mass-radius relationships
included in the appendix. I created all the tables and figures and wrote the article. All the
authors contributed to the discussion and helped with the revision of themanuscript.
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A B S T R A C T 

The formation of supermassive stars is believed to be an essential intermediate step for the formation of the massive black hole 

seeds that become the supermassive black holes powering the quasars observed in the early Universe. Numerical simulations 

have shown that supermassive stars can form in atomic-cooling haloes when protostars reach accretion rates higher than 

∼10 
−2 M ⊙ yr −1 and fragmentation is suppressed on pc scales. It is, ho we ver, still uncertain if a supermassive star still emerges 

when fragmentation occurs at smaller scales and a cluster of stars is formed instead. In this work, we explore the problem of 

massive object formation due to the interplay of collisions and accretion in star clusters at low metallicity. We model a small 

embedded cluster of accreting protostars following subparsec scale fragmentation during the collapse of a primordial gas cloud, 

and follow its evolution by performing N -body plus hydrodynamical simulations. Our results show that supermassive stars with 

10 
3 and 10 

4 M ⊙ are al w ays formed due to the interplay of collisions and accretion, and in some cases these objects are part of a 

binary system. The resulting supermassive star is surrounded by tens of smaller stars with typical masses in the range 1–100 M ⊙. 

Key words: methods: numerical – stars: formation – quasars: supermassive black holes – stars: Population III – early Universe. 

1  I N T RO D U C T I O N  

As of today, more than 200 quasars have been detected at redshift z 

> 5.7 (Fan et al. 2006 ; Mortlock et al. 2011 ; Wu et al. 2015 ; Ba ̃ nados 

et al. 2018 ; Onoue et al. 2019 ; Reed et al. 2019 ; Ba ̃ nados et al. 2021 ; 

Wang et al. 2021 ), with masses larger than 10 9 M ⊙, and notably, more 

than 10 10 M ⊙ for SDSS J010013.02 + 280225.8 (Wu et al. 2015 ). 

Explaining the formation and growth of the supermassive black holes 

(SMBHs) powering those quasars, at an age of the Universe of less 

than a billion years, is still an important open problem in astrophysics 

(see the re vie ws by Volonteri 2010 ; Woods et al. 2019 ). A natural 

approach to solve this problem is to find and study the processes 

capable of yielding massive black holes (BHs) early in the history 

of the Universe. These early-formed massive BHs are the seeds 

that grow further by accreting matter, continuous mergers, or both, 

becoming finally the most distant quasars observed today. 

The most straightforward path that yields massive BH seeds comes 

from the death of massive population III stars (Abel, Bryan & 

Norman 2002 ; Heger & Woosley 2002 ; Heger et al. 2003 ; Klessen 

2019 ), whose initial mass function (IMF) is believed to be heavy 

as supported by recent numerical simulations (Stacy, Bromm & Lee 

2016 ; Fraser et al. 2017 ; Riaz et al. 2018 ; Sharda, Federrath & 

Krumholz 2020 ). This scenario, ho we ver, faces important limitations, 

as the formed seeds are still too light ( � 10 2 M ⊙). In addition, 

because massive Pop III stars are very ef fecti ve at expelling gas from 

the low-mass haloes, in which they form the black holes formed 

from them are ‘born starving’ in regions of low-gas density, and 

thus cannot grow efficiently by gas accretion (Johnson & Bromm 

⋆ E-mail: bastian.reinoso@uni-heidelberg.de 

2007 ; Smith et al. 2018 ). An alternative pathway for massive black 

hole seed formation is the runaway growth of a single star due to 

stellar collisions in very dense star clusters (Omukai, Schneider & 

Haiman 2008 ; Katz, Sijacki & Haehnelt 2015 ; Sakurai et al. 2017 ; 

Reinoso et al. 2018 ; Sakurai, Yoshida & Fujii 2019 ; Reinoso 

et al. 2020 ; Vergara et al. 2021 ), or black hole mergers in dense 

black hole clusters (Davies, Miller & Bellovary 2011 ; Lupi et al. 

2014 ). This channel yields massive objects with typical masses 

of 10 3 M ⊙. These BHs could grow to 10 9 M ⊙ by z ∼ 7 if they 

accreted continuously at the Eddington limit, but this is an unlikely 

scenario considering the environment in which those seeds emerge. 

A recent work by Escala ( 2021 ) suggests that a runaway collision 

process in nuclear star clusters could produce BHs with masses up 

to 10 9 M ⊙. 

The pathway that yields the most massive BH seeds is the so- 

called direct collapse black hole (DCBH) scenario, and as of today, 

it seems the most plausible explanation for the highest redshift 

quasars observed. Initially proposed by Rees ( 1984 ), this formation 

channel consists of the accumulation of a huge amount of matter in 

a sufficiently small volume, following the collapse of a pristine gas 

cloud. This process yields a supermassive star (SMS) that collapses 

to a BH due to the post-Newtonian instability (Chandrasekhar 1964 ). 

Stellar structure calculations show that SMSs are inflated objects, 

with ef fecti ve temperatures of 10 4 K, that can reach final masses 

of 10 5 M ⊙ before collapsing due to the post-Newtonian instability 

(Chandrasekhar 1964 ; Hosokawa, Omukai & Yorke 2012 ; Hosokawa 

et al. 2013 ; Schleicher et al. 2013 ; Woods et al. 2017 ; Haemmerl ́e 

et al. 2018 ; Haemmerl ́e 2021 ). Given their low effective temperature, 

they are unable to produce ionizing photons that may terminate ac- 

cretion due to radiative feedback. Furthermore, considering the gas- 

rich environments, in which those objects form, they are promising 

© 2023 The Author(s) 
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candidates to produce the massive BH seeds that can grow further 

by mass accretion. 

Recent numerical simulations explored the collapse of pristine gas 

clouds in the early Universe, and found that an essential condition 

for the formation of SMSs in such environments is the suppression 

of molecular hydrogen cooling, which would otherwise lead to 

fragmentation of the cloud and the formation of population III 

stars. Preventing the cooling due to molecular hydrogen requires 

a decrease of its abundance by photodetachement of the H 
− ion 

and the destruction of the H 2 molecule. This can be achieved in the 

presence of a strong radiation background that carries photons in 

the Lyman–Werner bands (11.2 eV ≤ h ν ≤ 13.6 eV), and dissociates 

the H 2 molecule along with infrared photons ( h ν ≥ 0.76 eV) that 

lower the abundance of H 
−, a catalyst for H 2 formation. This can 

occur if two pristine haloes remain at a small separation such that 

once star formation begins in one of them, the other is exposed to 

a high Lyman–Werner radiation intensity, thus suppressing molec- 

ular hydrogen cooling. This is termed as the ‘synchronized pairs’ 

scenario (Dijkstra et al. 2008 ; Visbal, Haiman & Bryan 2014 ; Chon, 

Hosokawa & Yoshida 2018 ). Once molecular hydrogen cooling has 

been suppressed, cooling occurs primarily via collisional excitation 

of hydrogen atoms, provided that the gas temperature is high enough 

to make this process efficient. Haloes, in which this is the case, are 

often referred to as atomic-cooling halo. 

The radiation intensity needed to suppress molecular hydrogen 

cooling is usually expressed in units of J 21 , where J 21 = 1 corresponds 

to a radiation intensity of 10 −21 erg cm 
−2 s −1 sr −1 Hz −1 at the Lyman 

limit (see e.g. Omukai 2001 ; Latif et al. 2015 ). The required radiation 

intensity on the atomic-cooling halo could be as high as J 21 = 

1000 (Regan, Johansson & Wise 2014 ; Latif et al. 2015 ), or even 

higher when considering an X-ray background (Inayoshi & Tanaka 

2015 ; Glo v er 2016 ), and the true value has important implications for 

the number density of DCBHs (Dijkstra, Ferrara & Mesinger 2014 ; 

Inayoshi & Tanaka 2015 ; Chon et al. 2016 ; Chon et al. 2018 ). 

It has been suggested (Wise et al. 2019 ) that extremely high 

radiation intensities are not a necessary condition as long as the 

dark matter halo grows rapidly through mergers. The dynamical 

heating induced by this period of rapid growth, combined with a 

moderate Lyman–Werner flux of J 21 ∼ 3 can still produce accretion 

rates of the order of 0.1–1 M ⊙ yr −1 onto the central object. Once 

the right conditions are met and high accretion rates achieved 

( > 0.04 M ⊙ yr −1 ), an SMS can still emerge. 

The ideal places for the emergence of DCBHs are o v erdense 

regions in the early Universe, as they provide intense radiation 

backgrounds and rapid halo growth. This has been investigated 

via semi-analytic models by Lupi, Haiman & Volonteri ( 2021 ), 

suggesting that the ‘synchronized pairs’ channel as well as the 

dynamically heated haloes can produce several BH seeds in these 

environments. 

Although, a single object forms initially in idealized scenarios 

of pristine atomic-cooling haloes irradiated by a high-intensity LW 

background, it is important to follow its evolution for longer times 

in order to place constraints on its final mass. High resolution 

numerical simulations have shown that fragmentation is una v oidable 

in the accretion disc for the high accretion rates expected in these 

environments, and fragmentation is seen on ∼au scales (Clark et al. 

2011 ; Greif et al. 2012 ; Latif, Schleicher & Hartwig 2016 ; Becerra 

et al. 2018 ; Suazo et al. 2019 ; Patrick et al. 2020 ; Wollenberg et al. 

2020 ; Latif et al. 2021 ; Jaura et al. 2022 ; Prole et al. 2022a , b ). It is 

therefore important to understand the fate of the haloes that failed to 

remain metal-free and/or of the ones, in which an important degree 

of fragmentation is expected. This scenario is now being explored, 

and various models, both numerical and analytical, have shown that 

SMSs with 10 4–5 M ⊙ might still be able to form (Boekholt et al. 

2018 ; Alister Seguel et al. 2020 ; Tagawa, Haiman & Kocsis 2020 ; 

Das et al. 2021 ; Schleicher et al. 2022 ). These results seem to be 

confirmed by the more sophisticated simulations of Chon & Omukai 

( 2020 ) and Regan et al. ( 2020 ). Additionally, Sassano et al. ( 2021 ) 

showed that under Eddington-limited accretion, the heavy black hole 

seeds ( ∼10 5 M ⊙) are able to produce 10 9 M ⊙ BHs at z ∼ 6 (see also 

Trinca et al. 2022 for a similar analysis involving light BH seeds and 

Kohri et al. 2022 for seed growth under super-Eddington accretion). 

In this paper, we present a set of N -body plus hydrodynamics 

simulations that include mass accretion, mass-radius parametriza- 

tions, and stellar mergers to model the central region of a collapsed 

primordial cloud, in which multiple protostars are present. We 

explore two environments similar to the ones expected in atomic- 

cooling haloes to assess the impact of fragmentation at sub parsec 

scales during the assembly of DCBHs. We describe our simulation 

set-up in Section 2 , then present our results in Section 3 and a 

discussion in Section 4 . 

2  SETUP  

In this section, we describe the initial conditions for our models, the 

numerical codes used, and additional algorithms that we include in 

our simulations. 

2.1 Initial conditions 

The clusters are modelled to consist of a combination of gas and 

protostars, the former represented by SPH particles and the latter 

by particles that interact only through gravity, which we also refer 

to as N -body particles throughout this paper. We model two clusters 

that differ only in the total mass being 10 025 . 6 in one case and 

30 025 . 6 M ⊙ in the other. In both cases, we start with a total mass 

of 25.6 M ⊙ in protostars, so the initial gas masses are 10 000 and 

30 000 M ⊙, respectively. The initial number of protostars is 256 and 

each of them has a mass of 0.1 M ⊙, which is consistent with the 

mass of protostars formed in atomic-cooling haloes (Becerra et al. 

2015 ). The gas is sampled with 2 18 SPH particles. For each set of 

particles (SPH and protostars), the positions are sampled from a 

Plummer distribution (Plummer 1911 ) with a Plummer radius R p ∼

0.077 pc such that the half-mass radius is R h ∼ 1.3 R p = 0.1 pc, and 

we impose a cut-off radius of 5 Plummer radii for each model such 

that all the mass is enclosed within ∼0.4 pc. This yields an initial 

number density for protostars of 956 pc −3 . We adopt this distribution 

for simplicity, as the precise distribution of gas and protostars will 

be unkno wn. Ho we ver, it ensures a meaningful behaviour of both 

quantities in the central region, where the density profile will be flat, 

while the behaviour in the outer parts will approximately resemble 

the behaviour found in cosmological simulations (e.g. Latif et al. 

2015 ). The velocities of the protostars are obtained by imposing 

virial equilibrium condition. We relax the Plummer distribution 

of SPH particles, and then inject a spectrum of non-compressive 

Kolmogorov turbulence with Mach number M = 1 as found in 

numerical simulations by Latif et al. ( 2013 ). 
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2.2 Numerical simulations 

To run our simulations, we use the Astrophsyical MUlti-purpose 

Software Environment (AMUSE 
1 ; see Portegies Zwart et al. 2009 ; 

Pelupessy et al. 2013 ; Portegies Zwart et al. 2013 ; Portegies Zwart & 

McMillan 2018 ), a PYTHON interface designed to couple existing 

numerical codes offering great flexibility, and allowing us to rela- 

tively easily include new algorithms such as mass accretion onto the 

protostars, sink particle creation, a treatment for stellar collisions, 

and mass radius relations for the protostars, all of them described in 

the next subsections. 

2.3 N -body-SPH coupling 

We couple the pure N -body code PH4 (McMillan & Hut 1996 ) and 

the SPH code FI (Hernquist & Katz 1989 ; Gerritsen & Icke 1997 ; 

Pelupessy, van der Werf & Icke 2004 ) by means of the BRIDGE 

method (Fujii et al. 2007 ) via the bridge class included in AMUSE. 

This method consists of calculating the gravitational acceleration at 

the position of the N -body particles using the SPH particles and vice 

versa, i.e. the particles in one code kick the particles in the other 

code. To ensure that the coupling does not violate Newton’s third 

law, we use the code FastKick to perform the kicks, with a constant 

gravitational smoothing length of 0.5 au, approximately equal to the 

smallest smoothing length among all the SPH particles. By doing so, 

we employ the same gravitational smoothing kernel for both sets of 

particles, and make sure that the gravitational forces among them are 

symmetric. 

For evolving the particles in the N -body code, we use a smoothing 

length of 1 R ⊙ in order to accurately solve gravitational interactions 

between the protostars. We include an external pressure floor in the 

SPH code by modifying the momentum equation in an analogous 

way as done in Benz ( 1990 ); Clark et al. ( 2011 ). This external 

pressure is equal to the pressure of the cloud at the cut-off radius, 

and corresponds to ∼1.72 × 10 −7 g cm 
−1 s −2 for the most massive 

cloud and ∼7.45 × 10 −8 g cm 
−1 s −2 for the less massive cloud. The 

external pressure is required to stabilize the clouds against vacuum 

boundary conditions. 

Finally, we modified the code FI to include a modified equation of 

state of the form 

T = T 0 

[ 

1 + 

(

ρ

ρc 

)γ−1 
] 

, (1) 

so that the gas behaves isothermally, with a temperature T 0 = 8000 K 

at low densities, but becomes adiabatic at densities abo v e ρc = 

10 15 cm 
−3 , as found in 1D and 3D models including detailed chemical 

networks (Omukai et al. 2008 ; Becerra et al. 2015 ). We use an 

adiabatic index γ = 5/3. 

The treatment of stellar collisions (described in Section 2.9 ) as 

well as the mass radius relations are implemented at the PYTHON 

level. The mass accretion (see Section 2.6 ) and sink particle creation 

(see Section 2.7 ) algorithms are written in FORTRAN and included as 

PYTHON functions via F2PY for adequate performance. This offers the 

advantage of easily replacing any of the codes used without having 

to re-write these routines. 

The time integration consists sequentially of the Kick-Drift-Kick 

(KDK) integration with bridge during which stellar collisions and 

sink particle creation are solved, followed by the computation of 

accretion onto the protostars, and the treatment of stellar ejections. 

1 https://github.com/amusecode/amuse 

Figure 1. The adopted mass radius relations for accreting protostars in our 

models. 

We impose a maximum time-step of 5 yr for bridge in order 

to perform the accretion steps rather frequently, given the rapid 

accretion rates expected in this environment. 

The densest gas is typically found around accreting protostars and 

thus it is often accreted after every accretion step. Nevertheless, there 

are regions where the gas becomes very dense, and thus the associated 

free-fall time can be of the order of 10 −4 yr. Because of this, we 

implemented an adaptive time-stepping algorithm for bridge , such 

that the time-step is reduced by factors of 2 until becoming smaller 

than the shortest free-fall time. The time-step can increase by a factor 

of 2 after each time-step only if the shortest free-fall time is more 

than twice the current time-step. 

2.4 Protostars and stars 

The N -body particles in our simulations are meant to represent, 

in an approximate way, protostars and stars, but they interact here 

only through gravity and we do not include any type of feedback. 

By taking advantage of the particle sets provided by AMUSE, we 

assign additional properties to our N -body particles such as: sta g e 

and luminosity . The sta g e property indicates if an N -body particle 

has already entered the main sequence phase or if it is still in the 

protostellar phase. This distinction is important as inflated protostars 

can still contract to the main-sequence phase, and thus will follow 

different mass-radius relations. A correct determination of the size 

of the particles is an essential feature needed in this very dense 

collisional environment. For the determination of the radius of each 

N -body particle, we incorporate new PYTHON functions without the 

need to modify any code. The mass radius parametrization that we 

use is briefly described in Section 2.5 , and further details are provided 

in Appendix A . 

2.5 Mass-radius parametrization 

We use a parametrization of the mass-radius relation based on the 

w orks by Hosokaw a & Omukai ( 2009 ), Hosokaw a et al. ( 2012 ), and 

Hosokawa et al. ( 2013 ). This implementation is simplified by the 

use of the sta g e property for our N -body particles. We define three 

stages in which an N -body particle can be. The possible stages are 

the protostar , star , and supermassive star stages. 

For a particle in the protostar stage, the mass–radius relation 

depends on its mass and accretion rate. We present in Fig. 1 , with 
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dashed lines, the mass radius relations for protostars accreting at 

different rates. The implementation is described in Appendix A . 

For a particle in the star stage, the mass-radius relation is given 

by: 

R ∗ = 0 . 97 

(

M ∗

M ⊙

)0 . 57 

R ⊙. (2) 

It is used once the protostars enter in the main-sequence stage, and 

corresponds to the blue solid line, onto which most of the other lines 

converge in Fig. 1 . 

An N -body particle enters into the supermassive star stage if it is 

still on the protostar stage and if its accretion rate becomes larger 

than a critical accretion rate Ṁ crit . The mass-radius relation for these 

particles is given by: 

R ∗ = 2600 

(

M ∗

100 M ⊙

)1 / 2 

R ⊙. (3) 

It is shown with a dot–dashed line in Fig. 1 . 

We note that an N -body particle in the protostar stage will 

eventually contract to the main sequence after becoming massive 

enough. Similarly, an N -body particle in the supermassive star stage 

can also contract to the main sequence if its accretion rate drops 

below a critical value Ṁ crit for a time longer than the Kelvin–

Helmholtz (KH) time-scale t KH . We adopt here Ṁ crit = 0 . 04 M ⊙ yr −1 

(Hosokawa et al. 2013 ). 

Due to the structure of supermassi ve stars, the rele v ant time-scale 

for contraction is the Kelvin–Helmholtz time-scale evaluated at the 

stellar surface t KH, surf (Schleicher et al. 2013 ; Sakurai et al. 2015 ). 

The value of the KH time-scale at the surface for these objects can be 

approximated as 10–100 t KH (Sakurai et al. 2015 ). We explore here 

these two extreme values, namely t KH, surf = 10 t KH and 100 t KH . The 

first case is the most pessimistic case for stellar collisions to occur, 

whereas the second is the most optimistic case. In consequence, in 

our simulations, an N -body particle in the supermassive star stage 

will contract if its accretion rate falls below Ṁ crit for a time longer 

than t KH, surf given by: 

t KH , surf = X t KH = X 
GM 

2 

RL 
, (4) 

with X = 10 or 100. 

In order to calculate t KH, surf , we make use of the luminosity 

property of our N -body particles. Luminosites are calculated based on 

the works by Hosokawa & Omukai ( 2009 ), Hosokawa et al. ( 2012 ), 

and Hosokawa et al. ( 2013 ) as described in Appendix A . 

Finally, we also assume that a stellar merger will perturb the new 

object in such a way that the resulting object has to start o v er the 

relaxation process. This means that stellar mergers help to keep the 

protostars inflated in our simulations. 

2.6 Gas accretion 

After every KDK step, we calculate the gas accretion onto the 

protostars. We model the gas accretion by employing the algorithm 

developed by Hubber, Walch & Whitworth ( 2013 ). For every N -body 

particle, we define a spherical volume called the interaction zone, 

with radius R I.Z. . Inside this region, the weighted average gas flux 

onto the central point mass is computed, with the weight calculated 

via a cubic spline kernel function. 

The radius of the interaction zone is adjusted iteratively before 

every accretion calculation, with a maximum of 50 iterations per 

particle, to maintain a constant gas mass of M int, max = 50 M gas / N SPH 

(the mass corresponding to 50 SPH particles). We impose lower and 

upper limits to the radius of the interaction zone of r min = max (10 au, 

2 R star ) and r max = 500 au, respectively, so that the interaction zone 

cannot be smaller than the protostars. We also impose the angular 

momentum conservation condition for the accreted gas and the 

angular momentum feedback from the point particle as described 

in Hubber et al. ( 2013 ), as well as the prescriptions for spherical or 

disc accretion. 

Once the accretion step has been completed, we update the radius 

of each star particle according to the mass–radius parametrization 

described in Section 2.5 and in Appendix A . 

2.7 Sink particles 

Given the high densities reached in our simulations, we decided 

to include sink particle creation to a v oid prohibitively small time- 

steps. Based on the work by Hubber et al. ( 2013 ), specifically on their 

‘NewSink’ algorithm, we create sink particles whenever an SPH par- 

ticle reaches a density higher than 10 16 cm 
−3 (Becerra et al. 2015 ), it 

sits in a minimum of the gravitational potential among its neighbours, 

it does not o v erlap e xisting sinks, and fulfills the density criterion: 

ρi > ρHill ≡
3 X Hill ( −� r is ′ · � a is ′ ) 

4 πG | � r is ′ | 2 
, (5) 

for all existing sinks s ′ for a given SPH particle i . Here, � r is ′ and 

� a is ′ are the relative position and acceleration of sink candidate i 

with respect to existing sink s ′ . We set X Hill = 4. This Hill sphere 

criterion ensures that an SPH particle turns into a sink particle in the 

vicinity of another sink only if the density peak dominates the local 

gravitational potential. Once the previous conditions are fulfilled, we 

remo v e the SPH particle from FI and insert a new N -body particle in 

PH4. The mass, position, and velocity of the new particle are the same 

as the ones of the remo v ed SPH particle. The radius of the protostar is 

initialized to 0.1 R ⊙, but is recalculated after every accretion step ac- 

cording to the mass–radius parametrization described in Section 2.5 . 

The Jeans mass scales as 

M J ∝ 

(

T 3 

n 

)1 / 2 

, (6) 

with n being the number density of the gas. In our simulations, the 

minimum Jeans mass is ∼3.96 M ⊙. The mass resolution is equal to 

twice the mass contained inside the smoothing length of an SPH 

particle. In our case this is 

M res = 2 N neigh 
M gas 

N SPH 
, (7) 

where N neigh = 64 is the number of neighbours for one SPH particle 

as adopted in the code FI, M gas is the initial cloud mass, and N SPH is 

the number of SPH particles. 

In order to a v oid artificial fragmentation, our simulations need to 

resolve the Jeans mass (Bate & Burkert 1997 ). We achieve the mass 

resolution by using N SPH = 1048 576 for all our simulations. 

2.8 Ejections 

The N -body particles can also be ejected from the cluster. A particle 

is considered to have been ejected once it fulfills three criteria: 

its distance to the centre of mass of the system is ≥1.4 pc; its 

gravitational potential energy plus kinetic energy per unit mass is 

positive; and it is moving away from the cluster, i.e. r · v > 0 . 

Ejected particles are remo v ed from the simulation. 
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2.9 Collisions 

A collision between two particles occurs once the radii of two N -body 

particles o v erlap during the N -body inte gration. This is implemented 

in AMUSE with the help of the stopping conditions . We acti v ate the 

stopping condition that detects the o v erlap of two particle’s radii in 

PH4, i.e. a collision occurs when 

d ≤ R 1 + R 2 , 

where d is the separation between the particles and R 1 and R 2 are their 

radii. Once the condition is fulfilled, the integration is interrupted, 

and then, by implementation at the PYTHON level, we replace the 

o v erlapping particles by a new particle that is placed at the centre of 

mass of the previous configuration, and the new velocity is calculated 

assuming linear momentum conservation. We assume no mass loss 

to occur, and thus the new mass is the sum of the masses of the 

colliding particles, i.e. 

M new = M 1 + M 2 . 

In order to determine the new radius of the merger product, we first 

determine the stage in which the new particle will be, according to the 

outcomes shown in Table B1 ; and the new track, in case the resulting 

stage is protostar , is assigned as shown in Table B2 . Subsequently, the 

new radius is obtained from the corresponding mass–radius relation. 

Further details are provided in Appendix B . After determining the 

evolutionary stage of the particle, the luminosity is calculated as 

explained in Appendix A . 

3  RE S ULTS  

In this section, we describe the results obtained from our simulations. 

We begin by describing the general behaviour of the simulated 

systems, in which we set t KH, surf = 100 t KH (see Section 2.5 ). We 

describe the emergence of massive objects and characterize the final 

state of the clusters. We do so first for the simulations with M gas = 

10 4 M ⊙, and then for simulations with M gas = 3 × 10 4 M ⊙. We then 

show the impact of setting t KH, surf = 10 t KH on the final masses of 

the most massive objects. All the uncertainties reported correspond 

to the one sigma interval assuming a normal distribution. 

3.1 Clusters with M gas = 10 4 M ⊙

3.1.1 Cluster evolution 

By the time that we stop our simulations, most of the gas accretion 

has already occurred as depicted in Fig. 2 . The initial phase of 

the evolution is marked by a contraction of the inner parts of the 

gas cloud on a free-fall time-scale. We see the contraction of the 

inner parts of the cloud, up to the radius at which 25 per cent of 

the total mass is enclosed, i.e. the 25 per cent Lagrangian radius. 

This takes place at around 6000 yr, and marks the beginning of 

the short-time-span during which most of the gas accretion takes 

place. 

During this contraction, turbulence does not significantly affect 

the cloud evolution as no substructures appear and we observe a 

spherical collapse, which in turn causes high accretion rates onto a 

central object around which a gaseous disc is formed. This object 

quickly becomes the most massive object (MMO) of the cluster. 

By the end of the simulations, the total accreted mass reaches 

typical values of 4612 ± 798 M ⊙, i.e. ∼46 ± 8 per cent of the 

initial mass, and the mean total mass in stars that are still bound 

to the cluster is 4131 ± 791 M ⊙. The mean mass in ejected stars is 

481 ± 338 M ⊙. 

Figure 2. Mass of the gas, bound stars, and ejected stars during the evolution 

of the system for one of our simulations with M gas = 10 4 M ⊙ (M1 t100 1). 

3.1.2 Emergence of very massive objects 

In most of our simulations, we see the formation of a single object that 

contains most of the accreted mass. The typical mass of the MMO 

is 3729 ± 792 M ⊙. We define a parameter ǫ to asses the efficiency 

of the formation of a massive object. It is defined as ǫ = M MMO / M gas 

and shown for each simulation in Table 1 . We find a mean efficiency 

ǫ = 0.37 ± 0.08. 

We also see that in one third of the simulations, the MMO is in a 

binary system with another very massive object. We define a pair of 

bound stars to be in a binary system if they follow a Keplerian orbit 

and the mass ratio q = M 1 / M 2 is less than 7. This choice for this 

mass ratio is arbitrary but allow us to select high mass stars that are 

in a binary system with the MMO, which are the binary systems in 

which we are interested. 

We show the properties of the binary systems in Table 2 , and we 

note that in simulations with a binary outcome, there are fewer stars 

in the final stellar system due to more collisions occurring and more 

ejections due to three body interactions (see columns 11, 12, and 13 

in Table 1 ). 

The o v erall contraction of the gas cloud causes a strong inflow 

and therefore a high accretion rate onto one of the central protostars. 

We show the evolution of this object that becomes the MMO in 

Fig. 3 . The maximum accretion rates in the simulations are a few 

M ⊙ yr −1 , surpassing during some time, the critical accretion rate of 

Ṁ crit = 0 . 04 M ⊙ yr −1 , and thus creating an MMO that emerges in 

the cloud centre and evolves as a supermassive star. This moment 

can be distinguished in the second panel of Fig. 3 at the point when 

the solid orange line first crosses the grey-dashed line. Because of 

this, the star inflates up to around 2 × 10 4 R ⊙, i.e. ∼93 au as it now 

follows the mass–radius relation shown with a black dot–dashed line 

in Fig. 1 . The increased cross section of the central star results in 

a period of runaway collisions with the MMO. The collision rate 

reaches a maximum of 0.1 collisions per year just after the MMO 

has inflated in radius, but starts to decline as the number of protostars 

decreases, as shown in the middle panel of Fig. 4 . The mass accretion 

rate due to collisions can reach very high values of up to 2 M ⊙ yr −1 . 

Additionally, we see that huge gas densities ( ρ ∼ 10 −8 g cm 
−3 ) 

around the MMO trigger the formation of ∼217 new sink particles 
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Table 1. Summary of simulation outcomes. We present for each simulation the initial gas mass, the final time, the quiescent time adopted for contraction 

to the main sequence for supermassive stars, the simulation outcome, the total accreted mass, the final stellar mass bound to the most massive object, the 

mass of the most massi ve object, the ef ficiency of massive object formation, the total mass in ejected stars, the number of stars bound to the MMO, the 

number of ejections and the number of collisions. 

Simulation M gas t end t KH, surf outcome M accreted M stellar, bound M MMO ǫ M ejected N stars N ejections N col 

[M ⊙] [yr] [ t KH ] [M ⊙] [M ⊙] [M ⊙] [M ⊙] 

M1 t100 1 10 4 200 015 100 single 5414 5305 5197 0.52 109 56 70 256 

M1 t100 2 10 4 200 005 100 single 3815 3482 3311 0.33 333 62 112 288 

M1 t100 3 10 4 200 043 100 single 4709 4539 3893 0.39 170 56 77 341 

M1 t100 4 10 4 200 023 100 single 3730 3315 3048 0.30 415 48 153 291 

M1 t100 5 10 4 200 017 100 binary 5854 4821 4096 0.41 1033 6 141 369 

M1 t100 6 10 4 200 050 100 binary 4150 3326 2831 0.28 824 15 196 300 

M1 t10 1 10 4 200 024 10 single 5397 4952 4326 0.43 445 66 83 343 

M1 t10 2 10 4 120 045 10 single 4548 4377 4156 0.42 171 88 79 375 

M1 t10 3 10 4 200 022 10 binary 6057 5297 4064 0.41 760 65 147 364 

M1 t10 4 10 4 200 029 10 binary 5262 4468 2901 0.29 794 86 141 456 

M1 t10 5 10 4 200 036 10 single 6804 6256 4858 0.49 548 89 53 412 

M1 t10 6 10 4 112 701 10 single 4617 4255 4135 0.41 362 56 119 301 

M3 t100 1 3 × 10 4 200 021 100 single 26 108 25 808 24 418 0.81 300 13 42 1892 

M3 t100 2 3 × 10 4 200 043 100 single 26 939 26 898 26 890 0.90 41 10 19 1842 

M3 t100 3 3 × 10 4 200 009 100 single 26 388 26 211 24 577 0.82 177 11 34 2547 

M3 t100 4 3 × 10 4 200 038 100 single 23 312 22 850 20 365 0.68 462 36 53 1844 

M3 t100 5 3 × 10 4 200 034 100 single 23 070 22 973 22 618 0.75 97 12 50 2215 

M3 t100 6 3 × 10 4 200 035 100 single 26 966 26 851 24 375 0.81 115 3 29 2522 

M3 t10 1 3 × 10 4 200 008 10 single 20 981 20 831 20 435 0.68 150 13 70 2283 

M3 t10 2 3 × 10 4 200 026 10 single 23 451 23 063 20 776 0.69 388 32 61 1807 

M3 t10 3 3 × 10 4 200 048 10 single 25 871 25 413 22 267 0.74 458 6 50 2354 

M3 t10 4 3 × 10 4 200 014 10 single 22 585 21 889 21 733 0.72 696 10 89 2445 

M3 t10 5 3 × 10 4 200 039 10 single 20 778 20 481 20 368 0.68 297 6 96 2297 

M3 t10 6 3 × 10 4 200 011 10 single 27 051 26 846 26 746 0.89 205 7 42 3514 

Table 2. Properties of binary systems. We present the mass of the most and 

less massive object M 1 and M 2 , respectively, the semimajor axis a and the 

eccentricity e . 

Simulation M 1 M 2 a e 

[M ⊙] [M ⊙] [au] 

M1 t100 5 4096 688 355 0.126 

M1 t100 6 2831 464 240 0.375 

M1 t10 3 4064 831 472 0.394 

M1 t10 4 2901 1224 120 0.077 

on average. Almost all (95.4 ± 1.7 per cent) of these new sinks merge 

with other objects, but only 34 ± 7 per cent of them merge with the 

MMO. We show the mass distribution of the particles that merge 

with the MMO in Fig. 5 . 

Despite the accretion rate falling below the critical accretion rate 

Ṁ crit , the frequent stellar collisions prevent the contraction of the 

MMO. We note that the mass contributed by collisions to this object 

is around 60 per cent of its final mass as shown in Fig. 6 . 

3.1.3 Final cluster properties 

The typical outcome of our simulations is a small cluster of stars 

with almost no gas left. This final stellar cluster in most simulations 

is made up of ∼50 stars with typical masses in the range 1–10 M ⊙

surrounding the MMO. No more significant gas accretion is taking 

place at 200 kyr, and we would expect radiative feedback from 

the stars to ef ficiently e v aporate the remaining gas. The final mass 

functions are similar in shape as well as the number of remaining 

and ejected stars, although a few clusters contain a binary system and 

fewer stars remain bound due to the increased number of collisions 

and three body interactions ef fecti vely ejecting lower mass objects. 

We present the combined mass distribution at the end of simula- 

tions M1 t100 1–6 in Fig. 7 , and the combined mass distribution of 

ejected particles in Fig. 8 . Individual mass distributions of bound and 

ejected particles for each simulation are presented in Figs D1 and 

D2 . 

3.2 Clusters with M gas = 3 × 10 4 M ⊙

In this section, we describe the general evolution of the clusters with 

3 × 10 4 M ⊙ in gas, and mention the differences with the less massive 

clusters. 

3.2.1 Cluster evolution 

The initial behaviour of the gas cloud is the same for all the 

simulations, and also very similar to the behaviour in the less massive 

clusters. We see that most of the gas is accreted early on in the cloud 

evolution as depicted in Fig. 9 . During the initial evolution, the inner 

parts of the cloud experience an o v erall contraction. Specifically, we 

see a contraction of the 25 per cent Lagrangian radius, which leads 

to a rapid inflow of gas to the central parts of the cluster in a free-fall 

time, i.e. ∼3000 yr. Unlike in the less massive clusters, we also see 

a contraction at the 50 per cent Lagrangian radius. 

Turbulence seems to have a negligible role here, as no substructure 

appears during the initial contraction and a spherical collapse 

proceeds. During the rapid mass inflow, either a central object starts 

to accrete most of the mass, or a new sink particle is created at the 

centre due to the high gas densities. This central particle reaches 

accretion rates of several 10 M ⊙ yr −1 , and the average efficiency 
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Figure 3. Evolution of the mass M , accretion rate Ṁ , and radius R for the 

MMO and second MMO in one of our simulations (M1 t100 2), along with 

the number of collisions N col as functions of time. 

Figure 4. Radius of the MMO, collision rate along with the number of 

protostars, and mass accretion rate due to collisions as functions of time for 

one of our simulations (M1 t100 1). 

Figure 5. Mass distribution of the particles that merge with the MMO for 

simulation M1 t100 1–6. 

Figure 6. Average mass fraction gained through collisions and accretion, and 

average masses for the MMO and second MMO for simulations M1 t100 1–

6. 

Figure 7. Combined mass distribution for stars bound to the cluster at the 

end of simulations M1 t100 1–6. 
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Figure 8. Combined mass distribution of ejected stars at the end of 

simulations M1 t100 1–6. 

Figure 9. Same as Fig. 2 but for a cluster with M gas = 3 × 10 4 M ⊙. 

ǫ = 0.80 ± 0.07 means that this single object gathers on average 

80 ± 7 per cent of the total mass of the cloud. 

3.2.2 Emergence of very massive objects 

In all our simulations with M gas = 3 × 10 4 M ⊙, we see the formation 

of a single object that contains on average 80 ± 7 per cent of the 

initial cluster mass at 200 kyr. This means that the average mass 

of the MMO is 23 873 ± 2001 M ⊙. We present in Fig. 10 some of 

the properties of the MMO, like the mass, accretion rate, radius, 

and number of collisions it experiences during the evolution of the 

system. This particle also evolves as a supermassive star due to the 

high accretion rates that it reaches, and grows both by accretion of 

gas and stellar collisions. The mass growth by mergers with other 

protostars contributes on average 46 per cent of its final mass as 

shown in Fig. 11 . Unlike the less massive clusters, here higher 

accretion rates are reached, and they last for longer. We also see 

that stellar collisions contribute with a smaller mass fraction to the 

final mass of the MMO. This is simply due to the fact that in the 

Figure 10. Same as Fig. 3 but for a cluster with M gas = 3 × 10 4 M ⊙. 

Figure 11. Average mass fractions gained through collisions and accretion, 

and average final masses for the MMO and the second MMO for simulations 

M3 t100 1–6. 

simulations with M gas = 3 × 10 4 M ⊙, the MMO gains much more 

mass by gas accretion. 

Gas accretion peaks on average at 10 M ⊙ yr −1 and remains abo v e 

the critical accretion rate during the initial 8000 yr after the initial 

cloud contraction. This is sufficient to cause the protostar to evolve as 

an inflated object that quickly reaches a radius of more than 100 au, 

which in turn causes many stellar collisions to occur. We see in 

Fig. 12, the collision rate peaks just after the MMO inflates in radius, 

reaching a peak of more than 0.3 collisions per year, a factor 3 higher 

than the lower mass cloud simulations. The mass accretion due to 
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Figure 12. Same as Fig. 4 but for a cluster with M gas = 3 × 10 4 M ⊙. 

Figure 13. Mass distribution of the particles that merge with the MMO for 

simulation M3 t100 1. 

collisions reaches peaks of ∼10 M ⊙ yr −1 , a factor 10 higher than for 

the less massive cloud simulations. The collision rate then decreases 

with the number of protostars. 

Additionally, the huge gas densities ( ρ ∼ 10 −8 g cm 
−3 ) found 

around the MMO trigger, the formation of sink particles, 1950 

new sink particles on average. Nearly all of these sink parti- 

cles ( ∼99 ± 0.2 per cent) merge with other objects, notably, 

70 ± 5 per cent of the sinks merge with the MMO, and most of 

them do so shortly after they are created when the y hav e accreted 

only 1–2 M ⊙. Sink particles in this mass range that merge with the 

MMO represent 52 ± 9 per cent of the total number of mergers, but 

they contribute on average only 11 ± 4 per cent of the total mass 

gained through mergers. We show the mass distribution of the sink 

particles that merge with the MMO in Fig. 13 . 

Figure 14. Combined mass distribution for stars bound to the cluster at the 

end of simulations M3 t100 1–6. 

Figure 15. Combined mass distribution for stars ejected from the cluster at 

the end of simulations M3 t100 1–6. 

3.2.3 Final cluster properties 

At the end of our simulations, the remaining stellar systems consist 

of, on average, only 14 ± 10 particles with an average of 38 ± 12 

ejected ones. Little to no gas is left, and the final cluster is essentially 

comprised of an MMO with ∼2 × 10 4 M ⊙ that is orbited by a few 

other stars, most of them with masses in the range 1–10 M ⊙. In 

three simulations, the second most massive object reaches more than 

1000 M ⊙ and is orbiting the MMO in a close Keplerian orbit, but 

since the mass ratio q = M 1 / M 2 is too high ( > 20), we do not mark 

them as binary systems. 

We show the combined mass distribution of the particles that 

remain bound to the MMO for simulations M3 t100 1–6 in Fig. 14 . 

Comparing this mass distribution to the mass distribution of less 

massi ve clusters sho wn in Fig. 7 , the immediate difference that we 

note is that now we do not have a prominent peak. Instead the mass 

distribution looks flat in the mass range 1–100 M ⊙. 

We also show the combined mass distribution of ejected particles 

for these simulations in Fig. 15 . This looks more similar to the one 

for less massive clusters, but with an additional peak at ∼0.1 M ⊙. 

While the shape of the mass function is maintained, it now peaks 
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in between 1–2 M ⊙ instead of 2–3 M ⊙ as observed for less massive 

clusters. 

We present the individual mass distribution of bound and ejected 

particles for each of these simulations in Figs D3 and D4 , respec- 

tively. 

3.3 Impact of a reduced t KH, surf 

As explained at the end of Section 2.5 , the time it takes for an inflated 

SMS to contract to the main sequence after its accretion rate falls 

below Ṁ cirt (i.e. t KH, surf ) ranges in between 10–100 t KH (Sakurai et al. 

2015 ). So far we have assumed t KH, surf = 100 t KH , and found that the 

MMOs in our simulations reach an average mass of 3729 M ⊙ for 

clusters with M gas = 10 4 and 23 873 M ⊙ for clusters with M gas = 

3 × 10 4 M ⊙. 

In principle, a shorter t KH, surf would cause an earlier contraction to 

the main sequence and this could impact the formation of an MMO 

via two effects. The first one is related to the growth via stellar 

collisions. An earlier contraction to the main sequence implies that 

the protostars that evolve as SMSs will not maintain a high cross- 

section for long enough times compared to simulations with t KH, surf = 

100 t KH . The second effect is a reduction of the mass of the stars that 

evolve as SMSs, given that gas accretion should terminate once the 

star contracts to the main sequence. Because of this, the simulations 

with t KH, surf = 10 t KH would have the highest impact on the final 

mass of the MMO. 

In order to explore the effects of a reduced t KH, surf on the final 

masses of the MMOs, we ran simulations with t KH, surf = 10 t KH 

for our two different cluster models (see Table 1 ), and compare the 

results to the ones from our simulations with t KH, surf = 100 t KH . This 

gives us an idea of how much a reduced t KH, surf would impact the 

formation of an MMO through stellar collisions. Then in order to get 

an idea of how our results would change when including radiation 

feedback, we post process the snapshots of our simulations with 

t KH, surf = 10 t KH . For this, we stop the mass growth of all particles 

once they contract to the main sequence and use the existing merger 

history, but now with the modified masses to obtain a new estimate 

for the final mass of the MMO. 

3.3.1 Clusters with M gas = 10 4 M ⊙

For the set of simulations with M gas = 10 4 M ⊙ (M1 t100 1–6 and 

M1 t10 1–6), by comparing the final masses of the MMOs (column 

7), we find that the average values are consistent within one sigma 

errors. In fact, for simulations with t KH, surf = 100 t KH , the average 

mass of the MMO is ∼3700 ± 800, whereas for simulations with 

t KH, surf = 10 t KH , the average mass of the MMO is ∼4000 ± 600. 

Therefore, we find that an earlier contraction to the main sequence 

has no impact on the growth of the MMO via stellar collisions and 

that the different values that we find here are the result of the intrinsic 

variability among different simulations. 

The MMO does not contract to the main sequence but this is not due 

to very frequent stellar collisions, the mean time between collisions 

( ∼2700 yr) is actually slightly longer than 10 t KH ( ∼1700 yr). We 

attribute this behaviour to very short accretion bursts that surpass 

Ṁ crit during a brief period of time ( < 50 yr) not captured in Fig. 3 , 

since the cadence for data output is 50 yr. 

Subsequently, after including an approximate effect of feedback 

(i.e. stopping the mass growth of a star once it enters the main 

sequence), we find very little reduction of the stellar masses. For 

simulations with t KH , surf = 10 t KH , the average final mass of the 

Figure 16. Estimate for the approximate effects of radiation feedback on the 

final mass of the MMO obtained from post-processing of our simulations. 

Left-hand panel: Average final mass of the MMO with one sigma errorbars 

for simulations with M gas = 10 4 M ⊙ and t KH, surf = 10 t KH . Right-hand panel: 

Same as left-hand panel but for simulations with M gas = 3 × 10 4 M ⊙ and 

t KH, surf = 10 t KH . 

MMO goes down to ∼3800 ± 500 M ⊙ after post-processing. This 

is still within the one sigma error of the value obtained without 

any type of feedback. We show the comparison of the final masses 

of the MMOs in the case without feedback, and in the case with 

approximate feedback in the left-hand panel of Fig. 16 . 

Finally, we also note that the same holds true for the binary systems 

formed in these simulations. We find a reduction of only 10 per cent 

for the masses of the primary and secondary stars, and the mass ratios 

remain the same. 

3.3.2 Clusters with M gas = 3 × 10 4 M ⊙

We first compare the final mass of the MMO for simulations with 

t KH, surf = 100 t KH and t KH, surf = 10 t KH . For the first case, the average 

mass of the MMO is ∼23 800 ± 2000 M ⊙, and for the second case, 

the average mass of the MMO is ∼22 000 ± 2200 M ⊙. Thus, we find 

again that an earlier contraction to the main sequence will not reduce 

the final mass of the MMO due to collisions appreciably. The MMO 

still remains inflated due to frequent mergers, and this is the main 

driver of stellar collisions. The different values that we find here are 

a result of the intrinsic simulation to simulation variation. 

When we post-process our simulations to account for the approx- 

imate effect of radiation feedback, we find that the average mass of 

the MMO is reduced to ∼21 500 ± 2200 M ⊙, which again is within 

the one sigma error of the average mass of the MMO when no 

feedback is considered. We thus conclude that radiation feedback 

would not appreciably reduce the mass of the MMO. We show the 

final average masses of the MMOs when no feedback is included and 

with approximate feedback in the right-hand panel of Fig. 16 . 

We find, ho we ver, that the mass of the second most massi ve object 

is severely affected. On average, the post-processing reduces the 

mass of the second MMO by a factor of four, and in one case even a 

factor of six. This occurs because in the simulations, where a higher 

density is reached in the cloud centre, many protostars initially evolve 

as SMSs as they surpass the critical accretion rate. They ho we ver 

cannot maintain the high accretion rates for long times and eventually 

contract to the main sequence. In the simulations with high t KH, surf , 

this time span of lower accretion rates is not long enough for the 

stars to contract to the main sequence, but in post-processing when 

t KH, surf is lower they contract and their masses are fixed at that point. 
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3.3.3 Possible impact of feedback from surrounding stars 

Regarding the formation and growth of the MMO, we try to 

understand if once another protostar close to the MMO contracts to 

the main sequence, it would appreciably impact the final mass of the 

MMO. For this purpose, we calculate the Str ̈omgren radius of the first 

star that enters the main sequence in our simulations, and that is close 

enough to influence the growth of the MMO. We find that the first 

star enters the main sequence once the MMO has already gathered 

more than 80 per cent of its final mass, and the typical separation 

between these objects is around 500 au, but the Str ̈omgren radius 

for the main sequence star (as calculated in Appendix C ) is usually 

around 6 au. Therefore, we conclude that the surrounding stars that 

enter the main sequence will not appreciably impact the final mass 

of the MMO, which can also still grow through stellar mergers. 

4  DIS C USS I O N  A N D  C O N C L U S I O N S  

In this work, we address the problem of massive object formation, 

considering the evolution of a protostellar cluster embedded in a 

massive gas cloud at very low metallicity following fragmentation 

at subparsec scales, during the collapse of an atomic-cooling halo. 

We perform a suite of hydrodynamical plus N -body simulations 

including sink particle creation, gas accretion, pseudo (proto-)stellar 

evolution, and stellar collisions. Our calculations start from a Plum- 

mer distribution of protostars embedded in a gas cloud that follows a 

Plummer density profile as well, and to which we impose a turbulent 

velocity field with Mach number equal to one, resembling the centre 

of a spherically collapsing atomic-cooling halo as found in cosmo- 

logical hydrodynamical simulations (Chon et al. 2018 ). We note that 

spherical collapse is not al w ays the case, and elongated clouds are 

also found in these simulations, so it will be desirable to begin with 

initial conditions taken directly from cosmological simulations in the 

future. Despite this, no fragmentation at parsec-scales is seen during 

these simulations, and we expect that fragmentation at smaller scales, 

as studied here, will not impede the formation of a supermassive star 

with 10 4 M ⊙. 

Our simulations include (proto)-stellar evolution in the sense that 

the stellar radius and luminosity change with the mass and accretion 

rate of the protostar. Therefore, the protostars are allowed to contract 

to the main sequence, and thus reduce the cross-section for collisions. 

This is essential because survi v al, ejection, and merger rates depend 

sensitively on the object size. One caveat in our simulations comes 

from the fact that we do not include stellar feedback. We estimate the 

possible impact of radiation feedback on the final mass of the MMO 

in Section 3.3 . For this purpose, we post-processed our simulations 

and stop mass accretion once the object enters the main sequence, 

at which point we assume that strong UV radiation may remo v e gas 

from the surrounding. In this extreme model, further mass growth 

is only possible via collisions. We find that this modification has 

negligible impact on the final masses of the MMO, and similar holds 

for the binary systems when present. We also calculate the Str ̈omgren 

radius of surrounding stars that enter the main sequence but find that 

they do so once the MMO has already gathered more than 80 per cent 

of its final mass and these stars are not close enough to affect the 

growth of the MMO. We find, however, that the masses of the second 

most massive object could be affected in simulations with M gas = 

3 × 10 4 M ⊙. This indicates that in order to fully characterize the final 

stellar masses in such systems, simulations that include radiation 

feedback are required. 

The simulation results presented here agree with the study by 

Chon & Omukai ( 2020 ), where they find what they termed a ‘super- 

competitive accretion’, in which a single massive object dominates 

the growth by gas accretion. The conditions under which this scenario 

emerges were recently studied by means of analytical arguments by 

Schleicher, Reinoso & Klessen ( 2023 ). They demonstrate that self- 

gravity induced accretion will initially dominate the mass growth of 

an object that will become the most massive object in the cluster, and 

this does not depend on the number of protostars present. Only after 

the gas accretion mode shifts from self-gravity to Bondi–Hoyle, due 

to lower gas densities, could the fragments around the MMO interfere 

with gas accretion onto it, ho we ver, the moment at which this occurs 

depends only on the square root of the number of protostars. We con- 

clude that in the context of atomic cooling haloes as studied here, in an 

initially Jeans-unstable cloud, varying the initial number of protostars 

will have little to no impact on the mass growth through accretion. 

We note that we model systems with a high initial number density 

of protostars (see Section 2.1 ). We tried to estimate the effect that 

a lower initial number density of protostars would have on the final 

mass of the MMOs. For this purpose, we consider the extreme 

scenario, in which no initial protostars are present and post-process 

the collision histories to remo v e all the mass contributed by these 

protostars to the MMO. In this extreme scenario, in which that mass 

would be lost from the system we find that for our simulations with 

10 4 M ⊙ in gas, the mass of the MMO decreases by 36 per cent; and 

in our simulations with 3 × 10 4 M ⊙ in gas, the mass is reduced by 

11 per cent. This reduction in mass would still leave MMOs that can 

collapse to produce massive black holes seeds. 

Since we consider protostars forming in a pristine gas cloud, the 

stars that are formed in our simulations resemble primordial stars, 

in particular the so-called Population III stars. These stars, once on 

the main sequence do not lose significant mass due to stellar winds 

because of their low metallicity (Krti ̌cka & Kub ́at 2006 ), therefore 

including mass loss due to stellar winds will not change our results. 

Moreo v er, the MMOs formed in our simulations evolve as 

supermassive stars because of the high accretion rate they reach 

(Hosokawa et al. 2013 ; Schleicher et al. 2013 ; Haemmerl ́e et al. 

2018 ; Haemmerl ́e 2021 ). Again, due to their low metallicity, no 

mass loss is expected from stellar winds. Furthermore, Hosokawa 

et al. ( 2013 ) demonstrated that mass loss due to the pulsational 

instability reaches a maximum of ∼5 × 10 −3 M ⊙ yr −1 , much lower 

than the accretion rates that these objects experience. It is thus safe 

also to ignore mass loss for our MMOs. Note that mass loss due to 

stellar winds is rele v ant for higher metallicity stars when considering 

the formation of massive objects due to stellar collisions as explored 

in the context of nuclear star clusters by Das et al. ( 2021 ). 

Finally, we note that the sink particles we consider resemble 

protostars but eventually some of them reach the zero-age main 

sequence (ZAMS) and turn into stars. The point at which this 

typically occurs is around 30 kyr when protostars accreting at high 

rates reach the Kelvin–Helmholtz contraction phase (Hosokawa & 

Omukai 2009 ). At this moment, the MMO has gathered more than 

80 per cent of its final mass. The typical mass for stars that reach 

the ZAMS is around 20 M ⊙. Stellar evolution models for these type 

of stars show main sequence lifetimes in the order of Myr even 

for very massive stars (Tanikawa et al. 2020 ; Murphy et al. 2021 ) 

therefore no supernova explosion can occur during the time-span of 

our simulations. 

We have not considered mass loss during stellar collisions. This 

effect has been studied in the context of blue straggler formation 

(Sills & Bailyn 1999 ; Sills et al. 2000 ), and in the context of local 

star clusters. For this purpose, fitting functions depending on the mass 

ratio of the collision (Lombardi James C. et al. 2002 ) and the stellar 

structure (Glebbeek & Pols 2008 ; Glebbeek, Pols & Hurley 2008 ) 
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have been obtained for stars colliding at different stages during their 

evolution (Glebbeek et al. 2013 ). Armed with these functions, Alister 

Seguel et al. ( 2020 ) found that including mass loss could reduce the 

mass of the MMO by 20–40 per cent in a similar environment to the 

one studied here. Applied to our simulations, we conclude that the 

run-away formation of the MMO cannot be pre vented. Ho we ver, we 

note that it is not clear how well these analytical estimates can be 

applied to the collision between an SMS and its surrounding stars. 

More work is required to reduce the uncertainty in these estimates. 

The formation of very massive objects that can collapse to produce 

massive black hole seeds has also been investigated in the context of 

star cluster formation in non-primordial clouds (Sakurai et al. 2017 ; 

Sakurai et al. 2019 ; Das et al. 2021 ). In these models different mass- 

radius relations are used as the accretion rates experienced in these 

environments are much lower. In particular in these studies, the stars 

ne ver e volve as the inflated SMSs produced in our simulations. This 

lead to important differences in the masses of the objects formed 

and the time-scales involv ed. Ev en in presence of a much larger gas 

reservoir (10 5 M ⊙), the most massive objects reach typical masses of 

10 3 M ⊙ (Sakurai et al. 2019 ; Das et al. 2021 ). 

According to previous simulations investigating the formation of 

SMSs in atomic cooling haloes, mass inflows of 0.5 M ⊙ yr −1 are 

reported at scales similar to the ones simulated here (Wise et al. 

2019 ). At this constant rate, the flow can be maintained for about 

1 Myr, which is comparable to the lifetime of the most massive 

stars formed in our simulations. Assuming that a total of 10 6 M ⊙

have concentrated in the inner 1 pc of the DM halo, we estimate 

a binding energy of ∼5 × 10 52 erg. On the other hand, the binding 

energy of a 150 M ⊙ Population III star (a typical massive star formed 

in our simulations) is around 1.7 × 10 52 erg. These estimates yield 

similar quantities therefore it is very uncertain to say that a supernova 

explosion will or not be able to eject the remaining gas, it is important 

to kno w ho w much mass is concentrated inside which volume and the 

final masses of the stars. If the gas is not ejected after the supernova 

explosion, another episode of star formation could occur in the halo 

but this time producing second generation stars due to the metal 

enrichment of the ejecta. 

In our simulations, we find that a massive central object is al w ays 

formed and experiences run-away growth via collisions with other 

protostars in the cluster. The mass growth is typically dominated by 

one single object, as found in previous studies (Latif et al. 2013 ; 

Inayoshi & Haiman 2014 ; Sakurai et al. 2016 ; Matsukoba et al. 

2019 ; Chon & Omukai 2020 ) and explained by analytical arguments 

by Schleicher et al. ( 2023 ). Additionally, the fragmentation process 

does not fully suppress the high-mass flo w to wards the centre and 

so the MMO continues to grow via gas accretion as well. The MMO 

begins to grow once the cloud collapses on a free-fall time-scale 

(around 3000 yr), and by 10 000 yr it already contains 37 per cent of 

the initial gas mass for clusters with M gas = 10 4 M ⊙, and 80 per cent 

of the initial gas mass for clusters with M gas = 3 × 10 4 M ⊙. 50 to 

60 per cent of the mass of the MMO is gained through collisions. In a 

third of the simulations with M gas = 10 4 M ⊙, we find that the MMO 

is in a binary system with another massive object with mass ratios in 

between 1:2 and 1:7. Radiation feedback is unable to reduce the mass 

of the MMO significantly. The final outcome is therefore a small 

group of tens of stars with typical masses in the range 1–100 M ⊙

orbiting a single object with 10 3 or 10 4 M ⊙. In one third of the cases, 

the group of stars orbits a pair of massive objects ( ∼10 3 M ⊙) in a 

binary configuration. 
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APPENDIX  A :  MASS  R A D I U S  

PARAMETRIZATION  

We use different mass-radius (M–R) relations depending on the 

accretion rate of the protostar and on its evolutionary stage. We also 

calculate associated quantities such as the luminosity and the Kelvin 

Helmholtz (KH) time-scale. All these properties are calculated after 

every accretion step. We define three evolutionary stages, namely 

protostar , star , and supermassive star . The M–R relations for each 

stage are described below. 

A1 Protostar 

Every particle in our simulations begins in the protostar stage. 

The M–R parametrizations that we use for them are based on the 

w orks of Hosokaw a & Omukai ( 2009 ), Hosokaw a et al. ( 2012 ), and 

Hosokawa et al. ( 2013 ). We calculate the properties of each protostar 
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by classifying them into three different tracks. The classification 

depends on the accretion rate Ṁ . We therefore have the ‘SMS’ track, 

‘VMS’ track, and ‘NORMAL’ track. Each track is described in the 

next subsections. 

A1.1 ‘SMS’ track 

There is a critical accretion rate abo v e which the accreting protostars 

remain inflated, and their radii al w ays increase with the mass. A 

protostar whose accretion rate is higher than this critical accretion 

rate is in the ‘SMS’ track. The critical accretion rate in our simulations 

is set to Ṁ crit = 0 . 04 M ⊙ yr −1 taken from Hosokawa et al. ( 2013 ). 

F or ev ery protostar in the ‘SMS’ track, the radius is computed as: 

R ∗ = 2600 

(

M ∗

100 M ⊙

)1 / 2 

R ⊙. (A1) 

The protostar will follow this relation unless the accretion rate Ṁ 

remains below Ṁ crit for more than 10–100 t KH (Schleicher et al. 2013 ; 

Sakurai et al. 2015 ), where the KH time-scale t KH is calculated as: 

t KH = 
GM 

2 

RL 
, (A2) 

with M , R , and L , being the mass, radius, and luminosity of the 

protostar. For the calculation of the KH time-scale, we need the 

luminosity of the protostar . As long as the mass is ≤10 M ⊙, the 

luminosity is calculated as (Hosokawa & Omukai 2009 ): 

L ∗ = 0 . 6 

(

M ∗

M ⊙

)11 / 2 (
R ∗

R ⊙

)−1 / 2 

L ⊙, (A3) 

whereas for M ∗ > 10 M ⊙, the luminosity is given by: 

L ∗ = 10 

(

M ∗

M ⊙

)3 

L ⊙, (A4) 

and for M ∗ > 70 M ⊙, the luminosity approaches the Eddington limit 

and is calculated as: 

L ∗ = 3 . 8 × 10 6 
(

M ∗

100 M ⊙

)

L ⊙. (A5) 

Finally, once the protostar reaches a mass of 600 M ⊙, it enters the 

supermassive star stage. In case the accretion rate Ṁ of a protostar in 

the ‘SMS’ track remains below Ṁ crit for more than a 10–100 KH time- 

scales, the protostar will enter a ne w e volutionary track according to 

its last value for Ṁ . We note that the time during which a protostar in 

the ‘SMS’ track remains inflated after its accretion rate falls below 

Ṁ crit can vary between 10–100 KH time-scales (Sakurai et al. 2015 ). 

We consider both extreme values for the KH time-scales in this work. 

A1.2 ‘VMS’ track 

Every protostar whose accretion rate is in the range [10 −6 , 

0.04] M ⊙ yr −1 is in the ‘VMS’ track. In this track, we distinguish 

three phases, the adiabatic accretion phase , the swelling , and the 

Kelvin Helmholtz contraction as described in Hosokawa & Omukai 

( 2009 ). The adiabatic accretion phase holds as long as the mass of 

the protostar is ≤M ad , which is given by: 

M ad =0 . 9 

[ 
(

Ṁ 

4 . 2 × 10 −8 M ⊙ yr −1 

)(

Ṁ 

10 −3 M ⊙ yr −1 

)( −0 . 41 / 2) 
] (2 / 9 . 27) 

M ⊙. 

(A6) 

In this phase, the luminosity is calculated from equation ( A3 ) and 

the radius as: 

R ∗ = 26 

(

M ∗

M ⊙

)0 . 27 (
Ṁ 

10 −3 M ⊙ yr −1 

)0 . 41 

R ⊙. (A7) 

Now, it is useful to define two parameters α and β: 

α = 26 

(

M ad 

M ⊙

)−4 . 73 (
Ṁ 

10 −3 M ⊙ yr −1 

)0 . 41 

, (A8) 

β = α

(

1 . 2 
M ad 

M ⊙

)7 . 5 

. (A9) 

The swelling phase holds for protostars whose mass is in the range 

[ M ad , 1.2 M ad ]. In this phase, the luminosity is given by equation ( A3 ), 

and the radius as: 

R ∗ = α

(

M ∗

M ⊙

)5 

R ⊙. (A10) 

The Kelvin Helmholtz contraction phase holds for protostars 

whose mass is in the range [1.2 M ad , M ms ], with M ms given by: 

M ms = 

(

β

0 . 97 

)1 / 3 . 07 

. (A11) 

The luminosity in this phase is given by equation ( A4 ), and the radius 

by: 

R ∗ = β

(

M ∗

M ⊙

)−2 . 5 

R ⊙. (A12) 

If the mass of a protostar in the ‘VMS’ track is larger than M ms , 

it enters the star stage, i.e. it contracts to the main sequence. In case 

the accretion rate Ṁ of a protostar in the ‘VMS’ track remains below 

10 −6 M ⊙ yr −1 for more than a KH time-scale, the protostar will enter 

the ‘NORMAL’ track. 

A1.3 ‘NORMAL’ track 

The protostars whose accretion rate is Ṁ < 10 −6 M ⊙ yr −1 are in the 

‘NORMAL’ evolutionary track. As long as their mass is <0.8 M ⊙, 

the luminosity is given by equation ( A3 ), and their radius is given 

by: 

R ∗ = 0 . 86 

(

M ∗

M ⊙

)0 . 27 

R ⊙. (A13) 

If the mass is ≥0.8 M ⊙, the protostar enters the star stage. 

As long as a particle is in the protostar stage, it can mo v e 

between the three tracks described abo v e. There is a hierarchy for 

the tracks, with the ‘SMS’ track having the highest hierarchy, and 

the ‘NORMAL’ track having the lowest hierarchy. A protostar can 

mo v e to a track with higher hierarchy if the accretion rate Ṁ is 

high enough, but it will only mo v e to a lower hierarchy track if the 

accretion rate Ṁ remains lower than the critical accretion rate for the 

current track during a time longer than a KH time-scale. 

A2 Star 

When a particle is in the star stage, the radius and luminosity are 

those for a star in the main sequence. Therefore, the luminosity is 

given by equation ( A5 ) and the radius is calculated as: 

R ∗ = 0 . 97 

(

M ∗

M ⊙

)0 . 57 

R ⊙. (A14) 
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Table B1. Determination of the evolutionary stage for a merger product. 

progenitor’s stage protostar star supermassive star 

protostar protostar protostar supermassive star 

star – star supermassive star 

supermassive star – – supermassive star 

We assume that a particle in the star stage will not inflate in radius 

even if the accretion rate is Ṁ ≥ 0 . 04 M ⊙ yr −1 , therefore once a star 

particle has entered the star stage, it will al w ays follow the same 

M–R relation. 

A3 Supermassive star 

When a particle is in the supermassive star stage, the luminosity is 

given by equation ( A5 ) and the radius is given by equation ( A1 ). 

It is worth noting that even after a star particle has entered the 

supermassive star stage, it can still contract if the accretion rate 

falls below the critical accretion rate for more than 10–100 KH time- 

scales. If that occurs, then the star particle will enter the star stage, 

and will follow the mass radius relation given by equation ( A14 ). 

APPE N DI X  B:  PROPERTIES  O F  T H E  M E R G E R  

P RO D U C T  

In our simulations, the star particles have not only mass and 

radius, but also an interaction zone radius, angular momentum, an 

evolutionary stage, and track (see Appendix A ). We describe here 

the method that we follow to determine the new properties for the 

merger product. 

We make the assumption that the mass is conserved and the mass of 

the merger product is the sum of the masses of the progenitors. We do 

the same for the angular momentum. For the radius of the interaction 

zone, we select the largest value among the two progenitors. 

B1 Stage 

Determining the stage of the merger product is important to decide 

the ne w radius. Gi ven that particles can be in three different stages, 

we have six combinations for the merging particles as presented in 

Table B1 . 

B2 Track 

When the stage of the merger product is decided to be a protostar , 

there are six possibilities for the track in which it can be, as shown 

in Table B2 . 

If the merging particles happen to be in the protostar and star 

stage, then the track of the merger product is simply the track of the 

protostar . 

For deciding the radius of the merger product, we need to 

determine the accretion rate. We do this by assigning the highest 

accretion rate among the progenitors to the merger product. Once 

the stage, the track, and the accretion rate of the merger product have 

been decided, the radius is calculated as described in Section A , and 

a new luminosity and KH time-scale are also computed. 

Table B2. Determination of the evolution track for a merger product in the 

protostar stage. 

progenitor’s track NORMAL VMS SMS 

NORMAL NORMAL VMS SMS 

VMS – VMS SMS 

SMS – – SMS 

APPENDIX  C :  STR  ̈O M G R E N  R A D I U S  

C A L C U L AT I O N  

In order to provide an estimate for the impact of the stars that contract 

to the main sequence during the cluster evolution, we provide our 

calculations of the Str ̈omgren radius at the moment when a star 
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enters the main sequence for the first time in one of our simulations, 

specifically simulation M1 t100 1. 

The Str ̈omgren radius is given by 

R s = 

(

3 

4 π

Q ⋆ 

n 2 H β2 ( T ) 

)1 / 3 

, (C1) 

where Q ⋆ is the number of hydrogen ionizing photons ( h ν ≥

13.6 eV) per unit time, n H is the hydrogen nuclei number density, 

and β2 ( T ) is the case B volume recombination rate for hydrogen, 

which is ∼2 × 10 −13 cm 
−3 s −1 at 10 4 K. We adopt this value here. 

The number of ionizing photons can be estimated by using Planck’s 

function as 

Q ⋆ = 

∫ ∞ 

ν1 

L ν

hν
d ν = 

8 π2 R 
2 

c 2 

∫ ∞ 

ν1 

ν2 

e 
hν
kT − 1 

, (C2) 

where h ν1 = 13.6 eV and R is the radius of the star. Now, in 

this specific simulation, the masses of the first star that enters 

the MS is around 7.5 M ⊙, this implies a radius of R ∼ 3 R ⊙, 

luminosity of ∼285 363 L ⊙, and T eff ∼ 76 316 K. With these values, 

we obtain hν1 
kT ∼ 2 . 1, so we can approximate the integral in 

eq.( C2 ) as 

∫ ∞ 

ν1 

ν2 

e 
hν
kT − 1 

d ν ∼

∫ ∞ 

ν1 

ν2 

e 
hν
kT 

d ν = 

(

kT 

h 

)3 ∫ ∞ 

x 1 

x 2 

e x 
d x, (C3) 

= 

(

kT 

h 

)3 

( x 2 1 + 2 x 1 + 2)e −x , 

where x = 
hν
kT . 

By doing so, we obtain 

Q ⋆ = 
8 π2 R 

2 

c 2 

(

kT 

h 

)3 
[ 
(

hν1 

kT 

)2 

+ 2 
hν1 

kT 
+ 2 

] 

e 
−

(

hν1 
kT 

)

. (C4) 

Inserting the numerical values we obtain 

Q ⋆ ∼ 2 × 10 49 s −1 . (C5) 

For estimating the number density of hydrogen atoms, we take 

the mean density inside a sphere with radius 200 au, centred on the 

radiation source, and obtain n H = 5.6 × 10 9 cm 
−3 , so the Str ̈omgren 

radius is 

R s = 6 au . (C6) 

We note that the separation between this star and the accreting 

MMO is 734 au at this moment, thus this star would be unable to 

stop further accretion onto the MMO. 

APPENDIX  D :  MASS  DIST RIBU TIONS  

In this appendix, we present the mass distribution of bound and 

ejected stars, at the end of, and for each of our simulations with 

t KH, surf = 100 t KH . 

D1 Clusters with M gas = 10 4 M ⊙

D2 Clusters with M gas = 3 × 10 4 M ⊙
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Figure D1. Mass distribution of bound stars at the end of our simulations M1 t100 1–4. 

Figure D2. Mass distribution of ejected stars at the end of our simulations M1 t100 1–4. 
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Figure D3. Mass distribution of bound stars at the end of our simulations M3 t100 1–6. 

Figure D4. Mass distribution of ejected stars at the end of our simulations M3 t100 1–6. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 





Chapter 8

Discussion and conclusions

In this work the origin of the supermassive black holes powering the highest redshift quasars
has been explored by means of numerical simulations. The research presented in this thesis
focused on two channels for massive black hole seed formation: runaway stellar collisions in
dense star clusters, and the interplay of gas accretion and stellar collisions in dense embedded
clusters formed in metal free atomic-cooling halos. In the following, a summary is presented
for each manuscripts included in this thesis, along with a discussion and comments on the
future work needed to improve the models presented.

8.1 Runaway collisions in dense star clusters and forma-
tion of massive black hole seeds

The research presented in Chap. 5 revisits the models presented in Reinoso et al. (2018) but
including the effects of an external potential to mimic the effects of the gas in embedded
Pop. III star clusters. An additional effort is dedicated to understanding how this external
potential affects the evolution of the clusters and the runaway collision process. The results
of this research demonstrate that in this case the scaling of the velocities that is needed to
produce virialized clusters directly impacts the formation of binary systems and the evo-
lution of the cluster. The higher velocities effectively modify the hard-soft boundary and
the formed binaries are more tightly bound. Additionally, the relaxation process is also
affected, leading to longer timescales for the onset of core collapse. The external poten-
tial works against the evaporation of the cluster by helping to keep the cluster compact, in
particular in the inner parts. This is an important difference compared to previous gas-free
models (Portegies Zwart et al., 1999; Reinoso et al., 2018; Sakurai et al., 2017; Vergara
et al., 2021). In this case a larger fraction of the cluster contracts (potentially up to the 20%
lagrangian radius), and the final masses of the collision product are enhanced by a factor of

157
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two. The simplified modelling allowed for a better understanding of the effects introduced
by the external potential, but the effects of an IMF or stellar evolution were not accounted
for. The addition of an external potential causes a delay in the runaway collision process
and this might work against the production of massive black hole seeds because of the short
lifetimes of massive stars which impose an upper limit to the duration of the runaway col-
lision process. However other factors can still play a role. Based on the study by Portegies
Zwart and McMillan (2002) one might expect that an IMF would accelerate the process of
core collapse due to mass segregation. The current uncertainty in the mass limits as well as
on the star formation efficiency of Pop. III star clusters would require the exploration of a
large parameter space in this case. Moreover, the effects of stellar rejuvenation following a
stellar merger have not been included yet. This mechanism could be significant for the run-
away collision process (Schneider et al., 2016), providing extra time for growing the central
massive star. More importantly, in real systems the gas would not remain static and star-gas
interactions could help to promote mass segregation through gaseous dynamical friction.
In addition, the modelling of embedded star clusters that self-consistently model the gas
has shown that the stars effectively transfer kinetic energy to the gas, causing it to expand
whereas the stellar component contracts (Hubber et al., 2013a). This would certainly help
to accelerate core collapse in this case.

As a summary, for the runaway collision scenario applied to the formation of massive
black hole seeds in the early Universe, including the effects of the gas in the clusters has the
potential to increase the final BH masses by a factor > 2. However it will be necessary to
improve on the numerical modelling of the systems in order to adequately characterize the
expected black hole masses. In particular, for the modelling of Pop. III clusters the initial
conditions are still uncertain in terms of star formation efficiency, the IMF, and the expected
sizes of the clusters. The inclusion of gas would help to boost the masses of the BHs formed
through this channel provided the core collapse occurs before themost massive stars explode
as supernova. It is important to adequately treat gaseous dynamical friction, the exchange
of kinetic energy between the stellar and gaseous component, the rejuvenation of the colli-
sion product, and to include an IMF. All of these effects will help to produce more massive
objects in a sorter timespan. The expected masses should be at least 1000M⊙ in sufficiently
dense clusters, and possibly > 2000 M⊙ if the effects previously mentioned are included.
Narrowing down on the conditions required and the masses of the BHs produced will be
important for proving this mechanism with gravitational wave detectors such as LISA and
the Einstein Telescope.
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8.2 Collision rates in dense star clusters and perturbations
on binary systems

The article presented in Chap. 6 provides a comparison of analytic collision rates with col-
lisions obtained from N -body simulations of dense star clusters. The confrontation of the
two reveals that the analytic rates derived for hyperbolic collisions are in perfect agreement
with the numerical simulations, and that this collision channel dominates during the initial
stages of cluster evolution. On the other hand the collision of stars that are part of a binary
system is underestimated by the analytic rates, and becomes unreliable once a very massive
object is formed at the cluster center. A different formalism should be adopted past that
stage.

Apart from revealing the difficulties in the analytic modelling of this process, this article
reports the identification of a new mechanism that triggers the collision of stars that are part
of a binary system. The identified mechanism occurs when encounters with single stars
cause a perturbation of the orbital parameters of the binary, resulting in a random walk of
the eccentricity towards unity, ultimately causing the collision of the stars. The identified
process is different to the Lidov-Kozai (LK) mechanism as it does not require the formation
of a triple system. The analysis presented in this research indicates that this new mechanism
could operate more efficiently than the LKmechanism in the central stellar disk of theMilky
Way. This hypothesis would need to be testedwith detailed numerical simulations in realistic
environments with an adequate snapshot output frequency that can capture the evolution of
the eccentricity in binary systems. Analytic collision rates that include this new collision
channel can be refined by performing simulations with the aim of calibrating the parameters
that control the process. These parameters are the number of perturbations needed and the
fraction of binary systems that experience the perturbation-driven merger.

Another possible effect of this collision channel would be the production of isolated
blue stragglers NBS,iso in star clusters instead of blue stragglers in binary systems NBS,bin

as predicted for the LK mechanism or for mass transfer in binary systems (Gosnell et al.,
2014, 2015). A possible indication of the operation of this channel would be a correlation
between the ratio NBS,iso/NBS,bin and the density of the cluster. This could be tested with
future observations of dense globular and open clusters. Follow up studies should focus in
refining the analytic rates presented here in order to better understand the environments in
which this new collision channel could be proved.
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8.3 Formation of supermassive stars in the first star clus-
ters

The research article presented in Chap. 7 explores the formation of supermassive stars in
dense stellar systems embedded in gas by self-consistently modelling the stellar and gas
dynamics. The scenario arises when the gas in a metal free atomic-cooling halo fragments
at subparsec scales. This is an important step in confirming the plausibility of the direct
collapse black hole scenario at scales inaccessible for large scale cosmological simulations
(Chon et al., 2018; Latif et al., 2014b; Regan and Haehnelt, 2009a). This work demonstrated
that the presence of additional fragments does not prevent the emergence of SMSs since one
single object is always favoured with high accretion rates, consistent with similar works
(Chon and Omukai, 2020; Regan et al., 2020). The high accretion rates onto this object
cause it to evolve as an inflated SMS which in turn triggers a large number of collisions
with other fragments. Despite the intermittent accretion, the collisions help to maintain an
inflated envelope for this star, preventing the production of ionizing photons that could halt
further growth. Interestingly, in the less massive systems explored, not only single but also
binary SMSs emerged. The fate of the SMSs formed in these simulations is their collapse to
massive black holes with 103 − 104 M⊙ surrounded by tens of stars with typical masses in
the range 1 − 10M⊙. These BH seeds are ideal candidates to explain the rapid emergence
of the highest redshift quasars observed to date. The binary BHs expected from this process
will be detectable by LISA if they merge (Amaro-Seoane et al., 2023).

The initial conditions chosen for the simulations were motivated by previous works of
large scale structure formation (Chon et al., 2018). The work presented here considered one
of the outcomes of such simulations, but the exploration of collapsed metal free atomic-
cooling halos with a different morphology should also be investigated. In particular, the
work by Chon et al. (2018) indicates that the proximity of star forming galaxies needed
for preventing H2 cooling can indeed tidally deform the collapsing clouds, and assuming a
spherical morphology is not valid in this case. Additionally, by including turbulence with
a mach number of 1, the slightly modified channel of Wise et al. (2019) is not taken into
account, since rapid halo assembly would produce more turbulence, possibly leading to
multiple high density sites and thus a higher multiplicity of SMSs. One possibility for im-
proving on this is to take the output of cosmological simulations and map the resulting gas
distributions into a set of SPH particles to study the assembly of SMSs with the numeri-
cal implementation presented in Sec. 4.2. Additionally, zoom-in simulations of individual
atomic-cooling halos could be an alternative.

The effects of mass loss in stellar collisions was also neglected in this study, however the
work by Alister Seguel et al. (2020) suggests that including this effect would not reduce the



Formation of supermassive stars in the first star clusters 161

mass of the SMSs by more than 10%. Nevertheless it is very important to mention that the
result obtained by Alister Seguel et al. (2020) makes use of mass loss recipes that might not
be applicable to the scenario explored here. The mass loss included in that study comes from
the calculations of Glebbeek et al. (2013) which are adequate for evolved MS stars at solar
metallicity. These stars have a different structure when compared to the Pop. III protostars
described in Sec.3.2.2 and the SMSs described in Sec. 3.5. Understanding the real outcome
expected in those situations will require the modelling of stellar collisions as done in Freitag
and Benz (2005) and Glebbeek et al. (2013). An important difference is that very massive
and inflated stars need to be modelled in this case, which might only be possible for masses
below 1000M⊙. Nevertheless this will provide invaluable insight into the runaway collision
process in these environments, and help to inform what is the amount of mass loss expected
for different combinations of impact velocities, masses, and impact parameters, as well as
the disturbance caused to the remnant of the collision in terms of structure and lifetime.

Regarding the numerical implementation used for this study, there is still room for im-
provement in the coupling of the N -body and SPH codes described in Sec. 4.2.3. While
the article presented in Chap. 7 solved the problems described in those sections, moving
away from a fixed softening length and using instead the variable smoothing length of SPH
particles is advised for future studies. This will improve the energy conservation and better
capture the gas fragmentation (Bate and Burkert, 1997; Price and Monaghan, 2007).

The simulations presented in Chap. 7 did not encounter the problem of tight binaries
that reduce the efficiency of the N -body integrator. This is due to the presence of an in-
flated SMSs with a radius of 104 R⊙ and the sticky star approximation included as collision
criteria. When applying this method to study different types of embedded star clusters this
problem will inevitably appear. One possible solution is to use a different N -body integra-
tor. A good candidate at the moment is the PETAR code (Wang et al., 2020) that includes
regularization for treating tight binaries (see Sec. 4.1.4), however it will be necessary to
include the detection of stellar collisions in the code during the integration of the particles.
The work by Polak et al. (2023) demonstrates this approach.

One of the processes that was not explicitly considered in this study was that of radiation
feedback. On one hand the assembly of an SMS occurs in a timescale of 30 000 yr so that not
even the surrounding high mass protostars have enough time to reach the ZAMS by then.
On the other hand the existence of periods of low accretion rate onto the SMS should cause
a gradual contraction of the stellar envelope which could trigger the emission of ionizing
radiation (Sakurai et al., 2015). In principle the variation of the stellar radius associated to
the low accretion rate periods can be easily included in future simulations. How to include
the effects of ionizing radiation is still not so clear, and this is in general true for the studies
of star formation in similar environments (Jaura et al., 2022; Klessen and Glover, 2023).
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In summary, the formation of supermassive stars in dense embedded star clusters is in-
evitable. This indicates that fragmentation at subparsec scales during the DCBH scenario
does not prevent the emergence of 104 M⊙ SMSs, at least in gas cloud with a spherical
morphology and moderate levels of turbulence. The combination of high accretion rates
and the high amount of collisions favour the formation of a single SMS. The large scale
fragmentation expected in tidally deformed clouds or in environments with higher levels of
turbulence could yield multiple formation sites for SMSs, but would not prevent their for-
mation. Modelling the contraction of SMSs during quiescent phases is necessary for future
studies. Understanding the outcomes of collisions that involve an SMS and the expected
amount of mass loss associated is critical for placing stronger constraints for the black hole
mass expected from this seeding mechanism. Confirming the frequency of binary SMSs
formation in this scenario is a promising route for testing the occurrence of this process via
gravitational wave detection with LISA.



Appendix A

Gravitational force and potential with a
softening kernel

When simulating systems comprised of SPH plus N -body particles it is necessary to intro-
duce a softening for the gravitational force between the particles to avoid numerical artifacts.
When doing this, the gravitational potential at position r produced by a set ofN particles is
given by

Φ(r) = −G
N∑
i=1

miϕ(|r− ri|, h), (A.1)

where ϕ is the potential softening kernel, which depends on the distance to a particle |r−ri|
and its softening length h.

It is common to use a Plummer force softening kernel in N -body codes, from which
the potential softening kernel can be derived. For SPH codes, one can derive the softening
kernel from the density smoothing kernel as

ϕ(r, h) = −4π

(
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r

∫ r

0

Wr′2dr′ +
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0

Wr′dr′ + C

)
, (A.2)

whereW is the density smoothing kernel, and C is a constant that guarantees the continuity
of the function. There are several options for the density smoothing kernel even for the same
SPH code. We derive here the potential softening kernel from the cubic spline kernel used
in the GADGET-2 code as well as on the FI code. The cubic spline kernel is given by

W (r, h) =
8
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(A.3)

In the following, a step-by-step derivation of the softening kernel is presented, for the cal-
culation of the gravitational potential and the gravitational force.
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A.1 Softened gravitational potential

The derivation of the potential softening kernel begins by considering first the case r
h
≤ 0.5.

Also, for simplicity, the factor 8
πh3 in Eq.(A.3) is ignored during the derivation. The first

term in Eq.(A.2) is therefore
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Now the second term in Eq.(A.2) is
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Now consider the second interval of the smoothing kernel in Eq.(A.3). For this interval
the first term in Eq.(A.2) is

−1

r

∫ r

0

Wr′2dr′ = −1

r

∫ r

0

2

(
1− r′

h

)3

r′2dr′

= −1

r

∫ r

0

2

(
1− 3

r′

h
+ 3

r′2

h2
− r′3

h3

)
r′2dr′

= −1

r

∫ r

0

2

(
r′2 − 3

r′3

h
+ 3

r′4

h2
− r′5

h3

)
dr′

= −1

r
2

(
1

3
r′3 − 3

4

r′4

h
+

3

5

r′5

h2
− 1

6

r′6

h3

) ∣∣∣r
0

= −1

r
2

(
1

3
r3 − 3

4

r4

h
+

3

5

r5

h2
− 1

6

r6

h3

)
= −2

3
r2 +

3

2

r3

h
− 6

5

r4

h2
+

1

3

r5

h3
, (A.6)



Softened gravitational potential 165

and the second term in Eq.(A.2) is∫ r
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Therefore, from Eq.(A.2), and using Eqs.(A.4), and (A.5), one finds that the softening ker-
nel, in the interval 0 ≤ r

h
≤ 0.5 is given by
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ϕ(r, h) = −32

h

[
1

6

( r
h

)2
− 3

10

( r
h

)4
+

1

5

( r
h

)5
+ c1

]
, 0 ≤ r

h
≤ 0.5, (A.9)

where the factor 8
πh3 has been reincorporated.

Next, for the interval 0.5 < r
h
≤ 1, and by combining Eqs.(A.2), (A.6), and (A.7), the

softening kernel is given by
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The factor 8
πh3 has been also reincorporated in this case.

Note that the potential must be proportional to −1
r
for r

h
> 1, therefore the softening

potential is given by
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Now it is necessary to find the constants c1 and c2 by imposing the condition of continuity
of the smoothing kernel. For the constant c2 the condition ϕ(r, h) → − 1

h
for r = h must be
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fulfilled. This means that
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Finally the smoothing kernel is given by

ϕ(r, h) = −32

h



1
6

(
r
h

)2 − 3
10

(
r
h

)4
+ 1

5

(
r
h

)5 − 41
480

0 ≤ r
h
≤ 0.5

1
3

(
r
h

)2 − 1
2

(
r
h

)3
+ 3

10

(
r
h

)4 − 1
15

(
r
h

)5
+ 1

240

(
h
r

)
− 49

480
0.5 < r

h
≤ 1

− h
32

1
r

r
h
> 1

(A.12)
The potential of a 1 M⊙ mass calculated with the smoothing kernel and the exact 1/r po-
tential is shown in Fig. A.1.

Figure A.1. Comparison of the gravitational potential produced by a 1 M⊙ point mass at
different distances calculated with the exact point-mass potential formula (orange dashed
line), and with Eq.(A.1) employing a softening kernel based on the cubic spline kernel (blue
solid line). Distance is shown in units of the smoothing length.
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A.2 Softened gravitational force

The gravitational force between two particles is obtained as

F = −Gm1m2ϕ
′(r12, h)r̂12, (A.13)

withm1 andm2 being the masses of the particles, r12 their separation, h the softening length,
and ϕ′ the force softening kernel.

After having derived the potential softening kernel it is a straightforward task to compute
the force softening kernel as

ϕ′ = −∂ϕ

∂r
. (A.14)

By doing so (and ensuring the continuity of the function) one arrives at the force softening
kernel
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Note that the force softening kernel is always positive. Fig. A.2 shows the magnitude
of the gravitational force between two 1 M⊙ particles computed with the force softening
kernel and the exact 1/r2 force dependence.
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Figure A.2. Magnitude of the gravitational force between two 1 M⊙ point-masses as a
function of the distance in units of the smoothing length. The green dashed line shows the
force as calculated with the exact point-mass gravitational force. The blue line shows the
force as calculated with a cubic spline force smoothing kernel. The orange line shows the
magnitude of the force as calculated with a Plummer softening kernel.
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