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Abstract

Rotating, compact objects power some of the most spectacular phenomena in astrophysics, e.g.,
gamma-ray bursts, active galactic nuclei and pulsar winds. The energy is carried by Poynting
flux, and the system is usually modelled using relativistic magnetohydrodynamics (MHD). How-
ever, in the relatively low density medium expected around some of these objects, the MHD
approximation breaks down, allowing new, large-amplitude waves to propagate. We discuss the
role of these waves in two astrophysical contexts:
In blazar jets, we show that a magnetic shear, launched together with a plasma from the black
hole magnetosphere, begins to accelerate particles at a large distance from its source. The
resulting non-thermal emission can, nevertheless, be modulated on very short timescales, which
can explain the rapid variability of the TeV gamma-ray flux observed from some blazars.
In pulsar winds, we analyze the radial propagation of superluminal modes, including their damp-
ing by radiation reaction and by interaction with an external photon field. We discuss their effect
on the structure of the pulsar wind termination shock, presenting new solutions in which the
non-linear wave is asymptotically matched to the constant pressure surroundings. The obser-
vational implications of these solutions are discussed for both isolated pulsars, and pulsars in
binary systems.

Zusammenfassung

Rotierende kompakte Objekte treiben einige der spektakulärsten Prozesse in der Astrophysik an,
beispielsweise Gammastrahlenblitze, aktive Galaxienkerne oder Pulsarwinde. Der Energieaus-
tausch wird durch elektromagnetische Felder („Poynting flux“) vermittelt und über relativistische
Magnetohydrodynamik modelliert. Diese Beschreibung ist jedoch ungeeignet für ein Medium mit
relativ geringer Dichte, welches um solche Objekte erwartet wird und in dem sich Wellen mit
grosser Amplitude ausbreiten können. Die Rolle dieser Wellen wird in zwei astrophysikalischen
Zusammenhängen diskutiert:
Erstens wird gezeigt, dass magnetische Scherwellen in Blazar Jets, welche zusammen mit Plasma
aus der Magnetosphäre eines Schwarzen Loches erzeugt werden, in grossem Abstand zur Quelle
Teilchen zu beschleunigen beginnen. Nichtsdestotrotz kann die resultierende nicht-thermische
Emission auf sehr kurzen Zeitskalen moduliert werden, was die schnelle Änderung des TeV Gam-
mastrahlenflusses erklärt, welche bei einigen Blazaren beobachtet wird.
Zweitens wird die radiale Ausbreitung von superluminalen Moden in Pulsarwinden analysiert,
inklusive der Strahlungsdämpfung und Abschwächung durch Wechselwirkung mit einem externen
Photonfeld. Der Effekt der Wellen auf die Struktur des Terminationshocks eines Pulsarwindes
wird diskutiert und neue Lösungen präsentiert, in denen die nichtlineare Welle an die Umgebung
mit konstanten Druck asymptotisch angepasst wird. Die Implikationen für Beobachtungen dieser
Lösungen werden sowohl für isolierte Pulsare, als auch für Pulsare in binären Systemen diskutiert.
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Chapter 1

Introduction

The mechanism underlying the most energetic phenomena in the Universe is thought to be
the extraction of the rotational energy of a central, compact object by a relativistic outflowing
wind. The energy transfer is mediated by the electromagnetic fields that are launched together
with a plasma, and, presumably, are responsible for the outflow collimation and acceleration of
the particles that radiate nonthermal photons.

Theoretical and numerical investigations suggest that such an outflowing wind is rather dense
close to the central object, since the magnetospheres around rapidly spinning neutron stars or
black holes are prone to avalanche pair production processes. The electromagnetic cascades are
started by primary particles, ripped out of the stellar surface or supplied by the accretion flow
around a black hole, and are sustained by the radiation these particles emit when accelerating
in the curved, extremely strong magnetic fields in the magnetosphere. Even though the created
plasma has a density high enough to screen out any electric field component along the magnetic
field lines, the particles are thought to contribute mainly through their charges and currents they
carry, and not through their inertia. This view is motivated by the fact that close to the compact
object the magnetic field dominates the energetics in the wind. The absence of an electric field
in the proper plasma frame validates the use of equations of relativistic magnetohydrodynamics
(MHD), which, in the limit of vanishing particle mass, is referred to as force-free electrodynamics
(FFE) [75].

This approach breaks down when the wind propagates to large distances. In radial expansion,
the particle density, and thus the conduction current, drops as 1/r2 with radius, but the toroidal
component of the field diminishes more slowly, as 1/r. As a consequence, there exists a critical
distance beyond which the flow becomes charge-starved [200, 151]. To increase the current
the particles accelerate, but the relativistic drift-speed implies that the particle inertia becomes
dynamically important, i.e., it begins to affect the plasma conductivity. In this case, a more
general description of a plasma is needed than that of ideal MHD. The simplest such model that
connects the current to the inertia of the plasma constituents is that of two cold fluids. A big
advantage of this model is its ability to describe the propagation of electromagnetic or Alfvén
waves of large amplitudes [140, 142, 43, 93], a property highly desirable in astrophysical contexts
[17, 97, 10], since the outflows from the rotating, magnetized objects are thought to propagate
outwards as waves. In black hole jets that emerge in the polar regions they resemble magnetic
twists, whereas in the pulsar case the equatorial striped wind is described as an entropy wave.
Their fully nonlinear description, beyond the MHD approximation, is therefore an important
next step towards understanding the nature and the properties of the Poynting-flux dominated
outflows.

In the following we take a closer look at two relevant astrophysical environments, in which
propagation of the nonlinear waves can be manifested: blazars and pulsars.
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1.1. Blazars

1.1 Blazars

Active galactic nuclei (AGN) are among the most spectacular objects in the Universe. About
10% of them are classified as radio-loud, and these launch large-scale outflows that are observed
as collimated jets. The enormous energy which they carry is thought to be stored in an elec-
tromagnetic field, and gradually (or impulsively) released to a plasma as it propagates outwards
to large distances. The energy supply is provided by a powerful engine, which is thought to be
a central compact object, maintaining the overall source activity by accretion of material from
its host galaxy. This supermassive (typically 106 − 109.5M⊙) nucleus is almost certainly a black
hole, a picture strongly supported by the observations of the Milky Way center.1

Figure 1.1: Collimated jets
from Cygnus A. Image
courtesy of NRAO AUI
(1.4 GHz).

One of the most intriguing open questions is the bimodality
of radio-loud AGNs. Outflows from the most powerful sources
are extremely well collimated, they can extend up to megaparsecs,
and finally terminate in extended lobes with bright “hot spots”(see
Fig. 1.1). Jets from less powerful ones usually exhibit more com-
plex structure, they are laterally wider, less collimated, with visible
edge-darkening, i.e., gradual fading away with the distance from the
central source to end “nowhere” (see Fig. 1.2).

The underlying cause of these differences is not clear, but two
kinds of models are proposed: “extrinsic” ones associate it with the
environment in which a jet propagates; the “intrinsic” models point
rather to the distinct jet formation processes or different properties
of the driving source (e.g., [186]). In the latter case, it was sug-
gested that the spin of a central black hole may play a role, being
close to the maximal for the most powerful sources [30, 207]. How-
ever, the X-ray observations of iron emission lines, which are used
to constrain the last stable orbit in the disk around rotating black
holes, indicate that at least some radio-quiet sources may harbor
very rapidly spinning holes a > 0.94, thus the “spin paradigm” may
not hold for all the objects2, or something else may be there. A more
global picture of radio-loudness, with the question why some sources
launch the jets at all, whereas other do not, points toward the ac-
cretion mode, so that the combination of both the spin and the disc
effects may play a role [183]. In particular, at high accretion rates,
the ability of an outflow to collimate has been questioned [183], and
at lower accretion rates different kinds of flows onto the center have

been proposed: radiatively efficient in quasar-mode, and advection dominated (ADAF) in radio-
mode, for powerful and less energetic sources, respectively [24]. Fast rotation, however, seems to
be a necessary condition for launching of a jet.

In AGNs two energy sources to power the outflows are thought to play a role: liberation
of gravitational energy of an accretion disk [131, 29, 31], or electromagnetic extraction of the

1The most compelling argument was given by [181], who used high-resolution infrared imaging to track the
proper motion of the stars in the very center of the Milky Way. Kepler’s law has been measured there down to
17 light hours, which corresponds to the distance 1.8× 1015 cm, and the unseen central object’s mass determined
from the pericenter of the closest orbit is 3.7 × 106M⊙, which implies the gravitational radius rg = 5.5 × 1011

cm. This, even though it does not confirm the existence of a central black hole with certainty, excludes on a high
confidence level the possibility of a cluster of astrophysical objects, and most of the more exotic models, such as
that of massive, degenerate fermions.

2It should be mentioned, however, that this method of measuring spins suffers from some subtleties and
uncertainties. The most serious one is the underlying assumption that the reflection of the coronal X-rays by disk
material does not occur within the plunging region between the black hole horizon and the last stable orbit. In
the case of MCG-6-30-15, for which this high spin was determined, a slowly spinning black hole hypothesis would
require extreme conditions and seems rather improbable (see exhaustive review by [175]).
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1.1. Blazars

rotational energy of a Kerr black hole (Blandford-Znajek mechanism) [32]. The physics of the
extraction process can be very different in each case, and is manifested in distinct outflow features.

Figure 1.2: Radio Galaxy
3C31 with edge-darkened
jets. Image courtesy of
NRAO AUI.

In unified models, jets have both components: the one origi-
nating in the disk and the other launched in the black hole mag-
netosphere. The latter is a fast, highly Poynting-flux dominated
core, and the former is a slower, heavier matter-loaded and more
dissipative sheath [185, 39]. The model of two-composite (strati-
fied) jets is consistent with general relativistic MHD simulations of
an accreting, rotating black hole. The time evolution of the system
reveals the formation of a low density funnel along the rotational
axis, in which a highly ordered magnetic field topology is estab-
lished. Accreting matter does not penetrate into this region, so
the mass-loading of the funnel is determined only by the pair pro-
duction rate in the black hole magnetosphere. The outer layer of
the jet, on the other hand, is the disk driven wind, loaded by the
accreting matter. If both mechanisms work simultaneously, then,
depending on the physical conditions in the source, one of them
can be dominant. It was proposed that if accretion proceeds in the
ADAF regime, the source luminosity can be largely due to the BZ
process [11], which can easily account for the power output of the
low and medium strength radio sources [67]. In the opposite case,
a radiatively efficient disk allows for disk-driven and/or rotation
driven outflows [130].

In both disk and magnetospheric launching mechanisms a spe-
cial role is played by the magnetic field, supported externally by an accretion flow. In fact, the
field is thought to have importance not only in launching, but also in accelerating and colli-
mating the outflowing plasma beam. This field, frozen into the disk or magnetospheric plasma,
is thought to be dragged by its rotation, so that it becomes twisted and this twist propagates
outwards as a jet. The energy extracted by electromagnetic fields, and carried by the Poynting
flux in a wound magnetic field, is deposited in relativistic particles that radiate in synchrotron
and inverse Compton processes. Emission is observed along the large-scale jets, across the entire
electromagnetic spectrum, often with the dominant component in the very high energy (VHE)
range.

Blazars constitute one class of AGN. Their name is a collective term for BL Lac objects and
Flat Spectrum Radio Quasars (FSRQ). These objects exhibit broad-band variability, and high
polarization. The non-thermal continuum is featureless in BL Lacs, but in the case of FSRQ
reveals broad emission lines in the optical band, e.g., [202]. In a unification scheme, blazars are
radio-loud AGNs with a visible outflow directed close to the line of sight of an observer, so that we
actually look down the jet. In this case the emission becomes significantly Doppler beamed. This
affects not only the luminosity, but also the spectral characteristics of their radiation. This is
what makes blazars so special – their spectra are completely dominated by the jet contribution,
both synchrotron and inverse Compton. The most energetic, jet phenomena can, therefore,
be directly probed by emission measurements. BL Lacs are likely to operate in the ADAF
regime, and in unification models are associated with low-luminosity radio galaxies. Quasars are
their powerful counterparts, working in a radiatively efficient regime of accretion. Since jets are
unlikely to be homogeneous, stationary flows, the outlined unification scheme can potentially
explain blazar variability on intraday scales. Really puzzling, however, are fluctuations of TeV γ-
ray fluxes, exhibited by some sources. The timescale on which the emission changes, as revealed
by observations of HESS and MAGIC, can be as short as few minutes [3, 5, 6], which is much
less than the light crossing time of the event horizon of the central black hole (around an hour).
The amplitude of these fluctuations is large, a factor of a few in comparison to the steady flux.
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1.2. Pulsars

Neither the mechanism of emission, nor the location of the emitting region is known, but it is
likely to occur far from the central object, so that the VHE photons can escape unattenuated by
γγ scattering on the soft photons from the disk, torus and broad line region (BLR). Alternatively,
small-scale structures that modulate the emission can be imprinted on the jet as it launched close
to the black hole, and further transported to large distances, where they show up.

Disk-driven jets are often modelled using an MHD description. However, in the low-density
medium that is expected in the aforementioned, inner-jet funnel around the rotational axis,
ideal MHD models break down and non-ideal MHD effects are likely to intervene. In particular,
particle inertia becomes dynamically important. As a consequence, initially frozen-in fields,
launched with a bunch of particles created in the magnetosphere, cannot maintain a steady flow
and try to release themselves from the charge-starving plasma. This leads to the acceleration
phase of the jet at large distance from the central source. The magnetic twist enters a nonlinear
regime, and this is where the fully nonlinear analysis is required to understand the evolution
of the system. In particular, it opens the way to investigation of new phenomena, that are not
included within standard approaches, but may explain ultra-fast, large-amplitude variability of
blazar emission.

1.2 Pulsars

Pulsars (pulsating radio sources) are rapidly spinning neutron stars. They owe their name to
their characteristic lightcurves, exhibiting pulses of emission in very accurate time intervals that
are attributed to the rotational periods. The pulsating signal is attributed to the “lighthouse
effect”, a beam of radiation inclined to the rotational axis, that sweeps the observer’s field of view
once (or twice) every period. However, an explanation how this beam is created turned out to be
much more difficult to find than an explanation how it is observed. Many complex phenomena are
involved in an underlying emission mechanism, which makes it hard to model and now, 45 years
after their discovery, it is still not understood how pulsars shine. In radio frequencies the pulses
exhibit finer structure, like subpulses and microstructures, superimposed on the main peaks;
every object has a unique lightcurve, sometimes exhibiting nulling (disappearance of pulsations
for a specific time) or periodic drifting of subpulses through the pulse.

Pulsar periods, known from measurements of the pulsating signal, increase extremely slowly.
For the Crab pulsar, the implied loss of rotational energy is ∼ 1038 erg s−1. However, the radio
luminosity in its pulses is ∼ 1030 erg s−1, only a small fraction of this power, implying that
different mechanisms are responsible for the radio emission and the slow-down of a pulsar. The
latter is attributed to the large-amplitude electromagnetic radiation of a rotating – as often
assumed – magnetic dipole. One of the first models of pulsar emission was that of an orthogonal
rotator [76], based on the fact that a magnetic dipole rotating in a vacuum losses its rotational
energy due to magnetic dipole radiation if the rotation and magnetic axes are misaligned. This
radiation is emitted beyond the light cylinder distance rL = c/ω, where the corotation velocity
exceeds the speed of light. Beyond the light cylinder information about a change in the field
configuration arrives with retardation and an electromagnetic wave is emitted to adjust the far-
field region to the changes. However, if the pulsar surroundings were vacuum, a huge electric field
acting on the star surface would be generated in analogy to a unipolar inductor. It was quickly
realized that this field would accelerate particles from the stellar surface and lead to cascade
pair production and, in turn, to a plasma-filled magnetosphere (see Sect. 5.1 for details). Thus,
large-amplitude electromagnetic radiation propagating in a plasma is in fact a wave, a mixture
of fields and particles.

Such a wave can be quantified by its strength parameter. It expresses the ability of a vacuum,
electromagnetic wave to accelerate particles, i.e., it is the Lorentz factor that a particle would
gain if it was accelerated in the wave fields in one wavelength, a = eEλ/mc2. For a general
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1.2. Pulsars

(nonvacuum) wave one can define it in analogy, and express it in terms of the total luminosity
of the source that would be carried by the wave at the light cylinder, a = (e2L/m2c5)1/2 =

3.4 × 1010L
1/2
38 , where L38 is the isotropic source luminosity in units 1038 erg/s (for details see

Sect. 5.2.2). For pulsars this implies a ∼ 1010 at the light cylinder, for blazars a ∼ 1014 at
one gravitational radius of a supermassive black hole of mass 109M⊙. The strength parameter
expresses also the ratio of the particle Larmor frequency to the wave frequency. It is clear that
any outflow originating from such conditions is extremely Poynting-flux dominated, and the
waves that potentially are launched in these environments are very strong. For comparison, the
next generation of laser facilities on the earth will reach a ∼ 102 − 104 [54].

Inside the light cylinder, in the near-zone close to the stellar surface, the field is much stronger.
If during the supernova collapse the angular momentum of a star and the poloidal magnetic flux
are conserved, the resulting neutron star can rotate with frequency 103 Hz and would have a
magnetic field of enormous magnitude, of the order 1012 G near the surface [92]. The fastest,
millisecond pulsars must have slightly weaker fields, up to 109 G (if their fields were stronger, the
spin-down due to dipole radiation would be too rapid). Magnetars, on the other hand, have a field
which can exceed the Schwinger critical magnetic field Bcr = m2c3/e~ = 4.4 × 1013 G. In such
an extreme field, exotic processes become possible: transitions between Landau quantized states
and resonant Compton scattering, magnetic one-photon decay resulting from nonconservation of
perpendicular momentum, spin-dependent phenomena [78]. In the spectra of X-ray and γ-ray
pulsars, direct measurements of cyclotron absorption lines, generated when particles change their
Landau states, confirm the strength of the field to be indeed of the order of a few ×1012 G. For
comparison, the strongest magnetic fields generated in the laboratory reach 45 T (hybrid magnet
in the National High Magnetic Field Laboratory, Florida). Stronger fields for fusion purposes,
were obtained by magnetic-flux compression using laser beams and reached 30-40 MG (Omega
facility) [72]3.

Figure 1.3: Crab pulsar (central point) and
nebula, and darker regions in between. Red:
radio, green: visible, blue: X-ray. Credit:
J. Hester (ASU), CXC, HST, NRAO, NSF,
NASA.

The energy stored in superstrong electromag-
netic fields, when released, can lead to very violent
and complex phenomena, from which many are still
not understood. In recent years a big puzzle related
to the violent release of energy, and conversion of
this energy into radiation, is the γ-ray flaring ob-
served from Crab. The three bright flares above
100 MeV were observed by AGILE and Fermi-LAT
between 2007 and 2010 [1, 194]. During the flare an
unpulsed high-energy flux was enhanced by a factor
of ≈ 10 in ∼12h, but the pulsed emission and pulsar
period were stable. In April 2011 Fermi reported
a fourth flare, where the flux was enhanced by a
factor ∼ 30 [37]. The isotropic luminosity at the
peak was about 1% of the total spin down power
of the pulsar. However, the angular resolution of
current gamma-ray telescopes is not sufficient to
specify the location of the flaring region.

A pulsar itself, in optical and X-rays is a point-
like source, well resolved from the nebular emission,
embedded in a dark region that extends between
the pulsar and the nebula. This dark region is at-

3For research purposes, however, it is expected that in the near future “artificial” fields will be accessible,
strong enough to simulate in laser-irradiated optical lattices some quantum processes unique for the strong-field
regime, such as quantum Hall effect, which may be of importance for quantum computing, e.g., [154].
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1.3. Structure of the thesis

tributed to the relativistically moving, cold pulsar wind. The emission site of the synchrotron
optical and X-rays cannot be determined unambiguously: in some models, photons are produced
in the pulsar’s inner magnetosphere, and an alternative scenario is that the emission originates
from the pulsar wind itself, which – if the wind is ultrarelativistic – would also appear as pulsed
and point-like [100]. Emission from the wind is attributed to the radiation processes in the alter-
nating magnetic field, frozen into, and transported outwards with the plasma. However, since its
density decreases with the distance as the wind propagates, at sufficiently large radius, charge
starvation allows the displacement current to take over, and the propagation of electromagnetic,
relativistically strong waves becomes possible. This is a different scenario than that in blazars.
In general, pulsar winds can be less magnetized than blazar jets, because pulsar cascades are
thought to have higher multiplicities. In this case, before charge-starvation changes the behavior
of the MHD wave, a conversion to the newly allowed electromagnetic modes is possible. Such an
electromagnetic wave can be regarded as a transition layer between the striped, MHD wind and
the surroundings. It arises in a confined flow, whose structure is determined by both inner and
outer boundary conditions. The latter are specified by the properties of the external medium,
which let us think of a conversion process as being a consequence of the boundary conditions,
imposed by the surroundings. Thus, in pulsar environments nonlinear waves can be manifested
as precursors to termination shocks. This possibility of conversion of an MHD wind to an elec-
tromagnetic wave is very attractive, because it may solve one of the puzzles posed by pulsar
winds: it provides a way to transfer an enormous amount of energy stored in the electromagnetic
fields to the particles, a process that cannot be explained within ideal MHD [146, 97, 10].

1.3 Structure of the thesis

The thesis contains three parts:

Part I, which includes this Chapter, is introductory. It continues with Chapter 2, in which
we first discuss nonlinear Thomson scattering of a test particle by a strong electromagnetic
wave. Then we focus on self-consistent, nonlinear waves propagating in cold pair plasmas. Two
modes are of interest: large-amplitude Alfvén wave with subluminal phase velocity β < 1, and
strong electromagnetic waves with superluminal phase speed β > 1, but subluminal group speed
β∗ = 1/β < 1. In the superluminal mode synchro-Compton radiation is emitted by accelerated
particles, and we review the physics of radiation reaction in this case.

Part II is focused on nonlinear waves in Poynting-flux dominated jets, launched from the black
hole magnetospheres.

Chapter 3. We review the electrodynamics of rotating black holes, immersed in an externally sup-
ported magnetic field. We derive equations of particle/cold fluid motion, and Maxwell equations
in a frame of physical, locally nonrotating observers, that have vanishing angular momentum
with respect to a central black hole, but move with respect to the distant stars. We discuss
models of launching, collimation and acceleration of Poynting-flux dominated jets, and recent
observations of very rapid variability of γ-ray TeV flux from some blazars, which are difficult to
accommodate in standard approaches.

Chapter 4. We present our model that can account for the observed fluctuations of blazar VHE
emission. In it, the short-scale modulations are associated with the wavelength of a nonlinear
Alfvén-like mode which propagates in the direction of the jet, and modulates the particle emission
with the frequency of the wave. This chapter is based on work published in the Astrophys. J.
[101].
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1.3. Structure of the thesis

Part III is dedicated to strong waves in magnetized pulsar winds.

Chapter 5. We review the physics of pulsar magnetospheres, from where relativistic winds are
launched, and also the properties and propagation characteristics of these winds. We emphasize
the “σ-problem”, the failure of an ideal MHD wind to transfer Poynting flux into particle energy
flux before reaching the termination shock. A solution for this problem must go beyond the
MHD description and this provides a motivation for the investigation of strong electromagnetic
waves as shock precursors.

Chapter 6. We present our contribution to the modelling of pulsar wind termination shocks. In
particular, we investigate the radial evolution of electromagnetic waves that are launched from
the MHD pulsar wind, and we show that there exists a unique, self-consistent solution that can
be matched to the external pressure. We investigate how this solution is affected by radiation
damping, and we discuss the formation of shocks for both isolated pulsars and those in binary
systems.
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Chapter 2

Beyond MHD: nonlinear waves in

plasmas

In black hole and pulsar environments electromagnetic waves can propagate with large ampli-
tudes. To understand the underlying physics and the behavior of plasma constituents when the
strong fields are applied, we start from a test particle approach in Sect. 2.1, where we describe
particle trajectories in a vacuum strong wave. Further we consider an exact, self-consistent solu-
tion of the nonlinear plasma-wave system. A general, two-fluid description of a plasma coupled
to the electromagnetic fields via Maxwell’s equations, is shown in Sect. 2.2, where we also discuss
some special solutions of these equations: the subluminal mode that describes a magnetic shear,
and the superluminal mode that resembles more an electromagnetic wave. We also make a few
remarks on the linearized theory, to explain better how the superluminal phase velocity arises
in a plasma medium, and how it is related to the subluminal group velocity of the wave. At the
end, Sect. 2.3, we summarize radiation processes that are of relevance for superluminal, strong
modes.

In our convention, throughout the thesis, the metric has a signature +2.

2.1 Motion of a particle in an electromagnetic wave

In the nonrelativistic physics interaction of a particle with an incident electromagnetic wave
is treated within the framework of Thomson scattering. However, when the wave is strong, it
imparts relativistic velocity on the particle, so that in every frame the particle becomes relativistic
at some point of its periodic trajectory, leading to the nonlinear regime of the scattering. We
discuss this regime in the following section.

Equations of motion

The equations of motion of a particle with charge e, mass m, momentum p = mc(γ, ui) and
4-velocity u = γ(1,v/c), in an external electromagnetic field Fµν are given by

dpα

dτ
= eFαβuβ (2.1)

or equivalently

mc
dγ

dτ
= eu ·E , (2.2)

mc
du

dτ
= e (γE + u×B) (2.3)

where γdτ = dt. In the nonrelativistic limit v ≪ c the contribution from the magnetic part of the
force is much smaller than that from the electric force. As we want to investigate the interaction
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2.1. Motion of a particle in an electromagnetic wave

of particles with strong waves, which are able to accelerate them to relativistic velocities, we
consider the full dynamics, following Gunn & Ostriker [77]. Consider a monochromatic plane
wave moving in an arbitrary direction k̂, |k̂| = 1. Without loss of generality we can choose this
direction to be x. The electric and magnetic fields have equal magnitude, they are mutually
orthogonal, and they oscillate in the plane perpendicular to the direction of motion B = k̂×E.
Hence

u×B = u×
(

k̂ ×E
)

= (u ·E) k̂ − (u · k̂)E (2.4)

and the parallel component of (2.3) immediately gives

mc
dux
dτ

= eu ·E (2.5)

From (2.2) and (2.5)
d

dτ
(γ − ux) = 0 ⇒ γ − ux = α (2.6)

where α denotes a constant of motion. From (2.3) and (2.4) we also get

1

αω

du⊥

dτ
=

eE

mcω
(2.7)

Since for a moving plane wave all the quantities are functions of only one variable φ = xµk
µ =

ωt− kx = ω(t− x/c), we can express the time and space derivatives in terms of it

∂

∂t
= ω

d

dφ
,

∂

∂x
= −k d

dφ
= −ω

c

d

dφ
, γ

d

dt
= ω (γ − ux)

d

dφ
= ωα

d

dφ
(2.8)

Then

u⊥ = u⊥0 +

∫ φ

0
dφ′

eE(φ′)

mcω
(2.9)

Linear polarization

Assume that the particle is initially at rest. In the special case of a linear polarization we
can choose

E = E0 cosφ ŷ (2.10)

From (2.9)
uy = a sinφ (2.11)

uz = 0 (2.12)

and the equations for the parallel component of velocity and the Lorentz factor give

dux
dφ

=
dγ

dφ
=
a2

α
sinφ cosφ (2.13)

The solution is straightforward and given by

ux =
a2

2
sin2 φ (2.14)

γ = 1 +
a2

2
sin2 φ (2.15)

Here we also introduced the wave strength parameter

a =
eE0

mcω
(2.16)
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2.2. Large-amplitude waves in cold pair plasmas

In the nonrelativistic limit a ≪ 1 the motion in x direction is negligible, given by the second
order expression in a small parameter a. The charge oscillates in the plane perpendicular to the
direction of wave motion. The oscillation velocity is nonrelativistic, hence the magnetic force on
the charge is negligible. The situation changes dramatically when a ≫ 1. The particle achieves
relativistic perpendicular velocity in half the wave period and the magnetic force influences the
motion. It bends the particle trajectory in the direction of the wave propagation, resulting in a
non-planar motion. It can be decomposed into the “figure-eight” motion and a uniform translation
in the x-direction. The solution in the “guiding center” frame, in which the phase-averaged
parallel velocity of the particle vanishes, is found from (2.13) with the condition 〈ux〉 = 0, which
determines the constant of integration. This gives

uy = a sinφ (2.17)

ux = − a2

4
√

1 + 1
2a

2
cos 2φ (2.18)

〈γ〉 =
√

1 +
a2

2
(2.19)

Circular polarization

When the wave is circularly polarized

E = E0 sinφ ŷ + E0 cosφ ẑ (2.20)

and u·E = 0. In the guiding center frame the condition 〈ux〉 = 0 implies ux = 0 and γ =
√
1 + a2.

Since the amplitude of the parallel motion vanishes, the particle moves entirely in the plane
perpendicular to the direction of the wave propagation. The trajectory is a circular helix, as in
the case of a uniform magnetic field.

2.2 Large-amplitude waves in cold pair plasmas

The electromagnetic structure of a wave propagating in a vacuum is supported by displace-
ment currents; in a plasma, also the conduction current contributes. The simplest model that
captures the physics connected with the finite inertia of the charge-carriers is that of two cold,
oppositely charged fluids – in particular, here these are the electron and the positron ones, de-
noted by suffices “−” and “+”. The method of solving self-consistently two-fluid and Maxwell’s
equations in the case of large wave amplitudes was introduced by Akhiezer & Polovin [4], and
used by Max & Perkins [140], Max [142], Clemmow [42], Kennel & Pellat [93].

Since the fluids are cold, their equations of motion are the same as the 1-particle Eq. 2.1,
but 4-velocity is now that of the fluid.

Here we change the notation: for waves in a plasma pα formally will denote the 4-velocity of
the fluid (i.e., the momentum normalized to mc). The fluid equations of motion take the form

mc
dγ

dτ
= ep ·E (2.21)

mc
dp

dτ
= e (γE + p×B) (2.22)

They are complemented by the continuity equation for each fluid

∂

∂t
ρ+∇ · j = 0 (2.23)
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2.2. Large-amplitude waves in cold pair plasmas

The Maxwell equations govern the propagation of light waves in a medium

∇ ·E = 4πρ (2.24)

∇ ·B = 0 (2.25)

∇×E = −1

c

∂B

∂t
(2.26)

∇×B =
4π

c
j +

1

c

∂E

∂t
(2.27)

where here
ρ = e(n+γ+ − n−γ−) (2.28)

j = ec(n+p+ − n−p−) (2.29)

As in the previous section, we consider a plane wave moving in the x direction with phase velocity
v = cβ. Changing the time and space variables to the phase φ, which now is

φ = ω

(

t− x

cβ

)

, (2.30)

we can express their derivatives by

∂

∂t
= ω

d

dφ

∂

∂x
= − ω

cβ

d

dφ
γ
d

dt
= ω

(

γ − px
β

)

d

dφ
= ω∆

d

dφ
(2.31)

Here we introduced
∆ = γ − px/β (2.32)

When ∆ = 0 the particles move with the wave phase speed in the direction of propagation. This
case is possible only for the subluminal mode. The equations of motion are

∆
dγ

dφ
= p · ν (2.33)

∆
dp

dφ
= γν + (p×Ω) (2.34)

where ν = eE/mcω is a normalized electric field, and Ω = eB/mcω is a normalized magnetic
field. From the continuity equation for each fluid one gets

d

dφ
(n∆) = 0 (2.35)

and from (2.25) and the x component of (2.26)

d

dφ
Ωx = 0 (2.36)

Expressing transverse fields as E = Ey + iEz, B = By + iBy, and transverse velocity as p⊥ =
py + ipz, one obtains Faraday’s law in a form

d

dφ

(

Ω− i
ν

β

)

= 0 (2.37)

and Ampère’s law
d

dφ

(

ν + i
Ω

β

)

+
ω2
p

ω2
p⊥ = 0 (2.38)
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2.2. Large-amplitude waves in cold pair plasmas

where we used j = 2encp. In a cold pair plasma neutrality ρ = 0 implies n+γ+ = n−γ−. The
waves are purely transverse, since (2.24) implies vanishing of the longitudinal component of an
electric field νx = 0, and therefore, vanishing of the longitudinal current jx = 0. From (2.28)
being 0, and from (2.29), one gets p⊥+ = −p⊥−, or py+ = py− and pz+ = −pz− (or the other
way round). Since both particle species have the same dynamics, the equations can be solved for
only one of them, say the positron fluid, and a solution for electrons can be obtained by analogy.

In our notation equations of motion take a form

∆
dγ

dφ
= Re (p⊥ν

∗) (2.39)

∆
dp‖

dφ
= −Im (p⊥Ω

∗) (2.40)

∆
dp⊥
dφ

= −i∆Ωβ − iΩxp⊥ (2.41)

2.2.1 Special frames

The Lorentz transformation of variables t and x from the laboratory frame to that moving
with 4-velocity U , parallel to the wave velocity, leads to the transformed phase variable [42, 93]

φ = ω

[

t′
(

Γ− c
U

β

)

+
x′

c

(

U − Γ

β

)]

(2.42)

Faraday’s law (2.37) takes a form [93]

d

dφ

[

Ω′

(

Γ− U

β

)

+ iν ′
(

U − Γ

β

)]

= 0 (2.43)

When phase velocity β is subluminal, one can choose U = Γβ. In a frame moving with this
speed, the phase variable is purely spatial, and (2.43) implies that the electric field in this frame
is constant.

When phase speed β is superluminal, a convenient choice is U = Γ/β, which defines the
frame moving with the speed c/β = cβ∗. The phase φ becomes just a time variable and all
the spatial dependence vanishes. (2.43) implies that the magnetic field in the special frame is
constant. To keep the analysis tractable analytically, we choose this constants to be 0, i.e., there
is no phase-averaged magnetic field in the special frame of the superluminal mode. In pulsars
it is justified in the equatorial plane of a rotating neutron star, where the alternating magnetic
field in a striped wind changes polarity every half a wavelength – thus, over one phase period,
it averages to 0. For higher latitudes, the averaged field does not vanish and a more general,
numerical treatment is needed.

2.2.2 Subluminal mode: magnetic shear

Let us outline here the solution discussed by Clemmow [42]. (2.36) implies that Ωx = const.
Clemmow derives a general solution for Ωx = Ω0, and in this case the nontrivial solutions have
∆ 6= 0. In both pulsar and black hole cases, the radial magnetic field drops as r−2 with the
distance, hence far from the object Ω0 → 0, and a solution has ∆ = 0. This condition implies
that the particles move in resonance with the wave, i.e., p‖ = γβ. In a frame moving with this
speed Faraday’s law (2.43) implies that the electric field is constant and special solution can be
found with this constant being 0 (this corresponds to the vanishing phase average of the field).
In this case equations of motion imply that the particle energy is constant and thus also p‖ is
constant. The continuity equation (2.35) is trivially satisfied for any dependence of n on φ, but
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2.2. Large-amplitude waves in cold pair plasmas

further we take the simplest solution with the proper density independent of the phase n = const.
Substitution of p⊥ from Ampère’s law

dΩ

dφ
= iβγ2w

ω2
p

ω2
p⊥ (2.44)

to (2.40) implies that the magnetic field has constant magnitude

0 = Im (p⊥Ω
∗) = −ω

2

ω2
p

1

βγ2w

(

dΩ

dφ
Ω∗

)

= −ω
2

ω2
p

1

βγ2w

1

2

d|Ω|2
dφ

(2.45)

Taking into account 2π-periodicity of the solution, one obtains the simplest monochromatic wave
that describes a magnetic shear

Ω = Ω0e
iφ, p⊥ =

Ω

βγ2w

ω2

ω2
p

(2.46)

In the frame moving with β, the wave speed is 0, so is the wave frequency. At each point
the conduction currents are parallel to the magnetic field, which is static in that frame and its
direction rotates through a full angle in one wavelength. The rate at which the vector rotates is
arbitrary, in general it is determined by the dependence of the proper density n on the phase.

2.2.3 Superluminal mode: linearized theory

Before considering a fully nonlinear, superluminal mode, let us first remark on a small-
amplitude, plane wave, propagating in an unmagnetized plasma Bx = 0. In addition, we require
that the phase-averaged transverse components vanish 〈By〉 = 0 = 〈Bz〉 such that Ωz − νy/β =
0 = Ωy + νz/β. By calculating a partial time derivative of Ampère’s law, and using ∂B/∂t from
Faraday’s law, together with ∇× (∇×E) = ∇(∇ ·E)−∇2E, one arrives at the wave equation
for the transverse electric field

c2∇2E − ∂2tE − 4π∂t j = 0 (2.47)

Let us substitute the usual ansatz E = E0e
i(ωt−kx) = E0e

iφ, where k = ω/cβ. Such a wave
is described as a small perturbation of the medium density δn, and a small perturbation of the
medium velocity u. To the first order in small quantities, one arrives at

∂t j = ∂t(2necu) = 2
ne2

m
E (2.48)

We also change the derivatives according to (2.8), and finally
(

−c2k2 + ω2 − ω2
p

)

E = 0 (2.49)

where we defined the proper plasma frequency in a pair plasma

ω2
p =

8πne2

m
(2.50)

Nontrivial solutions of (2.49) can be found if

ω2 = c2k2 + ω2
p (2.51)

This condition defines the dispersion relation for an electromagnetic wave in an unmagnetized
plasma. Phase velocity then is given by

vph =
ω

k
=

c
√

1− ω2
p

ω2

> c (2.52)
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2.2. Large-amplitude waves in cold pair plasmas

and is greater than c, since ω > ωp, as seen from (2.51). The energy is carried with the group
velocity of the wave, which is subluminal as required

vg =
dω

dk
= c

√

1−
ω2
p

ω2
< c (2.53)

Note that

β =
vph
c

=
c

vg
≡ 1

β∗
(2.54)

hence the dispersion relation (2.51) can be written equivalently as

1

γ2∗
=
ω2
p

ω2
(2.55)

An electromagnetic wave in a plasma propagates only if its frequency ω is above the plasma
frequency ωp. Since the latter defines the characteristic response time for the electrons, the
wave electric field that oscillates more slowly, is shielded out. It follows that the condition
ω = ωp defines the maximum plasma density that can support a given electromagnetic wave.
In the nonrelativistic regime γ ≈ 1, hence the proper plasma frequency given by (2.50) and the
laboratory one ωlab

p = 8πe2N/m are almost equal.
This condition is relaxed for nonlinear large-amplitude waves, which are able to accelerate

electrons to ultrarelativistic Lorentz factors of the order of the wave strength parameter a. In
comparison to the nonrelativistic case the laboratory plasma density N = γn is now increased
by the factor of γ =

√
1 + a2 ≈ a, which follows from Eq. (2.1). The electron response time

defined by t ∼ 1/ωlab
p is now increased and waves with lower frequencies can propagate. Under

these circumstances, the condition for propagation of strong waves in plasmas is less stringent
than the one applicable to the linear electromagnetic waves, and it reads

ωlab &
ωlab
p√
a

(2.56)

2.2.4 Superluminal nonlinear waves

Here we investigate the more general solution that describes the electromagnetic waves prop-
agating with large amplitudes. In this case a perturbation analysis is not applicable, and fully
nonlinear equations have to be solved exactly. Since they simplify in the special frame, we per-
form the appropriate Lorentz transformation, and search for the solutions in that frame. This
approach reveals the specialty of a self-consistent solution: in the frame, in which a superluminal
wave has zero group velocity, the displacement current is exactly balanced by the conduction
current. Here we review this method for both circular and linear wave polarizations.

For large-amplitude superluminal waves we change the notation, denoting now by p not a
momentum, but a 4-velocity of a fluid.

Independently of the wave polarization, (2.35) and (2.34) can be integrated immediately.
Since in the special frame ∆ = γ, the continuity equation gives

nγ = const ≡ n0γ0 (2.57)

Also, in this frame the magnetic field vanishes and, as we treat only the transverse waves ν‖ = 0,
the equation of motion for the parallel momentum reads

p‖ = const ≡ p‖0 (2.58)
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2.2. Large-amplitude waves in cold pair plasmas

Circular polarization

The simplest solution is that with the constant density

n = n0 (2.59)

which implies that also the particle Lorentz factor is constant

γ = γ0 (2.60)

Together with (2.33), this implies that the transverse particle momentum is everywhere per-
pendicular to the electric field. Since γ2 = 1 + p2‖ + p2⊥, also p2⊥ = const and we can choose a
monochromatic solution

p⊥ = p⊥0e
iA1φ (2.61)

We require it to be 2π−periodic in φ, which constrains the integration constant

A1 = 1 (2.62)

Substituting this solution into Ampère’s law, and into the equation of motion for the transverse
momentum (2.34), we get

ω = ωp (2.63)

i.e., in the special frame the wave frequency coincides with the plasma frequency – in analogy to
the linear theory. Moreover,

E = i
mcω

e
p⊥ (2.64)

and hence

|p⊥| =
e|E|
mcω

≡ a (2.65)

Linear polarization

When a wave is linearly polarised, the proper density and the particle Lorentz factor are
both phase dependent. Combining (2.33) with (2.38) and (2.37), we get

γ0
dγ

dφ
= −ω

2

ω2
p

ν
dν

dφ
(2.66)

We see that it is convenient to express the phase dependence in terms of a new variable y = E/E0,
where E0 is the maximal electric field, for which we choose the phase to be 1. Then it takes a
form

mc2n0γ0
dγ

dy
= −E

2
0

8π
y (2.67)

Choosing also γ = γ0 for the phase y = 1 we get

γ = γ0 +
E2

0

16πmc2n0γ0
(1− y2)

= γ0 +
2γ0
q

(

1− y2
)

(2.68)

where, following [93], we defined the nonlinearity parameter

q =
32πmc2n0γ

2
0

E2
0

=
4γ20
a2

n0
ñ

(2.69)
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and

ñ =
mω2

8πe2
(2.70)

Since the electrons and positrons have the same p‖0 and γ0, we must choose p⊥0 = 0 at the phase
y = 1 in order to fulfill p⊥+ = −p⊥−. Hence

γ0 =
√

1 + p2‖0 (2.71)

and

p⊥ =
2γ0
q

√

(1− y2)(1− y2 + q) (2.72)

From Ampère’s law
dy

dφ
= −8πnecp⊥

ωE0
(2.73)

(

ñ

n0

a

γ0

dy

dφ

)2

=
p2⊥
γ2

=
(1− y2)(1− y2 + q)

(1− y2 + q
2)

2
(2.74)

the dispersion relation takes a form

1 =
2

π

∫ 1

0

dy

|dy/dφ|

=
2

π

ñ

n0

a

γ0
F1(q),

(2.75)

where we defined

F1(q) =

∫ 1

0
dy

(1− y2 + q
2)

√

(1− y2)(1− y2 + q)
(2.76)

This also defines the procedure of averaging over the phase – for a quantity X it is given by

〈X〉 = 1

F1(q)

∫ 1

0
dy

X(y)(1− y2 + q
2)

√

(1− y2)(1− y2 + q)
(2.77)

After averaging over the phase, only two independent variables are left in the special frame. We
choose them to be q and p‖0. The third one is β∗, which defines the Lorentz transformation from
the special to the lab frame. Using (2.69) and (2.75) we express the other quantities in terms of
these:

n0
ñ

=
16

π2
F 2
1 (q)

q
(2.78)

a =
8γ0
π

F1(q)

q
(2.79)

where γ0 is given by (2.71).
Note that linearly polarized strong waves are not monochromatic. The waveform is a saw-

tooth, since the electric field changes approximately linearly with the phase. The Lorentz factor
of the particles has an approximately parabolic dependence on the phase, while the wave velocity
is phase-independent by definition. All these suggest that the solution is obtained by a precise
phasing between the particles and the fields. It is interesting is to see how this equilibrium
behaves when it is perturbed.
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2.3. Radiation processes

2.3 Radiation processes

Perturbations in the system may appear due to interactions of particles with photons, which
may come from external sources or be emitted by the accelerated particles themselves. In the first
case, the photons will be upscattered by the relativistic particles in the external inverse Compton
(EC) process. In the second case, we talk about the nonlinear inverse Compton (NIC) mechanism,
since the particle motion is described by the nonlinear equations [77, 173, 15]. Resulting spectrum
is neither inverse-Compton, nor standard synchrotron, but, depending on the strength parameter
of the wave, it may resemble one or the other. If an incident wave is weak a≪ 1 and a particle
initially is at rest, it undergoes only small amplitude oscillations, emitting the scattered radiation
in the Thomson regime. If initially a particle moves relativistically, the interaction with the
incident wave is the inverse Compton scattering. When, on the other hand, the wave is strong
a ≫ 1, it imparts relativistic speeds to a particle such that in any chosen frame the particle
becomes relativistic in one wave period, and the particle emission is always in this sense “inverse
Compton”. However, despite the fact that the particle trajectory in the wave fields is very
different from that of a particle in a static electromagnetic field, radiation emitted by a particle
is synchrotron-like. As explained by Rees [173], the reason is that during the fast emission process
a relativistically oscillating charge indeed sees the wave field as quasi-static. Therefore, the NIC
process is also called “synchro-Compton”. In this work we focus on strong waves, and relevant
analysis of radiation reaction is discussed in more details.

Let us mention briefly that perturbations in the system can also arise as geometrical effects
in the radial propagation. Waves emitted by a pulsar are spherical, but in a short wavelength
approximation ǫ ∼ (c/ω)/r ≪ 1 (r is a radius at which the wave is investigated) plane wave
approximation is also valid, at least in the lowest order in ǫ. At large wave amplitudes one
expects a wavefront to be perturbed by the spherical first-order terms, leading to a slow radial
evolution of all the wave quantities. This is the subject discussed in Chapters 4 and 6.

2.3.1 Radiation reaction

In this section we consider the case of a particle interacting with the radiation it emits. The
photons exert a recoil force, which makes the particle brake. This effect of radiative dragging is
described by an additional force term gα in the equations of motion

m
duα

dτ
= eFαβuβ + gα (2.80)

where

gα =
2e2

3c2

(

d2uα

dτ2
+ uαuβ

d2uβ
dτ2

)

(2.81)

As already remarked, in the case of a cold fluid, the equation of motion of the fluid is the same
as the one-particle Eq. 2.80, but uα is change for pα – the 4-velocity of the fluid. The fact that
the radiation reaction force (2.81) satisfies the condition pµgµ = 0 means that there is no heating
due to the dragging force, and the cold fluid approach is consistent.
In the Landau-Lifshitz (L-L) [115] approximation the second derivative of 4-velocity is expressed
by the equations of motion (2.1) without the radiation reaction force

d2uα

dτ2
=

e

mc

d

dτ

(

Fαβuβ

)

=
e

m

∂Fαβ

∂xσ
uσuβ +

e2

m2c2
FαβFβσu

σ (2.82)

This leads to

gα =
2e3

3mc2
∂Fαβ

∂xσ
uσuβ +

2e4

3m2c4
FαβFβσu

σ − 2e4

3m2c4
uαF βσuσFβλu

λ (2.83)
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2.3. Radiation processes

When the motion is ultrarelativistic u ≫ 1 the last term is dominant, because it contains the
highest power of the 4-velocity. In this approximation

gα = − 2e4

3m2c4
uαF βσuσFβλu

λ

= − 2e4

3m2c4
uα
[

−(u ·E)2 + (γE + u×B)2
]

(2.84)

The Classical description of radiation damping in L-L approximation is appropriate only if any
inhomogeneities of an electromagnetic field are large compared to the classical electron radius
r0 = e2/(mc2). Also, in the particle rest frame, the fields must be small in comparison to
the critical field of classical electrodynamics Ecr = m2c4/e3, which would be able to accelerate a
particle from rest to the relativistic energymc2 over the distance of the classical electron radius r0.
However, quantum effects become important for already weaker fields, of the order of the critical
(Schwinger) field of QED ES = m2c3/(e~) = αfEcr. This field is able to accelerate an electron
from rest to the energy mc2 over one Compton wavelength λ̄c = ~/mc = r0/αf . Such energy
would be sufficient to rip virtual e+e− pairs out of a vacuum, leading to its breakdown much
before the classical limit of validity of the L-L approximation is approached. The importance of
the quantum effects is quantified by a Lorentz-invariant parameter η, small in the classical limit

η =
1

ES

√

(uµFµν)
2 ≪ 1 (2.85)

When η ≥ 1 the probability of pair production in trident process1 is significant. For an ultrarel-
ativistic particle this situation may arise even if E ≪ ES.

One may note that the ratio of the radiation reaction force to the external electromagnetic
force is of the order e3/(m2c4)γ2|F | = αfηγ, hence for an ultrarelativistic particle might be
large even though (2.85) holds; in this case radiation reaction is a dominant force acting on the
particle.

Let us now apply this analysis to the system we consider, in particular to a circularly polarized
self-consistent wave (here, again, pα is the fluid 4-velocity). As discussed, for a plasma oscillating
in the fields of this wave, p · E = 0. Simplification also comes from (2.37), for which we have
already chosen the averaged magnetic field to vanish, implying Ωz = νyβ∗, Ωy = −νzβ∗; hence

η =
e~

m2c3
∆|E| (2.86)

gα = −2

3

m2c3

~
αfη

2pα (2.87)

where we used the definition of ∆ (2.32).
There is an important point to mention. In a self-consistent unperturbed solution p⊥ is

always perpendicular to the electric field E. Radiation reaction perturbs this equilibrium, making
the momentum lag behind the field, which in turn generates a velocity component along the field
and thus a particle accelerates. As p⊥ is also not parallel to the magnetic field B any more, a
Lorentz force is induced in the direction of the wave motion. As the wave loses the energy for
acceleration of the particles, it slows down. Particle motion is determined by interplay between
the damping and acceleration forces. Similar situation arises for particles in vacuum strong waves
[77].

2.3.2 Inverse Compton scattering on an external photon field

As discussed above, a radiating particle feels a dragging force gα from the emitted photons,
which is given by (2.81). However, when a particle does not radiate itself, but is embedded in

1Direct pair production via a virtual photon by an electron or positron in a strong field.
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2.3. Radiation processes

an external (uncorrelated) photon field, a statistical treatment is useful. We assume that the
radiation field can be described by the energy-momentum tensor Tµν , following next description
of the inverse Compton scattering given by Landau & Lifshitz [115] and Phinney [166], and
discussed by Padmanabhan [160].

In the electron rest frame the drag force should have a form σT T̄
i
0, where T̄ i0 is the momentum

flux of the radiation in the particle rest frame. In an invariant way this force would be given by
σTT

µ
νpν . Since any force gµ must satisfy the condition pµg

µ = 0 (as there is no heating due to
the force) the final expression is

gα = σT

(

Tαβp
β + pαTµνp

µpν
)

(2.88)

When the gradient terms are unimportant, (2.88) reproduces the radiation reaction force in
the L-L approximation (2.81). In this case the electromagnetic stress-energy tensor

Tµν =
1

4π

(

FµαF να − 1

4
gµνFαβF

αβ

)

(2.89)

is substituted. Moreover, also a formula for the energy emitted in the synchrotron radiation can
be obtained for a particle moving in a uniform magnetic field [160], for which

Tµν =
B2

8π
diag(1,−1,−1, 1) (2.90)

In this case

g0 = σT
B2

8π
γ
[

1− γ2
(

1 + β2 − 2β2z
)]

= σT
B2

8π
γ
(

−2β2γ2 sin2 α
)

(2.91)

where β = v/c is the particle normalized velocity, α is the pitch angle.
For isotropic, external photon field

Tµν = Urad diag

(

1,−1

3
,−1

3
,−1

3

)

(2.92)

one gets the radiation drag force

gα = −4

3
σTUrad γ

2

(

γ2 − 1

γ
, p‖, p⊥

)

(2.93)

In Sect. 6.3 we discuss the EC scattering as a damping mechanism of a strong wave, launched
from a pulsar wind. This may be of relevance in binary systems, where the energy density of
the photons from the companion star can be very high. The EC process, together with the NIC,
may be responsible for the formation of the shock between the pulsar and the stellar winds.
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Chapter 3

Rotating black holes and jet launching

Both stellar mass black holes and those which are thought to reside in the centers of galaxies,
in a generic case are rotating. The former – because a dying star has typically nonvanishing
angular momentum, conserved during the collapse. On the other hand, the spin evolution history
of the supermassive holes is richer, as both accretion events and merger encounters can lead to
their spinning up or spinning down. Black hole rotation can provide an energy source, which
potentially can be exploited in the astrophysically relevant scenarios. As noted by Blandford &
Znajek (BZ) [32], braking of the spinning, supermassive black holes by electromagnetic torques,
would be able to account for the power of large-scale jets from AGNs. They formulated a theory
of the jet launching mechanism, in which the energy transport is mediated by the magnetic field
that threads the black hole event horizon. This field is external in origin, possibly dragged into
the black hole neighborhood by infalling matter from an accretion disk. Nowadays this is the
ergosphere (or rather its “effective” counterpart), not the event horizon, that is thought to play a
major role in the energy extraction. A curved spacetime is compared to an electromagnetically
active medium, which induces an electric field, driving outwards the current that constitutes the
jet outflow.

First, in Sect. 3.1 we summarize briefly the geometry around a rotating black hole, described
by the Kerr metric, §3.1.1, and further, in §3.1.2, the formulation of physical laws in the frame
of locally nonrotating observers. The mechanical (Penrose) process of the extraction of the black
hole rotational energy is described in §3.1.3. However, this picture changes dramatically, when
a black hole is immersed in a magnetic field, and new processes become of interest. First in
Sect. 3.2 we describe the vacuum magnetosphere, given by Wald’s solution. Charge-depleted
regions, if maintained in some limited space around black holes, would contain the fields that
could be efficient accelerators for any stray particle from t accretion disk. The astrophysics of
these processes we describe in Sect. 3.3. Given that the particle acceleration can lead to avalanche
pair production, Blandford & Znajek envisaged the formation of a force-free magnetosphere, in
analogy with pulsars. The BZ process, in its original version, is described in §3.4, and its recently
formulated interpretation in §3.4.2 and §3.4.3. This section is closed by the discussion of the
expected efficiency of this process §3.4.4. In Sect. 3.5 we briefly discuss the relevance of accretion
disks in the context of the launching of jets, and proposed mechanisms of their collimation
and acceleration, §3.5.3. The last subsection §3.5.4 summarizes some recent observations of
the extremely rapid TeV variability in blazars, and the proposed models that could potentially
explain it.

Here we use geometrized units c = G = 1.
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3.1. Kerr black holes

3.1 Kerr black holes

3.1.1 The metric

The spacetime around a rotating black hole is given by the Kerr solution of Einstein’s equa-
tions [94]. In Boyer-Lindquist coordinates (t, r, θ, φ), in which cartesian ones are given by

x =
√

r2 + a2 sin θ cosφ

y =
√

r2 + a2 sin θ sinφ

z = r cos θ, (3.1)

the metric components are expressed by, e.g. [204],

gtt = −
(

1− 2Mr

Σ

)

, gtφ = −2Mar sin2 θ

Σ
, gφφ =

B̃

Σ
sin2 θ, grr =

Σ

∆
, gθθ = Σ (3.2)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr, B̃ = (r2 + a2)2 −∆a2 sin2 θ (3.3)

Here a = J/M is the Kerr parameter, J is the angular momentum of a black hole. This metric
has several characteristic radii:

counterrotating 

photon sphere
corotating 

photon sphere

ergosphere

outer horizon

inner 

horizon

singularity

Figure 3.1: Kerr spacetime.

(1) photon spheres (co- and counterrotating) – sur-
faces defined by unstable orbits of the photons that cir-
culate around a black hole,

(2) innermost stable circular orbit (ISCO) – defined
by a radius of marginal stability, inside which no stable
rotation of test particles around a black hole is possible,

(3) ergosphere/static limit (see below): re = M +√
M2 − a2 cos2 θ; the name comes from the fact that the

energy of a rotating black hole can be extracted mechan-
ically in the region (ergoregion) inside this surface (see
§3.1.3),

(4) event horizons: r± = M ±
√
M2 − a2; r+/r−

is the outer/inner horizon; it is a surface, where the
redshift factor vanishes, grr = 0; the existence of the
horizons requires |a| ≤M , i.e., a black hole is maximally
rotating when a = ±M (extreme black hole)1,

(5) ring singularity: given by r = 0, θ = π/2; since in Kerr geometry r defines a disk, not a
point in space, the singularity is a ring, located in the equatorial plane.

This stationary, axisymmetric spacetime has a timelike ηµ = ∂t and an axial ψµ = ∂φ Killing
vector.2 Since any timelike vector, when normalized, can be interpreted as a 4-velocity nµ of some
test observer, the timelike Killing vector defines the static observers. Their existence, in turn,
defines the static limit, a surface, where the timelike Killing vector becomes null, i.e., gtt = 0.
Inside this surface all the observers have to rotate with a black hole. A stationary observer has
a world line of constant (r, θ) with angular velocity given by

Ω =
dφ

dt
=
dφ/dτ

dt/dτ
=
uφ

ut
(3.5)

1In the presence of an accretion disk, photon capture limits this maximal value to 0.998 [196].
2Killing vector ξµ is a generator of spacetime isometry, i.e., the Lie derivative of a metric tensor in the direction

of this vector vanishes, which leads to the Killing equation

0 = Lξgµν = ξα∇αgµν + gµα∇νξ
α + gαν∇νξ

α = ∇νξµ +∇µξν (3.4)
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3.1. Kerr black holes

Of particular interest are zero angular momentum observers (ZAMO), for whom L = −ψµuµ =
−uφ = 0, i.e., they have no angular momentum with respect to the black hole. Their angular
velocity, relative to the distant stars, is given by

Ωzamo =
uφ

ut

∣

∣

∣

∣

zamo

=
gtφ

gtt
(3.6)

Writing χ = η +Ωψ, we get ZAMO’s 4-velocity

nµ =
χµ

(−χ · χ)1/2 = e−Φχµ, Φ =
1

2
ln (−χ · χ) (3.7)

ZAMO is locally nonrotating, but they are not inertial. The acceleration of their worldline3, e.g.,
[161]

aµ = nν∇νnµ = e−Φχν∇ν

(

e−Φχµ
)

= e−2Φ

[

−1

2
∇µ (χ

νχν) +
χνχµχ

σ

−χ · χ ∇νχσ

]

= ∇µΦ (3.8)

where we used the fact that the second term in the bracket is 0, since an antisymmetric derivative
of the Killing field is contracted with the symmetric Killing field.

3.1.2 Spacetime splitting and physics in ZAMO’s frame

Splitting of a metric into the spacelike and timelike components allows one to investigate
physics in the special frames of test observers. One can measure time at a fixed point of space
(i.e., the local time direction is fundamental) or one can look at space at a fixed moment (i.e.,
the space is fundamental). Thus, there are two different categories of spacetime splittings (for
detailed discussion see, e.g., [87, 26, 27] and references therein). The first approach has a unit
timelike vector tangent to the “threading” congruence, and this defines the spatial hypersurfaces,
to which this vector is normal. In the second approach a unit timelike vector is defined as
normal to the chosen space “slices”. In the case of Kerr metric, the first approach is characterized
by congruences of Killing observers, whereas the second approach defines the frames of locally
nonrotating observers. Since they have nonvanishing acceleration, inertial forces enter into their
description of physics.

Abramowicz et al. [2] argued that such inertial forces can be interpreted as a result of the
deviation of motion from the uniform motion along the trajectories of light, which define dynam-
ically “straight lines” in spacetime. In particular, this formulation gives a physical interpretation
of many general relativistic effects that are not explained easily by other approaches. They dis-
cuss a static Schwarzschild spacetime, which has some special properties at the radius r = 3M :
(1) photons have there a circular orbit, (2) all the massive particles need the same thrust, regard-
less of their orbital speed, to move on this trajectory, (3) gyroscopes carried along this trajectory
do not precess with respect to the direction of motion, (4) there is no radiation damping acting
on the charges, moving along this trajectory. They interpret it as the consequence of the fact
that along this trajectory particles move along “straight lines” of the geometry. Thus, they do
not experience centrifugal forces but only speed-independent gravity, the same as in the case of
straight-line motion in Minkowski spacetime.

In the studies of Kerr black holes, of particular interest is the formulation of physics in the
frame of locally nonrotating observers. Historically, however, first was the “threading” approach
formulated by Landau & Lifshitz [115]. Here we discuss briefly both these approaches, “threading”
and “slicing”, particularly focusing on the latter.

3The integral curve of a timelike vector is a worldline/congruence.
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1+3 “threading”

As discussed by Landau & Lifshitz (L-L) [115] a metric of the form

ds2 = gttdt
2 + 2gtidx

tdxi + gijdx
idxj (3.9)

can be written as

ds2 = gtt

(

dt+
gtφ
gtt
dφ

)2

+

(

gφφ −
g2tφ
gtt

)

dφ2 + grrdr
2 + gθθdθ

2

= −h2(dt− gidx
i)2 + γabdx

adxb (3.10)

where
ga = −gta

gtt
, h2 = −gtt (3.11)

and γab parameterizes the spatial metric. One can choose new coordinates as

x̃i = xi, t̃ = t− gix
i, (3.12)

and new basis vectors

X̃i = ∂i + gi∂t, X̃ · X̃ = γxx, T̃ = ∂t, T̃ · T̃ = −h2 (3.13)

These coordinates are comoving with the observer, whose 4-velocity is uµ = h−1δµ0. From
(3.13) one can see that the observer worldline coincides with the coordinate time line, and the
lapse function h relates the coordinate time to the observer proper time. Thus, the threading
congruences that define the spatial hypersurfaces, serve both as the observer congruences, as well
as those along which the evolution of spacetime is described.

3+1 “slicing”

In the black hole physics the more popular approach was that of Arnowitt et al. [12] and
described by Misner et al. [152] and Thorne et al. [197]. Since these results are crucial in
the sense that they are widely used in black hole electrodynamics studies, here we show their
derivation from first principles. Although physically intuitive, the derivation is mathematically
involved, and precise formulation is discussed by Gourgoulhon [73].

In Thorne’s approach the spacetime splitting is different than that of L-L, i.e., the metric
(3.9) is written as

ds2 =

(

gtt −
g2tφ
gφφ

)

dt2 + gφφ

(

dφ+
gtφ
gφφ

dt

)2

+ grrdr
2 + gθθdθ

2

= −α2dt2 + g̃ij(dx
i + βidt)(dxj + βjdt) (3.14)

A family of spacelike hypersurfaces has a unit normal nµ, which is 4-velocity of a test observer

nµ =
1

α

(

δµ0 − βiδµi
)

(3.15)

New coordinates can be chosen as

x̄i = xi + βit, t̄ = t, (3.16)

and new basis vectors

X̄i = ∂i, X̄ · X̄ = gxx, T̃ = ∂t − βi∂i, T̄ · T̄ = −α2 (3.17)

28



3.1. Kerr black holes

Figure 3.2: Spacetime slicing. Lines xi = const across Σt define ∂t and β of the coordinates t,
xi.

Now the shift vector βi is spatial and determines the shift of the coordinate time line away
from the observer worldline (see Fig. 3.2). The lapse function α, similar as before, relates the
coordinate time along the observer worldline to the observer proper time. This shows that now
the observer worldline does not coincide with the coordinate time line. There is a need for a
new temporal derivative along the threading curves that would act as an evolution operator.
One defines the normal evolution vector that is perpendicular to the spatial hypersurfaces, i.e.,
mµ = αnµ [73], and drags the hypersurfaces along the threading curves. For any spatial vector
Aµ on the spatial hypersurface, its shift is expressed by the Lie derivative in the direction of m:

LmAν = mµ∇µA
ν −Aµ∇µm

ν LmAν = mµ∇µAν +Aµ∇νm
µ (3.18)

Using this, one can write equations of motion of a free particle. The particle 4-velocity can
be decomposed into the component parallel to the observer’s velocity, and to the orthogonal
component, which belongs to a spatial hypersurface

uµ = γ
(

nµ + viδ µi

)

(3.19)

The equation of motion is given by

0 = uµ∇µuν = γ
(

nµ + viδµi
)

∇µuν (3.20)

and its first term

nµ∇µuν =
1

α
mµ∇µuν =

1

α
(Lmuν − uµ∇νm

µ) (3.21)

One obtains
1

α
Lmuν −

1

α
uµ∇νm

µ + viδµi ∇µuν = 0 (3.22)

Using the definition of the shift vector β

∂t = m+ β (3.23)

one can express the Lie derivative along mµ by the Lie derivative along the timelike Killing vector
and the orthogonal shift (on the spatial surface) along β

Lm → L∂t − Lβ

=
∂

∂t
− Lβ (3.24)
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Taking into account the definition of Lie derivative and denoting the particle momentum mea-
sured by ZAMO as pi = mγvi one arrives at

1

α

(

∂

∂t
− β · ∇̃+ αv · ∇̃

)

pi = mγgi (3.25)

where we denoted by ∇̃ a spatial covariant derivative, acting on the spatial hypersurfaces (ob-
tained by restriction of 4D metric to its 3D spatial part), and

gi = − 1

α
∇̃iα = −∇̃i lnα (3.26)

For the covariant components one has to rise an index but this involves multiplying by the 3-
metric g̃ij . It does not commute with the Lie derivative Lm and a new term appears Lmg̃ij =
2αH ij [73], where

Hij =
1

α
∇̃iβj (3.27)

so that we finally get

1

α

(

∂

∂t
− β · ∇̃+ αv · ∇̃

)

pi = mγgi +H i
jp
j (3.28)

Maxwell equations can be also written in the ZAMO frame [115, 73]. It is instructive to
obtain explicitly at least one example, say Faraday’s law. It reads

∇µ
∗F νµ = 0 (3.29)

where
Fµν = nµEν − Eµnν + ǫσρµνn

σBρ (3.30)

and thus, by replacing E → −B and B → E one gets

∗Fµν = −nµBν +Bµnν + ǫσρµνn
σEρ (3.31)

The first two terms, when substituted to Faraday’s law, give

∇µ (−nνBµ +Bνnµ) = nµ∇µB
ν −Bµ∇µn

ν − nν∇µB
µ +Bν∇µn

µ (3.32)

In this equation the last term vanishes, since ∇µn
µ =

√−g−1∂µ(
√−gnµ) and the metric is

independent of t and φ, which could give the only nonvanishing components of n. The first two
terms give the Lie derivative of B along n

LnBν = nµ∇µB
ν −Bµ∇µn

ν (3.33)

However, since all the quantities evolve with the normal evolution vector defined as mµ = αnµ

one should rather express the Lie derivative along this vector. It is

LnBν =
1

α
(LmBν +Bµnν∇µα) (3.34)

Thus,

∇µ (−nνBµ +Bνnµ) =
1

α
LmBν − nν (∇µB

µ −Bµ∇µ lnα) =
1

α
LmBν − nν∇̃µB

µ (3.35)

where ∇̃ is the derivative, restricted only to the spatial hypersurface. In the last equation we
used the fact that for any two vectors u and v tangent to the spatial hypersurface [73]

uµ∇̃µv
α = uσg̃νσ g̃

α
µ∇νv

µ = uν
(

δαµ + nαnµ
)

∇νv
µ = uν∇νv

α + nαuνnµ∇νv
µ

= uν∇νv
α − nα (uνvµ∇νnµ) (3.36)
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3.1. Kerr black holes

where we used nνv
ν = 0 (n is orthogonal to the spatial hypersurfaces). Taking vα = Bα and

α = ν = µ, we have Bνnµ∇µnν = −BinµΓσµinσ = −Bi∇i lnα, and finally we arrive at (3.35).
Further, since the covariant derivative of the Levi-Civita tensor vanishes,

∇µ (ǫ
ρσνµnρEσ) = ǫρσνµ (m̃ρEσ∇µα+ αEσ∇µm̃ρ + nρ∇µEσ) (3.37)

where we defined auxiliary vector m̃ρ = nρ/α. The second term in the bracket vanishes, because
in ∇µm̃ρ = ∂µm̃ρ − Γηµρm̃η the partial derivative of m̃µ = (−1, 0, 0, 0) gives 0 and symmetric
Christoffel symbols, contracted with antisymmetric Levi-Civita tensor, also give a vanishing
term. Finally we get

∇µ (ǫ
ρσνµnρEσ) = −ǫ0σνµ∇̃µ (αEσ) (3.38)

Faraday’s law takes a form

1

α
LmBν − nν∇̃µB

µ − ǫ0σνµ∇̃µ (αEσ) = 0 (3.39)

where we note that det gµν = −α2det g̃µν and thus ǫ0ijk = −ǫijk/α. This equation can be
projected along the threading curve by multiplying by nν . One can notice that, since the Lie
derivative of tangent, spatial vectors along mµ leaves them in the spatial surface, LmBµ remains
tangent to the threading curve and, thus, one gets

∇̃iB
i = 0 (3.40)

Projection on spatial hypersurface (i.e., multiplying by nνnλ + δλν ), gives

LmBi + ǫijk∇̃j (αEk) = 0 (3.41)

Using the definition of the shift vector β

∂t = m+ β (3.42)

one can express the Lie derivative along mµ by the Lie derivative along the coordinate time line
and the orthogonal shift (on the spatial surface) along β

Lm → L∂t − Lβ

=
∂

∂t
− Lβ (3.43)

Faraday’s law reads
(

∂

∂t
− Lβ

)

Bi + ǫijk∇̃j (αEk) = 0 (3.44)

The remaining Maxwell equations are obtained in the same manner. Gauss law is given by

∇̃iE
i = 4πρ (3.45)

and Ampère’s law
(

∂

∂t
− Lβ

)

Ei − ǫijk∇̃j (αBk) + 4παji = 0 (3.46)

where ρ = −nµjµ is the charge density and jµ = ρnµ + J iδµi is the current density measured by
ZAMO, which satisfies the continuity equation

(

∂

∂t
− β · ∇

)

ρ+ ∇̃i

(

αji
)

= 0 (3.47)
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3.1. Kerr black holes

Gravitoelectromagnetism

In the Newtonian limit of a weak gravitational field, i.e., far from a black hole r ≫M ,

α ≃ 1, |β| ≪ |v| (3.48)

so that the equations of motion of a particle (3.28) take a form [197]

m
d2xi

dt2
≃ mgi +m

(

H i
k −H i

k

) dxk

dt
(3.49)

which may be written as

m
d2x

dt2
≃ m

(

g +
dx

dt
×H

)

, H = ∇× β (3.50)

This weak gravity limit of the force measured by ZAMO looks like a Lorentz force, with charge e
replaced by mass m, E replaced by g, B replaced by H , and vector potential A replaced by β.
For that reason, the shift function β is called gravitomagnetic potential, and g – gravitoelectric
acceleration. This analogy with electrodynamics is, in fact, even deeper. The Einstein field
equations that govern the gravitational field of a rotating mass, in a weak gravity limit, and in
a time-independent case, look like Maxwell’s equations for electromagnetism [197]

∇×H = −16πGρmv, ∇× g = 0, ∇ · g = −4πGρm, ∇ ·H = 0 (3.51)

A difference is made by minus signs, which means that gravity is rather attractive than repulsive.
For time dependent objects (pulsating, collapsing etc.) the direct analogy is valid unless veloc-
ities become comparable to the speed of light, or gravity becomes too strong to use linearizing
techniques (even in that case, however, the analogy is not completely disrupted) [35].

3.1.3 Energy extraction from Kerr black holes – the Penrose process

Penrose [163] showed that the energy can be extracted from a rotating black hole in a simple
mechanical process. Consider a particle A, moving with the energy at infinity EA along the
geodesics. Its energy is conserved during the motion

EA = −ηµp(A)µ (3.52)

Suppose that when it enters the ergosphere, we arrange its splitting into two particles B and
C (e.g., by some explosive, timing devices), B falls into the black hole and C escapes to radial
infinity. The 4-momentum conservation reads

pα(A) = pα(B) + pα(C) (3.53)

and, when contracted with ηα,
E(A) = E(B) + E(C) (3.54)

However, in the ergosphere ηµ is spacelike, so for certain choices of a timelike momentum vector,
E = −η ·p can be negative (those are negative energy at infinity states). Thus, in the ergosphere
it is possible that E(B) < 0 (p(B)t > 0). If C escapes to infinity on a geodesics, the energy
conservation implies that its energy is greater than that of the infalling particle A.

In the ergosphere ZAMO velocity is u = ξ + Ωzamoψ (assuming normalization), and the
energy of the particle B which they measure is

Ezamo
(B) = −ξµp(B)µ − Ωzamoψ

µp(B)µ = −p(B)t − Ωzamop(B)φ (3.55)
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3.2. Wald’s solution and the vacuum magnetosphere

This locally measured energy has to be positive, hence

−p(B)t − Ωzamop(B)φ > 0 (3.56)

Ωzamop(B)φ < −p(B)t (3.57)

Thus, for negative energy at infinity states, the local observer sees that p(B)φ < 0, i.e., that a
particle falls into the black hole in the direction opposite to its rotation, braking it. That is, the
ergosphere supports the negative energy at infinity orbits of particles provided that their angular
momentum is directed opposite to the angular momentum of the black hole. As a consequence,
the escaping particle C has larger energy than the infalling particle A, and this occurs at the
expense of the rotational energy of a black hole.

3.2 Wald’s solution and the vacuum magnetosphere

No-hair theorem says that an uncharged black hole, which we considered above, cannot
generate its own magnetic field, because this would require a well defined distribution of currents
behind the horizon. However, a rotating black hole can be immersed in a magnetic field that is
supported externally by, e.g., an accretion disc.

An interesting, special solution for an electromagnetic field in the vicinity of a rotating black
hole, placed in an originally uniform, aligned magnetic field, was given by Wald [203]. To obtain
it, he used the fact that a Killing vector ξα in a vacuum spacetime generates a solution of Maxwell
equations in that spacetime, i.e., the field Fµν = ∇µξν −∇νξµ satisfies the source-free Maxwell
equations ∇µF

µν = 0. It is straightforward to show it, taking the definition of the Riemann
tensor

∇α∇βξγ −∇β∇αξγ = −ξλRλγαβ (3.58)

permuting indices cyclically, adding these three permuted equations, and finally using the Rie-
mann tensor symmetry Rλ[α,β,γ] = 0. One obtains

∇α∇βξγ = ∇γ∇βξα −∇β∇γξα

= Rλαγβξ
λ (3.59)

and after contraction of indices α and β,

∇α∇αξγ = R γα
λα ξλ = Rγλξ

λ (3.60)

For a vacuum spacetime the Einstein field equations are Rαβ = 0 (note that in a general case this
condition does not imply that the components of the Riemann tensor vanish), hence ∇α∇αξγ = 0.
On the other hand, ∇µF

µν = ∇µ(∇µξν − ∇νξµ) = 2∇µ∇µξν , which proves that Maxwell
equations are satisfied.

In a flat space there are 10 independent Killing vectors: rotational ones generate uniform
magnetic fields, boost ones generate uniform electric fields and the field generated by the four
translational Killing vectors vanishes [203]. In a stationary axisymmetric spacetime there exists
the timelike ηµ = ∂t and the axial ψµ = ∂φ Killing vector, hence the field tensor F is a combina-
tion of Fψ = dψ and Fη = dη. At large distances Fψ becomes a uniform magnetic field B0 and
the charge of Fψ is associated with the angular momentum J of the spacetime [44].

4πqψ =

∫

∗Fψ =

∫

∗dψ = 16πJ (3.61)

On the other hand, Fη, determining an electric field, vanishes asymptotically and its charge is
associated with the mass of the original vacuum spacetime

4πqη =

∫

∗Fη =

∫

∗dη = −8πM (3.62)
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3.2. Wald’s solution and the vacuum magnetosphere

Wald noted that these properties are satisfied by the general solution

F =
1

2
B0

(

dψ +
2J

M
dη

)

. (3.63)

Explicitly, for a Kerr spacetime in the orthonormal tetrad

ω0 =

√

∆

Σ

(

dt− a sin2 θdφ
)

, ω1 =

√

Σ

∆
dr,

ω2 =
√
Σdθ, ω3 =

sin θ√
Σ

[

−adt+ (r2 + a2)dφ
]

(3.64)

the components of the Wald electromagnetic tensor defined by F = Fµνω
µ ∧ ων , are given by

F10 =
B0

Σ

(

ar sin2 θ − aM

Σ
(r2 − a2 cos2 θ)(1 + cos2 θ)

)

(3.65)

F13 =
B0

Σ
∆1/2r sin2 θ (3.66)

F20 =
B0

Σ
∆1/2a sin θ cos θ (3.67)

F23 =
B0

Σ
cos θ

(

r2 + a2 − 2a2M

Σ
r(1 + cos2 θ)

)

(3.68)

The Wald solution shows that due to the spacetime rotation, an electric field is generated close
to the black hole. The components of the Wald field can be transformed to the ZAMO frame.
Using definitions of the magnetic and electric fields, as measured by an observer with 4-velocity
uα (e.g. [204]),

Bi = −1

2
ǫiαµνF

µνuα, Ei = Fiαu
α (3.69)

one obtains the result shown in Fig. 3.3 for two different values of a, which we have chosen to
be 0.5 and 1. The electric field induced by the black hole rotation has a quadrupole geometry.
However, it diminishes as 1/r2 at large distances, whereas the true quadrupole has 1/r4 depen-
dence. An interesting property of the Wald’s solution is that the faster a black hole rotates, the
more magnetic field lines are expelled from the horizon. For a maximally rotating hole, there are
no lines threading it. This is called the Meissner effect for black holes.

The topology of an electromagnetic field determines the structure of a magnetosphere (here a
vacuum one), and the trajectories of the test particles that may enter it. The Wald magnetosphere
contains two force-free surfaces, where E ·B = 0. The first one is the equatorial plane, and the
second one is a hollow cone around the rotational axis, with an inclination angle defined by the
cusp of an electric field. In Wald’s solution the magnetic field is aligned with the rotation axis of
the hole, and negative charges on the symmetry axis are repelled by the hole, whereas positive
charges are accreted. It can be shown by considering the particle’s energy when lowering it
down the symmetry axis ǫ = Ef − Ei = eAµη

µ|hor − eAµη
µ|∞. If ǫ is positive, it is energetically

favorable for the black hole to accrete the positive charges. Accretion can be sustained until
ǫ = 0 and this condition defines the Wald’s charge QW = 2B0J . A solution for a black hole
charged with Q = fQW (f denotes the fraction of the maximum charge, which has been already
accreted by the hole) in a uniform magnetic field is a sum of the uncharged solution (3.63) and
the charge perturbation, proven by Wald to be (−Q/2M)Fη

F =
1

2
B0

(

dψ +
2J

M
dη

)

− Q

2M
dηµ (3.70)

As he discussed, the contribution to the electric field from the accreted charges is not significant,
however, since a Kerr black hole must satisfy a ≤M , Q/M ≤ 2B0M .
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Figure 3.3: A rotating black hole (gray shading), placed in an asymptotically uniform magnetic
field (Wald’s solution). Blue: magnetic field lines, red: electric field lines (shown only for one
half space), in the ZAMO frame.

In a general case of a strong field, to consider the test particle trajectories quantitatively,
it is necessary to take into account radiation damping (see §2.3.1, where we discuss radiation
reaction). For a given particle of mass m and charge e, the ratio of its gyroradius rgy = m/eB
to the gravitational radius rg = M , depends only on the product MB, thus, when radiation
reaction is unimportant, the dynamics is the same for supermassive holes with lower fields and
the less massive holes with the stronger fields. Radiation damping changes this picture, and can
significantly affect the motion in the magnetosphere [156]. The equations of motion take a form

duα
dτ

= Γραβuρu
β +

e

m
Fαβu

β − 2e4

3m3
Fµνu

νFµρuρuα (3.71)

where we employed the Landau-Lifshitz approximation for the radiation reaction and we took
into account only the largest term of the force acting on the particle. These trajectories are
shown in Fig. 3.4 below. One can see that if initially the particles are located in latitudes
between the equator and the inclined force-free surface, the electrons are attracted to the former,
and the positrons to the latter, so that the force-free surfaces trap the particles undergoing strong
radiation reaction. Surfaces attracting opposite charges are well separated, but in a more general
solution of the asymptotically uniform magnetic field that is misaligned with the rotational axis
of a black hole (this solution was given by [28]), it was shown that these force-free surfaces
“reconnect” [156].

For pulsars a similar problem was studied by Finkbeiner el al. [59]. They considered a star,
endowed with the vacuum dipole magnetic field (Deutsch solution), and considered the motion
of particles from its surface. Their motivation was to obtain a self-consistent picture, where the
magnetosphere is gradually filled up with the charges that modify the initially vacuum field.
They found that the trajectories on which the radiation reaction is minimized during the motion
define the local velocity field. It is an attractor for the particles undergoing strong radiation
damping, and the stronger is the damping, the faster the particle velocity converges with the
local field. In particular, a particle trapping on the force-free surfaces was observed. The local
field was calculated by solving gα = 0, where the force gα is given by (2.84), and the solution is
given by

vL =
1

B2 + P 2

(

E ×B +
E ·B
P

B + PE

)

, (3.72)
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(a) (b)

Figure 3.4: Trajectories of charged particles in the Wald field: blue e−, red e+, in gray the black
hole horizon (or its part) is shown. Initially the particles are located above the event horizon of
a rotating black hole with a = 0.5: (a) in polar regions e− is expelled, whereas e+ is accreted
onto the black hole, (b) for latitudes higher than 0 both particles move towards the force-free
surfaces. The trajectories exhibit wiggles as the particles radiate and recoil, but these features
are not seen on the scale of the figures.

where

P = sgn(e)
{

1
2(E

2 −B2) + 1
2

√

(E2 −B2)2 + 4(E ·B)2
}1/2

. (3.73)

It has a drift component ∝ E ×B, a component describing the motion along the magnetic field
∝ (E · B)B, and a component along the electric field ∝ E. For black holes, all these vector
operations should be understood as performed in a curved space of ZAMO.

In fact, a proper description of radiation reaction in a Kerr metric is much more tricky,
since the causal structure of the Green’s functions is richer in the curved spacetime than it is in
the flat one4 (for exhaustive discussion see Poisson [167]). As a consequence, radiation reaction
has a gravitational part, which appears only due to the presence of a curvature. The equation
of motion of a point charge in a curved spacetime, including its self-force, was carried out by
DeWitt & Brehme [53] and corrected by Hobbs [84]. However, when the gravitational radius is
much larger than the gyroradius of a particle, radiation reaction due to presence of curvature
can be ignored. This is the case in the astrophysical context.

3.3 Particle acceleration and cascade pair production

In the Wald solution the normal component of a magnetic field Bn generates an electric field
of the order E ∼ ΩHrHBn. The potential difference within the gap of height ∼ rH, induced above
the polar regions, reaches

U ∼ ErH ∼ 1

2

a

M
BnrH ∼ 2× 1019V

( a

M

)

(

M

109M⊙

)(

Bn

104G

)

(3.74)

Thus, acceleration of any stray particle from an accretion disk, can be very efficient. The super-
massive black holes that can sustain such fields in very limited regions of their magnetospheres,
were considered as candidates for the cosmic ray (CR) accelerators [34]. However, due to curva-
ture losses, the energy a particle can gain in the gap must be limited far below the maximum
value that is defined by the potential drop [122]. As argued by Levinson, the curvature photons
would be emitted in TeV band, and could, in turn, produce pairs via scattering on external soft
photons, originating from the accretion disk. However, if such soft photons were not prolific in
the black hole vicinity, the very high energy (VHE) curvature radiation would be able to escape.
Apart from being a particle accelerator, such an object would be also a TeV emitter [122, 156].

4In a curved space, the vector potential of an electromagnetic field couples to the Ricci tensor, and the wave
equation is more complicated in comparison to that in a flat space.
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The absence of soft photon fields around a black hole, places restrictions on the class of the
objects that can be the candidates for the accelerators, i.e., these must be dormant AGNs or
quasar remnants. Boldt & Ghosh [34] and also Levinson [122] argued that massive dark objects
(MDOs) in the centers of nearby galaxies, detected recently by [138], satisfy these criteria. Some
of them have masses in excess of 1010M⊙ and it is not well understood why they do not show
any accretion activity, remaining radiatively inefficient. Thus, without rich environment, such
objects may be able to sustain vacuum gaps, not broken down by the pair cascading of the
curvature photons.

On the other hand, Neronov et al. [156] argued that the models of acceleration of particles
in dormant AGNs to the highest energies (> 1020 eV), work well only for the most massive BHs
(i.e., balancing the acceleration and the curvature losses terms in the equation of particle motion,
one obtains that only black holes of masses M ∼ 1010M⊙ could accelerate the most energetic
particles), which are rare. In that case the acceleration is accompanied by the electromagnetic
emission with 2-3 orders of magnitude higher luminosity than the UHECR-luminosity of the
source, which, in turn, would mean that the object is not dormant. They argued that this
scenario can be recovered, if an inclination between the magnetic and rotational axes is within a
few degrees. In that case the most energetic particles can be produced around less massive BHs
(∼ 108M⊙), but, on the other hand, the magnetic field is required to be very strong ∼ 105 G,
much above the current estimates. They showed that also the electromagnetic luminosity is
decreased by misalignment so that it does not exceed a typical power output of AGNs in the
local Universe.

The TeV emission was detected in many blazars. Those objects are special, however, because
of strong Doppler boosting, which enhances observed radiation. The vacuum gap geometry, and,
thus, its ability to accelerate particles, can be tested rather by examining non-blazar objects. If
the acceleration is sufficiently efficient, misaligned, low-luminosity radio galaxies should be also
detectable in the TeV band. To search for this emission from the non-blazar objects, Pedaletti
et al. [162] analyzed VHE (HESS and Fermi) data for NGC 1399, which has a high-mass central
black hole, low-luminosity jets (at all wavelengths), and it is located close enough to enable
detection, if the emission is produced. However, there was no detection reported. They obtained
the upper limit for the source luminosity at energies above 200 GeV L < 9.6 × 1040 erg s−1.
This result is also robust in the sense that there is no expected source of attenuation of the
signal along the line of sight to an observer. Pedaletti et al. concluded that either only a small
portion of the vacuum gap is available for the particle acceleration, and/or the charge density
close to the black hole is much smaller than the Goldreich-Julian density (and, therefore, the
fully developed vacuum gap exists), but additional production of pairs occurs due to absorption
of inverse Compton upscattered photons at larger distances. Up to date, only a minor fraction
of AGNs detected above 100 MeV are radio galaxies, the rest consisting of blazars, e.g., [176].
This fact may favor scenarios in which the highest energy emission originates from the relativistic
jet rather than from the stationary gap, and the Doppler beaming makes blazars stronger TeV
sources than radio galaxies.

It was proposed [32] that, in analogy to pulsar magnetospheres, vacuum gaps may be unstable
to cascade pair production, and a plasma-filled magnetosphere can result instead. As will be
discussed in detail later, in polar gap models of pulsar magnetospheres, such sparks, where a pair
avalanche can be initiated, are located close to the stellar surface and primary particles for a
cascade production are supplied directly from it. In the black hole case, location of vacuum gaps
is only limited to be above the event horizon, possibly being even nonstationary [32]. Numerical
investigations [201, 153] show that in analogy to the pulsar magnetospheres, also in the black
hole vicinity the density of produced pairs may be high enough to screen out the gravitationally
induced electric field, and pair production may proceed in bursts, when the sparks discharge.
The production of plasma would be manifested by the appearance of relativistic outflows – highly
magnetized plasma beams, launched in the form of jets. The energy that they carry is supposed
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to come from the rotation of a black hole.

3.4 Force-free magnetosphere and Blandford-Znajek mechanism

Force-free (FF) electrodynamics is a massless limit of MHD, applicable when the electromag-
netic stresses are completely dominant in the system, such that the plasma dynamics does not
play a role in determining of the field configuration. In that case the inertial (ρ = 0), pressure,
and gravitational forces are neglected [75]. The plasma provides only charges and currents, and
the charge density necessary to satisfy the FF condition, i.e., screening out the electric field
component along the magnetic field lines, is the equivalent of the Goldreich-Julian density in
pulsars [32] (see also §5.1): ρ = ∇ ·E/4π ∼ aB/(GM)2.

Clearly, FF electrodynamics is only the first approximation, and the relativistic MHD ap-
proach, which takes into account particle (in the sense of one-fluid) inertia, is more general.

The advantage of the FF approximation is that one can search for the electromagnetic field
structure without invoking any plasma dynamics. Such a plasma-filled magnetosphere was con-
sidered by Blandford & Znajek in their seminal paper [32]. They proposed that the energy can
be extracted from a rotating black hole in the same manner as it is extracted from a rotating
pulsar. In the following we first summarize their result, then we discuss what was criticized
about it and how the mechanism is understood today.

3.4.1 The Blandford-Znajek mechanism

To obtain a solution for the plasma-filled, highly magnetized magnetosphere, Blandford &
Znajek used the covariant form of the FF condition FµνJν = 0, together with Maxwell equations.
It was assumed to hold everywhere apart from the equatorial plane, where an accretion disk
separates two magnetic hemispheres. This approach has several important implications: (1)
from the 0th and 3rd component of the FF condition, a function Ω(r, θ) can be defined, that was
proved to be constant along each magnetic field line. BZ interpreted Ω as an electromagnetic
angular velocity. Even though it is constant along a given field line, it may change from line to
line. In general, it does not coincide with the angular velocity of the black hole, but depends on
the global structure of the black hole magnetosphere. (2) The electrostatic potential At is also
constant along each field line. (3) The poloidal field surfaces can be defined by Aφ = const. Aφ
plays a role of a stream function for the magnetic field, and the toroidal component of the field
BT was shown to be a function of Aφ only. (4) The magnetospheric current does not cross the
poloidal field surfaces, thus it flows along them. This outflowing current has to be balanced by
the inflowing current in the equatorial disc that supports the discontinuity in the toroidal field
across the disk.

Thus, the solution for a magnetosphere is determined by the topology of the magnetic surfaces
Aφ = const, and all the relevant quantities can be expressed as functionals of Aφ. BZ obtained
the final self-consistent equation governing Aφ, being in fact a generalization of the one obtained
in the case of flat space by Scharlemann & Wagoner [180]. This fundamental equation was
complemented by the boundary conditions: (1) for the field lines threading the equatorial disk,
instead of the black hole horizon, the boundary condition was the continuity of the tangential
electric field across the (conducting) disk. This implies Ω(Aφ) equal to the angular velocity of
the disk at the line footpoint. (2) For the lines threading the black hole horizon, the boundary
condition was specified on its surface: it was the requirement that Aφ is finite and the famous
Znajek boundary condition

BT[Aφ(r+, θ)] =
(r2+ + a2)(Ω− ΩH)

r2+ + a2 cos2 θ
sin θAφ;θ(r+, θ) (3.75)

where ΩH = a/(r2+ + a2) is the angular velocity of the hole. As shown by Komissarov [106]
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it is equivalent to the regularity condition (rather than a boundary condition) of a field at the
horizon, not violating causality.5 (3) For the field lines threading the black hole horizon, the
boundary condition at infinity was also given: the solution has to match a known flat space
solution – specifically, radial and paraboloidal topologies were considered.

With these conditions, an exact solution of the fundamental equation for Aφ was found, in the
case a = 0, i.e., a generalization of the Michel’s monopole magnetosphere, found earlier in pulsar
related studies [149, 150]. A solution for a 6= 0 was obtained in the perturbation analysis with a
small parameter ǫ = a/M , such that the influence of the black hole spin on the poloidal field lines
is small (BZ noted that it is not applicable in the pulsar case, because the poloidal lines change
their topology dramatically when they open up due to the rotation). According to the boundary
conditions at infinity, in the first case of the asymptotically radial lines (i.e., the split monopole
magnetic field), BZ obtained a constant angular velocity of field lines, given by Ω/ΩH = 0.5. In
the second case, a solution for the paraboloidal field lines was given, and the resulting angular
velocity of the field lines was not uniform, changing from line to line 0.265 < Ω/ΩH < 0.5.

Such a configuration, with the currents flowing along the field lines that rotate more slowly
than the black hole, was interpreted to extract the energy by braking of the black hole, similar as
in the case of pulsars. The local ZAMO measures the velocity of a field line according to (3.19),
which may be expressed as vφ = (Ω− Ωzamo)/α, and the energy flux that he measures (see also
discussion in [106]) is

Si = ǫijkEjBk (3.76)

where the electric field is given by the MHD condition

Ei = −ǫijkvjBk (3.77)

The poloidal component SP = Srer + Sθeθ of this energy flux yields

SP = − 1

α
(Ω− Ωzamo)BtorBP (3.78)

where by Btor we denoted Bφ measured by ZAMO. On the other hand, the poloidal component
of the energy at infinity flux (i.e., the energy flux as seen by the observer at infinity)

SP∞ = − 1

α
ΩBtorBP (3.79)

The fluxes flow along the poloidal surfaces, and cannot reverse on any given field line. The
“radiation condition” at infinity defines the flow in (3.79) as being outward on all lines. In the
ZAMO frame, on the other hand, there is the Poynting flux coming into the hole along the
lines with Ω < Ωzamo, and also outgoing flux along the lines Ω > Ωzamo. At the event horizon
Ωzamo = ΩH (ΩH is the angular velocity of the horizon) implies that for all the lines in the
magnetosphere the condition 0 ≤ Ω ≤ ΩH must hold.

BZ argued that the assumption about the FF magnetosphere at r > r+ implies that the
friction, responsible for the extraction of the hole energy, acts inside the horizon, where the
electrical circuit between the outflowing current and that inflowing along the equatorial disk is
completed, but by no-hair theorem the character of this friction cannot be exhibited outside. The
closure of currents inside the horizon is possible because the FF condition, upon which particles
move along the poloidal surfaces of constant At and Aφ, breaks down inside the horizon, since
these surfaces muss cross the equator at a finite distance, and, therefore, become spacelike. Thus,

5Formally, a boundary condition at the horizon is not the same as a regularity condition; the former applies
to both steady-state and time-dependent solutions and is set on the boundary of the computational domain in
order to select a particular solution; the latter applies only to the steady-state solutions, when one wants to find
the one passing smoothly through the critical points at which the steady-state equations change their type – for
discussion see, e.g., [38].
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the particles cannot follow them any longer. As a consequence, within the horizon the energy is
transferred from the electromagnetic into the mechanical component.

Thorne et al. [197] developed this formulation in, so-called, the membrane paradigm. In it,
the details of the physics close to horizon are neglected, regarded as a relic history of the black
hole’s past that do not have astrophysical importance. This frozen boundary-layer structure of
particles and fields is in this sense a membrane that stretches the horizon. The stretched horizon
looks from outside as endowed with the electric charge, currents and other properties that help
to determine the physical conditions outside [197]. Braking of the black hole in this case is in a
direct analogy to the pulsar case. This approach, however, was criticized by papers of Punsly &
Coroniti [170] (an exhaustive summary is contained in the book of Punsly [169]), who argued that
the horizon cannot not play any role in the energy extraction, because it is causally disconnected
from the surroundings. Okamoto [157] developed the idea that instead of the event horizon, it
is rather the “effective” ergosphere that allows the energy extraction by the magnetic field, in
analogy with the Penrose process. Komissarov [108] argued that in fact the energy extraction is
a result of more general phenomenon – energy counter-flow, and the Penrose process itself is a
particular example of it.

3.4.2 Blandford-Znajek as a Penrose process

In the mechanical Penrose process the existence of the ergoregion (bounded by the ergosphere)
is crucial. In the magnetosphere, rotating with respect to the black hole, the ergosphere is not
the same as in the vacuum case, and is referred to as the effective ergosphere. The difference
comes from the fact that in the rotating magnetosphere the null surface is replaced by two new
null surfaces [152], which we call light cylinders, in analogy to pulsar magnetospheres.

Figure 3.5: Black hole (black shading),
light cylinders shown by thin lines, er-
gosphere shown by a thicker (middle)
line, calculated for Ω = 0.7ΩH, a = 0.9.
Taken from [106].

Consider a point of a field line, orbiting a black
hole with a uniform angular velocity Ω, and 4-velocity
uµ = ut(1, 0, 0,Ω). 4-velocity of the point becomes
null when [152, 106]

f(Ω, r, θ) ≡ gtt + 2gtφΩ+ gφφΩ
2 = 0 (3.80)

In the simplest case Ω = 0 one gets f = gtt = 0.
Hence, the only light cylinder is the ergosphere. When
Ω > 0, the location of the inner light cylinder changes,
but it always lies between the horizon and the ergo-
sphere [106]. Moreover, in the case of Ω > 0 also
another light cylinder emerges from infinity. For large
r it is given by

f(Ω, r, θ) = Ω2r2 sin2 θ − 1 (3.81)

= 0 (3.82)

This is the outer light cylinder, in analogy to the pul-
sar one, but modified by the gravity close to the equa-
torial plane. The geometry of null surfaces is shown
in Fig. 3.5. The condition for subluminal rotation
f(Ω, r, θ) < 0 implies that Ω− < Ω < Ω+ [152], where

Ω± = Ωzamo ±
√

Ω2
zamo − gtt/gφφ (3.83)

and the angular velocity of ZAMO is Ωzamo = −gtφ/gφφ (see Eq. 3.6). This means that only the
lines that do not rotate too fast, or too slow, can be force-free. This is in a direct analogy with

40



3.4. Force-free magnetosphere and Blandford-Znajek mechanism

the pulsar case, for which, beyond the light cylinder, the force-free condition breaks down, and
the induced electric field cannot be screened on the lines that cross the light cylinders. As for
the pulsars, in black hole magnetospheres the particles move outwards beyond the outer light
cylinder, and they must move inwards into the black hole, when crossing the inner light cylinder
[106]. The spark gaps where the plasma is created and the outflowing currents formed, must lie
between these two surfaces, [32].

Figure 3.6: Twisting of magnetic field
lines due to frame dragging in the ergo-
sphere. Red lines show negative energy
at infinity orbits. Simulations by [169].

The propagating outwards Poynting flux is a
magnetic twist, launched beyond the light cylinder as
it is in the pulsar magnetosphere. Originally Koide
[105, 102] proposed that such a twist exerts a ten-
sion back onto the plasma and pushes the particles
into negative energy at infinity orbits which brake
the hole when plunging behind the horizon, exactly
as in the mechanical Penrose process. However, the
simulations by Komissarov [107] suggest that initially
such hydrodynamic negative energy at infinity orbits
indeed appear, but even when they disappear the BZ
process still operates. Okamoto [157] defined the ef-
fective ergosphere by the condition Ω = Ωzamo. For
the lines that rotate faster than ZAMO, Ω > Ωzamo,
the fluxes SP and SP∞ flow in the same direction,
and the Poynting flux propagates outwards when
these lines cross the outer light cylinder. For the lines
that rotate more slowly than ZAMO, Ω < Ωzamo, the
fluxes flow in the opposite sense, when the lines cross
the inner light cylinder. In analogy to the Penrose
process, the incoming wind brakes the black hole, and
the outflowing one extracts its energy. Komissarov
[108] argued, however, that the domain of this en-
ergy counter-flow does not necessarily coincide with

the negative energy at infinity domain, in particular, the wind separation surface Ω = Ωzamo

may be located outside the ergosphere, whereas the Penrose process can operate only inside the
ergosphere. For that reason, he named the whole mechanism the energy counter-flow rather than
the Penrose process.

3.4.3 Vacuum of a curved spacetime as an electromagnetically active medium

In the pulsar case, the physics of energy extraction is in analogy with the unipolar inductor,
i.e., due to rotation of a conducting stellar surface with the anchored magnetic field, charges
become redistributed, the electric field in the space is induced, and along the field lines that
cross the light cylinder it cannot be screened out so that it drives a current that brakes the
rotating conductor.

In the black hole case there is no conducting surface (like a stellar surface) to induce the
electric field by the charge distribution. The curved spacetime itself behaves as an electromag-
netically active medium, e.g., [108], in the sense that the electric field is induced even by the
vacuum magnetic field in the vicinity of a rotating black hole (Wald’s solution).

To see how the curved spacetime is electromagnetically active, we consider Maxwell equations
in the ZAMO frame (3.40), (3.44), (3.45), (3.46). Given that ∇̃iB

i = 0 and also in Boyer-
Lindquist coordinates ∇̃iβ

i = 0, one can write

[∇× (β ×B)]i = Bj∇jβ
i − βj∇jB

i = −LβB
i (3.84)
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where we also used the fact that the covariant derivative of the Levi-Civita tensor vanishes. The
Faraday law can be expressed as

∂

∂t
B +∇× (αE + β ×B) = 0 (3.85)

In analogy the Ampère law is

∂

∂t
E −∇× (αB − β ×E) = −4παj (3.86)

Defining new quantities
Ẽ = αD + β ×B, D = E (3.87)

H = αB − β ×D, B = B (3.88)

one finds the Maxwell equations have the same form as those in an electromagnetically active
media. This analogy was in fact first discussed by Landau & Lifshitz. In a special case of a
constant gravitational field one gets D = Ẽ/α, B = H/α as if the electric permittivity and
magnetic permeability were ε = µ = 1/α.

3.4.4 Efficiency of the Blandford-Znajek process

In the BZ process the current driving battery is close to the black hole horizon. The power
extracted in the astrophysical load (L) far from the black hole is given by [197]

∆PL = I2∆RL =
U2

(∆RH +∆RL)2
∆RL (3.89)

where U = ΩH∆Φ/2π is the potential difference created by the battery, ∆Φ ∼ Bnπr
2
H is the

magnetic flux, ∆RH is the impedance between two magnetic surfaces on the horizon (denoted 1
and 2 in Fig. 3.7), and ∆RL is the impedance in the astrophysical load.

Figure 3.7: Black hole battery and the
astrophysical load. From [197].

Since the circumference around the black hole is
given by 2π̟ = 2π

√
gφφ one can relate the part of it ∆l

between magnetic surfaces, to the whole circumference
with the impedance of free space RH = 4π = 377 ohms

∆RH = RH
∆l

2π
(3.90)

Moreover one can write for the magnetic flux difference
between magnetic surfaces

∆Φ = (2π̟∆l)Bn (3.91)

and thus

∆RH = RH
∆Φ

4π2̟2Bn
(3.92)

Apart from this, since the same current driven by the
battery flows through the load

∆RL

∆RH
=
UL

UH
=

Ω

ΩH − Ω
(3.93)

since in the load the angular velocity is that of the field lines Ω, and for the horizon only it is
calculated from U − UL, thus proportional to ΩH − Ω. One gets

∆PL =
Ω(ΩH − Ω)

4π
̟2Bn∆Φ

∼ 1

128

( a

M

)2
B2

nr
2
H ∼ 1043 erg s−1

( a

M

)2
(

M

108M⊙

)2( Bn

104G

)2

(3.94)
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where in the last calculation we assumed Ω ∼ ΩH/2, for which the mechanism has the highest
efficiency.

Studies of Blandford-Znajek mechanism confirm that the mechanism can work efficiently
in astrophysical conditions, but may require high values of the black hole spin [139]. Since it
depends also on the magnetic field strength, advected by matter infalling from a disk, a kind
of accretion is also of importance. The stronger the field is generated in the inner disk (and
sustained against diffusion outwards), the stronger is its Maxwell pressure, which maintains the
field close to the black hole. Given that geometrically thick, optically thin ADAF disks are
plausibly able to support much stronger fields than radiatively efficient ones, BZ process can
provide a significant fraction of the overall energy budget of low luminosity sources [11].

3.5 Astrophysical jets

3.5.1 Central engine – accreting black hole

The luminosity from the BZ mechanism competes with the luminosity of an accretion disk
in a system. For the steady, spherical accretion the maximum luminosity is the Eddington one,
determined by the balance between gravitational and radiation-pressure forces

G
Mmp

r2
= σTT

01 (3.95)

where T 01 = LEdd/4πr
2c is the 01-component of the energy-momentum tensor of the radiation

field (here, radial momentum flux), mp is the proton mass; this implies

LEdd =
4πGcMmp

σT
= 1.25× 1046

(

M

108M⊙

)

erg s−1 (3.96)

To maintain this luminosity, the critical accretion rate is required

ṀEdd =
LEdd

ηc2
≈ 2

(

M

108M⊙

)

M⊙yr
−1 (3.97)

where η ≈ 0.1 is a typical efficiency of conversion energy into radiation. The equipartition
magnetic field at rg

B2
eq

8π
=

L

4πr2gc
(3.98)

have the upper Eddington limit for Ṁ = ṀEdd

Beq =

(

2L

r2gc

)1/2

≈ 6× 104

(

Ṁ

ṀEdd

)1/2
(

108M⊙

M

)1/2

G (3.99)

In the accretion disc the gas accreting onto the black hole may be shaped in various geometries,
but the Bardeen-Petterson effect6 should eventually drag it into the equatorial plane.

Power output of the BZ process (3.94) can compete with luminosity of the accretion, if
the latter proceeds in a weak, sub-Eddington regime. As we mentioned, however, the role of an
accretion disc is not only to launch a wind, in particular – a collimated disk jet, whose luminosity
competes with the BZ jets, but also to provide environment that would be able to collimate the
BZ jet, and to supply a magnetic field. This seems to go together – lower luminosity ADAF
disks are able to supply stronger fields, and, what follows, in low-power sources the BZ process
may account for the jet launching.

6At small radii, an accretion disk is driven into the equatorial plane of a rotating black hole, regardless of its
initial inclination, due to a combination of gravitomagnetic forces and viscous forces in the disc.
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However, as seen in (3.94), the Blandford-Znajek mechanism, even though efficient enough
to play a role in BL Lac objects, cannot completely explain the power output of Flat Spectrum
Radio Quasars (FSRQs). This suggests that two classes of AGNs are possible (see e.g. [38]): one
class gets the luminosity from accretion (i.e., liberation of the gravitational energy of accreting
matter), the other class – from rotation of a central black hole. In particular, FSRQs are
energized by accretion at rates Ṁ/ṀEdd ∼ 1 (which provides the luminosity L & 1046 erg s−1),
and BL Lacs with Ṁ/ṀEdd ≪ 1, are powered by both the central black hole and the weak disk
component, maintaining the overall luminosity L ∼ 1044 erg s−1.

3.5.2 Disk jets

The process of launching jets from the disk was considered by Lovelace [131] and Blandford
[29]. In these models, matter in the disk rotates with Keplerian velocity and drags along the
magnetic field that threads the disk. This works as a unipolar inductor, and generates an
electric field. Since the charges are presumably free to leave the disk, a current is driven along
the magnetic field lines that act as wires. This process can account for the formation of the
magnetosphere that satisfies the FF condition ρE + j ×B ≈ 0. In it, each magnetic field line,
anchored in the accretion disk, rotates rigidly with constant angular velocity of the matter in
its footpoint. Near the light cylinder this corotation must cease, the FF approximation breaks
down, and the retardation effects bend the field backwards. A magnetic twist propagates in a
form of the wind, collimated by the toroidal field. The outflowing current exerts a torque on the
disk, and Blandford showed that the field can be arranged so that the disk evolves in a stationary
manner. The mechanism of braking of the disk is purely electromagnetic, and the energy and
angular momentum are transported outwards as the Poynting flux.

This work was extended by Blandford & Payne (BP) in their seminal paper [31], where they
went beyond the FF approach and included the particle inertia (MHD regime) in calculations.
This inclusion of inertial effects allowed them to investigate the scenario of centrifugal acceleration
of particles. To demonstrate explicitly that a magnetically focused jet outflow can be indeed
established, they searched for self-similar solutions for cold, axisymmetric, ideal MHD flow from
a rotating Keplerian disk, which, in analogy to a force-free problem of Blandford, was threaded
by the magnetic field lines (see also [58]). Self-similar solutions are those for which all the
physical quantities scale with the radial distance from the center (BP assumed particular scalings:
velocity scales as the Keplerian one, the density scaling was given by the mass conservation
in this spherical wind, and scaling of the magnetic field given by its relation to the Alfvén
velocity, assumed to be scaled the same way as the wind velocity). In this solution, due to
rotation, the lines wrap around the magnetic surfaces of constant magnetic flux. Their pressure
causes the flow to accelerate along the rotational axis, and pinching yields collimation. Until
the flow is inside the Alfvén surface the collimation is effective, because the collimating force
may be provided from the accretion disk (communication is possible through the Alfvén waves).
Further BP identified two classes of solutions: (1) those which cross the FMS point at the finite
distance, have paraboloidal streamlines and remain Poynting-flux dominated; (2) the second
class includes those solutions that approach the FMS point asymptotically, collimate along the
rotational axis, and are marginally kinetic-energy dominated. As most of the energy is extracted
electromagnetically, a fraction of accreted matter that flows in a jet is small, and within the
MHD description BP demonstrated explicitly that the cold, and initially starting from rest at
the equatorial plane flow, can be centrifugally accelerated provided the angle between the disk
and the poloidal component of the magnetic field is sufficiently small (less than π/3).

Also other self-similar solutions were investigated in the literature, with different scalings
chosen, e.g., [47], and relativistic extensions of the BP model [127]. A different class of MHD
outflows can be obtained from simplifications of the Grad-Shafranov equation. All these inves-
tigations show that disks and jets can be connected through the transfer of energy and angular
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momentum, but, in reality, it is expected that such systems are far more complicated than the
self-similar solutions given by the simplified models. In fact, the lunching of jets in the accret-
ing systems, in which the jet acceleration and collimation can be supported by the wind from
the disk, can be a universal mechanism for all accreting systems (including protostellar ones,
accreting white dwarfs, neutron stars and black holes).

Figure 3.8: Formation of a low density
funnel, which accreted matter does not
penetrate. MHD simulations by [144].

Time-dependent general relativistic MHD simu-
lations have been performed in 2D [104, 144] and
also full 3D [143]. Porth & Fendt [168] performed
simulations, in which the disk surface is prescribed
as a boundary condition for the outflow, such that
the study of how the disk conditions determine the
outflow properties, becomes possible. This numeri-
cal analysis shows that the accreted matter does not
penetrate the region close to the rotational axis of a
central black hole, and a low density funnel in the po-
lar regions of the black hole magnetosphere is formed.
The reason is that due to the flux-freezing condition,
the matter accreted onto the black hole cannot pass
onto the magnetic field lines that thread the horizon,
and, therefore, have no connection to the accretion
disk.

From a theoretical point of view, “cleaning” of
the magnetic field was investigated by [197]. They
argued that the plasma that spirals down from the

inner part of an accretion disk onto the hole, transports the magnetic field that is frozen into it,
but as it falls down the hole, it becomes causally disconnected from the field. The field however
is a subject to Maxwell pressure of the magnetic field in the black hole vicinity, and also in the
inner disk. If the pressure of the transported field lines is smaller than that of the disk field,
the plunging field lines are pushed onto the black hole neighborhood, and develop the ordered
structure between the horizon and the disk.

Figure 3.9: Sketch of a two-composite jet.
Dashed lines show annular flux tubes (a
intersects the hole, b – the accretion disk),
characterized by the magnetic flux ψ,
around which magnetic field lines wind.
Taken from [137].

The model of a composite (stratified) jet was
first proposed by Sol et al. [185] and also linked to
the different launching mechanisms by Cavaliere &
D’Elia [39]. This jet has the magnetospheric, highly
Poynting-dominated core plus the hydromagnetic,
dissipative component that emerges, when the accre-
tion power increases, and the disk becomes radiation-
pressure dominated. If the BZ mechanism operates
in the black hole vicinity, the inner “spine” of the jet
is possibly loaded with pairs produced in the black
hole magnetosphere, and the rotational energy of a
central hole is extracted according to the BZ mech-
anism. Such inner outflow is highly relativistic. On
the other hand, the outer “sheath”, i.e., more slowly
moving counterpart launched from the accretion disk,
consists of a proton-electron plasma from the accret-
ing matter that flows along the magnetic field lines
anchored in the disk.

The two-component model can account for the
presence of the ultrarelativistic flow at parsec scales
(indicated by apparent superluminal velocities from
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VLBI observations), dominated by the fast component or a mixture of both, and a large-scale
mildly-relativistic component from outer parts is dominates far from the source. In particular,
if the jet was stratified, the inner highly relativistic spine would dominate the blazar emission,
whereas radiation from radio galaxies, seen at larger viewing angles, would be dominated by the
outer disk-jet.

3.5.3 Collimation and acceleration

Astrophysical jets are observed to propagate over very long distances, which may reach
megaparsecs. Since the expanding plasma volume losses its energy adiabatically and radiatively
very quickly, most of the jet energy must be accumulated in other forms, that slowly dissipate
it over long lengthscales [109]. In the “standard model” most of the energy is in the Poynting
flux, which converts to the kinetic energy and eventually dissipates at shocks. It is not clear,
however, how and where the EM energy is transferred to the plasma, in order for the jet to have
high Lorentz factor, low magnetization, and, thus, be able to dissipate at the shock.

The simplest possibility – radial MHD wind in a generic case does not convert the electro-
magnetic to the kinetic energy. In the nonrelativistic case, BP showed that this conversion is
possible, since the organized magnetic field provides acceleration and collimation by the build-up
of the toroidal component. However, this configuration seems to be prone to instabilities [82] so
that may not be maintained to large distances. Moreover, the generalization to the relativistic
case changes this picture: the inward pressure gradient of the magnetic lines almost exactly
balances the outward tension force [133, 100]. After the flow has passed the fast magnetosonic
point, it does not collimate any longer. Thus, if the flow is radial in the force-free region, it
remains so further out [100]. This implies that in the relativistic case the acceleration at the
expense of the magnetic energy depends strongly on the field geometry, and in the case of a radial
flow, the magnetization remains large at long distances, making the flow unable to convert the
energy to the particles. Therefore, in a relativistic, radial MHD wind it is difficult to envisage
the production of a jet with high Lorentz factor and low magnetization.

To overcome this problem, the collimated flows were considered, which can increase the
asymptotic Lorentz factor and decrease magnetization by the factor θ−2/3

jet (this is a jet asymp-
totic, half-opening angle). Causal contact across the flow demands that the faster it is, the
smaller the opening angle should be, and thus the stronger collimation. The maximal angle
θmax = 1/Γ ∼ 1/σ0 seem to be consistent with observations of AGNs [171] (not for GRBs).
Collimation, however, requires special boundary conditions [132, 135]. More specifically, in the
ideal MHD description, transformation of the electromagnetic into the kinetic energy is possible
only to the equipartition limit (which is still not the matter dominated limit); and even for this,
however, there is the requirement that the flow is confined by the external pressure which does
not diminish too fast with the distance. If it does so, the flow stops accelerating after reaching
the terminal Lorentz factor, in general much smaller than the maximum possible one. What is
even more important is that – since the acceleration in relativistic MHD proceeds very slowly
due to the cancellation of the electric and Lorentz forces – this confining medium has to be
present up to large distances. Thus, Lyubarsky [132] showed that jets cannot be completely
matter-dominated without dissipation. On the other hand, the jets indeed are observed where
the external pressure exists, e.g., winds from the outer parts of the disk in accreting systems.

Models, in which the magnetization remains high at large distances, were also proposed. In
that case magnetic acceleration must be somehow enhanced, e.g., via nonaxisymmetric current-
driven instabilities that randomize the magnetic field and transfer the energy from the slowly
decaying transverse field component to the rapidly decaying longitudinal component [82]. Heinz
& Begelman found that such chaotic magnetic field exhibits the acceleration Γ ∝ r, the same as
an ultrarelativistic gas with γ = 4/3. Thus, this magnetic mechanism would be able to provide
acceleration as rapidly as the thermal mechanism. Instabilities can be also connected with
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dissipation of the magnetic energy into plasma heating or kinetic energy in sideways expansion.
Contopoulos [46] suggested that magnetic acceleration is more efficient if it proceeds in the

impulse, instead of a steady-state, manner. In the relativistic regime this idea was developed
by Granot et al. [74]. They considered a discrete magnetized shell of width l0, whose back is
adjoined to a conducting “wall”, and which expands into a vacuum in front of it. This expansion
can be described as a rarefaction wave propagating into the shell towards the wall. The front
of the shell moves away from the wall with relativistic velocity, because the particle inertia are
negligible in the strongly magnetized shell and, therefore, the shell resembles an electromagnetic
pulse. Quickly the rarefaction wave reaches the wall and the second, “reverse” rarefaction wave
is launched behind the escaping front of the shell. Since both fronts propagate with relativistic
speeds, their mutual distance changes very slowly. Between those fronts the fluid is accelerated by
the pressure gradient of the magnetic field that was generated in the initial expansion. Moreover,
behind the reverse rarefaction wavefront the fluid density and pressure are very low and therefore
the shell can be regarded as separated from the wall. After the shell has lost causal contact with
the wall, it keeps accelerating with time as Γ ∝ t1/3, and its width is approximately constant7.
Eventually, when the kinetic energy becomes comparable to the magnetic energy, the acceleration
ceases and the flow enters the coasting phase. At this point the Lorentz factor has its maximum
value Γ ∼ σ0 and the flow is kinetically dominated. During coasting the shell width increases
with time, while its magnetization decreases inversely proportional to time. However, Levinson
[124] showed that in this mechanism acceleration is limited by interaction of high-σ shells with
the ambient medium.

It appears, therefore, that it may be necessary to go beyond the ideal MHD approximation
in order to understand the high Lorentz factors and collimation of jets. There is yet another big
puzzle, revealed by observations of very rapid variability in blazars.

3.5.4 Extreme TeV variability in blazars

Blazars are variable at all wavelengths. The shortest timescales and the largest amplitudes
of variability are in the VHE band. In some cases (PKS 2155-304, Mrk 501) the timescale of
TeV flares is a few minutes [3, 5], and in Mrk 421 ∼ 20 minutes [60]. Since the supermassive
black holes have masses ∼ 109M⊙, the light-crossing time of the black hole horizon is t ∼ rg/c =
GM/c3 = 1.4 h, much longer than the variability timescale [23]. One possibility is that the
observed fluctuations are generated by the small fraction of the black hole horizon, but there is
no obvious source of characteristic scale smaller than rg. It also demands high efficiency of the
energy conversion into radiation [136]. Most of existing models concentrated on the possibility
that the rapid variations are produced rather in a relativistically moving jet, and in this case,
causality implies that the length (radius) l′ of the emission region in the comoving frame satisfies
[23]

l′ < ct′ = c
tobs

Γ(1− β · n) (3.100)

where n is the direction to the observer, β and Γ are the emitting region speed and Lorentz
factor, respectively, tobs is the variability timescale. Due to beaming, photons can reach the
observer only when β is almost parallel to n

1− β · n ≈ 1− β ≈ 1

2Γ2
(3.101)

7It is interesting to show how this effect is explained by Granot et al. They use the analogy to two masses
m connected by a compressed spring with potential energy Epot in the comoving frame. In this frame the total
energy is E′ = 2mc2 + Epot, and in the lab frame E = ΓE′. When the spring energy is released, it goes into
the kinetic energy of the masses, which in the comoving frame achieve Lorentz factors Γ∗ = 1 + Epot/2mc2 and
velocities u′µ

± = Γ∗(1,±β∗, 0, 0). This implies that in the lab frame uµ
± = ΓΓ∗(1± ββ∗, β ± β∗, 0, 0). Thus, for Γ,

Γ∗ ≫ 1 one gets E−/E+ ≈ (1/Γ2 + 1/Γ2
∗)/4 ≪ 1, i.e. as seen in the lab frame, almost entire energy released by

the spring goes into a leading mass. Epot in the model is the shell magnetic energy.
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and then one obtains that

l′ . ctobsΓ (3.102)

For PKS 2155-304 the mass of a central black hole M ∼ 109M⊙ [3] implies approximately
Γ > 30(l′/rg), where l′ > rg. Observations of the proper motion of the jet knots allow to
directly measure the Lorentz factor of the flow. Those are mainly VLBA radio measurements of
apparent superluminal speeds βa = β sin θ/(1 − β cos θ). Results from the MOJAVE survey of
highly-beamed radio-loud AGNs indicate Γ ∼ 10 with a tail extending up to Γ ∼ 50 [128].

On the other hand, rapid VHE variability implies much higher values, for several reasons
[23]:

(1) ability of electrons to cool efficiently within the required timescale. γ-rays can be produced
in the jet due to inverse Compton scattering of synchrotron and also external photons [23].
Begelman et al. [23] argued that constraints on radiative efficiency rather exclude the synchrotron
self-Compton (SSC) mechanism for flares. The reason they gave was that the homogeneous SSC
model of Comptonization of the synchrotron spectrum, requires Γ & 50 for the γ-ray peak, i.e.
the bulk Lorentz factor of the flow has to be high. The cooling timescale of high energy electrons
is however longer for higher Γ, since tic ∼ γ/γ̇, and the energy density of photons, which appears
in γ̇ is boosted by a factor ∼ Γ2. For the fast variability (i.e., very short cooling timescale)
this places an upper limit Γ . 40 [23]. However, the requirement of high Lorentz factor in
the homogeneous SSC models can be alleviated in the decelerating jet model [63]. If the jet
continuously decelerates, fast electrons in the jet spine see the photons from the slow sheath as
beamed, and upscatter them in the IC process to the TeV range, without a need to invoke high
bulk Lorentz factors. Model with initial Γ ∼ 15 to final Γ ∼ 4 well reproduces the existing data.

Begelman et al. [23] argued that, instead of SSC, the external Compton (EC) scattering may
be rather of importance, since the conditions on radiative efficiency can be relaxed. In that case
the energy density in the ambient photon field must exceed that of the synchrotron photons.
The external emission should be in submillimeter band if it is isotropic. In contrast to the
SSC, cooling of electrons in EC mechanism is more efficient with larger Γ. In particular, such
submillimeter nonthermal radiation could be produced in the radiatively inefficient accretion
flows (RIAF) that can be present in blazars, or as a thermal emission from outer, cool parts of
the accretion disc, or as emission of electrons in the outer shear layer of a jet.

(2) low opacity such that TeV photons can escape from the flaring region without producing
pairs in scattering on soft photons in that region. It places a lower limit on the bulk Lorentz fac-
tors, depending, however, on the character of target photons, i.e., whether they are synchrotron,
or rather external in origin [23]. If synchrotron photons dominate the energy density in the
flaring region, the condition of low opacity τγγ ≤ 1 implies Lorentz factors Γ & 50, provided
that the synchrotron emission comes from the same region as the TeV photons (if VHE photons
pass through other radiating regions, probability of their absorption increases). If the external
photon fields are present, flaring activity could be produced in external Comptonization rather
than synchrotron process – but only out to a radius of several hundred rg if Γ ∼ 50 (although
higher values would allow flares at larger distances) [23].

(3) emitting region travels to parsec scales before the radiation occurs, since otherwise the
TeV photons would be absorbed in the accretion flow (e.g. [64]).

The discrepancy of these constraints with VLBI measurements poses a challenge for emission
models, and is known as “blazar’s bulk Lorentz factor crisis”. [23] argued, however, that the radio
and gamma-ray producing regions may have different properties, so, in fact, they do not have
to be necessarily associated with the same Lorentz factor. In particular, it was proposed that a
jet may decelerate on scales ∼ 102 − 103rg, where the local dissipation, responsible for the TeV
photons, occurs [123].

To explain TeV rapid flaring many models were investigated:
(1) “needles” in a jet [65] – a compact and active region moves in a larger jet with much
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higher Lorentz factor. The entire jet is responsible for the persistent emission, and the needle
accounts for the very rapid variations. Such a needle could be an anisotropic electron beam
directed along the jet [66]. Variable emission is produced by the IC scattering of relativistically
streaming particles along the magnetic field in the jet. Occasionally these particles with small
pitch angles point towards the observer which results in the flaring event. As they have very
small pitch angles, there is very little synchrotron emission and resulting TeV flare is “orphan”.
Such beams were argued to be produced in the magneto-centrifugal acceleration scenario.

(2) misaligned minijets inside a jet [68] – compact high Lorentz factor emitting regions move
relativistically within the jet of a bulk Lorentz factor Γ ∼ 10, which is implied by the VLBA, sub-
pc jet observations. Those emitting regions have origin in reconnection sites, where the magnetic
energy of a Poynting-dominated global flow is dissipated, and a plasma accelerated to local, high
Lorentz factors. TeV flares are produced through SSC process. There is also the simultaneous
synchrotron X-ray emission, which potentially distinguish this model from the needle-in-a-jet
one.

(3) interaction with the star [19] – flares are produced when a red giant crosses the jet close
to its launching site. The stellar envelope becomes fragmentated into the compact magnetized
blobs, which are accelerated, and radiate γ-rays through the proton synchrotron, or EC scattering
of electrons.

(4) firehose instability [188] – the instability develops due to the pressure anisotropy in the
jet: the parallel pressure exceeds the perpendicular one, as a result of the bulk jet streaming.
When the instability develops, it causes the disruptions in the jet structure that, in turn, may
produce the variability in the observed emission. The characteristic growth rate is on the order
of several minutes, which could explain the measured variability timescales in blazars.

A quite different idea, in the case of PKS 2155-305, was investigated by Rieger & Volpe [177].
They argued that the system can consist of a binary black hole with the more and also the less
massive object. The latter is responsible for the flare, and the variability timescale is consistent
with the light crossing time of its horizon.

Recent observations reveal that the very rapid TeV variability exists in both subclasses of
blazars, BL Lacs and FSRQs. Dense external photon fields that are thought to exist in the
vicinity of quasars suggest that the TeV variable emission occurs at large distances from the
central objects, such that the TeV photons are able to escape not attenuated by pair production
in γγ scattering on the soft radiation. In all the cases, for both BL Lacs and quasars, the flares
show that the flux variations are large-amplitude. This suggests that the whole emitting region
contributes to the flares [155].

In the following we propose a different model of the rapid variability in blazars. In it, the
particle emission is modulated by the large-amplitude magnetic twist, launched together with a
relativistically outflowing plasma from the polar region of a black hole. The radial dimension is
a wavelength that constrains the variability scale – in fact, much smaller than the gravitational
radius. A candidate for a source of such small-wavelength, large-amplitude fluctuations can be
the vacuum gap above the polar regions of the central black hole. Both theoretical and numerical
investigations show that it may be highly nonstationary in nature. In particular, Sturrock [187]
argued that in the pulsar magnetospheres a steady state pair flow is not possible and that pairs
escape in sequential charge sheets. In his model the flow is oscillatory, with a pattern resembling
that of an oscillating diode. Shibata et al. [182] argued that models of stationary pair flow that
screens out the parallel electric field just above the pair formation front require extremely large
pair multiplicities, which cannot be realized around pulsars. Levinson et al. [126] considered a
scenario in which bursts of pair creation in pulsar and black hole magnetospheres result from
the large-amplitude electrostatic oscillations of the unscreened gap electric field. Specifically, the
accelerated primary electrons produce pairs at the pair formation front, from which positrons
are accelerated back and create a second pair formation front, from which electrons again are
accelerated and enhance the primary electron beam. They argue that the fine-tuning is needed for
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this process to screen out the parallel electric field, and in a generic case the oscillatory behavior
sets up. This nonstationary nature of the gap discharges can be a source of short-timescale
(< rg/c) variability in the outflow.
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Chapter 4

Subluminal waves in blazar jets

In this chapter we present our model of ultra-fast variability of TeV gamma-ray flux from
blazars. The timescales of the fluctuations, on the order of several minutes, imply the presence
of structures much smaller than the black hole gravitational radius that modulate the entire flux
reaching the observer. In our scenario these structures are associated with the wavelength of
a nonlinear, large-amplitude wave that is launched together with a plasma from a black hole
magnetosphere, and propagates relativistically as a Poynting-flux dominated jet.

First, in Sect. 4.1 we introduce parameters that describe the physical conditions in the
magnetized outflows, familiar from pulsar related studies. Further, in 4.2, we specify the two-
fluid model of a pair plasma, coupled to Maxwell equations, which we further solve in Sect. 4.3,
using a perturbation analysis. As a small parameter we choose the ratio of a wavelength to the
actual radius at which the wave is probed. In the lowest order the solution is a subluminal,
magnetic shear, that can be regarded as a large-amplitude, circularly polarized Alfvén wave.
However, given that the wave is considered at large distances, the radial component of the
magnetic field originating from the central object, is negligible, and a shear propagates without
a background field (i.e., phase averages of the fields vanish). The wave properties become slowly
modified by the lateral expansion. Thus, in the first order of the perturbation calculation we get
the radial evolution of all the wave quantities. Our results show that this configuration effectively
accelerates particles at parsec scales. The pre-existing nonthermal emission of these particles can
be modulated, and we show that the fluctuations are not filtered out by the propagation effects,
provided the pair loading in a black hole magnetosphere is sufficiently low. This suggests that
the extremely rapid variability of the very high energy flux is confined to the sources that do
not exhibit prolific pair production, and, presumably, are able to sustain vacuum gaps in their
magnetospheres.

This chapter is based on work published in the Astrophys. J. [101].

4.1 Parameters

We specify the physical conditions in the pair-dominated, magnetized outflow via three di-
mensionless parameters:

(1) The nonlinearity or strength parameter a is a dimensionless measure of the energy-
flux density (for details see Sect. 5.2.2). For a circularly polarized vacuum electromagnetic
wave of frequency ω/2π and electric field E, the strength parameter is conventionally defined
as a = eE/(mcω), and measures the Lorentz factor that an electron would achieve if it were
accelerated from rest over a distance of (2π)−1 times one wavelength in the field E. Assuming
radial propagation, the corresponding luminosity is

L =
m2c3ω2a2Ωsr

2

4πe2
(4.1)
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and we use this expression to define a for a general (non-vacuum) wave. In the absence of
radiation losses, a ∝ r−1, and is determined by specifying its value at some fiducial radius.
For this we chose r0 = c/ω, although our treatment is, of course, valid only for r ≫ r0 and
we certainly do not expect radial flow to extend to such small radii. With this choice, a0 is
independent of ω:

a = a0 (r0/r) (4.2)

a0 =

[

4πe2L

m2c5Ωs

]1/2

= 3.4× 1014L
1/2
46 (4.3)

where L46 = (4π/Ωs)L/
(

1046 erg/s
)

is the “isotropic” or “4π” luminosity of the jet, scaled
appropriately. The energy radiated per unit solid angle by a jet is directly measurable if the
distance to the object is known. For the rapidly variable gamma-ray flare of PKS 2155-304, it
corresponds to an isotropic luminosity of roughly 1046 erg/s, so that, for this object, L46 & 1.

(2) The mass-loading of the wind is conventionally described by the µ-parameter introduced
by [148]:

µ = L/Ṁc2 (4.4)

In the case of an electron-positron jet, µ denotes the Lorentz factor each particle would have if
the entire luminosity was carried by a cold, unmagnetized flow. It is constant in those parts of
the jet in which pair creation and radiation losses can be neglected.

(3) The magnetization parameter σ describes the ratio of the energy flux carried by electro-
magnetic fields to that carried by particles. For monoenergetic electrons and positrons of Lorentz
factor γ,

σ = (µ/γ)− 1 . (4.5)

In a cold, non-accelerating, ideal MHD flow, σ is constant (assuming pair creation and radiation
losses are negligible). However, as we show below, σ is not constant in charge-starved jets, even
in the absence of dissipation. For this reason, we specify its value at the “launching” radius,
inside of which the ideal MHD approximation is assumed to hold, and denote this quantity by
σ0, even though the region of constant σ is unlikely to extend to radii as small as r ∼ c/ω. The
particle Lorentz factor at the launching point is then

γ0 = µ/ (σ0 + 1) . (4.6)

The mass-loading parameter µ is determined by the physics of the pair-production cascade
close to the black hole. A more intuitive measure, therefore, is the pair multiplicity κ, which
relates the pair (proper) number density n± to the number density of electrons (or positrons)
needed to screen out the (magnetic-)field-aligned component of the rotation-induced electric field.
Adopting the definition conventionally used in pulsar physics, but replacing the angular velocity
of the neutron star by c/rg gives (e.g. [133])

κ = γ±n±

(

B

2πerg

)−1

, (4.7)

where γ± is the Lorentz factor of the fluids. In the inner regions of the flows we consider, where
σ = σ0 ≫ 1, the fluids move non-relativistically in the wave frame, so that κ ≈ a/ (4µ). Thus,
in the absence of radiation losses and pair production, κ ∝ r−1 in this region. Physically, it is
the value of κ at the outer boundary of the pair-production region that is most relevant. This
is thought to be close to the black hole, but its precise location is unknown. In the following,
therefore, we specify κ by its value κrg at r = rg:

κrg ≈ a0
4µ

(

c

ωrg

)

. (4.8)
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4.2 The model

As we mentioned, the simplest model of an electron-positron plasma that takes account for the
finite inertia of the charge-carriers is that of two cold, charged fluids (− denotes the electrons,
whereas + stands for positrons). Such model, embedded in Kerr geometry, was developed in
Khanna [96] and Koide [103]. Following this approach, we formulate the Euler equations for
these fluids, coupled to the Maxwell equations, and we search for solutions that describe large-
amplitude waves propagating radially from a magnetosphere of a rotating black hole. To keep
the analysis tractable analytically, we consider only purely transverse, circularly polarized waves,
for which also the phase-averaged electric and magnetic fields vanish. As discussed in 2.2.2, in
this case fluids have equal number densities n+ = n− = n, equal radial velocities v‖+ = v‖− = v‖
and the meridional and azimuthal components of the fluid velocities are equal in magnitude but
of opposite sign v⊥+ = −v⊥−. Thus, fluids have also equal Lorentz factors

γ+ = γ− = γ =
(

1− v2‖ − v2⊥+

)−1/2
(4.9)

The radial component of the four-velocity we denote by a dimensionless, parallel momentum
p‖ = γv‖/c, and the transverse component this four-velocity by a dimensionless, perpendicular
momentum p⊥ = ±γv⊥±/c. Circularly polarized fields of a wave are described by complex
quantities E = Eθ̂ + iEφ̂ and B = Bθ̂ + iBφ̂.

In the following we derive the continuity equation, the equations of motion of the fluids and
the two relevant Maxwell equations (Faraday’s law and Ampère’s law) in the small-wavelength
approximation, r ≫ c/ω, where ω is the wave frequency, using formulation in the ZAMO frame,
outlined in 3.1.2. In the lowest order, large-amplitude plane-wave solutions are given by those
discussed in 2.2.2.

4.3 Multiple-scale perturbation calculation

A self-consistent, nonlinear solution of two-fluid and Maxwell equations was carried out by
Akhiezer & Polovin [4], and subsequently developed in the literature [140, 142, 42, 93]. It is
based on the multiple-scale perturbation analysis.

In the astrophysical context, waves emitted from a central, compact object propagate with
large amplitudes and at large distances, their characteristics become modified by the lateral
expansion. Thus, there are two relevant scales in the problem:

(1) short one described by a “fast” phase variable φ
(2) long one determined by a “slow” radial coordinate ρ = ǫr, where ǫ is a small parameter.
The independent variables (t, r) are transformed into the new ones (φ, ρ), and also space and

time derivatives are transformed into the derivatives of the new variables. In the lowest order in
ǫ the space and time derivatives are given only in terms of ∂/∂φ. Thus, the relevant equations
give the known plane wave solution.

However, the plane wave description is valid only at distances large compared to the wave-
length, and large compared to the launching point. Close to this point lateral extend of a wave
is possibly comparable to its wavelength, and plane waves must be invalidated. Thus, we assume
that the waves are probed at a large radius, and we employ the short-wavelength approxima-
tion r ≫ c/ω, where ω is the wave frequency. This defines the small parameter of the problem
ǫ ∼ c/(ωr) ≪ 1. The characteristic scale, on which the wave properties are modified, is deter-
mined by a slow radial coordinate ρ = ǫr. The expansion of the governing equations in the small
parameter, in the first order gives the slow radial evolution of the phase-averaged plane-wave
quantities.

Here we assume that the gravitational radius is of the same order in ǫ as the wavelength.
We set G = c = 1, so that the black-hole mass M ∼ 1/ω ∼ ǫr. As measured by a locally
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nonrotating observer the fluid 3-velocities and Lorentz factors, and the electric and magnetic
fields are denoted by v±, γ±, and E and B, respectively. Here we omit a “tilde” over the spatial
differential operators ∇̃, but, whenever they appear, should be understood as acting on 3D
hypersurfaces, described by the metric g̃ij . The wave speed is now denoted by βw, and β we
reserve for the shift function.

In the two fluid model the continuity equation (3.47) reads (Eq. 22 in [96]))

(∂t − β · ∇)n±γ± +∇ · (αn±γ±v±) = 0 , (4.10)

As before α is the lapse function and β is the shift vector. Lapse function determines the
change between the local ZAMO time τ and the coordinate time t, i.e. α = dτ/dt, whereas β is
interpreted as ZAMO 3-velocity with respect to the distant stars.

Since our fluids are cold and collisionless, the momentum conservation is given by the equa-
tions of motion for each fluid, but now, to equation (3.28) in §3.1.2 we add also a Lorentz force

1

α

∂

∂t
pi± +

(

v± − β

α

)

· ∇pi± = γ±g
i +H i

jp
j
± ± e

m

(

Ei + ǫijkvj±Bk

)

(4.11)

Faraday’s law (3.44) and Ampère’s law (3.46) are, respectively

∇× (αE) = − (∂t − Lβ)B (4.12)

∇× (αB) = (∂t − Lβ)E + 4παe (n+p+ − n−p−) , (4.13)

where, as before, Lβ is a Lie derivative along β:

LβE = (β · ∇)E − (E · ∇)β . (4.14)

Now we assume that the waves propagate radially so that the field and fluid variables depend
only on t and r. The fast variable is the wave phase φ, a function of t and r that depends on the
(as yet unspecified) wave phase velocity βw(r), which is a function of r alone. The phase of an
outwardly propagating vacuum wave in Kerr geometry is

φvac = ω

(

t− r∗
cβw

)

(4.15)

where

r∗ =

∫ r r′2 + a2

r′2 − 2Mr′ + a2
dr′ , (4.16)

a is the Kerr parameter, and ω is the wave frequency measured by an observer at infinity (e.g.
[197], Eq. 8.66). In analogy with this expression we write the phase of the nonlinear wave as

φ = ω

(

t−
∫ r r′2 + a2

(r′2 − 2Mr′ + a2)βw(r′)
dr′
)

. (4.17)

Transforming the independent variables in (4.10–4.13) from (t, r) into (φ, ρ), where ρ = ǫr,
we now expand in the small parameter ǫ, assuming ρ ∼ rg. Keeping terms of zeroth and first
order, the derivatives are replaced according to

∂

∂t
→ ω

∂

∂φ
(4.18)

∂

∂r
→ ∂ρ

∂r

∂

∂ρ
+
∂φ

∂r

∂

∂φ

= ǫ
∂

∂ρ
−
(

1 + ǫ
2M

ρ

)

ω

βw

∂

∂φ
(4.19)

∂

∂t
+ (αv± − β) · ∇ → ǫv‖±

∂

∂ρ
+ ω

(

1−
v‖±

βw

)

∂

∂φ
. (4.20)
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Expanding the dependent variables according to

p‖ = p
(0)
‖ + ǫp

(1)
‖ (4.21)

etc., one finds the zeroth-order equations are those of continuity:

ω
∂

∂φ

(

n(0)∆(0)
)

= 0 , (4.22)

Faraday’s and Ampère’s laws:

− ω

βw

∂E(0)

∂φ
− iω

∂B(0)

∂φ
= 0 (4.23)

− ω

βw

∂B(0)

∂φ
+ iω

∂E(0)

∂φ
+ i8πen(0)p

(0)
⊥ = 0 , (4.24)

and momentum/energy conservation:

ω∆(0)
∂p

(0)
‖

∂φ
+

e

m
Im
(

p
(0)
⊥ B(0)∗

)

= 0 (4.25)

ω∆(0)∂p
(0)
⊥

∂φ
− e

m

(

γ(0)E(0) + ip
(0)
‖ B(0)

)

= 0 (4.26)

ω∆(0)∂γ
(0)

∂φ
− e

m
Re
(

p
(0)
⊥ E(0)∗

)

= 0 , (4.27)

where ∆ = γ−p‖/βw. Solutions to these equations can be found with superluminal phase speed,
βw > 1, but these waves do not propagate close to the black hole [97]. Here, we concentrate
on subluminal waves. As remarked, a general solution can be found with a large-scale, constant
magnetic field in the direction of a wave propagation [43]. However, we consider waves already
at large distances r ≫ c/ω, where the magnetic field originating from the central object is weak,
diminishing as 1/r2. Thus, we concentrate on the case of vanishing phase-averaged fields, and
this implies that for the solutions the condition ∆ = 0 holds.

4.3.1 Lowest order solution: nonlinear waves

In the lowest order a solution with subluminal speed βw < 1 is that of a plane wave, derived
in 2.2.2. It describes the monochromatic wave, in which

B = iE/βw (4.28)

and, since the phase-averaged fields vanish, ∆ = 0 implies that the particles are in resonance
with the wave, i.e., the radial components of the fluid velocities equal the phase velocity of
the wave. Viewed from a frame that moves radially with speed βw, the electric field vanishes,
and the wave is simply a static magnetic field of constant magnitude, whose direction rotates
through 2π radians over one wavelength. The rate at which the B-vector rotates is arbitrary,
being determined by the dependence of the fluid density n on phase. At each point, the current
and, hence p⊥, is parallel to the magnetic field to zeroth order. Thus, to this order, the forces
exerted on the fluids by the fields vanish. We select the simplest case, where n, |B|2 and |p⊥|2
are all constant and the wave is a monochromatic magnetic shear: B ∝ p⊥ ∝ e±iφ.
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4.3.2 First order solution

Our lowest order solution has ∆(0) = 0, and |B(0)|2, |E(0)|2, |p(0)⊥ |2, p(0)‖ and n(0) all indepen-
dent of φ. Taking account of this, the first-order equation of continuity is:

ω
∂

∂φ

(

n(0)∆(1) + n(1)∆(0)
)

+
1

ρ2
∂

∂ρ

(

ρ2n(0)p
(0)
‖

)

+
1

ρ sin θ

∂

∂θ

(

sin θn(0)p
(0)

θ̂

)

+
1

ρ sin θ

∂

∂ϕ

(

n(0)p
(0)
ϕ̂

)

= 0 , (4.29)

Faraday’s and Ampère’s laws are:

− ω

βw

∂E(1)

∂φ
− iω

∂B(1)

∂φ
+

1

ρ

∂

∂ρ

(

ρE(0)
)

= 0 (4.30)

− ω

βw

∂B(1)

∂φ
+ iω

∂E(1)

∂φ
+ i8πe

(

n(0)p
(1)
⊥ + n(1)p

(0)
⊥

)

+
1

ρ

∂

∂ρ
(ρB(0))

−iM
ρ
8πen(0)p

(0)
⊥ = 0 , (4.31)

and momentum/energy equations give:

ω∆(0)
∂p

(1)
‖

∂φ
+

e

m
Im
(

p
(0)
⊥ B(1)∗ + p

(1)
⊥ B(0)∗

)

+ p
(0)
‖

∂p
(0)
‖

∂ρ
− e

m

M

ρ
Im
(

p
(0)
⊥ B(0)∗

)

=
|p(0)⊥ |2
ρ

(4.32)

ω∆(0)∂p
(1)
⊥

∂φ
+ ω∆(1)∂p

(0)
⊥

∂φ
− e

m

(

γ(0)E(1) + γ(1)E(0) + ip
(1)
‖ B(0) + ip

(0)
‖ B(1)

)

+ p
(0)
‖

∂p
(0)
⊥

∂ρ
+

e

m

M

ρ

(

γ(0)E(0) + ip
(0)
‖ B(0)

)

= −
p
(0)
‖ p

(0)
⊥

ρ
− i cot θ

p
(0)
⊥ p

(0)
ϕ̂

ρ
(4.33)

ω∆(0)∂γ
(1)

∂φ
+∆(1)∂γ

(0)

∂φ
− e

m
Re
(

p
(0)
⊥ E(1)∗ + p

(1)
⊥ E(0)∗

)

+ p
(0)
‖

∂γ(0)

∂ρ

+
e

m

M

ρ
Re
(

p
(0)
⊥ E(0)∗

)

= 0 . (4.34)

The slow dependence of the zeroth-order quantities on ρ follows by eliminating secular terms
in the first-order quantities, i.e. by imposing the condition that they are periodic in φ. Equa-
tion (4.29) can immediately be integrated over φ, yielding, when periodicity is imposed,

1

ρ2
∂

∂ρ

(

ρ2n(0)p
(0)
‖

)

= 0 . (4.35)

Similarly, (4.30) integrates to give

1

ρ

∂

∂ρ

(

ρ

∫ 2π

0
dφE(0)

)

= 0 . (4.36)

However, this merely constrains the average components of the wave fields, which we assume to
vanish. In order to integrate (4.34) and (4.32), it is first necessary to use Ampère’s law (4.31)

to re-express p(0)⊥ in the expressions Im(p
(0)
⊥ B(0)∗) and Re(p(0)⊥ E(0)∗) in terms of B(0) and E(0)

respectively.

56



4.3. Multiple-scale perturbation calculation

We do it by substituting the Faraday’s law

∂B

∂φ
=

i

βw

∂E

∂φ
− ǫ

i

ω

1

ρ

∂

∂ρ

(

ρE(0)
)

(4.37)

into the Ampère’s law

− i8πnep⊥ = iω

(

1− 1

β2w

)

∂E

∂φ

+ ǫ

[

iω
M

ρ

(

1− 1

β2w
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∂E(0)

∂φ
+

i

βw

1

ρ

∂

∂ρ

(

ρE(0)
)

+ i
1

ρ

∂

∂ρ

(

ρ
E(0)

βw

)]

(4.38)

where E and B denote the full fields, not yet expanded. This gives

Re (u⊥E
∗) = − 1

16πne

{

ω

(

1− 1

β2w

)

∂|E|2
∂φ
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ω
M
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(

1− 1

β2w

)

∂|E(0)|2
∂φ

+
2

ρ2
∂
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(

ρ2
|E(0)|2
βw

)]}

(4.39)

where we used the fact that

Re

(

∂E∗

∂ρ
E

)

= Re

(

∂E

∂ρ
E∗

)

=
1

2

∂

∂ρ
|E|2 (4.40)

In the first order, after multiplying by n, the equation (4.34) now takes a form

ω∆(0)n(0)
∂γ(1)

∂φ
+ p

(0)
‖ n(0)

∂γ(0)

∂ρ
+

ω

16πm

(

1− 1

β2w

)

∂
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(

E(0)∗E(1) + E(1)∗E(0)
)

+
1

8πm

1

ρ2
∂

∂ρ

(

ρ2
|E(0)|2
βw

)

= 0 (4.41)

Note that E(0) is periodic. The first order continuity equation implies that

p
(0)
‖ n(0)

∂γ0
∂ρ

=
1

ρ2
∂

∂ρ

(

ρ2p
(0)
‖ n(0)γ(0)

)

(4.42)

and we arrive at
∂

∂ρ

[

ρ2

(

p
(0)
‖ n(0)γ(0) +

1

8πm

|E(0)|2
βw

)]

= 0 (4.43)

In the same manner we get the expression for Im(p⊥B
∗). Expressing perpendicular current

in terms of the magnetic field

− i8πnep⊥ = − ω

βw

(

1− β2w
) ∂B
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1
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(4.44)

and thus

Im(u⊥B
∗) =

1

16πne
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4.3. Multiple-scale perturbation calculation

From the equation (4.32), after multiplying by n and expanding, reads

ω∆(0)n(0)
∂p

(1)
‖
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(0)
‖ n(0)
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ρ

1
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The first order continuity equation implies that we can write

p
(0)
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‖
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and now we have
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|p(0)⊥ |2
ρ

(4.48)

Thus, our radial evolution equations are:

∂

∂ρ

[

ρ2
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(0)
‖ n(0)γ(0) +

βw
∣

∣B(0)
∣
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= 0 (4.49)

∂
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[

ρ2

(

p
(0)
‖

2
n(0) +

(

1 + β2w
)

∣

∣B(0)
∣

∣

2

16πm

)]

= n(0)|p(0)⊥ |2ρ . (4.50)

Equations (4.35), (4.49) and (4.50) suffice to determine the dependence on ρ of the phase-
averaged, zeroth-order variables. Note that, to this order, M does not appear; i.e., general
relativistic effects do not enter. Furthermore, because we assume cold, dissipationless fluids
that interact only via the wave fields, (4.49) simply states the conservation of the sum of the
zeroth-order particle and field contributions to the phase-averaged energy flux in flat space,
expressed in differential form. Radial momentum flux of the system is not conserved, because the
perpendicular degrees of freedom are present, and part of the energy goes into sideways expansion
of the flow. This, in fact, expresses the conservation equation for the energy-momentum tensor of
the system. RHS of (4.50) appears due to nonvanishing Christoffel symbol in the 1st component
of the tensor 4-divergence. This approach we discuss when investigating superluminal waves in
pulsar winds, see Sect. 6.1 for details.

Integrating (4.35) and (4.49), and recovering units we get

2mcr2n(0)p
(0)
‖ = Ṁ/Ωs (4.51)

µ = γ(0) (1 + σ) (4.52)

and from (4.50)
dν

dR
=
R|p⊥|2
µω̂2

, (4.53)

where we define

ν = p
(0)
‖

(

1 +
1 + β2w
2β2w

σ

)

, R =
µ

a0

ωr

c
, (4.54)

Ṁ/Ωs is the mass-flux per unit solid-angle, µ = L/Ṁ is the mass-loading parameter, ν is the
radial momentum flux density per unit rest mass, R is the radius in units of the critical radius,
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4.3. Multiple-scale perturbation calculation

inside of which the superluminal modes do not propagate [97], and the magnetization parameter,
defined as the ratio of the field and particle terms in the energy flux density, is

σ =

∣

∣B(0)/γ(0)
∣

∣

2

8πn(0)m
. (4.55)

Using the definition of the strength parameter (4.3) enables the mass-flux to be expressed in
terms of a0 and µ, leading to

p
(0)
‖ =

a20c
2

µr2ω2
p

=
µ

R2

ω2

ω2
p

, (4.56)

4.3.3 Radial evolution of a magnetic shear

The slow evolution of the subluminal magnetic shear wave as it propagates outwards at
r ≫ rg is governed by the first-order equations in the expansion in ǫ ∼ c/ (ωr), as derived
in §4.3.2. Making simplifications to the notation by omitting superscripts “0”, these are the
continuity equation (4.56):

p‖ = µω̂2/R2 , (4.57)

the equation of energy flux conservation:

µ = γ(1 + σ) (4.58)

and the radial momentum equation
dν

dR
=
R|p⊥|2
µω̂2

, (4.59)

where the momentum-flux density per unit mass-flux

ν = p‖

(

1 +
1 + β2w
2β2w

σ

)

(4.60)

and ω̂ = ω/ωp, with the plasma frequency defined using the proper fluid density ω2
p = 8πne2/m.

Note that in a non-monochromatic wave, the quantities p‖, ω̂, σ and γ are replaced in these
equations by their phase-averages.

According to (2.44), σ, as defined in (4.55), is related to the fluid momentum components
through

σ =
β4wγ

4
w |p⊥|2
ω̂2p2‖

, (4.61)

The condition that the wave velocity equals the radial component of the fluid velocity, ∆ = 0,
implies

γ2w = γ2/
(

1 + |p⊥|2
)

. (4.62)

The five equations (4.57)–(4.62), together with the definition

γ =
(

1 + p2‖ + |p⊥|2
)1/2

(4.63)

determine the radial dependence of the six unknown wave variables γw, γ, p‖, |p⊥|, ω̂, and σ.
It is straightforward to reduce these to a first-order ordinary differential equation for p⊥(γw),
for example. Solutions extend from R = 0 to R = ∞ provided they are launched at super-
magnetosonic speed: σ = (µ/γ) − 1 < µ2/3. At R → 0, |p⊥| → 0 and γ → γw, whereas at
R → ∞, σ → 0 and γ → µ, so that the wave converts all of the Poynting flux to kinetic energy
at large radius. The radial dependence of the wave goes through three phases:
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Figure 4.1: The magnetization parameter σ, transverse fluid momenta p⊥ and Lorentz factor
of the wave, γw, as functions of the dimensionless radius R = µrω/ (a0c), for σ0 = 106 and
µ = 1010. The approximate solutions given in Eq. (4.67) are also shown.

1. At small R, |p⊥| ≪ 1 and the wave is essentially a cold MHD structure in which the inertia
associated with the current is negligible. There is no acceleration of either the wave speed
or the fluids in this regime, and the magnetization parameter σ remains constant at its
initial value σ0. Assuming σ0 ≫ 1, this region is restricted to R≪ µ/σ0.

2. At intermediate radii, one readily finds an approximate solution:

p⊥ ≈ 1 (4.64)

σ ≈ µ/ (2R) (4.65)

γ ≈ 2R (4.66)

γw ≈ γ/
√
2 , (4.67)

valid in the range
µ/σ0 ≪ R≪ µ . (4.68)

3. Finally, at large radius, R≫ µ, only kinetic energy remains: γ ≈ γw ≈ µ, |p⊥| ≪ 1.
This behavior is illustrated in Fig. 4.1.

4.4 Application to blazar variability

The locations of the three phases of wave propagation illustrated in Fig. 4.1 depend on the
parameters a0, µ (or κrg), σ0 and ω. As discussed in Sect. 4.1, it is possible to infer values
for a0 and ω directly from the observed flux and variability timescale. Another parameter may
be eliminated by fixing the wave speed at its launching point. A very slow, sub-magnetosonic
outflow can be described by the force-free MHD equations, and would accelerate as γ ∝ r [36],

until it approached the sonic speed, where γ0 ≈ σ
1/2
0 ≈ µ1/3. On the other hand, all waves

launched at super-magnetosonic speeds (σ0 < µ2/3) behave similarly, as described in §4.3.3, with
the acceleration phase moving out to larger radius as the initial magnetization decreases. It
suffices, therefore, to analyze the case of mildly supersonic launch: σ0 ≈ µ2/3, corresponding to
the maximum magnetization of a supersonic flow.

However, the uncertainty associated with the unknown mass-loading of the flow can be
removed only by modelling the pair cascade. Leaving this quantity as a free parameter, the
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radius racc at which acceleration begins, corresponding to R ≈ µ/σ0, is

racc ≈ rga
1/3
0 κ2/3rg (ωrg/c)

−1/3

= 1.2∆t
1/3
100κ

2/3
rg L

1/6
46 M

2/3
9 pc , (4.69)

where we define the variation timescale in units of 100 s to be ∆100 = (2π/ω) / (100 s), and write
the mass of the black hole as M = M9 × 109 M⊙. For r < racc the Lorentz factor of the flow
remains constant at roughly the sonic speed:

γ0 ≈ 6.5× 103∆t
1/3
100κ

−1/3
rg L

1/6
46 M

−1/3
9 (4.70)

and, for r > racc, the Lorentz factors increase linearly with r:

γw ≈ γ/
√
2 ≈ 7.4× 103 (r/1 pc)κ−1

rg M
−1
9 . (4.71)

The solutions presented in §4.3.3 eventually convert all of the Poynting flux to kinetic energy
flux at large radius. However, in the case of blazars, this is unlikely to be realized, since the
resulting Lorentz factor (= µ) is very large. Instead, dissipative processes so far neglected, such
as instabilities in the wave-solution, or interaction of the jet with the external medium, or with
ambient photons, are likely to intervene.

The wave propagates radially with fixed frequency. However, if it converts part of its energy
into high-frequency (≫ ω), forwardly beamed photons via an emissivity that is modulated by
the wave-phase, then the difference between photon and wave propagation speeds will lead to
a smoothing of the modulation in the observed photon signal. This loss of short-timescale
variability becomes more effective as the size of the radiating section of the wave increases.
Similarly, if the photons do not propagate exactly in the radial direction, smoothing of the
modulation will be produced by the difference in light-travel time to the observer from different
parts of the spherical wavefront. In §3.5.4 we discussed the criterion (3.102) on the size of
the emitting region (assumed here ∼ r = l′/γw, where l′ is the size of the emitting region in
the comoving frame) and the Lorentz factor of the jet γw, such that fluctuations of frequency
ω = 2π/tobs are not suppressed in the photon signal – here this criterion takes a form

γ2w2πc/ω > r . (4.72)

In the acceleration region, γw ∝ r, so that this condition is fulfilled everywhere within this
region, provided it is satisfied at the beginning, where r = racc, and γw = γ0. Combining (4.69)
and (4.70) the requirement that modulation on a timescale of 100∆t100 seconds should not be
filtered out leads to an upper limit on the multiplicity:

κrg < 14∆t100L
1/8
46 M

−1
9 . (4.73)

Equation (4.73) implies that electron-positron pair creation is much less effective in the
central engine of a rapidly variable blazar than it is in a pulsar magnetosphere [145], but this is
perhaps not unexpected, given that a neutron star surface is able to anchor a very strong magnetic
field. However, it also implies that blazars exhibiting extreme variability contain a charge-
starved magnetosphere able to support a vacuum gap [122, 125]. This scenario is particularly
attractive, because the non-stationary nature of gap discharges found in pulsar-related studies
[187, 182, 126, 198], suggests a natural source of short-timescale (< rg/c) variability in the
outflow from a black-hole magnetosphere.
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4.5 Summary and conclusions

Here we described a mechanism that causes a magnetically dominated, radial outflow from a
black-hole magnetosphere to enter a delayed acceleration phase, starting at a distance from the
hole given by (4.69). Applying this mechanism to blazar jets, we derive a constraint, (4.73), on
the pair density in the magnetosphere that permits radiation produced in the jet acceleration
region to retain short-timescale structure imposed on it close to the launching site.

The mechanism is based on an analysis of the propagation characteristics of a nonlinear wave
– specifically a circularly polarized magnetic shear – in a low-density plasma. Such a wave, we
suggest, is likely to be launched in the polar regions of a rotating, accreting black hole, and, in a
non-axisymmetric picture, may fluctuate on a time shorter than rg/c, as indicated by observations
of the source PKS 2155-304. Acceleration is a result of charge-starvation – a non-MHD effect
that arises when the relative drift-speed of the oppositely charged constituents in a low-density
plasma becomes relativistic. The analysis employs a cold two-fluid model of the plasma, and
uses a short-wavelength perturbation expansion to find the evolution of the radially propagating,
nonlinear wave. The equations are derived in Kerr geometry. However, under the conditions we
envisage, where the wavelength of the oscillation is of the same order in the expansion parameter
as the gravitational radius, general relativistic effects do not appear in the governing equations.

Several important problems remain to be investigated. These include the nature of the dis-
sipation and radiation mechanisms, and the effect these might have on the propagation of the
wave, as well as the possibility of modelling the multi-wavelength blazar spectrum. Furthermore,
although the picture of a circularly polarized magnetic shear that is static in the jet frame is in-
tuitively attractive, this is only one specific, nonlinear solution of the governing equations; other
polarizations and other modes, such as the linearly polarized striped wind [133] or the electro-
magnetic mode of superluminal phase-speed [97, 10] may also prove important. Nevertheless,
the underlying physical cause of the acceleration — the inertia of the charge-carriers — suggests
that delayed jet-acceleration may be a generic phenomenon.
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Chapter 5

Pulsar winds

In this chapter we summarize the present state of our knowledge and models of Poynting-flux
dominated outflows from pulsars. Our current understanding is based mainly on theoretical mod-
elling and numerical simulations. Many key issues, such as the details of the pair production sites
in the pulsar magnetosphere, the corresponding multiplicity of pair cascades, and the location of
emitting regions, are still open. First, in Sect. 5.1 we discuss the launching of pulsar winds, to-
gether with the suggested models of vacuum gaps in otherwise force-free magnetospheres, where
the particles are accelerated and pair avalanches ignited. Sect. 5.2 summarizes the physics of
the outflowing, MHD wind: its structure §5.2.1, the parameters that are thought to describe it
(albeit rather poorly constrained) §5.2.2, and the formation of the MHD termination shock at
the interface with the surrounding nebula §5.2.3. However, this MHD description of the shock
suffers from the so-called magnetization problem, which we describe in §5.2.4. In Sect. 5.3 we
discuss a possible solution to this problem – the model of electromagnetic precursors to the ter-
mination shocks. We summarize the conditions for such a precursor to propagate in §5.3.1, and
the conversion process between the MHD striped wind and the precursor – in §5.3.2.

5.1 Launching from the magnetosphere

A magnetosphere is the region closest to a neutron star – located inside the light cylinder,
where the electromagnetic fields dominate the plasma dynamics, and where a pulsar wind is
thought to originate from. A full understanding of pulsar wind launching requires the knowledge
of (1) a field topology, (2) the location of particle accelerating regions, and (3) the mechanisms
that lead to the charge supply in the flow. The latter are closely linked to radiation processes,
which in a strong-field regime often change their character or become dominated by new, ex-
otic phenomena, resulting from energy quantization in the direction perpendicular to the field,
nonconservation of transverse momenta, and the importance of the particle spin [78].

The structure of the magnetic field is anticipated from the polarimetry of averaged pulse
profiles. The sweep of the polarization angle through the radio pulse profiles is consistent with
the dipole geometry [172]. Close to the surface, however, higher multipoles are expected to
be important [20, 69]. The strength of the magnetic field can be measured directly from the
energies of cyclotron absorption lines in the X-ray spectra of X-ray and γ-ray pulsars. The
lines are generated in resonant photon scattering and absorption by electrons at multiples of the
cyclotron frequency1 (e.g., [78])

ωB =
eB

mc
= 2× 1019B12 Hz → 12B12 keV (5.1)

1The occurrence of the resonant lines is a result of the aforementioned quantization of the momentum compo-
nent perpendicular to the magnetic field. The quantized energy levels are discrete Landau states, separated by
the cyclotron energy.
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These measurements imply the fields exceeding 1012 G.
A neutron star rotating in this dipole field, generates also a quadrupole electric field, in a

direct analogy to a unipolar inductor: as for a conductor rotating in a magnetic field, charges
on the pulsar’s surface are redistributed by the Lorentz force, what induces an electric potential
difference between the poles and the equator. The normal component of the resulting electric
field E‖ = ωBr∗/c acts on the charges with the force that is orders of magnitude larger than the
gravitational one

eE‖

GMm/r2∗
≈ 8× 1011B12P

−1
1 (5.2)

where B = B12 × 1012 G, P = P1 s is a pulsar rotation period, and r∗ = 10 km is a typical
radius of a neutron star. Hence, the dynamics in a magnetosphere is completely dominated by
the electromagnetic fields. The binding energy of material on the stellar surface is thought to
be smaller than the work done by the electric forces and, therefore, the field is able to rip the
charges off the surface, providing particles to the magnetosphere. These particles are accelerated
and redistributed to screen out the accelerating field component. For an aligned rotator, the
minimum charge density needed for this screening was obtained in the ideal MHD approximation
E+v×B/c = 0 (where v = ω×r), with the magnetic field lines as equipotentials (i.e. E ·B = 0),
by Goldreich & Julian (GJ) [71]

ρGJ =
1

4π
∇ ·E = −ω ·B

2πc

1

1− (ωr/c)2 sin2 θ
(5.3)

This model describes a stationary state of an aligned rotator, with a corotating, closed magne-
tosphere, and a wind of charges flowing along the open magnetic field lines from the polar cap
regions.

Figure 5.1: Goldreich-Julian space charge. The
null surface is shown by the inclined line that
separates charges of opposite sign. Taken from
[71].

The charge is not lost from the system as
long as the return current back to the star is
assumed. In fact, the derivation of GJ den-
sity assumes that the charges fill in the entire
space that surrounds the pulsar. However, it
was pointed out by Holloway [85] that many
field lines must cross the null surface B ·ω = 0,
beyond which the required charge density has
the opposite sign to the charges that can be
supplied from the star. Thus, large vacuum
gaps can be expected to develop and the cur-
rent closure is not possible. This in turn im-
plies charging up of the star itself, until the
growing electric field finds its balance with
the pulsar surroundings. The question was
posed, if there exists a stable self-consistent
solution with such the vacuum gaps, satisfy-
ing E ·B = 0 everywhere.

A self-consistent solution describing the system with a net charge (fixed by the rotation
rate) was given by Krause-Polstorff & Michel [112, 111]. In their model, the electrodynamics of
an aligned, charged rotator is characterized by the formation of an “electrosphere”, i.e., a charge
distribution with polar domes filled with one-sign charges, the equatorial torus with the opposite-
sign charges, and a huge vacuum gap in between. The electrosphere has a finite extend, well
within the light cylinder, hence no plasma can flow (the domes corotate, and the torus rotates
differentially). Numerical simulations show that the GJ configuration indeed collapses to the
stable electrosphere [195].
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However, the aligned rotator in this equilibrium state is inactive. For that reason most of
theoretical and numerical attention was paid to wind models, in which the pulsar magnetosphere
is filled with a plasma being produced in a self-consistent way. This implies that a real pulsar
magnetosphere cannot be force-free everywhere. Crucial for maintaining pulsar activity are
limited regions (“gaps”), where the electric field is not screened out, and pair production takes
place, being a consequence of particle acceleration, radiation and materialization of photons into
leptons. Hence, in plasma-filled models a force-free, global picture of a magnetosphere is closely
linked to the dynamics of small charge-starved gaps, which are able to replenish a constantly
outflowing plasma.

Avalanche pair production starts when the rotationally-induced electric field rips the primary
charges off the stellar surface. They can move only along the magnetic lines, because any
perpendicular momentum they had, would be immediately radiated in the synchrotron process
(see e.g., [14, 79]). Since a relativistically moving charge emits the synchrotron power P ≈
2r20cγ

2B2/3, a timescale for radiating away its perpendicular momentum can be estimated as

t ∼ γmc2

P
=

3m3c5

2e4γB2
≈ 5× 10−16

γB2
12

s. (5.4)

where B = B12×1012 G. Note that the synchrotron radiation in pulsar conditions is characterized
by discrete transitions from higher to lower Landau states. This occurs in a very short timescale,
hence nearly all the particles must occupy the Landau ground state. However, in a motion along
the curved, dipole magnetic field lines, particles undergo acceleration. This inevitably will lead
to the curvature emission. If the emitted photons are energetic enough, they can decay into e−e+

pairs, initiating electromagnetic cascades. The development of avalanche pair production in a
pulsar magnetosphere involves several steps:

(1) acceleration of primary particles by an unscreened electric field – the regions of particle
acceleration must contain an electric field component parallel to the magnetic field E ·B 6= 0.
According to the current models, this is possible only in limited “gaps” of an otherwise force-free
magnetosphere.

(2) emission of high-energy photons – the dominant radiation mechanisms are the curvature
emission (electrons with Lorentz factors ≥ 106), resonant and nonresonant inverse Compton
scattering of thermal X-rays from the star by primary electrons, and the synchrotron radiation
of secondary pairs. Similarly as for resonant absorption (in which a particle excited to a higher
Landau level deexcitates collisionally), in a strong-field regime also the cross section for Compton
scattering (in which an incident photon excites an electron to a higher Landau level, from which
it then decays spontaneously) has a resonance at the cyclotron (and higher harmonics) energy.
In the strongest fields, the cross section for this process increases by few orders of magnitude in
comparison to the Thomson cross section (e.g., [50]), what decides about its great efficiency in
typical pulsar conditions (i.e. typical surface fields and temperatures). Electrons with Lorentz
factors γ ∼ 102 − 106 can upscatter resonantly thermal photons from the star surface up to
energies ǫ ≈ γBmc2/Bcr.2 When γ ∼ 106, the scattered photon can ignite a cascade in a field
B ≈ 1012 G [40]. In case of millisecond pulsars with lower fields, the dominant process is the
non-resonant scattering. In this case, for γ ≥ 105 the X-ray photons will be upscattered to
energies ǫ ∼ γ in the Klein-Nishina regime.

(3) photon decay into secondary e± pairs – in the presence of a magnetic field a transverse
momentum may not be conserved, because the field can supply or absorb a momentum (however,
the total energy and parallel momentum are strictly conserved). Hence, possible becomes one-
photon splitting, in which a photon with energy ǫγ , moving at a sufficiently large angle θγB to

2Landau states have energy levels given by En = (1 + p2 + 2nB/Bcr)
1/2. In the nonrelativistic regime p ≪ 1,

B ≪ Bcr and hence the gap between two neighboring levels ∆E ≈ B/Bcr. Thus, the resonant photon has the
energy ∼ B/Bcr in the electron frame; after the scattering its energy in the lab frame is ∼ γB/Bcr.
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the magnetic lines, given by the threshold for the pair production

ǫγ sin θγB ≈ 2mc2, (5.5)

converts into an e−e+ pair. This photon, radiated by a particle accelerated along the field
lines, moves initially at a very small angle to the field lines but as their curvature increases
with the distance, the angle also increases till the threshold for the pair production is satisfied.
Simulations, e.g. [81], show that at this point the pair growth is very rapid, and the thin layer,
called the pair formation front (PFF), limits the gap height. Beyond, the voltage of the gap
is suppressed, so that an outflowing plasma can be regarded as quasi-neutral. Energetic γ-rays
can also undergo two-photon scattering: for GeV photons collisions with X-rays – and for the
highest TeV photons collisions with the soft optical and IR photons – play a role. These X-ray
and soft photons may come from the synchrotron radiation of pairs. When B > Bcr splitting of
an energetic photon into two lower-energy photons dominates over pair production [80].

(4) the synchrotron radiation of secondary pairs,
(5) further pair production by photons and emitting electrons.
However, it is still not clear where these processes really take place in pulsar magnetospheres.

First models were focused on the regions (both the vacuum and space-charge limited flow gaps)
close to the magnetic poles, from where a plasma escapes along the open field lines, forming a
pulsar wind. The existence of the polar gap would naturally account for replenishing of ouflowing
charges. Any depletion would result in the rapid growth of an unscreened electric field, until it
again reaches the value for a gap breakdown [187, 179]. In this polar-gap picture, the particle
acceleration and radiation occurs close to the stellar surface, but other locations of magneto-
spheric gaps were also proposed, mostly in order to explain the high-energy pulsed emission from
pulsars. In fact, the high-energy radiation can be of non-magnetospheric origin, well described in
the framework of the pulsar wind models [165] – for review see also [100], and references therein.
This possibility we discuss in the next sections, here focusing on the vacuum gap models that
involve (see Fig. 5.2):

(1) the slot gap – according to Arons [13], a narrow slot gap is placed in the polar region, but
its height varies across the polar cap. The parallel component of a generated electric field well
inside the polar cap is large, and the pair formation front is close to the surface. Further from
the magnetic axis, on the last closed field line in a magnetosphere, Arons assumed the perfect
conducting boundary conditions, so that on this line E‖ vanishes. Thus, close to this boundary,
large distances are needed to accelerate particles to high energies. The particles accelerated along
the gap can gain high Lorentz factors, limited by the curvature radiation losses to γ ∼ 107.

(2) the outer gap – in a model suggested by Cheng, Ho & Ruderman [41] both acceleration
and particle radiation occurs close to, but still within, the light cylinder. Similarly as in the
aligned rotator case of Goldreich & Julian, they argued that the vacuum gaps will be formed
beyond the null surface defined by B ·ω = 0, along the lines that cross it. Beyond this surface the
charge density required to screen the electric field, has the opposite sign to the charges that can
be supplied from the star. Cheng et al. considered the pair production model that would limit
the growth of the gap, such that the empty outer magnetosphere of Holloway is not achieved,
and a vacuum is limited to a narrow region only. Here, plasma generation processes may have
a different nature than those relevant in the polar gap, since in the outer magnetosphere the
magnetic field is weaker than that close to the stellar surface.

(3) the two-pole caustic model – in the model of Dyks & Rudak [57] the gap, confined to the
surface of the last open field line, also extends up to the light cylinder, however starting not from
the null surface as in the outer gap model, but from the neutron star itself. To model the high-
energy emission in the polar gap models alone, one has to assume small inclination and the right
viewing angle to reproduce the observed lightcurves [51]. The models of the gaps that extend to
the outer magnetosphere overcome these difficulties. In particular, in the two-pole caustic model,
high-energy photons are produced tangentially to the magnetic field lines, uniformly along the
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5.1. Launching from the magnetosphere

whole gap length. To the distant observer, photons from different altitudes accumulate and the
emission pattern is caustic. The accumulation occurs due to caustic effects: phase delay (due
to pulsar rotation) of the photons from high altitudes is compensated by the time of flight and
aberration of the photons from lower altitudes.

(4) the light cylinder gap – all of the previous models predict a cut-off of emission around
GeV. However, in the case of the Crab pulsar (and so far only there) sub-TeV tails in the pulsed
high-energy emission were recently detected [9, 7]. It is not clear whether this is a separate
spectral component or it links somehow to the GeV emission. Bednarek [22] proposed the model,
in which an accelerating gap forms very close to the light cylinder, where the open magnetic
field lines bend due to the retardation effect. At this point the electric potential is not shorted
out by the GJ charge configuration (the possibility of charge depletion close to the light cylinder
was also noted by Holloway [85]), particles get accelerated and radiate the curvature photons in
sub-TeV range. The leading (the last open field line in the direction of rotation) and the trailing
(the last open field line in the opposite direction) magnetic field lines exhibit different curvature,
hence the two peaks of the very high energy lightcurve can have different spectra and structure.
In this model, the particles streaming along the intermediate lines would be responsible for the
interpulse emission.

Figure 5.2: Sketch of a pulsar magnetosphere and the location of accelerating gaps. Taken from
[8].

According to numerical simulations of the cascade generation [80], only the youngest pulsars,
with the largest potential across their vacuum gaps, are able to create pairs by curvature photons
[81]. The peak energy of such a photon,

ǫ =
3λc
2ρc

γ3 ≈ 2× 10−18

ρ̂c
γ3 (5.6)

where λc = h/mc is the electron Compton wavelength, ρc = ρ̂cc/ω is the curvature of a field
line (for the last closed one ρc ∼ c/ω and for Crab ω = 190.4 s−1), is much lower than the IC
peak energy in the Klein-Nishina regime, given by ǫ ∼ γ. Therefore, production of the curvature
photon that is able to initiate a cascade, requires large particle Lorentz factors [80]. On the other
hand, nearly all radio pulsars are able to produce pairs in nonresonant IC scattering [81].
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According to all pulsar models, pair production rate in electromagnetic cascades is supposed
to be large, orders of magnitude larger than that required to screen out a vacuum parallel electric
field. For the Crab pulsar the latter implies the pair injection rate given by ṄGJ ∼ 1034 s−1. One
can define the multiplicity parameter κ = N/NGJ = Ṅ/ṄGJ, which is a number of pairs created
per one primary particle. Observational constraints on κ can be provided by nebular synchrotron
emission, when one assumes that all the radiating particles are supplied by the pulsar wind. In
the following sections we discuss the value of κ that is implied by both direct measurements, and
theoretical magnetospheric models.

Let us make a brief remark. In fact, all the magnetospheric models assume that in the
closed-field zone a plasma is corotating. However, as pointed out by Yuen & Melrose [147],
screening of the parallel component of the electric field in the magnetosphere, does not have to
be accompanied by screening of its perpendicular component, as usually assumed. They showed
that complete screening is not possible at all, and the magnetosphere is never strictly corotating.
This could give an explanation to phenomena like subpulse drifting, observed in the lightcurves
of some pulsars.

5.2 The striped wind

5.2.1 Structure

Since close to the neutron star the electromagnetic fields dominates the energetics, particle
inertia are usually neglected in the analysis. Plasma is assumed to be cold, in the sense that
any transverse motion would be suppressed in the superstrong magnetic field due to synchrotron
radiation. In a good approximation, therefore, if only pair production in a magnetosphere is
prolific, a force-free electrodynamics (FFE) is applicable. This formulation is a low-inertia limit
of MHD, useful for self-consistent modelling of a plasma in strong electromagnetic fields. Plasma
particles are assumed to be massless, but they carry charge and currents [75]. Such a limit
significantly simplifies the MHD equations, which include inertial terms.

An exact solution for a force-free magnetosphere of an aligned rotator was given by Michel
[149]. He noted that the freezing-in MHD condition, together with the force balance in the limit
of vanishing particle inertia, imply that a self-consistent current flows in the magnetosphere. The
equation governing its generation allowed him to find an equation for the magnetic field lines.
In the corotating zone he found a monopole solution, and all the higher, axisymmetric multipole
moments he derived by differentiation with respect to z, a coordinate along the symmetry axis.
First derivative leads to a dipole field, which describes both the closed, corotating magnetic field
lines, entirely contained within the light cylinder, and the open ones, which originate from the
polar caps and cross the light cylinder at the right angle. The transition between these two
topologies occurs at the critical line that reveals a cusp in the equatorial plane, when it reaches
the light cylinder.

Beyond the light cylinder, this magnetospheric solution can be matched to a solution for an
MHD wind of an aligned rotator [150, 180]. However, the exact configuration of a magnetic field
at the transition region near the light cylinder is not completely understood. Outside the light
cylinder rigid corotation of a plasma is not possible, and both the drift velocity across the field
lines, and also the velocity component along the field lines, are present. In the limit of negligible
particle inertia, a monopole configuration has exactly radial lines in the meridional plane, and
in the equatorial plane these lines develop a perfect Archimedean spiral

rs = rLφ (5.7)

regardless of a field topology inside the light cylinder. Globally, more appropriate is a split-
monopole configuration, in which two half magnetic monopoles of opposite polarity are separated
in the equatorial plane. This change in magnetic field direction must be, according to MHD,
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accompanied by formation of a current sheet, within which the magnetic field vanishes and the
pressure, necessary to keep the equilibrium, is supported by a hot plasma.

This solution was generalized for an oblique rotator by Bogovalov [33]. He was able to
reduce the oblique-rotator problem to the axisymmetric one, and used Michel’s solution of an
aligned rotator. In the oblique case, a current sheet oscillates around the equatorial plane
as the pulsar rotates, connecting the equator with field lines of opposite polarity every half
a period. The corrugated current sheet is given by the equation e · eM = 0, where the unit
vector e = (sin θ cosφ, sin θ sinφ, cos θ) points in the direction of a sheet surface point, and
eM = (0, sinχ, cosχ) – in the direction of the stellar magnetic moment, inclined with the an
angle χ to the rotational axis. Taking into account (5.7), rs = (V/ω)φ = βrLφ, where V = βc is
the wind velocity, one gets the equation (see also, e.g., [164])

rs = βrL [± arccos (− cotχ cot θ) + 2nπ] (5.8)

where n is an integer. In the equatorial plane, like in the case of an aligned rotator, a current
sheet forms a perfect Archimedean spiral. It is shown in the Fig. 5.3 for an inclination angle
χ = π/6.

(a) meridional plane (b) equatorial plane

Figure 5.3: A current sheet plotted for an inclination angle χ = π/6. In the equatorial plane the
sheet forms a perfect Archimedean spiral.

Coroniti [48] and Michel [151] argued that in the physical scenario, in which a current sheet
is not only a mathematical discontinuity, but the plasma dynamics becomes important, the wave
developed by the oscillating current sheet is not monochromatic. They argued that the toroidal
magnetic field and the poloidal current generate j × B force, that acts on the particles and
makes the current sheet thinner and thinner. This interaction would cause the wave to evolve
into a square shape, consisting of stripes of a cold, magnetized plasma, separated by the current
sheets of a hot, unmagnetized plasma. The magnetic field in each stripe is constant and changes
polarity from one stripe to another. In the equatorial plane the stripes have the equal width,
hence the average magnetic field vanishes. This is not the case for the higher latitudes, for which
a phase-averaged magnetic field is nonzero.

At large distances the azimuthal component of the magnetic field is dominant over the
poloidal one. Their radial dependence can be obtained from the magnetic flux conservation
∇ · B = 0. Integrating over the volume of a sphere of a radius r, one gets from the Gauss
theorem

Br ∝
1

r2
(5.9)

Similarly, as the number of field lines in the sectional area is constant,

Bφ ∝ 1

r
(5.10)
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The poloidal component, which in this solution is purely radial, decreases much faster than the
toroidal one. Observations of synchrotron radiation at the edge of the dark cavity, show uniform
linear polarization in the optical and radio bands, which is consistent with the toroidal magnetic
field structure, predicted in the wind.

However, as pointed out by Usov [200] and Michel [151], according to the mass continuity
r2Nvr = const, the density of current carriers N , as measured in the laboratory frame, drops as

N ∝ 1

r2
(5.11)

hence, faster than the magnetic field they are required to maintain. In the plasma frame, inte-
grating Ampère’s law over the toroidal ring of thickness ∆′ (which is the thickness of a current
sheet), one obtains

2B′
φ =

4π

c
j′θ∆

′ (5.12)

where j′θ = eN ′vθ. In the lab frame Bφ = γwB
′
φ, N = γwN

′, ∆ = ∆′/γw, hence

Bφ ∝ γwNvθ∆ (5.13)

The left hand side decreases as 1/r, but the right hand side would fall as 1/r2 if γw and ∆
were constant (vθ is limited by c). Speed of an ideal MHD radial wind does not change indeed,
because the outward pressure gradient of the magnetic field lines is exactly balanced by the
inward tension force [133]. As discussed by Coroniti [48], Michel [151], and also Lyubarsky &
Kirk [133], if the wind speed does not change, the particles are forced to stream with higher
and higher drift-speed, but, since it cannot reach c, the anomalous resistivity arises, which in
turn may lead to magnetic reconnection. As a result, magnetic energy would be released into
heating of a plasma. Lyubarsky & Kirk pointed out that this heated plasma will perform work
on the flow, leading to its acceleration. The reason is that a hot plasma exerts an outward
pressure gradient, but there is no inward tension force. In particular, their asymptotic solution
is γw ∝ r1/2 and ∆ ∝ r1/2. The radius at which reconnection can start rrec, depends on the initial
particle density in the sheet [133]. They argued that, if it is small compared to the density in
the cold magnetized stripes, the sheet can maintain the required current at r > rrec by absorbing
particles from the cold phase during expansion. In this case, MHD description retains its validity,
but there also exist regions of magnetic field annihilation. This reduces the magnetic field in a
wind frame, and also the required current, so that the MHD solution can indeed exist at much
larger distances. They showed that for an MHD picture to be valid all the way to the termination
shock, a minimum multiplicity is required, however (for the Crab κ > 104, which is not very
demanding). In general, no significant dissipation occurs before the MHD wind arrives at the
shock, which must be then itself responsible for the wave dissipation.

Apart from acceleration due to reconnection, another possibility arises. The flow may indeed
become charge-starved, and therefore non-stationary, so that the displacement current in Am-
père’s law cannot be neglected any more. Usov [200] and Melrose & Melatos [146] suggested that
when the MHD description loses validity, the wind may convert to another, electromagnetic wave
whose propagation would be described by a non-MHD approach. In the striped wind scenario
the distance rmax, beyond which the available charge carriers are unable to carry the necessary
current, Lyubarsky & Kirk [133] calculate as

rmax =
π

2
aL
c

ω
(5.14)

which for the Crab nebula is rmax = 1.9×1019 cm (for definition of aL see Eq. 5.17 below), much
larger than the distance to the termination shock. Thus, the MHD description is formally valid
up to this radius. Despite that the possibility of a mode conversion will be still open, if strong
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electromagnetic waves can propagate at distances smaller than the shock radius. For this, the
shock has to be sufficiently far – a condition, satisfied for the wind shocks from isolated pulsars.
In fact, this scenario might provide a solution to the problems that the ideal MHD description
cannot account for, and which we discuss in the next sections.

5.2.2 Parameters

A rotating magnetic dipole, the simplest model of a pulsar, losses its rotational energy due to
magnetic dipole radiation; if the rotator is immersed in a plasma, it always losses energy, but if
it is surrounded by a vacuum, the rotational and magnetic axes have to be misaligned [158, 76].
This radiation is emitted at the light cylinder distance rL = c/ω, beyond which the corotation
velocity exceeds the speed of light, and the information about a time-dependent changing field
arrives with retardation. It is convenient to express the pulsar spin-down luminosity L in terms
of the energy (Poynting) flux 〈F 〉 of the emitted wave, which carries the entire pulsar energy flux

L

4πr2
= 〈F 〉 = cB2

4π
(5.15)

Here we also assumed that the pulsar luminosity is isotropic. One can define the strength
parameter of this radiated wave as [97, 10]

a ≡ eB

mcω
= aL

c

ωr
(5.16)

where the dimensionless luminosity

aL =

(

e2L

m2c5

)1/2

(5.17)

The latter is in fact an observable. Modelling a pulsar as a spherical neutron star, one can
estimate its rotational energy Erot =

1
2Iω

2, where the moment of inertia I = 2
5M∗r

2
∗ ≈ 1045 g

cm2, given that M∗ ≈ 1.4M⊙, r∗ ≈ 10 km. If the rotator slows down, the emitted spin-down
power is L = Ėrot = Iωω̇, where the pulsar’s rotational frequency ω can be measured directly
from lightcurves, and its derivative ω̇ – from phase timing. For Crab ω̇/ω ≈ 1/2400 yr−1 (see,
e.g., [70] and references therein) implies L = 4.8× 1038 erg s−1 and hence

aL = 3.4× 1010L
1/2
38 (5.18)

The magnetic field at the light cylinder, as given by (5.16), is

BL = 3.7× 105 G (5.19)

This calculation is accurate if the pulsar spin-down were purely due to the dipole emission in
a vacuum. In reality, other processes may contribute. This problem has been investigated in
observations and simulations. The most accurate observational verification is based on coherent
phase timing (for discussion see [129]). One measures pulse times of arrival and fits them into
the Taylor expansion of the pulse phase φ(t) = φ(t0)+ω0(t− t0)+ 1

2 ω̇0(t− t0)2+ 1
6 ω̈0(t− t0)2+ ....

The first and the second derivative of the rotational frequency determine the braking index n of
a pulsar, defined as

ω̇ ∝ ωn ⇒ n =
ωω̈

ω̇2
(5.20)

Measurements for Crab give n = 2.515±0.005, for Vela n = 1.4±0.2 (see, e.g., [21]). These values
encode information about the physics involved in the pulsar slow-down. In the pure magnetic
dipole case, in which (e.g., [115])

Ė = −2

3

d20ω
4 sin2 χ

c3
, d0 =

Φr∗
2π

=
1

2
B∗r

3
∗ (5.21)
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(Φ is the magnetic flux and χ is the angle between the magnetic and rotational axes), one obtains
ω̇ ∝ ω3, i.e., n = 3, by equating Ė = Ėrot. On the other hand, the torque exerted on a pulsar
due to launching of a wind can be estimated by a unipolar inductor. The dissipated power of a
rotating Faraday disk is given by Ė = U2/Z, where U = Φω/2π is the potential difference across
the magnetic field lines and Z is the resistance of a medium. In this case ω̇ ∝ ω (n = 1). In
reality n should be determined by a combination of the dipole emission and the wind outflow (for
discussion of this model see e.g. [208]). In the numerical simulations Contopoulos & Spitkovsky
[45] showed that an important role may be played by the inclination angle χ and the angular
velocity of the field lines ωF, which, in general, is different from the pulsar rotational frequency
ω. Values n < 3 are usually taken as a proof that the pulsar wind carries away a significant
portion of the pulsar spin-down energy [21].

Another important parameter characterizing a pulsar wind is the energy per particle µ that
it carries, first introduced by Michel [148] as the mass-loading parameter µ = L/Ṁc2. As it is
a constant of the flow, its value can be determined at the light cylinder, where J = κ(2JGJ) =
κ(2NGJ)ec, and related to the multiplicity coefficient κ

µ =
aL
4κ

(5.22)

κ is not well constrained, however. According to theoretical pulsar models [83] and numerical
simulations [49, 199] it is expected to be large ∼ 103−105, especially for young pulsars, which, due
to higher voltage, are able to create pairs by the curvature photons. Lower limits on multiplicities
from the HESS observations of PSR B1823-13, PSR B1509-58 and Vela X were put by de Jager
[52]. Lower limits for PSR B1823-13 and PSR B1509-58 give ∼ 500 and 2000, respectively. Since
these objects are not detected in radio, de Jager used also extrapolation of the spectrum to this
range and, when he added the radio emitting electrons, he obtained much higher multiplicities
∼ 105.

On the other hand, from the observations of the Crab nebula it is not quite clear if the
radio emitting synchrotron electrons are still being injected into the nebula together with the
more energetic particles, or they were supplied only at the early stages of the nebula history
[159, 90]. Their lifetime is longer than the nebula age and any possibility cannot be excluded a
priori. However, there are strong indications that the radio electrons are still supplied. Recent
observations of wisps in the radio and optical bands [25] suggest that the electrons emitting radio
photons are accelerated at present in the same regions as the ones emitting optical and X-rays.
This conclusion is also implied by the analysis of Gallant & Tuffs of IR observations [61, 62]. If
this is indeed the case, the total radio brightness of the Crab nebula implies multiplicities ∼ 106

[174, 25], assuming equipartition of magnetic and particle energy in the nebula. This value is
larger than any of those that theoretical models predict.

The last parameter characterizing pulsar winds is the magnetization σ, a ratio of the energy
flux carried by the fields to that carried by the particles,

σ =
B2

8πnmc2γ2w
≫ 1 (5.23)

where γw = (1−β2w)−1/2 is a wind Lorentz factor and n is a proper density of each of two plasma
species e±. Using (5.15), (5.16) and (5.17) one obtains N = NL(rL/r)

2, B = BLrL/r and

σ =
B2

L

8πNmc2γw

(rL
r

)2
(5.24)

and at the light cylinder [133]

σL =
ωL

4γLκω
(5.25)
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(The factor of 2 difference in the result of the cited paper, is a consequence of our definition
of density). NL = κNGJ = κBLω/2πec, ωL = eBL/mc is the Larmor frequency, ω – frequency
of star rotation, and γL is the wind Lorentz factor at the light cylinder. Assuming purely
dipole emission from a pulsar, we estimate the magnetic field at the light cylinder according to
(5.19). The Lorentz factor of the wind at the light cylinder γL is usually estimated to be a few
hundred [179]. Taking for Crab γL ∼ 100, and the upper limit on the multiplicity implied by the
observations κ ∼ 106, we get

σL ∼ 100 (5.26)

However, there is no direct measurement of σ upstream of the termination shock. Upstream
values are always calculated from the jump conditions at the shock, since the observational
limits on σ can be put downstream.

These parameters can be related to the conserved quantities in a striped wind. To show it,
one can define the energy-momentum tensor of the wind

Tµν = Tµνp + Tµνf (5.27)

which is a sum of the plasma and field components

Tµνp = mc2
(

n+u
µ
+u

ν
+ + n−u

µ
−u

ν
−

)

(5.28)

Tµνf =
1

4π

(

FµαF να − 1

4
gµνFαβF

αβ

)

(5.29)

We consider only a cold, pair plasma, that is expected to be produced in a pulsar magnetosphere,
and “+/−” refers to positrons/electrons. Quasi-neutrality requires n+ = n− = n, and both the
electron and positron fluids to move in the same manner, hence also u+ = u− = u. In such a
wind the electromagnetic field is purely transverse. The flow as a whole expands radially, so that
uα = ur, and we denote it by βw. With these assumptions, in the laboratory frame the only
nonvanishing components of the stress-energy tensor are: the energy density

T 00 = 2mc2nγ2w +
1

8π

(

E2 +B2
)

, (5.30)

the energy flux

T 01 = 2mc2nγ2wβw +
1

4π
E ×B, (5.31)

and the radial momentum flux

T 11 = 2mc2nγ2wβ
2
w +

1

8π

(

E2 +B2
)

. (5.32)

Moreover, in the wind frame the electric field vanishes, so that in the lab frame E = −βw ×B.
The magnetic field has constant magnitude in each stripe, but changes sign across each current
sheet. Thus, the flow quantities change periodically with the rotational phase. At distances
much larger than a wavelength, we can consider only quantities averaged over the pulsar period
(for detailed discussion see Lyubarsky & Kirk [133]). Since the energy and momentum are
transported only in the radial direction, they are conserved in the spherical expansion:

1

r2
d

dr

(

r2
〈

T 10
〉)

= 0 (5.33)

1

r2
d

dr

(

r2
〈

T 11
〉)

= 0 (5.34)

Apart from these conservation laws, the mass continuity holds

1

r2
d

dr

(

r2 〈J〉
)

= 0 (5.35)
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where J = 2ncγwβw is the particle flux. Since the particle number is constant, we can write the
conserved quantities in a form

µ =

〈

T 01
〉

mc 〈J〉 = γw(1 + σ) (5.36)

ν =

〈

T 11
〉

mc 〈J〉 =
1

γwβw

(

γ2w(1 + σ)− 1− σ

2

)

≈ µ− 1 + σ

2µ
(5.37)

〈J〉 r2 = c
〈

T 01
〉

mc2µ
r2 =

a2L
µ

mc3

4πe2
(5.38)

– respectively: the energy and the radial momentum fluxes per particle, and the particle number.
Here we also used c

〈

T 01
〉

= 〈F 〉 = L/4πr2.
Thus, the wind is uniquely described by three quantities: µ, σ (equivalently ν) and aL.

5.2.3 MHD shocks of pulsar winds

Since neutron stars are the final products of the supernova explosions, pulsars are surrounded
by the progenitor’s (unshocked) ejecta, which expand in the interstellar medium. A supersonic
pulsar wind that impacts on the slowly moving ejecta, drives a forward shock, and at the same
time a second shock propagates backwards in the wind, decelerating it and compressing in order to
adjust its properties to the expansion of the shocked ejecta. Between the shocked wind (nebula),
downstream of the backward-moving shock, and the shocked supernova ejecta, downstream of
the forward shock, a contact discontinuity appears. The shape of this discontinuity is strongly
distorted by Rayleigh-Taylor instability operating on the ejecta, accelerated by the pulsar-driven
wind (see, e.g., [89]). The reverse shock is called the termination shock and is located at the
distance, where the ram pressure of the pulsar wind is balanced by the confining pressure of the
nebula. The model of supernova remnant is shown in Fig. 5.4.

Figure 5.4: Sketch of a type-II supernova remnant. Taken from [89].

Broad-band (radio to γ-rays) observations of synchrotron radiation downstream of the ter-
mination shock suggest that a significant fraction of the pulsar spin-down power is converted
into particles. In a consistent picture they are carried by a wind away from a pulsar magneto-
sphere, and they are injected into the nebula at the termination shock. In the Crab spectrum
synchrotron emission extends up to a few hundred MeV. At higher energies, up to a few TeV,
emission is attributed to the IC scattering of the synchrotron photons. The implied energies of
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electrons, which reproduce the Crab spectral energy distribution, are in the range ≤ 100 MeV
to ∼ 1 PeV. Most of the energy density is in the particles with energies ∼ 100 GeV, but, at the
same time, majority of the particles is in the low-energy range. The acceleration process that
would reproduce these features is not well understood (for detailed discussion see, e.g., [100]).
In the standard shock acceleration mechanisms only a fraction of the total available energy is
converted to very few energetic particles. An interesting possibility was noted by Lyubarsky
[134], according to which the nonthermal low-energy component is produced at the shock during
reconnection of the alternating magnetic field in the striped wind. It predicts formation of a par-
ticle spectrum that would reproduce the flat observed distribution of the radio and IR emitting
particles in the nebula. On the other hand, the high energy tail, in the Crab spectrum – above 1
TeV, may be produced in the first order Fermi process, as discussed in [100]. They note that (1)
annihilation of the alternating magnetic field may indeed leave a turbulent, small-scale magnetic
field, which, in turn, may provide a scattering medium for the 1st order Fermi process; (2) how-
ever, this mechanism of particle acceleration is not very efficient at perpendicular shocks until
the cross-field diffusion occurs; (3) interestingly, for isotropic diffusion of accelerated particles it
predicts the energy spectrum with an index -2.2, which well explains the X-ray Crab spectrum.

5.2.4 σ-problem

Above in Eq. 5.26 we estimate the magnetization parameter of a wind at the light cylinder,
assuming the wind Lorentz factor of the order of a hundred. Initially, however, a plasma created
by ultrarelativistic primary particles accelerated in a polar gap, is expected to move subsonically.
Such a flow in the force-free approximation accelerates with radius as γw ∝ r [100] till it reaches
the fast magnetosonic speed, which, for magnetically dominated flow σ ≫ 1, is determined
by γfms =

√
σ [99]. Because in a radial flow B2/N is constant, σ ∝ 1/γw ∝ 1/r as the flow

accelerates. It passes the magnetosonic point somewhere close to the light cylinder3 [133]. From
that point the wind has to be described by full relativistic MHD (not only force-free, because
propagation of the fast magnetosonic wave is an interplay between particle inertia and magnetic
tension, implying that the former already is important) [100]. In this MHD wind the outward
pressure gradient of the magnetic field lines is exactly balanced by the inward tension force, hence
the flow is ballistic (i.e., its speed is constant) and σ does not decrease. The electromagnetic
energy is not transferred to the plasma any longer. Therefore, all the way up to the termination
shock, the magnetization of the ideal MHD wind retains its initial value σL ≫ 1.

The observational limits can be put on σ only downstream of the termination shock. There
are two ways to do this. Firstly, a downstream flow should match to the nonrelativistic expansion
of a nebula [90]. Secondly, the same value of magnetization which is determined by this boundary
condition, must also account for the intensity, spatial distribution and the correct spectral index
of the nebular synchrotron radiation [91].

Since the wind has to match to the nonrelativistically expanding nebula, it must be de-
celerated at the termination shock, beyond which the communication with the outer edge of
the nebula is maintained by the sound waves [174]. This communication will adjust a subsonic
shocked flow to the expansion speed of the outer edge of the nebula. Deceleration of the wind
can be determined from the Rankine-Hugoniot jump conditions across the perpendicular MHD
shock. The downstream quantities, expressed in terms of σ, have very different behavior, de-
pending on the value of magnetization [90]. When σ > 1 an MHD shock is weak, in the sense
that, despite the large jump of the flow velocity across the shock, the downstream value is still
relativistic ∼ √

σ, and, consequently, the downstream pressure is magnetically dominated. All
the energy released at the shock goes to a small build up of the magnetic field strength, accord-
ing to the magnetic flux conservation. Only for σ < 0.1 the significant energy can be dissipated
into the plasma, which gives it off in a synchrotron process. For the Crab nebula Kennel &

3Since γ ∼ γ∗r/r∗ and rL ≈ 102r∗ one can estimate that γ ∼ γL ∼ 102 when r ∼ rL.
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Coroniti [90] estimated the averaged nebular expansion velocity and pressure from observations,
and comparing them with the solution of the Rankine-Hugoniot conditions at the termination
shock in the limit of small σ, they obtained a best-fitting value σ ≈ 3× 10−3.

An independent way of estimating σ is provided by investigation of the synchrotron-emitting
electrons. Kennel & Coroniti [91] assumed the power-law distribution of particles in the down-
stream region and required it to satisfy the Rankine-Hugoniot jump conditions at the shock.
This enabled them to connect the synchrotron radiation of the nebula with the pulsar wind
parameters. Next, this synchrotron spectrum, calculated as a function of σ, wind four-velocity
u and a photon index α, was evolved in space, assuming adiabatic expansion and synchrotron
energy losses, and compared with the observations of the continuum from optical to γ-rays. The
authors were able to constrain u from the requirement that the downstream flow radiates the
total observed nebular luminosity. In particular, they found that it is possible only in the models
with small σ and high u. From their analysis of the photon index, they concluded that the MHD
model of the flow transport correctly describes the observations. Kennel & Coroniti investigated
also the extend to which the value σ = 3 × 10−3 can reproduce the spatial and spectral distri-
bution of the Crab nebula continuum. The spatial size of the nebula is a result of an interplay
between the efficiency of radiation losses in the flow and its speed in the downstream region.
The high-σ flows have rapid synchrotron burn-off, but at the same time they are relativistic
downstream so that moderate-energy particles, emitting UV and X-ray photons, can flow to
large distances from the shock; when σ is low, the burn-off is not severe, but the shocked flow
is slow and X-rays can be emitted only close to this shock. Hence, in general, low-σ flows have
more compact X-ray emission. For the best fitting value σ = 3 × 10−3, u = 3 × 106 seemed to
satisfactorily reproduce all the features, being also consistent with the earlier estimates.

Summarizing, the magnetization in the downstream region must be very small to reproduce
the observations. Therefore, there must be a mechanism at work that allows a transition between
high- and low-σ regimes in the wind expansion, but its nature is unclear. This is known as the
“σ-problem”. A solution can be found only by looking beyond the ideal MHD description.

Lyubarsky [134] proposed that in the case of a striped wind the upper limits on σ, found
from the MHD jump conditions, should be related not to the total Poynting flux in the flow,
but to its fraction, associated with the average magnetic field. Upstream, the wind is Poynting-
flux dominated indeed, but as long as the electromagnetic energy is carried by the alternating
magnetic field, it will be released into the plasma when the field lines annihilate at the shock.
This reconnection might result from the abrupt deceleration of the wind, caused by the pressure
of the hot downstream plasma and magnetic field. The crucial point is the difference between
the collisionless MHD shock and the striped wind shock. In the former, the downstream pressure
is determined by the downstream temperature, which is roughly the upstream particle kinetic
energy. Downstream particles penetrate the shock on the Larmor radius and, therefore, decelerate
the flow on this lengthscale. In the second case, the downstream pressure is exerted by the
particles that gained the energy from the annihilating magnetic field, so their energy exceeds the
upstream kinetic energy. Their Larmor radius exceeds the upstream Larmor radius (and also
the stripe width) – thus the deceleration scale is longer. In the proper frame the annihilation
looks as if the upstream plasma was compressed by an external force. When the alternating
field dissipates completely, the particle Larmor radius becomes equal to the shock width, and
the shock behaves as a standard MHD one. This scenario is also attractive, because, as already
mentioned, it predicts that the particles produced at the striped wind shock have a very flat
distribution, in which the energy of a majority of the particles is less than the upstream particle
kinetic energy.

Another possibility is a scenario, in which the MHD wind converts into a large-amplitude
strong electromagnetic (EM) wave before reaching the shock [200, 146]. This mode is able to
accelerate particles to relativistic energies in a plane transverse to the direction of motion and,
therefore, to transfer the flow energy from the fields into the plasma. In the following we discuss
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the details and closely investigate this solution for the σ-paradox.

5.3 Relativistically strong waves in pulsar winds

First suggestions of the presence of large-amplitude electromagnetic waves in pulsar’s sur-
roundings appeared in papers of Pacini [158] and Gunn & Ostriker [76], who attributed pulsar
spin-down to the emission of dipole radiation at the rotational frequency. Pulsar periods range
from milliseconds to almost ten seconds, which implies extremely low radio frequencies of the
emitted radiation. According to the model of Gunn & Ostriker, such a wave when launched by
a misaligned dipole, would propagate in a vacuum. It was also realized that its great intensity
should be responsible for strong acceleration, as it always imparts relativistic speeds to the par-
ticles [77]. Moreover, motion of a test charge in the large-amplitude fields of an electromagnetic
wave is strongly affected by radiation reaction, a consequence of the nonlinear inverse Compton
scattering. Wave intensities estimated from the pulsar parameters lead to the emission spectrum
resembling closely the synchrotron one. Gunn & Ostriker suggested that the continuum emission
from the Crab nebula can be explained by this process.

Also Rees [173] considered the same mechanism for the nebular emission. He noted that the
dipole radiation is linearly polarized at the equator and circularly polarized along the rotational
axis. Radiation from the other latitudes has elliptical polarization. This property implies that
also the NIC radiation is polarized. Uniform direction of polarization from the inner nebula
supported this idea, since the linear component has the same direction at all latitudes. However,
a contribution from the polar regions was predicted to give a few percent of circular polarization
in radio, optical and X-rays. Measurements of Landstreet & Angel [116] showed that no such
polarization appears, making the model rather improbable. On the other hand, the observations
excluded only the vacuum dipole radiation. Additionally, model of the pulsar magnetosphere
proposed by Goldreich & Julian [71] brought into consideration the prolific pair production
and the existence of a plasma around a rotating neutron star. The need for a self-consistent
treatment of large-amplitude electromagnetic waves propagating in plasmas was realized. Early
papers, however, showed that the propagation of such waves in the vicinity of pulsars is strongly
restricted, e.g., [142].

The aforementioned restrictions have several origins. (1) Firstly, the plasma, produced in
a magnetosphere and outflowing through the light cylinder, is overdense, and the propagation
condition for large-amplitude EM waves cannot be satisfied close to the light cylinder (see sec-
tion 5.3.1). (2) Secondly, investigations of the possible wave damping mechanisms showed that
the waves are quenched almost immediately after the launch. Radiation damping due to the
synchro-Compton (i.e., nonlinear inverse Compton) process, studied by Asseo et al. [15], seemed
to be able to damp a wave within a few wavelengths. (3) Finally, superluminal modes were
shown to be unstable against density perturbations in the direction of motion [141, 55, 178, 118]

For these reasons, strong electromagnetic waves went out of fashion in modelling of pulsar
winds. Kennel & Coroniti [90, 91] constructed a purely MHD model of a wind, its termination
shock and a nebula. In this description the entire post-supernova system is tightly coupled, in
particular, an MHD pulsar wind is responsible for loading a nebula with particles and large-scale
magnetic fields. Assumption that the particles are accelerated at the MHD shock reproduces
the nebular synchrotron emission from optical to X-rays, and the relativistic MHD simulations
[110] explain the observed nebular morphology. These models, however, are known to suffer
from several serious problems, from which still unknown is the solution for the σ-paradox. As
suggested in [200, 146], and investigated in details in [97, 10], strong EM waves may be capable
of providing such a solution, because they effectively accelerate particles at the expense of the
electromagnetic energy.

Since an overdense plasma prohibits the EM wave propagation close to a pulsar (even in a
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strong-wave regime), Kirk [97] proposed the model which assumes that from the light cylinder
it is the striped wind that emerges, but further, before reaching a shock, it converts into an EM
wave, when the propagation of this mode becomes possible due to the decrease of the plasma
density with a distance. Due to the great complexity of the physics involved, the mode conversion
process itself has not been considered so far. Presumably it can be investigated only in two-fluid
or PIC simulations. However, just like in the case of an MHD shock, the transition from one
mode to another can be described without using the microphysics, by solving the jump conditions
across the transition region [97, 10].

In fact, there is also a loophole in the results that concern the damping of strong waves. The
fast damping rate due to the NIC process, reported by Asseo et al. [15], was considered only in
the case of linear polarization. They used the expansion in a small parameter q, defined as the
ratio of the energy density in fluids to that in the electric field, evaluated at the phase at which
the field has the maximum [93]. Arka & Kirk [10] noted that in fact this phase is very special and
it corresponds to the turning points of the sawtooth waveform. These points cannot determine
the average properties of the wave and expansion of the fluxes, carried by the wave, in the limit
q → 0 is not appropriate in pulsar conditions.4 Consequently, the damping of strong waves is not
as rapid as previously thought. In a general case, a wave can propagate over many wavelengths,
slowing down with the distance. Finally, when the streaming of the particles through the wave
is sufficiently slow, instabilities are expected to set in [118, 178, 184]. They can disrupt the wave
within only one period. Such a rapid disruption provides, in turn, a natural mechanism that
leads to formation of the shock, where the energy is randomized and deposited into the particles.

Thus, by re-examining the properties of strong EM waves and their ability to propagate in
pulsar winds, we can construct a new, fully consistent picture, in which the superluminal modes
are launched not close to the pulsar, but they play a role in formation of the termination shocks.
In pulsar conditions these waves are not plane, but spherical, and in a self-consistent solution the
spherical geometry should be accounted for. The radial evolution of strong, linearly polarized
modes, was investigated by Asseo et al. [17], who used a perturbative approach to expand
the nonlinear equations is a small parameter ǫ ∼ λ/r ≪ 1 (short-wavelength approximation).
The lowest order equations gave the known self-consistent, plane wave solution, and the effects
of spherical geometry appeared in the first order. However, in their calculations one of the
Christoffel symbols for the spherical geometry was omitted, and, as a result, the radial momentum
of the flow appeared to be a conserved quantity. This is not the case when the calculation is
corrected, and, as a consequence, radial evolution of the wave quantities is different than reported.

These problems motivate a new investigation of the properties of large-amplitude EM waves.
Our contribution will be presented in the next chapter. Here, in the remaining two sections, 5.3.1
and 5.3.2, we discuss the critical distance [97], beyond which strong EM waves can propagate
in pulsar winds, and we summarize the jump conditions that determine the mode conversion
process [10].

5.3.1 Propagation condition

As discussed in Sect. 2.2.3, a plasma can support the electromagnetic wave propagation,
when the wave frequency is larger than the proper plasma frequency. In the lab frame

ω′2

ω2
p

≥ 1

γ
(5.39)

4Most readily it can be shown for a circularly polarized wave, for which all the quantities are phase independent.
Since q, Eq. 2.69, is a Lorentz invariant, we can calculate it in the special frame (where ω = ωp):

q =
32πγ2

0n0mc2

E2
0

= 4
ω2
p

ω2

γ2
0

a2
= 4

1 + a2 + p2‖0
a2

> 4
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In pulsars, the frequency of a wave is fixed, and determined by the rotational frequency ω′ (here
we add “prime”, because later we use it to denote the quantities measured in the lab frame), but
the plasma density (and, what follows, the plasma frequency) decreases with the distance from
a pulsar. Therefore, it is more appropriate to express the propagation condition in terms of a
critical radius rather than a critical frequency [97, 10].

The critical radius is defined as the one beyond which an electromagnetic strong wave, emitted
by a pulsar, can propagate. Up to that point the wind density, as measured in the lab frame,
drops as N = NL(rL/r)

2 with NL = κNGJ = κBLω
′/2πec, and we get

ω′2

ω2
p

=
ω′2

8πe2N/m
=
r2

r2L

1

4κaL
(5.40)

where we also used the definition aL = eBL/mcω
′. On the other hand, the flow is required

to carry the finite energy flux per particle, so that a launched EM wave cannot impart to the
particles arbitrarily large Lorentz factors, but the condition γ < µ must hold. It yields

ω′2

ω2
p

>
1

µ
(5.41)

When comparing these two expressions and using (5.22), we find it convenient to define

R = ρ
µ

aL
= r

ω′

c

µ

aL
(5.42)

for which the propagation condition is R > 1, where Rcr = 1 (ρcr = 4κ) is the critical radius.
As already mentioned, this distance ρcr is smaller than ρmax = πaL/2, beyond which the

available charge carriers in the striped wind are unable to carry the necessary current to keep
the MHD approximation valid. In particular, for the Crab pulsar with a multiplicity κ ∼ 106,
and the termination shock at the distance ρts ≈ 109, one gets ρcr ∼ 4 × 106 ≪ ρts and ρmax ∼
5× 1010 ≫ ρts.

Since the critical radius can be much smaller than the distance to the termination shock, a
possibility arises that a strong wave is launched in front of the shock. In principle, it may happen
either spontaneously, or as a result of the boundary conditions imposed on a pulsar wind by the
downstream medium. In the latter case, one can think of an EM wave as a shock precursor. In a
physical picture it is causally connected to the surroundings, which means that the information
about a pressure perturbation in the external medium can reach the wind fast enough to enable
its adjustment, by launching of the precursor.

5.3.2 Conversion

A strong EM wave, which emerges from this conversion process, carries the same energy,
radial momentum and particle fluxes as a striped wind [97, 10]. Conservation of these fluxes in
a flow leads to the jump conditions, in analogy with the familiar jump conditions, solved usually
for MHD shocks. Unlike for the shocks, however, there is no plasma heating involved in the mode
transition, but the entropy is generated as the new, perpendicular degrees of freedom appear.

It is convenient to introduce the energy-momentum tensor of a self-consistent electromagnetic
wave Tµν . In analogy to the striped wind case, one can express it is a sum of the particle (5.28)
and the field (5.29) components. In the special, homogeneous frame5 these components are

5This is a frame moving with the wave group speed, where no spatial dependence appears, and the electro-
magnetic field is purely electric. See Sect. 2.2.1.
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explicitly given by [10]

T 00 = 2mc2nγ2 +
E2

8π
(5.43)

T 10 = 2mc2nγp‖ (5.44)

T 11 = 2mc2np2‖ +
E2

8π
(5.45)

T 22 + T 33 = 2mc2np2⊥ (5.46)

The particle flux in this frame is

J = 2ncp‖ (5.47)

Since the particle flux is conserved in the transition, one can write the jump conditions in terms
of the fluxes per particle, in an MHD wind defined by µ (5.36) and ν (5.37). On the other hand,
they are given by the stress-energy tensor of an EM wave:

〈

J ′
〉

R2 =
µmcω′2

4πe2
(5.48)

µ =

〈

T ′01
〉

mc2 〈J ′〉 (5.49)

ν =

〈

T ′11
〉

mc2 〈J ′〉 (5.50)

where we also used definition (5.42).
Prime denotes quantities measured in the laboratory frame. To obtain the fluxes in this

frame, one can Lorentz transform the ones from the homogeneous frame [10]

J ′ = γ∗(2cβ∗nγ + J) (5.51)

T ′00 = γ2∗ [T
00 + 2β∗T

01 + β2∗T
11)] (5.52)

T ′10 = γ2∗ [(1 + β2∗)T
10 + β∗(T

00 + T 11)] (5.53)

T ′11 = γ2∗ (T
11 + 2β∗T

10 + β2∗T
00) (5.54)

T ′22 = T 22 (5.55)

T ′33 = T 33 (5.56)

If the phase-averaged magnetic field does not vanish in a flow, jump conditions (5.48), (5.49),
(5.50) are complemented by the magnetic flux conservation [10]

η =
〈E′〉2 /4π
mc2 〈J ′〉 (5.57)

where η = σβwγw 〈B′〉2 /
〈

B′2
〉

is the averaged magnetic field in an MHD wind. In fact, the
average of the field vanishes only in the equatorial plane (where the stripes have equal width)
and increases towards higher latitudes. It achieves its maximum value when the latitude is equal
to the inclination angle between the rotational and magnetic axes of a pulsar. Since the magnetic
flux is conserved during the mode conversion process, it contributes also to the total energy and
momentum of a strong EM wave, thus the new terms in the components (5.43), (5.44), (5.45) of
the stress-energy tensor must be taken into account.

Arka & Kirk [10] solved the algebraic equations (5.48), (5.49), (5.50) and (5.57) numerically
for both linearly and circularly polarized waves. In the latter case, if η = 0, also an analytic
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solution is available [97]. Alternatively, instead of solving algebraic equations one can integrate
the ordinary differential equations that express the conservation laws:

d

dR

(

R2
〈

J ′
〉)

= 0 (5.58)

d

dR

(

〈

T ′01
〉

〈J ′〉

)

= 0 (5.59)

d

dR

(

〈

T ′11
〉

〈J ′〉

)

= 0 (5.60)

The initial conditions for integration are given by the MHD wind parameters. The results for
circularly polarized waves are plotted in Fig. 5.5. Red curves trace the wave Lorentz factor
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Figure 5.5: The Lorentz factor of a circularly polarized strong wave that is launched from an
MHD wind with aL = 3.4× 1010, µ = 104, σ = 100, η = 0. The Lorentz factor is implied by the
jump conditions between these two modes (R is the conversion radius).

at launch as a function of the conversion radius. For a given conversion radius there are two
solutions of the jump conditions, which define two possible modes: the confined (lower branch)
and the free-escape one (upper branch).

83



5.3. Relativistically strong waves in pulsar winds

84



Chapter 6

Superluminal waves in pulsar winds

In this chapter we present our studies of the nonlinear electromagnetic modes in pulsar winds
– in particular their role in the formation of termination shocks. The motivation is to gain new
insight into the shock structure, providing a self-consistent picture, that is free of the σ-problem.

In section 6.1 we investigate the radial propagation of a spherical wave, for both circular and
linear polarizations, for the case of a vanishing averaged magnetic field. Similar to our study
of magnetic shear in blazar jets, we use a perturbative approach, in which the spherical effects
are treated as a perturbation to the known, plane wave solution. We find that the total energy
and the particle number are conserved during expansion, but the radial momentum changes due
to the motion of particles in the perpendicular plane. Consequently, the wave slows down as it
propagates and the ram pressure of the outflow converges to a constant value at large radii. For
a generic solution this value should be equal to the pressure of the external medium.

In section 6.2 we find that matching of a wave to the surroundings can be obtained from a set
of algebraic equations, due to the existence of a conserved quantity in the flow that connects the
asymptotic values of the wave parameters, fixed by the medium pressure, with those at the launch
site. The latter are determined from the striped wind µ, σ, aL, but the conversion radius is not
constrained uniquely. Since only the wave that is launched at a specific radius has the required
asymptotic pressure, the matching procedure allows us to define the conversion radius uniquely.
We find that the integral of motion for this system is the phase-averaged particle Lorentz factor,
measured in the laboratory frame. The main conclusion is that the shock precursor is determined
not only by the MHD wind parameters, but also by the pressure of the external medium. Thus,
in our scenario, the mode conversion process is determined by the boundary conditions, which
the striped wind itself cannot satisfy.

Further in section 6.3 we examine damping of strong waves due to the nonlinear inverse
Compton process. This effect is also treated as a perturbation to the known, plane wave solution.
Since the drag force due to radiation reaction depends on the wave amplitude, and that, in turn,
is determined by the external pressure when the wave is launched, we find that the efficiency
of the wave damping is determined by the pressure of the surrounding medium. Winds of
isolated pulsars, confined by the low-pressure nebulae, are not affected by the radiative damping.
However, for a pulsar/Be-star binary system, where the high-pressure environment is guaranteed
by the wind of a companion star, the interaction of particles with photons can be very efficient
and the wave may diminish very quickly after it has been launched. In our model, the wave
slow-down due to spherical expansion and radiation damping, is followed by the instabilities
that can set in when the streaming of the particles through the wave becomes sufficiently small.
The point where the streaming vanishes we identify with the shock, beyond which the wave is
disrupted and its energy is randomized. We find the expression for the fraction of the total
energy that is radiated before the shock is formed and it turns out to be dependent only on the
external pressure. Finally, we apply this model to the binary PSR B1259-63.
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6.1. Radial propagation

6.1 Radial propagation

In analogy to the subluminal waves in blazar jets, we investigate here the radial propagation
of a superluminal wave using perturbation analysis. The lowest and the first order equations can
be obtained directly from the previous analysis by putting M = 0 and a = 0, i.e. neglecting the
spacetime curvature caused by the presence of a rotating mass.

The two different timescales, on which the outflow quantities change, are the following: a
short one – determined by the pulsar rotation period P = 2π/ω′, and a long one t ≫ P , on
which the wave parameters evolve slowly due to the spherical expansion. A fast variable given
by the WKB-like phase of a wave takes a form

φ = ω′

(

t−
∫ r dr′

cβ(r′)

)

(6.1)

where β = 1/β∗ is the superluminal phase velocity of a wave, β∗ is the subluminal group speed.
The slow radial variable is defined by the light cylinder distance rL as

ρ = ǫ
r

rL
(6.2)

where ρ ∼ 1 and ǫ ∼ rL/r ≪ 1 is a small parameter (the short wavelength approximation).
In the next step we change the independent variables from (t, r) into the new coordinates

(φ, ρ). The time and space derivatives are expressed in terms of φ and ρ as

∂

∂t
→ ω′ ∂

∂φ
(6.3)

∂

∂r
→ ǫ

ω′

c

∂

∂ρ
− ω′β∗

c

∂

∂φ
(6.4)

γ′
d

dt
→ ǫ

ω′

c
p′‖

∂

∂ρ
− ω′∆′ ∂

∂φ
(6.5)

where ∆′ = γ′ − β∗p
′
‖.

Expanding all the dependent variables to the first order, i.e. γ′ = γ′(0) + ǫγ′(1) etc., and
substituting (6.3), (6.4) and (6.5) into the fluid and Maxwell equations, one obtains a set of
equations that describes the system in the lowest, and in the first order. Since we already know
the lowest order solution for the strong, plane waves (see §2.2.4), we can concentrate on the
radial evolution governed by the first order equations.

They, in turn, are equivalent to the conservation of the energy-momentum tensor ∇µT
′µν =

∂µT
′µν + ΓµµαT ′αν + ΓνµαT

′µα = 0, where the Christoffel symbols for the spherical geometry (in
the orthonormal basis the coordinates are denoted by numbers) are given by (e.g. [152], p. 213)

Γ1
22 = Γ1

33 = −Γ2
21 = −Γ3

31 = −1

r
, Γ2

33 = −Γ3
23 = −cot θ

r
,

1

r
=
ω′

c

ǫ

ρ
(6.6)

In the first order, one obtains

∂

∂φ
T ′0ν
(1) +

∂

∂ρ
T ′1ν
(0) +

2

ρ
T ′1ν
(0) − δν1

1

ρ

(

T ′22
(0) + T ′33

(0)

)

+
cot θ

ρ
T ′2ν
(0) − δν2

cot θ

ρ
T ′33
(0) = 0. (6.7)

Next, we average (6.7) over the phase. Elimination of secular terms demands all the first
order quantities be periodic, thus the first term vanishes immediately

∫ 2π

0

∂

∂φ
T ′0ν
(1) dφ = 0 (6.8)

86



6.2. Matching to the external pressure

For the component ν = 0 and ν = 1 we get the energy and momentum equations, respectively

1

ρ2
d

dρ

(

ρ2
〈

T ′10
(0)

〉)

= 0 (6.9)

1

ρ2
d

dρ

(

ρ2
〈

T ′11
(0)

〉)

=
1

ρ

〈

T ′22
(0) + T ′33

(0)

〉

(6.10)

They are complemented by the continuity equation ∇µJ
′µ = ∂µJ

′µ + ΓµµνJ ′ν = 0, which in the
same manner, in the first order, gives

1

ρ2
d

dρ

(

ρ2
〈

J ′1
(0)

〉)

= 0 (6.11)

Note that the transverse momenta of the fluids ensure that T ′22 and T ′33 do not vanish, and the
terms involving Christoffel symbols Γ1

22 and Γ1
33 contribute (as opposed to the case of an MHD

wind). As a consequence, radial momentum (6.10) of a flow is not conserved (i.e., the radial
momentum flux does not decrease as r−2). It reflects the fact that the flow does work in both
the parallel and transverse directions, and, even that the total energy is conserved, its division
between the parallel and transverse degrees of freedom changes.
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Figure 6.1: The Lorentz factor of a circularly polarized strong wave that is launched from an
MHD wind with aL = 3.4× 1010, µ = 104, σ = 100, η = 0. Red curves show the Lorentz factor
implied by the jump conditions, and the blue curves show the radial propagation of a wave,
launched at a point on the red curve.

Radial evolution of the wave Lorentz factor, obtained by integration of (6.9), (6.10) and
(6.11), is shown in Fig. 6.1. As before, red curves show the wave Lorentz factor at launch as
a function of the conversion radius. Blue curves trace the radial evolution of the wave Lorentz
factor, launched at a point on the red curve. The propagation is very different for each of two
superluminal modes: at large distances the free-escape wave accelerates, whereas the confined
one decelerates. The latter may have an application to the pulsar wind nebulae, which confine
the wind outflows, demanding its slow-down to the nonrelativistic speeds at the termination
shocks. In the following we concentrate on this mode.

6.2 Matching to the external pressure

By integrating equations (6.9), (6.10), and (6.11), one obtains the radial evolution of the
quantities measured in the special (homogeneous) frame (see §2.2.1): β∗(R), p⊥(R), p‖(R) for
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6.2. Matching to the external pressure

circular polarization, or β∗(R), q(R), p‖(R) for linear polarization. As discussed in Sect. 5.3.2, to
find the initial conditions for integration, one has to solve jump conditions between an MHD and
an EM wave, to ensure that they carry the same particle, energy and radial momentum fluxes [97,
10]. However, the conversion radius is not constrained uniquely, and, since the mode conversion
is causal, an additional equation should encode information about the physical conditions in the
surroundings. This information is the external pressure pext, to which the wind pressure

〈

T ′11
〉

should match. Since the wind impacts on the surroundings very far from the pulsar, e.g., in
the Crab case the nebula is located beyond 109rL, a generic solution converges to the external
pressure asymptotically R → ∞. We find that it is possible to connect the asymptotic pressure
of a wave with its initial parameters, because 〈γ′〉 is conserved during the spherical expansion,
for both the circular and linear polarizations. We show it in the next section 6.2.1. Taking
advantage of this integral of motion, the full set of algebraic equations that determine uniquely
the initial parameters of a wave, is as follows

〈

J ′
〉

=
〈

2np′‖

〉

= µ
〈

F ′
〉

=
2nω′2a2L
ρ2ω2

pµ
=

2nµγ2∗
R2

(6.12)

µ =

〈

T ′10
〉

mc3 〈J ′〉 (6.13)

ν =

〈

T ′11
〉

mc2 〈J ′〉

∣

∣

∣

∣

∣

0

(6.14)

〈

γ′
〉∣

∣

0
=
〈

γ′
〉∣

∣

∞
(6.15)

Figure 6.2: Sketch of the model. An MHD striped
wind converts at the conversion radius R0 to an EM
precursor before reaching the shock. The pressure of
the striped wind drops as 1/R2 (blue line), whereas
the pressure of the precursor asymptotically goes to
a constant value (red line), allowing smooth match-
ing to the external value pext.

6.2.1 Conservation of 〈γ′〉
Here we omit all “0” subscripts – wherever quantities come out of averaging, they should be

understood as phase independent. Thus, according to the calculations shown in Sect. 2.2.4, we
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6.2. Matching to the external pressure

use
〈

p‖
〉

= p‖0 ≡ p‖, 〈nγ〉 = n0γ0 ≡ nγ.
By taking

〈

T ′10
〉

= 2mc2γ2∗

[

(1 + β2∗)nγp‖ + β∗

(

nγ 〈γ〉+
〈

E2
〉

8πmc2
+ p2‖ 〈n〉

)]

(6.16)

〈

T ′11
〉

= 2mc2γ2∗

[

2β∗nγp‖ +

〈

E2
〉

16πmc2
(1 + β2∗) + p2‖ 〈n〉+ nγβ2∗ 〈γ〉

]

, (6.17)

multiplying (6.9) by β∗, and subtracting (6.10), we get

2

R

(

β∗nγp‖ +

〈

E2
〉

16πmc2
+ p2‖ 〈n〉

)

+
d

dR

(

〈

E2
〉

16πmc2
+ p2‖ 〈n〉+ β∗nγp‖

)

+
dβ∗
dR

γ2∗

[

(1 + β2∗)nγp‖ + β∗nγ 〈γ〉+
β∗
〈

E2
〉

8πmc2
+ β∗p

2
‖ 〈n〉

]

=

〈

np2⊥
〉

R
(6.18)

First simplification comes from the fact, that the term on the RHS is cancelled by the second
term on the LHS. It is straightforward for the circular polarization, since

|p⊥| =
e|E|
mcω

→
〈

E2
〉

8πmc2
=

E2

8πmc2
=
ω2

ω2
p

np2⊥ = np2⊥ (6.19)

where we used ω = ωp, holding in the homogeneous frame. For the linear polarization we have
to calculate averages explicitly

〈

np2⊥
〉

= nγ

(

〈γ〉 − γ2
〈

1

γ

〉)

= nγ2
F (q)

2F1(q)
(6.20)

〈

E2
〉

8πmc2
=
E2

0

〈

y2
〉

8πmc2
=

4nγ2

q

〈

y2
〉

= nγ2
F (q)

2F1(q)
=
〈

np2⊥
〉

(6.21)

where

F (q) = 2F1(q)

(

1

γ
〈γ〉 − γ

〈

1

γ

〉)

(6.22)

For later use, we also define G(q) as

G(q) = 2F1(q)

(

1

γ
〈γ〉+ γ

〈

1

γ

〉)

(6.23)

Another simplification will come from the continuity equation (6.11)

1

R2

d

dR

[

R2γ∗
(

β∗nγ + p‖ 〈n〉
)]

= 0 (6.24)

2

R

(

β∗nγ + p‖ 〈n〉
)

+ β∗γ
2
∗

dβ∗
dR

(

β∗nγ + p‖ 〈n〉
)

+
d

dR

(

β∗nγ + p‖ 〈n〉
)

= 0 (6.25)

Cancelling those terms in (6.18) and noting that γ∗(γ + β∗p‖) = γ′ we get

nγ

γ∗

d 〈γ′〉
dR

+β∗γ
2
∗

dβ∗
dR

(nγ 〈γ〉−γ2 〈n〉)− 1

2
γ2
d 〈n〉
dR

+
1

2
γ 〈γ〉 dn

dR
− 1

2
nγ
d 〈γ〉
dR

+
1

2
n 〈γ〉 dγ

dR
= 0 (6.26)

For the circular polarization 〈n〉 = n, 〈γ〉 = γ so all the terms – apart from the first one –
cancel and we get

dγ′

dR
= 0 (6.27)
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6.2. Matching to the external pressure

For the linear polarization, expressing averages explicitly as integrals and using

1

γ∗

dγ∗
dR

= β∗γ
2
∗

dβ∗
dR

, 〈n〉 = nγ

〈

1

γ

〉

(6.28)

we get
nγ

γ∗

d 〈γ′〉
dR

+
γ2

2

[

1

γ∗

dγ∗
dR

nF (q)

F1(q)
+

1

2

F (q)

F1(q)

dn

dR
− n

2

d

dR

(

G(q)

F1(q)

)]

= 0 (6.29)

Because ω′ is a fixed pulsar rotation frequency, we use

n

n′
=

n

ñγ2∗
=

16

π2
F 2
1 (q)

q

1

γ2∗
(6.30)

to get
nγ

γ∗

d 〈γ′〉
dR

+
4

π

n′

γ2∗

[

F

F1

d

dR

(

F 2
1

q

)

− F 2
1

q

d

dR

(

G

F1

)]

= 0 (6.31)

Expression in the bracket gives 0, so we are left with

d 〈γ′〉
dR

= 0 (6.32)

6.2.2 Matching of a circularly polarized wave

For the circularly polarized waves

〈

T ′11
〉

= 2mc2np′2‖ +
1

2

E′2 +B′2

4π

= 2mc2np′2‖ + (1 + β2∗)
E′2

8π

(6.33)

From (6.12)

p′‖ = γ∗(β∗γ + p‖)

=
µγ2∗
R2

(6.34)

In the limit R→ ∞, β∗ → 0, so we get

pext =
〈

T ′11
〉∣

∣

∞
=
E2

8π

∣

∣

∣

∣

∞

= mc2n′p2⊥∞ (6.35)

where n′ = mω′2/(8πe2) is the asymptotic value of ñ = mω2/(8πe2) = mω′2/(γ2∗8πe
2). Hence

p2⊥∞ =
pext
n′mc2

(6.36)

From (6.15) we get

γ′2 = 1 + p′2‖0 + p2⊥0

= 1 + p2⊥∞

(6.37)

The algebraic equations that determine an electromagnetic wave at launch are: (6.13), (6.14),
(6.34), (6.37). The roots can be found numerically, but to gain some intuition how the initial
values depend on the MHD wind parameters, we can also approximate them analytically. From
(6.37) and (6.34)

p2⊥0 = p2⊥∞ − µ2γ4∗0
R4

0

(6.38)
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6.2. Matching to the external pressure

and from (6.14), (6.33)

p2⊥0 =

(

ν − µ
γ2∗0
R2

0

)

2µ
γ2∗0
R2

0

2γ2∗0 − 1
(6.39)

These two equations can be combined to give a quadratic equation for R2
0 as a function of γ∗0.

A solution we expand in a small parameter 1/µ ∼ 1/ν and in the lowest order

R2
0 ≈ 2µνγ2∗0

p2⊥∞(2γ2∗0 − 1)
(6.40)

In analogy with this, from (6.13) we also get a quadratic equation for R2
0, and after expanding

R2
0 ≈ µ2γ∗0

p2⊥∞

√

γ2∗0 − 1
−
µγ∗0

√

1 + p2⊥∞

p2⊥∞

√

γ2∗0 − 1
(6.41)

p⊥∞ is given by (6.36). Combining (6.40) and (6.41), we finally obtain

γ2∗0 ≈
1

2

(

1 +
ν

√

ν2 − (µ− γ0)2

)

, γ0 =
√

1 + p2⊥∞ (6.42)

R2
0 ≈ µ

p2⊥∞

(

ν +
√

ν2 − (µ− γ0)2
)

(6.43)

6.2.3 Matching of a linearly polarized wave

For linearly polarized waves

〈

T ′11
〉

= 2mc2γ2∗

〈

2β∗nγp‖ +
E2

16πmc2
(1 + β2∗) + np2‖ + nγ2β2∗

〉

(6.44)

= 2mc2γ2∗

[

2β∗n0γ0p‖0 +
1

2
n0γ0

〈

p2⊥
γ

〉

(1 + β2∗) + n0γ0p
2
‖0

〈

1

γ

〉

+ n0γ0β
2
∗ 〈γ〉

]

(6.45)

where we used (6.21), (6.20) and (6.28) (see below). From (6.12)

〈

J ′
〉

= 2γ∗n0γ0

(

β∗ + p‖0

〈

1

γ

〉)

= 2γ∗n0γ0

(

β∗ +
p‖0

γ0

G(q)− F (q)

4F1(q)

)

=
2n0µγ

2
∗

R2

(6.46)

and in the limit R→ ∞, β∗ → 0 we get

n0γ0p‖0

〈

1

γ

〉

→ 0 (6.47)

Hence, in this limit and we also get from (6.45)

pext =
〈

T ′11
〉
∣

∣

∞
= mc2n0γ0

〈

p2⊥
γ

〉
∣

∣

∣

∣

∞

(6.48)

= mc2n0γ
2
0

(

1

γ0
〈γ〉 − γ0

〈

1

γ

〉)
∣

∣

∣

∣

∞

(6.49)

= mc2n0γ
2
0

F (q)

2F1(q)

∣

∣

∣

∣

∞

(6.50)
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6.3. EM precursors of pulsar wind shocks

where F1(q), F (q) are given by (2.76) and (6.22), respectively. Taking into account (2.78) and
limiting value γ0 → 1 as R→ ∞, we have the final form

8

π2
F (q)F1(q)

q

∣

∣

∣

∣

∞

=
pext
mc2n′

(6.51)

From this equation we calculate q∞, which, in turn, allows to obtain 〈γ′〉|∞, and therefore the
initial value 〈γ′〉|0

〈

γ′
〉∣

∣

∞
= 〈γ〉|∞ =

F (q) +G(q)

4F1(q)

∣

∣

∣

∣

∞

=
〈

γ′
〉
∣

∣

0
= γ0

F (q) +G(q)

4F1(q)

∣

∣

∣

∣

0

(6.52)

The wave at launch is determined by (6.13), (6.14), (6.46), (6.52).

6.2.4 External pressure

Instead of pext, one can define another parameter rext, which characterizes the distance, at
which pext is equal to the ram pressure pram of the MHD wind (i.e., the distance from a pulsar
to the MHD-shock)

pram =
L

4πr2extc
=
m2c2ω′2

4πe2
a2L
ρ2ext

=
m2c2ω′2

4πe2
µ2

R2
ext

(6.53)

= pext (6.54)

Asymptotically pram → 0. Thus, asymptotic, constant, but nonvanishing pressure of the EM wave
is always higher than that of the MHD wind. The upper limit for this value pupext is determined by
the critical radius Rext = Rc = 1, i.e., pupext = m2c2ω′2µ2/4πe2. It corresponds to the wave that
is launched almost at the cut-off. If the external pressure is higher than pupext, the EM precursor
cannot be formed because the required conversion radius would fall below the critical one. Hence,
the larger is µ, the higher can be the external pressure for which the precursor still exist.

Rewriting the initial conditions (6.42), (6.43) for a circularly polarized mode in terms of ρext,
we get

γ20 = 1 + p2⊥∞ = 1 + 2
aL
ρext

(6.55)

ρ20 ≈
ρ2ext
2µ

(

ν +
√

ν2 − (µ− γ0)2
)

(6.56)

This implies that the smaller the external pressure (or equivalently the larger ρext), the further
from the pulsar the wave is launched, and the larger group speed, and the smaller amplitude it
has. The amplitude is the largest, when the wave conversion occurs close to the cut-off.

Fig. 6.3 shows the example of matching for aL = 3.4 × 1010, µ = 10100, σ = 100 and
ρext = 4.6× 107; note that the distance ρext is smaller than the radius of the termination shock
in the Crab nebula ρts ≈ 109.

6.3 EM precursors of pulsar wind shocks

Superluminal waves are known to be unstable. Small density perturbations propagating in
the direction of motion become amplified and grow at extremely fast rates, of the order of the
plasma frequency Γ ∼ ωp [141, 118]. When this happens, the wave is disrupted and its energy
becomes thermalized. In our approach, a shock is a region, in which the instabilities set in
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Figure 6.3: Radial evolution of a strong wave, whose pressure is matched asymptotically to the
external pressure pext. Exemplary values for the matching were chosen to be aL = 3.4 × 1010,
µ = 10100, σ = 100 and ρext = 4.6× 107 (Rext = 13.8).

and the total energy carried by the cold fluids and the Poynting flux is randomized. Based on
calculations [118] and simulations [178, 184] in the literature, we expect the instabilities to set in
when the particles stream through the wave sufficiently slowly, i.e., when the wave group speed
becomes approximately equal to the parallel component of the particle velocity.
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6.3. EM precursors of pulsar wind shocks

We have already showed that as a large-amplitude wave propagates, it slows down gradually
due to the spherical sideways expansion. Here we examine its radiative damping, a consequence
of the nonlinear inverse Compton process. This mechanism also makes the wave slow down, and,
as a result, it leads to a decrease of the streaming. We expect, however, that it has the radiative
signatures that differ from those of the standard MHD-shock.

6.3.1 Damping due to radiation reaction

Inhomogeneities introduced by the radiation reaction force acting on the particles are added
as a first order correction to the plane-wave solution, in analogy with the analysis of the spherical
effects. We assume that the damping in one wavelength is small, thus the small parameter
ǫ ∼ r0/rL < c/rω ≪ 1, where r0 = e2/mc2 is the classical radius of an electron. As a fast
variable we again choose the WKB-like phase (6.1), and a slow distance is ρ = ǫr/rL. Writing
the radiation reaction force density in a way discussed in §2.3.1, we have

f ′µ = −2

3

m2c3

~
n0αfη

2(γ′, p′‖, p
′
⊥) (6.57)

where

η =
1

Ecr

√

(pµFµν)
2 =

e~

m2c3
∆′|E′| (6.58)

From (6.9) and (6.10), we find the equations

1

R2

d

dR

[

R2

(

n0mc
2p′‖γ

′ +
β∗E

′2

8π

)]

=
c

ω′

aL
µ
f0 (6.59)

1

R2

d

dR

[

R2

(

n0mc
2p′2‖ +

1

2
(1 + β2∗)

E′2

8π

)]

= n0mc
2 p

2
⊥

R
+

c

ω′

aL
µ
f1 (6.60)

where we rescaled the radial coordinate according to (5.42). Using E′ = γ∗E and (6.19), we get

1

R2

d

dR

[

R2

(

p′‖γ
′

γ2∗
+ β∗p

2
⊥

)]

= −gaL
µ

p2⊥∆
′2γ′

γ2∗
(6.61)

1

R2

d

dR

[

R2

(

p′2‖

γ2∗
+

1

2
(1 + β2∗)p

2
⊥

)]

=
1

γ2∗

p2⊥
R

− g
aL
µ

p2⊥∆
′2p′‖

γ2∗
(6.62)

where

g =
2

3
αf

~ω′

mc2
(6.63)

Here we consider only a circularly polarized wave so we omit phase averaging. The results of
numerical integration of equations (6.61) and (6.62) for exemplary values of the parameters are
shown in Fig. 6.4. It can be noticed that as the particles radiate, the energy is lost from the
system overall; however, the particles gain from the wave fields more energy than they lose in
radiation, and, consequently, they accelerate (Fig. 6.4b, p⊥ ≈ γ increases), whereas the wave
slows down (Fig. 6.4d, β∗ drops). The physical reason is the dephasing of p⊥ and E, induced
by the presence of radiation drag. In a circularly polarized wave p⊥ is everywhere orthogonal
to the wave electric field provided no interaction with photons is present, but as soon as the
radiation drag appears, p⊥ starts lagging behind E; the momentum and electric vectors are not
orthogonal any more, which results in the particle acceleration at the expense of the wave energy.
Moreover, also a Lorentz force is induced in the direction of the wave propagation. At the end
of the day, the group velocity of the wave drops and the particles catch up with the wave. In
the comoving frame both the particle and electromagnetic fluxes vanish at this point, so that it
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Figure 6.4: Radial evolution of a circularly polarized strong wave undergoing strong radiation
damping (solid lines). Dashed lines denote the solution without the radiation reaction. The
integration is stopped at the point, where the particle streaming through the wave vanishes
(i.e., where β∗ = p′‖/γ

′). Exemplary values for the matching were taken to be aL = 3.4 × 1010,

µ = 10100, σ = 100, ρext = 4.6× 107 (Rext = 13.8), g = 10−18.

can be regarded as a boundary (shock), where, due to the vanishing streaming, the instabilities
in the outflow come into play.
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6.3. EM precursors of pulsar wind shocks

The important remark is that in the no-streaming point the energy is equipartitioned between
the particles and the fields. Since the wave in this point, γ∗ ≈ 1, and the particle energy flux
is approximately p′‖γ

′. On the other hand, the Poynting flux is given by p′‖p
2
⊥/γ

′ ≈ p′‖γ
′, since

β∗ = p′‖/γ
′ and p⊥ ≈ γ′. Thus, the final total energy flux is given by

µf ≈ 2
R2p2⊥β∗

µ
(6.64)

Since the parallel component of the particle velocity is equal to the wave speed, the relation

p′‖

β∗
= γ′ ≈ R2p2⊥β∗

µ
(6.65)

holds. These two equations can be combined to give

µf = 2p⊥∞γ∗ ≈ 2p⊥∞ (6.66)

Equation 6.66 shows that the energy flux that is left in the outflow does not depend on the initial
energy flux µ. Hence, for a given pext, the more energy is available, the more is also dissipated
into the radiation field before the no-streaming point is reached. On the other hand, the higher
the external pressure pext, the larger is the wave amplitude, and the more important radiation
drag becomes. In this case, however, the wave abruptly slows down, transferring energy to the
accelerated particles, but the total energy is not efficiently dissipated by the system. Thus, in
the strong radiation reaction regime, the conversion between the electromagnetic and kinetic
energy occurs without significant energy losses, but the wave becomes unstable, and forms a
shock quickly after the launch.

We can estimate the damping lengthscale Rd analytically. From (6.61), by integrating both
sides over R,

µ− µf =
gaL
µ2

∫ Rd

R0

dRR2 p2⊥∆
′2γ′ (6.67)

and approximating p⊥ ≈ p⊥∞, ∆′ ≈ γ′ ≈ p⊥∞, one obtains

Rd ≈
(

R3
0 +

3µ2(µ− µf)

gaL p5⊥∞

)1/3

(6.68)

=

[

R3
0 +

3R5
ext

25/2gaLµ2

(

1− 2
√
2

Rext

)]1/3

(6.69)

where R0 and p⊥∞ are given by (6.43) and (6.36), respectively. In Fig. 6.5 we show the damping
length as a function of Rext. We plot both the numerical results and the analytic estimation
(6.69). The latter is valid only when Rext ≥ 2

√
2, and it is a good approximation only when the

external pressure is rather low.
Rewriting the damping length in wavelengths, we get

ρd ≈
[

ρ30 +
3a2L
gp5⊥∞

(

1− µf
µ

)]1/3

(6.70)

It shows that ρd is only very weakly dependent on the initial mass loading µ, but it strongly
depends on the external pressure – the higher pext is, the smaller the damping lengthscale be-
comes.

Since the shock location is given by the damping length in the radiation dominated regime,
our results imply that in the pulsar systems one can distinguish between different scenarios of
the formation of the termination shocks. For specified values of the magnetospheric and wind
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Figure 6.5: Damping length Rd of a strong wave as a function of the external pressure, char-
acterized by the distance Rext at which it would balance the ram pressure of an MHD wind.
Solid curves show the numerical results (where Rd is taken as a point of vanishing streaming).
Dashed curves show the analytical estimate (6.69) for three different values of µ. Clearly, the
analytical approximation is not valid when the external pressure is high (i.e., Rext is low) and
the mass loading µ is large. Below the minimum value Rext = 2

√
2, denoted here by the vertical

line, the analytical approximation is not valid. Parameters are chosen as those of the Crab:
aL = 3.4× 1010, σ = 100, g = 1.19× 10−21.

parameters, the structure of the shock is determined only by the pressure conditions in the
external medium:

(1) if the external pressure is very high pext > pram(Rc), so that the conversion radius
required by the external conditions falls below the critical radius, the superluminal mode cannot
be launched and the shock is formed when the inner, MHD striped wind interacts with the
surroundings,

(2) if the pressure is pext < pram(Rc), the EM precursor can be launched; here, however,
different cases may also occur:

• when the pressure is close to the maximal value, the radiation damping is efficient; in
addition, if the mass loading µ is large enough to support the superluminal wave solution,
the damping determines the shock location (this damping is followed by the instabilities in
the outflow),

• the pressure is lower so that the radiation damping in the wave is ineffective; in this case
the particle streaming decreases, e.g., due to the spherical expansion, until the instabilities
set in and the shock is formed.

6.3.2 Application to binaries

For the Crab nebula the pressure at the termination shock of the pulsar wind was estimated by
Kennel and Coroniti [90]. In their MHD model of a pulsar wind/nebula system, behind the shock
it is given by ∼ L/(4πr2s c) and it falls with the distance, with the radial dependence determined
by the value of σ. It was found that for small magnetization, close to the inner edge of the nebula,
the pressure is approximately ∼ 10−8 dyn cm−2. Following this analysis, we assume this value at
the shock. In fact, it is very low, hence the effects of radiation reaction are negligible. In Fig. 6.5
it is shown how the damping lengthscale depends on Rext. For Crab ρext ≈ 109, and dissipation
is very inefficient for any reasonable value of µ. Estimating the dissipation length from (6.70),
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one obtains a value much larger than the distance to the termination shock ρd ∼ 2×1011 ≫ ρext.
A different situation arises for the binaries, in which the wind of a massive companion star

provides a high-pressure environment. If this pressure is sufficiently large, and also the mass
loading is large, the EM wave can form a shock close to where it would be expected from the MHD
wind. In Fig. 6.5 the red curve shows these solutions, for which Rd ≈ Rext when the pressure
is high. Such a non-MHD shock, characterized by its precursor, even though located close to
the would-be MHD shock of the striped wind, has very different structure and properties, when
compared to the standard MHD shocks: (1) upstream in the flow the electromagnetic energy is
effectively transferred to the particles, (2) possibility it can be created only in some parts of the
pulsar orbit, (3) it has radiative signatures that depend mostly on the external pressure.

To study these properties as an example we consider the binary system PSR B1259-63. The
48 ms pulsar moves around the massive companion Be-type star on a very eccentric orbit with
a period 3.4 years [88]. The pulsar spin-down power was measured to be L = 8 × 1035 erg s−1

which gives
aL = 3.8× 109 (6.71)

From (6.63) one can also calculate the radiation damping coefficient as

g = 8.2× 10−22 (6.72)

Most probably, there is no accretion onto the pulsar [192], hence µ should be dependent only on
the magnetospheric conditions, staying constant along the orbit. The distance from the star to
the shock rsh, and also pext (the pressure at the shock between the pulsar and stellar winds), in
contrast to µ, are both expected to change with the pulsar position relative to the star. However,
pext, determined by the stellar wind, is not well constrained, and strongly depends on a model
of the stellar wind. Typically, for Be-type stars, such a wind is modelled as two-component,
with a fast, low-density outflow from the polar regions and a slow, high-density one from the
equatorial disk [206]. Since the disk-like equatorial flow does not extend to large distances, only
the polar flow is thought to be important for shocks located further from the star than the disc
edge rsh ≥ 1.6× 1013 cm. The mass loss rate is of the order Ṁ ≈ 10−8M⊙ yr−1 and the velocity
of a radiatively driven polar wind is modelled as [206] (for discussion see also [192])

vw(r) = v∞

(

1− r∗
r

)

(6.73)

with v∞ = 2× 108 cm s−1, r∗ = 8× 1011 cm – the asymptotic wind velocity and a stellar radius,
respectively. Pressure at the shock is given by

pext =
Ṁvw(rsh)

4πr2sh
(6.74)

For estimation we can safely approximate vw ≈ v∞ for rsh ≫ r∗. Assuming that the shock is
located halfway between the star and the pulsar, when a pulsar is in the apastron, we get a value
of the order 2× 10−3 dyn cm−2.

In the periastron, the external pressure may be rather determined by a dense equatorial flow.
In this case the mass loss rate is higher, of the order Ṁ ≈ 10−7M⊙ yr−1 and the velocity and
density distributions are modelled as [205]

v(r) = v0

(

r

r∗

)n−2

, ρ(r) = ρ0

(

r

r∗

)−n

(6.75)

with ρ0 = Ṁ/4πr2∗v0 g cm−3, v0 = 106 cm s−1 and 2 ≤ n ≤ 4, depending on the star. The value
n = 2.4 is indicated for some Be stars [205]. The pressure, given by

p(rsh) =
Ṁv0
4πr2∗

(

rsh
r∗

)n−4

(6.76)
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strongly depends on the assumed parameters, ranging between 0.05− 0.5 dyn cm−2.
In a system PSR B1259-63, however, the stellar disk is highly inclined to the plane of the

pulsar orbit and even in the periastron this is rather the polar flow that determines the external
pressure. The disk is probably important only when the pulsar crosses it, twice on the orbit. In
the following we assume that the stellar flow is polar, and the pressure at the shock varies along
the orbit only due to change of the orbital separation. In particular, one can notice that close
to the periastron, the external pressure may be too high to allow the EM waves to be launched.
In the apastron, on the other hand, propagation of a shock precursor can be permitted. Thus, a
possiblity arises that depending on the orbital distance to the companion star, different regimes
of the pulsar wind shock formation are probed. Here our strategy will be to choose µ which can

Figure 6.6: Sketch of the binary PSR B1259-63. Since the pulsar (black dot) is on a very eccentric
orbit around the companion Be-star (yellow star), the external conditions provided by the stellar
wind (yellow shading) change significantly over the period. Close to the periastron the pressure at
the shock front (red curve) between the stellar and pulsar winds is higher than the critical value
p > pc, and the EM precursor cannot be launched. The shock is determined by the interaction
of the stellar wind with the MHD striped wind. When the orbital separation increases, so that
p < pc, launching of a precursor becomes possible and non-MHD shock is formed.

support EM waves, matching even the highest estimated pressures. This case implies a testable
prediction how the radiation losses µrad = µ− µf change during the orbital motion, if the shock
is everywhere determined by the radiation reaction.

We examine the binary properties versus the orbital separation in several steps: (1) having
chosen the MHD wind parameters, we calculate the EM wave parameters and integrate the
evolution equations to obtain the wave dissipation length (i.e., the point where the streaming
vanishes), which is smaller than the orbital separation. (2) In this point we calculate the pulsar
wind pressure, which is assumed to be equal to the stellar wind pressure, given by

pBe =
Υ

4πr2sh
(6.77)

where the outflow parameter Υ = Ṁ−8v8 [193, 192]. (3) Finally, we calculate the orbital sepa-
ration by adding a shock distance from the pulsar (conversion radius + dissipation length) and
a shock distance from the star (calculated from Eq. 6.77). Fig. 6.7 shows the resulting radiated
energy per particle µrad, pressure at the shock psh and the dissipation length rd versus the orbital
distance d.

Very high energy emission in PSR B1259-63 is attributed to the inverse Compton scattering
of soft stellar photons by energetic particles in the pulsar wind [98, 18]. The drag due to IC
scattering can be treated in the same manner as the radiation reaction, and in the first order
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Figure 6.7: The radiated energy per particle µrad, the star wind pressure at the shock psh and
the shock distance from the pulsar rd (i.e., the damping length rd = ρdrL) versus the orbital
separation d. Distances are normalized to the orbital separation at the apastron da = 1.4× 1014
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2
a = 1.08 × 10−4 dyn cm−2 (Lsd is a pulsar

spin-down luminosity). Vertical lines denote the apastron and periastron separation for this
system. The dashed line is the result obtained when the IC energy losses are taken into account.
µ = µ5 × 105, Υ denotes a model of the companion star’s wind (the bigger the value, the denser
the wind). We assumed aL = 3.8× 109, σ = 100 and g = 8.2× 10−22.

one obtains the radial evolution of the total energy and momentum

1

R2

d

dR

[

R2

(

p′‖γ
′

γ2∗
+ β∗p

2
⊥

)]

= −4

3

σU

mc2
aLc

µω′

γ′(γ′2 − 1)

γ2∗
(6.78)

1

R2

d

dR

[

R2

(

p′2‖

γ2∗
+

1

2
(1 + β2∗)p

2
⊥

)]

=
1

γ2∗

p2⊥
R

− 4

3

σU

mc2
aLc

µω′

γ′2p′‖

γ2∗
(6.79)

The energy density in the photon field from the companion star of luminosity L∗ = 3.3 ×
1037 erg s−1 can be estimated as

U =
L∗

4πcd2
≈ 0.9

(

dp
d

)2

erg cm−3 (6.80)

where dp is the orbital distance in the periastron. We can define the coefficient of the IC process
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as

k =
4

3

σU

mc2
aLc

ω′
= kp

(

dp
d

)2

(6.81)

To estimate the IC effect, we work in the Thomson regime. Lorentz factors of the particles are the
largest in the periastron, e.g., for psh ∼ 0.1 dyn cm−2, γ ∼ 2× 105. For the stellar temperature
T = 2.3× 104 K, most photons appear with the energy ǫ = 2.7kBT/mc

2 ≈ 10−5. Hence we get
γǫ ∼ 1, which in fact is the threshold for the Klein-Nishina effects to become important. At
larger distances, however, γ is lower and the Thomson limit safer. We can treat the calculation
as the upper limit on the interaction.

Now we add both the radiation reaction and the IC drag forces on the flow and we calculate
the shock position in analogy with the previous analysis, assuming that it is located at the point
where the streaming in the flow vanishes. However, the photon energy density at the point,
where the wave is launched, depends on the distance from this point to the star, which we do not
know until we match the stellar and the pulsar wind pressures at the shock. To do it consistently
we (i) choose k, (ii) integrate evolution equations, (iii) check if the location of the shock, and the
flow pressure at the shock, satisfy the equation

dp

√

kp
k

= rd − r0 +

√

Ṁvw
4πpsh

(6.82)

where rd is the distance from the the pulsar to the shock (i.e., the dissipation length), r0 is the
launching radius measured from the pulsar, (iv) if not, we repeat the procedure until we find a
solution. The result is shown in Fig. 6.7.

Inverse Compton losses are the strongest not in the periastron but when the orbital separation
is slightly larger ∼ (0.1− 0.3)da ∼ (1.4− 4.2)× 1013 cm. The shift of the radiation peak reflects
the significance of the nonlinear inverse Compton (NIC) process in comparison to the external
IC, similar as it is for the synchrotron/IC model discussed by Kirk et al. [98]. In a very highest
pressure environment the former is dominant and very quickly leads to the wave slow-down and to
the formation of the shock, without significant radiative losses from the precursor. Contribution
from the scattering on the external photon field plays a role at larger orbital separations, when
the photon energy density is still large, but the NIC process is less efficient. This effect can be
even stronger when the full Klein-Nishina description is applied.

6.3.3 Implications for lightcurves

As the external pressure increases, the amount of the energy radiated in the precursor de-
creases (if µ is constant along the orbit). Since less energy is radiated, near the periastron the
dissipation has to occur mainly at the shock itself, where the particles are accelerated, and there-
fore emit nonthermal radiation. Thus, in the parts of the orbit where the pressure is higher than
in the other parts, but not too high so that the precursor still can be launched, one can expect
an enhancement of the high energy emission from the shock.

In our model the emission is not only from the shock itself, where the flow is thermalized,
but also from the shock precursor, as soon as it is launched. Since the radiation process is the
NIC scattering in a strong wave, the spectrum will resemble that of the synchrotron photons.
However, there is an additional effect that should be taken into account when modelling the
emission. As the external pressure increases from apastron to periastron, photons radiated in
the NIC process have higher energies. From Fig. 6.7 one can estimate the pressure at the shock in
the apastron ∼ 10 pa and the critical frequency of the radiated photons is Ω ≈ γ3ω ≈ 4×1015 Hz.
In the periastron it is higher, since p ∼ 700 pa implies Ω ≈ 1018 Hz. Thus, during the apastron
passage one can expect a spatially extended optical/UV emission, which however may be masked
by the emission from the luminous Be-star. Around the periastron the X-ray emission would
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appear, but since the amount of the energy radiated by the precursor is suppressed in periastron
(i.e., µrad = µ − µf has a minimum, because µf has a maximum), it may be of lower intensity.
the emission region would be rather compact, since the precursor layer between the wave launch
and the shock is very thin. This emission in principle would be pulsed, but, on the other hand,
may be smeared out during propagation.

In the periastron soft stellar photons can be upscattered in the IC process to energies γ2ǫ ∼
100 GeV, and those emitted in the NIC process are in the X-ray band. If µ is smaller, say
µ ∼ 104, the upscattered photons have energies of a few hundred MeV. Fermi data in > 100
MeV range in PSR B1259-63 show the flare emission 30-50 days after the periastron passage, see
e.g. [191], and also after the stellar disk crossing. The flare is initiated quickly, with maximum
35 days after the periastron passage, but it drops very slowly afterwards. The flare emission is
a significant fraction of the pulsar spindown power (the gamma-ray flare was not accompanied
by any significant X-ray activity). Khangulyan et al. [95] proposed that the underlying process
is Comptonization of the cold pulsar wind. When the pulsar crosses the stellar disk, its wind
is early terminated, which suppresses the gamma-ray emission. After escape out of the disk,
the pulsar wind increases its zone length towards the observer and the cooling length of the IC
emission can be smaller than this zone length provided the sufficient photon density is present.
In their model an additional source of the soft photons is needed, and it is the stellar disk itself.
In our scenario the flare could be caused in the transition between the MHD and the non-MHD
regime of the shock formation. 30 day after the periastron, during the flare, the binary members
are d ≈ 3× 1013 cm apart – if this distance was equal to the critical radius rc, beyond which the
EM wave precursor starts playing a role in determining the shock, it would give us µ = 2× 104.
This is consistent with no X-ray counterpart of the flare, because the precursor emission would
be at Ω ∼ 1015 Hz, the optical frequency where the starlight from the companion is much more
luminous. This value of the mass loading implies multiplicities κ ∼ 105, about order of magnitude
smaller than that of the Crab.

In particular, this system can be compared to other binaries, like LS 5039 and LS I+61◦303,
which possibly also contain a young pulsar as a compact object [56]. In that case their mass
loading µ may be similar in all three systems. The difference is that the two latter ones are more
compact that PRS B1259-63:

orbital separation [AU]
system periastron apastron
PSR B1259-63 0.7 10
LS I+61◦303 0.2 0.7
LS 5039 0.1 0.2

In our earlier calculations we assumed very high value of µ ∼ few × 105 that would allow
the damping-dominated regime along the entire elongated orbit of PSR B1259-63. For this value
we expect that LS 5039 is not able to support an EM precursor anywhere along he orbit, LS
I+61◦303 may be able to support it only close to the apastron, and PSR B1259-63 may have a
non-MHD shock everywhere along the orbit. However, if µ is smaller, µ ≈ 104, an alternative
possibility can be realized: in the apastron of LS I+61◦303 the pressure is also too high, and only
PSR B1259-63 can maintain the non-MHD shock around the apastron. More detailed analysis
of lightcurves may help to distinguish between these scenarios.

6.3.4 Parametric instabilities

In our scenario, a flow is terminated when intrinsic instabilities set in. This can occur when
the wave slows down due to radiation reaction or spherical expansion, and its group velocity
cβ∗ becomes close to the parallel component of particle velocity v‖. As the wave slows down, in
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the frame moving with v‖ the wave frequency decreases until it reaches the plasma frequency.
If large-amplitude waves are unstable against small perturbations, the parametric excitation of
plasma oscillations can occur.

On the other hand, the discussed self-consistent waves are obtained as special solutions, in
which particles and fields have a precisely set phasing. One may expect, therefore, that any
perturbation of this equilibrium will destroy it [118]. Thus, the strong waves are likely to be
unstable against small fluctuations. The stability analysis is crucial for an understanding of the
formation of shocks, and is summarized in the next section.

Physical mechanism

The physics of parametric instabilities was explained first by Max [141]. A longitudinal wave,
propagating through a nonlinear wave, produces the density perturbation δN that generates the
perpendicular current ev⊥δN . This current is a source of a first order electromagnetic field
(i.e., scattered electromagnetic mode), which, in turn, interferes with the field of the pump
wave. Consequently, the ponderomotive force ∇(E · δE) is generated in the direction of the
wave motion, and it reinforces the initial density perturbation. Thus, the feedback mechanism
is a result of the coupling between transverse electromagnetic modes and longitudinal plasma
oscillations, which occurs in the presence of a nonlinear wave in a plasma.

The parametric character of the instability can be understood most easily in the nonrela-
tivistic limit, when a pump is a linear electromagnetic wave that causes electrons to oscillate
with small amplitudes. In that case one linearizes the continuity equation and the equation of
particle motion for small density and velocity perturbations. They can be combined to give an
equation governing evolution of the density fluctuation. It has exactly the form of the Mathieu
equation, describing parametrically driven oscillators [114, 113].

Wave stability

The stability of large-amplitude nonlinear waves against density perturbations, propagating
in the direction of motion, was investigated in many papers. Max [141] studied transverse, cir-
cularly polarized waves in a cold unmagnetized electron-ion plasma, but the ions were treated
nonrelativistically. The obtained dispersion relation was an eighth order polynomial in the per-
turbation frequency. Romeiras [178] extended this work by treating the ion motion relativisti-
cally, which also allowed him to discuss the wave stability in an electron-positron plasma. In
this case, the dispersion relation decouples into a stable longitudinal second order branch, and a
sixth order polynomial, describing transverse modes. When the streaming vanishes, these modes
were shown to be unstable for every wave number in the limit of large phase velocities. The
instability growth rate is as large as the wave frequency. Numerical calculations show, however,
that the relativistic streaming can stabilize a wave. Analytical estimates were carried out by Lee
& Lerche [118]. They found that, in a general case, the wave is unstable against short wavelength
perturbations. However, the small-wavelength fluctuations are expected to be Landau-damped.
Instead, long wavelength perturbations can play a role. In this case, Lee & Lerche found that
the roots of the dispersion relation give an oscillatory behavior if

p2‖ > 2γp⊥ − p2⊥ (6.83)

i.e., when the streaming of the particles through the wave is sufficiently large. The wave stabi-
lization by streaming was also shown in the PIC simulations [184]. This study showed that the
launching of a circularly polarized wave into a relativistically streaming, cold pair plasma, per-
mits its propagation without the disruption by instabilities, up to the shock, set up in simulations
at a fixed position. The dissipation of the Poynting flux into the thermal motion was observed
just in the shock precursor region, where the wave interaction with the particles is strongest.
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In isolated pulsars, such a strong wave is launched with a small amplitude and high velocity,
so that, initially, the streaming is large. A different situation arises in binary systems, where
the external conditions require the waves that have large amplitudes, small velocities, and small
particle streaming. In this case, instabilities are likely to set in close to the launching site, because
(6.83) may not be satisfied. Therefore, in binary systems, even though a superluminal solution
may be allowed by the pressure conditions, it may be destroyed immediately after launching,
and the shock would be located very close to the conversion radius. However, there are several
possible stabilizing mechanisms that could prevent the quick disruption of the strong wave.
Firstly, electromagnetic waves in plasmas can be stabilized against longitudinal perturbations
by the presence of a magnetic field [16]. Secondly, in a finite temperature plasma, longitudinal
perturbations can be easily damped. One may expect that the instabilities are an artifact of
the cold plasma assumption. Lastly, determining of the stability of nonlinear waves requires a
fully nonlinear consideration as the perturbation grows into a nonlinear regime. As shown in
numerical calculations [86] there might exist a saturation threshold for the instabilities.

The stability of linearly polarized waves in the presence of a magnetic field perpendicular to
the direction of motion was studied by Asseo et al. [16]. They found that the magnetic field has
a stabilizing property for this mode. This situation is of interest for pulsars, because in a striped
wind, the nonvanishing phase averaged magnetic field is perpendicular to the direction of the
wave motion. Therefore, even if in the equatorial plane the waves are unstable and the shock
forms just after the wave has been launched, in higher latitudes it may form considerably further,
when the wave slows down due to spherical expansion or radiation reaction. For completeness
we also mention that the case of circularly polarized waves and a magnetic field in the direction
of motion was investigated in [120]. They concluded that in a general case the inclusion of the
magnetic field does not stabilize this mode. However, in the most interesting case of nonvanishing
streaming and the magnetic field both included, the instability growth rate can be substantially
decreased.

As we mentioned, a self-consistent solution in a cold plasma is obtained by a precise phasing
between particles and fields. In a finite temperature the spread in particle momenta relaxes this
phasing and, therefore, the system may be more tolerant of the perturbations. Clemmow [43]
and Lee & Lerche [119] constructed a strong, self-consistent wave solution in a warm plasma.
Lee & Lerche [121] added a magnetic field, and investigated the stability of the solution against
the same kind of perturbations as previously. Their analysis was restricted to a nonrelativistic
plasma p⊥ ≪ mc. In particular, the plasma was cold in the direction of the wave propagation
and, since this distribution is anisotropic and may be intrinsically unstable, they focused on
the modes that have the vanishing growth rate when the wave amplitude goes to zero. They
concluded that the spread in the particle distribution does not affect the instability growth rate.
In the application we discuss here, the perpendicular momentum is highly relativistic, but up to
date no calculations have been published for this case.

All of the outlined studies were based on the perturbation technique, and linearization of
the perturbed two-fluid and Maxwell equations. When the perturbation grows into a nonlinear
regime a fully nonlinear stability analysis is needed, however. Such a nonlinear analysis, in the
case of a circularly polarized, strong wave in a magnetized plasma, was carried out in [189, 190].
Their numerical analysis showed the sharpening of a perturbing density wave, leading to a shock-
like structure as the perturbation evolves to a nonlinear regime. The fate of instabilities depends
in this case on the relative timescale of the evolution of the excited waves into a nonlinear
regime, and a timescale for their spatial diffusion out of the system. Somewhat earlier, the
need for such a fully nonlinear investigation was pointed out by Jancarik & Tsytovich [86], who
investigated a subluminal electrostatic mode, and found that the monochromatic perturbations
grow in the beginning, but saturate and decay before they would reach a high level. Stochastic
initial perturbations were shown to be slightly damped.

One more question can be posed, concerning the dependence of the wave stability on the
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wave polarization. The case of linearly polarized waves was investigated numerically by Leboeuf
et al. [117]. First, they investigated a sinusoidal wave and perturbed the particle momenta in
the direction of the wave electric field, finding that (1) if the wave has the frequency well above
the cut-off, the waveform changes little; (2) if the frequency is close to the cut-off frequency, the
waveform steepens (more energy is transfered to the particles as the frequency gets closer to the
cut-off frequency). In both cases, the significant parallel momenta are gained by the particles.
As the wave steepens, the energy is dissipated, and a hot plasma with large particle velocities
in the longitudinal direction is generated. Density spikes initially appear at the maxima and
minima of the wave magnetic field, but they propagate with the speed smaller than the wave
group speed. This is the formation of a longitudinal density wave. In the case of a self-consistent
sawtooth wave, the energy exchange between the fields and the particles reveals the oscillatory
behavior. Also in this case a significant gain in the parallel momenta was observed. Independent
of the initial waveform then, the final stationary state is a very hot plasma in the direction of a
wave propagation, with twice as many peaks in the density as in the fields. As the wave shape
steepens, there is a tendency towards the equipartition of the electromagnetic and particle fluxes.

6.4 Summary and conclusions

We extended a model of Kirk [97] and Arka & Kirk [10], in which an MHD striped wind
converts into a strong electromagnetic wave at some distance to the termination shock. This
new mode can propagate only beyond a critical radius (in a sufficiently underdense plasma), and
can be viewed as a shock precursor. It transfers the energy from the fields to the particles, and
thus provides a solution to the magnetization problem in pulsar winds.

In particular, we investigated its radial propagation, and we showed that one can find a
unique, self-consistent solution matching asymptotically to the external pressure, defined by the
surroundings. This procedure can be applicable to the isolated pulsars, whose winds form shocks
at large distances. We conclude that the conversion process does not occur spontaneously, but
rather as an effect of the external conditions.

This picture may change when the interaction of particles and photons is no longer a negligible
effect. Thus, we investigated the wave evolution when the nonlinear inverse Compton, and/or
external Compton processes contribute. Both these effects, and also the radial expansion cause
the wave to slow down, and decrease the streaming of the particles through the wave until the
parametric instabilities can set in. We suggest that this underlies the formation of a shock.

We identified two regimes for the conditions at shocks:
• one with high external pressures, which require an EM wave to be launched in a region

where it cannot propagate; thus, in this regime, no electromagnetic precursor can exist.
A shock is possibly formed by the interactions of the inner, MHD striped wind with the
external medium; the energy dissipation mechanism which has been proposed is that of
reconnection [134], when the stripes of opposite polarity are compressed at the shock,

• one with lower external pressures, in which the superluminal wave might be generated
in the shock precursor, damped and merged to the surroundings; the possible damping
mechanisms include the nonlinear IC process, IC scattering on the external photon field,
and wavebreaking parametric instabilities in the outflow.

The winds from isolated pulsars belong to the second category. Pulsars in binary systems,
on the other hand, may be embedded in high pressure winds of companion stars, and a regime of
the shock conditions can change with the orbital phase. An example is the binary PSR B1259-
63. If the regime switch occurs 30 days after periastron, one can expect IC emission from the
shock precursor in the range of a few hundred MeV, consistent with the flare observed by Fermi-
LAT. If this is true, mass loading in the magnetosphere is constrained to a very moderate value,
consistent with current pulsar models. At the same time, one can expect a twin, optical flare
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due to the nonlinear inverse Compton mechanism, but its emission may be hidden beneath that
of the much more luminous companion star.
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Summary

Highly magnetized, relativistic outflows, despite years of investigation, remain mysterious
in many aspects. One of the outstanding issues is an understanding of how the energy that is
extracted electromagnetically from a rotating compact object, can be transferred from the fields
to the plasma particles. Observations show that it can happen very abruptly, at the highest
energies, and can occur on the very short timescales. These properties are hard to accommodate
within the standard models of Poynting-flux dominated winds.

The outflow from black holes is typically characterized by collimated jets, while the wind of
obliquely rotating pulsars form a corrugated current sheet that separates stripes of alternating
magnetic field. Close to the central object, the outflow is thought to be dense, but as it propagates
outwards, the density drops and the field can no longer be regarded as stationarily frozen-in. The
ideal MHD approximation breaks down, and a more sophisticated treatment is necessary. The
breakdown follows from the increasing importance of the particle inertia in a charge-starved
plasma, and consequently, the plasma conductivity becomes affected by the relativistic drift-
speed of the plasma species. The simplest model that can account for these effects is that of two
cold fluids, coupled to the electromagnetic fields. The system is solved using a short-wavelength
perturbation analysis, which in the lowest order gives an exact solution for the large-amplitude
plane waves, and in the first order describes their slow radial evolution. In the following we
summarize the main conclusions of this work.

Blazar jets

In unconfined, initially dense outflows, of particular interest are the waves of subluminal
phase velocity, which, at least close to their launch, resemble more closely MHD waves than
electromagnetic. In blazars, we suggested that such a wave is launched from the polar regions of
a rotating black hole and propagates radially in the direction of a jet. We investigated a special
solution: a large-amplitude circularly polarized, Alfvén-like mode, characterized by a magnetic
shear – in the comoving frame it has only a static magnetic field that rotates one full revolution
per wavelength, with the magnetic vector everywhere parallel to the direction of the current.
The particles move radially in resonance with this wave. The radial evolution depends on two
parameters that specify the supermagnetosonic jet at launch: the dimensionless luminosity a0
and the outflow magnetization σ0 (i.e., the ratio of the Poynting flux to the particle energy flux)
or, alternatively, the energy per particle µ carried by the wave.

Although the wave can propagate in a high density plasma, its evolution changes dramatically
when the plasma becomes rarefied, i.e., a coasting, constant velocity outflow starts to accelerate
when the particle inertia becomes an important contribution to the energy-momentum flux. This
occurs at the distance r ≈ (a0/σ0)(c/ω). For the parameters, inferred for the source PKS 2155-
304, this takes place on parsec scales. Pre-existing high-energy particle emission is expected to
be modulated with the wave frequency, and we showed that these fluctuations are not smeared
out by the difference in the light-travel time to the observer provided the pair loading in the
magnetosphere is sufficiently low. The model can provide an explanation of the extremely fast
variability in the TeV band, exhibited by some blazars.
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Pulsar winds

Pulsar winds, as opposed to blazar jets, are confined flows, terminated at roughly standing
shocks. Their magnetization is thought to be lower than that of the jets, because the pulsar out-
flows have a larger pair multiplicity. Thus, before charge starvation affects the MHD wave, other
modes available in underdense plasmas may take over. In particular, beyond a certain critical ra-
dius, the propagation of a large-amplitude electromagnetic wave becomes possible, and an MHD
pulsar wind can convert to this wave before reaching the termination shock. In this model, the
electromagnetic wave is a shock precursor, which efficiently transfers the electromagnetic energy
to the particles, providing a possible solution to the magnetization problem in pulsar winds.

We showed that the mode conversion is driven by the boundary conditions, imposed by an
external medium. These conditions, together with the MHD wind parameters, specify the new
mode uniquely. Thus, a self-consistent solution matching asymptotically to the pressure of the
surroundings can be found, and we discussed its evolution when the nonlinear inverse Compton
process (i.e., radiation reaction of the particles accelerated in the wave fields) becomes important.
In particular, we investigated the role this mechanism can play in the formation of pulsar wind
termination shocks.

Two different regimes of shocks were identified: the MHD one, when the external pressure is
so high that the required conversion radius for an electromagnetic wave falls below the critical
radius; in this case the shock is determined by the direct interaction of the striped wind with
the surroundings. The second one is that of lower external pressures, when the electromagnetic
precursor can be launched beyond the critical radius, and subsequently slowed down by the
radiation reaction process is efficient, or the radial expansion of the flow. The shock forms when
the parametric instabilities set in, as a result of low streaming in the wave.

In isolated pulsars the radiation reaction is inefficient, because they are confined by the low-
pressure environment, which requires the electromagnetic waves to have smaller amplitudes at
launch. In the binary PSR B1259-63 a young pulsar is immersed in the wind of its companion
star, and, depending on the orbital phase, both shock regimes can be probed. In particular,
a switch between the regimes may manifest itself via the enhanced emission from both the
nonlinear inverse Compton and the external Compton processes. If the regime change occurs
when the orbital separation is that of 30 days after the periastron, one can expect the emission
at few hundred MeV, consistent with the flare observed by Fermi-LAT. This would constrain
mass loading in the magnetosphere at a very moderate value, consistent with pulsar models.

Propagation of large-amplitude waves in Poynting-flux dominated outflows has received very
little attention in the literature, and only in the limited cases, due to the complexity of the
underlying physics. These modes, however, can be an important ingredient in models of rela-
tivistic flows, because they are capable of describing charge-starved, highly-magnetized systems,
for which standard approaches do not apply. Thus, nonlinear waves prove to give new insight
into these astrophysical phenomena, and a deeper understanding of the mechanisms that govern
the energy transfer between the electromagnetic fields and the plasma particles.
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