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Abstract

RAVE, SEGUE and Hipparcos data are used to study the dynawvhistrs in the extended so-
lar neighbourhood. The asymmetric drift of thin disc dwasfstudied as a function of colour and
metallicity. Linear extrapolation of the data falls withtime error bars from Aumer & Binney (2009)
for local standard of rest. The observed metallicity depeice of the asymmetric drift is consistent
with the known radial metallicity distribution in the disbmplying the asymmetric drift correction to
the SEGUE data allows us to reconstruct the behaviour ofdtagion curve of the Milky Way in the
extended solar neighbourhood. The rotation curve appeds ¢Rentially flat, giving no hint for a dip
just outside the solar radius followed by an increase oleseiv some other data sets. The data are
supplemented by tangent point measurements for the intetiaio curve. Thus a synthetic rotation
curve of the Milky Way is obtained. It is fitted by a density nebdonsisting of a Dehnen bulge, an
exponential disc with a hole, and a flattened dark matter hatlo either cored isothermal or NFW
density profile. In this fitting the parameters are consgaito reproduce the local surface density of
the disc and the local volume density of the halo, which a@nfrom local stellar dynamics in the
solar neighbourhood. Thus the density model of the Milky \igagconstructed. The vertical structure
of the disc of the Milky Way is consistent with the model byt®&dahreild (2010). Some basic features
of distribution functions of the Milky Way and of the dynaraidheating are also discul3ed.

Inhaltsangabe

RAVE, SEGUE und Hipparcos Daten wurden verwendet, um Syeoaik in der erweiterten
Solarnachbarschaft zu studieren. Die asymmetrische iftden Zwergen von derihnenscheibe
Zwergen ist als eine Funktion der Farbe und Metaliziintersucht worden. Lineare Extrapolation
der Daten stimmt mit dem lokalen Standard der Ruhe von Aum@irgey (2009)uberein. Die
beobachtete Aldngigkeit der asymmetrischen Drift von der MetalBzitst konsistent mit der bekan-
nten radialen Verteilung in Metallizit von der Scheibe. Die Korrektur von den SEGUE Dai@n f
die asymmetrische Drift erlaubt die Rotationskurve derchitral3e in dem erweiterten Solarnach-
barschaft zu rekonstruieren. Die Rotationskurve ist glggmflach, mit keinem Sprung auf3erhalb des
Sonnensystems Radius und keinem Anstieg danach, die inhmaraderen Dateatzen beobachtet
wurden. Die Daten werden durch Tangentenpunktmefl3ungedemimnenrotationkurve eémzt. Dal3
erlaubt eine synthetische Rotationskurve der Milchstraf¥ekonstruieren. Die wird mit einem Dichte-
modell angepaldt, dieses besteht aus Dehnen Bulge, einaemtmile Scheibe mit einem Loch und
einem abgeflachten Halo aus Dunklematerie mit entwedeegiitisothermen oder NFW Dichtepro-
fil. In dieser AnpalBung sind die Parameter gezwungen, digléokFhchendichte der Scheibe und
der ortlichen Volumensdichte des Halos zu reproduzieren, dielakalen Sterndynamik im Sonnen-
systemnachbarschaft bekannt sind. Damit ist die Dichtethalér MilchstraBe rekonstruiert. Die
vertikale Struktur der Scheibe der MilchstraRe steht inkking mit dem Modell von Just & Jahreil3
(2010). Einige grundlegende Merkmale von Verteilungsfigrien der Milchstra3e und des dynamis-
chen Heizung werden auch diskutiert.
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Introduction

1.1 Whatitis all about

1.1.1 What s the Galaxy?

The Universe looks dlierently on diferent scales. Seen as a whole at Gigaparsec scales it
seems uniform, on Megaparsec scales it consists of voids, walls, andrslo$ galaxies,
on kiloparsec scales we see individual galaxies, on AU scales the visiierde consists
predominantly of stars, and on fm scales of baryons. From this poinewfa galaxy is more
or less any self-gravitating system with size of 30 pc to 100 kpc. (Findingre mgorous
definition appears to be much more tricky: it ighaiult to distinguish dwarf galaxies from
globular clusters, and setting a limit when two merging galaxies turn into one & guststion
of terminology.)

The galaxy containing the Solar system is called the Milky Way, or simply the @dlzs
a spiral galaxy consisting of some 100 billion stars, with a disc radius atBdyid, embedded
into a dark matter halo extending to over 100 kpc.

1.1.2 What the Galaxy is not?

Two important features of the Galaxy distinguishing it from many other physicd astro-
physical systems are worth mentioning.

The Galaxy isnot stationary. Two-body relaxation timescale is orders of magnitude longer
than the age of the Galaxy. That is why relaxation mostly occures througiegses involv-
ing slight global perturbations of the gravitational potential. These pseseare capable of
substantially changing the structure of the Galaxy over cosmological timesbaleare way
to slow to lead it to a quasiequilibrium thermodynamic state. (Moreover, theideayof ther-
modynamical equilibrium can’t be applied to a system consisting of selftgtang particles.)
The Galaxy as we see it thus presents a transient phenomenon, cortstamilyn the course
of its formation.

The Galaxy is not closed. There is a stereotype, that astronomers mostly occupy them-
selves with closed systems, which can be well separated from the environiieés notion
largely holds for stellar and planetary astronomy, planet dynamics, amatogy (the Uni-
verse is closed by definition!), but totally breaks for the Galaxy. ThexXyaaongly interacts
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with its environment, accreting intergalactic gas and merging with smaller galawaBpw-
ing their stars and dark matter, and being dynamically perturbed by them.

1.1.3 Why study the Galaxy?

There is no practical need to study the Galaxy at all. Probably, galactmnasty is the
least practical branch of astronomy at all. Indeed, planetary scieilicprabably acquire
practical implications in the following centuries. Stellar astrophysics is at iegosirtant for
understanding solar activity and predicting supernova explosions irothereighbourhood.
Cosmology and studies of exotic astrophysical objects can have an impéghdamental
physics. On the other hand, interstellar spaceflights are so unrealistit)@possible impact
of galactic astronomy on the revelation of the structure of dark matter is Setédred, that
we must recognize, that the practical outcome of the Galactic studies is almost nil.

But interests of fundamental science are not more deducible to practicassities, than
haute couture trends are deducible to the primary purpose of cloth to warbotly. And,
similarly to fashion trends, trends of science demonstrate bold changés) sdmetimes
have deep reasons for them, and sometimes look just random. The vématioig of galactic
astronomy provides a magnificent example of such a change. When Messiposed his
catalogue of nebulous objects, many of which later appeared to be dxjalasdes, he had a
primary purpose to select all dull objects on the sky not to confuse thencuiitiets, which re-
ally were interesting. Now the interests of scintists have changed drastaalgstronomers
are investing galaxies with much morgaeet than comets.

Still, however interests of scientists changed over time, two questions atetaysed a
great popularity: Where do we come from? and What constitutes the wodd@ alr current
understanding, the answer to the first question includes cosmologytigasironomy, star
formation, planet formation, planetary science, and evolution biology, whél@nswer to the
second question includes cosmology, galactic astronomy, stellar astroplamst formation,
planet science, chemistry, molecular, atomic, nuclear, and particle phgegaeeper theo-
ries yet under construction. Understanding the Galaxy possesses artantplace in both
answers, and it makes a good excuse to study it. At least, the best anériccéor myself.

1.1.4 How study the Galaxy?

The Galaxy is a very complex system. Its physics involves a great varigiiydical pro-
cesses, including gravitationdlFbody problem of stellar dynamics, physical kinetics of dark
matter, magnetohydrodynamics of star formation and supernova explogiensodynamics
and nuclear physics that determine properties of stars. This makes dligticeto obtain a
self-consistent theoretical derivation of properties of the Galaxy fishprinciples.

Numerical simulations of this problem as a whole are also not viable bechasgreat
variety of spatial and temporal scales involved. Indeed, such a rigonamerical model must
include the entire Galactic hale (L0?? m), but still resolve stellar sizes (1L0° m) to account
properly for the physics of star formation and supernova explosionst mmeciude the entire
age of the Galaxy~ 3- 107 s), but still resolve timescales of individual supernova explosions
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(~1s).

To be abble to study the Galaxy, astronomers separate the simulation into sthegler s
which are simpler in terms of complexity for the analytical treatment and the ssjoompu-
tational capabilities for numerical simulations. Thus star formation and soygeexplosions
are simulated on small scales, dynamics of star clusters on bigger scdlasdgteamics and
gas dynamics on even bigger scales, and everything is embedded inkawatsr halo, which
is simulated on the largest scales. Outcomes of some simulations are takingeagligites
to others, and ideally they all have to become consistent in the end. The sitisagimilar to
cartography, where it is impossible to depict the entire Earth in one map esbasnto make
different maps for dierent parts of the Earth’s surface and to conjugate them, checking that
overlapping maps depict the same areas consistently.

The primary topic of this thesis is stellar dynamics of the Galactic disc. This implies
distance scales from roughly 0.1 to 10 kpc and time scales from roughly Q0 @Ggayears.

At these scales the number of stars is so large, that the Galaxy is seesrdgimaaus medium.
The stars are moving in the collective potential created by the dark mattetimaloterstellar
gas, and the stars themselves.

1.2 Formation of the Galaxy

The Milky Way was formed in cosmological context from an almost uniforntrithistion of
baryonic and dark matter. Primordial density fluctuations in the early Usévgrew through
Jeans instability, creating dark matter halos, that merged with each otlhemdpever more
massive structures. Baryonic gas, distributed between these haldsallyaadiated away its
energy, cooled down and sank to the centres of potential wells of the os energy didn'’t
have such fective mechanisms to loose its random motion, and baryonic matter compressed
far below the size of the dark matter halo. But in the course of this compreissionserved a
large fraction of its initial angular momentum, that in some cases led to formatiatatiing
discs of baryonic gas. Further cooling down, the gas formed cold moledolaas, Jeans in-
stabilities governed star formation, while spiral and bar instabilities createdipent patterns
in the disc. Material processed in stars and released by superngasiexs is used again
for star formation, this time allowing to form planets around stars.

Alternative theories of gravity, the most notably Modified Newtonian dynami&3ND),
compete with the standard cosmological mod€IDM in the description of the process of
galaxy formation, but up to novACDM seems to be the simplest and the best consistent
with the bulk of cosmological and astrophysical data. Simulations of strufomeation in
cosmology nicely agree with observations (Springel et al. (2005))siamalations of structure
of a separate galaxy succeed to reproduce most basic featuresdfiemo et al. (2012)).
Some contradictions still persist (dwarf satellite problem, cuspy halo prolitmmmassive
bulges in most numerical simulations), but they may be soon solved by bettarrding for
astrophysical processes in baryonic matter, a better resolution of simulaggaroa diferent
interpretation of observational data. The flows of the theory are ovedméd by its successes,
and it is an outstanding case in astronomy when a theory with such a small nafrfbee
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parameters can explain results of so mariedent observations.

The unclearness of nature of dark matter and dark energy is an origonsfant worry.
The most popular candidates for dark matter are Weakly Interacting \d2aiticles (WIMPSs)
or axions, while the origin of dark energy is usually sought among sceldsfiBut their exact
nature appears to be almost unimportant for cosmology. The only pragettyk energy that
matters is constancy of its density, while for dark matter the essential praemties coldness
(speeds of particles are much less than speed of light), darknesss@mdiakinteraction with
electromagnetic radiation), and constancy of its mass (density inversedgriomal to the
scale factor cubed). This allows cosmologists to build a phenomenologicayilag@plicable
for whatever the exact nature of dark matter and dark energy is.

1.3 Structure of the Galaxy

The Milky Way is a barred spiral galaxy of type SBc. It can be convehjiegparated into a
halo, a batbulge, and a disc.

1.3.1 The halo

The dark matter halo has a mass of about (15) x 10" (McMillan (2011)), comprising
the major contribution to the total mass of the Galaxy. There are no direct twaysserve
structures in the distribution of the dark matter, but numerical simulations phevelark
matter halo to be very clumpy, including a number of tidal streams, subhalcsiasdbhalos
in different phases of their accretion and dissolution.

Halo stars are not essential in terms of their total mass, but serve as ingoatans of
structures in the halo and of the history of the Galactic environment. Theyeathatal-poor,
demonstrate no net rotation or a slight rotation in the negative direction. Mie@in density is
close to a power law o« r=28 (Turon et al. (2008)).

Embedded in the halo are globular clusters and satellite galaxies, that h&aadesbnanch
of interesting astrophysics, but their consideration goes far beyorsttipe of this thesis.

1.3.2 The bulge

The bulge dominates density of the Milky Way insidel kpc. It is geometrically and chem-
ically complex, with its main body being barred, gas-poor, and consistingddtars, while
its inner parts are gas-rich and demonstrate active star formation. Thetates with a pat-
tern speed about 19 Gyr(Dehnen (1999)), its orientation changes when moving towads the
centre (Nishiyama et al. (2005), Gonzalez et al. (2011)), that is attdliatthe existence of
an inner bar, having a length about 1 kpc and being nearly perpendicule line of sight.

In the centre of the bulge a supermassive black hole is situated, with a miskgaf =
(4.30 £ 0.20stat + 0.30)sys) X 10°M,, (Gillessen et al. (2009)). It is associated with the radio
source Sgr A*.
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1.3.3 Thedisc

The disc extends to the radius of about 15 kpc, with the Sun lying at abkpt &om the
centre. The disc is separated into a thin disc (metal-rich, alpha-weak, loeityedispersion,
scale height- 300 pc) and a thick disc (metal-poor, alpha-strong, high velocity dispersio
scale height- 900 pc). It is still an open question whether there is a real dichotomy betwee
these two populations (Lee et al. (2011)) or a smooth transition from opelgt@mn to the
other (Bovy et al. (2012)). The thin disc is found to form spiral arms,the shape and the
number of arms is still discussed. Outside the solar radius the disc is warped.

1.4 Stellar dynamics

The major contribution to the gravitational potential of the Galaxy is presentedean den-
sities of dark matter, stars, and gas. It makes sense first to consider mab#astar in this
smooth potential, and then to treat inhomogeneities of the potential as pertasbatizerim-
posed on the idealized motion in the smooth potential.

The smooth potential is axi-symmetric, therefore angular momemhtui® conserved in
this motion. The total energl¢f is another conserved quantity. Two integrals of motion are
not enough to constrain a 3-dimensional orbit, but simulations show, th#titdentegral of
motion exists, even though it can not be expressed analytically. If a starsearly circular
orbit with only small vertical and radial excursions, vertical and horiabmotion decouple,
and a good approximation to the three integrals of motion is given by the vestieadyE,,
the dfective radial energ¥g, and the angular momentuli. Doing Taylor decomposition of
Er over small radial excursions of the star one gets the epicyclic approxintitsnmotion.

In this approximation the star appears to rotate around an ellipsis (epioybiéd,the centre

of epicycle (guiding centre) is uniformly rotating around the Galactic cenfitee distance
from the guiding centre to the centre of the GaldRy (guiding radius) is defined by the
angular momentunh,, and the rotational velocity of guiding centre is just circular velocity
of the Galaxy at the guiding rading(Rg). The shape of the epicycle is defined by the slope
of the rotation curve of the Galaxy at radiRg, its size depends on théfective energyEr,
and the frequency of the rotation around this ellipsis independent oEg. In the meantime
the star is doing vertical oscillations around the Galactic plane withffardnt frequency.
When we add all these motions together, in 3 dimensions we shall get a trajecofined

to a torus of rectangular cross-section, which in general (if there @m@ormeasurabilities
between frequencies) fills the ring. If radial or vertical excursiona sfar are big, epicyclic
approximation is no longer valid, and, moreover, radial and vertical moao@so longer
decoupled. The orbit aquires a more complex shape, but is still constitaiseme torus, and
still characterized by three integrals of motion.

If perturbations are superimposed on this regular motion of a star, thetiditaas be
thought as moving almost along this unperturbed orbit in any instant of timgarameters
characterizing this orbit slowly change with time. The three main sourcegtoirpations are
known, but their relative importance is still under debate:

Clumps of dark matter. Simulations of galaxy formation show that dark matter halos of
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galaxies are clumpy and rich in substructures, including partially dissolakd lof formelly
accreted sattelites, tidal streams, and satellites currently in the courser@fi@tc Gravita-
tional interaction with these substructures can perturb regular motion ef star

Transient structuresin the disc. A periodical spiral pattern can cause secular perturbations
only in resonances. But if the spiral structure is transient, it can in pitandynamically heat
populations of stars at all locations with heating rate depending on clorkittof the star.
This mechanism appears to work mofeeetively for heating in the plane of the disc, than in
the vertical direction.

Molecular clouds. Stars are scattered by massive molecular clouds. As velocities of molec-
ular clouds with respect to the local standard of rest are relatively srtab, grobably do not
gain much energy in these collisions. But they are thought to be very impdotaoumping
energy from motion in the plane of the disc to the vertical motion.

Stars form in massive molecular clouds, who possess almost circular. orhis is why
young stars also have small vertical and epicyclic energies. Eventualtyotiis get per-
turbed, and stars insrease their epicyclic and vertical energy. Ldtés af stars get so
non-circular, that it makes no sense to speak about epicyclic approximeatib about ver-
tical energy. Action-angle variables are the best way of generatigésn of such orebits.
They are especially convenient for studying small perturbations ofaeguotion. But the
problem is that actions can be expressed analyticvally only in few spedascAny realistic
gravitational potential of the Galaxy leads to complicated numerical computations

1.5 Surveys of the Galaxy

To study stellar dynamics in the Galaxy one needs large ensambles of statisenithole 6D
dynamical information (3 coordinates and 3 velocity components), andrgrefally also with
metallicities, chemical compositions, and ages. Biases in these samples agly stnovanted,
and volume-complete samples are the best ones.

Let’s discuss obtaining these 6 dynamical componets in more detail.

1. Angular coordinatesdo not have to be measured too precisely: for the sake of dynamical
modelling errors of arcseconds and even arcminutes are still tolerableaWeangular coor-
dinates with arcsecond precision for billions of stars, and these 2 catedinever become a
limiting factor.

2. Proper motions of stars are also measured astrometrically, by comparing the position
of a star on the celestial sphere in twdfdient epochs. And in this case a much more precise
astrometry is needed. For example, to measure proper motion of a star atwlitR@L0%
accuracy by comparing its positions in two epochs separated by 10 geuniliarcsecond ac-
curacy is needed, which is already very complex for ground-bassehaditions. Nevertheless,
proper motions are known for millions of stars (most notably, Tycho-2 ogi@levith 2 539
913 stars), and they also do not strongly constrain Galactic studies.

3. Line-of-sight velocity can only be determined spectroscopically, from Doppler shift
spectroscopy. As spectroscopy usually requires longer expothaersastrometry, and the
number of targets observed simultaneously is limited to some hundreds, spepitsurveys
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appear to be very time-costly, and availability of spectroscopic data pisesamjor constraint
for stellar samples. Up to now RAVE with 600 000 stars and SDSS with 250ta@0are the
most extended surveys of this sort. LAMOST, which has recently star€dima, is expected
to supercede them in the term of number of stars.

4. Distances to field stars in the Galaxy are the most commonly produced by measure-
ments of parallaxes and by fitting stellar models to spectroscopic data. Fatipglstars
distances can be determined from period-luminocity relation. Distances to staliters can
be obtained by fitting Hertzsprung-Russell diagram.

Measurements of parallaxes can be easily performed for the nearsstbstiameasuring
parallaxes of more distant stars requires very accurate astrometrgx&mple, to measure
the distance to a star lying at 1 kpc with 10% accuracy by parallax method sitsopomust
be measured with precision 1@@s. This precision is available for space telescopes only.
Hipparcos mission that operated between 1989 and 1993 still repretsatefdhe art in this
field, with the resulting catalogue including 118 000 stars. Gaia mission, thaiésted to be
launched in September 2013, should provid@ gérallaxes. Gaia should also provide high-
resolution spectroscopy in a narrow band 847-874 nm for stars upthomagnitude, thus
measuring their line-of-sight velocities.

Fitting stellar models to observational data is another important method of mepdigin
tances to stars. It works as follows. Photometrically we can measureesppaagnitudes of
a star in dfferent filters, spectroscopically we can also determine its metallicifiH]Falpha-
abundance [Fe], temperaturel, logarithm of the free-fall acceleration on the surfacedog
All these propeties can be in principle deduced with a high accuracy fragdtsinitial mass
M, metallicity [Fg¢H], alpha-enhancementfFe], distance, and reddening. Other properties
(like angular momentum, magnetic field, detailed elemental abundance) ally osueh less
important, so that we can assume the 7-9 observables (depending onrrudrfilbers) to be
functions of 5-6 free parameters (depending on whether reddenisgdsas a free parameter).
These functions are known with good accuracy from theories of steitdutéeon and from lo-
cal samples. If the number of observables is bigger than the numberegbdrameters, we
can choose parameters to fit the observations, and thus determine pfaeeeters including
the distance. In reality some degeneracies arize. For example, star$ stoongly change
their properties during their main sequence phase, and therefore déngrrstiellar age by
this method is subjected to high uncertaities. Temperature and colours stconglate, thus
adding more magnitudes inftérent filters usaally does not help to improve the accuracy. In
particular, it is almost impossible to do a reliable fitting having only photometryffiereéint
filters, without spectroscopy: spectroscopically determinedjlisga key probe to distinguish
dwarfs from giants. But having intermediate-resolution spectroscopysigittal to noise ratio
above 20 usually allows to do the fitting and to get distances with uncertaint@slef of
30%. This work was done for RAVE stars (Zwitter et al. (2010), Brésléeal. (2010)) and
SDSS stars (Lee et al. (2011)).
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Table 1.1: Space-based astrometric surveys.

Name Years Number of parallaxes V-magnitude| o, [uas]
Hipparcos| 1989-1993 118 000 2-12.4 4000-200
Gaia 2013-2019 10° 6-20 200-20

Table 1.2: Spectroscopic surveys Turon et al. (2008)

Name Years Number of star§ Magnitude | Wavelength #m] | Resolution
RAVE 2003-2013 600 000 9-12 (V) 0.84-0.88 7500
SEGUE | 2005- 250 000 14.5-20.5 ¢) 0.38-0.92 2000
LAMOST | 2011- 0.39-0.90 2500
APOGEE | 2011-2014 100 000 <12.5 H) 1.52-1.69 20 000

1.6 State of the art

The local standard of rest in the Galaxy was established using Hippdatas Dehnen &
Binney (1998) assumed linear dependence of the mean rotational velbaistellar sample
on its velocity dispersion (Simberg’s relation), and the velocity of the Sun in the direction
of the Galactic rotation with respect to the LSR appeared t¥be= 5.25 + 0.62 km s
This result considered to be well established for a decade (Aumer & B20@9), until the
underlying assumption of this analysis was questioned byi@ath et al. (2010), who got
Vo = 1224+ 0.47 km st. This controversy is very important, as changing the local standard
of rest will influence all the data analysis of stellar samples, and thus elthegneasured
rotation curve of the Galaxy, radial scalelength of the disc etc. Also thkcappity of the
linear Stbmberg’s relation to the Milky Way disc is an important question, probing therkisto
of star formation and dynamical heating.



Data analysis

2.1 Used data sets

2.1.1 RAVE

The RAVE sample we are using is an extended version of the sample didou&setter et al.
(2010). Itincludes 222 241 stars with distance estimates, radial veloaitigsraper motions.
Errors in distances, radial velocities and proper motions are also estimated.

Figure 2.1 presents CMD of the sampledin- K colours. For our analysis we select the
main sequence according to the criteriod 5(K) < J < 5(J — K) + 2. The borders of
the main sequence are plotted with two black lines in Fig. 2.1. Then we sepagateath
sequence stars into 5 bins according to their colouks<0J - K < 0.2, 02 < J- K < 0.3,
03<J-K<04,04<J-K<05,and05<J-K<0.9.

2.1.2 Hipparcos

The sample from Anderson & Francis (2012) contains 116 096 stars veitHifsparcos par-
allaxes. We exclude stars, which are marked as group or cluster membassgomponents
of multiple stellar systems. To have a sample without velocity biases, we exdhrdensth
V magnitude bigger than 7.3. We also exclude stars with negative parallaxiesbsolute
distance errors bigger than 0.2 with velocity error 7.5/«mr bigger, or without) and K
photometry. Thus we end up with 9 590 stars.

Their CMD is presented in Fig. 2.2. We adopted the same boundaries of theenaience
and performed the same binningdn- K colour, as we did for RAVE.

2.1.3 SEGUE G-dwarfs

We use a sample of G-dwarfs and subgiants presented by Lee et al).(20he sample
contains distance estimates for 40 496 stars. Following Lee et al. (20@1)s&vonly stars
with d < 3 kpc, logg >4.2, SN>30, [FgH]>-1.2. The residual sample contains 20 141 stars.
The CMD of the sample is presented in Fig. 2.3.
We cross-match the sample with 2MASS point-sourse catalogue. Most kthessample
still have 2MASS photometry, but as SEGUE stars are at the faint end AS8vmagnitude

range, theJ and K magnitudes from 2MASS catalogue have high errors, mostly about 0.1
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Figure 2.1: Colour-magnitude diagram for the RAVE sample. Colour-cisi¢ioe density
of stars per unit area of the diagram. Black lines mark the adopted boundériege main
sequence.
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Figure 2.2: Colour-magnitude diagram for the Hipparcos sample.
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Figure 2.3: Colour-magnitude diagram for the SEGUE G-dwarfs.

mag in each colour. The CMD ilandK colours is presented in Fig. 2.4. Stars are separated
into 3 bins according to theg — r colours, and the bins are plotted irffédrent way: density

of stars belonging to the most abundant bin with8< g — r < 0.55 is colour coded, stars
with 0.4 < g —r < 0.48 are marked with brown dots, and stars witB & g—r < 0.4 are
marked with blue dots. The spread of stars within each bin is consistent widrrrs inJ
andK colours, while systematikftset between the bins consistent with the trend of the main
sequence is also present.

In Fig. 2.5 we plot the distribution of the stars in the/Fe] vs. [F¢H] plane. The
two black lines present borders between the thin disc (below the lower tiveeintermediate
region (between the lines), and the thick disc (above the upper line),yawére determined
by Lee et al. (2011).

2.1.4 SEGUE M-dwarfs

The sample contains 70841 SEGUE M-dwarfs from West et al. (201&)exdude suspected
white dwarf - M dwarf pairs (flag "WDF” equals 1), stars with bad photoméitag "GOOD-
PHOT” equals 0), stars with bad proper motions (flag "GOODPM” equalar@i) stars without
line of sight velocities. Thus we end up with 38862 stars.

For these stars we have distance estimates and radial velocity measurawitaots error
estimates), proper motions with errors, SD&fiz photometry corrected for extinction by
Schlegel maps. Most stars also havK photometry. Figure 2.6 presents CMD of the sample
in g —r colours, and Fig. 2.7 id — K colours. (For both plots only stars with errors smaller
than 0.05 mag in corresponding colours were selected.) dnd K magnitudes the sample
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Figure 2.4: Colour-magnitude diagram for the SEGUE G-dwarfs in 2MA&8ucs. Density
of stars with 048 < g —r < 0.55 is colour coded, stars withD< g —r < 0.48 are marked
with brown dots, and stars with®< g —r < 0.4 with blue dots.
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Figure 2.5: Distribution of the SEGUE G-dwarfs in the/Fe] vs. [F¢H] plane. The two
black lines present borders between the thin disc (below the lower line)ntivenediate
region (between the lines), and the thick disc (above the upper line),\awére determined
by Lee et al. (2011).
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Figure 2.6: Colour-magnitude diagram for the SEGUE M-dwarfs in the SE@Uandr
colours.

occupies the proper place for M-dwarfs, whilegrandr colours some stars look like K and
even G dwarfs.
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Figure 2.7: Colour-magnitude diagram for the SEGUE M-dwarf$ andK colours.
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2.2 Rotation curve data

2.2.1 Observations of the rotation curve

The inner rotation curve can be reliably measured by HI tangent point mettmoadvantage
of this method is that it doesn’t rely on distance estimastes to the tracers. Thedoan not
be applied for the outer rotation curve, and distance estimates are neecdkd th

In the last decades various methods have been applied to obtain rotatenocuside
solar radius. Fich et al. (Fich et al. (1989)) compiled a catalogue of dissato HII regions
and their line-of-sight velocities, and used the catalogue to construtioroturve outside
solar radius. Honma & Sofue (Honma & Sofue (1997b), Honma & Sof@874)) obtained
rotational velocities from the HI-disc thickness method. Nakashima et aka@ma et al.
(2000)) used C- and O-rich SiO maser emission Miras to trace rotation ofutiee disc.
Demers & Battinelli (Demers & Battinelli (2007)) used C stars as kinematic grolbehe
Milky Way disc. Frinchaboy & Majewski are conducting a long-term propfcopen clusters
velocity and distances determination with the aim to use them as the disc tramees ré&sults
of the project are already available (Frinchaboy & Majewski Frinclya®ajewski (2008)).
Maciel & Lago (Maciel & Lago (2005)) derived the rotation curve fratanetary nebulae.
VLBI observations of water maser sourses in star-forming regionsumed with VERA
provided several very accurate points on outer rotation curve (Hohmla(@007), Oh et al.
(2010)).

2.2.2 Rescaling the data

We use for the standard of rest at galactocentric distRptlee angular speedy = Q(Rp) and
circular velocityVy = Vc(Rg) = QoRy. The line of sight velocity projected onto the Galactic
planeV, = V| / cosb is given by

Vr = Ro[Q(R) — Q(Ro)] sinl (2.1)
leading to the rotation curve
R \
VeR) = (vo + ﬁ) 2.2)

The data of Sofue et al. (Sofue et al. (2009)) are scaled to the localssthof restR,, Vi) =
(8kpc 200knys). If we want to use a flierent LSR Ry, Vp), the data must be rescaled. As
the initial dataR andV; are not available, we must use Sofue’s circular velogigyto find
rescaled velocity.. Solvability of this problem depends on whetlieis smaller or greater
thanRg.

Inner rotation curve For the inner rotation curve determined by the tangent method we
have| sinl| = R/Ry leading to the simple equation

R
Ve(R) = VO% + Vil (2.3)



16 2.2. Rotation curve data

Rescaling of the data to aftkrent LSR setf( = Ry, Vo + dVp) is simple using
R— fR Ve(f R) = V(R) + dVo% (2.4)

The shape is independent B§ and changind?y by a factorf corresponds to rescaling the
enclosed masses insiR, by the same factor. Since the enclosed mdgdR,) for the disc
is proportional tozoRg, the surface density would decrease by the same fdctdrolume
densities (of bulge and halo) would decrease by the factor

Outer rotation curve  For the outer rotation curve it is more complicated, because the galac-
tocentric distanc® must be determined by

R? = R3 + % — 2Ryr cosl (2.5)
and the circular speed is
LR VR _
Ve(R) = 0% + ﬁ% =
~ vV roo(r)?
_ (vo+ Sim) \/1—ZcosIRo +(RO) (2.6)

Rescaling to a diierentVy is the same as for the inner rotation curve (it corresponds to a rigid
rotation correction), but for a correction to d&drentR, the distance and Galactic longitude
| must be used (known).



Vertical structure of the disc

3.1 A self-consistent local disk model

Just & Jahreil3 (2010) presented a new Galactic disc model (herehiftdrIahrei? model”):

g(rj)SFHE)dt -0(2)
2hqg(t;) LO_\ZN(T )

psj(2) = ]

whereps j is the density of the thin disk (compones)twith the age binj, theg accounts for
mass loss by stellar evolution, the thicknbgsand potentiald are determined iteratively via
kinematics constrains. The thin disk is expressed using a continuous isett@rmal sub-
populations with age range from 0 to 12 Gyr and the size of bins 25 Myrtfiible disk has a
single population with the oldest component of 12 Gyr.

3.2 Consistency check via star counts

In Just et al. (2011) Just-Jahreil3 model was compared with SDSS dhta @alactic pole
field in order to constrain the SFR of the thin disc. The “model A’ of Justel@8hmodel
demonstrated a good match of luminosity functions and Hess diagrams. Thal tigarep-
ancy of star counts in the color-magnitude diagram was less than 5 perTdentotal local
star numbers determined from fitting data were in a reasonable agreemelucaltiurvey.

17
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3.3 Vertical structure of the Milky Way disk from RAVE

We use RAVE 2 data to extract information about vertical structure of theyMiay disc.
Vertical velocity dispersion is studied as function of height. Comparison withottal veloc-

ity dispersion from Hypparcos implies either existence of sharp maximunroéakevelocity
dispersion at the Galactic midplane or inconsistency of the two surveysisélesd the possi-
bility of such a maximum and the consequences it implies. We construct distrilmft&iars
over energies of vertical motion forfirent subpopulations presented in the RAVE sample,
and use it to predict stellar density distribution in the disc.

3.3.1 Introduction

Observational programs of the last decades enormously expandkdowledge of the Milky
Way disk. These observations provided us with information about the distibfunctions of
stars in the Milky Way i (R, ¢, z, u, v, w), whereR, ¢, zare cylindrical coordinates in the Milky
way, u, v, w are velocity components, ands the number of subpopulation. When speaking
about vertical motion in the solar cilinder, as we do in this article, one is inter@stg(z, w)
only, where we substitute solar coordinaland¢ and integrate over velocity components
andv. No survey has yet measurédz, w) directly in all the domain of interest for the Milky
Way disc studies. Hypparcos provided us with knowledge of velocity digtab in the solar
neighbourhoodf;(0, w), but told nothing about large Starcounts from 2MASS could be used
to get stellar density;(2), Oth velocity momentum of;(z, w). RAVE provided cross-sections
of fi(z w) for givenz, but these cross-sections can’t be put together due to unknown sgmplin
function.

But fi(z w) is in some sense overabundant. In the case of dynamic equillibrium @&ogord
to the Jeans theoreifi(z, w) must be a function of integrals of motion, which in 1-dimensional
case is the total vertical energy only. Thus set of distributions ovegessh(E) for differ-
ent subpopulations together with gravitational poterbi@) contain all the information about
vertical dynamics in the disc. The measured moments and cross-sectionh&onathemat-
ical point of wiew are sfficient not only to constrairf;(E) and®(2), but also to cross-check
consistency of our assumptions (e.g. dependendedbfenergy only, absence of biases in the
measurements etc.). Even though in reality everything appears to be byriacamplex due
to observational and statistical errors in the samples, we already caf(E)dnd®d(z) with
ever better accuracy.

Functionsf;(E) and®(z) are formed by many entangled factofgE) is determined by star
formation rate, initial mass function and initial distribution over velocities, whiehadtered
by dynamical heating and radial migration with the lapse of ti®éz) in addition to stellar
component is influenced by dark matter and gas components. ConstrifEhg@nd ®(2)
from the observational data analys allows us to extract information alidbese interfering
factors, IMF and SFR, dynamical heating and radial migration, dark madtesity and gas
distribution in the disc, thus providing a tool to understand various aspédte cGalaxy
formation and evolution.
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Figure 3.1: Velocity dispersion as function of height foftelient color bins, each 50 pc wide.
RAVE, Hipparcos and SEGUE data are used.

3.3.2 \Vertical velocity dispersion

We bin stars in 50 pc bins in heightand calculate velocity dispersienin each bin. Then
we ploto as a function of average absolute value of a bin (Fig. 3.1 and 3.2). The plotted
error bars are purely statistical errors, without taking into account®in W. The general
trend of the curves is quite understandable. Redder stars have largesegaence lifetime,
and are thus in average older, demonstrating higher velocity dispersianheF from the
Galactic midplane fraction of young dynamically cold stars goes down, andyoldmically
hot population dominates, corsing largethan for smallz. For large|z velocity dispersion
must presumably tend to limiting value, that corresponds to the velosity dispengicch can
be reached in the course of main sequence life time of stars in a given batodihe limiting
value is generally larger for redder stars as their main sequence lifetimgés. 1But it is the
same for the last two colour bins, because for them main sequence lifetimges tlaan the
age of the Galaxy.

3.3.3 Gravitational potential of the disc

In the SEGUE sample we have two distinct populations (alpha-strong andhabgsig with
nearly the same velocity biases, buffelient kinematics. Each of the populations obeys Jeans
equation,

dinvy p0? 1 do
= 22 = = (3.1)
912
Subtracting Jeans equations for the two populations, we get
din 2%
% 0'2 1 1 dq)
293
=-S5 -=|=0 3.2
dz (o’% a'%] dz ( )
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Figure 3.2: Velocity dispersion as function of height foftelient color bins. The height bin
scans over. The first point in the plot contains 100 stars, then the number of staesaises,
and reaches 400 at the second point with error bars. Then it is 40@aiith up to the third
point with error bars, after which the limiting condition is the width of the bin, whghot
greater than 100 pc. The smooth lines are predictions of Just & JahreéBmod

This equation contains only the ratio of the two densities, thus can be ussdnfimles with
distance biaces. The result of application of this equation to calculation sfitfece density
of the disc on dterent heights is plotted in Fig. 3.3.

3.3.4 Distribution over vertical energies

As far as selection function isfiiérent for diterent|z, we introduce 10z bins and treat them
separately. As far as a bin is narrow enough, we may assume that iniaackxed (though
unknown) part of stars is observed. Then distribution of stars owvengeas must be the same
for all the bins. Of course, not all the energies will be present in ghbin, the ones smaller
than potential energy will be unattainable. It will change normalization of bisexwed part of
the distributionf (E) and complicate putting togeth&(E) from different|Z bins. The borders
of the bins ardz =60, 90, 120, 140, 160, 180, 210, 240, 280, 340, and 400 pc. Bach
is sepgarated intfw| bins in such a way, that mean energy in e@th |w|-bin is one from
the list 20, 60, 100, 140, 190, 250, 320, 410, 530, 700, 950, 1RAGP. Some of the bins
are necessarily left empty. In such a way we get 10 cui{&) for different|z bins, that
must be put together by vertical shifts, corresponding to unknown rizatians. We chose
normalizations to minimize the expression

" 2
2li=1.Ne.j=1.Ne %
F — a~ 'aj

, (3.3)
1
a=L.N; 2i=1.Ng ar

wherefy is distribution function foiith value of energy ifg bin a, Afy is its statystical error,
N; = 10 is the number ofz bins, andNg = 12 is the number of used mean valueskof
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Figure 3.3: Estimates for the free fall acceleration as a function of heifet SEGUE sample
is treated with Eq. 3.2, for the RAVE sample Kolmogorov-Smirnov test is used.

The allowed transformation is renormalization insfgéins, f5 — c5fa, wherec, are some
constants. Iffy is not determined for some pairs afandi, then we put correspondingfy;
to be infinity, and these bins fall out of the calculation. After the minimurk @$ found we
calculate the final distribution function as average throughout alkthins:

fai
2i=1.Ne Afg

, 1
i=1.Ng Af2
ai

f(Ei) = (3.4)

The overall normalisation is still free. Errors in the distribution function awenfl by vari-
ations. Eachfy is varied by a random value which has normal distribution with dispersion
Afyi, then the optimisation procedure is repeated, and new distribution functioand.f@y
comparing the original distribution function with a set of perturbed onedinglearrors in the
distribution function.

Distribution functionsf(E) obtained for our 5 colour bins are plotted in Fig. 3.4-3.8.
Overplotted are fittings by Sersic law

f(E) « exp(— (EEO) ) (3.5)

We see, that in all the cases de Vaucouleurs law gives a good approxim&id the in-
ner maximum of velocity dispersion can’t be reproduced by de Vaucmilaw. It requires
flattening of f (E) in the rangeE = 0..100 (kms).
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Figure 3.4: Distribution over vertical energies.
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Figure 3.5: Distribution over vertical energies.
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Figure 3.6: Distribution over vertical energies.
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Figure 3.7: Distribution over vertical energies.
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Figure 3.8: Distribution over vertical energies.






Horizontal structure of the disc

4.1 Asymmetric drift and the local standard of rest

In this section asymmetric drift in the Galaxy is discussed. RAVE, SEGUE apgartos
data are used to measure it. RAVE provides the largest sample of dwarasththe applica-
tion of the linear Sttmberg relation leads to the tangential velocity of the Sun with respect to
the local standard of rest, = 4.37 + 0.94 km s, consistent with the classical value based
on Hipparcos data. Binning RAVE stars in metallicity reveals a bigger asymmeiticatre-
sponding to a smaller radial scalelength for more metal-rich populations, tmtssstent with

our expectations from the radial metallicity gradient in the disc. The confethisosection
was submitted to MNRAS (Golubov & Just (2012)).

4.1.1 Introduction

To get the Galactic circular velocity from the observed mean rotation velocéysample, we
must correct the mean velocity for the asymmetric drift. Moreover, asymmeifidd itself
provides an important probe of the Galaxy.

The asymmetric drift of a stellar population is defined as tlfedince between the ve-
locity of a hypothetical set of stars possessing perfectly circular ognitsthe mean rotation
velocity of the population under consideration. The velocity of the formealied the stan-
dard of rest. If the measurements are performed at the solar Galactocadtus, it is the
local standard of rest, or LSR. The determination of the LSR corresptancheasuring the
peculiar motion (e, Ve, W,) of the Sun, wherdJ,, is velocity of the Sun in the direction of
the Galactic centréy, in the direction of the Galactic rotation, aid, in the vertical direc-
tion. While measurindJ, andW, is relatively straightforwardy,, requires a sophisticated
asymmetric drift correction for its measurement, which is one goal of thisrpape

Dehnen & Binney (1998) used a volume-complete sample of Hipparcogstemastrain
the LSR. They argued that the asymmetric dviftdepends linearly on the squared radial ve-
locity dispersion of a stellar populati@xﬁ, extrapolated this linear dependence to zero velocity
dispersion, and found the LSR. The velocity of the Sun in the direction dd#iactic rotation
with respect to the LSR appeared toVWe = 5.25+ 0.62 km s. Aumer & Binney (2009)
applied a similar approach to the new reduction of the Hipparcos catalogdiepgained the
same valu&/, = 5.25+0.54 km s but with a smaller error bar. The linear Stnberg relation

25
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(Binney & Tremaine 2008) adopted in this analysis relies on the assumptiaiéhstructure
(radial scale lengths and shape of the velocity dispersion ellipsoid) ofitip@pulations with
different velocity dispersion are similar. This assumption was discarded ljnSch et al.
(2010). Their chemodynamical model of a Milky Way like galaxy implietatient radial
scalelengths and filerent shapes of the velocity ellipsoid fofférent sub-populations, which
resulted in a non-linear depender\tegécré). Fitting the observed dependemgaé) by pre-
dictions of their model, they gof, = 1224+ 0.47 km s1, which is significantly larger than
the classical value.

In this note we analyse the asymmetric drift and the LSR mainly based on thealadge
homogeneous sample of dwarf stars provided by an internal data set BfAttlial Velocity
Experiment (RAVE, see Siebert et al. (2011) for the third data releemkefomplement it with
other data sets.

We assume the Galactocentric radius of the Sun teybe 8 kpc, which is consistent with
most observational data up to date (Reid 1993; Gillessen et al. 2009)mixss Sgr A* to
reside at the centre of the Galaxy and takifng = 6.37+0.02 mas yr* for its proper motion
in the Galactic plane (Reid & Brunthaler 2005), we find the rotation velocity ®&tn to be
Vo = 2416 km st in a Galactocentric coordinate system. This velocity consists of the circular
velocity in the solar neighbourhoad (of the LSR) and the peculiar velocity of the Sun with
respect to the LSR,, so thatv, = V¢ + V. For the radial and vertical components of the LSR
we assuméJ,, = 9.96 km st andW, = 7.07 km s from Aumer & Binney (2009).

Even though most stars in our samples are relatively local, we make all cdiopstin
Galactocentric cylindrical coordinates. That is why we n&gdandy o+ for our computa-
tions: they influence how velocities of distant stars are decomposed inéb aad rotational
components.

4.1.2 The velocity ellipsoid

In order to take full advantage of the stellar parameter estimation in RAVE ktérspsample
into three metallicity bins with comparable sample sizes. We use these RAVE datie $amp
measure the shape and the orientation of the velocity ellipsoid.

The top panel of Figure 4.1 shows the radial velocity dispersion as agidanof J — K
colour. A clear trend with metallicity can be observed in the sense that lowelligigta
shows larger velocity dispersion, which is only partly due to the bluer intrcimur.

The other panels of Figure 4.1 show the axis ratios of the velocity ellipsoid angettex
deviationa in the Galactic plane. The second panel shows the squared ratio of tlee velo
ity dispersions in the rotational and radial direction%/o-é. There is a trend with velocity
dispersion (which is discussed more in Sect. 5) but no significdferdnces for dferent
metallicities. In the epicyclic approximation the ratio is connected to the local rotetiwe
by 0% /0% = k?/4Q* ~ 0.46 for standard values (Binney & Tremaine 2008), whefe the
epicyclic frequency in the solar neighbourhood &hd the orbital frequency. The observed
deviations may be due to spiral structure at the low velocity dispersion ehdwto non-
linear efects at the high velocity dispersion end. The third panel demonstrates;ime%"aré.
We can see that the ratio is bigger for bigger velocity dispersions andvier lmetallicities.
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In the bottom panel the vertex deviatianof the velocity ellipsoid is plotted« is defined
as the angle between the maximal eigenvector of the velocity ellipsoid projectionttoe
Galactic plane, and the direction towards the Galactic centre. The trend withicitgtas not
significant due to the large error bars.

The radial and vertical components of the LSR from the RAVE dat&dJare 8.74+ 0.13
km st andW, = 7.57+0.07 km s. They are in reasonable agreement with= 9.96+0.33
km st andW, = 7.07+0.34 km s from Aumer & Binney (2009). The discrepancy of order
of 1 km s* doesn’t make a big ffierence in computations of velocity dispersions, as it is only
added to the velocity dispersion quadratically.

4.1.3 The asymmetric drift

The asymmetric drift is governed by the Jeans equation (Binney & Tremabt) 2

RA(vo3) O(VRVZ)
iy 2 2 R RVzZ,
V2C—V2¢+0'¢—0'R—; IR -R I (4.2)

with tracer density and mean tangential velociti. Roughly speaking, it expresses dynam-
ical equilibrium in an axi-symmetric system within a volume element in a cylindricai-co
dinate system. The left-hand side represents the gravitational force iratbeti@ potential,
the first term on the right-hand side represents the centrifugal fondetha rest of the terms
represent dynamical pressure and shear forces acting on theesudathe volume. There
are two crucial assumptions for the validity of Eqn. (4.1), namely the axi-syrgoé the
Galactic gravitational potential and the dynamical equilibrium of the stellarlptpo under
consideration. The former assumption can be broken by a spiral derssig; while the latter
can be violated for young populations, whose mean age is smaller than tieliegeriod.

For simplicity we assume a flat rotation curve in the solar neighbourhg@®), ~ const.
Then the Jeans equation is also valid for a stellar sample extending ovegeaaiaGalacto-
centric radii.

Standard assumptions that allow us to simplify Eqn. (4.1) include an expordiatia o
expR/Ry), with an exponential radial velocity dispersion profitg «« expR/R,) (with Ry
andR,, being radial exponential scalelengths for the density and the velocityrdispg and
an alignment of the principal axes of the velocity ellipsoid with the sphericaidinate axes
(the latter is argued by Binney 2010). These assumptions transforn(4&dhinto

v§:\7§+a§+a§+a§(%+%{—2). (4.2)
It is convenient to rewrite this equation, substitutiRg= Vo — Vo andvy = Vo — AV, where
—AV is the mean rotational velocity of a stellar sample determined with respect to thénSun
this notation the asymmetric drift velocity is given by = v¢ — V5 = AV - V. If we also
assume that the shape of the velocity ellipsoid is constghitx o5 « o7, and neglect the
quadratic termaV? andV(%, assuming\V << or andV, << o, then Egn. 4.2 at the solar
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Figure 4.1: Properties of the velocity ellipsoid from the RAVE data. The uppeel shows
the radial velocity dispersion as a function of colour. The second anithittiepanels present
squared axis ratios of the velocity ellipsaig/cg ando?/of as a functions ofrg with the
median values marked by horizontal lines. The bottom panel shows the dext&ationa of
the velocity ellipsoid.
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positionR = Ry is transformed into the linear form of $tnberg’s equation,
AV = Vy+Koj

1 (05 of R 2R
v O_§+O_é 2+Rd+ R |
whereK is a constant. If we assume additionally a constant thickness of the disc (which
is ordinarily the case for external galaxies), then a constant shape aftbcity ellipsoid
as a function of Galactocentric radius would implyx (ré, and therefordR, = 2Ry. This
assumption together with estimates of the axis ratios of the velocity ellipsoid frome~igl
allows us to transform Eqgn. 4.3 inv, = Ry/Ry — const., and to use it to estimatey from
the slope of the asymmetric drift curve.

Equation 4.3 predicts thatV depends linearly on-é. We plot this dependence for our
observational data in Figure 4.2, and for each bin plot its mean meastagdmel velocity in
terms ofAV versus its squared radial velocity dispersa'fﬁ]

We first discuss the RAVE data which show the smallest error bars. Waaabe RAVE
data can be fitted fairly well with a straight line (grey line in Figure 4.2). Thst bging value
for the LSR isV, = 4.37 + 0.94 km s1, which is nicely consistent withly, = 5.25+ 0.54 km
s7! obtained by Aumer & Binney (2009) by a similar linear fit to Hipparcos datee Jlbpe

1, . . . o .
K = (90kms™) " is also consistent with the classical value. An application of Eqn. 4.3 with

the median ratios of the squared velocity dispersierjg¢g = 0.40 ando?/cf = 0.25, see
Figure 4.1) results in a radial scale lengthRaf= 2.27 + 0.12 kpc.

SEGUE F and G dwarfs allow us to get only one significant point in the plat,this
point is consistent with the trend obtained from RAVE, while SEGUE M dwsefsm to be
off the trend. The local stars from the Hipparcos, the Catalogue of Neaaby @NS4) and
McCormick samples are also generally consistent with the best fitting line folERéxcept
for the two dynamically coldest bins — a feature, already observed byddet Binney (1998),
which could be explained by the fact that the young stars have not gehed dynamical
equilibrium.

If the shape of the velocity ellipsoid and the scalelengths of the disc fiezatit for dif-
ferent velocity dispersions, Eqn. 4.3 still can be applicable, butkaepends on the velocity
dispersiorog of the sub-population. The chemodynamical model byd®cich et al. (2010)
probably can be interpreted in these terms. Each point of the non-Iineandmrpca/a(o-%)
from Sclonrich et al. (2010) should correspond to Eqn. 4.3 with its évnThus observed
or theoretically predicted asymmetric drift serves us as a measure of tieboa the right-
hand side of Eqn. 4.3. As terms with axis ratios of the velocity ellipsoid are les#isamnt,
the overall trend oK(Uﬁ) is dominated by the variations of the disc scalelengrhand R
with the velocity dispersions. Therefore the depende:‘yceé) from Sclonrich et al. (2010)
can be interpreted as an increasdrgfandor R, with the velocity dispersionrg of the sub-
populations.

The increase of the observéf] (or equivalentlyAV) in Figure 4.2 for the smallest ve-
locity dispersions is inconsistent even with the model bydcich et al. (2010). A possible
explanation is a spiral wave perturbation, which could influence the stslteandics in the

(4.3)
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Figure 4.2: The asymmetric drift for filerent data sets. The two black circles on thé
axis correspond to the fiiérent local standards of rest with, = 5.25 km st from Aumer &
Binney (2009) and/, = 1224 km s from Sclonrich et al. (2010), respectively. The grey
line gives the best fit to the data points for RAVE dwarfs. It correspdadhe LSRV;, = 4.37
km st and the scalelength of the diBg = 2.27 kpc.

solar neighbourhood. It would break the axi-symmetry of the gravitatipogntial implied

by Eqn. 4.1, thus making all the further analysis inapplicable. The dynamizallifest sub-
populations of stars are the most susceptible to small gravitational pertumhatibile dy-
namically hotter sub-populations are much le§scied by them. Thus a Jeans analysis could
break down for smaldré, while still being a good approximation for b@. There is still no
precise model to correct for thesexts in the solar neighbourhood.

4.1.4 Metallicity dependence

Binning stars of the RAVE sample in metallicities allows us to see more interestingeieatu
in the behaviour of the asymmetric drift. Even though the absolute calibratitredRAVE
metallicity is not completely settled (Boeche et al. 2011), the metallicif§H]Nrom the RAVE
pipeline can be used as a relative indicator of the true metallicity. In Figure d.Blot
the mean rotational velocity in terms @f versus its squared radial velociv;% for three
different metallicity bins, -0.6[M/H]<-0.3, -0.%[M/H]<-0.1, and -0.X[M/H]<0.1. We see
that stars at dierent metallicities demonstratefidirent asymmetric drifts, with more metal-
poor stars having smaller asymmetric drifts and thus larger rotational velocitrgs trend

is consistent with the observed negative metallicity gradient in the Milky Way (@isc as
found by (CoskungLu et al. 2012) also using RAVE dwarfs). Indeed, the inner partsef th
Galaxy harbour more metal-rich stars than the outer parts. The high@oifra¢ metal-rich
stars observed in the solar neighbourhood is expected to possesggadlirsmaller thamy.

It means that we are observing these stars closer to the apocentre afrbitsiy that makes
the observed mean rotational velocity smaller. In contrast, metal-poor stacoming on
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average from larger Galactocentric radii, resulting in a bigger mean raghti@hocity. In
terms of Egn. (4.2) it means that metal-rich stars are more centrally corteghtaad have a
smaller disc scale lengfRy, while metal-poor stars have a bigger scale lerigjth

Since we have measurements of the shape of the velocity ellipsoid for daslausiple, it
is useful to separate observables and unknowns in the Jeans equatoyrréwriting it into

2 2 2 2
0'¢+0'Z—20'R+AV

Vi = AV - 4.4
o (4.4)

2 2

V

- V®+E(E+2_Fz)__®.

2o \Ry R PAVSS

leading atRy to the linearized form
: 1 (Ry 2R

V' =V, + Ko th K=-—(=+— 4.5
o+ Kog, wi 2V@(F\)d+ RU) (4.5)

in linearized form. In this form we need to assume only equal radial scakbldor a linear
fit to the data. In principle, this scalelength could be also a functiomggfthus implying
a nonlinear dependence Kf in Eqn. (4.5). In some case4 can even become negative
(Schonrich et al. 2010).

In Figure 4.3 the best joint linear fits to the data of the three metallicity bins based o
Eqgn. 4.3 (top panel) and on Egn. 4.5 (bottom panel) are compared. W#fitide LSR
Vo = 459+ 1.00 km s (5.56 + 0.84 km st in the bottom panel), which is consistent with
the estimate from Figure 4.2. The radial scalelengths of the disc are 1.%4f@¢2the bottom
panel), 2.42 (2.71) and 3.20 (3.69) kpc with decreasing metallicity. Thersgfitally larger
radial scalelengths in the bottom panel are mostly due to the shift of the LSR.

4.1.5 Discussion

An extended, unbiased velocity catalogue of RAVE stars provides ageery tool to analyse
stellar dynamics in the solar neighbourhood and to study the asymmetric driftoldgerved
dependence of the asymmetric drift velodityon the squared radial velocity dispers'mfg is
linear with high accuracy, and linear extrapolation of this dependencé te O determines
the LSR withV, = 4.37 + 0.94 km s, which is consistent with the classical value (Aumer
& Binney 2009). The trend CN'/a(o'%) from RAVE is also consistent with the asymmetric drift
measured by means of other stellar samples, in particular Hipparcos anB@¢ESF- and
G-dwarf sample.

A somewhat similar analysis of the RAVE data was performed by Cogkunet al.
(2011). The authors used a kinematically selected sample of stars with phiotaistances
to determine the velocity of the Sun with respect to the neighbouring stars. a\esing a
bigger sample of stars, more reliable distances obtained from stellar maulsineour stars
independently of their velocities. The mean velocity of the Sun of about 13 kwith re-
spect to the local stars determined by Coskilaet al. (2011) is consistent with the me&v
for the RAVE stars in Figure 4.2. Coskujla et al. (2011) did not to decompose this velocity
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Figure 4.3: The asymmetric drift for the RAVE dwarfs separated into threallcgy bins:
-0.6 <[M/H]< -0.3, -0.3 <[M/H]<-0.1, and -0.X[M/H]<0.1. The two black circles on the
y-axis correspond to the LSR from Aumer & Binney (2009) and fromdeich et al. (2010).
The full lines show the best joint linear fit. Top: Using Eqgn. (4.2). Bottomng€qgn. (4.5).
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into velocity of the Sun with respect to the LSR and the velocity of the LSR witheeso
the mean velocity of stars in their sample.

The measured LSR can be strongffieated by a spiral arm perturbation. Siebert et al.
(2012) estimate variations of the megwelocity to be of order of 5 km$ depending on the
relative position of the observer with respect to the spiral arm. This caotiibcould be a
possible reason for the non-linear dependenoéa(nfé) for smallaé. Additionally the spiral
arm perturbation could essentially influence the LSR computed with the aidefuatibrium
axi-symmetric model of the Galaxy.

From the slope of the asymmetric drift dependence on the radial velocitgrdiep, we
can estimate the radial scalelength of the Galactic disc. With the standard &ssuRyp=
2Ry, we getRy = 2.3 kpc. If R is significantly larger thanRy, as it is assumed by Bienaym
(1999), therRy can be smaller than our estimate and even fall well below 2 kpc.

The observed dependence of the asymmetric drift on metallicity from RAY& idaon-
sistent with our understanding of the metallicity distribution in the Milky Way disce bast
linear fit to the dependence gives a consistent vellue 4.59+ 1.00 km s for the LSR. The
radial exponential scalelength of the disc is smaller for higher metallicities, ingpéyimore
centrally concentrated distribution of stars. The radial scalelength atssdrom 3.7 kpc to
2.2 kpc for a metallicity increasing from [M]=-0.45 dex to+0 dex in the disc computed
from our data. The dependence of the asymmetric drift on metallicity cae s&sna good
constraint for chemodynamical models of the Milky Way and for tfiect of radial migration
on the stellar dynamics and abundance distribution in the solar neighbourhood
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4.2 Rotation curve of the Milky Way

Our aim is to construct a density model of the Milky Way, consistent with therobsl rotation
curve and with local density constraints. We reanalyfiedint sets of observational data for
the rotation curve of the Milky Way. We calculate theoretical rotation cureedlattened
density models, apply these flattened models for the Milky Way bulge and mal@ua them
together with exponential disc to get density model of the Milky Way. Whenstidg free
parameters of the model to reproduce the observed rotation curve nsain ourselves with
local matter and dark matter densities in the solar neighbourhood. We finthéhlagst fit to
the observations is given by a model consisting of flattened Hernquist,bexgonential disc
with a hole, and flattened cored isothermal dark matter halo. An outline of thjgehwas
published in Golubov et al. (2012).

4.2.1 Introduction

The rotation curve of the Milky Way provides important constrains on thsitledistribution
in the Galaxy. Unfortunately, observation of rotation curve for the Milky\Wéaby far less
straightforward than for external galaxies, and entails large errspgcally outside the solar
radius. Nevertheless, we already have enough observations tcaiomgnsity distribution in
the Galaxy fairly well.

Besancon model (Robin et al., Robin et al. (2003)) is probably the moséssful achieve-
ment of this sort. Authors of the model combine Hipparcos results and theeveakrotation
curve to propose a self-consistent density model of the Milky Way.

A more recent density model derived from the rotation curce is presemt8dfue et
al. (Sofue et al. (2009)). The authors compile observational data rfaglal velocities of
HIl regions, HI-disc thickness method, optical measurements of C staisyaBl observa-
tions to construct a synthetic rotation curve. The diverse data weralgetated adopting
the same galactocentric distance of the 8= 8.0 kpc and its circular velocityy = 200
km/s. The data were fitted with theoretical rotation curve produced by 3 masgarents:
de Vaucouleurs bulge, a cored isothermal dark matter halo, and anesxj@misc with two
overdensity rings, which were necessary to reproduce the behafithe observed rotation
curve with minima at 2 kpc and at 9 kpc. Physical motivation for these highdewsities is
somewhat questionable, and the very existence of the dip in the rotatiom @u@wkpc is un-
certain due to high errors in the outer rotation curve. Another probleneafehsity model by
Sofue et al. (Sofue et al. (2009)) are too high local matter and dark ndatteities in the solar
neighbourhood. They are about 1.5 times higher than the amounts obteonedrialysis of
the vertical dynamics of stars in the solar cylinder (Just et al., Just &ilka{2010))

In this section we re-analyse the available observational data for the rotatiee of the
Milky way, supplement them with our constraints of the behaviour of the rotatiove from
SEGUE and RAVE data, and propose a density model of the Milky Way densiwith the
observed rotation curve and density constraints for the solar neighdibrin Sect.?? we
discuss available observational constraints for the rotation curve, samekla construct our
own rotation curve in the solar neighborhood from SEGUE data. In Sextwvéd discuss our
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choice of mass components of the Milky Way. In Sect. 4.4 we adjust freemeders of our
mass model to fit the observed rotation curve and the local density cotstida discuss our
results in Sect??.

4.2.2 Local density constraints

When constructing the density model of the Milky Way to reproduce the rotatiove we
must always keep in mind local density and dark matter density constrairtteqaa by ob-
servations of vertical stellar dynamics in the solar cylinder.

For the surface density of the Milky Way diZgisc Holmberg & Flynn (Holmberg & Flynn
(2004)) propose the valtgyisc = 56 + 6My/ pc?, while Just & JahreiR(Just & JahreiR (2010))
for their best fit model gelgisc = 45.2 + 4My/pc?, while other their models spread Misc
from 41.8 to 50.4M/pc?. Both the works are based on the analysis of Hypparcos sample.
They are consistent with earlier estimalgg. = 48+ 8M/pc? (Kuijken & Gilmore Kuijken
& Gilmore (1991)) Zgisc = 52+ 13My/ pc? (Flynn & Fuchs Flynn & Fuchs (1994)), and to the
estimated surface density of visible mafifsc = 53My/pc? Holmberg & Flynn (Holmberg
& Flynn (2004)).

The local density of DM halo in the solar neighbourhood is estimatgglgr= 0.014M/pc
by Just & JahreiR(Just & JahreiR? (2010)) angiig = 0.0099M,/pc by Robin et al. (Robin
et al. (2003)).

4.2.3 Local rotational velocity

The first point we can put on the rotation curve of the Milky Way is the pdRat Vo), cor-
responding to the galactocentric distance and to rotational velocity of thedtralard of
rest. But even this point is subjected to essential unsertainties, produgiegainties in other
points whose derivation rely on an assumed local standard ofRe3fd) and solar velocity
with respect to it (e, Ve, Wp).

Present amounts &, andW,, obtained from Hypparcos data seem to be reliable. The
recent results by Séimrich et al. (Scbnrich etal. (2010)))o = 111*383%knys, W, = 7.2570.3¢
kmy/s confirmed earlier results by Dehnen & BinneyDehnen & Binney (1Ei@)yey (Binney
(2010)) In contrast to these two components, the amouvit afas recently revisited, and the
amountV, = 5.2 + 0.6 knys by Dehnen & Binney (Dehnen & Binney (1998)), which had
been considered to be fiducial for a decade, was risen to 14 @mney, Binney (2010)).
Sclonrich et al. (Scbnrich et al. (2010)) gé¥, = 12.24+ 0.47 ks, confirming these recent
results.

Studies of Sgr A* provide the most direct way to determifgeandVy. Reid & Brunthaler
(Reid & Brunthaler (2005)) find proper motion to pg = 6.37 + 0.02 magyr, that implies
(Vo+Vo+Vsgra:)/Ro = (30.2/pm0.1) knys/kpc, wheréVsgea. is an unknown peculiar velocity
of Sgr A* that probably is not greater than a few jenUsuallyVsga. is assumed to be 0,
and we find a very presise estimate for the ratioVptto Ry. The amount$y = 8 kpc and
Vo = 200 kmys recommended by IAU give/p+Vs) /Ry = 26.5 knmys/kpcare, that is completely
inconsistent with the observatons.
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DisentanglingRy andVy is less straightforward and subjected to big errors. In his com-
prehensive review Reid (Reid (1993)) combinefiledient estimetes of distance to the Galactic
centre, came out with the synthetic redRjt= 8+ 0.5 kpc and prognosed that we would know
Ro with the accuracy of 3% till the year of 2000. Regretfully enough, we stileha reached
this limit, and Reid’s paper still well presents our knowledg®&ef More recent observations
are also consistent witRy = 8 kpc and still retain significant errors. Gillessen et al. (Gillessen
et al. (2009)) get an estimaly = 8.28 + 0.15stat + 0.29sys kpc from fitting orbit of S2 star in
the Galactic centre. From VLBI observations with VERA Reid et al. (Reid.¢2809)) find
consistent valueRy = 8.4 + 0.6 kpc andVy = 254+ 16 knys.

In this section we adopt the local standard of rest fromd&dieh et al. (Scbnrich et al.
(2010)), IAU recommended valug& = 8 kpc that is consistent with all the available obser-
vations, and/p = 230 ks to get the correct proper motion of Sgr A* by Reid & Brunthaler
(Reid & Brunthaler (2005)).

4.2.4 Tracing the rotation curve with SEGUE and RAVE stars

We consider several SEGUE samples to get rotation curve in the extesldedeighborhood.
Properties end origins of these sample are listed in Table 4.1.

We plot average rotational velocitigg in bins with thin lines in Fig. 4.4. To transform,
into rotational velocity/; we must correct for asymmetric drift.

By consideringt component of Jeans equation, asymmetric drift correction can be proved
to be given by formula (Binney & Tremaine Binney & Tremaine (2008)),

RO(vod) _O(VRVY)
P22 2 R RVz

(4.6)

Now, folowing Binney & Tremaine (Binney & Tremaine (2008)), we do thseaplifying
assumptions.

Firstly, we assume the disc to be exponential. This assumptions is consistenbgth
vational data for the Milky Way and as well finds a strong confirmation in lasens of
external galaxies. But scale length of the digds still poorly constrained. To the best extent
of our knowledge, we assuni®=3.5 kpc for the thin disc anBy=2.5 kpc for the thin disc.

Secondly, we assume tha% oc v. Assuming constansy of shape of velocity ellipsoid, this
proportionality implies constansy of thickness of the disc.

Thirdly, we assume that principal axes of velocity ellipsoid retain allignment thi¢h
coordinate directions of spherical coordinates. Then

VRY; = (0R — 03)(@/R) (4.7)
After applying these 3 assumptions to Eqn. 4.6, it turns into the following szre,
2R
Vg:\_/§+0'(2p+§0'2R+0'§ (4.8)

Plot of circular velocity, is presented in Fig. 4.4.



4.2. Rotation curve of the Milky Way 37

300 ™ thicK disk, 0.2-0.6'kpc T—— '
0.6-1
280 1-2 -
thin disk, 0.2-0.6 kpc ——
260 0.6-1 — -
1-2
o 240 | no AD correction 1
S
x
>a 220 - —
200 =
180 —
160 | .

6.5 7 7.5 8 8.5 9 95 10 105
R, kpc

Figure 4.4: Rotation curve.

4.2.5 Power index of the rotation curve

Another way of determining steepness of the rotation curve in the solarbwtybod is mea-
suring the ratio of mean square deviatiorvgffrom circular rotational speed; to radial ve-
locity dispersionrg. From epicyclic theory (Binney & Tremaine, Binney & Tremaine (2008))
this ratio is known to be
(Vo —Ve)> R 6Q
A A | 4.9
o2 200R (4.9)
Let's assume power index of the rotation curve toabeo thatV o« R* andQ o« R*~! Then
Eqgn. 4.9 transforms into
(Vg — Vc)? _a+l
o-% 2

(4.10)

Power indices resulting from velocity dispersions of our SEGUE and RAVE samples are
given in the last colomn of Table 4.1.

This method doesn't need stellar samples covering the extanded solabowighood
and can be equally well used for local stellar samples such as Gengeagiagen survey
(Holmberg et al. (Holmberg et al. (2009))), and this result is also inclucldeble 4.1. We
can compare our result to the one presented in (Narasat al. (Nordstim et al. (2004))).
The authors compare the ratig /oy, find the result 0.63, that is essentiallyfdirent from 0.5,
and conclude that the epicyclic theory with a flat rotation curve fails to exfit@mbserved
velocity dispersions. But if we compare this expression to Eqn. 4.1 we findesgential
differences. Firstly, the ratio of velocity dispertions must be squared, digctite dispersion
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Table 4.1: Properties of samples used for our analysis.

Description Source N stars a

G dwarfs, thin disc | Lee et al. (Lee et al. (2011)) -0.04+0.02
G dwarfs, thick disc| Lee et al. (Lee et al. (2011)) 0.04+0.02
M dwarfs West et al. (West et al. (2011)) 0.19+0.01
GCS Holmberg et al. (Holmberg et al. (2009)) -0.02+0.01

of oy must be calculated not with respect to its mean value, but with respect to nalate
locity, which can be essentiallyftierent due to asymmetric drift. And the resultingppears
to be indistinguishable from 0.

Table 4.1 seems to rule out the fast decline of the rotation curve in the sajaboehood
with @ = —0.25 predicted by Sofue et al. (Sofue et al. (2009)).

4.3 Rotation curves for 3-component density models

We useV. for the circular speed in the Galactic plaree 0). Dependens¥(R) gives the
rotation curve.V, can be obtained by equating centripetal acceleration of the star to sum of
gravitational accelerations produced by all the density components,

do _(dbp dDdg dd
2 _pdy _ b d h
Ve=Rgr =R dR+dR+dR)

= vgb + vgd + vgh. (4.11)

Here®y, stands for gravitational potential of bulgky for potential of disc, anéy, for potential
of halo. V¢p, Veg andVep are circular velocities, which would be created by each density
component alone. Contributions of bulge, disc and halo add up quadsatasacentripetal
acceleration is proportional to velocity squared.

For a spherical mass distributions with enclosed mMdsgqn. 4.11 transforms into

_ GM,
TR

_ > M (R
= (207kmy9? - OloMo(kpc) . (4.12)

V¢

An equation of the same form as 4.12 can also be applied for each contpAssaming that
V. isn't very different from 207 kirs (at least between 1 and 15 kpc) we get a famous rule of
thumb for enclosed madd, ~ 10'°M; -

Spherical mass distributions for bulge and halo, thouh are simple and wisketymod-
els, are unrealistic. From observations of the Milky Way bulge and bulfjether galaxies
we know that it must be flattened. Numerical simulations of dark matter accgtiogrally
demonstrates formation of triaxial halos. Thus as a next step in the quesafistic models
we can consider a flattened mass distribution, where density depengdB?n z2/q2, with R
andz standing for cylindrical coordinates, agdor flattening.q = 1 corresponds to spherical
mass distribution, where density depends on spherical radR%s+ 2. q < 1 gives oblate,
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andg > 1 prolate density distributions. In many cases rotation curve of a flattertedtad
can be calculated analytically. The corresponding formulae are giveahle 2. The result-
ing formulae for rotation curves appear to be convenient for fitting easienal data, though
intricate and complex for comprehension.

Nevertheless, some consequences of flattening are intuitively evidetténeld mass dis-
tributions lead to higher circular speed for the same enclosed mass (in elijpsgitbjected).
As a consequence less enclosed mass is needed to reproduce thetatioreaarve. A flat-
tening ofq = 0.5 increases the circular speed (in the inner part) by about §624.1 by 20%
(see Fig. (2-12) for a modified Hubble profile and (2-17) for an erptial disc in Binney
& Tremaine (Binney & Tremaine (2008)), hereafter BT). The radialtstiifthe maximum
depends on the profile.

In this chapter we discudg of different dencity components, their dependencies of den-
sity models, and the ways how the rotation curve can constrain the density. mbddormu-
las for the flattened components are not reproduced here. Insteadavieegsimpler equations
for spherical mass distributions, which are the limiting casesg ferl.

4.3.1 Rotation curves for spherical density distributions

The generalised form of the NFW profile is

pO) = o (4.13)

The parameters are connected to the cosmological quantities by (Naveartk & White
Navarro et al. (1996)) the virial radiuggo. This is the radius with mean denspiyr < ragg) =
20Qprit exceeding the critical density by a factor of 200. It can be written in thma for

4
Moo = Mr(rao0) = ZOQOcrit?rg’oo
3H(2’ 4.14
Pcrit = 871G (4.14)
The central density and the characteristic radius are quantified by tampsers
I'200
cC = = —
Y200 a

5. = o (4.15)

Pecrit

The standard model with = 1 can be integrated analytically.

In the literature two other modifications with core are discussed: the modifibdleland
the Burkert profiles with similar asymptotic behaviour.
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Table 4.2: Rotation curves for fiiérent spherical density distributions. The first column
presents name of the model, the second presents denagyfunction of dimensionless ra-
diusy = g, the third column gives squared circular velocity in Galactic plane as funofion

Y.

Model 0 vz
. . f0 sarcsin(y1-g?)
Singular isotherma V2 AnGpoq & —\/1__(‘2
Cored isothermal 1;/2 47Gpoa? |1 - HT¥|
H 0
Hernquist y(1;y)3 ey )
0
NFW sy | 4nGpod® (RS - 1)
e 2 [ In(1+y) 2+3y
Cored NFW @l | 4rCpoa? ("GN - 23 )
e
Jate yz(liy)2
- o 2| In(y+ V1+y?) 1
Modified Hubble W 4rGpoa y - \/FyZ]
o 2 | In((1+y) V1+y?) __ arctgy
Burkert ) 2nGpoa v v

4.3.2 Rotation curves for flattened potentials

The rotation curve of an oblate spheroidal mass distribytion with m? = (R? + 22/q?)/a?
can be calculated (in most cases numerically) by (BT 2-91)

V2= arca? [ Ply)y*dy (4.16)

0 Y- (1-)y?

where R
y =mR,z=0)=— (4.17)

is distance normalized to a scale radausHere we used foz = 0 the integration variable

R. If we squeeze the spherical distribution by a factowe must rescale the density profile

by a factor 1qin order to get the same enclosed mass (and total mass). For a set ofprofile
equation 4.16 can be integrated analytically by using the substitution

q ™o
V2 = 4nGa® —— f y2p(y’)dx (4.18)
V1-9g2Jo
where )
y = Y3nX (4.19)
1-0f

SiNXm = /1 -2 (4.20)
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Table 4.3: Rotation curves for fierent density distributions. The first column presents
name of the model, the second presents depsdg function of dimensionless radius =

%1 |R2 + é—i the third column gives squared circular velocity in Galactic plane as funofion
_R
Y=3

Model o vz

Singular isotherma| ~ £5 47GpoQ az%

Cored isothermal | 2% | 4rGpoqa? \/f__qzarctg\/ﬁ - mamtg 1‘32+y2]
Hernquist ﬁ

N Ty 471(—;5393?[1137 - e |y < VI,

4nGpoqd?y | 1-g+y 2y Vy?-(1-?) —
by [“y Vet g |y > V=g

Jdffe 4rGpoqa® [y(l—qw) L2 aregVE Z—YZ]' y< VI-

£o g
m(L+m)?? | y2—(1-¢?) | (1+y) V-1 T+q+y
4Gpoad® | Y(A-qry) 1o (Y= VY@ gy VYA (1 6) y> JI=
Vo) | @) Vi@l v V- vy V(D)) |

1-g2+y?

. . 1_q2+y2 y
F (arcsin y — E|arcsin,/
42 7 \[1-gp1y2 42 7 \1-g21y2

. el 471'Gp qa2y
Modified Hubble | 25 >

4.3.3 Bulge

Dehnen models We use mainly Dehnen (Dehnen (1993)) models for the bulge. In the-spher
ical case we have

£0

= — 4.21
y 7

M) = ML) .22

V2 = SRy (4.23)

wherey = r/ais dimensionless radiu$y; is enclosed mass, apg is central density,

(B = ¥)Miot

= -7 4.24

£o e (4.24)

The Hernquist model corresondsjyic= 1 and the Jée model with isothermal cusp to= 2.
Fory > 2 the rotation curve is singular at the centre andyfor 3 the enclosed mass diverges.
Fory > 2 the rotation curve has maximumyt 2 — y. For reproducing the maximum of
Vi = Ve(rm) with differenty’s one needs to choose

a=rm/2-7)  Mn=Mm) = 2V2 (4.25)
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Figure 4.5: Data of Sofue et al. (Sofue et al. (2009)) witliedentVy showing negligible
influence insideR < 1kpc. Dehnen bulges with fiierent cusp slopeg, which match the
maximum.

leading to

3-y\¥7
Miot = Mm(zfz) (4.26)

For a Hernquist model the maximum isrgt= a and the enclosed massN&q; = 4 M. For a
shallow cusp withy = 0.5 we haveMi; = 3.59 My, and for a steeper cusp with= 1.5 we find
Mot = 5.2 M. Fig. 4.5 demonstrates Sofue et al. (Sofue et al. (2009)) inner rotaiive c
in logarithmic scale, thus best resolving the innermost kiloparsec of the Galdrere the
buldge dominates. The uncertainty of the LSR makes us to tigeatitVy and to recalibrate
the plots. The rotation curves for thregfdrent amounts o¥y are shown in Fig. 4.5 with
different colours. We see that, in accordance with Eqn. 2.3, chandg rabkes almost no
difference in the first kiloparsec, while for larger radii the spread.iis by far more essential.

The bulge is strongly flattened with~ 0.6, but we have no analytic formula for general
v values (only for Hernquist andfla). The flattening leads to a reduced Bulge mass by about
10%.

We see that J8e model § = 2) has uniformly decreasiny., and fails to reproduce
maximum ofV; at 0.3 kpc. Dehnen model with= 1.5 is also not steep enough in the first 0.2
kpc. The models witly = 1 (Hernquist) ang = 0.5 fit the data equally well. Total masses of
the bulge for the best fit models are abowt 201°M,,.
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4.3.4 Disc

The surface density for an exponential disc is given by
2(Y) = Zpe¥ = e, (4.27)

whereY = R/Ry is nomalized radiusYy = Ry/Ry is nomalized radius of Sun, arfg} is
scalelength of the dis& is the surface density in the centre of the disc, Agglis the surface
density of the disc at the solar radidg. The enclosed mass corresponding to the density from
Eqn. 4.27 is

M (Y) = Mit[1- (1+ Y)e"]. (4.28)

where the total disc madd;: is
Miot = 27Z0R5. (4.29)

The rotation curve created by this mass distribution is given in terms of modiéssieBfunc-
tions bY (BT 2-169)

GMyot Y?
=R, 7 Lo(Y/2Ko(¥/2) = 11(Y/2)Ka(Y/2)] (4.30)
In the Besancon model (Robin et al., Robin et al. (2003)) the authars tat there is a hole
in the exponential disc. For simplicity we model the hole by subtracting an expiahdisc
with a scale length smaller by a factorménd a central surface density reduced by a factor of
€.

Ve

The possible shapes of rotation curve caused by disc are presented if.6. For all
the curves the local surface density is fixed at the [Bygl= 47M,/pc in accordanse to the
local disc model by Just & Jahrei3(Just & Jahreif3 (2010)). The d&lelength is not that
well constrained. We vary it in the range 2.5-4 kpc, and plot the resultsthétHirst four
curves. The lager is the scalelength, the smaller is the density in the innef gaetGalaxy,
and for the ranges dR and Ry under consideration, it causes a lower circular spéed
and the four curves illustrate this trend. The next three curves illustrate @dish the same
scalelengtiRy = 2.8 kpc, but with holes of dierent properties in the centre. The last curve
examines the case when scalelengths of stellar and gas components of tre digerent. In
accordanse with Just & Jahreif3(Just & Jahreif3 (2010)), we sephralocal surface density
47M,/pc into 34M,/pc belonging to stellar component, andM3/pc® belonging to gas.
The scalelength of stellar component is ad&jr= 2.8 kpc, the scalelength of gas is assumed to
be twice larger. The plot demonstrates that neither hole inside the discffesedt scalelegth
of gas change the rotation curve essentially, in contrast to scalelBggthwhich the rotation
curve is very sensitive.

Nevertheless, hole inside the disc appears to be important in reproduciolgsttieved dip
of the rotation curve at 2 kpc, as it is illustrated in Fig. 4.7. The plot demdastthe sum of
Hernquist bulge (the same as in Fig. 4.5) and a disc witlerdint kinds of a hole, overplotted
with the observational poins from Sofue et al. Sofue et al. (2009)neszed onVy = 220
km/s. Three dferent values are chosen for the ratio of the disc and the hole scala,radi
for eachn two values of ratio of central densitieswere used. The curve must fit the data
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Figure 4.6: Exponential discs with fixed local surface density: variaticstale length and
cutting out an inner hole by substracting an exponential disc with redwadel lengthRy/n
and reduced central surface densitjchosen to just avoid a negati% of the disc at the
centre. The last (pink) line shows théfext of a gas disc with twice the scale length, where
13M,/ pc? of the local surface density of 4,/ pc? is attributed to the gas disc.
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Figure 4.7: Plot o2, where the components add up linearlyfdgt of a hole in the expo-
nential disc with respect to reproduce the strong decline ar®usd2 kpc. The bulge is a
Hernquist model with parameters as in figure 4.5)er 1.0.

points after adding up the halo. We can already see that the lower andplpfsecan barely
reproduce the observations, and scale ra@j/8 seems to be the most favourable for the hole.

4.3.5 DM Halo
We compare two standard halo models, cored isothermal profile and Ndwamk-White
profile.

Cored isothermal models The spherical isothermal case with core is given by density dis-
tribution

ply) = 1ﬁ Oyz. (4.31)

Circular velocity of the cored isothermal profile is

V2y) = 4rGpod® 1-@]. (4.32)

Fixing the local densityoa®/(R5 + a%) means, that the circular velocity at inifinty is propor-

tional to /Rg + a2. The expected flattening is not too strong (at nwpst 0.8 for the density
distribution). The corresponding flattening of the iso-potential surfece®.9.
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Figure 4.8: DM halo with local density fixed ja&,o ~ 0.01My/pc. Isothermal models with
different core radius and théect of flattening.

Rotation curves for cored isothermal halos are presented in Fig. 4.8allRbe curves
local dark matter density is fixed s = 0.01 Mo/pc®, while scale radius and flattening

are varied.
The main &ect of fixing the local densityy is that the cusp requires a large contribution

to the inner rotation curve for all scale radii.

4.4 Fitting observed rotation curve of the Milky Way with a den-
sity model

Full models A full 3 component model with Bulge, disc and DM halo, which fits the rotation
curve and the local constraints, is shown in figure 4.12 adopBagvp)=(8 kpc,220 krys).
The isothermal halo fits better the local minimumRat 2 — 3kpc. Up to 3 or 4 kpc bulge
gives the main contribution to rotational velocity, around 5 kpc disc slightlyvalvelmes the
other two component, and starting from about 7 kpc halo contribution dorsinat¢he solar
radius the contribution of the DM halo is around 50%.
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Figure 4.9: DM halo with local density fixed t,0 ~ 0.01My/pc®. NFW model with diferent
scale radius and flattening. Additionally the modified Hubble and the Burkedelmare

shown.
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Figure 4.10: Plot oiv? for different DM halo models with fixed local volume density and

varying scale radius.
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Figure 4.11: Plot oi/2 for bulge+ disc models (no DM halo) with maximum local surface
density and varying scale length. The model with a h&g'8 ande = 0.8) can in principle
reproduce the inner rotation curve.
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Figure 4.12: Plot oi/2 for bulge+ disc + halo models. The bulge is a Dehnen model with
Mp = 1.8e1l0Mg and a scale radius @, = 0.22kpc. The disc is an exponential disc with
R4 = 3.0 kpc with a hole Ry/3 ande = 0.4). The total disc mass ¥lg = 4.3 x 101°Ms.



Perspectives

5.1 Distribution functions in the plane of the Milky Way disc

We construct distribution functions of stars over the two components of tloeityein the
plane of the Milky Way, and to compare them with the observations.

5.1.1 Epicyclic approximation

Let’s consider the simplest model of the Milky Way disc. We assume the rotatime to be

flat with the rotation velocityp, and use epicyclic approximation. Each star can be described
by its guiding radiusRy, epicyclic velocityu (radial velocity when crossing the epicyclic ra-
dius), and epicyclic phasg Then the observed rotational velociy radial velocityU, and
galactocentric radiuR of the star are

V=Vt %Zcosp, (5.1)
U = —using, (5.2)

_ R _ YRy
R=Ry Vv, coSp. (5.3)

We assume an exponential distribution over guding radii, with the scale I&gthd the
local surface density of guiding centrEg in the solar neighbourhodg,

_RRo

Note, that the exponential scale length and the local surface densitydirigjaentredRy and
Zqo don’'t have to be equal to the exponential scale length and the locatsutéasity of stars
Ry andXy, as the latter two are alsdfacted by bluring due to epicyclic rotation. Distribution
over epicyclic velocities is assumed to be two-dimensional Gaussian,

udu u?
The dispersionr is also assumed to depend on the radius exponentially,

o(R) = ooe” "o (5.6)

49
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Al phasesp are assumed to be equally probable. Then the number of stars with a gidamg
radius, epicyclic velocity, and epicyclic phase, are

_ udu d¢
o2 21

Then we invert Egs. 5.1, 5.2, 5.3, to exprasg, andRy in terms ofU, V, andR,
u= VU2 +(V-\Vp)2 (5.8)
o= —arctanL (5.9)
V2(V - Vo)
(V- Vo)R
=R+ ———.
R 2Vo -V

Now we use Egs. 5.8, 5.9, 5.10, to transform Eq. 5.7 to varidble¥, andR. When
performing this transformation we must mention that the Jacobian of thedraredfon is

Au¢.Ry) _ 2
AOVR) = '/u2+2(v Vo zvo . Then we make the substitutiaiN/(2rRdR) = dZ, and thus
get the following expression,

dN = 272gRydRy €

(5.7)

(5.10)

R %) g gy
oh

dx =

S [ Vo V¥ (& )RR+ ) %ﬁﬁe’
V2r\2Vo -V

This equation presents the distribution of stars over the two componentswaituoiy.

(5.11)

5.1.2 Precise integration of orbits in 2D with a flat rotationcurve

Let us now reject epicyclic approximation, and precisely integrate the iorBidimensions,
still assuming the flat rotation curve. Then tHEeetive potential for the radial motion of a star
is

2
Veff = V2In§ VR ( 1 (ﬁ - %) (5.12)

It gives the following expression for epicyclic energy of the star,
VERE(1 1) U2
2 — — —
E= VInRg > (RZ §)+ > (5.13)

We assume the surface density of guiding centres to have the same forq &.4£ The
distribution over epicyclic energies is assumed to be exponential,

dN o %exp(—%). (5.14)

This formula is a generalization of Eq. 5.5. The dispersiois assumed to be expressed by
Eq. 5.6.
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Figure 5.1: Theoretical disc surface density distribution in epicyclic appration. Ry = 2.5
kpc, R, = 5 kpc,Vo = 240 km's, Ry = 8 kpc, o = 38 knys.

—-100 -50

Figure 5.2: Theoretical distribution over velocitigsin epicyclic approximationRy = 2.5
kpc, R, = 5 kpc,Vo = 240 kmi's, Ry = 8 kpc, o9 = 38 knys.
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Figure 5.3: Theoretical ratio of rotational and radial velocity dispersioepicyclic approxi-
mation.Ry = 2.5 kpc,R,- = 5 kpc, Vo = 240 kmi's, Ry = 8 kpc.

Then we can write the following expression for the number of stars withngineding
radiusRy and epicyclic energg observed at a given galactocentric radr)s

_2Rg-Ry)
-5e R e_@da 20R

Rg-Ro
- "R dRye ° o
dN = 27R;Z0e = dRye 0 270 (5.15)

The ultimate term gives the fraction of time, which is spent by a star betwed@nRauhd
R+ dR. HereU is the radial velocity of the star determined from Eq. 5.13,

U==+ \/28 - 2V§In% + V3RS (% - %) (5.16)

T is epicyclic period,

Rmax
T= f 20R . (5.17)
R \/28 - 2VAng + V3RS (% - &)

With a reasonable precisidncan be approximated as

Vo

T ~
Vo

(5.18)
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Figure 5.4: Theoretical disc surface density distribution for flat rotationes Ry = 2.3 kpc,
R, = 8 kpc,Vo = 240 ks, Ry = 8 kpc,og = 38 knys.

Equation 5.15 must be transformed to the variakble¥, andR. The Jacobian of the transfor-

. . 0(ERR) _ UR
mation is 3oy = v - Thus we get

_ V2 v2\ 2\ - [Rergr YR
B e e B MR LY

V2r os

(5.19)

5.1.3 Power-law rotation curve

Instead of the flat rotation curve we now assume a rotation ciii®) = Vo(R/Rp)?, with
an arbitrary power index. The flat rotation curve correspondsdo= 0. Then the fective
potential for the radial motion of a star is

V2 2a V2
Vett = 2—2 (%) + OZRS (é - %) (5.20)




54 5.1. Distribution functions in the plane of the Milky Way disc

—-100 -50 50

Figure 5.5: Theoretical distribution over velocitigsfor flat rotation curve.Ry = 2.3 kpc,
R, = 8 kpc,Vp = 240 km's, Ry = 8 kpc,og = 38 kmys.
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Figure 5.6: Theoretical ratio of rotational and radial velocity disperdioniat rotation curve.
Ry = 2.3 kpc,R, = 8 kpc,Vp = 240 km's, Ry = 8 kpc.
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Figure 5.7: Observed distribution over velocitd$rom the RAVE data for 5 dferent colour
bins.
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5.2 Dynamical heating of the disc as a diffusion process

A distribution functionf(l, t) of a 1-dimensional stellar population evolves with time accord-
ing to the dffusion equation,

of 0 of

AN (D(I)a—l), (5.21)
whereD(l) is diffusion codicient, which is assumed to be time-independent.

Let's consider a simple and important case dfudiion codficient being proportional to a

power of the action variabld® = Dgl#. The factorDg can be easily incorporated into the time
variable, thus leading us to the equation

of _ 0 ( gof
o3 () 522
Let's find its self-similar solution, which is in each instant of time proportionaF {tt®),
wherea is some constant arfél is some function, which are to be determined.fAfs(I,t)dl
must be independent ofsuch self-similar solution can only have the fofma- t* f(1t%). We
substitute this solution into Eq. 5.22, and require @hdt participate in the equation only in
the same combinatiox= [t* in which they participate as the argumentofThus we define
the power indexq = ﬁ%Z, and get forF the equation

(B-2)XCF"(X) + BB -2’ (X) - xF'(X) —F =0 (5.23)

In two cases the equation can be solved analytically:

_If B = 0 thenF(x) = e

- If p = 1 thenF(xX) = €*. Only in this case we have a simple exponential distribution
over energies.

For other amounts ¢f we solve Eq. 5.23 numerically and present the resulting functions
in Fig. 5.8. We normalise all the solutions in such a way to (@ = 1. For smallg the
function F has a strong core, and then rapidly decaysxfor 1, tending to the step-function
wheng tends to—co. For bigs the functionF is cuspy atx = 0 and possesses a strong tail at
big x.

Thus, the self-similar solution looks likg(l,t) = C:’%F (2'—1 . For anyp < 2 it gives a
distribution function, which tends té-function whentt—i 0, énfj then expands to the higher
values of the angle variable, so tH&} « tflﬁ. For small amounts of actiolp when the action
| is nearly proportional to the enerdy, our results imply, that a coeval population will stay
isothermal only if the heating law B « t. If the heating is described by a power law with a
different power index, then isothermal population is inconsistent with it. Fongbea if we
assume the heating la{ie) o« t3 (as it is done in Just & Jahreil3 (2010)), ther= 0.5, and
the distribution over energies is given by the blue curve in Fig. 5.8, whicksisraially more
cored an has a weaker tail, than the exponential.
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1 2 3 4 5

Figure 5.8: Shapes of the functiéi(x) for different amounts gf: -10 (the curve, which is
the highest ak=1), -3, -1, 0, 0.5, 0.75, 1, 1.25, 1.5 (the highestat).
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5.3 Statistical methods for adjusting theoretical distribution func-
tions to observational data

We discuss a variational method for constraining distribution functions witaithef obser-
vational data. The method intrincically accounts for observational biassn@asurement
errors.

5.3.1 General idea

Let's consider the following problem. On the one hand, we have a catatdgleservational
data, which containdl stars and provides their coordinatgsand velocitiesv;, i = 1 to N.
On the other hand, we have a family of theoretical distribution functitijgsa), whereq

is a multidimensional vector in the system’s phase space, that includes allrtaBles on
which the distribution function should depend (spatial coordinateglocity v, if available,
also metallicity, age etc.), aral= (ag, ..., av) is a multidimensional vector composed of free
parameters of the theoretical model. The aim is to select free pararagtessich a way to
provide the best consistency between the theory and the observastions.

A common approach to this problem is binning the data in coordinatgsravelocities,
comparing number of stars in each bin with the predictions of the theoreticadlnaal ad-
justing free parameters according 6 criterion. Usually this approach leads to problems
connected with small-number statistics. An even more severe problem is tef loBgrma-
tion during binning, which augments degeneracies and sometimes everesaggiitg several
different kinds of binning to resolve them.

Here we consider a fierent approach. We sum logarithms of theoretical distribution
function over the catalogue, thus constructing a function

N
F(a) = Z Inf(qgn; @). (5.24)
n=1

Then we adjust free parameterto maximize the functior.
Thus performed fitting is the best in the following sense. Let us consideryabig cata-
logue. When the number of staxstends to infinity,F turns into

FoN f dq fo(@)In (a), (5.25)

with fp being the true distribution function. Let us also not constrain ourselvesetdth
parametric family of function$(r, v; @), but search for the maximum &fthroughout all pos-
sible functionsf(r,v). Then the variational problem reads: we must optimize the functional
Eqg. 5.25, under the normalization constraint for the distribution function,

f dq f(q) = 1. (5.26)
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Then the method of Lagrange multipliers leads to the equation

fo() 3

Accounting for normalization, its solution s = fq, thus the theoretical distribution function
that optimized~ coinsides with the true distribution function.

As well we can expect, that best fitting functiémvill be still close tofy, if it was searched
not among all possible functions, but only among a reasonable properseoM-parametric
set, and if the number of stars in the catalog, though not tending to infinity, snoiggh.

5.3.2 Treating observational errors

Let us now consider the case when positions of stars in the phase g@aeeknown not
precisely, but with some errors. Lp{éq) be the probability density of a star with actual phase
space coordinates to be observed at the poigt+ 6q. For the time being the probability
distribution p(6q) is assumed to be the same for all stars. The normalization condition for the
error distribution reads

fdéq p(oq) = 1. (5.28)

Now we can construct and maximize the following function

N
F@) = ). n( [ da ploa)(an - oa; ) (529
n=1
For a big number of stars, the sum turns into an integral,

F=n [ [ P(5Q')fo(Q)|n( [ o p(aq)f(q+6q'—6q)). (5.30)

A simple transformation of variables gives

F=N [ ( [ ase p(aq)fo(q—aq))ln( [ ase p(aq)f(q—aq)). (5.31)

This expression foF is now very similar to Eq. 5.25. Moreover, Egs. 5.26 and 5.28 provide
a normalization condition,

f dq f 4o p(a) F(q — o) = L (5.32)

Equations 5.31 and 5.32 present a variational problem equavalent todhgaesented by Egs.
5.25 and 5.26. Method of Lagrange multipliers again results in the solution girtiidem,
which reads

f doq p(oa) f(q - 66) = f do p(6q) fo(q - 50). (5.33)
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Itimplies thatf(q) = fo(q) is a solution of the problem. In most practical cases it is the unique
solution. For example, for Gaussian errors the bluring of a distributiorbeathought as a
diffusion proces with someftlision codicients, then uniqueness of the solution follows from
uniqueness of solution of a time-reverseffuliion equation.

Let us now consider the case when the errors dferént for ditferent starsp = p(6q; Aq),
with Ag being parameters, describing the distribution of errors. The veajatoesn’t nec-
essarily have the same number of components. d$ g hasM components, then Gaussian
errors requireM(M + 1)/2 components irAq to specify them, and non-Gaussian errors can
require even more. Further, IB{q, Aq)dAq be the probability for a star with coordinatg$o
have the error within the rangeg around the valuag. We again maximize a function similar
to Eq. 5.29,

N
@) = ). n( [ dia ploa. a0 f(an - 60ia). (5.34)
n=1

For a big number of stars Eq. 5.34 transforms into

F@=N [aa [ quP(q,Aq)( [ oo p(csq,Aq>fo(q—6q))ln( [ asa p((sq,Aq)f(q—aq)).

This expression must be maximized with the normalization condition, 639
| da [ daapea.aa) [ dsa ploa. Aq)o(a - oa) (5.36)

This problem also leads to the equation
| @saptea. aa)f(a - da) = | doa ploa. ac)o(a - o0, (5.37)

This also implies, that(q) = fo(q) is a solution. For small Gaussian errors the solution must
also be unique. But sophisticated error distributions allowing multiple solutiansalso be
constructed.

If some components af are not measured at all (for example, a catalogue without radial
velocities), we still can use the data, but must set the error for the lackimganents to be
infinite.

5.3.3 Biased samples

If a sample is biased with a known bias functia(g) (which is the probability for a star with
a given position, velocity, mass, age etc. to be observed), then Eq. 5.2d4enuwansformed
into

1 Inf(qn; @)
F(a) = an TR (5.38)

In the limit of a big number of stars Eq. 5.42 transforms into the same formula.E§, &d
thus also leads to the correct distribution function as the best fitting value.
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If the survey is magnitude- or distance-limited, we expect to observetesdbeno stars
in some regions of phase space. If occasionally some outliers happemnbsé®ed in these
regions, they contribute to the function Eq. 5.42 too strongly due to a verlf dememina-
tor. This problem can be solved by prescribing any weighting functig@) and considering
variational problem

F(a) = Z W(q”)g?c:n()q”’ W(GnInf(Gn: @) (5.39)
f daw()f(q) = L (5.40)

In particular,w can be set to be equal 0 in the region we want to exclude out of the comside
tion at all.

Another important case is a sample with an unknown bias. Let's assume tlsaniipde
is unbiased in a subspace of phase space coordigateghile in the other coordinates is
biased in an unknown manner. (The direct sum of sultredsdq, equals to the entire phase
spaceay.) A typical example of this sort of bias is a sample with no velocity biases, tarigstr
biases in coordinates. In this cage= v, while g; includes coordinatesand some additional
variables, like absolute magnitude and colour.

In this case we can still adjust the distribution function by a similar method. khstef,
we introduce a new function

f(Qv.ar; @)
fdQV f(av.ar; @)’ (541

9(qv.qr; @) =

We useg to construct a function

N
F@ = D INg(Gun: trn; @)- (5.42)
n=1

Then we maximize this functiok(a) with the constraint, which follows from the definition
Eq. 5.41,

f day g(av.qr) = L. (5.43)

In the limit of a big number of pointE is proportional to

F=N f da b(ar) fola. ) ING(c. o). (5.44)

Hereb(q,) is again the bias function, the probability bor a star to be observed. Isisras]
to depend on the variables from the suligeonly. Solving the variational problem of max-
imizing Eg. 5.44 under constraint Eq. 5.43 with the aid of Lagrange multiplieng$us to
the equation

b(ar) fo(av. ar) ) _
f dgvag; (—g(qv’ ) - ca)ot(awean) =0 (5.45)
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with C being an arbitrary function depending gnonly. Thus we get Euler’s equation
_ b(ar) fo(av. ar) '

, = 5.46
We substitute the result into Eqg. 5.41, and get
f(av.ar) = C'(ar) fo(av, ar). (5.47)

whereC’(q;) = b(qr)quv f(av, qr/C(qr) is an unknown function that depends gpnonly.
Thus f = fp is a solution of the variational equation, though it's by far not unique when
searcing among all possible functions.

But constraining ourselves to the range of physically reasonable fascti@y, q;; a)
instead of all possible functiong(qy, g;) helps us to remove the degeneracy, as functions
f(av, gr; a) for different amounts ad can’t usually be obtained from one another by myltiply-
ing by a factorC’(q,) depending only on a part of variables. For example, two distribution
functions can't have the same velocity distribution in every locus of sfacteljfferent density
distributions, as it will fall into contradiction with Jeans equations, thus actpfalepending
on spatial coordinates can be eliminated for a velocity unbiased sample. @th#rehand,
an unknown factor depending on colours and magnitudes can't be elithinéteout more
sophisticated assumptions, like IMF and SFR.

5.3.4 Error estimate

When maximizing F from Eq. 5.24 we are expectin to get

(Fy = N(nf(@)) = N f dq F(@)Inf () (5.48)

AF? =((F = (F)* =N qu f(a)(Inf(a) - (Inf(a))? (5.49)

If if the amount ofF for the best-fitting function falls within the intervaF) + AF?, then the
fitting can be considered to be successful. The resuRisignificantly exceedingF) + AF?
implies an unsuccessful fitting and either a wrong family of theoretical disimibdunctions,
an unaccounted bias, or another mistake.

Let's assume that everything was right, anddct O the distribution function really turns
into the true distribution functionf(q; 0) = fo(q). Let's estimate the error in the best fitting
amount ofa due to the shot noise. Byftierentiating Eq. 5.24 we get the system of equation

N1 af(gna)
,Z;f(qn;a) oa ° (5:50)

There areM such equations far= 1, ..., M, with M being the number of variables. Now we
expand Egs. 5.50 into Taylor's series, obtaining

M N f _Ef. N 3
ZZ¥=Z? (5.51)

j=1n=1
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Here we use shorthand notatifn= df(qn; a)/0a;)|a=0. Summation oven means substitution
gn as arguments into all functions. Now we multigly equalities Eq. 5.51 by each other, and
average the resulting products. Thus we get

M

Z(f fij f fldeQ)(f fuf — : fkf| )( a >_5|kff2dq (5.52)

Jil

TheseM(M+1) independent equations allow us to compute the variance rgae. Though
these equations can be too complex for practical purpoddsisfbig, their qualitative result
is still obgious: errors\a; are proportional tiN~*/2, and can be estimated as

Ay ~ %, (5.53)
whereag; is the minimal change od; necessary to substantially chanfjeA similar system
Eq. 5.52 can be written fdf being defined by Eqg. 5.29. In this case the distribution function
blured by errors must be substituted into Eq. 5.52 instead of the originalharsuch bluring
normally soften the gradients, and the derivatives participate in the ledt $ida of Eq. 5.52

in higher powers than in the right hand side, as a rule of thumb we cantekaechis will

increase the errors @.

5.3.5 Applications

If we have several dlierent stellar samples and are applyinffedtent methods of the ones
described above, we can add up fithess functiere different methods and maximize the
sum. As the true distribution function must maximize all the fitness functions aeparit
must also maximize their sum. But adding them together can make the error oftitige fi
smaller, and even resolve some degeneracies producedteredt sorts of biases and errors
in different catalogues.






Summary

RAVE, SEGUE and Hipparcos data were used to study the dynamics ofrstassextended
solar neighbourhood. The asymmetric drift of thin disc dwarfs as a fumofigelocity disper-
sion was found to depend on metallicity. This dependence is consistent wkhdta radial

metallicity distribution in the disc and with our understanding of inside-out Galasydtion.

Linear extrapolation of the data give the LSR within the error bars from tieeby Aumer &

Binney (2009).

Implying the asymmetric drift correction to the SEGUE data allows us to recanshe
behaviour of the rotation curve of the Milky Way in the extended solar neigitinod. The
rotation curve appears to be essentially flat, giving no hint for a dip jutstidmithe solar
radius followed by an increase observed in some other data sets. Therelat@pplemented
by tangent point measurements for the inner rotation curve and by estirhdtegoavitational
potential of the outer Galaxy from the dynamics of open clusters and satelléeigs.

We construct a 3-component density model of the Milky Way as a sum ofi@ehulge,
an exponential disc with a hole, and a flattened dark matter halo with eithal mther-
mal or NFW profile. We adjust the free parameters in such a way, to getetiefib of
the observational data Sofue et al. (2009) and a flat rotation curve isolae neighbour-
hood. When adjusting the parameters we constrain ourselves with the Infzadesdensity
of the discXgisc = 45.2 + 4My/pc? and the local volume density of the dark matter halo
pho = 0.014M,/pc Just & Jahreil (2010).

Thus we get a 3-component density model of the Milky Way. The densityeobtiige is
given by Dehnen model with power index= 0.5, total massVl, = 1.8 x 101°M,, and the
scale radius o&, = 0.22 kpc., The disc is exponential wiRy = 2.5 kpc with a hole of a twice
smaller scalelength wite = 0.4. Two different models of dark matter halo are considered,
spherical cored isothermal halo with core radius 3.2 kpc, and flattened NFW profile with
a = 20 kpc. Both models succeed to reproduce the data, with a somewhat Iettss for the
one with cored isothermal profile.

Vertical structure of the disc of the Milky Way was studied using predominaméyRAVE
sample. The results were found to be consistent with the model by Justr&iska2010),
which had been constructed using the Hipparcos sample. We also rectedtdistribution
of stars over energies of vertical motion.
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