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Abstract

Understanding the formation and evolution of galaxies through cosmic time has been a central
focus of astrophysics in the last decades: how did the interplay between dark matter structure for-
mation, star formation, galaxy merging, and active galactic nuclei (AGN) give rise to the observed
galaxy properties at different redshifts? This thesis presents innovative observational approaches
to two aspects of this problem: finding and studying AGN through their variability, and making
a first systematic census of galaxy mergers at z > 1 through three-dimensional spectroscopy.

First we present a new and simple technique for selecting extensive, complete, and pure quasar
samples via their intrinsic variability, parameterizing the single-band light-curve structure func-
tion through a power-law to identify quasars among other variable and non-variable sources.
Using extensive multi-epoch observations from SDSS Stripe 82 containing ∼60 epochs taken
over ∼8 years, we demonstrate the power of this approach. The presented algorithm identifies
quasars with a completeness and purity above 90% at all redshifts. Even for Pan-STARRS 1
mock data of only 6 epochs over 3 years, variability is still an encouragingly efficient quasar
classifier. Data on intrinsic quasar variability enable a wide range of astrophysical science. We
quantify the color variability, confirming and greatly fleshing out previous claims, that quasars
become bluer as they brighten. We find a strong redshift dependence of this blueing, which we
can attribute to emission lines contributing to the SDSS bands at different redshifts. We find that
the color variations of single quasars are much more pronounced than the ranges in color seen in
time-averaged ensembles of quasars. This indicates, that the observed color variations cannot be
explained by changes in the mean steady state AGN accretion rate, but must arise from accretion
disk ‘hotspots’ or similar phenomena.

In the second, distinct part of the thesis, we present the first large sample of morphologically
selected galaxy mergers with three-dimensional spectroscopy at z ∼ 1.5. With individual masses
and star formation rates derived from multi-band photometry, we created emission line maps from
the slitless grism spectroscopy of 3D-HST as proxy for star formation maps, providing a com-
prehensive empirical picture of where star formation takes place in galaxy mergers at the epoch,
where the cosmic star formation and merger rates peaked. We find that a broad range of star
formation morphologies occur at all redshifts, irrespective of star formation rate and total stellar
mass, in these mergers. An initial illustrative comparison to a set of cosmological simulations
shows, that simulated mergers with similar mass and gas content show star formation in both
merger components far more often than for the observed 3D-HST mergers. This suggests that
mergers at z ∼ 1.5 most commonly happen between galaxies of distinctly different gas fractions.





Zusammenfassung

Das Verständnis der Entstehung und Entwicklung von Galaxien durch die kosmischen Epochen
ist seit Jahrzehnten ein zentraler Fokus der Astrophysik: Wie führte das Wechselspiel zwischen
der Strukturentstehung der dunklen Materie, Sternentstehung, Galaxienverschmelzung und ak-
tive Galaxiekerne (AGN) zu den beobachteten Eigenschaften der Galaxien bei unterschiedlichen
Rotverschiebungen? Diese Dissertation präsentiert neue Beobachtungsherangehensweisen an
zwei Aspekte dieses Problems: Das Auffinden und Untersuchen von AGN durch deren Vari-
abilität und die Erstellung der ersten systematischen Untersuchung von Galaxienverschmelzun-
gen bei z > 1 durch dreidimensionale Spektroskopie.

Zuerst präsentieren wir eine neue und einfache Technik um große, komplette, und reine Stich-
proben an Quasaren durch deren intrinsische Variabilität zu bestimmen. Wir parametrisieren
die Strukturfunktion deren Einzelbandlichtkurven durch ein Potenzgesetz um Quasare von an-
deren variablen und nicht-variablen Quellen zu unterscheiden. Mit Hilfe von Multi-Epochen-
Beobachtungen des SDSS Stripe 82, welche ∼60 Epochen über ∼8 Jahre umfassen, können
wir die Effizient dieser Suchweise zeigen. Der vorgelegte Algorithmus identifiziert Quasare mit
einer Vollständigkeit und Reinheit über 90% bei allen Rotverschiebungen. Sogar für simulierten
daten für den Pan-STARRS 1 Survey, mit nur 6 Epochen über 3 Jahre, ist die Variabilität ein
ermutigend effizienter Klassifikator für Quasare. Daten zur intrinsischen Variabilität der Quasare
ermöglichen einen weiten Bereich von astrophysikalischer Anwendungen. Wir quantifizieren die
Farb-Variabilität und bestätigen und untermauern unsere vorherigen Hinweise, daß Quasare mit
zunehmender Helligkeit blauer werden. Wir finden eine starke Rotverschiebungs-Abhängigkeit
dieser Farb-Variabilitaet. Dies können wir Emissionslinien zuschreiben, die zu den SDDS Bändern
bei verschiedenen Rotverschiebungen beitragen. Wir finden, daß die Farbvariationen von Einzel-
quasaren viel ausgeprägter sind als die Farbbereiche in zeitlich gemittelten Quasarensembles. Die
zeigt, daß die beobachteten Farbvariationen nicht durch Änderungen in der stationären Durch-
nittsakkretionsrate der AGN erklärbar sind, sondern von ‘hotspots’ oder ähnlichen Phänomenen
der Akkretionsscheiben herrühren müssen.

In dem zweiten eigenständigen Teil der Dissertation präsentieren wir die erste große, morphol-
ogisch selektierte Auswahl von Galaxienverschmelzungen mit dreidimensionaler Spektroskopie
bei z ∼ 1.5. Mit individuellen Massen und Sternentstehungsraten, die von Multiband-Photometrie
abgeleitet werden, erzeugen wir Karten der Emissionslinien von der spalt-losen Grismspek-
troskopie von 3D-HST stellvertretend für Sternentstehungskarten. Diese stellen ein umfassendes,
empirisches Bild bereit, das zeigt wo Sternentstehung in Galaxienverschmelzungen in dieser
Epoche, in der kosmische Sternentstehung und Verschmelzungsraten einen Höhepunkt erreichen,
passiert. Die Untersuchung hat gezeigt, dass ein weiter Bereich von Sternentstehungsmorpholo-
gien bei allen Rotverschiebungen passiert, unabhängig von der Sternentstehungsrate und totalen
stellaren Masse in diesen Verschmelzungen. Ein illustrativer Anfangsvergleich von einem Satz
von kosmischen Simulationen weist daruaf hin, daß Verschmelzungen bei z ∼ 1.5 am häufigsten
zwischen Galaxien mit deutlich unterschiedlichen Gasanteilen passieren.
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Chapter1
Introduction

The aim of this introduction is not to give a broad and general introduction to
the vastly different and overwhelmingly many interesting topics of ancient as well
as modern astrophysics. The aim of this introduction is rather to set the stage of
Chapters 2–4 which contain the bulk material of this thesis. After taking a stroll
down astronomy’s memory lane, we present the standard cosmological model,
which is the foundation of modern astronomy. Within this theoretical framework,
we describe the build-up of galaxies including the formation of stars in merging
dark matter potential wells. We will focus on two particular epochs of the evo-
lution of galaxies as we set the stage for the main chapters. Firstly, we focus on
the build-up of galaxies just 3–4 Gyr after the Big Bang (z ∼ 1.5), where the vast
majority of the present day stars formed within galaxies and in violent collisions
of galaxies. Secondly, we focus on the active phase of a galaxies life cycle, where
galaxies are bright enough, that they can be observed out to z = 7, providing an
important probe of the very early Universe, the Universe’s large scale structures,
the intergalactic medium, as well as the physics of the central regions of individual
(active) galaxies.

Apart from in-text references this introduction is based on Longair (1998); Freedman & Kaufmann
(2002); Binney & Tremaine (2008) and Mo et al. (2010).

1



2 Introduction

1.1 Our Place in the Universe

Astronomy, being one of the oldest professions in the world, has a long and glorious
history, which this short introduction will by no means give justice. Nevertheless, a
short description of where the science of astronomy/astrophysics come from is in its
place. Astronomy has played a crucial part in the oldest societies known to man, from
the Mayan empires over the greek cradle of democracy to the persian and babylonian
ancient people. The breathtaking starry night has by many been thought of as godly
and/or holy and has inspired people to observe it, describe it and map it.

Up through time the surrounding Universe has not only been amazing and fascinating
generations, it has also been a constant cause for disputes. It was long thought that
Ptolemy’s geocentric second century picture of the Universe, where stars and planets all
revolve around the Earth, as illustrated in the two left panels of Figure 1.1, was the correct
model. If you proposed otherwise, you were ridiculed or punished. In the renaissance
people slowly started to accept that there might be more to the understanding of the Uni-
verse than a scheme with the earth in the center and everything else revolving around it.
With scientists like Copernicus, Brahe, Kepler, and Galilei significant steps were taken
away from the geocentric world picture towards a heliocentric picture as first described
by Copernicus, with the planets moving around the Sun on elliptical orbits as described
by Kepler (1609). Brahe actually did not believe the heliocentric picture, but his out-
standing naked eye(!) observations led Kepler to his discoveries. In the right panel of
Figure 1.1 the heliocentric picture is portrayed as Copernicus imagined it. Moving from
the geocentric to the heliocentric world picture was based on observations of the night
sky, both with and without telescopes, and the eager to understand and describe these
observations by mathematics. With Newton’s Philosophiae naturalis principia mathe-
matica (Newton 1760), where he describes the laws of gravitation and derives Kepler’s
empirical laws of planetary motion for the first time, astronomy entered a new era.

In very much the same way, it is this fascination and urge to describe observations of
the Universe by mathematics and physics that drives many astronomers today. Taking
part in the observing, detailed theoretical description, and mapping of the magnificent
Universe around us is a privilege and what makes this profession so great. With this
eager to discover and explore the unknown, we have come a long way since the mayans,
the babylonians, the greeks, and the astronomers of the renaissance. Not despite of them,
but because of them, we today believe that we understand how it all started, what the
foundation of it all is, and how it evolved into what it is today. As Bernard of Chartres
(and later Sir Isaac Newton) puts it:

We are like dwarves perched on the shoulders of giants, and thus we are able
to see more and farther than the latter.
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Figure 1.1: The traditional geocentric picture of the Universe as described by Ptolemy in his
second century Almagest (left) and in a ‘modern’ sixteenth century version (center). Copernicus’
heliocentric model was first presented and illustrated in “On the Revolutions of the Celestial
Sphere” (1543) as shown in the right panel. This model changed the view of our place in the
Universe – we were no longer the center of attention.

1.2 The Standard Big BangModel

People slowly started to acknowledge that the earth was not the center of the solar sys-
tem, let alone the Milky Way Galaxy or the Universe as a whole, and mathematicians,
physicists and astronomers were able to theoretically describe the empirical models that
existed of larger and larger portions of the observable Universe. With the Messier catalog
(re-published in Messier & Niles 1981) and Herschel’s Catalogue of Nebulae (Herschel
1786) in the late eighteenth century and later Dreyer’s New General Catalog (Dreyer
1888), it became evident that the sky was filled with objects, that were not ‘just’ stars.
Though it had been speculated by several people that these objects were ‘island’ Uni-
verses similar to our own Milky Way at extreme distances, it was not until the work
of Hubble in the early 1920s (less than 100 years ago!), that it was finally shown that
they were extragalactic. In 1925 Hubble for the first time used Cepheid’s relationship
between period and absolute magnitude to show that some of the major known nebulae,
i.e., galaxies, were indeed extragalactic (Hubble 1925a,b). In Hubble (1926) he showed
that extragalactic objects were spread all over the sky and derived the first empirical rela-
tions for these objects. Hubble showed that these extragalactic galaxies were all receding
from the Milky Way with a velocity strongly dependent on their distance to us (Hubble
1929). This relationship can be formulated in Hubble’s law:

v = H0 × d . (1.1)

Here H0 is the so-called Hubble constant (at present indicated by 0), v the receding
velocity of the galaxy and d the distance to the galaxy.

Thirteen years earlier Einstein presented his general theory of relativity (Einstein 1916)
generalizing the special relativity theory and Newton’s laws of gravitation via his field
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equations (Einstein 1915) providing a unified theory for the behavior of energy, i.e., mass
in the spacetime continuum. In Einstein (1917) this theory was put into a cosmological
context, and how to obtain stable solution to the field equations was discussed. Einstein
created stable solutions by introducing the cosmological constant, Λ, to keep the Uni-
verse (artificially) static. Einstein later regretted having introduced Λ, however, as we
will describe below, this cosmological constant became an important part of our present
understanding of the Universe in the 1980s (though introduced via different reasoning).
De Sitter (de Sitter 1917, 1918) and Friedmann (Friedmann 1922, 1924) later showed
that stable solutions to Einstein’s field equations did indeed exist for expanding as well
as stationary models of the Universe, also without introducing the artificial Λ. Hubble
was aware of this work in 1929 and therefore noted that the linear distance-velocity re-
lationship from Equation (1.1) might be a first approximation to the actual movement
and behavior of the extragalactic nebulae. At cosmological distances Hubble’s law is
indeed model dependent, but the Hubble expansion in Equation (1.1) is nevertheless a
fundamental feature of the local Universe.

Having established both theoretically and observationally in the 1920s that the Universe
was expanding, it became obvious that in the very distant past the Universe must have
been much denser, than it is today. In fact, with enough time available it would at some
point have been considered a physical singularity, i.e., it would have been so dense and
hot that all physical models would brake down. This singularity has since the early
1950s been known as the Big Bang. The time needed for the Universe to evolve from
this singularity into a Universe with the observed expansion rate is simply obtained by
inverting Hubble’s law in Equation (1.1). This results in an approximate age of the
Universe, called the Hubble time

t0 ≡
1

H0
=

d
v
∼ 13.7 Gyr . (1.2)

Up through the 40s and 50s people like Gamow, Dicke, Alpher & Herman speculated
that this Big Bang over-density should be observable as a smooth background black-body
radiation, and they estimated it to have a temperature of the order 10s of Kelvin. In 1965
the cosmic microwave background (CMB) was serendipitously observed for the first
time as a spurious 3.5 K background as presented in Penzias & Wilson (1965) and Dicke
et al. (1965). This was the second observational evidence (Hubble’s distance-velocity
relation in Equation (1.1) being the first) of the Big Bang model of the Universe. With
the Cosmic Background Explorer (COBE; Mather et al. 1990; Smoot et al. 1991; Bennett
et al. 1996) and Wilkinson Microwave Anisotropy Probe (WMAP; Hinshaw et al. 2009;
Jarosik et al. 2007; Bennett et al. 2003; Jarosik et al. 2011) the CMB has later been
observed in amazing detail and has backed up these initial findings. In Figure 1.2 the
CMB maps from the COBE 4 years data (left) and the WMAP 5-years data (right) are
shown.
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Figure 1.2: The cosmic microwave background (CMB) from the COBE 4-years data (left; Bennett
et al. 1996) and WMAP 5-years data (right; Hinshaw et al. 2009). The color scheme depicts
the 13.7 Gyr old temperature (density) fluctuations, which after inflation grew via hierarchical
merging and condensation into the galaxies we know and love. This radiation is the left-over from
the singularity we call Big Bang and is one of the strongest observational proofs of the standard
Big Bang model.

Previously it had been a challenge to explain the high abundance of metals (primarily
He) in the local Universe via Hydrogen burning in stars only, so when Hoyle & Tayler
(1964) managed to describe the observed He/H ratio within a factor of two, by assuming
that the Universe had been a singularity in the past, the road was paved for the general
acceptance of the evolutionary Big Bang model.

1.3 Structure Formation& (Λ)CDM BuildingBlocks

Apart from the particle physicists’ interest in the formation of the first heavy elements,
also a more general theoretical interest in describing the Big Bang model grew in the
twentieth century. Many such attempts assumed Einsteins’s general relativity to be true.
One of the preferred models, in the form of Friedmann’s solutions to Einstein’s field
equations mentioned above, made some strong assumptions. The model assumed that
the Universe is isotropic and homogenous. These two main assumptions have come to
be known as the cosmological principle. Even though this was just a cosmological re-
statement of the thoughts behind Corpenicus’ heliocentric picture depicted in Figure 1.1,
i.e., there is nothing special about our location in the Universe, it still seemed odd that
this should be the case, now that it was clear that the observable Universe was definitely
not isotropic and homogenous. Thus, any theoretical model of how the CMB temperature
fluctuations over time turn into the observed galaxies, needed to obey these assumptions
if Friedmann’s equations were to be right.

Already in Jeans (1902) it was described how a stable structure (in this particular case a
spherical nebula) can become unstable and collapse under its own gravity. This happens
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if the size of the initial density perturbations are larger than the Jeans length

λJ =
cs√
Gρ0
π

, (1.3)

where G is Newton’s gravitational constant and cs is the sound speed propagating in
the ‘medium’ of mass density ρ0. This equation simply states that if the spatial (Jeans)
scales are large enough the gravitational attraction can overcome the (sound) pressure
and collapse.

Concerned with only spherically symmetric perturbations Lemaı̂tre (1931, 1933), Tol-
man (1934) and later Bondi (1947) applied this line of thought to the expanding Universe,
assuming the cosmological principle to be true. It was generalized by Lifshitz (1946),
who studied the evolution of the assumed infinitesimal temperature (density) perturba-
tions in the framework of the Friedmann model. From these different studies the authors
however arrived to the conclusion that the observed galaxies could not have formed from
gravitational collapse, since the Hubble time, t0 (Equation (1.2)), was simply too short
to allow the assumed infinitesimal perturbations to collapse into structures as massive as
galaxies.

In the 1960s various authors among those Zel’Dovich & Novikov (1967) and Peebles
(1968, 1971) allowed the initial density perturbations to be non-infinitesimal, and de-
veloped a framework in which structures could collapse, form filaments of over-dense
regions (leaving under-dense voids behind), and evolve into the large scale structure of
the Universe, which was observed. In the 70s generally two theories came to domi-
nate: the adiabatic and the isothermal model. The adiabatic picture (e.g., Doroshke-
vich et al. 1974) describes the perturbations as adiabatic sound waves, i.e., sound waves
not exchanging energy with the surroundings, which starts to fragment into smaller and
smaller structures, as the density contrast of the surroundings changes. Hence, the adi-
abatic picture is, so to speak, a ‘top-down’ picture of structure formation, where large
structures form first and then fragment into smaller structures. The isothermal picture,
on the other hand, is a ‘bottom-up’ picture, where small structures form first and then
merger to grow into larger and larger structures. It describes how isothermal perturba-
tions in balance with the pressure collapse and form larger structures via hierarchical
clustering and merging of over-densities. The discovery of the CMB in 1965 served as a
direct observational test of the initial conditions of these theories of structure formation.
As the CMB measurements improved it became clear that the size of the observed per-
turbations were simply too small to have been the primordial seeds of baryonic matter,
that developed into the massive galaxies observed in the nearby Universe within the age
of the Universe, i.e., within t0. The main problem was that the baryons needed to cool
significantly before they could collapse (or fragment) due to the counteracting radiation
pressure in Jeans’ theory. However, along with the development of the theories for bary-
onic structure formation up through the 70s, the concept of dark matter was discussed
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extensively as possibly playing a major role in the picture of structure formation – and
indeed, dark matter turned out to be the key for solving the t0 time-scale issue.

Dark Matter, predicted already in the early 1930s (Oort 1932; Zwicky 1933), consists of
non-baryonic particles neither emitting nor reflecting electromagnetic radiation. It was
initially introduced into structure formation as neutrinos with non-zero mass, later re-
ferred to as hot dark matter due to the neutrinos’ relatively low masses. It was however
realized that several other particles, some more exotic than others, but all weakly inter-
acting and much more massive particles (WIMPs) than the neutrinos, could also serve
as non-baryonic dark matter1. In the early 1980s the models for this cold dark matter
(CDM)2 were presented (e.g., Peebles 1982; Faber 1984; Primack & Blumenthal 1984).
Since dark matter is weakly interacting, or in other words collisionless, the gravitational
instability of the CDM perturbations is not hampered by a counteracting radiation pres-
sure. This was the problem baryonic structure formation was facing, and it therefore
made the dark matter structure formation picture more attractive.

In Press & Schechter (1974) it had several years earlier been described how the mass
function of objects experiencing a hierarchical structure formation, i.e., a bottom-up
picture similar to the isothermal structure formation from the same period, under the
assumption of an initial gaussian distribution of density perturbations, evolves as a func-
tion of time. This theory proved extremely useful for describing the buildup of the CDM
hierarchical Universe and was later improved by Lacey & Cole (1993) taking detailed
observations of the CMB into account3. In general, at very early stages the initial gravi-
tational collapse is linear, i.e., the CDM perturbations are slowly collapsing linearly into
larger and larger over-densities, which the baryons relentlessly follow. When these over-
densities become large enough, the evolution enters a non-linear regime, where the dark
matter potential wells collapse to form filaments and voids mapping the CDM ‘poten-
tial well landscape’ that baryons can condense into to form the observable galaxies. In
Section 1.4 we will describe this ‘condensation’ in a bit more detail. Having established
the general picture of structure formation, it was no longer as problematic to state that
the Universe was homogeneous and isotropic, i.e., to assume the cosmological principle

1In principle brown dwarfs, black holes and neutron stars, all baryonic, are also dark matter ‘particles’
and are usually referred to as MACHOs (massive compact halo objects). However, these were not present
in the very early Universe, so here we let the term dark matter refer to the non-baryonic WIMPs only.

2Also warm dark matter schemes were introduced, but both the hot and warm dark matter models have
proven much less successful than the cold dark matter models, and was mostly popular in the late 70s and
the 80s. The terms hot, warm and cold refer to the masses of the dark matter particles (CDM being the
heaviest), and the epoch at which the particles became relativistic. For further information on the different
types of dark matter see Faber (1984); Ryden (2003); Longair (1998) or Mo et al. (2010).

3Lacey & Cole (1993) combined the theory for the collapsing of dark matter structures with the assump-
tion that the CMB fluctuations can be described by a primordial power-spectrum, as confirmed by COBE in
1992 (Smoot et al. 1992) and predicted by the Harrison-Zeldovic power spectrum (Harrison 1970; Zeldovich
1972).
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to hold. Since, if all structures form by the collapse of gaussian perturbations in a large
uniform ‘fluid’ or plasma of particles, it is not hard to imagine that a some character-
istic scale the cosmological principle is indeed true. This characteristic scale has been
shown by extensive observational efforts (e.g., Shectman et al. 1996; Colless et al. 2001;
Stoughton et al. 2002) to be of the order ∼ 100 − 200 Mpc (Longair 1998; Ryden 2003;
Binney & Tremaine 2008), i.e., the Universe is indeed homogeneous and isotropic and
the cosmological principle therefore holds.

Despite the many successes of the standard Big Bang model, there were still unsolved
issues that cosmologists in the 1970s were very puzzled by. To obtain the high degree of
isotropy that the CMB predicts, the initial conditions of the Big Bang need to be carefully
adjusted, fine-tuned, and arranged such that the Universe evolves into what is observed.
The five main unsolved issues or problems with the Big Bang model are often referred to
as the flatness, horizon, baryon asymmetry, large scale structures and monopole problem.

The flatness problem concerns the fact that the Universe seems to have an energy density
very close to the critical density, preventing the geometry of the Universe to be curved,
i.e., the Universe is flat. It appears that the Universe was flat to within a factor of ∼ 10−16

when it was already 1 second old (Kolb & Turner 1990), which is indeed heavy fine-
tuning.

As mentioned the CMB was observed to be very uniform over the full sky. However, by
simply rewinding the clock, every point in the sky could not have been in causal contact
and therefore did not have the chance to adjust their temperature in the early Universe if
only t0 was available. In other words the horizon of each point in the sky is too small for
them to have been in causal contact, so how come the full-sky CMB map is so uniform?

The baryon asymmetry problem deals with the fact that there is an asymmetry between
baryons and photons in the Universe today. For this asymmetry to survive the hot early
phase of the Big Bang model, there must have been a baryon–anti-baryon asymmetry at
early times, which insured that enough baryons were left for the electron-positron pair
production.

The large scale structure problem questioned whether there was actually enough time for
matter to condense and collapse, as described above, to form the observed large scale
structures of the Universe within t0.

Lastly, the so-called grand unified theory of particle physics where the electromagnetic,
strong, and weak forces were combined in the early Universe, predicts the presence of
so-called magnetic monopoles and cosmic strings. Since these have not been observed,
their volume density must be approximately 0 at present, which is the essence of the
monopole problem. Why are they not here anymore? Thus, all five problems question
the initial conditions and consequences of the Big Bang model.
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In Guth (1981) and Linde (1982) the inflationary scenario of the early Universe was
presented as a solution to these problems. The authors suggested that when the Universe
was of the order 10−35 seconds old it went through and exponential inflation. Through
several e-foldings the geometry of the Universe was driven towards flat, the size, i.e.,
the event horizon was heavily expanded, the baryon-anti-baryon asymmetry was created,
the seeds for the large scale structures were ‘frozen out’, and the density of magnetic
monopoles was diluted to almost 0. The inflation therefore solved the five main problems
of the Big Bang models.

The inflationary scenario also predicts that the cosmological constant Λ is significantly
different from 0, and thereby re-introduces the cosmological constant into Einstein’s field
equations; though through different reasoning than Einstein’s. In the field equations the
terms concerning Λ can be thought of as an energy density, and today the astronomical
community refers to the cosmological constant contribution as the dark energy of the
CDM model. Since the early 1980s inflation has been a crucial part of the modern cos-
mological picture and the formation history of the Universe, and with the introduction
of inflation and dark energy, the CDM model is now referred to as the ΛCDM model.
For any further details on the individual problems of the pre-inflation Big Bang model or
inflation itself we refer the reader to Kolb & Turner (1990); Longair (1998) and Ryden
(2003).

Despite the extensive observational efforts that supported ΛCDM (CMB, the Hubble
expansion, the lack of monopoles and cosmic strings, baryon-photon asymmetry, large
scale structures, etc.)4 it wasn’t before the late 1990s that the ΛCDM picture was gen-
erally accepted. This happened when several authors, using distant supernovae, showed
that the expansion of the Universe is indeed accelerating as predicted by the dark energy
cosmological constant contribution to the theory (Garnavich et al. 1998; Schmidt et al.
1998; Riess et al. 1998; Perlmutter et al. 1999). Through these and the CMB efforts,
among others, it has been established that the global energy densities of the ΛCDM
building blocks, i.e., visible baryonic matter, dark matter and dark energy are remark-
ably different. It appears that the energy density of the Universe consists of only 4%
baryons(!), 23% dark matter and 73% dark energy (e.g., Jarosik et al. 2011).

Today ΛCDM with its dark energy component is referred to as the standard model of
Big Bang cosmology and structure formation. Hence, today we describe the Universe as
having started from a Big Bang (singularity) with perturbations mainly consisting of dark
matter, running through a short phase of exponential inflation at early times, after which
the dark matter halos started collapsing under their own gravity and grew in a hierarchical
manner via merging. This landscape of dark matter potential wells then acted as ‘hosts’
for the baryons, which condensed into galaxies and started forming the stars, from which

4Some of these observations admittedly supports ΛCDM because the theory was build to fit them, but
nevertheless.



10 Introduction

we gain the vast majority of our knowledge about the Universe.

1.4 Building a Galaxy

There are two main scenarios through which a galaxy is believed to be able to form from
dark matter halos (potential wells) and baryons: through hierarchical merging of halos
and the associated baryons, and via a monolithic collapse of the baryons in the potential
wells.

The hierarchical merging is a direct consequence of the structure formation picture out-
lined above, where the merging of dark matter structures drags along the baryons and
enable these to merger with them. Already in Toomre & Toomre (1972) is was made
clear, that some of the observed peculiar galaxies were well described by a merger sce-
nario. Generally, when galaxies merge the end result is a structure with a broad distribu-
tion of internal velocities, such that most orbits around the systems center of gravity are
occupied.

The monolithic collapse of the baryonic gas in (isolated) galaxies, on the other hand,
often results in a preferred rotation of the system. Since baryonic matter can loose its
energy by radiating in ways dark matter cannot (see Section 4.2), the gas residing in the
dark matter potential wells will over time loose its energy and slowly sink or condense
into the bottom of the potential well (White & Rees 1978; Efstathiou & Silk 1983).
Since angular momentum needs to be conserved, this results in a rotating system where
the gas often flattens to a disk-like structure with a preferred direction of rotation. Such
a fairly equilibrated system can of course be destroyed or stirred up if it encounters the
gravitational effects of another galaxy, or in the most extreme case becomes part of a
galaxy merger.

Hence, the merging of dark matter halos and their galaxies combined with the conden-
sation of gas in (isolated) dark matter potential wells are the main drivers of building
galaxies, and are able to reproduce the observed population of galaxies. Three classes of
galaxies are know: the ellipticals, the spirals and the irregulars. These are often divided
into subclasses, or Hubble classes, as illustrated in Figure 1.3. These classes address the
appearance of the galaxies, like eccentricity of the ellipticals, whether a bar is present
or not in the spirals, and how tightly wound the spiral’s arms are. The formation of
galaxies via hierarchical merging preferentially produces ellipticals, whereas the main
end-product of a monolithic collapse is a nicely rotating spiral galaxy. The irregular
galaxies consist of everything belonging to neither the elliptical nor the spiral Hubble
classes, e.g., merger remnants not yet equilibrated or odd-looking truly irregular galax-
ies.
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Figure 1.3: A schematic overview of the Hubble galaxy classes. The left panel shows the elliptical
classes of galaxies. They are designated by Ex, with x giving the (observed) eccentricity. The two
center panels show the sub-division of spiral galaxies. Spirals are designated with Sα where α
refers to how tightly wound the spiral arms are, with ’a’ referring to the most tightly wound arms.
In the case of prominent bars a B is added. The right hand panel represents irregular galaxies,
which consist of everything (including recent merger events) that cannot be categorized as either
elliptical (Ex), spiral (Sα), or barred spiral (SBα). Ellipticals are the end product of galaxies
formed in recent merger events, whereas spirals need an extended epoch of monolithic collapse
of gas to conserve the preferred direction of rotation and the spiral pattern.

It is not only the appearance and the internal velocities of these different galaxies that are
significantly different. Also the stellar populations of ellipticals, spirals and irregulars are
distinctly different. Since most ellipticals are believed to be the equilibrated end-product
of a merging event, most of the stars in the final elliptical were already present prior to the
merger, i.e., they are relatively old. On the other hand the condensation of gas in spirals
induces new star formation, and hence the age spread of stars in spirals is much broader
than in ellipticals. If irregular galaxies are recent mergers that have not yet equilibrated
into ellipticals, they might have experienced a recent burst of star formation induced by
the collision of gas during merging. Irregulars therefore have a fairly young population
of stars. Thus, the population of stars, i.e., the star formation and the merging activity
in galaxies is closely linked to each other and are important factors when dealing with
galaxy formation and evolution. The epoch where the global star formation rate in the
Universe peaked has been estimated to be at 1 < z < 3 (Ferguson et al. 2000; Heavens
et al. 2004). This agrees well with the peak of galaxy merging (Conselice et al. 2008),
and therefore supports this picture. We will address the interplay between merging and
star formation at 1 < z < 3 further in Chapter 4 and in particular in Section 4.2.

It is not only bursts of star formation the merging of galaxies seems to trigger. Galaxy
mergers are also thought to be able to trigger the most violent phase of a galaxies life, the
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active (quasar) phase, by enabling large amounts of gas to accrete onto a galaxies central
black hole.

1.5 Galaxies’ Active (Quasar) Phase

So far most of the galaxies described have been relaxed equilibrated systems quietly
residing in the bottom of cold dark matter potential wells, slowly forming stars from their
gas reservoirs. However, this state of peace and quit does not last forever. It is believed
that most, if not all, galaxies in their lifetime of several billion years experience one or
more short active phases lasting for only ∼ 107 years (e.g., Haiman & Hui 2001; Martini
& Weinberg 2001; Hopkins et al. 2005a,b). Galaxies in this phase of their evolution are
referred to as active galaxies or ‘AGN’. Strictly speaking AGN refers to the cause of
the active phase, namely the Active Galactic Nucleus and not the actual galaxy itself.
However, it has become standard to refer to active galaxies by this acronym, which we
will therefore also do here.

AGN are among the most luminous and powerful objects in the sky. The majority of
AGN are known to vary by a few percent over weeks, months and years to the more
extreme cases of several percent within a few nights (e.g., Pollock et al. 1979; Webb
et al. 1988; Schramm et al. 1994; Giveon et al. 1999; Bauer et al. 2009a or Ulrich et al.
1997 for a review). That some AGN vary on these short time-scales indicate that the
variability originates from very small regions of sizes from light-months down to a few
light-days(!) across. This early led to the conclusion, that something extremely small
and massive must reside at the center of active galaxies (Spitzer & Stone 1967; Spitzer &
Saslaw 1966; Lynden-Bell & Wood 1968). It is generally accepted that a supermassive
black hole (SMBH) lives at the center of most, if not all, galaxies.

Several classes of AGN exist. Among these are Seyfert 1 and 2 galaxies named after their
discoverer (Seyfert 1943), broad and narrow line radio galaxies (BLRG and NLRG re-
spectively), optically violently variable (OVV) galaxies, BL Lac galaxies, Blazars, low-
ionization nuclear emission line regions (LINERs), quasi stellar objects (QSOs), and
quasars. Some of these names are descriptive for the object class, whereas others are
named for historical reasons. Furthermore, the classes are far from clearly distinct. For
instance LINERs are thought to be a low-luminosity extension of the Seyfert galaxies,
quasar and QSO nowadays refer to the same class, even though they were originally
distinct classes, and Blazars are supposed to be the combination of OVVs and BL Lac
galaxies. This makes the ‘zoology’ of AGN a rather complicated matter. Nevertheless,
we attempt to summarized the key features of the different kinds of AGN in Table 1.1.
This table is by no means exhaustive but gives a good flavor for what characterizes and
distinguishes different AGN types.
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Table 1.1: The Main AGN Types and Their Characteristics

Seyfert† Quasar Radio Galaxy Blazar
1 2 RL RQ BLRG NLRG OVV BL Lac

Broad Lines
+ –? + + + – + –

(σv > 1000 km/s)
Narrow Lines

+ + + + + + + –
(σv ∼ 100 km/s)
Number Density

10−4 10−7 10−6
[Mpc−3]
MB < −21.5 > −21.5

– –
(classic definition) +5 log h +5 log h
Strongly Polarized

+ +
> 5% of light
Significant Radio

+ + + + +
Emission
Variable

+ + + + + + + +
> 1%-level

† LINERS are believed to be a low-luminosity extension of the Seyferts.
? NGC1068 is an example of a classic Seyfert 2 galaxy, where polarized broad lines are actually observed.
This might indicate the presence of an obscured/hidden BLR (Tran 1995) supporting the unified model of
AGN illustrated in Figure 1.4.

The sometimes opaque or muddied classification scheme of AGN has given rise to the
idea, that the different classes of AGN are in principle the same object perceived dif-
ferently by the observer due to viewing angle. This unified model for AGN (Antonucci
1993; Urry & Padovani 1995) is still a matter of debate (e.g., Elvis 2000; Almeida et al.
2011; Trump et al. 2011), but has to some extent made the AGN classification more di-
gestible. In Figure 1.4 we illustrate how the different AGN classes from Table 1.1 are
supposedly observed according to the unified AGN model.
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AGN are believed to get their power from the SMBH residing in the center of the galaxy.
It is believed that the SMBH is swallowing material which radiates strongly, as it falls
into the deep potential well of the SMBH from a surrounding accretion disk. This cen-
tral engine (which we will describe in more detail in Section 2.2) is part of the 6 main
components of the unified AGN model illustrated in Figure 1.4. These components are:

• Central supermassive black hole (SMBH): The SMBH is assumed to inhabit the
bottom of the galaxy’s dark matter potential well and be the key part of the central
AGN. The SMBH in the (non-AGN) Milky Way has been monitored extensively
(Narayan et al. 1995; Schödel et al. 2002; Ghez et al. 2008) and has an estimated
mass of ∼ 106M�. This is two orders of magnitude smaller than the average size
of AGN SMBHs of ∼ 108M� (e.g., Woo & Urry 2002; McLure & Dunlop 2002;
Vestergaard 2002; Häring & Rix 2004).

• Accretion disk: A flattened disk of gas and stars rotating around the SMBH. Mat-
ter being accreted onto the SMBH from this disk is thought to be the main source
of radiation for the extreme AGN luminosities. The accretion disk and the SMBH
make up the central AGN engine which is described in Section 2.2.

• Broad line region (BLR): A small inner region believed to be less than a few
light-years across, composed of individual high density clouds (ρ ∼ 1010cm−3)
giving rise to the broad emission line features observed in most AGN spectra. The
temperature of the BLR is expected to be TBLR ∼ 104K.

• Narrow line region (NLR): A wider (∼ 50 − 100pc) region giving rise to the nar-
row lines in the quasar spectra, such as [Oiii]. The density of the NLR is expected
to be (ρ ∼ 106cm−3). The temperature in the NLR is the same as in the BLR, i.e.,
TNLR ∼ 104K.

• Dust Torus: An obscuring dusty torus believed to block the light from the BLR
and NLR for near-edge-on galaxy views.

• Jet: Along the rotational axis of the central engine, powerful radio jets (most
prominent in the radio loud AGN) form from the synchrotron radiation of the ma-
terial being accreted onto the SMBH. The most powerful and most variable AGN
are seen ‘down the barrel’ of these jets.

These individual components of the AGN model give rise to some of the characteristic
features in AGN spectra (a standard composite AGN (quasar) spectrum is shown in Fig-
ure 3.1 on page 63). We will described the specific features of the quasar spectrum and
how they can be used to probe the physics governing AGN in Section 3.2. For a more
detailed discussion of the individual components of AGN and their spectra please refer
to, e.g., Antonucci (1993); Urry & Padovani (1995); Krolik (1999) and Mo et al. (2010).



16 Introduction

Despite the extreme differences in length scales of the different components of the AGN
(and galaxies in general), from sub-parsec scales of the central SMBH and accretion disk
to the several kpc of the bulge and outer regions of the galaxy itself, there seems to be
a remarkable tight correlation between the size of the central black hole and the galaxy
observables like for example luminosity, the velocity dispersion and the (bulge) mass of
the stars, and light concentration (e.g., Kormendy & Richstone 1995; Magorrian et al.
1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000; Graham et al. 2001; McLure &
Dunlop 2002; Tremaine et al. 2002; Marconi & Hunt 2003; Häring & Rix 2004; Jahnke
et al. 2009). For example several of these studies find that the black hole mass is tightly
correlated with the bulge mass such that MSMBH ∼ 0.003 × Mbulge. In Bandara et al.
(2009) they argue that log(MSMBH/M�) ∼ 8.18 + 1.55× (log(Mtot/M�)− 13.0) with Mtot

being the total galaxy (halo) mass, i.e., they argue that a standard AGN SMBH of 108M�
approximately corresponds to 10−5Mtot. Whether these scaling relations are due to a
causal co-evolution of the galaxy and its SMBH across the vastly different length scales
or a simple consequence of ΛCDM hierarchical merging is debated (Peng 2007; Jahnke
& Maccio 2010). These correlations can be used to constrain evolutionary models of
AGN as exemplified in Section 2.2.

1.5.1 Quasars – AGN at Its Best

One of the most powerful and brightest kind of AGN is the quasar. Quasars5 have
extreme luminosities corresponding to absolute magnitudes of Mr ∼ −24 (Richards et al.
2005) making quasars the second brightest objects in the sky only outshone by a few
gamma ray bursts as illustrated in Figure 8 of Bloom et al. (2009). Quasars are observed
out to redshifts of 6 (Fan 2006; Fan et al. 2001b; Willott et al. 2010), and even at redshift
7 they have been found (Mortlock et al. 2011b), showing that they had already formed
and started shining less than a 1 Gyr year after the Big Bang. This puts strong constraints
on theories trying to describe the physics of quasars and AGN as described in Section 2.2.

Even though quasars have been observed at z ∼ 7 the distribution of quasars peaks at
redshifts 2–3 (e.g., Richards et al. 2009). Also the co-moving density of quasars peaks
a these redshifts (Shaver et al. 1996; Boyle et al. 2000; Fan et al. 2001b; Croom et al.
2009a). The fact that quasars were more common at earlier epochs speaks in favor of the
scenario, where many AGN and quasars are triggered by gravitational interaction and
merging of galaxies mentioned in Section 1.4. Since the merger rate between galaxies

5Referring to a quasar as an object is strictly speaking wrong, since it is not an object in itself but rather
a galaxy in its active (quasar) phase of evolution. Nevertheless, as we have referred to AGN as objects we
will also in the reminder of this thesis refer to quasars as astronomical objects – but it has to be kept in mind
that quasars (and AGN) are strictly speaking not objects in themselves, but rather a particular phase of a
galaxy’s life.
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was higher, than it is today, at these redshifts, naturally more quasars would be observed
per co-moving volume if they are a consequence of interactions. That the average quasar
density drops at higher redshift is explained by the fact that in a ΛCDM Universe there
were very few galaxies with masses high enough to host the SMBHs of quasars at z >
3 − 4.

Galaxies in their active quasar phase will be the main topic of Chapters 2 and 3 and will
be described in more details in these chapters.

1.6 Outline of this Thesis

This thesis will concern the nature and evolution of quasars and the star formation in
mergers at z ∼ 1.5. The thesis contains three major parts represented by Chapters 2–4.
They are presented in chronological order and not (necessarily) in the order the described
physics would be important in the formation and evolution of a galaxy, as outlined in this
introductory chapter. Chapters 2–4 are based on Schmidt et al. (2010), Schmidt et al.
(2012a) and Schmidt et al. (2012b), respectively. At the beginning of each of these
chapters a small abstract will summarize the key results and a prologue will set the stage
and pose the questions to be addressed in the respective chapter. After the bulk content of
each chapter an outlook describes the prospects of the results and give some suggestions
on how to take advantage of these in the future. Each chapter is ended by a short epilogue
which will try to pick up any loose ends and summarize before the thesis advances to the
next chapter. In this way, the hope is that the pro- and epilogues distills the bulk content
of this thesis into 6 short, concise and easily digestible sections.

In Chapter 5 the individual chapters, their results and their individual outlooks are sum-
marized and boiled down to the essentials. We also present a short outlook on the topic
of galaxy formation and evolution in general before we finish with a short look into the
immediate future of ‘yours truly’.





Chapter2
Selecting Quasars via

Variability

In this Chapter we present a new and simple technique for selecting extensive,
complete and pure quasar samples, based on their intrinsic variability. We
parametrize the single-band variability by a power-law model for the light-curve
structure function, with amplitude A and power-law index γ. We show that
quasars can be efficiently separated from other non-variable and variable sources
by the location of the individual sources in the A–γ plane. We use ∼60 epochs
of imaging data, taken over ∼8 years, from SDSS Stripe 82, to demonstrate the
power of variability as a quasar classifier in multi-epoch surveys. For UV excess
selected objects, variability performs just as well as the standard SDSS color selec-
tion, identifying quasars with a completeness of 90% and a purity of 95%. In the
redshift range 2.5 < z < 3, where color selection is known to be problematic, vari-
ability can select quasars with a completeness of 90% and a purity of 96%. This
is a factor of 5-10 times more pure than existing color-selection of quasars in this
redshift range. Selecting objects from a broad griz color box without UV excess in-
formation, variability selection in Stripe 82 can afford completeness and purity of
92%, despite a factor of 30 more contaminants than quasars in the color-selected
feeder sample. We also show that even with much sparser time sampling, e.g., with
just 6 epochs over 3 years as is the case for Pan-STARRS 1, variability is still an
encouragingly efficient quasar classifier. Finally, we show that the presented A–γ
technique, besides selecting quasars is also efficient at selecting (periodic) variable
objects such as RR Lyrae.

This chapter is based on Schmidt et al. (2010).
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2.1 – Prologue –

Quasars are some of the most versatile astronomical objects known. First and foremost,
they are interesting themselves. For example, samples of quasars provide precise mea-
surements of the evolution and spectral properties of AGN in general and quasars in
particular (see Section 3.2 and, e.g., Boyle et al. 2000; Vanden Berk et al. 2001; Richards
et al. 2002a, 2004, 2006, 2009; Croom et al. 2009a). As described in Chapter 1, AGN and
quasars probe galaxy evolution in general and especially at the epoch where the galaxy
merger rate peaked and most stars formed. But not only do quasar samples provide us
with insight into the nature (and nurture) of galaxy evolution and map the black hole
growth in the centers of galaxies, they are also the key to various other areas of astro-
physics. In particular the clustering of quasars is a tracer of mass clustering on both large
and small scales (Croom et al. 2005, 2009a; Shen et al. 2007, 2009; Ross et al. 2009)
and hence carries information about intergalactic structure formation. Quasar sight lines
probe the content of the intergalactic medium as well as individual structures in absorp-
tion (D’Odorico et al. 2002; Hennawi et al. 2006b; Hennawi & Prochaska 2007). Hence,
they provide information on quasar environments and the quasar emission geometry,
and shed light on the physical nature of Lyman limit systems and damped Lyα systems
(described in Section 3.2.1). If quasars are also gravitationally magnified by a lens, ex-
ploration of the dark matter (halo) content of galaxies (Dalal & Kochanek 2002; Bradač
et al. 2002; Dobler & Keeton 2006; Macciò 2008), gaining knowledge about the molecu-
lar gas content in distant galaxies (Yun et al. 1997; Riechers et al. 2007a,b) and using the
integrated Sachs-Wolfe effect by cross correlating quasars with the CMB to obtain esti-
mates of cosmological parameters and the dark energy equation of state (e.g., Scranton
et al. 2005; Giannantonio et al. 2008; Xia et al. 2009) becomes possible. In summary:
large well-defined quasar samples are a cornerstone of observational cosmology.

Many applications rely on large statistical samples of quasars. Photometric quasar sam-
ples have recently grown to nearly a million objects (850,000 actual quasars; Richards
et al. 2009). Despite these impressive catalog sizes, which at first glance might seem
overwhelming, the number statistics still limits the achievable science in several of the
science cases mentioned above; especially those where particular, and hence rare, geo-
metric constellations of quasars are needed. For instance a 3σ detection of a luminosity-
dependent quasar bias above z & 1.9 when analyzing the angular clustering of quasars,
needs an estimated sample size of at least 1,200,000 actual quasars (Myers et al. 2007,
2008, 2009). Searches for binary quasars (Hennawi et al. 2006a, 2010; Myers et al.
2008), which provide interesting knowledge about small scale clustering and hence shed
light on quasar triggering mechanisms and the nature of quasar progenitors, also needs
to be based on samples with > 106 actual quasars in order to obtain reasonably sized
statistical samples of possible quasar pairs. Also quasar-galaxy clustering (e.g., Scranton
et al. 2005; Lopez et al. 2008; Padmanabhan et al. 2008; Burbidge & Napier 2009), i.e.,
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exploring the statistics of quasars behind the foreground galaxies, calls for larger (rel-
atively low-z) quasar samples than exist today. Furthermore, exploring the ‘transverse
proximity effect’ in the Lyα forest of quasars, with foreground quasars near the sight
line of background quasars (e.g., Hennawi et al. 2006a,b; Hennawi & Prochaska 2007) is
presently limited by quasar sample sizes. Obtaining larger photometric quasar catalogs
to boost possible candidates for spectroscopic follow-up is needed. The size estimates of
the cosmological parameters and the dark energy equation of state will also be improved
by larger photometric samples of 1<z<5 quasars. Last but not least, larger photometric
quasar catalogs will enhance the number of known gravitationally lensed quasars (e.g.,
Oguri & Marshall 2010). At present only ∼100 quasar lenses are known (Oguri et al.
2008; Inada et al. 2010). A larger sample of the rare gravitationally lensed quasar sys-
tems will, among other things, improve our knowledge about cosmology, galaxy mass
distributions, quasar hosts and the growth of the host’s central black holes (see Sec-
tion 2.9.2 as well as Schneider et al. (2006) and references herein).

Hence, pursuing large well-defined quasar samples is not only crucial for investigating
the quasars themselves, but provides the data for a large palette of interesting astrophys-
ical applications. The main purpose of this chapter is to investigate a new approach for
obtaining such quasar samples in the future. Previous efforts have focused mainly on
purely photometric selection of quasars as we will describe below. We will present an
alternate approach to selecting quasars, based on their intrinsic variability. This is an
important step towards understanding how quasars are selected in the most efficient and
powerful way in future time-domain surveys, where color-selection may not be the pre-
ferred selection method. We will illustrate that it is actually feasible to take advantage
of the intrinsic variability of quasars to select them, and show how this in practice can
be applied to future time-domain surveys focusing mainly on the Pan-STARRS 1 survey
(described in Section 2.3.1) which is already well underway. To sum up:

Huge well-defined quasar samples serve as a versatile cornerstone of ob-
servational cosmology; current samples are still not large enough for many
applications.
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2.2 Igniting Galaxies – The Quasar (AGN) Engine

As mentioned in Section 1.5 the central engine of AGN is generally believed to be an
accretion disk dumping material onto a super-massive black hole (SMBH). In this sec-
tion we will describe this picture in a bit more detail, before we take advantage of one
of its main characteristics, variability in the produced radiation, to select quasars from
time-domain data. The fueling of the central engine is a complicated process, which is
probably best illustrated by the schematic overview of the fueling of central black holes
and the possible formation of SMBHs from Shlosman et al. (1990) shown in Figure 2.1.
We will not attempt to describe every step in the fueling process, but only outline the
crucial physical consideration one needs to take into account, and refer to Shlosman
et al. (1990); Krolik (1999) and Mo et al. (2010) and their references for a more in-depth
description of AGN fueling mechanisms.

Igniting a galaxy, i.e., enabling gas to accrete onto the sub-parsec sized SMBH (region)
so it starts radiating, faces some theoretical challenges. First of all the SMBH needs
to form and exist in the center of the galaxy before it can start radiating. In the low-
redshift Universe there have been plenty of time to merge galaxies and black holes to
form SMBHs in the centers of gaseous galaxies, however, as mentioned in Section 1.5.1
AGN are found out to redshift 7. This implies that whatever process forms black holes
in the very early Universe, either via the collapse of super-massive isolated stars or by
merging and accretion onto neutron stars, needs to be able to produce black hole ‘seeds’
that can grow to masses of 108M� via accretion in gaseous galaxies in less than ∼ 5×108

years, if SMBH are indeed residing at the centers of AGN. It has been argued that it is
possible to form black hole seeds of masses 100− 200M� at very high redshifts (Bromm
et al. 1999; Madau & Rees 2001; Schneider et al. 2002), possibly leaving just enough
time for them to grow into SMBH before z = 7. This is under the assumption that both
a large enough dark matter halo to host the black hole seed and the gas needed for it to
grow, is available. Since the SMBHs usually only correspond to ∼10−5 of the total halo
mass (see Section 1.5), a dark matter halo of the order 108M�/10−5 = 1013M� needs to
be available at z > 7 to ignite AGN, putting further constraints on the AGN models as
well as ΛCDM (see Longair 1998; Mo et al. 2010 for further details).

Another challenge in establishing an AGN is, that when the SMBH is formed in the
center of the galaxy an accretion flow onto it needs to be established. One difficulty with
this is, for example, that a given black hole mass has a maximum luminosity it can radiate
with under the assumption of a spherically symmetric system. This limiting luminosity,
known as the Eddington luminosity, LEdd, is a balance between the gravitational force
the SMBH acts with on the in-falling gas, and the radiation pressure the gas produces as
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Figure 2.1: Schematic overview of the possibly ways of fueling the central black hole of an AGN
or quasar illustrating its complicated nature. [Adapted from Shlosman et al. (1990)]

it accretes onto the SMBH. If the radiation pressure is given by

Prad(r) =
L

4πr2c
, (2.1)

assuming that the gas is ionized and the scattering of photons on the electrons has the
Thomson cross section, σT, the force the radiation acts with is described by

Frad = σTPrad(r)ne(r) , (2.2)
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with ne being the electron density. If this force is smaller than the gravitational force on
the gas, the infall will be successful. On the other hand if

Frad ≥ Fgrav =
GMSMBH ρ(r)

r2 , (2.3)

where ρ(r) is the density of the gas cloud surrounding the SMBH, the radiation will pre-
vent more matter from being accreted. This mechanism is ‘self-regulating’: The amount
of radiation will decrease until the gravity is strong enough to accrete matter again, then
the radiation pressure will increase until it turns off accretion and radiation then de-
creases again, and so on. This balance defines the Eddington luminosity and combining
Equations (2.1)–(2.3) give that

LEdd ≡
4πcGρ(r)
σTne

MSMBH ≈ 1.26 × 1046
(

MSMBH

108M�

)
erg
s
, (2.4)

where ρ(r)/ne corresponds to the proton mass, mp, assuming that the gas consist mostly
of ionized hydrogen. This shows that in the case of spherical accretion a bright quasar
with a luminosity of ∼ 1046 erg

s could be powered by a SMBH of 108M�. The Edding-
ton luminosity hence gives the maximum luminosity an object can obtain via spherical
accretion. Super-Eddington luminosities have been observed in several quasars (see for
instance Kollmeier et al. (2006) or the left panel of Figure 3.8 on page 80). This is
possible because the central accretion in AGN is (obviously) not spherical.

The Eddington luminosity also puts a constraint on the accretion rate needed. Formally
luminosity is accretion rate in units of c2, i.e., E/t = mc2/t. Assuming that the fixed
efficiency of converting the mass accreted onto the SMBH into radiation, η, is of the order
0.1 (Krolik 1999; Mo et al. 2010), the highest possible accretion rate in the spherically
symmetric model, know as the Eddington accretion rate, becomes:

ṀEdd =
LEdd

c2η
≈ 2.2

(
MSMBH

108M�

) (
η

0.1

)−1 M�
yr

. (2.5)

Thus the size of the SMBH regulates the maximum allowed accretion. According to this,
an accretion rate of ∼ 2M�/yr is needed to power a quasar with L ∼ 1046erg/s. Even
though the spherical Eddington accretion picture gives a simple theoretical framework
for the central engine, it is by no means a sufficient description. It is a big challenge
to theoretically obtain continuous (semi)stable accretion rates of this order to power the
AGN, and hence, an important step of any AGN model is to collect enough gas to sustain
the accretion for the expected lifetime of the AGN. Finding the gas is usually not a big
problem, as most galaxies contain several factors more gas in the interstellar medium than
needed for the accretion. The real challenge is to transport the gas from the interstellar
medium of the galaxy all the way into the SMBH sub-parsec scales. This gas-funneling
needs to transport a significant amount of the gas’ angular momentum elsewhere, for it to
reach these extremely small scales, and to make sure the gas has the right temperature to
prevent kinetic gas-pressure from limiting the gas-flow and lowering the accretion rate.
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One way of lowering the angular momentum of the gas, sometimes by as much as a
factor of 104 (Mo et al. 2010), is by interacting gravitationally with other galaxies. As
mentioned briefly in Section 1.4 merging of galaxies (both minor and major) are believed
to be able to enhance the fueling of AGN, or even trigger AGN. In simulations (e.g.,
Hopkins et al. 2005a, 2006; Matteo et al. 2005; Cox et al. 2006) it has been investigated
whether gravitational interaction of galaxies is capable of bringing the acquired amount
of gas into the SMBH region and ignite quasars. Most studies indicate that this is indeed
the case, but due to the extreme difference in length scale (from kpc to sub-parsec) it is
still debatable whether merging can bring the gas so close to the SMBH that the actual
accretion happens. Also observational evidence for merger activity in AGN has been
established (Hutchings & Neff 1992; Hutchings et al. 1988; Gehren et al. 1984; Heckman
et al. 1984). Whether it is a necessity for AGN to have been gravitationally interacting
to ignite has been a matter of great debate (Sanders et al. 1988; Canalizo & Stockton
2001; Dunlop et al. 2003; Georgakakis et al. 2009; Cisternas et al. 2011; Schawinski
et al. 2011; Kocevski et al. 2012). However, in the most recent studies strong arguments
are presented, that mergers are no necessity for galaxies to ignite, even though mergers
do seem to be able to trigger AGN in some cases. A second possibility for gas to loose its
angular momentum is by spontaneous instability caused by interaction of the accretion
disk with other parts of the galaxy, minor interactions or super nova explosions (e.g.,
Jogee 2006). Hence, it seems to be possible for galaxies to ignite and enter their quasar
(AGN) phase both with and without external gravitational interaction, as also shown
in the top part of Shlosman’s flow-chart in Figure 2.1. For further discussion of the
challenges AGN models face see for example Krolik (1999); Kormendy & Kennicutt
(2004); Jogee (2006) and Mo et al. (2010).

A natural consequence of the simple model for the central engine described here, is that
the accretion rate is not necessarily constant or stable. The temperature of the in-falling
gas might change, resulting in an altered spectral shape of the radiation, the Edding-
ton limit might be reached, the amount of gas funneled onto the SMBH by a recent
merger might run out, or blobs in the accretion flow could be swallowed irregularly by
the SMBH, etc. Hence, it must be expected that the luminosity of AGN varies. As
noted in Table 1.1 basically all AGN have indeed been observed to vary. In particular the
variability of quasars has been studied in great detail. Quasars are observed to exhibit
brightness variations, of typically & 10% over several years (e.g., Giveon et al. 1999;
Vanden Berk et al. 2004; Rengstorf et al. 2004; Sesar et al. 2007; MacLeod et al. 2008;
Bramich et al. 2008; Wilhite et al. 2008; Kozłowski et al. 2010; Bauer et al. 2009b; Kelly
et al. 2009). Even though accretion disk instabilities (Rees 1984; Kawaguchi et al. 1998;
Pereyra et al. 2006) has so far been the most prevailing model for the quasar (AGN) vari-
ability, several other physical processes are and have been discussed as other important
causes of the observed variability. For instance, it has been suggested that large-scale
changes in the amount of in-falling material may be important (e.g., Hopkins et al. 2006
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and references therein), as well as starbursts in the host galaxy (Aretxaga et al. 1997;
Fernandes et al. 1997), micro lensing by the host galaxy and compact dark matter object
(Hawkins 1996; Zackrisson et al. 2003), and stochasticity of multiple supernovae (Ter-
levich et al. 1992). Irrespective of the physics behind the variability, it is an observational
fact that quasars vary significantly over periods of years. This variability has been ex-
ploited for several purposes, e.g., to estimate Eddington ratios (Lbol/LEdd) and black hole
masses (see, e.g., Bauer et al. 2009b; Wilhite et al. 2008 and Section 3.2). In Chapter 3
we will use the color variability to gain further insight into the underlying processes of
the quasar engine.

Apart from determining Eddington ratios and black hole masses and constraining the
physics of AGN, another potentially very powerful application of the observed quasar
variability is to identify quasars (e.g., Scholz et al. 1997; Eyer 2002; Geha et al. 2003;
Sumi et al. 2005). With for example the Sloan digital sky survey (SDSS; Abazajian
et al. 2009), the quasar equatorial survey team (QUEST; Rengstorf et al. 2004) and the
optical gravitational lensing experiment (OGLE; Udalski et al. 1997), large-scale, multi-
epoch and multi-band surveys have emerged, and have been used to search for quasars.
The Panoramic Survey Telescope & Rapid Response System 1 (Pan-STARRS 1, Kaiser
et al. 2002) and 4 (Pan-STARRS 4, Morgan et al. 2008), and the Large Synoptic Survey
Telescope (LSST, Ivezic et al. 2008; LSST Collaboration 2009) will take such surveys to
the next level. Even though all these surveys have multi-epoch data, the largest quasar
samples stem from color and not variability selection (e.g., Richards et al. 2002b, 2004,
2009; Atlee & Gould 2007; D’abrusco et al. 2009). The characteristic so-called ‘UV
excess’ of quasars, their bright blue SDSS u−g color for instance, is capable of separating
the quasars from their stellar contaminants in color-color space, allowing for efficient
selection of targets for spectroscopic follow-up (e.g., Strauss et al. 2002). Such UV
excess color selection is, however, only efficient for low (z . 2.5) and high (z & 3)
redshift quasars, since the quasar and stellar loci overlap in the u − g color for 2.5 < z <
3.0 objects, causing the selection efficiency (or purity) in that region to drop below 50%.
For quasars with 2.6 < z < 2.8 the UV excess color selection efficiency is close to 10%
(Richards et al. 2006). This confusion reigns until the Ly-break of high-z quasars moves
into the g-band and again makes for unusual colors (e.g., Fan et al. 2001a; Fan 2006).
More details on this color selection will be given in Section 2.3.1.

Moreover, u-band imaging is expensive: the area and depth of an optical imaging survey
can be greatly increased by focusing on redder filters, where atmospheric attenuation is
lower and detectors more efficient. For example, the Pan-STARRS 1 telescope offers the
possibility of creating the largest sample of quasars to date with its multi-epoch 30,000
deg2 (3/4 of the sky) grizY imaging survey named ‘3π’. For the purpose of identifying
quasars in this data set, the question remains, whether we can compensate for the lack
of u-band data by exploiting the multi-epoch nature of the imaging instead. With one
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eye on the potential of Pan-STARRS 1, we therefore explore the possibilities of creating
large, complete and pure samples of quasars based on limited color information, but with
light curves spanning several years. We use Stripe 82 of SDSS (Abazajian et al. 2009) as
a testbed, both for the method in general and for making mock Pan-STARRS 1 data sets.

The rest of this chapter is organized as follows. In Section 2.3 we briefly review the
standard color selection and previous attempts to characterize quasar variability in optical
imaging surveys, before we introduce the SDSS Stripe 82 data sets in Section 2.4. We
introduce our methodology for quantifying the variability of various objects via their
individual power-law structure functions in Section 2.5, and show results of selection
experiments in Stripe 82 in Section 2.6. After a brief discussion in Section 2.7, we
conclude in Section 2.8 and present an outlook in Section 2.9.

2.3 Variability Characterization of Sources and the
Structure Function

In this section we briefly review the strengths and weaknesses of optical color selection,
of particular sources, focusing on quasars. We present our approach for quantifying
source variability, which we will then explore as an additional approach to selecting
quasars.

2.3.1 Color Selection

The most common way to generate large samples of optical quasar candidates for follow-
up is by specifying a particular region of interest in color space, as it was done in for
example SDSS (Richards et al. 2002b, 2006, 2009). For quasars at z < 3 the u − g
color is crucial in this approach since it enables a photometric separation of the quasar
candidates from the stellar locus, reducing the number of contaminating objects to a point
where spectroscopic follow-up is feasible. This is illustrated in Figure 2.2, where we
have plotted the median color of ∼9000 spectroscopically confirmed quasars, as well as
an illustrative comparison sample of 5000 F/G and 483 RR Lyrae stars (see Section 2.4),
all drawn from the SDSS Stripe 82 photometric catalog DR7 (Abazajian et al. 2009). The
top panels and the bottom left panel of Figure 2.2 shows the distribution of the samples
in the color-color planes of the SDSS ugriz color cube. This clearly shows the power
of the u − g color (upper left panel) compared to the g − r, r − i and i − z colors in
separating the quasars from their contaminants, especially for low-redshift quasars (i.e.,
z . 2.5 shown as light blue points). The color magnitude diagram in the lower right
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panel illustrates that a cut in magnitude will also eliminate contaminants. The contours
indicate the stellar locus of Stripe 82 point sources with 15 < r < 18.

For higher redshift objects (z & 2.5, shown as magenta points in Figure 2.2) the quasars
intersect the stellar locus (top left panel). The purity for 2.5 < z < 3.0 quasar candidate
samples is around 10-50% in the color-selected SDSS quasar target sample (Richards
et al. 2006). In general the color selection method is efficient for low and high redshift
quasars, but for the intermediate redshift objects contamination becomes a severe prob-
lem. We refer to Figures 13 and 14 in Richards et al. (2002b) for a more complete version
of Figure 2.2.

With Pan-STARRS 1 the contamination problem is even more pronounced when us-
ing the color selection method only. Pan-STARRS 1 has a 5-filter system consisting of
SDSS-like g, r, i, z bands (albeit with significantly higher red sensitivity) and a Y fil-
ter. The crucial u − g color used in the SDSS color selection method is not available:
the contamination of a color-selected Pan-STARRS 1 quasar sample will be a problem
for z > 2.5 as well as for z < 2.5. It is therefore necessary to find a way of sepa-
rating the majority of quasars from the contaminating stellar locus in order to obtain a
pure Pan-STARRS 1 quasar sample. The intrinsic variability of the quasars described in
Section 2.2 (and their contaminants) is a very promising tool for doing this.

2.3.2 Source variability: power-law structure functions

The structure function characterizes the variability of quasars (and the other sources) by
quantifying the variability amplitude as a function of the time lag between compared
observations (Cristiani et al. 1996; Giveon et al. 1999; Eyer 2002; Vanden Berk et al.
2004; de Vries et al. 2005; Rengstorf et al. 2006). For any object the observables for
estimating the structure function are the N(N−1)

2 data pairs, assuming N light curve data
points, describing the variability as the magnitude difference between two epochs i and
j, corrected for measurement errors, i.e.,

Vi, j(∆ti, j) = ∆mi, j −

√
σ2

i + σ2
j . (2.6)

Here ∆mi, j is the measured magnitude difference between observation i and j. The σi

and σ j are the photometric errors on the measurements and ∆ti, j is the time difference
between the two observations. The quantity V is defined like this so that its average, over
a large number of data pairs, is an estimator for the intrinsic standard deviation of the
source magnitude.

At this point we note that ∆ti, j usually refers to the time lag in the quasar rest frame.
However, computing this requires a priori knowledge of the quasar redshift, and when
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Figure 2.2: Projections of point-source colors from the SDSS Stripe 82 data described in Sec-
tion 2.4 to the ugriz color space. The light blue (magenta) points show z < 2.5 (z > 2.5) spec-
troscopically confirmed quasars. Illustrative contaminant point sources are shown as grey (F/G
stars) and red (RR Lyrae) points. These panels demonstrate the importance of the u-band data in
color selection of quasars, with the u − g color allowing the clearest discrimination. This clearly
shows the necessity for an alternative way to lower the amount of contamination when the filters
are too red. The lower right color magnitude diagram illustrates that a cut in magnitude will also
eliminate some contaminants, and is included for comparison purposes with Figures 4, 7, 13 and
14 in Richards et al. (2002b). The black, green and blue boxes correspond to the UVX, nUVX and
griz color boxes defined in Tables 2.1, 2.2 and 2.3 respectively. The narrow appearance of the
contaminant sample in the upper right panel is due to our contaminants being mostly reference
stars with small photometric errors. The stellar locus spanned by all point sources in Stripe 82
with 15 < r < 18 is shown as the black contours (see also figures in Richards et al. 2002b).

selecting objects in imaging-only surveys, we do not know the object redshift. Therefore,
we work with time lags in the observed frame. This necessary convention differs from
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most of the quasar variability literature; we will make some comparisons in Section 2.5.

In previous analyses, the average V has been calculated in n time lag bins using data
pairs from many quasars, thus ‘stacking’ the variability signal to allow the properties of
the quasar population to be probed. Then

V(∆t) =

〈√
π

2
|∆mi, j| −

√
σ2

i + σ2
j

〉
∆t
, (2.7)

where the average, 〈 〉∆t, is taken over all epoch pairs i, j, whose lag falls in the bin ∆t.
The same approach can be taken in estimating the structure function of classes of objects
(e.g., quasars in a given luminosity and redshift bin) if, say, only two epochs are available
per object, but large samples exist (e.g., Richards et al. 2006, 2009); in that case the 〈 〉
in Equation (2.7) becomes an ensemble average. Vanden Berk et al. (2004) and others
find that the ensemble average quasar structure function appears to follow an increasing
power law with time lag.

On the other hand, for the case where the light curve sampling of each object is high, we
can compute the average V(∆t) for an individual object (Eyer 2002). Binning the N(N−1)

2
data pairs from an object’s N-point light curve gives an estimate of V(∆t) defined at each
bin center. This approach is computationally efficient, and provides a free-form view of
the object’s structure function. However, in the case of relatively sparse sampled data (6
epochs over 3 years in the Pan-STARRS 1 3π survey, see Section 2.4.7), binning the data
pairs to obtain the structure function from Equation (2.7) to estimate the variability may
not be the optimal approach.

In Equation (2.7), both the noise and the intrinsic photometric variability are assumed
(implicitly) to have a Gaussian distribution (Rengstorf et al. 2006). We can then extend
this simple model of quasar variability to include a power law increase in variability with
time lag. Drawing on the results from Richards et al. (2006) we propose a power-law
model for the structure function given by

Vmod(∆ti, j|A, γ) = A
(
∆ti, j
1yr

)γ
. (2.8)

We can then fit this model to a given set of data, (∆mi, j,∆ti, j), as follows. We write the
likelihood for the power law parameters A and γ as

L(A, γ) =
∏
i, j

Li, j , (2.9)

assuming a set of independent magnitude differences as our data. Here Li, j is the like-
lihood of observing one particular magnitude difference ∆mi, j between two light curve
points separated by ∆ti, j. Following the ensemble analyses referred to above, we assume
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an underlying Gaussian distribution of ∆m values and Gaussian photometric errors:

Li j =
1√

2πV2
eff,i j

exp

− ∆m2
i j

2V2
eff,i j

 . (2.10)

Here, the effective (observed) variability Veff is

V2
eff,i j = Vmod(∆ti j|A, γ)2 +

(
σ2

i + σ2
j

)
, (2.11)

i.e., we propagate the photometric errors σi and σ j by adding them in quadrature to the
variability ‘error’ Vmod(∆ti j|A, γ).

This approach can yield posterior probability distributions on the two model parameters,
A and γ. The amplitude A quantifies the root-mean-square magnitude difference on a 1
year timescale, while γ is the logarithmic gradient of this mean change in magnitude.
We assign uninformative priors for the parameters (uniform in the logarithm of A, and
uniform in the arctangent of γ – since γ represents the slope of a straight line), and
then explore the posterior probability distribution for these two power law parameters
via a simple Markov chain Monte Carlo (MCMC) code (Metropolis et al. 1953; Hastings
1970) as described in Appendix A on page 141. All we are doing is replacing n binned
structure function parameters (the values of V in each of the n bins) with two parameters
that define a power law structure function, and then inferring these parameters instead
of constructing estimators for them. We will show in Section 2.5 that using a power law
model for the variability actually provides a good fit.

2.4 SDSS Stripe 82: a Testbed for Variability Stud-
ies

Anticipating the results of Section 2.5, we note that to detect and quantify intrinsic quasar
variability will likely require multi-epoch data spanning several years. Before surveys
with facilities such as Pan-STARRS and LSST become fully available, SDSS Stripe 82
(Abazajian et al. 2009) forms an excellent training set and methodological test bed (e.g.,
Sullivan & Collaboration 2005; Sesar et al. 2007; Bramich et al. 2008; Frieman et al.
2008). In this section we will describe the various Stripe 82 data sets that we have
created in order to test and illustrate the prospects of our algorithm.

The SDSS Stripe 82 region covers approximately 300 deg2, from right ascension around
300◦ to 60◦ in a 2.5◦ wide band on the celestial equator. Over 8 observing seasons it has
been repeatedly observed in the fall months, resulting in many epochs (typically ∼60) in
each of the 5 SDSS bands. As the Pan-STARRS 1 3π survey will contain fewer epochs,
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we can ‘down-sample’ the Stripe 82 object light curves to simulate observations taken
with Pan-STARRS 1 (albeit ones at lower angular resolution and depth).

Relative to Pan-STARRS 1, Stripe 82 does have the advantage of u−g color coverage, and
extensive bright object spectroscopy. One can therefore construct quite pure samples of
quasars, RR Lyrae and so on, that may serve as ground truth for our variability selection.

In the following subsections we describe the various subsamples used in our study in
some detail, and provide a brief overview here. We have selected all the spectroscopi-
cally confirmed quasars in Stripe 82 together with a representative set of (stellar locus)
contaminants, which contains non-varying (type F/G stars) as well as varying (RR Lyrae)
point sources to illustrate our method and algorithm prospects. These objects’ photom-
etry data are plotted in ugriz color space in Figure 2.2. To investigate the selection of
quasars by their colors, we define three color selection boxes and explore the objects re-
turned by each. One of these mimics the more limited color selection possible with Pan-
STARRS 1. Quantifying how the variability information improves the Pan-STARRS 1
quasar selection is one of the main goals of this chapter.

In the following subsections, we describe two preparatory steps for turning the ∼ 60
epoch Stripe 82 data into a testbed for color plus variability based quasar selection in
SDSS (Stripe 82) and Pan-STARRS 1: first, we describe the definition of various sub-sets
of candidate objects; then we describe some technical steps ‘cleaning’ the light curves
and down-sampling the Stripe 82 data to mimic Pan-STARRS 1 observations.

2.4.1 Spectroscopically confirmed quasars in Stripe 82

A key to designing a quasar variability selection algorithm is an understanding of the
variability properties of objects that are spectroscopically confirmed to be quasars. We
have selected all of these (both point sources and extended objects) published in the
SDSS DR5 quasar catalog (Schneider et al. 2007) that fall within Stripe 82. There are
9157 spectroscopically confirmed DR5 quasars in Stripe 82, spanning a redshift range
from 0.08 to 5.09. These quasars have 15.4 < i < 22.0 with a mean of 19.5. See
Schneider et al. (2007) for the corresponding numbers for the whole DR5 quasar catalog.

To get the multi-epoch photometry (light curves) for the 9157 quasars we performed an
SQL neighbor search in the Stripe 82 DR7 database, choosing a search radius of 0.5′′

to minimize the light curve contamination from misidentified (spatial) neighbors. This
search on average yielded 60 epochs per object, after selecting only entries with good
BRIGHT, EDGE, BLENDED, NODEBLEND, SATUR, PEAKCENTER, NOTCHECKED, INTERP_CENTER
and DEBLEND_NOPEAK flags (of which the first 5 are referred to as fatal and the rest as
non-fatal flags by Richards et al. (2002b) – see their Table 2 or Stoughton et al. (2002)
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Table 9 for a description of the flags). For consistency we applied these same flag checks
on all object samples we drew from the Stripe 82 catalog. We describe these other sam-
ples below.

2.4.2 Stellar locus ‘contaminants’ in Stripe 82

To get a sample of typical non-variable stellar contaminants we used the SDSS standard
star catalog of 1.01 million non-variable point-source objects in Stripe 82 published in
Ivezić et al. (2007). From that we created a set of F/G star colored objects, presumably
non-varying, by applying a color-magnitude cut on the standard star catalog so that 0.2 <
g − r < 0.48 and 14.0 < g < 20.2 for all the objects. This is a suitable cut for F/G stars
according to the SEGUE team (Yanny et al. 2009) and makes them potential quasar
contaminants because of their g − r color (see Figure 2.2). We took a randomly selected
subsample of 5000 objects from this catalog and did a neighbor search in Stripe 82 to get
multi-epoch observations of these contaminants. We again used a search radius of 0.5′′

and again made sure that none of the flags listed in Section 2.4.1 were set.

To be able to test whether our algorithm is able to separate quasars from known vari-
able contaminants, we used the largest available sample of securely identified RR Lyrae
within Stripe 82 (Sesar et al. 2010), which consists of 483 RR Lyrae.

We will refer to the F/G stars and RR Lyrae catalogs collectively as the ‘contaminants’
in the remainder of the chapter.

2.4.3 UV excess (UVX) objects

We would also like to test our ability to detect quasars in the absence of spectroscopic
data. To this end, we defined three photometrically-selected samples of Stripe 82 objects,
whose variability properties we will explore.

The first of these is defined by a three-dimensional ugri color box in which the SDSS
quasar sample is complete for extinction-corrected i magnitudes brighter than 19.1 (Richards
et al. 2002b). This color box is given in Table 2.1, and is shown with black lines in Fig-
ure 2.2. Note that this selection uses the SDSS u-band data. We extracted all point
sources within Stripe 82 that obeyed these ‘UV excess’ (UVX) criteria. This returned a
catalog of 2912 UVX point sources.
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Table 2.1: The UV excess (UVX) color box.

-0.4 < u − g < 0.6
-0.5 < g − r < 0.7
-0.4 < r − i < 0.4

i < 19.1

2.4.4 Non-UV excess (nUVX) objects

As a compliment to the UVX object sample defined above, where the color selection
is known to efficiently return quasars at high completeness, a catalog of ‘non-UVX’
(nUVX) objects was created from a region of ugriz color space where color selection
of quasars is known to have problems. The color box from which we selected these
nUVX point sources is given in Table 2.2, and shown as a green box in Figure 2.2 (and
also Figure 7 of Richards et al. 2002b). In this particular color box, the quasar locus,
containing mostly intermediate redshift (2.5 < z < 3) quasars, crosses the stellar locus.
The color selection therefore has efficiency as low as 10% in this region of color space
(Richards et al. 2006). In the nUVX color box we find 3258 objects in Stripe 82.

Table 2.2: The non-UV excess (nUVX) color box.

0.6 < u − g < 1.5
0.0 < g − r < 0.2

-0.1 < r − i < 0.4
-0.1 < i − z < 0.4

i < 19.1

2.4.5 Quasar Candidate Color Selection without u-band Data

To simulate approximately the anticipated Pan-STARRS 1 3π survey light curves, we
defined a third color box suitable for a first cut of the Pan-STARRS 1 catalog. The main
purpose of this selection (where no u-band information is used) is to excise the quasar
locus as it threads through the three-dimensional griz color space. However, part of the
stellar locus also lies in this box. We restrict ourselves to right ascensions between 0
and 20 degrees (enclosing a sixth of the Stripe 82 area, ∼50 deg2) in order to return a
manageable catalog of 12,714 objects. The griz box is indicated by the blue solid lines
in Figure 2.2 and is defined in Table 2.3. The magnitude cut of 19.1 is chosen to allow
straightforward comparison with the UVX and nUVX boxes.



2.4. SDSS Stripe 82: a Testbed for Variability Studies 35

Table 2.3: The griz color box.

-0.2 < g − r < 0.9
-0.2 < r − i < 0.6

-0.15 < i − z < 0.5
17 < i < 19.1

2.4.6 Eliminating light curve ‘outliers’ in Stripe 82

Plotting the complete Stripe 82 multi-epoch photometry output for the various objects
revealed some outlying points that were several magnitudes fainter than adjacent flux
points (see Figure 2.3); only some of these outliers were found to be caused by im-
age defects. However, we assume that such a significant decrease in magnitude in
a single observation must be non-physical. We therefore removed the outliers (irre-
spective of their origin) by running a median filter on the photometric measurements.
Measurements with a residual between the medianized light curve and the photometric
data larger than 0.25 magnitudes were removed. In Figure 2.3 we show the g, r and
i-band multi-epoch photometric measurements (open symbols indicating the removed
measurements) with the corresponding medianized light curves over-plotted for quasar
SDSS J203817.37+003029.8. The bottom panel shows the residuals, with the limit of
0.25 magnitudes indicated by the dashed lines. As is the case here, in general, only a
small fraction of the epochs is removed.

It is these cleaned multi-epoch measurements, where the outlying observations have been
removed (i.e., the filled symbols in Figure 2.3), we use in the determination and explo-
ration of the objects’ variability.

2.4.7 Down-sampling Stripe 82 light curves to the Pan-STARRS 1
cadence

In order to explore quasar selection in the context of the Pan-STARRS 1 3π survey, we
down-sampled the Stripe 82 data to mimic the Pan-STARRS 1 observations (Chambers
& Denneau 2008 shown schematically in Table 2.4). We assumed 3 observing seasons
for Pan-STARRS 1, with a duration of 155 days (covering all filters) each. Only Stripe
82 objects with more than 7 epochs in each (SDSS) season were passed to the actual
down-sampling routine: ∼1% of the quasars, < 0.1% of the F/G stars and ∼20% of the
RR Lyrae did not satisfy this criteria.

We down-sampled the Stripe 82 light curve data by matching each season of observations
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Figure 2.3: Multi-epoch photometry output from SDSS Stripe 82 for the spectroscopically con-
firmed quasar SDSS J203817.37+003029.8, shown in the g (green squares), r (blue triangles) and
i (red circles) bands. For a handful of epochs, the output magnitudes appear spuriously faint;
their inclusion would severely affect the calculation of a variability structure function. Over-
plotted are the corresponding medianized light curves used to remove the outliers (open symbols)
from the raw multi-epoch output. The dotted lines are plotted to guide the eye and are spaced by
half a magnitude from 20 to 21.5. In the lower panel the residuals between the medianized light
curve and the photometric measurements for the three bands are shown, with the photometric
errors over-plotted. The limit used to remove the outliers (|LC − LCmed| > 0.25) is indicated by
the horizontal dashed lines.

for the g, r, i and z-band with the (approximately) correct time intervals between con-
secutive observations in each band. No color information went into the down-sampling.
After identifying 6 suitable Stripe 82 epochs in each band we removed all other observa-
tions, providing a set of mock Pan-STARRS 1 data.
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Figure 2.4: Variability structure functions (solid lines) for SDSS J203817.37+003029.8, based
on the photometry shown in Figure 2.3 for the g (green), r (blue) and i (red) band, computed
from Equation (2.7). The best-fit power law (Equation (2.8)) model for the structure function
from the MCMC simulated annealing code (Appendix A on page 141) are over-plotted as dashed
lines. The corresponding A and γ parameters of the power law and their estimated errors are
quoted in the lower right corner of the plot. Calculating similar structure functions by means
of the power-law model for the 9157 Stripe 82 quasars give the median quasar sample structure
function shown in the top panel of Figure 2.5.

2.5 Power-Law Structure Functions for Sources in
Stripe 82

In Figure 2.4 we show the binned structure functions (Equation (2.7)) from the g, r
and i-band light curves of quasar SDSS J203817.37+003029.8 (Figure 2.3). Calculating
binned structure functions for individual Stripe 82 objects is a simple way of quantifying
the variability of each object if there is a large number of epochs available. However,
Figure 2.4 suggests that we might indeed be justified in further compressing the structure
function into a two parameters power-law fit, as proposed in Section 2.3.2.

Before doing so, we explore wether this power law behavior is present in an aver-
age sense. In Figure 2.5 we show the median sample structure function, created by
median-combining all the individual binned structure functions calculated with Equa-
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tion (2.7) separately for the well sampled Stripe 82 quasars (Section 2.4.1), F/G stars
(Section 2.4.2) and RR Lyrae (Section 2.4.2 and Sesar et al. 2010). The shaded regions
in Figure 2.5 around the medians enclose 68% and 95% of the individual structure func-
tions. Figure 2.5 shows that the quasar sample median of the binned structure function
closely resembles a power law with A = 0.093 ± 0.0002 and γ = 0.43 ± 0.002, in agree-
ment with findings elsewhere in the literature (Vanden Berk et al. 2004; Rengstorf et al.
2006; Wilhite et al. 2008; Bauer et al. 2009b). In particular, a value of the slope of the
sample median structure function of γ = 0.43 agrees well with most of the literature (see,
e.g., Table 4 in Bauer et al. (2009b) for a brief overview). Rough estimates of the 1-year
observed frame power law amplitudes in the literature give amplitudes between 0.10 and
0.14 (depending on the assumed mean redshift of the samples), in good agreement with
our estimate for A of 0.093 mag.

Figure 2.5 also shows that the sample structure functions of contaminants are also well
described by power laws, but with small values of γ (i.e., they show no long-term growth
in their variability). Note that the F/G stars, chosen to be non-variable, have a variability
amplitude of ∼0.04 mag. The RR Lyrae variability, when sparsely and randomly sampled
in Stripe 82, looks like white noise (|γ| � 1) with an amplitude ∼0.2 mag. Thus, the use
of a power-law model of the form given in Equation (2.8) seems to be a fairly good
assumption, and different types of objects may differ both in amplitude and in slope of
their structure function.

In Figure 2.4 the power law fits to the three (binned) structure functions are shown as
dashed lines. The A and γ with their estimated errors are given in the lower right corner
of the plot.

2.6 Results

Having defined different sub-samples of sources, and having shown that we can sensibly
quantify their light curve characteristics by a power-law structure function model, we
now proceed to characterize each of these sources by their best-fit parameters A and γ.

As opposed to the earlier SDSS analysis (Richards et al. 2002b, 2006, 2009) the im-
proved time sampling of the Stripe 82 (and even Pan-STARRS 1) surveys, enables us
to investigate the distributions of the A and γ parameters for the individual sources, not
only for ensembles.
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Figure 2.5: The sample-median r-band binned structure function for the quasars (top), F/G stars
(center) and 483 RR Lyrae (bottom) in Stripe 82, calculated using Equation (2.7). The power-law
nature of the three samples is clearly seen, by the approximate straight lines the structure func-
tions trace. The power law parameters A and γ obtained by fitting the quasar sample structure
function with the 2 parameter power law model in Equation (2.8) are shown in the top panel.
The shaded regions around each structure function indicate the 68% and 95% scatter around the
median value.

2.6.1 The A–γ Distribution

Figure 2.6 shows the distribution of the variability characteristics, quantified by the best-
fit A and γ for all the spectroscopically confirmed quasars, and for the ‘contaminant’
F/G stars and RR Lyrae, as described in Section 2.4, based on their r-band Stripe 82
light curves. The histograms along the axes of the two-dimensional scatter plot show
the projected parameter distribution of the quasars and of the contaminants. Inspection
of Figure 2.6 alone shows how well the spectroscopically confirmed quasars separate
from the (stellar locus) contaminants in this space, demonstrating that the power-law
structure function fit from a single band is an efficient classifier for data of this quality
(∼60 epochs).

The analogous A–γ distributions for the much sparser Pan-STARRS 1-like sampling of
the r-band measurements (Section 2.4.7) are shown in Figure 2.7: these parameter esti-
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Figure 2.6: Distribution of the variability structure function parameters A and γ (Equation (2.8))
for ∼15,000 individual objects in Stripe 82. The spectroscopically confirmed quasars are shown
as light blue points; confirmed RR Lyrae and color-selected F/G stars are shown in red and grey,
respectively. A separation of the quasars from the stellar locus contaminants is clearly seen.
The three solid lines (Equations (2.12)–(2.14)) define the region in which we estimate the quasar
completeness c of our algorithm (which turns out to be 93% in this case, Table 2.5). Along the
axes we show the projected A and γ distributions for the sub-samples.

mates are based on only 6 epochs of photometry over 3 years, rather than the ∼60 in the
full Stripe 82 survey. The separation of the quasars and the contaminants is less clean
with the Pan-STARRS 1 sampling, but one nevertheless clearly sees a quasar-dominated
region with rather low contamination. Plots analogous to the ones shown in Figures 2.6
and 2.7, but for the g, i and z-band measurements, show that on average A decreases by
30-50% going from g to z band, whereas γ is unchanged with varying wavelength. Thus,
the separation of the quasars from the contaminants via their γ values appears to work
comparably well in all 4 bands (with somewhat more scatter in the z-band). In agreement
with Kozłowski et al. (2010), no clear difference in the ratio of the amplitudes at different
wavelengths between RR Lyrae and quasars is detected.

Since most F/G stars should not vary, but RR Lyrae do, they should have different A dis-
tributions. This is seen in Figure 2.6 and 2.7: RR Lyrae have magnitude amplitudes
above ∼0.1 (e.g., Soszynski et al. 2003; Sesar et al. 2010), while the F/G stars have char-
acteristic values of A ∼ 0.01. It is therefore clear that our approach can also separate
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Figure 2.7: Distribution of the variability structure function parameters, similar to Figure 2.6,
but after down-sampling to the 6 epochs Pan-STARRS 1 3π survey cadence (Section 2.4.7). A
variability separation of quasars and their contaminants is again apparent, albeit not as clearly
as in Figure 2.6. The selection region is the same as in Figure 2.6; the completeness is given in
the upper right corner of the plot, and in Table 2.5.

RR Lyrae from stellar (non-varying) contaminants without doing a full fit of a periodic
light curve.

2.6.2 Completeness and Purity

To move beyond a merely qualitative assessment of the separability of the quasars from
contaminants we now estimate the achievable completeness and purity of the resulting
sample. Purity is the more difficult quantity to estimate as it requires appropriate abun-
dances for the contaminants. We do not have these for the training set quasar, F/G star
and RR Lyrae samples, where the ratio of quasars to contaminants is 2:1, instead of a
more realistic ∼1:25, and we can therefore only estimate completeness when working
with these samples. However, by design the UVX, nUVX and griz selection boxes (Sec-
tions 2.4.3–2.4.5 and Sections 2.6.2.1–2.6.2.3 below) give parent samples with the cor-
rect quasar-contaminants ratio: we use these to explore the purity of our quasar selection
algorithm.
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For the present we divide the A–γ plane by simple cuts that define a quasar selection
box, and then quantify its performance. Specifically, our fiducial quasar selection region
is bounded by the following three straight lines:

γ(A) = 0.5 ∗ log(A) + 0.50 (2.12)

γ(A) = −2 ∗ log(A) − 2.25 (2.13)

γ(A) = 0.055 . (2.14)

These cuts are shown as black solid lines in Figures 2.6–2.10.

This can be thought of as a way of providing lower limits on the available completeness
and purity, that a more sophisticated selection procedure would improve upon. One could
of course tweak the cuts in Equations (2.12)–(2.14) to explore the trade-off between
purity and completeness, which we have only done here ‘by eye.’

Applying these cuts to the data leads to the completeness given in Table 2.5 for the
‘QSO+contam’ catalog. The completeness is calculated as the fraction of spectroscopi-
cally confirmed quasars in the sample that fall within the cuts. In our simple illustrative
setup we have a completeness of 93% for the quasars in the case where the time sampling
is equal to Stripe 82 (∼60 epochs). In the case of a Pan-STARRS 1-like time sampling
the completeness drops to 76%.

Table 2.5: The completeness c and purity p of the SDSS Stripe 82 and mock Pan-STARRS 1
variability selected object catalogs. The δc and δp indicate the poisson error on c and p.

Parent Cat. Sampling c δc p δp Quasar Reference Cat.

QSO+cont. Stripe 82 93% 1% - - SDSS
QSO+cont. Pan-STARRS 1 76% 1% - - SDSS
UVX Stripe 82 90% 3% 95% 3% SDSS+2SLAQ
UVX Pan-STARRS 1 73% 2% 92% 3% SDSS+2SLAQ
nUVX Stripe 82 90% 15% 96% 16% Visual
nUVX Pan-STARRS 1 65% 12% 32% 5% Visual
griz box Stripe 82 92% 6% 92% 6% Visual & SDSS+2SLAQ
griz box Pan-STARRS 1 75% 6% 30% 2% Visual & SDSS+2SLAQ

Of the RR Lyrae 97% and 83% (for the Stripe 82 and Pan-STARRS 1 sampling respec-
tively) fall in the high-A low-γ corner below the line given by Equation (2.12). In this
region <0.5% of the 5000 F/G stars lie, illustrating quite a clean separation between
RR Lyrae and non-varying stellar contaminants.

Besides calculating the overall completeness, we also split our data into redshift bins.
The completeness of the quasars is rather constant as a function of redshift, with a minor
loss of about 5-10% for redshifts above 4. Since our training set only contains 52 quasars
at z > 4, we were not able to investigate this decreased completeness further.
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In the next three subsections we proceed to explore the A–γ distributions for the samples
of objects that were selected only on the basis of their colors (Table 2.1, 2.2 and 2.3).
For those samples, we estimate the completeness (as above) and also the purity, defined
as the fraction of known quasars compared to the total number of objects inside the A–γ
selection regions.

2.6.2.1 Quasars in the UVX catalog

For the UVX object sample (Section 2.4.3) there is enough spectroscopy in Stripe 82 to
define a spectroscopically confirmed quasar subsample, a reference catalog of quasars
which is complete in Stripe 82. By combining the spectroscopically confirmed quasars
in Stripe 82 (Section 2.4.1), with the objects from the 2SLAQ (2-degree field SDSS
luminous red galaxies and QSO) survey (Croom et al. 2009b), our final quasar reference
catalog contains 11216 individual quasars (9157 from SDSS and 2059 from 2SLAQ).
We only selected objects flagged as ‘QSO’ in the publicly available 2SLAQ data.1

Matching this quasar reference catalog with the catalog of UVX Stripe 82 point sources
returned 2140 quasars out of the 2912 objects in the UVX catalog. Thus, 73% percent
of the point sources in the UVX color box are known quasars. It is not surprising that
the fraction is so large, since we used the powerful u − g color in the definition of the
color box. This simply re-affirms that the UVX box is a region of color space where the
quasars are in the majority, as they are well separated from the stellar locus by the u − g
color; it is exactly this separation we are trying to find an alternative to.

We estimated A and γ for the entire UVX catalog, using both the full (Stripe 82) sam-
pling and the sparser Pan-STARRS 1-like version of it. The result is shown in the
top row of the A–γ plots in Figure 2.8. Applying our simple variability selection cuts
(Equations (2.12)–(2.14)) returned 2033 and 1734 quasar candidates for the Stripe 82
and Pan-STARRS 1 sampling, respectively. Matching these objects with the 2140 know
SDSS+2SLAQ quasars in the UVX catalog returned 1935 and 1573 matches. Thus we
are able to detect the UVX quasars with a completeness of 90% and a purity of 95%
(1935 matches/2033 candidates) when using the Stripe 82 time sampled data. For the
Pan-STARRS 1-like sampling of the data we get a completeness of 73% and a purity of
92% (Table 2.5).

1http://www.2slaq.info/

http://www.2slaq.info/
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Figure 2.8: Distribution of variability structure function power law parameters A and γmeasured
for the objects in the UVX and nUVX catalogs of Table 2.5. The left plots corresponds to the
catalogs with a Stripe 82 time sampling, while the right plots correspond to the sparser Pan-
STARRS 1 time sampling (6 epochs over 3 years). The three solid lines in each scatter plot
correspond to the quasar variability selection region defined by Equations (2.12)–(2.14). The
completeness and purity estimates are shown in the upper right corner of each scatter plot, and
in Table 2.5. In the upper left corner the total number of objects in the catalog is stated. The light
blue points indicate the known quasars, and the red points all other objects. Along the axes of
the two-dimensional scatter plots the projected probability distributions for A and γ are shown
as histograms.

2.6.2.2 Quasars in the nUVX catalog

The catalog of the UVX point sources was deliberately chosen from a region of color
space where the color selection already does a superb job finding quasars, as confirmed
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by the complete SDSS and 2SLAQ quasar catalog and the completeness and purity of
our A–γ approach. However, one might argue that in this case (of UVX quasars) a light
curve analysis adds little. To explore the A–γ approach further we applied it to the non-
UV excess objects described in Section 2.4.4.

In the nUVX color box (Table 2.2) there is no simple way to quantify the completeness
of the parent sample of color-selected objects, since we do not know how many quasars
were missed in this region of color space during the SDSS survey. To try to quantify
this, we extracted the spectra from the 973 objects in this catalog that were targeted
for SDSS spectroscopy. By visually inspecting these spectra we were able to compile
a catalog of 77 quasars among the Stripe 82 nUVX objects. (Of these 77, 6 quasars
are not in the SDSS+2SLAQ catalog). This means that if the SDSS fibers had been
allocated to nUVX objects randomly, then the purity of the nUVX quasar sample would
be 77/973 = 8%. However, in practice the fibers were placed according to a Bayesian
ranking that made fuller use of the color information, so that this 8% is likely an upper
limit on the purity of the nUVX quasar sample. (The fraction of quasars hidden in the
un-targeted nUVX objects is likely lower than the fraction of quasars found in the nUVX
objects with spectra.)

Applying our A–γ analysis and our variability selection criteria to the spectroscopic sub-
catalog of 973 nUVX objects returned 72 (178) quasar candidates for the Stripe 82 (Pan-
STARRS 1-like) time sampling. The nUVX objects’ variability parameters are plotted
in the bottom row of Figure 2.8. Estimating the completeness and purity in the Stripe 82
sampling case, assuming that the 973 objects with spectra are a random subset of all the
nUVX objects, gives that we are 90% complete and 96% pure (Table 2.5). By the same
argument as above, the purity is an upper limit on the overall purity of the nUVX quasar
sample whereas the completeness is exact. The purity and the completeness stand on
their own in quantifying our ability to recover the spectroscopically confirmed quasars.
Thus, the addition of the variability information enhances the purity to 96% instead of
8%, as is the case for the purely color-selected sample. In the case of the sparser Pan-
STARRS 1-like sampling we still have a completeness of 65%, and a purity of 32%. This
clearly demonstrates that a variability-based approach is very efficient at selecting nUVX
quasars when the data is well sampled in time. Even with the sparse Pan-STARRS 1
sampling, the purity increases by a factor of 4 when variability information is used.

The plot of the Stripe 82-sampled nUVX objects (lower left corner of Figure 2.8) shows
a clear bimodality of the A parameter distribution of the unknown (red) objects. As
seen with the object training set, this bimodality is a probable separation between the
non-varying contaminants and the varying (possible RR Lyrae) contaminants. Thus
the nUVX objects have been separated into quasar candidates (high γ; intermediate A),
RR Lyrae candidates (low γ; high A) and non-varying stars (low γ; low A).
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2.6.2.3 Quasars in the griz Color Box

To simulate quasar candidate selection without u-band photometry, we applied our vari-
ability analysis to the objects lying in a fairly large multi-color region in griz space,
the so-called griz box defined in Section 2.4.5. This color box fully contains an impor-
tant part of the stellar locus. Estimating the completeness and purity of our algorithm
for the griz box is difficult, as no clear estimates of the abundance of quasars exist for
such a color cut. We therefore checked the quasar candidates against a catalog of the
SDSS+2SLAQ quasars, plus the 6 extra quasars found via the visual inspection of the
nUVX spectra. This may fall considerably short of a complete sample of quasars, but
at the moment it is the best we can do; the purities calculated in this section are there-
fore lower limits. Matching this quasar reference catalog to the 12,714 objects in the
griz box we found 443 known quasars. Estimating A–γ for all these sources, returned
442 (1,118) variability-based quasar candidates, when considering the Stripe 82 (Pan-
STARRS 1) sampling and when applying the A–γ cuts of Equations (2.12)–(2.14). Of
these candidates 407 (333) were found to be known quasars. Thus, for the broad griz
color pre-selection, variability selection achieves 92%(75%) completeness and a purity
of 92%(30%) for the Stripe 82 (Pan-STARRS 1) sampled data, respectively. The A and
γ distributions for the griz box selected objects are shown in the top panel of Figures 2.9
(Stripe 82 sampling) and 2.10 (Pan-STARRS 1 sampling).

In the bottom panel of Figure 2.9 and 2.10 we have projected our variability selected
quasar candidates back into ugr and gri color space, in order to understand the color
distributions of variability selected quasar candidates. The figures show that 86% and
98% of the not spectroscopically confirmed candidates fall on the gri stellar locus, de-
fined as the (blue) contour level containing 95% of the stellar locus objects in Stripe 82.
This suggests that many, if not most, of these unconfirmed quasar candidates are stars
scattered into our variability selection region. However, there are some possible quasars
among the unknowns judging from their colors. For instance, a few of the unknown ob-
jects (6% and 1% in the Stripe 82 and Pan-STARRS 1 sampled case respectively) fall
in the ugr UVX selection box. This illustrates that our purity estimates are lower limits
but close to the likely truth. It also shows that the ugriz quasar color selection in SDSS
(Richards et al. 2002b, 2006, 2009) has done an excellent job, implying that < 10% of
the quasars with i < 19.1 are ‘hiding’ in the stellar locus and have been missed by the
SDSS selection.

When defining the griz box in Section 2.4.5 we included the stellar locus to achieve as
high a completeness as possible and to illustrate the prospects of our approach. However,
removing objects falling within the stellar locus, could greatly enhance the purity at a
modest reduction of the completeness. Thus, selecting quasar candidates without u-band
information can be put into four scenarios:
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Figure 2.9: The top panel shows the A and γ power law parameter space of the objects in the
griz selection box (Sections 2.4.5 and 2.6.2.3) with Stripe 82 time sampling. The projected prob-
ability distributions for A and γ for the confirmed quasars (light blue points) and the unknown
objects (red points) are shown as histograms. The solid lines indicate the selection cut defined in
Equations (2.12)–(2.14). The numbers 12,217, 442 and 55 in the A–γ plane indicate the number
of objects in the given region. The estimated completeness and purity is shown in the upper right
corner of the scatter plot. The bottom row shows the 442 variability selected quasar candidates
(407 confirmed quasars and 35 unknown candidates) from the A–γ space, projected back into
ugr and gri color space. The black, green and blue boxes correspond to the UVX, nUVX and griz
selection boxes (Sections 2.4.3–2.4.5 and 2.6.2.1–2.6.2.3). 87% of the confirmed quasars and 6%
of the unknown candidates fall in the black UVX box in ugr color space (lower left plot). 5% and
6% of the quasars and unknowns fall in the green nUVX box. The contours in the bottom plots
indicate the Stripe 82 stellar locus. 95% of the stellar locus objects are within the blue contour
level (the last but one outer contour). Above 80% of the 35 unknown candidates and 41% of the
407 confirmed quasars fall within the blue gri contour, providing an estimate of the number of
quasars ‘hiding’ in the gri stellar locus.
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Figure 2.10: Plots similar to those of Figure 2.9 for the griz selection box data down-sampled
to a Pan-STARRS 1 cadence (6 epochs over 3 years). The numbers 11,420, 1,118 and 169 in
A–γ space (top panel) indicate the number of objects in each of the three regions defined by the
black solid lines as defined in Equations (2.12)–(2.14). The estimated completeness and purity
of the 1,118 variability selected quasar candidates is shown in the upper right corner of the top
panel. Of these 1,118 objects, 42% of the confirmed quasars and 98% of the unknown candidates
fall within the blue gri color space (lower right plot) stellar locus contour level, which encloses
95% of the Stripe 82 stellar locus objects. 87% of the confirmed quasars fall in the black UVX
selection box in ugr color space (lower left plot), as opposed to only 1% of the unknowns. In the
green ugr nUVX box fall 5% and 1% of the quasars and unknown candidates. These percentages
indicate that most of the unknowns are stars scattered into our selection region due to the 6 epoch
sampling of Pan-STARRS 1.



50 Chapter 2. Selecting Quasars

1) A ‘naive’ griz box (i < 19.1) including the stellar locus and not considering vari-
ability information will have a quasar selection completeness above 90%, but a
purity of only 4%.

2) Taking a griz box color selection, but cutting out the stellar locus (defined by
the (blue) contour in Figures 2.9 and 2.10) and still not considering variability
information improves the purity to ∼48% but lowers the completeness to ∼59%.
This is what would be easily achievable in a single-epoch griz survey.

3) Combining a griz color selection including the stellar locus, but considering vari-
ability information (illustrated in Figures 2.9 and 2.10) leads to a completeness of
92%(75%) and a purity of 92%(30%) for the Stripe 82 (Pan-STARRS 1) sampled
data, respectively. This means that Pan-STARRS 1 can provide a 75% complete
quasar sample, if 30% purity were acceptable.

4) Finally, removing the stellar locus from the griz selection box and combining this
with variability information lowers the completeness to 54%(44%), but returns a
purity of 97%(92%) with Stripe 82 (Pan-STARRS 1) time-sampled data. Pan-
STARRS 1 can provide a high purity quasar sample that is ∼50% complete.

This illustrates how a variability selection cut greatly improves the candidate sample as
compared to quasar candidate selection based on colors alone when u-band information
is not available. Keeping in mind that the purities calculated here are lower limits, these
results suggest that the variability selection of quasar candidates in Pan-STARRS 1 or
other multi-epoch surveys will produce high quality, extensive samples.

2.7 Discussion

We have explored the selection of quasars by their variability in lieu of their UV excess
in the context of the Pan-STARRS 1 3π survey as a test case for various upcoming multi-
epoch surveys. Given its extensive, multi-year time sampling, SDSS Stripe 82 is an
excellent test bed, that allows us to address variability selection of quasars (and other
sources) in general. Besides Pan-STARRS 1 and SDSS, LSST (Ivezic et al. 2008; LSST
Collaboration 2009) and Gaia (Perryman et al. 2001) will be able to employ variability
selection similar to what we have presented.

For any source, we have characterized its variability by a simple power law model for
its light curve structure function, which is similar to (but not the same as) Cristiani et al.
(1996); Eyer (2002); Sumi et al. (2005); MacLeod et al. (2008). For each object the
amplitude A is the typical variability within 1 year, and the exponent γ describes how
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the expectation value for the magnitude differences changes with the time between mea-
surements. Applying this simple variability characterization to spectroscopically con-
firmed quasars, to presumably non-variable sources (F/G stars) and to known RR Lyrae,
we have found that the A–γ space separates these source classes nicely. Quasars have
0.07 < A < 0.25 and 0.15 < γ < 0.5; RR Lyrae have A ∼ 0.2 and γ ∼ 0, as the rapid pe-
riodic variations in their light curves appear as ‘white noise’ with no secular trend when
coarsely sampled on year-long time scales; finally, non-variable sources have A < 0.05.
The variability properties for quasars derived here for individual objects with ∼60-epoch
light curves, are consistent with those derived by for instance Vanden Berk et al. (2004)
and Bauer et al. (2009b) using ensemble averaging. The results allowed the definition
of a simple variability-based quasar selection in multi-epoch data, using cuts in the A–γ
plane. As we summarize quantitatively below, this variability selection works very well
when considering 60-epoch light curves in Stripe 82, and still works quite well for the
sparser sampling expected for Pan-STARRS 1.

The presented algorithm for variability selection is simple enough that it can be applied
to large samples. Our IDL code (not optimized for speed) running on two dual-core
CPUs takes 2 hours to characterize the ∼12,000 objects of the griz color box with the
Pan-STARRS 1 sampling.

The extensive spectroscopy of quasars in Stripe 82 has enabled stringent completeness
and purity estimates for variability selection, at least for UVX quasars. Our analysis has
shown that variability-based quasar selection with only 6 epochs over 3 years (as for Pan-
STARRS 1) is effective, producing either complete or pure samples. However, something
more like the ∼60 epochs of Stripe 82 is needed to produce variability selected quasar
samples that are both complete and pure (with only weak color pre-selection).

Therefore, it is paramount to eventually combine the variability information in different
filters, in order to boost the number of epochs in Pan-STARRS 1. We can attempt to do
this by predicting time-offset synthetic r-band magnitudes from the g, i, z and Y bands
which could reduce the scatter in the A–γ plane, and so enhance the completeness and
the purity of the Pan-STARRS 1 sampled catalogs.

Considerably further in the future, LSST (Ivezic et al. 2008; LSST Collaboration 2009)
will start operating and is planned to ultimately have ∼200 epochs spread over 10 years.
This makes LSST optimal for creating complete and pure variability selected quasar
samples. Considering a UVX box like the one used here, a quasar candidate variability
selection with the LSST cadence and a 10 year baseline would definitely push both the
completeness and purity above the (lower) Stripe 82 limits of 90% and 95% shown in the
top left plot of Figure 2.8 and in Table 2.5. Such samples are expected to be obtainable
at least down to LSST’s 10σ limiting iAB magnitude of around 23.3 (Oguri & Marshall
2010), or even down to 5σ (iAB . 24) with the 200 epoch variability selection. If we
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further consider the fact that LSST will have a u-band, a LSST color variability quasar
selection will presumably be able to create (UVX) quasar catalogs almost as pure and
complete as spectroscopic samples. Hence, LSST will be superior to Pan-STARRS 1 in
the 20,000 deg2 LSST will observe. However, until LSST happens, Pan-STARRS 1 is
excellent for improving and further developing variability selection of quasars, and it will
provide the first large variability (and grizy-color) selected quasar samples. The LSST
(and Pan-STARRS 1) quasar catalogs will with estimated sizes of 100 quasars per square
degree, or even more, continue the exponential growth of quasar catalog sizes seen the
last 50 years (Richards et al. 2009), and thereby stress that we are on the verge of an era
where confirming the quasar nature of all objects in the catalogs by spectroscopic follow-
up will be unfeasible. This makes the purity of the photometric samples crucial for doing
statistical analyses of the quasars. As demonstrated variability provides purities above
90% for well sampled data at all redshifts and not only for UVX object and will therefore
be an important step in achieving very pure photometric quasar catalogs in the future.

2.8 Conclusions

We have presented a simple, parameterized variability characterization for sources with
many epoch photometry. We do this by fitting a power-law model for the structure func-
tion of each source’s light curve; the model is specified by an amplitude A and a power-
law index γ.

We have applied this approach to understanding variability selection of quasars in multi-
epoch, multi-color surveys, either augmenting or supplanting the more common color-
selection. Specifically, we have analyzed data in Stripe 82 both to understand variabil-
ity selection per se and as a testbed for ongoing and upcoming surveys, such as Pan-
STARRS 1 and LSST. To predict Pan-STARRS 1’s ability to identify quasars, we have
down-sampled Stripe 82 data to a set of 6 epochs of data, resembling the expected single-
band time sampling in the Pan-STARRS 1 3π survey.

For all sources in various sub-samples we calculated the parameters A and γ, and found
that for sufficiently many epochs over a multi-year interval, quasars separate well in the
A–γ parameter plane from non-variable sources and, e.g., RR Lyrae. The quasar vari-
ability as typically characterized by 0.07 < A < 0.25 and 0.15 < γ < 0.5, is consistent
with earlier ensemble analyses.

Drawing on the nearly complete spectral identification of quasars with i < 19.1 in Stripe
82, we have explored both the completeness and the purity of single-band, variability
selected quasar samples with both Stripe 82 and Pan-STARRS 1 time-sampling, and
with or without the benefit of u-band photometry (which Pan-STARRS 1 does not have).
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Specifically, we found the following:

• Among the complete, spectroscopically confirmed sample of UV excess quasars
in Stripe 82, we can identify 90% of them on the basis of ∼60 r-band epochs over
∼5 years. This variability selected sample only has a 5% contamination from other
objects.

• Repeating the same exercise but with the 10-times sparser Pan-STARRS 1 sam-
pling, reduces the completeness to 73% but with still high purity (top right of
Figure 2.8).

• In the redshift range 2.5 < z < 3, where quasars overlap with the stellar locus
in color-color space, variability can find 90% (65%) of all spectroscopically con-
firmed quasars for Stripe 82 (Pan-STARRS 1) sampling. This is a factor of 5-10
more complete than existing color-selection in this particular regime (bottom panel
of Figure 2.8).

• To understand our ability to select quasars through their variability when no u-
band data are available, we selected all sources in a broad griz color box, known
to contain almost all spectroscopically confirmed quasars. In this color box, stars
and other contaminants outnumber quasars by a factor of 30 for 17 < i < 19.1.
Nonetheless, variability selection encompasses 92% (75%) of known quasars for
Stripe 82 (Pan-STARRS 1) sampling. For Stripe 82 sampling (Figure 2.9) the
purity of this sample is still very high (92%), but is somewhat lower with Pan-
STARRS 1-like sampling (Figure 2.10), 30%.

• If in the case of Pan-STARRS 1 (6 epochs, no u-band) a more pure quasar sample
is desired, this can be done by omitting the stellar locus in the griz box and then
looking at the variability of the remaining sources. This yields a completeness of
only 44%, but with a purity of 92%.

• The high purity of the variability selected quasar sample in the griz box (with
Stripe 82 sampling) confirms that the fraction of overlooked quasars in Stripe 82
must be small (< 10%); this inference is predicted on the assumption that the
quasars ‘buried’ in the stellar locus have a variability behavior similar to the others.

• The same A–γ analysis is also very effective at identifying RR Lyrae. With Stripe
82 sampling 97% of the RR Lyrae from Sesar et al. (2010) are found, with Pan-
STARRS 1 sampling still 83%; they appear as objects with (A, γ) ≈ (0.2, 0) (red
points in Figure 2.6 and 2.7).
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2.9 Outlook

Having shown that the intrinsic quasar variability is indeed an excellent classifier and
tool for putting together large, well-defined, complete, and pure samples of quasars,
opens new possibilities for building upon or expanding the work presented in this chapter.
As already mentioned in the discussion in Section 2.7, an obvious improvement and
extension of the selection algorithm presented here, is to expand it from a single to a
multi-band treatment to take advantage of the full information of Pan-STARRS 1 and
LSST. Two other, maybe less obvious, extensions of the presented algorithm are (i) a
combination with existing selection algorithms and (ii) selection of gravitationally lensed
quasars via variability. We will describe these in the following.

2.9.1 Probabilistic Combination of SelectionMethods

With surveys like Pan-STARRS (Kaiser et al. 2002), LSST (Ivezic et al. 2008), and
Gaia (Perryman et al. 2001), among others, large amounts of data will become available
in the (near) future. The science described in Section 2.1 become more feasible with
quasar catalogs containing more than a million actual quasars, however, new methods
for selecting quasars will also be needed to avoid spectroscopic follow-up confirmation,
which becomes unfeasible with such large quasar (candidate) samples. One of these
new selection methods could very well be the intrinsic variability of quasars as presented
here. That being said, only relying on one method for detecting quasars is far from
the optimal. Therefore, a main focus of the quasar selection community should be to
combine existing, and possibly new, selection methods for quasars. As argued, quasars
are extremely versatile, so the work put into such an effort will definitely pay off.

The above text has mostly focused on the selection of quasars via a structure function
parameterization of variability (Schmidt et al. 2010) and the standard SDSS ugriz color
selection (e.g., Richards et al. 2009, 2002b). However, these are (obviously) not the
only methods proposed for selecting quasars in the literature. For instance, it is not
only in the optical bands that quasars can be selected convincingly based on their colors.
Also near-infrared colors have been shown to aid quasar selection (Hewett et al. 2006;
Chiu et al. 2007; Maddox et al. 2008; Wu & Jia 2010). After the results presented in
this chapter were published in Schmidt et al. (2010) also several other methods using
the intrinsic variability of quasars as a selection tool have been proposed. In MacLeod
et al. (2010, 2011); Kozłowski et al. (2010) and Butler & Bloom (2011) they base their
color selection on the modeling of quasar light curves as a damped random walk, as pre-
sented in Kelly et al. (2009, 2010), by parametrizing the variability by the characteristic
damping time-scale, τ, and the asymptotic magnitude of a structure function, SF∞. In
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Palanque-Delabrouille et al. (2011) they base a neural network scheme on the A–γ selec-
tion presented in this chapter, and in Kim et al. (2011) a selection method using support
vector machines on extracted parameters such as period, variability amplitude, and color,
was used to select quasar candidates. Hence, quasar variability selection presently offers
several (partially correlated) selection parameters.

Combining all the methods based on colors as well as variability would without a doubt
strengthen the selection of quasars. One could imagine representing each of the different
selection methods and selection parameters in a probabilistic way, such that they can eas-
ily be combined to a ‘unified selection’ of quasars. A scheme where the overall ‘grand’
probability, P , of a given object being a quasar is given by something like

PQSO =
1

Nmethods

Nmethods∏
i

wi Pi , (2.15)

with i counting the different selection methods, e.g., (A, γ), (u − g, g − r), (J − K, i − Y),
(SF∞, τ), (period,amplitude), etc., Pi giving the probability that the object is a quasar
according to method i, and wi representing some clever weighting, would accomplish
that. The weighting scheme should be created such that cases where a given selection
method does not provide a sensible Pi due to for instance lack of epochs (variability) or
wavelength coverage (colors), are taken probably into account. How to actually do this
in practice is still not clear, but attempts at creating probabilistic selection schemes (so
far only based on colors) have been presented (Mortlock et al. 2011a; Kirkpatrick et al.
2011; Bovy et al. 2011).

An example of how combining different selection methods improves the final results is
also presented in Wu et al. (2011) (though not in a probabilistic manor like proposed
above). Our goal with this study was to find the ‘missing’ quasars at z ∼ 2.7 men-
tioned in Section 2.2 combining the variability selection presented in this chapter with
the optical/near-infrared color selection presented in (Wu & Jia 2010). The spectroscopic
follow-up of our final candidate sample revealed a 100% success-rate, which speaks for
itself and nicely illustrates the power of combining quasar selection methods.

2.9.2 Selecting Lensed Quasars with Variability

With new and larger quasar samples another very interesting prospect of the work pre-
sented here is the possibility of finding lensed quasars. As mentioned gravitational
lenses, and in particular gravitationally lensed quasars, have a wide range of applica-
tions. For instance, the anomalous brightnesses of quasar lenses probe the small scale
dark matter content of (the lens) galaxies (Dalal & Kochanek 2002; Dobler & Keeton
2006), microlensing of the images by stars in the lens galaxies allows the central AGN
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Figure 2.11: SDSS thumbnails (approximately 12×12 arcsec) of four high priority small-
separation quasar lens candidates selected via intrinsic quasar variability as described in this
chapter. Confirming any of these as an actual lens will be the first time a lens has been found via
variability and will serve as the proof-of-concept for dedicated variability lens searches on large
areas of the sky, e.g., the 3π survey of Pan-STARRS 1.

region of the quasars to be super-resolved (Poindexter et al. 2008), and the lens magnifi-
cation enables the host galaxy to be studied, i.e., it becomes possible to study the scaling
relations between the quasar host and the central black holes mentioned in Section 1.5
(Peng et al. 2006a,b). At present only ∼100 lensed quasar systems are known (Oguri
et al. 2008; Inada et al. 2010), and for any given lensing application only a small fraction
of these is suitable. Hence, enhancing the number of known quasar lenses will enable a
more detailed exploration of many of the applications mentioned above.

In the work presented here, we have mainly focused on point source selection, with the
purpose of finding quasar candidates. Such an approach would be directly applicable
to a search for wide separation lenses, where (by definition) the multiple images are
well-resolved. With the overwhelming sample sizes of the upcoming quasar catalogs the
number of wide separation lensed quasars occurring as multiple quasar detection within
a relatively small projected distance on the sky will be significant. It will be a relatively
straight forward exercise to search the new quasar catalogs, for instance created with a
probabilistic ‘unified selection’ as the one described above, for close pairs of quasars.
There is a high chance that such pairs turn out to be multiple images of the same quasar,
i.e., a lens. In the cases where they turn out to be at different redshifts, these quasar
constellations are still valuable and have several interesting applications (e.g., Hennawi
et al. 2006a, 2010; Myers et al. 2008).

But also small-separation quasar lenses can potentially be identified through their vari-
ability. As these are unresolved for optical intermediate resolution surveys like SDSS,
applying for example the A–γ variability selection algorithm presented here to spatially
extended (rather than point sources), yet quasar-colored, objects will return a list of small
separation quasar lens candidates.

We have initiated such a search on SDSS Stripe 82 with promising preliminary results.
By selecting objects with quasar colors, extended morphologies, quasar variability ac-
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cording to A and γ, and suitable photometric (or spectroscopic when available) redshift
to be a lens, we have collected a sample of a few hundred small-separation lens candi-
dates. In Figure 2.11 4 of the highest priority lens candidates are shown. We expect that
of the order 10 of these candidates are indeed lenses. We have initiated a high resolution
photometric follow-up program (either in near-infrared or with space based observato-
ries) in an attempt to resolve the lens-components and possibly the lens galaxy. So far
we have obtained La Silla 2.2 m GROND near-infrared photometry for around 40 of our
candidates, but have not yet analyzed the data. Furthermore, a proposal for HST follow-
up of some of the highest ranked candidates has recently been submitted. In cases where
the photometric follow-up reveals particularly interesting (now hopefully resolved) can-
didates, a second spectroscopic follow-up is most probably needed to confirm the lens
nature of the candidate. If a candidate is confirmed as a lens, this will be the first time a
gravitational lens has been found based on the intrinsic variability of the source.

This pilot study, which we plan to present in a forthcoming paper, will therefore be a
proof-of-concept for selecting lenses with variability and a first step in effectuating such
a search on larger areas of the sky with multi-epoch data, e.g., the 3π (3/4 of the sky)
area of the Pan-STARRS 1 survey, where as many as 2000 lenses are expected (Oguri &
Marshall 2010).
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2.10 – Epilogue –

As presented in this chapter, i.e., in Schmidt et al. (2010), as well as in several more re-
cent studies (e.g., MacLeod et al. 2010, 2011; Palanque-Delabrouille et al. 2011; Butler
& Bloom 2011; Kim et al. 2011), the selection of quasars based on their intrinsic vari-
ability has proven to be a very powerful tool for finding quasars, and has proven to be
more robust and more efficient than the standard color selection alone. In Table 2.5 on
page 43 we summarized the results from applying the developed selection algorithm, or
A–γ selection, to a set of differently selected sub-samples from SDSS Stripe 82. These
results show, that even without information about the UV excess in quasar colors, which
is crucial to the success of color selection, quasar variability selection is outstanding.
Furthermore, the results show that even in the case of relatively poor time-sampling of
the data, quasar variability selection out-performs color selection in areas of color space
where standard selection methods face heavy challenges. The high performance of the
structure function variability selection presented here confirms that only a few percent of
the quasars in SDSS Stripe 82 were overlooked.

We have also shown that besides selecting quasars the A–γ selection very efficiently
selects RR Lyrae stars. This propose that a structure function based variability selection
can be fine-tuned to select several kinds of variable objects, and not only quasars, taking
advantage of the fact that one man’s trash is another man’s treasure.

That being said, all of this does not make the standard color selection obsolete. Abandon-
ing the successes of previous studies because a new and better probe has been discovered,
seems thoughtless. A ‘unified selection’ of the very successful color selection, the vari-
ability selection techniques, and any other previous or future quasar selection methods
will without a doubt stand stronger against future challenges, than a selection base on
just a single method. The strength of combining the different selection methods in this
manner, is that all information is taken into account when available, clearly strengthen-
ing the quasar selection and eventually enabling the community to select quasars from
the vast amounts of data with a confidence that eliminates the necessity for spectroscopic
follow-up.



Chapter3
The Quasar Color

Variability

In this chapter we quantify quasar color variability using the quasar variability
database from Chapter 2, i.e., ugriz photometry of ∼9000 quasars from SDSS
Stripe 82, observed over ∼8 years at ∼60 epochs each. We confirm previous re-
ports that quasars become bluer when brightening. We find a redshift dependence
of this blueing in a given set of bands (e.g., g and r), but show that it is the result
of the flux contribution from less variable or delayed emission lines in the differ-
ent SDSS bands at different redshifts. After correcting for this effect, quasar color
variability is remarkably uniform, and independent not only of redshift, but also of
quasar luminosity and black hole mass. The color variations of individual quasars,
as they vary in brightness on year timescales, are much more pronounced than the
ranges in color seen in samples of quasars across many orders of magnitude in
luminosity. This indicates distinct physical mechanisms behind quasar variability
and the observed range of quasar luminosities at a given black hole mass – quasar
variations cannot be explained by changes in the mean accretion rate. We do find
some dependence of the color variability on the characteristics of the flux varia-
tions themselves, with fast, low-amplitude, brightness variations producing more
color variability. The observed behavior could arise if quasar variability results
from flares or ephemeral hot spots in an accretion disk.

This chapter is based on Schmidt et al. (2012a).
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3.1 – Prologue –

In Chapter 2 we argued for the necessity of keep looking for quasars and expand the sam-
ples, even though they have almost reached sizes of 106 actual quasars. We also showed
how variability has the potential of being a key tool for the success in doing so. In arguing
for the need of larger quasar samples we gave several examples of areas in astrophysics
where quasars are crucial (Section 2.1). One of the main reasons large samples of quasars
are so interesting is because they offer the possibility to obtain new knowledge about the
quasars themselves, and the physical mechanisms that cause them to vary. In particular
the intrinsic variability of quasars directly probes the physics of the quasar central en-
gine described in Section 2.2. Nevertheless, the ubiquitous time-variability of the quasar
emission is still among the phenomena which are not fully understood and needs to be
explained.

At present, the physical cause of quasar variability is not understood in any detail. In
Section 2.2 we focused on the idea that the quasar engine, i.e., the central black hole
and accretion disk of the host galaxy, gives rise to the variability when the mean steady
state accretion rate changes. This seems to be the explanation for the quasar variability
that the community has agreed upon. However, strictly speaking there is no evidence
that this is actually what gives rise to quasar variability. As mentioned, several other
mechanisms, among those starbursts in the host galaxy (Aretxaga et al. 1997; Fernandes
et al. 1997), micro lensing by the host galaxy and compact dark matter objects (Hawkins
1996; Zackrisson et al. 2003), and stochasticity of multiple supernovae (Terlevich et al.
1992), have also been proposed as possible origins of optical quasar variability. Many
of these suggestions have later been rejected as significant to the quasar variability such
that accretion disk instabilities (e.g., Rees 1984; Kawaguchi et al. 1998; Pereyra et al.
2006), and large-scale changes in the amount of in-falling material (e.g., Hopkins et al.
2006 and references therein) are the most probable causes for the main contributors to
the observed variability. But the jury is still out!

Through large efforts and dedicated searches (e.g., Schmidt & Green 1983; Croom et al.
2001; Eyer 2002; Richards et al. 2002b, 2004, 2009; Atlee & Gould 2007; D’abrusco
et al. 2009; Bovy et al. 2011) large samples of quasars exist and have already been ex-
plored in much detail to aid the general understanding of quasars and the physics that
governs them. The goal of this chapter is to use one of these data sets, SDSS Stripe
82, to add valuable information to the discussion about the actual cause of the observed
variability in quasars and the physics governing these systems.

For this study we will use the change of the quasar color as they vary in luminosity, i.e.,
the color variability, as a probe of the quasar physics. Several studies have previously
tried to exploit color changes to extract information about the underlying physics of



3.1. – Prologue – 61

quasars and AGN, whether it being through monitoring of the photometry (Giveon et al.
1999; Trèvese et al. 2001; Trèvese & Vagnetti 2002; Geha et al. 2003; Vanden Berk
et al. 2004; Wilhite et al. 2005; Sakata et al. 2011) or via reverberation mapping (see
Section 3.2.5 and, e.g., Peterson 1993; Kaspi et al. 2005, 2007). In a similar way we will
in this chapter, use the outstanding multi-epoch data of the ∼9000 quasars in SDSS Stripe
82 described in Section 2.4 to answer important questions about the quasar variability.
First of all we will address the reported trend, that quasars get bluer as they brighten,
to see if this data agrees with previous studies. We also compare the observations to
recent thin accretion disk models to see if simulations are actually capable of reproducing
the observations. Maybe most importantly, we will try to address the following crucial
question when dealing with the intrinsic variability of quasars: Do the observed (color)
variability agree with the general idea that quasars vary because the mean accretion rate
of the central engine is changing? We will do this by exploiting the fact that:

The intrinsic (color) variability of quasars is a direct probe of the physics
governing the central engine of active galaxies.
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3.2 Probing the Physics of Quasars

The generally accepted model of AGN described in Sections 1.5 and 2.2 has several
observational features that makes it possible to probe and extract information about the
physics governing this spectacular galaxy evolution phase. The three main observables
of AGN and quasars that provide information about the underlying physics are: pho-
tometry over most of the electromagnetic spectrum from hard x-rays to radio, the quasar
spectra and their broad as well as narrow emission lines (see Section 1.5), and the vari-
ability (probably) produced by the accretion disk nature of the AGN, which we used as a
selection tool to find quasar candidates in Chapter 2. In this section we will present some
of the methods used to probe the physics and characteristics of quasars and their central
engine, before we in the reminder of this chapter describe a new study that combines the
spectral features and the variability to gain new general knowledge about AGN.

3.2.1 The (Rest-Frame Optical) Quasar Spectrum

The electromagnetic spectrum is one of the main providers of precise and detailed infor-
mation about the physics of AGN and quasars in particular, but of all astronomical ob-
jects in general – it is popularly said that photometry and imaging is astronomy, whereas
spectroscopy is astrophysics; which is not without a good reason. This will also be-
come evident in the following subsections where many of them are closely linked to the
information the quasar spectrum provides.

In Figure 3.1 we show the composite quasar spectrum of Vanden Berk et al. (2001). The
quasar spectrum represents the spectra of the general population of AGN (see Table 1.1)
and consists of four main components: (i) the absorption blueward of the Lyα emission,
(ii) the power-law continuum, (iii) the broad emission lines and (iv) the narrow emission
lines.

The pronounced absorption at wavelengths shorter than the Lyα emission at 1216 Å
is produced by absorption from intervening columns of neutral hydrogen (Hi) in the
quasar line of sight, and is present in all distant quasars and AGN as well as ‘normal’
galaxies. Photons of energy 10.2 eV (corresponding to λ =1216 Å) can excite the neutral
hydrogen from its ground state and hence be absorbed. Due to the redshifting of light,
caused by the expansion of the Universe while traveling from the distant quasar to the
observer, the energy of photons is diluted, i.e., the wavelength becomes longer/redder.
This means that at some point all wavelengths initially more energetic than 10.2 eV in
the quasar spectrum, i.e., blueward of Lyα will have been diluted to 10.2 eV so it can be
absorbed by any neutral hydrogen it might encounter. Hence, the Lyα absorption lines
fill up basically all wavelengths blueward of the Lyα emission (which comes from the
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Figure 3.1: Composite quasar spectrum showing the main features of most AGN spectra: the
absorption bluewards of Lyα referred to as the Lyα forest, the broken power-law non-thermal
continuum, and the broad and narrow emission lines. For a more detailed version of the spectrum
see Figure 6 of Vanden Berk et al. (2001). [Adapted from Vanden Berk et al. (2001)]

quasar itself) like ‘trees’ in a forest, and is therefore also referred to as the Lyα forest.
The density of the hydrogen the photons encounter determines the amount of absorption,
such that very dense regions in the line of sight, e.g., galaxies, will strongly absorb the
light and give rise to pronounced broad absorption features. These systems are referred
to as damped Lyα systems or Lyman limit systems. The Lyα forest therefore maps
the hydrogen column densities in the line of sight to the quasar, which for quasars at
high redshift, corresponds to a significant fraction of the Hubble volume. This has been
used for several studies both mapping individual galaxies and the intergalactic medium
(e.g., Gnedin & Hui 1998; Gnedin 1998; Cowie et al. 1995; Metcalf 2005; Hennawi
et al. 2006b; Hennawi & Prochaska 2007). For further details on the Lyα forest and its
applications see for example Rauch (1998); Longair (1998) and Mo et al. (2010).

The second important feature of the quasar spectrum is the power-law continuum, which
as illustrated in Figure 3.1 and described in for instance Vanden Berk et al. (2001), is ac-
tually best approximated by a broken power-law in the rest-frame optical spectral range.
The quasar continuum arrises from the radiating accretion disk of the AGN, i.e., it is
not the sum of billions of blackbody radiating stars as the spectra of normal galaxies
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basically are, and is therefore non-thermal. However, the break in the power-law slope,
also referred to as the ’near-infrared inflection’, is presumably caused by emission from
hot dust and an increased significance of the underlying host-galaxy (stellar blackbody)
light (Vanden Berk et al. 2001). Attempts at reproducing this particular quasar contin-
uum shape in models has provided many constraints and large insight into the physics
of the central engine. This is very well illustrated by the lengthy discussion of the AGN
accretion disk continuum spectrum in for instance Krolik (1999). The clear distinction
between the spectra of standard black-body stars (and hence galaxies) is what makes the
color selection of quasars described in Section 2.2 so efficient.

The last prominent features of any quasar spectrum are the broad and narrow emission
lines. These are produced in the broad and narrow line regions (BLR and NLR) described
in Section 1.5 and illustrated in Figure 1.4 on page 14. Several processes contribute to
the line emission in AGN, for example the narrow lines might have a significant con-
tribution from the narrow lines of the host galaxy (stellar) spectrum. However, by far
the most important process is photoionization of the BLR and NLR clouds by the non-
thermal continuum radiation of the accretion disk. The emission lines are thought to be
absorption of high energy photons which are then re-emitted at the characteristic wave-
lengths of the atomic electron-levels. The width of the individual lines are determined
by the Doppler-broadening arising from the kinematics of the BLR and NLR clouds.
‘Broad’ lines are usually defined as lines with widths σv > 1000 km/s, whereas narrow
lines usually haveσv ∼ 100 km/s, as also noted in Table 1.1 on page 13. Quasar and AGN
emission lines have proven very useful for gaining information about quasar physics as
the following subsections will show. For a detailed description of AGN emission lines
see Krolik (1999) and Vanden Berk et al. (2001).

To summarize, the characteristics of the continuum as well as the broad and narrow lines
are tied to the physics of the different components of the standard AGN model (illustrated
in Figure 1.4), whereas the Lyα forest characterizes the Hi content between us and the
quasar.

3.2.2 Eddington Ratios and Black HoleMasses

Two of the main parameters used in the literature to describe AGN is the mass of the
central black hole and the Eddington ratio. The mass of the central black hole is often
obtained by inferring the velocity of the BLR (vBLR) from measurements of the velocity
broadening of the broad emission lines (σvBLR) in the AGN spectrum, and combining that
with simple assumptions about the characteristic size of the BLR (rBLR; or obtained from
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reverberation mapping as described below) such that

Mvir ∝
rBLRv2

BLR

G
. (3.1)

To be specific, what is actually obtained is the virial mass enclosed by the BLR clouds,
which is assumed to approximate the actual mass of the central black hole, MBH. This is
done under the assumption that the gravity (and not radiation pressure or magnetic fields)
dominates the velocity broadening of the emission lines. Corrections of this assumption
have been discussed (e.g., Peterson 2010).

With an estimate of the central black hole mass, the Eddington Luminosity is easily ob-
tained via Equation (2.4) on page 24, and from that the Eddington ratio, which is defined
as the ratio between the bolometric luminosity of the AGN and the Eddington Luminos-
ity, i.e., (Lbol/LEdd). The Eddington ratio is also calculated under certain assumptions.
Since its definition requires an estimate of the bolometric luminosity, i.e., the luminos-
ity corresponding to the integrated flux of the full AGN spectral energy distribution, a
bolometric correction (Shen et al. 2008) is assumed to link observable luminosities to
the bolometric luminosity. The Eddington ratio indicates the accretion state of the AGN,
as it relates to actual luminosity of the object to the theoretically determined Eddington
accretion limit (see Section 2.2).

Several catalogs of AGN and quasar samples with these two key parameters have been
published and discussed in the literature (e.g., Peterson et al. 1998; Kaspi et al. 2000;
Peterson et al. 2004; Wilhite et al. 2008; Bauer et al. 2009b; Peterson 2010; Shen et al.
2011; Rosa et al. 2011; Shen & Liu 2012). In the study presented in this chapter we will
use the catalog of Shen et al. (2011) to obtain these parameters for the Stripe 82 quasar
sample as described in Section 3.6.1.

3.2.3 Emission Line Ratio Diagnostic – The BPT Diagram

Not only do the (broad) emission lines of quasars and AGN provide information about
the physics of their hosts, they can also help distinguishing AGN from ‘normal’ emis-
sion line galaxies, and have been used to divide the AGN population into individual sub-
populations (Kewley et al. 2001; Kauffmann et al. 2003; Kewley et al. 2006; Trouille et al.
2011), as was also illustrated in Figure 1.4 and becomes clear when inspecting Table 1.1.
One of the preferred methods to make such a distinction is the so-called BPT diagram first
presented in Baldwin et al. (1981). In Figure 3.2 we show an example of such a classifi-
cation scheme from Trouille et al. (2011). Here the line ratios of the prominent [Oiii] and
Hα emission lines with respect to Hβ and [Nii] are plotted. These line ratios are a good
proxy for the degree of ionization of the gas in the observed galaxy. The level of ioniza-
tion reflects the ability of the radiation to actually strip the electrons from the atoms in



66 Chapter 3. Quasar Color Variability

Figure 3.2: The BPT diagram. The plotted emission line ratios [Oiii]/Hβ and [Nii]/Hα are a good
proxy for the level of ionization of the observed gas, and since AGN spectra are generally harder
than ‘normal’ star-bursting emission line galaxies’ spectra, the BPT diagram, i.e., the emission
line ratios, serve as an excellent AGN classifier. The blue points are star-bursting galaxies, the
gray point are composite galaxies (part AGN and part Hii star-burst galaxy; Kewley et al. 2006),
and the red points are AGN. The dashed and dotted lines separating these regions are defined in
Kewley et al. (2001) and Kauffmann et al. (2003). With other line ratios the AGN cloud can be
subdivided into different classes of AGN (e.g., Kewley et al. 2006). [Adapted from Trouille et al.
(2011)].

the gas via photoionization, and since the quasar/AGN spectrum has a much larger frac-
tion of high-energy (low wavelength) photons than ordinary galaxies, i.e., AGN spectra
are harder than normal galaxies’, the BPT diagram, or ‘line-ratio’-diagram, has proven
very useful for distinguishing AGN from normal star-bursting galaxies as well as AGN
diagnostics. The applicability of the BPT diagram is of course limited by the availabil-
ity of the emission lines and has mostly been applied to low-redshift galaxies (from for
instance SDSS) where the emission lines fall in the optical pass-bands. However, if the
[Oiii]–Hβ and Hα–[Nii] emission line features can be followed into the near-infrared as
the object redshift increases, the BPT diagram diagnostics can also be applied out to
higher redshifts. We will illustrate in Chapter 4 that this is in principle possible with
for example the 3D-HST survey, though higher resolution follow-up (Section 4.9.2) is
needed to obtain confident line ratios, as only [Oiii]–Hβ is (marginally) resolved in the
3D-HST spectra.
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3.2.4 The Variability of Quasars

The different models of AGN variability mentioned in Section 2.2 have variability on
many different timescales. From weeks for changes on thermal timescales in the accre-
tion disk, over months for superpositions of stochastic processes, to several years for
viscous changes in the large-scale structures of the accretion disk and for lens crossing
times. These ‘physical’ timescales of AGN (e.g., Webb & Malkan 2000; Collier & Pe-
terson 2001 and references herein) can be compared to the observed AGN variability
timescales. The observed variability time-scales span the range from a few hours (Stalin
et al. 2004; Gupta & Joshi 2005), possibly the result of processes in a jet (Kelly et al.
2009), to months and years where quasars as mentioned are known to typically vary by
& 10% (e.g., Giveon et al. 1999; Collier & Peterson 2001; Vanden Berk et al. 2004;
Rengstorf et al. 2004; Sesar et al. 2007; Bramich et al. 2008; Wilhite et al. 2008; Bauer
et al. 2009b; Kelly et al. 2009; Kozłowski et al. 2010). A longstanding challenge for any
AGN theory is to disentangle these processes based on variability-timescales alone, and
from that sort out which variability mechanisms are prevalent under what circumstance,
and which mechanisms are responsible for which variations.

Moreover, as described in Chapter 2, AGN generally have power-law-shaped structure
functions for the temporal variations, i.e., with no particular timescales, and because
measurements of ‘characteristic variability timescales’ are likely dominated, or at least
influenced by window functions, interpretations of variability time-scales are always
somewhat problematic. All this being said, as described earlier, there seems to be a
general consensus in the community, that the most probable scenario for the majority of
the observed variability behavior is changes in the accretion disk.

The many observations of these intrinsic variability timescales of quasars and AGN pro-
vide a unique tool for probing the physics and the geometry of the central regions of the
AGN; for instance via performing reverberation mapping.

3.2.5 ReverberationMapping - Measuring Sizes of BLRs

Reverberation mapping deals with the monitoring of continuum variations in AGN, and
the determination of how the emission lines react to that variation in form of an echo or
reverberation, to constrain the geometry of the inner regions of the AGN. Blandford &
McKee (1982) outlined the theoretical framework of reverberation mapping (and named
it), but also noted that due to the variability timescales expected for a standard AGN,
the observational challenges are many. Since 1982 many improvements have been made
to the observational campaigns for reverberation mapping, which in 2010 had let to the
precise measurements of the size of the BLR in ∼45 AGN (Peterson 2010).
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The goal of reverberation mapping is to constrain the so-called transfer function, which
describes the BLR in velocity–time-lag (v, τ) space (e.g., Blandford & McKee 1982; Pe-
terson 1993; Netzer & Peterson 1997). Hence, the key observations are velocity of the
individual BLR clouds, and the time-lag between the variations of the spectrum contin-
uum and the emission lines. As mentioned above, part of the observed variability in
AGN is of the order days to months. These requirements, i.e., finely sampled (days) ob-
servations over long periods of time (years), are what make spectroscopic reverberation
mapping an observational challenge. If the data is available the structure of the BLR can
be determined by assuming that the observed time delays are caused by light traveling
times between the central continuum source and the BLR, implying that

rBLR = c τ . (3.2)

This is the simplified version of the transfer function where the velocity is assumed
to be the same for all BLR clouds. The size of the time-lag is therefore a proxy for
the BLR size. We know from detailed reverberation mapping studies that τ can be of
the order years for quasars at z ∼ 1 (e.g., Kaspi et al. 2005, 2007). This can be done
for individual pairs of epochs of observations, and has let to the discovery of a strong
correlation between rBLR and the luminosity L (e.g., Kaspi et al. 2000), with rBLR ∝ L0.5.
This size-luminosity relation and the estimate of the BLR size are used to calibrate the
single-epoch mass estimates obtained with Equation (3.1). Hence, with the benefit of
the statistic of the many observation epochs in reverberation mapping campaigns, which
give reliable (average) emission line widths, reverberation mapping provides reliable
direct measurements of the black hole mass (via Equation (3.1)) and the size of the BLR
(e.g., Kaspi et al. 2005, 2007; Peterson et al. 2004), as opposed to other more indirect
estimates, such as scaling relations and AGN line widths (e.g., Vestergaard & Peterson
2006).

To obtain the interplay between the continuum and emission lines, historically rever-
beration mapping has only been done by monitoring the AGN spectroscopically. How-
ever, the results presented in this chapter as well as the work by Haas et al. (2011) and
Chelouche & Daniel (2012), illustrate the possibility of performing photometric rever-
beration mapping, making reverberation mapping of large samples of objects feasible,
with the potential of improving the number of robustly measured BLR sizes and MBH by
orders of magnitude.

For further details on spectroscopic reverberation mapping see Peterson (1993); Netzer
& Peterson (1997) and Peterson (2010)
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3.2.6 Spectral Hardness – BrighterMeans Blue

The last diagnostic of AGN and quasar physics we will describe in this short summary,
and which will be a main topic of the rest of this chapter, is the characterization of
the emitted spectrum described above and illustrated in Figure 3.1. Available multi-
wavelength AGN variability data provide clear, albeit somewhat qualitative, evidence
that quasars tend to get bluer when they get brighter (e.g., Giveon et al. 1999; Webb &
Malkan 2000; Trèvese et al. 2001; Trèvese & Vagnetti 2002; Geha et al. 2003; Vanden
Berk et al. 2004; Wilhite et al. 2005; Sakata et al. 2011), i.e., the quasar spectrum gets
harder with relatively more high-energy (blue) radiation. Whether this is a consequence
of hardening of the variable spectrum, or because the variable blue component becomes
more dominant compared to the non-variable red spectral component of the underlying
host galaxy, is a matter of debate (Sakata et al. 2010). This correlation between luminos-
ity and spectral shape of the quasar provide information on the variability type, and can
be used to further constrain AGN (variability) models.

One practical caveat to almost all the photometric ‘brighter makes bluer’ claims men-
tioned above, is that they are based on fitting in flux vs. color space, without accounting
for the color-magnitude error correlation in the modeling. Such fitting may lead to spuri-
ous, or at least biased, results, as we describe in this chapter and illustrate in Appendix B
on page 145. To avoid these error correlations such analyses should be performed on
flux-flux space. We will quantify this further below, as we in this chapter develop a better
unbiased fitting procedure to quantify whether brighter-makes-bluer on short time-scales
(see also Sakata et al. 2011).

Furthermore, we will in the reminder of this chapter, carry out a comprehensive study
of color variability in quasars, i.e., we study how flux variability is linked to changes
of the (observed) optical colors. We provide both a detailed empirical description of the
observed variability, and work on linking it to the physics of the quasar central engine, by
quantifying the correlation of color variability with the redshift of the quasars, their MBH,
Lbol/LEdd, and the temporal behavior of the flux variations. While the temporal behavior
has been studied extensively, there are no comprehensive studies of color variability in
large quasar samples with many epochs of data, which as described above, offers great
potential as a diagnostic of accretion disk physics.

In Section 3.3 we re-introduce the SDSS Stripe 82 data which was also used in Chapter 2.
We describe the development of the unbiased fitting procedure in Section 3.4 and in Sec-
tion 3.5 we present the color variability results from applying this procedure to the Stripe
82 data. In Section 3.6 we discuss our findings and describe how the color variability
depends on the light curve variability properties. Furthermore, we check for Lbol/LEdd

and MBH dependences, and compare our results to recent accretion disk models, before
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we conclude in Section 3.7. We finish by presenting a couple of the immediate next steps
this work leads to in Section 3.8. The central findings of this chapter are reflected in
Figures 3.6, 3.9, and 3.11 on page 77, 81, and 84, respectively.

3.3 SDSS Stripe 82 Data

The Sloan Digital Sky Survey’s (SDSS’s) Stripe 82 is as mentioned in Section 2.4 an
equatorial stripe 2.5 degrees wide and about 120 degrees long which has been observed
many times in the 5 SDSS bands over more than 8 years. The Stripe 82 data base there-
fore provides an unprecedented collection of data for variability studies in general (e.g.,
Ivezić et al. 2007; Bramich et al. 2008; Sesar et al. 2007, 2010; Bhatti et al. 2010) and
quasars in particular (Kelly et al. 2009; Schmidt et al. 2010; MacLeod et al. 2010, 2011;
Butler & Bloom 2011). The analysis presented here is done on the ∼9,000 spectroscop-
ically confirmed quasars in Stripe 82. They have been selected from the SDSS data
archive1 as described in Chapter 2 (Schmidt et al. 2010). Thus, we have a sample of
quasars with on average 60 observations spread over a period of roughly 8 years. To ob-
tain further information on each individual quasar, such as for instance estimates of the
bolometric luminosity (Lbol) and black hole mass of the central engine (MBH), we cross-
matched our list of objects with the catalog of quasar properties presented in Shen et al.
(2011). We found a total of 9093 matches which constitute the catalog we will use in
the remainder of this chapter, unless noted otherwise. This corresponds to basically the
complete catalog of spectroscopically confirmed quasars in Stripe 82, hence, matching
to the Shen et al. (2011) catalog did not cut down the sample much.

3.4 Fitting Color Variability inMagnitude Space

In principle optical color variability of quasars, i.e., the tendency of changing color,
generally becoming bluer when they brighten, has been well established as described in
Section 3.2.6. However, as noted this color variability has been established and quantified
by fitting data in color-magnitude space, for instance in g vs. (g− r) space, which suffers
from co-variances between the color and the magnitude uncertainties that have not been
accounted for in the past analyses. As we describe in Appendix B on page 145, we have
found that this may lead to severe overestimates of the color variability, especially as the
photometric errors are not negligible compared to the intrinsic variability amplitudes. To
remedy these biases we fit the color variability in magnitude-magnitude space, and then
‘translate’ them into color-magnitude relations.

1http://casjobs.sdss.org/CasJobs/default.aspx

http://casjobs.sdss.org/CasJobs/default.aspx
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The Stripe 82 data presented in Sections 2.4 and 3.3 are unprecedented in their combina-
tion of time coverage, number of epochs, filter bands and sample size, which allows us to
take the color variability analysis to the next level. Since the quasar variability typically
shows modest amplitude (a few tenths of a magnitude or less) it has been characterized
in previous work by a linear relation in flux-flux space (e.g., Choloniewski 1981; Win-
kler 1997; Suganuma et al. 2006; Sakata et al. 2010, 2011). We make the ansatz that
the photometric measurements of each individual quasar can be represented by a linear
relation in gr-space (and ui-space). The gr and ui spaces were chosen for high signal-
to-noise and broad spectral range respectively (the uz-space being too uncertain due to
z-band measurement errors). By calculating the Pearson correlation coefficient (PCC)
for each individual quasar we verified that this approach is indeed sensible. Averaged
over the full sample in gr-space the PCC = 0.8. A PCC of 1 indicates a linear correlation
with basically no scatter. Including an extra parameter in the linear relation to resemble
the intrinsic scatter when determining sgr also shows that the scatter of the assumed lin-
ear relation is insignificant. Hence, the data do indeed resemble a linear relation quite
closely.

When fitting such data a number of factors need to be taken into account: there are
comparable errors along both axes, e.g., for g and r magnitudes, the errors vary widely
among different data points, and there are ‘outliers’ (as described in Section 2.4.6 and in
Schmidt et al. 2010). In order to take these factors properly into account we have used
the linear fitting approach, including outlier pruning, laid out in Hogg et al. (2010) page
29ff. In practice we identify the set of relations that make the data likely outcomes

r − 〈r〉 = s′gr(g − 〈g〉) + b (3.3)

by a Metropolis-Hastings Markov chain Monte Carlo (MCMC) approach. Thus, we are
determining the color variability (slope) s′gr and the offset on the r-axis b (moving each
object to its mean g and r value to improve the determination of b) by sampling the
parameter space via a MCMC chain. From simple algebraic manipulations of Equa-
tion (3.3) we have that

r = s′grg + b′ (3.4)

g − r = −(s′gr − 1) (g − 〈g〉) + B , (3.5)

where b′ = 〈r〉 − s′gr〈g〉 + b and B = −b + (〈g〉 − 〈r〉) are constants. These equations give
the ‘transformation’ of the fit between magnitude-magnitude space and color-magnitude
space. If (s′gr − 1) < 0, i.e., if s′gr < 1 the quasar gets bluer as it brightens. In the
remainder of this chapter we will use

sgr = (s′gr − 1) (3.6)

as our definition of the color variability. In more general terms this corresponds to sλ1λ2 ≡
∂mλ2
∂mλ1
− 1 where the λs refer to the photometric bands. This expression has the intuitive
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Figure 3.3: Example of MCMC fitting for the gr color variability, given a set of independently
measured g and r light curve points and their uncertainties. These photometric data for the
quasar SDSS J2037-0112 are shown as black circles with error ellipses indicating the photo-
metric errors on the measurements. The solid blue line indicates the MCMC ‘best’ fit (i.e., the
parameters for which the data are most likely) of the linear relation in Equation (3.3) to the data
that resulted from the MCMC chain, as described in Section 3.4 and in Hogg et al. (2010). The
dashed blue lines show the 68% confidence interval of the MCMC. The empty data points with
dashed error ellipses have a posterior probability of being outliers to the relation of > 50%, as
described in Section 3.4; see also Section 3 in Hogg et al. (2010). Note that the filled point in
the lower right corner is not counted as an outlier, due to its large photometric error in r. This
fitting accounts for the independence of the g and r measurements, the widely varying error bars,
and the fact that even data as well-calibrated as SDSS Stripe 82 have ‘outliers’. In the upper left
corner we note the mass of the central black hole and the bolometric luminosity taken from the
value-added quasar catalog presented in Shen et al. (2011), and the spectroscopic SDSS redshift
of the object. In this manner the gr and ui color variability of each of the 9093 Stripe 82 quasars
in the sample were determined.

interpretation that sgr = 0 means no color variability, i.e., brightness variation at constant
color, whereas sgr < 0 accounts for the bluer equals brighter trend (the most common
trend in the data) and sgr > 0 implies objects that become redder when they brighten.

In Figure 3.3 an example of such a MCMC fit to constrain the color variability is shown
for the quasar SDSS J2037-0112 in gr space. The filled circles represent the individual
photometric epochs from Stripe 82, with the ellipses indicating the photometric errors
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in g and r. The ‘best’ fit from Equation (3.3) is shown as the blue solid line. The blue
dashed lines show the 68% confidence interval given by the 16th–84th inter-percentile
range of the MCMC ‘cloud’ of possible fits. The described fitting procedure also allows
estimating the probability that a given data point is an outlier to the obtained relation,
i.e., an estimate of the posterior probability that each individual observation ‘belongs’ to
the obtained relation (see Section 3 in Hogg et al. 2010). Such outliers can be due to
for instance weather, bad calibration, image defects, etc. The data points represented by
the open circles with the dashed error ellipses in Figure 3.3 have a posterior probability
of being outliers to the shown MCMC fit which is larger than 50%. On average 8%
and 19% of the observed epochs were counted as outliers to the obtained relations when
fitting in gr and ui-space respectively. Similar fits in gr (and ui) space were performed
for all 9093 quasars in the Stripe 82 sample, each resulting in estimates for the gr and ui
color variability for each object. Note that the temporal ordering of the flux points plays
no role in this analysis.

3.5 Results

In the following subsections we will present the results from the investigation of the color
variability, sgr and sui, for the 9093 spectroscopic Stripe 82 quasars.

3.5.1 Color Variability in gr

Figure 3.4 shows the immediate result of the MCMC fitting procedure; the directly ob-
served gr color variability for the 9093 spectroscopically confirmed quasars from Stripe
82 as a function of their spectroscopic redshifts (left panel). It is clear that the vast major-
ity of the quasars show color variability sgr < 0 (i.e., they get bluer when they brighten)
represented by the shaded region. The right panel shows the analogous plot for the ui
color variability, which we consider further in Section 3.5.3.

Figure 3.4 shows that there is a very significant redshift dependence on the mean ob-
served color variability, 〈sgr/ui〉(z). Spectra (Wilhite et al. 2005) and other information
suggest that the 〈sgr/ui〉(z) behavior seen in Figure 3.4 arises from a general trend of
bluer continuum color in higher flux states modified by the redshift-dependent influence
of emission lines in a given observed bandpass. As we will show in detail below, such a
description is consistent with trends in the Stripe 82 data.

The colors of quasars in general are known to have a pronounced redshift dependence
resembling that seen in Figure 3.4 because emission lines and the continuum affect static



74 Chapter 3. Quasar Color Variability

Figure 3.4: The color variability, sλ1λ2 , in gr (left) and ui-space (right) for the full sample of
9093 Stripe 82 quasars (dark gray dots), as a function of redshift. The black rectangles show
the sample mean and its uncertainties in redshift bins of ∆z = 0.125, containing at least 5 data
points. The width (σ) of the color variability distribution is indicated by the thin error bars. The
red curve gives the interpolated mean redshift trend, 〈sgr〉(z), and the black dashed line indicates
the sample median color variability of -0.17 (-0.46) in gr (ui). The shaded region indicates where
sgr and sui < 0, i.e., where bluer means brighter. The complex redshift-dependence of color
variability is due to the influence of various emission lines (see discussion in Section 3.5.1 and
3.5.2).

or single epoch colors (e.g., Richards et al. 2001; Wilhite et al. 2005; Wu & Jia 2010;
Meusinger et al. 2011). For instance, the strong drop in 〈sgr〉(z) at z ∼ 0.95 in Figure 3.4
corresponds exactly to the redshift where the Mgii line moves from the g to the r band.
This is illustrated in Figure 3.5, where the left panel shows the Vanden Berk et al. (2001)
composite quasar spectrum from Figure 3.1 with the 5 SDSS bands as they would be
positioned if the quasar was at z = 0.95. The right panel shows the ratio between the
emission line flux (Fline; the composite spectrum minus the estimated continuum flux)
and the estimated continuum flux (Fcont; modeled as a simple power-law) as a function
of redshift. The shift of the Mgii line from the g (green) to the r (yellow) band is marked.
Likewise the dips and bumps in 〈sgr〉(z) at z ∼ 1.85, 2.8 and 3.5 in the left panel of
Figure 3.4 are attributable to the Ciii], Civ and Lyα lines (see Figure 3.1) shifting between
the g and r bands respectively. In the right panel of Figure 3.5 only z . 2.4 is shown
since this is the region where a simple single-power-law approximation of the continuum
is valid. For higher redshift the g and r bands move blue-ward of the Lyα line.

In order to isolate the continuum color variability for comparison with other quantities
such as Lbol/LEdd and MBH (Section 3.6.1), we need to eliminate the source redshift
dependence induced by the emission lines. This is done by ‘emission line correcting’ the
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Figure 3.5: The role of emission lines in the color variability. On the left, the Vanden Berk et al.
(2001) composite SDSS spectrum from Figure 3.1 is shown with the 5 SDSS filter’s response
curves (ugriz from left to right; arbitrarily scaled for visibility) as they would fall if the quasar
was at z = 0.95. In the right panel the expected ratio between the line flux Fline and the continuum
flux Fcont for the same spectrum is shown as a function of redshift with the SDSS g (green) and
r (yellow) bands shown as solid curves and the u (blue), i (orange) and z (red) bands shown
as dashed curves. The redshift at which the Mgii and Ciii] lines move from the g to the r band
(z ∼ 0.95 and z ∼ 1.85 respectively) has been indicated. This illustrates the redshift dependence
of the color variability seen in Figure 3.4 and described in the text. The redshift range in the right
panel has been set equal to the one used in Figure 3.4 to ease comparison.

individual values of sgr and sui by the quantity

〈s〉 − 〈sk〉(z) . (3.7)

Here the first term is the mean color variability of -0.17 (-0.46) in gr (ui) which is our
stand-in for the emission line free color variability (dashed line(s) in Figure 3.4). The
second term is the mean color variability for the sample capturing the mean redshift de-
pendence of the sample as depicted by the red line in Figure 3.4 for each of the individual
quasars, k.

3.5.2 Reproducing the Color Variability Redshift Dependence
with Simple VariabilityModel

We now quantify to which extent a simple spectral variability model can reproduce the
observed redshift trends in 〈sgr〉(z). We do this by integrating a time-varying sequence of
mock spectra created from the Vanden Berk et al. (2001) composite quasar spectrum over
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the SDSS g an r filters as illustrated in the left panel of Figure 3.5. After decomposing the
Vanden Berk et al. (2001) spectrum in a continuum and line component, by subtracting
the estimated power-law continuum from Vanden Berk et al. (2001) illustrated by the
long-dashed line in Figure 3.1, we varied both the continuum and line flux to create a
mock time sequence of spectra for which we obtained g and r light curves and then sgr.
By changing the slope of the continuum (with a pivot-point in the infrared to ensure
sgr < 0) and scaling the line response by a given amount, a sequence of spectra could be
created to simulate a variable quasar. The line response was characterized by the ratio
between the total integrated change in continuum flux and the total change in line flux
over the modeled wavelength range

α =
δFline

δFcont
(3.8)

and could be set free (both lines and continuum can vary freely) or be fixed. Several
setups for creating the sequence of variable spectra were inspected. Among those setups
were fixed line contribution with changing continuum slope and both continuum and
lines changing in various ways. For given α the emission lines are assumed to respond
instantly to the continuum variation; i.e., in this simplistic approach we ignore any of
the existing reverberation time-delay between the continuum and the lines mentioned
in Section 3.2.5. An exploration of this effect to carry out reverberation mapping (e.g.,
Peterson et al. 2004; Kaspi et al. 2005, 2007; Haas et al. 2011; Chelouche & Daniel 2012)
using the broad-band light curves seems promising in light of Figure 3.4, but is beyond
the scope of this study (see Section 3.8.2). Details on the simple spectral variability
models are given in Appendix C on page 149.

The predictions of the spectral variability models are shown in Figure 3.6 together with
the estimated values of sgr, shaded regions, and the mean redshift dependence, 〈sgr〉(z),
from the left panel of Figure 3.4. This Figure shows that 〈sgr〉(z) is best matched if the
(implicitly instant) line response is very sub-linear: α = 0.1 (purple line in Figure 3.6)
is a much better fit than the model with α = 1 (red line in Figure 3.6). It is seen that for
emission lines that vary in lockstep with the continuum by α > 25% the redshift features
in 〈sgr〉(z) are ‘inverted’. Actually, unresponsive line fluxes (i.e., α = 0), lead to the
best match in this model context (black dashed curve in Figure 3.6). Overall, Figure 3.6
tells us that the redshift dependence of the gr color variability is nicely reproduced by a
simple spectral variability model where the continuum of the spectrum is hardened, i.e.,
its power-law slope is changed so brighter makes bluer, and the emission line fluxes in
the two bands are (instantly) unresponsive. As mentioned in Section 3.2.5 we know from
detailed reverberation studies that emission lines do respond (on ∼1/2 year timescales
Kaspi et al. 2005, 2007) for quasars at z ∼ 1. The explanation for α ≈ 0 may be that
the lags in the lines are long enough to introduce a phase offset whereby the line is
sometimes stronger, sometimes weaker than predicted from a tight correlation and in the
net the correlation gets lost. As noted in Appendix C on page 149 the used variability
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Figure 3.6: Comparison of the observed redshift dependence of sgr with our simple spectral
variability models. The mean 〈sgr〉(z) is shown by the solid black line (cf. Figure 3.4). The
rainbow colored curves show the color variability models with fixed ratios α (see Equation (3.8))
between the line variability and continuum variability from a ratio of 0.1 (purple) to a ratio of
α = 1.0 (red). The variability model, where only the continuum varies (α = 0) is shown as the
dashed black line, providing the best match to the observations. Reverberation mapping time-
lags, (τ ∼ 0.3 − 1 year × (1 + z) in quasars, e.g., Kaspi et al. 2007) are not taken into account.

model leads to the same conclusions and predicts the redshift behavior in Figure 3.4
equally well for sui.

Improved modeling, including a broken power-law continuum, explicit treatment of line
reverberation and lack of variability at higher rest wavelengths as shown in Vanden Berk
et al. (2004) and Wilhite et al. (2005), would be fruitful to carry out (see Section 3.8.1
for details), but is beyond the scope of the present work.

3.5.3 Color Variability in ui

The SDSS Stripe 82 data offer the opportunity to extend this analysis beyond the rela-
tively short spectral range covered by g and r, 4770 Å to 6231 Å in the observed frame.
We do so by exploring the color variability in the u vs. i magnitude-magnitude space,
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Figure 3.7: The color variability in gr vs. ui color variability space, after correcting for the line-
induced redshift dependence (as described in Section 3.5.1). The gray shaded region shows where
sλ1λ2 < 0, i.e., where bluer means brighter. The dashed line indicates sgr = sui for reference. The
ui color variability is more pronounced on average than the gr color variability. Only the 3111
objects of the sample with δsgr < 0.04 are shown.

which covers a spectral range from 3543 Å to 7625 Å. We chose to use the i-band instead
of z because of the significantly smaller photometric uncertainties in the i-band. The fit-
ting procedure was exactly analogous to the case of gr color variability as described in
Section 3.4. The right panel of Figure 3.4 shows the estimated ui color variability for
the Stripe 82 quasar sample. Despite the larger scatter in sui at any given redshift we see
similar features such as a distinct redshift dependence in 〈sui〉(z) superimposed on quite
dramatic overall color variability of -0.46. It is clear that the ui color variability is more
pronounced than the gr color variability; 〈sui〉(z) < 〈sgr〉(z). This holds true for the en-
semble properties as well as for individual objects, as illustrated in Figure 3.7, where we
plot the emission line corrected (as described in Section 3.5.1) color variability in gr and
ui. The fact that sui < sgr for almost all objects, implies that there is a relatively stronger
blueing over the ui spectral range than over the smaller gr range. The same conclusion is
reached when accounting for the difference in the wavelength baselines between gr and
ui by normalizing sgr and sui with the corresponding wavelength ratio.
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3.6 Discussion

We now proceed to put the color variability into the context of other physical parameters
that describe the quasar phase and the time dependence of variability, exploring to which
physical processes color variability may be linked.

3.6.1 Color Variability as a Function of Eddington Luminosity
and Black HoleMass

All 9093 spectroscopically confirmed quasars have matches in the quasar catalog pre-
sented in Shen et al. (2011), of which 99.9% (9088) have an estimate of the bolometric
luminosity and 84.1% (7615) have an estimated black hole mass derived from Mgii (see
Shen et al. 2011 for details). This allows us to normalize the bolometric luminosity to
the Eddington luminosity (LEdd; Equation (2.4)) to obtain the Eddington ratio.

If we plot the emission line corrected (as described in Section 3.5.1) gr color variabil-
ity against Lbol/LEdd and MBH, as shown in Figure 3.8, it is evident that there is no
detectable relation between the color variability sgr and the Lbol/LEdd or MBH. This is
also illustrated in Figure 3.9 where a 2D histogram of Lbol/LEdd and MBH, with the bins
color coded according to the median sgr, is shown: across the well sampled range in
Lbol/LEdd and MBH, the median sgr varies by no more than 0.01 as a function of these
two variables about the mean value of -0.17. The 2D histogram has been smoothed by
a 2D gaussian to reflect the uncertainty in luminosity and mass, with the full width at
half maximum of the smoothing kernel (represented by the ellipse in the bottom left of
Figure 3.9) FWHM = [FWHM(MBH),FWHM(Lbol/LEdd)] = [0.35, 0.24] correspond-
ing to [σ(MBH), σ(Lbol/LEdd)] = [0.15 dex, 0.1 dex]. Plots similar to the ones shown
in Figure 3.8 and 3.9 for the ui color variability show no significant Lbol/LEdd or MBH

dependence, either. In Figure 3.8 the full sample, i.e., all masses and redshifts are shown.
Inspecting smaller sub-samples in z (and MBH) space does not change the picture. Hence,
we find no correlation between the color variability in gr (and ui) with Lbol/LEdd or MBH.
More broadly, this seems to imply that the overall state of the quasar (characterized by
Lbol/LEdd and MBH) plays no significant role in determining the color variability.
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Figure 3.8: The emission line corrected gr color variability as a function of Lbol/LEdd (left) and
MBH/M� (right). The black rectangles indicate the mean sgr and its error in each L and MBH

bin. The thin error bars show the width of the sgr distribution similar to in Figure 3.4. No
correlation between the color variability and Lbol/LEdd and MBH/M� is detected. This implies
that the color variability is not a function of black hole mass or the overall (Eddington) accretion
rate (Equation (2.5)).

3.6.2 The Color Variability as a Function of the Light Curve
Variability Characteristics

In Chapter 2 (Schmidt et al. 2010) we characterized the r-band variability of all the 9093
quasars through a structure function with an amplitude parameter A and the light curve
stochasticity, γ. The structure function variability of each individual quasar was modeled
by a simple power-law (Equation (2.8))

SFmod(∆tobs|A, γ) = A
(
∆tobs

1yr

)γ
, (3.9)

with ∆tobs being the time between the observation of two individual photometric epochs
and SFmod =

√
〈(m(t1) − m(t2))2〉. The structure function of a periodically varying object

or one varying like white noise will as mentioned have a flat structure function and hence
a small power-law exponent γ (see Figure 2.5). Thus a large γ indicates a secularly vary-
ing object or an object with a random walk like variability. The latter has been shown
to describe quasar variability well in Kelly et al. (2009) and MacLeod et al. (2011). The
amplitude A corresponds to the average variability on a 1 year timescale. In Chapter 2
(Schmidt et al. 2010) all calculations were done in the observed frame to mimic quasar
identification with no prior information such as redshift. However, the spectroscopic red-
shift of each of the 9093 Stripe 82 quasars is known, and the amplitude can be corrected
for time-dilation. The rest-frame variability amplitude A′ is defined to be A(1 + z)γ such
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Figure 3.9: The color variability sgr as a function of Lbol/LEdd and MBH/M�, as in Figure 3.8,
again showing no significant trends. The color coding indicates the emission line corrected me-
dian gr color variability of the objects in the bin. To reflect the uncertainty in luminosity and mass,
the distribution has been smoothed by a 2D gaussian (represented by the ellipse in the bottom
left corner) with full width at half maximum of FWHM = [FWHM(MBH),FWHM(Lbol/LEdd)] =

[0.35, 0.24] corresponding to [σ(MBH), σ(Lbol/LEdd)] = [0.15 dex, 0.1 dex].

that

SFmod(∆trest|A′, γ) = A′
(
∆trest

1yr

)γ
, (3.10)

where ∆trest is now the difference between observations in the quasar rest-frame. All
quoted A′s are estimated from the robust r-band measurements as described in Chapter 2
(Schmidt et al. 2010). The variability amplitudes are independent of redshift in agree-
ment with Giveon et al. (1999) and the majority of the previous studies listed in their
Table 1.

In the following, however, the structure function parameters A and γ have been obtained
somewhat differently from in Chapter 2 (Schmidt et al. 2010). Rather than fitting the
structure function directly to the magnitude differences we fit a Gaussian Process model
(Rasmussen & Williams 2006) defined by the structure function to the magnitudes di-
rectly. This properly includes all of the correlations between data points. This Gaussian
Process model consists of an n-dimensional Gaussian distribution (for n epochs) with a
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constant mean m and n × n variance matrix V . The elements of this variance matrix are
given by

Vi j ≡ V(|ti − t j|) = V(∆ti j) =
1
2

[
SF2

i j(∞) − SF2
i j(∆ti j)

]
(3.11)

for data points at epochs ti and t j. Here the structure function SFi j is given by

SFi j =

√
〈(m(ti) − m(t j))2〉 . (3.12)

The photometric uncertainty variances are added to the diagonal elements of V . For the
power-law structure function we cut off the power-law at 10 years such that SF(∞) is
finite. As all data span less than 10 years this cut-off does not influence the fit. This
type of fit is similar to the Ornstein-Uhlenbeck process describing quasar variability as
a damped random walk (e.g., Kozłowski et al. 2010; Butler & Bloom 2011; MacLeod
et al. 2011).

We can now look at the emission line corrected sgr and sui as a function of A′ and γ for
all quasars. Figure 3.10 shows that sgr and sui seemingly vary both with A′ and with γ.
However, the limit of little variability (small A′) requires particular care, both because
outliers play a bigger role and because A′ and γ starts to be degenerate. We estimated
the gr color variability of 500 color-selected non-varying F/G stars (see Chapter 2 for
further details) and of the 483 Stripe 82 RR Lyrae stars from Sesar et al. (2010). These
are over-plotted in the top panel of Figure 3.10 as the blue and red points, respectively. As
expected the RR Lyrae have a well defined color variability, whereas the inferred color
variability of the non-varying F/G stars span a much wider range of sgr. Interestingly,
the majority of the non-varying F/G stars have color variability estimates of sgr < 0
like the quasars and the RR Lyrae stars. This seems to be caused by the outliers in
g being relatively larger than the outliers in r, hence affecting the initial guess of the
MCMC in a bluer-brighter direction. In the case of the RR Lyrae the well defined mean
color variability in gr is expected, as RR Lyrae change their effective temperature and
luminosity during their pulsation. By creating a sequence of black body spectra with
temperatures from 6200K to 7200K, estimating the flux received in the g and r bands for
each spectrum, and using that as a simple model for a variable RR Lyrae star, a color
variability of sgr ∼ −0.23 is obtained, in very good agreement with the observations
(Figure 3.10, top panel, red dots). Thus, in general the sgr for the F/G and RR Lyrae stars
look as expected.

A more direct way to estimate the fidelity of color variability estimates at low A′ values
is to recover sgr estimates for objects of known (simulated) color variability. We induce
such simulated variability into the 500 F/G stars by generating data of a certain 1 year
amplitude (A′) from the original F/G star g and r photometry. We do that by generating
new u, g, r and i magnitudes for the individual epochs j via the expression

p j,sim = p j + A′sim
∆MJD j

365.25
, (3.13)



3.6. Discussion 83

Figure 3.10: Correlation between the light curve (temporal variability) structure function and
color variability. The emission line corrected color variability in gr (top) and ui (bottom) are
plotted against A′ (left) and γ (right). A′ indicates the mean level of variability within one year
(rest-frame), and γ, the power law exponent in the structure function, indicates how random (low
γ) or secular (high γ) the light curve variations are. Gray dots (data), black rectangles and error
bars are analogous to Figure 3.8. In the gr plots (top) 500 non-varying F/G stars and the 483 RR
Lyrae from Sesar et al. (2010) are shown on top of the 9093 Stripe 82 quasars (gray dots) as blue
and red points respectively. In the left column the recovered average sgr (sui) for 50 F/G stars is
shown as green filled circles, where synthetic brightness variations with sgr(in) ≡ 0 and different
variability amplitudes A′sim have been created. As described in the text, this illustrates that only
gr (ui) trends for A′ & 0.1 (A′ & 0.25) can and should be trusted. It shows that objects with
large A′, i.e., with large variability amplitudes, have a color variability close(r) to 0, i.e., less
blueing when brightening, than do objects with small A′. The trends in the two right hand plots
are dominated by low A′ objects and is therefore not trustworthy. Figure 3.11 shows a cleaned
version of his figure.
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Figure 3.11: The estimated correlations between mean color variability and structure function
parameters. The four panels show the portion of parameter space in Figure 3.10 that is well pop-
ulated by the sample. The rectangles in the left hand plots correspond to the ones in Figure 3.10.
In the right hand plots the rectangles are only estimated from objects with A′ > 0.1 (0.25). A
clear trend is seen, that the color variability of objects with high variability amplitude are closer
to 0 than objects with small variability amplitude (left panel). This indicates that strongly varying
quasars get less blue as they brighten on average, than do moderate varying quasars. The color
variability is independent of the power law index γ.

which by construction is a data set with s = 0. Here p represents the photometric mea-
surements in a given band, j runs over the individual epochs, and ∆MJD j refers to the
observation time of the jth epoch with respect to the first observation. In this way many
of the aspects of the real data (i.e., the outliers and realistic photometric errors) are in-
cluded in the simulated data. In the two left panels of Figure 3.10 this recovered mean
average (over 50 randomly chosen F/G stars) color variability is shown for a sequence
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of variability amplitudes, A′sim, as large filled green circles. This shows that the recov-
ered gr (ui) color variability has some systematic errors below A′ . 0.1 (A′ . 0.25).
When ignoring quasars with variability amplitudes smaller than 0.1 (0.25) the correla-
tion between sgr and sui and A′ is still present and significant. The trustworthy part of the
relations, 〈sgr〉(A, γ) and 〈sui〉(A, γ), in Figure 3.10 is shown in Figure 3.11. Again the
black rectangles represent the uncertainty on the estimated mean color variability. The
left hand plots correspond directly to Figure 3.10, whereas for 〈sgr〉(γ) and 〈sui〉(γ) the
black rectangles are estimated only from objects with A′ > 0.1 (A′ > 0.25). Figure 3.11
clearly illustrates the trend that objects with larger variability amplitude have a smaller
color variability (meaning less blueing when brightening) than for low A′. On the other
hand the color variability is independent of γ.

As mentioned, Vanden Berk et al. (2004) and Wilhite et al. (2005) showed that there
is a lack of variability at high rest wavelengths. Furthermore, it is known that quasar
variability is anti-correlated with luminosity (e.g., Hook et al. 1994; Cristiani et al. 1996;
Vanden Berk et al. 2004). This might lead to the suspicion that the trend presented in
Figure 3.10 and 3.11 is nothing more than a redshift effect. If this was the case the relation
should be due mainly to low-z objects, since the most variable quasars are supposedly
low luminosity quasars, i.e., necessarily only observed at low z, and should therefore
disappear at high redshift. Estimating the relation between sgr and A′ in various redshift
bins (also split in luminosity) shows that the trend is equally strong for all redshifts and
all luminosities. Hence, the presented relation appears to be of a physical origin and not
merely a redshift effect.

3.6.3 ColorVariability andChanges in theMeanAccretionRate

In this section we carry out a cursory exploration as to the physical origin of the observed
color variability.

3.6.3.1 Color Variability of Individual Quasars vs. the Color Distribution
of Quasar Ensembles

The colors of quasars at a given redshift are known to depend only weakly on their mean
accretion luminosity or accretion rate (Davis et al. 2007), while we find that individual
quasars become considerably bluer when they brighten on year time-scales. This sug-
gests different physical mechanisms creating the accretion luminosity range in ensembles
and the luminosity variations in individual quasars.

In Figure 3.12 the emission line corrected color variability of a sub-sample of the Stripe
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82 quasars is shown in gr and ui-space. This sub-sample represents the ‘average’ quasars,
i.e., the combined sample of the 33rd–66th percentile of masses and the 25th–75th per-
centile of redshifts for the quasar sample. The color variability of each individual quasar
is depicted as a short solid gray line showing s′gr (s′ui) from Equation (3.3) for each
quasar centered on [〈g〉, 〈r〉] ([〈u〉, 〈i〉]) for that particular quasar. Only every 10th ob-
ject of the sub-sample is actually shown to keep the individual gray lines visible. The
length of the lines resemble the change in the photometric g-band (u-band) data of the
quasar. The Figure compares the average s′gr (s′ui) of all the individual quasars in the
sub-sample (red solid line) with a fit to the time-averaged color distribution of the sub-
sample (black solid line) where each data point corresponds to [〈g〉, 〈r〉]k ([〈u〉, 〈i〉]k) with
k counting the quasars. Figure 3.12 reveals that indeed the mean color variability for in-
dividual quasars is much more pronounced than the equivalent quantity for the ensemble,
ssample =

d〈mr〉
d〈mg〉

. For the given sub-sample sgr ∼ −0.18 and sui ∼ −0.48 on average (as
opposed to sgr ∼ −0.17 and sui ∼ −0.46 for the full sample) compared to sgr = −0.01
and sui ∼ −0.08 for the corresponding time-averaged sub-sample color distribution. The
difference is highly significant in both cases, with the ui color variability difference for-
mally larger, because of the broader spectral range. The exact same trends are found for
plots containing the full quasar sample.

This result shows that (temporal) color variability of individual quasars is considerably
stronger than the color range of ensembles of quasars at similar redshifts and with similar
black hole masses, that presumably differ in Lbol/LEdd.

3.6.3.2 Color Variability vs. Accretion DiskModels

Explaining quasar spectral energy distributions, and in particular the UV/optical contin-
uum through steady-state accretion disk models has an established history (e.g., Shakura
& Sunyaev 1973; Bonning et al. 2007; Davis et al. 2007). However, comparing the ob-
served color variability of large samples of quasars with the predicted colors of model
sequences of varying accretion rate has not been done yet. Such a comparison could tell
us whether it is sensible to think of the quasar variability on scales of years as changes in
the mean accretion rate. The superb Stripe 82 data enables us to perform such a compar-
ison, by comparing the observed color and color variability of the Stripe 82 quasars with
sequences of accretion disk models presented in Davis et al. (2007).

Davis et al. (2007) presented three different thin accretion disk models that describe the
spectral slope of quasars as a function of Lbol/LEdd and MBH. We took these three models
and worked out predictions for the observed g and r band for models of a given MBH but
varying accretion rates. The three models presented in Davis et al. (2007) and the color
we adopt for their graphical representation are:
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Figure 3.12: The color variability in individual quasars (red) vs. the color-luminosity relation in
the ensemble of quasars (black), drawing on the sub-sample of 33rd–66th percentile of masses
and the 25th–75th percentile of redshifts. The mass and redshift ranges are shown in each panel.
Each individual quasar is indicated by a short solid gray line corresponding to the fitted and
emission line corrected gr (ui) relation, with a length reflecting the standard deviation of the g
(u) light curve. Only every 10th object of the sub-sample is shown to keep the individual objects
visible. The red solid lines show the average trend within this sub-sample of sgr ∼ −0.18 and sui ∼

−0.48, with the dashed red lines indicating the bootstrapping uncertainty. The black lines show a
MCMC fit to the time-averaged fluxes for the sample, i.e., the fit to (〈g〉, 〈r〉) ± (stdev(g), stdev(r))
for each quasar, corresponding to sgr ∼ −0.01 and sui ∼ −0.08. The dashed black lines show
the 68% confidence interval of the MCMC fit. In other words, the red line is the ensemble mean
color variability while the black line is a fit to the ensemble of time-averaged mean magnitudes.
Hence, it is clear that the average color variability of the individual quasars deviate significantly
from the time averaged sample color variability.

1) A relativistic model of accretion onto a Schwarzschild black hole with a spin pa-
rameter of 0. The emission is based on Non-LTE atmosphere calculations (green).

2) A relativistic model of accretion onto a Schwarzschild black hole with a spin pa-
rameter of 0. The disk is emitting as a black body (red).

3) A Model of accretion onto a spinning black hole (spin parameter of 0.9) with
emission based on Non-LTE atmosphere calculations (orange).

For further details on the models we refer to Davis et al. (2007).

We can compare the models to the data in two respects: (i) do they predict the right
color (which has been done before) and (ii) do they predict the right change of color
with changing accretion rate or luminosity? In Figure 3.13 the quasar from Figure 3.3 is
shown in g-r-(g−r) space (without error ellipses) together with its best fit color variability



88 Chapter 3. Quasar Color Variability

Figure 3.13: Comparison of the observed color variability with sequences of steady-state accre-
tion disk models (Davis et al. 2007) of different accretion rates. This comparison is illustrated
using the quasar SDSS J2037-0112 from Figure 3.3, shown in r vs. g (left) and g − r vs. g
(right) space. The black symbols are the individual photometric measurements. The blue solid
line shows the MCMC fit in gr-space to these measurements and the blue dashed lines indicate
the 68% confidence interval of that fit. The open symbols denote likely outliers (see Figure 3.3).
The Davis et al. (2007) models described in Section 3.6.3.2 are shown in green (model 1), red
(model 2) and orange (model 3) with Lbol/LEdd changing along the lines. Each set of 3 lines de-
notes models for differing black hole masses near the value determined from the Mgii line width
(Shen et al. 2011). From top to bottom each set of lines (models) correspond to 9.1, 9.0 and 8.9
log(Mmodel/M�). For this particular object the match to model 2 is good; see Figure 3.14 for an
ensemble comparison.

(blue solid line). The three accretion disk models are shown as solid lines in bundles of
three, where each of the three lines corresponds to a different black hole mass, as noted
in the bottom right corner of each panel. In this particular case model 2) matches the
data well both in color and in the change of color with changing luminosity. However,
such a good match is not representative for the ensemble. We quantify this for the whole
sample by estimating the ‘goodness’ of the models as:

Dy =

 Nk∑
j

1
δy j


−1 Nk∑

j

y j − y(x) j,model

δy j
(3.14)

∆s = sk − sk,model , (3.15)

where y = (g − r) and x = g. The index j runs over the Nk epochs for each individual
quasar k. The model prediction is the color at a given luminosity (or accretion rate),
for a fixed black hole mass y(x) j,model. The photometric error on the color for the jth
measurement is denoted by δy j. Since the error on the MBH estimates based on Mgii
(Shen et al. 2011) is ∼ 0.4 dex (Vestergaard & Peterson 2006; Rosa et al. 2011), we have
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chosen to show three values for MBH, leading to three model prediction lines, for each
model in Figure 3.13.

The ‘goodness’ parameters Dy and ∆s defined in Equations (3.14) and (3.15) therefore
describe how well the observed values of color and color variability are predicted by the
Davis et al. (2007) models. Dy can be seen as the standard χ2 measure of comparison
between model and data before squaring, i.e., it estimates the difference between the
model color and the observed color averaged over all epochs for each quasar. The ∆s is
simply the difference between model color variability and observed color variability of
each quasar.

Figure 3.14 summarizes the model–data comparison for a subset of quasars with z ∼ 1.5:
the quantities from Equations (3.14) and (3.15). All models predict a color variability
– as a function of changes in the mean accretion rate – that is weaker than observed.
On average model 2) shown in red matches the observed gr color variability the best.
Furthermore, the Dg−r values indicate that the g − r color is on average overestimated
by model 1) and 3), whereas the distribution of model 2) has a mean very close to the
dashed perfect agreement line. Creating similar plots for other mass and redshift ranges
as well as for the results in ui-space show the exact same trends. Thus, of the three Davis
et al. (2007) accretion disk models considered here, model 2) matches the observed color
and the obtained gr and ui color variability the best.

3.7 Conclusion

In this chapter we determined and analyzed the color variability of 9093 spectroscopi-
cally confirmed quasars from SDSS Stripe 82, to understand to which extent and why
quasars get bluer (redder) if they brighten (dim), by fitting linear relations between the
SDSS g and r bands as well as between the u and i bands in magnitude-magnitude space.
The connection of various quasar properties to the color variability were inspected before
the results were compared to models of accretion disks with varying accretion rates from
Davis et al. (2007). Our main results can be summarized as follows:

• We showed that quasar color variability, sλ1λ2 ≡
∂mλ2
∂mλ1

− 1, is best determined by
fitting data in the statistically independent magnitude-magnitude space, rather than
in color-magnitude space as many studies have done. Unless care is taken to ac-
count for the data correlations, the latter approach may lead to spurious or biased
estimates of color variability. The gr and ui color variability for the vast majority
of the 9093 quasars sgr and sui are both < 0, confirming that quasars get bluer
when they get brighter.
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Figure 3.14: Comparison of the observed color variability with steady-state accretion disk mod-
els with changing Lbol/LEdd. Each individual point reflects the data vs. model discrepancy in
the mean color Dg-r (Equation (3.14)) and ∆sgr (Equation (3.15)) for one individual quasar in
the parameter space illustrated in Figure 3.13. The plot shows the sub-sample of 1066 quasars
with 1.4 < z < 1.6. The color of the points correspond to model 1) (green), 2) (red) and 3) (or-
ange) from Davis et al. (2007) converted into g and r magnitudes. The dashed lines show perfect
agreement between model and data in color and color variability, respectively. The projections
of the distributions are shown as histograms along the axes. While the different sets of models
can reproduce (by design) the mean quasar colors (i.e., Dg-r), the observed color variability is
far too strong to be interpreted as changes in accretion rate in a steady-state model context.

• The color variability as measured in gr and ui space exhibits a distinct redshift
dependence, which we could clearly attribute to the effect of emission lines exit-
ing/entering the photometric SDSS bands. From a set of simple models of spectral
quasar color variability, a model in which the line and continuum vary in phase
but with the line amplitude fixed to 10% or less of that of the continuum, is able to
reproduce the observed redshift trends in the gr (and ui) color variability as well
as the observed amount of color variability.

• The fact that we clearly see the impact of the emission line fluxes on the broad
band photometry through the redshift-dependence of the color variability implies
that broad-band reverberation mapping should be possible with the data set at hand.

• Correcting for the emission lines leaves us with a sample mean (continuum) color
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variability of sgr ≡
∂mr
∂mg
− 1 = −0.17 and, analogously, sui = −0.46.

• We found that the emission line corrected color variability is independent of Lbol/LEdd

and MBH in both gr and ui: there is no correlation between the mass and luminosity
of quasars and their color variability.

• The color variability, however, does depend on the light curve variability properties
(described by a power-law structure function as in Chapter 2 and Schmidt et al.
2010). We found that quasars with large variability amplitudes (A′) tend to have
less color variability, as compared to quasars with small variability amplitudes.

• We found that the characteristic color variability on timescales of years of the in-
dividual quasars is larger than the dependence of the typical quasar colors on their
overall accretion state (i.e., Lbol/LEdd). This implies that changes in the overall ac-
cretion rate cannot explain the observed color variability. Ephemeral hot spots may
however be a plausible explanation for the observed color variability. This picture
is confirmed by our comparison of the observed color variability to sequences of
steady-state accretion disk models by Davis et al. (2007) with varying accretion
rates, which also exhibit much less color variability as a function of accretion rate.

Our analysis provides a clear indication that on time-scales of years, quasar variability
does not reflect changes in the mean accretion rate. Some other mechanism must be at
work; presumably some disk instability. What mechanism match the existing data, cer-
tainly warrants further modeling. The current study can also be viewed as an initial foray
into the realm of multi-band, multi-epoch panoptic photometry that the Pan-STARRS
and LSST surveys can bring to full fruition.

3.8 Outlook

As illustrated above, the intrinsic color variability of quasars is an under-exploited ob-
servable of quasars and AGN that enable in-depth characterization of the physics that
govern these systems. Some of the arguments laid out in this chapter are preliminary,
and hence would benefit from further investigation and in-depth studies. We will de-
scribe a couple of these in this short outlook.

3.8.1 Modeling of Spectral Quasar Variability

In Section 3.5.2 we created a simple variability model (outlined in detail in Appendix C
on page 149) to reproduce the observed color variability of the SDSS quasars (see Fig-
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ure 3.6). The model assumed that the quasar spectrum can be model by a simple power-
law in the rest-frame optical, and that the emission lines all vary by the same amount
with zero time-lag, τ, with respect to the continuum variations. Even though this simple
model successfully reproduced the general trend of the observed color variability, the
assumptions make it only a toy model pointing towards future, more realistic modeling.

There are three obvious improvements that needs to be included in any future attempts to
model the color variability. First of all the continuum emission should be modeled as a
broken power-law instead of a single power-law, as this is generally a better approxima-
tion of the non-thermal AGN continuum as illustrated in the composite quasar spectrum
in Figure 3.1 and described in Vanden Berk et al. (2001); Krolik (1999) and Section 3.2.
Secondly, the variability reverberation, or echo, of the emission lines to the continuum
variability is non-zero and more complex, than simply just scaling the total emission line
flux all at once, as was used for the model presented here. The individual emission lines
have been shown to have very different time-lags to the observed continuum variation
(e.g., Peterson et al. 2004; Zu et al. 2011), and the response of the different lines is very
different. While some lines respond by a large fractional increase in their flux, others
respond more moderately or not at all to the continuum variations (Wilhite et al. 2005).
As described in Section 3.2.5, the observed time-lags can be seen as a direct consequence
of the size of the structure, hence, both of these observational facts might simply be a
consequence of the different emission being produced in different regions of the AGN.
Nevertheless, this needs to be included in any modeling. Last but not least, it has been
shown that the variability at redder rest wavelengths tends to disappear (Wilhite et al.
2005; Vanden Berk et al. 2004). With a broken power-law prescription one could imag-
ine to limit the allowed variability on the red part of the power-law, and adjust the redder
part of the emission line flux, such that it reacts to the more modest continuum variation.

The exact details of these improvements to the toy model presented in Section 3.5.2 still
needs to be worked out, but with a more physical model that takes these crucial steps
into account, we will be able to get a clear view of the interplay between the individual
emission lines and the continuum variation, as described by the observed color variability
of the ∼9000 quasars in SDSS Stripe 82.

3.8.2 Photometric ReverberationMapping

In this chapter we also indicated that the observed color variability on time-scales of
months to years is not caused by simple changes in the mean steady state accretion
rate. We showed that the emission line fluxes (their delayed/sub-linear responses) leave
a signature in the photometric data. Correcting for these emission line effects leaves
a strong and nearly constant color variability both seen as a function of Lbol/LEdd and
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MBH. Through statistical photometric precision broad band reverberation mapping these
emission line effects can possible be disentangled from the continuum variation, and
determine the black hole masses and sizes of the BLR of thousands of quasars. The im-
proved modeling of how the actual quasar spectra vary mentioned above, held up against
the observational results will help in this disentanglement. Developing the field of photo-
metric reverberation mapping (already initiated in, e.g., Chelouche & Daniel 2012; Haas
et al. 2011) could first be done as a feasibility study on the SDSS Stripe 82 data used
here, and later be applied to the Pan-STARRS 1 and LSST data sets, enabling black hole
mass estimates of classes of AGN as opposed to individual objects. Obtaining directly
measured black hole masses of thousands of objects across a wide range of redshifts, will
help better understand the proposed scaling relations between MBH and, e.g., luminosity,
velocity dispersion and bulge masses (see Section 1.5). Especially at high redshift these
relations are essentially extrapolations, and detecting any evolution in them will be a key
diagnostic of the growth and fueling of AGN and their host galaxies.

A statistical (and photometric) approach to reverberation mapping of AGN will serve as
a compliment to traditional monitoring campaigns, and direct comparison can be per-
formed by considering predefined regions in the space spanned by redshift, luminosity
and black hole mass.
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3.9 – Epilogue –

In this chapter (Schmidt et al. 2012a) we have shown how the color variability can be
used as a probe of the physics governing the central engine of quasars (and AGN). We
confirm that the optical quasar spectrum is hardened, i.e., becomes bluer, when the quasar
increases its brightness. This is in agreement with several previous studies Giveon et al.
(1999); Trèvese et al. (2001); Trèvese & Vagnetti (2002); Geha et al. (2003); Vanden
Berk et al. (2004); Wilhite et al. (2005); Sakata et al. (2011) though here we eliminate any
doubt about the strength of the results, caused by co-variances between the magnitudes
and colors, as was not done in the majority of these studies.

We also show that the Davis et al. (2007) steady-state accretion disk models have prob-
lems reproducing the relatively strong variations in the quasar colors observed in the
SDSS Stripe 82 data. This agrees well with our main result of this chapter, namely that
the strength of the observed color variability in the ∼9000 quasars in Stripe 82 does not
agree with being solely caused by changes in the mean steady state accretion rate of the
assumed central engine accretion; such a scenario seems on average to produce too small
color changes. Hence, by fairly simple means, we have used the color variability of the
quasars to give concise predictions of what physics can and cannot be responsible for the
observed signal.

If the change in steady state accretion rate is only responsible for part of the observed
variability, where does the rest of the observed signal then stem from? What we are
looking for is a process which disappears, or weakens, when time-averaging the sample
and remains strong when looking at individual objects. We speculate that a stochastic
process in the accretion disk could be responsible for the observed color variability. For
instance a scenario where flares or ephemeral hot spots were to appear in the accretion
disk could create the observed strong trends. However, this needs to be investigated
further.

Another very interesting direction to take the results presented in this chapter, is pho-
tometric reverberation mapping of tens of thousands of quasars. As described in Sec-
tion 3.8.2, if the contribution from the emission lines and the continuum to the observed
color variability can be disentangled, the outstanding data of Stripe 82 (and in the future
Pan-STARRS 1 and LSST) offers the possibility of obtaining direct measurements of the
black hole masses in thousands of systems all at once. This opens a new window to the
understanding of the size and mechanisms that govern the central engine of ensembles of
quasars and AGN.
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Star Formation in

High Redshift Galaxy
Mergers

In this chapter we will present and analyze the spatial distribution of star for-
mation in an extensive sample of galaxy mergers at z > 1. Our sample, drawn
from the 3D-HST survey, is the first merger sample to be systematically selected at
these redshifts and consists of 61 objects, including pre-mergers (close pairs) and
post-mergers (single objects with multiple components and/or tidal features). To-
tal stellar masses and star formation rates are derived from multi-wavelength pho-
tometry. The slitless spectra from 3D-HST provide emission line maps, which are
projected back onto the undispersed continuum images, providing a comprehen-
sive, high-resolution, empirical picture of where star formation happens in galaxy
mergers at the epoch where the cosmic star formation rate density peaked. We
find that detectable star formation can occur in one (or both) galaxy centers, or
in tidal tails. The most common case (69%) is that star formation is largely con-
centrated in a single, compact region, coincident with a peak in rest-frame optical
continuum emission. This suggests that z ∼ 1.5 mergers typically occur between
galaxies with different gas fractions. No correlations between star formation mor-
phology and redshift, total stellar mass, or star formation rate is found. An initial
comparison with a restricted set of cosmological hydrodynamical simulations of
mergers between similarly massive and gas-rich objects, supports this by predict-
ing that star formation usually occurs in both components of the merger, when the
gas fraction of the individual components is the same.

This chapter is based on Schmidt et al. (2012b).

95
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4.1 – Prologue –

In the previous two chapters we have been focusing on AGN and quasars, the extraordi-
nary active phase in the life and evolution of galaxies. As mentioned both in Section 1.5
and Section 2.2 one of the causes for AGN and quasars is thought to be the merging of
galaxies. However, the exact mechanisms that trigger AGN have been quite extensively
debated in the literature (e.g., Sanders et al. 1988; Canalizo & Stockton 2001; Dun-
lop et al. 2003; Georgakakis et al. 2009), and recently several authors have been arguing
against clear evidence that merging is a necessity for igniting AGN (Cisternas et al. 2011;
Schawinski et al. 2011; Kocevski et al. 2012). Irrespective of this debate it is clear that
many AGN and quasars reside in interacting or dynamically perturbed systems. Hence,
understanding how mergers behave and evolve might shed light on the processes that can
ignite AGN.

Furthermore, as described in Chapter 1, both merging of galaxies and the formation of
stars are among the most important mechanisms in galaxy formation and evolution in
general. The results of billions of years of star formation and galaxy evolution, i.e., the
spatial distribution of present-day stars in galaxies, is well known. How it looked at
redshift 1–3, the main epoch of galaxy formation where most quasars are observed and
the galaxy merger rate peaked, is still fairly unknown. Probing this epoch is crucial to get
a better understanding of how the galaxies evolved from the initial density fluctuations
presented in Chapter 1 into the galaxies we observe today. One way to do this is by
mapping the spatial extent and distribution of star formation in high redshift (z > 1)
galaxy mergers.

Gaining knowledge about the spatial distribution of star formation in mergers would help
answering where gravitational interaction triggers the formation of stars. Is it mostly
triggered in the galaxies’ outer regions, in pronounced tidal tails, or are the stars cen-
trally concentrated in the merging components with no clear burst from the interaction?
Closely related to this question is the uncertainty about in what phase of the merging
star formation happens. Does the majority of the star formation triggering happen at first
passage, where the two galaxies are almost undisturbed, or at final coalescence where the
two galaxies merger to one heavily disturbed system? It is not hard to imagine that both
of these issues are governed by the mass ratio of the merger, the gas fraction of the indi-
vidual components, and at what angle we are observing the galaxies at, i.e., the relative
inclination of the merging components and the line of sight to the merger. Simulations
have done a great job in predicting observables of exactly these quantities (e.g., Mihos
& Hernquist 1996; Springel 2000; Cox et al. 2008; Hopkins et al. 2010), but models of
star formation in mergers have not been tested against observations at high redshifts yet;
another reason why such studies are needed.
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However, there are several complicating factors making high redshift star formation stud-
ies very challenging in practice. First of all, the emission line features of galaxy spectra
probing star formation, i.e., Hα (Kennicutt 1983; Gallagher et al. 1984; Kennicutt et al.
1994; Kennicutt 1998a,b), [Oii] (Gallagher et al. 1989; Kennicutt 1998b; Kewley et al.
2004), and [Oiii] (Kennicutt 1992; Teplitz et al. 2000; Hippelein et al. 2003), move into
the near-infrared for redshifts above ∼1, making collecting these data observationally
much more challenging than in the UV and optical, where star formation in the low-
redshift Universe has been extensively studied. Secondly, simple photometric obser-
vations are not (always) enough to get a clear view of spatial extent of star formation in
galaxies. People have been using photometry in various pass-bands to probe the extent of
the light from star forming regions (Pogge & Eskridge 1987; Mirabel et al. 1998; Gavazzi
et al. 2002), but a more direct way of probing star formation is via the spectral signatures
mentioned above. To probe the spatial extent of star formation three-dimensional spec-
troscopy is needed via for example slitless or integral field unit spectroscopy. The SINS
sample (Förster Schreiber et al. 2009) described in Section 4.2.1 is the largest existing
sample of galaxies at the main epoch of galaxy formation with the spatially resolved
near-infrared three-dimensional spectral information needed to probe the extent of star
formation at these redshifts.

But this is unfortunately not enough if the goal is to study the interplay between star
formation and merging of galaxies. Yet another complicating factor is to obtain and
define a sample of mergers at high redshift. Mergers were not a systematically selected
part of the SINS sample, so only ∼10 of the SINS galaxies have perturbed morphologies
and are characterized as merging systems, making the SINS survey unsuitable for such
a study. Hence, no proper statistical samples of galaxy mergers with near-infrared three-
dimensional spectroscopy exist today.

However, these challenges have recently been overcome with the 3D-HST survey and
the slitless spectroscopy capabilities of the Wide Field Camera 3 on the Hubble Space
Telescope. In this chapter we will use the 3D-HST survey (described in Section 4.3)
to define the largest sample of morphologically disturbed galaxies at the main epoch of
galaxy formation with near-infrared three-dimensional spectral information, enabling us
to start answering some of the crucial questions outlined above, regarding the build-up
of galaxies just 3–4 Gyr after the Big Bang.

Galaxy mergers and star formation are the two main reasons galaxies look
the way they do – and now we can study their interplay at the main epoch of
galaxy formation.
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4.2 Star Formation & GalaxyMergers

As described in Chapter 1 two of the key elements of galaxy evolution are the linear
and non-linaer merging of dark matter halos and their accompanying baryons, and the
monolithic collapse and condensation of baryonic gas into stars in these dark matter
potential wells. Hence, getting a handle on both mergers and star formation (regions)
at different redshifts can help clarify and describe the various evolutionary stages of a
galaxy’s life. In this section we will describe the processes leading to the formation
of stars in the bottom of dark matter halo potential wells, and how the interaction and
merging between galaxies can further induce and enhance this star formation. We do
this by partially following Mo et al. (2010), hence, for a detailed and extensive in-depth
treatment of the mechanisms involved in star formation mentioned here, please refer to
their book and the references therein.

Having isolated (for now) a dark matter halo, the gas eventually making up the observable
galaxy, and hence our main source of information, will start condensing while sinking
towards the bottom of the dark matter potential well as first described in (White & Rees
1978; Efstathiou & Silk 1983). In it simplest form a condensation is the process of
becoming more dense and to cool. From a chemical point of view a condensation reaction
is the formation of molecules from smaller reactants. This is exactly what is thought to
happen when gas condensate to form galaxies as well as stars.

The internal energy of the gas reservoirs in galaxies decrease mainly by radiative cool-
ing. The gas is under gravitational influence of the dark matter halo and to some extent
its own self-gravitation and therefore contracts and increases its density as it cools. The
gas mainly looses its energy via bremsstrahlung, where electrons are slowed down by
interaction with atomic nuclei in the gas and hence looses energy and cools. When the
gas has cooled and contracted significantly for actual interactions to happen cooling via
collisional ionization (atoms ionized by colliding electrons), recombination (an electron
is captured by an ionized atom), and collisional excitation (and atom is excited from a
non-ground state and afterwards decays to the ground state) also sets in. Complimen-
tary to the radiative cooling, Compton scattering, where electrons and photons exchange
energy, also contribute.

Allowing the gas to cool radiatively of course assumes that the gas can stream freely from
the cloud, i.e., it is assumed that the galaxy is not opaque at the emitted wavelengths. The
cooling, and thereby the contraction of the gas, is counteracted by the produced radia-
tion that, instead of streaming freely, re-reacts with the gas resulting in photoionization
heating. Hence, the cooling of the gas clouds in the galaxy is a balance between self
gravity of the gas particles, the cooling radiation and the radiation pressure. These are
the same mechanism that were important in the structure formation model described in
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Section 1.3, and the Jeans formalism therefore also applies in this case. Thus, what de-
termines whether the gas cloud continues to collapse or comes to a hold is the size of
the initial perturbation of the particular region in the gas cloud, expressed via the Jeans
length, λJ , from Equation (1.3) on page 6. The mass within a sphere of diameter λJ

is called the Jeans mass, MJ . If the amount of gas within the Jeans sphere is larger
than the Jeans mass, i.e., if Mgas > MJ , the considered gas parcel is not stopped by the
counteracting pressure and will continue to collapse.

Such a basically free-falling contraction of the gas is referred to as the ‘cold mode’ of
gas accretion. This is in contrast to the ‘hot mode’ of gas accretion, where it is not only
the radiation pressure of the gas that counteracts the collapse. In the hot mode, the gas
is heated to the virial temperature by shocks happening during the condensation. Cold
mode accretion usually happens in less massive dark matter halos whereas hot mode
accretion predominantly happens in massive halos.

Eventually, whether the gas is condensing via cold or hot mode accretion, the gas will
reach an equilibrium where the temperature, i.e., the kinetic energy, balances the cooling
mechanisms. Thus, a thermal equilibrium between the density of the gas, ρgas, and the
gas temperature, Tgas, is reached. At this stage instabilities can be obtained if the temper-
ature or the density of the equilibrated system is perturbed, either by thermal instabilities,
i.e., by further internal cooling or heating, or by hydrodynamical instabilities as for in-
stance turbulence where parcels of gas starts moving around within the condensed gas
cloud.

All of the above applies under the assumption that only the energy of the radiating gas
contributes to the balances and equilibria. However, if stars have already formed, stellar
winds or stellar explosions add new terms to the equation. Furthermore, if an AGN has
been ignited at the center of the galaxy (Section 2.2) this radiation will also counteract
further collapse and needs to be included, which complicates the matter even further.

If all the radiative processes are nevertheless overcome by the gravitational contraction
and the radiative and collisional cooling, the most dense regions of the gas cloud will
eventually become so dense that they can start transforming1 into so-called giant molec-
ular clouds. Giant molecular clouds mostly consist of H2, but depending on the en-
richment of the gas, i.e., how many times the gas has been recycled via stellar winds
and explosions, it might also contain, e.g., CO, H2O, and HCN. If the recombination
of hydrogen to form H2 is more efficient than the photodissociation of H2, these clouds
become stable. It is generally accepted that the overall star formation rate of a galaxy is
determined by its ability to form these dense molecular clouds.

1The main cause for this transformation, whether it being thermal instability, gravitational instability or
over-densities induced by galaxy interactions and/or mergers, is still unclear.
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Assuming that the galaxy efficiently forms giant molecular clouds, the next challenge to
overcome, is to create an over-density of gas and molecules within this cloud, so dense
that it starts burning hydrogen in its core, i.e., so dense that a star is born. The efficiency
of forming stars from a giant molecular cloud has been estimated to be εSFR ∼ 0.002, i.e.,
only of the order 0.2% of the available molecular gas is turned into stars (see Mo et al.
2010). This last step of turning the densest regions of the molecular cloud into stars is a
complicated matter and has not yet been fully understood. The reason for the very low
star formation efficiency in molecular clouds is believed to be due to a combination of
magnetic fields, winds from already formed stars dispersing the surrounding molecular
material to prevent further star formation, and/or (maybe most importantly) turbulence
in the molecular cloud itself. Assuming that all of the above conditions are in place and
satisfied new stars are born.

Thus, it is clear, that without large enough gas reservoirs to form giant molecular clouds,
stars will not ignite. Hence, it is not surprising that one of the more well-established
relations, describing the star formation in galaxies, show a tight correlation between
the gas surface density, Σgas, and the star formation rate per surface area, ΣSFR. This
relation is called the Schmidt-Kennicut law (Schmidt 1959; Kennicutt 1998a) and can be
expressed as

ΣSFR = (2.5 ± 0.7) × 10−4
(

Σgas

M� pc−2

)1.4±0.15 M�
yr kpc2 . (4.1)

This empirical relation was obtained assuming that the Hα emission traces star formation,
which we will also assume later in this chapter. As the Schmidt-Kennicut law relates the
global star formation rate to gas surface density of galaxies it cannot tell us much about
the actual star formation in individual clouds within galaxies, but only provide infor-
mation about the formation and evolution of galaxies as a whole. It has actually been
shown that within galaxies a clear relation between Σgas and ΣSFR is lacking. More local-
ized observational empirical relations between star formation rate and atomic as well as
molecular gas have been established (see, e.g., Bigiel et al. (2008), but also Calzetti et al.
(2012) and references herein), enabling a more detailed study of the star formation itself
within single galaxies, rather than the global star formation in populations of galaxies
Equation (4.1) provides.

Apart from the self-regulated star formation described above, another way to obtain the
dense gas and giant molecular clouds needed to ignite stars is by compressing the mate-
rial via external forces. An example of such an event is external interaction from another
galaxy and its halo, or in the more extreme case galaxy merging. The gravitational in-
teraction of close encounters can produce tidal tails as it was first shown in Toomre &
Toomre (1972) and induce density waves in the interacting systems. Such an enhance-
ment in the density and kinetic energy of the gas and molecular clouds can trigger bursts
of star formation by kick-starting the chain of processes outlined above. Not only do the
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galaxy interactions and mergers produce density waves and tidal tails, they also enhance
the angular momentum loss of the gas. This is an important step in funneling gas into
the central regions of galaxies as described in Section 2.2. If the loss is big enough,
this can feed a possible AGN engine. More modest angular momentum loss can lead
to enhanced density and temperature in the inner regions and trigger nuclear star bursts.
Hence, the interaction and merging of galaxies can enhance and induce star formation
and is therefore an important player in the evolution of galaxies. This has been confirmed
both observationally and via simulations as described in the following.

4.2.1 Observing the Star Formation inMergers

The results of ∼10 billion years of galaxy-scale star formation and galaxy evolution are
well known thanks to countless observational efforts, i.e., we know the spatial distribu-
tion of stars in the population of present-day galaxies. This has for example led to the
powerful correlations between star formation and the gas in galaxies mentioned above.
Also the particular cases of star formation in interacting galaxy systems has been studied
in the low-redshift (z < 1) Universe (e.g., Joseph & Wright 1985; Lambas et al. 2003;
Hammer et al. 2005; Barton et al. 2000, 2007; Lin et al. 2007; Bridge et al. 2007; Jogee
et al. 2009; Robaina et al. 2009, 2010). From these studies it has become clear that both
self-regulated star formation and merging must be key ingredients in galaxy formation
and evolution.

Even though galaxy mergers are observed to enhance star formation in galaxies and
trigger some of the most violent starbursts known (e.g., Rieke et al. 1985; Joseph &
Wright 1985; Melnick & Mirabel 1990; Klaas & Elsaesser 1991; Wang et al. 2004), it
appears that the net effect of major mergers in the global star formation history of the
galaxy population has been relatively modest since at least a redshift of 1 (e.g., Robaina
et al. 2009; Jogee et al. 2009). Whether or not it played a more important role at larger
redshift is a present very uncertain. Hence, a crucial step towards fully understanding
how galaxies have evolved is to study the star formation properties in merging systems
at high redshifts, i.e., at z > 1. Some of the questions that needs to be observationally
addressed are: Where did stars form in merging galaxies at higher redshift? Which
phase(s) of the merging process seems to trigger most star formation?

The fact that the interplay between merging and star formation in the general evolution
of galaxies has been investigated in much less detail at higher redshift is mainly due to
the observational challenges. For example, tracing the star formation via Hα at z > 1, as
Kennicutt (1998a) did it when establishing Equation (4.1) in the local Universe, requires
observations in the near-infrared, and these have been far less practical than observations
in optical wavebands. Nevertheless, the epoch from 1 < z < 3 is immensely important
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for understanding the formation and evolution of galaxies, since this is the cosmic time
when the majority of the stars we see in galaxies today were formed (e.g., Hopkins &
Beacom 2006; Karim et al. 2011). Only a few studies have tried to address the impact of
(major) galaxy mergers on the amount and geometry of star formation at z ∼ 1.5 (e.g.,
Swinbank et al. 2004; Law et al. 2007; Förster Schreiber et al. 2009; Wright et al. 2009).

As mentioned above, to get an understanding of the star formation processes it is crucial
to be able to investigate the resolved star formation within individual galaxies, instead
of the global star formation. Hence, it is essential to obtain knowledge about the spa-
tial extent of star formation. This is most efficiently done via three-dimensional (3D)
spectroscopy like integral field unit (IFU) data or slitless spectroscopy, where both the
spectral (to identify emission lines) and the spatial information is available. Until re-
cently, large samples of galaxies, and in particular galaxy mergers, with spatial 3D spec-
troscopic information at high redshift did not exist. The most prominent current sample
of galaxies with 3D spectroscopy at 1 < z < 3 is as mentioned the SINS sample of
Förster Schreiber et al. (2009). They have by now collected near-infrared SINFONI IFU
spectroscopy and imaging of ∼100 star forming galaxies on ESO’s Very Large Telescope.
Using Hα as a star formation tracer, this data enabled them to spatially analyze the gas
kinematics (Shapiro et al. 2008), morphologies and physical properties of these systems.
Mergers were not a systematically selected part of their sample, so only a small fraction
of the SINS galaxies have significantly perturbed morphologies and are characterized as
merging systems. Thus, studying the spatial extent of star formation in mergers at high
redshift in a systematic manner with existing data has so far been extremely difficult, not
to say impossible. The study presented in this chapter will take the first steps in changing
that.

4.2.2 Modeling the Star Formation inMergers

Along with the extensive observational programs, that have addressed the interplay be-
tween star formation and galaxy mergers below redshift 1, theoretical simulations of
mergers with dust prescriptions enabling the study of star formation have been carried
out (e.g., Mihos & Hernquist 1996; Barnes & Hernquist 1996; Springel 2000; Cox 2004;
Cox et al. 2006, 2008; Matteo et al. 2007). The strength of such models is that they can
be followed in ‘real-time’ as galaxies merge and evolve over cosmic time, as opposed to
observations which resemble snapshots of billions of years of evolution.

These simulations have predicted and confirmed several of the ‘modes’ and ‘morpholo-
gies’ of star formation observed, such as nuclear star bursts, enhanced star formation
in tidal features resulting from the gravitational interaction of the merger components,
and regions of star formation triggered by the direct interaction as the galaxies collide.
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Hence, simulations are now advanced enough that they can efficiently reproduce the star
formation observed at z < 1. However, due to the lack of observations at higher redshifts,
it has not been possible to address whether the simulations in the present form are able
to reproduce the observed star formation in mergers here. However, as illustrated below
and in particular in Section 4.7, such comparisons have recently become possible too.

In Section 4.7 we will use the N-body and smoothed-particle hydrodynamics (SPH) cos-
mological merger simulations of T. J. Cox and Patrik Jonsson (Cox et al. 2006, 2008;
Jonsson 2006; Jonsson et al. 2010) as representatives for the status quo of merger sim-
ulations with proper dust prescriptions and hence star formation. These simulations are
based on the GADGET code (Springel et al. 2001) with the addition of a proper dust
prescription from the radiative transfer code SUNRISE (Jonsson 2006).

The simulations calculate the radiative cooling of the gas outlined above, via a simple
function of the local gas density, ρgas, and the internal energy per unit mass, and en-
sures that the empirical Schmidt-Kennicut law from Equation (4.1) is satisfied. One of
the largest uncertainties and challenges in modern simulations of star formation is the
treatment of supernova feedback, i.e., how much radiation is fed back into the system
as stars explode. In the simulations used here, the supernovae feedback is fed back on
a 8 Myr timescale from an available energy reservoir, resulting in an effective change in
temperature and pressure (density) of the surrounding gas. Before this can take effect the
actual stars need to be formed. As the resolution of the simulations only goes down to
particles of ≥ 105M�, a stochastic prescription is used to fragment these particles into
collisionless stars, i.e., if the over-dense regions satisfy the criteria for star formation,
they are turned into stars if a randomly drawn number satisfy some preset star formation
efficiency εSFR.

The ‘raw’ GADGET mergers only trace the massive particles and show how the actual
merging happens, but do not resemble actual observations which traces light and not
mass. Realistic observations are obtained via SUNRISE. SUNRISE traces photons as
they interact with the gas particles and molecules, either via scattering, collisions, ab-
sorption and/or re-emission, until they eventually leave the enshrouding cloud of gas and
dust. Generating enough such photons, matched to the spectral energy distribution of the
source calculated from stellar population synthesis models, and tracing them through the
medium, eventually paints a picture of the system in the direction of the artificial observer
(see Jonsson 2006 for details). Hence, by collecting these photons an observed spectrum
of the object is obtained. In practice this can be done in each individual pixel of the
collecting area, and therefore provides a three-dimensional data-cube of monochromatic
images of the GADGET merger as observed from the ray-traced photons escaping the
system. It is three such data-cubes, with two spatial and one spectroscopic dimension,
we will use in Section 4.7.
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For further information on these simulations and their dust prescription please refer to
Cox (2004); Jonsson (2006); Cox et al. (2006, 2008) and Jonsson et al. (2010).

4.2.3 This Study: Exploiting New Data

The goal of this chapter is to use the new unprecedented data from the 3D-HST survey,
to address the spatial extent and triggering of star formation for a statistical sample of
galaxy mergers at the peak of cosmic star formation. The 3D-HST survey, which we will
present in more detail in Section 4.3, provides large samples of objects with near-infrared
slitless grism spectroscopy making such a study possible for the first time.

The power of the 3D-HST data, i.e., the ability to obtain resolved line emission, enabling
studies of the spatial extent of star formation for large samples of galaxies at z > 1
in different cosmological fields, has already been illustrated in a series of papers. van
Dokkum et al. (2011) construct and study a spectroscopic stellar mass-limited sample of
34 galaxies at 1 < z < 1.5 to quantify the properties of massive galaxies via Hα equiva-
lent widths. Nelson et al. (2012) use the 3D-HST data to determine the spatial extent of
star formation in high-z galaxies with Hα equivalent widths > 100 Å and compare this
with the near-infrared continuum light distribution, and Fumagalli et al. (2012) estimate
the Hα equivalent width of an extensive sample of high redshift systems.

Using the same 3D-HST data we will explore the spatial extent and distribution of star
formation in a ’population snapshot’ of merging systems at z ∼ 1.5. It is the first time an
extensive and more representative statistical sample of morphologically selected mergers
at z ∼ 1.5 with spatially resolved line emission, i.e., spatially resolved star formation, is
available and can be exploited to understand the star formation properties of mergers
at these redshifts in detail. For this sample we make ∼0.2′′ resolution maps of emission
lines (Hα and [Oiii]), which delineate the spatial extent of the (unobscured) star formation
in these mergers and allow us to study their star formation properties in a statistical and
unbiased way. This is done under the assumption that the Hα (for z ∼ 0.7 − 1.5) and
[Oiii] (for z ∼ 1.2 − 2.3) emission of the systems trace the star formation. This has been
shown to be a fair assumption indeed, for both Hα (Kennicutt 1983; Gallagher et al.
1984; Kennicutt et al. 1994; Kennicutt 1998a,b) and [Oiii] (Kennicutt 1992; Teplitz et al.
2000; Hippelein et al. 2003), even though using [Oiii] as a quantitative indicator of star
formation rate (which is not what we will do here) includes several complicating factors.

Furthermore, we will create an initial sample of pseudo-observations from the simulated
data-cubes described in Section 4.2.2, which we can compare to the 3D-HST data. As
mentioned, simulations predict a merger sequence and star formation picture with both
centrally concentrated triggered star-bursts at final coalescence, enhanced star formation
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in tidal features, and black hole growth and accretion. It is predictions like these we hope
to confirm or reject at z > 1 by making direct comparisons with the observational results
from the 3D-HST survey. Furthermore, such comparisons will help exploring which
parameters, e.g., viewing angle, merger phase, gas fraction, mass ratio, etc. play a crucial
role in determining, for example, the distribution of star formation from observations

In Section 4.3 we describe the 3D-HST survey from which the merger sample was se-
lected. We then describe the actual selection of our sample in Section 4.4, before the
procedure used to map the spatial extent of the star formation is described in Section 4.5.
In Section 4.6 we present and discuss the results of the 3D-HST data. In Section 4.7 we
describe how the simulated grism spectra were created and compare them to the 3D-HST
results, before we summarize and conclude in Section 4.8. As in the previous science
chapters we end this chapter in Section 4.9 with a short outlook presenting some of the
improvements and possibilities this study leads to.

4.3 The 3D-HST Spectroscopic Survey Data

To construct the 0.2′′ resolution emission line maps which we will use as a proxy for star
formation maps, we take advantage of the near-infrared 3D spectroscopy survey possi-
bilities that the Wide Field Camera 3 (WFC3) on The Hubble Space Telescope (HST)
has brought. The 3D-HST survey2 (Brammer et al. 2012) is a 248 orbit near-infrared
spectroscopic Hubble treasury program (Cycles 18 and 19, PI van Dokkum). It provides
near-infrared imaging with the F140W filter and grism spectroscopy with the G141 grism
over well-studied extragalactic survey fields (AEGIS, COSMOS, GOODS-S, GOODS-
N, and UKIDSS/UDS). The grism spectroscopy is slitless so both spatial and spectro-
scopic information is available for every single object in the survey fields. The 3D-HST
survey provides rest-frame optical spectra for a sample of ∼7000 galaxies at 1 < z < 3.5
(van Dokkum et al. 2011; Brammer et al. 2012).

As of August 2011 the survey had gathered 68 pointings over the GOODS-S, GOODS-
N, COSMOS and AEGIS fields (van Dokkum et al. 2011). As the work presented here
is limited to pointings with extensive ancillary data, the present study is based on 30
of these 68 pointings. The 3D-HST data was reduced and analyzed using the slitless
spectroscopy data extraction software aXe (Kümmel et al. 2009). The reduction of the
grism spectroscopy include a detection of sources in the F140W image using the Source-
Extractor (Bertin & Arnouts 1996), for which the respective grism spectra can be identi-
fied and extracted.

2http://3dhst.research.yale.edu/

http://3dhst.research.yale.edu/
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4.3.1 The 3D-HST Grism Spectroscopy

The key element of the 3D-HST survey for constructing the emission line maps is the
slitless grism spectroscopy component, where light from the full field-of-view is dis-
persed onto the detector via a grism. The WFC3 G141 grism used in 3D-HST disperses
the light over the wavelength range from 1.05 µm to 1.7 µm with a relatively low spectral
resolution of R ∼ 130. In parallel 3D-HST has also obtained optical grism spectroscopy
with the Advanced Camera for Surveys (ACS), which we will not use for the current
study.

Since the grism spectroscopy is slitless, the WFC3 G141 grism basically produces an
emission line image that is superimposed onto a sequence of dispersed monochromatic
continuum images, and some of the key features of slitless spectroscopy therefore need
to be considered and taken into account. First of all, the width of emission/absorption
lines in the dispersion direction in slitless spectroscopy is not only caused by velocity
broadening (which is negligible for the low resolution 3D-HST spectra) and the intrin-
sic broadening of the wavelength dispersion: as slitless spectroscopy simply produces
shifted monochromatic images, the spatial extent of the dispersed emission line image
reflects the spatial distribution of the line emission both along and perpendicular to the
dispersion direction. It is exactly this feature we will take advantage of when mapping
the spatial extent of star formation as described in Section 4.5. Figure 5 in van Dokkum
et al. (2011) illustrates this ‘morphology-broadening’ of the emission lines.

Another issue with slitless spectroscopy is the wavelength coverage of the spectra. Since
the detector onto which the field-of-view is dispersed has a finite size, ∼10% of the
spectra will fall on the edge of the detector and is therefore cut off. This is quantified
by the value FCOVER, which simply gives the fraction of the G141 wavelength range that
actually falls on the detector when dispersing each object.

Lastly, ‘contamination’ is an important property of slitless spectroscopy. Since the focal
plane is not blocked out with a slit or a mask as is usually done in standard spectroscopy,
all the light of a given object, and all other objects in the observed field, are dispersed
onto the detector. Hence, spectra will often overlap and therefore ‘contaminate’ each
other as explained in Brammer et al. (2012). In 3D-HST catalogs this contamination
is quantified by the value FCONTAM, which is defined as the ratio of the contamination
from the aXe contamination model and the flux measured in the 1D spectra in the G141
range. The aXe software estimates this contamination via modeling of the expected
grism spectra from the F140W source extraction. The contamination model of the grism
spectra is not perfect. For example light from objects outside the field-of-view will be
dispersed into the detector but will not appear in the sextractor catalog of the field which
the contamination model is based on, hence FCONTAM in principal runs from 0 to ∞, but
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for approximately correct models give the fraction of contaminating flux (from 0 to 1) in
the 1D spectrum.

For more information on the data reduction methods, the data products of the 3D-HST
survey and the survey itself please refer to Brammer et al. (2012).

4.4 SelectingMergers

We select our sample of mergers from the pointings in the first (internal) data release of
the 3D-HST survey based on three different inputs: (i) The 3D-HST survey catalog, (ii)
spectral energy distribution (SED) modeling, and most importantly (iii) visual inspection
of near-infrared (F140W) morphologies. The two former selection steps are performed
to minimize the number of objects to visually inspect. We will describe each of these
three steps in the following.

To obtain robust star formation rate estimates via the SED fitting described in Sec-
tion 4.4.2, we require extensive ancillary photometric catalogs. We therefore focus on
the 30 pointings of data available in GOODS-S (6) and COSMOS (24), where the photo-
metric data in the FIREWORKS (Wuyts et al. 2008) and the NEWFIRM medium band
survey (NMBS; Whitaker et al. 2011) catalogs are available, respectively. Hence, this
work is performed on approximately 1/4 of the final 120 pointings 3D-HST data prod-
uct.

4.4.1 Grism Catalog Cuts

The first step in defining our merger sample is to minimize the number of objects to
visually inspect by selecting a well-defined sample of objects based on the data products
of the 3D-HST survey. We ensure that the spectra of the sample cover the majority of
the G141 wavelength range by demanding FCOVER > 0.75. Since we are looking for
merging objects we do not put any constraints on FCONTAM, as spectra of close pairs
will always have a high level of contamination. We will rely on the visual inspection
(Section 4.4.3) to remove objects with heavy contamination from objects, which are not
part of the potentially merging system.

Each individual object in the 3D-HST catalog has been matched to the available ancillary
photometric catalogs. Each 3D-HST detection is assigned a match radius given by

Rmatch =
√

∆R.A.2 + ∆Dec2 , (4.2)
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Table 4.1: Grism (Top) and SED (Bottom) Catalog Cuts

0.75 ≤ FCOVER

0.0 ≤ FCONTAM

Rmatch ≤ 0.3′′

mF140W ≤ 23.5
0.7 ≤ zgrism ≤ 2.3

9.0 ≤ log
(

M∗
[M�]

)
≤ 12.0

-9.5 ≤ log
(

sS FR
[yr−1]

)
1.0 ≤ log

(
S FR

[M�/yr]

)

where

∆R.A. = R.A.grism − R.A.phot (4.3)

∆Dec = Decgrism − Decphot . (4.4)

Hence, Rmatch, corresponds to the distance to the nearest photometric match. Since the
3D-HST catalog is selected on the deep (HF140W ≈ 26.1; Brammer et al. 2012) high-
resolution near-infrared HST F140W images, and the photometric catalogs are ground
based and shallower, not all 3D-HST objects show up in the photometric catalogs. Some
objects are therefore matched to another object’s photometry. We adopt Rmatch ≤ 0.3′′

to avoid contamination by other objects in the photometric catalog. Also, faint objects
have the risk of being assigned to a bright(er) counterpart’s photometry, so we restrict
ourselves to objects with mF140W ≤ 23.5.

Last but not least, the 3D-HST catalogs provide a redshift estimate of the objects based on
the extracted grism spectra. The catalog grism redshifts, zgrism, are obtained by collapsing
the 2D grism spectrum into a 1D spectrum, combining it with available photometry, and
then estimating the redshift with an updated version of the EAZY code (Brammer et al.
2008). As illustrated in Figure 1 of Brammer et al. (2012), the redshift range where Hα
and/or [Oiii] emission fall in the G141 grism wavelength range is 0.7 < z < 2.3. We
are interested in tracing the star formation in the merging systems via either Hα or [Oiii]
emission and therefore use zgrism to select objects in this particular redshift range.

Applying these five initial cuts (listed in the top half of Table 4.1) reduced the full sample
of 21460 detections in the 30 GOODS-S and COSMOS pointings to 1542 objects.



4.4. SelectingMergers 109

4.4.2 Fitting SEDs to Photometry

Besides putting constraints on the 3D-HST catalogs, we also want to make sure that our
sample has a high chance of showing pronounced emission line features in the spectra,
i.e., pronounced star formation, to be mapped. To ensure this, we select objects with large
star formation rates (SFR) and specific SFR (sSFR) as well as stellar masses (M∗) in a
fixed range. We obtain the SFR, sSFR and M∗ of each individual object from modeling
the SED based on the ancillary photometric catalogs with the code MagPhys presented
in da Cunha et al. (2008). We use the 37 NMBS bands (Whitaker et al. 2011) for the
COSMOS objects and the 17 FIREWORKS bands (Wuyts et al. 2008) for the GOODS-
S objects. Both catalogs span from the far UV to MIPS 24 µm. The 3D-HST catalog
redshift zgrism is used as a prior when fitting the ancillary photometric data for each objet.

Despite the fact that the photometry measurements in most cases belong to two or more
blended components, selecting the high-SFR objects based on SED fits to the photometry
is still very effective in selecting objects with strong emission line features.

As shown in the bottom part of Table 4.1 we select objects with SFR > 10M�/yr,
sSFR > 10−9.5yr−1 and 109M� < M∗ < 1012M�. A SFR of 10M�/yr roughly corre-
sponds to FHα ∼ 10−16 erg/s/cm2 at z = 1.5, which corresponds to a (collapsed) emission
line signal-to-noise (S/N) of ∼8 at 1 × 10−16 erg/s/cm2 (Brammer et al. 2012). Hence,
concentrated star formation, i.e., emitted from a modest amount of pixels of this order,
should be well detected in the 3D-HST spectra. On the other hand, if the total emission
line flux FHα is spread over a larger area, the S/N per pixel might become too low for
clear detection (see Section 4.6).

There are 353 of the initial 1542 objects in the 0.7 < z < 2.3 range that satisfy these SED
criteria.

4.4.3 Visual Inspection of Near-InfraredMorphology

After reducing the number of objects to 353, the crucial step in the merger sample se-
lection process, the visual inspection, can be performed. The visual inspection is based
on the near-infrared F140W morphology of the objects from the 3D-HST direct imag-
ing. The near-infrared images show the rest-frame optical emission at the redshifts
of our galaxies. Hence, the near-infrared morphology traces the distribution of the
(intermediate-age) stellar component of the galaxies, and it is therefore different from
the stars being formed now (current star formation), which are traced by the emission
lines. The criteria used to select the mergers from the 353 objects are that (i) they should
show a morphology that differs from the bulk of the ‘normal’ isolated galaxies, and (ii)
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they have to show several distinct components in the continuum image, either multiple
objects within the on average 2 × 2 arcsec F140W thumbnails or pronounced tidal fea-
tures extending from the main continuum emission component. It should be noted, that
because our merger selection is based only on this visual classification, and the low res-
olution of the G141 grism (R ∼ 130) does not offer any kinematic information of the
individual companions, making it impossible to address whether or not the systems are
gravitationally bound, in principle our merger sample consists of potentially merging
systems. We will therefore assume that the majority of objects are indeed bound and are
at the same redshift, and are therefore gravitationally interacting. We do that primarily
based on the relatively small distances involved at z ∼ 1.5 where 0.3′′ corresponds to a
proper distance of approximately 3 kpc.

The visual inspection is not only used to select morphologically disturbed systems. By
inspecting the grism spectrum of each object we can also remove objects that do not show
any obvious emission line features, despite the SFR, mass, and redshift cuts described
above. Without such emission line features, creating a star formation map is impossible
and these objects are therefore discarded.3 Inspecting the grism spectra also ensures that
any strong contamination is due to the different components of the merging system and
not due to interlopers.

From the parent sample of 353 catalog-selected objects, the visual inspection discards
292 objects as either being isolated ‘normal’ galaxies (252/292), having high contamina-
tion not stemming from the merging components (13/292) or having no obvious emission
line features in their spectra (24/292). Hence, our final sample of (potential) mergers
from 6 GOODS-S and 24 COSMOS 3D-HST pointings consists of 61 systems corre-
sponding to ∼17% of the 353 catalog-selected objects.

In Figure 4.1 we have plotted the 61 mergers as large solid points together with the
selection regions from Table 4.1 (gray shaded regions). The small gray dots represent
the 292 objects discarded by the visual classification, i.e., the general galaxy populations
satisfying the selection cuts in Table 4.1. The distributions of the 61 merger’s SFR, sSFR,
zgrism and M∗ are shown as histograms on the axes of the scatter plots. In Figure 4.2
we show the mF140W magnitude distribution of these objects. In both the histograms in
Figure 4.1 and in Figure 4.2 the dotted lines correspond to the 16th and 84th percentiles
of the distributions, whereas the dashed lines show the median values. In Section 4.7
we will use these values to determine the parameter space to sample when simulating
3D-HST grism spectra.

3Assuming that the estimated SFR is correct, these objects are in them selves very interesting, as they
might be highly dust obscured systems suffocating the star formation emission. 7% of the 353 catalog-
selected objects, corresponding to 24 of the 292 visually discarded objects, fell in this category but are
ignored for the present study.
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Figure 4.1: The 61 3D-HST mergers (large points) plotted in the main region of the catalog se-
lection space given in Table 4.1 (gray shaded regions). The small gray points represent the 292
objects discarded by the visual inspection. The histograms attached to the scatter plots show
the distribution of zgrism, M∗, SFR and sSFR for the 61 mergers. The dotted and dashed lines
in the histograms indicate the 16th and 84th percentiles and the median of the distributions, re-
spectively. These values are used to define the parameter space of the simulated grism spectra
described in Section 4.7. The points are color coded according to the morphology of their emis-
sion line maps (SF type) described in Section 4.6 as indicated on the top. No obvious trends
between SF type and SFR, sSFR, redshift or stellar mass are found.
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Figure 4.2: The distribution of mF140W magnitudes for the 61 3D-HST mergers. The dotted lines
indicate the 16th and 84th percentiles of the distribution, whereas the dashed line shows the
distribution median. The 16th and 84th percentile values stated in the upper right corner are
used when defining the parameter space for the simulated grism spectra in Section 4.7.

In the left panel of Figure 4.3 we compare the 3D-HST catalog redshifts to the photomet-
ric FIREWORKS and NMBS redshifts of the merger sample. It is clear that the overall
agreement is fairly good with a few outliers resulting mostly from poor photometric red-
shifts.

4.5 Emission LineMapping

To quantify the extent of (unobscured) star formation in the 61 3D-HST mergers de-
scribed in the previous section, we rely on the spatial information of the Hα and [Oiii]
emission lines the slitless grism spectroscopy described in Section 4.3.1 provides. From
the grism spectra we create emission line maps by subtracting a model of the continuum
light in the grism spectra, such that only the probed emission line feature is remaining.
This can then be mapped back onto the near-infrared continuum light-distribution of the
object. In practice we:
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Figure 4.3: The left panel shows the comparison of the photometric redshift from the FIRE-
WORKS and NMBS catalogs (zphot) with the grism redshifts from fitting the collapsed 3D-HST
spectra (zgrism). The horizontal dashed lines indicate agreement on the 3% level between zgrism

and zphot. The arrows indicate objects falling outside the shown region. The right panel com-
pares the catalog grism redshift (zgrism) with the redshift determined via the emission line map-
ping method described in Section 4.5 (zELmap). These redshifts are obtained from the same data
with the same emission lines, hence, the (minor) disagreement mainly reflects the uncertainty in
estimating λCCmax as described in Section 4.5.2.

1. create a 2D continuum model for the grism spectrum.

2. subtract this continuum model from the 2D grism spectrum itself.

3. cross-correlate the F140W thumbnail with the continuum subtracted spectrum to
determine the emission line map redshift, zELmap.

4. map the (cut-out) continuum subtracted thumbnail corresponding to zELmap back
onto the F140W thumbnail.

Each of these steps are described in details in the following subsections and are illustrated
in Figure 4.4.

4.5.1 ContinuumModeling and Subtraction

The 2D continuum models we subtract from the 3D-HST spectra of the mergers are based
on a third order polynomial fit to a one-dimensional spectrum obtained from a weighted
collapse of the individual 2D spectra. The polynomial fit to the 1D spectrum is turned
back into a 2D continuum model by concatenating rows with the 1D polynomial form
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Figure 4.4: Illustration of the steps performed to obtain the emission line (star formation) maps
as described in Section 4.5. The top panel shows a standard 3D-HST spectrum with a prominent
emission line feature. The 2D continuum model is shown just below that. The third panel shows
the spectrum from the top panel after subtraction of the 2D continuum model. The red square
marks the zELmap emission line map cut-out. The bottom panel illustrates how the emission line
map zELmap cut-out is turned into (red) contours on the near-infrared F140W thumbnail of the
object.

weighted by a ‘slit-profile’, which is obtained from a weighted average of the columns
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blueward and redward of the probed emission line feature in the full 2D spectrum. Thus,
we have a continuum model with the shape of a polynomial in the dispersion direction
scaled in each row to a ‘slit-profile’ of the original spectrum. Subtracting this model from
the 3D-HST spectrum returns a two-dimensional emission line map as illustrated in Fig-
ure 4.4, where all that is left is the emission line feature. This approach is the same as the
one used in Nelson et al. (2012). Often when dealing with slitless spectroscopy and the
3D-HST grism spectra in particular, the goal is to remove contamination in a systematic
manner. However, we relied on the visual inspection to remove badly contaminated ob-
jects, as mergers per definition are contaminated. This allowed contamination sometimes
complicates the continuum subtraction, but in virtually all cases the probed emission line
region is continuum-subtracted to a satisfactory level.

4.5.2 The Emission LineMap Redshift, zELmap

We used a simple cross-correlation between the near-infrared F140W thumbnail contin-
uum image of each object and the corresponding full 2D emission line map in order to
map the emission line map back onto the near-infrared image. In practice we calculate

CC(λ) =

Nwidth∑
i

Nwidth∑
j

fi, j,F140W × fi, j,ELmap (4.5)

for each individual of the first k = N2D − Nwidth columns in the full 2D emission line
map, where N2D is the number of columns in the 2D emission line map and Nwidth is the
width of the F140W thumbnail. The fi, j,F140W and fi, j,ELmap is the flux in the pixel (i, j)
for the F140W thumbnail and 2D emission line map cut-out (indicated by the red box in
Figure 4.4), respectively.

The maximum of the cross-correlation function CC indicates the wavelength, λCCmax,
where there is the largest overlap between the near-infrared light distribution of the object
and the kth cut-out of the full emission line map. The λCCmax corresponds to the kth
column of the 2D emission line map plus Nwidth/2.

In order to transform this wavelength into a redshift, prior knowledge about the probed
emission line feature is needed. This can either be obtained via wavelength ratios if
multiple emission line features are available for the same object, for instance at redshifts
between 1.1 and 1.5 where both the Hα and [Oiii] line fall within the G141 range, or
by invoking the emission line rest wavelength (λEL) using prior knowledge about the
redshift. Since only a small fraction of our objects show multiple significant emission
line features, we use the latter approach to estimate the emission line map redshifts,
zELmap. Using zgrism to identify the emission line feature, the emission line map redshifts
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can be determined as

zELmap =
λCCmax − λEL

λEL
. (4.6)

In the right panel of Figure 4.3 we compare the redshifts determined from the emission
line maps with the grism redshifts. A few outliers (marked by the arrows) are observed
but overall we find an excellent agreement between the two redshifts: the horizontal
dashed lines show redshift agreement on the 3% level. This is expected as zELmap and
zgrism are obtained from the same data with the same emission lines. The fairly modest
scatter reflects the uncertainty in estimating λCCmax.

In Figure 4.5 we show a collection of emission line maps (red contours) from our 3D-
HST merger sample. The individual maps correspond to the region at λCCmax that has
been mapped back onto the near-infrared continuum image as illustrated in Figure 4.4.
The different ‘morphologies’ of these maps will be addressed in Section 4.6. In Ap-
pendix D on page 151 we show the full sample of 3D-HST merger emission line maps.

4.6 Results: The Spatial Extent of Star Formation in
High-z Mergers

As noted in the introduction, star formation and mergers are important parts for under-
standing how high-z galaxies evolved into the galaxies we observe in the low-z Universe.
In the previous sections we have described how we select the mergers from the 3D-HST
data, and subtract the continuum light in the spectra to create the emission line (star for-
mation) maps. In this section we will characterize the morphological type of the spatial
extent of the star formation in the 61 3D-HST mergers. However, we first divide our
sample into two different kinds of mergers: the ‘pre-mergers’ and the ‘post-mergers’. By
pre-mergers we mean objects that show multiple clearly-distinct and pronounced contin-
uum peaks in the near-infrared images, i.e., the optical continuum emission comes from
multiple objects in the process of merging or about to merge. Examples of those are
shown to the left in the two top panels of Figure 4.5 (maps framed in yellow). The post-
mergers, on the other hand, are systems that have undergone merging and now appear
to be dominated by a nuclear feature in the continuum with pronounced tidal features
surrounding it. Examples of some of these systems are shown to the right in the two
top panles in Figure 4.5 (maps framed in red). Dividing the 61 mergers into these two
sub-samples return 33 pre-mergers and 28 post-mergers.

To characterize the location and the spatial extent of the star formation in the 3D-HST
mergers we categorize the star formation maps into the following four morphological
types (SF type):
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Figure 4.5: Examples of Hα and [Oiii] emission line maps (red contours) plotted on the WFC3
F140W thumbnails (gray scale) for a sub-subsample of the 61 3D-HST mergers. The dashed
boxes indicate the mapped region. Each row represents one morphological type of star for-
mation distribution as described in Section 4.7.2. From top to bottom each row show maps of
SF type 1 (‘one component’ maps), SF type 2 (‘both (all) components’ maps), SF type 3 (‘in-
between’ maps), and SF type 4 (‘low S/N’ maps). The left-hand emission line maps of the top
two rows (framed in yellow) are pre-mergers, whereas the right-hand maps (framed in red) are
post-mergers. The full sample of emission line maps is shown in Appendix D on page 151.
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1. One Component: The star formation is significantly more pronounced in one of
the merger components. For the pre-mergers this means one of the multiple objects
and for the post-mergers this refers to the nuclear region or the tidal feature(s).

2. Both (All) Components: The star formation is pronounced/detected in all (or the
majority if more than two) components of the system, it being individual objects
or the nuclear and tidal region.

3. In-between: The mapped star formation appears to be emerging from in-between
the merging components. None of the post-mergers show this feature, so indeed
this means in-between clearly distinguishable objects.

4. Low S/N: The S/N per pixel of the emission line features in the 2D grism spectrum
was too low to produce a convincing emission line map as might be the case for
extended star formation as pointed out in Section 4.4.2.

Each of the four rows of star formation maps in Figure 4.5 show examples of these four
SF types. The results from characterizing the two classes of mergers with these four SF
types are shown in Figure 4.6. The error-bars are obtained by bootstrapping the results,
i.e., by randomly drawing 61 SF types from the results a thousand times and then using
the 2σ width of the resulting SF type distributions as error-bars (hence, no error-bar
on the post-merger SF type 3 in Figure 4.6; none were found). For both the pre- and
post-mergers, the star formation is most prominent in just one of the components (SF
type 1) for roughly 3/4 of the objects. In roughly 1/5 of the objects, star formation was
detected in all components (SF type 2). Hence, the distribution of the spatial extent of
star formation among the objects in the two subsamples is consistent with being the same.
In Table 4.2 we have listed the exact fractions for the total sample of 3D-HST mergers
resulting from the classification of the emission line maps.

That the fraction of objects with more prominent star formation in just one component
(SF type 1) is three times larger than the cases with star formation of type 2 might be
a consequence of dust obscuration. As mentioned, we are only able to probe the unob-
scured star formation, so in cases where one component (or the tidal feature) is much
more dust-obscured than the other, we would end up with star formation maps of type
1. It could also simply be due to different SFRs in the different components. Since the
mergers are selected on morphology and we, as mentioned, do not have any kinematic
information, the fraction of SF type 1 objects might be biased by chance superpositions
of objects on the sky at different redshifts, such that we only see line emission from one
object in the near-infrared. However, the fraction of such contaminants is not expected to
be significant compared to the difference observed in the two SF types due to the small
distances involved at these redshifts.

Hence, assuming that the fraction of systems that look like mergers due to a projection
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Figure 4.6: The morphological types of the star formation distribution (Section 4.6) observed
in the 61 3D-HST mergers split into ‘pre-mergers’ of multiple individual objects (33 objects,
yellow star) and ‘post-mergers’ of systems with a nucleus and tidal features (28 objects, red
squares). The error-bars are obtained via bootstrapping. The two samples have similar star
formation distributions. Only ∼ 20% of the objects show star formation in all merger components
(individual objects or nucleus and tidal feature) whereas more than 60% of the systems only show
star formation in one component.

effect on the sky is insignificant, the results (maybe as expected) indicate that most merg-
ers happen between objects of different gas fractions and/or different SFR. We will show
below that this is backed up by an initial comparison with simulated mergers.

In Figure 4.1 we have color coded the points of the 61 mergers according to the SF types
to look for dependencies between the morphology of the star formation maps and SFR,
sSFR, zgrism, and M∗. As we do not find any significant correlations this suggests that all
star formation morphologies occur at all redshifts irrespective of SFR and mass.

4.7 Simulating 3D-HST Spectra

With the exceptional data of the 3D-HST merger sample presented above, we can for the
first time perform meaningful comparisons with the star formation produced in simulated
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Table 4.2: The Spatial Extent of Star Formation

SF type 3D-HST Simulations
1: One Component 69% (42/61) 28% (83/296)
2: Both (All) Components 21% (13/61) 59% (175/296)
3: In-Between Components 3% (2/61) 0% (0/296)
4: Low S/N per pixel 7% (4/61) 13% (38/296)

See Figure 4.8 for a plot of these values.

mergers at high redshift. Modern high-resolution merger simulations are able to predict
the spatial distribution of star formation in mergers and produce simulated images by
including the emission by young, newly-formed stars and the transfer of starlight through
gas and dust (Cox et al. 2006, 2008; Jonsson et al. 2010). These simulations have shown
various examples of star formation triggered by direct galaxy interaction, star formation
originating in the central cores of the individual merging components, and star formation
appearing in tidal features. In the nearby Universe several examples of such features have
been found, e.g., in the antennae galaxy (Wang et al. 2004). Whether the predictions of
simulations are also representative of the star formation in mergers at z ∼ 1.5, i.e., when
the Universe was only 3–4 Gyr old, has not yet been tested. The simple reason for
this is as mentioned that the data has not been available before now. With 3D-HST, the
sample size is becoming large enough that we can start looking at a population (snapshot)
of mergers instead of individual case studies, and hence comparisons with predictions
from simulations become feasible. In this section we will make an initial illustrative
attempt at comparing state of the art merger simulations (described in Section 4.2.2)
with the observational results from 3D-HST. In the following we describe how we create
simulated WFC3 G141 grism spectra from a small initial set of these high resolution
simulated mergers.

4.7.1 SPH Merger Simulations

To simulate grism spectra, having knowledge about both the spatial and spectral ex-
tent of the object is crucial. As input for our grism simulations we therefore used the
three-dimensional data-cubes from the N-body/SPH mergers from GADGET described
in Section 4.2.2. For our initial comparison of simulations with actual data, we used the
three models listed in Table 4.3. The three simulations are all of mass ratio 1:2 and the
two merging objects in each simulation both have a gas fraction ( fgas) of 40%. The three
mergers happen at three different relative orientations (Θ) of the two merging compo-
nents. Hence, what we are testing here is the effect of orientation on the detected star
formation distribution. We further have a series of time steps or snapshots of each galaxy
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Table 4.3: The Simulated 3D Input Data-Cubes

Name Nt Nview Mass ratio? fgas Θ

Sim. 1 6 3 (Sb) 1:2 (Sc) 0.4:0.4 30◦

Sim. 2 5 3 (Sb) 1:2 (Sc) 0.4:0.4 90◦

Sim. 3 3 3 (Sb) 1:2 (Sc) 0.4:0.4 150◦

? Parenthesis give approximate galaxy type.

(Nt) and a set of viewing angles (Nview) that we can simulate spectra for. Thus, the simu-
lation parameter space (sparsely) sampled here is spanned by time, orientation of the two
mergers and viewing angle. As described below we combine this with a set of parameters
determined by the 3D-HST sample to define the total parameter space to be covered by
the simulated spectra. For further information on the input simulations we refer to Cox
et al. (2006, 2008); Jonsson (2006) and Jonsson et al. (2010).

4.7.2 Simulating 3D-HST grism Spectra

Simulating the grism spectra from the merger simulation output data-cubes presented
above and in Section 4.2.2 is fairly straightforward. The grism spectrum is created by
dividing the data-cube into wavelength slices, i.e., images corresponding to a ‘filter’ of
width ∆λ. Offsetting or dispersing this sequence of images and co-adding the fluxes re-
sults in a grism spectrum. Using this approach we have turned the input data-cubes into
a sequence of simulated WFC3 G141 grism spectra. We use a pixel scale of 0.06 arcsec
and a spectral resolution of ∆λ = 22Å according to the 3D-HST grism spectra charac-
teristics described in Brammer et al. (2012). For the HST PSF we use a Tiny Tim PSF4

and for the system throughput we used the G141 sensitivity curve made available on the
WFC3 website.5

We let the observed sample of mergers from 3D-HST determine the dimensions of the
simulation parameter space. By simply re-scaling each data-cube we simulate grism
spectra corresponding to the 16th and 84th percentiles of the magnitude (mF140W), red-
shift (zgrism) and SFR distributions of the 3D-HST data as indicated by the dashed lines
in the corresponding histograms in Figure 4.1 and 4.2.

To adjust the SFR of the data-cubes before turning them into grism spectra, we assume
that the SFR to Hα-flux conversion follows the empirical relation of Kennicutt et al.

4http://www.stsci.edu/hst/observatory/focus/TinyTim
5http://www.stsci.edu/hst/wfc3/analysis/grism_obs/wfc3-grism-resources.html

http://www.stsci.edu/hst/observatory/focus/TinyTim
http://www.stsci.edu/hst/wfc3/analysis/grism_obs/wfc3-grism-resources.html
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(1994):
SFR

[M�/yr]
=

1
1.26 × 1041

LHα

[erg/s]
. (4.7)

This relation assumes a Salpeter initial mass function. The mF140W is obtained by scal-
ing the flux integrated over the F140W passband independently. Combining the values
from Table 4.3 with these data-determined parameters, we end up with a sample of 336
simulated spectra spanning the parameter space (Nt,Nview,Θ,mF140W, z,SFR).

Added to the ‘raw’ grism spectra are Poisson noise and noise terms corresponding to the
read noise and dark current quoted on the WFC3 website, as well as the background sky
levels presented in Brammer et al. (2012).

In Figure 4.7 we present a sequence of simulated G141 grism spectra. The spectra shown
have various combinations of Nt, Nview, Θ, mF140W, z, and SFR. The thumbnails on the
left are the noise-free F140W images of the objects.

4.7.3 Creating Star FormationMaps of Simulated Spectra

To create the star formation maps for the simulated spectra, we treat them in exactly
the same way as the actual 3D-HST spectra as outlined in Section 4.5. First we visually
inspected the spectra to make sure that an emission line feature was available; for some of
the high redshift, low SFR combinations the emission lines did not show up in the noise-
added spectra. Having eliminated spectra without emission line features, as well as cases
of viewing angle and time step were the two merging objects could not be distinguished,
the sample of 336 simulated spectra was reduced to 296. For these 296 spectra we created
emission line maps by the method described in Section 4.5.

As for the actual 3D-HST data, we characterized the 296 emission line maps of the
simulated spectra according to the four SF types. The results from this classification
is shown in Table 4.2 together with the results for the 3D-HST mergers presented in
Section 4.6. The simulated spectra in Figure 4.7 show examples of both spectra resulting
in star formation maps of type 1 (top three spectra) and type 2 (bottom three spectra).

4.7.4 Comparing the 3D-HST Data with Simulations

We compare the 3D-HST SF types we inferred in Section 4.6 with the simulated SF
types, in order to investigate what effects we are dealing with when trying to characterize
the extent of star formation in the selected sample of 3D-HST mergers. In Figure 4.8
we compare the SF types of the 61 3D-HST mergers (blue circles) with the SF types
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Figure 4.7: Examples of simulated 3D-HST grism spectra. Various combinations of SFR, mF140W,
z, time-step in the merging of the components (Nt), viewing angles (Nview), and initial relative
orientation of the two merging components (Θ) are shown. The first three spectra result in star
formation maps of SF type 1, while the bottom three spectra result in SF type 2 star formation
maps.



124 Chapter 4. Star Formation inMergers

of the 296 simulated mergers (green triangles). The plotted percentages are given in
Table 4.2. The error-bars are again obtained via bootstrapping. The comparison needs
to be done with care, as the sample of simulated mergers from Table 4.3 does not span
the gas fraction and mass ratio dimensions; they are as mentioned fixed at 40% and 1:2,
respectively. Nevertheless, the 3D-HST survey enables comparison of predictions from
simulations with a statistical sample of high-z mergers for the first time. Even though
the spanned simulation space is fairly limited, it seems that the fraction of spectra where
the S/N per pixel is too low to create an actual emission line map is fairly consistent.
Likewise, the fraction of cases where the star formation seems to emerge from in-between
the merging components (SF type 3) is comparable: in fact we did not find any objects
in this category for the simulations. Looking at the two SF type 3 cases we found for
the data (third row of Figure 4.5) could indicate, that the reason we are not seeing star
formation from the components themselves is due to dust-obscuration rather than more
pronounced star formation in-between the components. To find similar trends in the
simulated emission line maps we would need to investigate a range of gas fractions rather
than just the fgas = 40% cases presented here.

The comparison also shows that the simulated spectra on average have almost three times
as many star formation maps where both components have pronounced star formation
(SF type 2), i.e., nearly 2/3 of the simulated maps as compared to ∼1/5 for the 3D-HST
star formation maps. Correspondingly the fraction of single component emission line
maps is significantly lower for the simulations as compared to the observations. This
suggests that the majority of mergers does not happen between galaxies of comparable
gas fraction as the parameter space spanned by our simulations implicitly assume. This
is in good agreement with the results presented in Section 4.6.

4.8 Conclusion

In this chapter (Schmidt et al. 2012b) we have presented the first statistical sample of
mergers with 3D spectroscopy at redshift z ∼ 1.5. The sample consists of 61 morpholog-
ically selected mergers from the Hubble treasury program 3D-HST with total masses and
star formation rates for the systems derived from multi-wavelength photometry. From
the slitless grism spectroscopy we created emission line maps of the rest-frame optical
emission lines Hα and [Oiii] as a proxy for the spatial extent of star formation in the
full sample. This provides a comprehensive empirical picture of where star formation
happens in galaxy mergers at z ∼ 1.5 where the cosmic star formation and merger rate
peaked.

We have also carried out an initial comparison of the 3D-HST mergers with recent SPH
simulations of galaxy mergers that include star formation and dust extinction. These
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Figure 4.8: Comparing the spatial extent of star formation (SF type; Section 4.6) in the 61 3D-
HST mergers (blue circles) with the 296 simulated spectra (green triangles). Each point has been
assigned an error-bar obtained via bootstrapping. Direct comparisons should be done with care
due to the limited size of the parameter space the simulations span. Nevertheless, it is evident
that the simulations show many more cases where star formation is seen in both the merging
components than the 3D-HST data do, indicating that the majority of mergers have different gas
fractions prior to merging.

simulations point towards larger and more extensive simulation programs aimed at span-
ning the full parameter space of the observations, to address whether these support the
predictions of modern merger simulations at high redshift or not (see Section 4.9.4).

The main conclusions of the study are:

• The spatial distribution of star formation in z ∼ 1.5 mergers shows a broad range
of morphologies. It is often concentrated in a single, compact region, but can also
be located in tidal tails or in between the main stellar bodies of the progenitors.

• In the majority (69%) of the early-stage, pre-coalesence mergers the star formation
is significantly more pronounced in just one of the merging components.This is
likely due to different gas fractions of the progenitors. Alternatively, dust content
may differ in quantity or configuration.

• The range of star formation morphologies show no clear correlations with the es-
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timated SFR, sSFR, zgrism, or M∗, suggesting that all star formation morphologies
are presents at all epochs irrespective of star formation rate and mass.

• Simulated mergers among galaxies with similar masses and similar gas fractions
typically predict similarly intense star formation in both merger components, at
odds with the observations: as opposed to 21% of the observed mergers, as many
as 59% of the simulated mergers show detectable star formation in both compo-
nents.This discrepancy lends further support to the notion that z ∼ 1.5 mergers
typically occur between galaxies with different gas fractions.

4.9 Outlook

As mentioned, little is know about the star formation in galaxy mergers at high redshift.
Until recently large 3D spectroscopic samples of galaxy mergers at high redshift (z > 1)
did not exist. The study presented in this chapter opens up for such investigations and
illustrates the possibilities and prospects of the 3D-HST survey presented in Section 4.3.
Using just 1/4 of the full 3D-HST survey, we were for the first time able to quantify the
spatial extent of star formation in the largest sample of mergers at z ∼ 1.5. Furthermore,
we, also for the first time at these redshifts, performed an initial comparison of the obser-
vational results with simulated star forming mergers. Here we will describe some of the
obvious, and maybe not so obvious, next steps the work presented in this chapter opens
up for.

4.9.1 Expanding the Analysis to the Full 3D-HST Survey

The first obvious extension of the work presented in this chapter is expanding the analysis
to all 120 pointings of the 3D-HST survey. The data of the last pointings are being taken
and reduced at the moment of writing, meaning that the final data product of the sur-
vey will be available by autumn 2012. Even though the present study has presented the
largest sample of morphologically selected disturbed pre- and post-merging systems at
the main epoch of galaxy formation to date, the sample size is still fairly modest. Hence,
expanding the sample by a factor of four will without a doubt strengthen the arguments
presented here and provide stronger statistical evidence for the conclusions made. How-
ever, a detailed assessment of the quality of the results, i.e., whether the assumptions
made are fully justified, also needs to be carried out as described in Section 4.9.2 below.

Using the full sample of ∼7000 galaxies with convincing grism redshifts in the final
product of 3D-HST to define a larger merger sample will not only support the work
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presented here, but will also allow a full scale investigation of the merger rate at the
probed redshifts of 1 < z < 3.5. Today, there are no indications of the amount of mergers
at this epoch based on such a large spectroscopic sample. Knowing how the rate of
merges has evolved the last several Gyr is, as mentioned in Section 1.4, a crucial key for
understanding the build-up of the galaxies we observe in the nearby Universe.

4.9.2 IFU Follow-up of Objects

An important step in expanding the analysis to the full 3D-HST survey, is to assess the
quality of the results presented here. As mentioned the merger selection is based on
visual inspection of the near-infrared morphology of the 3D-HST objects (after reducing
sample sizes by down-selection on redshift, star formation rate, quality of the spectra,
etc.) and hence are in principle only merger candidates. The low resolution of 3D-
HST unfortunately does not provide any kinematic information, so to assess whether the
selected (potential) mergers are indeed gravitationally bound systems, higher resolution
spectroscopic follow-up is needed. Also confirming that the fraction of interlopers (i.e.,
chance superpositions of objects on the sky) is indeed insignificant, as was assumed here,
will be an important step in expanding to the full 3D-HST survey.

Obtaining kinematics for the 3D-HST mergers is not only interesting for confirming that
the merger selection function is indeed doing what we designed it to, namely selecting
highly star forming interacting or highly disturbed galactic systems. It will also provide
information about the mass ratios of the selected mergers and provide total masses of
the individual systems. Furthermore, spectroscopic follow-up at higher resolution will
enable us to asses whether the assumption that the emission line features are probing
star formation is indeed true. As described in Section 3.2, AGN also have pronounced
emission lines, and there is therefore the risk that some of the more centrally concen-
trated emission line maps presented in this chapter are probing AGN emission instead
of star formation. However, with the higher resolution data we would be able to obtain
emission line ratios like [Oiii]/Hβ and/or Hα/[Nii], which as described in Section 3.2.3
and illustrated by the BPT diagram in Figure 3.2 on page 66, is capable of distinguishing
between the two possible causes for the strong emission lines.

We have recently submitted a proposal with the aim of doing all of the above (ESO P90:
“Spatially Resolved Kinematics of Mergers at z ∼ 2”; PI K. B. Schmidt). The goal is
to observe the Hα (and [Nii]) emission of 20 out of the 61 3D-HST mergers with the
high resolution near-infrared IFU SINFONI. The candidates have been selected based on
zgrism to make sure that the Hα feature falls in the near-infrared H or K band which are
available on SINFONI.



128 Chapter 4. Star Formation inMergers

4.9.3 Star Formation andMolecular Gas at High Redshift

Another aspect of galaxy formation that the 3D-HST survey enables the exploration of,
is the question of whether the location of star formation coincide with molecular gas
at high redshifts. With ALMA’s call for early science cycle 0 proposals in 2011 and
cycle 1 coming up, it has now become possible to follow up 3D-HST systems at redshifts
z ∼ 2 obtaining molecular gas maps of high enough resolution to directly compare them
with the sub-arcsec resolution of the 3D-HST grism spectroscopy. This will enable us
to answer whether star formation at high redshift is also primarily happening in dense
molecular clouds as has been found to be the case in the Milky Way (Williams et al.
2000; Blitz 1993) and the very local Universe (Blitz et al. 2007).

ALMA will also be able to estimate the total star formation in the mergers. As mentioned
we are only able to probe the unobscured star formation with the Hα and [Oiii] emission
lines. However, in the radio where ALMA operates, the star formation is no longer
obscured by the dust, and hence the light from it can propagate freely. This would help
explain or clarify whether the mergers with the somewhat spurious ‘in-between’ type
3 star formation maps (as well as the rest of the emission line maps. See Figure 4.5)
are caused by asymmetric star formation, tidal features with enhanced star formation,
or dust obscuration in the main components. Such dust-free star formation maps would
also illustrate how well (or poorly) obscured line emission trace the underlying total star
formation.

4.9.4 Comprehensive and Detailed Sampling of the Simulation’s
Parameter Space

The last improvement of the present study we will mention here concerns the compari-
son between the observational results and the simulated grism spectra. The simulation
parameter space used in the present study is spanned by (Nt,Nview,Θ,mF140W, z,SFR).
This is a significant fraction of the parameters that are expected to influence the appear-
ance of the created star formation maps. However, as stressed, the mass ratio of the
mergers as well as the gas fraction of the individual merging components most probably
play a key role in the appearance of the obtained star formation maps as well. Expanding
the simulations’ parameter space with these two quantities will provide a broader more
general picture and enable a true direct comparison between observations and simula-
tions, and a more straight forward assessment of the similarities and/or differences of the
two. Furthermore, improving the resolution of the individual parameters will also give a
more detailed picture (here we only used 2 redshifts, 2 magnitudes, and 2 star formation
rates), but also challenges the bookkeeping and simulation power as the total number of
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simulations quickly grows. For example, sampling each of the 8 parameters just 4 times
each would result in 48 = 65, 536 simulated spectra to analyze (and visually inspect!),
which is unfeasible with the current approach. For such a parameter space automated
classification schemes of the mergers and their star formation maps are needed.
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4.10 – Epilogue –

In this chapter we have presented an initial study of the interplay between star formation
and merging of galaxies at the main epoch of galaxy and star formation, with the goal
of quantifying the spatial extent of star formation in morphologically disturbed systems
at high redshift for the first time. We did this by using the initial 30 pointings of slit-
less grism spectroscopy from the 3D-HST survey. We were able to create high (spatial)
resolution maps of Hα and [Oiii] assumed to trace the star formation in 61 merging sys-
tems at z ∼ 1.5. This showed that in ∼70% of the systems pronounced star formation
was found in only one of the merger components, most often at its center. In roughly
20% of the systems star formation (line emission) was detected in all components. This
result indicates that merging at the main epoch of galaxy formation happens more often
between objects with different gas fractions, such that the fuel for forming stars and the
dust obscuration of the merging systems are significantly different. We searched for cor-
relations between the morphology of the spatial extent of the star formation and redshift,
star formation rate, specific star formation rate, and total stellar mass, but found none.
This suggests that all star formation morphologies occur at all epochs irrespective of star
formation rate and mass.

With the presented merger sample we were able to perform the first comparison between
merger simulations and a statistical sample of mergers with the crucial 3D spectroscopic
information at high redshift. This initial comparison was done spanning the parameter
space of merger inclination, viewing angle, magnitude, star formation rate, and redshift
with three simulations of constant mass ratio and gas fraction. This limits the conclusions
that can be drawn from the comparison, but directly points towards larger efforts also
spanning ranges in mass ratio and gas fraction, as these are also expected to be important
players for the star formation in mergers. We found that for the simulated mergers around
60% of the systems show pronounced star formation in both components, whereas 30%
only showed star formation in one. This supports the conclusion from the data, that
mergers at high redshift does not primarily happen between mergers of the same gas
fractions (and mass ratio) as the simulations implicitly assume. This supports the claimed
importance of mass ratio and gas fraction on these parameters.

These studies were performed using only 1/4 of the full data product of 3D-HST. The
full data product of 3D-HST will be available by the end of 2012 and as described in
Section 4.9 stronger conclusions with a larger sample of mergers is straight forwardly
obtained by extending the present initial study to the full 3D-HST survey.



Chapter5
Summary &
Conclusion

In the three main chapters of this thesis we have studied the intrinsic variability of
quasars, the most powerful active phase in the evolution of galaxies, and the spa-
tial extent of star formation in mergers at z > 1, the possible precursors of AGN
and quasars. In Chapter 2 we showed that large complete and pure samples of
quasars are easily selected via their intrinsic variability by modeling the structure
function of each individual quasar as a power-law. Such a selection will become
very valuable in the near future, where wide time-domain surveys will provide
quasar candidate samples of millions of objects making spectroscopic follow-up
unfeasible. Obtaining large samples of quasars is desirable due to their many ap-
plications in observational cosmology. In particular we showed in Chapter 3 how
samples of quasars with variability information can be used to probe the physics of
the quasar central engine. We argued that the observed color variability of quasars
is too strong to stem solely from changes in the steady state accretion rate of the
central engine. We suggested that a stochastic process, like for instance ephemeral
hot spots in the accretion disk, could solve this discrepancy. In Chapter 4 we pre-
sented the first statistical sample of mergers with three-dimensional spectroscopic
information at z ∼ 1.5. Making maps of the spatial extent of star formation (traced
by emission lines), we showed that more than 2/3 of these systems have pronounced
star formation in only one of the merger components. By comparing with an ini-
tial set of simulated spectra, this illustrates that most mergers at z ∼ 1.5 happen
between objects with different gas content.
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5.1 Contributing to the Galaxy Evolution Puzzle

In this thesis we have exploited two of the most powerful and promising tools at the
frontier of galaxy evolution and formation, namely photometric time-domain observa-
tions and three-dimensional spectroscopy in the form of slitless grism spectroscopy. The
formation and evolution of galaxies is a complicated and very diverse matter, as we be-
lieve this thesis, and in particular Chapter 1 and the introductory sections of each of the
three main science chapters, Chapters 2–4, illustrates. And that is even considering the
fact that these have only mildly scratched the surface of the topic. The areas needed to be
covered and dealt with to get a coherent picture of how galaxies formed and evolved are
countless. From the description of the cosmological framework of the Universe describ-
ing how the first structures formed, over the condensation of gas in dark matter potential
wells and the physical mechanisms leading to the formation of stars, to the description
and investigation of populations of galaxies at various redshifts to analyze snapshots of
the results of billions of years of evolution and star formation, just to mention a few. In
order to address these very different and versatile aspects of astronomy and astrophysics
the ‘galaxy & cosmology community’ needs to come together as a whole, and everyone
must provide their pieces to the puzzle. With the present study of the intrinsic variability
of quasars as a selection tool for finding new quasars and as a probe of the underlying
physics mechanisms, as well as the first study of a statistical sample of galaxy mergers
with three-dimensional spectroscopy at the peak of cosmic star formation rate density
just 3–4 Gyr after the Big Bang, we believe, that we have added significant pieces to the
galaxy evolution puzzle, and that these will help understanding how galaxies form, grow
and evolve.

Below we have distilled and boiled down the conclusions of the three main science chap-
ters. We have summarized the possibilities this work has lead to and recapped what
immediate improvements would strengthen the arguments and results presented, as it
was outlined in the individual chapter outlooks (Sections 2.9, 3.8 and 4.9). We will end
this thesis in Section 5.6 by taking a peek into the immediate future of ‘yours truly’.

5.2 Selecting Quasars with Variability

In Chapter 2 we presented how the well established intrinsic variability of quasars can be
used as an efficient selection tool in up-coming time-domain surveys like Pan-STARRS 1,
LSST and Gaia. As these surveys will provide quasar candidate samples of millions of
objects, spectroscopic follow-up to confirm quasars will become unfeasible. Hence, it
is crucial to develop methods that can provide candidate samples so pure and complete,
that follow-up confirmation is no longer needed. Variability is as illustrated a promising
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candidate for solving this issue. Our focus was mainly on Pan-STARRS 1, as this survey
lacks the quasar UV excess information, which is crucial for the standard color selection
methods applied in, e.g., SDSS. Using the largest sample of spectroscopically confirmed
quasars with extensive time-domain data, consisting of approximately 9000 quasars from
SDSS’s Stripe 82, as a testbed, we developed a new variability selection method.

Representing the time-domain data of each individual object by a power-law structure
function as described in Section 2.3.2, and referred to as the A–γ selection, we obtained
impressive results both with the well sampled Stripe 82 data, ∼60 epochs over ∼8 years,
as well as with mock Pan-STARRS 1 data created by down-sampling the Stripe 82 data
to the Pan-STARRS 1 cadence of approximately 6 epochs over 3 years. In particular we
obtained quasar candidate samples with estimated completeness and purity above 90% in
basically all test cases with a Stripe 82-like time sampling as summarized in Table 2.5 on
page 43. Even in the case where we eliminated the previously so crucial UV excess in-
formation, we achieved completeness and purity above 90%. In the cases of the 10-times
sparser Pan-STARRS 1 sampling, the completeness and purity of our samples drops be-
low 90% in most cases, but in specific regions of color space this variability selection
is still 5-10 times more complete than existing color-selections. This illustrates another
power of variability selection of quasars: its performance is independent of redshift and
photometric (optical) band.

Besides providing promisingly complete and pure quasar samples by very simple means,
the A–γ selection confirmed that the fraction of overlooked quasars in Stripe 82 is very
modest, i.e., less than 10%. Furthermore, the results suggest that also other objects can
be selected convincingly via this simple method, as we were able to cleanly separate 97%
of a sample of confirmed RR Lyrae from the non-varying stellar contaminants and the
quasars.

The work presented in Chapter 2 therefore clearly illustrates the power of variability se-
lection of large samples of quasars (and possibly other variable objects). As described
throughout this thesis, the areas of galaxy evolution where large quasar samples signifi-
cantly contribute are many. Hence, as time-domain data of significant fractions of the full
sky become available these and the coming years, the capabilities of quasar variability as
a confident quasar selection method is very promising and comforting.

5.3 The Color Variability of Quasars

In Chapter 3 we gave a specific example of how large statistical quasar samples, in this
particular case with variability, can provide direct information about the physics gov-
erning quasars and AGN. The central engine of quasars, as described in Section 2.2,
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consists of a supermassive black hole surrounded by an accretion disk. Whether such
a model is the sole power of the observed variability in quasars is still unknown. By
exploiting the unprecedented sample of confirmed quasars with variability information
from SDSS Stripe 82 also used in Chapter 2, we used the color variability to address the
question of whether or not the standard steady state accretion disk model is the underly-
ing mechanism giving rise to the observed color variability in quasars. We parametrized
the color variability by the quantity sλ1λ2 ≡

∂mλ2
∂mλ1
− 1, which we obtained via Metropolis-

Hastings Markov chain Monte Carlo fitting in the magnitude-magnitude space of each of
the ∼9000 quasars in the sample.

We confirm the proposed relation between the magnitude and color of quasars, namely,
that quasars become bluer when they get brighter. We observed a distinct redshift de-
pendence in this relation, which we showed was linked to the spectral emission lines
exiting/entering the photometric SDSS bands as different redshifts. From simple model-
ing it turned out that a continuum and emission line variability in phase, with an emission
line variability amplitude of 10% or less than the continuum amplitude, was able to re-
produce the general form of this redshift dependence. As mentioned in Section 3.8 and
below, this offers and illustrates the possibility of performing photometric reverberation
mapping.

Testing for any dependencies between the quasar color variability and the mass of the
central black hole, the Eddington ratio, the light curve variability amplitude A′ (A at
quasar rest frame), and the structure function power-law exponent γ, only showed a
sλ1λ2–A correlation, indicating that quasars with large variability amplitudes have less
color variability than quasars with modest variability amplitudes. Hence, the observed
color variability is independent of MBH and luminosity of the quasar.

Lastly, we found that the color variability of the individual quasars is on average much
stronger than the time averaged ensemble color variability at fixed mass, which resem-
bles the color variability arising from changes in the accretion rate of the central en-
gine. Hence, the study implies that changes in the steady state accretion of the standard
quasar engine model cannot explain the observed color variability of quasars. This was
confirmed by a comparison of the observations to a set of steady-state accretion disk
models.

We speculate that ephemeral hot spots in the accretion disk could produce variability with
the observed characteristics, and hence, the work presented in Chapter 3 exemplifies how
quasars, and quasar variability in particular, can be used to modify AGN models and add
pieces to the general galaxy evolution puzzle.
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5.4 Star Formation inMergers at z ∼ 1.5

The final science chapter, Chapter 4, was concerned with the spatial extent of star forma-
tion in galaxy mergers, the proposed precursor of AGN and quasars, at the main epoch
of galaxy and star formation at z ∼ 1.5. Using the outstanding data of three-dimensional
slitless grism spectroscopy and near-infrared imaging from the 3D-HST Hubble treasury
program (Section 4.3), we were able to create a statistical sample of galaxy mergers at
the peak of cosmic star formation rate density (z ∼ 1.5) with spatial spectral informa-
tion for the first time. Making 0.2′′ spatially resolved maps of the (unobscured) star
formation, assuming that the star formation is well traced by Hα and [Oiii] emission, we
categorized the spatial extent and distribution of star formation in this sample of mergers.
We found that a diverse morphology of the spatial extent of star formation in mergers at
z > 1 is present. Nevertheless, in more than 2/3 of the merging systems star formation in
just a single merger component was significantly more pronounced than the star forma-
tion in the other(s), indicating that merging at these redshifts happen between objects of
distinctly different gas fractions and/or star formation rates.

Besides star formation rate, gas fraction and mass ratio, the viewing angle and inclination
of the individual merging components are expected to influence the morphology of unob-
scured star formation. To test this, we used recent N-body SPH simulations with proper
radiative transfer and dust prescriptions to create a sample of simulated mock 3D-HST
grism spectra resembling the properties of the 61 3D-HST mergers. The estimated star
formation morphologies of the simulations were significantly different from the observa-
tions: 2/3 of the simulations show star formation in both merger components as opposed
to only 21% of the 3D-HST mergers. These initial and illustrative simulations are done
on mergers with fixed gas fraction and mass ratio, i.e., the significant difference between
them and the 3D-HST mergers supports the conclusion that mergers happen between
objects of distinctly different gas fractions and/or star formation rates.

Even though this study was only done on 1/4 of the full 3D-HST data product and the
performed simulations are illustrative and point towards more comprehensive studies as
pointed out in Section 4.9.4 and noted below, the results of Chapter 4 nicely illustrates
the prospects of high resolution spatial studies of star formation in statistical samples of
mergers at high redshift.

5.5 Outlook

As is the case for most, if not all science, there is always room for improvement, and re-
sults very seldom answer questions without posing and revealing several new interesting
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perspectives on the subject to be investigated. The work presented here is no exception
and also leads to new interesting studies and leaves room for improvement, confirmation
and strengthening of the key results and arguments presented.

The variability selection of quasars is an area of research which is heavily investigated
in these years, and therefore evolves from one day to the other. Following the results
presented in Chapter 2 (Schmidt et al. 2010) a series of papers (MacLeod et al. 2010,
2011; Butler & Bloom 2011; Palanque-Delabrouille et al. 2011; Kim et al. 2011) also
presented quasar selection methods based on variability, some of which pointed out lim-
itations, such as computational speed and limited contaminants in the testing phase, of
the A–γ selection. This very well illustrates the nature of research, namely, that we stand
on each others shoulders to reach higher, as it was already realized in the early days by
Newton through Chartres’ quote on page 2. Hence, combining all efforts and quasar
selection methods should be a main goal for the quasar selection in upcoming surveys.
As mentioned in Section 2.9.1, a probabilistic combination might be a way to include all
the knowledge gained over the years on how to select quasars in the most efficient and
complete way, and thereby exploit all the available photometric as well as time-domain
observations.

Besides improving the important selection of quasar samples, the intrinsic variability
also offers the possibility of finding even rarer and more glorified objects such as grav-
itationally lensed quasars. Since quasars are in most cases point sources (especially at
higher redshift) using their variability signature can be used to search for unresolved
small-separation quasar lenses as described in Section 2.9.2.

Exploiting the variability of quasars in more direct ways to gain further knowledge about
AGN and quasars is well illustrated by the results presented in Chapter 3. But also
here there is room for improvement. Especially the modeling of the spectral quasar
variability’s redshift dependence, described in Section 3.5.2, is not giving full credit to
the many previous studies of the interplay between the variability of emission lines and
the spectral continuum’s variations. Despite the presented model’s illustrative purpose
and capability to actually reproduce the observed redshift trend by very simple means,
the model needs to be improved upon. One of the things the model does not take properly
into account is the reverberation, i.e., the delay or echo, of the emission line variations to
the continuum variations. For example we assumed an instant response, which is know to
be pretty far from the truth. Nevertheless, the fact that we actually saw the clear imprint
of emission lines on the observed color variability from the broad band photometry of
SDSS, illustrates the prospects of performing photometric reverberation mapping of large
samples of quasars from the very local Universe all the way out to redshift 7. A couple of
recent studies have already engaged in developing such mechanisms (Haas et al. 2011;
Chelouche & Daniel 2012), and more will most certainly come, as direct estimates of the
size and mass of the components of the AGN engine in tens of thousands of objects over
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a wide redshift range will be a huge improvement to the present knowledge gained from
just a few tens of AGN at very low redshift.

In a similar way, though not by as many factors, the sample size of galaxy mergers at
z ∼ 1.5 with three-dimensional spectroscopic information was improved by the study
presented in Chapter 4. As mentioned the sample was established using only 1/4 of
the 3D-HST survey, which offers the possibility of expanding our study to the full scale
3D-HST data product, which will become available by the end of 2012.

Sample size is however not always the key to more insight. Also thorough and detailed
case studies are needed. The 3D-HST mergers serve as obvious follow-up candidates
for high resolution IFU spectroscopy. First of all it will provide information about the
merging nature of the system, that the relatively low resolution grism spectroscopy of
3D-HST cannot provide, but it will also enable an assessment of the possible AGN con-
tribution to the emission lines via emission line ratios (see Section 3.2.3). Follow-up in
radio of these systems would also be extremely valuable. It would be very interesting
to see whether the unobscured star formation actually represents and traces the total star
formation, and whether the observed star formation morphologies are a consequence of
dust obscuration or different star formation rates. Radio follow-up would also be able to
quantify, whether or not star formation is coincident with dense molecular clouds at high
redshift, as has been found to be the case in the nearby Universe.

Last but not least, the comparison between the 3D-HST mergers and the simulated mock
3D-HST grism spectra is by no means spanning the full parameter space expected to
influence the observed star formation maps. As mentioned, the SPH merger simulations
used in Section 4.7 all have a mass ratio of 1:2 and are between galaxies all having a
gas fraction of 40%. As both gas fraction and mass ratio are expected to influence the
appearance of star formation, future comparisons with simulations should sample these
parameters as well.

Most of what is mentioned above describes studies that can be initiated immediately,
assuming that proposals get excepted, access to the different data repositories can be
established, and the time investment needed is available. But also the (near) future is very
bright for both galaxy evolution studies in general, as well as quasar variability and high-
redshift mergers in particular. With Pan-STARRS 1 (Kaiser et al. 2002) fully operational
as of mid 2010 continuously surveying 3/4 of the sky, LSST (Ivezic et al. 2008; LSST
Collaboration 2009) steadily moving along in the planning process, Gaia (Perryman et al.
2001) hopefully being launched next year, WFC3 and its slitless grism spectroscopy
capabilities fully operational on HST (e.g., Brammer et al. 2012), proposal submission
for ALMA1 cycle 1 coming up, multi-object near-infrared IFUs and spectrographs like
KMOS (commissioning in August 2012; Sharples et al. 2004) and MOSFIRE (first light

1http://www.eso.org/sci/facilities/alma/index.html

http://www.eso.org/sci/facilities/alma/index.html
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in April 2012; McLean et al. 2010), soon available, and of course JWST (e.g., Gardner
et al. 2006) in the more distant future, galaxy formation and evolution studies are entering
a very bright era. Many of the possibilities these new instruments, missions and surveys
offer will greatly benefit the areas of research presented in this thesis, but also serve
the greater good of the community. Mentioning all the possibilities these observational
capabilities offer would be far too lengthy for this chapter, so instead we refer to the
individual papers and websites, and just mention a couple of very interesting projects
(from the point of view of this thesis).

First and foremost, and almost needless to say, the 24 high resolution near-infrared IFUs
and the 7 arcmin diameter field-of-view on KMOS make large follow-up programs of
interesting 3D-HST objects, mergers as well as non-mergers, much more efficient than
observing one object at the time with existing instruments. This enables statistical stud-
ies of star formation histories, merger rates, environmental effects on galaxy evolution,
etc. MOSFIRE will aid similar studies with the only difference that spatial spectroscopic
information of individual objects will not be available. In the following section we will
describe a specific example of the capabilities of MOSFIRE combined with WFC3 se-
lected samples of very high redshift galaxies.

We have mentioned that the quasar redshift record at the moment is at 7 (Mortlock et al.
2011b), but as explained in, e.g., Schleicher et al. (2008), ALMA (as well as JWST) will
help pushing the detection of quasars towards even higher redshift. This is particularly
interesting, since it helps determining the ionization-state of the very early Universe and
can put even tighter constraints on the models of AGN engines and the formation of the
first galaxies and supermassive black holes and their seeds. For instance if we find a
quasar at z = 10 we need to figure out how to create ∼ 108M� supermassive black holes
residing in gas-rich galaxies and ignite the quasar in less than 0.5 Gyr after Big Bang!

These are obviously just a few of the advances in studies of galaxies and their evolution
the future will bring. In the following we will end this thesis by looking into the very
near future...

5.6 The Immediate Future of ‘Yours Truly’

In the very near future ‘yours truly’ will move to the University of California Santa
Barbara (UCSB) to be part of Prof. Dr. Tommaso Treu’s group. The planned work for
this employment is two-fold, but will, as the majority of this thesis, concern the formation
and evolution of galaxies at high redshift.

The primary science goal will be to spectroscopically follow-up redshift 8 galaxy candi-
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dates selected from the “Brightest of Reionizing Galaxies” (BoRG) survey (Trenti et al.
2011). When the BoRG survey is complete, it will consist of ∼310 arcmin of HST WFC3
multi-band (F606W, F098M, F125W and F160W corresponding to V, Y, J, and H) deep
imaging with a F125W 5σ limiting AB magnitude of ∼26.8 (Bradley et al. 2012). The
main purpose of the survey is to find the brightest galaxies at the epoch of reionization
in the early Universe, i.e., at z & 7.5, to gain insight in the reionization epoch and ex-
plore the properties of galaxy and star formation at these early epochs. With the four
visual/near-infrared bands and the dropout technique, where objects due to their spec-
tral shape fall below the detection threshold in a certain band at a particular redshift and
therefore ‘disappear’ in the observations, a list of potential bright galaxies at z & 7.5
has been compiled. To confirm that these dropouts are indeed some of the first star-
bursting galaxies in the Universe, spectroscopic follow-up is needed. The BoRG z ∼ 8
candidates seem to cluster and form over-densities (Trenti et al. 2012) and are therefore
perfect targets for the new near-infrared multi-object spectrograph MOSFIRE on Keck,
mentioned above. We have recently submitted the Keck proposal “Probing the physics
of reionization with MOSFIRE spectroscopy of z ∼ 8 galaxy over-densities” (PI T. Treu)
to follow-up 15 of the most promising BoRG candidates.

The secondary science goal will be to exploit the scientific environment of UCSB in a
continued exploration of some of the results presented in this thesis. Prof. Treu’s group
has extended experience in gravitational lens searches, hence, the already initiated search
for the first variability selected quasar lenses described in Section 2.9.2, will without
doubt benefit greatly from this new scientific environment. Investigating the possibility
of performing photometric reverberation mapping (Section 3.8.2) will also thrive in Prof.
Treu’s group, where new interesting studies of spectroscopic reverberation mapping in
AGN have been carried out (Pancoast et al. 2011; Brewer et al. 2011). Last but not least,
the possible extension of the 3D-HST work described in Chapter 4 will unquestionably
take advantage of the near-infrared-spectroscopy expertise and the knowledge about star
formation in the early Universe gathered at UCSB.

Hence, it is not only the near future of galaxy formation and evolution stud-
ies that looks really bright!





AppendixA
Individual Structure
Function Parameter
Inference byMCMC

We use a simple Markov chain Monte Carlo (MCMC) approach (e.g., Metropolis et al.
1953; Hastings 1970; Press et al. 1992; Hansen 2004) to infer the parameters A and
γ (Equation (2.8)) and their confidence regions. Our MCMC procedure takes as input
a catalog of magnitudes, photometric errors and observed frame MJDs, converted to
N(N − 1)/2 pairs of observations (Equation (2.6)). We then initialize it as follows:

• Pick a starting point for A and γ: we chose 0.1 for both

• Define an initial Gaussian proposal distribution (PD)

• Set an initial temperature β for the chain

The PD width sets the mobility of the Markov chain. Based on several tests we set the
initial PD width to 0.05 in both the log A and γ directions. During a ‘burn-in’ period at
the start of sampling, we draw samples from a modified posterior probability distribution
function (PDF) for the parameters, given by the product of the prior PDF, and the like-
lihood raised to the power of λ. This parameter is an inverse temperature; we start from
λ0 = 1

β0
= 10−3. The λ parameter is then increased geometrically to unity as 500 sam-

ples are drawn, at which point burn-in is declared over, the inverse temperature is fixed
at λ = 1, and the subsequent samples are stored and used to compute various statistics.
For the post burn-in sampling, we use an updated Gaussian proposal distribution, whose
widths are set to 10% of the standard deviations of the parameter (log A and γ) values
sampled during burn-in.
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At each point in parameter space proposed, we calculate the (un-normalized) log poste-
rior probability distribution of the step, which we define as

log P = log P(A) + log P(γ) − λ
χ2

2
. (A.1)

Here, χ2 is related to the logarithm of the likelihood defined in Equation (2.9)

χ2 = −2 logL =

∑
i j

log(2πV2
eff,i j) +

∑
i j

∆m2
i j

V2
eff,i j

 , (A.2)

with the effective variability defined as in Equation (2.11):

V2
eff,i j = Vmod(A, γ|∆ti j)2 + δ∆m2

i j =
(
A∆tγi j

)2
+ δ∆m2

i j . (A.3)

The sums in Equation (A.2) are over the data pairs derived from the light curve of the
given object, and δ∆mi, j is the photometric error on the i jth magnitude pair. In Equa-
tion (A.1) log P(A) and log P(γ) represent the (log) prior PDFs for the parameters A and
γ, which we chose to be uninformative. We assigned the following functional forms:

P(A) ∝
1
A

(A.4)

P(γ) ∝
1

1 + γ2 . (A.5)

If γ is negative or A lies outside the range [0, 1], the log prior density for that parameter
is set to −1032, lowering the overall posterior probability for that particular iteration step
to effectively zero. In this way we enforce our assumption that the power law exponent
is positive and that the average variability on a 1 year timescale is less than 1 magnitude
(as found by, e.g., Vanden Berk et al. 2004; Bauer et al. 2009b). Samples are accepted or
rejected via the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970).
Care is taken to make the comparison of the log posterior values at constant inverse
temperature.

For our final A and γ values, we choose to take the position of the global peak of the
likelihood, an approximation of the ‘best-fit’ point. We approximate this by keeping
track of the value of the likelihood as we sample, and then using the sample with the
highest value as our estimate. In practice the posterior PDF is not dominated by the
prior, such that the peaks of the likelihood and the posterior PDF are usually quite close
together.

The uncertainties on the parameters are estimated by considering the 16th and 84th per-
centiles of the one-dimensional marginalized distributions. In the case of a (symmetric)
Gaussian distribution, this would correspond to the 1σ error bar.

To confirm our choice of initial conditions, cooling schedule and PD evolution as sen-
sible, we tested our sampler on simulated light curves for both sine wave and Gaussian
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white noise sources, and recovered the correct parameters (zero γ and analytically calcu-
lated A).





AppendixB
Fitting in Col.-Mag.
andMag.-Mag. Space

The photometric errors of the (g − r) color are correlated with the photometric errors of
the g and r band. Thus, when estimating the color variability of objects in general, and
quasars in particular, as is done in Chapter 3, care has to be taken that the co-variances
of the errors are either removed, taken into account, or avoided. In Chapter 3 we avoided
the co-variances by estimating the color relation in magnitude-magnitude space and then
‘translated’ that into a color variability in color-magnitude space as described in the text.
In the following we illustrate the problems one can run into, if the color variability is
instead estimated directly in color-magnitude space.

The correlated errors between for instance the g band and the (g − r) color are easily
illustrated, by simply drawing a set of random ‘observations’ from a gaussian distribu-
tion with a standard deviation corresponding to the approximate photometric error at the
given magnitude. In the left panel of Figure B.1 such a sequence of simulated data is
shown. The data have been drawn from 2D gaussian distributions in g and r with mean
magnitudes of approximately 18, 19, 20, 21, and 22 and estimated errors of 0.02, 0.025,
0.04, 0.06, and 0.15 respectively. The solid line shows the g = r relation for reference.
The color trend (deviation of the data from the g = r line) has been put in to mimic
the average color trend of quasars at the given magnitudes. Plotting these simulated ob-
servations in color-magnitude space, as done in the right panel of Figure B.1, clearly
illustrates the error correlations. The stripy pattern of the color-magnitude diagram is
not a consequence of a color change in the object, but a consequence of the fact that the
errors in (g − r) are correlated with the errors in g; this is the reason that the ‘length’ (or
artificial color change) of each set of points grows for fainter magnitudes.

In Figure B.2 we show how this effect looks when dealing with real data. Figure B.2
shows the SDSS Stripe 82 photometric data of the quasars SDSS J0320-0051 (left) and
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Figure B.1: Simulated data illustrating the effect of error co-variances between magnitude and
color, which has not been accounted for in a number of previous analyses. The left panel shows 5
‘clouds’ of simulated observations in r-g space drawn from 2D gaussian distributions at g = 18,
19, 20, 21 and 22 with ‘photometric’ errors of 0.02, 0.025, 0.04, 0.06 and 0.15 respectively. In
the right panel these data are plotted in the g-(g − r) color-magnitude space. The stripy pattern
seen here is due to the correlation between the errors on the g magnitude and the (g−r) color and
not a change in color. Our test showed that this effect need to be accounted for when analyzing
data of SDSS Stripe 82 quality, as is also illustrated in Figure B.2.

SDSS J2141-0050 (right) in magnitude-magnitude, magnitude-color and color-magnitude
space. The top panel corresponds to the left panel of Figure B.1. The stripy nature of
the data when turned into colors is clearly visible in the center and bottom panels of Fig-
ure B.2. The data have been color coded according to the observation time. In each panel
one solid and two dashed lines are shown. The solid line has been fitted to the shown
data, whereas the dashed lines are ‘translations’ of the fits from the other two spaces. It
is clear that in the case of the superb data set of SDSS Stripe 82 the difference between
fitting in r-g (top), g-(g− r) (center) and (g− r)-g (bottom) space is negligible. However,
if one imagines that only data from year 6 and 7 were available for SDSS J2141-0050
(right panel) and the color variability was estimated based on either g-(g− r) or (g− r)-g,
it is clear that the fit would deviate significantly from the ‘real’ color relation because of
the co-variant errors.

If this effect is not taken into account or avoided when estimating color variability, and
the error co-variance ‘color change’ is interpreted as an actual color change of the quasar,
there is a high probability that the results and conclusions will be erroneous. As men-
tioned in the text color variability has been estimated in color-magnitude space in the
past with only a few exceptions. Hence, there might be cases in the literature where this
effect has not been taken properly into account and therefore might affect the validity of
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Figure B.2: Comparison between fitting in magnitude-magnitude, magnitude-color and color-
magnitude space. The objects SDSS J0320-0051 (left) and SDSS J2141-0050 (right) from the
SDSS Stripe 82 sample are shown in the r-g (top), g-(g−r) (center) and (g−r)-g (bottom) spaces.
The observations are color coded according to the observation year. Each plot has one solid and
two dashed lines. The solid line corresponds to the fit (performed as described in Section 3.4)
done in the given space, whereas the dashed lines are ‘translations’ from the two other spaces
into the present one. The red line has been fit in r-g space (top), the black line in g-(g−r) (center)
and the blue line in (g − r)-g (bottom). The stripy-ness in the bottom two panels comes mostly
from the correlated errors between g and (g − r) as illustrated in Figure B.1.
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the results. It is hard to quantify how much this effect will affect the results and conclu-
sions made so far in the color variability literature, and we have therefore not made any
attempts at quantifying it, but will just note that one needs to take this error correlation
into account or, as it is done here, estimate the color variability in magnitude-magnitude
or flux-flux space to avoid it.



AppendixC
Simplistic Spectral
VariabilityModel

In the following we describe the simplistic model for the spectral (color) variability of
the quasars used in Section 3.5.2. The simple spectral variability model is an attempt
to reproduce the observed redshift trends in the mean color variability, 〈sgr/ui〉(z). The
model is based on the composite SDSS spectrum from Vanden Berk et al. (2001), FVdB.
We decomposed the composite spectrum in a line component, Fline, and a continuum
component, Fcont, such that

FVdB = Fline + Fcont . (C.1)

The underlying continuum of the composite spectrum is well modeled (for 1150Å .
λrest . 4500Å) by a simple power-law with a power-law index of βλ = −1.528. By fixing
the power-law continuum model with a pivot point in the IR (ensuring that sgr/ui < 0)
we simulate the variable continuum by a (time)sequence of power-laws with different βλ.
Adding fractions of Fline to each power-law simulates the (potentially) variable emission
lines. The amount of variability in the emission lines can be fixed to the variability of the
continuum power-law via a constant α in Equation (3.8), which as a reminder reads

α =
δFline

δFcont
. (3.8)

We define

δFline ≡

∫ λmax

λmin

Fline(λ, t j) dλ −
∫ λmax

λmin

Fline(λ, t j−1) dλ (C.2)

δFcont ≡

∫ λmax

λmin

Fcont(λ, t j) dλ −
∫ λmax

λmin

Fcont(λ, t j−1) dλ , (C.3)

where λmin ∼ 1150Å and λmax ∼ 4500Å. The t j and t j−1 refers to the ‘epochs’ of the
variability model. This implies from Equation (3.8), that for a fixed α the emission line
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response for each variability model ‘epoch’ is given by∫ λmax

λmin

Fline(λ, t j) dλ =

∫ λmax

λmin

Fline(λ, t j−1) dλ+α

∫ λmax

λmin

Fcont(λ, t j)−Fcont(λ, t j−1) dλ .

(C.4)
Here the emission lines are assumed to respond instantly to the continuum variation. By
integrating the obtained spectra at the different epochs, t j, over the SDSS bands the model
color variability can be estimated. The results shown in Figure 3.6 are for a variability
model with fixed α, since such a variability seems to resemble the observed redshift
dependence of the color variability the closest.

The pivot point for the results shown in Figure 3.6 was put at 4λmax ∼ 1.8µm. Changing
the pivot point slightly changes the amplitude of the obtained model predictions (dashed
and colored curves in Figure 3.6) and the mean color variability in such a way that pivot
points in the far-IR result in smaller amplitudes and larger 〈sgr/ui〉(z). The actual curva-
ture of the curves in Figure 3.6 does not change with the pivot point, i.e., the redshift
dependence is independent of the continuum power-law model pivot point.

This spectral variability model predicts the redshift dependence in sgr and sui equally
well.

A model similar to the one presented here, was used in Richards et al. (2001) to explain
the redshift dependences of the SDSS quasar colors.



AppendixD
The 3D-HST Emission

LineMaps

In Figures D.1 and D.2 we show the full sample of the 61 3D-HST emission line (star
formation) maps. The objects have been sorted according to the estimated morphology
of the star formation (SF type) described in Section 4.6, such that Figure D.1 contains all
42 SF type 1 objects, and Figure D.2 contains the 13, 2, and 4 systems with SF type 2, 3,
and 4, respectively.
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Figure D.1: The emission line (star formation) maps obtained as described in Section 4.5 of the
42 3D-HST mergers with SF type 1 (‘one component’) star formation morphologies.
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Figure D.2: The emission line (star formation) maps obtained as described in Section 4.5 of the
13 (top), 2 (center), and 4 (bottom) 3D-HST mergers with SF type 2 (‘both (all) components’),
SF type 3 (‘in-between’), and SF type 4 (‘low S/N’) star formation morphologies, respectively.
The SF type 3 and 4 are mergers also shown in Figure 4.5.
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MacLeod, C. L., Ivezić, Ž., Kochanek, C. S., et al. 2010, The Astrophysical Journal, 721, 1014
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Eddington luminosity, LEdd, 24
Eddington ratio, Lbol/LEdd, 26, 64
emission line map, 112, 151
emission line ratio, 65

F/G stars, 33
filaments, 6, 7
flatness problem, 8

GADGET, 103
geocentric, 2, 3
giant molecular cloud, 99
grand unified theory, 8
grism spectrum, 106

contamination FCONTAM, 106
coverage, FCOVER, 106
simulated, 120

griz box, 34, 47

heliocentric, 2, 3

177



178 INDEX

Herschel catalogue, 3
hierarchical merging, 10, 98
hierarchical Universe, 7
horizon problem, 8
hot mode gas accretion, 99
Hubble

class, 10, 11
constant, H0, 3
expansion, 4, 9
law, 3
time, t0, 4

inflation, 8
isothermal structure formation, 6

Jeans
length, λJ , 6
mass, MJ , 99

large scale structure problem, 8
lensed quasar, 55
LINER, 12
LSST, 26, 51
Lyα forest, 63
Lyman limit systems, LLS, 63

MACHO, 7
Markov chain Monte Carlo, MCMC, 31,

141
match radius, Rmatch, 107
merger rate, 11
Messier catalogue, 3
monolithic collapse, 10, 98
monopole problem, 8

narrow line radio galaxy, NLRG, 12
narrow line region, NLR, 15, 64
near-infrared inflection, 64
new general catalogue, NGC, 3
non-UV excess, nUVX box, 34, 45

optically violently variable galaxy, OVV, 12–
14

Pan-STARRS 1, 26, 28
Pan-STARRS 4, 26
Press-Schechter theory, 7
probability distribution function, PDF, 141
purity, p, 43, 44

quasar, 12–14, 16
color selection, 27
peak of density, 16
spectrum, 62, 63
variability timescales, 67
volume density, 13

Radio galaxy, 13, 14
volume density, 13

reverberation mapping, 67
photometric, 93

RR Lyrae, 33, 82

SDSS Stripe 82, 31
SED model, 109
Seyfert galaxy, 12–14

volume density, 13
simulation data-cubes, 103, 120
SINS sample, 102
star formation

efficiency, 100
peak of, 11

stellar locus, 28, 29
structure function, 28, 30, 38, 40, 82

ensemble, 30
model, 30, 80

SUNRISE, 103
super-Eddington accretion, 24
supermassive black hole, SMBH, 12, 15

top-down model, 6
transfer function, 68

unified AGN model, 13, 14
unified quasar selection, 55
UV excess, UVX, 26

box, 33, 44



INDEX 179

virial black hole mass, 65
voids, 6, 7

WIMP, 7


	Introduction
	Our Place in the Universe
	The Standard Big Bang Model
	Structure Formation & ()CDM Building Blocks
	Building a Galaxy
	Galaxies' Active (Quasar) Phase
	Quasars – AGN at Its Best

	Outline of this Thesis

	Selecting Quasars via Variability
	– Prologue –
	Igniting Galaxies – The Quasar (AGN) Engine
	Variability Characterization of Sources and the Structure Function
	Color Selection
	Source variability: power-law structure functions

	SDSS Stripe 82: a Testbed for Variability Studies
	Spectroscopically confirmed quasars in Stripe 82
	Stellar locus `contaminants' in Stripe 82
	UV excess (UVX) objects
	Non-UV excess (nUVX) objects
	Quasar Candidate Color Selection without u-band Data
	Eliminating light curve `outliers' in Stripe 82
	Down-sampling Stripe 82 light curves to the Pan-STARRS 1 cadence

	Power-Law Structure Functions for Sources in Stripe 82
	Results
	The A– Distribution
	Completeness and Purity
	Quasars in the UVX catalog
	Quasars in the nUVX catalog
	Quasars in the griz Color Box


	Discussion
	Conclusions
	Outlook
	Probabilistic Combination of Selection Methods
	Selecting Lensed Quasars with Variability

	– Epilogue –

	The Quasar Color Variability
	– Prologue –
	Probing the Physics of Quasars
	The (Rest-Frame Optical) Quasar Spectrum
	Eddington Ratios and Black Hole Masses
	Emission Line Ratio Diagnostic – The BPT Diagram
	The Variability of Quasars
	Reverberation Mapping - Measuring Sizes of BLRs
	Spectral Hardness – Brighter Means Blue

	SDSS Stripe 82 Data
	Fitting Color Variability in Magnitude Space
	Results
	Color Variability in gr
	Reproducing the Color Variability Redshift Dependence with Simple Variability Model
	Color Variability in ui

	Discussion
	Color Variability as a Function of Eddington Luminosity and Black Hole Mass
	The Color Variability as a Function of the Light Curve Variability Characteristics
	Color Variability and Changes in the Mean Accretion Rate
	Color Variability of Individual Quasars vs. the Color Distribution of Quasar Ensembles
	Color Variability vs. Accretion Disk Models


	Conclusion
	Outlook
	Modeling of Spectral Quasar Variability
	Photometric Reverberation Mapping

	– Epilogue –

	Star Formation in High Redshift Galaxy Mergers
	– Prologue –
	Star Formation & Galaxy Mergers
	Observing the Star Formation in Mergers
	Modeling the Star Formation in Mergers
	This Study: Exploiting New Data

	The 3D-HST Spectroscopic Survey Data
	The 3D-HST Grism Spectroscopy

	Selecting Mergers
	Grism Catalog Cuts
	Fitting SEDs to Photometry
	Visual Inspection of Near-Infrared Morphology

	Emission Line Mapping
	Continuum Modeling and Subtraction
	The Emission Line Map Redshift, zELmap

	Results: The Spatial Extent of Star Formation in High-z Mergers
	Simulating 3D-HST Spectra
	SPH Merger Simulations
	Simulating 3D-HST grism Spectra
	Creating Star Formation Maps of Simulated Spectra
	Comparing the 3D-HST Data with Simulations

	Conclusion
	Outlook
	Expanding the Analysis to the Full 3D-HST Survey
	IFU Follow-up of Objects
	Star Formation and Molecular Gas at High Redshift
	Comprehensive and Detailed Sampling of the Simulation's Parameter Space

	– Epilogue –

	Summary & Conclusion
	Contributing to the Galaxy Evolution Puzzle
	Selecting Quasars with Variability
	The Color Variability of Quasars
	Star Formation in Mergers at z1.5
	Outlook
	The Immediate Future of `Yours Truly'

	Individual Structure Function Parameter Inference by MCMC
	Fitting in Col.-Mag. and Mag.-Mag. Space
	Simplistic Spectral Variability Model
	The 3D-HST Emission Line Maps
	List of Figures
	List of Tables
	Acknowledgements
	Bibliography
	Index

