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Zusammenfassung

Die Doktorarbeit präsentiert eine numerische Studie zur Wechselwirkung zwischen Planeten und zirkum-
stellaren Scheiben. Wir benutzen den hydrodynamischen/magneto-hydrodynamischen Code PLUTO
(Mignone et al., 2007) zur Simulation von zirkumstellaren Akkretionsscheiben. Ein Modul zur Beschrei-
bung des Planeten wurde in den Code eingebaut. Wir untersuchen zwei entscheidende Aspekte in der
Theorie der Planetenentstehung: die Migration von Planeten aufgrund des Gravitationstorque der Scheibe
und die Akkretion von Gas der umliegenden Scheibe auf die Planeten. Zuerst untersuchen wir diese
Gesichtspunkte für massereiche Planeten (Mp ≈ MJup) in der Entwicklungsphase einer Gaslücke in
der Scheibe. Sobald die Gaslücke erzeugt wird (Σgap < 0.1Σ0), findet man eine lineare Abhängigkeit
zwischen der Oberflächendichte innerhalb der Gaslücke und der Migration und Gasakkretionsrate. Der
Torque welcher auf den Planeten wirkt, hängt stark von dem Material innerhalb der Hill-Sphäre ab sobald
die lokale Scheibenmasse die Planetenmasse übersteigt. Die Entleerung der Hill-Sphäre aufgrund eines
akkretierenden Planeten kann die Migrationszeitskala aus der linearen Abschätzung bis zu einer Gröenord-
nung erhöhen. Zweitens untersuchen wir die Migration und Gasakkretion in turbulenten Scheiben, gener-
iert von der Magneto-Rotations Instabilität (MRI). In schwach magnetisierten turbulenten Scheiben do-
miniert die Migration von Planeten mit geringer Masse durch stochastische Dichtefluktuationen welche
mithilfe einer gegebenen Amplitude und Korrelationszeit charakterisiert werden kann. Aufgrund der
Ungesättigtheit des Korotationstorque von der turbulenten Advektion und Diffusion des Gases in der
”horseshoe” Region können schwerere Planeten eine langsamere oder sogar eine umgekehrte Migration
erfahren. Die magnetische Turbulenz ist im Falle von Riesenplaneten, welche eine Gaslücke öffnen, stark
unterdrückt. Zusätzlich akkretieren Planeten mit Jupitermasse in turbulenten Scheiben weniger als vom
global-gemittelten internen Stress in der Scheibe erwartet wird. Unsere Ergebnisse können direkt in ein
Planeten-Populations Model eingebaut werden um die Eigenschaften der beobachteten Populationen von
extrasolaren Planeten besser zu verstehen.

Abstract

This thesis presents a numerical study on the interaction between planets and circumstellar disks. We
use the hydrodynamics/magnetohydrodynamics code PLUTO (Mignone et al., 2007) to simulate the
circumstellar accretion disk. A module to include embedded planets was incorporated into the code. We
study two critical aspects for planet formation theory: the migration of planets due to gravitational disk
torques and the accretion of gas onto planets from the surrounding disk. These two aspects are critical
in any planet formation model as they will determine the final mass and the orbital separation. We first
investigate these aspects for massive planets (Mp ≈ MJup) in the evolutionary phase when a gap has
been cleared in the disk. It is found that when a gap has been opened (Σgap < 0.1Σ0), the migration
and gas accretion rate is linearly dependent on the surface density inside the gap. The torques exerted
on the planet depend strongly on the material inside the Hill sphere when the local disk mass exceeds
the planet mass. The depletion of the Hill sphere due to an accreting planet can increase migration
timescales up to an order of magnitude of the linear estimate. Secondly, we investigate migration and
gas accretion in turbulent disks, where the turbulence is generated by the magneto-rotational instability
(MRI). In weakly magnetized and turbulent disks, low-mass planet migration is dominated by stochastic
density perturbations that can be characterized with a given amplitude and correlation time. More
massive planets can undergo slower or reversed migration due to the unsaturation of the corotation
torque by turbulent advection and diffusion of gas into the horseshoe region. Magnetic turbulence is
greatly suppressed by giant planets that open a gap in the disk. Additionally, Jupiter-mass planets in
turbulent disks are found to accrete less than expected from the global-averaged internal stresses in the
disk. Our results can be directly implemented in planet population synthesis studies in order to better
understand the nature of the observed population of extrasolar planets.
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Introduction

1.1 Context

The natural history of the earth and the origin and formation of our solar system are two

of the most fundamental scientific questions of modern times. Tremendous progress and

understanding has been achieved in this field in the last century. Improbable and incorrect

theories of solar system formation have given way to a mature and comprehensive theory

of planet formation by accretion of solid material and eventually gas, in a circumstellar

disk of gas and dust revolving around an early accreting Sun.

The field of planet formation, which has had its main focus on the solar system, has become

much more exciting and complex, as hundreds of new planetary systems were discovered

in the last decade, and new ones are constantly being added to the list (see Figure 1.1).

Preconceived ideas were challenged with the great diversity of systems observed, with the

discovery of Jupiter mass planets closer to their parent star than Mercury is to the Sun, of

tightly packed multi-planet systems, of free-floating giant planets, of bloated giants and

super Earths. Focus shifted to a theory of planet formation that is capable of explaining

such diversity, and why the solar system is similar, or why it differs from other planetary

systems.

Any theory that attempts to explain the observed diversity in systems has to include

many different elements such as the possibility of gaseous planet formation by gravita-

tional instability in the outer parts of massive disks, or the excitation of eccentricity and

inclination of close-in planets in systems with an outer massive companion due to the

Kozai mechanism, or a history of planet migration that produces Jupiter-mass planets at

small separations. These elements might not have been all present in the formation of the

solar system, but they have become much more relevant in explaining a great number of

the observed extrasolar planets.

Ultimately, a comprehensive theory of planet formation must be linked to stellar formation
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history and must be able to explain features of individual systems as well as general

population characteristics, where diversity in outcome results from a diversity in initial

conditions.

While currently the general structure of such a theory is in place, focus has shifted from

the idea of a grand theory, to explaining and describing in detail the multiple processes in-

volved in the formation of planetary systems. There are many unresolved key issues along

the way, due to the complexity and scales involved. These include the centimeter and me-

ter barrier to planetesimal formation, the fast inwards migration of planets, the source of

accretion in disks, and the size distribution and composition of dust grains, among others.

It is not theoretically or computationally feasible to form a planetary system from begin-

ning to end, although methods like planet population synthesis are capable of gathering

a number of elements, and study the interplay of these and the evolution of planetary

systems during Gyrs timescales. Additionally, global three-dimensional numerical simula-

tions of protoplanetary disks have reached unprecedented resolutions, making it possible

to elucidate the nature of important non-linear processes and instabilities that might be

present in disks, such as the baroclinic instability, the well studied magneto-rotational

instability, or the nature of planet-disk interactions.

1.2 Planet formation and evolution: concepts, theory and sim-

ulations

Early theories of solar system formation considered many different scenarios. One branch

of early theories postulated a disjunct formation of the Sun and the planets (Jeans, 1931).

In this branch, the Sun was proposed to be formed and established in its current main se-

quence state before the formation of the planets (Lissauer, 1993; Ter Haar, 1967; Williams

and Cremin, 1968).

One possibility was the formation of the planets out of solid and gas material ejected from

the Sun as a result of a perturbation by a near-by passing star (Chamberlin, 1901; Jeans,

1931; Jeffreys and Moulton, 1929; Moulton, 1905). The ejected solid material was called

planetesimals and is the origin of the terminology used currently. Filaments of stellar

material would be tidally formed around the Sun, followed by the condensation of the

filaments into the planets at different separations from the Sun. This theory was later

discarded when it was demonstrated that the terrestial planets were not massive enough

to condense out of filament material, and the timescales for formation of the giant planets

were of the order the lifetime of the solar system, due to very large cooling timescales

(Lyttleton, 1940; Nölke, 1932; Spitzer, 1939).

Another possibility was the formation of the planets out of a captured interstellar cloud

by the Sun, that later condensed into planets (Berlage, 1968). The cloud was apriori
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Figure 1.1: Minimum mass vs. orbital period of exoplanets. The color represents the orbital

eccentricity of the planets. [Figure produced with the exoplanets.org plotter]

assumed to have the right angular momentum to match the solar system distribution and

it would form ringed structures as a result of dissipative processes, which would later

condense into planets. The rings were also predicted to be distributed according to the

Titus-Bode law. The difference in composition was attributed solely to the difference in

temperature in the nebula. In the inner hotter regions only non-volatile material could

condense, forming the terrestial planets (Ter Haar, 1948, 1950).

Theories of cloud capture were later abandoned as the problem of the angular momen-

tum distribution of the solar system remained unsolved. No mechanism was provided to

remove angular momentum from the Sun, and the angular momentum distribution was

always imposed as an initial condition in the cloud, rather than being a result of physical

evolution. Additionally, condensation timescales of the planets by gravitational instability

seemed comparable to the lifetime of the solar system.

Theories where the Sun co-formed with the planets effectively out of the same interstellar

material slowly gained more acceptance and popularity. Circumstellar disks were recog-

nized as natural by-products of the formation of stars out of the colapse of a rotating

molecular cloud and conservation of angular momentum (Cameron, 1962; Hoyle, 1960;

3
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Terebey et al., 1984). The excess of infrared luminosity in the spectra of low-mass stars

was attributed to heated circumstellar material (dust grains) emitting thermal reprocessed

stellar light (Geisel, 1970; Lada and Adams, 1992; Mendoza V., 1968). These young stel-

lar objects represented the first stages of star formation. In the circumstellar envelope

composed of gas and dust and arranged in a flattened disk structure, planetesimals and

planets could form out of the solid material.

Edgeworth (1949) already postulated an accretion disk around the Sun, where angular

momentum was carried away from the Sun by viscous processes, slowing down the rotation

of the Sun. The source of viscosity was the boundary layer between disk material and

the solar surface. However it was not clear if this provided enough viscosity to support

accretion and carry the necessary amount of angular momentum outwards (Edgeworth,

1962).

With the possibility of grain growth by coagulation and competitive accretion (Baines

and Williams, 1965; Donn and Sears, 1963), timescales for terrestial planet formation

decreased by orders of magnitude, as compared to the case where condensation from a

gas sub-cloud was assumed. The accretion of small particles and grains into a protoplanet

with an atmosphere also allowed for the possibility of energy release by interaction with

particles and of dispersal of light materials (McCrea and Williams, 1965).

The growth of dust particles into aggregates and macroscopic bodies, and their effect

on disk properties has been studied extensively (Alexander, 2008; Birnstiel et al., 2010,

2011; Dullemond and Monnier, 2010; Güttler et al., 2010; Juhász et al., 2010; Williams

and Cieza, 2011). Dust grows by collisional sticking into larger aggregates, that then be-

come compactified (Dominik and Tielens, 1997). Evidence for grain growth in envelopes of

young stellar objects can be seen in the change in shape of the spectral energy distribution

at long wavelengths (millimeter and sub-millimeter) (Bouwman et al., 2008; Mannings and

Emerson, 1994; Sicilia-Aguilar et al., 2007; Throop et al., 2001). This change is usually

associated with an evolutionary sequence. However, other physical configurations in the

disk, such as a steady state of growth and fragmentation due to turbulent stirring, can

produce a constant supply of small and large grains in long timescales (millions of years)

(Dullemond and Dominik, 2005; Schräpler and Henning, 2004; Weidenschilling, 1984).

Turbulence and composition of the disk will critically affect the processing of heavy ele-

ments such as silicates, iron and PAHs, therefore affecting the optical properties in the

disk (Bouwman et al., 2008; Henning and Meeus, 2009; Henning and Stognienko, 1996;

Hughes and Armitage, 2010; Juhász et al., 2009). Dust growth will depend on factors

such as sticking efficiency, relative velocities and electric charge. Growth is significantly

hindered for charged grains (Okuzumi, 2009). Additionally, turbulence creates high rel-

ative velocities which disrupts aggregates due to collisional fragmentation (Brauer et al.,

2008; Zsom et al., 2010).

Another possibility to form macroscopic bodies are gravitational instabilities of the sedi-
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mented mid-plane layer of dust (Schräpler and Henning, 2004). However, this requires an

enhancement of solids with respect to cosmic values of factors of 2 to 10 (Youdin and Shu,

2002). Furthermore, radial drift has the effect of quickly depleting the disk of small dust

particles, so that a fraction of the primordial material might be left for aggregation and

planet formation (Brauer et al., 2008). These factors exemplify the many uncertainties

and barriers that have yet to be overcome in order to fully understand the formation

process of rocky and icy planets, or of the cores of gas planets.

The formation mechanism of the giant gaseous planets has been a subject of much debate.

Models of giant planet formation by gravitational instability need a very massive disk that

can cool effectively on timescales of a few local orbital periods (Boss, 1997; Durisen et al.,

2007; Mayer et al., 2002; Rafikov, 2005). Additionally, the planet needs a large reservoir

of gas that can only be provided by the outer parts of the disk. These factors make the

formation of giant planets inside 10AU very improbable. Close in planets may also be

suseptible to tidal disruption by the star, depending on their mass (Wetherill, 1980). It is

possible that gravitational instability can form planets in the outer parts of disks. Once a

planet has formed out of an unstable clump of gas and dust, it can accrete solid material

from the circumstellar disk. Solids can sediment inwards and form a rocky core (Boss,

1997).

In the inner parts of disks, gas giants can form as a result of core formation by planetesimal

accretion followed by formation of the gas envelope by gas accretion. Using numerical

simulations of core accretion and envelope evolution, Pollack et al. (1996) distinguished

three phases in the formation of planets. A first phase marked by the fast accretion of

solids onto a core until the feeding zone of the planet is mostly evacuated (Stevenson,

1982); a second phase where gas and solids accretion is low and constant; finally, a

third phase where the core mass equals the envelope mass, the envelope contracts and

runaway gas accretion proceeds (Mizuno, 1980). Migration of the planet might allow for

an extension of the feeding zone, while gap formation might lead to a mass limit for gap

opening planets (Alibert et al., 2005).

While planets form and evolve, mass flows from the accretion disk towards the star,

bringing most of the mass into the central object, while depositing most of the angular

momentum in the planets and outer parts of the disk. Keplerian disks have been found

to be hydrodynamically -linearly and non-linearly- stable (Goldreich and Lynden-Bell,

1965; Papaloizou and Pringle, 1984, 1985), and hydrodynamic turbulence has been shown

to be inefficient for mass transport at the required rates (Ji et al., 2006). The source of

accretion in circumstellar disks is still not known, although there are different candidate

instabilities that could generate turbulence in the disk given different conditions (e.g. the

baroclinic instability (Klahr and Bodenheimer, 2003)).

The most promising at present is the magnetorotational instability (MRI): an instability

of ionized Keplerian disks under the action of a weak magnetic field (Balbus and Hawley,
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1991, 1998). The MRI is active when the field is well coupled to the gas, so it requires a

minimum degree of ionization. This makes the development of the instability dependent

on factors like the distance from the star and from the mid-plane, the temperature and

chemical composition, and external sources of ionization such as cosmic rays (Sano et al.,

2000; Turner and Sano, 2008; Turner et al., 2007). The characteristics of the MRI-dead

zone therefore depend on these factors. In general the upper layers and the outer parts of

the disk will be MRI-active, therefore turbulent, while the mid-plane will remain stable

(Dzyurkevich et al., 2010; Fleming and Stone, 2003; Machida et al., 2000).

The development of new numerical methods and codes (Mignone et al., 2007; Stone et al.,

2008; Stone and Norman, 1992), along with access to supercomputers, has allowed an

enormous amount of work to arise using numerical MHD simulations of magnetized disks.

In particular, the linear growth and saturation level of the instability have been studied

extensively (Davis et al., 2010; Fleming and Stone, 2003; Flock et al., 2011; Fromang and

Papaloizou, 2007; Fromang et al., 2007; Guan et al., 2009; Hawley et al., 1995, 1996; Sano

et al., 2004; Sharma et al., 2006; Stone et al., 1996; Stone and Pringle, 2001; Wardle,

1999), along with the characterization of the dead zone using resistive simulations that

calculate a self-consistent ionization profile (Sano et al., 2000; Turner and Sano, 2008).

Of particular interest to planet formation are the studies on dust stirring above the mid-

plane by turbulent eddies and high relative velocities that hinder coagulation (Johansen

and Klahr, 2005; Turner et al., 2010, 2007). Also relevant is dust trapping in the edge

of the dead zone that could provide a place for rapid particle accumulation (Dzyurkevich

et al., 2010; Kretke and Lin, 2007). MHD structures in an MRI-turbulent flow can also

increase the effectiveness of particle trapping in regions of over pressure (Johansen et al.,

2006, 2007, 2009)

As cores are formed in these turbulent accretion disks, there is a point where the mass

of the planet is large enough so that gravitational forces between the disk and the planet

become important. The theory of periodical perturbations in disks (such as the potential

of an orbiting planet) had been developed in the field of galaxy spiral arms long before

it had its application in planet-disk interactions (Goldreich and Tremaine, 1979; Lin and

Shu, 1966; Shu, 1970). The planet excites density waves in the disk that propagate away

from itself. Due to gravitational torques exerted on the planet by the gas, the planet can

move radially. The speed and direction of motion depend on the planet mass and on disk

properties like the surface density and viscosity (Bate et al., 2003; Papaloizou and Lin,

1984; Tanaka et al., 2002; Ward, 1997). For standard disk parameters, migration leads to

a fast reduction of the separation between planet and star (Tanaka et al., 2002). Planets

comparable to Earth or more massive migrate inwards in timescales that are comparable

to the disk lifetime (see Figure 1.2). However, many mechanisms have been put forward

to prevent or slow down rapid inwards migration (Masset, 2002; Masset et al., 2006b;

Paardekooper and Papaloizou, 2009a; Thommes and Murray, 2006).
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Models of planet formation processes were put to the test as hundreds of new extrasolar

planets were discovered in the last decade (see Figure 1.1). The radial velocity method

provided the first large population of discovered planets: close in massive giants that pro-

duce large RV signals in the spectra of the parent star, allowing for estimation of orbital

parameters and a minimum value of the planet mass (Marcy et al., 2005; Santos et al.,

2003; Udry and Santos, 2007). Giant planets were found to be common around stars with

higher metalicities (for solar type stars)(Udry and Santos, 2007; Vauclair, 2004), suggest-

ing a possible signature of a more efficient formation by core accretion (Johnson et al.,

2010). Massive planets were found to clump at short separations, with periods around 3

days, pointing to a history of inwards migration and a common stopping mechanism close

to the star, such as the stellar magnetosphere boundary or an inner cavity in the disk

(Cumming et al., 1999; Udry et al., 2003). However, in-situ formation of close in planets

has been found to be possible in some cases (Bodenheimer et al., 2000).

A big surprise was the large range of eccentricities in the population of exoplanets (see

Figure 1.1). Contrary to the solar system, exoplanets were found to have a almost a

full range of eccentricities, similar to the one found in stellar multiple systems (Shen and

Turner, 2008; Udry and Santos, 2007). Planet-planet scattering has been proposed to

explain highly eccentric planets, as it would dominate the dynamics after the gas is no

longer present (since the gas tends to damp eccentricity) and therefore shape the final

configuration of a system (Ford and Rasio, 2008). Small-period solid planets (rock plus

ice) in close-in orbits are predicted to have low eccentricities due to tidal circularization

(Jurić and Tremaine, 2008; Nagasawa et al., 2008; Rasio and Ford, 1996).

Another detection technique, the transit method, brings the possibility of obtaining the

radius of the planet, by studying the dimming of the stellar brightness due to a planet

passing in front of the star through the line of sight (Borucki and Summers, 1984). To-

gether with the RV method, candidates can be confirmed and the mean density of the

planet can be obtained with the mass and radius information. Hundreds of candidates

have been found by the KEPLER (Koch et al., 1998) and COROT (Léger et al., 2009)

space missions, which include many Neptune analogs and super earths, possibly in the

habitable zone of their parent star (Batalha et al., 2011; Gilliland et al., 2010; Howard

et al., 2010).

The transit of planets provides the unique opportunity to study the absorption spectra

of the atmosphere of a planet or the presence of moons (Ballester et al., 2007; Charbon-

neau et al., 2005; Pont et al., 2008; Richardson et al., 2007). Additionally, the Rossiter-

MacLaughlin effect (the displacement of the stellar spectral lines due to stellar rotation

during a transit) makes it possible to obtain the inclination of the orbit of the transiting

planet, a parameter that provides much insight into the formation mechanism (Fabrycky

and Winn, 2009; Gaudi and Winn, 2007).

An interesting subset of the exoplanet population are the so called bloated giants, which
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are unusually high-up in the mass-radius diagram of planets; planet structure models

predict smaller radii for planets of equivalent masses (Howard et al., 2010). Tidal heating

has been proposed as the main inflating mechanism (Ibgui and Burrows, 2009; Miller

et al., 2009; Ogilvie and Lin, 2004), although tidal effects are not sufficient for explaining

the largest of the inflated planets (Leconte et al., 2010). Magnetic effects such as Ohmic

dissipation could account for a fraction of the necessary thermal energy to produce the

inflation in radius (Batygin and Stevenson, 2010).

Other planet detection methods like microlensing or direct imaging can detect planet

in previously unexplored parts of the planetary mass-separation diagram, although with

much lower yield compared to the RV or transit method. Microlensing is capable of finding

very low-mass planets, but follow up and characterization are not possible (Beaulieu et al.,

2006; Bennett and Rhie, 1996; Gould and Loeb, 1992; Mao and Paczynski, 1991). Direct

imaging can detect large period, young planets in the infrared thermal light, although

it is an extremely challenging method due to the typical contrast of over six orders of

magnitude between the star and the planet (Angel, 1994; Kalas et al., 2005; Lafrenière

et al., 2008; Thalmann et al., 2009). However, both of these methods provide interesting

testing grounds for formation models in the outer parts of the disk, specially of planets

formed by gravitational instability (Veras et al., 2009).

Making sense of the multitude of data of extrasolar planets and comparing to theoretical

models is a difficult task. Planet population synthesis models combine observational

constraints with theoretical elements to create synthetic populations of individual planets

forming and evolving in individual disks with diverse initial conditions (Mordasini et al.,

2009a). These simulations usually include disk evolution through evaporation, planet

accretion of planetesimals and gas, planet migration, and an adapted stellar structure

model for the planet core and atmosphere. Although planet population synthesis brings

together the uncertainties of each of its elements, it is a powerful tool to understand the

interplay of processes and timescales of formation. Population synthesis has been able to

reproduce key elements of the observed planet population like the metalicity relation and

the presence of close-in giants due to Type II migration. It has also shed light on runaway

accretion processes and their relation to clumps in the mass distribution of exoplanets

(Alibert et al., 2004; Benz et al., 2008; Ida and Lin, 2004; Mordasini et al., 2009b).

1.3 About this thesis

It can be inferred from the population of discovered exoplanets that many systems un-

derwent migration in their evolutionary history. The fact that migration timescales are in

general shorter or on the order of the disk mean lifetime presents a problem for the for-

mation of planetary systems; in theory planet embryos would fall into the central star as
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Figure 1.2: Left: Disk fraction (as JKHL excess) vs. mean age for seven young clusters [figure

taken from Haisch et al. (2001)]. On average, half of the disks are gone after 3 Myr. Right: Inwards

migration timescale vs. planet mass [figure taken from Bate et al. (2003)]. Analytical estimates for

Type I and II migration are overplotted. Planets more massive than 0.01MJup migrate their initial

semi-mayor axis distance in less than 1 Myr.

long as there is enough gas present in the disk. However, we know that there are planets

that survive migration and that the surviving systems are not only the lucky remaining

embryos after the gas has disappeared. There must be different stopping mechanisms and

a diversity in conditions in disks that prevents migration from being as effective as it was

originally conceived.

The validity of the estimates for migration can only be tested indirectly through planet

population synthesis models. In other words, population synthesis requires estimates of

migration rates for a wide variety of planet/disk properties in order to be able to explain

and predict the observed population of exoplanets. These migration estimates must come

from theory and hydrodynamical simulations. Is is equally important to have models of

gas accretion by planets, as this is a fundamental parameter for modeling the formation

of giant gaseous planets. Current planet population synthesis models have to reduce

the Type I migration rates to 1% of the theoretical value in order to partially match

observational results (Benz et al., 2008; Ida and Lin, 2008; Mordasini et al., 2009a,b).

There is clearly a need to provide better estimates of migration rates.

In this thesis we present a numerical study of orbital migration and gas accretion onto

planets embedded in protoplanetary disks. In Chapter 3, we focus on Type II migra-

9

/home/uribe/PhD/Thesis/figures/intro/disk-lifetimes.eps
/home/uribe/PhD/Thesis/figures/intro/mig-rates.eps


1. INTRODUCTION

tion of gap opening planets. Similar studies have been performed to study the migration

and gas accretion of gap opening planets. Edgar (2007) studied migration as a function

of surface density and viscosity. However, no comparison with analytical estimates was

done and they did not present the estimations of the torque as a function of the stud-

ied parameters. Additionally, their results overlap between the gap opening regime and

partial gap opening. Masset and Papaloizou (2003) concentrated on studying runaway

Type III migration, and covered a good range of the parameter space. We perform a

dedicated study of Type II migration as a function of a variety of parameters and provide

a comparison with analytical estimates. We also study the relation between migration

and accretion onto planets, which is critical to obtain the correct migration rates. Our

results are directly applicable to planet population synthesis models

In Chapters 4 and 5, we turn to the more complex problem of migration in turbulent

disks. In most previous numerical and analytical studies, the disk turbulence is included

as an effective viscosity. The disk, however, is technically laminar. One possibility that

has been explored is modeling of the turbulence itself using a perturbing potential. In

this case, the actual stochastic perturbations are reproduced in the density (Adams and

Bloch, 2009; Baruteau and Lin, 2010; Laughlin et al., 2004). Simulations of turbulent disks

where turbulence is generated by weak magnetic fields through the magneto-rotational

instability (MRI) have been performed, under the approximation of a local shear flow, or

a cylindrical geometry (Nelson and Papaloizou, 2003, 2004; Oishi et al., 2007; Papaloizou

and Nelson, 2003; Papaloizou et al., 2004).

We study migration in turbulent disks, with MRI-induced turbulence, in global stratified

disk simulations. This is useful for two reasons. It provies a check for the previous sim-

ulations that have been performed with other approximations, and it provies parameters

derived from ”real” MHD turbulence that can be used in populations synthesis models

and semi-analytical models. We also study the accretion of gas onto giant planets in

MRI-turbulent disks, which has never been studied in the literature before.
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Planet-disk gravitational interactions

Young planets orbiting around a star and embedded in a circumstellar disk will interact

gravitationally with the gas and the dust present in the disk. The dust component is

typically a small fraction ( 0.01) of the gas component, therefore the dynamics of migration

can be understood in terms of the interaction between circumstellar gas and planet. The

effect of the gas on the planet will be to change its separation to the star at a certain rate

and direction, while the planet will modify the density in the disk linearly or non-linearly

depending on the planet mass.

This process will depend on a number of factors: the gravitational torque exerted on the

planet and the gas, the viscous diffusion in the disk, the thermal properties of the disk

and the disk density structure. These factors in turn introduce relevant timescales which

will determine the importance of each factor: the migration timescale τmig, the viscous

timescale τν , the cooling timescale τcool, the orbital timescale τorb and finally the libration

τlib and U-turn timescales τuturn associated with material near corotation 1.

The evolution of the gas under the action of the planet is given by (neglecting magnetic

fields and self-gravity and energy transport)

∂ρ

∂t
−∇ · (ρv) = 0 (2.1)

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p −∇Φp −∇Φstar + fν (2.2)

(2.3)

where Φp and Φstar are the planet and stellar gravitational potential respectively and fν
is the viscous stress tensor. The gas pressure relates to the density through an equation

of state p = p(ρ, T ). The stellar potential is given by Φstar(r) = −GMstar/r, while the

1All these being relevant within the gas disk lifetime
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planet potential is given by

Φp(r) = −
GMp

|r − rp|
. (2.4)

The torque exerted by the disk on the planet is determined at any moment in time by the

detailed structure of the density resulting from solving system Eq 2.2, and is given by

Γ(r) = GMp

∫

ρ(r)
rp × r

|r− rp|3
dV. (2.5)

Torque exerted on the planet leads to a change in angular momentum Γ = dL/dt. In

particular, vertical torque leads to a change in orbital angular momentum Γz = dLz/dt =

d(Mprpv
′

p)/dt, where v
′

p is the velocity of the planet in the orbital plane, equal to the

Keplerian speed v
′

p = vKep =
√

GMp/rp. Using this expression, the vertical torque Γz is

related to the change in separation ṙp by

Γz =
Mpvk

2ṙp

. (2.6)

A natural timescale for migration is τm = rp/ṙp.

2.1 Migration Regimes

2.1.1 Type I: Low-mass planet migration

If a planet doesn’t significantly perturb the disk, the steady state density structure can

be estimated through linear perturbation analysis. Let v0 and p0 be the unperturbed

velocity and pressure. The orbiting planet introduces perturbations v1 and p1 such that

v1 << v0 and p1 << p0. It is possible to define the enthalpy perturbation as η = p1/ρ0.

The perturbed velocity, pressure, enthalpy and gravitational potential of the planet are

fourier-decomposed as

X = ΣmRe[Xmeim(φ−Ωp)], (2.7)

where spherical coordinates (r, θ, φ) are used. Solving Eqs. 2.2 and 2.3, for the fourier

amplitudes Xm of perturbed velocities and enthalpy results in a wave equation for ηm.

The amplitude of the enthalpy wave ηm is found to diverge for two cases: when 4BΩ −

m2(Ω − Ωp)2 = 0 and when Ω − Ωp = 0. The first case occurs at positions rm in the disk

where 4BΩ(rm) = m2(Ω(rm) − Ωp), where B is the Oort’s constant. These locations are

referred to as Lindblad resonances, and are located inside and outside the orbit of the

planet, moving asymptotically towards rp as m increases to infinity. The second divergent

case occurs at the position rc where Ω(rc) = Ωp, which is the corotation resonance. Due

to the pressure gradient, the corotation resonance is offset from the position of the planet

(Lin and Papaloizou, 1986; Tanaka et al., 2002; Ward, 1997).
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2.1 Migration Regimes

The angular momentum flux carried by the waves, can be approximated as

Fw =

∫ 2π

0

∫

∞

−∞

dφdzr2ρ0v1,φv1,r, (2.8)

which by conservation of angular momentum, will be given to/by the planet in terms of

orbital angular momentum. The effective torque felt by the planet due to this angular

momentum flux is given by

ΓI = −(2.340 − 0.099a + 0.418b)

(

q

hp

)2

Σpr
4
pΩ2

p, . (2.9)

where q = Mp/Mstar and hp is the pressure scale height of the disk. This is the Type

I migration regime for low-mass planets (Tanaka et al., 2002). This is valid in locally

isothermal disks with power law density profiles, where Σ = Σ0r
−a and b is the power law

exponent of the temperature profile.

2.1.2 Type II: Gap-opening planets

As the mass of the planet increases above a certain limit, the perturbations on the disk

density become highly non-linear. The planet opens a partial or full cavity in the disk

density around its orbit, pushing material away from corotation. The limiting mass for

gap opening can be expressed in terms of two criteria: the viscous and the pressure

criteria. In the first case, a condition for gap opening is that the angular momentum

transported by the waves Fw matches or exceeds the angular momentum transported by

viscous processes in the disk Fν . Taking a gaussian profile for the density in the vertical

direction, and writing the dynamic viscosity η in terms of the surface density Σ =
∫

ρdz,

the viscous angular momentum flux is

Fν = 3πΣr2Ω. (2.10)

Letting q = Mp/Mstar, and equating Fw = Fv, results in a lower limit for the mass of the

planet given by

q >
40ν

Ωr2
. (2.11)

The viscosity can be modelled as a turbulent viscosity parameterized by α, where ν =

αΩkH
2 and H = cs/Ωk. In this case, the viscous criteria can be expressed as the maximum

value of α that allowes for gap opening

α <
q

40

( r

H

)2

. (2.12)
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2. PLANET-DISK GRAVITATIONAL INTERACTIONS

As a second condition for the planet to open a gap, the Hill radius of the planet must

exceed the pressure scale height rh = (q/3)1/3 > H . This can be expressed as a condition

on the mass of the planet

q > 3

(

H

r

)3

. (2.13)

As opposed to the migration of low-mass planets, where the planet angular momentum

flux can never match the viscous flux in the disk, a large-mass planet that satisfies Eq

2.12 and Eq 2.13 can be in a position in the disk where the wave torque is cancelled out.

This means the planet is stationary in the frame moving radially with the disk at the

viscous rate. In this case, the effective torque on the planet is given by

ΓII = −
2π

Mp

(

3

2
r2
pΩpνΣ

)

(2.14)

This is Type II migration regime for gap opening planets (Bryden et al., 1999; Crida et al.,

2006). The timescale for migration is then the viscous accretion timescale τν = (2r2)/(3ν).

2.1.3 Type III: Intermediate cases

An interesting migration case occurs for intermediate-mass planets (sub-Saturns to Jupiters)

that open a partial gap in the disk. If the disk is massive enough and the gas mass in the

coorbital region is comparable or larger to the mass of the planet, the planet can migrate

inwards in a runaway process. The torque coming from the corotation region can have

a negative contribution due to open streamlines that go from the inner disk to the outer

disk, passing the planet. This torque scales with the radial drift rate of the planet and is

proportional to the mass located in the corotation region (Masset and Papaloizou, 2003).

2.2 Migration in non-isothermal disks

In the case of adiabatic disks, or disks where the temperature structure is allowed to vary

according to the evolution of the density and the stellar flux, low-mass planets can migrate

outwards in certain conditions. A component of the corotation torque that scales with the

entropy gradient (which is not present in locally isothermal disks) can be present in cases

of high opacities or a fully adiabatic disk. This component is positive and can overcome the

negative wave torque, making the planet drift outwards. This effect will usually saturate

(i.e. the torque will go to zero in short timescales) as the entropy gradient is removed

by motions in the horseshoe region. Similar to the vortensity-related corotation torque

that can remain un-saturated due to viscosity, the entropy-related corotation torque can

remain un-saturated due to fast local cooling (Baruteau and Masset, 2008; Kley et al.,

2009).
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2.3 Corotation Torques

2.3 Corotation Torques

From a frame of reference moving with the planet at an angular frequency Ωp, gas particles

within a certain distance of rp move on horseshoe orbits around the position of the planet.

These gas particles orbit in trajectories that follow equipotential surfaces defined by the

two body-problem, around Lagrangian points. On the side trailing the planet, particles

move radially inwards, while on the leading side they move radially outwards. Each

time a particle executes a U-turn as it makes its closest approach to the planet, its

angular momentum changes. The change in angular momentum with time will determine

the torque exerted on the planet due to particles in horseshow orbits Masset (2002);

Paardekooper and Papaloizou (2009a,b).

The corotation torque can be estimated by calculating the change in angular momentum

of gas particles that move from the outer(inner) disk to the inner(outer) disk , at the

trailing(leading) side of the planet. Assuming particles are matched symmetrically to

either part of the planet as they execute a U-turn, and the half-width xs to be the same

at each side, the total change in angular momentum can be given as a integral over the

half-width of the horseshoe region. For the trailing side, this is given by

∆Lt =

∫ rp

rp+xs

(f(2rp − r) − f(r))dr, (2.15)

while for the leading side this is given by

∆Ll =

∫ rp

rp−xs

(f(2rp − r) − f(r))dr. (2.16)

Here f(r) is the angular momentum of a gas particle at r, an is equal to f(r) = Σ(r)v(r)r.

The net change in angular momentum is then ∆Lt + ∆Ll. The torque can be shown to

scale with the gradient of the vortensity (d/dr)(Σ/w), where w is the vorticity. This effect

will usually saturate (i.e. the torque will go to zero in short timescales) as the vortensity

gradient is removed by motions in the horseshoe region, unless a sufficiently high viscosity

is present (Masset, 2002; Paardekooper and Papaloizou, 2009a,b)
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3

Type II migration and gas accretion

onto planets in disks with uniform

constant mass accretion

Using two-dimensional hydrodynamical simulations, we study the orbital migration

and gas accretion of a free-moving planet of mass Mp = 2MJup purely in the stage

where a gap has been cleared in the disk by the planet. The viscosity in the disk is

chosen to obtain a constant mass accretion rate through the entire disk, independent

of time and radial position. We study the effects of various parameters like the

surface density, density power-law exponent, gravitational softening and viscosity.

We find that the torque of the planet is best approximated by the expression Γ =

− 3
2q

r2νΩpΣ, for a wide range of disk densities. When the local disk mass is around

10 times the planet mass, we observe runaway migration and the planet migrates

inwards much faster than the analytical estimate. Only when the Hill sphere material

is not taken into account in the orbital evolution, or when the planet is accreting,

the migration of the planet is slowed down if it is in the regime where the local

disk mass is larger than the planet mass. The torques exerted on the planet do not

depend on the steepness of the density profile. We also study the accretion of gas

onto the planet, and find that the accretion rate measured in the simulations is a

fraction of the disk accretion rate, and is given by Ṁp = 3πνΣgap ≈ (0.1)3πνΣ0.
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3. TYPE II MIGRATION AND GAS ACCRETION ONTO PLANETS
IN DISKS WITH UNIFORM CONSTANT MASS ACCRETION

3.1 Introduction

The migration of giant planets due to disk torques is one of the mechanisms that can

partially explain the population of giant exoplanets orbiting at small separations from the

central star (Alibert et al., 2004, 2005; Benz et al., 2008; Currie, 2009; Ida and Lin, 2008;

Mordasini et al., 2009b). An exoplanet belonging to this population of Hot Jupiters (Mp ≈

Mjup and a ≈ 0.1AU) cannot form in situ, either by the standard core accretion formation

scenario or by disk gravitational instability and collapse. At such small separations, the

disk temperature is too high and the disk doesn’t carry enough solid and gas material to

form a planet with a mass close to a Jupiter mass.

The gravitational torques by the gas disk provide a mechanism to move a planet that

formed in the outer parts of the disk to very small separations, where then it can be

stopped by the presence of an inner disk cavity or other mechanisms (Crida and Morbidelli,

2007). It is well known from analytical calculations (Lin and Papaloizou, 1986; Ward,

1997) and extensive numerical studies (Crida et al., 2006; de Val-Borro et al., 2006; Masset

et al., 2006a; Nelson et al., 2000) that planets in the Jupiter mass range open a gap in

the disk, pushing material away from its orbit due to tidal torques. The depth of the gap

depends on the ratio of the planet mass to the primary mass and on the disk viscosity

and pressure scale height at the position of the planet. As a planet opens a gap in the

disk, it is said to be migrating in the Type II regime.

Quite a number of analytical studies have been done studying Type II migration. Lin

and Papaloizou (1986) studied gap opening and migration as a function of the viscosity

as compared to the tidal forces, and as a function of the ratio of disk to planet mass.

It was found that for planets with a small mass compared to the disk mass, migration

was dominated by the viscous evolution of the disk. In the interior parts of the disk, the

planet will migrate inwards, while after a given radial position in the disk, the planet

will migrate outwards where the disk is viscously spreading outwards as it receives the

angular momentum transfered from the inner accreting disk. A planet that is very massive

compared to the disk mass has no significant orbital evolution.

Crida et al. (2006) modelled the tidal torque exerted by the planet in terms of a torque

component that is locally deposited in the disk, while another component that is carried

away by waves supported by pressure. They described the evolution of the surface density

of the disk using an semi-analytic model and correctly predict the evolution of the gap

profile and provide a criteria for gap opening (Crida and Morbidelli, 2007). Modeling the

viscous evolution of the disk following Lynden-Bell and Pringle (1974), Type II migration

has been divided in regimes separated by that dominated by the planet (planet more

massive than disk) and that dominated by the disk (disk more massive than planet). In

the planet dominated regime, migration rates is dependent on disk and planet masses,

while in the disk dominated regime, migration is determined by the disk accretion speed,
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3.2 Gap opening and type II migration

which significantly slows down migration as compared to Type I rates or Type II in the

planet dominated regime (Armitage, 2007a,b; Syer and Clarke, 1995).

Three-dimensional hydrodynamics calculations have shown that the surface density of

the disk can be correctly modelled using two-dimensional simulations with proper gravi-

tational potential smoothing. The mass of the disk present inside the Roche lobe of the

planet is also critical for the torque determination and can in some cases reverse inwards

migration. Jupiter-mass planets have also been found to be able to accrete very efficiently

through gaps, as compared to the disk mass accretion, although this might depend on

the numerical algorithm used to model planet accretion in a grid numerical code. Addi-

tionally as the planet mass increases above a Jupiter-mass, accretion efficiency decreases.

(Bate et al., 2003; Bryden et al., 1999; Lubow et al., 1999).

Crida and Morbidelli (2007) performed two-dimensional hydrodynamical simulations of

Type II migration coupled with a one-dimensional simulation of a viscously spreading

disk, in order to correctly model the global viscous evolution of the disk. They observed

the effects of the corotation torque for planets that open a partial gap when the disk has

enough viscosity to mantain the torque corotation torque unsaturated. This effect can in

principle slow down or reverse the inwards migration of planets that open partial gaps

(D’Angelo et al., 2005). Edgar (2007) performed a study of migration as a function of disk

mass and viscosity and obtained interesting results on the discrepancy between analytical

estimates of migration in the Type II range and two-dimensional numerical simulations.

In this chapter we revisit the issue of the dependence of Type II migration rates on the

disk mass, and on the disk surface density gradient. We focus on how different numerical

set ups can yield very different results, and how migration rates derived from numerical

simulations compare with analytical models. We also provide estimates of migration rates

in the Type II regime, directly obtained from simulations, that can be used in planet

population synthesis models to more accurately estimate the migration of giant planets.

This chapter is organized as follows. In section 2, we summarize the analytical expressions

for the Type II torque. Section 3 describes the set up of the simulations, the parameters

used and the initial conditions. We also show a test of the numerical scheme to verify

the correct viscous evolution in the disk. In Section 4 we present our results for various

numerical set ups and parameters. Finally, the conclusions of the study are presented in

Section 5.

3.2 Gap opening and type II migration

Planets migrate in the Type II regime when they open a gap in the disk around their orbit.

In this case, the density perturbations induced by the planet can no longer be treated as

linear since the disk density is drastically modified in the gap region. The transition into
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3. TYPE II MIGRATION AND GAS ACCRETION ONTO PLANETS
IN DISKS WITH UNIFORM CONSTANT MASS ACCRETION

this regime is approximately given by the conditions that

(Mp/Ms)(1/(3h3
p)) > 1, (3.1)

and

Mp/Ms > 40ν/r2
pΩp, (3.2)

meaning that the planet has to be able to overcome both the pressure gradient and the

viscous transport at its given position in the disk (Crida and Morbidelli, 2007; Lin and

Papaloizou, 1986).

After the gap has opened, the torques on the planet cannot consistently move the planet

in the disk, since it can take an equilibrium position inside the gap where the total net

torque is zero instantaneously. This effectively means that the planet is stationary in a

frame moving with the disk, at the viscous rate. One can assume that the giant planet

now moves at the radial velocity given by the equations for the viscous evolution of the

disk, vr = −3ν/2r (Lynden-Bell and Pringle, 1974). This in turn can be integrated to

give the radius of the planet as a function of time

r(t) = (r2
0 − 3νt)1/2, (3.3)

where r0 is the initial position of the planet at t = 0. The torque felt by the planet at a

given location, Γ(r) = rvrΩp/2, is then given by

Γ = −
3

4
νΩp. (3.4)

However this expression is not correct for a broad range of disk to planet mass ratios. The

expression can be modified to take into account this variation. In this case, the radial

velocity of the planet is given by vr = −(Ms/Mp)3νΣr, which can be integrated to give

the position of the planet as a function of time

r(t) = r0e
−3νΣt/q , (3.5)

which is valid for a = 0 only. Here q = Mp/Ms and r0 is the initial position of the planet.

The time-averaged torque exerted by the disk at a given radial position is then given by

Γ = −
3

2q
r2νΩpΣ. (3.6)

3.3 Description of the setup of the simulations

We performed the simulations using the Hydrodynamics module of the Godunov code

PLUTO (Mignone et al., 2007). In the code, time stepping is done using a second order
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3.3 Description of the setup of the simulations

Runge Kutta integrator, while space interpolation is done is done with the second order

linear TVD approximation. For computing the fluxes through the cell interfaces, we use

the HLLC approximate Riemann solver. We work in polar geometry r = (r, φ), where

the computational domain is given by r ∈ [0.4, 4.0] and φ ∈ [0, 2π]. The resolution in the

radial and azimuthal direction is (Nr, Nφ) = (128, 256) and the grid is uniform.

3.3.1 Disk profile and planet setup

The initial surface density profile of the disk is given by

Σ = Σ0r
−a. (3.7)

The equation of state of the disk is given by p = csΣ, where cs is the sound speed. The

disk is assumed to be locally isothermal, so that the temperature drops radially as T ∝ r−1

and is constant in time. Hence, the sound speed is given by cs = c0r
−0.5 and the effective

pressure scale height of the disk is set to the standard value of cs = h = 0.05. The initial

azimuthal velocity is equal to the Keplerian value corrected by the pressure contribution

vφ =

√

GMs

r
(1 − c2

s(a + 1)). (3.8)

The gravitational potential felt by the disk at a location r includes the stellar and plane-

tary contributions, and is given by

Φg(r) = −
GMs

|r − rs|
−

GMp

(|r − rp|2 + ǫ2)1/2
, (3.9)

where r, rs and rp, are the positions of the gas, star and planet respectively, measured from

the center of mass of the star-planet system. Also, ǫ = krhill is the softening parameter

of the potential, to avoid divergent forces on the disk near the planet. The constant k

is less than one. The ratio between the planet mass and the stellar mass is given by

q = Mp/Ms = 2 × 10−3. The initial position of the planet is set to rp = 1.5. The planet

is free to migrate and its equations of motion are integrated using a leap frog integrator.

The simulations are run for 500 or 1500 periods of the planet.

The z component of the torque Γ exerted by the disk on the planet is given by

Γz = GMp

∫

Σ(r)
(rp × r)z

(|r − rp|2 + ǫ2)3/2
dA, (3.10)

where (rp×r)z = (rp×r)·êz , with êz being the cartesian unit vector in the z direction. The

torque is calculated for every timestep of the hydro code. We work in normalized units,

where GMs = 1 and positions and velocities are normalized to r0 = 1 and vk(r0) = 1. We
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3. TYPE II MIGRATION AND GAS ACCRETION ONTO PLANETS
IN DISKS WITH UNIFORM CONSTANT MASS ACCRETION

note that all torques in the following sections are negative quantities presented as absolute

values

The kinematic viscosity ν is in general radially varying with a power law and is given by

ν = ν0r
a, where a is the radial exponent of the surface density in Equation 3.7. We take

this form of the viscosity so that for all of the simulations, the disk mass accretion rate

Ṁ ∼ 3πνΣ is radially constant.

3.3.1.1 Parameters of the simulations

We study migration rates both as a function of the radial exponent a of the surface density

(where ν = ν0r
a ) and as a function of surface density and viscosity. In simulations that

vary the radial exponent, the surface density is constant Σ0 = 1 × 10−4. The radial

exponent is varied for the values a = 0.0, 0.5, 1.0 and 1.5. In simulations that vary

the surface density, we choose values in a large range, from local disk mass very small

compared to the planet mass, to local disk mass larger than planet mass. Here the

radial exponent is fixed to a = 0. The surface density constant is varied for the values

Σ0 = 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3 and 3 × 10−3.

3.3.2 Test of the viscous evolution of the disk

Since migration speeds of gap-opening planets are critically dependent on the disk viscous

evolution, it’s necessary to correctly model this evolution numerically. Figure 3.1 shows

the mass accretion rate measured in simulations with no planet included, for different

values of the surface density and a = 0. We have implemented boundary conditions that

set the velocity of the flow at each radial boundary to that determined by the analytical

expression for the constant mass accretion rate for each value of the surface density. This

ensures a constant flow of mass through the disks that matches well with the expected

value resulting from theory. The density profile is not modified up to more than a few

percent of its initial value (only close to the boundaries) and the disk achieves a steady

state.

3.4 Results

3.4.1 Dependence of migration on surface density

In this section, we study the Type II migration regime of giant planets for a range of

disks density. First we present the results for the case when the planet is not allowed to

migrate, and then the results in the case when the planet is allowed to move radially.

For a planet mass of q = Mp/Ms = 2 × 10−3, we followed the evolution of the orbital

elements and the torque experienced by the planet over 1500 orbits (or 500 orbits for a
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3.4 Results

Figure 3.1: Disk mass accretion rate measured in the simulations. The analytical estimate Ṁ =

−3πΣν is shown in the dashed line.

fixed-orbit planet). This was done for different values of the surface density, (equivalently

the B = (πr2
p)Σ/Mp parameter), such as to cover the regime when the planet is more

massive than the disk B < 1, to where the local disk mass is more massive than the

planet B > 1. The local disk mass is taken to be Mdisk = πr2
pΣ.

3.4.1.1 Fixed orbit planet

For the case in which the planet is no a fixed orbit, at rp = 1.5, Figure 3.2 shows the

evolution of the cumulative torque exerted on the planet, for different values of the surface

density (colored lines) and for two values of the gravitational softening. The gravitational

softening parameter ǫ is used in the expression for the gravitational potential (see Eq.

3.9) to avoid the divergence at the position of the planet, and near it where the potential

grows fast. We study how the choice of the parameter and the inclusion/exclusion of

the Hill sphere material affects the torque felt by the planet. Figure 3.2 shows that the

evolution of the torques is slightly different in the two cases. The case with the smaller

value ǫ = 0.06 converges faster and to slightly higher values than the case with the larger

value ǫ = 0.3. The material moving around the planet has a negative contribution to the

torque (making the torque larger), meaning that the planet will drift innwards slightly

faster. Figure 3.2 also shows that the dependence of the torque on the surface density is
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Figure 3.2: Cumulative average torques on the planet for varying surface density (where Σ=Σ0)

for ǫ = 0.3 (left) and ǫ = 0.06 (right). From dark to light curves, Σ0 = 5× 10−6, 1× 10−5, 5× 10−5,

1×10−4, 5×10−4, 1×10−3 and 3×10−3, respectively. This corresponds to B = (πr2

p)Σ/Mp = 0.017,

0.035, 0.17, 0.35, 1.76, 3.53 and 10.6.

linear as is expected from Eq. 3.6.

The shape of the gap is also affected by the choice of gravitational softening parameter,

as is seen in Figure 3.3. The gaps are deeper for ǫ = 0.06 since the pressure gradient and

viscous torque in the gap wall has to overcome a larger gravitational torque pushing the

material inwards/outwards, putting the equilibrium position (the gap edge) farther away.

The gaps are also wider for the smallest ǫ, specially for the disk with larger densities.

Additionally, more material accumulates around the planet for for ǫ = 0.06 (see Figure

3.4).

Figure 3.5 shows the average cumulative torque as a function of surface density (or B

parameter) for both values of ǫ. We find agreement with the analytical expression for

the torque for all disk densities. In general, the runs with smaller softening match the

estimate better and resolve the potential around the planet in a more accurate way. The

torques with the larger softening, systematically underestimate the torque, if the Hill

sphere is not taken into account. Provided with sufficient resolution, the choice of smaller

softening models the potential better, although it might lead to numerical issues (very

fast velocities and short timesteps) close to the planet.

3.4.1.2 Free moving planet: Effect of the Hill sphere

We now turn to the case where the planet is allowed to migrate according to the disk

gravitational pull. We study two cases. One where we take into account the full disk to

calculate the planet’s acceleration, and another case where material from the Hill sphere

is excluded from this calculation.
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Figure 3.3: Surface density after 500 orbits for ǫ = 0.3 (left) and ǫ = 0.06 (right). Initial densities

are Σ0 = 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3 and 3 × 10−3.

Figure 3.6 shows the evolution of the cumulative torque exerted on the planet, for different

values of the surface density. In the left(right) plot, we excluded(included) the Hill sphere

when calculating the acceleration of the planet. Figure 3.7 shows the evolution of the

semi-mayor axis of the planet for the same simulations. When excluding the Hill sphere,

the planets in the most massive disks migrate slower as compared to the planet that is

moving under the influence of the entire disk. The material in the Hill sphere accelerates

the planet inwards towards the central star. For the simulations shown on the plots in the

right side, the planets reach the boundary of the domain in less than 400 orbital periods,

and for the higher density case, the planet migrates 1AU in less than 50 orbital periods.

Some runs are cut before the planet reaches the boundary due to numerical instabilities.

The dependence of the cumulative average torque with respect to the surface density is

shown in Figure 3.8 1. Two analytical estimates for the torque are overplotted. The

first estimate is given by the torque resulting from simply taking the radial velocity of the

planet to be equal to the radial velocity of the viscously evolving disk. This is independent

of surface density. The second estimate is given by a similar migration rate, corrected

by a factor proportional to the ratio of the local disk mass to the planet mass (the B

parameter, see Eq. 3.5). This is a linear function of B.

The migration of the planet never reaches the Σ-independent expression, which means

the radial velocity of the planet is in general not the same as the mean radial velocity

of the gas. For the higher values of the density, the local disk mass is larger than the

planet and the planet migrates slower if one does not include the Hill sphere material in

the torque calculation. The planet in the more massive disk for the case including the

1The value of the torque in this plot corresponds to the cumulative average at the end of the simulation,

averaging the torque only after the first 200 orbits of the planet.
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Figure 3.4: Density after 500 orbits for ǫ = 0.3 (left) and ǫ = 0.06 (right). The initial density is

Σ0 = 5 × 10−4 for both cases.

Hill sphere (Figure 3.8, right plot), migrates significantly faster that the rate given by the

viscous evolution of the disk Γ = − 3
2q

r2νΩpΣ.. The planet reaches the inner boundary of

the computational domain in the first 50 orbits.

3.4.2 Dependence of migration on the power law exponent

We performed simulations testing the dependence of the migration rates on the exponent

of the surface density Σ = Σ0r
−a. In this case the viscosity profile was chosen to be

ν = ν0r
a, (3.11)

so as to produce an approximately constant mass accretion rate through the disk. The

simulations were done for the surface density Σ0 = 1 × 10−4. The power law exponent a

was varied to take values of a = 0, 0.5, 1.0, and 1.5. Figure 3.9 shows the dependence
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Figure 3.5: Dependence of the cumulative average torque on the B = (πr2

pΣ)/Mp parameter

(where Σ=Σ0) for ǫ = 0.3 (left) and ǫ = 0.06 (right). The dashed line shows the analytical expression

Γ = −(3/4)ν0Ωp (Eq. 3.4). The dash-dotted line shows the analytical expression Γ = −(3/2π)ν0ΩpB

(Eq. 3.6).

of the cumulative average torque on a and the density profile after 1500 orbital periods

have elapsed.

We find that the torque is independent of the surface density profile. This is true even as

the planet migrates and changes position radially, thus in principle increasing the surface

density that it ”sees” locally. There was no measurable difference in the torque, either

due to the change in radius during the 1000 orbits evolution, or due to the planet moving

to parts of the disk where the density is higher (a > 0).

3.4.3 Dependence of migration on disk viscosity

To study the dependence of the torque exerted on the planet as a function of viscosity,

we run four different simulations with a flat density profile and different viscosities. The

kinematic viscosity is set to ν = 1×10−6, 1×10−5, 1×10−4 and 1×10−3. The cumulative

torque as a function of time, and viscosity is shown in Figure 3.10. We see that the

expression Γ = − 3
2q

r2νΩpΣ does not correctly match the simulated torque for different

viscosities. For the lowest viscosity ν = 1 × 10−6, the torque is found to be equal to

the case when ν = 1 × 10−5. This means that the code is not capable of handling such

lower viscosities and the limit of the numerical viscosity has been reached. For values

of the viscosity larger than ν = 1 × 10−5, the torques are considerably lower than the

analytical estimate. For ν = 1 × 10−3, the simulated torque is more than one order of

magnitude lower. In this case, the gap depth is only 10% of the initial density, and the

corotation torque is influenced by viscosity. In the case where ν = 1 × 10−4, almost a

full gap is opened, but migration is still slowed down due to the torque exerted by the
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Figure 3.6: Cumulative average torques on the planet for varying surface density, excluding (left)

and including (right) the contribution of the Hill sphere on the orbital evolution. From dark to light

curves, Σ0 = 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3 and 3 × 10−3, respectively.

This corresponds to B = (πr2
p)Σ/Mp = 0.017, 0.035, 0.17, 0.35, 1.76, 3.53 and 10.6.

remaining co-orbital material, since in this case the viscosity is high enough to mantain

the corotation torque unsaturated (see Masset (2002)).

3.4.4 Accretion of gas onto planets

In this section we present results on the accretion rates of gas onto the planet. The planet

mass is the same as in the previous simulations, Mp = 2MJup. The accretion is modelled

by removing a fraction of the mass inside the Hill sphere at each time step. At each

timestep the new density ρ
′

is given by

ρ
′

(r) =

(

1 −
∆t

ta

)

ρ(r). (3.12)

The accreted mass in timestep ∆t is ∆M = (ρ(r)t−1
a ∆t)rdrdφ. The accretion rate for

timestep ∆t is calculated as the accreted mass divided by the timestep ∆M/∆t. The

factor ta represents the accretion timescale in which the Hill sphere is emptied if there

was no replenishing of gas. This is chosen to be ta = 2 inside the inner half of the

Hill sphere (this corresponds to about 0.3 orbital periods at 1AU). The accretion rate

has been shown to be dependent on the accretion radius (the distance from the planet

up to which mass is removed) and on the accretion timescale parameter ta. Tanigawa

and Watanabe (2002) showed that the accretion radius should be small (≈ 0.1rh) and

the accretion timescale should be on the order of the orbital period, in order to obtain

converged results. Because of our lower resolution, we take most of the mass from within
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Figure 3.7: Planet position for varying surface density, excluding (left) and including (right) the

contribution of the Hill sphere on the orbital evolution. From dark to light curves, Σ0 = 5 × 10−6,

1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3 and 3 × 10−3, respectively. This corresponds to

B = (πr2
p)Σ/Mp = 0.017, 0.035, 0.17, 0.35, 1.76, 3.53 and 10.6.

the inner half of the Hill sphere. This prescription has also been used in previous studies

of gas accretion and migration by giant planets (Kley et al., 2001).

Our results are originally in code units. We scale all of the results so that the disk with

Σ0 = 10−4 has a total mass of Mdisk = 0.01Msolar (inside the computational domain). The

resulting disk masses and accretion rates measured in the simulations are shown in Table

3.1. The accretion rate and cumulative mass accreted as a function of time are shown

in Figure 3.11. The resulting mean accretion rates as a function of the B parameter

(B = (πr2
p)Σ/Mp) are shown in Figure 3.12. We find very good agreement with the

expression Ṁ = 3πνΣgap. We stress that the reduced density in the gap must be used

to obtain the correct results for the accretion rate onto the planet. Table 3.1 shows the

growth time τgrow = Mp/Ṁ for the different simulations.

It is interesting to note that for the most massive disk (Σ = 3×10−3), the planet migrates

out of the grid extremely fast in the case where there was no accretion (as is seen in Figure

3.7, right plot). In that case, the entire disk was taken into account in calculating the

acceleration of the planet. The simulations with accretion onto the planet use the same

setup. However, we find that the planet in the most massive disk no longer undergoes

runaway migration when it is accreting mass from the disk. Figure 3.13 shows the torques

on the accreting planet. The torques are similar to what was found when excluding the

Hill sphere material in the orbital evolution of the planet. As the planet accretes, it

removes mass from its sphere of influence and for very massive disks this results in a

slower inwards migration. Note that the planet is still migrating faster than the radial

drift rate of the disk.
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Figure 3.8: Dependence of the cumulative average torque on the B = (πr2

pΣ)/Mp parameter,

excluding (left) and including (right) the contribution of the Hill sphere on the orbital evolution.

The dashed line shows the analytical expression Γ = −(3/4)ν0Ωp (Eq. 3.4). The dash-dotted line

shows the analytical expression Γ = −(3/2π)ν0ΩpB (Eq. 3.6).

Σ0 5 × 10−6 1 × 10−5 5 × 10−5 1 × 10−4 5 × 10−4 1 × 10−3 3 × 10−3

Mdisk[code] 1.4 × 10−4 2.8 × 10−4 1.4 × 10−3 2.8 × 10−3 1.4 × 10−2 2.8 × 10−2 8.5 × 10−2

Mdisk[M⊙] 5 × 10−4 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2 1 × 10−1 3 × 10−1

dM/dt[MJup/yr] 9.5 × 10−8 1.9 × 10−7 9.5 × 10−7 1.8 × 10−6 7.5 × 10−6 3.3 × 10−5 6.8 × 10−5

τgrow[yr] 2 × 107 1 × 107 2 × 106 1 × 106 2.6 × 105 6 × 104 3 × 104

Table 3.1: Simulations parameters and measured gas accretion rates onto the planet.

3.4.5 Mass flow through gaps

An interesting question is that of how much gas is able to pass by the planet when there

is a gap present. We calculate this for three different sets of simulations: the case when

the planet is on a fixed orbit (presented in Section 3.4.1.1), the case when the planet is

allowed to migrate (presented in Section 3.4.1.2), and the case when the planet is allowed

to migrate and to accrete gas (presented in Section 3.4.4). For each case, the surface

density varies as before where Σ0 = 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4,

1 × 10−3 and 3 × 10−3.

Figure 3.14 shows the mass flux, calculated as ρ(rp)vr(rp), and averaged in time and in

the azimuthal direction. This represents the mass per unit time that passes through the

orbit of the planet (i.e. per 2πrp). The density ρ has been multiplied by an additional

factor of hrp to compare to the analytical expression involving the surface density. The

blue symbols in Figure 3.14 denote positive values of the mass flux, which means flow of

gas from the inner to the outer disk.

For the fixed orbit case, the net mass flux is negative (radially inwards), and is exactly the
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Figure 3.9: Left: Dependence of the cumulative average torque (taking last value at 1500 orbital

periods) on the surface density exponent a parameter (where Σ=Σ0r
−a and ν = ν0r

a), for two

different values of the surface density constant Σ0. Right: Surface density after 1500 orbital periods

of the planet for each profile.

one expected by the viscous mass accretion rate of the disk, but taking the density at the

gap region. This is equal to ≈ −3πνΣgap. This is expected, since in this case the planet

is not able equilibrate the torque by moving into an equilibrium position with respect to

the disk.

For the case where the planet is allowed to move radially according to the disk torques,

the net mass flow across the gap is now positive, which means that gas is flowing from

the inner to the outer disk. In this case, the planet is now migrating faster than the gas is

accreting through the disk. It is interesting that in the cases with very fast migration (for

the highest Σ), gas flows by the planet at a rate where the mass flux is almost two orders

of magnitude higher than the inwards accreting flow of the disk. The faster the planet

migrates, the larger the mass flux, hence the larger negative torque on the planet due

to passing by fluid elements. This is a runaway process that produces the fast migrator

discussed in Section 3.4.1.2.

For the case where the planet is moving and accreting gas, we find a similar behavior as

the non-accreting case, except that the outwards mass flux through the planet is reduced.

Additionally we find that there is no runaway migration if the planet is allowed to accrete

gas from the disk, since the Hill sphere is depleted of gas and doesn’t contribute the same

amount of torque. In this case is possible that a fraction of the fluid that previously

passed by the planet is now accreted as it moves into the Hill sphere.
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Figure 3.10: Left: Cumulative average torques on the planet for varying viscosity (ν = 1 × 10−6,

1 × 10−5, 1 × 10−4 and 1 × 10−3). Right: Torques vs kinematic viscosity ν.

3.5 Discussion and conclusions

We have studied the migration of giant planets that open a gap in viscous disks. As a

condition in all the simulations, the disk mass accretion rate is constant and is radially

uniform. This implies that if Σ = Σ0r
−a, then ν = ν0r

a. We have performed simulations

studying the dependence of migration and torques on variables like the surface density,

density profile, viscosity, acceleration terms and gravitational softening. Additionally, we

study the mass accretion rates of gas onto the planet purely in the phase when the gap

has been opened.

In the case of planets migrating in very massive disks, where the local disk mass is

around 10 times the planet mass, runaway inwards migration takes place due to corotation

torques. In this case, the material left in the gap is still comparable to the planet mass

and will influence migration critically. This scenario has been discussed by Masset and

Papaloizou (2003); Pepliński et al. (2008). Lin and Papaloizou (2010) also studied fast

inwards migration of Jupiters and Saturns in low viscosity disks. In their simulations,

the planet scatters large vortices formed in the disk, losing angular momentum in the

process. However, in out simulations we find that no vortices are excited. The fast inwards

migration instead relates to the large amount of material left in the corotation region, even

after 500 orbital periods. The material that originally performs closed horshoe orbits is

forced instead to follow an open orbit from the inner to the outer disk, transferring angular

momentum as it passes by the planet. This is a runaway process that was described by

Masset and Papaloizou (2003). Our simulations with h = 0.05 and the most massive

density Σ0 = 3 × 10−3 fall within the range where runaway migration is expected. We

also find that performing this simulation with a fixed orbit planet or neglecting the Hill
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Figure 3.11: Left: Accretion rate of gas onto the planet for different disk surface densities. Right:

Cumulative mass accreted by the planet. From dark to light curves, Σ0 = 5 × 10−6, 1 × 10−5,

5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3 and 3 × 10−3, respectively.
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Figure 3.12: Accretion rates onto the planet as a function of surface density.

sphere material, does not capture this effect of runaway migration.

The material inside the Hill sphere affects the migration of planets in massive disks con-

siderably. If the Hill sphere is neglected in the calculation of the torque, planets in more
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Figure 3.13: Left: Cumulative torques vs time for different densities. From dark to light curves,

Σ0 = 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3 and 3 × 10−3, respectively. Right:

Dependence of the cumulative average torque on the B = (πr2

pΣ)/Mp parameter for an accreting

planet. The dashed line shows the analytical expression Γ = −(3/4)ν0Ωp (Eq. 3.4). The dash-dotted

line shows the analytical expression Γ = −(3/2π)ν0ΩpB (Eq. 3.6).

massive disks will migrate slower and the torques will be approximately independent of

Σ.

Migration rates are also independent of the density profile in the disk. The torques exerted

on the planet are constant as a function of surface density exponent up to a = 1.5. It is

not clear if this remains valid for very massive disks. The variation of the torque with

disk viscosity showed interesting behavior. For larger viscosities, the torque is no longer

given by the analytical estimate that is linear with respect to viscosity. The offset of the

simulated torque from the formula grows with larger viscosities. The slower migration in

highly viscous disks has been observed also by Crida and Morbidelli (2007). This can be

an effect of the corotation torque exerted by material left in the gap. At high viscosities,

the corotation torque can be unsaturated and the material orbiting in horseshoe orbits

around corotation exerts a positive torque on the planet, therefore slowing migration down

(Masset, 2002; Paardekooper and Papaloizou, 2009a).

During the gap phase of the evolution, planets accrete at a fraction of the viscous mass

accretion rate, corrected to take into account the density inside the gap. This is approx-

imately given by Ṁp = 3πνΣgap ≈ (0.1)3πνΣ0. It is interesting that for the accreting

planet in the most massive disk, we find no runway migration, as opposed to the case

where accretion is switched off.

The estimations of the Type II torque dependence on a wide range of parameters is usefull

in the modeling of synthetic planet populations that can explain and predict the observed

population of extrasolar planets, specially massive planets in the gap opening regime.
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Figure 3.14: Mass flux ρ(rp)vr(rp), averaged in time and in the azimuthal direction at the position

of the planet. The mass flux is shown for simulations with a fixed orbit planet (stars), a free moving

planet (diamonds) and a free moving and accreting planet (crosses). The blue symbols denote

positive values of the mass flux.

35

/home/uribe/PhD/Thesis/figures/paper2/massf_vs_sigma.eps


3. TYPE II MIGRATION AND GAS ACCRETION ONTO PLANETS
IN DISKS WITH UNIFORM CONSTANT MASS ACCRETION

36



4

3D MHD Simulations of Planet

Migration in Turbulent Stratified

Disks

We performed 3D MHD simulations of planet migration in stratified disks using the

Godunov code PLUTO, where the disk is turbulent due to the magnetorotational

instability. We study the migration for planets with different planet-star mass ratios

q = Mp/Ms. In agreement with previous studies, for the low-mass planet cases

(q = 5 × 10−6 and 10−5), migration is dominated by random fluctuations in the

torque. For a Jupiter-mass planet (q = Mp/Ms = 10−3 for Ms = 1M⊙), we find

a reduction of the magnetic stress inside the orbit of the planet and around the

gap region. After an initial stage where the torque on the planet is positive, it

reverses and we recover migration rates similar to those found in disks where the

turbulent viscosity is modelled by an α viscosity. For the intermediate-mass planets

(q = 5 × 10−5, 10−4 and 2 × 10−4) we find a new and so far unexpected behavior.

In some cases they experience sustained and systematic outwards migration for the

entire duration of the simulation. For this case, the horseshoe region is resolved

and torques coming from the corotation region can remain unsaturated due to the

stresses in the disk. These stresses are generated directly by the magnetic field. The

magnitude of the horseshoe drag can overcome the negative Lindblad contribution

when the local surface density profile is flat or increasing outwards, which we see

in certain locations in our simulations due to the presence of a zonal flow. The

intermediate-mass planet is migrating radially outwards in locations where there is

a positive gradient of a pressure bump (zonal flow) a.

aA version of this chapter has been published in The Astrophysical Journal, 736, 85 (2011) (Uribe

et al., 2011).
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4. 3D MHD SIMULATIONS OF PLANET MIGRATION IN
TURBULENT STRATIFIED DISKS

4.1 Introduction

Understanding why and how fast planets migrate is fundamental to explaining the ob-

served distribution of exoplanets and constraining planet formation timescales and ef-

ficiencies (Alibert et al., 2005). The basic principle behind the migration of planets in

protoplanetary disks is the transfer of angular momentum between the planet and its disk.

This transport process occurs at Lindblad resonances and, in a locally isothermal disk,

typically leads to fast inwards migration. (Goldreich and Tremaine, 1980; Papaloizou

and Lin, 1984; Tanaka et al., 2002; Ward, 1986). This is the standard type I migration

scenario which applies to low- to intermediate-mass planets where the specific torque is a

linear function of the planet mass (Ward, 1997).

If the planet is massive enough (the mass depending on the viscosity and the pressure scale

height), the tidal forces on the disk can eventually overcome the pressure gradient and the

viscous transport, causing gap opening around the planet orbit. This migration regime,

referred to as type II, in which the planet-disk interaction can no longer be described

by linear perturbation theory, is then conceptually very different from the type I regime.

Due to the gap opening, it is possible for the torques on the planet to cancel in such a

way that the evolution of the planet’s position is determined by the viscous transport of

gas in the disk, making the planet move with the disk on viscous timescales (Bate et al.,

2003; Ward, 1997).

Current numerical and analytical calculations estimate migration timescales to be a small

fraction of the expected disk lifetime, which creates a problem for the survival of planetary

cores. Gas planet cores need to reach a critical mass before the onset of runaway gas

accretion (Ida and Lin, 2008). It is well established that planet population synthesis

models together with giant planet formation models require a much less efficient type

I migration to reproduce the observed distribution of exoplanets (Alibert et al., 2005;

Benz et al., 2008; Ida and Lin, 2004, 2007; Mordasini et al., 2009b; Trilling et al., 2002).

Nevertheless, core survival mechanisms have also been proposed to solve the timescale

problem without resorting to an artificially reduced Type I migration rate (Fromang

et al., 2005; Terquem, 2003; Thommes and Murray, 2006).

Deviations from linear theory have been found in a number of three dimensional calcula-

tions. Masset (2002) and D’Angelo et al. (2003b) and later Masset et al. (2006a) found

that for intermediate-mass planets (around Mp = 1× 10−4Ms), the torques on the planet

can be significantly lower and even reverse sign when the local surface density profile of

the disk is flatter (Σ ∼ rα with α = 0 − 0.5) than in the usually assumed Minimum

Mass Solar Nebula (MMSN) model Σ ∼ r−1.5. This is found for a certain range of the

disk viscosity. In this case, the torques from the corotation region can become impor-

tant. The fluid elements that are librating (moving in horseshoe orbits in the corotation

region) orbit on a U-turn trajectory at trailing and leading sides of the planet. These
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fluid elements exert a torque on the planet at each U-turn, which is a symmetric effect

on both sides of the planet in an inviscid disk; therefore there is no net torque coming

from this region after a few librating periods. This is referred to as the ”saturation” of

the corotation torque. In the presence of viscosity, if the viscous crossing timescale across

the horseshoe region of accreting disk material is smaller than the libration timescale, the

torques exerted by fluid elements around the U-turn are not symmetric at each side of

the planet, creating a net positive torque that can be sustained. This is refereed to as

the ”unsaturated” corotation torque, and it can depend on the surface density and on the

width of the horseshoe region that in turn depends on the planet mass (Ward, 1992).

So far most numerical studies of migration and/or gap formation have concentrated on the

quasi-laminar disk case, where Navier-Stokes shear viscosity is included in order to model

the viscous stresses resulting from including turbulence in the disk (e.g. Bate et al. (2003);

Bryden et al. (1999); Crida et al. (2006); de Val-Borro et al. (2006); Nelson et al. (2000);

Papaloizou and Larwood (2000) and many more). There has been strong interest in sim-

ulating planet-disk interactions in turbulent disks, where the turbulence is magnetically

generated by the magneto-rotational instability (MRI) (Balbus and Hawley, 1991, 1998).

Only ideal MHD has been considered so far in global simulations. The disk is assumed to

be fully ionized and the magnetic diffusivity is negligible. Winters et al. (2003) looked at

gap formation by intermediate- and large-mass planets in turbulent unstratified disks and

the local internal stresses around the planet. In the MHD case, they found the gap to be

shallower and wider compared to the laminar HD case; the Maxwell stresses in the disk

dropped in the vicinity of the planet’s orbit. Papaloizou and Nelson (2003) performed

a comprehensive study of protoplanets embedded in MHD-turbulent unstratified disks.

They found that for low mass planets, Type I migration is no longer effective due to large

fluctuations in the torque. No convergence was reached due to fluctuations of the torque

on timescales longer than the orbital period and short simulation timescales. However,

the torques for planets more massive than 30M⊕ = 0.1MJup were found to converge to

the standard Type I migration torques after long-time averaging (Nelson and Papaloizou,

2003, 2004; Papaloizou et al., 2004). For low-mass protoplanets, Nelson (2005) studied the

long-term evolution of the orbital elements and particularly the excitation of eccentric-

ity by turbulent fluctuations. The evolution of the orbital elements of particles in MHD

turbulence has also been studied using shearing unstratified boxes (Yang et al., 2009)

and stratified boxes including a dead zone (Oishi et al., 2007). To avoid the expensive

MHD simulations, other approaches have been taken, such as modeling the turbulence as

a time and space varying forcing in a laminar disk model (Laughlin et al., 2004). In this

case, depending on the amplitude of the forcing, type I migration can be overcome by

the random fluctuations in the torque, and random walk motion will be superimposed on

the smooth inward migration. Baruteau and Lin (2010) used a similar turbulent forcing

model and studied the unsaturation of the corotation torque due to turbulence. Depend-
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ing on the amplitude of the turbulence, the corotation torque is found to be unsaturated

to a certain level, making the total torque increase accordingly (become less negative),

slowing down inwards migration. Other approaches include the analytical description of

stochastic migration of low-mass planets using a diffusion-advection equation (Adams and

Bloch, 2009; Johnson et al., 2006) and coupling N-body simulations with a random forcing

to study the accretion and formation of low-mass planets (Ogihara et al., 2007). Recently,

Nelson and Gressel (2010) examined the velocity dispersion of 1 m to 10 km planetesimals

embedded in a turbulent disk, using 3D MHD simulations and neglecting stratification,

and characterized the stochastic gravitational perturbations felt by planetesimals due to

MHD turbulence.

In this chapter, we study planet migration in stratified 3D MHD-turbulent disks for planet

masses in the Type I and II mass range. In Section 4.2 we describe the numerical setup of

our simulations, and the initial conditions for the disk and the magnetic field, before the

addition of a planet. In section 4.3 we present the results of our simulations and finally

in section 4.4 we discuss our results.

4.2 Simulation Setup

Simulations where performed using the finite volume fluid dynamics code PLUTO (Mignone

et al., 2007). In the code, time stepping is done using a second order Runge Kutta scheme,

while the spatial integration is performed using linear interpolation through the second

order TVD scheme. The Riemann fluxes are computed using the HLLC and HLLD

solvers for the HD and MHD cases, respectively. The code uses the Constrained Trans-

port method for preserving a divergence-free magnetic field (Gardiner and Stone, 2005).

The numerical setup for the MHD case follows the setup presented in (Flock et al., 2010).

The MHD equations in the isothermal approximation (no energy equation) are given by

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.1)

∂v

∂t
+ (v · ∇)v +

1

ρ
B× (∇× B) = −

1

ρ
∇P −∇Φg (4.2)

∂B

∂t
+ B(∇ · v) − (B · ∇)v + (v · ∇)B = 0 (4.3)

The potential Φg includes contributions from the star and the planet. We work in spher-

ical coordinates (r, θ, φ), where the computational domain is given by r ∈ [1, 10], θ ∈

[π/2−0.3, π/2 + 0.3] and φ ∈ [0, 2π]. The grid resolution is (Nr, Nθ, Nφ) = (256, 128, 256)

and it is centered in the center of mass of the planet-star system. The boundary con-

ditions for the velocities and magnetic field are periodic in the vertical (θ boundary)

and azimuthal directions and reflective in the radial direction, except for the transverse
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magnetic field component, which reverses its sign at the radial boundary. Buffer zones

are defined at the radial boundaries to avoid boundary effects, where for 1 < r < 2 the

magnetic resistivity is given by η = 2 × 10−4(2 − r) and for 9 < r < 10 the resistivity is

η = 1 × 10−4(r − 9).

4.2.1 Disk and Planet Models

As an initial condition we take a gas disk in sub-Keplerian rotation around a solar mass

star. The azimuthal velocity is given by

vφ =
√

v2
k − c2

s(a − 2b), (4.4)

where vk is the Keplerian velocity and a = 3/2 and b = 0.5 are the exponents of the radial

power law distribution of the density ρ ∝ r−a and sound speed cs = c0(r sin θ)−b. The

initial density distribution is given by

ρ(r, θ) = (r sin θ)−3/2 exp

(

sin θ − 1

c2
0

)

. (4.5)

The disk is described by a locally isothermal equation of state P = c2
sρ. The ratio of the

pressure scale height h to the radial coordinate of the disk is taken to be a constant such

that h = H/(r sin θ) = 0.07.

The gravitational potential of the planet is given by a softened point-mass potential

Φp(r) = −
GM

(|r − rp|2 + ǫ2)1/2
(4.6)

where ǫ is the softening parameter, needed to avoid numerical divergence near the position

of the planet and

|rp − r|2 = r2
p + r2 − 2rpr(sin θp sin θ cos(φp − φ) + cos θp cos θ) (4.7)

is the distance between the planet and a gas particle in the disk. For all the simulations

ǫ is set to be a fraction of the Hill radius ǫ = krp(Mp/3)1/3 with k < 0.5. Table 4.1 shows

the parameters of our simulations. Distances are given in units of r0 = 1AU , density

is given in units of ρ0 = 2.6 × 10−10gcm−3, and velocity is given in units of Keplerian

speed at 1AU , v0 = vk(1AU). The surface density have been scaled such that the total

disk mass is 0.01Mstar. Magnetic fields are given in units of B0 =
√

4πρ0v2
0. In the cases

where the planet is not on a fixed orbit (runs see Table 4.1), the equations of motion are

integrated with a simple leap frog integrator. For the calculation of the torque, we include
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Name q = Mp/M⋆ ǫ(rh) rp Fixed orbit Run time (local orbits)

R0 Massless 0.3 3.3 Yes 130

R1 5 × 10−6 0.3 5.0 No 85

R2 10−5 0.3 5.0 No 140

R3 10−5 0.1 3.3 Yes 89

R4 5 × 10−5 0.3 5.0 No 90

R5 10−4 0.3 5.0 No 100

R6 10−4 0.1 3.3 Yes 135

R7 10−4 0.3 4.0 No 85

R8 2 × 10−4 0.3 5.0 No 95

R9 10−3 0.3 5.0 No 100

R10 (HD) 10−3 0.3 5.0 No 100

Table 4.1: Simulation Parameters

the entire disk in the integration (without Hill sphere tapering, except for simulation R9).

The components of the torque vector in cartesian coordinates are given by

Γi = GMp

∫

ρ(r)
(rp × r)i

(|r− rp|2 + ǫ2)3/2
dV, (4.8)

where i ∈ {x, y, z} is any of the three cartesian indices and (rp × r)i = (rp × r) · êi,

with êi being the cartesian unit vectors. Of course, for studying migration, we are mostly

interested in the z component of the torque vector. Specific torques are given in units of

v2
k(1AU).

4.2.2 Magnetic Field Configuration

Before introducing the planet in the simulations, a weak toroidal magnetic field is imposed

on the disk given by

(Br, Bθ, Bφ) = (0, 0, 2p/25), (4.9)

where p is the initial thermal pressure. This gives an initial azimuthal field with constant

plasma beta β = 25. The field is imposed in a subset of the full computational domain

given by 2 < r < 9 and π/2 − 0.07 < θ < π/2 + 0.07. The simulation is then followed

until turbulence generated by the MRI has reached a saturated state. After this stage, we

reset the density to the initial condition. This is the initial state in which the potential

of the planet is incorporated and where all our runs start. The azimuthally, vertically

and time averaged value of the effective α parameter is shown in Figure 4.1. However,

the α stress is not constant throughout the vertical dimension. The upper layers of the

disk are the most active. Figure 4.2 shows the time evolution of Bφ, B2/B2
0 and α for
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simulation R0 (see Table 4.1) that does not include a planet. The top figure shows the

characteristic butterfly diagram for the azimuthal component of the magnetic field in a

turbulent stratified disk. 1
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Figure 4.1: Initial radial distribution of the time, azimuthally and vertically averaged stress pa-

rameter (before the addition of the potential of the planet). The dashed and dashed-dot lines show

the Reynolds TRey and Maxwell TMax stresses respectively, normalized by the initial pressure. The

solid line shows the total effective α parameter.

4.2.2.1 Zonal flows and pressure bumps

The time-averaged thermal and magnetic pressure and the perturbed (with respect to Ke-

plerian) azimuthal velocity are plotted in Figure 4.3 for run R0. We plot these quantities

in the mid-plane of the disk, and one scale height above the mid-plane, for a simulation

without a planet (or, equivalently, a massless planet). The radial gradient of the pressure

has been removed and the pressure is averaged in the azimuthal direction. As expected

of zonal flows, we see pressure bumps that correlate with bumps in perturbed azimuthal

velocity, only phase shifted by one quarter of a period (Johansen et al., 2009). Bumps in

thermal pressure correlate with drops in magnetic pressure, a behavior that is seen more

1A more complete description of the type of model used in this chapter and a detailed analysis of the MRI,

magnetic fields and turbulent spectra can be found in Flock et al. (2011).
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Figure 4.2: Time evolution of Bφ, B2/B2

0 and α for a run without a planet. The dashed and

dashed-dotted lines show the Reynolds TRey and Maxwell TMax stresses respectively, normalized to

the initial pressure. The solid line shows the total effective α parameter.

clearly above the mid-plane, since the MRI is not resolved in the mid-plane of the disk.

Notice also that in the velocity peaks, the azimuthal velocity exceeds the Keplerian value

at some radial locations. These structure in the pressure and the velocity lived for the en-

tire duration of our simulations, around 1000 inner orbits. These ”zonal flows” result from

an inverse cascade of kinetic energy, e.g. a transport of energy from the MRI unstable

medium scales, to the largest scales, which is very typical in accretion disks simulations

(see for instance Dzyurkevich et al. (2010) and Lyra et al. (2008)).

4.3 Results

4.3.1 Disk torques and migration

Table 4.1 summarizes the computational time in local planet orbits for each of the sim-

ulations. The torque was calculated by taking into account the entire disk and its value
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Figure 4.3: Top figure: Time-averaged thermal and magnetic pressure in the mid-plane (black

line) and one scale height above the mid-plane (red line). The profiles have been normalized to take

out the radial variation. Bottom figure: Azimuthal velocity perturbation (with respect to Keplerian

speed) in the mid-plane (black line) and one scale height above the mid-plane (red line). This is

from a simulation with no planet included.

was saved at every time step. We calculated the cumulative average specific torque as

Γn =
1

Tn

Σn
k=1Γk∆tk, (4.10)

where Γn is the cumulative average torque up to timestep n and Tn is the total time until

timestep n.

4.3.1.1 Low Mass Planets (q = 5 × 10−6 and q = 1 × 10−5)

Figure 4.4 summarizes the density structure of simulations R2, R5 and R9. Runs R1

(q = 5 × 10−6), R2 and R3 (q = 10−5) shows no significant perturbation of the density
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by the planet, and no spiral arms are seen. The turbulent perturbations dominate in this

case. Figure 4.5 shows the torque cumulative average torque as a function of local orbits

for run R1. Figure 4.6 shows the torque for simulations R2 and R3. The fluctuations in

the torque created by the perturbations in the density can, in both cases, be larger than

the mean torque expected for standard Type I migration in a laminar disk. Comparing

the torque for the planet at different positions in the disk, we see that the local (in time)

evolution depends on the location of the planet. Random variations in the torque can

be an order of magnitude larger than torques coming from the Lindblad resonances, in

addition to the possibility that the spiral waves excited at Lindblad resonances are partly

or totally suppressed by density fluctuations coming from the turbulence, such that the

magnitude of this torque can be reduced. For the low-mass planet simulations, we find

no convergence of the torque on timescale of the runs. For a run with a massless planet

orbitting at rp = 3.3, a gaussian fit of the time distribution of the torque gives a standard

deviation of σ ≈ 1.5e − 5. We also calculate the auto-correlation function of the torque

and take the correlation time to be given by τc =
∫ tmax

0
ACF (τ)dτ . This gives τc ≈ 2

local orbits, while the first and second zero crossing of the torque ACF occur at 0.2 and

0.8 local orbits. 1 This is in agreement with results by Nelson (2005) and Fromang and

Nelson (2009) and with estimates used by Baruteau and Lin (2010) that are based in

previous MHD simulations of turbulent low-mass planet migration. We also calculate the

power spectrum of the mid-plane density (see Eq. 3 in Baruteau and Lin (2010)). This

is shown in Figure 4.7 and we compare our results from MHD simulations to Figure 1 of

Baruteau and Lin (2010), where the spectrum in the result of the forcing model for the

turbulence with α ∼ 10−3. This comparison is valuable, since ultimately, a more complete

parameter study migration and turbulence will have to be studied in models with forced

turbulence. For this α value, in our simulations we find that the larger scales carry more

power than in the random forcing model, while the two spectrum agree for smaller scales

for the case that includes the modes with m > 6. The higher power at larger scales can

result from the higher compressibility of stratified disks, especially at large scales, as a

vertically stratified disk can respond to compression with vertical expansion. However,

the overall shape of the spectrum of the MHD simulation agrees better with the HD

simulation without the m > 6 modes included. Therefore with the proper scaling of

the amplitude of the turbulence, and a cutoff of these modes, these simulations could

reproduce the MHD spectrum. Another possibility is that the power at the small scales

in the MHD simulation is lower due to lacking resolution at these scales. Ultimately,

there needs to be a physical motivation for the cutoff of the turbulent forcing potential

1The calculation of the torque standard deviation and the torque correlation time is done as an averaging over

a set of massless particles that sample the torque at different locations in the disk. This provides a characterization

of the stochastic torque in an unperturbed disk. A more detailed description of this topic is presented in Appendix

A
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after the first few modes, if this is indeed the model that better matches the global MHD

simulations.
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Figure 4.4: Logarithm of the disk density in the mid plane (top row) and in an azimuthal cut at

the position of the planet (bottom row) for runs R2 (left, q = 10−5), R5 (middle, q = 10−4) and R9

(right, q = 10−3).

4.3.1.2 Intermediate Mass Planets (q = 5 × 10−5, q = 1 × 10−4 and q = 2 × 10−4)

Figure 4.4 shows the log density for run R5. For this simulation (q = 10−4), spiral arms

are visible and their amplitude is comparable (or larger closer to the planet) to that of

the perturbations generated by the turbulence. Figure 4.8 shows the cumulative average

specific torque for run R4 and Figure 4.9 shows the torque for simulations R5 and R6. We

see that in these three simulations there is an initial stage where the torque is negative

followed by a reversal of the direction of the migration where the torque becomes positive

and takes a defined value for the rest of the simulation. This happens at different times

when we compare two different positions of the planet in the disk (runs R5 and R6).

Instead of a random walk variation in semi major axis superimposed on smooth inwards

migration, we find that planets of around 30 Earth masses undergo systematic outward

migration. This outward migration is sustained for the total duration of the simulation.

The simulation times for runs R5 and R6 are around 600 to 1000 orbits at the inner

boundary of the disk (1AU). During this time, the density profile in the disk can evolve
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Figure 4.5: Cumulative average torque for run R1 for q = 5 × 10−6. The red and blue lines show

the torque exerted by the inner and outer disk respectively.
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Figure 4.6: Cumulative average torque for runs R2 and R3, for q = 10−5,where the planet is located

at rp = 3.3 and rp = 5.0 respectively. The red and blue lines show the torque exerted by the inner

and outer disk, respectively.
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Figure 4.7: Power spectrum of the surface density, averaged in time and azimuthally, from MHD

simulation (stars). We compare with the power spectrum that results from the turbulent model of

Baruteau and Lin (2010) used in HD simulations, with (triangles) and without (crosses) the cutoff

of the modes with m > 6, and with effective α ∼ 10−3.

significantly from the initial state, and although the surface density profile can still be

fitted by the initial profile (Σ ∝ r−1/2), there can be changes in the local profile at the

position of the planet and accumulation of mass at the disk inside the planet’s orbit due

to turbulent stresses. However, for both simulations, the torque is reversed before there is

a significant accumulation of mass at the inner boundary and it converges to a constant

value for the remaining simulation time. The torque for run R8 is shown in Figure 4.11.

In this run the planet mass (q = 2 × 10−4) is now able to modify the density profile

around its orbit, and opens a partial gap, which affects the convergence of the torque. We

don’t find convergence for the simulation time, but there is still a tendency for outwards

migration.

Unlike the simulations for the small-mass planets (R1, R2 and R3), for the simulations

R4, R5 and R6, the hill radius of the planet and the horseshoe region are resolved (by ap-

proximately 4, 4 and 7 grid cells per half width respectively). In this case, the component

of the torque originating from the horseshoe region can dominate if there is a mechanism

for keeping the corotation torque unsaturated and the local density profile differs from
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the global profile, possibly increasing outwards, such that the corotation torque can be

larger than the Lindblad torque, making the total torque positive. There are special lo-

cations in the disk where is possible for the surface density to increase outwards, due to

the appearance of zonal flows, as seen in Section 4.2.2.1.

Comparing the torque values of the simulations with analytical estimates by Paardekooper

and Papaloizou (2009a) or Masset et al. (2006a) is not straightforward. First, the un-

dergoing evolution of the disk can make the surface density profile at the position of the

planet and the effective stress resulting from turbulence vary in time, therefore one torque

estimate does not apply at all times. On the other hand, the value of the horseshoe drag

is very sensitive to the structure of the horseshoe region, and the estimate used in the

analytical calculations is based on a 2D model of the flow around the planet. In our case,

the horseshoe region is distorted, making the half-width difficult to define. Addition-

ally, the inclusion of magnetic fields can introduce new magnetic resonances that affect

the total torque, as seen by Terquem (2003) and Fromang et al. (2005) for a uniform

non-turbulent field. For the sake of the comparison and simplicity, we discard this type

of contribution. We attempt a comparison with the analytical estimates for the torque,

including a contribution of the horseshoe drag. We take the total torque to be composed

of the Lindblad torque in a 3D locally isothermal disk (Tanaka et al., 2002)

ΓLind = −(2.340 − 0.099a + 0.418b)

(

q

hp

)2

Σpr
4
pΩ2

p, (4.11)

plus the fully unsaturated non-linear horseshoe drag1 (Paardekooper and Papaloizou,

2009a)

ΓHS =
3

4

(

3

2
− a

)

x4
sΣpr

4
pΩ2

p. (4.12)

Here Ωp is the angular frequency of the planet and Σp is the surface density at the position

of the planet. The cumulative average torque at the end of the simulation for run R5

is 2.0 × 10−5 and we take the half width of the horseshoe region to be xs = 0.25, as

is measured in our simulations (calculated from the analytical expression, xs = 0.24).

Assuming the global surface density profile Σ ∝ r−d, with d = 0.5, will always give a

negative torque. However, the torque always becomes positive for d = 0.3 and matches

the simulation value for d = −1.5, which is comparable to the local profile observed in

the simulations (see middle plot in Figure 4.12). We should also note that already a

”close-to-flat” profile can significantly reduce the negative torque or change the sign of

the torque. For simulation R6, the cumulative average torque at the end of the simulation

1We take the expression for an isothermal disk, in the zero gravitational softening limit.
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is 3.7 × 10−6 and the measured half width of the horseshoe region is xs = 0.16. In this

case, a local profile of d = 0.1 is enough to obtain a positive torque, while a local profile

of d = −0.4 matches the value of the torque obtained in the simulation. However for this

simulation, we only observe a flatter profile (see Figure 4.12). This discrepancy can be due

to the fact that these values are very sensitive to the value of xs, since the horseshoe drag

scales as x4
s, and we stress that the streamlines can be very distorted, therefore making

the estimation of xs difficult. This is a critical parameter, and we find that an increase

of 1% to 5% in the simulation value of xs with respect to the analytical estimation is

enough to reproduce the observed positive torques. Therefore, if one assumes that the

observed torque is composed of the wave torque plus the corotation torque and neglects

any additional effect, we see that the corotation torque is crucial and able to cancel out

or overcome the negative Lindblad contribution for standard disk parameters.

To further test the effect of the local density profile, we performed a simulation with

q = 10−4, for the planet located at rp = 4.0 (run R7, Figure 4.10), initially at the right

side of a pressure bump (where pressure and density decrease with radius). In this case,

the cumulative average torque does not clearly converge, and we do not see systematic

outwards migration, as the cumulative average torque approaches zero. However there is

still a significant reduction of the torque as compared to the Type I Lindblad torque, which

cannot be explained only in terms of a locally decreasing radial density profile. This result

suggest that even in the absence of a pressure bump, inwards migration can be significantly

slowed down for this planet mass. We note also that we used the expression for the

horseshoe drag valid for an isothermal disk, so that there is an additional contribution

due to the locally isothermal profile that we did not take into account.

To see if the transport of mass in the disk is enough to sustain the unsaturated torque,

we take the expression for the minimal α to mantain the unsaturated corotation torque

(Masset et al., 2006a)

αm = 0.035q3/2h−7/2, (4.13)

we obtain αm = 0.0003 for q = 10−4, which is always smaller than what we observe in our

simulations1 (comparing with the volume average α). For run R6 we also observed that

in comparison to a purely HD laminar run, in which the planet is able to open a partial

gap in the disk, the gap in this case is less deep that in the HD case, and also wider,

compared to the narrower gap seen in the laminar simulation. For run R5, there was no

gap opening neither in the laminar nor the turbulent runs as the gap opening criterion is

not satisfied. We also find that the stresses in the disk are affected by the presence of the

planet; the volume averaged stress decreases as the mass of the planet is increased (see

top and middle plots in Figure 4.13), which might be a result of numerical dissipation

1However, this expression for αm is derived using a 2D model of the HS region, which determines the viscous

crossing time across the region, the libration time and the U-turn time.

51



4. 3D MHD SIMULATIONS OF PLANET MIGRATION IN
TURBULENT STRATIFIED DISKS

due to the limited resolution.
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Figure 4.8: Cumulative average torque for run R4 for q = 5 × 10−5. The red and blue lines show

the torque exerted by the inner and outer disk respectively.

4.3.1.3 Large Mass Planet (q = 10−3)

The density structure and spiral arms induced by the Jupiter mass planet in run R9

(q = 10−3) dominate over the turbulent perturbations and influences the entire disk.

Figure 4.14 shows the cumulative average torque. We have excluded the torques coming

from the Hill sphere for the calculation of the torque, to exclude material bound to

the planet which is not properly simulated at this resolution or without including other

relevant effects. For these simulations, initially we see the same trend as for runs R5

and R6, where the torque becomes positive, however this is not sustained for this planet

mass as torques coming from the corotation region are suppressed due to gap opening (see

bottom plot in Figure 4.12 and the right panels in Figure 4.4). Additionally, the planet

modifies the stresses in the disk, and therefore, the accretion behavior, as can be seen

in the bottom plot in Figure 4.13, that shows the evolution of the stresses for run R9.

In this case, the α stress is progressively suppressed and the Reynolds stress dominates

the total stress. The reduction of the Maxwell stress is seen mostly in the part of the

52

/home/uribe/PhD/Thesis/figures/paper1/f8.eps


4.3 Results

0 20 40 60 80 100 120
Planet Orbits

-5•10-5

0

5•10-5

C
um

ul
at

iv
e 

A
ve

ra
ge

 T
or

qu
e/

q 
[v

k2 
(1

A
U

)]

0 20 40 60 80
Planet Orbits

-5•10-5

0

5•10-5

C
um

ul
at

iv
e 

A
ve

ra
ge

 T
or

qu
e/

q 
[v

k2 
(1

A
U

)]

Figure 4.9: Cumulative average torque for runs R5 and R6, for q = 10−4, where the planet is

located at rp = 3.3 and rp = 5.0 respectively. The red and blue lines show the torque exerted by the

inner and outer disk, respectively.

disk inside the planet’s orbit and in the gap region (see Figure 4.15). Is possible that the

magnatic stress is suppressed in the gap region due to the modified azimuthal velocity

near the planet, which can suppress the MRI locally. Notice that for this run, the density

has a more laminar appearance (see Figure 4.4), consistent with a reduction of the stress

due to the presence of the planet. This could also be a numerical effect that appears at

this resolution, so further studies at higher resolution are needed.

In Figure 4.16 we compare the gap opened by the Jupiter mass planet in a magnetized

disk (run R9) with an equivalent HD 3D simulation with α viscosity where α = 2 × 10−3

(run R10) and stratification. The time of the snapshots is 100 local orbits. The gap for

the hydro case is narrower and slightly deeper than the gap formed in the magnetized

turbulent disk. However the gap is not completely cleaned after this time. We observed

the same characteristics for lower-mass planets that open only a partial gap in the disk.

Winters et al. (2003) studied a similar case of gap opening, but in a unstratified MHD-

turbulent disk. In agreement with our results, they found a wider gap when the disk is

turbulent, and larger transport of mass from the outer to the inner disk (see our Figure

4.16). In contrast to our findings, they find a deeper gap in the hydro case. This can be

due to a different treatment of the gap opening criteria, since the planet mass in their

calculations does not satisfy the viscous criterion. In terms of the reduction of the stresses

around the planet, we find agreement with their results.

Nelson and Papaloizou (2003) studied gap opening by a giant planet in an MHD-turbulent

unstratified disk and compared their results with 2D simulations with an α viscosity. They
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Figure 4.10: Cumulative average torque for run R7 for q = 10−4, for the planet located at rp = 4.0,

initially at the right side of a pressure bump. The red and blue lines show the torque exerted by the

inner and outer disk respectively.

found that a run with an equivalent α stress to the turbulent run produced a shallower

gap. This is different to our own results where we found the same gap depth. However,

we should note they only studied how the turbulence affects an already formed gap and

did not observe the depletion of the outer disk. The difference to our simulation results

could also be due to our choice of α in the hydro run. We choose an α matching the

global average of the turbulent runs, but this is a quantity that varies vertically. In a

non-stratified disk simulation, this averaging is not necessary.

4.4 Discussion and conclusions

For simulations R1, R2 and R3, where q = 10−5, during the simulated time, migration was

dominated by random fluctuations in the torque, that can be orders of magnitude larger

that what is expected for the value of the Lindblad or corotation torques for this planet

mass. This is in agreement with simulations by Nelson (2005) of migration of low-mass

protoplanets in cylindrical disk models, where stratification is neglected. It is unclear if

after long term averaging (∼ 1000 orbits), the fluctuations will average out to zero while
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Figure 4.11: Cumulative average torque for run R8 for q = 2× 10−4. The red and blue lines show

the torque exerted by the inner and outer disk respectively.

some component of the systematic torque will remain. Such a calculation is currently

too expensive. It will also be difficult to get a steady state without special prescriptions

for correcting the density, due to the accretion evolution of the disk, in addition to the

decrease in α stress for long simulation times due to the limited resolution. Another

interesting point for further studies is to investigate this type of migration with enough

resolution to resolve the corotation region, to see the impact of the corotation torque

in these cases. However, even if this torque is present and well resolved, its magnitude

would still be small compared to the amplitude of the fluctuations, since ultimately the

torque depends strongly on the width of the corotation region, which approaches zero as

the planet mass approaches zero.

As the planet mass is increased by one order of magnitude to q = 10−4, the hill radius is

now properly resolved and the systematic torque is now large enough to dominate over

the random component of the torque. Outwards migration in a locally isothermal disk

can occur due to the viscosity unsaturating the torque coming from the corotation region

(where the viscous timescale across the horseshoe region is smaller than the libration

timescale), as was found by Masset et al. (2006a) for planets in the intermediate-mass
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Figure 4.12: Surface density at different times in the simulation. Top, middle and bottom plot

show the surface density for runs R2, R5 and R9 respectively. The vertical lines shows the position

of the planet and the extent of the Hill radius.

range. Specifically, a planet with mass ratio q ≈ 10−4 in a disk with h = 0.06 with a flat

surface density profile (d = 0) and an α viscosity was found to be the critical mass for

which the offset from linear theory was the largest. Additionally, a planet mass of q = 10−4

is within the range of masses for which reversal of migration occurs, if one extrapolates

their results to a disk with h = 0.07. However, this is the first study that observes the effect

of the unsaturated corotation torque due to the accretion of mass in the disk provided

directly by turbulence that has been self-generated by the MRI. For runs R4, R5 and R6,

the planet is in locations in the disk where the local surface density profile is either close

to flat or increasing outwards, due to the pressure bumps seen in Section 4.2.2.1. This can

make the contribution of the corotation torque dominate over the Lindblad torque, which

is usually unexpected in an α disk, since for realistic density profiles, the Lindblad torque

will dominate. This is also consistent with the torque in run R6 being initially negative,

since at the beginning of the simulation the local profile is decreasing outwards, but getting

shallower as time increases, eventually reaching the point where the torque reverses. For

56

/home/uribe/PhD/Thesis/figures/paper1/f12.eps


4.4 Discussion and conclusions

0 20 40 60 80 100
Planet Orbits

0.0001

0.0010

0.0100

In
te

rn
a

l 
S

tr
e
ss

e
s

0 20 40 60 80 100
Planet Orbits

0.0001

0.0010

0.0100

In
te

rn
a

l 
S

tr
e
ss

e
s

0 20 40 60 80 100
Planet Orbits

0.0001

0.0010

0.0100

In
te

rn
a

l 
S

tr
e
ss

e
s

Figure 4.13: Time evolution of the stresses in a disk with an embedded planet. Top, middle and

bottom plot show the stresses for runs R2, R5 and R9, respectively. The dashed and dashed-dotted

lines show the Reynolds TRey and Maxwell TMax stresses, respectively, normalized to the initial

pressure. The solid line shows the total effective α parameter.

run R5, the slope is almost immediately increasing outwards due to the evolution of the

disk, which makes the torque positive from the beginning of the simulations. We can

only roughly compare our numerical results with analytical estimates, as was done in

the previous section, for the reasons described already there. Also in comparing with

previous estimates, we also discarded any possible additional contributions to the torque

that might arise because of the turbulent magnetic fields. The detailed structure of the

horseshoe region in the presence of turbulence and stratification deserves further study.

Our results are summarized on Figure 4.17, where the torque dependence on planet mass

is shown. For each simulation, we plot the last value of the cumulative average torque.

Note however that only for part of the simulations the torque converges to a well defined

value. It is possible to see a trend of the torque to reverse, corresponding to the addition

of the contribution of the fully unsaturated horseshoe drag (Γtot = ΓLind + ΓHS). For the

plot we assumed values for the width of the horseshoe region that are 5% larger than

the analytical estimate given by Paardekooper and Papaloizou (2009a) and we use the
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Figure 4.14: Cumulative average torque for run R9 for q = 10−3. The red and blue lines show the

torque exerted by the inner and outer disk respectively. The torque coming from the Hill sphere has

been excluded from the calculation.

value of the local surface density profile for the calculation of the torque. We see that

the trend breaks down already for q = 2 × 10−4, where gap opening starts to become

important and there is a transition into the Type II regime. Error bars represent the

standard deviation of the time distribution of the torque. Note that since the raw torque

is a highly oscillating quantity, the standard deviation does not match directly to the

amplitude of the turbulent fluctuations, especially in the high-mass planet cases. For run

10, the standard deviation was found to be only 20% lower that in the turbulent run R9.

In the Type II range, we plot the torque corresponding to the viscous timescale of the

disk, taking α = 3 × 10−3. We find reasonable agreement with our simulation, taking

into account the short simulation time, and that the value of the torque is still decreasing

in the simulation after 100 orbits. Additionally we use the value of the initial, volume

averaged α, while the mid-plane value is smaller.

The question remains about the long term behavior of the torque, and whether this is

only a transient behavior lasting for the first few hundred orbits (assuming the same local

surface density profile), afterwards saturating and returning to standard negative Type I

values. This is still a transient behavior in the sense that the planet can migrate out of the
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Figure 4.15: Radial distribution of the time, azimuthally and vertically averaged stress parameter

for run R9. The dashed and dashed-dot lines show the Reynolds TRey and Maxwell TMax stresses

respectively, normalized by the initial pressure. The solid line shows the total effective α parameter.

part of the disk where the local profile allows for outwards migration and enter a region

where migration proceeds inwards again. Additionally it is limited by the lifetime of the

pressure bumps, which we weren’t able to determine. We observe a stable pressure bump

through the duration of our simulations. If there are other mechanisms such as the ones

discussed in Masset et al. (2006b) that produces this type of locally increasing outwards

density profile, then, in the presence of turbulence, these density bumps can also act as

a protoplanet trap and halt, slow down or reverse inwards migration. Dzyurkevich et al.

(2010) performed non-ideal MHD simulations of accretion disks with spatially varying

resistivity. They also find zonal flows/pressure bumps not only at the snow line, e.g. a

region with a jump in resistivity, but also inside the more active region. They already

suggest that small planets should get trapped at those local pressure maxima (see also

Kretke and Lin (2007)).
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Figure 4.16: Gap comparison for run R9 (q = 10−3) and run 10, an equivalent HD simulation with

α = 2 × 10−3.

4.5 Summary

We studied the migration of planets under the influence of turbulence that is a result

of the magneto-rotational instability. We find that, under the right conditions, planets

can undergo systematic outwards migration in a locally isothermal disk. After long term

averaging, transient or long term periods of outwards migration can help the survival

and influence the mass accretion history of giant planet cores of a certain mass ratio.

The contribution of the unsaturated horseshoe drag and the stochastic migration of low-

mass planets, which are both consequences of the turbulence, should be incorporated into

planet population synthesis models in order to test the influence of this element on the

produced populations of planets. On future work we plan on studying low-mass planet

migration in detail using similar stratified disk models.

Giant planets significantly decrease the magnetic stresses in the disk (mostly inside its

orbit), effectively killing the turbulence, as we observe in our simulations. This is possibly

a numerical effect and it will affect the accretion behavior of the disk and possibly the

Type II migration rate of the giant planet. This issue deserves further study, with high
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Figure 4.17: Specific torque as a function of q = Mp/Ms. The black symbols correspond to

simulations R1, R2, R4, R5, R8 and R9, where the position of the planet is rp = 5.0. The red

symbols correspond to simulations R3 and R6, where the position of the planet is rp = 3.3. In the

q = 5× 10−6 to q = 2× 10−4 mass range, we overplot the analytical estimates for the torque, taking

into account only the Lindblad contribution Γtot = ΓLind (dotted line) and both the Lindblad plus

the unsaturated horseshoe drag Γtot = ΓLind + ΓHS (dash-dotted line), for both positions (i.e. local

surface density profiles) of the planet, rp = 5.0 (black line) and rp = 3.3 (red line). For the analytical

expressions of the torque, we take the half-width of the horseshoe region to be 5% larger than its

analytical estimate. The dashed line corresponds to the constant Type II migration rate, given by

the viscous transport in the disk, using α = 2 × 10−3. Error bars represent the standard deviation

of the torque time distribution.

resolution simulations to determine any possible effects of numerical dissipation of the

magnetic fields induced by the presence of the planet. Additionally, in agreement with

previous studies, we find that the gap opened by a planet in the presence of turbulence

is wider than the gap produced in a quasi-laminar disk with an equivalent α viscosity.
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5

Accretion of gas onto giant planets

and envelope structure in

magnetized turbulent disks

We have performed three-dimensional magneto-hydrodynamical simulations of ac-

cretion disks, using the PLUTO code, and studied the accretion of gas onto a Jupiter-

mass planet after opening a gap in the disk. We compare our results with simulations

of laminar, yet viscous disks with different levels of an α viscosity. A jupiter mass

planet is known to reduce the magnetic stress in the disk to around 10% of the

unperturbed value. We find that this low levels of MRI-turbulence in protoplane-

tary disks do not enhance mass accretion onto the planet, and in fact might slightly

suppress accretion, as compared to the case of a laminar viscous disk with compa-

rable α parameter. In all cases, the accretion flow accross the surface of the Hill

sphere of the planet is not spherically or azimuthally symmetric, and is predomi-

nantly restricted to the mid-plane of the disk. Even in the turbulent case, we find

no vertical flow of mass into the Hill sphere. Accretion rates are best approximated

analytically by using the reduced density in the gap region. This means that the

gap-opening planet never reaches an accretion rate as high as the one given by the

unperturbed density of the disk. For a simulation of a magnetized turbulent disk,

where the global averaged alpha stress is αMHD = 1 × 10−3, we find the accretion

rate onto the planet to be Ṁ = 6 × 10−7MJyr−1.
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5. ACCRETION OF GAS ONTO GIANT PLANETS AND ENVELOPE
STRUCTURE IN MAGNETIZED TURBULENT DISKS

5.1 Introduction

Studying how planets accrete gas from circumstellar disks is necessary to estimate a limit

on the mass of giant gaseous planets depending on the disk properties such as density and

viscosity. It is also necessary to estimate the timescales for gas accretion (Alibert et al.,

2004). In general one should take into account the effects of migration, gap formation

and the viscous evolution of the disk.

In the inner parts of disks, gas giants can form as a result of core formation by plan-

etesimal accretion followed by formation of the gas envelope by gas accretion from the

circumstellar disk. Pollack et al. (1996) distinguished three phases in the formation using

numerical simulations of core accretion and envelope evolution. A first phase marked

by the fast accretion of solids unto a core until the feeding zone of the planet is mostly

evacuated (Stevenson, 1982). A second phase where gas and solids accretion is low and

constant. Finally, a third stage when the core mass equals the envelope mass, leading to

the contraction of the envelope and the onset of runaway gas accretion (Mizuno, 1980).

Migration of the planet might allow for an extension of the feeding zone, while gap for-

mation might lead to a mass limit for gap opening planets (Alibert et al., 2005). In the

outer parts of the disk, giant planets could form as a result of the collapse of a gravita-

tionally unstable disk clump. This mechanism requires a very massive disk that can cool

effectively on timescales of a few local orbital periods (Boss, 1997; Durisen et al., 2007;

Mayer et al., 2002; Rafikov, 2005).

Planet population synthesis models produce synthetic populations of extrasolar planets,

with a large diversity of initial conditions. These models have been successful in reproduc-

ing key features of the observed distribution of exoplanets(Benz et al., 2008; Ida and Lin,

2008; Mordasini et al., 2009a,b). The calculations usually include one-dimensional disk

evolution and core/envelope structure models. The accretion of planetesimals and gas

onto an already formed proto-core is included, using a given prescription for the accretion

rates of gas and rocky materials onto the planet (Alibert et al., 2004). For this reason,

an accurate estimation and parameterization of the accretion rates of gas onto planets

for a variety of conditions is necessary to correctly calculate the formation time and the

limiting mass of the giant planetary population.

5.1.1 Modeling planet accretion

The accretion of gas onto planets has been modelled using two different approaches. On

one side, one dimensional models have been used to calculate the radial structure of the

envelope and the accretion onto a rocky core. This models can include effects such as

the dust opacity of the envelope, the release of energy of infalling planetesimals into the

envelope and the thermal feedback of the planet (Hubickyj et al., 2005; Ikoma et al., 2000).
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These models can only include the disk evolution in a restricted way, and assume a certain

model of the outer envelope (as a boundary condition) that is spherically symmetric.

On the other hand, two/three-dimensional simulations of accretion disk with accreting

planets aim to estimate the structure of the flow around the planet and how much mass

is the disk capable of feeding to the planet. However, most of these simulations miss the

radiative feedback from the planet and a detailed model of the inner envelope. D’Angelo

et al. (2003a,b); Tanigawa and Watanabe (2002) used high resolution two-dimensional sim-

ulations to study the detailed flow pattern around the planet, and the circumplanetary

disk. They showed that inside the planets Roche lobe, accretion in the circumplanetary

disk is powered mainly by energy dissipation of circulating matter at the spiral shock.

Outside the Roche lobe, gas flows into the planet through ”accretion bands” located be-

tween the horseshoe flow and the passing-by flow (although the detailed structure depends

strongly on the sound speed). The accretion timescale

τacc =
Mp

Ṁp

, (5.1)

has been measured to be around 104 − 105 yr, and the accretion rate of a Jupiter-mass

planet has been found to be on the order of 10−5MJ/yr on a disk with Md = 0.01M⊙

(Bate et al., 2003; Bryden et al., 1999; Kley et al., 2001; Lubow et al., 1999). Three-

dimensional simulations including radiation transfer have found similar accretion rates

and have shown the formation of a thick (H/r ≈ 0.5) circumplanetary disk (Klahr and

Kley, 2006).

In this chapter we take the second approach and study the accretion rate of gas onto

giant gap-opening planets in turbulent magnetized disks using three-dimensional global

disk simulations. The turbulence in the disk is generated by the magneto-rotational

instability (Balbus and Hawley, 1991). We compare the accretion rate of a planet in a

turbulent disk with that in a viscous laminar disk and we examine the accretion structure

and mass inflow into the Hill sphere of the planet, where material is assumed to be

gravitationally bound to the planet. The chapter is organized as follows. In Section 2, we

describe the computational setup, boundary and initial conditions, and the parameters

we use in our simulations. We also describe the prescription for the mass accretion onto

the planet. In Section 3.1, we present our results on the three-dimensional structure of the

accretion flow into the Hill sphere. Section 3.2 contains the results on the mass accretion

rates for the different simulations, while Section 3.3 shows the details of the accretion flow

around the planet. Finally, we discuss and sumarize our results in Sections 4 and 5.
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5.2 Computationl setup

Simulations were performed using the finite volume fluid dynamics code PLUTO (Mignone

et al., 2007). In the code, time stepping is done using a second order Runge Kutta

scheme, while the spatial integration is performed using linear interpolation through the

second order TVD scheme. The Riemann fluxes are computed using the HLLC and HLLD

solvers for the HD and MHD cases, respectively. The code uses the Constrained Transport

method for preserving a divergence-free magnetic field (Gardiner and Stone, 2005). The

numerical setup for the MHD case follows the setup presented in (Flock et al., 2010).

We use spherical coordinates (r, θ, φ) and the domain is given by r ∈ [1, 10], θ ∈ [π/2 −

0.3, π/2 + 0.3] and φ ∈ [0, 2π]. The grid resolution is (Nr, Nθ, Nφ) = (256, 128, 256) and

it is centered in the center of mass of the planet-star system.

The gas disk is initially in sub-Keplerian rotation around a solar mass star. The azimuthal

velocity is given by

vφ =
√

v2
k − c2

s(a − 2b), (5.2)

where vk is the Keplerian velocity and a = 3/2 and b = 0.5 are the exponents of the radial

power law distribution of the density ρ ∝ r−a and sound speed cs = c0(r sin θ)−b. The

initial density distribution is given by

ρ(r, θ) = (r sin θ)−3/2 exp

(

sin θ − 1

c2
0

)

. (5.3)

The disk is described by a locally isothermal equation of state P = c2
sρ. The ratio of the

pressure scale height h to the radial coordinate of the disk is taken to be a constant such

that h = H/(r sin θ) = 0.07.

The gravitational potential of the planet is given by a softened point-mass potential

Φp(r) = −
GM

(|r − rp|2 + ǫ2)1/2
(5.4)

where ǫ is the softening parameter, needed to avoid numerical divergence near the position

of the planet. For all the simulations ǫ is set to be a fraction of the Hill radius ǫ =

krp(Mp/3)1/3 with k = 0.3. Distances are given in units of r0 = 1AU , density is given in

units of ρ0 = 1 × 10−12gcm−3, and velocity is given in units of Keplerian speed at 1AU ,

v0 = vk(1AU). The surface density have been scaled such that the total disk mass is

0.01Mstar. Magnetic fields are given in units of B0 =
√

4πρ0v
2
0. The equations of motion

of the planet are solved at each timestep with a leap frog integrator.

The components of the torque vector in cartesian coordinates are given by

Γi = GMp

∫

ρ(r)
(rp × r)i

(|r− rp|2 + ǫ2)3/2
dV, (5.5)
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where i ∈ {x, y, z} is any of the three cartesian indices and (~rp × ~r)i = (~rp × ~r) · êi, and

êi are the cartesian unit vectors. Specific torques are given in units of v2
k(1AU).

5.2.1 Boundary conditions

The boundary conditions for the velocities and magnetic field are periodic in the vertical

(θ boundary) and azimuthal directions and reflective in the radial direction, except for

the transverse magnetic field component, which reverses its sign at the radial boundary.

Buffer zones are defined at the radial boundaries to avoid boundary effects, where for

1 < r < 2 the magnetic resistivity is given by η = 2 × 10−4(2 − r) and for 9 < r < 10 the

resistivity is η = 1 × 10−4(r − 9).

5.2.2 Initial conditions, gap opening and viscosity

The planet is allowed to accrete gas after only 100 orbital periods at 5AU have elapsed

(see Figure 5.1). At this stage, a gap has been cleared, and the density has been reduced

by more than 95%. We refer to Chapter 4 for a detailed description of the initial setup

and the study of the migration and the interaction between the planet and the magnetic

field. For the hydrodynamical simulations, viscosity is added explicitly as a source term

in the momentum equation. We use an α-type kinematic viscosity give by ν = αc2
sH ,

where α takes values of 2 × 10−3, 2 × 10−4 and 2 × 10−5.

5.2.3 Accretion prescription

The accretion is modelled by removing a fraction of the mass inside the Hill sphere at

each time step. At each timestep the new density ρ
′

is given by

ρ
′

(r) =

(

1 −
∆t

ta

)

ρ(r). (5.6)

The accreted mass in timestep ∆t is ∆M = (ρ(r)∆tt−1
a )r2sin(θ)drdθdφ. The accretion

rate for timestep ∆t is calculated as the accreted mass divided by the timestep ∆M/∆t.

The factor ta represents the accretion timescale in which the Hill sphere is emptied if

there was no gas flowing in from the disk. This is chosen to be ta = 1Ω−1
1AU inside

the inner half of the Hill sphere and ta = 2Ω−1
1AU in the outer half of the Hill sphere

(where Ω−1
1AU is the keplerian angular frequency at 1AU). A density floor is applied to

the simulations with magnetic fields, where the density is not allowed to drop bellow

10−19grcm−3. Nevertheless, the density in the simulation never reaches this value. The

magnetic field is not modified as the density is reduced inside the Hill sphere in order to

preserve a divergence-free field. The accretion rate has been shown to be dependent on

the accretion radius (the distance from the planet up to which mass is removed) and on

67



5. ACCRETION OF GAS ONTO GIANT PLANETS AND ENVELOPE
STRUCTURE IN MAGNETIZED TURBULENT DISKS

2 3 4 5 6 7 8 9
r[AU]

0

10

20

30

S
ur

fa
ce

 D
en

si
ty

 [g
r 

cm
-2
]

α=2e-3
α=2e-4
α=2e-5

MHD

α=2e-3
α=2e-4
α=2e-5

MHD

α=2e-3
α=2e-4
α=2e-5

MHD

α=2e-3
α=2e-4
α=2e-5

MHD

Figure 5.1: Initial conditions before the planet starts accreting for the laminar disk simulations

and the MHD simulation. The gap in the MHD simulation is found to be wider as compared to all

the viscous simulations.

the accretion timescale parameter ta. Tanigawa and Watanabe (2002) showed that the

accretion radius should be small (≈ 0.1rh) and the accretion timescale should be on the

order of the orbital period, in order to obtain converged results. Because of our lower

resolution, we take most of the mass from within the inner half of the Hill sphere. This

prescription has also been used in previous studies of gas accretion and migration by

giant planets (Kley et al., 2001). We have also check that our results remain valid if one

restricts the accretion radius down to 0.4rh. We have also verified that we obtain the

same results if we extend the accretion timescale to ta = 10.
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5.3 Results

5.3.1 Structure of the envelope and mass inflow

In this section we study the structure of the density and the inflow of mass in/into the

Hill sphere. We calculate the gas density and the mass flux through the surface of the Hill

sphere. The mass flux is given by ρvinflow = ρv·(∇F/|∇F |), where F (r) = (r−rp)2−r2
h =

0 is the equation describing the surface of the Hill sphere. The density is plotted in Figures

5.2 and 5.3 for all four simulations. The mass flux is plotted in Figures 5.4 and 5.5 for

all simulations. These quantities have been averaged in time. We plot the surface of the

Hill sphere using an ellipsoidal projection where the three-dimensional structure can be

observed. The center of the ellipse corresponds to the point in the Hill sphere that is most

distant from the star.

The structure of the spiral arms can be seen in Figures 5.2 and 5.3 in the radial directions

(with respect to the star) pointing away from the planet. The arms go into the Hill sphere

radially from the inner and outer disk. However, comparing the density plots with the

mass flux as is seen in Figures 5.4 and 5.5, the accretion into the Hill sphere is not exactly

correlated to the spiral arms in general, meaning that the planet accretes from a more

extended region. The density and mass flux are much larger in the case with the higher

viscosity (α = 2 × 10−3), and are the lowest in the turbulent magnetized case. In the

first high viscosity case, most of the gas accreted is supplied by the disk from the outer

disk. In the low viscosity cases and the magnetized case, the mass flux is more extended

over the midplane surrounding the planet. In all cases, all the flux through the surface is

inflowing, and we see no significant amount gas entering the Hill sphere from the vertical

direction above and below the mid-plane. Figure 5.6 shows the vertical structure of the

mass flux averaged over the azimuthal direction. Once the gas enters the Hill sphere, we

assume it is bounded to the planet and it will be eventually accreted out of the domain.

5.3.2 Gas accretion rates

The cumulative mass accreted and the accretion rate are shown in Figures 5.8 and 5.7,

for the laminar viscous simulations and the magnetized simulation1. We will first discuss

the laminar simulations. The largest accretion rate is obtained for the viscous simulation

with α = 2 × 10−3, as it is expected since the disk accretion rate is proportional to the

viscosity. For the case where α = 2 × 10−4 and α = 2 × 10−5 the accretion rates are one

third lower than the rate for the higher viscosity, but with the α = 2×10−4 being slightly

lower than the lowest viscosity case. This means that the limit of the lowest viscosity that

the code is able to resolve above numerical dissipation effects is α ≈ 10−4. Additionaly,

1We will refer to αMHD to denote the alpha stress that is measured in the magnetized simulation, and to α

to denote the Shakura and Sunyaev (1973) viscosity parameter that is chosen for the viscous laminar simulations
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Figure 5.2: Density in the surface of the Hill sphere for the viscous laminar runs with α = 2 ×

10−3(left) and α = 2×10−4(right). The density is shown in units of 2×10−10grcm−3. The center of

the ellipse corresponds to the point in the Hill sphere that is most distant from the star and points

away in the radial direction.
  

-135 -90 -45 0 45 90 135 180

-90

-60

-30

0

30

60

90

2.2e-12

2.3e-10

4.6e-10

6.9e-10

9.2e-10Density
  

-135 -90 -45 0 45 90 135 180

-90

-60

-30

0

30

60

90

2.2e-12

2.3e-10

4.6e-10

6.9e-10

9.2e-10Density

Figure 5.3: Density in the surface of the Hill sphere for the viscous laminar run with α = 2 ×

10−5(left) and for the turbulent run(right). The density is shown in units of 2× 10−10grcm−3. The

center of the ellipse corresponds to the point in the Hill sphere that is most distant from the star

and points away in the radial direction.

at this low viscosity, our simulation time is not able to cover the viscous evolution, since

the viscous timescale is given by τvisc = H2/ν = H2/(αH2Ω) = (αΩ)−1.

The magnetic case shows interesting behavior. We find the average accretion rate in the

magnetic case to be lower that in all the laminar α simulations. In this case, the planet

accretes gas at a rate which is less than half (40%) the accretion rate in an disk with

α = 2×10−3. This accretion rate is below the rate expected from the numerical dissipation

limit. It is also below the value found for the viscous simulation with α = 2 × 10−4. For

the turbulent magnetized simulation, the global and time-averaged αMHD is equal to

αMHD = 1 × 10−3. The global average Maxwell stress is αMHD,Max = 2 × 10−4. Due to

the presence of the giant planet, the Reynolds stress dominates over the Maxwell stress by

a factor of 2 to 3 (see bottom plot of Figure 4.13 of Chapter 4) 1. However, the effective

viscosity provided by the turbulence in the mid-plane is less than in the upper layers of

the disk. Small scale turbulent structures in the mid-plane might not be well resolved

1This results are part of the published work Uribe et al. (2011)
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Figure 5.4: Mass flux through the surface of the Hill sphere for the viscous laminar runs with

α = 2 × 10−3(left) and α = 2 × 10−4(right). The mass flux is given in units of MJyr−1S−1, where

quantity S is the area of the grid cell given by S = r2

h∆θRH∆φRH . The center of the ellipse

corresponds to the point in the Hill sphere that is most distant from the star and points away in the

radial direction.   
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Figure 5.5: Mass flux through the surface of the Hill sphere for α = 2 × 10−5(left) and for the

turbulent run(right). The mass flux is given in units of MJyr−1S−1, where quantity S is the area of

the grid cell given by S = r2

h∆θRH∆φRH . The center of the ellipse corresponds to the point in the

Hill sphere that is most distant from the star and points away in the radial direction.

and the α parameter measured for magnetic turbulence measures large scale transport.

Nevertheless, the effective viscosity in the mid-plane should be comparable (or higher) to

the one in the viscous laminar simulation with α = 2 × 10−5. Since the mean accretion

rate in the turbulent run is still lower than in the later case, this suggest an additional

effect hindering accretion in the magnetic case.

Figure 5.8 shows the total mass accreted by the planet starting from the time when the

accretion is switched on. There is an initial rapid raise due to the material that has

accumulated in the Hill sphere during the previous evolution of 100 orbital periods. After

this stage, the planet has consumed the ”excess” of material, and accretes at a rate in

which the disk can provide material. It can be seen in Figure 5.8 that even though

the initial conditions are slightly different (some simulations have more gas accumulation

around the planet depending on viscosity, as seen in Figure 5.1), after the initial phase is

passed, the accretion tends to relax to more or less steady state values.

Previously, Tanigawa and Watanabe (2002) and Lubow et al. (1999) found growth times of
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Figure 5.6: Vertical structure of the mass inflow ρvinflow into the Hill sphere. The coordinate

θRH refers to the polar angle in the frame of the planet. The quantity ρvinflow has been azimuthaly

averaged (with respect to the Hill sphere). The quantity S is the area of the grid cell given by

S = r2

h∆θRH∆φRH .

4×104yr and 4×104yr. Kley et al. (2001) found gas accretion rates of Ṁ = 6×10−5MJ/yr

for Jupiter mass planets, which indicates a growth time of 2 × 104yr. We find a mass

accretion rate of Ṁ ≈ 10−6MJ/yr for the laminar viscous case with α = 2×10−3. For the

magnetized simulation we find Ṁ ≈ 6×10−7MJ/yr. These rates are measured only when

the planet has already cleared a gap around its orbit, contrary to the previous studies.

Therefore we obtain a growth time (after gap opening) one order of magnitude smaller

than growth times measured in the absence of a gap.

5.3.3 Gas inflow and magnetic pressure

Figure 5.9 shows the radial mass flux and the pressure (and magnetic pressure b2/(8π))

at a distance of ±2rh from the planet position. In the mid-plane, the thermal pressure

exceeds the magnetic pressure by a factor of the order of 102. There is radial inflow of
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Figure 5.7: Mass accretion rate for the three viscous simulations and the magnetized simulation.

The red line corresponds to α = 2 × 10−5, green line to α = 2 × 10−4, and black line to α =

2 × 10−3. The yellow line shows the MHD case. The colored dashed lines show the mean value of

each simulation.

gas coming from both sides of the planet, and this is dominant in the high viscosity case.

As the viscosity gets lower, the density and mass flux decrease. The magnetized case

shows radial mass inflow comparable to the two cases with the lower α viscosity. The

radial profile of the thermal pressure is similar for all cases, although the pressure across

the Hill sphere decreases with viscosity. At either side of the planet, following the spiral

arms, there are bumps of high magnetic pressure.

Figure 5.10 shows the density in the mid plane and the radial velocity for the laminar

viscous simulation with α = 2 × 10−3. Overplotted is the mid-plane vector field of the

velocity. Figure 5.11 shows the same quantities for the magnetized turbulent disk simu-

lation. The mid-plane magnetic pressure for this simulation is plotted in Figure 5.12. In

agreement with previous studies (Tanigawa and Watanabe, 2002), we find that the gas

accreting into the planet comes from a flow between the open pass-by flow and the gas

that is orbiting in horsshoe orbits at corotation. This comes from both sides of the planet,
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Figure 5.8: Cumulative mass accreted by the planet for the three viscous simulations and the

magnetized simulation. The solid line corresponds to α = 2× 10−3, dotted line to α = 2× 10−4, and

dashed line to α = 2 × 10−5. The dash-dotted line shows the MHD case.

as can be seen in the upper right and lower left part of Figures 5.10 and 5.11. Material

enters the Hill sphere though these channels, as it is also seen in the mass flux at the

surface of the Hill sphere in Figures 5.4 and 5.5. Inside the Hill sphere, the spiral shock

and the turbulence allow accretion into the planet through the circumplanetary disk, al-

though in our simulations there is not enough resolution in the Hill sphere to resolve the

spiral shock. Outside de Hill sphere, we see the spiral arm structure that forms the bow

shock (see D’Angelo et al. (2003b); Tanigawa and Watanabe (2002)), altough the shock

is diffused by viscosity and turbulence in our simulations.

In the case of the magnetized turbulent run, the velocity structure around the planet is

much less uniform (see Figure 5.11 ) in comparison with the laminar viscous run. This is

due to small scale turbulence and the non-uniformity of the magnetic field, seen in Figure

5.12.
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The dashed line shows the magnetic pressure (multiplied by a factor of 150) for the magnetized case.
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simulation with α = 2× 10−3. Right: Radial velocity (in units of vk(1AU)) in the mid-plane for the

same simulation. The overplotted vector field shows the velocity field in the mid-plane.

5.4 Discussion and conclusions

Figure 5.13 shows the mass accretion rate as a function of α for the laminar viscous

runs. The rate obtained in the magnetized run is shown in a dotted line, and the square

symbol signals the global stress at the beginning of the simulation. We compare this

results to the analytical estimate Ṁ = 3πνΣ, calculating the surface density inside the

gap region and the unperturbed initial density. It is clear that for the lowest value of

α, the numerical dissipation limit at this resolution is reached. The code cannot resolve

kinematic viscosities corresponding to less than α ≈ 10−4. For the magnetized case, after

100 orbital periods, the turbulence has decayed as was seen in the simulations presented
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plotted vector field shows the velocity field in the mid-plane.
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Figure 5.12: Magnetic pressure in the mid-plane for the MHD simulation. The overplotted vector

field shows the velocity field in the mid-plane.

in Chapter 4. However, the effective global averaged stress coming from the turbulence at

the beginning of the simulation (right before accretion starts) is αMHD = 1 × 10−3. The

Maxwell stress at the beginning of the run is αMHD,Max = 2×10−4. In the magnetic case,

the measured accretion rate is comparable to a laminar viscous run with α ≈ 10−4. It is

also significant that the accretion rate measured is below the limit of numerical viscosity,

since this points directly to a negative effect on accretion by the magnetic field. This
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5.5 Summary

could be attributed to the fact that turbulent transport is achieved mainly at the large

scales, while the effective viscosity provided by the turbulence at the small scales is not

represented by the global value of the measured αMHD. There is also the question of how

well resolved is small scale turbulence in our simulations. Additionally, a steady uniform

flow into the Hill sphere is seen in the laminar viscous simulation, while in the magnetic

case the velocity field is not uniform.

The mass accretion into the Hill sphere happens along two channels located at each side

of the planet. Closer to the radial location of the planet, material can’t flow in, and

instead executes a U-turn, since it looses it’s angular momentum rapidly as it approaches

the planet. Radially away from the planet, the gravitational torque of the planet is

not strong enough to pull the material in fast enough, and instead gas orbits passing the

planet. The accretion flow lies between these two regions. In all cases, the accretion of gas

into the Hill sphere is not spherically symmetric, nor azimuthally symmetric. However,

in all cases, the flow through the vertical direction is negligible and the flow is restrained

to the disk scale height. In our simulations, the Hill radius is approximately equal to the

pressure scale height of the disk. Compared to the analytical estimates of the accretion

rate, the value of the rate using the value of the reduced density in the gap region gives

a better agreement with our results, although for α = 2 × 10−3 the simulation accretion

rate is around half the analytical value.

Further study needs to be carried out to verify the results presented in this chapter. In

order to test the convergence of the obtained accretion rates, it is necessary to perform

additional simulations at higher resolutions. Furthermore, one needs to test the effect

of the numerical parameters used in the accretion prescription and to achieve longer

integration times.

5.5 Summary

We find that low levels of MRI-turbulence in protoplanetary disks do not encourage mass

accretion, and in fact might slightly hinder accretion as compared to the case of a laminar

viscous disk with comparable α parameter. In all cases, the accretion flow into the Hill

sphere of the planet is not spherically or azimuthally symmetric, and is predominantly

restricted to the mid-plane of the disk. Even in the turbulent case, we find no vertical flow

of mass into the Hill sphere. Accretion rates are most closely approximated analytically

by using the reduced density in the gap region. This means that the gap-opening planet

never reaches an accretion rate as high as the one given by the unperturbed density of the

disk. In a turbulent magnetized disk with global stress parameter of αMHD = 1 × 10−3,

we find lower accretion rates than those found in a laminar viscous disk with α = 10−4.
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Figure 5.13: Mass accretion rates by the planet for different values of α(crosses) and the turbulent

run (square and dotted line). The diamond symbols show the accretion rate Ṁ = 3πνΣ calculated

using the unperturbed density, while the triangle symbols show the accretion rate calculated using

the mean density inside the gap region.
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6

Conclusions

This thesis presents a study on different aspects of the interaction between a forming

planet and a circumstellar accretion disk of gas and dust. The focus points of this work

are the migration behavior of planets due to disk gravitational torques and the accretion

of gas onto giant planets. The accretion disk is modelled using hydro and magneto-

hydrodynamical simulations with the PLUTO code (Mignone et al., 2007). The planet

contribution and modeling was incorporated into the code. The planet module allows

for a free moving planet (using a simple leap frog integrator), accretion of gas onto the

planet (using the accretion prescription proposed by Kley et al. (2001)) and the presence

of multiple planets (which was used in this work as a particle integrator). The main

conclusions of this work are the following.

Chapter 3 deals with the migration and gas accretion of Jupiter mass planets in the

evolutionary phase when a gap has been opened in the disk. The dependence of the

torque was studied as a function of disk surface density, viscosity, steepness of density

profile and numerical parameters such as the gravitational softening. The accretion rate

onto planets was studied as a function of surface density. We improve over previous results

and include migration and accretion, and study the interplay between these two factors.

We find that migration is affected by accretion of gas by the planet and very fast inwards

migration is suppressed when the planet is accreting material from the disk. Our results

can be summarized in more detail as follows.
• The linear estimate of the torque for Type II migration given by Eq. 3.6 is only fully

realized when the planet is artificially fixed on a given orbit at constant separation.

When the local disk mass is larger than the planet mass, the motion and accretion

of the planet affects the migration rate.

• When the local disk mass is larger than the planet mass, the migration rate is highly

dependent on the material inside the Hill sphere of the planet. If the Hill sphere is

not included in the motion of the planet, the mean cumulative torque is lower than

the analytical estimate. For Mdisk ≈ πr2
pΣ = 10Mp, the mean cumulative torque is
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lower by one order of magnitude. As a result, the migration timescale increases by

the same amount.

• When the local disk mass is larger than the planet mass, the mean cumulative torque

is lower than the analytical estimate when the planet is accreting gas from the disk

(due to the depletion of the Hill sphere). For Mdisk ≈ πr2
pΣ = 10Mp, the mean

cumulative torque is lower by one order of magnitude. As a result, the migration

timescale increases by the same amount.

• When the local disk mass is about 10 times the planet mass, the planet undergoes

runaway (Type III) migration. Runaway migration is triggered by the initial fast

migration due to the Hill sphere material, but it is caused by gas passing by the planet

in open orbits from the inner to the outer disk. Runaway migration is completely

suppressed when the Hill sphere is depleted by planetary accretion.

• In a disk with uniform and constant mass accretion, there is no dependence of Type

II migration on the power law exponent of the surface density, so that a giant planet

will migrate equally fast in a disk with flat or rapidly decreasing density profile

The results of this chapter can be directly implemented in planet population synthesis

models, to better model the evolution of massive planets.

Chapter 4 deals with the migration of planets with masses from Mp = 3MEarth to

Mp = MJup in magnetized turbulent disks. We improve over previous studies that assume

an parametrized form of the turbulent viscosity or that use a forcing potential to simulate

turbulence. In our simulations, we study a global disk and turbulence is self-consistently

generated by magnetic fields. We find new migration behavior for intermediate-mass

planets (Neptunes and Saturns) that might reduce the effectiveness of fast Type I in-

wards migration. In this case, further study needs to be carried out to directly apply our

results in population synthesis simulations. Our results are summarized in more detail as

follows.

• For low-mass planets that don’t significantly perturb the disk, the stochastic torque

resulting from the density perturbations is characterized in terms of the density spec-

tra, the autocorrelation time of the torque and the torque standard deviation. These

quantities allow for modeling of the turbulent torque through a forcing potential or

as a diffusion process, that are tuned to match the characteristics of MRI turbulence.

The parameters found can be directly used in planet population synthesis modeling.

• Due to positive corotation torques, the migration of intermediate-mass planets (in

the Neptune/Saturn mass range) can be slowed down or even reverse in parts of the

disk where the density increases locally. These type of structures in the disk can

be a result of un-uniformities in the internal stresses (i.e the magnetic field). Zonal

flows are exited by the magnetic turbulence and have amplitudes of ≈ 20 − 25%
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the unperturbed density value. Planets with mass ratios of around q = 10−4 can be

temporarily trapped in these locations in the disk.

• Jupiter mass planets strongly decrease the magnetic stress in the disk, and the

Reynolds stress dominates the angular momentum transport. This can potentially

have an impact on the overall mass accretion rate in the disk. The shape of the

gap is also influenced by turbulence, being wider in a magnetized turbulent disk as

compared to a viscous laminar disk.

Chapter 5 deals with the accretion rate of gas onto Jupiter-mass planets in a turbulent

magnetized disk. This is the first study to investigate how accretion is affected by turbu-

lence and turbulent magnetic fields. Our results suggest that accretion in turbulent mag-

netized disks cannot be directly modelled by assuming a laminar disk with a parametrized

form of the viscosity. We find that accretion rates are smaller than previously calculated.

Further work is required to understand the interplay between turbulence, magnetic fields

and accretion. Our results are summarized as follows.

• Accretion rates are lower in the presence of magnetic turbulence as compared to the

accretion rate in a viscous laminar disk that has an α = ν/HΩ equal to the global

average stress measured in the turbulent disk.

• The accretion flow structure is very similar to the one obtained in two-dimensional

simulations of laminar viscous disks. The accretion flow is constrained to specific re-

gions in the mid-plane of the disk and it is not azimuthally or spherically symmetric.

The mean vertical structure of the accretion flow is gaussian, following the density

distribution, and its vertical dimension is constained to one scale height of the disk.

The flow in the vertical direction is negligible as compared to the mid-plane flow, in

both the turbulent and the laminar cases.

• In general, the accretion rate of gas onto the planet is best approximated by Ṁ =

3πνΣgap. However we do not find an exact match for the high α = 10−2 case. This

could possibly be a result of the numerical parameters that we used for the accretion

prescription.

6.1 Future research

Many aspects that were not explored in this work pose interesting questions for future

investigations. One aspect that has not been explored in the literature is the migration of

planets in turbulent disks with thermal effects included. In all the simulations presented

in this work, the disk is locally isothermal, such that its temperature profile is constant.

This assumes an infinitely short cooling time. It is well known that including heating

and cooling effects or a full treatment of radiation transport affects the migration rates

observed in simulations (Klahr and Kley, 2006; Kley et al., 2009; Paardekooper et al.,
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2010). This is due to contributions to the torque from the corotation region, that be-

have in a similar manner as the viscosity-induced corotation torques in isothermal disks.

Studing thermal effects in magnetized turbulent disks will provide a more complete and

comprehensive understanding of the impact of corotation torques and of the migration

rates of embedded planets. An interesting option to tackle this problem is to include

thermal effects in two-dimensional simulations with forced turbulence. This greatly sim-

plifies the numerical problem and makes the simulations practical. The forced turbulence

can be tuned to resemble MRI turbulence using the parameters found in this work. This

would allow a practical study of different parameters without the prohibiting limitations

of three-dimensional MHD simulations.

Another aspect that deserves attention is the numerical modeling of the gas accretion

by planets in hydrodynamical simulations. Improving the prescription for modeling the

gas accretion is necessary to understand the full formation process. A better model for

accretion must include physical elements that tie the disk modeling to the formation of

the planet and its envelope. One such element is the radiation feedback unto the disk

from the forming protoplanet, such that the contraction of the envelope can be followed.

Furthermore, it is necessary to implement a sub-grid model for the inner envelope of

the planet that provides a boundary condition for the disk simulations. The treatment

of the magnetic field when the planet is accreting also needs to be revised. In this

work, mass is removed from the grid to simulate accretion and the magnetic field is not

modified. As before, ultimately there needs to be a treatment of the magnetic field based

on physical arguments. The implementation of these elements will be possible as higher

resolution simulations become practical, and allow for the circumplanetary disk to be

properly resolved.

Higher resolution simulations are also required to establish the convergence of the results

with increasing resolution. Longer integration times are necessary to cover the longer

physical timescales associated with the viscous evolution of the disk, gap opening and the

evolution of zonal flow structures. Covering these timescales is not yet practically possible

for three-dimensional magneto-hydrodynamics simulations.

An important application of this work is related to observations of the dust in the outer

parts of protoplanetary disks at sub-milimeter and milimeter wavelengths. Telescopes like

ALMA will be able to probe and spatially resolve the outer regions of protoplanetary disks

at these wavelengths. A very interesting question is whether the structures in the disk

resulting from planet-disk interactions or from magnetic turbulence can be observed and

under what conditions. The results of this work can be incorporated into dust growth and

evolution models or radiative transfer codes in order to model observed disk structures

like gaps or density inhomogeneities.
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Appendix A

Stochastic gravitational torque on

low-mass planets

In this Appendix we present results about the characterization of the turbulent torque

exerted on low mass planets in turbulent disks. This subject has been covered extensively

using two-dimensional hydrodynamical simulations of planet-disk interaction (Baruteau

and Lin, 2010; Laughlin et al., 2004; Ogihara et al., 2007), and using a semi-analytical

model to describe the migration (Adams and Bloch, 2009). In hydrodynamical simula-

tions, turbulence in the disk is not consistently generated by disk instabilities. Instead it

is modelled as a turbulent perturbation in the form of a potential that appears a source

term in the momentum equation. The potential is taken to be a sum over a certain

number of modes, each with a different amplitude and lifetime. Laughlin et al. (2004)

proposed the following form of the potential (for mode m)

Φm = ηmr−0.5e(r−rc)2/σ2

cos(mθ − φ − Ωct̃) sin

(

π
t̃

∆t

)

. (A.1)

Here, ηm is the amplitude of mode m, (rc, φc) are parameters sampled from a uniform

distribution covering the computational domain, the mode m is sampled from a log-

random distribution, and the time t̃ = t − tm,c, where tm,c is the starting time of mode

m. At any given time, a given number of modes are alive in the disk. The amplitude

and lifetime of the mode are tuned in order to obtain a density amplitudes spectrum that

resembles a turbulent disk spectrum with well characterized magnetic turbulence.

In order to have estimations the amplitude and lifetime of modes in the turbulent po-

tential, one needs to characterize the stochastic gravitational torque exerted by the disk

on test massless particles. We performed simulations of massless particles embedded in

a turbulent disk. The computational setup is identical to the one described in Chapter

4, except that instead of a planet orbiting the disk, we follow the orbital evolution of 50

massless particles at different positions in the disk. These particles have no feedback on
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the disk. In Chapeter 3, we already present the resulting density spectrum and discuss

its implications. Here, we focus on the calculation of the lifetime of the modes and of the

turbulent torque variance. The particles sample the perturbations throughout the disk.

We average quantities over the number of particles.

Figure A.1 shows the evolution of the semi-mayor axis for the 50 particles. The color

signals the position of the particles for the following figures. On the right plot, we show

the normalized variation in semi-mayor axis for all particles. The variation in semi-mayor

axis is very small, and particles approximately follow their initial orbits. The density in

this case is very low so that the fractional changes are small. The right plot shows the

fractional variation in the small scales. Here is it possible to see why a statistical approach

is necessary. Some particles drift in, some out. The purely turbulent perturbations act as

a diffusion process. The cumulative torques exerted on the particles are shown in Figure

A.2. The right plot shows the distribution of the mean torque at the end of the simulated

time. We can see that the torque distribution is approximately gaussian. The standard

deviation of the fitted gaussian profile provides an estimate of the range of torques (and

migration directions) experienced by particles. For this case we obtain

σtor ≈ 1.5 × 10−5v2
k(1AU). (A.2)

The lifetime of the modes is estimated as the autocorrelation time of the torque Γ(t)

(Baruteau and Lin, 2010). This is calculated using the autocorrelation function given by

ACF (τ) =

∫ tmax

τ
Γ(t)Γ(t − τ)dt

∫ tmax

τ
Γ(t)2dt

. (A.3)

The autocorrelation timescale is given by

τc =

∫ tmax

0

ACF (τ)dτ. (A.4)

For our simulation, we obtain τc ≈ 2 local orbits. The first and second zero crossings of

the torque autocorrelation function occur at 0.2 and 0.8 local orbits. The lifetime of the

modes in the turbulent potential should be taken to be one of these values.

In the semi-analytical approach of modeling turbulent migration using a diffusion equation

for the particle distribution, the diffusion coefficient is given by (Adams and Bloch, 2009)

D =
(∆L)2

τc
, (A.5)

where (∆L) is the fluctuation amplitude of the angular momentum of the particles (that

can be obtained from the standard deviation of the torque calculations), and τc is again

the timescale over which the perturbations are independent from each other, given by the

autocorrelation time calculated above.
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Figure A.1: Left: Semi-mayor axis vs time for 50 massless particles (position signaled by color).

Right: Fractional change in semi-mayor axis vs time. Particles undergo a diffusion process in small

scales.

Figure A.2: Left: Cumulative torque on the 50 massless particles. Right: Histogram of the

cumulative torque at the end of the simulation (after 150 orbits).
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Pierens, A., Plewa, T., Rice, K., Schäfer, C., and Speith, R.: 2006, MNRAS 370, 529

18, 39

Dominik, C. and Tielens, A. G. G. M.: 1997, ApJ 480, 647 4

Donn, B. and Sears, G. W.: 1963, Science 140, 1208 4

Dullemond, C. P. and Dominik, C.: 2005, A&A 434, 971 4

Dullemond, C. P. and Monnier, J. D.: 2010, ARA&A 48, 205 4

Durisen, R. H., Boss, A. P., Mayer, L., Nelson, A. F., Quinn, T., and Rice, W. K. M.:

2007, Protostars and Planets V pp 607–622 5, 64

89



BIBLIOGRAPHY

Dzyurkevich, N., Flock, M., Turner, N. J., Klahr, H., and Henning, T.: 2010, A&A 515,

A70+ 6, 44, 59

Edgar, R. G.: 2007, ApJ 663, 1325 10, 19

Edgeworth, K. E.: 1949, MNRAS 109, 600 4

Edgeworth, K. E.: 1962, The Observatory 82, 219 4

Fabrycky, D. C. and Winn, J. N.: 2009, ApJ 696, 1230 7

Fleming, T. and Stone, J. M.: 2003, ApJ 585, 908 6

Flock, M., Dzyurkevich, N., Klahr, H., and Mignone, A.: 2010, A&A 516, A26+ 40, 66

Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. J., and Henning, T.: 2011, ApJ 735,

122 6, 43

Ford, E. B. and Rasio, F. A.: 2008, ApJ 686, 621 7

Fromang, S. and Nelson, R. P.: 2009, A&A 496, 597 46

Fromang, S. and Papaloizou, J.: 2007, A&A 476, 1113 6

Fromang, S., Papaloizou, J., Lesur, G., and Heinemann, T.: 2007, A&A 476, 1123 6

Fromang, S., Terquem, C., and Nelson, R. P.: 2005, MNRAS 363, 943 38, 50

Gardiner, T. A. and Stone, J. M.: 2005, Journal of Computational Physics 205, 509 40,

66

Gaudi, B. S. and Winn, J. N.: 2007, ApJ 655, 550 7

Geisel, S. L.: 1970, ApJ 161, L105+ 4

Gilliland, R. L., Jenkins, J. M., Borucki, W. J., Bryson, S. T., Caldwell, D. A., Clarke,

B. D., Dotson, J. L., Haas, M. R., Hall, J., Klaus, T., Koch, D., McCauliff, S., Quintana,

E. V., Twicken, J. D., and van Cleve, J. E.: 2010, ApJ 713, L160 7

Goldreich, P. and Lynden-Bell, D.: 1965, MNRAS 130, 97 5

Goldreich, P. and Tremaine, S.: 1979, ApJ 233, 857 6

Goldreich, P. and Tremaine, S.: 1980, ApJ 241, 425 38

Gould, A. and Loeb, A.: 1992, ApJ 396, 104 8

Guan, X., Gammie, C. F., Simon, J. B., and Johnson, B. M.: 2009, ApJ 694, 1010 6

90



BIBLIOGRAPHY

Güttler, C., Blum, J., Zsom, A., Ormel, C. W., and Dullemond, C. P.: 2010, A&A 513,

A56+ 4

Haisch, Jr., K. E., Lada, E. A., and Lada, C. J.: 2001, ApJ 553, L153 vii, 9

Hawley, J. F., Gammie, C. F., and Balbus, S. A.: 1995, ApJ 440, 742 6

Hawley, J. F., Gammie, C. F., and Balbus, S. A.: 1996, ApJ 464, 690 6

Henning, T. and Meeus, G.: 2009, ArXiv e-prints 4

Henning, T. and Stognienko, R.: 1996, A&A 311, 291 4

Howard, A. W., Marcy, G. W., Johnson, J. A., Fischer, D. A., Wright, J. T., Isaacson,

H., Valenti, J. A., Anderson, J., Lin, D. N. C., and Ida, S.: 2010, Science 330, 653 7, 8

Hoyle, F.: 1960, QJRAS 1, 28 3

Hubickyj, O., Bodenheimer, P., and Lissauer, J. J.: 2005, Icarus 179, 415 64

Hughes, A. L. H. and Armitage, P. J.: 2010, ApJ 719, 1633 4

Ibgui, L. and Burrows, A.: 2009, ApJ 700, 1921 8

Ida, S. and Lin, D. N. C.: 2004, ApJ 604, 388 8, 38

Ida, S. and Lin, D. N. C.: 2007, ArXiv e-prints 38

Ida, S. and Lin, D. N. C.: 2008, in Y.-S. Sun, S. Ferraz-Mello, & J.-L. Zhou (ed.), IAU

Symposium, Vol. 249 of IAU Symposium, pp 223–232 9, 18, 38, 64

Ikoma, M., Nakazawa, K., and Emori, H.: 2000, ApJ 537, 1013 64

Jeans, J.: 1931, Nature 128, 432 2

Jeffreys, H. and Moulton, F. R.: 1929, Science 69, 245 2

Ji, H., Burin, M., Schartman, E., and Goodman, J.: 2006, Nature 444, 343 5

Johansen, A. and Klahr, H.: 2005, ApJ 634, 1353 6

Johansen, A., Klahr, H., and Henning, T.: 2006, ApJ 636, 1121 6

Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, T., and Youdin, A.:

2007, Nature 448, 1022 6

Johansen, A., Youdin, A., and Klahr, H.: 2009, ApJ 697, 1269 6, 43

91



BIBLIOGRAPHY

Johnson, E. T., Goodman, J., and Menou, K.: 2006, ApJ 647, 1413 40

Johnson, J. A., Aller, K. M., Howard, A. W., and Crepp, J. R.: 2010, PASP 122, 905 7

Juhász, A., Bouwman, J., Henning, T., Acke, B., van den Ancker, M. E., Meeus, G.,

Dominik, C., Min, M., Tielens, A. G. G. M., and Waters, L. B. F. M.: 2010, ApJ 721,

431 4

Juhász, A., Henning, T., Bouwman, J., Dullemond, C. P., Pascucci, I., and Apai, D.:

2009, ApJ 695, 1024 4
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papá por su apoyo, su generosidad y sus locuras. Le agradezco tambien a mi

querida hermana Luisa, por sus correos de apoyo y de distracción :P.

Finalmente, mis últimas gracias son para Joe, el mejor descubrimiento que

pude haber hecho en este tiempo. Gracias por caminar este camino al lado

mio, por ser una persona tan increible y por hacerme feliz. Los momentos que

comparti contigo (y con Harper) durante este tiempo estaran siempre en mi

corazon.

English Version

I would like to thank my friends for keeping me sane during these three years.

Thanks to Maxito for being how you are, to Paolilla for being a crazy girl, and

to Carolina and Ulrich for being so beautiful people. Thanks to my friends who

were far away but were always on my mind, Peter and Olga. To the people



who shared this years with me at some point and with whom I spent many

good times; Juan, Camila, Julio, Natasha, Sareh, Somayeh, Dading, Matucci,

Lavinia, Leonard. Specially, I want to thank my friend Mauricio for the infinite

coffees, the complaining and nostalgia sessions, for always making me laugh and

very mad sometimes. These three years would not have been the same without

him in Heidelberg.

A special thanks to Mario for all his help in the early (and not so early) days

of the project, it was great to get to work with you. I also want to thank my

supervisors, Hubert and Thomas, for all their support, discussions and advice.

I thank Hubert for his constant kindness and for all his suggestions and ideas

that always improved my work.

My dear parents have made it possible for me to be here in the first place.

Thanks to my mom for being always there for me and for not letting me forget

all that was always there for me. Thanks to my dad for his constant support,

his generosity and his craziness. Thanks to my dear sister Luisa for her support

and distraction emails :P.

Finally, my last thanks are for Joe, the best discovery I could have made in

this time. Thank you for walking this path next to me, for being so wonderful

and for making me happy. The moments I spent with you (and Harper) during

this time will be forever in my heart.



Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have been

identified as such. This paper has not previously been presented in identical

or similar form to any other German or foreign examination board.

The thesis work was conducted from 2008 to 2011 under the supervision of

Dr. Hubert Klahr and Prof. Dr. Thomas Henning at Max-Planck-Institute for

Astronomy (MPIA).

Heidelberg, November 21, 2011.


	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Planet formation and evolution: concepts, theory and simulations
	1.3 About this thesis

	2 Planet-disk gravitational interactions
	2.1 Migration Regimes
	2.1.1 Type I: Low-mass planet migration
	2.1.2 Type II: Gap-opening planets
	2.1.3 Type III: Intermediate cases

	2.2 Migration in non-isothermal disks
	2.3 Corotation Torques

	3 Type II migration and gas accretion onto planets in disks with uniform constant mass accretion
	3.1 Introduction
	3.2 Gap opening and type II migration
	3.3 Description of the setup of the simulations
	3.3.1 Disk profile and planet setup
	3.3.1.1 Parameters of the simulations

	3.3.2 Test of the viscous evolution of the disk

	3.4 Results
	3.4.1 Dependence of migration on surface density
	3.4.1.1 Fixed orbit planet
	3.4.1.2 Free moving planet: Effect of the Hill sphere

	3.4.2 Dependence of migration on the power law exponent
	3.4.3 Dependence of migration on disk viscosity
	3.4.4 Accretion of gas onto planets
	3.4.5 Mass flow through gaps

	3.5 Discussion and conclusions

	4 3D MHD Simulations of Planet Migration in Turbulent Stratified Disks
	4.1 Introduction
	4.2 Simulation Setup
	4.2.1 Disk and Planet Models
	4.2.2 Magnetic Field Configuration
	4.2.2.1 Zonal flows and pressure bumps


	4.3 Results
	4.3.1 Disk torques and migration
	4.3.1.1 Low Mass Planets (q=510-6 and q=110-5)
	4.3.1.2 Intermediate Mass Planets (q=510-5, q=110-4 and q=210-4)
	4.3.1.3 Large Mass Planet (q=10-3)


	4.4 Discussion and conclusions
	4.5 Summary

	5 Accretion of gas onto giant planets and envelope structure in magnetized turbulent disks
	5.1 Introduction
	5.1.1 Modeling planet accretion

	5.2 Computationl setup
	5.2.1 Boundary conditions
	5.2.2 Initial conditions, gap opening and viscosity
	5.2.3 Accretion prescription

	5.3 Results
	5.3.1 Structure of the envelope and mass inflow
	5.3.2 Gas accretion rates
	5.3.3 Gas inflow and magnetic pressure

	5.4 Discussion and conclusions
	5.5 Summary

	6 Conclusions
	6.1 Future research

	A Stochastic gravitational torque on low-mass planets
	Bibliography

