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Abstract
The importance of nuclear reactions in low-density astrophysical plasmas with ion tem-

peratures kBT ≥ 1 MeV has been recognized for more than thirty years. However, the lack of
comprehensive data banks of relevant nuclear reactions and the limited computational power
did not allow detailed theoretical studies. In this thesis, using the publicly available code TALYS,
I have built a large nuclear reaction network relevant for temperatures exceeding 1 MeV. It con-
tains about 270 nuclear species and include the calculation of γ-ray emissivity due to different
nuclear reactions. The π-mesons production are also included. An approach to calculate the
γ-ray spectra through p + p→ π0 channel for an arbitrary proton distribution is also proposed.

The nuclear network is applied to two-temperature accretion disk models the so-called
Advection Dominated Accretion Flows (ADAF) and Shapiro-Lightman-Eardly (SLE). The γ-rays
emissivity are calculated for a wide parameter space including initial chemical composition.
For a 10 M� black hole, both models can produce nuclear γ-ray lines luminosities as large as
LN ∼ 1034 erg s−1. SLE is not an effective source of π0 photons, whereas ADAF luminosity can be
as large as Lπ ∼ 1035 erg s−1. ADAF regime is hot enough to evaporate neutrons. They can reach
the companion star atmosphere and initiate secondary nuclear reactions.

Zusammenfassung
Die Bedeutung der Kernreaktionen in astrophysikalischen Plasmen mit geringer Dichte

und hohen Ionentemperaturen von kBT ≥ 1 MeV ist schon seit mehr als 30 Jahren bekannt. Das
Fehlen umfassender Datenbanken für die entsprechenden Kernreaktionen und eingeschränkte
Rechenleistungen haben jedoch bisher keine detaillierten, theoretischen Untersuchungen er-
laubt. Um dieses zu beheben, habe ich In dieser Arbeit unter Verwendung des öffentlich–
zugänglichen Computercodes TALYS ein grosses Netzwerk an Kernreaktionen für den Temper-
aturbereich oberhalb 1 MeV aufgebaut. Das Netzwerk enthält 270 Kernarten und beinhaltet die
Berechnung der Gammastrahlen-Emissivität für verschiedene Kernreaktionen. Die Erzeugung
von π-Mesonen ist dabei ebenfalls berücksichtigt. Eine Verfahren zur Berechnung der Gam-
mastrahlenspektren durch p + p → π0 Reaktionen für eine beliebige Protonenverteilung wird
aufgezeigt.

Das nukleare Netzwerk wird auf bekannte Zwei– Temperaturen– Akkretionsscheibenmod-
elle, das sogenannte "Advection Dominated Accretion Flows" (ADAF) und das "Shapiro– Lightman–
Eardly" (SLE) Modell angewandt. Dabei wird die Gammastrahlen– Emissivität für einen grossen
Parameterraum und verschiedene chemische Anfangskompositionen berechnet. Für ein schwarzes
Loch der Masse 10 M�, können sich in beiden Modellen nukleare Gammastrahlenlinien mit
einer Leuchtkraft von bis zu LN ∼ 1034erg s−1 ergeben. SLE Scheibenmodelle sind keine bedeu-
tende Quellen von π0-Zerfallsphotonen; in ADAF Scheiben hingegen kann diese Leuchtkraft bis
zu Lπ ∼ 1035 erg s−1 betragen. ADAF Scheiben sind dabei heiss genug, um Neutronen freizuset-
zen. Wenn diese die Atmosphäre eine Begleitsterns erreichen, können sie zusätzliche Kernreak-
tionen auslösen.
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Introduction 1

The universe – as we nowadays know – started from a very hot and dense

state. This was the first time when the matter of the universe encountered

temperatures kB T > 1 MeV and it was the first time when nuclear reactions

played a role in the chemical evolution.

According to the standard Big-Bang Nucleosynthesis (or the BBN) – which

is the subject of physical cosmology that deals with the primordial abun-

dances of elements – the light elements such as Deuterium (D), 3He, 4He,
6Li and 7Li, are synthesized during the first three minutes after the Big-Bang.

The further expansion of the universe cooled the primordial plasma down

and lowered its density; hence, all nuclear reactions have been frozen out.

All other heavy elements are produced much later in the interior of stars

(Bethe, 1939; Alpher et al., 1948; Burbidge et al., 1957)

The BBN has been successful in predicting the primordial abundances of

D, 3He and 4He. These abundances match with the composition of very old

metal-poor stars – which are believed to contain the primordial composition

of elements. These observations have served to validate the standard cosmo-

logical model (see e.g. the Particle Data Group review). Despite this success,

the BBN fails to predict the observed 6Li and 7Li abundances. This is the

so-called “the Lithium problem” (see e.g. Fields, 2011). Lithium abundance

may not be the only issue for the BBN because recent observations in some

metal-poor stars have revealed traces of beryllium and boron which could

have existed in the primordial plasma (see e.g. Primas, 2010).

In a hot plasma, the collisions of nuclei can either excite them due to

inelastic processes or produce secondary nuclei in an exited state (due to

nuclear reactions). Generally, nuclear interactions in a very hot plasma are

accompanied by nuclear de-excitation lines. The observation of the Doppler

broadened γ-ray lines would provide evidences for the nuclear reactions.

In order to be detected, the γ-rays must be able to escape the production

region, i.e plasma must be optically thin (transparent) for γ-rays.

1



2 INTRODUCTION

The primordial plasma during the BBN was opaque, thus, it was not

possible for γ-rays to move freely; the only direct information we have about

the primordial nuclear reactions are the abundances of light elements.

A natural question arises: is any place in the sky where we can detect

γ-ray lines and observe nuclear reactions in action? In principle low-density

optically thin, hot plasmas with ion temperature exceeding 1 MeV can form

near compact relativistic objects, such as accretion flows close to black holes

(see e.g. Shapiro et al., 1976; Narayan and Yi, 1994; Blandford and Begel-

man, 1999) and in strong shock waves related, for example, to supernova

explosions (see e.g. Colgate, 1975).

The most straightforward approach to study the dynamics of forma-

tion and evolution of such plasmas, is the detection of prompt γ-ray lines

– product of nuclear reactions. The reason is that prompt γ-ray lines are

unambiguous signatures of specific nuclei and their production rates are

very sensitive to the conditions in plasma such as temperature and density.

Hence, nuclear reactions can transform a given nuclei to another one giv-

ing rise to different γ-ray lines. The intensity and the width of the prompt

γ-ray lines inform us about the plasma composition, temperature and den-

sity. Thus, it is of great practical importance to analyse and understand the

MeV-γ-ray spectra from very hot plasma.

The evolution of chemical composition of plasma also carries informa-

tion about the physical conditions. A very high temperature plasma experi-

ences energetic collisions. They lead to destruction of heavy elements into

lighter ones due to spallation reactions. If plasma lifetime is longer than

the nuclear destruction time-scales then a proton–neutron (p–n) plasma is

formed. The p–n plasma contains some traces of light elements which are a

result of weak nucleosynthesis. If a very hot plasma has outflows, then it can

spread its light elements into the surrounding and become “a contaminator”.

These elements can then interact with the nuclei of the surrounding material.

This will lead to secondary nuclear reactions and produce some characteris-

tic nuclear γ-ray lines which can give us indirect clues on presence of very

hot plasma.

The first attempts to assess the importance of nuclear processes in hot,

thin astrophysical plasmas were made in Aharonian and Sunyaev (1984,

1987). Different astrophysical implications of nuclear reactions in hot two-

temperature plasmas have been widely discussed in the literature (see e.g.

Ramadurai and Rees, 1985; Gould, 1986; Vestrand, 1990; Jin, 1990; Gues-

soum and Kazanas, 1990; Harris and Share, 1991; Bildsten et al., 1992; Yi and

Narayan, 1997; Guessoum et al., 1999; Jean and Guessoum, 2001; Guessoum

and Jean, 2002; Belyanin and Derishev, 2001). These works provide estimates

for the abundances of different light elements such as D, 6Li, 7Li, 9Be, 11B, etc.
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The possibility that two temperature plasmas may modify the primordial

(cosmological) abundances have also been discussed. Furthermore, they

have estimated the γ-ray lines luminosity due to nuclear reactions.

Aharonian and Sunyaev (1984, 1987) have also suggested a mechanism

for producing light elements, in particular deuterium, as an alternative to

BBN. In very hot accretion flows, neutrons that are formed due to breakup

reactions, can evaporate. If these neutrons manage to interact with a nearby

cold surrounding material, they can be captured by hydrogen and form

deuterium and a characteristic 2.22 MeV γ-ray capture spectrum.

These early works have formulated the basic theoretical description of

a very hot plasmas. However the early calculations could include only a

limited number of nuclei and reaction channels. The lack of data on nuclear

cross-sections and the increased computational complexity of calculations

as more nuclei are considered, were the main limitations. Most of these diffi-

culties have nowadays been overcome. The introduction of on-line nuclear

databases (Evaluated Nuclear Data File (ENDF), n.d.; Expermimental Nuclear

Reaction Data (EXFOR/CSISRS), n.d.) provides easy access to experimental

and theoretical data on nuclear cross-sections. There also exist publicly avail-

able computer codes which allow calculations of nuclear cross-sections and

other quantities of interest. These make use of several theoretical models.

Further advancements in computational power, makes it timely to conduct

comprehensive studies of nuclear properties of very hot plasmas.

In this work I have developed numerical tools that allow us to perform

detailed studies on the nuclear reactions and γ-ray spectra of a very hot

plasma. In particular a large nuclear reaction network for temperatures

kBT > 1 MeV has been built. This nuclear network contains about 270

nuclear species and the most intense nuclear prompt γ-ray lines. This allows

accurate treatment of the time evolution of the chemical composition and

calculations of intensity of related γ-ray lines.

The π-meson production at proton-proton interaction has been also

included in the nuclear network calculations. For a thermal plasma, accurate

analytical fit formulas are provided for the π0 production rate, cooling rate

and γ-ray spectra. Calculations of γ-ray spectra due to π0 production and

decay have been performed also for non-fully thermalized plasmas.

The continuum radiation that come from the proton–nucleus nuclear

bremsstrahlung and from capture reactions are also included. A general

formula for capture reaction calculations is provided which it also considers

the thermal Doppler broadening due to the thermal motion of the center of

mass frame.

The nuclear network is applied to two accretion models, the Advection

Dominated Accretion Flows (ADAF models) (see e.g. Narayan and Yi, 1994)
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and to the Shapiro et al. (1976) model (SLE models). This has allowed detail

studies of chemical composition evolution with the disk radius as well as

calculation of the γ-ray emissivity spectra due to nuclear lines, continuum

radiation and from the π0 production. For a non-fully thermalized plasma,

the calculation of the π0 production γ-ray spectra it is also shown. Neutrons

evaporation effect are included as well.

To conclude, this thesis provides a detailed study of the nuclear reac-

tions in a very hot plasma, and discuss important applications for accretion

flows.While theory and numerical studies – to which this thesis belongs –

have made steps forward, sensitive MeV-γ-ray instruments are lagging be-

hind. Hopefully this work can contribute to motivate further experimental

studies.

Structure of the thesis

This thesis is constructed as follows:

CHAPTER 1 provides the introduction and overview.

CHAPTER 2 gives the recipe to construct a nuclear reaction network. The

network is validated through many different examples toward the end of the

chapter.

CHAPTER 3 a method is suggested for calculation of the γ-ray spectra due to

π0 production in a thermalized and non-fully thermalized plasma. Analytical

fits are provided, too.

CHAPTER 4 considers nuclear reactions in accretion plasmas such as ADAF

and SLE. The abundance evolution and γ-ray spectra are calculated for

different accretion disk parameters. Upper limits are set for the γ-ray lines

luminosity of the disk. The neutron, D, Li and Be abundances are calculated

as a function of the disk parameters. The neutron evaporation efficiency is

also calculated for ADAF model.

CHAPTER 5 provides conclusions and summary.



Nuclear reactions in very hot
optically thin astrophysical
plasmas

2

2.1 Introduction

Theoretical predictions on the radiation of very hot astrophysical plasmas

with ion temperature kB Ti ≥ 1 MeV, motivate detail nuclear interaction stud-

ies. These very hot astrophysical plasmas are energetically able to initiate

different nuclear reactions which can change its chemical composition and

produce radiation that can be detected experimentally. All the relevant nu-

clear processes form a large nuclear reaction network. The main quantity

that characterise each reaction channel is the rate which for a binary reaction

i + j→ k + ... is defined as (see e.g. Fowler et al., 1967)

〈συ〉ki j (T ) =

√
8

π µi j (kBT )3

∞∫
0

σk
i j(E) E exp

(
−

E
kBT

)
dE

[
cm3 s−1

]
. (2.1)

Here 〈συ〉ki j represents the rate averaged over the Maxwellian distribution,

for a binary reaction i + j → k + ...; σk
i j denotes the cross-section; E is the

Center of Mass frame (CM) collision energy; T is the temperature; kB is the

Boltzmann constant, and µi j is the reduced mass of the interacting system

i + j.
The main aim of this chapter is to build a nuclear reaction network

to study composition and radiative processes of plasmas at temperatures

kB Ti ≥ 1 MeV. With this we can solve the nuclear reaction network and

calculate the γ-ray spectra due to ion interactions.

2.2 The nuclear reaction network

The calculation of the evolution of the nuclear abundances and the γ-ray

line emission in low density, high temperature plasmas, requires the use of a

comprehensive nuclear network. This network should take into account all

relevant nuclear reactions that may occur in a hot plasma with T ≥ 1 MeV.

5



6 NUCLEAR REACTIONS IN VERY HOT OPTICALLY THIN ASTROPHYSICAL PLASMAS

There is an extensive literature dedicated the issue of how to build and

solve nuclear networks (e.g. see Fowler et al., 1967; Hix and Thielemann,

1999). Nowadays, all this knowledge is compressed and very easy to access

through on-line nuclear databases for astrophysical applications, such as

JINA Reaclib (Cyburt et al., 2010), NucAstroData (Rauscher, 2006), BRUSLIB,

NetGen and NACRE II (Jorissen and Goriely, 2001; Aikawa et al., 2005; Xu et al.,

2013) and many more. There also exists many computer programs which

store, manage and solve the networks, such as libnuceq and libnucnet.1

However, all these nuclear networks are designed for scenarios such

as big-bang nucleosynthesis, core collapse supernova, stellar interiors, etc.

Generally, they are valid for temperatures T ≤ 1010 K. Thus, to describe

nuclear reactions for astrophysical plasmas with T > 1010 K (or kB T ≥ 1 MeV),

it is necessary to extend the aforementioned works.

Our main purpose here is to describe the evolution of the abundance

of nuclear species and the γ-ray emission of a very hot, low density and

optically thin astrophysical plasma. To further simplify the problem, we

assume the following conditions hold:

1. All nuclei are instantaneously thermalized, and their velocity distribu-

tions are described by Maxwellian distribution.

2. All target nuclei interact in their ground state.

3. The plasma physical conditions and initial composition are such that

photodisintegration and heavy nuclei reactions can be neglected.

These assumptions simplify the nuclear reaction network. The first as-

sumption reduces the rate calculation formula to the eq. (2.1). The second

assumption frees us to account for the nucleus excited states in the rate

calculation. The last assumption reduces the number of reactions we should

include into the nuclear network.

The assumption about instant thermalization may not be fully satisfy

in nature because plasma may not be able to fully develop a Maxwellian

distribution. The reason could be that the physical time-scales involved such

as plasma lifetime are shorter than the thermalization time. Nevertheless, a

plasma with a Maxwellian-like core distribution function and average energy

〈E〉 ∼ kBT ≈ 10 MeV is able to cover the most important energy interval of

the nuclear cross-sections; therefore, the reaction rate will not depend on

the tail of the distribution function. Thus, it is reasonable to calculate the

rate for a Maxwellian distribution plasma.

1See the nuclear astrophysics group at Clemson University (http://www.webnucleo.org/
home/modules/).

http://www.webnucleo.org/home/modules/
http://www.webnucleo.org/home/modules/
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In a high temperature plasma, different isomeric states of a given nu-

cleus may be in thermal equilibrium. Therefore, to obtain the reaction rate,

one should sum the contributions of all isomers (see Woosley et al., 1978;

Rauscher and Thielemann, 2000; Rauscher, 2011). A low density plasma such

as the case for very hot accretion flows the excitation time is much longer

than the de-excitation one. A typical number density for such accretion flows

is n . 1018 cm−3, whereas a typical excitation rate is 〈συ〉 < 10−14 cm3 s−1;

hence, the excitation time-scale will be τex = (n 〈συ〉)−1 & 10−4 s. On the

other hand the de-excitation time-scale is typically τex . 10−12 s. Therefore,

nuclei cannot reach thermodynamic equilibrium and they will interact in

their ground state.

Under the above assumptions, and since we are interested in low density

plasmas, only the binary interactions contribute to the chain of nuclear

reactions. The next section is devoted to justify the third assumption as well

as to specify the most relevant binary nuclear reactions that play the main

role in the plasma chemical composition evolution.

2.2.1 The nuclear reactions

Most of the astrophysical conditions – such as accretion flows – have an initial

chemical composition similar to a solar one. For such compositions the

Hydrogen (1H or p) and Helium (4He or α) are the most abundant elements

making about 98 % of the plasma’s mass. Other elements abundances – such

as 16O, 12C, 14N etc – will have less than 2 % of the plasma’s mass (see e.g.

Suess and Urey, 1956; Anders and Grevesse, 1989). In rarer cases plasma

could be composed differently, and some elements heavier than 4He may be

much more abundant compare to a solar composition. The applicability of

these cases will be discussed separately.

For studying purposes, let we divide the nuclear reactions into three

groups. The first group involve the reactions between hydrogen and helium,

the second one involves the reactions of hydrogen and helium with elements

heavier than 4He and the last group involves the reactions between elements

heavier than 4He. Based on the initial abundances, the most relevant reac-

tions of the first group are p + α, α + α and p + p inelastic collisions. During

the plasma chemical evolution, isotopes such as D (2H), T (3H) and 3He

become abundant. As a result the reactions such as p + D, p + T , p + 3He,

α + D, α + T and α + 3He become important and thus must be included in

the nuclear network. A full description of these reactions cross-sections and

their corresponding channels are shown in tables 2.1 and 2.2. The most

important nuclear reactions in the second group are those between p and α

with elements heavier than 4He. Because the heavy elements make up less
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than 2 % of the plasma’s mass composition, the reaction of the third group

will be negligible.

Neutrons (n) are unstable particles with mean lifetime τn = 880.1 ± 1.1 s

(Beringer et al., 2012, (PDG)). They are not initially present in the plasma.

However, during the plasma evolution the heavy nuclei spallation processes

as well as p + p inelastic interactions at high temperatures, produce many

neutrons. These neutrons quickly become abundant such that their number

density ratio with respect to protons can be as large as nn/np ≤ 0.1 depending

on the plasma temperature. Therefore, neutron reactions with other particles

can become as important as p and α reactions. Hence, all neutron reactions

are included in the nuclear reaction network.

To summarize, the most important nuclear reactions are the binary reac-

tions where at least one of the particles is a n, a p or an α-particle. All other

possible nuclear reactions will be negligible. As it is shown in the appendix A,

all discarded reactions for a solar composition plasma do not contribute

more than 0.4 % of the dominant reaction channels. In case of high metallic-

ity plasma the solution can still be reasonably accurate if nA/np . 10−1 – A is

an element heavier than 4He. However, the solution accuracy for this case

will drop to 7 %.

Although the nuclear reaction rates for p, n andαprojectiles can be simply

calculated from the local conditions of the plasma – such as ion temperature

and density – this is not the case for the interactions of photons with nuclei.

The γ-interaction reaction rates not only depend on local parameters, but

also on the number density of photons, which itself depends on the optical

depth of the plasma. Furthermore, the optical depth is also a function of

“non-local” variables such as the electron number density and size of the

object (plasma).

The γ-rays are produced and transported inside the plasma. Hot two-

temperature plasmas radiate X-rays and γ-rays through interactions of both

components of the plasma. The dominant radiative cooling channels for

ions are the excitation of nuclei with production of prompt γ-ray lines such

as 12C(4.44 MeV) or 16O(6.13 MeV) and 16O(6.92 MeV) lines, the γ-radiation

released at p − n capture, as well as p − n bremsstrahlung. For very high

temperature plasmas an additional radiative component come from the

p + p inelastic collisions that produce π0 which quickly decay to two photons.

The electronic component radiates more efficiently, predominantly through

thermal bremsstrahlung, and in the case of large optical depth, is cooled due

to comptonization.

Because the photon number density depends on the optical depth of the

plasma, the effect of the photodisintegration of nuclei cannot be estimated

without considering the plasma as a whole. The importance of this effect
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must be checked for each specific problem. As it is illustrated in appendix B

the effect of the photodisintegration on 16O and D nuclei – for the case

of a spherically symmetric and optically thin plasma – is negligible. The

photodisintegration of all radiative components do not make more than

0.1 % of the dominant nuclear reactions. It is shown in the appendix B that

even if the electron temperature is comparable with the ion temperature,

the effect of photodisintegration on the evolution of the plasma can still be

safely neglected. However, this might not be the case for an optically thick

plasma, or for the case where nuclear statistical equilibrium is reached.

We conclude here by noting that if heavy nuclei reactions are initially

negligible, they will always be so. The reason is that nuclear spallation

reactions will destroy all heavy nuclei during the plasma evolution.

2.2.2 The nuclear reaction cross-sections

Nuclear reaction rates are the main ingredient of a nuclear network. Know-

ing them precisely, allows us to make accurate predictions. To calculate

the Maxwellian averaged rate of a nuclear reaction, we must know the

reaction cross-section. Typically, a nuclear reaction cross-section peaks

from few MeV/nucleon to few-tens of MeV/nucleon. Thus, for a plasma

with kBT > 1 MeV the most important projectile energy window is within

E < 200 MeV/nucleon. At such high energies nuclear reaction mechanisms

such as direct, pick-up and pre-compound become important. The recently

established, publicly available TALYS code (A.J. Koning and Duijvestijn, 2007),

has incorporated all these mechanisms and is thus ideal to use. The TALYS

code is attractive because it has the following features:

i. it offers a projectile energy range 1 keV-250 MeV or higher because it

includes pre-equilibrium reactions,

ii. it incorporates modern nuclear models for the optical model, level densi-

ties, direct reactions, compound reactions, pre-equilibrium reactions,

iii. it can treat γ, n, p, D, T, 3He, and α-particles as both projectiles and

ejectiles,

iv. target mass numbers can be between A = 12 and A = 339. The code can

also calculate cross-section for targets with mass number in the range

A = 6 − 12, but the results may not be as accurate.

Very hot and optically thin astrophysical plasmas can reach ion tempera-

tures of order Ti ∼ 1012 K (∼ 100 MeV). To calculate the Maxwellian average

rate 〈συ〉 at such high temperatures with an accuracy better than 5 %, we
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Table 2.1: Isotopes of Hydrogen reaction cross-sections

Reaction Description

p(n, γ)D
Data from JENDL High Energy File 2007 (JENDL/HE-2007)
(n.d.) valid for projectile energy up to 3 GeV.

D(n, 2n)p
D(n, γ)T
D(p, np)p
D(p, γ)3He
D(α, np)4He

Data from ENDF/B-VII.0 (Evaluated Nuclear Data File
(ENDF), n.d.) valid for projectile energy up to 150 MeV.

T(n, 2n)D
T(p, n)3He
T(p, D)D

Data from ENDF/B-VII.1 evaluations (Evaluated Nuclear
Data File (ENDF), n.d.) valid for projectile energy up to
20 MeV.

T(n, 3n)p
Data from JEFF-3.1 evaluations (The Joint Evaluated Fis-
sion and Fusion File (JEFF) OECD/NEA Data Bank, n.d.),
valid for projectile energy up to 20 MeV.

T(p, γ)4He

For this reaction no theoretical evaluations have been
found; therefore the experimental data from (Expermi-
mental Nuclear Reaction Data (EXFOR/CSISRS), n.d.)
were used. From 10-100 keV in CM-system, data were
taken from Canon et al. (2002). For 8.34 and 13.6 MeV
data from Calarco et al. (1983).

T(α, n)6Li
Again no evaluations, data were extracted by Spiger and
Tombrello (1967). These data are valid up to 18 MeV.

should extend the projectile energy window up to 450 MeV – as it is estimated

in appendix C. For this reason I have extrapolated all TALY’s cross-sections

from 250 to 450 MeV as σ ∼ E−1 – similar to geometrical cross-section.

In this work we will use TALYS to calculate the cross-sections for reac-

tions involving elements from 6Li to 70Zn. For targets with A ≤ 6 (i.e. n, p, D,

T , 3He, 4He), the cross-sections are collected from theoretical evaluations;

when no evaluations were available experimental data are used instead. Both

evaluations and experimental data points were taken from the publicly avail-

able databases (Evaluated Nuclear Data File (ENDF), n.d.; Expermimental

Nuclear Reaction Data (EXFOR/CSISRS), n.d.).

It must be mentioned here that using evaluations or experimental data

from different sources introduce additional uncertainties. Some evaluations

do not exceed projectile energies of 20 MeV. In these cases, the cross-section

is extrapolated in the high energy region as σ ∼ E−1. Tables 2.1 and 2.2 list

all reactions with A ≤ 6 that are taken into account here. The fig. 2.1 shows

some important cross-sections.
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Table 2.2: Isotopes of Helium reaction cross-sections

Reaction Description
3He(n, p)T
3He(n, D)D
3He(n, γ)4He
3He(p, 2p)D

Evaluations from ENDF/B-VII.0 (Evaluated Nuclear Data
File (ENDF), n.d.), which are valid up to 20 MeV.

3He(α, γ)7Be

No evaluations. Experimental data in the interval 0.02-
3.13 MeV collected by different authors (experiments
from 2008-2009). Consult the EXFOR Database (Expermi-
mental Nuclear Reaction Data (EXFOR/CSISRS), n.d.).

4He(n, D)T

Data around 22 MeV from Shamu and Jenkin (1964), and
one point at 50MeV differential cross sections from Sagle,
Bonner, Brady, King, McNaughton, Romero and Ullmann
(1991).

4He(p, D)3He

Experimental data for 31 MeV from Bunch et al. (1964)
for 32 MeV, 40 MeV, 50 MeV and 52.5 MeV from Sagle,
Bonner, Brady, King and Romero (1991) for 85 MeV from
Votta et al. (1974) and for 200 MeV and higher from Alons
et al. (1986).

4He(α, p)7Li
4He(α, n)7Be
4He(α, 2p)6He
4He(α, np)6Li
4He(α, D)6Li

Data taken from King et al. (1977) for energies between
threshold and 50 MeV. For energies higher than 60 MeV,
measurements from Glagola et al. (1982) and fits from
Mercer et al. (2001) were used. In the work of King et al.
(1977), there are also data for the excited-state cross sec-
tion of 7Li(0.478) production γ-ray line.

The π-mesons production cross-section

At very high temperatures, p + p inelastic collisions are able to produce

π-mesons. The main p + p reactions are

pp→ ppπ0; pp→ pnπ+; pp→ Dπ+; pp→ π−...

Thus, a very hot, pure proton plasma will quickly convert protons to neutrons

and some deuterium. As a result, the interactions of neutrons that produce

π-meson should be taken into account, too. The neutron reactions are:

np→ npπ0; np→ ppπ−; np→ nnπ+; np→ Dπ0

nn→ npπ−; nn→ nnπ0; nn→ Dπ−

The neutron reaction cross-sections can be related with proton ones through

the isospin symmetry (see e.g. Rosenfeld, 1954; Gell-Mann and Watson, 1954).
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Figure 2.1: Some nuclear reaction cross-sections for some important reac-
tions of hydrogen and helium isotopes

The cross-sections of reactions that will influence p and n abundances are

related as follows:

σ(nn→ npπ−) = σ(pp→ pnπ+) (2.2)

σ(nn→ Dπ−) = 2σ(np→ Dπ0) = σ(pp→ Dπ+) (2.3)

The σ(pp → pnπ+) and σ(pp → Dπ+) are well measured experimentally

see fig. 2.2 (see e.g. Machner and Haidenbauer, 1999).

Dermer (1986) has suggested the following cross-sections fits:

σ(pp→ pnπ+) =


0 : 0 < pp ≤ 0.79621 GeV/c
0.95η4 + 0.099η6 + 0.204η8 : 0.79621 < pp ≤ 0.95 GeV/c
0.67η4.7 + 0.3 : 0.95 < pp ≤ 1.29 GeV/c
22.0(pp − 1.27)0.15 : 1.29 < pp ≤ 4.0 GeV/c

(2.4)

σ(pp→ Dπ+) =


0 : 0 < Ek ≤ 0.28755 GeV
0.18η + 0.95η3 − 0.016η9 : 0.28755 < Ek ≤ 0.65 GeV
0.56 E−3.9

k : 0.65 < Ek ≤ 1.43 GeV
0.34 E−2.5

k : Ek ≥ 1.43 GeV
(2.5)
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Figure 2.2: The cross-sections for different p + p interaction channels as
a function of collision momenta. The elastic and total cross-sections are
shown as well. The figure is taken from Machner and Haidenbauer (1999).

Both cross-sections are in millibarn (mb). The η = pmax
π /mπ c, pmax

π and mπ are

the maximum π+ momentum and mass, respectively. s = 2mpc2(Ep + mpc2) is

the full center of mass energy, mp is the proton mass and Ep =

√
p2

pc2 + m2
pc4

is the full proton collision energy and pp is the collision momenta. The

parameter η is:

η =

√
(s − m2

π c4 − 4m2
p c4)2 − 16m2

πm2
p c8

2mπ c2 √s
(2.6)

2.2.3 Constructing the nuclear network

First of all the reaction network should in principle satisfy a “closure con-

dition”: the reaction products of all nuclei in the network must be also

part of the same network. In practice we select the most relevant reac-

tions/channels, which implies that the closure condition holds only approxi-

mately. We can fix the accuracy up to which the closure condition is satisfied

by introducing a threshold value for the Maxwellian average rate (〈συ〉). Ev-

ery channel with a Maxwellian average rate smaller than the threshold is

ignored. Changing the value of the threshold changes the number of reaction
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channels in consideration, therefore this parameter plays a crucial role in the

accuracy of the solution, the calculation time, the dimension of the network,

etc.

To calculate the cross-sections and the Maxwellian average rates for the

reactions of nuclei from 6Li to 70Zn, the following algorithm is constructed.

First of all we introduce a first generation of nuclei which is chosen to be the

solar composition of nuclei from 6Li to 70Zn. Then by using TALYS code for

n, p and α-particle projectiles and the first generation of nuclei targets, all

the reaction cross-sections for each channel and γ-ray line are calculated.

Then using these cross-sections the Maxwellian average rate is calculated

according to eq. (2.1). At T = 1 MeV the largest reaction rates are of the

order of 〈συ〉ki j ∼ 10−16 − 10−15 cm3 s−1. By choosing a threshold value Rth =

10−19 cm3 s−1, we ensure that the contribution of the dismissed reactions

would be no more than 0.1%.

From the selected channels new targets may appear. They are potentially

created in the plasma due to the reactions of the previous generation of

nuclei, and they enter in calculations as a second target generation. After

that the previous procedure is repeated for the new targets, i.e. calculating

the cross-sections, the reaction rates, and the selection of the relevant chan-

nels according to the chosen threshold value. The new channels may still

introduce a third generation of new nuclei. We have to apply the algorithm

until there is no generation of new nuclear species. The network is then

closed up to the accuracy given by Rth.

The Maxwellian average rates for the isotopes of hydrogen and helium

are calculated separately from the above algorithm. They are then added to

the large nuclear network.

To save the calculation time, the Maxwellian average rates 〈συ〉ki j are

fitted as a function of temperature using the parametrization suggested in

Thielemann et al. (1986); Rauscher and Thielemann (2000) :

〈συ〉ki j = exp(a1 + a2 T−1 + a3 T−
1
3 + a4 T

1
3 + a5 T + a6 T

5
3 + a7 log T ). (2.7)

The fit is valid for T ∈ [0.1, 200] MeV. The goodness of the fit is estimated for

the seven parameters using the χ2 method. In the mentioned temperature

range the majority of the rates have a residual fluctuation less than 20%.

2.3 Gamma-ray emission

High temperature and low density plasma have a characteristic γ-ray spec-

trum component that results from nuclear processes. The most important

nuclear processes are the ones that produce prompt γ-ray lines, p−n capture

and bremsstrahlung (see e.g. Aharonian and Sunyaev, 1984). At very high
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temperatures (kB T > 20 MeV) the π0 production start to become important;

thus an additional component of the γ-ray spectra appears.

The MeV-range γ-ray spectra are composed by nuclear lines component

– result of nuclear de-excitation into different isomeric states – as well as a

continuum component made of the nuclear bremsstrahlung and nuclear

reactions such as the capture reactions 1H(n, γ)D, D(n, γ)T, D(p, γ)3He, and

T(p, γ)4He, etc.

Let the Φγ be the gamma-ray emissivity. If ṅγ is the number of γ-rays

emitted per unit time and volume at energy Eγ, then the emissivity can be

written as:

Φγ(Eγ) = Eγ

dṅγ(Eγ)
dEγ

cm−3 s−1. (2.8)

2.3.1 Nuclear γ-ray lines emissivity

In a thermal plasma the excited nuclei have a Maxwellian velocity distri-

bution, therefore the emitted γ-ray lines will be Doppler-broadened. The

Doppler broadening (ΓD) of a γ-ray line with a central energy E0
γ emitted by

a nuclei of mass m in a plasma at temperature T is

ΓD =

√
8 ln(2) kBT

mc2 E0
γ . (2.9)

In a high-temperature plasma ΓD is much larger than the natural width

Γ0 for almost all the strongest lines. For such condition the nuclear line

broadening profile is a Gaussian profile. If the energy of the photon emitted

by the nucleus at rest is E0
γ, and if ṅγ is the number of photons with energy

E0
γ that are emitted per unit time and volume, then the emissivity can be

written as

Φl
γ(Eγ) =

E0
γ ṅγ√
2πσ2

G

exp

− (Eγ − E0
γ)2

2σ2
G

 , (2.10)

where the Gaussian broadening σG is

σG =

√
kBT
mc2 E0

γ .

2.3.2 Gamma-ray emissivity of capture reactions

The γ-rays emissivity of a capture reaction 1 + 2→ 3 + γ, such as for instance

the n + p→ D + γ, is given by eq. (2.11) and eq. (2.12). The formula is derived

in appendix D.

Φc
γ(Eγ,T ) = n1 n2 ×

(
2 m3 c

π (m1m2)1/2 (kBT )2

)
Eγ × I(Eγ,T ) (2.11)
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where

I(Eγ,T ) =

∫
dE

E (E + Q)σ(E)
E2
γ

×

× exp

− m2
3 c2

2(m1 + m2) kBT

(
1 −

E + Q
Eγ

)2

−
E

kBT

 (2.12)

Here n1 and n2 are the number densities of species 1 and 2. The m1, m2 and

m3 are the masses of particles 1, 2 and 3. The Eγ is the γ-ray energy in the

LAB-frame, E is the collision energy in the center-of-mass frame, and σ(E)
and Q are the cross-section and the Q-value of the reaction, respectively.

The recoil of nuclei 3 is neglected in Eq.(2.11), i.e. terms ∝ Eγ/2m3c2 are

not included. The energy of the interacting particles is ∼ kB T , so most of the

photons will be produced with an energy of the order of Eγ ∼ Q + kB T ; thus

(Q + kB T )/m3 < 10−2 and the approximation is justified.

2.3.3 Gamma-ray emissivity of nuclear bremsstrahlung

Nuclear Bremsstrahlung involves electrodynamics and nuclear physics. There

are different phenomenological treatment of nuclear bremsstrahlung in the

literature. They involve classical, semi-classical and quantum treatment.

Edgington and Rose (1966) have found experimentally that the nuclear

bremsstrahlung spectra from p +A
Z X interaction – where Z and A are the the

nucleus X charge and mass, respectively – follows the law:

dσpX

dEγ
=

(A − Z)
A1/3 ×

dσpn

dEγ
(2.13)

where the dσpn/dEγ is the proton-neutron bremsstrahlung differential cross-

section.

The application of p-n capture and nuclear bremsstrahlung radiation in

a very hot proton-neutron plasma is described in Aharonian and Sunyaev

(1984). For a very hot accretion plasma where nuclei are not fully destroyed

the effect in eq. (2.13) should be taken into account.

There exist an extensive literature of how to calculate the p-n and p-p

bremsstrahlung differential cross-sections (see e.g. Ashkin and Marshak,

1949a,b; Aharonian and Sunyaev, 1984; Bauer, Bertsch, Cassing and Mosel,

1986; Bauer, Cassing, Mosel, Tohyama and Cusson, 1986; Remington et al.,

1987; Njock et al., 1988; Nifenecker and Pinston, 1989). Here, we will use the

p-n bremsstrahlung semi-classical formula from Aharonian and Sunyaev

(1984) because their differential cross-section describes reasonably well the

experimental data:

dσnp

dEγ
'

2α
3 π Eγ

√
1 −

Eγ

E
(2E − Eγ)

mp c2 σel
np(E) (2.14)
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Here E is the collision energy, and Eγ is the photon energy; α is the fine

structure constant and the σel
np is the elastic p-n scattering which is taken

from JENDL High Energy File 2007 (JENDL/HE-2007) (n.d.). The mp is the

proton mass.

In fig. 2.3 are compared the differential cross-section models from Ashkin

and Marshak (1949a); Aharonian and Sunyaev (1984) and Bauer, Bertsch,

Cassing and Mosel (1986) at the laboratory frame projectile energy EL =

100 MeV.
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Figure 2.3: Comparison of the p–n bremsstrahlung differential cross-
section at the projectile energy EL = 100 MeV from Ashkin and Marshak
(1949a); Aharonian and Sunyaev (1984); Bauer, Bertsch, Cassing and Mosel
(1986) .

By inserting the differential cross-section of eq. (2.14) in the eq. (2.1),

we obtain the photo-production rate per photon energy interval due to p-n

interactions:

dRb
np

dEγ
(Eγ) =

√
16

πmp (kBT )3

∞∫
0

dσnp

dEγ
(Eγ, E) × E exp

(
−

E
kBT

)
dE (2.15)

Using eq. (2.13) we obtain the nuclear bremsstrahlung emissivity for all

reactions p +A
Z X:

Φb
γ(Eγ) = n2

p ×

∑
i

(Ai − Zi)

A1/3
i

(
nxi

np

) × Eγ ×
dRb

np

dEγ
(Eγ)

 (2.16)

The np and nx are the number densities of protons and nucleus X, respec-

tively.
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2.4 The solution of the nuclear network

The Maxwellian average rates 〈συ〉ki j – that we calculated in the previous

section – enter into the kinetic equations of the plasma chemical evolution

(see e.g. Woosley et al., 1978). If we define the mass fraction abundance of

the element i as Xi = Ai ni/%u, where Ai is the mass number, ni is the number

density and %u ≡
∑

l Al nl the nucleon number density2, then the kinetic

equation reads:

Ẋk =

n,p,α∑
i

N∑
j

%u

1 + δi j

(
Ak

Ai A j

)
〈συ〉ki j Xi X j. (2.17)

The index i runs over the three projectiles n, p and α; whereas the index j
runs over all elements of the network – here the number of nuclei that are

taken into account is about 270 and they cover elements from n and p to
70Zn. Note that the sum in eq. (2.17) includes both, positive and negative

terms. Negative terms include processes that destroy the nucleus k.

To solve the nuclear reaction network means to solve the system of dif-

ferential equations in eq. (2.17), for every specie in the network. Due to

relatively large number of nuclear species, the system of differential equa-

tions is too complicated to be solved analytically; thus, it must be solved

numerically. The differential equations in eq. (2.17) are stiff ones; hence, I

use the Matlab R©’s “ode15s” numerical solver. This numerical solver is an

implementation of the Klopfenstein-Shampine family of Numerical Differ-

entiation Formulas (NDF) of orders 1 to 5 (MathWorks Inc. (Matlab R2009b),

n.d.)

The numerical solver does not always guarantee a physically meaningful

solution, thus some constraints are included to be checked in every solution

step. The constraints originate from conserved quantities such as the num-

ber of nucleons (or baryon number conservation), electric charge, etc. One

of the most important constraints is baryon number conservation, which

can be written as

%̇u = 0 ⇒
∑

Ẋi ≡ 0 ⇔
∑

Aiṅi ≡ 0 (2.18)

This condition ensures that the number of nucleons remain constant even if,

for instance, neutrons decay.

By defining the plasma temperature (T ), nucleon number density (%u)

and initial abundances for each element of the network, we can now solve the

network and obtain the abundances temporal evolution for every element

as well as we can calculate the γ-ray emissivity spectra for such plasma.
2In practice, nucleon number density %u can be converted to mass density ρmass, simply

by multiplying it with nucleon mass mu, ρmass ≈ %u × mu
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2.4.1 A pure proton plasma

Let us consider a unit volume of plasma at two fixed-temperatures, 30 MeV

and 100 MeV. The nucleon number density for this plasma is assumed %u =

1018 cm−3. This nucleon number density will be kept fixed for all the examples

that are shown in this chapter. This number density is a typical value for a

very hot, two temperature, optically thin accretion plasma.

At low temperatures kBT < 20 MeV, pure proton plasma is dominated by

p–p elastic scattering. As a result the proton abundance does not change.

At temperatures higher than kBT > 20 MeV, p–p inelastic collisions start

to produce π-mesons. This collision convert protons to neutrons and to

deuterium.
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Figure 2.4: Abundance evolution of a very hot and initially pure proton
plasma. On the left is shown the mass fraction abundance evolution for
temperature kB T = 30 MeV and on the right hand side that of temperature
kB T = 100 MeV. Both solutions have initial mass fraction abundance Xp = 1
(pure proton) and the nucleon number density %u = 1018 cm−3. The green
line shows the proton abundance evolution, blue line that of neutrons and
the red one is the deuterium multiplied to the coefficient shown in brackets.

The π-mesons production cross-sections satisfy the isospin symmetry;

therefore a pure proton plasma will result a proton-neutron (p-n) plasma,

with equal amount of protons and neutrons (Xn = Xp = 0.5). Deuterium is

also produced in such plasmas due to the capture reaction and π-meson

production.

In a pure proton plasma the deuterium is formed only through p + p→
D + π+. On the other hand, protons destroy deuterium through the pick-up

reaction p + D → 2p + n. Therefore, the amount of deuterium in a fixed

temperature plasma is give by:

ṅD = n2
p

(
Rpp

2
− RpD

nD(t)
np

)
,

where Rpp is the abbreviation for the rate (〈συ〉) of the reaction p + p → D
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and RpD that of deuterium destruction p + D. The np and nD are the number

densities of proton and deuterium in the plasma.

The solution of the eq. (2.17), gives initially a linear rise of the deuterium

number density (nD = Rpp n2
p t/2), then with the increase of nD, the destruc-

tion process tends to equilibrate the amount of D to a value

neq
D

np
=

Rpp(T )
2 RpD(T )

.

At temperature kBT = 30 MeV, Rpp ≈ 1.7 × 10−19 cm3 s−1 and RpD ≈ 9 ×
10−16 cm3 s−1; thus the equilibrium value is neq

D /np ≈ 9×10−5 or in mass fraction

abundance ratio Xeq
D /Xp = 2 × (neq

D /np) ≈ 1.8 × 10−4.

At temperature kBT = 100 MeV the Rpp ≈ 1.3 × 10−17 cm3 s−1 and RpD ≈

9 × 10−16 cm3 s−1; thus the equilibrium value – if it would have enough time

to reach it – is neq
D /np ≈ 7 × 10−3 or Xeq

D /Xp = 2 × (neq
D /np) ≈ 1.4 × 10−2.

For t > (np × 〈συ〉pp→n)−1, the protons start to effectively be converted

to neutrons until the equilibrium is reached. This causes a shift in the

equilibrium abundance of the deuterium.

The pure proton plasma produce γ-rays through π0 production in p–p

inelastic collisions as well as through p–n capture.

2.4.2 A proton-neutron plasma

Assume an initial p–n plasma. In reality this plasma is a product of the

evolution of other plasmas. It may come form a plasma that has destroy

all nuclei or from a plasma as shown in the previous example. As shown in

section 2.4.1, this plasma will not show a noticeable abundance evolution

for temperatures kBT > 1 MeV. In case of an initial asymmetry between the

amount of protons and neutrons, the plasma will only evolve to an equal

amount of protons and neutrons if it is able to produce π-mesons efficiently.

Figure 2.5 shows the p-n plasma γ-ray emissivity for temperatures 1, 10

and 100 MeV. The γ-ray spectra through π0 production it is not shown.

2.4.3 A pure 4He plasma

The abundance evolution analysis

The α + α reactions produce light elements dominated by 6Li, 7Li and 7Be.

For the pure He-plasma with constant temperature and density, the Li or Be

production rate would be:

ṅLi/Be = Rαα
n2
α

2
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Figure 2.5: The γ-ray emissivity of an initial p-n plasma for three tempera-
tures 1, 10 and 100 MeV. For this example the initial mass fractions are set
Xp = Xn = 0.5 and the nucleon number density is fixed at %u = 1018 cm−3.
The spectrum is a composition of p-n bremsstrahlung and capture reaction.
The γ-ray emissivity due to π0 production is not included here.

The nLi/Be and nα are the number densities of Li (or Be) and 4He, respectively.

The Rαα is the Maxwellian average rate for producing Li or Be through the

α + α reactions.

Initially the destruction processes are negligible; therefore, one obtains:

nLi/Be(t) = Rαα
n2
α

2
× t =

(nα
2

)
×

(
Rαα
Rt
α

)
×

(
t
τα

)
,

where τα = (nα Rt
α)−1 is the 4He destruction time-scale and Rt

α is the destruc-

tion rate at the given plasma temperature. We thus conclude that the first

generation products of α+α reactions, have abundances that depend linearly

with time (Xi ∝ t) for t � τα.

The α-particles can interact with the first generation of nuclei (G1 such

as Li or Be) to produce a second generation (G2). The production rate for the

second generation is written:

ṅG2 = RαG1nαnG1
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Its solution will be:

nG2(t) =

(nα
2

)
×

(
RG1

Rt
α

)
×

(
RG2

Rt
α

)
×

(
t
τα

)2

.

The RG1 and the RG2 are the production Maxwellian average rates for the

generation G1 and the generation G2, respectively, at the given plasma tem-

perature.

Using this expression, we can generalise the last result to the N’th genera-

tion (GN), for which the number density will be:

nGN(t) =

(nα
2

)
×

[(
RG1

Rt
α

)
× · · · ×

(
RGN

Rt
α

)]
×

(
t
τα

)N

,

where the RG1 to RGN are the production rates for each generation from their

previous one.

Therefore, we conclude that the N’th generation abundance have a Xi ∝ tN

dependence for t � τα. Hence, it is remarkable that the higher the generation

of a product is, the steeper will its abundance raise with time.

When the plasma evolution time becomes comparable to the 4He destruc-

tion time-scale t ∼ τα, each generation abundance reaches the maximum.

The maximum possible number density for the generation N’th is given by:

nmax
GN '

(nα
2

)
×

[(
RG1

Rt
α

)
× · · · ×

(
RGN

Rt
α

)]
.

The peak value is always nGN < nmax
GN , because the above formula is valid for

t � τα.

Suppose that the generation “i’th” has a very small rate RGi � Rt
α. As

a result the “i’th” generation will have an insignificant abundance; hence,

the generations “i’th + 1” will barely form. On the other hand if the rate is

too high then the generation “i’th - 1” does not exist because it is quickly

converted to generation “i’th”. Thus to have a chain of reactions similar

with what is described above, the rates between generations will not change

drastically from each other. Therefore, we cannot gain very high number

density of the N’th generation by considering for instance, one channel with

very high rate.

For a period of time larger than the destruction of 4He (t > τα) the amount

of 4He and other products that depend on it, will decline. The 4He is de-

stroyed by itself from α+α reactions initially, but soon the proton abundance

becomes large; thus the p + α reactions become much more effective and

dominate 4He destruction for t � τα.

For t � τα when p + α is the dominant 4He distraction process, thus the
4He distraction rate is give by

ṅα = Rt
α × np × nα
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The solution of which is:

nα(t) = n0
α × exp

(
−

t
τα

)
,

where n0
α is the initial 4He number density and τα is the 4He destruction

time-scale.

The first generation (G1) products of the α + α reactions for t � τα will

start to decline due to 4He destruction; therefore, we have:

ṅG1 = RG1
n2
α

2
=

(
RG1

Rt
α

)
×

(
n0
α

2 τα

)
× exp

(
−2

t
τα

)
,

the integration of which, gives:

nG1(t) =

(
RG1

Rt
α

)
×

(
n0 2
α

4

)
× exp

(
−2

t
τα

)
=

(
RG1

Rt
α

)
×

n2
α(t)
4

For the second generation (G2) we have:

ṅG2 = RG2nαnG1 =

(
RG1

Rt
α

)
×

(
RG2

Rt
α

)
×

(
n3
α(t)

4 τα

)
The solution of which gives nG2 ∝ nα(t)3. We can conclude that the N’th

generation number density dependence for t � τα, is nGN ∝ nα(t)N+1.

To sum up this analysis, the asymptotic behaviour of the N’th generation

products should be:
nGN(t) ∝ tN : t � τα

nGN(t) ≈ peak value : t ∼ τα
nGN(t) ∝ exp

(
−(N + 1) × t

τα

)
: t � τα

(2.19)

In other words, the higher the generation is, steeper its abundance raises

with time and sharper it falls.

The abundance evolution of a pure 4He plasma for temperatures kBT =

1 MeV and kBT = 10 MeV, is shown in fig. 2.6.

The evolution analysis of the γ-ray spectra

The γ-ray production rate due to a nuclear reaction depends directly on the

abundances of the nuclei. The photon production rate is ṅγ = 〈συ〉γ n1 n2,

where 〈συ〉γ is the Maxwellian average rate of the reaction 1 + 2→ γ. The n1

and n2 are number densities of species 1 and 2, respectively.

Let us analyse the γ-ray production rate in a pure 4He plasma. These

predictions allow us to construct analytically the γ-ray emissivity for every

component of the γ-ray spectra, with a rather good accuracy.
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Figure 2.6: The abundance evolution for an initial pure 4He plasma. Here
the nucleon number density is fixed %u = 1018 cm−3, and two temperatures
are considered kBT = 1 MeV (left) and kBT = 10 MeV (right). The black
vertical line represents the moment of time for which the γ-ray spectra in
fig. 2.9 is built.

Let us split the plasma evolution into three stages – as we have already

done in section 2.4.3. The first stage is during t < τα for which 4He abundance

is practically constant. The second stage t ∼ τα is the start of 4He destruction.

At this period, all generations of nuclei abundances reach their maximum

value. The last stage is t > τα during which neither 4He nor other generations

of nuclei are present in the plasma. During this period we obtain a proton–

neutron plasma.

During the firs stage, the abundance of the 6Li, 7Li and 7Be grow lin-

early with time; thus, α-particles start to excite them. As a result, the de-

excitation lines of 6Li, 7Li and 7Be, start to appear in the plasma spectra

together with the excited products of α + Li/Be. They all will have the same

γ-ray production rate behaviour, i.e. linear increase with time. The reason is

ṅγ = 〈συ〉γ nα nLi/Be, where, nLi/Be ∼ t.
Following the same logic, the excitation of other generations of nuclei

from α-particles will have a γ-ray production rate time dependence identical

to the abundance for that given generation.

At the second stage, since all the abundances for all generations reach a

maximum, so will the γ-ray production rate do. Whilst for the third period

(t > τα) when 4He destruction take place, the decline of the γ-ray production

rate will be ṅγ = 〈συ〉γ nα nGN ∝ exp
(
−(N + 2) × t

τα

)
faster than the abundance

of the generation N (nGN). During this last period the γ-ray production rate

is dominated by p–n plasma radiation.
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To sum all up:

ṅγ(t) ∝


∼ nGN(t) ∝ tN : t � τα

∼ nGN(t) ≈ peak value : t ∼ τα
∼ nα × nGN(t) ∝ exp

(
−(N + 2) × t

τα

)
: t � τα

(2.20)

Figure 2.7 shows the evolution of the production rate for different γ-ray lines.
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Figure 2.7: Gamma-ray production rates for an initial pure 4He plasma. The
plasma has nucleon number density fixed %u = 1018 cm−3 and temperatures
kBT = 1 MeV (left) and kBT = 10 MeV (right).

If we want to know the γ-ray emissivity at a certain moment of time, the

ṅγ shown in fig. 2.7 become very useful. The γ-ray lines will have a peak value

(Φl
γmax) and width (for details see eq. (2.10)) :

Φl
γmax(t) =

√
M c2

2π kB T
× ṅγ(t) (2.21)

∆Eγ =

√
kB T
M c2 × E0

γ (2.22)

where Mc2 = A × mu c2 is the emitter nucleus mass, with A its mass number

and mu c2 = 931.5 MeV the nucleon mass. The E0
γ is the central γ-ray line

energy.

For example, from fig. 2.7 at temperature kBT = 10 MeV and instant

t = 10−2 s, the production rate of the E0
γ = 0.478 MeV line emitted due to

de-excitation of 7Li is ṅγ ≈ 6 × 1017 cm−3 s−1; whereas, for E0
γ = 3.04 MeV

line produced by 8Be is ṅγ ≈ 4 × 1017 cm−3 s−1. Hence, the maximum emis-

sivity for these lines will be Φ0.478
γ ≈ 9.8 × 1012 erg cm−3 s−1 MeV−1 and Φ3.04

γ ≈

6.9 × 1012 erg cm−3 s−1 MeV−1; whilst, their widths are ∆E0.478
γ ≈ 0.02 MeV and

∆E3.04
γ ≈ 0.1 MeV. Figure 2.8 shows the nuclear line emissivity.
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Figure 2.8: Gamma-ray line emissivity for an initial pure 4He plasma with
kBT = 10 MeV and at the instant t = 10−2 s. The γ-ray line production rate it
is shown in fig. 2.7.

Nuclear bremsstrahlung emissivity Φb
γ is constant for Eγ � kBT ; whereas,

for Eγ ≥ kBT it has a sharp decline. Thus, to predict the nuclear bremsstrahlung

emissivity it is enough to know the height of the constant part as a function

of temperature and density. Note that for a composite plasma with different

species of nuclei, we need to include the modification factor to the p–n

bremsstrahlung, as it is shown in eq. (2.16).

The constant behaviour of the bremsstrahlung emissivity for Eγ � kBT ,

is because the differential cross-section has a dσ/dEγ ∝ E−1
γ behaviour at

low Eγ energies. With a good approximation the p–n elastic cross-section

is σel
pn ∝ E−1/2 for 0.1 < E < 10 MeV and σel

pn ∝ E−1 for 10 < E < 400 MeV. By

substituting these information in the eqs. (2.15) and (2.16), we obtain the

following formula for the p–n bremsstrahlung emissivity:

Φb
γ(Eγ � kBT ) ≈

 8.0 × 10−25 np nn θ : 0.1 < kB T < 2 MeV
3.2 × 10−26 np nn θ

1/2 : 2 < kB T < 100 MeV
, (2.23)

where θ = kB T/mp c2 and np and nn are the protons and neutrons number

densities, respectively. The Φb
γ is in units erg cm−3 s−1 MeV−1. For Eγ ∼ kBT ,

the bremsstrahlung emissivity falls sharply.

The p–n capture on the other hand, has an emissivity that starts from

Eγ = Q, reaches a peak at Emax
γ and then declines – where Q is the reaction

Q-value.

It is remarkable though, that the p + n→ D +γ capture reaction emissivity

maximum does not change noticeably for a wide range of temperatures. The

emissivity changes from Φc
γ/np nn = 1.6× 10−25erg cm3 s−1 MeV−1 to Φc

γ/np nn =

1.3×10−25erg cm3 s−1 MeV−1 when the temperature changes from kBT = 1 MeV
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Figure 2.9: Gamma-ray spectra for an initial pure 4He plasma. The abun-
dance evolution for this plasma is shown in the fig. 2.6. The spectra is
constructed at the moment of time shown with a black vertical line in
the fig. 2.6. The plasma has nucleon number density %u = 1018 cm−3 and
temperatures kBT = 1 MeV (left) and kBT = 10 MeV (right).

to kBT = 200 MeV, respectively. Thus, with a good accuracy, the emissivity

peak value can be considered independent of temperature. Hence, the

emissivity peak value and its photon energy is given by:

Φc
γmax ≈ 1.5 × 10−25 × np nn

[
erg cm−3 s−1 MeV−1

]
(2.24)

Emax
γ ≈ Q +

3
2

kB T (2.25)

Here Q = 2.225 MeV is the Q-value of the p + n→ D + γ capture reaction. The

γ-ray energy at the maximum emissivity is found by differentiating eq. (2.15)

with respect to Eγ.

The width of the capture emissivity spectra at the half maximum is of

the order ∆Eγ ∼ 2 × Emax
γ . Figure 2.5 shows the p–n spectra for different

temperatures. There np = nn = 0.5 × 1018 cm−3.

Figure 2.9 shows the emissivity from different components for the solu-

tions that are shown in fig. 2.6. The spectra are constructed for the instant

when the plasm starts to destroy 4He, for which all other generations abun-

dances have reached their maximum.

The spectrum in fig. 2.9 is dominated by nuclear lines, in particular

the lines that come from the de-excitation of the first generation of nuclei.

We can clearly see there the p–n bremsstrahlung and capture continuum

radiation. Moreover the continuum radiation of the p + T → 4He + γ with

Q-value Q = 19.8 MeV dominates because of the large amount of the T at

that particular moment of time. However, the cross-section for this reaction

is poorly known experimentally; thus, the result must be taken with caution.
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2.4.4 Hydrogen and Helium mixed plasma

Let us consider an initial plasma with Xp = Xα = 0.5. The dominant nuclear

reactions in such plasma are p + α and α + α. At temperature kBT = 1 MeV

the α + α reactions are not as effective as the p + α → D + 3He, because the

α + α reactions have a higher threshold energy.

The hydrogen-helium mixed plasma differs from the pure hydrogen or

pure helium plasma due to p + α → D + 3He reaction as well as due to the

reactions of p and α-particles with the p + α and α + α reaction products.

Another difference of H-He plasma from the pure helium one, is the 4He

destruction time-scale τα. For the mixed plasma, the 4He destruction time-

scale is shorter, because protons are present from an earlier stage; thus,

increasing the 4He destruction efficiency.

Figure 2.10 shows the chemical evolution of the H-He plasma for temper-

atures kBT = 1 and 10 MeV. The γ-ray spectra are also constructed therein, at

the instant when 4He destruction starts to take place.

The discussion about the chemical evolution and γ-ray production rate

(cf. sections 2.4.3 and 2.4.3) applies here as well. Figure 2.10 shows that the

products of the p + α and α + α reactions, rise linearly with time, peak at

the moment of 4He destruction and then fall down exponentially. The γ-ray

spectra will be dominated by the nuclear lines from the Li and Be isotopes.

These isotopes are produced in an excited state from α + α reactions, or get

excited from p or α particles. After 4He is destroyed, the plasma becomes a

p–n plasma.

2.4.5 A proton-heavy element mixed plasma

Now we consider a plasma that is initially composed by hydrogen and ele-

ments heavier than 4He. Here is investigated the plasma evolution for two

fixed-temperatures, 1 and 10 MeV. The elements that are considered here,

are: 12C, 28Si and 56Fe. Their initial mass fraction abundances are:

1. Xp = 0.7 and X12C = 0.3

2. Xp = 0.7 and X28Si = 0.3

3. Xp = 0.7 and X56Fe = 0.3

This is equivalent of having a plasma with np = 7 × 1017cm−3 and n12C/np =

3.6 10−2, n28Si/np = 1.53 10−2, and n56Fe/np = 7.7 10−3, respectively. Since

nX /np < 0.1 for these cases, we can neglect the 12C + 12C, 28Si + 28Si and 56Fe +
56Fe reactions (cf. appendix A).

The plasma evolution period is 100 s and its temporal composition evolu-

tion and the γ-ray lines production rate, are shown in figs. 2.11, 2.13 and 2.15.
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Figure 2.10: Chemical composition evolution and emissivity of an initial
p − α mixed plasma. The initial mass fraction abundances are Xp = Xα = 0.5.
The nucleon number density is fixed %u = 1018 cm−3, and two temperatures
are considered: kBT = 1 and 10 MeV. The figures on the left show the
chemical evolution for the two temperatures; whereas, the right side shows
the emissivity spectra built at the instant marked with the black vertical line
in the respective chemical evolution plot.

The γ-ray spectra are also constructed in figs. 2.12, 2.14 and 2.16. Two char-

acteristic periods are considered for its construction: The period before and

during the destruction of the element under consideration. The γ-ray spec-

tra of the period when the heavy element is fully destroyed, matches the p–n

plasma γ-ray spectra, which is already shown in section 2.4.2. In appendix E,

some cross-sections with their respective rates are shown for some intensive

γ-ray lines of some important elements.

2.4.6 Solar composition plasma

Now we consider a plasma with initial solar composition. Let the nucleon

number density and the temperature be fixed to %u = 1018 cm−3 and kBT =

10 MeV, similar to the examples above. The evolution of such a plasma

will have three stages. The first period lasts until all “metallic” nuclei are
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Figure 2.11: Temporal evolution of mass fraction abundances and γ-ray
line emission for a plasma with initial mass composition of 70% protons
and 30% 12C, for temperatures 1 MeV (left) and 10 MeV (right). In each
case, the bottom panels show in particular the evolution of the abundance
of light elements up to 11B, multiplied by the coefficient in brackets for
comparison.
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Figure 2.12: Gamma-ray spectra of a plasma with initial composition of
70% protons and 30% 12C, for temperatures 1 MeV (left) and 10 MeV (right).
The spectra are built for two instance of evolution belonging to the period
before and during the 12C destruction.

destroyed. The second period lasts until 4He is destroyed and the third period

is when the p–n plasma forms. Figure 2.17 shows the abundance temporal

evolution for such plasma. There the γ-ray emissivity is also constructed

for the first period. The other two periods of this plasma will have the same

spectra as the H-He and p–n plasma in their respective periods.

2.4.7 Temperature and/or density time dependence plasma

All the above examples had a fixed temperature and density. Moreover, their

evolution period has been shorter than the neutron decay lifetime. Here we

cover these two interesting cases with two examples.

For the first example consider a plasma with fixed temperature and nu-

cleon number density (%u = 1018 cm−3), over the entire solution interval

∆t = 104 � τn ≈ 880 s.

To a first-order approximation, the result of the evolution of a low-density,

high-temperature plasma over time-scales larger than one second is a system
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Figure 2.13: Temporal evolution of mass fraction abundances and γ-ray
line emission for a plasma with initial mass composition of 70% protons
and 30% 28Si, for temperatures 1 Mev (left) and 10 MeV (right). In each
case, the bottom panels show in particular the evolution of the abundance
of light elements up to 11B, multiplied by the coefficient in brackets for
comparison.
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Figure 2.14: Gamma-ray spectra of a plasma with initial composition of
70% protons and 30% 28Si, for temperatures 1 MeV (left) and 10 MeV (right).
The spectra are built for two instances of evolution belonging to the period
before and during the 28Si destruction.

formed by protons and neutrons. If the plasma temperature is kBT . 20 MeV,

the p–n interactions are feeble to keep free neutrons from decay; thus, for

time-scales larger than neutron lifetime the p–n plasma will consist of a

pure proton plasma. If the temperatures are higher than 20 MeV then the

π-meson production serves as a coupling between protons and neutrons

and the plasma will tend to evolve towards an equal amount of protons and

neutrons. This symmetric behaviour has its roots in the isospin symmetry

which was assumed earlier cf. section 2.2.2.

Figure 2.18 left, shows the evolution of a plasma initially composed with

Xp = 0.7 and XFe = 0.3 at temperature kBT = 10 MeV. After neutrons start to

decay, this plasma becomes a proton plasma; as a result, it becomes “darker”

(low fluxes of γ-rays). If the plasma temperature will be high enough to

produce π-meson, then neutrons will be in equilibrium with protons

The second example considers the plasma temperature as a function

of time. If plasma temperature increases with time, it will facilitate the

destruction processes and result to a p–n plasma. However, the most in-



34 NUCLEAR REACTIONS IN VERY HOT OPTICALLY THIN ASTROPHYSICAL PLASMAS

         

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

X
i (

m
a
s
s
 f

ra
c
ti

o
n

)

T=1MeV

p
n

D

T

3
He

4
He

56
Fe

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
14

10
15

10
16

10
17

10
18

10
19

t(s)

p
h

o
to

n
s
/s

*c
m

3

56
Co(0.16)

56
Fe(0.85)

56
Fe(1.24)

p(n,γ
2.22

)D

         

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

X
i (

m
a
s
s
 f

ra
c
ti

o
n

)

T=10MeV

p
n

D

T

3
He

4
He

56
Fe

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
14

10
15

10
16

10
17

10
18

10
19

t(s)

p
h

o
to

n
s
/s

*c
m

3

←
56

Co(0.16)

←
56

Fe(0.85)

←
56

Fe(1.24)

p(n,γ
2.22

)D

         

10
−4

10
−3

10
−2

10
−1

10
0

n
i/n

p

T=1MeV

n

D(x10
3
)

T(x10
4
)

3
He(x10

4
)

4
He(x10

3
)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

t(s)

n
i/n

p

6
Li(x10

12
)

7
Li(x10

12
)

         

10
−4

10
−3

10
−2

10
−1

10
0

n
i/n

p

T=10MeV

n

D(x10
3
)

T(x10
4
)

3
He(x10

4
)

4
He(x10

3
)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

t(s)

n
i/n

p

←
6
Li(x10

9
)

←
7
Li(x10

9
)

←
9
Be(x10

12
)

←
10

Be(x10
12

)

←
10

B(x10
12

)

Figure 2.15: Temporal evolution of the mass fraction abundances and
γ-ray line emission for a plasma with initial mass composition 70% protons
and 30% 56Fe, for temperatures 1 Mev (left) and 10 MeV (right). In each
case, the bottom panels show in particular the evolution of the abundance
of light elements up to 11B, multiplied by the coefficient in brackets for
comparison.
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Figure 2.16: Gamma-ray spectra of a plasma with initial composition of
70% protons and 30% 56Fe, for temperatures 1 MeV (left) and 10 MeV (right).
The spectra are built for two instance of evolution belonging to the period
before and during the 56Fe destruction.
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Figure 2.17: The solar composition plasma temporal evolution. The
nucleon number density is %u = 1018 cm−3, and the temperatures is
kBT = 10 MeV. The figure on the left shows the chemical evolution; whereas,
on the right is shown the emissivity spectra built at the instant marked with
the black vertical line in the chemical evolution plot.
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Figure 2.18: The temporal evolution of the mass fraction abundances
and the γ-ray line, emission for a plasma with initial composition of 70%
protons and 30% 56Fe, for constant temperature 10 MeV (left), and for time
dependent temperature T = 0.1 + 20 exp(−t/0.001) MeV (right).

teresting case is when the plasma cools down very quickly i.e. the cooling

time-scale is comparable or shorter than the nuclear destruction time-scale.

If plasma temperature becomes too low, the nuclear reactions “freeze out”.

Under these conditions many light and intermediate-mass elements can

form. The same phenomenon could occur if the density and/or pressure are

instantaneously lowered, such as in the case of free expansion.

The temporal dependence of the temperature adopted here is of the form

T = 0.1 + 20 exp(−t/τ∆) MeV, where τ∆ = 10−3 s. Due to the added complexity

and computational expenses, the network computes reaction rates down to

T = 0.1 MeV.

2.4.8 Using the nuclear network for Monte-Carlo simulations

The applicability of the nuclear network described here can be extended to

applications that require Monte-Carlo simulations. Astrophysical problems

such as: Evaporation of neutrons from a very hot and non-fully-thermalized

plasma; Radiation emitted due to neutron’s transport along a star atmo-

sphere or a cloud, or the transport of accreted matter into a neutron star

atmosphere – are examples where one may need both Monte Carlo simula-
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tions and nuclear physics.

These problems however, go beyond the scope of this thesis and are

thus not discussed here. Nevertheless, I show here a simple example where

the nuclear network is used with a Monte-Carlo method to simulate the

destruction of a given nucleus.

In section 2.2.3, it was discussed how to built a nuclear network. The rate

threshold that was suggested there was Rth = 10−19 cm3 s−1. Although, this is

a reasonable choice for problems related with plasma chemical composition

and γ-ray spectra, for other problems such as the Monte-Carlo methods, it is

not sufficient.

Consider a unit volume of plasma made of e.g. pure protons with temper-

ature kBT = 10 MeV and number density fixed to % = 1018 cm3. Let us throw

nuclei into this plasma e.g. 56Fe, and lets track how these nuclei “dissolve”

with time. These simulations require a network that has many more channels

than the one we have used so far in the other examples. I have constructed a

nuclear network with a threshold rate Rth = 10−20 cm3 s−1. Figure 2.19 shows

some possible dissolving paths of a 56Fe nucleus in a proton soup during 100

collisions.

Consider again the above example but replacing the proton plasma with

a neutron one. The fig. 2.20 shows some possible dissolving paths of a 56Fe

nucleus in a neutron soup during 100 collisions.

2.5 Summary and Discussion

The main purpose of this chapter was to develop a nuclear reaction network

that works for temperatures kB T > 1 MeV. All the tools are explained in details

and a numerical code that produce, manage and solve the nuclear network,

is built. The nuclear network is validated through different examples for

which the chemical evolution and the γ-ray emissivity are calculated, see

sections 2.4.1 to 2.4.8.

These examples allow us to draw some general inferences about how the

abundances behave with time and how the γ-ray spectra look like at a certain

moment during the plasma evolution. Plasma that is composed initially of

e.g. a solar composition, will evolve in three distinct stages. The first stage

lasts until elements heavier than 4He are destroyed, the second stage lasts

until the 4He is destroyed; finally, in the third stage plasma is composed of

protons, neutrons and some traces of light elements such as deuterium.

During the first stage t � τA, the abundances of the heavy elements are

almost constant – the τA is the destruction time scale of a given element A.

Therefore, the interactions p+A and α+A will produce some first generation
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of nuclei. This first generation abundance will increase linearly with time

(XG1 ∝ t) because abundances of p or α-particles and nucleus A are constant.

When the first generation of nuclei become abundant enough they can

produce a second generation of nuclei by interacting with protons and α-

particles. The abundance for the second generation depends quadratically

on time (XG2 ∝ t2). The second generation can also interact with protons

or α-particles and generate a third generation, and so on and so forth. For

a generation N the abundance will increase as XGN ∝ tN for t � τA. There-

fore, higher the generation of an element in a reaction chain is, steeper its

abundance increases with time.

All these generations abundances will increase with time until t ∼ τA.

At this moment the abundances of each generation reach a maximum. For

t > τA the element A abundance start to drop exponentially. At this moment

all its generations abundances drop like XGN ∝ XN+1
A (t).

This analysis allows us to study the evolution of different generations. To

summarize, higher the generation of an element is, steeper its abundance

increases and sharper it falls.

During the second stage, all elements heavier than 4He and their inter-

mediate elements disappear. The remnant of the heavy elements are some

isotopes of hydrogen and helium. For t � τα – where τα is the 4He destruc-

tion time scale – the abundance of 4He as well as that of protons are constant.

Therefore, the abundances of the p + α and α + α reactions products will

increase linearly with time. This first generation will interact with p or α

and produce a second generation. The second generation abundance will

depend quadratically on time. Further increase in the second generation

abundance can produce a third generation of elements, etc.

When t ∼ τα then all generations that were initiated by 4He will peak.

For t > τα the 4He abundance drops exponentially; thus, other generation

abundances will drop like XGN ∝ XN+1
α (t), see eq. (2.19). The second stage of

the plasma evolution looks qualitatively similar to the first stage, except that

the source of the chain of the intermediate elements is 4He.

At the last stage t � τα, a neutron–proton plasma is formed. In a such

plasma there are some traces of the hydrogen and helium isotopes that

coexist with protons and neutrons. The reason is the weak fusion which

equilibrate the destruction processes. The most abundant of these isotopes

is deuterium. The deuterium equilibrium abundance depends on the plasma

temperature and whether or not the plasma is able to produce π-mesons.

The γ-ray lines are produced through de-excitation of nuclei. A given nu-

clear reaction can either excite a given nucleus or it can produce a daughter

nucleus in an excited state. In both cases the γ-ray line production rate ṅγ will

have the same behaviour. If however, a given γ-ray is produced by the N’th
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generation reactions, then ṅγ ∝ nGN(t) ∝ tN for t � τA. The ṅγ will peak when

abundances of all generations reach their maximum, i.e. t ∼ τA. However, it

will decline sharper than the N’th generation abundance, ṅγ ∝ nA(t) × nGN for

t � τA, cf. eq. (2.20).

The γ-ray line emissivity is proportional to the γ-ray line production rate

ṅγ; therefore, the evolution of the γ-ray line emissivity Φl
γ, will be identical to

the ṅγ. The p–n capture and bremsstrahlung are proportional to ∝ np × nn;

thus they will evolve in the same way as the neutron abundance.

The three stages of plasma chemical evolution are reflected in the γ-ray

emissivity spectra. At the first stage, when the plasma is abundant with

elements heavier than 4He, intensive γ-ray lines are radiated. The emissivity

of these lines will evolve identical with ṅγ. Nuclear bremsstrahlung is the

dominant continuum radiation. At the second stage plasma is abundant

with p + α and α + α reaction products; thus, the γ-ray spectra are composed

of γ-ray lines, nuclear bremsstrahlung of p−n and p−α and capture reactions

spectra. The source of nuclear γ-ray lines are basically Li and Be isotopes

which are formed through α+α reactions. These isotopes are either produced

in an excited state or protons and α-particles interact with these nuclei and

excite them. The dominant capture reaction in this stage is the p + n→ D + γ;

however, intermediate elements such as D and T reach their maximum

abundance at t ∼ τα. Therefore, capture reactions such as p + D→ 3He + γ,

n + D→ T + γ and p + T → 4He + γ become significant.

At the last stage γ-ray spectra are dominated by the continuum radiation

of p-n bremsstrahlung and capture. For temperatures kBT > 30 MeV the p + p
interactions produce π-mesons. Thus the γ-ray spectrum has an additional

component due to π0 → 2γ decay. This component was not included here

because the next chapter is dedicated to it.

The destiny of a long-lived (i.e., t > τn), constant density and temperature

kBT < 20 MeV plasma, is a purely protonic composition. This is due to the

β-decay of free neutrons into protons, and as a result no other element will

remain in equilibrium. Aharonian and Sunyaev (1984) suggested a “neu-

tron evaporation” mechanism for very hot accretion disk around a black

hole through which a fraction of the neutrons escape and transforming the

accretion disk in an astrophysical neutron source. The neutrons might be

captured by surrounding (relatively) cold(er) material such as hydrogen and

form deuterium, emitting 2.22 MeV γ-rays. The observation of this spectral

line would serve to reveal the existence of the nearby neutron source.

Plasmas which for some reason are cooled to such an extent that re-

actions are “frozen” at the right moment in time, could produce a higher

abundance of intermediate elements (and therefore light elements). Such

a scenario could be related with shock waves formed during a supernova
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explosion. Since supernova explosions are ubiquitous in the universe, this

mechanism could, in principle, change cosmic abundances.

I conclude that the use of the nuclear reaction network that was sug-

gested here can be extended to other applications such as the Monte Carlo

applications.



The non-developed
Maxwellian distribution
plasma

3

3.1 Motivation

Very hot astrophysical plasmas with temperatures kB T > 20 MeV start to

produce π0-mesons through inelastic p–p collisions. The decay of π0-meson

leads to two high energy γ-rays. The importance of this process as a source of

γ-rays in hot accretion plasma around black holes has been recognized long

ago (e.g. Dahlbacka et al., 1974; Kolykhalov and Syunyaev, 1979; Giovannelli

et al., 1982; Aharonian and Atoyan, 1983; Dermer, 1986).

The π0 production cross-section through p–p inelastic collisions has a

kinematic threshold at Ek ≈ 2 mπ c2 ≈ 280 MeV – mπ is the π0 mass. Thus, a

thermal proton plasma with temperature below kB T < 100 MeV is able to

produce π0 only through high energy protons (E � kBT ) that populate the

distribution tail. As a result, the π0 production is very sensitive to the shape

of the distribution tail.

Typically, a thermal plasma is described by a Maxwellian distribution. In

real astrophysical plasmas however, full thermalization – i.e. fully developed

Maxwellian tails – may not establish. The reasons could be short lifetime of

plasma or some acceleration processes. In the first case ions do not have

enough time to interact and exchange momentum and energy, thus the

plasma will not be able to develop a tail. In the second case, even slight

acceleration of particles may result in deviation of the distribution tail.

Astrophysical situations where full thermalization may not take place,

are for instance Advection Dominated Accretion Flows (ADAF) regimes (e.g.

Narayan and Yi, 1994). For these accretion regimes, the plasma falling time is

shorter than the time required to develop the ion’s Maxwellian tail. Thus, the

γ-ray spectra due to π0 production from these objects can differ substantially

compared to the case of developed Maxwellian distribution.

Recent reports by Fermi collaboration of variable γ-ray sources with soft

energy spectra can be result of π0 production and decay in hot accretion flows

42



3.2 THE pp→ ppπ0 CROSS-SECTION 43

onto relativistic compact objects such as black holes or neutron stars. The

very hot plasma of such objects may not be able to develop the Maxwellian

distribution tail which would affect the π0 production

Hence, it is of great practical interest to investigate the γ-ray production

in such plasmas. There are two main component that influence the π0

production and its γ-ray spectra. The first is related to the p–p inelastic

collisions close to the kinematic threshold and the second component is

related with distribution tail of the ion component of the plasma.

3.2 The pp→ ppπ0 cross-section

Many experiments have been performed to measure the pp→ π0 production

close to the kinematic threshold (e.g. Shimizu et al., 1982; Meyer et al., 1990,

1992; Stanislaus et al., 1991; Bondar et al., 1995; Machner and Haidenbauer,

1999; Agakishiev et al., 2012). The cross-section σppπ0 shows a rapid increase

from the kinematic threshold Ek ≈ 0.28 GeV until a proton kinetic energy

around 0.85 GeV. For proton kinetic energies between 0.85 and 2.5 GeV, the

data show approximately constant cross-section with a value 4 mb. A good

fit to low energy data below 1 GeV can be found in Dermer (1986). Moreover,

the latter for proton energies higher than 1 GeV start to significantly exceed

the experimental data. In the calculation here we will assume a constant

cross-section of σppπ0 = 4 mb for 0.85 < Ek < 2.5 GeV, i.e we will use:

σppπ0 =



0 : 0 < pp ≤ 0.77654 GeV/c
0.032η2 + 0.04η6 + 0.047η8 : 0.77654 < pp ≤ 0.96 GeV/c
32.6(pp − 0.8)3.21 : 0.96 < pp ≤ 1.27 GeV/c
5.40(pp − 0.8)0.81 : 1.27 < pp ≤ 1.53 GeV/c
4 : 1.53 < pp ≤ 3.3 GeV/c

, (3.1)

where σppπ0 is in millibarn (mb) and η = pmax
π /mπ as defined in section 2.2.2.

In fig. 3.1 the cross-section given by eq. (3.1), the fit suggested by Dermer

(1986) and the experimental data (see e.g. Machner and Haidenbauer, 1999;

Agakishiev et al., 2012), are compared.

3.3 The π0 production reaction rate

Following Weaver (1976), in a relativistic plasma the production rate for two

plasma species 1 + 2 can be written as:

R12 =

∫
d R =

n1 n2 c
1 + δ12

∫
f̃1(~p1) f̃2(~p2)

γr βr

γ1γ2
σ12(βr) d3~p1 d3~p2 , (3.2)

where n1 and n2 are the number densities for the two species 1 and 2 in

the laboratory frame; ~p1 and ~p2 are the momenta of two particles; f̃1(~p1)
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Figure 3.1: The p + p→ π0 production cross-section as a function of proton
collision kinetic energy. Circles are the experimental data taken from the
(Machner and Haidenbauer, 1999; Agakishiev et al., 2012). Full black line is
the fit provided in (Dermer, 1986), red dash-line is the fit that is used in this
work.

and f̃2(~p2) are the momenta distributions of particles 1 and 2; σ12(βr) is the

interaction cross-section as a function of the collision speed βr for which the

Lorentz factor is defined by γr = γ1γ2(1 − ~β1 · ~β2); γ1 and γ2 are the protons

Lorentz factors and β1 and β2 their speeds in the laboratory frame; δ12 = 1 if

particles 1 and 2 are identical and zero otherwise.

For the p + p → π0 reaction, the differential production rate can be

presented as

dR =
n2

p c

2
fp(γ1) fp(γ2)

√
γ2

r − 1
γ1γ2

σppπ0(γr) dγ1 dγ2
du
2

, (3.3)

The γ1 and γ2 are the protons Lorentz factors in the laboratory frame; Where

u = cos(η), η is the angle between two colliding protons in the laboratory

frame. The γr = γ1γ2(1 − β1β2 u) is the collision Lorentz factor.

3.3.1 π0 production rate in plasma described by a Maxwellian

distribution

In a relativistic fully thermalized plasma, particles have the following distri-

bution

fMB(γ, θ) =
γ2 β

θ K2(1/θ)
exp

(
−
γ

θ

)
, (3.4)

where γ is the Lorentz factor and β =
√

1 − γ−2; θ = kBT/mpc2 is the temper-

ature in units of proton mass; K2(x) is the modified Bessel function of the

second kind.
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By inserting eq. (3.4) into eq. (3.3), Weaver (1976) has obtained the fol-

lowing formula for the production rate

d R(γr, θ) =
n2

p c

2 (θ K2(1/θ))2

(γ2
r − 1) K1 (z(γr))

z(γr)
σppπ0(γr) d γr , (3.5)

γr is the collision Lorentz factor, z(γr) = θ−1
√

2(γr + 1), and K1(x) and K2(x)
are the modified Bessel functions of the second kind.

The integration of eq. (3.5) for the cross-section given by eq. (3.1) is shown

in fig. 3.2. This figure shows the rate 〈συ〉 = 2R/n2
p (circles) as a function of

the plasma temperature. We find a simple analytical fit for the rate:
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Figure 3.2: The rate 〈συ〉 of p+ p→ π0 reaction as a function of temperature.
The circles are the results from eq. (3.5). The solid line is the analytical fit
given by eq. (3.6). The inserted figure shows the ratio between the fit and
the numerical calculations.

〈συ〉 = 10−27 c exp
(
1.3885 + 1.5835 log10(θ)

√
θ

) [
cm3s−1

]
(3.6)

The analytical fit formula is shown in eq. (3.6) by a solid line. The fit is valid

for proton temperatures between 10 MeV and 1 GeV. The accuracy of the fit

is better than 20 %, see fig. 3.2.

3.3.2 Deviation from Maxwellian distribution

Below we consider two distinct classes of the distribution tail. The first class

is a Maxwellian distribution with a sharp cutoff at a certain energy. We will

refer to it as fcut for short. The second class is a Maxwellian distribution

where the tail after some given energy is replaced by a power law function.

We will refer to this class fpl.
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Let us assume an original relativistic Maxwellian distribution fMB(γ, θ),
see eq. (3.4). Then the distributions fcut and fpl are presented as

fcut(γ, θ̃) = A

 fMB(γ, θ̃) : 1 ≤ γ ≤ γ0

0 : γ > γ0
(3.7)

fpl(γ, θ̃, α) = A

 fMB(γ, θ̃) : 1 ≤ γ ≤ γ0

B × E−δk : γ > γ0
(3.8)

The constant B is fixed to provide continuity of the distribution function at

γ0; whereas, A and θ̃ to conserve the total number of particles and the total

plasma energy. Thus, they are defined from the following conditions
∞∫
1

f (γ, θ̃) dγ = 1

∞∫
1

(γ − 1) f (γ, θ̃) dγ =
∞∫
1

(γ − 1) fMB(γ, θ) dγ
(3.9)

3.3.3 The π0 reaction rate in a modified Maxwellian distribution

plasma

We calculate here the π0 production rate 〈συ〉 = 2R/n2
p for three different

distributions: pure Maxwellian distribution, Maxwellian distribution with

a sharp cutoff and Maxwellian distribution with a power-law tail. The

Maxwellian distribution with a sharp cutoff has a cut off at γ0 = 1 + 3θ;

whereas the Maxwellian distribution with a power-law tail is formed by re-

placing the Maxwellian distribution tail from γ0 = 1 + 3θ to infinity with a

power law function with an index δ = 2.2.

Figure 3.3, illustrates how strongly the π0 production rate is influenced

by the distribution tail. The inserted figure shows the ratio of the rates of

two modified distributions to the rate corresponding to the pure Maxwellian

distribution.

As one may expect, at low temperatures, the Maxwellian distribution with

a sharp cutoff has a much smaller rate compared to the pure Maxwellian.

The opposite happen to the Maxwellian distribution with a power-law tail

E−2.2
k which at low temperatures populate more high energy protons than

the pure Maxwellian distribution tail; therefore it has a larger rate.

At higher temperatures, the cut off energy becomes larger (γ0 = 1+3θ) and

the Maxwellian part (or the distribution core) of the modified distribution

becomes wider. For these reasons, the Maxwellian distribution with a sharp

cutoff contains more high energy protons that are able to produce π0. Thus,

its rate becomes comparable to the Maxwellian rate.

For the given normalization, the Maxwellian distribution with power-

law tail, at high temperatures contain less particles in its tail compared to
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Figure 3.3: Comparison of the π0 production rates for three different dis-
tributions as a function of temperature. Solid black line is calculated for a
pure Maxwellian distribution plasma. The blue dot-dash line is calculated
for Maxwellian distribution with a sharp cutoff at proton kinetic energy
Ek = 3kBT (γ0 = 1 + 3θ). The red dash-line is calculated for a Maxwellian
distribution with a power-law tail E−2.2

k (γ0 = 1 + 3θ). The inserted figure
shows the ratio of the two modified distributions rates compare to the pure
Maxwellian distribution one.

the pure Maxwellian distribution. Most of the particles go to the relatively

cold Maxwellian “core” leaving the tail lesser populated. This results in the

reduction of the rate at high temperatures compare to the pure Maxwellian

distribution.

3.4 Gamma-radiation spectra from p + p→ π0 reaction

The aim here is to compute the γ-radiation spectra for plasma temperatures

between 20-200 MeV. For this temperature interval, the π0 production thresh-

old plays a crucial role for the γ-ray spectra similarly as it does with the π0

production rate. Therefore, we need to calculate the γ-ray spectra close to

the π0 kinematic threshold.

Convenient fits for γ-ray spectra at very high proton energies Kelner

et al. (2006) and intermediate proton energies Kamae et al. (2006) have been

suggested in the literature. For energies close to the p + p → π0 kinematic

threshold, one finds the differential cross-section for π0 production spectra

that has been suggested by Stecker (1970).
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3.4.1 The plasma π0 production spectra

For calculations it is convenient to use a δ-function approach suggested by

Aharonian and Atoyan (2000):

dN
dEπ

(θ,K, Eπ) =

∫
d R(θ) ×

A
mπc2 × δ

Eπ −Kmp c2(γr − 1)
mπc2

 (3.10)

Here Eπ is the π0 total energy; d R(θ) is defined by eq. (3.3) or eq. (3.5),

depending on the plasma distribution function. From the conservation of

the total number of π0-mesons, the constant is set A = 1.05 and K is fixed by

the condition
∞∫

mπc2

dEπ
dN
dEπ

(θ,K, Eπ) = R(θ) , (3.11)

R(θ) is defined from the integration of eq. (3.3) or eq. (3.5) depending on the

plasma distribution function.

The γ-ray spectrum is obtained by integrating the π0 spectrum

dN
dEγ

(Eγ, θ,K) = 2 ×

∞∫
Eγ+

m2
πc4

4Eγ

dEπ√
E2
π − m2

πc4

dN
dEπ

(Eπ, θ,K) (3.12)

3.4.2 Parameter K(T ) for a pure Maxwellian plasma

Solution of eq. (3.11) for a given R(T ) for a pure Maxwellian plasma, provides

a unique K. Figure 3.4, shows the dependence of K on temperature. We can

fit the parameter K(θ) with accuracy better than 0.4 % by the following

K(θ) = 0.061 exp

− (
log10(θ) + 1.768

0.32

)2 +

+ 2.781 exp

− (
log10(θ) + 9.867

5.76

)2 (3.13)

The fit of K(θ) is shown in fig. 3.4.

3.5 The plasma cooling rate from π0 production

The emission from the decay π0 → 2γ carries energy which escapes from

the plasma. Figure 3.5 shows the energy cooling rate for π0 → 2γ emission.

It also shows for comparison some typical cooling processes of ions such

as the electrons heating through Coulomb exchange, nuclear lines, nuclear

continuum radiation including p–n capture and bremsstrahlung.
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Figure 3.4: The temperature dependence of the parameter K inside the
δ-fuction. Circles are the numerical calculation of eq. (3.11) and the solid
line is the fit formula in eq. (3.13). The inserted figure shows the ration
between the fit and the numerical calculation.

We find that the energy loss due to π0 production can be fitted for tem-

peratures kBT < 300 MeV, by the following

qπ(T ) =
mπ c2

2 K(T )
× R(T ) (3.14)

R(T ) and K(T ) are given by eqs. (3.6) and (3.13), respectively. Figure 3.6

compares the π0 energy loss between the numerical calculations and the fit.

The accuracy of the fit is better than 17 % for plasma temperatures be-

tween 10 ≤ kBT ≤ 300 MeV.

3.6 π0 decay γ-radiation of a Maxwellian distribution

plasma

The γ-ray spectra for different temperatures and models are presented in

fig. 3.7. These spectra are based on the cross-section proposed by Kamae et al.

(2006), from Dermer (1986) and the δ-function approach that is described

here. Figure 3.7 shows that the delta function approach produces results

that mimic Dermer (1986). The Kamae et al. (2006) fits always produce a

wider spectra compared to Dermer (1986) and the one from the δ-function

approach.

For the temperature kBT = 20 MeV, the Kamae et al. (2006) cross-section

gives γ-ray spectra which is lower than Dermer (1986) or δ-function ones.

The reason is that Kamae et al. (2006) are correct for proton kinetic energies

Ek > 488 MeV, which is 1.7 times larger than the kinematic threshold.



50 THE NON-DEVELOPED MAXWELLIAN DISTRIBUTION PLASMA

10 100 200
−28

−27

−26

−25

−24

−23

−22

−21

−20

−19

−18

T [MeV]

lo
g

1
0
(q

 [
e

rg
 c

m
3
 s

−
1
])

 

 

e−p excha. Te=0.01MeV
e−p excha. Te=1MeV
p+C12(4.4) line
p−n Bremsstrahlung
p−n Capture

π
0
−>2γ energy loss
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numerical calculations and the fit formula of eq. (3.14). The inserted figure
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Figure 3.7: Gamma-ray spectra of a Maxwellian distribution plasma for
different temperatures between Kamae et al. (2006), Dermer (1986) and
the δ-function approach. The difference of the δ-function approach at
kBT = 200 MeV comes from the flatter cross-section that is used here – which
is motivated by the data. For temperature 20 MeV the Kamae et al. (2006)
calculation is lower because their cross-sections are valid for Ek > 488 MeV.

For temperatures kBT = 50 and 100 MeV the δ-function approach give

results that are in good agreement with Dermer (1986). Whereas for kBT =

200 MeV, the δ-function approach is lower than Dermer (1986) and Kamae

et al. (2006) because of the π0 production cross-section that is used. The

cross-section in fig. 3.1, is lower than the one used by Dermer (1986).

The γ-ray spectrum of the δ-function approach for a Maxwellian distribu-

tion plasma is fitted as a function of Eγ and temperature. The analytical fit

formula has the following representation

dN
dEγ

(θ) = 2 × R(θ) ×
dS γ

dEγ

[
cm−3 s−1 GeV−1

]
dS γ

dEγ
(θ) =

θ exp
(
−
√
X /θ

)
mπc2 ×

× exp
(
A1(θ) + A2(θ)Y + A3(θ)Y2 + A4(θ)Y3

)
. (3.15)

Here mπc2 is the π0 mass (in GeV). The X = Eγ/mπc2 + mπc2/(4Eγ), Y = log(X ).



52 THE NON-DEVELOPED MAXWELLIAN DISTRIBUTION PLASMA

The functions A1(θ) − A4(θ) are defined in eq. (3.16). Let x = log(θ) then:

A1(θ) = exp
(
a1 + a2 x + a3 x2 + a4 x3

)
,

A2(θ) =θ−1/2
(
b1 + b2 x + b3 x2 + b4 x3

)
,

A3(θ) =c1 + c2 θ
−1 + c3 θ

−2 + c4 θ
−3 + c5 θ

−4 + c6 θ
−5 ,

A4(θ) =d1 + d2 θ
−1 + d3 θ

−2 + d4 θ
−3 + d5 θ

−4 + d6 θ
−5 . (3.16)

The values of the a1 − a4, b1 − b4, c1 − c6 and d1 − d6 coefficients are shown

in table 3.1.

Table 3.1: The coefficients a, b, c and d of the functions A1(θ), A2(θ), A3(θ)
and A4(θ), respectively.

index a b c d

1 -5.7938E-1 1.1784 2.0462 -1.0110
2 -1.5822 2.4825 -7.5069E-2 6.6742E-2
3 -1.8994E-1 1.4282 -3.8762E-2 1.5706E-2
4 -2.0215E-2 1.6593E-1 2.0636E-3 -9.5610E-4
5 -3.5334E-5 1.7342E-5
6 2.0315E-7 -1.0322E-7

The fit in eq. (3.15) is valid for proton temperatures between 15-220 MeV

and for photon energies Eγ between 10-600 MeV. The raccuracy of the fit is

about 10-15 % for temperatures between 15-30 MeV and about 8 % or less

for temperatures between 30-220 MeV.

3.7 π0 decay γ-radiation of modified Maxwellian

distribution plasma

As long as the plasma temperature is lower than the threshold energy of π0

production, the distribution tail will have a strong effect on the π0 decay

γ-ray spectrum. This is illustrated for a proton plasma with Maxwellian

distribution of temperatures kBT = 50 MeV. The Maxwellian distribution tail

is modified as discussed in section 3.3.2 to produce a Maxwellian distribution

with a sharp cutoff and a Maxwellian distribution with a power-law tail. The

cut off is taken at kinetic energy Ek = 3kBT . Two cases of power law tail

are considered, one is with power law index δ = 2.2 and the other one is

with index δ = 4. Figure 3.8 shows the shape of the distributions and the

corresponding γ-ray spectra due to π0 decay.

The γ-ray spectra imprints the characteristics of the proton distribution.

Let we separate the proton distribution function into the tail and the core

parts, then π0-mesons are produce by protons that come both from the “core”
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Figure 3.8: Gamma-ray spectra due to π0 production in modified
Maxwellian distributions at kBT = 50 MeV. On the left the proton distri-
bution functions are shown; whilst, on the right the corresponding γ-ray
spectra. The initial Maxwellian distribution temperature is kBT = 50 MeV.
The Maxwellian distribution tail is modified either by a sharp cutoff at pro-
ton kinetic energy Ek = 3kBT or by a power-law tail with index δ = 2.2 and
δ = 4. Note that because of the condition of the energy conservation the
temperatures are different.

(for short we can call core–core interaction); one of the protons come from

the Maxwellian “core” and the other come from the tail (or the core–tail

interaction); both protons come from the tail (or the tail–tail interaction).

The core–core interactions involve protons that come from relatively low

energy parts of the distribution (with Ek ∼ kBT ). Thus, we will observe this

interaction in the γ-ray spectrum, only if the plasma effective temperature

is high enough so that protons can produce π0-mesons. Due to low energy

protons that are involve in this interaction, the π0-mesons are produced

almost at rest. Consequently, photons have energy around Eγ ≈ mπc2/2.

At low temperatures, more abundant p + p interactions are the core–tail

interaction because they combine the high energy protons from the tail

and a large number of particles from the Maxwellian core. The tail–tail

interactions at low temperatures are suppressed.

Let us consider the γ-ray spectra produced by a Maxwellian distribution

proton plasma as the standard shape. By using the above analyses, we

can discuss qualitatively how the γ-ray spectra of a modified Maxwellian

distribution plasma deviates from the standard one.

The Maxwellian distribution with a sharp cutoff is obviously limited by

the core–core interaction; thus, the γ-ray spectrum is narrower than the stan-

dard one. Note that in our calculation of the sharp cutoff distribution, we

have required the conservation of energy, therefore the Maxwellian distribu-

tion with a sharp cutoff has higher temperature.

For temperatures lower than kBT < 90 MeV, the π0 production rate of
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the Maxwellian distribution with a sharp cutoff is lower than that of a pure

Maxwellian distribution. However, the rate between these two distributions

becomes comparable for kBT > 90 MeV, as can be seen in fig. 3.3.

The Maxwellian distribution with a power-law tail of index δ = 2.2, at low

temperatures has a distribution core with effective temperature lower than

the original Maxwellian because this distribution contains more protons

in the tail. Therefore, core–core interaction is not effective to produce π0-

mesons, whilst the tail–core interaction dominates. Hence, the γ-ray spectra

are a result of the high energy protons from the core with relatively cold

protons from the Maxwellian core. This results in a power law shape of the

γ-ray production spectra with the same index as that of the distribution, i.e.

δ = 2.2
The Maxwellian distribution with power-law tail of index δ = 4 has a

hotter Maxwellian core and lesser protons in the tail compare to the power

law of index δ = 2.2. Thus both core–core and core–tail interactions are

featured in the γ-ray spectra. For this reason the central part around the

peak Eγ ≈ mπc2/2 will contain the core–core and core–tail features. Whereas

for higher energies, where core–tail interactions dominate, the γ-ray spectra

transform to a power law of index similar to that of the tail i.e. δ = 4.

With an increase of the temperature, the effect of the distribution tail

become less pronounced, as it is demonstrated in fig. 3.9 where the γ-ray

spectra are shown for the temperature kBT = 100 MeV. Note that for this case

the cut-off distribution will have a temperature higher than the Ek = 3kBT ,

thus it is not a physically meaningful example. We see that the discussion

above for the kBT = 50 MeV Maxwellian plasma applies here as well.

3.8 Gamma-ray spectra due to π0 production versus

nuclear de-excitation lines

Here we will consider a plasma that has initially a solar composition. The

nucleon number density and ion temperature are kept fixed during the whole

evolution ttot = 100 s. Figure 3.10 shows the time evolution of the chemical

composition and the γ-ray emissivity for three instants of a kBT = 50 MeV

plasma. These instants are related to the stage when the initial heavy nuclei

begin to breakup; the stage when the 4He nuclei start to breakup, and the

third stage when a proton–neutron plasma is formed and all other nuclei are

destroyed.

The γ-ray spectra of the first stage is dominated by nuclear lines and π0

decay γ-ray spectra. In the second stage, the γ-ray spectra is dominated by

π0 decay γ-ray spectra as well as the γ-ray lines from α − α reactions (e.g.
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Figure 3.9: Gamma-ray spectra due to π0 production in modified
Maxwellian distributions at kBT = 100 MeV. On the left the proton dis-
tribution functions are shown; whilst, on the right the corresponding γ-ray
spectra. The initial Maxwellian distribution temperature is kBT = 100 MeV.
The Maxwellian distribution is modified either by a sharp cutoff at pro-
ton kinetic energy Ek = 3kBT or by a power law tail of index δ = 2.2 and
δ = 4. Note that because of the condition of the energy conservation the
temperatures are different.

7Li(0.478 MeV)), p–n and p − α bremsstrahlung and p–n capture. The third

stage is a proton-neutron plasma; thus γ-ray spectra is dominated by the π0

decay γ-ray spectra and p–n capture and bremsstrahlung. Note that due to

isospin symmetry the p + p → π0 production is symmetric with n + n → π0.

The γ-ray spectra of the thermal electron bremsstrahlung with electron

temperature kBTe = 0.1 MeV is included. It dominates for temperatures

below 1 MeV.

Figure 3.11 shows the γ-ray spectra for a solar composition plasma for

two different temperatures kBT = 20 MeV and kBT = 100 MeV at the period

when all initial nuclei are present. By changing the plasma temperature from

20 to 100 MeV the γ-ray spectra from π0 production is increased about four

orders of magnitude. Instead, the nuclear γ-ray lines decreases roughly by a

factor of 4.

3.9 Summary and Discussion

In this chapter the chemical and γ-ray emissivity evolution for a two tem-

perature plasma have been calculated for the first time. The γ-ray emissivity

that comes from π0 production is included.

There are three stages that chemical composition of a very hot plasma

can go through. The first stage is before all elements heavier than 4He are

destroyed. The second stage is after all heavy elements are destroyed but

before 4He destruction. The third stage is when all elements are destroyed
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Figure 3.10: Time evolution of the chemical composition and γ-ray spectra
of an initial solar composition plasma. Plasma evolves for 100 seconds
with a fixed temperature kBT = 50 MeV and nucleons number density
%u = 1018 cm−3. On the left the temporal chemical evolution is shown and
with the black vertical line is marked the period when the γ-ray spectra is
constructed on the right hand side, respectively. The nuclear γ-ray spectra is
composed by the nuclear lines, the nuclear bremsstrahlung and the capture
reactions. There is also shown the γ-ray spectrum from π0 production. The
thermal electron bremsstrahlung at temperature kBTe = 0.1 MeV is also
shown.
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Figure 3.11: Time evolution of the chemical composition and γ-ray spectra
of an initial solar composition plasma at kBT = 20 MeV and kBT = 100 MeV.
The nucleons number density is fixed %u = 1018 cm−3. The nuclear γ-ray
spectra is composed by the nuclear lines, the nuclear bremsstrahlung and
the capture reactions. The γ-ray spectrum from π0 production is plotted
separately. The thermal electron bremsstrahlung at temperature kBTe =

0.1 MeV is also shown.

and a p–n plasma is formed.

Although, different γ-ray spectra components are strongly influenced

by the chemical composition evolution, the π0 production is a function of

proton abundance. Because proton abundance evolve very slowly, the π0

component of γ-radiation is almost constant. Other γ-radiation components

depend on the chemical evolution stage. The first stage is dominated by

nuclear lines coming from heavy nuclei interactions. The second stage

spectra is dominated by nuclear lines produced via α + α reaction products,

the p − n and p − α bremsstrahlung as well as p − n capture. The third stage is

dominated by p − n capture and bremsstrahlung. It is noticeable that γ-ray

emissivity due to π0 production start to dominate nuclear lines for a plasma

with temperature kBT > 50 MeV.

As long as the plasma temperature is less than the threshold energy of
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p + p → π0 production, the π0 production rate will strongly depend on the

high energy part of the plasma distribution function. For this reason we

have investigated the π0 production rate and γ-ray emissivity for different

distribution “tails”.

Two classes of modified Maxwellian distribution tails were considered.

The sharp cutoff Maxwellian distribution which is a Maxwellian distribution

for which the tail is cut off at a certain energy. The second class includes

Maxwellian distribution the tail of which is replaced – from a certain energy

– with a power law function.

The numerical tools that allow us to perform the calculation of the π0

production rate and γ-ray spectrum for a modified Maxwellian distribution

function, were developed. This tools are validated for a thermal plasma by

comparing the π0 production γ-ray spectrum with Dermer (1986) and Kamae

et al. (2006) calculations.

Modified Maxwellian distribution imprints its characteristics in the π0

production γ-ray spectrum. For a sharp cutoff Maxwellian distribution for

which no high energy protons are present, the γ-ray spectrum will also show

a cut off, i.e. it will be narrower compare to a pure Maxwellian distribution.

For a Maxwellian distribution with a power law tail, low and high energy

part of the γ-ray spectrum will have a power law shape of the same index.

The reason is the interaction between high energy protons from the tail with

the relatively cold protons from the core. Hence, observation of the γ-ray

spectrum from π0 production will give us information about the distribution

tail. On the other hand, detection of the Doppler broadened γ-ray lines give

us information about the plasma distribution core.

For a Maxwellian distribution plasma, accurate analytical fits are pro-

vided for the π0 production rate, cooling rate and for the γ-ray spectrum.



Nuclear γ-ray emission of hot
accretion flow onto black
hole

4

4.1 Introduction

Hard X-ray emission of compact binary systems is explained by radiation of

a hot accretion plasma with electron temperature up to 100 keV.

One of the first attempts to explain these very high energy photons was

done by Shapiro et al. (1976) (the SLE model for short). The SLE model is

a very hot, optically thin, two temperature accretion disk plasma with no

advection. Here the only cooling process for ions is the Coulomb exchange

with electrons. Electrons on the other hand, are heated by ions, loose their

energy radiatively through Bremsstrahlung and Comptonization. Because

of the low density, the Coulomb exchange interaction cannot equalize the

ion and electron temperature; therefore, ions and electrons are decoupled.

As a result, a two temperature plasma is formed. The typical SLE electron

temperature is of the order of Te ∼ 109 K, whereas, the ion temperature can

go up to Ti ∼ 1011 K. This model is thermally unstable and its realization has

been questioned (see e.g. Abramowicz et al., 1995, 2000).

The importance of advection on the heat transport and on viscous and

thermal accretion disk stability, has been recognized by many authors (e.g.

Paczynski and Bisnovatyi-Kogan, 1981; Abramowicz et al., 1988; Narayan and

Popham, 1993; Narayan and Yi, 1994; Abramowicz et al., 1995).

The modelling of a two temperature optically thin accretion plasma with

advection is described in Narayan and Yi (1994, 1995a,b). These models are

often called Advection Dominated Accretion Flows (or ADAF models). Ions

and electrons interact ineffectively through Coulomb exchange; hence, ions

and electrons are decoupled. The electrons are cooled through Synchrotron,

Bremsstrahlung and Comptonization and their temperature can reach values

Te ∼ 3 × 109 K. On the other hand, the ion temperature is close to the virial

temperature and can be as high as Ti ∼ 1012 K.

Due to the high ion collision energy (kBTi > 1 MeV) – larger than their

59
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binding energy – nuclei in the accretion plasma can easily break up. The

breakup reactions dominate in very hot accretion plasmas and will be re-

sponsible for the plasma chemical evolution, as it has been shown in the

previous chapter. Nuclear interactions can also produce γ-rays. Estimations

for different γ-ray emission components and different very hot accretion

models are found in e.g. Dahlbacka et al. (1974); Higdon and Lingenfelter

(1977); Kolykhalov and Syunyaev (1979); Bisnovatyi-Kogan et al. (1980); Aha-

ronian and Sunyaev (1984, 1987); Mahadevan et al. (1997); Yi and Narayan

(1997); Jean and Guessoum (2001); Oka and Manmoto (2003).

The γ-rays resulting from nuclear interactions will produce a character-

istic spectrum of the accretion disk in the MeV energy range. The measure-

ment of this spectrum would give unique information about such as for

example the ion temperature.

Nuclear reactions in a very hot accretion disk can also produce indirect

effects. Due to e.g. positive Bernoulli integral, the accretion disk may have

winds which can carry material from the disk and contaminate the surround-

ings. The hot disk can also evaporate neutrons which can produce some

further nuclear reactions e.g. in the binary companion star atmosphere.

Very high temperature accretion models such as ADAF, with an opti-

cally thin plasma with respect to neutrons, can evaporate thermal neutrons

almost isotropically. The breakup reactions in the accretion disk plasma

produce neutrons. Due to their electrical neutrality, neutrons with energy

high enough to overcome gravity can easily escape (e.g. Aharonian and Sun-

yaev, 1984; Jean and Guessoum, 2001). The evaporated neutrons have high

energies and can reach the companion star atmosphere before decay. In

the star atmosphere, neutrons can destroy heavier nuclei such as Carbon,

Oxygen, Nitrogen (the CNO nuclei) and produce light elements such as

Lithium, Beryllium and Boron. They can also scatter off in the star atmo-

sphere and cool down until they are captured by Hydrogen and producing

Deuterium and the characteristic 2.2 MeV γ-rays (Aharonian and Sunyaev,

1984; Jean and Guessoum, 2001). This chemical composition modification

of the companion star atmosphere can become a contamination source of

the interstellar medium.

The aim of this chapter is to calculate the ion component of plasma γ-ray

spectra due to nuclear reactions for the ADAF and SLE models. Both models,

as we have already described, predict very hot optically thin two temperature

plasmas. This imply that nuclear reactions can affect plasma composition

and the electron temperature is low enough, so that the radiation of the disk

cannot mask the nuclear γ-ray lines.

Using the nuclear network that is described in chapter 2, the chemical

abundances and nuclear γ-ray emissivity evolution with the disk radius, are
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calculated. Upper limits have been found on the luminosities of different

parts of the γ-ray spectra and on the neutrons evaporation efficiency.

The accretion plasma may not always be able to fully thermalize and

develop the Maxwellian distribution tail, as described in chapter 3. This can

strongly affect the γ-ray emissivity of high energy threshold reactions such as

p + p→ π0. The π0 production γ-ray spectrum for an ADAF accretion plasma

with non-developed Maxwellian tails is also calculated.

4.2 Method

The calculation of the nuclear γ-ray emissivity of the accretion disk requires

an accretion model and a comprehensive nuclear reaction network. The

accretion model predicts the plasma physical parameters such as plasma

density, ion temperature, radial velocity etc. The nuclear network on the

other hand, contains information about the most relevant nuclear reactions

and their γ-ray production rates. By solving the nuclear network for each

radius of the disk, we find the chemical abundances and γ-ray emissivity

evolution throughout the disk.

4.2.1 Accretion models

The accretion models used here are the ADAF (Narayan and Yi, 1994, 1995a,b)

and the SLE (Shapiro et al., 1976). Both of these models have solutions for

which every physical quantity is a function of the radius R (or r = R/Rs where

Rs the Scharzschild radius) and the accretion disk parameters: the viscosity

parameter α, the mass of the black hole M (or m = M/M� where M� is the

solar mass), the accretion rate Ṁ (or ṁ = Ṁ/Ṁedd where Ṁedd is the so called

Eddington accretion rate) and the parameter β = Pg/Ptot which relates the

gas pressure to the total pressure Ptot = Pg + Pm, where Pm is the magnetic

pressure (see e.g. Narayan and Yi, 1995a).

Note that the original SLE model has been modified to include the Syn-

chrotron cooling (in additional to the Comptonization). This modification

slightly lowers the SLE electron temperature.

By defining α, m, ṁ and β, we can calculate any other physical quantity for

every radius r (see Shapiro et al., 1976; Narayan and Yi, 1995a). To facilitate

these calculations, a computer code is developed, which calculate all relevant

model parameters in the framework of the ADAF and SLE models.

4.2.2 Accretion plasma with a modified Maxwellian distribution

Ions in the accretion disk may not be in thermodynamic equilibrium. Due

to the low plasma density and short accretion time-scales, ions do not have
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enough time to exchange energy and momentum. Hence, ions may not fully

develop their Maxwellian distribution tail.

The ADAF models predict very high ion temperatures kBTi ∼ 100 MeV;

therefore, nuclear reactions and γ-ray lines are not affected by the ion dis-

tribution tail. As it is described in chapter 2, the nuclear reaction cross-

sections typically have a threshold of few MeV/nucleon. They peak around

10-30 MeV/nucleon and then they decrease as a power-law. This means

that the most important part of the cross-section is covered by the core of a

Maxwellian distribution with an average energy of order∼ 10 MeV. The π0 (π+)

production reactions are strongly influenced by the Maxwellian distribution

tail.

In this section we consider two type of modified Maxwellian distribution

of particles. The first one assumes that plasma cannot form a Maxwellian tail

at all. In this case is assumed a sharp cutoff of the Maxwellian distribution

3 kBTi. The second case assumes some acceleration mechanism to be present

in the plasma which produces a suprathermal component of particles above

the Maxwellian distribution tail. Thus, the pure Maxwellian distribution tail

is replaced from a proton kinetic energy 3 kBTi with a power law tail of index

2.2.

Both, ADAF and SLE accretion flows, have very hot and optically thin

plasma; therefore, the nuclear breakup reactions dominate. We assume

that their plasma initial composition is similar to the solar composition of

elements. The low number density ensures that nuclei will interact in their

ground state, see section 2.2.

The electron temperatures for ADAF and SLE models are kBTe < 0.3 MeV.

Hence, the thermal Bremsstrahlung photo-production rate for Eγ > 3 MeV

is negligible. The ADAF has a maximum number density of the order % ∼

1016 cm−3 and the radius for which the nuclear reactions are important is of

the order R ∼ 108 cm. The SLE has a maximum number density of the order

% ∼ 1018 cm−3 and R ∼ 106 − 107 cm. Therefore, the photodisintegration ratio

with respect to proton reactions for both models is Γ(γA)/Γ(pA) � 10−5 in case

of a solar composition and Γ(γA)/Γ(pA) � 10−3 if we have higher metallicity

plasma (i.e. nA/np = 10−1) see eq. (B.7) – A is a given nucleus. A more

important impact on the dynamics of the accretion flow may have the effect

of evaporation of neutrons.

Below we use the notation for which a quantity Q is scaled as Q(i) =

10−(i) Q, where the index i shows the power of ten.
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α = 0.1; ṁ = 0.10α2

α = 0.3; ṁ = 0.17α2
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α = 0.3; f = 0.56; ṁ = 0.17α2
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Figure 4.1: The temperature and density profiles for ADAF and SLE models.
The figures on the left are the profiles for the ADAF model; the figures on
the right are for the SLE model. Two sets of parameters are considered: in
one case α = 0.1, ṁ = 0.1 × α2 and in the other α = 0.3, ṁ = 0.17 × α2. The
m = 10 and β = 0.5 are kept fixed. The black color is used for the first set of
parameters, whilst red for the second.

4.3 Results

To demonstrate the radial chemical evolution and the emissivity spectra for

ADAF and SLE accretion models, two different sets of accretion parameters

are chosen. Parameters kept fixed are m = 10 and β = 0.5; we use α = 0.1,

ṁ = 0.1 × α2 for the first case, and α = 0.3, ṁ = 0.17 × α2 for the other.

The plasma initial composition is considered to be the solar composition of

elements. We will also assume the case of higher metallicity plasma for which

the initial mass fraction abundances are Xp = Xα = 0.3 and XC12 = XO16 = 0.2.

Figure 4.1 compares the temperature and the density profiles of the ADAF

and SLE models for the accretion parameters. It shows clearly that the ADAF

ion temperature is independent of the accretion parameters and is equal to

the virial temperature. The ADAF electron temperature and density however,

are more sensitive on the parameters. The SLE, on the other hand, has a

density profile that is not sensitive to model parameters.
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Figures 4.2 to 4.5 show the chemical evolution of the plasma as a function

of the disk radius and the disk emissivity Φγ(Eγ).
The ADAF accretion model predict much hotter plasma than the SLE

model. Therefore, for a set of parameters close to the critical ones, the ADAF

is able to destroy all heavy nuclei. Nuclear reactions become important

already at 100 Rs. Moving toward the last stable orbit, the ADAF plasma

becomes hotter and denser. As a result, the destruction processes intensify,

thus, nuclei heavier than 7Li and 7Be – which are result of α + α reactions –

have a negligible abundance.

The destruction of heavy nuclei before reaching the hottest and densest

part, will suppress the γ-ray line emissivity of the ADAF. Hence, it will lower

the disk efficiency of converting accretion energy into γ-ray lines.

In figs. 4.2 to 4.5 are shown also the emissivities of ADAF and SLE. One

can see that a part of the nuclear γ-ray lines can be screened by the electron

thermal bremsstrahlung. The blue lines represents the nuclear emission. We

can see the continuum which is dominated by the nuclear Bremsstrahlung

and on top of it, are the Doppler broadened nuclear lines. The thermal π0

emission is shown with the cyan dash-line.

The ADAF model temperature is very close to the virial temperature and it

remains so high for a wide range of parameters. This allows the luminosities

to be scaled as L ∼ ρ × R3 ∼ m ṁ2 α−2. This scaling is valid far for parameters

far from critical ones. For the ADAF we have the following relations:

Le = (1 − f ) × Lacc (4.1)

LN ∼ 3 × 1031 m(1) ṁ2
(−3) α

−2
(−1) erg s−1 (4.2)

Lπ ∼ 3 × 1033 m(1) ṁ2
(−3) α

−2
(−1) erg s−1 (4.3)

Where LN is the γ-ray luminosity due to nuclear γ-ray lines, p–n capture and

bremsstrahlung; Lπ is the γ-ray luminosity due to production and decay of

π0-meson.

Note however,that there will be an upper limit on the luminosities due to

the critical value of the accretion rate ṁc ≈ 0.2α2, beyond which ADAF most

likely do not exist (see e.g. Narayan and Yi, 1995a). Therefore, the luminosity

of a solar initial composition plasma cannot be higher than:

LN ≤ 1 × 1033 m(1) erg s−1

Lπ ≤ 1 × 1035 m(1) erg s−1 .

The upper limit is taken assuming α = 0.3, ṁ = 0.17α2. This limit on the γ-ray

lines luminosity is about an order of magnitude higher than the calculations

of Yi and Narayan (1997).
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For the SLE model, is cold to produce π0 and its nuclear γ-ray luminosity

cannot be higher than:

LN ≤ 6 × 1032 m(1) erg s−1 ,

where the upper limit is taken for α = 0.3, ṁ = 0.17α2.

For a plasma with higher mass fraction abundance of initial heavy ele-

ments Xp = Xα = 0.3 and XC12 = XO16 = 0.2, the upper limits shift to

ADAF

∣∣∣∣∣∣∣ LN ≤ 8 × 1033 m(1) erg s−1

Lπ ≤ 5 × 1034 m(1) erg s−1 (4.4)

SLE
∣∣∣∣ LN ≤ 1 × 1034 m(1) erg s−1 (4.5)

Tables 4.1 and 4.2 summarize the accretion γ-ray luminosities for the two

sets of parameters chosen here.

Table 4.1: ADAF and SLE luminosities for α = 0.1, ṁ = 10−3, m = 10 and
β = 0.5. The advection parameter is f = 0.86 and the accretion luminosity is
Lacc = 1.4 1036 erg s−1.

Solar Composition

Model Le (erg s−1) LN (erg s−1) Lπ (erg s−1)

ADAF 1.8 1035 3.1 1031 3.3 1033

SLE 9.4 1035 5.6 1030 0

Table 4.2: ADAF and SLE luminosities for α = 0.3, ṁ = 0.17α2, m = 10 and
β = 0.5. The advection parameter is f = 0.56 and the accretion luminosity
is Lacc = 2.1 1037 erg s−1. The first table here shows the results for a Solar
composition plasma and the second one for Xp = Xα = 0.3 and XC12 =

XO16 = 0.2.

Solar Composition

Model Le (erg s−1) LN (erg s−1) Lπ (erg s−1)

ADAF 9.3 1036 9.8 1032 1.1 1035

SLE 7.6 1036 5.9 1032 0

H-He-C-O Composition

Model LN (erg s−1) Lπ (erg s−1)

ADAF 8 1033 4.7 1034

SLE 1.2 1034 0

For the case where the plasma is unable to develop a Maxwellian distri-

bution tail, two extreme modifications of the distribution tail are shown in
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Figure 4.2: The ADAF model for a black hole of mass m = 10, α = 0.1,
accretion rate ṁ = 10−3 and β = 0.5. The figure on the left shows the
plasma abundances evolution during its fall toward the black hole. The
initial plasma composition is the solar composition. The figure on the
right is the emissivity of the disk. The red dash-line is the emissivity of the
thermal electron bremsstrahlung. The blue-line is the emissivity of nuclear
interactions composed by: The nuclear lines, the nuclear capture and the
nuclear bremsstrahlung. The cyan-line is the emissivity due to thermal
π0 production. The lines (1) and (2) and the shaded area they enclose, are
the possibilities where the emissivity of the π0 → 2γ should lie in the case
when plasma has not been able to develop the Maxwellian distribution
tail. The line (1) is the emissivity due to π0 production for the Maxwellian
distribution tail that is cut off at energy 3 kBTi. The line (2) is the emissivity
for the Maxwellian distribution tail that is cut off at energy 3 kBTi and is
replaced with a power law tail of index 2.2. The advection factor for this
model is f = 0.86 and the accretion luminosity is Lacc = 1.4 × 1036 erg s−1.
The luminosity that the electrons radiate away is Le = 1.8 × 1035 erg s−1, the
luminosity that disk radiate through nuclear lines and continuum is LN =

3.1× 1031 erg s−1 and the luminosity radiated through thermal π0 production
is Lπ = 3.3 × 1033 erg s−1.

fig. 4.2. The curve (1) is calculated for a Maxwellian distribution with a cut

off at 3 kBTi. The curve (2) for a Maxwellian distribution with a power-law

suprathermal component with index δ = 2.2.

Figures 4.6 and 4.7 show the Eγ × Φγ as a function of Eγ for the solutions

presented in figs. 4.2 to 4.5. The ADAF Eγ × Φγ function shows three interest-

ing features: the thermal electron bremsstrahlung “bump”, the nuclear lines

and the π0 “bump”. The same feature, except for the π0 “bump” are present

in the plasma emissivity of the SLE model.

The ADAF is very hot, thus the secondary neutrons have energy high

enough to overcome gravity and effectively escape from the accretion disk.

The ratio between the amount of neutrons that manage to escape against

the original amount of neutrons is called evaporation efficiency and denoted

with η. The evaporation efficiency η for the ADAF model is shown in fig. 4.8.

As we can see from this figure, the ADAF can effectively expel neutrons with
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Figure 4.3: The SLE model for a black hole of mass m = 10, α = 0.1, ac-
cretion rate ṁ = 10−3 and β = 0.5. The figure on the left, shows the plasma
abundances evolution during its fall toward the black hole. The initial
plasma composition is the solar composition. The right figure is the γ-ray
emissivity of the disk. The red dash-line is the emissivity of the thermal
electron bremsstrahlung. The blue-line is the emissivity of the nuclear
interactions composed by: The nuclear lines, the nuclear captures and the
nuclear bremsstrahlung. This model is very cold to produce π0-mesons. The
accretion luminosity of this model is Lacc = 1.4× 1036 erg s−1. The luminosity
that electrons radiate away is Le = 9.4 × 1035 erg s−1 whereas the luminosity
due to nuclear γ-rays is LN = 5.6 × 1030 erg s−1 (the Lπ = 0).
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Figure 4.4: The ADAF model for a black hole of mass m = 10, α = 0.3, accre-
tion rate ṁ = 1.7 × α2 = 1.53 × 10−2 and β = 0.5. The advection factor of this
model is f = 0.56; whilst, the accretion luminosity is Lacc = 2.1 × 1037 erg s−1.
The figure on the left shows the plasma abundances evolution during its
fall toward the black hole. The initial plasma chemical composition is the
solar composition. The figure on the right, is the emissivity of the disk. The
red dash-line is the emissivity of the thermal electron bremsstrahlung. The
blue-line is the emissivity of the nuclear interactions composed by: The
nuclear lines, the nuclear capture and the nuclear bremsstrahlung. The
cyan-line is the emissivity due to thermal π0 production. The luminosity
through nuclear lines and continuum is LN = 9.1 × 1032 erg s−1; whereas, the
luminosity radiated through thermal π0 production is Lπ = 1.0×1035 erg s−1.
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Figure 4.5: The ADAF model for a black hole of mass m = 10, α = 0.3,
accretion rate ṁ = 1.7 × α2 = 1.53 × 10−2 and β = 0.5. The advection factor
f = 0.56 and the accretion luminosity is Lacc = 2.1 × 1037 erg s−1. The figure
on the left shows the plasma abundances evolution during its fall toward
the black hole. The initial mass fraction abundances are Xp = Xα = 0.3
and XC12 = XO16 = 0.2. In the figure are shown only n, p, D, T, 3He, 4He, 6Li,
7Li, 7Be, 12C and 16O. No intermediate elements are shown. The figure on
the right is the emissivity of the disk. The red dash-line is the emissivity
of the thermal electron Bremsstrahlung. The blue-line is the emissivity
of the nuclear interactions composed by: he nuclear lines, the nuclear
capture and the nuclear bremsstrahlung. The cyan-line is the emissivity
due to thermal π0 production. The luminosity through nuclear lines and
continuum is LN = 7.5 × 1033 erg s−1 and the luminosity radiated through
thermal π0 production is Lπ = 4.3 × 1034 erg s−1.
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Figure 4.6: The Eγ ×Φγ function of the Eγ. On the left it is shown the ADAF
model; whilst, on the right the SLE model. The disk parameters are m = 10,
α = 0.1, ṁ = 0.1α2 and β = 0.5. The initial plasma chemical composition is
the Solar composition.
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Figure 4.7: The Eγ × Φγ as a function of Eγ for the ADAF model. The disk
parameters are m = 10, α = 0.3, ṁ = 0.17α2 ≈ 1.5 × 10−2 and β = 0.5. The
initial plasma chemical composition are: for the figure on the left, solar
composition; for the figure on the right, initial mass fraction abundances
are Xp = Xα = 0.3 and XC12 = XO16 = 0.2.
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Figure 4.8: The evaporation efficiency η for an ADAF models as a function
of radius. The disk parameters for this example are m = 10, α = 0.1, ṁ = 10−3

and β = 0.5. However, this function is universal, and it does not depend on
the accretion parameters.

an efficiency η ≈ 70 % for r < 100.

The source of the neutrons in the accretion plasma are the nuclear

breakup reactions. This process starts around r ≈ 100. For the innermost part

of the ADAF accretion disk r < 10, the temperatures become very high and

neutrons are produced also in p–p interactions, through p + p→ p + n + π+.

The neutron abundance is proportional to the plasma density and in-

verse proportional to the plasma radial speed; therefore it scales like dXn
dr ∼

ρ υ−1
r Rs ∼ ṁα−2. For a given radius the neutrons abundance will scale the
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Figure 4.9: The neutron abundance predicted by the ADAF model at r =

3.1. The neutron mass fraction abundance is a function of ṁ and α. For
low accretion rate the mass fraction abundance is proportional with Xn ∝

ṁα−2. Here the parameters are m = 10 and β = 0.5, however the neutrons
abundance does not depend on them. The red-line and the black-dash-line
have a Solar initial composition, whereas the the cyan-line and the blue-
dash-line have Xp = Xα = 0.3 and XC12 = XO16 = 0.2 initial composition. The
solar abundance has more protons therefore p + p → p + n + π+ is more
important than in the other higher metallicity composition case.

same way; thus, Xn ∼ ṁα−2 and the proportionality constant is a function

of radius. Note that this is valid far from the critical parameters such as the

critical accretion rate ṁc. The neutron abundance does not depend on the

black hole mass. Figure 4.9 shows the Xn = f (ṁα−2) dependence at r = 3.1
for the ADAF model. There it is estimated the role of p + p → p + n + π+

reaction from the nuclear breakup ones, thus they are shown separated.

The p + p → p + n + π+ reaction will clearly affect the case were the pro-

tons are more abundant. Two initial compositions have been considered:

the Solar composition of elements and the one with Xp = Xα = 0.3 and

XC12 = XO16 = 0.2.

Some accretion disks, due to a positive Bernoulli integral, can have out-

flows. ADAF accretion is one of these models (e.g. Narayan and Yi, 1994;

Yi and Narayan, 1997). This outflow can carry some of the accretion ma-

terial and expel it into the interstellar medium. The accretion material is

richer with light elements such as Li and Be; thus, this could be a possible

way of enhancement of the content of the light elements in additional to

the primordial (Cosmological) Li and Be. Thus, it can contribute to the so
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Figure 4.10: The mass fraction abundances of 6Li, 7Li and 7Be predicted by
ADAF model at r = 3.1. Their mass fraction abundances are a function of ṁ
and α. For low accretion rate the mass fraction abundance is proportional
to ṁα−2. For this example, I have chosen m = 10 and β = 0.5, although
the abundances do not depend on them. The "solar" plots means Solar
initial composition, whereas plots with "H–He–C–O" have Xp = Xα = 0.3
and XC12 = XO16 = 0.2 initial composition.

called, primordial lithium problem (see e.g. Fields, 2011). Figure 4.10 shows

the mass fraction abundance of 6Li, 7Li and 7Be as a function of ṁ α−2, for

an ADAF plasma close to the last stable orbit (r = 3.1). The calculations

are performed for the solar initial composition and for Xp = Xα = 0.3 and

XC12 = XO16 = 0.2 initial composition. For a given expelling rate one can

calculate the mass rate expelled from each of these elements.

4.4 Discussion

4.4.1 Nuclear reactions and abundances

The r > 100 region of the accretion disk is not important for nuclear reac-

tions. There the densities and temperatures are very low, thus the nuclear

reaction rates are insignificant. Generally, closer to the black hole the temper-

ature and density increase, consequently the nuclear reaction rate increase

dramatically.

Due to very high temperatures, ADAF accretion shows a subregion be-

tween 3 < r < 20. In this region the π-meson production starts to become

important; thus the p + p → p + p + π0 reaction produces γ-rays through

π0 → 2γ decay; whilst, the reaction p + p → p + n + π+ converts protons to
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neutrons. The SLE is not hot enough to produce π-mesons.

In the accretion plasmas, moving toward the accretion center, heavy

nuclei become lesser abundant due to the breakup reactions. For some

accretion disk parameters – close to critical parameters such as the critical

accretion rate – heavy nuclei may be fully destroyed; as a result, isotopes of

Hydrogen and Helium become more abundant. We find that in the inner-

most part of the disk isotopes of Lithium and Beryllium are abundant due to

α + α reactions. Figures 4.2 to 4.5 show the abundances evolution with the

disk radius, in particular fig. 4.10 shows the abundances of 6Li, 7Li and 7Be

mass fraction abundances as a function of ṁα−2 for the ADAF regime.

On the other hand, SLE is colder but has a density an order of magnitude

higher than ADAF. Although this enhances the nuclear reaction rates and

increases the luminosities, the heavy nuclei are destroyed less efficiently.

Figure 4.9 shows the mass fraction abundance of neutrons at the ADAF’s

last stable orbit. The neutron mass fraction abundance for solar initial

composition can become as high as Xn . 10−2; however, higher metallicity

plasma can increase the abundance by one order of magnitude. This is

shown in fig. 4.5. Also, the π-meson production can help to increase the

neutron abundance.

Depending on the ADAF initial chemical composition, the mass fraction

abundances of the D and 3He are of the order X ∼ 10−2. The source of these

elements is basically the p + α reaction.

The mass fraction abundance of T depends crucially from the abundance

of neutrons and 4He, which are provided in the reaction n + α→ T + D.

The abundances of 6Li, 7Li and 7Be depends especially on the 4He abun-

dances because, α + α reaction works effectively in the ADAF accretion flows,

cf. fig. 4.10. The isotopes of Li and Be are fragile nuclei they are easily de-

stroyed in the plasma. For accretion rates close to critical one, their abun-

dances peak somewhere between 10 − 30 Rs. For r < 10 the destruction

processes start to become important by lowering the Li and Be abundances.

4.4.2 The γ-ray spectra and luminosity

The γ-ray emissivity of the accretion disks are shown in figs. 4.2 to 4.5. Nu-

clear γ-rays are a contributed by nuclear lines, nuclear bremsstrahlung,

neutron capture and γ-rays from π0 production.

Both ADAF and SLE accretion disk models have electron temperatures

kBTe < 0.3 MeV, thus, thermal electron Bremsstrahlung almost screens all

nuclear lines with Eγ < 2 MeV. The nuclear lines that are in principle possible

to detect lies in the interval 2 < Eγ < 10 MeV. The γ-rays with Eγ > 10 MeV are

due to π0 production. The SLE γ-ray spectra shows a cut off at Eγ ≈ 10 MeV
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depending on the chemical composition.

Both ADAF and SLE models have about the same efficiency of converting

accretion energy into nuclear γ-ray lines, LN/Lacc < 6 × 10−4. However, ADAF

due to high temperatures produces more effectively π0-mesons. The π0

production has an efficiency Lπ/Lacc < 10−2.

In principle, the measurement of the disk nuclear lines profile would give

us unique information about disk physical parameters such as: chemical

composition, density, temperature, accretion rate etc. The calculations here

take into account the Doppler broadening of nuclear lines due to the thermal

motion of excited nuclei. This full width at the half maximum (FWHM) ratio

with the central energy is:

∆Eγ

Eγ
≈ 2.35

√
kBTi

M c2 ≈ 0.24 ×

√
T(1)

A

where M is the excited nucleus mass, A is the nucleus mass-number; T(1) is

the temperature in units of 10 MeV.

The SLE is much colder than ADAF therefore its nuclear lines are narrower

and higher, whereas ADAF nuclear lines are wider with ∆ν/ν ∼ 0.08.

4.4.3 Modified Maxwellian distribution

In the framework of ADAF, accretion plasma may not be in thermal equilib-

rium. Therefore, protons as well as other ions may not be able to develop

their Maxwellian distribution tail. On the other hand, even a slight accelera-

tion of the plasma particles lead to formation of suprathermal (power law)

tail above the Maxwellian distribution.

Figure 4.2 shows the γ-ray emissivity calculated for two proton distribu-

tion tails. The γ-ray spectra due to π0 production will be somewhere in the

shaded area between curve (1) and (2) in the fig. 4.2.

Both, γ-ray lines and γ-rays from π0 production, are great observational

tools to distinguish between different accretion models/regimes. By measur-

ing the γ-ray line width we would get information about the proton tempera-

ture. Also, by measuring the π0 decay γ-ray spectral shape we gain important

information about protons distribution shape.

4.4.4 Evaporation of neutrons

Neutron are not bounded by electric or magnetic accretion disk fields; there-

fore, if neutrons have enough energy to overcome gravity potential of the

black hole, they can escape from the disk. ADAF is very hot, thus if neutrons

are thermalized at such high temperatures they can easily escape from the

disk almost isotropically. ADAF is optically thin with respect to neutrons.
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Figure 4.8 shows the evaporation efficiency η as a function of the disk

radius. The efficiency profile is quite universal for r < 100 because it de-

pends mainly on the disk temperature profile which is approximately virial

temperature for a wide range of the accretion parameters. In this condition

about 70% of the disk’s neutrons can escape. Depending on the accretion

parameters and the initial composition, ADAF accretion model allows an

escape of neutrons with a rate 0.15 × Ṁ.

A non-negligible contribution to neutron production comes from the

reaction p + p→ p + n + π+ inside the region 3 < r < 10.

4.4.5 Evaporated neutrons interacting with the companion star

atmosphere

Solar mass black holes with an accretion disk, are usually observed in binary

systems. If the accretion regime is an ADAF and if the disk neutrons managed

to escape, they can reach the companion star atmosphere. Neutrons will

scatter off nuclei from the star atmosphere, until they loose their energy and

eventually are captured by protons. Neutrons can also interact with CNO

nuclei and can breakup them.

The result of neutron interactions with the star atmosphere are the pro-

duction of 2.2 MeV γ-rays from hydrogen capture and the production of light

elements such are D, Li and Be in the star atmosphere.

The detection of the 2.2 MeV γ-rays from the companion star and/or

the observation of unexpected high abundances of the light elements in the

companion star atmosphere or in the interstellar medium that surrounds

the binary system would be a secondary signal for the existence of a high

temperature plasma in that system.

4.4.6 Metallicity effect on the γ-ray luminosity and the neutron

production

Due to higher reaction threshold and high excitation energy, the p + α and

α + α reactions are less effective in producing neutrons and γ-ray lines than

heavy nuclei. Figure 4.5 demonstrate an example of a plasma with initially

high content of heavy elements, Xp = Xα = 0.3 and XC12 = XO16 = 0.2. It

is shown that neutron abundance and the γ-ray lines luminosity can be

increased with at least an order of magnitude compare to the case of a solar

composition plasma.

The increase of the accretion rate close to the critical one, will increase

the amount of neutrons but will not necessary increase with the same propor-

tions the γ-ray lines luminosity. This is true because the quicker we destroy
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heavy nuclei, the innermost part of the disk – which is the hottest and the

most dense part – will not be able to radiate γ-ray lines. Thus the efficiency

of converting accretion to γ-ray lines will decrease.

4.4.7 Li-production

The so called, the Lithium problem, involves the unexplained abundances

of the 6Li and 7Li that are measured in metal-poor stars (e.g. Fields, 2011).

Observations show that 6Li is over-abundant whereas 7Li is under-abundant

compare to predictions of the big-bang nucleosynthesis. There are many

hypothesis of how to solve this problem; they involve three directions: Cos-

mology, astrophysics and beyond standard model physics.

It is possible that very hot accretion plasmas might play a role in the

solution of the Lithium problem. In particular ADAF models have positive

Bernoulli integral; thus, if they can produce Li in the disk, the outflows can

carry it and expel to the surrounding media and contaminate it.

Recently, by using a simplified tori-model for a solar mass black hole, the

Iocco and Pato (2012) predicted a large amount of Li from such systems. The

amount of Li expelled from such a system can contaminate the entire Galaxy.

It seems, however that this model is too simplified and should suffer the

same limitations as the ADAF models do. At high accretion rates (ṁ > 0.3α2)

the ions will be effectively cooled down such that their temperature will be

too low to initiate effective nuclear reactions. Apparently, Iocco and Pato

(2012) overestimate the maximal accretion rate of the hot plasma by a factor

of 100.

4.5 Summary and Conclusions

In this chapter it is investigated the evolution of the accretion disk abun-

dances and γ-ray emissivities for two accretion disk models, namely ADAF

and SLE.

The accretion disk which operates in the ADAF regime, has relatively low

γ-rays emissivity; therefore, it might be difficult to observe them with the

current detectors. However, the next generation of the MeV-γ-ray instru-

ments allow us to test these predictions and thus to open a new window on

the physics of these objects.

The γ-ray emissivity spectra from the accretion plasma show three dis-

tinct features: The electron thermal bremsstrahlung, the nuclear lines and

in the case of very hot ADAF accretion, the γ-rays from π0 production. The

detectable nuclear lines lie in the interval 2 < Eγ < 10 MeV. The π0 production

γ-ray spectra become noticeable for Eγ > 10 MeV.
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Different part of the MeV-γ-ray spectra carry important information for

different physical parameters. The measurement of nuclear γ-ray lines pro-

file give a unique information about the temperature, chemical composition,

accretion rate etc. From Eγ > 100 MeV spectra, we can extract information

about the proton distribution shape, in particular its deviation from the

Maxwellian distribution.

Depending on the accretion parameters and the initial chemical compo-

sition, the γ-ray luminosities for ADAF can reach quite high values: for the

nuclear lines and continuum, LN ∼ 8×1033 m(1) erg s−1 and for the γ-rays from

π0 production, Lπ ∼ 1×1035 m(1) erg s−1. The SLE nuclear lines and continuum

luminosity can reach values as high as LN ∼ 1 × 1034 m(1) erg s−1. At the same

time, SLE cannot provide effective production of π0 decay γ-ray emission.

The SLE accretion model is cold to be able to emit a considerable amount

of neutrons. However, the ADAF model is very hot and neutrons can effec-

tively escape the disk. The neutron escape efficiency for ADAF accretion

disk has a universal profile which is valid for a wide range of disk parameters.

Depending on the initial composition and the accretion parameters, the

neutron mass fraction abundance can be as high as Xn ≈ 0.2; therefore, the

total amount of neutrons that can be expelled from the ADAF accretion disk

might be as large as 0.15 × Ṁ.

Neutrons that escape the disk and reach the companion star atmosphere,

initiate nuclear interactions there. The result of these interactions might

be the breakup of the CNO nuclei which will produce light elements, or it

can scatter off in the star atmosphere until is cooled down and captured

by hydrogen with production of Deuterium and 2.2 MeV γ-ray line. The

abundances are possible to contaminate the interstellar environment that

surrounds the binary system, through the companion star solar winds. The

light elements that are produce in the accretion disk can escape through disk

outflows and enhance the abundance of the interstellar medium.
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The gamma-ray emissivity of very hot optically thin plasma with ion tem-

perature T ≥ 1010K has been quantitatively studied for the first time. The

calculations are based on a comprehensive network of nuclear reactions. At

ion temperatures up to several tens of MeV, the plasma emissivity initially

is dominated by de-excitation lines. The emissivity depends on the chem-

ical composition of plasma. However, because of spallation reactions, the

chemical composition experiences strong evolution. Correspondingly, both

the spectral shape and the absolute emissivity evolve in time with gradual

reduction of contribution of heavy elements to gamma-ray production. On

timescales exceeding the characteristic time of nuclei destruction (which is

a strong function of ion temperature), the plasma consists of protons and

neutrons with a small fraction of D, T and 3He. At this stage, proton–neutron

plasma radiates through p–n bremsstrahlung as well as through gamma-rays

at the capture of neutrons by protons.

At ion temperatures exceeding several tens of MeV, plasma starts to cool

radiatively due to inelastic p–p interactions. These interactions produce

π0-mesons which quickly decay to two high energy photons. If the ion tem-

perature is lower than the threshold energy of π0 production, only protons

from the “tail” of distribution (E � kT ) contribute to the gamma-ray produc-

tion. Generally, particles in thermal plasma are well described by Maxwellian

distribution. However, in realistic astrophysical scenarios one may expect

significant deviations from Maxwellian distribution. Namely, when the char-

acteristic time of elastic p–p interactions is too long (longer than the ac-

cretion time) to establish a developed Maxwellian “tail”, the production of

π0-mesons would be strongly suppressed. On the other hand, even a modest

particle acceleration, for example by plasma waves, can lead to a suprather-

mal (typically, power-law) component of particle distribution well above the

Maxwellian “tail”. This might dramatically increase the π0 production rate,

and consequently the gamma-ray luminosity.

77
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The importance of these two effects, which may have strong impact on

the detectability of gamma-radiation from astrophysical objects containing

very hot two–temperature plasma, are demonstrated by detailed numerical

calculations. The nuclear reaction network has been applied to different

models of two–temperature plasma around an accreting black hole – ADAF

and SLE. The chemical composition evolution and the γ-ray emissivity of

accretion disks are calculated for a wide range of parameters and initial

chemical compositions of plasma. Very hot plasma with an ion tempera-

ture close to 100 MeV achievable in the ADAF accretion regime, could be

marginally detected by Fermi LAT telescope and future low-energy gamma-

ray detectors.

The ADAF regime also predicts effective production of neutrons and

their evaporation from the accretion disk. A significant fractions of these

neutrons can be captured by the atmosphere of the companion star, leading

to production of Deuterium as well as light elements (Li, Be, B) through

spallation of CNO nuclei. The stellar wind can transport this material and

enhance the interstellar medium by light elements. The contribution of this

non-cosmological channel to the content of light elements in the Universe

could be quite significant and deserves further exploration in the context of

the so-called problem of underproduction of light elements, in particular

Deuterium and 7Li, in the Big Bang paradigm.
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Quantitative justification of
discarded nucleus–nucleus
reactions

A

As discussed in section 2.2.1, the most important nuclear reactions between

nuclei are those that involve n, p or α-particles. Here we will quantify the

error that the discarded reactions cause in the nuclear network solution. The

matters will be justified for a solar composition plasma; afterwards, limits

will be set on the abundances of e.g. heavy elements, such that the nuclear

network solution will have an accepted accuracy.

We can quantify the error magnitude that the discarded reactions gener-

ate on the network solution by comparing their reaction rates (or the reaction

time-scales) with their respective dominant channels. Let we consider the

two most abundant elements after p and α-particles – D and 16O. Deuterium

is the third most abundant element after p and α-particles among the group

of elements lighter than 4He. It is not abundant initially; however, different

nuclear reactions such as spallation of heavy nuclei or weak nucleosynthesis.

Proton-proton inelastic collisions in very high temperatures are also able

to produce D. All these reactions cannot increase the number density ratio

of deuterium with respect to protons (nD/np) more than 10−3. On the other

hand, 16O is the most abundant among the elements heavier than 4He. Its

initial number density ratio with respect to protons is nO16/np ≈ 5.4 × 10−4

(Suess and Urey, 1956; Anders and Grevesse, 1989).

Let us symbolize with ξ either D or 16O. More specifically, we want to

compare the reaction rates of D + D and 16O + 16O (i.e. ξ + ξ) with their

respective destruction channels from p and α (i.e. p + ξ and α + ξ). Note that

D becomes abundant when all nuclei are destroyed; thus it is not necessary

to compare the D + D with α + D reaction rate simply because α-particles

exist in very small quantities during that period.

The reaction rate is defined by Γ = 〈συ〉×n, where the 〈συ〉 is the Maxwellian

average rate, and n is the projectile number density. The destruction reaction
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rates ratios are:

Γ(ξ+ξ)

Γ(p+ξ)
=

〈
σ(ξ+ξ) υ

〉〈
σ(p+ξ) υ

〉 × nξ
np

(A.1)

Γ(ξ+ξ)

Γ(α+ξ)
=

〈
σ(ξ+ξ) υ

〉〈
σ(α+ξ) υ

〉 × nξ
nα

(A.2)

For an order of magnitude estimation of the ratio between the reaction

rates we can estimate the rate 〈συ〉 by simply considering a constant cross-

section σ. where, the rate becomes σ 〈υ〉 = σ ῡ, where ῡ = 〈υ〉 is the average

thermal collision velocity which is ῡ ∼ µ−1/2, if µ is the reduced mass for the

projectile-target system. A rough estimate of the cross-sections ratios, can

be done by simply comparing their maximum values for a projectile energy

E > 1 MeV. This makes sense because at these energies the cross-sections

have roughly the same energy dependence.

The p + D reaction has a threshold around 3 MeV. To gain a large amount

of D in the plasma, requires to destroy all heavy nuclei; therefore, the plasma

must have a high temperature i.e. at least kBT > 5 MeV. For this reason the

reaction threshold will not play a significant role. The p+D and D+D reaction

cross-sections show the same behaviour for a projectile energy E > 6 MeV,

and the ratio between the cross-sections highest values isσ(D+D)/σ(p+D) . 0.5.

The total nonelastic cross-sections for p + 16O, α+ 16O and 16O + 16O have

almost the same behaviour. Thus from measurements in (Carlson et al.,

1975; Auce et al., 1994; Tserruya et al., 1978), we get the following ratios:

σ(O16+O16)/σ(p+O16) ∼ 2 and σ(α+O16)/σ(p+O16) ∼ 2.

By taking the number density ratios to be nD/np < 10−3; nHe4/np ≈ 8× 10−2

and nO16/np ≈ 5.4 × 10−4, the reaction rate ratios become:

Γ(D+D)

Γ(p+D)
≈
σ(D+D)

σ(p+D)

√
µ(p,D)

µ(D+D)

nD

np
∼ 4 × 10−4 (A.3)

Γ(α+O16)

Γ(p+O16)
≈
σ(α+O16)

σ(p+O16)

√
µ(p,O16)

µ(α,O16)

nα
np

∼ 9 × 10−2 (A.4)

Γ(O16+O16)

Γ(p+O16)
≈
σ(O16+O16)

σ(p+O16)

√
µ(p,O16)

µ(O16,O16)

nO16

np
∼ 4 × 10−4 (A.5)

As mentioned, D and 16O represent the elements lighter and heavier

than 4He, respectively. They are the most abundant in their respective cate-

gories. Therefore, neglecting a reaction with projectile different from p and

α particles will cause an error

Γ(D+D)

Γ(p+D) + Γ(D+D)
. 0.04%;

Γ(O16+O16)

Γ(p+O16) + Γ(α+O16) + Γ(O16+O16)
< 0.04%



Thus, for a solar composition we can neglect all reactions except the one

that p and α are involved with a solution accuracy better than 0.4%. Some

very hot accretion flow systems can accrete matter from Wolf-Rayet stars or

from white dwarfs. These stars have much higher metallicities compared

to a solar one. Thus it is important to know if heavy nuclei interactions are

important in such systems. By using the above estimates, a plasma with

nA/np . 10−1 – if A is an element heavier than 4He – we can still neglect heavy

nuclei interactions but the solution accuracy will drop to 7 %.

Photodisintegration B

As discussed in section 2.2.1, the most important projectiles are protons, neu-

trons and alpha particles. Plasmas produce photons through ion-nuclear

reactions and electron bremsstrahlung. The photon number density de-

pends on the optical depth, i.e. electron density and the plasma’s size. The

photon number density per Eγ energy interval (dnγ/dEγ), is given by:

dnγ
dEγ

≈
dṅγ
dEγ

×
R
c
×max(1, τ) , (B.1)

where dṅγ/dEγ is the photon production rate per Eγ energy interval, R is the

size of the plasma, τ is the optical depth and c is the speed of light. The

term max(1, τ) takes into account the photon’s time-escape delay due to

propagation through an optically thick plasma (τ > 1).

The optical depth for a homogeneous plasma with number density n and

size R is given simply by τ(Eγ) = n R σc(Eγ), where σc(Eγ) is the Compton

scattering cross-section.

The photodisintegration reaction-rate is given by:

Γ(γ,A) =

∫
dEγ

dnγ
dEγ

σ(γ,A)(Eγ) c (B.2)

where σ(γ,A)(Eγ) is the photodisintegration cross-section for a given nucleus

A. The cross sections for the important nuclei such as D, 12C, 16O, 56Fe,

etc, generally show a threshold Eγ > 2 MeV, and have a maximum around

7 − 20 MeV.
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By including all of the above, one obtains:

Γ(γ,A) = R
∫

dEγ

(
dṅγ(Eγ)

dEγ

)
× σ(γ,A)(Eγ) ×max

(
1, τ(Eγ)

)
(B.3)

Note that the photodisintegration reaction rate in eq. (B.3), includes

two cases, one without optical depth and one with optical depth. The case

without optical depth scales as n2
e R (ne is the electron number density), whilst

the case with optical depth scales as n3
e R2. On the other hand ion-nuclear

reaction rates scale as n2
i (ni is the ion number density). Thus, for an optically

thin plasma, photodisintegration effect is mostly influenced by the size R
because ne ∼ ni.

In a high temperature, low density and optically thin plasma, electrons

could not be heated to high temperatures. The reasons is that electrons

which are heated due to Coulomb exchange with ions are cooled quickly

through Bremsstrahlung and other possible cooling processes such as Syn-

chrotron and/or Comptonization. In the extreme case of electrons getting

heated to high temperatures (kB Te > 1 MeV), pair-production processes

become effective, and thus, will cool the plasma down (see e.g. Bisnovatyi-

Kogan et al., 1971; Svensson, 1984).

We consider here an uniform, electrically neutral, spherically symmet-

ric, optically thin plasma, with a size R ∼ 106 cm and number density

n ∼ 1018 cm−3. Let we also consider two important nuclei, the 16O as the

third most abundant cosmic/solar element after Hydrogen and Helium, and

Deuterium as the most abundant light element obtained after heavier nuclei

are destroyed. Let we first calculate the photodisintegration reaction rate due

to electron thermal bremsstrahlung (Gould, 1980) and p–n capture and ther-

mal nuclear bremsstrahlung as it is calculated in section 2.3. Let we calculate

the photodisintegration reaction rate for 16O(γ, X) and D(γ, n)p reactions and

then compare them with e.g. 16O(p, X) proton spallation reaction. The re-

sults are shown in fig. B.1. Note that reaction rates calculated with thermal

electron bremsstrahlung photons are a function of electron temperature,

whereas the reaction rates calculated from p–n interactions are a function of

ion temperature. Figure B.1 reveals that for a spherically symmetric, optically

thin plasma with size R = 106 cm, and number density n = 1018 cm−3, the pho-

todisintegration due to thermal electron bremsstrahlung and p–n thermal

capture and nuclear bremsstrahlung is negligible. Even when the electron

temperature becomes comparable with the ion temperature, the photodis-

integration reaction rate is 3-4 orders of magnitude below other nuclear

reaction rates, which is clearly seen by comparing 16O(γ, X) and 16O(p, X). In

the case when the electron temperature is lower than the ion temperature,

and there is a significant amount of neutrons in the plasma (here we took,
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Figure B.1: The photodisintegration of 16O and D nuclei due to thermal
electron bremsstrahlung and p–n capture and nuclear bremsstrahlung as a
function of temperature, for a plasma with size R = 106 cm, and n = 1018 cm−3.
The full line (16O) and the dotted curve (D) are the photodisintegration
reaction rates calculated with thermal electron bremsstrahlung photons.
They are a function of electron temperature (Te). The dash-dotted (16O)
and the full-dotted (D) lines are the photodisintegration reaction rates
calculated with p–n thermal capture and nuclear bremsstrahlung. They are
a function of ion temperature (Ti). For comparison the dashed curve is the
proton destruction reaction rate of 16O as a function of ion temperature (Ti).

for simplicity, nn = np = 1018 cm−3), the most significant amount of γ-rays are

produced from p−n interactions. We see from fig. B.1 that the contribution of

photodisintegration due to γ-rays coming from p−n interactions is negligible,

too. If the electron temperature is Te < 1 MeV then photodisintegration due

to photons emitted by electrons and from p − n interactions could affect the

nuclear statistical equilibrium only for time-scales longer than Γ−1 > 104 s.

Nuclear reactions in plasma produce γ-ray lines. Very high temperature

plasma will have an additional γ-ray channel due to p + p→ π0 production.

Let we estimate the highest photodisintegration reaction rate from this γ-ray

sources.

The prompt nuclear γ-ray lines are formed in a reaction like p + A→ γ.

Let σ(pAγ) be the γ-ray line production cross-section and np and nA be the

number densities of projectile and target nucleus. The photo-production

rate per unit volume is given by ṅγ =
〈
σ(pAγ) υ

〉
np nA. Consider that the

cross-section is constant with its maximum possible value; thus the reaction

rate will become ṅγ = σ(pAγ) ῡ np nA, where ῡ denotes the average thermal

collision velocity.



On the other hand, the π0 production rate per unit volume is given by

ṅπ0 = σπ0 ῡ n2
p/2, if σπ0 is the peak value of the p + p→ p + p + π0 reaction. For

each π0 there will be two γ-rays, therefore ṅγ = σπ0 ῡ n2
p.

By plugging these photon production rates into eq. (B.1) and then substi-

tuting the photon number densities into the eq. (B.2), one obtains:

Γ1(γA) ∼ R np nA ῡ × σ1(γA) × σ(pAγ) (B.4)

Γ2(γA) ∼ R np np ῡ × σ2(γA) × σπ0 (B.5)

The σ1(γA) is the maximum photodisintegration cross-section value for the

interval 0.1 < Eγ < 10 MeV where nuclear lines are emitted; whereas, the

σ2(γA) is the maximum photodisintegration cross-section value for the inter-

val 10 < Eγ < 400 MeV where π0 photons are emitted.

The total non-elastic reaction rate for the element A through e.g. p + A is

given by Γ(pA) ∼ σ(pA) ῡ np. Therefore the ratio between the photodisintegra-

tion and total non-elastic reaction rates, is:

Γ(γA)

Γ(pA)
∼ R np ×

(
σ1(γA) σ(pAγ)

σ(pA)

nA
np

+
σ2(γA) σπ0

σ(pA)

)
(B.6)

The typical ratios between the cross-sections peak values are: σ(pAγ)/σ(pA) ∼

10−1, σπ0/σ(pA) . 10−3, because the π0 production has a threshold at around

280 MeV the ratio in the most important interval is much lower. For solar

composition the ratio is nA/np ∼ 10−4, while for high metallicity composi-

tion is nA/np ∼ 10−1. The photodisintegration cross-section is taken to be

σ1(γN ) ∼ σ2(γN ) ∼ 0.1 b. By substituting one obtains:

Γ(γN )

Γ(pN )
< K ×

( R
108 cm

)
×

( np

1017 cm−3

)
, (B.7)

with K ∼ 10−4 in case of a solar composition and K ∼ 10−2 in case of a high

metallicity plasma.

We conclude here that the photodisintegration reactions are negligible.

They are about three orders of magnitude less than the other nuclear reac-
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tions even if we consider the highest values of all parameters.

The boundaries of the
reaction rate integral

C

The integral in eq. (2.1) is evaluated over the energy range (0,∞). In practice,

however, one needs to integrate eq. (2.1) only in a “narrow” energy interval

where the most important contribution to the reaction rate come from. An

accurate evaluation of the reaction rate requires to know precisely the cross-

section in that narrow energy interval.

For a given temperature, there exists an energy interval [ε1(T ), ε2(T )] ∈
[0,∞), such that, the integration over it brings the major contribution to the

rate (〈συ〉). In other words we can split the integral in eq. (2.1) as:

∞∫
0

=

ε1(T )∫
0

+


ε2(T )∫
ε1(T )

 +

∞∫
ε2(T )

(C.1)

ε1(T )∫
0

+
∞∫

ε2(T )
∞∫
0

≡ ε � 1 (C.2)

Working within the temperature range [T1,T2], we want to obtain the

maximal integration interval [E1, E2] such that the accuracy of the rate is

greater than a desired value (ε). The energy interval [E1, E2] includes all

energy windows [ε1(T ), ε2(T )] for any temperatures in [T1,T2]. Therefore, it is

expected that the lowest temperature T1 will affect the lowest energy limit

E1, and the highest temperature T2 that of the energy limit E2. The reason

of course, is the Maxwellian distribution function which constrains the two

limits.

Although the Maxwellian distribution is the main factor that constraints

the integration limits, it may not work always alone. The reaction cross-

sections, however, play a role, too; especially the cross-section behaviour at

low and high energies. For instance, the low energy cross-section might be

zero due to the reaction threshold. For this case the lowest integration limit
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does not need to be lower than the threshold energy. However, there could

be a complete opposite behaviour for which the cross-section is very large at

low energies. A typical example is the neutron capture cross-section such as

the neutron capture by hydrogen n + p→ D + γ for which the cross-section

at low energies behave like σ ∼ 1/υ ∼ E−1/2.

On the other hand, the high energy cross-section – if there are no reso-

nances – will behave similarly to the geometrical cross-section. It will fall as

σ ∼ E−1 until it becomes approximately constant at very high energies.

To sum all up, the lowest integration limit E1 is affected by the lowest

temperature T1 and the low energy cross-section – especially the neutron

capture (σ ∼ E−1). On the other hand, the highest integration limit E2 is

affected by the highest temperature T2 and the high energy cross-section.

By combing this with the integration of eq. (2.1) and the notation in

eq. (C.1) we obtain:

∞∫
E1

dE σ1 E exp
(
−

E
kBT1

)
= (1 − ε)

∞∫
0

dE σ1 E exp
(
−

E
kBT1

)
(C.3)

E2∫
0

dE σ2 E exp
(
−

E
kBT2

)
= (1 − ε)

∞∫
0

dE σ2 E exp
(
−

E
kBT2

)
(C.4)

Here I have simplified the calculations by considering that E1 � E2. This

allows that when we calculate E1 we can consider E2 as very big “∞”. Recall

that [E2,∞) integration is by definition very small. The same happen when

we calculate the E2 for which E1 is considered as “0”. Recall that the [0, E1] is

by definition very small.

By taking the extremes, σ1 ∼ E−1/2 and σ2 = constant and then by inte-

grating eq. (C.3) and eq. (C.4), we obtain:

erf
√ E1

kBT1

 − √
E1

π kBT1
× exp

(
−

E1

kBT1

)
≡ ε (C.5)(

1 +
E2

kBT2

)
× exp

(
−

E2

kBT2

)
≡ (1 − ε) (C.6)

For ε = 1 % the solutions are E1 ≈ 3 × 10−4 × kBT1 and E2 ≈ 6.6 × kBT2. For

ε = 5 % the E1 ≈ 8× 10−3 × kBT1 and the E2 ≈ 4.7× kBT2. Whereas for ε = 10 %

the solutions are E1 ≈ 0.03 × kBT1 and E2 ≈ 3.9 × kBT2.

Thus in the worst case ε = 10 % accuracy, the limits of energy for a

temperature that varies between T ∈ (1, 100) MeV are in E ∈ (0.01, 400) MeV.

Note, however, that the boundaries [E1, E2] were taken to be all inclusive;

therefore, they form the largest energy interval we need to know about all

critical cross-sections, i.e. the cross-sections that become large at low or



high energies. Most of the cross sections have a threshold value which

is E > 1 MeV; making the calculations of even lower temperatures much

more accurate. At high energies however, we do not know with accuracy

the behaviour of all channels. For most of the channels we do not have

data at all which makes the high temperature calculations very difficult.

In section 2.2.2 I will impose a general assumption that the cross-section

behaviour for energies higher than E > 250 MeV is σ ∼ E−1. This will allow

us to calculate higher temperature rates.

Note once more that ε is the error that the rate 〈συ〉has at the temperature

boundaries T1 and T2; for the intermediate temperatures the accuracy is

much higher.

The capture reaction γ-ray
spectra

D

Different from nuclear de-excitation γ-ray lines that are result of nuclear tran-

sition between two levels with definite energy, the γ-rays that are produced

through capture reaction such as 1 + 2 → 3 + γ have a kinematic photon.

This means that γ-ray energy depends on the energy of the two interacting

particles 1 and 2.

Let we define the γ-ray energy emitted per unit volume and time by the

capture reaction at photon energy Eγ, to be:

d εγ(Eγ) = Eγ ∗ d ṅγ(Eγ) = Eγ

d ṅγ(Eγ)
d Eγ

d Eγ (D.1)

where the ṅγ is the number of photons emitted at the energy Eγ per unit

volume and time.

The production rate of photons (ṅγ) is a function of the reaction 1 + 2→
3 + γ rate. If particles 1 and 2 have two distributions f1 and f2 which we

assume to be Maxwellian distributions then we obtain:

d ṅγ = n1 n2 d (< σ v >) (D.2)

d (< σ v >) = f (v1) σ12 |v1 − v2| f (v2) d3v1 d3v2 (D.3)

Where f (v1) and f (v2), n1 and n2, v1 and v2 are the Maxwellian distribu-
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tions, number densities and the speeds of particle species 1 and 2, respec-

tively. The σ12 is the cross-section of 1+2 reaction.

As it is commonly used to arrive at the rate formula eq. (2.1), one changes

the variables. Instead of v1 and v2 theV1 and u2 are used, which define the

center-of-mass speed and collision speed respectively:

(m1 + m2)V = m1v1 + m2v2 (D.4)

u = v1 − v2 (D.5)

The Jacobian of this transformation is one, thus by transforming the

variables we obtain:

v1 = V +
m2

m1 + m2
u (D.6)

v2 = V −
m1

m1 + m2
u (D.7)

d3v1 d3v2 ≡ d3V d3u (D.8)

If we replace the distribution with Maxwellian distribution and transform

the variables; moreover, if we call µ the reduced mass of the interacting

system 1+2, the E = µ u2/2 the collision energy (or CM-frame energy) and if

d3u = 4πu2 d u, then we obtain:

d (< σ v >) =
(m1m2)3/2

π2µ2(kBT )3

{
σ(E) E exp

(
−

E
kBT

)
d E

}
×

×

{
exp

(
−

(m1 + m2)V2

2kBT

)
d3V

}
(D.9)

As we see, the differential rate d (< σ v >) depends on the collision energy

E and the velocity V (or the center-of-mass motion). By integrating the

eq. (D.9) with respect to the CM-velocity V we get [2πkBT/(m1 + m2)]3/2, then

by integrating through the energy E, we obtain the well know formula we

wrote in the eq. (2.1).

From the kinematics of the reaction 1 + 2→ 3 + γ also by neglecting the

recoil of nuclei 3 (i.e. Ecm
γ � m3 c2), the γ-ray energy in the center-of-mass

system is given by:

Ecm
γ = E + Q (D.10)

where Q = (m1 + m2 − m3) c2 is the Q-value of the reaction. By changing the

variables from collision energy E to the CM-frame γ-ray energy Ecm
γ we then

obtain the CM-frame d < σ v > /dEcm
γ (or CM-frame emissivity d εγ/dEcm

γ as it

is described in eq. (D.1))

For a LAB-frame observer, the center-of-mass (CM-frame) of the two

colliding particles 1 and 2 is moving with velocity V; therefore the γ-rays that

are emitted in CM-frame of the 3 and γ system, will be Doppler-broadened to



the LAB-frame observer. Let the line of sight be for instance the z-direction.

Every photon observed in the z-direction will be Doppler-broadened and it

is related with the Vz component in accordance to:

m3

m1 + m2

(
1 −

Ecm
γ

Eγ

)
=

m3

m1 + m2

(
1 −

E + Q
Eγ

)
=

Vz

c
= β (D.11)

m3

m1 + m2

E + Q
E2
γ

dEγ = dβ (D.12)

Note that this equation is calculated for a fixed collision energy E.

By substituting eq. (D.11) to eq. (D.9) and integrate over Vx and Vy degrees

of freedom – they play no role to broadening the z-direction photons – then

we obtain:

d (<σ v >) = c

√
8

πµ(kBT )3

(
m1 + m2

2πkBT

) {
σ(E) E exp

(
−

E
kBT

)
d E

}
×

×

exp

− m2
3c2

(m1 + m2)2kBT

(
1 −

E + Q
Eγ

)2 m3

m1 + m2

E + Q
E2
γ

dEγ

 (D.13)

Therefore, the rate to emit a photon with energy Eγ in the LAB-frame per

unit energy interval is given by:

d < σ v >
dEγ

(Eγ) =

(
2 m3 c

π (m1m2)1/2 (kBT )2

)
× I(Eγ,T ) (D.14)

where we have denoted with I(Eγ) the integral

I(Eγ,T ) =

∫
d E

E (E + Q)σ(E)
E2
γ

exp

− m2
3c2

2(m1 + m2)kBT

(
1 −

E + Q
Eγ

)2

−
E

kBT


(D.15)

Hence the emissivity in the LAB-frame is:

Φ(Eγ,T ) =
d εγ
dEγ

= n1 n2 ×

(
2 m3 c

π (m1m2)1/2 (kBT )2

)
Eγ × I(Eγ,T ) (D.16)
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Cross sections and reaction
rates for some typical nuclei

E

E.1 Total nonelastic and inelastic cross sections with

their corresponding rates
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Figure E.1: Nonelastic and inelastic cross-sections and the respective
Maxwellian average rates for three projectiles n, p and α-particle and for the
12C, 16O, 24Mg nuclei.
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Figure E.2: Nonelastic and inelastic cross-sections and the respective
Maxwellian average rates for three projectiles n, p and α-particle and for the
28Si, 56Fe nuclei.
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E.2 Production of γ-ray lines for some elements
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Figure E.3: The Maxwellian average rates for temperature kBT = 1 and
10 MeV, for the most important γ-ray lines of 12C interaction with n, p and
α-particles.
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Figure E.4: The cross section for the most important γ-ray lines of 12C
interaction with n, p and α-particles.
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Figure E.5: The Maxwellian average rates for temperature kBT = 1 and 10
MeV, for the most important γ-ray lines of 16O interaction with n, p and
α-particles.
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Figure E.6: The cross sections for the most important γ-ray lines of 16O
interaction with n, p and α-particles.



E.2 PRODUCTION OF γ-RAY LINES FOR SOME ELEMENTS 105

0.1 1 10

10
−17

10
−16

10
−15

10
−14

N
a
2
4
(0

.0
9
)

N
e
2
1
(0

.3
5
)

N
a
2
4
(0

.4
7
)

M
g

2
4
(1

.3
7
)

M
g

2
4
(2

.7
5
)

M
g

2
4
(3

.8
7
)

M
g

2
4
(4

.2
4
)

 

 

n+Mg24 (T=1MeV)

n+Mg24 (T=10MeV)

0.1 1 10

 

 

 

 

<
σ

v
>

 (
c

m
3
/s

)

M
g

2
4
(1

.3
7
)

M
g

2
4
(2

.7
5
)

M
g

2
4
(3

.8
7
)

M
g

2
4
(4

.2
4
)

 

 

p+Mg24 (T=1MeV)

p+Mg24 (T=10MeV)

0.1 1 10

10
−17

10
−16

10
−15

10
−14

E
γ
 (MeV)

M
g

2
4
(1

.3
7
)

A
l2

7
(2

.2
1
)

M
g

2
4
(2

.7
5
)

A
l2

7
(3

.0
0
)

 

 

α+Mg24 (T=1MeV)

α+Mg24 (T=10MeV)

Figure E.7: The Maxwellian average rates for temperature kBT = 1 and 10
MeV, for the most important γ-ray lines of 24Mg interaction with n, p and
α-particles.
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Figure E.8: The cross sections for the most important γ-ray lines of 24Mg
interaction with n, p and α-particles.



E.2 PRODUCTION OF γ-RAY LINES FOR SOME ELEMENTS 107

0.1 1 10

10
−17

10
−16

10
−15

10
−14

M
g

2
5
(0

.5
9
)

S
i2

8
(1

.7
8
)

S
i2

8
(2

.8
4
)

 

 

n+Si28 (T=1MeV)

n+Si28 (T=10MeV)

0.1 1 10

 

 

 

 

<
σ

v
>

 (
c

m
3
/s

)

S
i2

8
(1

.7
8
)

S
i2

8
(2

.8
4
)

 

 

p+Si28 (T=1MeV)

p+Si28 (T=10MeV)

0.1 1 10

10
−17

10
−16

10
−15

10
−14

E
γ
 (MeV)

P
3
1
(1

.2
7
)

S
i2

8
(1

.7
8
)

S
i2

8
(2

.8
4
)

 

 

α+Si28 (T=1MeV)

α+Si28 (T=10MeV)

Figure E.9: The Maxwellian average rates for temperature kBT = 1 and 10
MeV, for the most important γ-ray lines of 28Si interaction with n, p and
α-particles.
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Figure E.10: The cross sections for the most important γ-ray lines of 28Si
interaction with n, p and α-particles.
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Figure E.11: The Maxwellian average rates for temperature kBT = 1 and
10 MeV, for the most important γ-ray lines of 56Fe interaction with n, p and
α-particles.



110 CROSS SECTIONS AND REACTION RATES FOR SOME TYPICAL NUCLEI

10
0

10
1

10
2

10
1

10
2

10
3

10
4

σ
 (

m
b

)

 

 

Fe56(n,x)Fe56
*
(0.847) [L1→L0]

Fe56(n,x)Fe56
*
(1.038) [L8→L2]

Fe56(n,x)Fe56
*
(1.238) [L2→L1]

Fe56(n,x)Fe56
*
(1.303) [L10→L2]

Fe56(n,x)Fe56
*
(1.811) [L3→L1]

Fe56(n,x)Fe56
*
(2.229) [L6→L1]

10
0

10
1

10
2

 

 

 

 

E (MeV)

 

 

Fe56(p,x)Co56
*
(0.158) [L1→L0]

Fe56(p,x)Co56
*
(0.812) [L4→L1]

Fe56(p,x)Fe56
*
(0.847) [L1→L0]

Fe56(p,x)Fe56
*
(1.238) [L2→L1]

10
0

10
1

10
2

10
1

10
2

10
3

10
4

 

 

Fe56(α,x)Ni59
*
(0.339) [L1→L0]

Fe56(α,x)Fe56
*
(0.847) [L1→L0]

5 10 15 20

10
−19

10
−18

10
−17

10
−16

10
−15

<
σ

v
>

 (
c
m

3
/s

)

 

 

Fe56(n,x)Fe56
*
(0.847) [L1→L0]

Fe56(n,x)Fe56
*
(1.038) [L8→L2]

Fe56(n,x)Fe56
*
(1.238) [L2→L1]

Fe56(n,x)Fe56
*
(1.303) [L10→L2]

Fe56(n,x)Fe56
*
(1.811) [L3→L1]

Fe56(n,x)Fe56
*
(2.229) [L6→L1]

5 10 15 20

 

 

 

 

 

T (MeV)

 

 

Fe56(p,x)Co56
*
(0.158) [L1→L0]

Fe56(p,x)Co56
*
(0.812) [L4→L1]

Fe56(p,x)Fe56
*
(0.847) [L1→L0]

Fe56(p,x)Fe56
*
(1.238) [L2→L1]

5 10 15 20

10
−19

10
−18

10
−17

10
−16

10
−15

 

 

Fe56(α,x)Ni59
*
(0.339) [L1→L0]

Fe56(α,x)Fe56
*
(0.847) [L1→L0]

Figure E.12: The cross sections for the most important γ-ray lines of 56Fe
interaction with n, p and α-particles.
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