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Verschiedene Aspekte des Wechselspiels
von Licht und der groß-skaligen Struktur im Universum

Die vorliegende Arbeit beschäftigt sich hauptsächlich mit dem Einfluss intrinsischer Elliptizitäts-
Korrelationen auf Messungen des schwachen Gravitationslinseneffektes. Eine mögliche Ursache für
diese Korrelationen sind ebensolche in den Drehimpulsen benachbarter Galaxien. Mit Hilfe eines ver-
besserten Ansatzes für die Drehimpuls-Korrelationen zeige ich, dass die typische Korrelationslänge
von Halos von der Größe der Milchstraße ungefähr 1 Mpc h−1 beträgt, was etwas geringer ist als
von früheren Arbeiten vorhergesagt. Ich entwickle den grundlegenden Formalismus, um 3d-Spektren
intrinsischer Elliptizitäts-Korrelationen analog zum schwachen kosmischen Linseneffekt beschrei-
ben zu können. Damit berechne ich die Kovarianz-Matrizen für verschiedene Varianten von Ellip-
tizitäts-Korrelationen. Im Falle eines Euclid-ähnlichen Surveys ist das von intrinsischen Elliptizitäts-
Korrelationen stammende Signal mehr als eine Größenordnung kleiner als dasjenige des Linseneffek-
tes. Darüber hinaus berechne ich die Parameter-Verzerrung, die aus der Außerachtlassung intrinsischer
Elliptizitäts-Korrelationen in zweidimensionalen nicht-tomographischen Messungen des schwachen
Gravitationslinseneffektes resultiert. Die Materiedichte Ωm und die Normierung des linearen Mate-
rieleistungsspektrums σ8 sind am stärksten verzerrt, falls intrinsische Elliptizitäts-Korrelationen mit
Hilfe eines Drehimpuls basierten Models beschrieben werden.

Im zweiten Teil meiner Arbeit wende ich mich sekundären Anisotropien des kosmischen Mikro-
wellenhintergrundes zu: dem schwachen Gravitationslinseneffekt und dem nichtlinearen integrierten
Sachs-Wolfe (iSW)-Effekt. Das charakteristische Signal des Linseneffektes lässt sich ausnutzen, um
das Leistungsspektrum des Linsenpotentials zu rekonstruieren. Ich zeige, wie diese Rekonstruktion
durch primordiale Nicht-Gaußianitäten verzerrt wird. Für aktuelle Werte von fNL ist die Verzerrung je-
doch auf allen außer den größten Winkelskalen vernachlässigbar gering. Abschließend stelle ich einen
neuen analytischen Zugang zur Berechnung des nichtlinearen iSW-Effektes im translinearen Bereich
vor. Der Ansatz offenbart zwei unterschiedliche Beiträge: die Änderung der gravitativen Selbstener-
giedichte der groß-skaligen Struktur bezüglich konformer Zeit und den Birkinshaw-Gull-Effekt.

Different aspects of the interplay between
light and the large-scale structure of the Universe

The main subject of this thesis is the influence of intrinsic alignments on weak lensing measurements.
One possible source of intrinsic alignments are correlations in the angular momenta of neighbouring
galaxies. Employing an improved ansatz for the angular momentum correlation function I show that
the typical correlation length of Milky Way-sized haloes is about 1 Mpc h−1 which is slightly smaller
than earlier work in this field suggested. Establishing the constitutive formalism to describe intrinsic
alignments consistently in the framework of 3d cosmic shear I compute the resulting covariance ma-
trices of different alignment types. For a Eucild-like survey it turns out that intrinsic alignments are
more than one order of magnitude smaller than the lensing signal. In addition the parameter estima-
tion bias in a two-dimensional non-tomographic weak lensing measurement is computed. The matter
density Ωm and the normalization of the linear matter power spectrum σ8 are most severely biased if
intrinsic alignments are described by an angular momentum based alignment model.

In the second part of my thesis I address secondary anisotropies of the cosmic microwave back-
ground: weak gravitational lensing and the nonlinear integrated Sachs-Wolfe (iSW) effect. The char-
acteristic imprint of lensing can be used to reconstruct the lensing potential power spectrum. I show
how this reconstruction is biased in the presence of primordial non-Gaussianities. For current values
of fNL, however, the bias is completely negligible on all but the largest angular scales. Finally, a novel
analytical approach for the computation of the nonlinear iSW effect valid in the translinear regime is
presented. It allows to identify two distinct contributions: the change of the gravitational self-energy
density of the large-scale structure with (conformal) time and the Birkinshaw-Gull effect.
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1 Chapter 1

Introduction

The contemporary picture of the Universe is largely determined by the observation of light in its
different wavebands. Since the speed of light is finite, photons observed today are emissaries of the
Universe’s past. The light of the oldest galaxies known today was emitted approximately 600 million
years after the Big Bang, when the size of the Universe amounted to only about one tenth of its
present value. Photons of the cosmic microwave background (CMB) are even older. They were
released around 400 000 years after the Big Bang. At that time the Universe was about one thousand
times smaller than it is today. Their origin from such an early stage of the Universe’s evolution makes
CMB photons the primary tool in the investigation of the initial conditions, from which all observable
structures formed by gravitational collapse. The nowadays well established cosmological standard
model, which is presented in Chapter 2, is to a major extent based on CMB observations.

However, light reaching today’s observer contains not only information about its source, the emit-
ting object, but also about the entire matter and energy distribution of the Universe between source
and observer. This is an immediate consequence of General Relativity: the spacetime geometry of the
Universe (and thus light paths therein) are determined by its energy content. The deflection of light by
matter, or more generally by any form of energy, is known as gravitational lensing. It has become one
of the most important tools in the investigation of the Cosmos and is discussed in detail in Chapter 3.

Due to its sensitivity to all forms of energy irrespective of its nature, gravitational lensing is pre-
destined for studying the dark components of the Universe’s energy budget: dark energy and cold
dark matter. Both components do not form part of the standard model of particle physics and in-
teract (almost) exclusively gravitationally. Nonetheless, they are the dominant contribution (dark en-
ergy ∼ 70%, cold dark matter ∼ 25%) to the total energy of the Universe. The fraction contributed by
luminous, i.e. baryonic, matter is astonishing small. This highlights the need for the tightest possible
constraints on the parameters describing the dark sector.

The mystery of dark energy and cold dark matter inspired the invention of an overwhelming variety
of models of arbitrary complexity. However, there is little hope that observational data, tough their
quality is permanently improving, will ever be able to discriminate between different models. It is
therefore advantageous to concentrate on a general parametrization of the most important properties
of the dark components. First, these are the shares of the entire Universe’s energy budget which they
hold, ΩCDM and ΩDE, respectively. While cold dark matter is assumed to be pressureless, the relation
between pressure and energy density, i.e. the so-called equation of state parameter w, is of mayor
interest in case of dark energy. It is the key quantity to distinguish dynamical realizations of dark
energy from a static cosmological constant. One commonly parametrizes the dark energy equation of
state parameter and its possible time evolution by two more parameters: its value observed today, w0,
and its value at early times, w0 + wa, assuming that it evolves linearly with respect to the scale factor.
These parameters are then accessible to cosmological observations, in particular gravitational lensing
measurements.

Tight constraints on these parameters, however, require a reliable control of systematic errors. In

1



INTRODUCTION

case of weak lensing studies the intrinsic alignment of galaxies is one of these systematics. Corre-
lations in the intrinsic ellipticities of adjacent galaxies mimic the lensing signal. This contamination
inevitably introduces a bias if cosmic shear measurements are carried out under the null hypothesis
of intrinsically randomly orientated galaxy shapes. This bias is substantial in the determination of the
dark energy equation of state parameter and its time evolution. Therefore, the main part of my the-
sis aims at a better understanding of intrinsic alignments and their interplay with weak gravitational
lensing.

One possible source of intrinsic alignments are correlations in the angular momenta of neighbour-
ing galaxies. This is a purely geometrical effect because the spin axis determines the angle under
which the galactic disc is observed. Thus, correlations in the galactic angular momenta necessarily
lead to correlated galaxy shapes. The correct modelling of angular momentum correlations in the
cosmic large-scale structure is therefore an important step towards a better understanding of intrinsic
alignments. In Chapter 4 a novel ansatz for the analytical computation of angular momentum corre-
lations is proposed. Since galaxies form at peaks in the cosmic density field, the underlying random
process is discrete in nature. My approach takes this discreteness explicitly into account. It allows
to derive all dynamical fields involved from a high-dimensional correlated Gaussian random process,
the covariance matrix of which is completely characterized in terms of the linear matter power spec-
trum. My results are therefore naturally limited to linear structure growth. This restriction, however,
is compensated for by the fact that, in contrast to previous works, neither further assumptions nor new
parameters have to be included.

The need for tighter and tighter parameter constraints stimulated the development of more and more
advanced methods for measuring cosmic shear. In the last ten years a large variety of methods have
been invented and successfully applied. Key among these is 3d cosmic shear. In this formalism
the three-dimensional character of the observable shear field is preserved. It avoids any line-of-sight
projection, making the additional information contained in the time evolution of the shear field fully
accessible. It therefore improves on shear tomography, which uses binning in redshift. In contrast
to the cosmic density field the weak lensing shear field is not statistically homogeneous; only statis-
tical isotropy is maintained. Its time-resolved investigation therefore has to deal with (spatial) mode
coupling increasing the numerical complexity of 3d cosmic shear analyses considerably. This mode
coupling is further enhanced by the observational uncertainties in the galaxies’ redshift. Nonetheless,
the capability to follow the time evolution of the lensing signal makes 3d cosmic shear very well
suited for the investigation of dark energy. As the quality of photometric redshift data is increasingly
improving, intrinsic alignments are expected to be the most severe contamination in 3d weak lensing
measurements. In order to remove, or at least reduce, this contamination, intrinsic alignments need to
be consistently incorporated in the 3d cosmic shear formalism. So far, only fitting formulae derived
from numerical simulations exist. In Chapter 5 I develop the constitutive formalism to describe in-
trinsic alignments in the language of 3d cosmic shear starting from physical alignment models. This
purely analytical approach then allows to compute the covariance matrices of the intrinsic ellipticity
field and its cross-correlation with the lensing induced one. Comparison with the 3d weak gravita-
tional lensing covariance matrix yields valuable insights into the linking of intrinsic alignments to the
observed three-dimensional power.

The part of my thesis which is concerned with intrinsic alignments concludes in Chapter 6. Here
I return to the conventional two-dimensional weak lensing analysis without tomography. The bi-
ases, which are introduced in a minimal set of cosmological parameters, if the presence of intrinsic
alignments is not accounted for, are computed. In contrast to previous studies I employ an angular
momentum based model in my calculations. This model is closely related to that of Chapter 4, but
appropriately simplified in order to make the computational efforts feasible. Advantageous of this
approach is the fact that its free parameters may, in principle, be determined from observations other
than galactic shape measurements. This avoids a marginalization over nuisance parameters which
inevitably weakens the derived constraints on cosmological parameters.

2



INTRODUCTION

In the second part of my thesis I leave intrinsic alignments behind and address the cosmic microwave
background (CMB). A short overview of its most important properties is provided in Chapter 7. The
effect of gravitational lensing does not only apply to light emitted by galaxies, but also to CMB pho-
tons leaving a characteristic imprint on the statistics of the CMB temperature fluctuations; it causes
a secondary anisotropy. In the current era of high-precision CMB experiments this characteristic sig-
nal is exploited as a valuable source of additional information. It allows to statistically reconstruct
the CMB lensing potential power spectrum, which may then be used to tighten constraints on cos-
mological parameters derived from the CMB. This reconstruction, however, is biased in the presence
of primordial non-Gaussianity. In Chapter 8 a formulation of this bias, which takes the curvature of
the sky explicitly into account and overcomes the flat-sky approximation used in previous studies,
is presented. Simulating a large sample of CMB temperature maps which consistently incorporate
all relevant contributions to the signal, i.e. primordial non-Gaussianity, gravitational lensing and in-
strumental noise, I quantify the reconstruction bias for an experiment similar to the Planck satellite
mission.

Another secondary anisotropy of the CMB is the integrated Sachs-Wolfe (iSW) effect. While they
are blueshifted on entering a potential well in the large-scale structure, CMB photons experience a
redshift when they leave the potential. Due to the time variation of the potential, blue- and redshift do
not compensate each other in amount, which causes an additional anisotropy in the CMB temperature.
Since it is absent in a universe exclusively built up by matter, the signal of the iSW effect is highly sen-
sitive to dark energy. Chapter 9 is devoted to the nonlinear iSW or Rees-Sciama effect, which results
from inhomogeneous structure growth, i.e. nonlinearly evolving potentials. I present a new analytical
derivation of this effect which is valid in the moderate nonlinear regime. It reduces the numerical
costs considerably and allows for a direct physical interpretation of the individual contributions to the
nonlinear iSW effect, which are concealed in earlier studies.

The main findings of my thesis are then finally summarized in Chapter 10, where I also draw
some further conclusions. Two appendices provide additional material, which has been excluded
from the principal part of this thesis for clarity. Appendix A contains mathematical details, primarily
definitions and theorems used throughout my thesis, whereas Appendix B gathers detailed calculations
and derivations the results of which are presented in the main part.

Parts of this work have been published in the following journal articles:

• Merkel, Ph. M. & Schäfer, B. M. (2013b): Intrinsic alignments and 3d weak gravitational
lensing. MNRAS, in press.

• Merkel, Ph. M. & Schäfer, B. M. (2013c): The interplay of CMB temperature lensing power
reconstruction with primordial non-Gaussianity of local type. MNRAS, 429, 444.

• Merkel, Ph. M. & Schäfer, B. M. (2013a): Contributions to the non-linear integrated Sachs-
Wolfe effect: Birkinshaw-Gull effect and gravitational self-energy density. MNRAS, 431, 2433.

• Schäfer, B. M. & Merkel, Ph. M. (2012): Galactic angular momenta and angular momentum
couplings in the large-scale structure. MNRAS, 421, 2751.

• Capranico, F., Merkel, Ph. M. & Schäfer, B. M. (2013): Intrinsic ellipticity correlations of
galaxies: Models, likelihoods and interplay with weak lensing. MNRAS, in press.
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2 Chapter 2

Cosmology

This chapter contains the most important physical concepts for a systematic study of the Uni-
verse. It is far from being complete in the sense that it does not cover all aspects of cosmology,
in particular it skips the physics of the (very) early universe, including nucleosynthesis. In-
stead, this overview is intended to introduce and motivate all quantities and formulae used in
the main part of this work in a self-consistent way. Its purpose is to make this work accessible
to non-cosmologists and to ease the reading for people working in that field. The gaps which
are inevitably left by my presentation might by filled by one of these excellent textbooks on
cosmology: Peacock (2003); Mukhanov (2005); Dodelson (2007) and the more recent review
by Bartelmann (2010a).

2.1. The observable Universe

Before I develop the theoretical foundations of modern cosmology in the following sections, I would
like to summarize some well established facts of the observable Universe.

First of all, the Universe is homogeneous and isotropic on scales larger than roughly 100 Mpc. On
smaller scales, however, there are well developed inhomogeneous structures. Before homogeneity
and isotropy were confirmed, for example by deep galaxy surveys, cosmological physics had already
postulated these properties in form of the

Cosmological Principle

(i) When averaged over sufficiently large scales, the observable properties of the Universe are
independent of direction.

(ii) There exists no preferred position in the Universe (Copernican principle).

Obviously, a Universe which is isotropic everywhere, as required by the Copernican principle, must
be homogeneous, too. It is important to note that the first assumption is not restricted to the distribution
of large-scale structure at all but is much more far-reaching. It contains physical laws as a whole. The
cosmological principle has proven to be one of the most powerful working assumptions of modern
cosmology. It ensures that observations from one single vantage point entail information of the entire
Universe.

Observationally, the cosmological principle is further supported by measurements of the cosmic
microwave background (CMB). The Universe is pervaded by thermal radiation with temperature T0 =

2.73 K. Its fluctuations are tiny (one per cent mille) and reflect those in the Universe’s energy dis-
tribution when it was about a thousand times smaller than today. The expansion of the Universe is
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governed by the Hubble law. The receding velocity, for example of distant galaxies, from the observer
is proportional to the distance to the observer.

The total energy density of the Universe is composed of three different species. Normal, i.e. bary-
onic, matter contributes only about five percent; the rest is constituted by a dark component, which
appears to consist of cold dark matter with negligible pressure (∼ 25%) and dark energy with nega-
tive pressure (∼ 70%). There seems to be (almost) no interaction between dark matter, dark energy
and baryonic matter besides gravity. The number of baryons is tiny in comparison to the number of
photons. There are roughly 109 photons per baryon, whereas the energy fraction carried by radiation
is negligible in the late phases of the Universe. Finally, the chemical composition of baryonic matter
is about 75 per cent hydrogen, 25 per cent helium and trace amounts of heavier elements. The amount
of antimatter present in the Universe is insignificant.

2.2. Friedmann-Lemaı̂tre-Robertson-Walker world models

For a consistent description of the Universe as a whole, along with its evolution, the use of General
Relativity is mandatory. Cosmological physics has to deal with matter moving with relativistic veloci-
ties and having arbitrary, even negative, pressure and the distances involved are too large for neglecting
retardation and curvature effects. Therefore, cosmology requires necessarily a fully relativistic theory
of gravitational fields beyond Newtonian gravity.

Einstein’s theory of general relativity is a geometrical1 theory of gravitation (Einstein, 1915, 1916).
In contrast to the Newtonian picture, the relative acceleration of particles is not due to gravitational
forces but results from the curvature of spacetime the particles are moving in. Spacetime is described
by a four-dimensional pseudo Riemannian manifold whose metric tensor gµν has Lorentzian signa-
ture (−1, 1, 1, 1). The metric allows to define the infinitesimal spacetime interval between two events,
i.e. two points in spacetime,

ds2 ≡ gµνdxµdxν (2.1)

which is invariant with respect to coordinate transformations. Throughout this work I will adopt
Einstein’s convention for the summation over repeated indices

gµνdxµxν ≡
∑
µ,ν

gµνdxµxν. (2.2)

If not stated otherwise Greek indices run from 0 to 3 (0 indicating the time-like coordinate) while
Latin indices are reserved for spatial coordinates.

General relativity is a metric theory of gravitation. The components of the metric become dynamical
fields whose evolution is determined by the Einstein field equations

Rµν −
1
2

Rgµν − Λgµν =
8πG
c4 Tµν (2.3)

(e.g. Landau & Lifšic, 1975). The left hand-side contains geometrical quantities only, while the
right-hand side accounts for the Universe’s matter content described by the energy momentum ten-
sor Tµν. The Ricci tensor is obtained from the single independent contraction of the Riemann tensor,
i.e. Rµν = Rαµαν. Its trace yields the Ricci scalar R = Rµµ. According to Lovelock’s theorem, the
cosmological constant Λ may be considered as a geometrical quantity rather than as a contribution
to the matter content (Lovelock, 1971, 1972). The numerical factor on the right-hand side, where G
is Newton’s constant and c the speed of light, ensures that Newtonian gravity is recovered in case of
weak gravitational fields and non-relativistic matter.

Any metric describing the Universe as a whole has to obey the cosmological principle. As no priv-
ileged point exists, the synchronization of the clock of any observer throughout the entire Universe

1A short overview of the main aspects of Riemannian geometry, in particular the Riemann curvature tensor, is provided in
Appendix A.1.
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2.2. FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER WORLD MODELS

has to be possible, and therefore g0i = gi0 = 0. The identification of coordinate time with proper time
yields g00 = −c2. Another consequence of the cosmological principle is that space-like hypersurfaces
at constant time need to be homogeneous and isotropic and are therefore maximally symmetric spaces,
i.e. spaces with the maximum number of Killing vectors or equivalently the largest symmetry group
possible (see Appendix A.1.3). In three dimensions there are six Killing vectors at most, which cor-
respond to three independent translations and rotations. Maximally symmetric spaces are spaces of
constant curvature K and one can distinguish three different cases

(1) K < 0: open universe,

(2) K = 0: spatially flat universe,

(3) K > 0: close universe.

In hyperspherical coordinates (χ, θ, φ) these symmetries are most evident and the spatial part of the
line element takes a particularly simple form

dσ2 = dχ2 + f 2
K(χ)

(
dθ2 + sin2 θ dφ2

)
with fK(χ) =



sinh
(√
|K| χ

)
√
|K|

if K < 0,

χ if K = 0,
sin

(√
K χ

)
√

K
if K > 0.

(2.4)

Scaling of this line element by a time-dependent function is permissible since it preserves homogeneity
and isotropy. Introducing the scale factor a(t) (normalized to unity today, i.e. a0 ≡ a(t0) = 1) one
obtains

ds2 = −c2dt2 + a2(t)
[
dχ2 + f 2

K(χ)
(
dθ2 + sin2 θ dφ2

)]
. (2.5)

The corresponding metric is called Robertson-Walker metric (Robertson, 1935; Walker, 1935).
The time evolution of the scale factor is found from Einstein’s field equations (2.3). On large scales

the Universe’s energy momentum tensor may be modelled as that of a perfect fluid. A perfect fluid
has neither anisotropic stress nor heat conduction, the presence of which would necessarily violate
isotropy. Furthermore, being collisionless cold dark matter does not exhibit viscosity. Thus, the
cosmic fluid is completely characterized by its (rest frame) energy density ρ and (isotropic) pressure p

Tµν =

(
ρ +

p
c2

)
uµuν + pgµν. (2.6)

Since for a comoving observer the cosmic fluid is at rest, i.e. its four-velocity reads uµ = (c, 0, 0, 0),
Einstein’s field equations lead to the Friedmann equations (Friedmann, 1922, 1924; Lemaı̂tre, 1927)

H2 =
8πG

3
ρ −

Kc2

a2 +
Λ

3
, (2.7a)

ä
a

= −
4πG

3

(
ρ +

3p
c2

)
+

Λ

3
. (2.7b)

In equation (2.7a) the Hubble function

H(t) ≡
ȧ
a

(2.8)

measuring the expansion rate of the Universe has been introduced. Derivatives with respect to time
are indicated by a dot. The Robertson-Walker metric along with the Friedmann equations for the scale
factor constitutes the class of Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) world models.

The Friedmann equations encode energy conservation as they can be combined to

dρ = −3
(
ρ +

p
c2

)
d log a. (2.9)
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This equation is readily integrated for a given, possibly time-dependent, equation of state parame-
ter w(a) relating the pressure to the energy density, i.e. p = wρc2,

ρ(a) = ρ0 exp
(∫ 1

a

da′

a′
3
[
1 + w(a′)

])
. (2.10)

For example, in case of pressureless matter w = 0 while for radiation w = 1/3 yielding ρm(a) =

ρm,0a−3 and ρr(a) = ρr,0a−4, respectively. Obviously, the scaling of the matter density ensures mass
conservation while that of the radiation density accounts for the conservation of particle number and
for the fact that radiation is redshifted in proportion to the inverse scale factor due to the cosmic
expansion (see Section 2.3.1).

The first Friedmann equation (2.7a) introduces a characteristic (energy) density, the so-called critical
density

ρcrit(t) =
3H2(t)
8πG

. (2.11)

The contributions of the different matter species to the total energy density can then be conveniently
expressed by dimensionless density parameters Ωi

ρ(a) = [Ωm(a) + Ωr(a)] ρcrit(a) = [ΩCDM(a) + Ωb(a) + Ωr(a)] ρcrit(a). (2.12)

The last equality accounts for the fact that the matter density is made up of cold dark matter (CDM)
and baryonic matter. If the time dependence of the density parameter is not explicitly stated its value
observed today is assumed, e.g. Ωm ≡ Ωm(a0). Additionally, by introducing density parameters for
both the curvature and the cosmological constant by setting

ΩK(a) = −
Kc2

H2(a)
and ΩΛ(a) =

Λ

3H2(a)
(2.13)

the first Friedmann equation (2.7a) can be rewritten as

H2(a) = H2
0

(
Ωma−3 + Ωra−4 + ΩKa−2 + ΩΛ

)
. (2.14)

Ω
Λ

Ωm

−1.0

−0.5

0

0.5

1.0

1.5

0 0.5 1.0 1.5 2.0 2.5

expands forever

recollapses

positive

spatial
curvature

negative

spatial
curvature

Figure 2.1.: Behaviour of a universe dominated by mat-
ter and dark energy. The encircled dot indicates the
WMAP7 best-fitting values.

Not all four density parameters are independent
because they necessarily have to add up to unity.
In particular, a universe where Ωm(a) + Ωr(a) +

ΩΛ(a) = 1 is spatially flat. Since today the radi-
ation density is negligible, the possible ongoing
expansion or future collapse of the Universe can
be conveniently analysed in the Ωm-ΩΛ-plane as
shown in Figure 2.1.

In Table 2.1 the values of the density param-
eters recommended by the WMAP team after
the seven-year-data release are given. These
constraints are derived from CMB observations
in combination with measurements of baryon
acoustic oscillations2 (BAO) as well as a local
measurement of the Hubble constant (Komatsu,
E. et al., 2011). Most recently, the WMAP re-

sults have been largely confirmed by the first Planck data release (Planck Collaboration, 2013a).

2Before recombination baryons were tightly coupled to the CMB photons. The oscillations of sound waves, resulting
from the radiation pressure counteracting gravitational collapse, are therefore expected to be imprinted in the baryon
perturbations as well as the CMB temperature anisotropies (cf. Section 7.1.1).
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Table 2.1.: Cosmological parameters.

Parameter WMAP Planck Description

Ωm 0.272+0.015
−0.016 0.314 ± 0.020 total matter density

Ωb 0.0456 ± 0.0016 0.0486 ± 0.0021 baryonic matter density

ΩCDM 0.227 ± 0.014 0.263 ± 0.013 cold dark matter density

Ωr

(
8.421+0.311

−0.335

)
× 10−5 (9.187 ± 0.382) × 10−5 radiation density

ΩΛ 0.728+0.015
−0.016 0.686 ± 0.020 cosmological constant

h 0.704+0.013
−0.014 0.674 ± 0.014 Hubble parameter (H0 = 100 h km s−1 Mpc−1)

ns 0.963 ± 0.012 0.962 ± 0.009 spectral index of primordial power spectrum

∆2
R

(
2.441+0.088

−0.092

)
× 10−9 (2.23 ± 0.16) × 10−9 amplitude of primordial power spectrum

σ8 0.809 ± 0.024 0.834 ± 0.027
normalization of the linear matter power
spectrum smoothed on a scale of 8 Mpc

The second column gives the seven-year ΛCDM WMAP+BAO+H0 best-fitting cosmological param-
eters (Komatsu, E. et al., 2011), while the third column contains the results for the Planck CMB
temperature power spectrum alone (Planck Collaboration, 2013a). The radiation density parameter is
obtained via the relation Ωr = 2.469 × 10−5 h−2 (1 + 0.2271 Neff). It includes the contributions from
neutrinos with an effective number of species Neff = 3.04.

2.2.1. Dark energy

Since the Hubble expansion of the Universe has to counteract the gravitational attraction of its matter
content, it is expected to gradually slow down. Observations of Supernovae Type Ia (SN Ia),3 how-
ever, show that the Universe currently undergoes a stage of accelerated expansion (Riess, A. G. et al.,
1998; Perlmutter, S. et al., 1999). In terms of the scale factor accelerated expansion means ä > 0.
According to the second Friedmann equation (2.7b) this requires matter violating the strong energy
condition ρc2 + 3p > 0 or equivalently in terms of the equation of state w < −1/3. The exceptional
property of negative pressure not present for any known form of matter gave rise to the name dark
energy. One possible candidate for dark energy is the cosmological constant. Interpreting it as a con-
tribution to the Universe’s energy content instead of being a geometrical quantity it can be described
by a fluid with negative pressure equal to its energy density, i.e. w = −1. It is then plausible to relate
the cosmological constant to the Universe’s vacuum energy density. But a rough estimate of the latter,
for example obtained by adding all zero-point energies up to the Planck mass, yields ρvac ' 1074 GeV4

which is in tremendous contrast to ρΛ ' 10−47 GeV4. This discrepancy with all possible fundamental
energy scales is sometimes referred to as fine-tuning problem. Yet another troublesome issue with a
cosmological constant is the so-called coincidence problem: the cosmological constant only recently
started to dominate the Universe’s energy budget, leaving today’s observer in the rather privileged
position to measure an accelerated expansion

These difficulties motivate the invention of dynamical dark energy models. The huge variety of
models proposed so far can be divided into two main categories modifying the left- or the right-hand
side of Einstein’s equations (2.3), respectively. The first class of models covers modified theories
of gravity, while the second class contains specific forms of the energy momentum tensor with a

3Supernovae of Type Ia can be observed when a white dwarf accretes gas from a companion star in a binary system
thereby exceeding the Chandrasekhar mass limit (Chandrasekhar, 1931). The absolute luminosity of the explosion is
nearly constant at the peak of brightness. Therefore the distance to the nova can be inferred from measurements of the
apparent luminosity. Hence, SN Ia serve as standard candles by which the luminosity distance (2.24) can be measured
observationally.
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negative pressure. For a comprehensive presentation of the different approaches I refer to Amendola
& Tsujikawa (2010).

Present observational data of SN Ia, the CMB and BAO are consistent with a cosmological con-
stant, w = −0.980 ± 0.053 at the 68 per cent confidence level (Komatsu, E. et al., 2011). Although
some dark energy models could have already been ruled out by observations the quality of data does
not allow to discriminate between different models in general. The main objective of forthcoming
dark energy studies is therefore to search for deviations from a constant equation of state of the dark
energy component. For this purpose the phenomenological parametrization proposed by Chevallier &
Polarski (2001) and Linder (2003)

w(a) = w0 + (1 − a)wa (2.15)

proves most convenient, covering a wide range of different dark energy models. The cosmological
constant is recovered for w0 = −1 and wa = 0.

2.3. Cosmological redshift and distances

2.3.1. Cosmological redshift

Almost all information that constitutes the contemporary picture of the Universe is provided by light
in its different wavebands. Therefore, understanding light propagation in an expanding universe is
of major importance. In the following, I will assume that an observer located at the origin of the
coordinate system receives light propagating in radial direction. The analysis can be further simplified
by introducing conformal time

η ≡

∫ t

0

dt′

a(t′)
, (2.16)

which allows to bring the Robertson-Walker line element (2.5) into the following form

ds2 = −a2(t)
(
c2dη2 −

[
dχ2 + f 2

K(χ)
(
dθ2 + sin2 θ dφ2

)])
. (2.17)

Radial trajectories along constant angles θ and φ are geodesics and since photons follow null or light-
like geodesics, i.e. ds2 = 0, light rays are characterized by a linear η-χ-relation

dχ2 = c2dη2 ⇐⇒ χ(η) = ±cη + const. (2.18)

Consequently, the conformal time interval ∆η of a light signal is the same for the emitter at (ηem, χem)
and the observer at (ηobs, 0). The physical time interval, however, does change according to

∆tem = a(ηem)∆η and ∆tobs = a(ηobs)∆η. (2.19)

Since the measured wavelength of the signal is proportional to the physical time interval and the scale
factor is increasing with (conformal) time (in case of an expanding universe), the observed wavelength
is enlarged. The light is shifted towards smaller frequencies, it is redshifted. Because the scale factor
today is unity, there is a one-to-one correspondence between the cosmological redshift z, defined as
the fractional change in wavelength, and the scale factor at emission

1 + z ≡ 1 +
λobs − λem

λem
=

a(ηobs)
a(ηem)

=
1
a
. (2.20)

2.3.2. Distances

Cosmological observations are that far extended in redshift that spacetime effects become appreciable
and Euclidean geometry breaks down. In order to restore the Euclidean notion of distance in an
arbitrarily curved spacetime, distance measures have to be chosen carefully according to the physical

10



2.4. STRUCTURE FORMATION

process under consideration. Relating the apparent brightness of an object to its luminosity requires
a different distance definition (luminosity distance dL) than a relation between the object’s apparent
angular velocity and its intrinsic transverse speed (proper motion distance dM).

For this work the angular diameter distance dA is most important. It mediates between the proper
(transverse) size ∆l of an object and its observed angular diameter ∆θ (which is supposed to be suffi-
ciently small such that sin ∆θ ∼ ∆θ)

dA =
∆l
∆θ

(2.21)

as shown in Figure 2.2. The proper size can be inferred from the Robertson-Walker line element (2.5)
by noting that a relativistically correct measurement of length needs to be carried out simultaneously,

∆θ
∆lobserver

χ = 0
a = aobs

χ = χem
a = aem

dA

Figure 2.2.: Visualization of the angular diameter dis-
tance.

i.e. ∆t = 0, and that in case of the transverse size
∆χ and ∆φ may be set to zero

∆l =
√

∆s2 = a(tem) fK(χem)∆θ. (2.22)

Accordingly, the angular diameter distance is
given by

dA = a(tem) fK(χem). (2.23)

It is interesting to note that all three distances can readily be converted into each other (Weinberg,
1976)

dL = (1 + z)dM = (1 + z)2dA (2.24)

providing a valuable tool for testing independently the consistency of different cosmological models.
The radial comoving distance χ can be related to the scale factor by means of the Hubble function

χ(aobs, aem) = c
[
η(aobs) − η(aem)

]
= c

∫ aobs

aem

da′

a′2H(a′)
. (2.25)

Evaluating this formula for the initial scale factor, i.e. setting aem = aini, one obtains the (comoving)
particle horizon χp, the maximum comoving distance light can propagate. It describes the radial
extent of regions which can be causally connected. The particle horizon is a scale set by the finite
speed of light. It is therefore a kinematical horizon which should be distinguished from the Hubble
or curvature scale c/H which, in contrast, is a dynamical scale. Characterizing the expansion of the
universe, the latter is crucial in the description of structure formation (cf. Section 2.4). Furthermore,
it is comparable to the four-curvature scale of the entire spacetime and can consequently be used to
estimate the size of the local inertial frame in which a Newtonian treatment of non-relativistic matter
is applicable.

2.4. Structure formation

Both, the tiny fluctuations of the CMB and the plethora of structures of today’s Universe, emerge from
the very same initial fluctuations in the cosmic density field. Since non-relativistic matter clusters and
is unstable to gravitational collapse, the initially tiny inhomogeneities could have been substantially
amplified in the course of time, resulting in a structure-rich universe.

2.4.1. Homogeneous structure growth

Although General Relativity needs to be invoked for a consistent description of the Universe as a whole
many aspects of structure formation can be treated in Newtonian theory. Such an analysis is necessar-
ily restricted to non-relativistic matter and must not exceed the Hubble scale (cf. Section 2.3.2). On
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sufficiently large scales the Universe’s matter content can be described as a perfect fluid. The evolu-
tion of its energy density ρ, velocity V and pressure P is then governed by a set of hydrodynamical
equations along with a field equation for the gravitational potential Ψ

∂ρ

∂t
+ ∇ · (ρV) = 0 (continuity equation), (2.26a)

∂V
∂t

+ (V · ∇)V = −∇Ψ −
∇P
ρ

(Euler equation), (2.26b)

∆Ψ = 4πGρ (Poisson equation). (2.26c)

For a long phase of cosmic evolution the deviations of the density from the homogeneous and isotropic
background ρbg which are characterized by the density contrast

δ(x, t) ≡
ρ(x, t) − ρbg(t)

ρbg(t)
(2.27)

are so small that a linearization of the hydrodynamical equations is well applicable. Decomposing the
fields into a background solution and small perturbations yields

ρ(x, t) = ρbg(t) [1 + δ(x, t)] , (2.28)

V(x, t) = Vbg(x, t) + υ(x, t) = H(t)x + υ(x, t), (2.29)

Ψ(x, t) = Ψbg(x, t) + Φ(x, t). (2.30)

The pressure is assumed to be only a function of the energy density ρ, i.e.

P(x, t) = P
(
ρbg(t) [1 + δ(x, t)]

)
= Pbg(x, t) + p(x, t). (2.31)

Thus, to first order its perturbation may be expressed in terms of the energy density

p(x, t) =

(
∂P
∂ρ

)
ρbg(t)δ(x, t) ≡ c2

S ρbg(t)δ(x, t). (2.32)

In the last step I identified the square of the adiabatic sound speed c2
S . This relation between pressure

and density perturbations allows to derive a closed set of linearized equations

∂δ

∂t
+

1
a
∇q · υ = 0 (linearized continuity equation), (2.33a)

∂υ

∂t
+ Hυ = −

1
a
∇qΦ −

c2
S

a
∇qδ (linearized Euler equation), (2.33b)

∆qΦ = 4πGa2ρbgδ (Poisson equation). (2.33c)

Here Lagrangian coordinates q have been introduced. They are related to Eulerian coordinates by x =

a(t)q. The operators ∇q and ∆q act on comoving coordinates and time derivatives now have to be
carried out at constant q. From an appropriate combination of these equations an equation for the time
evolution of the density contrast can be derived

δ̈ + 2Hδ̇ −
c2

S

a2 ∆qδ − 4πGρbgδ = 0. (2.34)

On large and intermediate scales, more precisely on scales larger than the Jeans length λJ = cS

√
π

Gρbg
,

where gravity dominates, the pressure can be safely neglected and the spatial derivatives drop out in
equation (2.34). In this regime the density contrast evolves homogeneously and the growth of structure
is fully described by the growth function D+(a) in terms of which the density contrast takes the form

δ(q, a) = D+(a)δ0(q) with δ0(q) ≡ δ(q, a0). (2.35)
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Accordingly, the growth function is obtained from the growth equation (Turner & White, 1997; Wang
& Steinhardt, 1998; Linder & Jenkins, 2003)

d2

da2 D+(a) +
1
a

(
3 +

d log H(a)
d log a

)
d
da

D+(a) =
3

2a2 Ωm(a)D+(a). (2.36)

which is equivalent to equation (2.34) (neglecting the pressure term).
In an Einstein-de Sitter universe, where Ωm(a) ≡ 1, the density contrast growths in proportion to the

scale factor, i.e. D+(a) = a. Comparing this to the results from Jeans theory of a static universe where
inhomogeneities are exponentially amplified shows that gravitational instability is much less efficient
in an expanding universe. While the growth of structures is driven by the matter density, because it
sources the gravitational potential whose strength in turn determines the rate of structure formation,
the Hubble expansion prevents structures from collapse. This is formally expressed in the friction-like
term of equation (2.34) involving the Hubble function.

Finally, I would like to briefly address the influence of a relativistic component, i.e. radiation on the
formation of structures. So far the analysis has been restricted to scales sufficiently smaller than the
Hubble scale which is comparable to the particle horizon (cf. Section 2.3.2). The latter, however, is of
the order of the Jeans length for relativistic matter. Consequently, only scales smaller than the Jeans
length are involved and the relativistic component may be treated as homogeneous. It therefore solely
changes the expansion rate of the Universe.

Introducing the normalized scale factor y ≡ a/aeq, where aeq denotes the scale factor of radiation
matter equality, the growth equation (2.36) can be brought into a form which is known as Mészáros
equation (Meszaros, 1974)

d2

dy2 D+(y) +
(2 + 3y)
2y(1 + y)

d
dy

D+(y) −
3

2y(1 + y)
D+(y) = 0. (2.37)

Its (growing) solution is given by

D+(y) ∝ 1 +
3
2

y. (2.38)

During radiation domination y � 1 and consequently, the growth of structures is strongly suppressed
even in the dark matter component. Acting only gravitationally dark matter is not directly affected by
the strong radiation pressure itself but it is sensitive to the expansion rate which is influenced by the
radiation component.

2.4.2. Beyond linear approximation

The linearization of the hydrodynamical equations becomes inappropriate when the density contrast
approaches unity. An analytical description of nonlinear structure growth is only possible for a few
idealized situations which possess special symmetry properties. From these particular solutions, how-
ever, one can extract useful approximations of inhomogeneous structure growth which hold at least in
the translinear regime. Starting point is the strain tensor

Ji j(q, t) ≡
∂xi(q, t)
∂q j , (2.39)

i.e. the Jacobian matrix of the transformation from Eulerian to Lagrangian coordinates. Using the
unperturbed hydrodynamical equations (2.26) an expression for the evolution of its determinant J ≡
det J can be derived (Mukhanov, 2005)

(
log J

)
¨+ tr

[(
J̇ J−1

)2
]

+ 4πGρbg,0J−1 = 0. (2.40)
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For scalar perturbations the peculiar velocity field is irrotational and can be derived from a potential Ψ,
thus

x(q, t) = a(t)
(
q − ∇qΨ(q, t)

)
. (2.41)

If the perturbation is one-dimensional, equation (2.40) reduces to

α̈ + 2Hα̇ − 4πGρbgα = 0 with α ≡
∂2Ψ

∂q2 , (2.42)

which has the same form as equation (2.34) without the pressure term. But in this case it is exact
regardless of the size of the perturbation. Consequently, the (growing) solution is given by

α(q, a) = D+(a)α0(q) (2.43)

and the energy density evolves according to

ρ(q, a) =
ρbg,0

J(q, a)
=

ρbg(a)
1 − α(q, a)

. (2.44)

The approximation proposed by Zel’dovich (1970) extends the exact one-dimensional solution to three
dimensions setting

ρ(q, a) =
ρbg(a)[

1 − α1(q, a)
] [

1 − α2(q, a)
] [

1 − α3(q, a)
] with αi(q, a) ≡ D+(a)

∂2Ψ0

∂q2
i

. (2.45)

This expression corresponds to the leading order solution of equation (2.40) and its applicability is
therefore limited to the translinear regime. In this regime one might approximate even further

ρ(q, a) ≈ ρbg(a)
[
1 + α1(q, a) + α2(q, a) + α3(q, a)

]
= ρbg(a)

[
1 + D+(a)∆qΨ0(q)

]
, (2.46)

revealing that the displacement potential Ψ0 is proportional to the gravitational potential Φ0 (which
can be immediately inferred from equation 2.28 and 2.33c). The Zel’dovich approximation ultimately
breaks down when the trajectories of particles start crossing.

To follow the evolution of structures into the highly nonlinear regime one has to resort to cos-
mological N-body simulations. Very large high-resolution simulations reach a spatial resolution of
about 100 kpc h−1 predicting the mass distribution in the Universe on both the largest and the smallest
scales (Springel, V. et al.,, 2005; Boylan-Kolchin et al., 2009). These simulations, however, require the
use of today’s most powerful supercomputers and have to be run for each particular choice of cosmo-
logical parameters separately, making them very costly and inflexible. Therefore, the development of
improved semi-analytical perturbation theory methods is of great interest. Currently, renormalization
group inspired approaches seem to be most promising (Crocce & Scoccimarro, 2006; Pietroni, 2008;
Anselmi et al., 2011; Anselmi & Pietroni, 2012).

2.4.3. Statistical description

Inflationary cosmology

In the previous section I have shown how fluctuations in the matter density evolve to build the cos-
mic structures observed today. In modern cosmology, the origin of the primordial inhomogeneities
is explained by the theory of inflation (see Liddle, 1999; Langlois, 2010, for detailed introductions).
Originally invented to explain the absence of magnetic monopoles, it was soon realized that an infla-
tionary epoch, i.e. an epoch of accelerated expansion, could naturally explain why the Universe is
spatially flat (the so-called flatness problem), as well as why the CMB temperature is uniform even
on scales which exceed the particle horizon at recombination (the so-called horizon problem) (Guth,
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1981). Today, the most important aspect of inflationary cosmology is its predictive power concerning
the statistical properties of the primordial inhomogeneities.

As seen in Section 2.2.1 an inflationary phase requires a form of matter with negative pressure or,
more precisely, with an equation of state w < −1/3. Due to its small energy density (cf. Table 2.1) the
cosmological constant, or more generally the dark energy component, has been unable to dominate
the cosmic evolution at early times and could therefore not drive inflation. Instead a possible and
particularly instructive scenario is given by a homogeneous scalar field (scalar condensate), the so-
called inflaton ϕ which follows slowly its potential V(ϕ). Its energy density and pressure can be
calculated to be

ρϕc2 =
1
2
ϕ̇2 + V(ϕ) and pϕ =

1
2
ϕ̇2 − V(ϕ). (2.47)

The slow-roll condition requires ϕ̇2 � V(ϕ) and therefore wϕ = pϕ/(ρϕc2) ≈ −1. Whether the slow-
roll condition is fulfilled for a given potential may be inferred from its (relative) slope and curvature,
which constitute the so-called slow-roll parameters (Liddle & Lyth, 1992)

ε ≡
1

16πG

(
V ′

V

)2

and η ≡
1

8πG

(
V ′′

V

)
, (2.48)

where V ′ ≡ dV
dϕ . Successful inflation demands that both parameters are much smaller than unity.

The smallness of the first parameter ensures that the equation of state becomes sufficiently negative,
i.e. wϕ < −1/3, while that of the second one makes the inflationary epoch last long enough. The very
same conditions apply to scalar field realizations of dark energy, i.e. quintessence models (Wetterich,
1988; Ratra & Peebles, 1988; Caldwell et al., 1998) previously mentioned in Section 2.2.1.

During the inflationary phase the Universe’s energy density is expected to be dominated by the infla-
ton, which is independent of the scale factor. Thus, the Hubble function is constant and the scale factor
growths exponentially with time (an immediate consequence of the first Friedmann equation 2.7a). It
is interesting to note that this implies that the curvature scale, i.e. c/H, is constant, while the physical
size of the causally connected region set by the particle horizon growths exponentially fast, too. That
is exactly the reason why inflation solves the flatness as well as the horizon problem.

As any quantum field, the inflaton exhibits vacuum fluctuations due to Heisenberg’s uncertainty
principle. The amplitudes of these fluctuations are only substantial on scales which are of the order
of the Planck length. In the course of inflationary expansion, however, they are stretched to galac-
tic scales, whereas their amplitudes are almost unchanged. The quantum fluctuations necessarily
introduce (primordial) perturbations in the gravitational potential which in turn are manifest in the
(initial) inhomogeneities of the matter density. The spectrum of these inhomogeneities has a nearly
universal shape and depends only weakly on the concrete inflationary model. This is due to the fact
that generically the fluctuations on a given physical scale cease evolving when the scale crosses the
curvature scale. As noticed earlier, during inflation, physical sizes grow exponentially, whereas the
curvature scale is almost constant. Consequently, the fluctuation amplitude is approximately the same
for all scales, i.e. the resulting spectrum is nearly flat. Actually, perturbations on larger scales are
slightly enhanced, allowing for a graceful exit of inflation, i.e. a smooth transition to a decelerating
Friedmann-Lemaı̂tre-Robertson-Walker universe. Reheating sets in, and the potential energy of the
inflaton is converted into a thermalized gas of matter and radiation.

Basic definitions

As described before, inflationary cosmology predicts the spectrum of the gravitational potential fluc-
tuations or likewise the density contrast. This suggests to treat them as random fields the statistical
properties of which have to reflect the cosmological principle (see Section 2.1). Thus, they have to be
statistically homogeneous and isotropic. All quantities, for example the mean or the variance, should
neither depend on position nor direction. From the statistical perspective, the observable Universe
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is just one particular realization of the initial conditions, whereas in principle any average needs to
be performed over a statistical ensemble of universes. The ensemble average, however, is equivalent
to the sample average, i.e. averaging over the volume of the whole observable Universe, as long as
ergodicity can be assumed (Adler, 1981; Marinucci & Peccati, 2010).

In the following I denote a statistically homogeneous and isotropic random field by Q(x). Further-
more, I assume that its expectation value vanishes, i.e. 〈Q(x)〉 = 0. Its spatial two-point correlation
function is then given by

ξQ(|x − y|) ≡ 〈Q(x)Q(y)〉 . (2.49)

Its dependence on the modulus of the separation ensures that neither any point nor any direction is
privileged. In case that Q(x) is a Gaussian random field all higher order correlators can be expressed
in terms of the correlation function by virtue of Wick’s theorem (see Section A.2.1). This allows to
capture deviations from Gaussianity by the connected part 〈. . .〉c of the n-point correlator. I give here
the explicit expression for n = 4 only:

〈Q(x1)Q(x2)Q(x3)Q(x4)〉c = 〈Q(x1)Q(x2)Q(x3)Q(x4)〉 −
[
〈Q(x1)Q(x2)〉 〈Q(x3)Q(x4)〉

+ 〈Q(x1)Q(x3)〉 〈Q(x2)Q(x4)〉 + 〈Q(x1)Q(x4)〉 〈Q(x2)Q(x3)〉
]
.

(2.50)

If the underlying probability distribution is skewed odd correlators may be non-vanishing.
While in observations the correlation function is direct accessible its Fourier representation proves

more convenient for theoretical considerations. The Fourier transform of the field Q(x) is defined by

Q(k) =

∫
d3x Q(x)e−ix·k ←→ Q(x) =

∫
d3k

(2π)3 Q(k)eix·k. (2.51)

The two-point statistics of the (complex) modes is described by the power spectrum PQQ(k)〈
Q(k)Q∗(k′)

〉
= (2π)3δD(k − k′)PQQ(k). (2.52)

The Dirac δ-function guarantees that different modes are statistically independent reflecting homo-
geneity, while isotropy is manifest in the directional independence of the power spectrum. The next
higher order statistics is given by the bispectrum BQQQ (k1, k2, k3)

〈Q(k1)Q(k2)Q(k3)〉 = (2π)3δD(k1 + k2 + k3)BQQQ (k1, k2, k3) , (2.53)

which vanishes identically for any symmetric probability distribution function and is therefore a pri-
mary diagnostic in the search for deviations from Gaussianity.

Matter power spectrum and transfer function

Most inflationary models predict that the initial fluctuations follow a Gaussian distribution and cur-
rent observations confirm that the amount of primordial non-Gaussianity, if present at all, is rather
small (Komatsu, E. et al., 2011). A Gaussian random process is completely characterized by its vari-
ance. Thus, in order to describe the statistics of the metric perturbations or equivalently of the density
contrast, knowledge of the power spectrum is sufficient. According to inflationary cosmology the
dimensionless spectrum of primordial fluctuations is almost flat with a small tilt towards larger scales

k3PΦΦ(k) = 2π2∆2
R

kns−1, (2.54)

where ∆2
R

is the scalar fluctuations amplitude and ns is the spectral index which is slightly smaller than
one (cf. Table 2.1). Its deviation from unity may be expressed in terms of the two slow-roll parameters
of equation (2.48) (Liddle & Lyth, 1992): ns − 1 = −6ε + 2η.
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While during the subsequent evolution of the universe the statistical properties are preserved, the
shape of the spectrum does change. The transition from the radiation dominated epoch to matter dom-
ination is captured by the transfer function T (k), whereas the time evolution during matter domination
is governed by the (linear) growth function, thus

Pδδ(k, a) = D2
+(a) T 2(k) k4PΦΦ(k) ∝ D2

+(a) T 2(k) kns . (2.55)

It is important to note that the transfer function is a function of wavenumber only, avoiding mode cou-
pling which would inevitably change the underlying probability distribution. The relation between the
primordial power spectrum of the gravitational potential and that of the density contrast has been es-
tablished via the Poisson equation (2.33c), i.e. via Pδδ(k) ∝ k4PΦΦ(k). Perturbations which reenter the
curvature scale before matter radiation equality are suppressed according to the Mészáros-mechanism
presented at the end of Section 2.4.1. Realizing that on smallest scales the growth of structures al-
most completely stops, thus k3Pδδ(k) ∼ const., one finds T (k) ∼ k−2 for k � keq. In contrast to this,
supercurvature modes evolve freely hence T (k) ∼ 1 for k � keq.

The transfer function is very well described by the fitting formula of Bardeen et al. (1986)

T (q) =
log(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.2q)2 + (5.47q)3 + (6.71q)4

]− 1
4 . (2.56)

The rescaling of the wavenumber q = k/Γ by the shape parameter

Γ = Ωmh exp
−Ωb

1 +

√
2h

Ωm

 (2.57)

accounts for the influence of the baryon density on the peak shape of the spectrum (Sugiyama, 1995).
Improved fitting formulae take additionally baryonic acoustic oscillations into account (Eisenstein &
Hu, 1998, 1999).

Inflationary cosmology predicts the shape of the spectrum but not its amplitude. This has to be
determined by observations. Commonly, the power spectrum is normalized to the variance of the
linearly evolved density field at redshift zero smoothed by a top hat filter on the scale R = 8 Mpc h−1

σ2
R =

1
2π2

∫
k2dk W2(kR) Pδδ(k). (2.58)

The Fourier transform of the top hat filter can be expressed by the first order spherical Bessel func-
tion j1(x) (Abramowitz & Stegun, 1972): W(x) = 3 j1(x)/x .

Nonlinear evolution

As the growth equation (2.36) is scale-independent, each mode of the density field evolves in the same
way. The statistical properties of the density field are unchanged. The validity of the growth equation,
however, is restricted to the linear regime. With the onset of nonlinear structure growth, density modes
cannot longer evolve independently. Mode coupling sets in and the statistics of the fluctuation field
is necessarily altered. It becomes inevitably non-Gaussian, even in case of purely Gaussian initial
metric perturbations. For a complete statistical description the power spectrum is no longer sufficient
and higher-order statistics (in principle all, i.e. infinitely many, moments [see Section A.2.2]) of the
density contrast needs to be taken into account. In particular, the probability distribution function
becomes more and more skewed due to the fact that a lower bound, namely δ ≥ −1 by definition, but
no upper bound exists.

Nonlinear evolution transfers power from large to small scales as structures collapse. Consequently,
the amplitude of the power spectrum increases on small scales at the expense of intermediate scales,
while the largest scales still follow linear evolution. Since inhomogeneous structure growth cannot be
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followed analytically (cf. Section 2.4.2) the fully nonlinear matter power spectrum has to be inferred
from numerical simulations. For most practical purposes, however, an approximation by the semi-
analytical fitting formula of Smith, R. E. et al. (2003) is sufficient. Figure 2.3 shows the linear and the
approximative nonlinear matter power spectrum for different redshifts. The cosmological parameters
are chosen according to Table 2.1. As expected, the smaller the redshift, the larger the scale being
affected by inhomogeneous structure growth.
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Figure 2.3: Linear and nonlinear matter
power spectrum for different redshifts.
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3 Chapter 3

Weak gravitational lensing

In this chapter the basic principles of weak gravitational lensing are presented. The meaning
of the term weak is twofold in this context. First, it is used in order to distinguish the effects
investigated in this work from other gravitational light deflection phenomena such as strong or
micro lensing. These phenomena are discussed in detail by Schneider et al. (2006). Second,
it emphasizes that the individual deflections, which light rays experience passing gravitational
lenses on their way from the source to the observer, are small. The sources are distant back-
ground galaxies, i.e. light emitted by baryonic matter, while the inhomogeneities in any matter
or likewise energy component of the Universe serve as gravitational lenses. These lenses are
characterized by their Newtonian gravitational potential which is assumed to be weak in the
sense that Φ � c2. Furthermore, the peculiar velocities of the lenses are supposed to be small
in comparison to the speed of light, i.e. they move slowly with respect to the mean cosmic flow.
Finally, all considerations are made under the assumption that the deflection of light by local
inhomogeneities and the effect of the homogeneous and isotropic background completely sepa-
rate. These assumptions are valid in all astrophysical applications apart from light propagation
near compact objects.
The presentation given here follows to some extent Bartelmann (2010b) and Amendola &
Tsujikawa (2010). A more detailed review of weak gravitational lensing provide Bartelmann
& Schneider (2001).

3.1. Jacobi equation

In Section 2.3.2 several distance measures have been introduced to accommodate for the effects of a
curved spacetime on the propagation of light. So far only a single light ray has been considered. Now,
I would like to extend the discussion to a thin bundle of light rays. The propagation of any of these
light rays is determined by the geodesic equation

∇k k = 0, (3.1)

i.e. the parallel transport along the light ray preserves the tangent vector

kµ =
dxµ

dλ
(3.2)

to the light ray4. Since the affine parameter λ is arbitrary, it can be chosen such that dλ = a2dη. With
this choice its projection on the four-velocity of a freely falling observer is unity, i.e. 〈k, u〉 = 1.

4Although using the same symbol, confusion with the usual gradient in three dimensions can be avoided by realizing
that the covariant derivative along a vector field X always carries that vector field as subscript, thus is indicated by ∇X ,
whereas the gradient, if at all, is labelled by a three-dimensional vector, e.g. ∇q.
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γ(σ)

k

∂σγ

fiducial
light ray

Figure 3.1.: Geodesic deviation.

Selecting a fiducial light ray of the bundle and con-
necting it to a neighbouring ray via a curve γ(σ),
the change of the connecting vector v = ∂σγ along
the fiducial light ray is quantified by the equation of
geodesic deviation or Jacobi equation

∇2
k v = R(k, v) k. (3.3)

The situation is illustrated in Figure 3.1. It is impor-
tant to note that it is the curvature of spacetime which
makes adjacent light rays approach to or recede from
another. Initially parallel light rays remain parallel
only in a flat spacetime where the Riemann tensor
R(X,Y) Z vanishes. The Jacobi equation (3.3) is the
generalization of the tidal force equation in Newto-
nian mechanics.

The bending of the light rays towards, or away from, each other will be observed on a screen
in the three-space of the observer perpendicular to the light ray, i.e. the connecting vector is two-
dimensional. Introducing the optical tidal matrix T the Jacobi equation (3.3) can be recast into

∇2
k

(
v1

v2

)
= T

(
v1

v2

)
. (3.4)

For the homogeneous and isotropic background described by the Friedmann-Lemaı̂tre-Robertson-
Walker models this equation takes a particularly simple form. If one uses the comoving radial co-
ordinate χ as the affine parameter along the fiducial ray equation (3.4) reduces to(

d2

dχ2 + K
)

vi

a
= 0, (3.5)

where K is the curvature parameter introduced in Section 2.2.

3.2. Perturbed photon propagation

Given an expression for the background contribution to the optical tidal matrix it now needs to be
extended by the contributions of matter and energy inhomogeneities. In Section 2.4 perturbations of
the homogeneous and isotropic background have been treated in Newtonian theory. This approach
is naturally limited to subcurvature scales and non-relativistic matter. Accordingly, light propagation
necessarily has to be considered in the framework of General Relativity. In General Relativity, how-
ever, there is no preferred coordinate system and the freedom of coordinate transformations, or more
precisely gauge freedom, may lead to fictitious, i.e. unphysical, perturbations resulting from the partic-
ular choice of coordinate system. Therefore, any observable needs to be expressed by gauge-invariant
quantities.

I only consider scalar perturbations and invoke longitudinal or conformal Newtonian gauge in terms
of which the perturbed metric can be written as

ds2 = −a2(η)
[
c2

(
1 −

2ΦN

c2

)
dη2 −

(
1 −

2ΨN

c2

)
γ̂i jdxidx j

]
(3.6)

with
γ̂i jdxidx j = dχ2 + χ2

(
dθ2 + sin2 θ dφ2

)
. (3.7)
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The two Bardeen potentials ΦN and ΨN are a generalization of the Newtonian gravitational potential.
In the following I assume that there are no anisotropic stresses present, hence ΦN = −ΨN, and iden-
tify Φ ≡ ΦN. The restriction to a spatially flat metric is appropriate since the spatial extent of the
perturbation deflecting the light ray is much smaller than the curvature scale.

One common approach to analyse the propagation of light in the perturbed metric given by the line
element of equation (3.6) is to split all quantities involved in an unperturbed background part, plus a
perturbation. The latter is assumed to be small due to the assumptions made at the beginning of this
chapter. Thus, only terms which are first order in the Newtonian gravitational potential will be kept.
The light ray is then characterized by kµ = k̂µ + δkµ and the coordinate representation of the geodesic
equation (3.1) reads

d
dλ

kµ +
(
Γ̂
µ
αβ + δΓ

µ
αβ

)
kαkβ = 0. (3.8)

The explicit form of the Christoffel symbols Γ̂
µ
αβ, δΓ

µ
αβ is given in Appendix A.1.1. The deflection of

the light ray in the two directions x1,2 perpendicular to the propagation direction x3 = χ is given by
the spatial part of the perturbed geodesic equation (3.8)

d2xi

dλ2 + 2aH(a)
dη
dλ

dxi

dλ
= −2

(
dη
dλ

)2
∂Φ

∂xi . (3.9)

Using that
d2xi

dλ2 =
c2

a4

d2xi

dχ2 − 2aH(a)
dη
dλ

dxi

dλ
(3.10)

and keeping in mind that a2dη = dλ equation (3.9) can be brought into a form similar to that of
equation (3.5)

d2xi

dχ2 = −
2
c2

∂Φ

∂xi . (3.11)

This equation describes the transverse displacement of a light ray in the vicinity of a local inhomo-
geneity. Cosmic lensing is then the combination of both, the distortions by localized lenses and the
bending of light due to the curvature of the homogeneous and isotropic background (described by
equation 3.5) (

d2

dχ2 + K
)

xi = −
2
c2

∂Φ

∂xi . (3.12)

Specifying appropriate boundary conditions the differential equation for the (comoving) bundle
dimension (3.12) can be solved by the method of Green’s functions. Since the observer located at the
origin of the coordinate frame receives adjacent light rays enclosing an angle θ = (θ1, θ2) the boundary
conditions read

xi
∣∣∣
χ=0 = 0 and

dxi

dχ

∣∣∣∣∣∣
χ=0

= θi. (3.13)

By coincidence the Green’s function of the operator d2

dχ2 + K is identical to the comoving angular
diameter distance fK(χ) defined in equation (2.4)

G(χ, χ′) = fK(χ) ΘH(χ − χ′) with ΘH
(
χ − χ′

)
=

1 if χ > χ′,
0 else.

(3.14)

Thus, the solution of equation (3.12) is given by

xi(χ) = fK(χ) θi −
2
c2

∫ χ

0
dχ′ fK

(
χ − χ′

) ∂

∂xi Φ
(
x j(χ′), χ′

)
. (3.15)

In principle, this integral needs to be evaluated along the actual trajectory of the photon. But since the
deflections are supposed to be small in accordance with the assumption that the Newtonian potential is
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weak, i.e. Φ � c2, it is justified to invoke the Born approximation: the actual transverse separation of
neighbouring light rays may be well approximated by their intrinsic separation, i.e. x j(χ′)→ fK(χ′) θ j.
The validity of the Born approximation has been confirmed by numerical simulations (Dodelson et al.,
2005; Hilbert et al., 2009) and perturbative calculations (Cooray & Hu, 2002; Krause & Hirata, 2010;
Schäfer et al., 2012).

In order to describe the typical situation in observations it is more convenient to work in terms of
(separation) angles. As long as the curvature of the celestial sphere does not explicitly have to be
taken into account, these angular coordinates can be described by two-dimensional Cartesian vectors
and the corresponding derivatives are usual partial derivatives. Later on, in Chapter 5, more elaborate
techniques will be presented which go beyond the flat-sky approximation. There the partial derivatives
have to be replaced by covariant derivatives on the unit sphere. Introducing the angle β via xi =

fK(χs)βi, where χs denotes the radial position of a source, equation (3.15) can be brought into the
form of the lens equation

β = θ −α(θ). (3.16)

The (reduced) deflection angle α is obtained as angular gradient of the lensing potential φ(θ), which
emerges as the line-of-sight projection of the Newtonian gravitational potential

αi(θ) =
∂

∂θiφ(θ) ≡
∂

∂θi

2
c2

∫ χs

0
dχ′

fK (χs − χ
′)

fK(χs) fK(χ′)
Φ

(
fK(χ′) θ j, χ′

)
. (3.17)

Light rays originally emitted at β are detected at the lensed position θ. Consequently, gravitational
lensing alters the observed shape of galaxies. In a locally linearized form, which is permissible due
to the smallness of the individual deflection, this effect is captured by the Jacobian of the lens map-
ping (3.16)

A =
∂β

∂θ
=

(
1 − κ − γ+ −γ×
−γ× 1 − κ + γ+

)
= (1 − κ)

(
1 − g+ −g×
−g× 1 + g+

)
. (3.18)

In terms of the lensing potential the individual contributions read

κ =
1
2

(
∂2φ

∂(θ1)2 +
∂2φ

∂(θ2)2

)
, γ+ =

1
2

(
∂2φ

∂(θ1)2 −
∂2φ

∂(θ2)2

)
and γ× =

∂2φ

∂θ1∂θ2 . (3.19)

γ+

γ×

κ

< 0 > 0

Figure 3.2.: Illustration of the distortion caused by the
convergence and the two shear components, respec-
tively. The source is indicated by the shaded circle.

The convergence κ describes the isotropic
change in size of the image, while the two shear
components γ+ and γ× encode the deformation
of the source galaxy. The γ+ component de-
scribes the stretching in the x1-x2 directions. The
stretching along axes rotated by 45◦ is given by
γ×. This is illustrated in Figure 3.2. Rotations of
the image may not be generated in this linearized
treatment.

The last equality in equation (3.18) shows that
the convergence and the two shear components
are not observable independently. The prefac-
tor 1 − κ causes a homogeneous distortion of the
source which is unobservable because the intrin-
sic size of the source is unknown. Thus, the com-
ponents of the reduced shear g+,× = γ+,×/(1− κ)
are the primary observable in weak lensing anal-
yses. This will be discussed in more detail in
Chapter 5.

It should be emphasized that all observable
quantities are second derivatives of the lensing
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potential. The choice of reference light ray with respect to which the transverse distortion within
a light bundle is computed is ambiguous, leaving absolute deflection angles unobservable. Only
their differences or derivatives are measurable. This gives rise to extend the analysis to third order
derivatives of the lensing potential, which are combined to the first and second flexion, respectively
(Goldberg & Bacon, 2005; Bacon et al., 2006). Gravitational flexion will not be considered in this
work.

3.3. Weak lensing power spectra

In contrast to strong lensing phenomena, where, for example, a single galaxy is multiply imaged, the
effect of weak gravitational lensing is only statistically observable. It is a reasonable assumption that
the convergence, as well as the two shear components, vanish on average because, according to the
cosmological principle (see Section 2.1), there must not be any preferred deflection angle. But due
to the fact that light rays are deflected by the coherent large-scale structure of the Universe the two-
point statistics of these fields are expected to reflect the statistical properties of the underlying cosmic
density field described in Section 2.4.3.

In equation (3.17) the deflection angle is given for one particular source located at a certain (co-
moving) radial distance χs. For a realistic survey the whole population of lensed sources along the
line-of-sight needs to be taken into account. Since the deflection angle or likewise the lensing poten-
tial has been derived in linear theory all individual contributions can be simply summed up using the
number density of sources n(χs) dχs. Introducing the weight function G(χ)

G(χ) =

∫ ∞

χ
dχs

fK(χs − χ)
fK(χs)

fK(χ) n(χs) (3.20)

the expressions for the convergence and the two shear components read

κ

γ+

γ×

 =
2
c2

∫ ∞

0
dχG(χ) D◦,+,×Φ

(
x j(χ), χ

)
with D◦,+,× =


1
2

(
∂2

∂(x1)2 + ∂2

∂(x2)2

)
, ◦

1
2

(
∂2

∂(x1)2 −
∂2

∂(x2)2

)
, +

∂2

∂x1∂x2 , ×.

(3.21)

Here the angular derivatives have been reformulated in terms of (comoving) Cartesian coordinates to
facilitate the use of the Fourier representation of the gravitational potential in the following. In partic-
ular, the power spectra of the various lensing observables should be related to that of the Newtonian
potential. While the convergence is a true scalar the two shear fields are not. They are the components
of a symmetric trace-free rank-2 tensor defined on the unit sphere instead. This will be discussed in
Chapter 5. Therefore, it is more convenient to express these two degrees of freedom by scalar quanti-
ties, the so-called E- and B-mode (Stebbins, 1996; Kamionkowski et al., 1997). The latter is actually
a pseudo scalar, i.e. it changes sign under parity transformations. They are obtained from the shear
components via differentiation

D◦

(
E
B

)
=

(
D+ D×
D× −D+

) (
γ+

γ×

)
. (3.22)

A detailed discussion of the complex shear γ = γ+ + iγ× and the corresponding E/B-mode decompo-
sition is also provided in Chapter 5.

In order to compute the (angular) power spectra of the four lensing quantities, κ, |γ| and E/B-mode,
the Fourier space version of Limber projection is invoked (Limber, 1953). Starting with the line-
of-sight projection q of a three-dimensional fluctuation field Q weighted by an appropriate function
w

q(θ) =

∫ ∞

0
dχw(χ) Q ( fK(χ)θ, χ) (3.23)
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the (angular) power spectrum of q is given by

Cqq
`

=

∫ ∞

0

dχ
χ2 w2(χ) PQQ(`/χ). (3.24)

It turns out that in case of lensing Pκκ = PEE = P|γ||γ|, whereas the B-mode vanishes identically. This
can be seen most easily by reformulating equation (3.22) in Fourier space, where

D◦,+,× =


− 1

2

(
k2

1 + k2
2

)
, ◦

− 1
2

(
k2

1 − k2
2

)
, +

−k1k2, ×

, (3.25)

thus

D◦

(
E
B

)
=

(
D+ D×
D× −D+

) (
γ+

γ×

)
=

2
c2

∫ ∞

0
dχG(χ)

(
D+ D×
D× −D+

) (
D+

D×

)
Φ = D◦

(
κ

0

)
. (3.26)

For the last equality I used the fact that D2
+ + D2

× = D2
◦, which at the same time shows that indeed

Pκκ = P|γ||γ|. For completeness it should be mentioned that there are small corrections to the relation
between the shear and the convergence due to the peculiar motion of galaxies (Bonvin, 2008), but
these corrections are unimportant in the context of this work. Finally, the angular power spectrum of
the convergence is found by noting that the two-dimensional Laplacian 2D◦ can be safely replaced
by the three-dimensional one because derivatives of the potential along the light path average to zero
(White & Hu, 2000). The three-dimensional Laplacian of the potential may then be substituted by the
density contrast according to the Poisson equation (2.33c), i.e. Pκκ ∼ k4PΦΦ ∼ Pδδ. This allows to
bring the convergence angular power spectrum into its final form

Cκκ
` =

∫ ∞

0

dχ
χ2 W2

κ (χ) Pδδ(`/χ, χ), (3.27)

with the lensing efficiency function

Wκ(χ) =
3H2

0Ωm

2c2

G(χ)
a

. (3.28)

The distribution of lensed background galaxies entering the lensing efficiency function via the weight
function G defined in equation (3.20) is usually parametrized in redshift space. A commonly adapted
parametrization is given by

p(z)dz = p0

(
z
z0

)2

exp

− (
z
z0

)β dz with
1
p0

=
z0

β
Γ

(
3
β

)
. (3.29)

The conversion to the distribution in terms of the comoving radial distribution is established via
p(z)dz = n(χ)dχ, i.e. n(χ) = p(z) dz

dχ =
p(z)
H(z) .

In Figure 3.3 the convergence power spectrum for a shallow (β = 3/2, z0 = 0.21) and a deep
(β = 3/2, z0 = 0.64) redshift survey, respectively, is plotted. The underlying cosmology is that
of Table 2.1. In addition, the power enhancement on small scales resulting from the usage of the
nonlinear matter power spectrum in equation (3.27) is shown.
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3.3. WEAK LENSING POWER SPECTRA

Figure 3.3: Convergence angular power spec-
trum for a shallow and a deep redshift survey,
respectively. The contributions from nonlin-
ear structure growth are also shown.
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4 Chapter 4

Galactic angular momenta and angular
momentum couplings in the large-scale
structure

This chapter reconsiders the one- and two-point distribution functions of angular momenta in
the large-scale structure. The angular momentum acquisition is described in the framework of
linear tidal torque theory. This allows to model the galactic angular momentum vector by a set
of 12 Gaussian random variates, the covariance of which is expressed in terms of the spectral
moments of the linearly evolved matter power spectrum. The two-point correlation function
is then obtained from the 24-dimensional joint probability distribution function. The one- and
two-point distribution functions are subjected to appropriate peak constraints, accounting for
the fact that haloes form at maxima in the cosmic density field. The numerical evaluation of the
resulting discrete random process is accomplished by a suitable sampling scheme especially
adapted to the very high dimensionality of this problem. With this the anticipated scaling of
the specific angular momentum with halo mass, namely L ∝ M2/3, is confirmed. Furthermore,
I find that the correlation length between the angular momenta of two Milky Way-sized haloes
is approximately r0 ∼ 1 Mpc h−1, whereas their correlation function is well described by the
empirically fitting formula CL(r) ∝ exp

[
− (r/r0)3/2

]
.

The contents of this chapter have been published in Schäfer & Merkel (2012).

4.1. Introduction

More than 50 years ago Hoyle (1949) and Sciama (1955) proposed that galactic angular momenta
emerge from tidal interactions between the host halo and the ambient cosmic matter field. This has
stimulated the development of tidal torque theory (Doroshkevich, 1970; Heavens & Peacock, 1988;
Catelan & Theuns, 1996a,b; Lee & Pen, 2000; Lee, 2006; Lee & Park, 2006, see Schäfer, 2009 for a
recent review), the basic mechanism of which has nowadays been confirmed by a number of N-body
simulations (White, 1984; Sugerman et al., 2000; Catelan et al., 2001; Porciani et al., 2002b,a; Hahn
et al., 2007, 2010). As a result of the shearing process the spin vectors are orientated along the tidal
field, which has important observational consequences. Specifically, the alignment of galactic angular
momenta introduces alignments in the intrinsic ellipticities of adjacent galaxies (Catelan & Porciani,
2001; Jing, 2002). These intrinsic ellipticity alignments are one of the most important systematics in
weak lensing measurements which will be discussed in Chapters 5 and 6. Moreover, aligned angular
momenta even affect galaxy surveys as they provoke correlated inclination angles of galactic discs
which give rise to selection effects (Krause & Hirata, 2011).

This chapter aims at a statistical description of galactic angular momenta derived in the framework
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CHAPTER 4. GALACTIC ANGULAR MOMENTUM COUPLINGS

of tidal torque theory. I am particularly interested in their two-point correlation function. The follow-
ing analysis contents itself with linear theory, where the statistics of the cosmic density (contrast) is
Gaussian. This is one of the key assumptions which makes a completely analytical treatment feasible.
Relating the statistics of the angular momentum field to the initial conditions of the large-scale struc-
ture renders my approach insensitive to the protohalo’s peculiar motion. It typically shifts the object
by about one correlation length of the density field, distorting the angular momentum distribution as
well as its correlation properties. Porciani et al. (2002a) and Lee & Pen (2008) show that nonlinear
clustering is able to enhance the correlation length in the angular momentum field considerably in
comparison to the linear evolution of stationary haloes. In addition, Catelan & Theuns (1996b, 1997)
find that higher-order corrections to Lagrangian perturbation theory increase the angular momentum
variance by approximately 30 per cent. All these nonlinear effects do not enter my approach.

Furthermore, there are a number of effects concerning the formation history of a halo which are not
accessible to an analytical treatment but need to be addressed by numerical simulations. These are, for
instance, dissipative processes and tidal interactions between neighbouring haloes (Sugerman et al.,
2000; Song & Lee, 2012) on the one hand and halo mergers and matter accretion on the other hand
(Peirani et al., 2004). I neglect these effects in favour of a purely analytical description.

There are two more simplifications which have to be made concerning the protohalo’s shape and
the tidal field acting on it. Although it is known that the collapse dynamics is determined by the
protohalo’s gravity in combination with the tidal forces of the ambient matter (Desjacques, 2008),
I follow standard tidal torque theory where the triaxial shape of the protohalo is kept fixed as tidal
shearing is neglected in its eigenframe (Bond & Myers, 1996a,b,c). According to Ludlow & Porciani
(2011a), however, the halo triaxiality is largely attributed to the deformation by tidal forces and it
may be inadequate to describe the boundary of the object by an isocontour in the initial density field.
Another aspect which points at a certain inflexibility inherent to the model for angular momentum
acquisition used in this work is that it keeps the shear field constant within the entire protohalo. It is
approximated by its value at the protohalo’s centre, i.e. at the location of the corresponding peak in
the density field. This simplification mainly affects the magnitude of the angular momentum (being
underestimated), but not its orientation.

Despite these limiting assumptions I am convinced that my approach helps to improve previous
studies. In particular, I aim at an improvement of the following aspects.

(i) The angular momentum distribution functions employed in this work explicitly account for the
fact that galaxies form at peaks in the cosmic density field. They are consistently derived from
a discrete (Gaussian) random process, abandoning a continuous formulation. This ensures the
correct statistical weighting of specific peak shapes. There are some objections concerning the
one-to-one correspondence between the maxima of a suitably smoothed density field and the
actual halo forming regions. Porciani et al. (2002b) point out that only about 40 per cent of the
protohaloes in numerical simulations emerge from primordial peaks. This is contrasted by the
findings of Ludlow & Porciani (2011b) who report that nearly 70 per cent of all haloes in their
simulations arise in the vicinity of density peaks. Nonetheless, there remains a considerable
fraction of haloes which do not belong to a peak region and the statistical properties of which
may differ substantially. By construction, my ansatz for the angular momentum correlation
function cannot accommodate for this fraction.

(ii) I treat the protohalo’s inertia on an equal footing with the tidal shear field, which makes a dis-
crimination with respect to differences in the correlation lengths of these two quantities unnec-
essary. Thus, my ansatz for the two-point correlation function is not confined to regions beyond
the short-ranged correlations in the peak shapes but is valid for all, even smallest, separations.

(iii) In order to be able to distinguish between the parallel and antiparallel orientation of the spin
axes, the correlation function must be more flexible than being purely quadratic in the angu-
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lar momenta. I accomplish this via a suitable antisymmetrization of the correlation function
yielding negative values in case of antiparallel orientated, i.e. anti-correlated, spins.

(iv) Another important improvement is that this antisymmetrization avoids any phenomenological
parametrization of the average misalignment between the eigenframe of the inertia tensor and
that of the tidal field (Lee & Pen, 2000; Crittenden et al., 2001). Configurations in which both
eigenframes coincide give no rise to angular momentum acquisition in the framework of tidal
torque theory. The antisymmetric form of the two-point correlation function automatically re-
jects such (unphysical) configurations right from the start and associates the appropriate statis-
tical weight to each physical configuration individually.

This chapter has the following structure: Section 4.2 lays down the formalism. After a short review
of tidal torque theory the peak-restricted Gaussian model used for describing the one- and two-point
statistics of galactic angular momenta is introduced. In addition, the influence of dark energy on their
time evolution is addressed. Section 4.3 is then devoted to the numerical evaluation of the expressions
for the angular momentum variance and the two-point correlation function. The integration scheme
employed is explained in detail and several tests of its accuracy and reliability are presented. The main
results of this chapter are finally summarized in Section 4.4.

Throughout this chapter I choose a spatially flat ΛCDM cosmology as reference model. The relevant
parameters describing its matter content are Ωm = 0.25, including the baryon fraction Ωb = 0.04,
and ΩΛ = 0.75. The adiabatic initial perturbations in the cold dark matter distribution are assumed
to be Gaussian and are characterized by ns = 1 and σ8 = 0.9. For today’s value of the Hubble rate I
set H0 = 100 h km s−1 Mpc−1 with h = 0.72. The influence of dark energy on the spin-up of haloes
will be discussed in Section 4.2 in comparison to the time evolution in an Einstein-de Sitter universe
(SCDM), where Ωm = 1 and the dark energy density vanishes.

4.2. Formalism

In this section the two-point correlation function of angular momenta in the cosmic large-scale struc-
ture is derived. This involves several rather technical steps which are now briefly outlined in order
to make the line of argument more readily accessible to the reader. Section 4.2.1 starts with the de-
scription of angular momentum acquisition in the framework of tidal torque theory. Having derived
an expression for the angular momentum vector in terms of the inertia tensor and the tidal field, its
(Gaussian) statistics is addressed next (Section 4.2.2). In the subsequent section the covariance ma-
trices entering the one- and two-point distribution functions are computed in an appropriately chosen
coordinate frame. The entries of these covariance matrices are then illustrated in Section 4.2.4. In a
last step the constraints accounting for the confinement of angular momentum build-up to peak regions
are specified and imposed (Section 4.2.5). I conclude with some comments on the functional form of
the angular momentum correlation function in Section 4.2.6.

4.2.1. Acquisition of angular momentum by tidal shearing

In the framework of tidal torque theory the angular momentum of galaxies results from tidal interac-
tions between the protogalactic region and the ambient matter distribution prior to collapse (Doroshke-
vich, 1970; White, 1984). Generally, the mechanical angular momentum of an object with continuous
mass distribution ρ(r, t) is given by

L(t) =

∫
V

d3r (r − r̄) × υ(r, t)ρ(r, t), (4.1)

where υ(r, t) denotes the (rotational) velocity of the corresponding mass element. The integration
ranges over the physical extent V of the rotating object. In this description the body’s centre of
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gravity r̄ serves as reference point. The shape of the rotating object is crucial for the actual angular
momentum acquisition rate. Assuming a matter dominated universe, spherical objects acquire their
angular momentum from convective matter streams onto the boundary surface (Peebles, 1969). This
is only a second order effect, whereas the angular momentum of less regularly shaped objects, e.g.
ellipsoids, growths at first order and linearly with time.

So far, there are two dynamical fields involved the density ρ and the (rotational) velocity υ. For
further progress I approximate the density inside the protogalactic region by the (spatially constant)
average density ρ̄ ≡ Ωmρcrit and invoke a description in Lagrangian perturbation theory in accordance
with White (1984), Catelan & Theuns (1996a) and Crittenden et al. (2001). The (leading order)
expression of the angular momentum vector then reads

L = ρ̄a5
∫

VL

d3q (x − x̄) × ẋ ' ρ̄a5
∫

VL

d3q (q − q̄) × ẋ. (4.2)

The rotating object is confined to the comoving, i.e. Lagrangian, volume VL. The comoving particle
velocity ẋ may be derived from the Zel’dovich relation (2.41) via differentiation with respect to the
time variable

x(q, t) = q − D+(t)∇Ψ0(q) −→ ẋ ≡
∂x
∂t

= −
∂D+

∂t
∇Ψ0. (4.3)

Since the time evolution of the Zel’dovich potential is independent of its spatial dependence I set Ψ ≡

Ψ0 for the remainder of this chapter.
In order to separate the translation of the protogalactic object as a whole from the differential ad-

vection velocities responsible for rotation I perform a second order Taylor expansion of the velocity
term, i.e. I set

∂iΨ(q) ' ∂iΨ
∣∣∣
q̄ +

∑
j

(q − q̄) jΨi j, (4.4)

where I abbreviate ∂i ≡
∂

∂xi from now on. In the following the constant shift in position ∂iΨ|q̄ will
be neglected. Terms higher than second order are not expected to significantly contribute because
the gradient of the Zel’dovich potential is only slowly varying across the region of interest. The
expansion coefficients Ψi j ≡ ∂i∂ jΨ may be identified with the tidal shear field (evaluated at the centre
of gravity q̄) due to the fact that the Zel’dovich potential follows from the density contrast in the very
same way as the gravitational potential; in both cases the relation is established by a Poisson-like
equation (cf. equation 2.33c and Section 2.4.2).

As an important intermediate result the angular momentum vector can now be reformulated in terms
of the shear field Ψi j and the protogalactic object’s inertia Ii j

Li = a2Ḋ+εi jkI jlΨlk = a3H(a)
dD+

da
εi jkI jlΨlk. (4.5)

To get the second equality the entire time dependence was expressed in terms of the scale factor. The
inertia tensor is computed from the second moments of the mass distribution

Ii j = ρ̄a3
∫

VL

d3q (q − q̄)i(q − q̄) j. (4.6)

The time evolution of the angular momentum is captured by q(a) = a3H(a)dD+/da. In an Einstein-
de Sitter universe the Hubble function is given by H(a) = H0 a−3/2 (cf. equation 2.14), while the
growth function coincides with the scale factor, i.e D+(a) = a (see Section 2.4.1). Putting things to-
gether one obtains qSCDM(a) = H0 a3/2. This can be compared to the time evolution in dark energy cos-
mologies. The function qDE(a) can be computed by numerically solving the growth equation (2.36) for
the derivative of the growth function. For the dark energy equation of state the parametrization (2.15)
is used.
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Figure 4.1 shows the ratio Q(a) ≡ qDE(a)/qSCDM(a). One immediately recognizes that the spin-up
of haloes is considerably slower in the presence of dark energy. Furthermore, it turns out that the time
evolution is quite sensitive to its particular realization. The influence of a cosmological constant and
of classical quintessence, w0 = −2

3 , is rather similar, while the behaviour for a time varying equation
of state is qualitatively different.

Figure 4.1: The influence of the dark en-
ergy model on the time evolution of galac-
tic angular momenta.
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4.2.2. Gaussian model of the angular momentum correlations

Having expressed the galactic angular momentum vector in terms of the tidal shear field and the tensor
of inertia the next aim is its statistical description. It proves most convenient that both constituents can
directly be related to the cosmic density field. The statistics of the latter is well understood in linear
theory where it follows a Gaussian distribution. For this reason I restrict my analysis entirely to the
linear regime although several extensions to tidal torque theory exist. They comprise contributions
from second order perturbation theory (Catelan & Theuns, 1996b), as well as effects of non-Gaussian
initial conditions (Catelan & Theuns, 1997).

The relation between the tidal shear tensor and the density contrast is straightforward due to the
aforementioned Poissonian relation. In case of the tensor of inertia one has to make some further
assumptions regarding the shape of the protogalactic region. In favour of an analytical treatment the
highly idealized form of an ellipsoid is chosen. The expression for the corresponding density profile
becomes particularly simple in the eigenframe of the so-called mass tensor. It is constituted by the
negative second derivatives of the density contrast, i.e. δi j ≡ −∂i∂ jδ. Since the protogalactic object Γ

under consideration forms at a peak in the density field, the first derivatives of the latter vanish and it
may be well approximated by

δ(x) = δ(xp) −
1
2

∑
i=1

δ̃i(x − xp)2
i , (4.7)

where the δ̃i denote the eigenvalues of the mass tensor evaluated at the peak location xp (Catelan &
Theuns, 1996a). The boundary ∂Γ of the peak region is defined by the condition that the surrounding
matter distribution drops to zero, hence δ|∂Γ = 0. This yields an ellipsoid equation

∂Γ :
∑
i=1

δ̃i(x − xp)2
i = 2δ(xp), (4.8)

from which one readily infers its semi-axes

Ai =

√
2νσ0δ̃

−1
i . (4.9)
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Here, the peak height has been expressed in units of the variance of the density field σ0 (see equa-
tion 4.19), i.e. δ(xp) = νσ0. In terms of the semi-axes the volume of the protohalo is given by

VΓ =
4π
3

A1A2A3, (4.10)

which allows to estimate its mass to be MΓ = ρmVΓ. Finally, the integration of equation (4.6) can be
carried out in order to obtain the inertia tensor. It is obviously diagonal in the mass tensor eigenframe
and reads

Ii j =
MΓ

5
diag

(
A2

2 + A2
3, A

2
1 + A2

3, A
2
1 + A2

2

)
. (4.11)

This constitutes the desired relation between the protogalactic object’s tensor of inertia and the cosmic
density field and derivatives thereof, respectively. Before I go on I would like to emphasize the in-
volved structure of this relation: the tensor of inertia is linked to the second derivatives of the density
contrast via the (inverse) eigenvalues of the mass tensor. This contrasts with the simple Poissonian
relation for the shear field.

Now the statistical description of galactic angular momenta can be further developed. In total, there
are 15 random variates that need to be considered: the first and second derivatives of the density field
as well as the shear tensor. Since second derivatives are interchangeable both the mass and the shear
tensor contribute six instead of nine degrees of freedom. All 15 variates are linked to the density
contrast which becomes most evident in Fourier space

δ(x) =

∫
d3k

(2π)3 δ(k)eik·x, (4.12)

δi(x) ≡ ∂iδ(x) = i
∫

d3k
(2π)3 kiδ(k)eik·x, (4.13)

δi j(x) ≡ −∂i∂ jδ(x) =

∫
d3k

(2π)3 kik jδ(k)eik·x, (4.14)

Ψi j(x) ≡ ∂i∂ jΨ(x) =

∫
d3k

(2π)3

kik j

k2 δ(k)eik·x. (4.15)

It is important to note that despite the fact that all dynamical quantities are related to the cosmic density
field the density field itself does not enter because it is fully degenerate with the trace of the shear field,
i.e. tr (Ψi j) = ∆Ψ = δ. This is an immediate consequence of applying the Zel’dovich approximation
(cf. Section 2.4.2) and is nicely demonstrated by equations (4.12) and (4.15). The density contrast is
thus treated as a derived quantity in my analysis. In contrast to the entries of the tidal shear matrix
it represents no degree of freedom. They all need to be considered because the tidal shear matrix
enters the expression for the angular momentum (4.5) as a whole. Once the components of the shear
field are given, the density contrast follows from its trace unambiguously. Comparing equation (4.14)
to equation (4.15) one immediately realizes that correlations in the peak shapes, and therefore in the
inertia, are short-ranged with respect to those in the tidal field.

Since I am working in linear theory the statistics of the density contrast and its derivatives is Gaus-
sian. Accordingly, the angular momentum distribution follows a 15-dimensional multivariate Gaussian
probability density function (Bardeen et al., 1986)

p(υ)dυ =
1

(2π)15/2
√

det V
exp

(
−

1
2
υ>V−1υ

)
dυ, (4.16)

where the vector υ comprises the 15 individual random variates collected in equations (4.13)-(4.15).
Their covariance matrix Vi j = 〈υiυ

∗
j〉, (i, j = 1, . . . , 15) will be expressed in terms of the linear matter

power spectrum in the subsequent section. Aiming at the two-point correlation function of galac-
tic angular momenta the probability density function (4.16) is extended by the corresponding set of
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variables υ′, which describe a second peak in the large-scale structure. The joint set of random vari-
ables containing both peaks under consideration is denoted by w = (υ,υ′) and the 30-dimensional
probability density function takes on the familiar form

p(w)dw =
1

(2π)15
√

det W
exp

(
−

1
2

w>W−1w
)

dw. (4.17)

As before, the covariance matrix is given in terms of the outer product Wi j = 〈wiw∗j〉, (i, j = 1, . . . , 30).

4.2.3. Computation of the covariance matrices

In this section I compute the covariance matrices entering the angular momentum probability density
functions (4.16) and (4.17), respectively. Regos & Szalay (1995) and Heavens & Sheth (1999) pointed
out that the computation is most readily carried out in spherical coordinates assuming that the two
peaks under consideration are located symmetrically along the z-axis. Hence, their positions, separated
by a distance r, read x = (0, 0, r/2) and x′ = (0, 0,−r/2), respectively. In order to take full advantage of
this special choice of coordinate system one additionally introduces the following set of dimensionless
complex variables

yn
`m(x) =

√
4π

i`+2n

σ`+2n

∫
d3k

(2π)3 k`+2nδ(k)Y`m(n̂k) eik·x. (4.18)

Appropriate combinations of these variables then reveal the desired correlations between the various
derivatives of the density field as demonstrated below. The weighted moments of the linear matter
power spectrum Pδδ(k) entering equation (4.18) are defined by

σ2
j =

1
2π2

∫
dk k2 j+2Pδδ(k). (4.19)

An adequate smoothing of equation (4.19) on large wavenumbers allows to select objects of a certain
mass scale. The diameter R of the isotropic filter function S R(k) corresponds to the size of the objects
at the onset of collapse which in turn is related to their mass via M = 4π/3ρmR3. In this work a
Gaussian filter function is applied, thus

Pδδ(k) −→ Pδδ(k)S 2
R(k) with S R(k) = exp(−k2R2/2). (4.20)

In the following the correspondence between the physical quantities and the yn
`m-moments is gathered,

starting with the scalar density field δ(x):

σ0y0
00(x) = δ(x). (4.21)

For the density gradient δi(x) one has

σ1y0
10(x) =

√
3 δ3(x), (4.22a)

σ1y0
11(x) = −

√
3
2

[δ1(x) + iδ2(x)] , (4.22b)

while for the mass tensor δi j(x) one finds

σ2y0
20(x) = −

√
5
4

[δ11(x) + δ22(x) − 2δ33(x)] , (4.23a)

σ2y0
21(x) = −

√
15
2

[δ13(x) + iδ23(x)] , (4.23b)

σ2y0
22(x) =

√
15
8

[δ11(x) − δ22(x) + 2iδ12(x)] , (4.23c)

σ2y1
00(x) = δ11(x) + δ22(x) + δ33(x). (4.23d)
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In case of the components of the tidal shear tensor one proceeds in complete analogy. It turns out that
they merely differ by a factor of σ2/σ0 and that the n-index of the corresponding yn

`m-coefficients is
lowered by one, underlining the enhanced correlation length of the tidal field with respect to the mass
tensor. The explicit form of the coefficients reads

σ0y−1
20 (x) = −

√
5
4

[Ψ11(x) + Ψ22(x) − 2Ψ33(x)] , (4.24a)

σ0y−1
21 (x) = −

√
15
2

[Ψ13(x) + iΨ23(x)] , (4.24b)

σ0y−1
22 (x) =

√
15
8

[Ψ11(x) − Ψ22(x) + 2iΨ12(x)] , (4.24c)

σ0y0
00(x) = Ψ11(x) + Ψ22(x) + Ψ33(x). (4.24d)

Equations (4.21) and (4.24d) once more demonstrate the complete degeneracy between the density
contrast and the trace of the shear field. The entire set of yn

`m(x)-coefficients may be grouped to a
vector y(x). The transition from the physical quantities compiled in the vector υ to the vector y is
accomplished by a linear unitary transformation R. The explicit expression for this matrix can readily
be inferred from the relations given above. Having the transformation R at hand, including a second
peak characterized by the vector y′ ≡ y(x′) is then straightforward. The corresponding transformation
matrix S, mediating between the two vectors (y, y′) and w, simply reads

S =

(
R 0
0 R

)
. (4.25)

Having once computed the covariance matrix in the yn
`m-basis inversion of this matrix allows to trans-

form the result back to the physical frame. The explicit computation of the covariance matrix will be
addressed in the following section. Formally, it is defined as the expectation value

Yi j ≡
〈
(y, y′)i(y, y′)∗j

〉
. (4.26)

By construction it can be decomposed into two 15×15 submatrices: the auto-correlation matrix A and
the cross-correlation matrix C = C(r). In terms of these two matrices the full covariance matrix takes
the following form

Y =

(
A C
C+ A

)
, (4.27)

where C+ denotes the Hermitian conjugate of the cross-correlation. In the following it is sufficient
to focus on the matrix C because the auto-correlation matrix is then obtained from evaluating the
cross-correlation at zero lag.

4.2.4. Shape of the covariance matrices

Employing the yn
`m-basis, the entries of the covariance matrix of two spinning objects separated by a

distance r are obtained from the expectation value

C(r) = Cnn′
``′mm′(r) =

〈
yn
`m(x)yn′∗

`′m′(x + r)
〉
. (4.28)

Since the underlying fluctuation field, i.e. the matter density contrast, is (statistically) homogeneous
and isotropic, the covariance matrix is only a function of the modulus r of the separation vector.
Inserting the explicit expressions from equation (4.18) and carrying out the average one k-integration
trivializes and one gets

Cnn′
``′mm′(r) =

(−1)n−n′

σ`+2nσ`′+2n′
i`−`

′

∫
d3k
2π2 Pδδ(k) k`+`

′+2(n+n′)Y`m(n̂k)Y∗`′m′(n̂k) eik·r. (4.29)
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Further progress is then achieved by making use of the plane wave expansion (Arfken & Weber, 2005)

eik·r = 4π
∞∑
`=0

i` j`(kr)
+∑̀

m=−`

Y∗`m(n̂r)Y`m(n̂k), (4.30)

which takes a particularly simple shape because the peaks are located along the z-axis, namely

eik·r
∣∣∣
r∼êz

= 4π
∞∑
`=0

i`
√

2` + 1 j`(kr)Y`0(n̂k). (4.31)

The remaining product of three spherical harmonics can then be expressed in terms of Wigner 3 j-
symbols (e.g. Messiah, 1962; Abramowitz et al., 1988) according to∫

dΩ Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

) (
`1 `2 `3
m1 m2 m3

)
.

(4.32)
After reordering and further simplifications, the final expression for the cross-correlation reads

Cnn′
``′mm′(r) =

(−1)m′+n−n′

σ`+2nσ`′+2n′

`+`′∑
L=|`−`′ |

(2L + 1)
√

(2` + 1)(2`′ + 1) iL+`−`′ KL
1
2 (`+`′)+(n+n′)

(r)

×

(
` `′ L
0 0 0

) (
` `′ L
m −m′ 0

)
,

(4.33)

where the k-integration has been absorbed into the generalized spectral moment

K`
m(r) ≡

1
2π2

∫
dk k2m+2 j`(kr)Pδδ(k). (4.34)

The entries of the cross-correlation matrix Cnn′
``′mm′ are real because the first Wigner 3 j-symbol ensures

that the sum L + ` − `′ is even. The second Wigner 3 j-symbol vanishes if m , m′, leaving the
cross-correlation diagonal in m. It is interesting to note that the matrix C adopts block diagonal shape
provided that the yn

`m-coefficients are suitably grouped in the vector y. Specifically, it is advantageous
to combine coefficients with the same value of m and to sort them by increasing modulus of m. From
the derivation given above it becomes clear that the effect of interchanging the peaks is captured by〈

yn
`m(x)yn′∗

`′m′(x′)
〉

= (−1)L
〈
yn∗
`m(x′)yn′

`′m′(x)
〉
. (4.35)

Setting the separation in equation (4.33) to zero immediately yields the auto-correlation matrix.
For r → 0 the generalized spectral moment (4.34) approaches K`

m(r) → σ2
mδ`0, which makes the sum

in equation (4.33) collapse. Furthermore, the Wigner 3 j-symbols reduce to the orthonormality relation
of spherical harmonics as can be easily seen from equation (4.32)

(−1)m′
√

(2` + 1)(2`′ + 1)
(
` `′ 0
0 0 0

) (
` `′ 0
m −m′ 0

)
=

∫
dΩ Y`m(n̂)Y∗`′m′(n̂) = δ``′δmm′ . (4.36)

Thus, the auto-correlation matrix has the remarkably simple form

A = Ann′
``′mm′ = (−1)n−n′ σ2

`+n+n′

σ`+2nσ`+2n′
δ``′δmm′ , (4.37)

which is diagonal in both angular indices ` and m.
Figure 4.2 shows typical entries of the correlation matrix (4.33) as a function of the peak separa-

tion r. In order to represent galaxies a smoothing scale (cf. equation 4.20) of R = 1 Mpc h−1 is chosen
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and the density threshold ν is set to unity. The associated mass scale is then M ' 3.1 × 1011 M� h−1.
There is one residual freedom concerning the frame of reference. For the purpose of illustration I use
two different frames. In the first frame the auto-correlation matrix is given by the unit matrix (left
panel), while in the second frame it adopts a diagonal shape instead (right panel). Comparing the ma-
trix elements Cnn′

``′mm′(r) in the two different frames one recognizes the elongation of the isoprobability
contours in the second frame. Additionally, the semi-axis ratios are approximately five and the overall
behaviour becomes less oscillatory in this frame.
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Figure 4.2.: Covariance matrix of the angular momentum distribution function transformed into a frame,
where the auto-correlation matrix is equal to the unit matrix (left panel) and into a frame, where the auto-
correlation matrix is diagonal (right panel).

4.2.5. Ansatz for the angular momentum correlations

The analysis presented so far emphasized that the acquisition of angular momentum takes place at
peaks in the cosmic density field. But the fact that the distribution of density maxima is discrete has
not yet been accounted for. This requires to impose several additional constraints on the Gaussian
probability density functions introduced in equations (4.16) and (4.17) (Schäfer, 2009).

In order to make the discrete number of density maxima accessible to a continuos formulation one
reverts to its number density constituted by a set of Dirac δ-functions (Bardeen et al., 1986; Regos &
Szalay, 1995; Heavens & Sheth, 1999)

npeak =
∑

p

δD(x − xp). (4.38)

In a second step one can get rid of the peak locations xp by reformulating the argument of the δ-
function. In the vicinity of a maximum the gradient is safely approximated by its first order Taylor
expansion, i.e.

δi(x) =
∑

j

δi j(xp)(x − xp) j. (4.39)

Solving this equation for the spatial components and inserting the result in equation (4.38) one obtains

npeak =
∑

p

δD
[
δ−1

i j (xp)δi
]

=
∣∣∣det δi j

∣∣∣ δD(δi). (4.40)

As it is independent of the particular choice of the coordinate system, the determinant is most conve-
niently expressed in terms of the eigenvalues of the mass tensor, thus det δi j = δ̃1δ̃2δ̃3.

For the purpose of this work the number density of extrema needs to be further constrained to only
contain maxima. This is assured by restricting the peak density to points xp where the density contrast
exceeds a certain threshold, i.e. δ(xp) ≥ νσ0, and where its curvature is negative definite as well. The
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expectation value for the number density of peaks in the fluctuating density field is then described by
the masked multivariate Gaussian random process

n̄peak =

∫
dυ C(υ) p(υ) (4.41)

with
C(υ) = δD [δi(x)]

(
δ̃1δ̃2δ̃3

) ∏
r

ΘH(δ̃r) ΘH [δ(x) − σ0ν] . (4.42)

Note that the curvature of the peak is given by the negative mass tensor. Thus, the peak is negatively
curved if all eigenvalues of the mass tensor are positive, which is manifest in the first Heaviside step
function ΘH on the right-hand side. The expression for the mean number density of peaks (4.41)
corresponds to the integral of the differential peak density npeak(ν)dν derived by Bardeen et al. (1986).

Now one can formulate the expectation value of the angular momentum vector of a protogalactic
object corresponding to a peak region in the Universe’s large-scale structure

〈L〉 =
1

n̄peak(> ν)

∫
dυ C(υ) p(υ) L(υ). (4.43)

Obviously, its variance is given by〈
L2

〉
=

1
n̄peak(> ν)

∫
dυ C(υ) p(υ) L2(υ). (4.44)

In each case the normalization n̄−1
peak explicitly accounts for the discreteness of the underlying random

process.
The angular momentum two-point correlation function also becomes readily accessible in this for-

malism. Extending the joint Gaussian probability density for both peaks (4.17) by the corresponding
mask for each individual peak, one is left with〈

Li(x)L j(x′)
〉

=
1

n̄2
peak(> ν)

∫
dυ C(υ)

∫
dυ′ C(υ′) p(υ,υ′) Li(υ) L j(υ′). (4.45)

Since generally the thresholds imposed on the peaks are equal, the normalization is given by n̄−2
peak.

The individual components of the angular momentum vector are given in terms of the inertia tensor Ii j

and the tidal shear field Ψi j (cf. Section 4.2.1). They can be put together to form a matrix

Xi j(x) ≡
∑

k

Iik(x)Ψk j(x) (4.46)

with which the angular momentum components are expressed in a more compact way

Li = a2Ḋ+εi jkI jlΨlk = a2Ḋ+εi jkX jk. (4.47)

Accordingly, one finds 〈
Li(x)Li′(x′)

〉
= a4Ḋ2

+εi jkεi′ j′k′
〈
X jk(x)X j′k′(x′)

〉
. (4.48)

This expression for the one-dimensional covariance between different angular momentum compo-
nents, however, is not independent of the coordinate system chosen. This disadvantage can be com-
pensated for by taking the trace of equation (4.48), resulting in a coordinate-frame independent ex-
pression for the covariance of the full three-dimensional angular momentum vector

CL(r) ≡ tr
〈
Li(x)Li′(x′)

〉
=

〈
Li(x)Li(x′)

〉
= 3a4Ḋ2

+

[〈
X jk(x′)X jk(x)

〉
−

〈
Xik(x)Xki(x′)

〉]
. (4.49)
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For the last equality I exploited the identity εi jkεi j′k′ = δ j j′δkk′ − δ jk′δ j′k. It is crucial that the indices
are interchanged in the right most term. Otherwise, the correlation function would identically vanish,
as it is the case for symmetric matrices. This becomes even more apparent in the matrix formulation
of the correlation function

CL(r) = tr
〈
L(x)L>(x′)

〉
= 3a4Ḋ2

+ tr
[〈

X(x)X>(x′)
〉
−

〈
X(x′)X(x)

〉]
= 3

a4Ḋ2
+

n̄2
peak(> ν)

∫
dυ C(υ)

∫
dυ′ C(υ′) p(υ,υ′) tr

[
X(υ)X>(υ′) − X(υ′)X(υ)

]
.

(4.50)

The possible emergence of symmetric matrices and its interpretation will be discussed in the next
section.

Finally, I would like to emphasize that the correlation function (4.50) treats the correlations in both
the tidal shear field and the inertia tensor on the same footing. It intentionally avoids any decomposi-
tion of the two quantities according to their differences in correlation length. Schematically, one could
think of the following ansatz〈

I(x)Ψ(x) I(x′)Ψ(x′)
〉

= P(I|Ψ) P(I′|Ψ′)
〈
Ψ(x)Ψ(x′)

〉
, (4.51)

where P(I|Ψ) indicates the probability distribution function of the inertia tensor I given the tidal fieldΨ.
This ansatz, however, is necessarily restricted to scales where the inertia tensors are uncorrelated.

4.2.6. Misalignment of the shear and inertia eigensystems

The matrix X = IΨ may be decomposed into its symmetric (X+) and its antisymmetric part (X−)
respectively, such that X = X+ + X−. The former is obtained from the anticommutator

X+ ≡
1
2
{I,Ψ} , X+

i j =
1
2

∑
k

(
IikΨk j + ΨikIk j

)
, (4.52)

whereas the latter is given by the commutator

X− ≡
1
2

[I,Ψ] , X−i j =
1
2

∑
k

(
IikΨk j − ΨikIk j

)
. (4.53)

Since the inertia tensor and the shear field are both symmetric it is easy to verify that (X+)> = +X+

and (X−)> = −X−. Inserting this decomposition in equation (4.47) one immediately finds

Li = a2Ḋ+εi jkX jk = a2Ḋ+εi jk
(
X+

jk + X−jk
)

= a2Ḋ+εi jkX−jk, (4.54)

due to the fact that the contraction of an antisymmetric and a symmetric tensor vanishes.
Thus, the acquisition of angular momentum requires that the commutator X− between the inertia

tensor and the tidal shear field does not vanish. In other words, they must not share a common eigen-
system where both simultaneously adopt diagonal shape. The need for a net misalignment between
the inertia tensor and the shear field motivated Lee & Pen (2000) and Crittenden et al. (2001) to in-
troduce an effective parametrized description of the average misalignment. Its single free parameter
then needs to be inferred from numerical simulations. In my approach, however, the misalignment
is directly accounted for by the ansatz for the correlation function (4.50), providing a self-consistent
description which intentionally avoids any additional parameter. A common eigensystem of the inertia
tensor and the shear field is excluded by the fact that the correlation function is identically zero for
any symmetric matrix X. But the matrix X necessarily assumes a symmetric shape in the particular
coordinate frame in which both the shear field and the inertia tensor are diagonal. Since the trace is
independent of the specific choice of coordinate basis, this argument holds true in general. Thus, field
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configurations which do not give rise to angular momentum acquisition, because they are perfectly
aligned, do not contribute to the correlation function at all.

In the extreme case of completely unaligned eigensystems of the shear and the inertia field, i.e.
if X = X− and X+ = 0, the angular momentum correlation function becomes purely quadratic in X and
its amplitude is maximized due to the fact that X> = (X−)> = −X− = −X. Hence, one obtains

Cmax
L (r) = −6

a4Ḋ2
+

n̄2
peak(> ν)

∫
dυ C(υ)

∫
dυ′ C(υ′) p(υ,υ′) tr

[
X(υ)X(υ′)

]
, (4.55)

while the corresponding one-point variance is given by〈
L2

max

〉
=

1
n̄peak(> ν)

∫
dυ C(υ) p(υ) L2

max(υ). (4.56)

The last two expressions underline the fact that any alignment of the eigensystems of the shear field
and the inertia tensor effectively reduces the fluctuation amplitude in the galactic angular momentum
field with respect to the case in which both fields are fully unaligned.

Finally, I would like to briefly comment on the physical interpretation of the anticommutator X+.
While the commutator X− is responsible for the protohalo’s angular momentum acquisition, the anti-
commutator X+ leads to an anisotropic deformation of the protogalactic region in the course of linear
structure formation prior to gravitational collapse. This could be interesting in the context of triaxi-
ality predictions derived in the framework of Gaussian random fields (Bardeen et al., 1986) because
the deformations due to X+ are likely to already alter the ellipticity distribution during the epoch of
linearly evolving structures.

4.3. Numerical results

4.3.1. Outline of the integration scheme

The main difficulty encountered by the numerical evaluation of the angular momentum distribu-
tion (4.44) and correlation function (4.50) is the high dimensionality; 15 dimensions for the distribu-
tion function and twice as many in case of the two-point correlation function. This high dimensionality
calls for the use of Monte Carlo integration methods. These methods can be refined and accelerated
if one includes all prior knowledge about the underlying distribution function. In the present work the
probability density function has the particularly simple form of a Gaussian. However, the sampling
process is complicated by the peak restriction, i.e. by applying the mask (4.42), because it results in
the rejection of a large fraction of the drawn samples. Thus, a reliable evaluation of the integrals re-
quires to generate an extremely large set of random variates following the distribution functions (4.16)
and (4.17), respectively.

Major simplification of this task can be achieved by noting that Gaussian random variables, obeying
a given covariance structure, can be obtained from a set of unit Gaussian variates which are subse-
quently multiplied by the Cholesky decomposition of the covariance matrix. The Cholesky decompo-
sition has to be carried out only once, whereas unit Gaussian variates can be very efficiently generated
by a number of methods, for instance by the ziggurat algorithm (Marsaglia & Tsang, 2000). While the
computation of the covariance matrices is most easily carried out in the yn

`m- basis introduced in Sec-
tion 4.2.3 the peak constraints are more readily evaluated in the physical frame. Therefore, I start with
the covariance matrices in the yn

`m-basis and transform them into the physical frame afterwards via the
matrices R and S, respectively (cf. equation 4.25). The construction of the inertia ellipsoid, which
approximates the protogalactic object, demands the diagonalization of the mass tensor. Regarding the
computational efforts, it turns out that this procedure is rather time consuming, hence it is desirable to
perform the least number of diagonalizations possible, i.e. exclusively for accepted samples. This can
be achieved by finding an alternative criterion for the positive definiteness of the mass tensor which is
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independent of its eigenvalues. Such a criterion can be formulated in terms of the basis-independent
quantities tr (δn

i j), n = 1, 2 and det δi j. Its application reduces the computational efforts considerably.
Another simplification of the sampling process results from the fact that the peak constraint enforces

the gradient of the density field to vanish. Thus, its components are no degree of freedom reducing
the effective number of dimensions by three. It is important to note that the dimensionality of the
underlying Gaussian distribution, however, remains the same. In other words, one has to retain the
correct normalization of the 15- and 30-dimensional case, respectively. Finally, I would like to empha-
size once more that the actual peak hight does not enter the distribution function independently but is
treated as a derived quantity exploiting its relation to the trace of the tidal shear field in the Zel’dovich
approximation.

4.3.2. Test of the integration scheme

As a first test of the integration scheme explained before, the mean peak density (4.41) is computed
and compared to the analytical solution provided by Bardeen et al. (1986). The agreement between
the two is very good and can be arbitrarily refined by increasing the number of samples. Furthermore,
it was assured that this method correctly reproduces the limiting extreme case of limν→−∞ n̄peak(ν).
Finally, the peak correlation function presented by Regos & Szalay (1995) is addressed. I recover
their results regarding the functional form, as well as the amplitude for different values of the density
threshold ν and smoothing scale R of the matter power spectrum. The agreement is very good for both
galaxies and clusters of galaxies up to distances of about 100 Mpc h−1. Another viable test concerning
performance and reliability of this integration method is provided by the scaling relation between
the variance of the specific angular momentum and the corresponding halo mass to be discussed in
Section 4.3.3.

In order to estimate the error of the integration procedure each sampling process is repeated several
times for different random seeds. The results are consistent and exhibit only small scatter which is
quantified in terms of the corresponding 1σ error. In addition, it is ensured that the number of accepted
samples is at least of the order of 105 for all computations. Ultimately, the reliability of the integration
method is tested by investigating the scaling behaviour with respect to changes in both the smoothing
scale (4.20) and the relevant cosmological parameters. These are in particular all parameters which
influence the shape of the linear power spectrum because changes in the matter spectrum propagate
through the weighted moments (4.19) to the covariance matrices of the one- and two-point distribution
function, respectively.

4.3.3. Angular momentum variance

For the visualization of my results it is convenient to introduce the specific angular momentum via

L ≡ L
H0M

. (4.57)

As it is normalized with respect to the mass scale under consideration as well as the Hubble constant,
the specific angular momentum is measured in units of (Mpc h−1)2. Its standard deviation σL exhibits
a clear dependence on mass (Peebles, 1969; Heavens & Peacock, 1988). After dividing out a factor
of σ0 for convenience, it scales in proportion to M2/3. This scaling relation serves as another valuable
test of my numerical integration strategy. Figure 4.3 shows the sampling results for two orders of
magnitude in halo mass. For the actual computation the halo mass is converted into an appropriate
smoothing scale (cf. equation 4.20) and the threshold of the peak height is set to one. In order to
compare my results to the theoretical expectation the data points are fitted by a power law. The fit
accounts for the sampling error. For the best-fitting values one finds

σL
σL,0

=

(
M
M0

)0.6469±0.001

, (4.58)
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with σL,0 = 11 362σ0 (Mpc h−1)2 and M0 = 1012 M� h−1, within three per cent of the theoretical
value. A physical situation one can think of in order to illustrate the specific angular momentum is
provided by a homogeneous sphere with radius 1 Mpc h−1 and mass 1012 M� h−1 that revolves once
every ∼ 109 years. The specific angular momentum of this object is exactly given by the 1σL-value.

Figure 4.3: Standard deviation σL of the
specific angular momentum as a function
of halo mass. A power law fit (red line)
demonstrates the excellent agreement with
the theoretical expectation σL ∝ M2/3

(green line).
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4.3.4. Scaling with peak height and dependence on a high-mass cutoff

Figure 4.4 illustrates the scaling of the specific angular momentum standard deviation σL with the
peak height ν together with its dependence on a high-mass cutoff. This cutoff rejects objects which
exceed a certain mass limit given in units of the mass scale Mscale, associated with the smoothed
fluctuation spectrum (cf. equation 4.20). The mass of the object is estimated from the protohalo’s
volume in ellipsoidal approximation (cf. equation 4.10). Hence, this procedure excludes very weakly
curved density peaks.

The high mass cutoff is necessary because the moments of the angular momentum distribution func-
tion are not finite. This might seem surprising at first glance since only Gaussian random fields are
involved. However, there is an instructive analogy to the Cauchy distribution. All of the moments of
the Cauchy distribution are undefined although it emerges as the Gaussian ratio distribution. Taking
into account that the angular momentum vector is build up by, for example, the inverse of the eigenval-
ues of the mass tensor (cf. equation 4.9), the need for a high mass cutoff turns out to be rather natural.
In general a cutoff of 20 Mscale h−1 is used as default.

Figure 4.4 reveals that the influence of variations in the (upper) mass bound is quite strong. It
amounts to changes in the specific angular momentum by a factor of about two. Opposed to that
the specific angular momentum is rather insensitive to changes in the peak height. The amplitude
of its standard deviation varies by 30 per cent at most over the whole ν-interval under consideration.
It is interesting to note that the standard deviation retains its maximum in the interval ν ∈ [1, 2]
corresponding to galaxy-sized objects. This ν-range is therefore of primary interest for my analysis
and I adopt a threshold of ν = 1 for the computation of the angular momentum correlation function in
the following section.

4.3.5. Angular momentum correlation function

In this section the most important result of this chapter is presented: the two-point angular momentum
correlation function. It fully accounts for all correlations between the dynamical fields involved; on
the one hand these are correlations between the inertia tensors of the two haloes under consideration
and on the other hand the correlations in the tidal shear field exerting torquing moments on the very
same haloes. As a matter of convenience the specific angular momentum is chosen for visualizing the
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Figure 4.4: Standard deviation σL of the
specific angular momentum as a function of
peak height ν for three different mass cut-
offs. The bars indicate the 1σ error of the
numerical sampling scheme artificially en-
larged by a factor of ten.
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result. To be specific the correlation function for two Milky Way-sized haloes is shown, i.e. the mass
scale is set to be 1012 M� h−1, in Figure 4.5.

The correlation function decreases only slightly up to a separation of about 1 Mpc h−1, where it
starts to fall off exponentially. This transition indicates the typical correlation length of the angu-
lar momentum field of Milky Way-like density peaks in the large-scale structure. Furthermore, its
dependence on separation motivates the following empirical fitting function

CL(r) = A exp

− (
r
r0

)β (4.59)

with A = (25 010 ± 165)σ2
0 (Mpc h−1)4, r0 = (0.8628 ± 0.008) Mpc h−1 and β = 3/2. The error

bounds indicate the 1σ error. The sharp exponential decrease for separations larger than approxi-
mately 1 Mpc h−1 is the main difference with respect to the earlier work of Crittenden et al. (2001),
who did not directly compute the angular momentum correlations but the closely related intrinsic el-
lipticity correlation function (for a detailed discussion of the relation between the two see Chapter 5).
In the approach of Crittenden et al. (2001) the decline of the correlations is described by a power
law, yielding a marginally enhanced correlation length. As a final remark I would like to point out
that, according to my results, the angular momentum vectors are preferentially parallel aligned. Since
the correlation function is not a quadratic form in the angular momenta (cf. equation 4.50), it is de-
liberately sensitive to the parallel or antiparallel spin alignment. The latter would result in an anti-
correlation, i.e. a negative correlation function, which is not observed in my study.
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Figure 4.5: Angular momentum correla-
tion function for two Milky Way-sized
haloes. The red line indicates the empiri-
cal fitting formula (4.59).
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4.4. Summary

In this chapter the one- and two-point angular momentum distribution functions were recomputed.
Employing tidal torque theory in the Zel’dovich approximation allowed to model the statistics of the
angular momentum field by a peak-restricted Gaussian random process.

(i) In the framework of linear tidal torque theory the time evolution of the angular momentum is
governed by the time derivative of the growth function, which is particularly sensitive to the
presence of dark energy. In dark energy cosmologies the angular momentum growth is up to
30 per cent slower than in an Einstein-de Sitter universe. The results for a cosmological constant
and classical quintessence with w0 = − 2

3 are quite similar, while there are qualitative differences
for realizations with time-dependent equation of state.

(ii) The angular momentum vector of a protogalactic object was built from two dynamical fields,
its tensor of inertia and the shear field of the ambient matter distribution. I restricted my anal-
ysis entirely to the linear regime in order to allow for a Gaussian description of the angular
momentum distribution function.

(iii) The one-point statistics of the angular momentum vector is then captured by 15 Gaussian ran-
dom variates: three for the gradient of the density field and six at a time for the inertia tensor
and the tidal shear field, respectively. The density field itself is completely determined by the
trace of the shear field and therefore does not explicitly enter the distribution function. Cor-
relations between the angular momenta of neighbouring galaxies were modelled by the joint
30-dimensional Gaussian distribution. The entires of the corresponding covariance matrices
could be exclusively expressed in terms of the spectral moments of the linear matter power
spectrum.

(iv) Since galaxy formation is assumed to take place at peaks in the cosmic density field the one-
and two-point Gaussian distribution functions were subjected to an appropriate masking which
enforced the peak constraints. Confined to density maxima exceeding a certain threshold the
statistical description of galactic angular momenta did no longer obey a continuous formulation
but became discrete instead.

(v) Resulting in a large rejection rate of samples, this discrete nature further complicated the nu-
merical evaluation of the high-dimensional angular momentum distribution. To overcome these
difficulties I developed a specialized sampling routine, which even facilitated the integration of
the effectively 24-dimensional angular correlation function. The effective dimension is rather 24
than 30 because focusing on density peaks necessarily requires that the density gradients both
vanish, i.e. the corresponding six variates are set to zero throughout the entire analysis.

(vi) Several tests of this integration method regarding its accuracy and reliability were carried out.
Key among these was the recovery of the correct scaling relation of the specific angular mo-
mentum with halo mass. I could confirm the expected behaviour of L ∝ M2/3 to a very high
accuracy for a wide range in halo mass.

(vii) The ansatz for the correlation function employed in my study improves on previous work be-
cause it treats both the inertia tensor and the tidal shear field on the same footing. It avoids their
discrimination with respect to differences in the correlation length (the correlation length of the
shear field is significantly enhanced in comparison to that of the peak shapes). By construction,
the correlation function is only sensitive to field configurations in which the eigensystems of the
inertia tensor and the shear field are not perfectly aligned. Thus, unphysical contributions are
automatically excluded. Furthermore, it is exactly this construction principle which allows for
the discrimination between the parallel and antiparallel orientation of the angular momentum
vectors under consideration.
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(viii) The numerical evaluation of the two-point correlation function for the angular momenta of
two Milky Way-sized haloes revealed that the spins are preferentially parallel aligned and
that the correlation length r0 is approximately 1 Mpc h−1, in good agreement with the work
of Crittenden et al. (2001). For larger separations the correlations in the angular momen-
tum field decline exponentially. Their functional form is very well captured by the empirical
fit CL(r) ∝ exp

[
− (r/r0)3/2

]
.

On the one hand the treatment in the framework of Gaussian random fields allows for a fully analytical
description of the complex mechanism of galactic angular momentum acquisition, on the other hand
it requires a number of rather far-reaching assumptions. In particular, modelling the peak shape by
a simple parabolic density profile along with the resulting ellipsoidal shape of the inertia tensor are
very coarse approximations. Furthermore, the motion of haloes and their nonlinear dynamics, which
I completely neglected, are expected to influence the angular momentum amplitude, as well as its sta-
tistical properties like the correlation length (Catelan & Theuns, 1996b, 1997; Porciani et al., 2002a,b;
Lee & Pen, 2008). It is important to keep these limitations in mind. However, they should not screen
the numerous advantages of a purely analytical approach and the valuable insights it provides.

In the next chapter I will investigate the implications of galactic angular momentum correlations
for gravitational lensing studies. A common assumption in weak lensing measurements is that galaxy
shapes, i.e. their ellipticities, are intrinsically uncorrelated. Coupled angular momenta, however, give
rise to the effect that the discs of neighbouring galaxies are viewed under similar angles of inclination
so that their ellipticities do in fact become correlated. The angular scale of these intrinsic alignments
may be estimated from the correlation length found above. For a deep redshift survey like Euclid one
can approximate the distance to the lensed galaxies by 1 Gpc. Thus, the correlations subtend an angle
of about 10−3 rad which corresponds to a multipole range of ` ∼ 3000. This highlights that intrinsic
alignments are a small-scale phenomenon.
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5 Chapter 5

Intrinsic alignments and 3d weak
gravitational lensing

In this chapter it is shown how intrinsic alignments can be incorporated consistently in the for-
malism of 3d weak lensing. Two different descriptions of the intrinsic galaxy ellipticities are
used, the so-called linear and quadratic model, respectively. For both models I derive the co-
variance matrix of the intrinsic alignment signal (II-alignments) and GI-alignments (the cross-
correlation of intrinsic and lensing induced ellipticities). Evaluating the covariance matrices
for the linear model numerically and comparing the results to the cosmic shear signal it is found
that for a low redshift survey the total covariance matrix is dominated by the contributions of
the II-alignments. For a Euclid-like survey II-alignments still dominate over GI-alignments but
they are more than one order of magnitude smaller than the lensing signal. Most remarkably,
the shape of the ellipticity covariance matrices is quite different in the k-k′-plane for cosmic
shear on the one hand and intrinsic alignments on the other hand. In comparison to lensing
both alignment types tend to be rather elongated along the diagonal k = k′. Moreover, for high
multipoles (` ∼ 100) intrinsic alignments are strongly concentrated along that diagonal.

The contents of this chapter have been published in Merkel & Schäfer (2013b).

5.1. Introduction

Forthcoming weak lensing surveys like the Euclid mission aim to constrain cosmological parameters
to an accuracy of a few percent. Information from gravitational lensing (Blandford et al., 1991; Seitz
et al., 1994; Kamionkowski et al., 1998) is eminently important because it is complementary to that
obtained from the cosmic microwave background (Hu, 2002b). Being sensitive to all forms of matter,
and particularly to its time evolution, gravitational lensing experiments are essential in the investi-
gation of dark energy; the most significant parameters are its equation of state along with its time
evolution, as well as the dark energy contribution to the Universe’s matter content.

Conventionally, weak lensing or cosmic shear analyses are carried out in two dimensions. The main
observables, angular correlation functions or equivalently angular power spectra, are obtained from
a projection along the line-of-sight (see Chapter 3). Furthermore, one usually neglects the curvature
of the sky considering only small patches which can be safely treated as flat. In order to overcome
the line-of-sight projection and to make the valuable information contained in the time evolution of
the lensing signal available, more advanced techniques have been developed in the past. These tech-
niques take the photometric redshifts of the lensed galaxies into account. Simple stacking of usual
(two-dimensional) lensing analysis carried out in several tomographic redshift slices already allows
for tighter parameter constraints (Hu, 1999; Takada & White, 2004; Hannestad et al., 2006), especially
in the case of the dark energy equation of state (Hu, 2002a). More elaborated than such tomographic
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methods is the three-dimensional formalism developed by Heavens (2003) and Castro et al. (2005).
They completely account for the three-dimensional character of weak gravitational lensing by main-
taining the radial dependence of the lensing potential throughout the whole analysis, i.e. by abandon-
ing the necessity of any projection. Additionally, they provide access to the full sky. The cost of this
very general formalism is its enhanced numerical complexity, which is mainly due to the coupling
of different density modes. This mode coupling underlines the fact that the lensing potential is not
statistically homogeneous.

For both, tomography as well as three-dimensional weak lensing, good knowledge of the lensed
galaxies’ redshift is indispensable. The error in photometric redshift estimation is therefore considered
as one of the most important systematics in cosmic shear studies (Abdalla et al., 2008). But the more
the redshift accuracy improves, the more significant other systematical errors become. Thus, the
systematical error budget might soon be dominated by intrinsic shape correlations. The correlations
in the shapes of galaxies, more precisely their ellipticities, are only an unbiased estimator of the weak
gravitational shear field if the intrinsic shapes are completely randomly orientated. Otherwise, intrinsic
shape correlations will mimic the lensing signal, thereby corrupting cosmological parameters derived
from lensing studies which are carried out under the null hypothesis of absent intrinsic alignments
(Bridle & King, 2007; Joachimi & Bridle, 2010; Kirk et al., 2010; Capranico et al., 2013). Employing
shear tomography Bridle & King (2007) and Kirk et al. (2012) showed that in particular the equation
of state parameter of dark energy is severely biased. Kitching et al. (2008) obtained similar results
using 3d cosmic shear.

Intrinsic shape correlations have been observed in a number of Sloan Digital Sky Survey samples
(Mandelbaum et al., 2006; Mandelbaum, R. et al., 2011; Hirata et al., 2007; Okumura et al., 2009), as
well as in numerical simulations (Heavens et al., 2000; Heymans et al., 2006; Kuhlen et al., 2007).

In order to remove, or at least reduce, the intrinsic alignment contamination of cosmic shear data
a large variety of methods have been proposed and successfully applied. While King & Schneider
(2002, 2003) and Heymans & Heavens (2003) exploit the locality of the intrinsic shape correlations
to suppress the intrinsic alignment signal; the nulling techniques invented by Joachimi & Schneider
(2008, 2009) modify the lensing efficiency function in such a way that the resulting cosmic shear mea-
sures are free from intrinsic alignment contributions. Both approaches provide unbiased estimates of
cosmological parameters at the expense of precision due to the unavoidable loss of information inher-
ent to these methods. Alternatively, one can circumvent data rejection by explicitly including intrinsic
alignments in the analysis. The additional parameters used for modelling the intrinsic alignments then
need to either be determined from the data or marginalized over, thereby weakening the constraints on
the derived cosmological parameters (King, 2005; Bridle & King, 2007; Bernstein, 2009; Joachimi &
Bridle, 2010; Heymans, C. et al., 2013).

All these methods, however, are tomographic methods. So far no comparable efforts have been
made in case of 3d cosmic shear. This is particularly deplorable because 3d weak lensing improves
upon tomographic analyses as it avoids the loss of information going along with any binning in red-
shift. Therefore, fully three-dimensional studies are extremely promising for measuring dark energy
properties; very precise forecasts for the dark energy equation of state parameter and its time evolu-
tion can be achieved (Heavens et al., 2006). Furthermore, 3d weak lensing is less sensitive to errors
in the photometric redshifts of galaxies than tomography. This makes intrinsic alignments very likely
to dominate the systematical error budget in future 3d cosmic shear surveys. Thus, reliable control of
this systematic error is increasingly important.

Nonetheless, the development of appropriate methods has received little attention in the past. This
might be due to the fact that a consistent three-dimensional description of intrinsic alignments derived
from physical alignment models is not yet available. Previous work analysing the impact of intrinsic
alignments on 3d weak lensing measurements (e.g. Kitching et al., 2008) used the fitting formulae
provided by Heymans et al. (2006). These intrinsic alignment parametrizations are derived from nu-
merical simulations. This chapter aims at a more analytical description. I establish the constitutive
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formalism necessary to incorporate intrinsic alignments into the framework of 3d weak lensing starting
from physical alignment models. I concentrate on the two models proposed by Catelan et al. (2001)
and Hirata & Seljak (2004) which have already been extensively used in the tomographic studies of in-
trinsic alignments mentioned above. Expressions for the resulting covariance matrices of the intrinsic
alignment signal and for its cross-correlation with that of cosmic shear are presented. A comparison
to the two-point statistics of weak cosmic shear then yields first insights into the strength of intrinsic
alignment contamination, in particular its dependence on scale. Additionally, I investigate how this
contamination varies with the depth of the lensing survey under consideration.

This chapter is structured as follows: Section 5.2 starts with a brief recapitulation of the key quan-
tities in the description of galaxy ellipticities and their relation to (weak) gravitational lensing. Sub-
sequently, the two intrinsic ellipticity models considered in this work are presented in detail. These
models are then reformulated in the language of 3d cosmic shear in Section 5.3. Furthermore, I derive
expressions for the resulting covariance matrices of the various intrinsic alignment types. Section 5.4
is devoted to the numerical evaluation of the covariance matrices derived before. Focusing on the
linear alignment model, I illustrate my results for two different lensing survey specifications. Finally,
the results are summarized in Section 5.5.

Throughout this chapter I assume a spatially flat ΛCDM universe characterized by the WMAP7
best-fitting parameters detailed in Table 2.1

5.2. Intrinsic galaxy ellipticity and gravitational lensing

In projection, the shape of a galaxy on the sky can be characterized by its (complex) ellipticity

ε = ε+ + iε× = |ε|e2iϕ. (5.1)

The real and imaginary part quantify the elongation and compression along two directions separated
by 45◦, respectively. The angle ϕ measures the misalignment between the local frame and the x-axis
on the sky plane (assuming the line-of-sight along the z-axis). Obviously, the ellipticity is a spin-2
field. It is invariant under rotations of the coordinate frame by an angle of π. Accordingly, its com-
plex conjugate carries spin weight −2. Under idealized conditions, i.e. in the absence of pixelization,
convolution and noise, the ellipticity components can be inferred from the second moments of the
brightness distribution. The processing of real data, however, requires more involved methods and
a variety of complementary shape measurement tools have been developed (Kaiser et al., 1995; Re-
fregier, 2003; Refregier & Bacon, 2003; Miller et al., 2007; Kitching et al., 2008; Melchior et al.,
2011). A compilation of the different methods and their individual performance can be found in the
handbooks of the GRavitational lEnsing Accuracy Testing Challenges 2008 and 2010 (Bridle, S. et al.,
2009; Kitching, T. et al., 2010).

Light rays reaching the observer from distant galaxies are deflected by gradients in the gravitational
potential of the intervening large-scale structure as has been shown in Chapter 3. Consequently, the
actually observed ellipticity of a galaxy ε(o) is made up of two contributions

ε(o) = ε + γ (5.2)

with
γ = γ+ + iγ×. (5.3)

The shear γ encodes the deformation of the source due to gravitational lensing. By construction, it
constitutes a spin-2 field, too. In addition to the deformation, lensing also changes the size of the
source isotropically. This effect is captured by the convergence κ which is a real scalar quantity in
contrast to the shear (see Figure 3.2 for an illustration of the different effects). The convergence is
only directly observable in rare cases.
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The simple superposition of intrinsic and lensing induced ellipticity in equation (5.2) only holds
in the limit of weak gravitational lensing. Here the lensing effect on the individual galaxy is small,
i.e. |γ| � 1 and κ � 1, and the reduced shear g ≡ γ/(1 − κ) mediating between lensing and observed
ellipticity

ε(o) =
ε + g

1 + g∗ε
(5.4)

(Seitz & Schneider, 1997) can be well approximated by ε + γ. Since the individual distortions are
so small, the observable weak lensing signal is obtained as a statistical average over an ensemble of
galaxies. Equation (5.2) underlines that the observed ellipticities are an unbiased estimator of the
gravitational shear provided that the intrinsic shapes of the observed galaxies are randomly orientated
and as long as lensing effects are weak, i.e. the approximation

ε(o) ∼ ε + g ∼ ε + γ (5.5)

holds.
The intrinsic galaxy shapes emerge, at least partially, from the cosmic tidal field introducing cor-

relations in the intrinsic shape of nearby galaxies, so-called II-alignments (Hirata & Seljak, 2004).

zj > zi zi
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Figure 5.1.: Illustration of the two types of intrinsic
alignments. The red galaxy is lensed whereas the blue
galaxies are intrinsically aligned. Both effects are due
to the adjacent CDM structure. This figure has been
adapted from Troxel & Ishak (2012).

Since both tidal field and gravitational lensing
have the same origin, namely the gravitational
potential, there may also be correlations be-
tween the intrinsic galaxy shapes and those be-
ing lensing induced. These correlations are com-
monly referred to as GI-alignments. It is in-
teresting to note that the two different align-
ment types feature opposed redshift dependen-
cies. II-alignments only arise from galaxy pairs
which are physically close, i.e. their separation
needs to be small both on the celestial sphere
and in redshift, while the correlation length of
GI-alignments in redshift is compatible with
that of weak lensing. This complicates the re-
moval of GI-alignments from cosmic shear data
enormously. Another important difference be-
tween II- and GI-alignments arises from the fact
that the latter can be negative, indicating an
anti-correlation between intrinsic and lensing in-
duced ellipticity. While a lensed background

galaxy appears preferentially tangentially aligned with the lens, the tidal field of the very same lens
aims to radially align a close-by foreground galaxy. Both alignment types are illustrated in Figure 5.1.

Basically, there are two physical models used to describe the intrinsic alignment of galaxies. They
are linear and quadratic in the tidal shear tensor, respectively. These models are rather simple and
account neither for baryonic physics nor for the details of the formation process which are assumed to
play a major role in building up the shape of an individual galaxy and for the orientation of its disc.
Yet, they provide a very general and physically intuitive parametrization which is largely based on the
symmetry or rather spin properties of the ellipticity. This is why they are a viable tool for an analytical
treatment. Despite their simplicity, these models are expected to provide valuable information about
the statistics of intrinsic alignments as for those the properties of a single galaxy should be of minor
importance. For a more extensive discussion of the range of applicability of these models I refer to
Mackey et al. (2002); Hirata & Seljak (2004).
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5.2.1. Linear model

The simplest model for intrinsic alignments is linear in the shear field,

ε+ = −C1
(
∂2

x − ∂
2
y

)
ΦS, (5.6a)

ε× = −2C1∂x∂yΦS, (5.6b)

assuming that the galaxy shape is at least partially determined by the shape of the dark matter halo
the galaxy resides in. The host halo forms from gravitational collapse in a tidal field and is therefore
expected to be triaxial and aligned with the principal axes of the tidal field. To physically motivate the
ansatz in equation (5.6), one can consider the extremely simple case of an initially spherical arrange-
ment of test particles moving in a spatially slowly varying potential Φ. A Taylor expansion of the
potential about the origin then reveals that its gradient leads to a constant gravitational field shifting
the test particles as a whole while the shape of the sphere is distorted by the quadratic term, i.e. the
tidal field (Catelan et al., 2001).

This ansatz is usually used to describe the shape of elliptical galaxies, expecting that the baryonic
matter, i.e. stars, fills up the gravitational well. The derivatives in equation (5.6) are comoving deriva-
tives and the proportionality constant C1 is a free parameter of the model which may be determined
empirically by comparison with observations (cf. Catelan et al., 2001; Hirata & Seljak, 2004). Since
I am interested in the intrinsic ellipticity of galaxies I have to apply an appropriate filter function to
the Newtonian potential in equation (5.6), which is indicated by the subscripted S. The smoothing
scale has to be chosen in such a way that it cuts off fluctuations corresponding to galaxy-sized ob-
jects. For instance, one could impose a Gaussian filter function, i.e. ΦS(k) = Φ(k)e−(kR)2/2, and adjust
the filter scale R to the mass scale of galaxies via the mean cosmic matter density ρ̄m, i.e. by set-
ting M = 4/3πρ̄mR3. Typical values for galaxies are M ∼ 1011 . . . 1012 M�. Moreover, I assume that
galaxy formation takes place during matter domination so that the linear Newtonian potential becomes
independent of the scale factor.

5.2.2. Quadratic model

In contrast to ellipticals the shape of spiral galaxies is believed to be determined by their angular mo-
mentum. Since the disc forms perpendicular to the spin axis the intrinsic ellipticity may be described
by the following ansatz (Catelan et al., 2001)

ε+ = f (L, Lz)(L2
x − L2

y) and ε× = 2 f (L, Lz)LxLy, (5.7)

where L denotes the magnitude of the angular momentum. In the special case of an ideally thin disc,
the function f is given by f (L, Lz) = 1/(L2 + L2

z ) so that

ε+ =
L̂2

x − L̂2
y

1 + L̂2
z

and ε× =
2L̂xL̂y

1 + L̂2
z

(5.8)

with the angular momentum direction L̂ ≡ L/L. The finite thickness of a realistic disc can be ac-
counted for by simply rescaling the expressions for the ellipticity by a constant factor, which weakens
the dependence on the inclination angle, i.e. f (L, Lz) = α/(L2 + L2

z ) with α ∼ 0.75, (Crittenden et al.,
2001). It is interesting to note that the modulus of the ellipticity in equation (5.8) is constant. Hence,
the ellipticity components just measure the galaxy’s orientation. For actual computations it is more
convenient to simplify equation (5.7) by assuming f (L, Lz) = C2 = const. Since f determines how the
ellipticity scales with the angular momentum, one expects C2 ∼

√
〈ε2〉/〈L2〉 (Mackey et al., 2002).

This comprises the effect of the finite disc thickness as well, which weakens the correlation.
Under the assumption that the galaxy’s angular momentum follows largely that of its host halo, one

can compute the angular momentum in the framework of tidal torque theory, which was explained in
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Chapter 4. There some of the limitations of this mechanism were also mentioned. In particular, recent
results from cosmological simulations indicate that tidal torque theory breaks down at the turn around
and virialization of the halo (Porciani et al., 2002b). Libeskind et al. (2013) suggest that from this
point on the angular momentum may emerge from a vortical, rather than a shear flow. In this case,
shape correlations could be related to correlations in the vorticity of the cosmic flow field and hence be
described by a single dynamical field in a way similar to the linear model presented in Section 5.2.1.

Despite its limitations, the framework of tidal torque theory is very well suited for an analytical
description of most of the fundamental properties of the spin of dark matter haloes (cf. Chapter 4).
The statistical properties of both, the tensor of inertia and the shear field, are well understood in
linear theory. In Section 4.3.1 it was explained that the actual computation of the resulting angular
momentum correlation functions is quite involved due to the high dimensionality of the underlying
probability distribution function. In the analysis of intrinsic alignments one therefore usually exploits
the different correlation lengths of the tensor of inertia and the shear field, respectively. Recall that the
correlations of the latter are typically long ranged, whereas correlations in the inertia tensor primarily
arise from smaller scales. Thus, neglecting any correlations between tidal field and inertia tensor,
one can first average over all possible orientations of the inertia tensor and subsequently over the
realizations of the tidal field. Setting f (L, Lz) = C2 in equation (5.7) as discussed above one finds

ε+ = C2
[
(∂2

xΦS)2 − (∂2
yΦS)2

]
, (5.9a)

ε× = 2C2
(
∂2

xΦS + ∂2
yΦS

)
∂x∂yΦS. (5.9b)

These relations were first derived by Catelan et al. (2001), while my presentation above follows more
closely the argumentation of Mackey et al. (2002). As before, the derivatives are comoving derivatives
and the constant of proportionality C2 is a free parameter of the model which needs to be determined
from observations.

5.3. 3d formalism

The lensing effect results from gradients in the Newtonian gravitational potential. It can therefore be
related to the cosmic density field by means of the Poisson equation (2.33c). In the standard procedure
of cosmic shear analysis the shear field enters as a projection along the line-of-sight γ(χ, ϑ, ϕ) →
γ(ϑ, ϕ) (cf. equation 3.21), thus providing an integrated measurement of the evolution of the cosmic
density field. The projection, however, removes valuable information contained in its evolution as it
inevitably mixes different spatial scales. This loss of information can be avoided, or at least reduced,
by employing tomographic methods (Hu, 1999, 2002a; Takada & Jain, 2004; Kitching et al., 2011;
Schäfer & Heisenberg, 2012). After dividing the population of lensed galaxies into redshift bins, the
projection can be carried out piecewise over smaller redshift intervals thereby increasing the sensitivity
of the lensing signal.

The focus of this work rests on another possibility to overcome the limitations of the line-of-sight
projection: 3d weak lensing (Heavens, 2003; Castro et al., 2005). This formalism allows for a direct
three-dimensional mapping of the cosmic density field.

As detailed in the preceding section, in the two simple models I am considering in this work intrinsic
galaxy alignments may also be related to the Newtonian gravitational potential. The linear model is
very similar to the description of weak cosmic shear. I shall therefore start with a short repetition of the
formalism of 3d weak lensing in a very general way allowing for a convenient extension to intrinsic
alignments later on.

5.3.1. Cosmic shear

3d weak lensing is formulated in harmonic space. Since all fields of interest carry spin weight two, the
most natural choice of basis functions is given by a combination of spherical Bessel functions j`(z)
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(Abramowitz & Stegun, 1972) and spin-weighted spherical harmonics sY`m(n̂) (Hu, 2000). Any spin-s
quantity can then be expressed as

S (x) =

√
2
π

∑
`,m

∫
k2dk S `m(k)sY`m(n̂) j`(kx). (5.10)

Inverting the last equation yields the expansion coefficients

S `m(k) =

√
2
π

∫
d3x S (x) j`(kx)sY∗`m(n̂). (5.11)

Here, and in the remainder of this work a spatially flat universe will be assumed. The generalization to
a universe with arbitrary spatial curvature is straightforward. This spherical Fourier Bessel expansion
has most recently been applied in the analysis of baryon acoustic oscillations (Pratten & Munshi,
2013).

The cosmic shear field, as well as the convergence, are derived from the lensing potential (cf.
equation 3.17)

φ(x) = φ (χ, ϑ, ϕ) =
2
c2

∫ χ

0
dχ′

χ − χ′

χχ′
Φ

(
χ′, ϑ, ϕ

)
(5.12)

by applying twice the eth operator ð (Newman & Penrose, 1966; Goldberg et al., 1967) and its complex
conjugate ð̄

γ(x) =
1
2
ðð φ(x), (5.13)

κ(x) =
1
4

(
ðð̄ + ð̄ð

)
φ(x) =

1
2

∆ϑϕφ(x) (5.14)

(Castro et al., 2005), respectively. Since a spatially flat universe is assumed, the distances χ in equa-
tion (5.12) are comoving distances.

Applied to a spin-weighted spherical harmonic the eth operator acts as a spin raising operator

ð sY`m(n̂) =
√

(` − s)(` + s + 1) s+1Y`m(n̂), (5.15)

whereas its complex conjugate lowers the corresponding spin weight

ð̄ sY`m(n̂) = −
√

(` + s)(` − s + 1) s−1Y`m(n̂). (5.16)

Noting that the lensing potential is a true scalar, i.e. spin-0 quantity, the following relations hold

γ`m(k) =
1
2

√
(` + 2)!
(` − 2)!

φ`m(k), (5.17)

κ`m(k) = −
`(` + 1)

2
φ`m(k). (5.18)

The coefficients of the lensing potential can be written in compact form as

φ`m(k) = η`(k, k′)Φ0
`m(k′) (5.19)

by introducing the matrix

η`(k, k′) ≡
4
π

∫
χ2dχ j`(kχ)

∫ χ

0
dχ′

χ − χ′

χχ′
j`(k′χ′)

D+(a′)
a′

(5.20)

along with the following summation convention

A(k, k′)B(k′, k′′) ≡
∫

k′2dk′A(k, k′)B(k′, k′′). (5.21)
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The inclusion of the linear growth function D+(a) allows for the use of today’s gravitational poten-
tial Φ0

`m(k), which in turn is related to the density contrast via the (comoving) Poisson equation (cf.
equation 2.33c)

Φ`m(k) = −
3Ωm

2χ2
H

1
a
δ`m(k)

k2 . (5.22)

Here the Hubble distance χH ≡ c/H0 was introduced.
Having established a relation between the harmonic transform of the gravitational shear and that

of the cosmic density field (cf. equations 5.17 and 5.19), a relation to the actually accessible observ-
ables in weak lensing measurements is still missing. Therefore, one considers the following discrete
estimator

γ̂`m(k) =

√
2
π

∑
galaxies g

γg(xg) j`(kχg) 2Y∗`m(n̂g) (5.23)

(Heavens, 2003) constructed from the gravitational shears of individual galaxies. In order to calculate
the expectation value of this estimator, one has to take observational uncertainties, as well as some
specifications of the galaxy survey, into account.

In any realistic experiment the exact radial position of a galaxy is not known, however an estimate
of its photometric redshift may be available. The conditional probability for the estimated redshift z,
given the true redshift ztrue, is typically modelled by a Gaussian

p(χ|χtrue)dχ =
1

√
2πσz

exp
[
−

(z − ztrue)2

2σ2
z

]
dz. (5.24)

For simplicity, I choose rather optimistically σz = 0.02 independent of redshift.
The survey itself is assumed to be a full-sky experiment, i.e. it is homogeneous and isotropic in

its angular part. The radial galaxy number density is described by the distribution given in equa-
tion (3.29), i.e.

n(z)dz ∝ z2 exp

− (
z
z0

)β dz. (5.25)

Having Euclid in mind one expects 100 galaxies per square arcminute and sets z0 = 0.64 and β = 3/2
(Amendola, L. et al., 2012).

After the transition to a continuos formulation the expectation value of the estimator is given by

γ̄`m(k) = Z`(k, k′)M`(k′, k′′)γ`m(k′′), (5.26)

where I have defined the two new matrices by

Z`(k, k′) ≡
2
π

∫
χ′2dχ′ j`(kχ′)

∫
dχ p(χ′|χ) j`(k′χ) (5.27)

and
M`(k, k′) ≡

2
π

∫
χ2dχ j`(kχ) j`(k′χ)n(χ). (5.28)

As it is proportional to the linear density contrast, the expectation value itself is obviously zero. Valu-
able information, however, can be extracted from its covariance. It reads in terms of the linear matter
power spectrum Pδδ(k)

Cγγ
`

(k, k′) =
〈
γ̄`m(k)γ̄∗`′m′(k

′)
〉

= A2 (` + 2)!
(` − 2)!

B`(k, k′′)
Pδδ(k′′)

k′′4
B`(k′, k′′) (5.29)

with the constant A ≡ 3Ωm/4χ2
H and the matrix B`(k, k′) ≡ Z`(k, k′′)M`(k′′, k′′′)η`(k′′′, k′).

In contrast to conventional cosmic shear studies, which are confined to the two-dimensional sky,
the covariance matrix of the three-dimensional lensing field acquires off-diagonal elements in k-space.
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Accordingly, the shear field has different statistical properties with respect to the underlying cosmic
density field. The latter is statistically homogeneous and isotropic, characterized by a power spectrum
which is diagonal in harmonic space, i.e.〈

δ`m(k)δ∗`′m′(k
′)
〉

=
Pδδ(k)

k2 δD(k − k′)δ``′δmm′ . (5.30)

The lensing potential, as a projection along the line-of-sight, is no longer statistically homogeneous
and isotropic in radial direction. Conversely, the covariance matrix is still diagonal in multipole space,
highlighting that it does maintain statistical homogeneity and isotropy in angular direction at fixed
radial position.

The structure of the covariance matrix becomes more involved if nonlinear structure growth is con-
sidered. Beyond linear theory the growth of cosmic structures becomes scale-dependent. Its time, or
equivalently redshift, dependence cannot longer be expressed in terms of the growth function. Ac-
cordingly, equation (5.19) needs to be replaced by

φ`m(k) =
4
π

∫
χ2dχ j`(kχ)

∫ χ

0
dχ′

χ − χ′

χχ′
j`(k′χ′)Φ`m(k′, χ′). (5.31)

The computation of the cosmic shear covariance matrix then requires the evaluation of the matter
power spectrum for modes located at different (comoving) distances (or instances of time), i.e. a term
of the form Pδδ(k, χ, χ′) enters equation (5.29) inside the χ-integrations. For further progress Castro
et al. (2005) suggested, and justified, to set Pδδ(k, χ, χ′) '

√
Pδδ(k, χ)Pδδ(k, χ′). From this it is easy to

recover my expressions which are restricted to linear structure formation

Pδδ(k, χ, χ′) =
√

Pδδ(k, χ)Pδδ(k, χ′) =

√
D2

+(a)Pδδ(k)D2
+(a′)Pδδ(k) = D+(a)D+(a′)Pδδ(k). (5.32)

Thus, the power spectrum does not enter the χ-integrations.
Large-scale modes of the estimator (5.26) can be safely treated as Gaussian random fields, hence

the corresponding likelihood is completely determined by the covariance matrix (5.29). Extending the
Gaussian likelihood to small-scale modes, however, is expected to introduce a significant bias in the
derived cosmological parameters (Takada & Jain, 2009; Sato & Nishimichi, 2013). While this is a
consequence of nonlinear structure growth, a non-Gaussian likelihood may also arise from the finite
volume of any realistic survey. Here, large-scale modes, which exceed the survey, couple adjacent
large wavelength perturbations. This results in a (additional) non-Gaussian signature on scales which
are much smaller than the survey (Takada & Hu, 2013).

5.3.2. Intrinsic alignments

For a realistic experiment the gravitational shear needs to be replaced by the observed ellipticity ε(o)

in the estimator given by equation (5.23). In the absence of intrinsic alignments the covariance matrix
of the gravitational shear field is almost unaffected by this substitution. It just acquires an additional
shot noise term given by

N`(k, k′) =
σ2
ε

4
M`(k, k′), (5.33)

where σ2
ε denotes the variance of the observed ellipticity, typically σ2

ε . 0.1 (Heavens, 2003).
The situation, however, is completely different when the intrinsic galaxy shapes are correlated.

There are then basically three distinct contributions to the total covariance (omitting the shape noise
for simplicity in the following)〈

ε(o)
`m (k)ε(o)∗

`′m′(k
′)
〉

= C`(k, k′) = Cγγ
`

(k, k′) + Cεε
` (k, k′) + Cεγ

`
(k, k′). (5.34)

Assuming a completely covered sky guarantees that the covariance matrix is diagonal in ` and m. The
second term describes II-alignments, whereas the third one captures GI-alignments. The last term
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solely arises from the correlation between the intrinsic shape of a foreground galaxy and the lensing
induced shear of a background galaxy. Lensed galaxies are typically located far enough from the
lens in order to safely consider intrinsic shape and tidal field being uncorrelated, i.e. their distance
exceeds several correlation lengths. Concentrating on linear theory, this term is only present in the
linear model, because in case of the quadratic model the covariance involves the bispectrum of the
gravitational potential which identically vanishes for a Gaussian random field. In order to compute
the individual contributions to the covariance one has to find the corresponding 3d expressions for the
intrinsic ellipticities first.

Linear model

I start with the linear model as given in equation (5.6). In a first step I convert the comoving derivatives
into angular derivatives, i.e.

ε+ = −C1
(
∂2

x − ∂
2
y

)
ΦS = −

C1

χ2

(
∂2
θ1
− ∂2

θ2

)
ΦS(χθ, χ), (5.35a)

ε× = −2C1∂x∂yΦS = −2
C1

χ2 ∂θ1∂θ2ΦS(χθ, χ), (5.35b)

where θ = (θ1, θ2) denotes a two-dimensional angular position on the sky. In order to facilitate
the incorporation of the intrinsic ellipticity field in the 3d formalism the angular derivatives are then
replaced by covariant derivatives (A.1) on the (unit) sphere. This step might seem worrisome because
the tidal shearing responsible for the intrinsic ellipticity is not confined to the surface of the observed
sky. However, in practice one is only interested in patches of the sky small enough to be considered as
flat, so that then covariant derivatives reduce to partial derivatives again. The non-vanishing Christoffel
symbols on the two-dimensional sphere are Γϑϕϕ = − sinϑ cosϑ and Γ

ϕ
ϑϕ

= Γ
ϕ
ϕϑ

= cotϑ. One then finds

ε+ = −
C1

2χ2

(
∇ϑ∇ϑ − csc2 ϑ∇ϕ∇ϕ

)
ΦS, (5.36a)

ε× = − cscϑ
C1

χ2 ∇ϑ∇ϕΦS. (5.36b)

The additional cscϑ term in the last expression mirrors the fact that the two ellipticity modes form the
components of a rank two tensor rather than those of a vector, i.e.

εµν =

(
ε+ sinϑ ε×

sinϑ ε× − sin2 ϑ ε+

)
, (5.37)

and that the basis vectors are orthogonal but not orthonormal.
The great advantage of reformulating the intrinsic ellipticity in terms of covariant derivatives is

that one can now exploit its relation to the eth operator (Castro et al., 2005). The (complex) galaxy’s
ellipticity can be written in the most compact form, namely as second eth-derivative of a suitably
constructed scalar potential

ε(x) = −
C1

2
ððΨ(x) (5.38)

with

Ψ(χ, ϑ, ϕ) ≡
ΦS(χ, ϑ, ϕ)

χ2 (5.39)

in complete analogy to the weak lensing case (cf. equation 5.13), replacing the lensing potential by the
auxiliary potential Ψ. There is one important difference between the two potentials. In contrast to the
lensing potential, the field Ψ does not evolve in time because it is assumed that galaxy formation takes
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place during matter domination. Accordingly, the following relation for the harmonic coefficients is
found

ε`m(k) = −
C1

2

√
(` + 2)!
(` − 2)!

Ψ`m(k). (5.40)

They are connected to the smoothed Newtonian gravitational potential by

Ψ`m(k) = η̃`(k, k′)Φ
S,0
`m (k′) (5.41)

with
η̃`(k, k′) =

2
π

∫
dχ j`(kχ) j`(k′χ). (5.42)

Due to the missing time dependence of the matrix η̃`(k, k′) the matrix B̃`(k, k′), which is defined in
complete analogy to the cosmic shear case, takes the particularly simple form

B̃`(k, k′) =
2
π

∫
dχ j`(kχ)

∫
dχ′p(χ|χ′) j`(k′χ′)

n(χ′)
χ′2

. (5.43)

Finally, one arrives at the expressions for the covariance matrix of the II-alignments

Cεε
` (k, k′) =

〈
ε̄`m(k)ε̄∗`′m′(k

′)
〉

= A2 (` + 2)!
(` − 2)!

B̃`(k, k′′)
Pδδ(k′′)

k′′4
B̃`(k′, k′′) (5.44)

and of the GI-alignments

Cεγ
`

(k, k′) =
〈
ε̄`m(k)γ̄∗`′m′(k

′)
〉

= −A2 (` + 2)!
(` − 2)!

B̃`(k, k′′)
Pδδ(k′′)

k′′4
B`(k′, k′′). (5.45)

It is interesting to note that without the inverse χ2-weighting of the gravitational potential in equa-
tion (5.39), the matrix η̃ would reduce to the unit matrix because of the orthogonality relation of the
spherical Bessel functions (cf. equation B.4). In this case, the intrinsic ellipticity field would be a
statistically homogeneous field and the non-diagonal structure of its covariance matrix would solely
result from the construction of the estimator ε̄`m(k).

Quadratic model

In order to find the 3d generalization of the quadratic alignment model the steps carried out for the
linear model in the previous section could, in principle, be repeated. However, one can shorten the
derivation by noting that

ε =
C2

χ4

(
∂2
θ1

ΦS + ∂2
θ2

ΦS
) (
∂2
θ1

ΦS − ∂
2
θ2

ΦS + 2i∂θ1∂θ2ΦS
)
. (5.46)

One then finds
ε(x) =

C2

2
[
ððΨ(x)

] [(
ðð̄ + ð̄ð

)
Ψ(x)

]
, (5.47)

where the potential Ψ is defined as before (cf. equation 5.39). Obviously, the ellipticity in equa-
tion (5.47) has spin weight two. It is the most general quadratic function of the tidal shear tensor with
spin-2.

Aiming at the statistics of the intrinsic alignments one needs to relate the harmonic coefficients of
the ellipticity field to that of the gravitational potential next. This relation is much more involved than
in case of the linear model. I start with the intermediate result

ε`m(k) = (−1)m+1

√
2
π3 C2

∑
`1,`2,m1,m2

`1(`1 + 1)

√
(`2 + 2)!
(`2 − 2)!

I`1`2`(k1, k2, k) 2W
`1`2`
m1m2m

× η̃`1(k1, k3)ΦS,0
`1m1

(k3)η̃`2(k2, k4)ΦS,0
`2m2

(k4).

(5.48)
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Here several new quantities, which emerge from the quadratic structure in the potential, were intro-
duced. The mode coupling is captured by

I`1`2`(k1, k2, k) ≡
∫

χ2dχ j`1(k1χ) j`2(k2χ) j`(kχ), (5.49)

while the angular mixing matrix is given by

2W
`1`2`
m1m2m ≡ Π`1`2`

(
`1 `2 `

0 −2 2

) (
`1 `2 `

m1 m2 −m

)
(5.50)

with

Π`1`2` ≡

√
(2`1 + 1)(2`2 + 1)(2` + 1)

4π
. (5.51)

The sixfold indexed quantities denote Wigner 3 j-symbols which are related to spherical harmonics by∫
dΩ s1Y`1m1(n̂) s2Y`2m2(n̂) s3Y`3m3(n̂) = Π`1`2`3

(
`1 `2 `3
−s1 −s2 −s3

) (
`1 `2 `3
m1 m2 m3

)
(5.52)

(Hu, 2000). The corresponding expectation value of the estimator is then obtained from equation (5.26)
replacing γ`m(k) by ε`m(k).

For the calculation of its covariance one needs to evaluate the trispectrum of the Newtonian poten-
tial. Since I am focusing on linear theory, the trispectrum is completely characterized by its reducible
part and I can therefore invoke Wick’s theorem (see Appendix A.2.1). Here the final result is quoted,
whereas a detailed derivation is relegated to Appendix B.1:

Cεε
` (k, k′) =

A4C2
2

2` + 1

∑
`1,`2

Bk
``1`2

(k3, k4)
Pδδ(k3)

k4
3

Pδδ(k4)
k4

4

(
Bk′
``1`2

(k3, k4) + (−1)`1+`2+` Bk′
``2`1

(k3, k4)
)
.

(5.53)
The definition of the matrix Bk

``1`2
(k3, k4) is given in equation (B.11). Note that the covariance matrix

is diagonal in multipole space reflecting the fact that full sky coverage was assumed. While it is
independent of m1,2, the quadratic form of the intrinsic ellipticities requires the evaluation of the
double sum in `1,2, leaving the numerical effort for its computation tremendous (cf. Section 5.4.2).

E/B-mode decomposition

Although I will not apply this formalism, I shall now briefly address the so-called E/B-mode (curl–
gradient) decomposition, already mentioned in Section 3.3, of the intrinsic and lensing induced shear
field for completeness. Since the gravitational shear tensor is symmetric and traceless (cf. equa-
tion 5.37 replacing ε by γ), it proves convenient to convert its two degrees of freedom into two scalar
functions with a definite behaviour under parity transformations

Eγ ≡ ∇
−2

(
∇α∇βγαβ

)
, (5.54a)

Bγ ≡ ∇−2
(
∇α∇τγαβετβ

)
(5.54b)

(Stebbins, 1996; Kamionkowski et al., 1997; Crittenden et al., 2002), where

εαβ ≡

(
0 sinϑ

− sinϑ 0

)
(5.55)

and ∇−2 is the inverse Laplace operator on the sphere. The gradient part or E-mode is a true scalar,
i.e, parity conserving, while the curl part or B-mode is a pseudo scalar, i.e. changing sign under
reflections. Any statistical analysis of weak lensing data can then be performed in terms of the angular
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power spectra of these two fields, which are invariant under rotations of the reference frame in contrast
to the shear components.

The E- and B-mode of any spin-2 field η can be most readily accessed in harmonic space because
there is a simple relation between the expansion coefficients of the two scalar functions and those of η
and its complex conjugate η∗, which carries spin weight −2, (Zaldarriaga & Seljak, 1999)

E`m(k) = −
1
2

(2η`m(k) + −2η`m(k)) , (5.56a)

B`m(k) =
i
2

(2η`m(k) − −2η`m(k)) . (5.56b)

Due to the fact that the expansion coefficients of the cosmic shear field and its complex conjugate are
identical, i.e. 2γ`m = −2γ`m, the shear field possesses no B-mode. Alternatively, this can be seen by
recalling that any spin-2 quantity η may be expressed in terms of a complex potential

η(x) =
1
2
ðð (φE(x) + i φB(x)) (5.57)

(Newman & Penrose, 1966; Castro et al., 2005) and realizing that the lensing potential is purely real.
It turns out that the statistics of the lensing E-mode are identical to that of the cosmic shear field, i.e.
Cγγ
`

(k, k′) = CEγEγ
`

(k, k′), provided that the expansion coefficients of the potential φEγ are appropriately
normalized (Castro et al., 2005).

The detection of a B-mode in weak lensing data may then be used as a diagnostic for systematical
errors in the experiment, assuming that any other potential B-mode source can be excluded. Possible
B-mode contamination results from higher-order lensing effects, like source-lens clustering (Schneider
et al., 2002), multiple lensing along the line-of-sight (Krause & Hirata, 2010) or violations of the Born
approximation (Cooray & Hu, 2002; Shapiro & Cooray, 2006). Another possible source are intrinsic
alignments. Obviously, the linear model cannot introduce any B-mode because in this model the
intrinsic ellipticities are obtained from a real potential as well. Thus, the same reasoning as in the
case of cosmic shear applies. The quadratic model, however, introduces inevitably a non-vanishing
B-mode as can be seen as follows: Looking at equation (5.48) and realizing that

ððY`m(n̂) =

√
(` + 2)!
(` − 2)! 2Y`m(n̂), (5.58a)

ð̄ð̄Y`m(n̂) =

√
(` + 2)!
(` − 2)!−2Y`m(n̂), (5.58b)

one notes that the only potentially spin-dependent part is given by the angular mixing matrix defined
in equation (5.50). Carrying out the decomposition of ε∗(x) = ε+(x) − iε×(x) one readily finds

−2W
`1`2`
m1m2m = (−1)`1+`2+`

2W
`1`2`
m1m2m (5.59)

and therefore 2ε`m(k) , −2ε`m(k). Consequently, for the quadratic model the B-mode of the ellipticity
field does not vanish.

Finally, I would like to mention that there are physical processes which transfer power from the
E-mode of the intrinsic ellipticity field into its B-mode and vice versa. Recently, Giahi & Schäfer
(2013a,b) investigated this E/B-mode conversion due to peculiar motion and gravitational lensing,
respectively, in the flat-sky limit.
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5.4. Numerical results

5.4.1. Linear model

After the derivation of the various covariance matrices in the last section, I would now like to illustrate
my findings by presenting some numerical results. I focus on the linear alignment model, which in
contrast to the quadratic model, exhibits both II- and GI-alignments. In general, the 3d weak shear
formalism is numerically very demanding due to the large number of k-integrations required. A further
complication arises from the fact that the functions which are to be integrated contain spherical Bessel
functions which are highly oscillatory. Ayaita et al. (2012) showed how the numerical efforts can be
minimized. I adapt their strategy in the numerical evaluation of the covariance matrices of the II- and
GI-alignments predicted by the linear model.

In order to make the computation feasible I restrict my analysis to a (discrete) k-space interval from
kmin = 10−3 Mpc−1 to kmax = 10−1 Mpc−1 covered by Nk = 200 equidistant steps. Therefore no
additional filtering to the CDM power spectrum is applied. Likewise, the finite wavevector interval
corresponds to a sharp cutoff filter in Fourier space which has been used by Hirata & Seljak (2004)
in their two-dimensional analysis. Furthermore, Nz = 1000 steps in redshift space ranging from
zmin = 10−4 to zmax = 10 are considered.

In accordance with Hirata & Seljak (2004); Bridle & King (2007); Joachimi et al. (2011) the value
for the constant of the linear alignment model, C1, is chosen in such a way that it matches the Super-
COSMOS observations at low redshift (Brown et al., 2002): C1H2

0 = 8.93 × 10−3 (here natural units
are used where the speed of light is set to unity).

First, I concentrate on the diagonal elements of the various covariance matrices. Figure 5.2 shows
the results for four different multipoles, ` = 10, 20, 100 and 200, assuming a shallow survey with
zmedian = 0.3. Note the different k-range in each of the plots. Only the range where the amplitude of
the covariance matrix is appreciable is depicted. The first observation is the expected trend that the
larger the multipole order, the larger the k-value where the covariance matrix peaks. Interestingly, the
peak position slightly differs for all three covariance matrices. The differences in the peak location
increases with increasing multipole order. At low multipoles (` = 10, 20, corresponding to an angular
scale of about ten degrees) the weak lensing signal dominates. It exceeds the signal of both intrinsic
alignment types by more than one order of magnitude. For the smallest multipole the amplitude of
the II-alignments is compatible to that of the GI-alignments but then starts to dominate the alignment
signal and finally exceeds it by more than one order of magnitude for ` = 200. On this angular scale
the GI-contribution is almost as large as the cosmic shear signal. Consequently, for ` = 200 the total
covariance matrix is dominated by the II-alignment term.

The situation is different for a deeper survey. In Figure 5.3 I show the results for a survey with
zmedian = 0.9 corresponding to the Euclid mission. As before, the diagonal elements of all three
covariance matrices for ` = 10, 20, 100 and 200 are plotted. Again, only the k-range featuring
substantial amplitude is shown for clarity. One finds that weak lensing contributes most to the diagonal
elements of the covariance matrices for all four multipoles under consideration. The difference with
respect to the II-contributions decreases with multipole order (from roughly three orders of magnitude
for ` = 10 to one order of magnitude for ` = 200). While on large angular scales the GI-contributions
are slightly enhanced in comparison to those from the II-alignments, the latter dominate vastly on
smaller scales where the II-contributions exceed the GI-signal by more than one order of magnitude.
Furthermore, one can see that the differences in the peak positions are much lees pronounced than for
the shallow survey.

Confronting the results obtained for the two different surveys one immediately recognizes that the
maxima are shifted to larger scales in case of the higher redshift sample. It is interesting to note that for
both survey specifications II-alignments on the one hand, and weak cosmic shear and GI-alignments
on the other hand, exhibit a different dependence on the wavenumber k. The weak lensing as well as
the GI-signal fall off much steeper than that of the II-alignments.
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Figure 5.2: Diagonal elements of the co-
variance matrices of the cosmic shear
field, II- and GI-alignments for the lin-
ear model. The results for multipoles ` =

{10, 20} (top panel) and ` = {100, 200}
(bottom panel) are shown. The median
redshift has been set to zmedian = 0.3.
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A direct comparison of my results to the two-dimensional analysis carried out by Hirata & Seljak
(2004) is of course not possible. However, one can draw some general, qualitative conclusions. As
Hirata & Seljak (2004), I find that in case of a shallow survey the II-contributions dominate over the
weak cosmic shear signal as well as the GI-signal. Increasing the depth of the survey the situation
is reversed and lensing is the dominant contribution. This is also true for the two-dimensional power
spectrum. However, as an important difference with respect to the work of Hirata & Seljak (2004) I
find that for the deeper survey the major contamination of the weak lensing signal is not given by the
GI-alignments but by the II-alignments.

Finally, I look at the shape of the full three-dimensional covariance matrices. Figure 5.4 shows from
top to bottom the covariance matrices of the cosmic shear field, II-alignments and GI-alignments for
multipoles ` = 10 (left panel) and ` = 100 (right panel), respectively. Here, only the Euclid-like
high-redshift sample was considered. Note that not the entire k-range is shown but that the figure
concentrates on the part from which the covariance matrices receive appreciable contributions. As
already noted before, it is common to all three covariance matrices that the higher the multipole order
the more the signal is shifted towards smaller scales. The individual shape of the matrices, however, is
quite different. While the weak lensing signal is rather circular, the covariance of the II-alignments is
elongated along the diagonal of the k-plane. This corresponds to the slow decline of the II-signal with
increasing wavenumber, which has already been noticed during the discussion of the diagonal entries
above. In contrast to this, the GI-contributions are much more compact. Their extent in the k-plane
is several times smaller than that of the II-alignments. Interestingly, for ` = 100 the contributions of
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Figure 5.3: Diagonal elements of the co-
variance matrices of the cosmic shear
field, II- and GI-alignments for the lin-
ear model. The results for the multi-
poles ` = {10, 20} (upper panel) and ` =

{100, 200} (lower panel) are shown. In
contrast to the shallow survey assumed
in Figure 5.2 the median redshift has
now been set to zmedian = 0.9 as antici-
pated by the Euclid mission.

both alignment types are almost completely concentrated on the diagonal, whereas the shape of the
cosmic shear covariance resembles that of an isosceles triangle. Especially the GI-alignments become
extremely narrow in the k-plane.

These findings allow a first qualitative estimate of how intrinsic alignments may bias cosmological
parameters inferred from 3d cosmic shear studies. With respect to the pure cosmic shear signal the
total covariance matrix, i.e. the sum of all three matrices, would be tilted towards larger k-modes
since the contributions from the II-alignments add power on smaller scales, whereas those of the GI-
alignments reduce the amplitude at smaller wavenumbers. This tilt suggests that the normalization of
the power spectrum σ8, the matter fraction Ωm and the Hubble parameter h are particularly biased.
The actual magnitude of this bias, however, is hard to predict because the effect of power enhancement
and suppression is different for different multipoles.

5.4.2. Quadratic model

There are two main complications in evaluating the quadratic model numerically, the double sum in
equation (5.53) and the mode coupling integral Ĩ`1`2`(k1, k2, k) defined by equation (B.5). The double
sum results from the product of two gradient fields (cf. equation 5.47); the corresponding multipoles
have to be considered as a kind of inner indices. Therefore, a truncation of the sum at relatively low
multipoles, `1,2 ∼ O(102), is not permissible. The very fact that this sum converges rather slowly casts
a shadow of doubt on a numerical implementation.

The situation is further aggravated by the evaluation of the mode coupling integral Ĩ`1`2`(k1, k2, k).
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Figure 5.4.: Covariance matrices for the linear alignment model. From top to bottom: covariance of
the lensing induced shear field (first row), II-alignments (second row) and GI-alignments (third row) for
multipoles ` = 10 (left column) and ` = 100 (right column). The median redshift was chosen to be zmedian =

0.9.

For large multipoles, as required by the double sum in order to converge, the computation is numer-
ically problematic due to the oscillatory behaviour of higher-order spherical Bessel functions. This
kind of integrals appears in nuclear scattering theory and analytical attempts to its evaluation exist
(Mehrem et al., 1991; Mehrem & Hohenegger, 2010). These analytical expressions, however, contain
multiple sums over Wigner 3 j- and 6 j-symbols, as well as associated Legendre functions, making the
practical use for an efficient computation of a large number of these integrals quite limited. A more
promising approach might be to resort to the asymptotic forms of spherical Bessel functions in the
high `-limit. But this obviously requires an elaborate distinction of cases since the multipoles enter
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the sum of equation (5.53) in all possible combinations. Aiming at the constitutive formalism for a
description of intrinsic alignments in the framework of 3d cosmic shear the explicit development of
such a scheme is beyond the scope of this thesis and is reserved for future work.

5.5. Summary

I developed a formalism to incorporate the intrinsic alignment of galaxy shapes into the framework of
3d cosmic shear. For the description of the intrinsic galaxy ellipticities two different physical models
were used, one linear and the other quadratic in the cosmic tidal field, respectively.

(i) Introducing an appropriate auxiliary scalar potential, I was able to formulate the intrinsic ellip-
ticity field for each of the two models in terms of second eth-derivatives emphasizing the spin-2
character of the ellipticity field.

(ii) I then derived expressions for the covariance matrices of the intrinsic alignments. Both ellip-
ticity models give rise to II-alignments but for Gaussian density fluctuations GI-alignments are
only present in the linear model.

(iii) In contrast to conventional two-dimensional weak lensing analyses, the covariance matrix of the
three-dimensional shear field acquires off-diagonal elements in k-space reflecting the fact that
the lensing potential is not a statistically homogeneous field. The same is true for the covari-
ance matrices of the II- and GI-alignments. Statistical homogeneity, however, is maintained in
the angular parts of the ellipticity and shear field, respectively, in case of an idealized observa-
tion with access to the full sky. As a consequence, the corresponding covariance matrices are
diagonal with respect to the angular multipoles ` and m.

(iv) In addition, I considered the E/B-mode decomposition of the ellipticity field and found that in
case of the linear model the B-mode is identically zero. Thus, for the linear model the intrinsic
ellipticities exhibit the same behaviour under parity transformations as those induced by lensing.
Contrary to that, the quadratic model does possess a non-vanishing parity odd B-mode.

(v) I numerically evaluated the covariance matrices of both II- and GI-alignments for the linear
model and compared them to that of cosmic shear. In case of a shallow survey (zmedian = 0.3)
I found that for large multipoles the II-alignments dominate the signal underlining the fact
that intrinsic alignments are a small-scale phenomenon. For a deep redshift survey like Euclid
(zmedian = 0.9), however, the lensing signal becomes dominant for all multipoles. In this case,
the II-alignment contamination is more than one order of magnitude smaller with respect to
the shear signal. Furthermore, I showed that in contrast to two-dimensional lensing studies the
GI-contributions are only slightly enhanced, if at all, in comparison to the II-alignments which
are the dominant contaminant on almost all scales for both survey specifications.

(vi) Finally, I investigated the shape of the various covariance matrices in the k-k′-plane. Concentrat-
ing on a Euclid-like survey I found a fundamental difference between the covariance matrices of
cosmic shear on the hand and of II- and GI-alignments, respectively, on the other hand. While
the shape of the lensing covariance matrix is rather circular that of the intrinsic alignments is
strongly elongated along the diagonal k = k′. For large multipoles (` ∼ 100) the covariance
matrices of both alignment types tend to almost completely concentrate along this diagonal.

Having established the basic formalism for a consistent treatment of the linear and quadratic align-
ment model in the framework of 3d weak lensing, future efforts should now be addressed to a detailed
quantitative study of their impact on cosmological parameters derived from 3d cosmic shear measure-
ments.
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6 Chapter 6

The impact of intrinsic alignments for
cosmic shear measurements

In this chapter the impact of intrinsic alignments for conventional two-dimensional cosmic
shear measurements is considered. In particular I quantitatively investigate the bias which
arises when weak lensing data are interpreted with a model which does not account for the
intrinsic correlations present in the observed ellipticity field. In order to complement previous
studies I concentrate on the quadratic alignment model. The parameters entering the alignment
model may be inferred from observations other than galactic shape measurements avoiding
marginalization over a large number of nuisance parameters. This allows for a clear distinction
between statistical and systematical errors. It is found that the matter density and the normal-
ization of the linear matter power spectrum are most severely biased, whereas the equation of
state parameter of the dark energy component is almost totally unaffected. The latter result is
in contrast to findings from investigations employing the linear alignment model.

The contents of this chapter have been published in Capranico, Merkel & Schäfer (2013).

6.1. Introduction

In the last chapter it was explained why the intrinsic alignment of galaxies is expected to bias cosmo-
logical parameters which are derived from weak lensing measurements under the null hypothesis of
uncorrelated galaxy shapes. Due to the numerical complexity of 3d cosmic shear analyses the quanti-
tative investigation of this bias is now carried out in the computationally much simpler framework of
two-dimensional weak lensing. I do not employe tomographic methods but use the lensing potential
in projection along the line-of-sight.

Similar studies have been carried out by Bridle & King (2007); Joachimi & Bridle (2010); Kirk
et al. (2010, 2011, 2012), which found out that in particular the equation of state parameter of the dark
energy component is severely biased. In all these studies the intrinsic shape correlations of galaxies
are described by the linear alignment model. The impact of intrinsic alignments derived from the
quadratic model, however, has not yet been considered and is therefore the main motivation for this
part of my work.

An important aspect of angular momentum based alignment models is that their parameters may
be constrained from information other than ellipticity data. The relation between the galactic angular
momentum and the galaxy’s shape is merely geometrically (cf. Section 5.2.2). Thus, knowledge
of the statistical properties of galactic angular momenta in principle suffices to compute ellipticity
correlations. For instance, the fact that galactic angular momentum can only build up if the shear
tensor and the tensor of inertia are not simultaneously diagonalizable (cf. Section 4.2.6) gives rise to
the angular momentum correlation model of Lee & Pen (2001). Here the only relevant parameter for
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the angular momentum distribution is the so-called misalignment parameter. It describes the average
orientation of the protohalo with respect to the tidal shear field. It may be inferred from structure
formation simulations without any reference to the galactic ellipticity. In addition to that, geometrical
effects like the finite thickness of any real galaxy can be captured by introducing another parameter
that is then obtained from the average disc morphology of a given galaxy survey. Consequently, one
is left with a two parameter model of intrinsic alignments. Both parameters have a distinct physical
meaning and are complementary to ellipticity measurements. Such an ellipticity model was laid out
by Crittenden et al. (2001).

In the following the actual computations will be carried out using the quadratic model in the form
of equation (5.9). Albeit being less general than the ansatz (5.8) it is technically superior and the
functional form of the resulting intrinsic ellipticity power spectra is quite similar for both approaches
(cf. Capranico et al., 2013). In fact, the average misalignment of shear and inertia tensor and the disc
thickness are used as physical parameters to determine the constant C2. It is chosen in such a way that
the large-scale power of the intrinsic alignments is the same for both approaches. This is well justified
by the reasonable assumption that large scales are least sensitive to the actual differences between the
two approaches.

This chapter is structured as follows: In Section 6.2 several measures to describe the statistics of the
intrinsic ellipticity field in comparison to the cosmic shear field are introduced. Section 6.3 is devoted
to the quantitative analysis of how strong cosmological parameters are biased, when they are derived
from weak lensing measurements without taking intrinsic alignments into account. Finally, the main
findings of this chapter are summarized in Section 6.4.

As reference cosmology I choose a spatially flat wCDM model, which is characterized by the fol-
lowing set of parameters. The matter content is described by the matter density parameter Ωm = 0.25,
including the small baryon fraction Ωb = 0.04. The equation of state parameter of the dark energy
component is set to w = −0.9, while the dimensionless Hubble parameter takes the value h = 0.72.
Finally, the primordial adiabatic density fluctuations are assumed to be scale invariant, i.e. ns = 1 with
a normalization given by σ8 = 0.8.

6.2. Intrinsic ellipticity correlations

6.2.1. Angular power spectra

The starting point for the computation of the intrinsic ellipticity power spectra is the Fourier transform
of equation (5.9). More precisely the Fourier transform of its E/B-mode decomposition (cf. equa-
tion 3.22) is used. As already mentioned in Section 5.3.2, II-alignments derived from the quadratic
model exhibit a non-vanishing B-mode in contrast to the weak lensing field. Being quadratic in
the gravitational potential, Fourier transformation of the gradient/curl-mode results in a convolution
(Mackey et al., 2002)

X(k) = C2

∫
d3k′

(2π)3 ΦS(k′)ΦS(k − k′) fX(k′⊥, k⊥ − k′⊥, k
′
z), X ∈ {E, B}. (6.1)

Here I assume that the line-of-sight coincides with the z-axis. The entire dependence on the geometry
of the wavevector configuration, which accounts for the differential structure in harmonic space, is
contained in the functions fE and fB, respectively. As in case of the weak lensing shear field gradients
along the line-of-sight are neglected (cf. Section 3.3). Thus, k⊥ denotes a two-dimensional wavevec-
tor, i.e. k⊥ = (kx, ky). The explicit form of these functions is relegated to Appendix B.2. There I
also discuss their symmetry properties, which can be used to simplify the (three-dimensional) power
spectra. These will be computed next. The computation of the power spectra requires the evaluation
of the four-point function of the Newtonian potential. This is accomplished by again invoking Wick’s
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theorem (A.6). The final expression reads

PXX(k) = 2C2
2

∫
d3k′

(2π)3 PΦΦ(k′)PΦΦ(|k − k′|) f 2
X(k′⊥, k⊥ − k′⊥, k

′
z). (6.2)

Applying Limber’s equation (3.24) yields for the corresponding angular power spectra

Cεε
XX(`) =

∫ χH

0

dχ
χ2 W2

ε (χ)PXX(`/χ) (6.3)

with the weighting function Wε(χ) = p(z) dz
dχ . The galaxy distribution is that of equation (3.29) with

the parameters of a Euclid-like experiment: z0 = 0.64, β = 3/2. Since I assume Gaussian fluctuations,
GI-alignments are not present in the quadratic model (cf. Section 5.3.2).

The resulting power spectra are shown in Figure 6.1. I employed a Gaussian smoothing of the matter
power spectrum (cf. equation 4.20) entering equation (6.2). The smoothing scale was set in such a
way that galaxy size fluctuations corresponding to objects of 1011 M� h−1 were filtered. The spectra of
the II-alignments are accompanied by the cosmic shear power spectrum. The latter is shown with and
without the small-scale power enhancement due to nonlinear structure growth. The functional form
of gradient and curl mode of the intrinsic alignment signal is very similar. The power in the E-mode
dominates the intrinsic alignment contributions but is about one order of magnitude smaller than the
nonlinear cosmic shear signal. If nonlinear structure growth is not taken into account, the E-mode of
the II-alignments even exceeds the amplitude of gravitational lensing on small scales (` ∼ 1000). At
even smaller scales both intrinsic alignment signals rapidly decrease due to the mass cutoff imposed.
Albeit being well below the cosmic shear spectrum, the B-mode of the II-alignments may exceed the
contributions of other B-mode sources which have been discussed in Section 5.3.2. For illustration the
expected shape noise of the Euclid mission (cf. equation 6.11) is also plotted.

Figure 6.1: Angular power spectrum of the
E- and B-mode of the intrinsic ellipticity
field as obtained from the quadratic model.
For comparison both, the linear and nonlin-
ear cosmic shear power spectrum, as well
as the anticipated shape noise of the Euclid
mission (10 and 100 times amplified) are
shown, too.
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6.2.2. Aperture measures

In addition to the angular power spectra I compute two more measures of the intrinsic ellipticity field.
Aperture measures are motivated by the fact that in an experiment correlation functions

ξεε++(θ) = 〈ε+(θ1)ε+(θ2)〉 (6.4a)

ξεε××(θ) = 〈ε×(θ1)ε×(θ2)〉 , (6.4b)

with θ = |θ1−θ2| are more readily accessible than the corresponding power spectra. Due to the different
parity behaviour the cross-correlation ξεε+× is identically zero. Correlation functions and power spectra
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can be converted into each other according to

ξεε++(θ) + ξεε××(θ) =
1

2π

∫
`d`

[
Cεε

EE(`) + Cεε
BB(`)

]
J0(`θ), (6.5a)

ξεε++(θ) − ξεε××(θ) =
1

2π

∫
`d`

[
Cεε

EE(`) −Cεε
BB(`)

]
J4(`θ) (6.5b)

(e.g. Kamionkowski et al., 1998). Analogous expressions hold for the weak lensing shear field. Fig-
ure 6.2 shows the angular correlation functions of the intrinsic ellipticity field (6.4). Additionally,
those of the cosmic shear field are shown, as well. For the calculation the power spectra depicted in
Figure 6.1 were used. In particular, the gravitational lensing correlation functions include the small-
scale power enhancement due to nonlinear structure growth. The plot suggests that the correlation
length in the ellipticity field is about ten arcminutes. Noticeable differences between the two correla-
tion functions arise on separations larger than three arcminutes.
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Figure 6.2: Angular correlation func-
tions of the intrinsic ellipticity field. For
comparison the corresponding quantities
of the weak lensing field are shown, as
well.

The Bessel functions Jn(z) appearing in relation (6.5) are quite broad. Therefore, measures which
filter the power spectra with a narrower function would be desirable. This motivates to introduce the
variance of the shear/ellipticity field within a circular aperture of radius θ (Kaiser, 1992; Jain & Seljak,
1997)

σ2
αα(θ) =

2
π

∫
`d`

[
Cαα

EE(`) + Cαα
BB(`)

] [ J1(`θ)
`θ

]2

, α ∈ {ε, γ}. (6.6)

In case of the weak lensing shear field the B-mode is zero (cf. equation 3.26) and measurements of the
variance σ2

γγ yield the filtered weak lensing angular power spectrum as desired. In contrast to this II-
alignments derived from the quadratic model do exhibit a non-vanishing curl mode. Thus, a measure
which allows for a separation of the signal in its E- and B-mode part would be more appropriate. One
possibility is provided by the aperture mass statistics (Schneider et al., 1998, 2002; Crittenden et al.,
2002)

M(θ) = Map(θ) + iM⊥(θ) =

∫
d2ϑQθ(ϑ) [ε>(ϑ) + iε⊥(ϑ)] , (6.7)

with some weight function Qθ(ϑ). It is important to note that it is the tangential shear ε>, i.e. the
component tangent to the centre of the aperture, which enters equation (6.7). Because of this the
aperture mass Map(θ) is only sensitive to the gradient part of the signal, whereas M⊥(θ) is exclusively
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related to the curl part (cf. Schneider et al., 2005). Therefore I identify

〈
M2
γγ(θ)

〉
=

2
π

∫
`d`Cγγ

EE(`)
[
12J4(`θ)

(`θ)2

]2

, (6.8a)

〈
M2

ap(θ)
〉

=
2
π

∫
`d`Cεε

EE(`)
[
12J4(`θ)

(`θ)2

]2

, (6.8b)

〈
M2
⊥(θ)

〉
=

2
π

∫
`d`Cεε

BB(`)
[
12J4(`θ)

(`θ)2

]2

. (6.8c)

Figure 6.3 gathers the aperture measures defined in equations (6.6) and (6.8). For the computation I
again used the angular power spectra shown in Figure 6.1. In case of the weak lensing signal nonlinear
power enhancement was taken into account. Cosmic shear therefore constitutes the dominant signal.
Differences between the different intrinsic alignment contributions are less pronounced than in case
of the angular power spectra (cf. Figure 6.1). This is expected since aperture measures are integrated
measures which are extended over the whole multipole range. Generically, the functional form of
the weighted variance (6.6) and the aperture mass (6.8) is quite different, irrespective of whether the
intrinsic or lensing induced ellipticity field is considered. The weighted variance has a plateau-like
structure starting to decline on an angular scale of about three arcminutes, whereas the aperture mass
exhibits a rather broad peak at roughly ten arcminutes.

Figure 6.3: Aperture measures of the in-
trinsic ellipticity field. For comparison
the corresponding quantities of the weak
lensing field are also shown.
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6.3. Interplay with cosmic shear

6.3.1. Fisher matrix

Since there are no GI-alignments present in the quadratic model for Gaussian density fluctuations,
the angular power spectrum of the ellipticity field observed on the sky is the sum of both, the cosmic
shear signal and the II-alignments. Interpreting this power spectrum while ignoring the contributions
of the intrinsic alignments necessarily introduces a bias in the derived cosmological parameters. In
the following I aim to quantify this bias. The key quantity in this analysis is the Fisher information
matrix or just Fisher matrix (Tegmark et al., 1997).

Suppose the outcome of some experiment can be structured in the data vector x = (x1, . . . , xn),
whereas the set of model parameters is given by the vector θ = (θ1, . . . , θm). The likelihood func-
tion L(θ|x) then quantifies the probability of having the model (characterized by θ) given the results
of the measurement (compiled in x). The set of parameters which maximizes the likelihood, the max-
imum likelihood (ML) estimator, is denoted by θ̂. Introducing the (negative) logarithmic likelihood
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L ≡ − log L for convenience, the Fisher matrix is defined as

Fi j ≡

〈
∂2L(θ)
∂θi∂θ j

〉
, (6.9)

where the average has to be performed over the data distribution.
The power of the Fisher matrix is mainly attributed to the fact that it allows to forecast the minimal

statistical error of the model parameters given their ML estimate. According to the Cramér-Rao in-

equality, the minimum standard deviation is given by ∆θi ≥

√[
F−1|θ̂

]
ii
; in the case that all parameters

are estimated from the data simultaneously. If all parameters but θi are known, the lower error bound
shrinks to ∆θi ≥ 1/

√
Fii|θ̂ instead. Obviously, for a successful application of the Fisher matrix a func-

tional form of the (logarithmic) likelihood, which can be treated analytically, is desirable. This is the
case for Gaussian likelihoods. Gaussianity as a constraint is not too strong because one can expect
that at least in the region close to its peak the likelihood is well approximated by a quadratic form. Of
course, this has to be tested for every problem under consideration individually. Fortunately, in case
of weak gravitational lensing, it turns out that the assumption of a Gaussian parameter likelihood is
well justified (Wolz et al., 2012). The weak lensing Fisher matrix reads (see e.g. Carron et al., 2011)

Fi j =

`max∑
`=`min

∂Cγγ
EE(`)
∂θi

1
cov(`)

∂Cγγ
EE(`)
∂θ j

. (6.10)

In the covariance matrix cov(`) the small contributions from the II-alignments are not included. How-
ever, the shot noise as well as incomplete sky coverage are taken into account:

cov(`) =
2

2` + 1
1

fsky

(
Cγγ

EE(`) +
σ2
ε

n

)2

. (6.11)

The Euclid mission is supposed to cover 50 per cent of the sky, i.e. fsky = 1/2. The anticipated shot
noise of this mission is characterized by the variance of the observed ellipticities σε = 0.1 and the
galaxy number density n = 30/arcmin2.

In this work I focus on the following subset of cosmological parameters {Ωm, σ8, h, ns,w}. The
fiducial values are those given at the beginning of this chapter. It is instructive to reduce the full Fisher
matrix to 2 × 2 matrices of parameter pairs by marginalizing over the remaining three parameters.
Then the confidence regions are ellipses in the two-dimensional parameter plane. Figure 6.6 shows
the 1, 2, 3σ-ellipses for all possible parameter combinations obtained from a Euclid-like cosmic shear
measurement, which has been carried out under the null hypothesis of absent intrinsic alignments.

6.3.2. Parameter sensitivities

In a next step I look at the sensitivity of the intrinsic ellipticity angular power spectra to the individual
cosmological parameters. An appropriate measure of the sensitivity is provided by the differential
change of the diagonal elements of the Fisher matrix with respect to the multipole order, i.e.

dFii

d`
=

1
cov(`)

[
∂Cεε

XX(`)
∂θi

]2

, X ∈ {E, B}. (6.12)

The Fisher matrix of the II-alignments is constructed in the very same way as the weak lensing
one (6.10) replacing the corresponding power spectra in equations (6.10) and (6.11). Since I am inter-
ested in the parameter sensitivity of the intrinsic alignment signal I disregard the dominant correlations
of the lensing induced ellipticities in this part of the analysis.

Figure 6.4 shows the resulting parameter sensitivities. Generically, the sensitivities increase with
the multipole order until the shot noise starts dominating on small angular scales. The decline of the
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sensitivities sets in later for the gradient mode signal than in the case of the curl mode, due to the
smaller amplitude of the latter (cf. Figure 6.1). Conversely, the amplitude of the sensitivity is larger
for the B-mode because of its smaller covariance. Both E- and B-mode angular power spectra are most
sensitive to the matter density Ωm. While the E-mode exhibits additionally a rather strong dependence
on the normalization of the linear matter power spectrum σ8, the B-mode is much less sensitive to
it. In particular, the curl mode depends more strongly on the dimensionless Hubble parameter h and
the equation of state parameter of the dark energy component w, to which in turn the gradient mode
is rather insensitive. This is contrary to previous studies (Bridle & King, 2007; Joachimi & Bridle,
2010; Kirk et al., 2010, 2011, 2012) which investigated the impact of intrinsic alignments derived
from the linear model, in particular the influence of GI-alignments. A discussion of this discrepancy
is postponed until the next section where I compute the actual biases in the cosmological parameters.
There the discrepancy becomes even more apparent.

Figure 6.4: Parameter sensitivity of the
intrinsic alignment angular power spec-
tra. In the upper panel the gradient or
E-mode is shown, while the lower panel
contains the curl or B-mode.
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6.3.3. Parameter estimation bias

Interpreting cosmic shear measurements with a model which takes intrinsic alignments into account
necessarily alters the likelihood, even in the case that no additional model parameters are introduced.
Accordingly, the resulting ML estimator, too, is different. In principle, this new estimator can be
found from the direct evaluation of the likelihood employing for example Markov-Chain-Monte-Carlo
(MCMC) methods. However in the case of Gaussian, or close to Gaussian, likelihoods an analytical
approach exists which allows to compute the bias vector, i.e. the difference between the ML estimators
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obtained for the two different models (Taburet et al., 2009). The agreement with results from MCMC
methods is compelling (Taburet et al., 2010).

θ̂WL θ̂IA

b̂

χ2

θ

χ2
IA

χ2
WL

second order
Taylor expansion

Figure 6.5.: Illustration of the analytical determination
of the parameter estimation bias.

In the following it is assumed that the likeli-
hood is of the form L ∝ e−χ

2/2 such that L ∝ χ2.
Thus, the normalization is expected to be largely
determined by the data and rather insensitive to
the cosmological parameters. The χ2-functional
generally reads

χ2 =

`max∑
`=`min

(
Cdata

EE (`) −Cmodel
EE (`)

)2

cov(`)
. (6.13)

The parameter dependence only enters through
the model power spectrum. The pure weak
lensing model is given by Cmodel

EE (`) = Cγγ
EE(`),

whereas the model which does take intrin-
sic alignments into account reads Cmodel

EE (`) =

Cγγ
EE(`) + Cεε

EE(`). For the next step it is cru-
cial to note that the angular power spectrum in-
ferred from the data is on average

〈
Cdata

EE (`)
〉

=

Cγγ
EE(`)

∣∣∣
θ̂IA

+ Cεε
EE(`)

∣∣∣
θ̂IA

. In order to establish a relation between the ML estimator for the pure weak

lensing model, θ̂WL, and that of the true model, θ̂IA, one can Taylor expand the χ2-functional of the
false model around the true ML estimator up to second order

χ2
WL(θ) ≈ χ2

WL

(
θ̂IA

)
+

∑
i

∂χ2
WL

∂θi

∣∣∣∣∣∣∣
θ̂IA

(
θ − θ̂IA

)
i
+

1
2

∑
i, j

∂2χ2
WL

∂θi∂θ j

∣∣∣∣∣∣∣
θ̂IA

(
θ − θ̂IA

)
i

(
θ − θ̂IA

)
j
. (6.14)

This is illustrated in Figure 6.5. The ML estimator is the set of model parameters for which the
ensemble averaged χ2-functional becomes extremal, i.e. for which

∂
〈
χ2

WL

〉
∂θi

∣∣∣∣∣∣∣∣
θ̂WL

= 0, ∀θi. (6.15)

Inserting equation (6.14) then yields a system of linear equations

∂
〈
χ2

WL

〉
∂θi

∣∣∣∣∣∣∣∣
θ̂IA︸         ︷︷         ︸

≡ai

= −
∑

j

∂2
〈
χ2

WL

〉
∂θi∂θ j

∣∣∣∣∣∣∣∣
θ̂IA︸          ︷︷          ︸

≡−Gi j

b̂ j (6.16)

which can be solved for the bias vector b̂ ≡ θ̂WL − θ̂IA by simple linear inversion, i.e. b̂ = G−1a. The
vector a and the matrix G read

ai =

`max∑
`=`min

1
cov(`)

Cεε
EE(`)

∂Cγγ
EE(`)
∂θi

, (6.17)

Gi j =

`max∑
`=`min

1
cov(`)

∂Cγγ
EE(`)
∂θi

∂Cγγ
EE(`)
∂θ j

−Cεε
EE(`)

∂2Cγγ
EE(`)

∂θi∂θ j

 , (6.18)

respectively. In case that intrinsic alignments are absent, i.e. the pure lensing model is the true model,
the power spectrum of the II-alignments Cεε

EE(`) is zero as is the vector a in full agreement with the
fact that then there is no parameter estimation bias.
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The parameter estimation bias computed via the formalism outlined above is depicted in Figure 6.6.
The bias vector is shown for all parameter pairs individually. For the computation all multipoles in
the range from `min = 10 to `max = 3000 were used. The estimation bias is a systematical error.
It becomes relevant if it exceeds the (minimal) statistical error, i.e. the corresponding confidence
ellipses in Figure 6.6, which have been obtained from the Fisher analysis of Section 6.3.1. As already
anticipated in Section 6.3.2, the biases are largest for the matter density Ωm and the normalization of
the power spectrum σ8. However, they exceed the 3σ-ellipses only in case of the latter. If not properly
accounted for, the power of the II-alignments is erroneously attributed to the lensing signal. Since
cosmic shear is directly sensitive to the universe’s matter distribution projected along the line-of-sight,
the additional small-scale power results in an overestimation of the matter density Ωm. At the same
time the large-scale part of the weak lensing spectrum is almost unchanged (intrinsic alignments are
a small-scale phenomenon [cf. Figure 6.1]), thus a smaller fluctuation amplitude may compensate for
the enhanced matter density. This explains why the sensitivity with respect to these two parameters,
Ωm and σ8, is strongest. However, these biases might be alleviated by including prior information
from CMB experiments which provide tight constrains on both parameters, as will be discussed in
Section 7.2. The spectral index ns, the dimensionless Hubble parameter h and the dark energy equation
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Figure 6.6.: Confidence regions for all pairs of the cosmological parameter set under consideration.
The 1, 2, 3σ-ellipses are obtained from a Euclid-like cosmic shear measurement which is carried out un-
der the assumption of intrinsic alignments being absent. In addition the bias due to II-alignments, derived
from the quadratic model, is shown.

of state parameter w are almost unaffected. The robustness of the latter is in some tension to previous
studies (Bridle & King, 2007; Joachimi & Bridle, 2010; Kirk et al., 2010, 2011, 2012). They, however,
have been carried out using exclusively the linear alignment model. Furthermore, Kirk et al. (2012)
showed that the contaminating effect is crucially influenced by the concrete implementation chosen
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within the class of linear alignment models (the different implementations are summarized in the
appendix of Kirk et al., 2012). Therefore, most of the before mentioned studies intend to maintain the
highest flexibility possible by introducing a set of nuisance parameters to account for the ignorance
of the underlying intrinsic alignment signal. These additional parameters are allowed to vary in scale
and redshift. Marginalizing over a sufficiently large number of nuisance parameters (more than 100),
the bias can be removed at the cost of weaker constraints on the derived cosmological parameters.

The focus of my analysis was chosen differently. I concentrated on the quadratic, angular momen-
tum based model characterized by a minimal set of physically motivated parameters, which may be
inferred from observations complementary to galactic shape measurements (I converted the two phys-
ical parameters, the averaged misalignment of shear and inertia and the morphological disc thickness,
into one single parameter, as explained at the beginning of this chapter). This approach is less flexi-
ble but it allows to reveal the influence of physical systematics in a much more direct way. It clearly
distinguishes between statistics on the one hand and systematics on the other hand. This separation be-
comes more and more important in the future as the understanding of intrinsic alignments and models
thereof will improve.

Another important aspect is that the quadratic alignment model is expected to be especially well
suited for the description of spiral galaxies, whereas the linear model may rather be applied to ellipti-
cals (cf. Section 5.2). Thus, any realistic morphological mix requires good knowledge and modelling
of intrinsic alignments arising from both models. My analysis suggests that the investigation of the in-
trinsic ellipticity field derived from the quadratic model can be carried out almost independently of the
dark energy equation of state parameter as opposed to the linear model. It is by no means unexpected
that intrinsic alignments derived from differing alignment models predict different biases in the various
cosmological parameters under consideration. Hence, my findings are not at all intended to question
the results of previous works on intrinsic alignments, but rather aim to complete the description of the
possible impacts of the various intrinsic alignment types on cosmic shear analyses.

6.4. Summary

The intrinsic alignment of galaxies is one of the most important systematics in cosmic shear stud-
ies. This chapter quantitatively investigated the contaminating effect of intrinsic shape correlations
computed in the framework of the quadratic model (5.9). Since this model is rather geometrical and
therefore closely related to the theory of galactic angular momenta, its parameters need not to be deter-
mined from the cosmic shear data set. This complementarity facilitates the separation of systematical
and statistical error sources. The main findings can be summarized as follows.

(i) I computed the angular power spectrum of the II-alignments. Working under the assumption
that the cosmic density fluctuations are Gaussian, the quadratic model gives no rise to GI-
alignments. However, it does exhibit a non-vanishing B-mode in contrast to weak lensing. Gra-
dient and curl mode of the II-alignments have the same functional form, but the E-mode starts
dominating on the sub-degree scale. For a Euclid-like survey the signal of the II-alignments
stays below that of cosmic shear on all scales provided that the enhancement of small-scale
power in the lensing field due to nonlinear structure growth is taken into account. In this case
the difference between cosmic shear and II-alignment signal amounts to one order of magnitude.

(ii) In addition to the angular power spectrum I computed several real space measures of the intrinsic
ellipticity field statistics. As in case of the spectra aperture measures are dominated by the
cosmic shear signal.

(iii) Investigating the parameter sensitivity of the intrinsic alignment power spectra I found that both
are particularly influenced by the total matter density Ωm. The gradient mode is also appreciably
sensitive to the normalization of the linear matter power spectrum σ8, while its dependence on
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the spectral index ns, the dimensionless Hubble parameter h and the dark energy equation of
state parameter w is rather weak. The curl mode behaves differently. In comparison to the impact
of the matter density Ωm it is more or less insensitive to the other cosmological parameters under
consideration.

(iv) In accordance with the parameter sensitivity of the E-mode of the II-alignments the estimation
of the matter density Ωm and the power spectrum normalization σ8 is most strongly biased if
intrinsic alignments are not accounted for in cosmic shear measurements. The biases, however,
hardly exceed the 3σ-confidence regions.

(v) The indifference of the estimated dark energy equation of state parameter with respect to the
presence of intrinsic alignments is a peculiarity of the quadratic model. The linear alignment
model exhibits the very opposite behaviour.

The last point especially highlights the importance of a deeper understanding of the physical mecha-
nisms of intrinsic alignments. Correct modelling of intrinsic shape correlations and reliable control of
the resulting systematics are the decisive steps towards a successful exploitation of the full power of
future cosmic shear measurements.
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7 Chapter 7

The Cosmic Microwave Background

The contemporary picture of the Universe is largely based on results from observations of the
cosmic microwave background (CMB). In this chapter I briefly compile the most important
aspects of the CMB which alleviate the understanding of the two subsequent chapters. Spe-
cial emphasis is put on two of its secondary anisotropies: weak gravitational lensing and the
integrated Sachs-Wolfe effect, respectively. Beside the seminal work of Seljak & Zaldarriaga
(1996) I would like to refer to the book of Durrer (2008) which covers all aspects of CMB
physics in great detail.

7.1. The Cosmic Microwave Background

After Big Bang nucleosynthesis, when the first light elements had formed, the Universe was so hot
and dense that all elements were ionized. Nuclei, electrons and photons formed a plasma which was
kept in thermal equilibrium by photons Thomson scattering off free electrons. In the course of its
expansion the Universe cooled and ionized helium and hydrogen nuclei were able to capture free
electrons becoming electrically neutral. This process is called recombination and occurred when the
Universe was approximately 400 000 years old. The Universe became transparent and baryons and
photons decoupled. Since then CMB photons pervade the whole Universe with almost no further
interaction, carrying detailed information about the physical conditions of the early Universe. Helium
recombination alone, which naturally set in first, did not suffice to render the Universe transparent but
it significantly changes the sound speed in the photon-baryon plasma. The contributions of the trace
amounts of the other light elements, lithium and beryllium, can be safely neglected.

The spectrum of the photons at recombination is expected to be Planckian. The photons had been
in thermal equilibrium with the, according to the cosmological principle (see Section 2.1), homoge-
neously and isotropically distributed baryons. Consequently, the spectrum had the form of a blackbody
with temperature T

I(ν,T ) =
2h
c2

ν3

ehν/kBT − 1
, (7.1)

where ν denotes the frequency of the emitted radiation, while h and kB is the Planck and Boltzmann
constant, respectively (Rybicki & Lightman, 2004). Although thermal equilibrium was not sustained
after decoupling, the shape of the spectrum did not change. It remained Planckian with an effective
temperature T0 = arecTrec. The temperature of recombination Trec can be estimated using Saha’s
equation. It accounts for the huge photon-to-baryon ratio which delays recombination considerably.
One finds kBTrec ∼ 0.3 eV, rather than kBTrec ∼ 13.6 eV, as suggested by the ionization potential of
hydrogen. Since arec ∼ 10−3, the effective temperature observed today is expected to be T0 ∼ 3 K.
Hence, the corresponding spectrum should peak in the microwave band. It was first detected, tough
accidentally, by Penzias & Wilson (1965). More than 25 years latter the FIRAS instrument of the
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COBE satellite measured the spectrum over a wide wavelength range finding it in perfect agreement
with that of a blackbody with an effective temperature of

T0 = (2.7260 ± 0.0013) K (7.2)

(Fixsen, 2009). This level of agreement puts tight constraints on possible energy releases in the early
Universe. The corresponding spectral distortions may be characterized by a non-vanishing chemical
potential µ and the optical depth to free-free emission Yff . The current limits are µ < 9 × 10−5

and 8 × 10−8 < Yff < 1.9 × 10−5 (Bersanelli et al., 1994; Fixsen et al., 1996; Haiman & Loeb, 1997).
For a more recent discussion including the results of the ARCADE 2 instrument I refer to Seiffert et al.
(2011).

7.1.1. Primary CMB anisotropies

Figure 7.1.: All sky map of the CMB temperature fluc-
tuations as measured by the WMAP satellite (Bennett,
C. L. et al., 2012).

In Section 2.4 inhomogeneities in the cosmic
density field have been discussed. They, or rather
the corresponding perturbations in the gravita-
tional potential, are necessarily imprinted on
the CMB, too. Since decoupling happened that
early, zrec ∼ 1100, perturbations in the gravi-
tational potential have only grown slightly and
fluctuations in the CMB temperature are tiny.
They are at the level of one part in 100 000 as
can be seen in Figure 7.1. Additionally, there
do exist mK fluctuations resulting from the fact
that the Earth is not perfectly comoving with
the CMB. This dipole anisotropy, however, is
of minor cosmological interest because it does
not convey any information about the Universe
at large. Measurements of it can be used to de-

termine the Earth’s velocity υ⊕ in the CMB rest frame. Fixsen & Mather (2002) found it to be

υ⊕ = (372 ± 1) km s−1. (7.3)

The quadrupole and all higher-order anisotropies do not dependent on the observer’s velocity.
The most important time scale in the discussion of these fluctuations is set by the mean free time of

Thomson scattering τT, which is given in terms of the Thomson cross section σT, the number density
of free electrons ne and the speed of light c

τT =
1

σTnec
. (7.4)

In principle, the interaction between electrons and photons is described by Compton scattering. How-
ever, to good accuracy, the electrons can be taken to be non-relativistic and a description in the classical
limit of Thomson scattering is appropriate. Due to the fact that Thomson scattering depends on the po-
larization of the incident radiation it results in a net linear polarization of CMB photons in the course
of decoupling. Its degree of polarization accounts for about ten percent of the total intensity.

Well before recombination, the mean free time was much shorter than the expansion rate, i.e. τT �

1/H. Consequently, Thomson scattering was sufficiently efficient to keep photons and electrons in
thermal equilibrium. Photons were tightly coupled to the baryon fluid but not to the dark matter
component. The tightly coupled baryon-photon fluid was compressed in the gravitational wells of the
dark matter overdensities until gravity was balanced by the increasing pressure of the fluid, mainly
the radiation pressure of the photons. Then the fluid began to expand again, thereby decreasing the
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pressure and the process restarted. The result were sound waves or acoustic oscillations, respectively,
in the baryon-photon fluid.

The coupling between the photons and baryons, however, was not perfect and therefore diffusion
between the two components took place. Silk damping erased temperature fluctuations quite efficiently
on scales smaller than the diffusion length. This effect was further enhanced by the finite duration of
recombination which increased the damping length. In fact, recombination can only be considered
to happen instantaneously on large angular scales. On small scales the finite thickness of the last
scattering surface needs to be taken into account.

According to equation (7.4), the tremendous decrease in the number density of free electrons after
recombination provoked a mean free time which by far exceeded the Hubble rate, τT � 1/H. Thus,
once decoupled from the baryons, the photons travelled without almost no further scattering. Most
importantly, this free streaming of photons left the observable angular anisotropies in the temperature
unchanged. Free streaming ended when the Universe started to reionize in the course of early structure
formation at redshift zion ∼ 10 - 40. Due to rescattering off free electrons photons originating from
intrinsically uncorrelated temperature fluctuations intermingled and the statistical properties of the
temperature fluctuations are tampered. While in case of the CMB temperature this is a small-scale
effect, reionization affects the large-scale fluctuations of the polarization. This complementarity can
be used to remove the reionization effect.

7.2. The CMB power spectrum

At the time of recombination the perturbations in the cosmic density field, imprinted in the tiny fluc-
tuations of the CMB temperature, evolved linearly and thus preserved the statistical properties of the
inflationary initial conditions. Accordingly, the fluctuation statistics of the CMB is identical to the
primordial one. Observations of the CMB are therefore one of the most important tools in the in-
vestigation of inflationary models of the Universe. The autocorrelation function of the temperature
fluctuations can be used to test the hypothesis of a scale invariant primordial power power spectrum.
Higher order statistics reveal possible deviations from Gaussianity helping to discriminate between
different scenarios of inflation.

In analogy to perturbations in the matter content (2.27) one introduces the temperature contrast

Θ(n̂) ≡
T (n̂) − T0

T0
, (7.5)

observed in the direction n̂. In contrast to the cosmic density the CMB is a field on the (unit) sphere
rather than in three-dimensional space. Since it is extended over the whole sky, a precise description
must take its curvature into account. The autocorrelation function of the density contrast then reads

ξ(β) =
〈
Θ(n̂)Θ(n̂′)

〉
. (7.6)

Here the cosmological principle (see Section 2.1), which enforces statistical homogeneity and isotropy,
is manifest in the fact that the correlator only depends on the angle cos β = n̂· n̂′. In case of the density
contrast the power spectrum has been introduced as the Fourier transform of the (spatial) correla-
tion function (cf. equation 2.52). For the CMB temperature a decomposition in terms of Legendre
polynomials P`(µ) (Arfken & Weber, 2005) instead of plane waves proves more advantageous

ξ(β) =
1

4π

∑
`

(2` + 1)CΘΘ
` P`(cos β) ←→ CΘΘ

` = 2π
∫ 1

−1
d cos β ξ(β)P`(cos β). (7.7)

The expansion coefficients CΘΘ
`

define the angular power spectrum of the CMB temperature fluc-
tuations. The analogy with the three-dimensional power spectrum becomes more apparent if one
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considers the harmonic space representation of the temperature contrast, i.e. its expansion in terms of
spherical harmonics

Θ(n̂) =
∑
`,m

Θ`mY`m(n̂) ←→ Θ`m =

∫
dn̂Θ(n̂)Y∗`m(n̂). (7.8)

Reformulating the correlation function (7.6) in terms of this expansion one finds the following equality∑
`,`′m,m′

〈
Θ`mΘ∗`′m′

〉
Y`m(n̂)Y∗`′m′(n̂′) !

=
1

4π

∑
`

(2` + 1)CΘΘ
` P`(cos β) =

∑
`,m

CΘΘ
` Y`m(n̂)Y∗`m(n̂′), (7.9)

where in the last step the addition theorem of spherical harmonics (Arfken & Weber, 2005)∑
m

Y`m(n̂)Y∗`m(n̂′) =
2` + 1

4π
P`(cos β) (7.10)

has been inserted. Exploiting the orthonormality relation of the spherical harmonics twice one finally
gets the desired relation for the angular power spectrum in multipole space〈

Θ`mΘ∗`′m′
〉

= CΘΘ
` δ``′δmm′ . (7.11)

Different multipoles of the temperature fluctuations are thus uncorrelated. This is one more manifes-
tation of statistical homogeneity and isotropy. The power spectrum of the observed CMB, i.e. of one
particular realization, is estimated by

ĈΘΘ
` =

1
2` + 1

∑
m

|Θ`m|
2 . (7.12)

By the law of large numbers this estimator is limited by cosmic variance ∆CΘΘ
`
' (2` + 1)−1/2CΘΘ

`
even in the case of an ideal experiment due to the finite number of multipoles available.
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Figure 7.2.: CMB temperature power spectrum. The black
data points represent the WMAP seven-year measurements
along with an estimate of their uncertainty. The red curve
is the best-fitting ΛCDM model, while the blue shaded band
indicates cosmic variance (data taken from Larson, D. et al.,
2011).

In Figure 7.2 the CMB temperature
power spectrum measured by WMAP
along with the theoretical power spec-
trum obtained for the seven-year ΛCDM
WMAP+BAO+H0 best-fitting parameters
compiled in Table 2.1 is shown. Looking
at Figure 7.2 one recognizes several charac-
teristic features. They can be split in three
distinct branches which reflect the physical
processes, most of which have already been
described in Section 7.1.1. The first part
of the spectrum, ` . 100, the Sachs-Wolfe
plateau, is featureless. The corresponding
angular scales exceeded the sound horizon
at decoupling and the temperature fluctu-
ations were solely determined by the per-
turbations in the gravitational potential as
will be detailed in Section 7.4. The spec-
trum of large-scale potential fluctuations,
however, is almost scale invariant (cf. Sec-

tion 2.4.3) and so is the angular power spectrum of the CMB temperature. In the acoustic regime,
100 . ` . 1000, a harmonic series of peaks corresponds to the phases of sound waves in the photon-
baryon plasma which were frozen in at decoupling. Finally, on small angular scales, ` & 1000, the
fluctuations are almost completely wiped out by Silk damping.
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The careful quantitative investigation of the CMB temperature power spectrum allows to derive
powerful constraints on cosmological parameters. While the plateau carries information about the
primordial fluctuation amplitude and the spectral index, the location of the first acoustic peak may
serve as a standard ruler. Its location is strongly related to the sound horizon at recombination which
is supposed to be known to high accuracy. Thus, the geometry of the Universe can be probed by
means of the angular diameter distance (2.23). The height of the first two peaks is sensitive to the
density of baryonic, as well as dark matter. Parameter degeneracies can be broken by exploiting the
complementary information contained in the polarization power spectrum. A sufficiently accurate
measurement of the latter will be provided by Planck for the first time.

7.3. CMB lensing

7.3.1. Secondary CMB anisotropies

In Chapter 3 I discussed how photon propagation is influenced by the intervening large-scale struc-
ture, as well as by the geometry of the homogeneous background. These effects also apply to CMB
photons emanating from the last scattering surface. Gravitational lensing thus introduces secondary
anisotropies in the CMB. An excellent review of CMB lensing is given by Lewis & Challinor (2006).

A good knowledge of secondary anisotropies is important in order to avoid confusion with the pri-
mordial ones present at recombination. The latter contain most valuable information on cosmological
parameters (see the end of the previous section) which might be corrupted if secondary anisotropies are
not properly accounted for. Conversely, a deep understanding and control of secondary anisotropies
may allow to exploit them as an additional source of information. How this can be done in case of
CMB lensing will be detailed in Chapter 8, whereas the importance of the integrated Sachs-Wolfe
(iSW) effect, to be introduced in the next section, will become clear in Chapter 9. Apart from lensing
and the iSW effect I would like to briefly mention the Sunyaev-Zel’dovich (SZ) effect (Sunyaev &
Zel’dovich, 1972). On average, inverse Compton scattering off free electrons along the line-of-sight
blueshifts CMB photons traversing the hot intracluster medium. The associated change in the photon
spectrum is unique and therefore a viable tool in the detection of galaxy clusters. Additionally, there
is the kinetic SZ effect which is due to the bulk motion of the cluster as a whole. In contrast to the
thermal SZ effect, the kinetic SZ effect leaves the photon spectrum Planckian. Finally, the observation
of both, primary and secondary anisotropies, is hindered by galactic foreground emissions which are
superimposed on the CMB and need to be carefully removed from any observational CMB data. An
overview of secondary CMB anisotropies is provided by Aghanim et al. (2008).

7.3.2. Power spectrum of the lensed CMB

Gravitational deflection of CMB photons is a weak lensing phenomenon as can be seen by the follow-
ing estimate given in Lewis & Challinor (2006). The typical deflection of a single large-scale structure
lens is of the order δα ∼ 10−4 rad. The coherence length of the deflecting Newtonian gravitational po-
tential is about 300 Mpc on average. Consequently, CMB photons encounter roughly 50 lenses on their
way from the last scattering surface (located at a comoving distance of approximately 14 000 Mpc).
Assuming that individual deflections are uncorrelated, the total deflection is δαtot ∼

√
50 × δα ∼

2 arcmin. Thus, a treatment in the framework of weak lensing is well applicable.
Due to the fact that gravitational lensing conserves the surface brightness of the source, the lensing

effect is captured by the simple remapping

Θ̃(n̂) = Θ(n̂ +α), (7.13)

where the deflection angleα is defined in equation (3.17) with the upper integration bound set to be the
comoving distance to the last scattering surface, i.e. χs = χrec. Lensed quantities will be denoted by a
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tilde. Equation (7.13) is rather symbolic. It can be taken literally only in case of a flat sky. Neglecting
the sky curvature, however, is inappropriate. The angular coherence length of a typical gravitational
well is about 2◦, which is much larger than the size of an individual deflection and comparable to the
angular scale of the acoustic peaks. This indicates that for an accurate description the curvature of the
celestial sphere has to be taken into account (Hu, 2000; Challinor & Lewis, 2005). The concepts of
CMB lensing, however, are much more readily accessed in the flat-sky approximation. Therefore, the
main part of the following presentation will content itself with a flat sky. Curvature effects become
important for CMB experiments approaching the cosmic variance limit and are below the sensitivity
of Planck (Challinor & Lewis, 2005).

Equation (7.13) suggests that the lensing effect might be accessed by a Taylor expansion in the
deflection angle which has been shown to be small at the beginning of this section. But it turns out
that a series expansion breaks down the latest at scales of a few arcminutes. Here the deflections start
being of the same size as the structures in the unlensed CMB. Therefore, the non-perturbative approach
of Seljak (1996a) is preferable. It starts with the correlation function of the lensed temperature contrast

ξ̃(r) =
〈
Θ̃(x)Θ̃(x′)

〉
=

〈
Θ [x +α(x)] Θ

[
x′ +α(x′)

]〉
, (7.14)

with r = |x − x′|. Since sky-curvature is neglected, angular positions are represented by two-dimensional
vectors and harmonic space is spanned by conventional Fourier modes:

ξ̃(r) =

∫
d2`

2π

∫
d2`′

2π
〈
Θ(`)Θ∗(`′)

〉
Θ

〈
ei[`·(x+α)−`′·(x′+α′)]〉

α
=

∫
d2`

(2π)2 CΘΘ
` ei`·r

〈
ei`·(α−α′)

〉
α
.

(7.15)
A separate evaluation of the average over CMB temperature fluctuations 〈. . .〉Θ and deflection angles
〈. . .〉α is permissible because their correlation, due to the iSW effect (cf. Section 7.4), is weak. It is
interesting to note that the lensed correlation function (7.15) depends on the difference of the deflection
angles involved, highlighting that absolute deflection angles are unobservable, as already mentioned
in Section 3.2. The remaining average in equation (7.15) can be expressed in terms of the lensing
potential power spectrum Cφφ

`〈
ei`·(α−α′)

〉
α

= exp
(
−

1
2
`2

[
σ2(r) + cos 2(ϕ` − ϕr)Cgl,2(r)

])
, (7.16)

with σ2(r) = Cgl,0(0) −Cgl,0(r) and

Cgl,n(r) =
1

2π

∫
d` `3Cφφ

`
Jn(`r). (7.17)

Equation (7.16) is exact only if the distribution of the deflection angles follows a Gaussian. The va-
lidity of this assumption was verified by Carbone et al. (2009) and Merkel & Schäfer (2011). Instead
of using the full expression (7.16) in the evaluation of the lensed correlation function (7.15) an ex-
pansion in powers of Cgl,2(r), which is small in comparison to σ2(r), keeping quadratic terms, suffices
(Challinor & Lewis, 2005)

ξ̃(r) ≈
1

2π

∫
d` `CΘΘ

` e−`
2σ2(r)/2

[(
1 +

1
16
`4C2

gl,2(r)
)

J0(`r) +
1
2
`2Cgl,2(r)J2(`r) +

1
16
`4Cgl,2(r)J4(`r)

]
.

(7.18)
As before, integrations over the polar angles ϕ`,r of the vectors ` and r, respectively, have been ex-
pressed by Bessel functions Jn(z) of nth order (Abramowitz & Stegun, 1972). Analogous expressions
for the lensed CMB polarization field and its cross-correlation with the temperature exist (Zaldar-
riaga & Seljak, 1998; Challinor & Lewis, 2005). The lensed power spectrum can then be obtained by
equation (7.7) which becomes in the flat-sky limit

CΘ̃Θ̃
` = 2π

∫
dr r ξ̃(r)J0(`r). (7.19)
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In the upper panel of Figure 7.3 both, the fiducial and the lensed CMB temperature power spectrum,
for the cosmological parameters in Table 2.1 are shown. The relative difference is plotted in the lower
panel. Since gravitational lensing conserves surface brightness, it does not create additional structures
in the power spectrum. In particular, lensing leaves the scale invariant Sachs-Wolfe plateau unchanged
but it becomes observable by the acoustic peaks and the damping tail. The peaks are smoothed,
whereas the power in the Silk damping part of the spectrum is increased.

Figure 7.3: Lensed and unlensed CMB
temperature power spectrum (upper
panel). The relative difference between
these two spectra is shown in the lower
panel.
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7.4. The integrated Sachs-Wolfe effect

Section 7.2 showed that the CMB temperature power spectrum is almost scale-invariant on large
scales. Now I would like to discuss the physical origin of this plateau more extensively. I thereby
follow to some extent Amendola & Tsujikawa (2010).

Fluctuations in the CMB temperature, observed on the sky, are related to perturbations in the ob-
served photon frequency via

δT
T

∣∣∣∣∣
0

=
δT
T

∣∣∣∣∣
rec

+
δ 〈k, u〉
〈k, u〉

∣∣∣∣∣
0
−
δ 〈k, u〉
〈k, u〉

∣∣∣∣∣
rec
. (7.20)

The measured photon frequency, or equivalently its energy, is determined by the projection of the
photon four-momentum k onto the four-velocity of the observer u. Therefore, perturbations in both
quantities have to be taken into account. The spatial part of the perturbed four-velocity is simply
given by the (comoving) peculiar velocity a u = υ, while the time component is proportional to the
Newtonian potential, i.e. δu0 ∼ Φ, reflecting the gravitational time delay. With this the relative
perturbation in the observed frequency can be worked out to be

δ 〈k, u〉
〈k, u〉

=
δ(kµuµ)

k0u0
=
δk0

k0 +
Φ

c2 −
kiυi

k0c
. (7.21)

The last term, the projection of the peculiar velocity onto the propagation direction of the photon,
gives rise to a Doppler shift in the temperature. This is the source term of the previously discussed
dipole anisotropy.

Below, it will be shown that the time-independent part of the relative shift in the photon en-
ergy δk0/k0 is given by −2Φ/c2. Since the Newtonian potential is independent of the photon direction,
this term, along with the second term in equation (7.21), has to be accounted for only at the last scat-
tering surface. The contributions of both to the CMB anisotropies were pointed out first by Sachs &
Wolfe (1967). Due to the fact that the intrinsic large-scale temperature fluctuations are proportional to
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the gravitational potential, too, one commonly refers to the combination of all three terms as (ordinary)
Sachs-Wolfe effect (

δT
T

)
SW

=
δT
T

∣∣∣∣∣
rec

+
Φ

c2

∣∣∣∣∣
rec

= −
2
3

Φ

c2

∣∣∣∣∣
rec

+
Φ

c2

∣∣∣∣∣
rec

=
1
3

Φ

c2

∣∣∣∣∣
rec
. (7.22)

Furthermore, a discrimination between these two effects is rather artificial because they are gauge-
dependent.

Finally, the relative shift in the photon energy δk0/k0 needs to be computed. The starting point is the
perturbed geodesic equation (3.8). Inserting terms which are quadratic in the perturbation and which
will therefore be automatically neglected later on, the fully simplified zeroth component reads

dk0

dλ
= −

2
c

(
aH(a) +

1
c
∂Φ

∂χ

)
(k0)2. (7.23)

Further progress can be achieved by rewriting the left-hand side of this equation as

c
dk0

dλ
=

k0

a2

d(a2k0)
dη

− 2(k0)2aH(a) = k̂0k0 d
dη
δk0

k0 − 2(k0)2aH(a). (7.24)

To get the last equality it was used that k̂0 = ca−2. Combining these elements one is left with

d
dη
δk0

k0 = −
2
c
∂Φ

∂χ
(7.25)

(at first order perturbation theory), which can be readily integrated by noting that

dΦ =

(
∂Φ

∂η
+ c

∂Φ

∂χ

)
dη (7.26)

because cdη = dχ. Thus, the fractional shift in the photon energy is given by

δk0

k0

∣∣∣∣∣∣0
rec

= −2
Φ

c2

∣∣∣∣∣0
rec

+
2
c2

∫ η0

ηrec

dη
∂Φ

∂η
. (7.27)

In addition to the ordinary Sachs-Wolfe contribution anticipated before, the integral accounts for the
red- or blueshift photons experience by evolving gravitational fields along their trajectory. This is the
so-called integrated Sachs-Wolfe (iSW) effect. In case of an Einstein-de Sitter universe, where Ωm = 1,
the linear Newtonian potential does not evolve in time and the iSW effect vanishes. Contributions from
the iSW effect therefore arise only when the gravitational potential is still slightly decaying during the
transition from radiation to matter domination shortly before decoupling (early time iSW effect) and
when the dark energy component starts dominating at late times (late time iSW effect). The latter is
thus a very important tool in the investigation of dark energy (cf. Chapter 9).
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8 Chapter 8

The interplay of CMB temperature
lensing power reconstruction with
primordial non-Gaussianity of local type

In the current era of high-precision CMB experiments, the imprint of gravitational lensing
on the CMB temperature is exploited as a source of valuable information. Especially the
reconstruction of the lensing potential power spectrum is of great interest. The reconstruction
from the optimal quadratic estimator of the lensing potential, though, is biased. As long as
the intrinsic CMB fluctuations are Gaussian this bias is well understood and controlled. In the
presence of non-Gaussian primordial curvature perturbations, however, the CMB also acquires
a non-Gaussian structure mimicking the lensing signal. Concentrating on primordial non-
Gaussianity of local type, I address the resulting bias by extracting the lensing potential power
spectrum from large samples of simulated lensed CMB temperature maps comprising different
values of fNL. I find that the bias is considerably larger than previous analytical calculations
suggested. For current values of fNL and a sensitivity like that of the Planck mission, however,
the bias is completely negligible on all but the largest angular scales.

The contents of this chapter have been published in Merkel & Schäfer (2013c).

8.1. Introduction

As shown in Section 7.2 the cosmic microwave background (CMB) carries an incomparable content of
cosmological information. After removing all foregrounds, its tiny temperature fluctuations observed
today mirrors the physical conditions in the Universe approximately 400 000 years after the Big Bang.
The primary tool to access this information is the CMB temperature power spectrum. Additionally,
CMB polarization is an important diagnostic of gravitational waves. Gravitational lensing of the CMB
by the intervening large-scale structure, however, alters the shape of the observed power spectra (see
Section 7.3.2). In particular, it inevitably introduces B-modes confusing the imprint of primordial
tensor perturbations. Therefore, in the context of parameter analysis and gravitational wave detection
CMB lensing can be regarded as contaminant.

However, the unprecedented sensitivity of ongoing and future CMB experiments allows for a new
perspective: The lensing signal in the CMB temperature itself contains valuable cosmological infor-
mation. Precise knowledge of the lensed CMB power spectrum can be used to improve on parameter
estimations from the primary CMB breaking several degeneracies (Hu, 2002b; Stompor & Efstathiou,
1999; Smith et al., 2006). Furthermore, lensing probes the (integrated) matter distribution from to-
day’s observer up to the last scattering surface. As the growth of the large-scale structure is sensitive
to neutrino mass, so is the lensing signal, thereby tightening up the mass limits (Lesgourgues et al.,
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2006). Besides these applications in cosmological parameter studies, direct reconstruction of the lens-
ing effect is also of major importance. In order to access the primordial B-mode signal the lensing
effect needs to be removed from the observed CMB, requiring the lensing potential (Knox & Song,
2002; Seljak & Hirata, 2004).

There are several approaches to extract the lensing potential from the observed CMB (Zaldarriaga
& Seljak, 1999; Guzik et al., 2000; Hu, 2001b; Hirata & Seljak, 2003; Okamoto & Hu, 2003). The
method of Okamoto & Hu (2003) is very well suited for the instrumental noise level of current ex-
periments regarding precision and numerical complexity. As this estimator is quadratic in the lensed
temperature field, it exploits the lensing induced non-diagonal elements of the CMB covariance ma-
trix. In the next step the reconstructed lensing potential can be used to estimate its power spectrum.
The resulting estimator, however, is biased. There are several contributions to this bias, which can
be classified according to the order of the lensing potential involved. The zeroth-order contribution is
dominant and given by the Gaussian variance of the estimator of the potential. Smaller, but substan-
tial, contributions are of first and second order in the lensing potential and arise from the non-trivial
part of the (lensing induced) CMB trispectrum. Up to date all relevant contributions to this so-called
reconstruction bias are identified and under control (Kesden et al., 2003; Hanson et al., 2011).

Since not only the information about the lensing potential power spectrum itself, but in part also
the reconstruction bias, originates from the connected part of the lensing induced CMB four-point
function, any kurtosis present in the observed CMB will affect the power spectrum extraction, too.
A non-trivial four-point function may arise from primordial non-Gaussian curvature perturbations,
which are predicted by all inflationary models. Current observations suggest that the deviations from
Gaussianity are quite small. Nevertheless, depending on the inflationary scenario, they can be rather
sizeable.

In this chapter I extend the analytical work of Lesgourgues et al. (2005) to the full sky and investi-
gate the impact of an intrinsic non-trivial CMB trispectrum on the lensing power spectrum reconstruc-
tion using numerical simulations.

The structure of this chapter is the following: Section 8.2 briefly reviews the key aspects of CMB
lensing power extraction. Then, in Section 8.3, primordial non-Gaussian curvature perturbations of
local type and their connection to a non-trivial CMB trispectrum are explained in detail. My method to
determine the additional reconstruction bias in the presence of primordial non-Gaussianity is presented
along with the results in Section 8.4. Finally, Section 8.5 is devoted to a short summary of the main
findings of this chapter.

As reference cosmology I choose the parameters compiled in the WMAP5+BAO+SN data set. The
matter content is described by ΩCDM h2 = 0.1143 and Ωb h2 = 0.02256, while the cosmological
constant is given by ΩΛ = 0.721. Primordial perturbations are characterized by the scalar ampli-
tude ∆2

R
= 2.457 × 10−9 and spectral index ns = 0.96. The value of the Hubble constant measured

today is H0 = 100 h km s−1 Mpc−1 with h = 0.701 and the optical depth is assumed to be τ = 0.084.
The differences to the cosmology given in Table 2.1 are marginal.

8.2. CMB lensing power spectrum reconstruction

On their way from the last scattering surface to today’s observer CMB photons are deflected by the
intervening large-scale structure. This gravitational lensing effect on the CMB is well described by
the simple remapping of the temperature contrast given in equation (7.13), which I now reformulate
in terms of the lensing potential φ(n̂)

Θ̃(n̂) = Θ
[
n̂ + ∇φ(n̂)

]
. (8.1)

In harmonic space and linear in the deflection field the effect of lensing can be expressed as (Hu,
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2000)

Θ̃`m ≈ Θ`m +
∑

L,M,`1,m1

(−1)mφLMΘ`1m1

(
` L `1
−m M m1

)
F`L`1 (8.2)

with

F`1L`2 =
Ξ2

L − Ξ2
`1

+ Ξ2
`2

√
16π

Π`1L`2

(
`1 L `2
0 0 0

)
(8.3)

where
Ξa···n ≡

√
a(a + 1) · · · n(n + 1), Πa···n ≡

√
(2a + 1) · · · (2n + 1). (8.4)

The sixfold indexed quantities in braces denote Wigner 3 j-symbols (cf. equation 5.52).
Okamoto & Hu (2003) realized that it is possible to extract the lensing potential from equation (8.2)

by taking the correlator of the lensed multipoles while keeping the realization of the lenses fixed. This
procedure returns the multipoles of the lensing potential weighted by a function just depending on the
intrinsic CMB power spectrum. Since lensing correlates temperature modes across a whole multipole
band (whose width is given by the corresponding band power in the deflection field), one can construct
an estimator of the lensing potential as weighted sum over lensed multipoles:

φ̂LM = AL

∑
`1,m1,`2,m2

(−1)Mg`1`2(L)
(
`1 `2 L
m1 m2 −M

)
Θ̃`1m1Θ̃`2m2 . (8.5)

Here I have slightly changed my notation. From now on multipoles with a tilde denote the observed
temperature fluctuations containing the lensing signal, as well as all kinds of experimental noise. The
weighted sum needs an appropriate normalization given by

A−1
L =

1
Π2

L

∑
`1,`2

f`1L`2g`1`2(L). (8.6)

Under the assumption that both the intrinsic temperature fluctuations and the lensing potential are
homogeneous and isotropic Gaussian random fields, i.e.〈

X`mX∗`′m′
〉

= CXX
` δ``′δmm′ , X ∈ {Θ, φ} , (8.7)

Okamoto & Hu (2003) derived optimal weights

g`1`2(L) =
f`1L`2

2CΘΘ
`1,obsC

ΘΘ
`2,obs

=
CΘΘ
`1

F`2L`1 + CΘΘ
`2

F`1L`2

2CΘΘ
`1,obsC

ΘΘ
`2,obs

, (8.8)

where optimal means that they minimize the estimator’s Gaussian variance. The spectrum CΘΘ
`,obs

denotes the observed one, i.e. it contains the lensing signal and all kinds of instrumental noise and
foregrounds.

Given the estimated multipoles of the lensing potential field one can proceed to estimate the corre-
sponding power spectrum via

Cφ̂φ̂
L =

1
2L + 1

∑
M

φ̂LMφ̂
∗
LM. (8.9)

Accordingly, the expectation value of the reconstructed lensing potential power spectrum involves the
four-point function of the lensed temperature contrast〈

Cφ̂φ̂
L

〉
=

A2
L

Π2
L

∑
`1 ,m1 ,`2 ,m2 ,
`3 ,m3 ,`4 ,m4

∑
M

(−1)M
(
`1 `2 L
m1 m2 −M

) (
`3 `4 L
m3 m4 M

)

× g`1`2(L)g`3`4(L)
〈
Θ̃`1m1Θ̃`2m2Θ̃`3m3Θ̃`4m4

〉
.

(8.10)
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This estimator, however, is biased. While the connected part of the four-point function contains the
information about the true lensing potential power spectrum, its Gaussian part gives the largest con-
tribution to the bias which is identical with the normalization of the estimator, i.e. N(0)

L = AL. In
addition, there are two more terms that need to be considered. The first one is linear in the lensing
potential spectrum. It was first derived by Kesden et al. (2003). Since it is only substantial on small
scales a treatment in the limit of a flat sky is well applicable

N(1)
L = A2(L)

∫
d2`1

(2π)2

∫
d2`3

(2π)2 g(`1, `2)g(`3, `4)

×
[
Cφφ
|`1−`3 |

f (−`1, `3) f (−`2, `4) + Cφφ
|`1−`4 |

f (−`1, `4) f (−`2, `3)
] (8.11)

with the additional constraint `1 + `2 = L = `3 + `4. The explicit expressions for the flat-sky analogues
of the normalization and weights are given in Appendix B.3.

Furthermore, on large scales Hanson et al. (2011) identified a negative bias which is quadratic in
the lensing potential spectrum. Its approximative formula

N(2)
L ≈ 4Cφφ

L

 AL

Π2
L

2
∑
`1,`2

g`1`2(L) f`1L`2

 ∑
`3,`4

g`3`4(L)F`4L`3

(
CΘ̃Θ̃
`3
−CΘΘ

`3

)
(8.12)

is in excellent agreement with results from numerical simulations. All three biases are shown in
Figure 8.1.
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Figure 8.1: Biases involved in the re-
construction of the CMB lensing po-
tential power spectrum Cφφ

`
, starting

with the optimal quadratic estimator of
the lensing potential defined in equa-
tion (8.5). The terms N(A)

`
and N(B)

`

are analytical estimates of the addi-
tional bias arising from primordial non-
Gaussian curvature perturbations of lo-
cal type where fNL = 100 has been as-
sumed.

8.3. Local non-Gaussianity

In the derivation of the optimal reconstruction weights and the three different biases of the estimated
lensing potential power spectrum the intrinsic CMB fluctuations were always assumed to be Gaussian
distributed. In this case, and under idealized experimental conditions, the non-Gaussian structure of
the observed CMB solely arises from the lensing effect. Non-Gaussianity of the lensed CMB then
manifests itself in the connected parts of the n-point correlation functions. Odd moments are not
generated by lensing, as long as both fields are uncorrelated. Correlations, however, do arise on large
scales due to the integrated Sachs-Wolfe (iSW) effect: In Section 7.4 it was shown that the cosmic
large-scale structure does not only deflect the CMB photons but its late-time evolution also gives rise
to an additional (large-scale) temperature anisotropy. On small scales there are correlations because of
the nonlinear iSW (or Rees-Sciama) effect (see Chapter 9), as well as the Sunyaev-Zel’dovich effects
discussed in Section 7.3.1. These correlations result in a non-vanishing bispectrum of the lensed CMB.
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Thus, there are non-Gaussian signatures present in the lensed, i.e. observed, CMB; even when starting
from Gaussian distributed temperature fluctuations.

Inflationary models, however, predict at least small deviations from pure Gaussian initial conditions.
While simple inflationary scenarios generate a nearly Gaussian spectrum of the primordial curvature
perturbations (Guth, 1981; Bardeen et al., 1983; Mukhanov et al., 1992), more involved models are
expected to introduce a significant amount of non-Gaussianity. These models can be classified by the
shape of their bispectrum: besides equilateral (Alishahiha et al., 2004; Arkani-Hamed et al., 2004;
Silverstein & Tong, 2004; Seery & Lidsey, 2005; Chen et al., 2007; Cheung et al., 2008; Li et al.,
2008) and orthogonal type (Senatore et al., 2010), local non-Gaussianity is an important category
(Lyth et al., 2003; Dvali et al., 2004; Barnaby & Cline, 2008; Byrnes et al., 2008; Alabidi et al., 2010;
Elliston et al., 2011).

Primordial non-Gaussian curvature perturbations of local type can be described starting from a
Gaussian fluctuation field ΦL(x) and setting

ΦNL(x) = ΦL(x) + fNL
(
Φ2

L(x) −
〈
Φ2

L(x)
〉)
. (8.13)

The amplitude of the non-Gaussianity observed is then set by the dimensionless parameter fNL which,
in this case, is assumed to be constant, although models with scale-dependent amplitude do exist
(Byrnes et al., 2010).

The ansatz of equation (8.13) can be extended by adding a further term of the form gNLΦ3
L(x). I

ignore this term in my analysis for simplicity and because gNL is observationally almost completely
unconstrained. However, in order to be competitive with the fNL contributions, its value must be of
the order

√
gNL ∼ fNL but is not constrained by theory; in fact it is possible to tune the inflationary

model arbitrarily in these parameters (Sasaki et al., 2006). Likewise, terms proportional to τNL, which
are similar in magnitude relative to fNL because of the Suyama-Yamaguchi relation τNL ≥ (6/5 fNL)2

(see, e.g. Suyama & Yamaguchi, 2008; Suyama et al., 2010; Sugiyama et al., 2011; Smith et al., 2011),
are neglected. Neglecting these contributions should at most result in a slight underestimation of the
impact of local primordial non-Gaussianity on the lensing power reconstruction.

By construction, the four-point function of the curvature perturbations acquires a non-trivial part.
This is also true for the intrinsic CMB fluctuations since they are simply related to those in the curva-
ture field via an integration over the corresponding radiation transfer function ∆`(k)

Θ`m = 4π (−i)`
∫

d3k
(2π)3 ΦNL(k)∆`(k)Y∗`m(n̂k) (8.14)

with ΦNL(k) being the Fourier transform of equation (8.13).
The non-trivial part of the angular trispectrum of the CMB temperature contrast is most conveniently

expressed in its fully reduced form (at leading order in fNL)

T
`1`2
`3`4

(L) =

∫
r2

1dr1r2
2dr2FL(r1, r2)α`1(r1)β`2(r1)α`3(r2)β`4(r2)h`1L`2h`3L`4 (8.15)

with

FL(r1, r2) =
2
π

∫
k2dk PΦΦ(k) jL(kr1) jL(kr2), (8.16)

α`(r) = 2 fNL
2
π

∫
k2dk ∆`(k) j`(kr), (8.17)

β`(r) =
2
π

∫
k2dk PΦΦ(k)∆`(k) j`(kr) (8.18)

and

h`1L`2 =
Π`1L`2
√

4π

(
`1 L `2
0 0 0

)
(8.19)
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(see Okamoto & Hu, 2002, for details on this formalism). In the expressions above, PΦΦ(k) is the
power spectrum of the curvature perturbations and j`(x) denotes the `th spherical Bessel function of
the first kind (see Abramowitz & Stegun, 1972).

The computation of the trispectrum given in equation (8.15) is numerically quite cumbersome.
Okamoto & Hu (2002) found a very useful approximation formula by extending the Sachs-Wolfe
approximation, i.e.

∆`(k) =
1
3

j`
[
k(η0 − ηrec)

]
, (8.20)

valid at small ` into the acoustic regime

T
`1`2
`3`4

(L) ≈ 36h`1L`2h`3L`4 f 2
NLCSW

L CΘΘ
`2

CΘΘ
`4

(8.21)

with
CSW

L =
2

9π

∫
k2dk PΦΦ(k) j2L

[
k(η0 − ηrec)

]
, (8.22)

where η0 − ηrec is the conformal time spread between today and recombination. This approximation
holds as long as the last scattering surface can be considered as thin and its temperature fluctuations
only vary slowly.

8.4. Power reconstruction bias

8.4.1. Zeroth order calculation

Since the first and second order bias of the reconstructed lensing potential power spectrum arise from
the connected part of the (lensing induced) CMB trispectrum, one expects that an intrinsic (non-trivial)
trispectrum of the unlensed CMB also contributes an additional bias. This bias was first addressed
by Lesgourgues et al. (2005). In their derivation they assumed that both of the effects leading to a
connected part of the observed CMB four-point function are completely separable. Thus, they did
not consider a so-to-speak lensed trispectrum but just added the connected part of the unlensed CMB
trispectrum. In this approximation, and in the limit of a flat sky, the additional bias is given by

N( fNL,0)(L) = A2(L)
∫

d2`1

(2π)2

∫
d2`3

(2π)2 g(`1, `2)g(`3, `4)
(
P
`1`2
`3`4

(L) + 2P`1`3
`2`4

(|`1 − `3|)
)
, (8.23)

with the additional constraints `1 + `2 = L and `3 + `4 = L. The functional form of the flat-sky expres-
sions are relegated to Appendix B.3. Lesgourgues et al. (2005) also computed the bias contribution
from the gNL term which is not considered in this work.

Starting from equation (8.10), the all-sky generalization of equation (8.23) is

N( fNL,0)
L =

4A2
L

Π4
L

 ∑
`1,`2,`3,`4

g`1`2(L)g`3`4(L)
[
T
`1`2
`3`4

(L) + Π2
L

∑
L′

{
`1 `2 L
`4 `3 L′

}
×

(
(−1)`2+`3T

`1`3
`2`4

(L′) + (−1)L+L′T
`1`3
`4`2

(L′)
)]
.

(8.24)

The quantity in curly brackets denotes a Wigner 6 j-symbol (see Abramowitz & Stegun, 1972). Using
the approximative formula for the trispectrum of unlensed temperature fluctuations given in equa-
tion (8.21) the similarity with the lensing induced CMB trispectrum (Hu, 2001a)

T`1`2
`3`4

(L) = Cφφ
L CΘΘ

`2
CΘΘ
`4

F`1L`2 F`3L`4 (8.25)

is striking. There are two important consequences. First, the term involving the Wigner 6 j-symbol,
hereafter denoted by N(B)

L , should only contribute on small scales, it can therefore safely be treated in
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the flat-sky limit, i.e. by using the second part of equation (8.23) . Second, the other term, afterwards
denoted by N(A)

L , should be proportional to CSW
L implying a scaling of the form

N(A)
L ∝

1
L3(L + 1)3 (8.26)

due to the fact, that

CSW
L =

2
9π

∫
k2dk PΦΦ(k) j2L

[
k(η0 − ηrec)

]
∝

1
L(L + 1)

(8.27)

for a scale-invariant power spectrum (cf. Liddle & Lyth, 2000).
In Figure 8.1 the two additional bias contributions N(A)

L and N(B)
L are shown. The agreement with

the results of Lesgourgues et al. (2005) is very good although they used the exact temperature trans-
fer functions instead of the extended Sachs-Wolfe approximation applied in this work. Only in the
acoustic regime the N(A)

L term shows substantial differences. There the bias is completely dominated
by the N(B)

L term, which is accurately described by the extended Sachs-Wolfe approximation, even on
smallest scales as the comparison with Figure 1 of Lesgourgues et al. (2005) shows. On large scales
the full-sky calculation does not greatly improve the results Lesgourgues et al. (2005) obtained ne-
glecting the curvature of the sky. For both methods one recovers the expected scaling relation with the
multipole order (cf. again Figure 1 of Lesgourgues et al., 2005).

As already pointed out by Lesgourgues et al. (2005) for current values of fNL, −10 ≤ fNL ≤ 74
(Komatsu, E. et al., 2011), the additional bias is not a severe contaminant of the reconstructed power
spectrum. On almost all scales the bias is more than four orders of magnitude smaller than the biases
arising from the lensing induced trispectrum. Only on largest scales the contributions from the N(A)

L
term can be substantial. Consequently, as long as a fully separate perturbative treatment of both,
gravitational lensing, as well as primordial non-Gaussianity, is applicable, the additional bias is well
controlled and for current fNL parameters negligible.

However, the validity of this separation ansatz is not obvious. In the presence of primordial non-
Gaussianity the mode coupling due to lensing is more involved since the perturbative expansions of
the lensed temperature field in powers of the lensing potential on the one hand, and the unlensed
temperature field in powers of the non-Gaussian curvature perturbations on the other hand, compete.

Furthermore, the analytical computation of the bias is only carried out at leading order in fNL, i.e.
only correlators in which the four multipoles are unlensed but two of them include non-Gaussian con-
tributions are considered. Higher orders than f 2

NL are neglected. Keeping in mind that the lensing
induced bias receives substantial contributions from terms which are second order in the lensing po-
tential power spectrum (namely the N(2)

L -term), it is not guaranteed that a leading order calculation is
sufficient.

In order to circumvent the assumptions and limitations which are necessary for an analytical study
of this problem I will resort to numerical simulations. Here, all the different effects involved, primor-
dial non-Gaussianity, lensing, instrumental noise, can be incorporated in a consistent manner and to
arbitrary order in fNL.

8.4.2. Numerical simulations

The starting point of the simulations is the large sample of non-Gaussian CMB realizations provided
by Elsner & Wandelt (2009). The non-Gaussian structure arises from primordial curvature perturba-
tions of local type detailed in Section 8.3. The maps of Elsner & Wandelt (2009) are well suited for
the analysis because they did not focus on the intrinsic CMB bispectrum but produced simulations
with accurate non-Gaussian statistics to all correlation orders. Every realization consists of a set of
Gaussian (ΘL

`m) and non-Gaussian (ΘNL
`m ) multipoles, so that a CMB map containing the desired level

of non-Gaussianity characterized by fNL can be built via

Θ`m = ΘL
`m + fNLΘNL

`m . (8.28)
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The cosmological background of these simulations is adapted from the WMAP5+BAO+SN data as
summarized at the end of Section 8.1.

Given a non-Gaussian CMB map, it can be lensed in the framework of lenspix5 (Lewis, 2005). The
remapping technique implemented in lenspix assumes that the lensing potential is fully described by
its power spectrum. Obviously, this is no longer true in the presence of primordial non-Gaussianity.
However, for the reconstruction scheme detailed in Section 8.2 the CMB and the lensing potential are
treated as statistically independent fields and higher order statistics of the lensing potential are not
involved.

Since the map is already given in multipole space I use a slightly modified version of lenspix, which
skips the simulation of a (Gaussian) CMB realization and starts directly from the temperature multi-
poles, constructed according to equation (8.28). In order to get a lensed CMB map at healpix (Górski
et al., 2005) resolution Nside = 2048, which is cosmically accurate up to `max = 2750, one needs input
multipoles up to `input = 3000. The non-Gaussian maps of Elsner & Wandelt (2009), however, cover
only a multipole range up to ` fNL = 1024. I therefore extend the maps in the range ` fNL < ` ≤ 3000
with pure Gaussian multipoles. Thus, equation (8.28) needs to be replaced by

Θ`m =

{
ΘL
`m + fNLΘNL

`m , if ` ≤ 1024
ΘL
`m, else.

(8.29)

The power spectrum needed for the construction of Gaussian CMB realizations has been computed
using camb6 (Lewis et al., 2000).

This method is not expected to crucially influence the main conclusion of this work. The non-
Gaussianity of the maps constructed according to this prescription will be even milder due to the fact
that scales smaller than about ten arcminutes are not affected by the primordial non-Gaussian curvature
perturbations. Likewise, if there are serious concerns about this method, one can think of the resulting
maps as not being subjected to primordial non-Gaussianity of the local type, but subjected to some
intermediate type, which is scale-dependent. In any case, the influence of the resulting non-trivial
intrinsic CMB trispectrum on the reconstructed lensing power needs to be studied.

Finally, the lensed maps are only exposed to instrumental noise. But neither any further secondary
anisotropies nor foregrounds nor experimental complications, such as incomplete sky coverage, are
included. Adapting the specification of the Planck satellite mission, the maps are first convolved
with a Gaussian beam with σFWHM = 7 arcmin. Before deconvolution, white Gaussian pixel noise
with standard deviation σN = 27 µK arcmin is added. The power spectra of the final maps are well
described by the analytic expression derived by Knox (1995)

CΘΘ
`,obs = CΘ̃Θ̃

` +

(
σN

TCMB

)2

e`(`+1)σ2
FWHM/8 log 2. (8.30)

8.4.3. Efficient estimator

For practical purposes, the estimator in the form of equation (8.5) is not suitable. One should use its
angular space representation instead

φ̂LM = AL

∫
dΩ Y∗LM(n̂)∇i [V(n̂)∇iU(n̂)] . (8.31)

Here, the spin-gradient derivative ∇ only acts on the spin part of the corresponding fields, the inverse
weighted temperature map

V(n̂) =
∑
`,m

1
CΘΘ
`,obs

Θ̃`mY`m(n̂) (8.32)

5http://cosmologist.info/lenspix/
6http://camb.info/
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and the Wiener reconstruction of the unlensed temperature field

U(n̂) =
∑
`,m

CΘΘ
`

CΘΘ
`,obs

Θ̃`mY`m(n̂) (8.33)

(Okamoto & Hu, 2003). This representation allows for the use of fast harmonic transform algorithms
on the sphere.

8.4.4. Results

In order to determine the bias associated with the connected part of the trispectrum of the unlensed
CMB, which is generated by primordial non-Gaussian curvature perturbations of local type, I pro-
ceeded as follows:

(1) construct N CMB maps following equation (8.29) setting fNL = 0

(2) use these maps to build a sample of lensed maps which contain the desired instrumental noise
properties as detailed in Section 8.4.2

(3) apply the efficient estimator of Section 8.4.3 to the sample and reconstruct the lensing potential
power spectrum for each map according to

Cφ̂φ̂,(i)
L =

1
2L + 1

∑
M

φ̂(i)
LMφ̂

∗(i)
LM − N(0)

L − N(1)
L − N(2)

L , (8.34)

where the upper index runs from 1 toN . The three bias contributions in the equation above have
not been computed separately for each individual realization. Instead, the theoretical power
spectrum of the lensed and unlensed CMB, as well as of the lensing potential, again computed
with camb, were used. To illustrate that in this way the (purely lensing induced) biases are very
well captured, the lensing potential power reconstruction for fNL = 0 obtained from hundred
CMB realizations is plotted in Figure 8.2. The boxes indicate the width of the multipole band
and the one sigma error for one realization.

(4) compute the sample mean

C̄φ̂φ̂
L =

1
N

N∑
i=1

Cφ̂φ̂,(i)
L (8.35)

(5) repeat steps (1) to (4) but now setting fNL = 100 in the first step

(6) repeat step (5) but now starting with fNL = 1000

(7) compute the bias for both values of fNL according to

N( fNL)
L = C̄φ̂φ̂

L

∣∣∣∣
fNL
− C̄φ̂φ̂

L

∣∣∣∣
fNL=0

. (8.36)

It needs to be stressed that in steps (1) to (3) for all three values of fNL the simulation conditions have
been the same. In other words, I kept track of the different random seeds involved in the map making
procedure. Thus, the ith map is always lensed by the same realization of the lensing potential and
always contains the same realization of instrumental noise. This ensures that the differences in the
reconstructed power spectra, i.e. the bias, are solely caused by the variations in fNL. The numerical
analysis of this work has been carried out setting N = 100.

In Figure 8.2 the reconstructed power spectra for both values of fNL are plotted, while Figures 8.3
and 8.4 show the corresponding biases. For comparison, also the bias derived by Lesgourgues et al.
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Figure 8.2: Illustration of the performance
of the CMB lensing power reconstruction
discussed in the text and condensed in
equation (8.34). The red boxes indicate the
width of the multipole band over which the
extracted power spectrum has been binned,
as well as the 1σ error for one realization.
In addition, the reconstructions in presence
of primordial non-Gaussianity for two dif-
ferent values of fNL are shown. Note that
on large angular scales the bias for fNL =

1000 exceeds the range of the plot by far
(cf. Figure 8.4) and is not shown for clar-
ity.

(2005) (cf. equations 8.23 and 8.24) is plotted. While the functional form of the bias found in the
simulations resembles that of the analytical zeroth order prediction, its amplitude is much larger.
Interestingly, the disagreement in amplitude is different for the two parts of the analytic bias formula.
For the smaller value of fNL the N(A)

L part, which gives the relevant contribution on large scales, needs
to be scaled by a factor of roughly 100 to reach the same level as the bias found in the simulations. Its
small-scale counterpart, the N(B)

L term differs approximately by a factor of 125.
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Figure 8.3: Additional bias associated
with the presence of primordial non-
Gaussian curvature perturbations. The
bias (red curve) has been extracted
from numerical simulations according
to equation (8.36) with fNL = 100.
In addition, the analytical estimates of
the bias (green and blue curve), phe-
nomenologically amplified, are shown.

Looking at the bias obtained for fNL = 1000 shown in Figure 8.4, one immediately realizes that,
in contrast to the analytical formula of Lesgourgues et al. (2005), the bias extracted from numerical
simulations does not scale quadratically with fNL. This is particularly true for large angular scales.
Here the agreement with the analytic expression, now phenomenologically amplified by a factor of
50, is much better than for fNL = 100. Thus, there is no simple scaling relation with fNL. To some
extent the fNL dependence of the bias qualitatively approaches a quadratic form in the acoustic regime
and beyond.

I shall now address possible explanations for this enormous discrepancy between the analytical
estimate of the bias and the results from numerical simulations. One can mainly think of three different
sources: (1) the assumption that lensing induced and primordial non-Gaussianity completely separate
does not hold. Thus, the discrepancy results from the lensing of the fNL trispectrum; (2) a calculation
of the bias at leading order in fNL is not sufficient, i.e. the discrepancy results from terms which
are higher order than f 2

NL; (3) the disconnected part of the trispectrum is changed in the presence of
non-vanishing fNL. In this case, the discrepancy results from changes in the N(0)

L term.
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Figure 8.4: Same as Figure 8.3 but for
another choice of the fNL parameter,
namely fNL = 1000. Note that in
this plot the N(A)

`
term has been scaled

differently highlighting, that the bias
found in numerical simulations does
not exhibit a simple scaling relation
with fNL in contrast to the analytical
model. The orange line indicates the
fNL induced bias in the absence of lens-
ing.
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I start with the last of these three possibilities by recomputing the N(0)
L term. Now the average

power spectrum of all the realizations is used instead of the theoretical one obtained from camb, which
is in principle only valid in the case of fNL = 0. However, there are no differences in the N(0)

L terms,
indicating that the disconnected part of the trispectrum is unchanged.

In order to check whether explanation (1) or (2) applies, the reconstruction scheme detailed at
the beginning of this section is repeated but this time without lensing. For clarity I focus on the
case fNL = 1000. The signal the estimator is now sensitive to is solely contained in the connected
part of the trispectrum induced by the non-Gaussian primordial curvature perturbations. Since N(1)

L
and N(2)

L identically vanish, subtracting N(0)
L from the reconstructed power spectrum then reveals the

bias associated with non-vanishing fNL. If explanation (1) is true the bias should be identical to the
analytical one given in equation (8.24). As shown in Figure 8.4 this is not the case. The analysis
without lensing reveals a deviation which has the same order of magnitude as before. In the absence
of lensing, however, the fNL bias is roughly one third smaller than with lensing. Again, the functional
form of the bias resembles the one of the analytical leading order calculation to some extent.

Since the order of magnitude of the deviation does not change, it can be concluded that the discrep-
ancy between the analytical expression for the fNL bias and the results from numerical simulations is
presumably due to contributions to the fNL induced trispectrum which are of higher order than f 2

NL.
The influence of lensing of the fNL induced trispectrum is subdominant. However, amounting to a
factor of approximately two, it is not negligible.

It is important to keep in mind that these are just qualitative considerations. The actual discrep-
ancy between the bias obtained from a rigour simultaneous treatment of primordial, as well as lensing
induced, non-Gaussianity via numerical simulations and its analytical lowest order estimate is tremen-
dous. The analytical expression, even phenomenological amplified, is not suited for an accurate and
consistent bias subtraction scheme. However, and this is the most important result, for intermediate
values of fNL, as suggested by current observational data, the bias associated with primordial non-
Gaussianity of local type does not effect CMB lensing power reconstruction at all.

8.5. Summary

In this chapter the influence of primordial non-Gaussianity on CMB lensing power reconstruction was
revisited. I determined the bias associated with the non-trivial structure of the CMB trispectrum gen-
erated by non-Gaussian curvature perturbations of local type. While the earlier work of Lesgourgues
et al. (2005) addressed this issue analytically, I used numerical simulations. This allows to overcome
the non-obvious hypothesis that both effects leading to a connected part of the CMB four-point func-
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tion do completely separate. The results of this work can be summarized as follows:

(i) The analytical expressions derived by Lesgourgues et al. (2005) in the limit of a flat sky have
been extended to the all-sky formalism.

(ii) In the case of non-Gaussian primordial curvature perturbations of local type the bias arising
from a non-trivial trispectrum of the intrinsic CMB temperature contrast is substantially larger
than so far expected.

(iii) I presume that this discrepancy mainly arises from the parts of the fNL induced trispectrum
which are of higher order than f 2

NL and which have not been considered in the analytical treat-
ment. Lensing of the fNL trispectrum itself amplifies the corresponding bias only by about 50%.

(iv) The limitation of the simulated non-Gaussian CMB maps (discussed in Section 8.4.2) does not
change the conclusion. Discarding the physical mechanism and thinking of the simulated maps
as the simplest example of a scale-dependent form of non-Gaussian structure in the unlensed
CMB, one finds that the associated connected part of the unlensed CMB is potentially a severe
contaminant in lensing power reconstruction studies. This interpretation of the simulated data
addresses another important aspect. In order to estimate the amplitude of the bias prior knowl-
edge of the type of primordial non-Gaussianity is needed. For removing the bias this prior
knowledge is even more important.

(v) The strength of the contamination is obviously set by the amplitude of the non-Gaussian con-
tributions. For current values of fNL only smallest multipoles are affected, while the effect on
intermediate and small scales is completely negligible. Low multipoles are anyway cosmic vari-
ance dominated and have therefore only small predictive power. Thus, even in the full-sky case,
the bias arising from primordial non-Gaussianity of local type is not expected to compromise
CMB lensing power reconstruction at all.

As this work focuses on the bias associated with primordial non-Gaussian curvature perturbations
solely characterized by fNL, an extension of this study including also the contributions from the gNL-
term is desirable. However, the simulation of accurate CMB maps containing the correct non-Gaussian
structure arising from both, fNL and gNL, is challenging.
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9 Chapter 9

Contributions to the nonlinear
integrated Sachs-Wolfe effect:
Birkinshaw-Gull effect and gravitational
self-energy density

In this chapter contributions to the spectrum of the nonlinear integrated Sachs-Wolfe
(iSW)/Rees-Sciama effect in a dark energy cosmology are recomputed. Focusing on the mod-
erate nonlinear regime, all dynamical fields involved are derived from the density contrast in
Eulerian perturbation theory. Shape and amplitude of the resulting angular power spectrum are
similar to that derived in previous work. With this purely analytical approach I identify two
distinct contributions to the signal of the nonlinear iSW effect: the change of the gravitational
self-energy density of the large-scale structure with (conformal) time and gravitational lenses
moving with the large-scale matter stream. In the latter the Birkinshaw-Gull effect is recovered.
As the nonlinear iSW effect itself is inherently hard to detect, observational discrimination be-
tween its individual contributions is almost excluded. This analysis, however, yields valuable
insights into the theory of the nonlinear iSW effect as a post-Newtonian relativistic effect on
propagating photons.

The contents of this chapter have been published in Merkel & Schäfer (2013a).

9.1. Introduction

In Chapter 7 several secondary anisotropies of the cosmic microwave background (CMB) temperature
were discussed. Chief among these is the integrated Sachs-Wolfe (iSW) effect (see Section 7.4). The
interaction of CMB photons with time-evolving gravitational potentials in the large-scale structure
causes additional fluctuations in the CMB temperature. While being blueshifted when entering a
potential well, the photons also experience a redshift on their way out of the potential. A net change
in temperature results when blueshift and redshift do not compensate.

Being a secondary effect, the signal of the iSW effect is quite small in comparison to the CMB
temperature itself. Its importance, however, arises from its dedicated sensitivity to cosmic fluids with
non-vanishing equation of state (Crittenden & Turok, 1996), promoting it as a valuable tool in the
investigation of dark energy and non-standard cosmologies (Lue et al., 2004; Zhang, 2006), as well as
the Universe’s spatial curvature (Kamionkowski & Spergel, 1994).

Exploiting its strong correlation with the galaxy distribution the iSW effect has been detected with
high significance by various groups (Boughn & Crittenden, 2004; Vielva et al., 2006; McEwen et al.,
2007; Giannantonio et al., 2008). The constraints they derive for the matter density Ωm and the dark
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energy equation of state w give support to the ΛCDM model.
The nonlinear iSW or Rees-Sciama (RS) effect (Rees & Sciama, 1968; Seljak, 1996b; Cooray, 2002;

Schäfer & Bartelmann, 2006) refers to any temperature anisotropy caused by nonlinearly evolving
gravitational potentials. In contrast to the linear iSW effect it is a small-scale phenomenon dominating
the total iSW effect signal on multipoles ` & 100, but is nevertheless hard to detect because of the
primary CMB (Cooray, 2002; Schäfer et al., 2011).

As it results from nonlinear structure formation, the statistics of the RS effect is necessarily non-
Gaussian. The non-Gaussianities induced by the RS effect, however, are small. Spergel & Goldberg
(1999) showed that the CMB bispectrum due to the RS effect is undetectable. Mixed polyspectra
of the nonlinear iSW effect temperature perturbation and the tracer galaxy density field, as recently
investigated by Jürgens & Schäfer (2013) in continuation of the work of Schäfer (2008), also do not
reach sufficiently high signal-to-noise ratios. Therefore, stacking methods (Granett et al., 2008), as an
alternative to a statistical detection of the iSW and RS effect, are of great interest.

Seljak (1996b) and Cooray (2002) provided two different perturbative descriptions of the nonlinear
iSW effect yielding comparable results. In this work I take up the ansatz of Cooray (2002). While his
results make extensive use of findings from the halo model in the deeply nonlinear regime, I am more
interested in a perturbative treatment. Therefore, the analysis concentrates on the weakly nonlinear
regime where the statistics of the underlying fields are not too far from being Gaussian and second
order perturbation theory is well applicable. The nonlinear iSW effect is computed by solely using the
density field and its derivatives. Although the applicability of this ansatz is naturally limited, it allows
for deeper insights into the underlying physical processes. This approach is well suited for identifying
the distinct contributions to the nonlinear iSW effect as well as elucidating their physical origin.

This chapter is structured in the following way: It begins with the computation of the spectrum of the
nonlinear iSW effect in Section 9.2. Furthermore, the resulting two-point statistics are derived and the
corresponding angular power spectrum are presented. The analysis is extended in Section 9.3, where
I discriminate and interpret the different contributions to the nonlinear iSW effect. In Section 9.4 the
physical interpretation is continued and deepened by pointing out analogies with classical field theory
as well as the theory of gravitomagnetic potentials. Finally, I summarize the results in Section 9.5.

Throughout this chapter I choose a spatially flat wCDM cosmology as reference. The initial per-
turbations in the CDM component are assumed to be adiabatic and Gaussian distributed with vari-
anceσ8 = 0.8, where the spectral index ns is set to unity. The matter content is described by Ωm = 0.25
and Ωb = 0.04 while the value of the Hubble constant is set to H0 = 100 h km s−1 Mpc−1 with h = 0.72.

9.2. Nonlinear integrated Sachs-Wolfe effect

In Section 7.4 I derived the relative change in temperature CMB photons experience when they traverse
time-evolving gravitational potentials on their way from the last scattering surface to today’s observer.
It is given by the line-of-sight integral (see the last term in equation 7.27)

τ(n̂) ≡
∆TiSW(n̂)

TCMB
=

2
c2

∫ ηrec

0
dη

∂

∂η
Φ(n̂, η). (9.1)

The gravitational potential is directly related to the density fluctuations via the (comoving) Poisson
equation (2.33c). Its time derivative can be most easily accessed in Fourier space where the Poisson
equation is readily inverted

∂

∂η
Φ(k, η) = −

3
2

H2
0Ωm

1
k2

∂

∂η

δ(k, η)
a

. (9.2)

Here I expressed Newton’s constant in terms of the critical density (2.11). In the derivation of the linear
iSW effect one usually inserts δ(k, a) = D+(a)δ0(k), revealing that during matter domination where
D+(a) = a the iSW effect vanishes. For the purposes of this work, however, it proves advantageous to
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carry out the time derivative formally

∂

∂η
Φ(k, η) =

3
2

H2
0Ωm

1
k2

(
H(η)δ(k, η) −

1
a
∂

∂η
δ(k, η)

)
. (9.3)

Obviously, the time evolution of the potential is sourced by two different effects: on the one hand the
scaling of structures by the Hubble expansion, represented by the first term, and on the other hand by
the time varying structure growth. As mentioned before, in epochs dominated by a fluid with vanishing
equation of state these two effects balance.

Since I am interested in nonlinear contributions to the iSW effect I express the time derivative of
the density fluctuations by means of the continuity equation

∂

∂η
δ(x, η) + div j(x, η) = 0. (9.4)

Due to matter conservation, the change of the dark matter density in time needs to be compensated by
the divergence of the corresponding flux

j(x, η) = [1 + δ(x, η)]υ(x, η). (9.5)

In the linear regime δ � 1, thus the momentum density δ(x, η)υ(x, η) is negligible and one can
immediately read off the familiar Fourier representation of the peculiar velocity field

υ(k, η) =

∫
d3x υ(x, η)eik·x = −i

∂D+(η)
∂η

k
k2 δ0(k). (9.6)

In Fourier space, the dark matter current density becomes a convolution

j(k, η) = υ(k, η) +

∫
d3k′

(2π)3υ(k − k′, η)δ(k′, η), (9.7)

so that the time evolution of the gravitational potential finally can be written as a function of density
contrast and peculiar velocities

∂

∂η
Φ(k, η) =

3
2

H2
0Ωm

1
k2

[
H(η)δ(k, η) − ik ·

(
υ(k, η) +

∫
d3k′

(2π)3υ(k − k′, η)δ(k′, η)
)]
. (9.8)

Due to the symmetry of the convolution the expression for the current density is not unique. For
example, one could have explicitly symmetrized equation (9.7). However, for the purpose of this
work, which aims at the different contributions to the RS effect, the form given above is most useful,
which will become clear below.

So far, this derivation is essentially the same as the one presented by Cooray (2002). Cooray (2002),
however, focused on the deeply nonlinear regime and proceeded by using approximations resulting
from the halo model approach. In contrast to this, I am interested in an analytical description of
the contributions to the nonlinear iSW effect which arise from dark matter currents. Therefore, this
analysis is restricted to the moderate nonlinear regime. Obviously, in this regime the simple relation
between peculiar velocities and density contrast, given in equation (9.6), is no longer strictly valid.
The CDM particles cease to exclusively follow the gradients of the potential. However, in order to
get an analytical estimate of the nonlinear contributions, it is still a useful approximation. Thus,
nonlinear corrections to the continuity equation, manifest in the momentum density, are taken into
account, but the linear properties of the underlying fields, density contrast and peculiar velocities, are
maintained. Consequently, by virtue of equation (9.6), there is only one dynamical field, namely the
density contrast, involved in the analysis. Equation (9.7) then may be written as

j(k, η) = −i
∂D+(η)
∂η

[
k
k2 δ0(k) + D+(η)

∫
d3k′

(2π)3

k − k′

|k − k′|2
δ0(k − k′)δ0(k′)

]
. (9.9)
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This expression for the current density has already been successfully used in the computation of the
power spectrum of the Ostriker-Vishniac effect (Ostriker & Vishniac, 1986; Jaffe & Kamionkowski,
1998; Castro, 2003). Since in the framework presented here all nonlinear contributions to the iSW
effect are solely sourced by the convolution part of the flux, it is convenient to define its rescaled
divergence

Θ(k, η) ≡ −
D+(η)

a
∂D+(η)
∂η

∫
d3k′

(2π)3

k · (k − k′)
k2|k − k′|2

δ0(k − k′)δ0(k′), (9.10)

whereas the linear contributions are captured by

τ̃(k, η) ≡
∂

∂η

D+(η)
a

δ0(k)
k2 . (9.11)

With this the change of the gravitational potential takes the compact form

∂

∂η
Φ(k, η) = −

3
2

H2
0Ωm

[
τ̃(k, η) − Θ(k, η)

]
. (9.12)

In Ωm/χ
2
H one recognizes the gravitational coupling constant mediating between the evolving matter

fields and the resulting change in the gravitational potential. Equations (9.10) and (9.11) underline the
different time evolution of the linear and nonlinear iSW effect. For illustration the relevant combina-
tions of the growth function and its derivative for three different equation of state parameters of the
dark energy component (cf. equation 2.15) are plotted in Figure 9.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
+
(a
),

D
(a
)

d d
a
D

+
(a
),

d d
a
D

+
(a
)

a

a

D+(a)

D(a) d
daD+(a)

d
da

D+(a)
a

w0 = −1

w0 = −3
4

w0 = −1
2

Figure 9.1: Growth function of the lin-
ear (dotted line) and nonlinear (solid
line) iSW effect along with linear struc-
ture growth (dashed line), for varying
equation of state parameters of the dark
energy fluid.

In order to characterize the statistics of the source field τ(k, η) ≡ ∂
∂ηΦ(k, η) its power spectrum is

computed 〈
τ(k)τ∗(k′)

〉
= (2π)3δD(k − k′)Pττ(k). (9.13)

The cross term Pτ̃Θ(k) involves the bispectrum of the density contrast. Since the density contrast is
treated as a Gaussian random field its bispectrum vanishes identically. Thus, the power spectrum
completely separates in its linear and first order nonlinear contributions

Pττ(k) = Pτ̃τ̃(k) + PΘΘ(k). (9.14)

The linear contribution is given by Pτ̃τ̃(k) = Pδδ(k)/k4, while for the evaluation of the second term
Wick’s theorem (see Section A.2.1) is invoked, yielding

PΘΘ(k) =

∫
d3k′

(2π)3

[
k ·

(
k − k′

)
k2|k − k′|2

+
k · k′

k2k′2

]
k · (k − k′)
k2|k − k′|2

Pδδ
(
|k − k′|

)
Pδδ(k′). (9.15)
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At this point I would like to emphasize that in my approach the signal of the nonlinear iSW effect
completely originates from the trispectrum of the density field representing velocity-density correla-
tions. In contrast to this, contributions of this kind vanish entirely in the approach of Cooray (2002).
Under the halo model, the trispectrum formed by velocity-density correlations does not contribute.
In the deeply nonlinear regime it is independent of the wavevector configuration. Consequently, any
anisotropic integration of this quantity cancels. Furthermore, Cooray (2002) argues that at small scales
the density fluctuations are independent of the large-scale velocity field. Thus, in his approach there
are no contributions from terms involving the cross-power spectra between density and velocity field.
Another difference with respect to the work of Cooray (2002) results from correlations of the density
field and its (conformal) time derivative. For describing these correlations Cooray (2002) borrows
once more a result from the halo model assuming that for the fields involved the Cauchy-Schwarz
inequality actually becomes an equality. In my approach, however, this far-reaching assumption is not
necessary. At this level of approximation, correlations of this form do not contribute to the nonlinear
iSW effect power spectrum because they involve the bispectrum of the (linear) density contrast which
identically vanishes.

The computation of the convolution integral in equation (9.15) is most readily carried out in a
coordinate system where the wavevector k is aligned with the x-axis and by introducing spherical
coordinates such that k′ = αk(µ, sinϑ cos φ, sinϑ sin φ) with α ≡ k′/k and µ ≡ cosϑ. Expressing the
CDM power spectrum in its dimensionless form, one finds

∆2
ΘΘ(k) =

1
2

∫ ∞

0

dα
α2

∫ 1

−1
dµ

(αµ − 1)
[
α
(
2µ2 − 1

)
− µ

]
k4 (

α2 − 2αµ + 1
)7/2 ∆2

δδ

(
k
√
α2 − 2αµ + 1

)
∆2
δδ(αk), (9.16)

where I have defined ∆2
XX(k) ≡ k3PXX(k)/2π2. The corresponding angular power spectrum is obtained

by Limber projection (Limber, 1953; Bartelmann & Schneider, 2001)

`(2` + 1)
4π

CXX
` =

π

`

∫ χH

0
χdχ W2

XX(χ)∆2
XX (k = `/χ) . (9.17)

In case of the linear iSW effect, the weight function reads

Wτ̃τ̃(χ) = 3ΩmH2
0
∂

∂η

D+(a)
a

, (9.18)

while for the first order nonlinear one it is given by

WΘΘ(χ) = 3ΩmH2
0

D+(η)
a

∂

∂η
D+(a). (9.19)

In Figure 9.2 both weighting functions are plotted for varying equation of state parameter of the dark
energy fluid. As expected, the weight function of the nonlinear iSW effect peaks at comoving distances
where the one of the linear iSW effect has already started to decline rapidly. At high redshifts Ωm(a)
approaches unity so that here growth function and scale factor coincide. Consequently, the linear iSW
effect vanishes identically (cf. equation 9.11).

The resulting power spectra are shown in Figure 9.3. Reflecting the additional fluctuation amplitude
of the matter distribution on small spatial scales, the spectrum of the nonlinear iSW effect is much flat-
ter than the linear one. In case of the ΛCDM model the nonlinear signal surpasses its linear counterpart
at angular scales smaller than about one degree, i.e. ` & 100. For time evolving dark energy models
this crossing has shifted to smaller scales. However, being of second order in the density contrast, the
amplitude of the nonlinear spectrum is much less sensitive to the underlying dark energy equation of
state than the linear one. Remarkably, the spectrum of the nonlinear iSW effect presented here is very
similar to the result of Cooray (2002), regarding its shape and amplitude, even though Cooray (2002)
worked in the deeply nonlinear regime while my analytical estimate is dedicated to the translinear
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Figure 9.2: Weighting function of the
linear (dashed line) and nonlinear (solid
line) iSW effect, respectively, for three
different values of the equation of state
parameter of the dark energy compo-
nent.
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Figure 9.3: Angular power spectra of
the linear (dashed line) and nonlinear
(solid line) iSW effect, respectively, for
three different values of the equation of
state parameter of the dark energy fluid.

regime. The agreement with the angular power spectrum derived using N-body simulations (Smith
et al., 2009; Cai et al., 2009, 2010) is also surprisingly good, suggesting that for a qualitative estimate
of the spectrum the second order perturbative treatment presented in this chapter is already sufficient.

It is interesting to investigate the mass dependence of the nonlinear iSW effect. I focus on the
ΛCDM model and smooth the power spectrum of the density contrast on different mass scales by
introducing a Gaussian filter function

Pδδ(k) −→ Pδδ(k)S 2
R(k) with S R(k) = exp(−k2R2/2). (9.20)

The smoothing scale R is set by the corresponding mass scale Msmooth = 4π
3 ρcritΩmR3. In Figure 9.4

the angular power spectra of the linear and nonlinear iSW effect are shown for three different masses,
namely 1011, 1012 and 1013 solar masses. Excluding objects with masses larger than 1013 solar masses,
the power decreases considerably on small scales (` & 1000), demonstrating that mostly cluster-size
objects contribute to the signal.

9.3. Contributions to the nonlinear integrated Sachs-Wolfe effect

A deeper analysis of equation (9.10) reveals some physical insights into the origin of the nonlinear
iSW effect. Mainly, one can identify two distinct sources. First, I rewrite equation (9.10) as the sum
of two new fields

Θ(k, η) = ΘSG(k, η) + ΘBG(k, η), (9.21)
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Figure 9.4: Contributions of different
mass scales to the angular power spec-
tra of the linear (dashed line) and non-
linear (solid line) iSW effect, respec-
tively.
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with

ΘSG(k, η) ≡ −
D+(η)

a
∂D+(η)
∂η

∫
d3k′

(2π)3

δ0(k − k′)
|k − k′|2

δ0(k′) (9.22)

and

ΘBG(k, η) ≡
D+(η)

a
∂D+(η)
∂η

∫
d3k′

(2π)3

k · k′

k2|k − k′|2
δ0(k − k′)δ0(k′). (9.23)

Concentrating on the first term, I proceed by making use of the Poisson equation and obtain

ΘSG(k, η) =
H−2

0 Ω−1
m

3
1
a
∂D2

+(η)
∂η

∫
d3k′

(2π)3 Φ0(k − k′)δ0(k′) (9.24)

=
H−2

0 Ω−1
m

3

[
∂

∂η
+ H(a)

] ∫
d3k′

(2π)3 Φ(k − k′, η)δ(k′, η) (9.25)

likewise in position space

ΘSG(x, η) =
H−2

0 Ω−1
m

3

[
∂

∂η
+ H(a)

]
Φ(x, η)δ(x, η). (9.26)

Keeping in mind that the inverse of the prefactor has already been absorbed in the definition of the
weighting function (cf. equation 9.19), the product Φ(x)δ(x) can be interpreted as the gravitational
self-energy density associated with the density contrast and its own gravitational potential. Conse-
quently, the field ΘSG may be interpreted as the (conformal) change of the gravitational self-energy
density of the large-scale structure together with the variation arising from the homogeneous expan-
sion of the background.

The interpretation of the second term is more involved. First, equation (9.23) is rewritten in a more
suggestive form

ΘBG(k, η) =

∫
d3k′

(2π)3 k′
D+(η)

a
δ0(k − k′)
|k − k′|2

·
∂D+(η)
∂η

k
k2 δ0(k′). (9.27)

By using the Poisson equation, one recognizes that the first term has the form of a gradient of the
potential. The second term, however, resembles the velocity field (cf. equation 9.6). Thus, one is
tempted to write

ΘBG(x, η) ' −2∇Φ(x, η) · υ(x, η) (9.28)

ignoring that equation (9.26) does not fully obey the structure of a convolution. Note that the pref-
actor contained in the weight function has also been restored. Although being rather symbolic, equa-
tion (9.28) has strong illustrative power. In the first term one recognizes the lensing deflection an-
gle α = −2∇⊥Φ (Bartelmann & Schneider, 2001). Since the CMB temperature fluctuations are
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measured along the line-of-sight, only the three-dimensional gradient perpendicular to the light ray
is considered. Accordingly, the scalar product projects out the velocity components in the plane of
the sky. Hence, one recovers the dipole-like temperature anisotropy pattern which is usually associ-
ated with moving gravitational lenses (Birkinshaw & Gull, 1983; Gurvits & Mitrofanov, 1986). The
close relation between this effect and the nonlinear iSW effect has already been pointed out by Cooray
(2002). However, neglecting the divergence part of the velocity field, Cooray (2002) does not account
for the contributions of the gravitational self-energy density discussed before.

For the computation of the power spectra of the two different contributions to the nonlinear iSW
effect I proceed in complete analogy to Section 9.2. In terms of the spectra of the two new fields ΘSG
and ΘBG the power spectrum reads

∆2
ΘΘ(k) = ∆2

SGSG(k) + ∆2
BGBG(k) + 2∆2

SGBG(k). (9.29)

The three different spectra involved can be jointly expressed as

∆2
XX(k) =

1
2

∫ ∞

0
dα

∫ 1

−1
dµ fXX(k, α, µ)∆2

δδ(αk)
∆2
δδ

(
k
√
α2 − 2αµ + 1

)
α(α2 − 2αµ + 1)3/2 (9.30)

with

fSGSG(k, α, µ) =
2α2 − 2αµ + 1

α2k4(α2 − 2αµ + 1)2 , (9.31)

fBGBG(k, α, µ) =
µ
(
2α2 + 2α2µ2 − α3µ − 3αµ + 1

)
αk4(α2 − 2αµ + 1)2 (9.32)

and the cross-spectrum

fSGBG(k, α, µ) = −
α
(
2αµ2 + α − 3µ

)
+ 1

α2k4(α2 − 2αµ + 1)2 . (9.33)

In Figure 9.5 the three-dimensional power spectra of the gravitational self-energy density and the
Birkinshaw-Gull term along with the cross-spectrum of both effects are plotted. In addition, the result-
ing power spectrum of the nonlinear iSW effect is shown, as well as, for comparison, the corresponding
spectrum of the linear iSW effect. From scales k & 0.1 Mpc−1 h on the spectra of the ΘSG and ΘBG
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Figure 9.5: Three-dimensional power
spectra of the gravitational self-energy
density and Birkinshaw-Gull term com-
prising the nonlinear iSW effect as well
as their cross-spectrum (upper panel).
In the lower panel the relative strength
of the signal in comparison to the
Birkinshaw-Gull term is shown.

field, as well as their cross-correlation, exceed the linear signal by several orders of magnitude. How-
ever, all three spectra are almost identical, as is demonstrated in the lower panel of Figure 9.5. Only
on largest scales does the relative difference amount to 10-20 per cent. Therefore, their combination
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according to equation (9.29) results in the much lower signal of the nonlinear iSW effect, which starts
to surpass the spectrum of the linear effect on scales k ∼ 0.2 Mpc−1 h. Furthermore, one recognizes
that the three spectra peak at k ∼ 1 Mpc−1 h, whereas the maximum of their combination is shifted to
larger scales (k ∼ 0.1 Mpc−1 h). Limber projection (cf. equation 9.17) of the three different spectra
results in the corresponding angular power spectra shown at the top of Figure 9.6. Since the projection
distributes the power of one mode over a wide multipole range the differences in the angular spectra
are even smaller than in case of the three-dimensional power spectra (see lower panel of Figure 9.6).
From multipoles ` & 1000 all three spectra are essentially indistinguishable.

Figure 9.6: Angular power spectra of
the gravitational self-energy density
and Birkinshaw-Gull term comprising
the nonlinear iSW effect as well as
their cross-spectrum (upper panel). The
lower panel shows the relative strength
of the signal in comparison to the
Birkinshaw-Gull term.
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9.4. Physical interpretation

To further motivate the interpretation of the contributions to the nonlinear iSW effect some analogies
to the theory of gravitomagnetic potentials and classical field theory are now presented.

I start with the temperature anisotropy induced by a small lens moving with small (transverse)
three-velocity υ. At lowest order one has (Birkinshaw & Gull, 1983; Gurvits & Mitrofanov, 1986)

∆TBG

TCMB
= −2

∫
dχυ · ∇Φ, (9.34)

where the integral is evaluated along the photon path. Albeit treating the involved fields in linear
theory, the Birkinshaw-Gull effect is obviously nonlinear in the sense that the perturbed quantities
enter as a product. In linear theory the velocity field can be obtained as the gradient of the potential
(cf. equation 9.6). Consequently, the Birkinshaw-Gull effect is of order O([∇Φ]2). In perturbation
theory one can naturally construct one more term of this order, namely Φ∆Φ. By virtue of the Poisson
equation this is exactly the gravitational self-energy density which was found in equation (9.26).

For simplicity any prefactors are dropped in the following. Then, both effects can be obtained from
the auxiliary vector potential A ≡ Φ∇Φ by taking the divergence

∆TRS

TCMB
= −2

∫
dχ div A = −2

∫
dχ

(
Φ∆Φ + (∇Φ)2

)
. (9.35)

Rewriting the potential A as

A(x) =

∫
V

d3x′
δ(x′)∇Φ(x)
|x − x′|

(9.36)

one immediately recognizes its similarity to the gravitomagnetic potential

AGM(x) ≡
∫
V

d3x′
j(x′)
|x − x′|

'

∫
V

d3x′
δ(x′)∇′Φ(x′)
|x − x′|

. (9.37)
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The vector potentials can be identified when the change of the gravitational potential may be consid-
ered to be constant over the volume of integration V. As long as both vector potentials coincide, the
nonlinear iSW effect is completely described by the Birkinshaw-Gull effect, as well as the gravita-
tional self-energy term (at the corresponding order in Φ) since Schäfer & Bartelmann (2006) showed
that ∆TRS/TCMB = 2

∫
dχ div AGM.

There is an important difference with respect to the theory of electromagnetism. In general, the vec-
tor potential describing the magnetic field is not fully determined by the scalar potential of the electric
field. The scalar potential only enters implicitly via the charge density. At the level of approximation
employed in this work, however, not only the mass density (δ ∼ ∆Φ) enters the gravitomagnetic po-
tential but the velocity field is derived from the scalar potential, too (υ ∼ ∇Φ). Thus, given the scalar
gravitational potential, the gravitomagnetic vector potential is already completely fixed.

It is interesting to note that the contribution of the self-energy density is independent of the assump-
tion ∇Φ ' const. for x ∈ V. This can be seen as

∇ ·

∫
V

d3x′
δ(x′)∇′Φ(x′)
|x − x′|

= ∇ ·

∫
V

d3x′
(
Φ(x′)∇

1
|x − x′|

+ δ(x′)∇′
Φ(x′)
|x − x′|

)
(9.38)

= −4πδ(x) Φ(x) + ∇ ·

∫
V

d3x′δ(x′)∇′
Φ(x′)
|x − x′|

, (9.39)

which was first integrated by parts and subsequently the order of differentiation and integration was
interchanged.

The strong similarity to the potential A also indicates why the statistics of the Birkinshaw-Gull and
the self-energy density term are almost identical (cf. Figures 9.5 and 9.6). Integrated over a large
volume, one expects the divergence of A to vanish due to Gauss’s theorem. Accordingly, both terms,
considered over a large volume, must cancel. Thus, one expects that they reveal the same statistical
properties, whereas the small deviations point to the actual differences in the two vector potentials A
and AGM.

Finally, it is worth mentioning an analogy with the theory of massless scalar fields. Interpreting the
potential Φ as scalar field interacting with an additional scalar field δ one readily computes its energy
momentum tensor (cf. Liddle & Lyth, 2000)

Tµν = ∂µΦ ∂νΦ −

(
1
2
∂λΦ ∂λΦ + δΦ

)
ηµν (9.40)

where ηµν = diag(−1, 1, 1, 1). Then the so-called mechanical pressure P of the field Φ is given by one
third of the trace of the spatial part of the energy momentum tensor, i.e.

P ≡
1
3

T i
i =

1
2

Φ̇2 −
1
6

(∇Φ)2 − δΦ. (9.41)

One now sees that, at the level of approximation used in this work, the nonlinear iSW effect measures
to some extent the mechanical pressure of the gravitational potential without the contribution arising
from its variation in time. That the term including time derivatives does not contribute is somewhat
expected since in this derivation of the nonlinear iSW effect the continuity equation was used to ex-
press the time variation of the gravitational potential by its variation in space. The analogy with the
mechanical pressure once more shows that the nonlinear iSW effect is naturally constituted by both
the Birkinshaw-Gull effect, as well as the gravitational self-energy density. The halo model approach
of Cooray (2002), however, cannot resolve this close relationship between these two contributions.

At the end of this section I shall comment on the apparent weakness of the presented approach.
Major concerns may arise from the fact that a nonlinear effect was analysed starting from linear theory.
I exploit the commonly used ansatz in perturbation theory that a product of first order fields yields a
second order perturbative, i.e. nonlinear quantity. This approach, however, at the same time reveals
one of the main problems of perturbation theory: it is not clear how to generalize this ansatz to
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higher order. On the other hand, this disadvantage is compensated for by the extreme simplification
provided by this ansatz. It allows for the reduction to one single dynamical field, the density contrast
or likewise the gravitational potential. One can then easily identify the terms which contribute at
the same order in the perturbative field. Furthermore, the statistical properties may be derived most
conveniently by tracing back higher order correlators to the matter power spectrum (cf. Section 9.3).
Thus, this approach facilitates a fully analytical treatment, which in turn offers some direct physical
interpretations of the origin of the nonlinear iSW effect. These interpretations are widely inspired by
analogies and always prefer the illustrative power of physical reasoning.

9.5. Summary

In this chapter the theory of the nonlinear iSW effect was revisited. I used the continuity equation to
express the time evolution of the gravitational potential in terms of the divergence of the dark matter
flux density. The momentum density, being the product of density and velocity field, can then be
interpreted as source field of the nonlinear iSW effect.

(i) This ansatz treats both dynamical fields, density contrast and velocity, in linear theory. Conse-
quently, the velocity field is completely determined by the density contrast, leaving the latter
as the only dynamical quantity involved in my analysis. This simplification allows for a fully
analytical treatment in contrast to the previous work of Cooray (2002) which substantially relies
on results from the halo model.

(ii) Exploiting Wick’s theorem I derived the angular power spectrum of the nonlinear iSW effect. I
confirmed the shape and amplitude found by other authors using different approaches (Seljak,
1996b; Cooray, 2002). Especially, I verified that the nonlinear signal surpasses that of the linear
iSW effect at multipoles ` & 100.

(iii) This analytical ansatz allowed to reveal two contributions to the nonlinear iSW effect: the
Birkinshaw-Gull effect (as already pointed out by Cooray, 2002) and the conformal change
of the gravitational self-energy density of the cosmic large-scale structure.

(iv) Computing the three-dimensional power spectra and the corresponding angular power spectra of
the individual contributions, it was found that they are almost identical, except on large scales,
and their individual detection is certainly impossible for ongoing CMB experiments.

(v) I showed, with simple arguments from perturbation theory, that it is natural that the Birkinshw-
Gull term is accompanied by the gravitational self-energy density term. Furthermore, I pointed
out several analogies with the theory of gravitomagnetic potentials and scalar fields to highlight
the physical meaning of the different contributions to the nonlinear iSW effect.

Despite its confinement to linear theory my ansatz allows for a deeper understanding of the physical
processes underneath the nonlinear iSW effect, especially regarding its relation to other phenomena
like the Birkinshaw-Gull effect.
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10 Chapter 10

Summary and conclusions

In this thesis I investigated several aspects of the interplay between light and the large-scale structure
of the Universe. The first part was concerned with the intrinsic alignment of galaxies and its impact
on weak gravitational lensing measurements. Intrinsic ellipticity correlations are expected to be the
most important systematic in future weak lensing analyses. Therefore, a deep understanding of in-
trinsic alignments is a key requirement in order to extract unbiased cosmological parameters from
observations. In particular, the physical mechanisms from which they arise and their statistics, which
contaminate the lensing signal, are of major interest. On the way to refined parameter constraints,
weak lensing measurement techniques became more and more elaborate, culminating in tomographic
and three-dimensional methods.

As a main result of my thesis I developed the fundamental formalism to consistently incorporate
intrinsic alignments into the framework of 3d weak gravitational lensing. My method allows for the
direct usage of physical alignment models and avoids any empirical parametrization common to previ-
ous work. Specifically, I employed two different models, which are linear and quadratic in the cosmic
tidal field, respectively. My approach for the first time facilitated to formulate the covariance matrix
of the intrinsic ellipticity field (II-alignments), as well as that of GI-alignments (the cross-correlation
between the intrinsic and lensing induced ellipticity field). The latter only arise in case of the lin-
ear alignment model provided that the distribution of the underlying cosmic density perturbations is
Gaussian which is a well justified assumption.

In order to compare the different alignment signals to the actual lensing signal the covariance ma-
trices were evaluated numerically. The numerical efforts for the covariance matrices resulting from
the linear alignment model are as demanding as those of the cosmic shear field itself. The enhanced
numerical complexity of 3d cosmic shear, with respect to conventional lensing studies, mainly stems
from the fact that the three-dimensional analysis invokes a basis set the radial part of which is given
by spherical Bessel functions. Their highly oscillatory behaviour complicates any harmonic space
integration. The complexity of the quadratic model is then further aggravated by the internal mode
coupling, which results from the products of tidal tensors. This mode coupling contains numerous
slowly converging sums in multipole space, leaving a direct numerical evaluation impossible.

For this reason I concentrated the numerical efforts on the linear alignment model. I found that
for a shallow redshift survey with median redshift zmedian = 0.3 II-alignments dominate the total
covariance matrix for large multipoles, which underlines the fact that intrinsic alignments are a small-
scale phenomenon. The situation is different for the forthcoming Euclid mission, which is much more
extended in redshift (zmedian = 0.9). Here the lensing signal contributes most for all multipoles. In
comparison to lensing the II-alignment contamination is more than one order of magnitude smaller.
Comparing the two alignment types, I found that, opposed to two-dimensional lensing studies, the GI-
signal is only slightly enhanced, if at all, with respect to the II-contributions. They are the dominant
contaminant on almost all scales for both survey specifications under consideration.

Concerning the three-dimensional shape of the covariance matrices in the k-k′-plane I showed that
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there is a fundamental difference between cosmic shear on the one hand and intrinsic alignments on
the other hand. Assuming a Euclid-like survey, the lensing covariance matrix adopts a rather circular
shape, whereas those of the II- and GI-alignments are strongly elongated along the diagonal k = k′.
In particular, for large multipoles (` ∼ 100) the covariance matrices of both alignment types tend to
almost completely concentrate along this diagonal.

These results stimulate the demand for a numerical evaluation of the quadratic model, too. One
possibility might be to resort to a hybrid approach, interpolating between pure 3d cosmic shear and
conventional tomographic methods, which allows to speed up 3d weak lensing computations (Kitching
et al., 2011). However, one has to be careful that such an approach is not too coarse for an accurate
description of intrinsic alignments. It needs to be assured that it does not accidentally remove parts
of the alignment signal. A reliable numerical implementation of the quadratic model therefore has to
be considered as a long-term goal. But in the meantime my findings for the linear alignment model
may serve as the starting point for a detailed quantitative study of the parameter estimation bias in
3d cosmic shear measurements due to the presence of intrinsic alignments.

In the conventional two-dimensional lensing formalism numerous studies of this kind have already
successfully been carried out. In contrast to its formulation in the framework of 3d cosmic shear, the
quadratic alignment model can be used without any numerical difficulties in such analyses. Neverthe-
less, previous efforts in this field have exclusively addressed the linear alignment model. In order to
bridge this gap I computed the biases associated with the quadratic alignment model for a minimal
set of cosmological parameters. In my analysis I took a two-dimensional non-tomographic weak lens-
ing measurement as a basis. I found that the matter density Ωm and the normalization of the linearly
evolved matter power spectrum σ8 are most strongly affected. The equation of state parameter of the
dark energy component, however, turns out to be rather insensitive to the presence of intrinsic ellip-
ticity correlations derived from the quadratic model. This is opposed to findings from studies which
have been carried out for the linear alignment model. The parameter describing the time evolution of
the dark energy fluid is severely biased here.

These differences underline the importance of the investigation of different models to gradually
improve the understanding of intrinsic alignments and their impact on cosmic shear measurements.
It seems that both models comprise complementary properties, as they apply to distinct galaxy mor-
phologies. Future work should therefore address a combined analysis aiming at a realistic morpholog-
ical mix of source galaxies. In addition, an extension to tomographic methods would be desirable and
is in fact one of the subjects of my current research.

The great advantage of the quadratic alignment model, in comparison to its linear counterpart, is that
its free parameters do not need to be inferred from galaxy shape measurements which are the main
weak lensing observable. Since in this model intrinsic shape correlations result from correlations
in the angular momenta of neighbouring galaxies, all model parameters are in principle accessible
in appropriate structure formation simulations. The close relationship between intrinsic alignments
and galactic angular momentum couplings motivated my investigation of the latter in the course of
this thesis. In my analysis angular momentum acquisition was described in the framework of tidal
torque theory. This mechanism has recently been questioned by results from numerical simulations
and its applicability is subjected to certain restrictions. These limitations, however, are compensated
for by the fact that tidal torque theory allows for a fully analytical treatment, which comprises the
most important properties of galactic angular momenta. In particular, it is well suited for a statistical
description where the formation process of individual galaxies is of minor importance.

I focused on the two-point correlation function of galactic angular momenta. According to tidal
torque theory in the Zel’dovich approximation, the angular momentum vector of a galaxy may be
described by 15 Gaussian variates; the covariance of which is given in terms of the linear matter
power spectrum. Since galaxy formation is assumed to only take place at peaks in the cosmic density
field the underlying random process is discrete. The peak restriction reduces the dimensionality of
the probability distribution to 12. Hence, the joint distribution function describing angular momentum
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correlations is 24-dimensional. This high dimensionality was the main difficulty in the computation
of the correlation function. In fact, its evaluation has been considered to be impossible only a decade
ago. In this thesis, however, I showed that an improved sampling strategy does allow for a numerical
evaluation. It can be carried out on a standard personal computer within a reasonable amount of time.
Applying this new evaluation scheme, I verified the fundamental scaling relation between specific
angular momentum and halo mass, as predicted by tidal torque theory. Finally, I estimated the typical
correlation length of galactic angular momenta for Milky Way-sized objects to be about 1 Mpc h−1.
This is in excellent agreement with previous studies carried out for less involved angular momentum
models. In the perspective of intrinsic alignments, my findings support the fact that intrinsic shape
correlations, i.e. II-alignments, only arise between physically close-by galaxies.

In the second part of my thesis I considered two important secondary anisotropies of the cosmic
microwave background: weak gravitational lensing and the nonlinear integrated Sachs-Wolfe ef-
fect. CMB lensing has become directly accessible by the unprecedented precision of the ongoing
Planck mission, and is exploited as a precious source of additional information (Planck Collabora-
tion, 2013a,b). The reconstruction of the CMB lensing potential power spectrum in particular allows
to break parameter degeneracies in the primary temperature anisotropies, revealing valuable insight
into the late-time Universe. As in the case of cosmic shear analyses, a reliable control of system-
atics is essential in order to take full advantage of the constraining power of the observations. For
the CMB lensing potential power reconstruction primordial non-Gaussianities are one of these sys-
tematic effects. In my thesis I investigated the reconstruction bias due to the presence of primordial
non-Gaussianity of local type, the amplitude of which is characterized by the so-called fNL parameter.

Since the reconstruction scheme is based on the connected part of the CMB temperature trispectrum,
any of its contributions other than lensing necessarily affects the reconstructed power. I improved
upon earlier work by leaving the flat-sky approximation behind and providing analytical expressions
for the reconstruction bias on the full sky. This is particularly important as in high-precision CMB
experiments like Planck the curvature of the sky may not be neglected any more.

The analytical predictions of the bias associated with local non-Gaussianity were confronted with
results from numerical simulations. In these simulations I could consistently model both contribu-
tions to the CMB trispectrum, lensing and primordial non-Gaussianity, as well as experimental noise.
It turned out that the bias found from the simulations is about two orders of magnitude larger than
the leading order calculations suggested. Treating the lensing effect separately from primordial non-
Gaussianity revealed that lensing of the fNL trispectrum amplifies the corresponding bias only by
roughly 50 per cent. Thus, the major extent of the discrepancy found from the simulations is presum-
ably due to those parts of the fNL induced trispectrum, which are of higher order than f 2

NL, and have
not been considered in the analytical treatment. The overall strength of the bias is set by the amplitude
of the non-Gaussian contributions. This, however, is quite small, fNL ∼ O(10). Therefore, the bias
does not compromise the Planck data analysis at all.

From a theoretical point of view it would be interesting to further disentangle the distinct contribu-
tions to the bias to at least the next higher order in fNL. These calculations, however, become quite
involved and the complex structure of the resulting mode coupling faces the same numerical challenges
encountered in the evaluation of the quadratic alignment model discussed before. The feasibility of
an extension of the analytical results presented in this work is therefore rather questionable, especially
with respect to the efforts required by its numerical implementation.

Regarding the four-momentum of a photon, the lensing effect may be interpreted as the rotation
of the photons’s (three-dimensional) wavevector by the spatial gradient of the gravitational poten-
tial, leaving the photon’s energy unchanged. This is contrary to the time variation of the Newtonian
potential which does change the photon’s frequency and therefore the effective CMB temperature.
Integrated along the line-of-sight, the corresponding (secondary) CMB anisotropy is known as the
integrated Sachs-Wolfe effect. In this thesis I proposed a novel, fully analytical, description of the
nonlinear iSW or Rees-Sciama effect, which is sourced by the nonlinear time evolution of the gravita-
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tional potential.
The main purpose of this ansatz was to gain further insights into the theory of the nonlinear iSW

effect as a post-Newtonian relativistic effect on propagating photons. First and foremost, I aimed
at revealing the different contributions to the signal, rather than at its precise calculation. The fully
analytical treatment of a nonlinear effect inevitably requires a number of simplifications. I chose
a perturbative ansatz which includes second order contributions but keeps the linear time evolution
of the individual constituents. These constituents were the (linear) cosmic density contrast and the
peculiar velocity field, which are directly related to each other in linear theory. One of the advantages
of this ansatz is that all terms of the very same perturbative order may be readily identified and their
individual contributions to the total signal become transparent. By construction, the applicability of my
approach is naturally restricted to the translinear regime. Nonetheless, the qualitative agreement of the
resulting angular power spectrum in comparison to results of both, alternative analytical descriptions
and numerical simulations, is surprisingly good.

I was able to identify two distinct sources: the change of the gravitational self-energy density with
conformal time and gravitational lenses moving with the large-scale matter stream. The latter is also
known as Birkinshaw-Gull effect. These contributions, in particular their lucid physical interpretation,
remain hidden in the standard derivation of the nonlinear iSW effect. An observational discrimination
between the two contributions is practically excluded, not only because the detection of the nonlinear
iSW effect itself is extremely difficult but mostly due to the fact that the (two-point) statistics of both
contributions is almost identical on all, but the largest angular scales. There, however, the signal of
the linear iSW effect is largely dominating.
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A Appendix A

Mathematical details

In this appendix I compile several mathematical details which have been excluded from the
main part of this thesis. The first part is devoted to some key concepts of differential geometry,
while the second contains the statistical supplement. Most of the contents presented in Sec-
tion A.1 can be found in much more detail in Nakahara (2003) and Wald (2005).

A.1. Riemannian geometry

A.1.1. Levi-Civita connection

The most basic definition of an n-dimensional manifold might be given as a topological space which
locally looks like Rn. The existence of smooth coordinate systems ensures calculus on it. If a manifold
is additionally endowed with a metric tensor, there exists a generalization of the inner product of two
vectors in Rn. Such a structure is essential for the notion of both lengths of and angles between vectors,
which belong to the same tangent space. Furthermore, the metric can be used to define a connection.
It allows to compare vectors which belong to different tangent spaces. The transport from one tangent
space to the other must not change the vector. Parallel transport of a vector field W along a vector
field V thus requires that the directional or covariant derivative of W along V

∇VW = Vµ

(
∂Wλ

∂xµ
+ Wν Γλµν

)
︸               ︷︷               ︸

≡∇µWλ

∂

∂xλ
(A.1)

vanishes, i.e. ∇VW = 0. On a (pseudo-) Riemannian manifold the connection coefficients or Christof-
fel symbols Γλµν are uniquely defined in terms of the (inverse) metric and its derivatives

Γλµν =
1
2

gκλ
(
∂gκν
∂xµ

+
∂gκµ
∂xν
−
∂gµν
∂xκ

)
. (A.2)

This so-called Levi-Civita connection is torsion-free, i.e. Γλµν = Γλνµ, and metric-compatible, i.e.
(∇κg)µν = 0.

Christoffel symbols for scalar perturbations of the FLRW metric

Equation (A.2) can now be used to compute the connection obtained from the perturbed FLRW met-
ric (3.6). I assume γ̂i j = δi j in equation (3.6) for convenience. The resulting non-vanishing Christoffel
symbols are compiled in Table A.1. Both the contributions from the homogeneous and isotropic back-
ground Γ̂λµν, and those of the perturbations δΓλµν (to first order in the Newtonian potential), are listed,
i.e. Γλµν = Γ̂λµν + δΓλµν. The speed of light has been set equal to one for clarity.
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Table A.1.: Christoffel symbols of the perturbed FLRW metric.

Christoffel symbol Γλµν background Γ̂λµν perturbation δΓλµν

Γ0
00 aH(a)

∂Φ

∂η

Γi
00 0

∂Φ

∂xi

Γ0
0i = Γ0

i0 0
∂Φ

∂xi

Γi
0 j = Γi

j0 aH(a) Φδi
j

Γ0
i j = Γ0

ji aH(a) −

(
2aH(a)Φ +

∂Φ

∂η

)
δi j

A.1.2. Riemann curvature tensor

Albeit a two-dimensional plane is obviously flat, the corresponding connection coefficients are non-
zero if for example polar coordinates are employed. Therefore, the connection coefficients cannot
serve as measure of the intrinsic curvature of a manifold. In fact, for any point on a manifold there
always exists a transformation to normal coordinates in which the Christoffel symbols vanish. From
the view point of General Relativity this is just a manifestation of Einstein’s equivalence principle
(Will, 2001). The connection, however, can be used to define the Riemann tensor R(X,Y) Z, which
does characterize the curvature of the manifold

R(X,Y) Z ≡ ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, (A.3)

where X, Y and Z are vector fields. The geometrical meaning of this tensor becomes obvious if one
computes the commutator of the covariant derivative in the coordinate basis[

∇µ,∇ν
]

Vλ ≡ ∇µ∇νVλ − ∇ν∇µVλ = RλσµνV
σ. (A.4)

While equation (A.3) is valid for any connection, equation (A.4) does only hold true for a torsion
free connection like the Levi-Civita connection (A.2). Since the covariant derivative of a vector

∇µ

∇ν∇ν

∇µ

Figure A.1.: Geometrical meaning of the Riemann cur-
vature tensor.

measures its difference with respect to a vec-
tor which would have been parallel transported
along the same direction one can think of the
commutator (A.4) as the difference which re-
sults from moving a vector along an infinitesimal
closed loop (cf. Figure A.1). This difference ob-
viously depends on the intrinsic curvature of the
manifold.

The Riemann tensor constructed from the
Levi-Civita connection obeys several symme-
tries, reducing the number of its independent
components considerably. There are only n2(n2−

1)/12 independent components. A further con-
sequence of these symmetries is that there is only one independent contraction of the Riemann
tensor, the Ricci tensor Rµν = gαβRβµαν = Rαµαν. Its trace is the Ricci scalar (or curvature
scalar) R = gµνRµν = Rνν. Their appropriate combination fulfils the contracted Bianchi iden-
tity ∇µ

(
Rµν − 1

2 Rgµν
)

= 0, ensuring that the energy momentum tensor which enters Einstein field
equations (2.3) is divergence free.
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A.1.3. Killing vectors and maximally symmetric spaces

A Killing vector k singles out a special direction in space in the sense that the local geometry does not
change along this direction. Formally, this is expressed by the vanishing Lie derivative of the metric
along k, i.e. Lkg = 0. In components the Killing equation reads

(Lkg)µν = ∇µkν + ∇νkµ = 0. (A.5)

While the covariant derivative of the metric vanishes for any vector field by construction, the Lie
derivative is defined independently of the metric. Therefore, the existence of a Killing vector field
indicates a certain symmetry of the manifold.

Spaces which admit n(n + 1)/2 linear independent Killing vector fields, i.e. the maximal number
possible, are called maximally symmetric spaces. Those spaces are spaces of constant curvature in
the sense that the Ricci scalar is constant. In case of the Robertson-Walker metric (2.5) the spatial
hypersurfaces are maximally symmetric spaces and the corresponding Ricci scalar is proportional to
the (constant) curvature parameter K.

A.2. Statistics

A.2.1. Wick theorem

Since most inflationary models predict Gaussian or almost Gaussian initial conditions (see Section 2.4.3)
higher order correlators, for example of the cosmic density field, can be expressed in terms of the cor-
relation function or equivalently in terms of the power spectrum by virtue of Wick’s theorem:

For even n the n-point correlator of a collection of Gaussian variables Xi1 , Xi2 , . . . Xin can be obtained
by summing all the possible products of two-point correlators made from the variables

{
Xin

}
,〈

Xi1 . . . Xi2n

〉
=

∑
{ j1,..., j2n}={i1,...,i2n}

〈
X j1 X j2

〉
× . . . ×

〈
X j2n−1 X j2n

〉
, (A.6)

where the sum is to be taken over all permutations which give rise to different pairs.

A proof of this important theorem is provided by Durrer (2008).

A.2.2. Characteristic function

Finally, I would like to introduce the characteristic function ϕX of the random variable X

ϕX(t) ≡
〈
eiXt

〉
=

∫
dX ρ(X)eiXt. (A.7)

Being related by Fourier transformation, the characteristic function is dual to the probability density
function ρ; it conveys all information about its properties and behaviour. Due to this duality the
probability density function may be reconstructed from measurements of the moments 〈Xn〉. For a
random variable with zero mean the characteristic function can be written as

ϕX(t) =

∞∑
n=0

(it)n

n!
〈
Xn〉 . (A.8)

Subsequent Fourier transformation yields the probability density function.
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B Appendix B

Calculational details

This appendix gathers additional material to the Chapters 5, 6 and 8.

B.1. Derivation of the covariance matrix of the quadratic model

In this appendix the missing steps in the derivation of of the covariance matrix of the quadratic intrinsic
ellipticity model used in Chapter 5 (see equation 5.53) are given. In order to simplify the notation I
denote multipoles with a bar ¯̀ when I refer to ` and m at the same time. I begin with the computation
of 〈ε`m(k)ε∗`′m′(k

′)〉. Denoting the trispectrum of the Newtonian gravitational potential evaluated today
by

T
¯̀1 ¯̀2
¯̀′
1

¯̀′
2
(k1, k2, k′1, k

′
2) ≡

〈
Φ
S,0
`1m1

(k1)ΦS,0
`2m2

(k2)ΦS,0∗
`′1m′1

(k′1)ΦS,0∗
`′2m′2

(k′2)
〉

(B.1)

one has 〈
ε`m(k)ε∗`′m′(k

′)
〉

= C2
2

∑
¯̀1, ¯̀2, ¯̀′1, ¯̀

′
2

Q̄k
¯̀1 ¯̀2 ¯̀(k1, k2)Q̄k′

¯̀′
1

¯̀′
2

¯̀′(k
′
1, k
′
2)T

¯̀1 ¯̀2
¯̀′
1

¯̀′
2
(k1, k2, k′1, k

′
2). (B.2)

In the last equation I have defined

Q̄k
¯̀1 ¯̀2 ¯̀(k1, k2) ≡ (−1)m+1

√
2
π3 `1(`1 + 1)

√
(`2 + 2)!
(`2 − 2)!

W`1`2`
m1m2mI`1`2`(k3, k4, k) η̃`1(k3, k1) η̃`2(k4, k2).

(B.3)
Exploiting the orthogonality of the spherical Bessel functions∫

k2dk j`(kχ) j`(kχ′) =
π

2χ2 δD(χ − χ′) (B.4)

(Abramowitz & Stegun, 1972) the matrix product in equation (B.3) can be simplified considerably.
Introducing

Ĩ`1`2`(k1, k2, k) ≡
π

2

∫
dχ
χ2 j`1(k1χ) j`2(k2χ) j`(kχ) (B.5)

one is left with

Q̄k
¯̀1 ¯̀2 ¯̀(k1, k2) ≡ (−1)m+1

√
2
π3 `1(`1 + 1)

√
(`2 + 2)!
(`2 − 2)!

W`1`2`
m1m2mĨ`1`2`(k1, k2, k). (B.6)

As explained in Section 5.3.2, the trispectrum is evaluated via Wick’s theorem given in Appendix A.2.1.
The trispectrum is then diagonal in the respective combinations of ki and ¯̀i. Therefore, the sums
over ¯̀′

1,2 collapse. The remaining sums over m1,2 trivializes due to the fact that∑
m1,m2

(
`1 `2 `

m1 m2 m

) (
`1 `2 `′

m1 m2 m′

)
=

1
2` + 1

δ``′δmm′ . (B.7)
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Having removed the entire m1,2 dependence I now set

Qk
`1`2`

(k1, k2) ≡

√
2
π3 `1(`1 + 1)

√
(`2 + 2)!
(`2 − 2)!

(
`1 `2 `

0 −2 2

)
Π`1`2`Ĩ`1`2`(k1, k2, k) (B.8)

and exploit another property of the Wigner 3 j-symbols, namely(
`1 `2 `

m1 m2 m

)
= (−1)`1+`2+`

(
`2 `1 `

m2 m1 m

)
, (B.9)

to arrive at〈
ε`m(k)ε∗`′m′(k

′)
〉

=
A4C2

2

2` + 1

∑
`1,`2

Qk
`1`2`

(k3, k4)
Pδδ(k3)

k4
3

Pδδ(k4)
k4

4

(
Qk′
`1`2`

(k3, k4) + (−1)`1+`2+` Qk′
`2`1`

(k3, k4)
)
.

(B.10)
Equation (5.53) may then be recovered by setting

Bk
``1`2

(k3, k4) ≡ Z`(k, k′′)M`(k′′, k′′′)Qk′′′
`1`2`

(k3, k4). (B.11)

B.2. Mode coupling functions

In Fourier space the quadratic alignment model of Chapter 6 becomes a convolution. This appendix
provides the explicit form of the resulting mode coupling functions. In case of the gradient or E-mode
it reads

fE(a, b, c) =
1
2

(
2c2 − a2

) [
b4 + (a · b)2 − (a × b)2 + 2b2(a · b)

]
+

1
2

(
2c2 − b2

) [
a4 + (a · b)2 − (a × b)2 + 2a2(a · b)

]
+ 3c2

[
(a + b)2(a · b) + 2(a × b)2

]
,

(B.12)

while one finds for the curl or B-mode

fB(a, b, c) =
(
c2 − a · b

) (
a2 − b2

)
(a × b) (B.13)

(Mackey et al., 2002). Here a and b denote two-dimensional vectors and c is a real number. Obvi-
ously, fE is a true scalar, whereas fB is a pseudo scalar. The coupling functions obey the following
symmetries

fE,B(a, b, c) = fE,B(a, b,−c) = fE,B(b, a, c). (B.14)

B.3. Some flat-sky expressions

Here the flat-sky expressions used in Chapter 8 are compiled. Starting with the lensing reconstruction
bias linear in the lensing potential (cf. equation 8.11), the normalization reads

A−1(L) =

∫
d2`1

(2π)2 f (`1, `2)g(`1, `2), (B.15)

while the optimal weights are given by

g(`1, `2) =
f (`1, `2)

2CΘΘ
`1,obsC

ΘΘ
`2,obs

=
`1 · LCΘΘ

`1
+ `2 · LCΘΘ

`2

2CΘΘ
`1,obsC

ΘΘ
`2,obs

(B.16)
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with the additional condition `1 + `2 = L imposed.
Finally, the expression for the intermediate quantities P`1`2

`3`4
(L), which build up the flat-sky fully re-

duced CMB trispectrum associated with primordial non-Gaussianity of local type (cf. equation 8.23),
reads

P
`1`2
`3`4

(L) =

∫
r2

1dr1

∫
r2

2dr2FL(r1, r2)
[
α`1(r1)β`2(r1) + α`2(r1)β`1(r1)

] [
α`3(r2)β`4(r2) + α`4(r2)β`3(r2)

]
(B.17)

with FL(r1, r2), α`(r) and β`(r) defined in equations (8.16) - (8.18).
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Melchior P., Viola M., Schäfer B. M., Bartelmann M., 2011, MNRAS, 412, 1552
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