
Dynamics and Evolution of Supermassive
Black Holes in Merging Galaxies

Fazeel Mahmood Khan
Astronomisches Rechen-Institut

Zentrum für Astronomie der Universität Heidelberg

Heidelberg 2011



Cover picture: Gemini image of NGC 5426-27 (Arp 271).



Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

Put forward by
Fazeel Mahmood Khan

Born in: Azad Kashmir, Pakistan
Oral examination: January 25, 2012





Dynamics and Evolution of Supermassive
Black Holes in Merging Galaxies

Referees: PD Dr. Andreas Just

Prof. Dr. Volker Springel





Abstract

Supermassive black holes (SMBHs) are ubiquitous in galaxy centers and are correlated with
their hosts in fundamental ways, suggesting an intimate link between SMBH and galaxy evolution.
In the paradigm of hierarchical galaxy formation this correlation demands prompt coalescence of
SMBH binaries, presumably due to dynamical friction, interaction of stars and gas with the binary
and finally due to gravitational wave emission. If they are able to coalesce in less than a Hubble
time, SMBH binaries will be a promising source of gravitational waves for gravitational wave
detectors. However, it has been suggested that SMBH binaries may stall at a separation of 1
parsec. This stalling is sometimes referred to as the “Final Parsec Problem (FPP)”. This study
uses N -body simulations to test an improved formula for the orbital decay of SMBHs due to
dynamical friction. Using a large set of N -body simulations, we show that the FPP does not
occur in galaxies formed via mergers. The non spherical shape of the merger remnants ensures
a constant supply of stars for the binary to interact with. On its way to coalescence, the SMBH
binary ejects several times its total mass in stars and leads to the formation of the cores observed
at the center of giant ellipticals. The results of this study also support a cosmological scenario
where the prompt coalescence of SMBHs following galaxy mergers is common and where SMBH
binaries are promising sources of gravitational waves at low and high redshifts.

Zusammenfassung
In vielen Galaxienzentren werden Supermassive Schwarze Löcher (SMBHs) detektiert. Ihre

Massen korrelieren mit unterschiedlichen Eigenschaften dieser Galaxien, was als enge Verbindung
in der Entwicklung der SMBHs und Galaxien interpretiert werden kann. Im Bild der hierarchi-
schen Galaxienentstehung erfordert diese enge evolutionäre Koppelung ein schnelles Verschmelzen
von Doppel-SMBHs, vermutlich verursacht durch dynamische Reibung, die Wechselwirkungen des
Doppelsystems mit Sternen bzw. Gas und im finalen Stadium durch Abstrahlung von Gravita-
tionswellen. Würden die Doppel-SMBHs schneller als in einer Hubble-Zeit verschmelzen, wären sie
eine vielversprechende Quelle von Gravitationswellen für die entsprechenden Detektoren. Jedoch
wird vermutet, dass die Entwicklung der Doppel-SMBHs bei Abständen von ungefähr einem Par-
sec zum Erliegen kommt. Dieser Effekt wird manchmal auch als “Finales Parsec Problem” (FPP)
bezeichnet. In dieser Arbeit nutzen wir N -Körper-Simulationen für eine erweiterte Beschreibung
des Herabsinkens von SMBHs als Folge dynamischer Reibung. Mit einer Vielzahl von N -Körper-
Simulationen zeigen wir, dass das FPP in Galaxien, die durch Verschmelzungen entstehen, nicht
auftritt. Die Abweichung von der Kugelsymmetrie der aus der Verschmelzung neu gebildeten
Galaxie sorgt für einen kontinuierlichen Nachschub an Sternen, die mit dem SMBH-Doppelsystem
wechselwirken. Auf dem Weg zu ihrer eigenen Verschmelzung schleudern die Doppel-SMBHs
Sterne mit einem Vielfachen ihrer eigenen Masse aus der Galaxie heraus, wodurch sich flache
Dichteprofile bilden, wie sie häufig in elliptischen Galaxien beobachtet werden. Die Ergebnisse
dieser Arbeit unterstützen kosmologische Szenarien, in welchen das rasche Verschmelzen von
SMBHs üblicherweise sowohl bei niedrigen als auch bei hohen Rotverschiebungen nach einer
Galaxienverschmelzung eintritt und in denen Doppel-SMBHs eine vielversprechende Quelle von
Gravitationswellen sind.
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Chapter 1

Introduction

Black holes are one of the most exotic predictions of physics described by Einstein’s Theory
of General Relativity (GR). In GR matter and energy cause spacetime curvature and the black
holes which are the densest masses in the Universe are the objects of spacetime wrapped around
themselves. Indirect astronomical observational evidence support that the astrophysical black
holes exist in three mass ranges: stellar mass black holes (BH), having masses of 4-15 M�, are
formed as the end product of stellar evolution of massive stars for a wide range of stellar masses and
metallicities. Intermediate mass black holes (IMBH), with masses ∼ 102 − 104 M�, are suggested
to have been formed by the collapse of population III (PopIII) stars (Rees 1984, Madau & Rees
2001) or by runaway mergers of very massive stars in the center of dense stellar clusters (Portegies
Zwart & McMillan 2002, Portegies Zwart et al. 2004, Gürkan et al. 2004). Supermassive black
holes (SMBH), with masses ranging from 105 − 109 M� reside at the center of massive galaxies.
SMBH are suggested to grow to these enormous masses by starting as a seed black hole of few
hundred solar masses as a remnant of a PopIII star and then accretion plays vital role in the
growth of supermassive black hole. In another scenario a SMBH can form as the end product
of dynamical instabilities setting in massive gaseous protogalactic disks (Koushiappas et al. 2004,
Begelman et al. 2006, Volonteri & Begelman 2010) or in the mergers of gas rich disk galaxies
(Mayer et al. 2010). Mergers between SMBHs can also assist the mass growth of black holes.

The idea of supermassive black holes was proposed in 1960s to explain the enormous luminosi-
ties of quasars (Salpeter 1964, Zel’Dovich & Novikov 1964). Quasars, the most powerful sources of
energy in the universe, are believed to be powered by accretion of gas and stars onto SMBHs. This
idea has also been generally accepted for the explanation of radiation and jets emission from all
active galactic nuclei (AGN). The existence of SMBHs is now firmly established by measurements
of velocities of stars and gas which have Keplarian rise near the centers of galaxies. Observations
of distant quasars (redshift greater than 6) suggest that SMBHs with masses of up to a billion
solar masses were already in place at the centers of galaxies in the first billion years after the
Big Bang (Fan 2006). The presence of the SMBH at the center of a galaxy is correlated with the
dynamics of its stellar component. There is a tight correlation between the mass of the SMBH and
the central velocity dispersion of stars, the M• − σ relation (Ferrarese & Merritt 2000, Gebhardt
et al. 2000, Gültekin et al. 2009). Similarly the bulge or spheroid luminosity is correlated with the
mass of the SMBH. These tight correlations indicate that the growth of the SMBH and its host
galaxy are tightly interwined. Hence an understanding of the evolution of of SMBHs can assist to
understand the evolution of the galaxies.

Dynamical friction causes orbital decay of satellite galaxies in the halo of larger galaxies. It
is also responsible for star clusters and SMBHs sinking to the centers of galaxies. The cosmolog-
ical growth of massive central black holes from minor and major mergers depends sensitively on
dynamical friction of satellite galaxies and massive black holes in a background of stars and dark
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CHAPTER 1. INTRODUCTION

matter. Dynamical friction can be seen as the drag induced on a massive body (satellite galaxy,
star cluster, SMBH etc.) by the over-density raised behind the massive body due to the deflection
of stars which interact with it. The principles of dynamical friction theory were formulated by
Chandrasekhar in his classical work in 1943. Chandrasekhar assumed an infinite, homogeneous
and isotropic background stellar distribution in which the massive body moves. The singularity
at large impact parameters is cut off by the use of a so-called Coulomb logarithm lnΛ which
is the ratio of maximum to minimum impact factors. Also all contributions to the dynamical
friction force come from the stars moving slower than the massive body. The contributions to
the dynamical friction force from particles moving faster than massive body cancel out due to
symmetry. Despite these assumptions, dynamical friction theory has worked remarkably well in
wide range of astrophysical situations since it was first formulated. The error made by the first
assumption is usually absorbed by fitting a certain numerical value of the Coulomb logarithm to
the results of numerical simulations; such a method has been very successful in plasma physics
(Rosenbluth et al. 1957), star cluster dynamics (Spitzer 1987) and galactic dynamics (Weinberg
1989, Spinnato et al. 2003, Antonini & Merritt 2011). In order to determine the fraction of slow
stars when compared to the motion of the massive body, a Maxwellian velocity distribution is
adopted for the stars. There are two developments which have caused renewed interest in more
accurate theoretical determinations of dynamical friction. One is the realization (both from the-
oretical structure formation models and Hubble Space Telescope (HST) observations of galaxy
cores) that the cores of most galaxies in the standard picture of hierarchical structure formation
are embedded in cuspy distributions of dark matter (Lauer et al. 1995, Navarro et al. 1997). This
means that in many galaxies the density profile of the dark matter, which is the main background
for dynamical friction of dwarf galaxies, star clusters and compact objects is nowhere constant
as assumed in the standard Chandrasekhar theory. This problem has led to the suggestion of
an empirical variation of the Coulomb logarithm with radius, so as to account for the different
efficiency of dynamical friction (Tremaine 1976, Hashimoto et al. 2003, Peñarrubia et al. 2004).
Secondly numerical investigations have identified few cases in which Chandrasekhar’s dynamical
friction theory appears to break down. These include the inspiral of the massive body in constant
density (harmonic) cores (Hernandez & Gilmore 1998, Read et al. 2006, Inoue 2009), deceleration
of rotating stellar bar (Weinberg 1985) and orbital evolution of SMBH in the core of galaxies
(Gualandris & Merritt 2008, Just et al. 2011).

In the paradigm of Λ Cold Dark Matter (Λ CDM) cosmology, galaxies are formed via hier-
archical merging. Galaxies grow in size and mass through the agglomeration of smaller galaxies.
If both merging galaxies contain SMBHs at their centers then the two black holes will form a
binary SMBH system in the merged galactic nucleus (Begelman et al. 1980). There are cases
in which there is clear observational evidence for two widely separated SMBHs as well as some
circumstantial evidence for a true SMBH binary (for detailed review see Komossa (2006)).

SMBH binary evolution, after the merger of the two galaxies, consists of three distinct phases
(Begelman et al. 1980). First, the two SMBHs sink towards the center due to the dynamical
friction exerted by the stars and the dark matter. Dynamical friction acts together with the
“gravitational slingshot effect” as SMBHs form a bound pair. Dynamical friction stops being an
effective driver of inspiral when the binary reaches a separation where the enclosed mass inside
the binary orbit is much smaller than binary’s mass itself. In the second phase, slingshot ejection
of stars is the dominant mechanism for removing energy and angular momentum from the SMBH
binary. The stars plunging into the orbit of SMBH binary are ejected with velocities compared to
the binary’s orbital velocity. Thirdly, if the binary eventually reaches a separation at which the
loss of orbital energy due to gravitational wave (GW) emission becomes the dominant mechanism
in extracting the binary’s remaining energy and angular momentum , the two SMBHs will finally
coalesce. It is also possible, however, that coalescence is delayed, perhaps for much longer than a
Hubble time, if the massive binary is limited in its ability to exchange angular momentum with
surrounding stars and gas.
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With the rapid development in computer power, massive parallelization and special purpose
hardware developed to run numerical codes efficiently, numerical modeling of astrophysical objects
has become, “third pillar” of astrophysics beside pure theory and observations. Big supercomputer
have become laboratories for astrophysicists to understand the formation and evolution of stars,
galaxies and structures on a cosmological scale. In the past decade several numerical simulations
have been carried out to study the dynamics of SMBHs at the center of galaxies (Makino 1997,
Milosavljević & Merritt 2001, Makino & Funato 2004, Berczik et al. 2005, 2006, Merritt 2006b,
Berentzen et al. 2009). It has been found that dynamical friction is very efficient in bringing two
SMBHs close to form a binary, but the subsequent evolution, which is governed by the individual
stars interacting with the massive binary, depends on number of the particles N used to represent
the galaxy in these simulations (Makino & Funato 2004, Berczik et al. 2005). The maximum
number of particles used in these studies is still several orders of magnitude less than the total
number of stars in real galaxies and the results of these studies which depend on particle number,
cannot be extrapolated to real galaxies. Also the direct N -dependence indicate that the evolution
of SMBH binaries happen on relaxation time scales which are O(1011 years) for real galaxies. The
N - dependent evolution of massive binary occurs at separation of approximately one parsec and the
SMBH binary should stop evolving beyond this point unless there is some other mechanism which
ensures a constant supply of the stars to the massive binary. This sometimes is referred to as the
“final parsec problem” (Milosavljević & Merritt 2003b). These studies, however, suffer a drawback
in that the binary evolution was always studied using a spherical galaxy model while in reality the
galaxy merger remnant where the binary evolution occurs is not spherically symmetric. Theoretical
studies suggest that by introduction of flattening and non-axisymmetries stellar dynamics might
suffice to bring SMBH binaries to GW dominated regime, since in these cases a significant fraction
of orbits pass through the center (Merritt & Poon 2004). Motivated by this, rotating bar unstable
galaxy models were used to study the evolution of SMBH binaries. These studies indicated that
the evolution of SMBH binaries was N -independent, thus providing a potential stellar dynamical
solution to final parsec problem (Berczik et al. 2006, Berentzen et al. 2009). In addition the torques
from gas (Escala et al. 2005, Cuadra et al. 2009), if present, or re-population of stellar orbits due to
“massive perturbers” (Perets & Alexander 2008) can assist the binary’s loss of energy and angular
momentum. It is thus important to perform numerical studies of the evolution of SMBH binaries
in more realistic scenario of merging galaxies in order to obtain a clearer picture of this paradigm.

Gravitational waves were predicted by Einstein shortly after presenting his theory of General
relativity. GWs are produced by accelerated masses, and according to GR, propagate with speed
of light . The first indirect observational verification of the existence of GWs came through
observations of the binary pulsar PSR B1913+16 by Hulse and Taylor starting in 1974 (Hulse
& Taylor 1974). There are several interferometric ground based detectors for GW detection
(such as LIGO, Virgo and GEO600) designed to observe neutron star or stellar-mass black hole
binary coalescences in a frequency range from few Hz to few hundred Hz. Currently a space
mission LISA1 (Laser-Interferometer Space Antenna) is designed to measure gravitational waves
for various sources over a range of frequencies (0.03 milli Hz - 0.1 Hz). The prospect of the
detection of low-frequency gravitational radiation by LISA (Hughes 2003, Barack & Cutler 2004)
has motivated theoretical studies into the formation and evolution of binary supermassive black
holes. Such binaries would constitute the highest signal-to-noise ratio sources of low-frequency
gravitational waves, but as is the case for virtually all potential LISA sources, the event rate is
still poorly known, with estimates ranging from a few to a few thousand events per year (e.g.
Wyithe & Loeb 2003, Rhook & Wyithe 2005, Sesana 2010). A common practice when estimating
event rates for LISA is to equate the binary SMBH coalescence rate with the galaxy merger
rate, the latter derived from models of structure formation in which galaxies merge hierarchically
(Haehnelt 1994, Menou et al. 2001, Volonteri et al. 2003, Wyithe & Loeb 2003, Jaffe & Backer
2003). But as mentioned above, it is not clear whether prompt coalescence of SMBHs in galaxy

1http://www.esa.int/science/lisa
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mergers is common, although observation may favor the prompt coalescence scenario. LISA can
determine the luminosity distance of coalescing binaries. Assuming standard cosmology this can
be converted to the redshift of the binary. Consequently, one can calculate the merger events as
a function of redshift and hence trace the early history of galaxy mergers and the build-up of
SMBHs2.

Detailed surface photometry of elliptical galaxies has revealed that their surface brightness
is well described by a Sérsic profile, log I(r) ∝ r1/n, over most of the body of a bulge or early-
type galaxy. However, systematic deviations from this profile are found in the innermost regions
close to the central SMBH – either in the form of a light (mass) excess or deficit with respect
to that would result from the extrapolation of the Sérsic profile towards the center. In other
words, observations seem to reveal a dichotomy in the central density profiles of bulges and early-
type galaxies: giant, high-luminosity objects have relatively shallow central density profiles while
normal, low-luminosity ones show steeper density profiles in their center. The former are often
called core galaxies and show density profiles (ρ ∝ r−γ) with central logarithmic slopes γ < 1,
and typically harbor SMBH of mass & 108M�; while the latter are normally called power law
galaxies, have central γ > 1 and lighter SMBH . few × 107M�. Recent studies show that this
mass excess or mass deficit can be as large as 10× the mass of the supermasssive black hole. The
inspiral of a binary SMBH is expected to leave a characteristic imprint in the morphological and
dynamical properties of the newly formed galactic nucleus following the merger. The inspiraling
binaries could carve a core in the centers of galaxies (Chapter 8) by ejecting stars on orbits that
intersect the orbit of massive binary, thus providing an explanation for the mass deficits present
in the centers of gas-poor giant elliptical galaxies.

Key scientific points to be addressed in this study

1. Use of self consistent distribution functions and an improved general form of the position
and velocity dependent Coulomb logarithm to estimate dynamical friction and estimate
the orbital decay of supermassive black holes in galaxies having different cuspy density
profile.

2. Production of a large set of N -body simulations that can be compared to our improved
dynamical friction formula in order to test its validity.

3. Investigations of the final parsec problem using more realistic models of merging galaxies
with SMBHs at their centers and follow the evolution of SMBHs once the galaxies merge
and a SMBH binary is formed.

4. Investigations of the shape of newly formed galactic nuclei following the merger of the
galaxies by looking at the projected densities contours and calculating the axes ratios for
the merged nucleus.

5. Investigations of the impact of mass ratios and density profiles of the merging galaxies on
the SMBH binary evolution and on the shape of the merger remnant.

6. Estimates of the full time to coalescence of SMBH binaries for different masses of the
merging black holes (106M�−109M�) and the implications for gravitational wave detection
by LISA.

7. Estimates of the mass ejected from the centers of galaxies by the massive SMBH binary
in the process of merging and implications for the missing light observed at the centers of
bright elliptical galaxies.

2Danzmann, K. et al., 2011, ESA LISA Yellow Book
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Outlines

Chapter 2 reviews briefly the black hole galaxy relation, observational evidence of the SMBH
binaries and evolution of the SMBH binary in galaxy merger. In Chapter 3, we discuss the galaxy
models and the numerical codes used to evolve these models for various investigations concerning
SMBHs and galaxy mergers. In Chapters 4 and 5 the improved formula of dynamical friction
is discussed and used to estimate the orbital decay for power law cusps. Chapter 6, presents
the results of our numerical study on dynamical friction and comparison of these results with
analytic and semi-analytic estimates for standard dynamical friction formula and our improved
formula. The results of numerical simulations to study the final parsec problem are discussed in
Chapter 7. The evolution of SMBH binaries in the galaxy mergers having different mass ratios
and density profile of merging galaxies are presented in Chapter 8. Chapter 9, presents the
result of our study of the SMBH binary evolution starting from a late phase of the Milky Way
type 1:10 galaxy merger. In the end, Chapter 10 concludes our study.
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Chapter 2

Supermassive Black Holes in
Galaxy Centers

This Chapter reviews the following aspects of SMBHs evolution

1. Supermassive black holes, formation scenarios and the correlation of their properties with
their host galaxies.

2. Observational evidence (direct and indirect) of binary supermassive black holes.

3. The formation and evolution of SMBH binaries in merging galaxies.

4. Stalling of SMBH binaries in spherical galaxy models and proposed scenarios to overcome
this stalling.

Super Massive Black Holes are now a well established component of galaxies with a sizable
bulge (Ferrarese et al. 2006). Since the 1960’s it was understood that energetic processes taking
place in quasars have gravitational origin (Salpeter 1964, Zel’Dovich & Novikov 1964, Robinson
et al. 1965). Quasars, the most powerful sources of energy in the visible universe are powered by
lurking SMBHs in the centers of galactic nuclei as they accrete stars and gas. The gravitational
energy is released very efficiently from the accreted gas in the form of highly energy radiation
and jets that sometimes extend to several kiloparsecs. The fact that quasar activity and galaxy
mergers peak at approximately the same redshift supports the idea that the gas accretion on
the SMBH is the source of triggering Active Galactic Nuclei activity since galaxy mergers are
very efficient in driving the gas to the centers (Kauffmann & Haehnelt 2000, Mayer et al. 2010).
Initially, SMBH masses in AGNs and quasars were deduced from the assumption of the Eddington
limited luminosities where the gravitational attraction on electrons and protons is balanced by the
radiation pressure of Thomson scattering:

LEdd = 4π
GM•mpc

σT
= 1039(

M•

108M�
)W. (2.1)

Where σT is the cross-section for Thomson scattering, mp is the mass of a proton and c is
speed of the light. In the last few years we have witnessed the discovery of luminous quasars at
z > 6 that are likely anchored by supermassive black holes of mass > 109M� at the end of re-
ionization epoch (Fan 2006). With the recent developments in ground and space based telescopes,
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CHAPTER 2. SUPERMASSIVE BLACK HOLES IN GALAXY CENTERS

Figure 2.1: Evolution of central gas disk in the merger of two disk galaxies[Figure taken from
Mayer et al. (2010)]. Figure shows the projected surface density maps of the central part of the
gaseous disk formed as the result of the merger of two gas rich disk galaxies. A massive gas cloud
with mass ∼ 108M� forms at the center.

the dynamics of gas and stars is used as a probe to measure the masses of even quiescent SMBHs
in the nearby universe. One of the most compelling evidence involves the presence of a SMBH at

the center of our own galaxy - the Milky Way. The motions of stars within 0.´́3 of Milky Way’s
SMBH have been monitored for more than a decade now (Eckart & Genzel 1997, Ghez et al. 1998).
The full Keplarian orbit obtained for the short-period S-2 star has revealed a 4.1 × 106M� mass
SMBH at the center (Ghez et al. 2008).

Several scenarios are proposed in literature to explain the appearance of billion solar mass
black holes within the first gigayear (Gyr) after the big bang:

• The conventional scenario involves the direct collapse of metal free population III star, lead-
ing to the formation of a seed black hole of about 100M� (Madau & Rees 2001). This seed
black hole then needs to accrete steadily at or above the Eddington rate to grow to the
billion solar mass supermassive black hole that is the power engine of a redshift 6 quasar
(Volonteri & Rees 2006). There are several processes which can go against this high ac-
cretion rate, namely radiative feedback (Milosavljević et al. 2009) and/or low gas densities
(Johnson et al. 2007) around the black hole. Also gravitational kicks due to asymmetric
emission of gravitational waves received during the final phase of black hole mergers, may
move the black hole off center (Haiman 2004) and hence can affect the accretion rates.

• Intermediate mass black holes, thought to be the remnants of very massive stars formed via
runaway mergers between the stars at the centers of dense stellar clusters, can act as seed
black holes and provide a possible route to SMBH growth (Portegies Zwart et al. 2004).

• Another interesting scenario involves the direct formation of SMBHs via multi-scale gas
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2.1. OBSERVATIONAL EVIDENCE FOR BINARY SUPERMASSIVE BLACK HOLES

inflows in galaxy mergers (Mayer et al. 2010). The collision of two galactic cores produce a
massive turbulent, rotating nuclear disk (Figure 2.1) and more than 108 M� is accumulated
in the central parsec. This supermassive cloud then can directly collapse to a SMBH or
can partially collapse to form a supermassive star that can in turn collapse to an IMBH.
The IMBH can then accrete from surrounding gas rich environment at high enough rates to
become 109M� black hole.

Locally there is a tight correlation between the mass of the SMBH and the velocity dispersion
σ of the stellar component of the host galaxy (Ferrarese & Merritt 2000, Gebhardt et al. 2000,
Merritt & Ferrarese 2001, Tremaine et al. 2002, Ferrarese & Ford 2005, Gültekin et al. 2009). This
correlation indicates that black hole evolution and galaxy formation are strongly coupled. The
M• − σ relation is given by (Gültekin et al. 2009)

log(M•/M�) = (8.12± 0.08) + (4.24± 0.41)log(
σ

200 km s−1
) (2.2)

Similar correlations exist between the bulge luminosity and the SMBH mass, and between the
mass of the galaxy and the mass of the SMBH.

log(M•/M�) = (8.95± 0.11) + (1.11± 0.18)log(
LV

1011L�,V
) (2.3)

The concordant evolution of SMBHs and their host galaxies suggest a paradigm in which
SMBHs play an active role in shaping the cosmic environment.

Density profiles near the centers of elliptical and spiral galaxies exhibit a power law, ρ ∝ r−γ .
Bright ellipticals have shallow cusps (γ ' 0.5) whereas faint ellipticals and spiral galaxies have
steep density cusps (γ > 1.5). The formation of steep cusps is possible via collisional relaxation. In
self gravitating cusps the encounter between stars result in driving the local velocity distribution to
Maxwellian. But in the sphere of influence of SMBH where its gravitational potential dominates,
the equilibrium density distribution has the ρ ∝ r−7/4 due to the exchange of energy between
stars (Bahcall & Wolf 1976). A key timescale for the formation of the Bahcall-Wolf cusp is the
relaxation timescale (Preto et al. 2004).

The bright elliptical galaxies with SMBH masses in the 108 − 109 M� range, have relaxation
times which are much longer than the age of the universe due to their relatively low stellar densities
and high velocity dispersion (equation 2.2). So the nuclear density profile in these galaxies did
not have enough time to evolve to a Bahcall-Wolf cusp and retain an imprint of their formation
processes. On the other hand in galaxies like the Milky Way and M32 both having SMBH masses
∼ 106 M�, the central relaxation time is shorter than a Hubble time. Each of these galaxies
exhibits a steep power law density profile γ ∼ 1.5.

2.1 Observational Evidence for Binary Supermassive Black
Holes

According to hierarchical galaxy formation models, the formation of Supermassive Black Holes
Binaries (BBHs) should be common in galaxies. The search for BBHs is of great interests for
understanding galaxy formation and evolution. The detection of a binary supermassive black hole
would strengthen the idea that black holes can grow to high masses in the centers of galaxies by
merging with other black holes. Here is a brief overview of several direct and indirect evidences
which point to the presence of two supermassive black holes in the nucleus of a single galaxy.
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CHAPTER 2. SUPERMASSIVE BLACK HOLES IN GALAXY CENTERS

Figure 2.2: SMBH masses as function of velocity dispersion σ based on 49 measurements [Fig-
ure from Gültekin et al. (2009)]. The line is the best fit relation to the sample: M• =
108.12M�(

σ
200 km s−1 )

4.24.
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2.1. OBSERVATIONAL EVIDENCE FOR BINARY SUPERMASSIVE BLACK HOLES

Figure 2.3: Left: Optical image of NGC6240 obtained by Hubble Space Telescope. Right: X-ray
image of the central region of NGC6240 obtained by NASA’s Chandra X-ray Observatory show-
ing two accreting supermassive black holes: red color corresponds to soft X-rays (0.5-1.5 keV),
green to medium X-rays(1.5-5 keV), and blue to hard X-rays(5-8 keV). Credit: NASA/CXC/M-
PE/S.Komossa et al. 2003.

2.1.1 Direct Evidence for Dual SMBHs: Spatially Resolved Systems

In this section cases in which both SMBHs can be spatially resolved in a single galaxy are described.

Starburst Galaxy NGC 6240

NGC 6240 is a result of the merger of two galaxies and belongs to the ultra luminous infrared
galaxy (ULIRG) class. It harbors two optical nuclei (Figure 2.3-left). Due to the recent collision
and merger of two galaxies the star formation rate is very high. Large amounts of gas and dust
make it difficult to observe the central regions of the galaxy with optical telescopes. However,
X-ray emissions from the central part of the galaxy can penetrate gas and dust.

Observations performed with the Chandra X-ray observatory (Komossa et al. 2003) reveal the
presence of two accreting supermassive black holes (Figure 2.3-right). The projected separation
between the two black holes is 700 pc (Max et al. 2007). Kinematic evidence suggest that the two
supermassive black holes are not yet bound.

Spiral Galaxy NGC 3393

A dual SMBH system has been reported in the central regions of NGC 3393 after the ob-
servation of X-ray emission from the two AGNs (see Figure 2.4) using NASA’s Chandra X-ray
Observatory (Fabbiano et al. 2011). Two SMBHs are separated by ∼ 135 pc and are estimated to
have masses ∼ 106M�. NGC 3393 hosts the nearest known pair of supermassive black holes (at
a distance of 160 million light years). It also happens to be the first time that a pair of SMBHs
has been reported in a spiral galaxy like our Milky Way.

Radio (Elliptical) Galaxy 0402+379

Using multi-frequency Very Long Baseline Array (VLBA) observations, Maness et al. (2004)
reported the presence of two central, compact, flat-spectrum components (possibly active galac-
tic nuclei) in the radio galaxy 0402+379 (Figure 2.5). Further VLBA observations of the same
galaxy were performed by Rodriguez et al. (2006) who concluded that the two components are

11
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Figure 2.4: Observational evidence for SMBH pair in a spiral galaxy NGC 3393 from the data
obtained by NASA’s Chandra X-ray Observatory. The figure shows composite image of X-rays
from Chandra (blue) and optical data from the Hubble Space Telescope (gold) of the galaxy. The
box (inset) shows the central region of NGC 3993 as observed by Chandra only. Credits: X-ray:
NASA/CXC/SAO/G. Fabbiano et al; Optical: NASA/STScI
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2.1. OBSERVATIONAL EVIDENCE FOR BINARY SUPERMASSIVE BLACK HOLES

Figure 2.5: VLBA image of 0404+379 at 0.3 GHz. Contours are drawn at 3 σ and increase by
factor of 2 thereafter (Figure taken from Rodriguez et al. (2006)). Right panel of the figure shows
sketch of two SMBHs.

supermassive black holes in a single galaxy. The projected separation of the two SMBHs is 7 pc
which makes this pair of SMBHs the closest binary SMBH system yet discovered. The estimated
total mass of the SMBHs system is 1.5× 108M�.

2.1.2 Indirect Evidence for BBHs: Spatially Unresolved Binary Sys-
tems

The inspiral of a binary SMBH is expected to leave a characteristic imprint in the morphological
and dynamical properties of the newly formed galactic nucleus following the merger of two galaxies.
This section describes several observed phenomena in galaxy centers that could be explained by
different models of SMBH binary evolution prior to or after the coalescence of the two black holes.

Radio Galaxies with X-shaped Jet Patterns

Large scale radio jets have been observed in several hundreds of radio sources (Liu & Zhang
2002). Among these, there is a class of so called “X-shaped” or “winged” radio sources character-
ized by two low surface brightness radio lobes oriented at an angle to high brightness lobes. The
coalescence of the binary SMBHs preceded by gravitational waves can alter the spin axis of the
larger SMBH. If one of the the two merging galaxies harbor a radio jet then a likely consequence
of SMBH merger is the sudden change in the direction of the radio jet at some angle with respect
to the original lobe (Merritt & Ekers 2002, Zier 2005).

Double-Double Radio Galaxies

These radio galaxy sources consist of a pair of symmetric double-lobed radio structures having
a common center and aligned along same axis. Schoenmakers et al. (2000) proposed several ideas
to explain this phenomenon. These structures are most likely caused by the interruption and
restarting of the jet formation and are suggested to be the remnants of a coalesced SMBH binary
system (Liu et al. 2003). Jet formation is interrupted as the inspiraling secondary black hole
opens a gap in the accretion disc around the primary supermassive black hole. Once the SMBHs
coalesce, the gap is refilled by disk material and jet formation restarts. Liu et al. (2003) showed
that the observed time for the interruption of jet activity is the time required for the accreted
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Figure 2.6: Left: Optical light curve of OJ 287 (Figure from Valtonen et al. (2008)). The light
curve shows periodicity with approximately 12 years period. Right: Model for the SMBH binary
in OJ 287.

plasma to refill the inner disc.

OJ 287

OJ 287, one of the brightest quasars, shows a quasi periodic pattern of prominent outbursts
in its light curve (Figure 2.6). This object has been observed since the late nineteenth century.
The interval between two outbursts peaks is 12 years and shows two peaks per interval (Sillanpaa
et al. 1988, Valtaoja et al. 2000, Valtonen et al. 2008). Sillanpaa et al. (1988) proposed a scenario
in which the secondary SMBH tidally perturbs the accretion disk of the primary SMBH on a close
passage that leads to an increased activity resulting in a peak in the optical light curve. Another
model which invokes a SMBH binary to explain the light curve variation of OJ 287 was proposed
by Katz (1997). In this model the jet sweeps periodically across the line of sight as gravitational
torque exerted by the secondary SMBH causes precession of the accretion disk around primary
SMBH. Lehto & Valtonen (1996) proposed that the observed sharp flashes are caused by the
impact of the secondary SMBH as it pierces the accretion disk of the primary SMBH. Valtonen
(2008) constructed the orbit of the SMBH binary with eccentricity 0.663. The mass of the primary
is 18 × 109M� and that of secondary about 107M�. Valtonen et al. (2008) predicted the next
outburst using the post Newtonian corrections to the binary orbit and observed the outburst to
be in good agreement to their predictions.

Sub-parsec SMBH Binary in Quasar SDSS J153636.22+044127.0

SMBH binaries at the center of active galaxies are expected to have observable effects on the
profile of broad emission line due to the orbital motion of the two black holes. Recently a quasar
SDSS J153636.22+044127.0 system which shows two broad-line emission system has been reported
as a sub-parsec SMBH binary candidate (Boroson & Lauer 2009). The two SMBHs have masses
∼ 107M� and 109M� solar masses. The binary separation is ∼ 0.1 pc with an orbital period of
∼ 100 years. The subparsec separation of the binary suggests that gravitational wave emission
can derive the binary to coalescence in approximately 1 Gyr (see Chapter 8).

A Close Binary Black Hole in the Giant Elliptical Galaxy 3C 66B

Several extragalactic sources show periodic variations in flux and outburst activity in γ-rays,
X-rays, optical and radio. The periodicity in outburst variations can be associated with the
presence of binary black hole system in numerous theoretical and observational studies (Rieger
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& Mannheim 2000, De Paolis et al. 2002). The core of 3C 66B a nearby giant elliptical (radio)
galaxy, is reported to have such periodic variations in its light curve that are associated with the
presence of a very close SMBH binary system (Iguchi et al. 2010). The mass of the more massive
of the two black holes is 1.2 × 109M� while for smaller black hole is 7.0 × 108M�. The orbital
separation of the binary is 6.1 × 10−3 pc with an orbital period of approximately one year. The
binary with a separation ∼ milli parsec could already be in gravitational wave dominated regime
and should be an interesting target for the GW detectors.

Core (missing light) Galaxies

Detailed surface photometry of ellipticals has revealed that their surface brightness is well
described by a Sérsic profile, log I(r) ∝ r1/n, over most of the body of a bulge or early-type galaxy
(Kormendy et al. 2009). Bright ellipticals with total absolute magnitude less than -21 have cuspy
cores–“missing light”– at small radii. Cores tend to be found in giant ellipticals and are loosely
defined as the central region in a bulge or early-type galaxy where the surface brightness deviates
and it is below the values that would result from the extrapolation of the Sérsic profile from the
main body of the object down to its innermost region. In dry mergers, i.e. in the absence of a
dynamically significant amount of gas, the slingshot ejection of stars by the central SMBH binary
drives the binary inspiral. It has been proposed that inspiraling binaries could carve a core by
throwing stellar mass of the order of the mass of the SMBH binary (Merritt 2006b).

2.2 Supermassive Black Hole Binary Evolution

Galaxy mergers, which are an essential part of galaxy evolution, are considered the prevalent path
leading to the formation of SMBH binaries. An understanding of the formation and evolution of
SMBH binaries is thus important to understand the galaxy formation and evolution.

The dynamical evolution of pair of supermassive black holes in galaxy mergers can be described
broadly in three phases (Begelman et al. 1980):

1. Supermassive black holes are embedded in the central cores/cusps of their host galaxies. The
galaxy cores/cusps sink to the center of the merger product due to the dynamical friction
caused by background dark matter + stars + gas. The galaxy cores/cusps merge, undergo
violent relaxation and form a new galaxy nucleus in a characteristic galactic dynamical
time scale. The two SMBHs form a binary system once their separation shrinks below the
influence radius.

2. The binary continues to decay under the combined effects of dynamical friction and the
gravitational slingshot effect. As the binary’s orbital time decreases the dynamical friction
becomes inefficient and the binary’s further evolution is governed by its interaction with
stars on orbits intersecting the binary, carrying away energy and angular momentum from
binary. These stars are then ejected at the velocities comparable to binary’s orbital velocity.

3. For a sufficiently small separation the emission of the gravitational waves become dominant
and carries efficiently the last remaining energy and angular momentum, resulting in a rapid
coalescence of supermassive black holes.

Figure 2.7 show a sketch of the three distinct phases in evolution of SMBH binary and the
underlying physical physical processes in each phase. Here we describe each phase in more detail:

Galaxy Mergers and Dynamical Friction

Galaxy mergers can be divided mainly in two classes: the first, in which the merging galaxies
have almost equal masses, are termed as major mergers while the second, which involve mergers
of galaxies with large mass ratio (typically 1:10 or larger), are referred to as minor mergers. In
major mergers as the galaxies merge, the two SMBHs centered inside the individual cusps fall
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Figure 2.7: Different phases of SMBH binary evolution. Figure shows the relative separation of
the two black holes during galaxy merger. As the galaxies merge the two SMBHs sink towards
the center and form a binary system due to dynamical friction (phase I). The binary gets harder
by flinging stars away on orbits intersecting the binary (phase II). At small separations (∼ milli-
parsec) SMBH binary shrink rapidly and SMBHs coalesce due to emission of gravitational waves
(phase III).

towards the center of the merger remnant and form a close pair surrounded by individual cusps.
Once the individual cusps are merged and a new galactic nucleus is formed the two SMBHs move
as individual entities, loose angular momentum due to dynamical friction and form a bound pair.
In the case of minor mergers, the less massive galaxy will be tidally disrupted. The black hole of
the less massive galaxy looses its surrounding cusp and spirals in due to dynamical friction. The
dynamical friction phase in minor mergers is shortened in the case of satellite galaxies which have
compact center since these galaxies can survive against the tidal disruption for a longer period
of time. If the merging galaxies (especially the less massive one) have a considerable fraction of
the gas, the gas can be funneled towards the center and undergo a strong star-burst, making the
central part of the galaxy more compact (Callegari et al. 2009). The orbital evolution of such an
inspiraling SMBH due to dynamical friction is discussed in great detail in Chapter 5. Dynamical
friction also plays a very important role in changing the shape of the binary’s orbit. Near apo-
center the orbital velocity is lowest while it is highest near peri-center. At peri-center SMBHs
need to move faster than local circular velocity to climb up and at apo-center SMBHs need to
move slower than local circular velocity to fall down. If dynamical friction is more efficient near
peri-center then the orbit of the binary circularizes whereas if dynamical friction is stronger at
apo-center it becomes eccentric.
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Stellar Dynamical Hardening

Let us define the mass of the two black holes as M1• and M2• for larger and smaller black
holes respectively. M• = M1• +M2• and q = M2•/M1• is the mass ratio of the two black holes.
For equal mass binary q = 1 and for unequal mass binaries q is always less than 1. Also we define
the reduced mass, µ = M1•M2•/M• and a is the semi-major axis of the SMBH binary. Following
the dynamical friction phase the two black holes become bound and form a binary system. The
separation at the time of formation of the SMBH binary is typically ∼ rh, the gravitational
influence radius of the black holes, defined as (Merritt & Milosavljević 2005)

rh =
GM•

σ2
≈ 11pc(

M•

108M•
)(

σ

200km s−1
)−2. (2.4)

Here σ is the one dimensional velocity dispersion of the stellar bulge. An alternate definition of
rh is the radius which encloses the stellar mass around the SMBH equal to 2M•,

rh = M?(r) = 2M• (2.5)

Here we define the binary’s parameters according to approximate relative Keplarian orbit ignoring
the force contribution from the stars. The binding energy is

Eb = −GM1•M2•

2a
= −GµM•

2a
(2.6)

and the binding energy per unit mass of the SMBH binary is

εb = −Eb/M• = Gµ/2a. (2.7)

We define the semi-major axis a and eccentricity e via the standard relations:

1

a
=

2

R
− v2

GM•
, (2.8)

e =

√
1 +

2h2

GM2
•

[
v2

2
− GM•

R

]
. (2.9)

where v is the relative speed, and h is the specific angular momentum of the relative motion. For
a circular orbit, the relative velocity of two SMBHs and the orbital period is given by

v =

√
GM•

a
, (2.10)

and

Porb = 2π

√
a3

GM•
(2.11)

respectively.
The stars passing within a distance of a few times the semi-major axis of the SMBH binary

are ejected by gravitational slingshot effect with velocities Vej ≈ v (e.g. Hills & Fullerton (1980)).
The stars carry energy and angular momentum away from the binary and the binary’s binding
energy increases. The rate at which Eb increases as a result of the encounter with field stars is
given by

dEb

dt
= H

G2M2
•ρ

8σ
(2.12)

where ρ is the background stellar density, σ is 1D velocity dispersion of the stars and H is
dimensionless hardening rate of the binary defined as
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H =
σ

Gρ

d

dt
(
1

a
). (2.13)

Various studies (e.g. Mikkola & Valtonen (1992), Quinlan (1996), Sesana et al. (2006)) estimated
the binary hardening rates by performing three-body scattering experiments with different mass
ratios of circular binaries and provided fitting formulas for H. Sesana et al. (2006) derived fitting
function for H,

H = A(1 + a/a0)
γ . (2.14)

The parameters A, a0 and γ are given in Table 1 of Sesana et al. (2006) for various mass ratios of
the binary. H has been found to be approximately constant in both N -body studies(e.g. Merritt
(2006b), Khan et al. (2011)) and scattering experiments (e.g. Quinlan (1996), Sesana et al. (2006))
once a ≤ ah , where ah is the semi-major axis of a “hard binary”. SMBH binary is called hard
when εb ≥ σ2. Semi-major axis of a hard binary is defined as (e.g. Merritt (2006a) )

ah =
Gµ

4σ2
(2.15)

Using equation 2.4 for the influence radius, ah can be written as

ah =
µ

4M•
rh =

rh
4

q

(1 + q)2
. (2.16)

For q = 1, ah ≈ 0.06rh and for q = 0.1, ah ≈ 0.02rh. The eccentricity of the massive binary grows
at a rate,

K =
de

dln(a0/a)
. (2.17)

Sesana et al. (2006) found the following fitting relation for K from their scattering experiments

K = A(1 + a/a0)
γ +B. (2.18)

The parameters for fit can be found from Table 3 of Sesana et al. (2006). During this phase of
SMBH binary hardening, the stars are deposited into large volume at large radii by gravitational
slingshots. The mass ejection rate is

J =
1

M

dMej

dln(1/a)
. (2.19)

where Mej is the stellar mass ejected by the SMBH binary. Fitting formula for J is (Sesana et al.
2006)

J = A(a/a0)
α[1 + (a/a0)

β ]γ , (2.20)

with A, a0, α, β and γ given in Table 2 of Sesana et al. (2006). The above mentioned formulas
obtained from scattering experiments assume that the SMBH binary has always constant supply
of stars to interact with. This may not be always the case as is discussed in the next section.

Gravitational Waves (Hardening)

Gravitational waves are generated by accelerated mass-energy distributions. If M• is the mass
of a system with size R at a luminosity distance D, the periodic motion of such a system generates
gravitational waves having a strain amplitude:

h ∼ (
GM•

Rc2
)2

R

D
, (2.21)
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and the frequency of the GWs is determined the frequency of motion of the system. The strongest
gravitational field systems (GM/R), generate the most powerful GWs. SMBHs have large masses
and small sizes (GM/Rc2) ≈ 1, and hence are very efficient at emitting gravitational waves.

If stellar dynamical processes or gas dynamics manage to reduce the binary separation suffi-
ciently that gravitational waves emission become dominant mechanism in extracting energy and
angular momentum then the two black holes coalesce in a time Tgw given by (Peters 1964),

TGW =
5

256

c5a4

G3µM2
•
F (e), (2.22)

where

F (e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)−1

.

Using equation 2.2,

TGW = 7.6× 10−5Gµ3c5

σ8M2
•
(
a

ah
)4F (e). (2.23)

2.3 The Final Parsec Problem

In the paradigm of a SMBH binary formation and evolution described in section 2.2, the transition
from phase II to phase III is understood to be the bottleneck in binary’s path to coalescence. As
the SMBHs forms a binary system, the binary quickly ejects all stars on orbits that intersect the
orbit of the SMBH binary - in stellar dynamical term the loss cone1 is depleted. In a spherical,
isotropic galaxy in equilibrium the loss cone can only be refilled by two-body relaxation. The
relaxation time scales as N−1 and for real galaxies it is O(1011 years). Thus timescale of loss cone
refilling is longer than Hubble time so once the loss cone is depleted, the supply of stars to the
binary is cutoff and binary’s further evolution stalls. The binary stalling happens at separations of
around 1 parsec and this is the so called “Final Parsec Problem” (FPP) (Milosavljević & Merritt
2003b). Figure 2.8 shows a sketch of the final parsec problem.

2.3.1 Numerical Studies of Final Parsec Problem

Several theoretical and numerical studies have been performed to investigate the timescales of loss-
cone depletion and refilling. Here we present a brief overview of some key numerical experiments
which address this issue.

Makino (1997) performed N -body simulations with different number of particles to study
the binary SMBH evolution by merging two (King profile) galaxies. He found that in the first
(dynamical friction) phase the binary’s evolution does not depend on number of particles used
to construct the galaxy model. In second phase when the binary evolution is governed by three
body interactions there is a clear N -dependence in the hardening timescale of SMBH binary
(∼ N1/3). This dependence, however, is weaker than what is expected if the hardening timescale
is proportional to relaxation time, i.e. O(N).

Using a composite method (tree code and direct N -body code) Milosavljević & Merritt (2001)
studied SMBH binary evolution in merging stellar cusps. Their initial spherical galaxy model
consisted of steep power law density cusp (ρ ∝ r−2) similar to those observed in the center of
spiral and faint elliptical galaxies. They employed a parallel tree code with individual time steps
(Springel et al. 2001) in the first phase of the merging of the galaxy cusps. Just before the
formation of SMBH binary they switched to a direct N -body code, NBODY6++ (Spurzem 1999).
They performed three runs with 8,000, 16,000 and 32,000 particles. The hardening rates in their

1The loss cone is the region of phase space corresponding, roughly speaking, to orbits that cross the binary, i.e.
with angular momentum J . Jlc =

√
GM•fabin, where f = O(1) (Lightman & Shapiro 1977).

19



CHAPTER 2. SUPERMASSIVE BLACK HOLES IN GALAXY CENTERS

Figure 2.8: The figure shows a sketch of final parsec problem. The early phase of binary evolution
is governed by dynamical friction. As mass is ejected from the central region and the separation
shrinks dynamical friction becomes inefficient. Three body encounters take energy away from
the binary. This phase is N -dependent; with an increasing number of particles in numerical
experiments the rate at which binary semi-major axis evolves decreases. For realistic number of
particles, which are several orders of magnitude larger than current state of the art simulation can
accommodate, the binary semi-major axis should stop evolving and the two black holes should
not enter the regime where gravitational waves become efficient in carrying energy away from the
binary. Figure credit: Dr. Ingo Berentzen.
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Figure 2.9: Evolution of inverse semi-major axis (1/a) for different particle numbers. Dashed lines
show the evolution for which the mass of SMBHs in the binary is M1• = M2• = 0.005 and solid
lines indicate the evolution for M1• = M2• = 0.02 mass binary. The total mass of the galaxy in
the model is 1. Figure taken from Berczik et al. (2005).

simulation did not show a clear N -dependence. The small number of particles used in this study
was explained (Milosavljević & Merritt 2003a) to be a reason for the N -independent hardening of
SMBH binary: stars repopulate the loss cone via collisions at a higher rate than they are scattered
by the binary. Thus binary continue to harden at a constant rate. In order to achieve an empty
loss cone in N -body simulations of spherical galaxies one requires either very large numbers of the
particles or very low densities, so that star-star relaxation time is long.

The depletion of the loss cone was first reported by Makino & Funato (2004) who performed
large N -body simulations of SMBH binary evolution at the center of a spherical galaxy represented
by King profile. They used sufficiently large particle number N (up to 1 million) made possible
by a parallel GRAPE cluster. When the binary was evolved for a sufficiently long time, it was
found that hardening rates depended directly on N . This result agrees with the simple theoretical
prediction that hardening rate is proportional to two body relaxation timescale. Berczik et al.
(2005) performed similar simulations again using a parallel GRAPE cluster with up to half a
million particles, and studied the evolution of SMBH binaries in a Plummer galaxy model. They
again noticed N -dependent binary hardening rates (see Figure 2.9). The hardening rate in their
study scales as N−0.8, almost as steep as the N−1 dependence predicted for an empty loss cone.

If the binary hardening rate is proportional to the relaxation time, as suggested by the aboveN -
body experiments, then the binary evolution should stop at separation ∼ 1 pc. On the other hand
there is circumstantial evidence that binary coalescence is normal. Few observational phenomena
discussed in section 2.1.2 such as X-shaped radio sources, are probably caused by coalescing
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Figure 2.10: Ellipsoidal density enhancement of the gas trailing the massive binary that is respon-
sible for the rapid decay in the binary separation by exerting torques on it. Figure taken from
Escala et al. (2005).

SMBHs. If the binary stalls at some separation then a subsequent merger with another galaxy will
add another SMBH or a SMBH binary and result in a 3-body or 4-body gravitational slingshot.
These off centered SMBHs would not be able to accrete at high rates and we would observe
much larger scatter in the M• - σ relation. Also the number of observed parsec or sub-parsec
scale binaries is small (Rodriguez et al. 2006, Boroson & Lauer 2009), which favors the prompt
merger scenario of SMBHs. If the binaries had survived a Hubble time, such detections should
be common (Volonteri et al. 2009). In the next section we present some physical mechanisms
that can potentially assist the binary to bridge the gap between the stellar dynamical regime and
gravitational wave dominated regime, thus avoiding the final parsec problem.

2.3.2 Avoiding Final Parsec Problem

Here we briefly mention mechanisms discussed in the literature that can help overcoming the final
parsec problem:

Evolution in Gaseous Environment

Gas could certainly assist the inspiral if it is cold enough to settle into a circumbinary thin
disk. Escala et al. (2005) investigated the effects of gas on an inspiraling SMBH binary. They
found that in the late stage of binary evolution an ellipsoidal density enhancement is created
whose axis lags behind the binary axis (see Figure 2.10). This offset between the two axis causes
a gravitational torque on to the massive binary. Which results in the binary losing angular
momentum and shrinking. Similar evolution of SMBH binary in gaseous and stellar disks was
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reported by Dotti et al. (2007). In their study the binary separation shrinks to 0.1 pc, the resolution
of their simulations. But the mass in Keplarian disk around the SMBH is only about few percent
of the SMBH binary mass, which might not be enough to carry the the binary inspiral to the
point where gravitational waves become important. Cuadra et al. (2009) studied the evolution of
SMBH binaries in small-scale gas disks. Their simulations directly resolved the angular momentum
transport within the gas disc. For the binary masses in the range 105 . M• . 108M�, the
decay rate of SMBH binary due to gas disc dominates the stellar dynamical hardening rates for
a ∼ 0.01 − 0.1 pc . According to their estimates the minimum merger time-scale is shorter than
Hubble time for massive binary with mass M• . 107M�. For more massive binaries the gas
dynamics could not attend black hole mergers.

To summarize, a gas disc can assist the binary’s journey towards coalescence but the uncer-
tainties associated with its long-term dynamical behavior are potentially more severe than those
related to stellar dynamics. For instance, gaseous disks are susceptible to fragmenting and forming
stars. In order for the disk to be marginally stable against fragmentation at every radius, its total
mass is constrained to be Mdisk ∼ (0.1 − 0.2)M• (Cuadra et al. 2009, Lodato et al. 2009). This
is not likely to be enough to drive the binary to coalescence. More simulations involving the gas
dynamics with high resolution and more physics are required to show a clear picture of influence
of gas on SMBH binary evolution.

Massive Perturbers / Minor Mergers

Perets & Alexander (2008) suggested that massive perturbers such as giant molecular clouds or
clusters can accelerate relaxation by orders of magnitude compared to two-body stellar relaxation
alone. The perturbations caused by massive perturbers efficiently refill the loss cone. The pertur-
bation caused by the inspiral of a merging dwarf galaxy in particular affects the stellar orbits in
the galactic central region of the host galaxy and increases the supply of stars into the loss cone
(Matsui & Habe 2009).

Triaxial Galaxies

Imaging of the centers of galaxies shows, a wealth of feature in the stellar distribution. These
features include bars, bars-within-bars and nuclear spirals (Shaw et al. 1995, Peng et al. 2002,
Erwin & Sparke 2002, e.g.). The orbits in triaxial potential do not conserve any component of
angular momentum and possess a rich families like boxes, tubes and pyramids (Schwarzschild
1979, Ostriker et al. 1989, Holley-Bockelmann et al. 2001, 2002) and can pass very close to the
centers. These orbits can potentially increase interaction rates with SMBHs in the center of galaxy
(Norman & Silk 1983).

In a triaxial galaxy nucleus harboring a SMBH the orbit families have different characteristics
depending on distance from the center. Inside the influence radius of SMBH, nearly circular
orbits in axisymmetric potential become tubes, nearly radial orbits are converted to pyramids and
Keplarian ellipses have one focus lying near the SMBH (Sridhar & Touma 1999, Poon & Merritt
2001). Gerhard & Binney (1985) suggested that SMBH will disrupt most box orbits with apo-
centers interior to about 1 kpc and boxlike orbits become chaotic . The mass enclosed in this zone
of chaos could be as large as 100 time the SMBH mass (Valluri & Merritt 1998). Merritt & Poon
(2004) built self-consistent cuspy, triaxial models with a single SMBH at the center and showed
that such models posses significant fraction of centrophilic orbits that would efficiently drive the
hardening rate of a binary if it were present at the center. The rotation in triaxial galaxies can
increase the fraction of chaotic orbits (Deibel et al. 2011) which can also boost the supply of stars
to the loss cone.

Berczik et al. (2006) performed direct N -body simulations and studied the evolution of su-
permassive black hole binaries in rotating and triaxial galaxy model. The rotating galaxy (King)
models in their study become unstable leading to the formation of a bar, yielding a slowly tum-
bling, triaxial spheroid (see Figure 2.11 right). The steep N -dependence in the evolution of SMBH
binary’s semi-major axis reported in spherical galaxy models was absent (see Figure 2.11 left).
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Figure 2.11: Left: Evolution of the inverse semi-major axis in rotating galaxy models for different
number of particles N . Right: Particle positions projected on (x,y) plane for various time steps
during the evolution of SMBH binary in rotating galaxy models. Figure is taken from Berczik
et al. (2006)

This provided a potential solution to final parsec problem. Berentzen et al. (2009) showed, using
simulations of SMBH binary evolution in rotating galaxy models of Berczik et al. (2006), but this
time including post-Newtonian corrections to the binary’s equation of motion up to order 2.5, that
SMBH coalescence can be achieved for these models within a Hubble time.

However the question which remains unclear is whether these models of strong bar-mode in-
stability are representative of more realistic models of galaxy mergers. Therefore more realistic
simulations that follow the merger of two galaxies from an early stage prior to the formation of a
galactic nuclei are hence necessary.

We studied the evolution of SMBH binaries by carrying out direct N -body simulations of
mergers of galaxies having SMBHs at their centers. We used different density profiles and mass
ratios of the merging galaxies and studied SMBH binary hardening rates, shapes of the merger
remnants and estimated the mass ejected by the binary due to the gravitational slingshot effect.
We also estimated the full time to the coalescence for the SMBHs in binaries.

Chapter 7 explains the methods and results of our study of SMBH binaries in equal mass
galaxy mergers. We studied the N - dependence in the binary hardening rates and used these
hardening rates to estimate the coalescence time of SMBH binaries. We also analyze the shapes
of merger remnants.

In Chapter 8, we extended the study to galaxy mergers with different mass ratios. We also
used different density profiles for merging galaxies and studied the hardening rates, merger induced
triaxiality and mass deficits created by inspiraling black holes.

Chapter 9 presents the result of our study of binary SMBH evolution from the late stage of
the realistic galaxy merger simulations of Milky Way type galaxies . The early phase of this study
included star formation and accretion onto the black holes.
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Key points in this review

• Supermassive black holes are correlated to their host galaxies through various relations.

• There is direct observational evidence of two well separated (∼ 1 pc - 1 kpc) accreting
SMBHs in a single galaxy nucleus.

• Several phenomena observed at the centers of galaxies can be explained by models of
SMBH binary in the processes of coalescing or already coalesced.

• In spherical galaxy models, the separation of SMBH binary stalls at an approximate sep-
aration of one parsec referred to as “Final Parsec Problem”.
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Chapter 3

Galaxy Models and N-body
Simulations

This Chapter reviews the following aspects of numerical modeling

1. Analytical models that we use to create galaxies in equilibrium for numerical investigations
of SMBH evolution.

2. How to set up a galaxy in equilibrium (set up of Bahcall-Wolf cusp)

3. A brief summary of the numerical codes that we use to evolve our galaxy models and
investigate the orbital decay of SMBHs towards the centers of the galaxies and the evolution
of the SMBH binaries.

Despite the fact that gravity is the weakest force by far of the four fundamental forces (strong
nuclear force, weak nuclear force, electromagnetic force and gravitational force), it dominates all
other forces at large distances. Gravitational systems from planetary systems to star clusters to
galaxies and the large scale structure of the universe can be described by an ensemble of point
masses interacting gravitationally with each. In order to study the dynamical evolution of such
systems, one needs to solve a large number of coupled differential equations. Numerical modeling
has become a basic method, alongside observations and pure theory, to study the dynamical
evolution of astrophysical objects. It allows astrophysicists to provide theoretical insights into
physical processes at work in these objects. Gravitational systems can be classified in two classes
“collisional systems” and “collision-less systems” – determined by whether or not the “two-body
relaxation” timescale Tr is shorter than lifetime of the system (Spitzer 1987):

Tr =
0.13σ3

G2m?ρlnΛ
, (3.1)

where G is the universal gravitational constant, m? is the mean mass of the stellar population, σ is
the velocity dispersion, ρ is the density and lnΛ is the Coulomb logarithm. Examples of collisional
systems are dense objects like globular star clusters and galactic centers. Systems such as dark
matter halos and galaxies have relaxation times much longer than the age of the Universe and
hence can be treated as collision-less systems.

The dynamical modeling of stellar system dates back to the very first light bulb experiment of
Holmberg (1941) who followed the evolution of a 37 particle system. The computer simulations
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started with the first such calculation performed by von Hoerner (1960) at Astronomisches Rechen-
Institut (ARI) in Heidelberg with 16 particles. Aarseth (1963) studied the dynamical evolution
of galaxy clusters using up to 100 particles. For collision-less system fast and efficient algorithms
such as particle-mesh (PM) codes and tree codes (Barnes & Hut 1986) were developed in 1980’s.
For tree codes and PM codes the computational cost increases roughly as N lnN . With recent
advances in computer power and massive parallelization on thousands of cores collision-less N -
body codes can handle very large particle number simulations (Springel et al. 2008). On the other
hand the key algorithms for collisional N -body (direct N -body) simulations were developed early
on (Aarseth 1963, Ahmad & Cohen 1973, Aarseth & Zare 1974, Heggie 1974) and made public.
Special purpose hardware boards, called GRAPEs, were developed to achieve high performance
in the gravity calculations for direct N -body codes. For these codes the computational cost scales
as O(N2). Using several GRAPE-6A cards in parallel, Harfst et al. (2007) studied the evolution
of a star cluster using up to 4 million particles. Recently direct N -body codes have been used on
parallel supercomputer clusters accelerated by many-core graphical processing units (GPU) with
the help of dedicatedN -body libraries (Gaburov et al. 2009) to study the dynamics of supermassive
black holes in galaxy mergers using up to a million particles (Khan et al. 2011, Preto et al. 2011).

3.1 Models for Spherical System

In order to setup a galaxy for numerical investigations, a smooth equilibrium model is needed
for the probability distribution to have a system in dynamical equilibrium. In isotropic spherical
systems, the gravitational potential, Φ, and the density, ρ, depend only on one dimension, the
distance r from the center of the system. Spherical symmetry leads to ρ(~r) → ρ(r) and Φ(~r) →
Φ(r). The gravitational potential and density are related through Poisson’s equation:

∆Φ(r) = 4πGρ(r). (3.2)

The amount of mass enclosed by a sphere of radius r is called the cumulative mass distribution,
M(r)

M(r) =

∫ r

0

4π(r′)2ρ(r′)dr′. (3.3)

The phase space distribution function depends only on the energy per unit mass E =
1

2
v2+Φ(r)

and can be calculated from the Eddington formula (Binney & Tremaine 1987),

f(E) =
1√
8π2

d

dE

[∫
dΦ

1√
φ− E

dρ

dΦ

]
. (3.4)

Here we describe commonly used analytical models for star clusters, elliptical galaxies and the
bulges of spiral galaxies.

3.1.1 The Plummer Model

The Plummer (1911) model is widely used to generate initial conditions for star cluster simulations.
This model is an analytic solution of the Lane-Emden equation corresponding to stellar polytrope
of index 5. In this chapter and others to follow we shall use gravitational constant G = 1, total
mass of the system M = 1 and scale radius (plummer radius) a = 1 for convenience, unless
otherwise is mentioned. The density distribution, cumulative mass profile and potential of the
Plummer model are :

ρ(r) =
3

4π
· 1

(1 + r2)5/2
, (3.5)
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M(r) = r3(1 + r2)−3/2, (3.6)

Φ(r) = −(1 + r2)−1/2. (3.7)

respectively.

3.1.2 The Hernquist Model

One of the most successful model for elliptical galaxies and bulges of disk galaxies is the Hernquist
model (Hernquist 1990). The density profile, mass profile and potential are

ρ(r) =
1

2π

1

r · (1 + r)3
, (3.8)

M(r) = r2(1 + r)−2, (3.9)

Φ(r) = −(1 + r)−1. (3.10)

respectively. Well inside the scale radius the Hernquist profile has a stellar density proportional
to r−1 and well outside the scale radius its density drops as r−4.

3.1.3 The Dehnen/Tremaine Model

Dehnen (1993) and Tremaine et al. (1994) presented a one-parameter family of isotropic spherical
models for stellar systems. Here we describe the η- models of Tremaine et al. (1994) in more detail.

The density distribution of the “η-model” is given by

ρ(r) =
η

4π
· 1

r3−η · (1 + r)1+η
, (3.11)

Well outside scale radius (1 in our model units), all η-models have ρ ∝ r−4 and well inside
scale radius density goes with r3−η. Hernquist model corresponds to η = 2.

The cumulative mass profile for the η-models is given below

M(r) =
rη

(1 + r)η
, (3.12)

and the gravitational potential is

Φ(r) =
1

η − 1

[
rη−1

(1 + r)η−1
− 1

]
, η 6= 1 (3.13)

and for η = 1, the potential is -ln(1 + 1/r).
Some of the η-models (η = 0.5,1,1.5,2,3) have analytic expressions for the distribution functions

(DF).
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3.1.4 η-Models With a Central Black Hole

Here we describe the η-model modified to contain a central supermassive black hole of mass M•.
The total mass in stars is still unity and the stellar density profile is still described by equation
3.11. The main effect of the black hole is to modify the potential:

Φ•?(r) = Φ(r)− M•

r
(3.14)

We used a numerically computed distribution function in order to reproduce ρ(r) (equation
3.11) in the combined potential of the SMBH and the stars in dynamical equilibrium. These
models are used to set up initial conditions for galaxy models used in Chapters 7 and 8 to study
SMBH binary evolution in galaxy mergers. Matsubayashi et al. (2007) modified the η- model with
a central SMBH. The stellar density distribution of their model is given as

ρ(r) =
η

4π
.

1

r3−η(1 + r2)1+η/2
, (3.15)

One main difference of this model with original η- model is that it has an outer slope of -5
instead of -4. This sharp cutoff guarantees high particle resolution inside core radius as compared
with the models having outer slope of -4. Thus this model is useful for studying the dynamics
of black holes at the center of single a galaxy. We use it to study the orbital decay of a less
massive SMBH inside the sphere of influence of a more massive black hole due to dynamical
friction (Chapter 6). The mass profile and distribution function of the model (equation 3.15) are

Mη(r) = Mη
rη

(1 + r2)η/2
(3.16)

and

f(ε) = f0(ε)
7/2(εs0 + εs)−(η+2/η) (3.17)

respectively.
Here ε = −E,

ε0 = (f1/f0)
−1/(η+2) (3.18)

f0 =
ηMηΓ(4− η)

27/2π5/2M3−η
• Γ(5/2− η)

(3.19)

f1 =
8
√
2

7π3
ηMη (3.20)

Here with s = 5 and η = 5/4, these equations can be used to construct BW cusp in approximate
equilibrium. The constant f0 represents the BW cusp, f1 the Plummer model and ε0 is the
transition threshold in energy.

Figure 3.1 shows the density profile and mass profile of various galaxy models that we use
to study the evolution of SMBHs in single galaxy or galaxy mergers. They include Plummer
model which has a constant density core in the center, shallow cusps with η = 2.5 and η = 2.0
(Hernquist profile) that we use to model the centers of bright elliptical galaxies and steep power
law density cusps with η = 1.5 (Dehnen models) and η = 1.25 (Bahcall-Wolf cusp) representing
density distribution around supermassive black holes at the centers of faint ellipticals and the
bulges of spiral galaxies. As η decreases more and more mass is added to the central part of the
cusp. Also one can observe from the figure that that the extended η-model of Matsubayashi et al.
(2007) has significantly more mass inside the scale radius than the η-model of Tremaine et al.
(1994).
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Figure 3.1: Top: Figure shows the density profile for Plummer model, shallow cusp (η = 2.5),
Hernquist model, Dehnen model (η = 1.5), Bahcall-Wolf cusp (equation 3.15 with η = 1.25) and
Bahcall-Wolf cusp (equation 3.11 with η = 1.25) respectively.
Bottom: Figure shows the mass interior to radius r for Plummer model, shallow cusp (η = 2.5),
Hernquist model, Dehnen model (η = 1.5), Bahcall-Wolf cusp (equation 3.15 with η = 1.25) and
Bahcall-Wolf cusp (equation 3.11 with η = 1.25) respectively.
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3.2 Initial Setup

In this section we shall describe how to generate initial positions and velocities for the particles
representing a model galaxy. We shall present the procedure only for model described by equation
3.15. Following same steps one can generate initial conditions for all the models described above.
In order to generate positions for the particles one needs the cumulative mass profile of the model
while in order to assign the velocities of the particles, the energy distribution function is required.
We choose η = 5/4 in equation (3.16) which corresponds to a Bahcall-Wolf cusp. The cumulative
mass profileM(r) is essentially a probability distribution function (PDF). The PDF can be realized
using Monte Carlo sampling. We invert the function M(r),

M(r) =
r1.25

(1 + r2).625
, (3.21)

into r(M)

r =
1

(M−1.6(r)− 1)0.5
(3.22)

In order to give a distance r to the star, we generate a random number X1 and equate M(r)
to this random number X1. So the distance is selected as

r =
1

(X−1.6
1 − 1)0.5

(3.23)

Three dimensional positions (x, y, z) of the star are selected on the sphere of radius r. Again
two random numbers X2 and X3 are generated and the coordinates x, y, z are computed as follow:

z = z(1− 2X2)r, x = (r2 − z2)1/2cos(2πX3), y = (r2 − z2)1/2sin(2πX3).

We compute the potential for the star at distance r due to SMBH and stellar distribution

Φ•? = −

M•

r
+ [4− 4

(1 +
1

r
)1/4

]

 . (3.24)

The escape velocity at distance r from the center is

Ve =

2M•

r
+ 2[4− 4

(1 +
1

r
)1/4

]


1/2

(3.25)

and the energy distribution function 3.17 is proportional to

f(q) ∝ q2(1− q2)3.5[
0.58 +

V 10
e

32
(1− q2)5

]13/20 (3.26)

Here q = V/Ve. The maximum value of f(q) is fmax = 0.14 and q has a range between 0 and 1.
We use Neumann’s acceptance-rejection method to assign velocities to the particles. We generate
two more normalized random numbers X4 and X5. If fmax × X5 is less than f(X4), we adopt
q = X4. Otherwise we generate a new pair of random numbers until the condition is fulfilled. The
absolute velocity of the particle is then obtained by V = q × Ve. Two new random numbers X6

and X7 are generated to assign the velocity components Vx, Vy and Vz.

Vz = (1− 2X6)V , Vx = (V 2 − V 2
z )

1/2cos(2πX7) and Vy = (V 2 − V 2
z )

1/2sin(2πX7)
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The procedure is repeated until positions and velocities are assigned to all N stars in galaxy
model.

3.3 Numerical Codes

In this section we briefly describe the numerical codes that we use to study the dynamics and
evolution of SMBHs in single galaxies or in galaxy mergers. SMBHs reside in the galactic nuclei,
which are collisional systems, so we used direct N -body codes φ-GRAPE and Φ-GPU to carry out
our simulations. For the orbital decay of SMBHs due to dynamical friction in outskirts of galaxies
the system is collision-less and furthermore, the density drops rapidly (r−4 or r−5) as we move far
away from scale radius in all our models and in order to gain sufficient resolution higher particle
numbers are necessary. The particle mesh code, SUPERBOX, which can accommodate a much
higher number of particles when compared to direct N -body code such as φ-GRAPE or Φ-GPU,
is used.

3.3.1 φ-GRAPE

φ-GRAPE (Harfst et al. 2007) is a parallel, direct-summation N -body code that uses special-
purpose hardware to compute the pairwise gravitational forces between all particles:

Fi = −mi

N∑
j=1,j 6=i

mj(ri − rj)

(|ri − rj |2 + ε2)3/2
. (3.27)

Here mi and ri are the mass and position of the ith particle and ε is a force softening parameter. φ-
GRAPE integrates the equations of motion using a fourth-order Hermite integrator with individual
block time steps .

Hermite Scheme

Let us assume that ~x0 and ~v0 are the position and velocity of the particle at time t = t0. Then
position and velocity of the particle can be predicted for time t = t1 using

~xp(t1) = ~x0 + ~v0∆t+
1

2
~a0∆t2 +

1

6
~̇a0∆t3 (3.28)

~vp(t1) = ~v0 + ~a0∆t+
1

2
~̇a0∆t2 (3.29)

Where ∆t = t1 − t0. The acceleration, ~a0, and jerk, ~̇a0, can be calculated directly without
need for differentiation:

~a0 =
N∑

j=1,j 6=i

Gmj
~rij

(r2ij + ε2)3/2
(3.30)

~̇a0 =
N∑

j=1,j 6=i

Gmj [
~vij

(r2ij + ε2)3/2
+

3.(~vij .~rij)~rij
(r2ij + ε2)5/2

] (3.31)

Using the predicted position and velocity, the acceleration (Eq. 3.30) and jerk (Eq. 3.31) can
be updated. The corrected positions and velocities are then calculated from updated acceleration
and jerk:

~x(t1) = ~xp +
∆t4

24
~a
(2)
0 +

∆t5

120
~a
(3)
0 (3.32)
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and

~v(t1) = ~vp +
∆t3

6
~a
(2)
0 +

∆t4

24
~a
(3)
0 (3.33)

where ~a
(2)
0 and ~a

(3)
0 are second and third time derivatives of acceleration.

The large dynamic range in time involved in collisional systems makes it necessary to use
individual time steps for each particle. The time step of particle i at time t is computed using the
formula (Makino & Aarseth 1992):

∆ti =

√
η

|~a(t)||~a(2)(t)|+ |~̇a(t)|2

|~̇a(t)||~a(3)(t)|+ |~a(2)(t)|2
(3.34)

where ~a is the acceleration of ith particle and the superscript (k) indicates the order of the
time derivative. The time-step parameter η is set typically set to 0.02 but we also use 0.01 in some
cases to achieve higher accuracy.

The acceleration and its time derivative are calculated using several GRAPE6A cards in paral-
lel. In order to minimize communication among different nodes an MPI parallelization strategy is
employed. For the simulations in a dense cusp around a massive central SMBH, we use a specially
modified version of the φ-GRAPE code. We include the central SMBH as an external potential
in order to avoid the relatively large random motion of a live SMBH due to the small particle
number. The time step criterion is also modified: we add a reduction factor for the BH time step,
which compensates the effect of its relatively small acceleration compared to the field particles.

3.3.2 Φ-GPU

The Φ-GPU code is also used for direct N -body simulations, and has a higher order Hermite
integration scheme and individual block time steps (the code supports time integration of particle
orbits with 4th, 6th and even 8th order schemes).

The code is fully parallelized with the use of MPI library. On each node, the code uses many
cores of the GPU hardware. The code is based on an earlier C code version1 for GRAPE6a clusters
(Harfst et al. 2007). The new code is written from scratch in C++ and based on (Nitadori & Makino
2008) earlier CPU serial N -body code (YEBISU). The MPI parallelization was done in the same
“j” particle parallelization mode as in the earlier Φ-GRAPE code (Harfst et al. 2007). All the
particles are divided equally between the working nodes (using the MPI Bcast() commands) and
in each node fractional forces are calculated only for the, so called, “active” – “i” particles at the
current time step. The full forces from all the particles acting on the active particles we get after
using the global MPI Allreduce() communication routines.

The current version of ΦGPU code uses native GPU support and direct code access to the
GPU using only the NVIDIA native CUDA library2. The multi GPU support is achieved through
MPI parallelization. Each MPI process uses only a single GPU, but usually two or more MPI
processes per node are started (to use effectively the multi core CPU’s and the multi GPU’s on
our clusters) are.

This code uses different softening parameter ε (if required) for different components like
SMBHs, dark matter and stars. More details and also the ΦGPU code public version will be
published in an upcoming publication (Berczik et al.).

3.3.3 SUPERBOX

The particle mesh (PM) code Superbox (Bien et al. 1991, Fellhauer et al. 2000) is a highly efficient
code with fixed time step for galaxy dynamics, where more than 10 million particles per galaxy

1ftp://ftp.ari.uni-heidelberg.de/staff/berczik/phi-GRAPE/
2http://www.nvidia.com/object/cuda home new.html
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Figure 3.2: The five grids that are used in SUPERBOX. Gray section in each grid shows the region
filled with particles in respective grid. Figure taken from Bien et al. (2008).

in co-moving nested grids for high spatial resolution at the galaxy centers can be simulated. The
code is intrinsically collision-less, which is necessary for long-term simulations of galaxies. Another
advantage of a PM code is the large particle number which can be simulated in a reasonable
computing time (up to a few days or a week per simulation). Three grid levels with different
resolutions are used which resolve the core of each component/galaxy, the major part of the
component/galaxy and the whole simulation area. The spatial resolution is determined by the
number of grid cells per dimension Nc = 2mand the size of the grids. The SMBH is included as
a moving particle with own sub-grids for high spatial resolution in its vicinity. The grid sizes are
chosen such that the full orbit of the secondary BH falls into the middle grid. All Superbox runs
were performed using the Astronomisches Rechen-Institut (ARI) fast computer facilities with no
special hardware. We also tried to use SUPERBOX to study the orbital decay of SMBH due to
dynamical friction in Bahcall Wolf cusp around a primary SMBH. We noticed that the cusp was
not stable and the Lagrange radii (radius enclosing fraction of cusp mass) were expanding soon
after the start of the run. The reason could be the use of fixed time steps for each particle. In the
center, close to primary SMBH, one needs very small time steps to integrate the orbits of stars
correctly.

3.3.4 Semi-analytic Code - INTGC

The program intgc developed by Andreas Ernst is an integrator for orbits in an analytic back-
ground potential of a galactic center including the Chandrasekhar formula for dynamical fric-
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tion. Different analytic models with their χ functions and a variable Coulomb logarithm Just &
Peñarrubia (2005) are implemented. An 8th-order composition scheme is used for the orbit inte-
gration Yoshida (1990); for the coefficients see McLachlan & Scovel (1995). Since the symplectic
composition schemes are by construction suited for Hamiltonian systems, the dissipative friction
force requires special consideration. It is implemented in intgc with an implicit midpoint method
Mikkola & Aarseth (2002). Four iterations turned out to guarantee an excellent accuracy of the
scheme. The gravitational potential and density are given analytically.
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Chapter 4

Dynamical Friction Force

Contents of this Chapter

1. Chandrasekhar dynamical friction formula; we consider this formula as the working ansatz
for our study.

2. Power law density profiles, calculation of their distribution functions and simplification of
physical models to approximate power law cusps in the outskirts.

3. Introduction to position and velocity dependent Coulomb logarithm.

4. Self consistent cumulative distribution functions to calculate dynamical friction force and
their comparison with the standard Maxwellian.

5. Brief discussion of dynamical friction force in a gaseous medium.

Note: The contents of this Chapter are based on paper by Just, A., Khan, F. M., Berczik,
P., Ernst, A., & Spurzem, R. 2011, MNRAS, 411, 653

When a massive object moves in a sea of background stars, it interacts gravitationally with
them. The two body encounters between perturber and stars sum up and result in deceleration
of the perturber, known as dynamical friction. The deflected particles form a wake behind the
massive object. The important consequences of dynamical friction in collision-less astronomical
systems show up as the orbital decay of the SMBH in galaxy mergers, sinking of satellite galaxies
in the dark matter halo of host galaxies, mass segregation in star clusters, etc. Many researchers
think it is sufficiently well understood and studied since the classical work of Chandrasekhar (1942)
and the many follow-ups. There is a duality between a collective gas-dynamic approach, studying
responses in a continuum through which a test body moves, and a kinetic or particles approach
where a test body moves through a sea of light particles. As is known since long Bondi & Hoyle
(1944), Rephaeli & Salpeter (1980) under certain limits both approaches can yield similar results.

Dynamical friction is quantified by the famous Chandrasekhar formula which considers the
motion of a massive object M moving with velocity V in a uniform background with homogeneous
density ρ of noninteracting light particles each having mass m (Binney & Tremaine 1987)

V̇ =
−4πG2ρM

V 2
χ lnΛ with χ =

ρ(< V )

ρ
(4.1)
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Here Λ is called Coulomb logarithm and χ the fraction of background particles with velocity
smaller than V . The Coulomb logarithm is given by the ratio of maximum to minimum impact
parameter. For maximum impact parameter, Chandrasekhar & von Neumann (1942) suggested
cut off at roughly inter-particle distance. Later, researchers used a radial distance of the object
and also the size of the host system for the upper cutoff. For χ, it is standard practice to use
Maxwellian distribution for the velocities of the background stars. In general the functions χ and
Λ depend on the velocity of the massive object and on the properties of the background system.

In this chapter, improvements in dynamical friction formula are presented by suggesting a vary-
ing Coulomb logarithm with the choice of self consistent distribution functions for the calculation
of the χ value for variety of power law and physical models.

4.1 Power Law Profiles

For analytic estimations it is usually a first approach to use idealized power law distributions for
the background distribution of stars. For both cases (self-gravitating and Kepler potential) the
density profile of the cusp and the cumulative mass profile can be approximated by the functions

M(y) = Mc +Mty
η with y =

R

R0
(4.2)

ρ(y) = ρ0y
3−η with ρ0 =

(η)Mt

4πR3
0

. (4.3)

It is comfortable to normalize all quantities to the initial values of the orbit. The initial position
of the object is R0 = R(t = 0) leading to y0 = 1, the enclosed mass is M0 = M(y0), and the
circular velocity at R0 is

Vc,0 = Vc(R0) =
√
GM0/R0. (4.4)

For the self-gravitating case one simply sets Mc = 0 leading to M0 = Mt via Eq. 4.3. In the
Kepler case one must set M(y) ≈ Mc = const. leading to the circular velocity with

V 2
c = GMc/R0 y

−1 (4.5)

and the local density determined by Mt.
All velocities are normalized to the local circular velocity Vc instead of the velocity dispersion

σ by
u = v/Vc and U = V/Vc (4.6)

U can be converted to X with the normalized circular velocity Xc by

X = XcU with X2
c ≡ V 2

c

2σ2
(4.7)

The velocity dispersion can be obtained by integrating the Jeans equation involving the second
moment of the velocity distribution function (Binney & Tremaine 1987)

σ2(y) =
−G

ρ(y)R0

[∫
ρ(y′)M(y′)

y′2
dy′ + C ′′

]
(4.8)

where the integration constant C ′′ depends on the inner and outer boundary conditions.
Substituting M(y) and ρ(y) from Eq. 4.2 and Eq. 4.3 yields

σ2(y) =



GM0

2R0(2−η)y
η−1 =

V 2
c

2(2−η) 0 < η < 2

GM0

R0
y (− ln y + C) η = 2

C ′′′y3−η 2 < η < 3

(4.9)
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Inserting Eq. 4.9 into Eq. 4.7 we find

X2
c =


2− η

2 η < 2.5 Kepler
2− η η < 2 self-grav.

[2(C − ln y)]
−1

η = 2 self-grav.
C ′ y(2η−4) 2 < η ≤ 3 self-grav.

(4.10)

which is independent of position y for the Kepler potential and the self-gravitating cusp with
η < 2. For a shallow self-gravitating cusp with η > 2 the integration constant C ′ depends on the
outer boundary conditions of the realization of the cusp.

The velocity dispersion in self-gravitating cusps behaves quite different for different η (Tremaine
et al. 1994). For η > 2 the kinetic pressure ρσ2 converges to a finite value at the center, which
depends on the outer boundary conditions. The transition case with η = 2 is of special interest,
because it corresponds to the ρ ∝ y−1 cusp as in the standard NFW cusp and in the Hernquist
model. In this case the kinetic pressure ρσ2 ∝ (C − ln y), where the constant C is also deter-
mined by the outer boundary conditions. In a Kepler potential the isotropic distribution function
degenerates for η = 5/2, because it is completely dominated by particles with low binding en-
ergy. Dependent on the outer boundary conditions the distribution function can vary between a
δ-function at the escape velocity (i.e. at E = 0) and a power law ∝ |E|−1 with some cutoff at
E ≈ 0.

4.1.1 Distribution Functions

The distribution function of a power law cusp (eqs. 4.2 and 4.3) is given by

f(E) =

 K|E|p η < 2.5 Kepler
K|E|p 0 ≤ η < 3 self-grav.
K exp(−E/σ2) η = 1 self-grav.

(4.11)

with normalization constant K and energy E = Φ + v2/2, where the zero point of the potential
is at the center for self-gravitating cusps with η > 1 and at infinity for the Kepler case and self-
gravitating cusps with η < 1. The dependence of the power law index p on η is different for the
Kepler and the self-gravitating case (see below). Lets consider the two cases where Φ is given
by the self-gravitating potential of the cusp or the Kepler case with Φ dominated by the central
mass Mc. The natural normalization of the velocity is

√
|2Φ|, which corresponds to the escape

velocity for vanishing potential at infinity. For practical use it is more comfortable to normalize the
velocities to the circular velocity (u from Eq. 4.6). Let us introduce the normalized 1-dimensional
distribution function F (u) by

4πv2f(E)dv = ρF (u)du. (4.12)

which can be written in the form

F (u) =

 K ′u2
(
1 + ξu2

)p
η < 2.5 Kepler

K ′u2
(
1 + ξu2

)p
0 < η < 3 self-grav.

K ′u2 exp
(
−u2

)
η = 1 self-grav.

(4.13)

with ξ =
V 2
c

2Φ

Self-Gravitating Cusps

The constants in Eqs. 4.11 and 4.13 are given by

ξ =
η − 1

2
; p =

3 + η

2(1− η)
(4.14)
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and

K =



ρ0

4π
√
2B( 3

2 ,1+p)

(
V 2
c0

1−η

)−p− 3
2

η < 1

ρ0

π
√
π
V −3
c0 η = 1

ρ0

4π
√
2B( 3

2 ,−p− 3
2 )

(
V 2
c0

η−1

)−p− 3
2

1 < η < 3

(4.15)

K ′ =



2|ξ|3/2

B( 3
2 ,1+p)

η < 1

4√
π

η = 1

2|ξ|3/2

B( 3
2 ,−p− 3

2 )
1 < η < 3

(4.16)

Here the beta function B(x, y) = Γ(x)Γ(y)/Γ(x+ y) (see Gradshteyn I.S. (1980) (8.38)).

Kepler Potential

In the Kepler potential of a central SMBH (without the mean field contribution of the stellar
cusp) one finds for the constants

ξ = −1

2
; p =

3

2
−η . (4.17)

and

K =
ρ0

4π
√
2B(3/2, 1 + p)

(
V 2
c0

)−p−3/2
(4.18)

K ′ =
2 |ξ|3/2

B (3/2, 1 + p)
(4.19)

In a pioneering work Peebles (1972) analyzed the structure of a stellar cusp in a Kepler potential
of a central SMBH, which is stationary for times large compared to the relaxation time. Unfortu-
nately he derived incorrect values for p and thus η. The correct derivation can be found in Shapiro
& Lightman (1976) using scaling arguments and in Bahcall & Wolf (1976) using a Fokker-Planck
analysis. The resulting so-called Bahcall-Wolf (BW) cusp is given by p = 1/4 leading to η = 5/4
and the well-known density profile ρ ∝ y−7/4. In a Hernquist cusp (HE) with η = 2 we have a
shallow density profile ρ ∝ y−1 and find p = −1/2 leading to a diverging 1-D distribution func-
tion at the escape velocity. The outskirts of Dehnen (DE) and Plummer (PL) distributions with
densities ρ ∝ y−4 and ρ ∝ y−5 correspond to η = −1 and η = −2 with p = 5/2 and p = 7/2,
respectively.

In Fig. 4.1 the distribution functions F (u) are shown for different values of η = 0.5, 1.0, 1.25, 1.95
(with decreasing maximum). The thick line is the standard Maxwellian. For η < 1 the energy
range is finite with u2 < |ξ|−1, whereas for η ≥ 1 the potential is infinitely deep allowing for all
velocities.
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Figure 4.1: Normalized 1-dim distribution function F (u) for different cases as a function of nor-
malized velocity u = v/Vc (see Eq. 4.13). The sequence with η = 0.5, 1.0, 1.25, 1.95 shows a
decreasing maximum. The full line is the Maxwellian (η = 1). The Kepler potential cases are
labeled by PL for Plummer, DE for Dehnen outskirts, BW for the Bahcall-Wolf cusp, HE for
Hernquist cusp.
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4.2 Physical Models

In many simulations of stellar cusps it turned out that the setup of an initial cusp distribution in
dynamical equilibrium with an unphysical outer cutoff is not stationary. The density profile evolves
deep into the inner cusp region. Therefore it is necessary to set up initial particle distributions
and velocities with a well-defined outer cutoff of the cusp distribution.

For the self-gravitating cusps we consider Dehnen (1993) models with an outer power law slope
of −4 for the density. These models are identical to the η-models of Tremaine et al. (1994) and are
already described in section 3.1.3. Here we rewrite density and cumulative mass using different
normalization:

M(y) = Mt

(
y

ya + y

)η

ya =
a

R0
(4.20)

ρ(y) =
ρ0

y3−η(ya + y)1+η
, ρ0 =

ηMtya
4πR3

0

with Eq. 4.3 for the conversion for ρ0. a is scale radius. Well inside the scale radius density
profile of these models have slope of −(3− η) and well outside the scale radius all Dehnen models
converge to a density slope of −4. The Jaffe and Hernquist models correspond to η = 1 and η = 2,
respectively. Well inside the scale radius a the particles behave asymptotically like in the idealized
power law distributions.

The Plummer model corresponding to stellar polytrope of index n = 5 is well known potential
density pair for star cluster model. Density and cumulative mass for Plummer model (already
described in section 3.1.1) are given by

M(y) = Mc

(
y2

y2a + y2

)3/2

ya =
a

rpl
(4.21)

ρ(y) = ρ0
(
y2a + y2

)−5/2
, ρ0 =

3Mcy
2
a

4πR3
0

Here ya is the Plummer radius.
For the Kepler potential case we investigate two different scenarios. In the first case we

investigate power law cusps in the vicinity of a central SMBH with mass Mc, i.e. the BW cusp
and a shallower Hernquist (He) cusp. There are no exact distribution functions known describing
the Kepler potential part inside the influence radius of the SMBH and the transition to a self-
gravitating outer regime. Tremaine et al. (1994) generalized their η models by including the
gravitational potential of a central SMBH and derived the power law distribution function (Eqs.
4.11 and 4.17) well inside the influence radius, which is comparable to the scale radius a. In
Matsubayashi et al. (2007) this approximation was adapted to a Plummer model instead of a η-
model. This model has two advantages. Firstly the steeper slope in the outer part saves particles
and computation time for simulations of BW cusps. Secondly the power law distribution function
of the Plummer sphere is exact also in the inner part. Therefore realizations with smaller SMBH
masses relative to the cusp mass are closer to equilibrium. The cumulative mass and density
distribution analogous to equations (3.16) and (3.15) are given by

M(y) = Mt

(
y2

y2a + y2

)η/2

, 0 < η ≤ 3 (4.22)

ρ(y) =
ρ0

y3−η(y2a + y2)η/2+1
, (4.23)

where Mt is the total mass of stars in the cusp.
The outskirts of Dehnen models (DE) and the Plummer model (PL) can also be approximated

by cusps in a Kepler potential using asymptotic expansions in y. From an identification of the
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density slopes for Dehnen and Plummer of -4 and -5, respectively, with η0 − 3 in Eq. 4.3, one
finds η0 = −1 and η0 = −2 for the outskirts (here the index 0 is used in order to distinguish it
from the parameter η in the core). This leads with Eq. 4.17 to the correct distribution functions
in Eq. 4.11 for the Dehnen models and the Plummer sphere in the limit of small energies. If we
now identify Mt in Eq. 4.2 with the mass deficiency compared to the total mass Mc, then Eqs.
4.2 and 4.3 also hold for these cases. For the Dehnen models

M(y) ≈ Mc

(
1− ηyay

−1
)
= Mc +Mty

η0 (4.24)

ρ(y) ≈ ρ0y
−4 = ρ0y

η0−3

η0 = −1, Mt = −ηMcya

ρ0 =
ηMcya
4πR3

0

=
η0Mt

4πR3
0

and similarly for the Plummer sphere

M(y) = Mc

(
y2

y2a + y2

)3/2

≈ Mc

(
1− 3

2
y2ay

−2

)
(4.25)

= Mc +Mty
η0

ρ(y) = ρ0
(
y2a + y2

)−5/2 ≈ ρ0y
−5 = ρ0y

η0−3

η0 = −2, Mt = −3

2
Mcy

2
a

ρ0 =
3Mcy

2
a

4πR3
0

=
η0Mt

4πR3
0

completely consistent with the power law cusp description.

4.3 Coulomb Logarithm

In derivation of Eq. 4.1, an integration over impact parameters is performed which diverges at the
upper limit. So an upper cut-off must be used. Some researchers use the size of the host system,
while others use the distance of spiraling perturber from the center as maximum impact parameter.
Yet another group of researchers use the distance where the density drops significantly. Since this
formula is applied to wide ranges of parameters, it is very useful to have the explicit parameter
dependence of lnΛ instead of fitting a constant value for each single orbit. In Just & Peñarrubia
(2005) the effect of the inhomogeneity of the background distribution on the dynamical friction
force with Chandrasekhar’s approach was discussed. The authors derived the approximation

lnΛ = ln
bmax√

b2min + a290
≈


ln
(

Dr

bmin

)
unres. or ext.

ln
(

Dr

a90

)
point-like.

(4.26)

The Coulomb logarithm depends on the maximum and minimum impact parameter bmax and bmin,
respectively, and for point-like objects on a90, the typical impact parameter for a 90◦-deflection
in the 2-body encounters. Just & Peñarrubia (2005) found that the maximum impact parameter
is given by the local scale-length Dr determined by the density gradient, i.e.

bmax = Dr ≡
ρ

|∇ρ|
=

R

3−η
η ≤ 2. (4.27)

In an isothermal sphere bmax is a factor of 2 smaller than the distance R to the center. In shallow
cusps with η > 2 the local scale length Dr exceeds the distance to the center. In that case, the
local scale-length may be substituted by R.
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For point-like objects like BHs the effective minimum impact parameter a90 is given by the
value for a 90◦- deflection using a typical velocity vtyp for the 2-body encounters

a90 =
GMbh

v2typ
≈ GMbh

2σ2 + V 2
bh

=
X2

c

1 +X2

Mbh

M(y)
R =

3 rg
2(1 +X2)

. (4.28)

Where rg = GM•/3σ
2. If the motion of a point-mass is numerically derived by a code, where a90

is not resolved, the minimum impact parameter is determined by the effective spatial resolution
of the code.

The parameter dependence of bmax and a90 leads to a position dependence of lnΛ, which
affects the decay time τdec and which also reduces the circularization of the orbits resolving a long-
standing discrepancy between numerical and analytical results. Using the distance to the center as
maximum impact parameter was proposed by different authors (Tremaine 1976, Hashimoto et al.
2003), but the effect on orbital evolution was never investigated in greater detail or for larger
parameter sets.

On circular orbits the local scale-length Dr and the deflection parameter a90 are position
dependent. On eccentric orbits a90 depends additionally on the velocity. Therefore lnΛ varies
systematically during orbital decay and for eccentric orbits along each revolution. This has conse-
quences on the decay time and on the evolution of orbital shape. In eccentric orbits the dynamical
friction force varies strongly between apo-and peri-galacticon mainly due to the density variation
along the orbit. The variation due to higher peri-center velocity and to the position dependent
Coulomb logarithm weakens the differences. All these factors depend on the slope of the cusp den-
sity. That means that the effective Coulomb logarithm averaged over an orbit depends differently
on the eccentricity for different values of η.

In the case of circular orbits with constant Xc the position dependence of the Coulomb loga-
rithm (Eq. 4.26) can be parametrized by

lnΛ = ln(Λ0y
β) . (4.29)

Deep in shallow self-gravitating cusps with η > 2 the contribution from the circular velocity
vanishes and Λ is also described by Eq. 4.29. With Eq. 4.28 the Coulomb logarithm is

β = 1 Λ0 = 1
(3−η)

R0

bmin
extended or unresolved (4.30)

for extended objects and for point-like objects we find

β = 0 Λ0 = (6−η)
(3−η)(4−η)

Mc

Mbh
Kepler

β = η Λ0 = 1
(2−η)

M0

Mbh
self-grav., η < 2

β = 4− η Λ0 = 1
C′

M0

Mbh
self-grav., 2 < η < 3

(4.31)

We see that the motion of a point-like object in a Kepler potential is also described by a constant
Coulomb logarithm, because the linear dependence of Dr and a90 cancel. The standard case
corresponds to β = 0 with R0 instead of Dr and rg instead of a90 in Eq. 4.26 leading to

lnΛs =


ln
(

R0

bmin

)
unres. or ext.

ln
(

3
2X2

c

M0

Mbh

)
point-like.

(4.32)

4.4 Cumulative Distribution Functions

Another interesting actor in the play of dynamical friction is the χ-function: The integral over the
velocity distribution of background particles. The cumulative distribution function χ(U) of the
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normalized 1-dimensional distribution function F (u) measures the fraction of background particles
with velocities smaller than U = Vbh/Vc. The cumulative function χ(U) is related to distribution
functions (Eq. 4.13) by

χ(U) =

∫ U

0

F (u)du . (4.33)

These self consistent distribution functions are significantly different to χs(U) of the standard
Maxwellian which is usually adopted for Chandrasekhar’s formula. In most applications of the
standard formula the local velocity dispersion is not known. Instead Xc = 1 as in the singular
isothermal sphere is adopted leading to the identification of X = U . In Fig. 4.3 the correction
factors χ(U)/χs(U) entering the friction force formula Eq. 4.1 are shown. The different lines give
the results for the self-gravitating cusps as a function of η. The values for the circular velocity
U = 1 (full line) and for U = 0.7, 1.4 (dotted and dot-dashed line), typical values for apo- and
peri-center velocities, are shown respectively. In shallow self-gravitating cusps (with η ≥ 1) the
efficiency of dynamical friction is reduced roughly by a factor of η due to the larger fraction of
high velocity particles. In steep cusps dynamical friction is larger compared to the isothermal case,
but with systematic deviations from the simple scaling for higher velocities U during peri-center
passage due to the finite escape velocity. The circles in Fig. 4.3 show χ(U)/χs(U) for the BW
and HE cusp (open symbols) and the outskirts of the Plummer (PL) and Dehnen (DE) spheres
(full symbols) at the corresponding values for η = 5/4, 2, −2, −1, respectively. For the HE case
numerically realized values are used.

For circular orbits the orbital decay time varies up to factor larger than two compared to the
standard formula due to the self-consistent χ functions. For the evolution of the orbital shape,
the relative variation of the friction force between apo- and peri-center is also important .

In Fig. 4.2 χ(U) is shown for the same set of η-values as in Fig. 4.1. In order to see more
clearly the difference to the Maxwellian distribution function the ratios χ(U)/χs(U) are plotted
in bottom panel. For η < 1 the χ-values are larger and for shallower cusps with η > 1 the values
are smaller.

In Fig. 4.4 we show χ(U) as a function of η for fixed U . U = 1 corresponds to the circular
velocity, and U = 0.7, 1.4 are typical values for peri- and apo-center velocities with moderate
eccentricities.
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Figure 4.2: Top: χ(U) for the same values of η as in Fig. 4.1. Bottom: Same functions as in top
panel, but here normalized to the Maxwellian: χ(U)/χs(U) (increasing η from top to bottom).
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Figure 4.5: Solid lines: Dynamical friction force in gaseous medium as a function of Mach number
M = V/cs. Curves correspond to ln(cst/rmin) = 4, 6, 8, ...., 16. Dashed lines: Corresponding
dynamical friction force in a collision-less medium with particle velocity dispersion σ = cs and
rmax = V t = Mcst. Figure from Ostriker (1999).

4.5 Dynamical Friction in Gaseous Medium

In collisional fluids dynamical friction arises from the gravitational pull between the perturber and
its density wake in the background medium. The dynamical friction formula in a gaseous medium
depends on the velocity V of the perturber which giving rise to two possibilities: (1) when the
velocity V is greater than speed of sound vc, i.e, supersonic case. (2) and the case in which it is
less than speed of sound, the subsonic case.

In the steady state limit and for the supersonic motion (Ostriker 1999),

FDF = −4π

(
GMp

V

)2

ρ0 ln

[
bmax

bmin

(M2 − 1)1/2

M

]
M > 1 (4.34)

where M = V/cs is the Mach number. If perturber triggering disturbance moves subsonically
then in this case dynamical friction force is given by formula

FDF = −(4/3)π

(
GMp

V

)2

ρ0

[
1

2
ln

(
1 +M
1−M

)
−M

]
M < 1 (4.35)

In the the limit of a very slow perturber, M << 1, dynamical friction force becomes proportional
to perturber speed V . Figure 4.5 show the comparison for gravitational drag on a particle of
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mass Mp in collisional and collision-less medium with the same density ρ0 for both mediums. For
collision-less medium Eq. 4.1 is used with a Maxwellian distribution of particle velocities. We can
notice from the figure that for M >> 1, dynamical friction forces are identical for collisional and
collision-less medium. For M < 1, the dynamical friction force is larger in collision-less medium
in general. At M ∼ 1, the dynamical friction force in collisional medium is up to factor 4 larger
than the drag force in collision-less medium.

Key results of the study

• The outskirts of Dehnen models and a Plummer model can be approximated by cusps in
a Kepler potential.

• In the Coulomb logarithm, the minimum impact parameter is defined by a90 and the
maximum parameter is defined by the local scale length.

• The motion of a point like object in a Kepler potential is described by a constant Coulomb
logarithm.

• The orbital decay time for circular orbits when using self consistent distribution functions
can be different up to a factor 2 when compared with those obtained with a standard
Maxwellian.
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Chapter 5

Orbital Decay of SMBHs in
Galactic Centers

Key scientific investigations addressed in this Chapter

1. Derivation of theoretical estimates for the orbital decay of supermassive black hole due to
dynamical friction in self gravitating cusps and Kepler potential.

2. Estimates of orbital decay for the special cases in Kepler potential include Bahcall-Wolf
cusp, Hernquist cusp, outskirts of Plummer and Dehnen models.

3. Applications of analytical estimates to the decay of IMBH in Galactic center and also for
a minor mergers.

Note: The contents of this Chapter are based on paper by Just, A., Khan, F. M., Berczik,
P., Ernst, A., & Spurzem, R. 2011, MNRAS, 411, 653

The generalized formula for dynamical friction described in Chapter 4 is valid for extended
objects like satellite galaxies or star cluster and for point-like objects like SMBHs. For extended
objects the Coulomb logarithm is small and corrections to the relevant impact parameter regime
are more significant than for SMBHs. Additionally the mass loss and the determination of the
effective mass for dynamical friction must be taken into account Fujii et al. (2006, 2008). The
present investigation is restricted to the orbital evolution of SMBHs.

Super-massive black holes, most likely to be present in merging galaxies from the early universe
onwards Kormendy & Richstone (1995), Ferrarese et al. (2006), will sink to the centers of galactic
merger remnants by dynamical friction and ultimately coalesce themselves Berentzen et al. (2009),
Khan et al. (2011). Numerical simulations to follow this process in a particle-by-particle approach
are still too computationally expensive for realistic particle numbers, and so this situation requires
another careful look at dynamical friction.

Here the orbital decay of a massive object on a circular orbit in a cuspy density distribution
is explicitly derived with a position dependent Coulomb logarithm. All values are normalized to
the values at the initial distance R0. The distance to the center is y = R/R0.
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The initial decay timescale for angular momentum loss is given by

τ0 = − Vc0

V̇df,0

=
1

2πηχ0 lnΛ0

M2
0

MbhMt
T0 (5.1)

=
14.9

ηχ0 ln Λ0

[
R0

pc

M0

M�

]3/2 [
Mt

M�

Mbh

M�

]−1

Myr.

The first expression is in units of the orbital time T0 = 2πR0/Vc0 and the second expression is in
physical units. In the case of a self-gravitating cusp the enclosed cusp mass M0 equals Mt and τ0
is proportional to M

1/2
t . In the Kepler case M0 equals Mc and τ0 is proportional to M

3/2
c .

The orbital decay can be computed by identifying the angular momentum loss due to the
dynamical friction force (Eq. 4.1)

d(yVc)

dy
ẏ = L̇ = y V̇df = −Vc0

τ0
yη−1 M0

M(y)

ln
(
Λ0y

β
)

ln Λ0
(5.2)

where we have used the definition of the decay timescale τ0 (Eq. 5.1), the position dependence
of the density (Eq. 4.3), replaced the square of the circular velocity by GM(y)/R0y with initial
value GM0/R0, and the parametrization of the Coulomb logarithm (Eq. 4.29). The enclosed mass
M(y) on the right hand side and the circular velocity Vc(y) on the left hand side are different for
the Kepler case and the self-gravitating case.

In the Kepler potential with constant enclosed mass M(y) = M0 = Mc and

V 2
c = V 2

c0y
−1 (5.3)

we write Eq. 5.2 in the form

ẏ = − 2

τ0

ln
(
Λ0y

β
)

ln Λ0
y(η−

1
2 ) (5.4)

We define for η 6= 3/2

z = Λ
κ
β = Λ

κ
β

0 y
κ, κ =

3

2
− η (5.5)

and find after a little mathematical manipulation

dz

dt
= −2κ

τ0

z0
ln z0

ln z (5.6)

or

t = − τ0
2κ

ln z0
z0

∫
1

ln z
dz

= τdf
ln z0
z0

[Ei(ln z0)− Ei(ln z(y))] β, κ 6= 0 (5.7)

and

τdf = τ0 ×



1
3−2η κ 6= 0 Kepler

ln Λ0

2β κ = 0, β 6= 0 Kepler

1
2 κ = β = 0 Kepler

. (5.8)
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where τdf measures the decay timescales and is given by Eq. 5.8 and the exponential-integral
function Ei(x) (see 2.2724.2 and 8.211.2 of Gradshteyn I.S. (1980)). For the special case of η = 3/2
we can use Λ as variable and find with

d

dt
ln(lnΛ) =

β

lnΛ

ẏ

y
(5.9)

the implicit solution

t = τdf ln

(
lnΛ0

lnΛ(y)

)
β 6= 0, κ = 0 (5.10)

For a point-like body the maximum and the minimum impact parameter Dr and a90 are both
linear in y leading to a constant Coulomb logarithm (i.e. β = 0). For this case direct integration
of Eq. 5.4 leads to the explicit solutions given by:

y(t) =



[
1− t

τdf

]1/κ
κ 6= 0, β = 0

Λ
(exp(−t/τdf)−1)/β
0 κ = 0, β 6= 0 Kepler

exp
(
− t

τdf

)
κ = β = 0 Kepler

. (5.11)

For the Kepler potential the results can be easily generalized to expanding or contracting cusps.
If the density varies proportional to a power of time, i.e. ρ(y) = ρ(y, t = 0)(1 + t/ta)

ν , then the
differential equation 5.4 with time dependent τ0 can be converted back to the original form with
initial ρ0 in τ0 by

dy

ds
= ẏ

dt

ds
= − 2

τ0

ln
(
Λ0y

β
)

ln Λ0
y(η−

1
2 ) (5.12)

s =
[
(1 + t/ta)

1+ν − 1
] ta
1 + ν

(5.13)

The implicit solution of the differential equation 5.4 is still given by Eq. 5.7 with the substitution
t → s. For a Plummer sphere with linear increasing Plummer radius ya = ya0(1 + t/ta) we find
for the outskirts ν = 2 (Eq. 4.25).

For shallow cusps with η > 3/2 in a Kepler potential κ becomes negative leading to a negative
τdf . In that case ln z0 is also negative and there is formally a stalling of the orbital decay for
β > 0 when Λ approaches unity. In case of β = 0 equation 5.11 yields an infinite decay time to
the center.

Also for positive κ the total decay time with varying lnΛ is not well-defined, because the
approximations in Eq. 4.26 breaks down for lnΛ < 1. In order to get an analytical estimate of the
effective decay time τdec, let’s choose the time needed to decrease lnΛ from the initial value lnΛ0

to lnΛ = 0.3725β/κ, where Ei(ln z) = 0. For ln z0 � 1 it can be estimated from Eq. 5.8 with the
help of the asymptotic expansion Ei(x) ∼ ex(1/x+ 1/x2) (8.216) Gradshteyn I.S. (1980)

τdec =

[
1 +

β

κ lnΛ0

]
τdf for

κ

β
lnΛ0 � 1 . (5.14)

The correction factor quantifies the effect due to the position dependence of the Coulomb loga-
rithm, if β 6= 0. For a negative κ (as realized in the Hernquist cusp HE) the last term in Eq. 5.7
dominates and diverges as Λ approaches unity. Therefore we define a decay timescale for a fixed
minimum value ydec (e.g. three times the stalling radius) by

τdec = − ln z0
z0

ln | ln z| τdf for | ln z| = −κ

β
lnΛ � 1 . (5.15)
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For κ = 0 and β 6= 0 the orbital decay of the BH would also stall at lnΛ = 0. Only for κ > 0 and
β = 0 there is a finite time τdf to reach the center. For completeness it is mentioned that for a
negative β the total decay time to the center would be finite due to the enhanced friction force by
an increasing Coulomb logarithm. But for all realistic cases one finds β ≥ 0.

In a self-gravitating cusp we have β = η, 1, 0 for a point-like object, an extended object, and
a constant Coulomb logarithm, respectively (Eq. 4.29). For the self-gravitating case we insert
M(y) = M0y

η and
V 2
c = V 2

c0y
η−1 (5.16)

into equation 5.2. The resulting differential equation takes the form

ẏ = − 2

(1 + η)τ0

ln
(
Λ0y

β
)

lnΛ0
y−

1+η
2 (5.17)

With the definition

κ =
3 + η

2
(5.18)

which is positive for all realistic cases, we find the same implicit solution for β 6= 0 and explicit
solution for β = 0 as in the Kepler case but with a different τdf :

τdf = τ0 ×
1 + η

3 + η
κ 6= 0 self-grav. (5.19)

The angular momentum evolution can be easily calculated by

L(t) =
√
GM(y)R = L0 ×

{
y(1+η)/2 self-grav.
y1/2 Kepler

(5.20)

with L0 =
√
GM0R0.

The standard case of dynamical friction corresponds to the isothermal sphere and a constant
Coulomb logarithm, i.e. initial enclosed mass M0 at radius R0 with η = 1 and β = 0 in Eq. 5.8.
Here the decay time of the standard case

τdf0 =
1

χs ln Λs

M0

Mbh

R0

Vc0
×


1
2 self-grav.

M0

Mt
Kepler

(5.21)

as given also in Binney & Tremaine (1987) (7-26) is used as normalization.
In Fig. 5.1 the orbital decay y(t) of circular orbits is presented. The differences in the orbital

evolution are caused by the combination of using self-consistent density profiles and distribution
functions and by the position dependence of the Coulomb logarithm. The standard case is given
by lnΛ = const. (β = 0, η = 1). For point-like objects y(t) is given in the top panel. Orbits
for different power law indices η with varying lnΛ are plotted. The full red line shows in an
isothermal core the delay due to the position dependence of lnΛ and the slightly smaller initial
value of lnΛ0 = 4.6 instead of 5.0. In the bottom panel the evolution for the same values of η
are shown for extended bodies. The parameters are chosen to give the same Coulomb logarithm
lnΛ0 = 5.0 in the standard case.

In Fig. 5.2 the variation of the effective decay time as a function of η is shown for point-like
and extended bodies. Some care should be taken to use these numbers, because the innermost
radius reached at time τdec depends on η. But the general parameter dependence of τdec gives
some insight in the physics of the orbital decay in cusps. The effective decay time of circular orbits
in self-gravitating cusps is affected by the following aspects:

In the case of eccentric orbits there is an additional effect of the variation of lnΛ, because
along these orbits the relative strength of the friction force at apo- and peri-center is changed.
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Figure 5.1: Radial evolution of circular orbits in cusps. HereMbh = 10−2M0 and rh = 6.7×10−3R0

leading to the same lnΛ0 = 5.0 for the standard case with β = 0, η = 1. For the four Kepler cases
Bahcall-Wolf cusp (BW), Hernquist cusp (HE), Dehnen (DE) and Plummer (PL) outskirts with
η = 1.25, 2.0,−1.0,−2.0 the initial cusp masses are Mt/Mc = 0.5, 0.5, −0.225, −0.06, respectively.
The top panel is for point-like objects and the lower panel for extended objects.
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Figure 5.2: Relative variation of total decay times (Eq. 5.14) normalized to the standard case of
constant Coulomb logarithm. We used the same parameters as in Fig. 5.1. Open symbols are for
positive η and full symbols for negative η.
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5.1. KEPLER POTENTIAL

5.1 Kepler Potential

In case of a Kepler potential the cusp mass distribution is decoupled from the potential and the
enclosed cusp mass Mt is an additional free parameter. We discuss the explicit solutions for four
cases. Well inside the influence radius of a central SMBH the stellar distribution can be described
by a cusp in a Kepler potential. We present the orbital decay in the Bahcall-Wolf cusp and
the shallow cusp of a Hernquist profile. In the outskirts of self-gravitating systems the density
distribution may be approximated by a power law and the potential by a point-mass potential, if
the density profile is steep enough. We investigate two cases with steep power law distributions to
test the maximum impact parameter dependence of the Coulomb logarithm. The Plummer sphere
with an outer density slope of −5 and the Dehnen models with a slope of −4 are the ideal cases.

5.1.1 Bahcall-Wolf cusp

Here we look to the orbital decay inside the gravitational influence radius, where the enclosed
mass of the stellar component Mt is smaller than the mass Mc of the central SMBH. We neglect
in this region the contribution of the stellar component to the mean gravitational field.

The general equations are already given in the previous sections, but we evaluate the terms
explicitly for the Bahcall-Wolf cusp with

η = 5/4 ρ ∝ y−7/4 , (5.22)

leading to

κ =
1

4
X2

c =
11

8
. (5.23)

For circular orbits the minimum impact parameter for a point-like object becomes

a90 =
11

19

Mbh

Mc
R , (5.24)

leading to the initial Coulomb logarithm

Λ0 =


76
77

Mc

Mbh
β = 0 point-like

4
7

R0

bmin
β = 1 unres. or ext.

. (5.25)

The distribution function F (u) and the corresponding χ(U) are shown in Figs. 4.1 - 4.2. The
decay time-scale τdf from Eq. 5.8 reads

τdf =
55

lnΛ0

[
R0

pc

Mc

M�

]3/2 [
Mt

M�

Mbh

M�

]−1

Myr , (5.26)

For point-like objects the total decay time τdec equals τdf and for extended bodies the corresponding
equation is (using Eq. 5.14)

τdec =
lnΛ0 + 4

(lnΛ0)
τdf unres. or ext. (5.27)

The orbital decay of circular orbits is given by Eqs. 5.11,

y =

[
1− t

τdf

]4
, (5.28)

which is very different to the standard case.
In Fig. 5.1 the orbit evolution in a Kepler potential is plotted for Mt = 0.5Mc. It shows the

strong slow-down in the inner part leading to long total decay times τdec (see Fig. 5.2).
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5.1.2 Hernquist Cusp

For the Hernquist cusp the corresponding equations are

η0 = 2 ρ ∝ y−1 (5.29)

κ = −1

2
X2

c = 1 . (5.30)

a90 =
1

2

Mbh

Mc
R , (5.31)

Λ0 =


2 Mc

Mbh
β = 0 point-like

R0

bmin
β = 1 unres. or ext.

. (5.32)

The decay timescales are

−τdf =
15

lnΛ0

[
R0

pc

Mc

M�

]3/2 [
Mt

M�

Mbh

M�

]−1

Myr , (5.33)

τdec = −1

2

√
Λ0 lnΛ0 ln

(
lnΛ

2

)
τdf unres. or ext.

and the orbital decay of circular orbits is for point-like objects

y =

[
1 +

t

|τdf |

]−2

. (5.34)

In Fig. 5.1 we have chosen the same yh as for the BW case. We find an initially faster decay
than in the BW cusp and a stronger slow-down in the late phase leading to a comparable τdec
adopting a final Coulomb logarithm lnΛ = 1.1 (see Figure 5.2). The comparison of the analytic
and the numerically realized cumulative distribution function χ(U) is shown in Fig. 5.3. The
Figure demonstrates the influence of the outer boundary conditions deep into the cusp.

5.1.3 The Outskirts of a Plummer Sphere

In the outskirts of a Plummer sphere with total mass Mc the corresponding equations are

η0 = −2 ρ ∝ y−5 (5.35)

κ =
7

2
X2

c = 3 . (5.36)

a90 =
3

4

Mbh

Mc
R , (5.37)

Λ0 =


4
15

Mc

Mbh
β = 0 point-like

1
5

R0

bmin
β = 1 unres. or ext.

. (5.38)

τdf =
0.78

y2a lnΛ0

[
R0

pc

]3/2 [
Mc

M�

]1/2 [
Mbh

M�

]−1

Myr , (5.39)

τdec =
lnΛ0 + 2/7

(lnΛ0)
τdf unres. or ext. (5.40)

We have used Eq. 4.25 for Mt. The orbital decay of circular orbits is for point-like objects

y =

[
1− t

τdf

]2/7
. (5.41)

and the distribution function F (u) and the corresponding χ(U) are shown in Figs. 4.1 - 4.2. In
Figs. 5.1 and 5.2 we have chosen ya = 0.2 for the Plummer radius in units of R0.
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5.1.4 The Outskirts of Dehnen Models

In the outskirts of Dehnen models with total mass Mc and inner cusp slope η the corresponding
equations are

η0 = −1 ρ ∝ y−4 (5.42)

κ =
5

2
X2

c =
5

2
. (5.43)

a90 =
5

7

Mbh

Mc
R , (5.44)

Λ0 =


7
20

Mc

Mbh
β = 0 point-like

1
4

R0

bmin
β = 1 unres. or ext.

. (5.45)

τdf =
2.36

ya lnΛ0

[
R0

pc

]3/2 [
Mc

M�

]1/2 [
Mbh

M�

]−1

Myr , (5.46)

τdec =
lnΛ0 + 0.4

(lnΛ0)
τdf unres. or ext. (5.47)

We have used Eq. 4.24 for Mt with η = 1.5. The orbital decay of circular orbits is for point-like
objects

y =

[
1− t

τdf

]2/5
. (5.48)

and the distribution function F (u) and the corresponding χ(U) are shown in Figs. 4.1 - 4.2. In
Figs. 5.1 and 5.2 we have chosen ya = 0.15 for the scale radius in units of R0.

5.2 Applications

5.2.1 The Galactic Center

The central region of the Galactic Center can be modeled by a cusp with η = 1.2 and enclosed
mass M0 = M(R0) = 1 · 109M� at R0 = 200 pc, and a central BH with mass Mc = 2.6 · 106M�
Genzel & Townes (1987). The gravitational influence radius is at R = 1.4 pc, where we may
assume a slightly shallower cusp with η = 1.25. If the central BH would have entered the cusp
on a circular orbit at some later time, the decay time from R0 = 200 pc to the center would be
110Myr (Eq. 5.14 with β = η). An intermediate mass BH with Mbh = 1 · 104M� can reach the
center from R0 = 60pc in 2.5Gyr. For the final decay inside the influence radius of R = 1.4 pc
the decay time is 15Myr.

In the central cusp of the Galaxy there are young star clusters like the Arches and the Quintu-
plet cluster with a projected distance from the Galactic center of about 30 pc and an age of a few
Myr. The stellar mass is ≈ 1 · 104M� with a half-mass radius of rh ≈ 0.2 pc Cotera et al. (1996).
Assuming that the initial distance is R0 = 30pc we find with Eq. 4.31 for the initial Coulomb
logarithm lnΛ0 = 4.4 leading to the decay time τdec = 720Myr. If we assume that the star clus-
ters are still embedded in their parent molecular cloud with mass 1 · 106M� and initial half-mass
radius rh0 ≈ 3 pc, the decay time becomes considerably smaller. Adopting cluster mass loss linear
in time we get τdec ≈ 30Myr, which is still large compared to the actual age of the clusters. This
is in contrast to Gerhard (2001), who investigated the in-fall of massive clusters, also embedded
in giant molecular clouds, to the Galactic center. He found much shorter time-scales, because he
used unrealistically high values for the Coulomb logarithm lnΛ ≈ 10− 20.
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5.2. APPLICATIONS

5.2.2 Minor Merger

One important application is the orbital decay of the SMBHs after the merger process of two
galaxies. Let us assume a 10:1 merger with primary BH of mass Mc = 1 · 108M� and the
secondary BH with Mbh = 1 · 107M�. After violent relaxation of the stellar components and
settling of the primary BH to the center we adopt a shallow new central cusp with η = 1.75 at radii
large compared to the gravitational influence radius of the central SMBH. With an enclosed mass
M0 = M(R0) = 1 · 1010M� at R0 = 1kpc the circular velocity is Vc0 = 207 km/s corresponding
to a velocity dispersion of σ0 = 293 km/s (Eq. 4.10). For the secondary BH we find with Eq.
5.14 a decay time of 830Myr. For the inner 500 pc with enclosed mass of M(500pc) = 3 · 109M�
the BH needs 190Myr. After reaching the gravitational influence radius of the central SMBH at
R = 72pc, the final decay takes 15Myr (with Eq. 5.26). If we compare these decay times with an
isothermal model with the same enclosed mass at R0 = 1kpc and adopting a constant Coulomb
logarithm of lnΛ = 6.9, we find the corresponding times 792; 200; 4.1Myr, respectively. The total
decay time is comparable, but in the final phase the decay is significantly slower in the Kepler
potential compared to the standard isothermal approximation.

Key findings of this Chapter

• Density profile With decreasing η the mass M0 is more and more concentrated to the
center leading to a smaller density in the outer regions. This results in a smaller dynamical
friction force and prolonged τdec.

• Distribution function With decreasing η the fraction of slow particles χ0 increases
considerably from 0.2 to 0.7, reducing the effect of the smaller density in the outer parts.

• Coulomb logarithm The position dependence of lnΛ leads to a moderate delay in orbital
decay in the later phase. The effect is strongest for large values of η.

• Extended bodies For extended bodies like star clusters lnΛ is generally smaller compared
to point-like bodies, because the minimum impact parameter is larger. Compared to the
standard case, the prolongation factor is only weakly dependent on η.
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Chapter 6

Numerical Tests of Dynamical
Friction Formula

Contents of this Chapter

1. Large set of numerical simulations to study the orbital decay of SMBHs on circular and
eccentric orbits in power-law cusps.

2. Comparison of orbital decay in N -body simulations with analytic/semi-analytic estimates
using improved and standard dynamical friction formula.

3. Study of the effect of the new Coulomb logarithm and correct distribution function sepa-
rately.

4. Numerical resolution of the particle particle code φ-GRAPE and the particle mesh code
SUPERBOX.

Note: The contents of this Chapter are based on paper by Just, A., Khan, F. M., Berczik,
P., Ernst, A., & Spurzem, R. 2011, MNRAS, 411, 653

The contributions to the dynamical friction force covers a large range of parameters for the
2-body encounters, which must be fully covered by the numerical simulations in order to reach a
quantitative measure of the Coulomb logarithm. The numerical representation is mainly restricted
by the resolution of small impact parameters determined by the spatial resolution, the time res-
olution and the number statistics. For PP codes the number statistics is the main limitation.
Therefore we can use the φGRAPE code for the BW cusp only with a very high local density in
the inner cusp. We reach a few encounters per decay timescale τ0 with impact parameters below
twice the minimum value. For the Superbox runs the spatial resolution is limited, which we can
take into account by a correct choice of the minimum impact parameter. But even in that case it
turns out that due to the fixed time step the time resolution is still a bottleneck, which limits the
total time of some simulations.
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Table 6.1: Parameters of the runs for the BW cusp.
Run N/103 ε/10−4 Mbh R0 Vc,0 V0/Vc,0 a90/10

−4 lnΛ0

A0 64 1.0 – – – – – –
A1 64 0.1 .005 0.2 2.25 1.0 5.79 5.28
A2 64 0.1 .005 0.1 3.17 1.0 2.89 5.29
A3 64 0.1 .01 0.2 2.25 1.0 11.6 4.59
B1 64 0.1 .005 0.2 2.25 0.7 7.01 5.09
B2 64 0.1 .005 0.1 3.17 0.5 4.07 4.94
C1 64 1.0 .005 0.2 2.25 1.0 5.79 5.25
C2 64 5.0 .005 0.2 2.25 1.0 5.79 4.79
C3 64 10.0 .005 0.2 2.25 1.0 5.79 4.26
E1 64 0.1 .005 0.7 1.20 1.0 17.5 5.33
E2 128 0.1 .002 0.2 2.27 1.0 2.0 6.91

Note. For all runs the gravitational constant G, the SMBH mass Mc and the scale radius a are
normalized to unity. N is the total number of particles in the cusp, ε the softening length of the
particles, Mbh the mass of the secondary black hole with initial distance R0 in units of a, the

circular velocity Vc,0 at R0 in units of
√
GMc/a and the initial velocity V0 in units of the circular

velocity, the initial value of a90 from Eq. 4.28 is in units of a.

6.1 Bahcall-Wolf Cusp

We used the extended η-model of Matsubayashi et al. (2007) to generate the initial particle dis-
tributions in phase space. In all our runs we are using N = 64, 000 particles (see section 3.2 for
setup of Bahcall-Wolf cusp). The particle positions are generated so that their spatial distribution
satisfy Eq. 4.23 and the velocities were assigned to these particles according to Eq. 3.17. In all
our simulations we are using the normalization G = Mc = a = 1 leading to ya = R−1

0 in N -body
units. The mass of the central black hole is Mc and the total cusp mass Mt = 0.1. For the setup
we used a radius range of 10−4−20 in all our runs. Inside one unit length our cusp follows density
profile −7/4 and then turns over to a Plummer density profile with slope −5 for far out distances.
Table 6.1 shows the list of parameters for the series of runs.

6.1.1 Cusp Stability Analysis

Since we are using an approximate DF, we first performed a run (run A0 in the table) without
a secondary BH to test whether or not the cusp is stationary around the central SMBH. We run
this model up till 50 time units. Figure 6.1 shows the evolution of Lagrange radii and also the
cumulative mass profile at various time steps. We can see that the cusp is very stable. So the
problem how to get a stationary cusp in a Kepler potential was solved by this kind of a compromise
distribution between Bahcall-Wolf cusp in the inner (high binding energy) regime and a Plummer
distribution in the outskirts.

6.1.2 Circular Runs

We performed two series of circular runs (see table 6.1). The runs A1–A3 with different BH masses
and initial radii are all resolved, i.e. the softening parameter ε = 10−5 is much smaller than the
initial value of a90. Since a90 decreases linearly in y Eq. 5.24, the minimum impact parameter
is fully resolved to very small radii and we can use Eq. 5.28 for analytic estimates. In figures
6.2 and 6.3 we show the distance and the angular momentum evolution, because already small
deviations from circularity smear out the appearance of the orbits due to the very short orbital
time compared to the decay time. The top panel of figure 6.2 shows the distance evolution for runs
A1, A2, and A3. Run A2 corresponds to a restart of A1 after time T = 155 but using the initial
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Figure 6.1: Top: Figure shows the evolution of Lagrange radii of 0.1, 0.5, 1, 3, 5, 10, 30, 50, 80,
90% enclosed mass (from bottom to top) for the BW cusp. The Lagrange radii do not show any
systematic evolution with time.
Bottom: Cumulative mass profile at various time steps. The cumulative mass profile is practically
indistinguishable from the theoretical one except the inner few dozen particles, where deviations
due to the inner cutoff and noise are expected.
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particle distribution of the cusp. We see that there is no significant long-term evolution of the
cusp, which influences the orbital decay, until the end of run A1. The dashed (green) lines show
the analytic predictions of the orbital evolution from Eq. 5.28. There is an excellent agreement in
the first phase with a small delay in the later phase of run A1, which occurs much earlier in A2.
The reason for the reduced friction is investigated in run A3 further. In run A3 we increased the
mass of the BH and put it back at R0 = 0.2 such that in case A3 the radius, where the enclosed
cusp mass Mt equals Mbh (horizontal lines in figures 6.2 and 6.3), is twice that of run A2. In
run A3 the delay starts also very early. In the bottom panel of figure 6.2 and in figure 6.3 the
same evolution is shown much clearer in angular momentum L using Eq. 5.20 for the analytic
predictions. The horizontal lines show the distance, where Mbh = Mt in all figures. This radius
coincides with the distance, where the BH mass exceeds the mass in a shell centered at the orbit.
An inspection of the cumulative mass profiles shows that the back-reaction of the scattering events
to the cusp distribution becomes significant (see figure 6.4). The cumulative mass profile becomes
shallower, which means that the local density is reduced leading to a smaller dynamical friction
force.

For a circular orbit in a Bahcall-Wolf cusp the new friction formula is very close to the standard
formula: the Coulomb logarithm is also constant, the value deviates only by ∆ lnΛ=-0.1 from lnΛs,
the χ value is 0.430 instead of χs=0.428. This leads to an indistinguishably faster decay when
applying the standard formula. The picture changes slightly for the eccentric orbits (see below).

In all simulations the eccentricity of the orbits vary slightly. The increasing eccentricities in
the later phases of the runs may correlate to the decreasing mean density, i.e. may be connected
to the feedback of the BH on the cusp. The eccentricity evolution will be investigated in more
detail in future work.

In a second series of runs C1–C3, we study the impact of the minimum impact parameter by
increasing the softening parameter until it is much larger than a90. In figure 6.5 we can see that for
the largest softening length ε (greater than a90) the decay is slower as expected from the smaller
Coulomb logarithm (Eq. 5.25). We can use the variation to measure the effective resolution of
the code. The best simultaneous fit of all curves lead to bmin = 1.5ε in Eq. 4.26 for the PP code
φ-GRAPE. The random variations of the orbital decay on time-scales of 10. . . 100 time units are
expected from a rough estimate of the close encounter rate and the corresponding velocity changes.

6.1.3 Eccentric Runs

In eccentric runs the additional effect of the velocity dependence of χ(U) and also a90 (Eq. 4.28)
along the orbit occurs. We performed two runs B1 and B2 with different initial radii and velocities
at apo-center corresponding to eccentricities of e = 0.5, 0.75, respectively. The effective minimum
impact parameter a90 is well resolved along the orbits. In the left panel of figure 6.6 the orbit of
B1 is shown in two short time intervals of length ∆T = 1 in order to resolve individual revolutions.
Since the orbital phase is very sensitive to the exact enclosed mass and apo- peri-center positions,
the cumulative phase shift after hundreds of orbits is expected. In the right panel the evolution in
L is shown for runs B1 and B2 for the full evolution time. The comparison with the semi-analytic
results show very good agreement for run B1. The delay in the orbital evolution as in runs A1
–A3 does not occur. In run B2 there is a delay in the later phase. In contrast to run B1 the
peri-center passages of B2 suffer from low number statistics. The peri-center distance decays from
0.015 at T = 0 to 0.01 at T = 150, where only 200 cusp particles are enclosed inside the orbit.

In the right panel of figure 6.6 we show also the orbital evolution using the standard param-
eters. In the standard case with constant lnΛs (equation 4.32) and χs from a Gaussian velocity
distribution are applied. The decay is slightly faster. In order to separate the effect of the new
Coulomb logarithm and the correct distribution function we show also the orbital decay substitut-
ing only χ by χs (dotted blue line) and only lnΛ by lnΛs (dashed-dotted cyan line), respectively.
The effect of the new Coulomb logarithm is larger, but still not significant in the Bahcall-Wolf
cusp.
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Figure 6.2: Top panel: Comparison of the orbit evolution of the φ-GRAPE data and the analytic
estimates (Eq. 5.28) for the circular orbits A1, A2, A3. The run A2 is shifted by T0 = 155 in order
to continue the theoretical line of A1. The horizontal lines shows the radii, where the enclosed
cusp mass equals Mbh (for A1, A2 at T > 150 and for A3 at T < 100). Bottom panel: Comparison
of the angular momentum evolution of the φ-GRAPE data and the analytic estimates (Eq. 5.20)
for the circular orbit A1. The horizontal line shows Lc at the radius, where the enclosed cusp
mass equals Mbh.
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Figure 6.8: Same as in figure 6.7 but for run E2 with higher resolution and closer in.

6.2 Hernquist Cusp

We performed two circular runs E1 and E2 in the shallow Hernquist cusp to test the limit of our
friction formula using the φGRAPE code. Run E1 is performed on the GRAPE cluster at ARI
and E2 with larger N on the GPU cluster of NAOC/CAS. The orbital decay is shown in figures
6.7 and 6.8. The velocity distribution function deviates significantly from the analytic limiting
case of an idealized cusp (see figure 5.3). The χ function is stable over the simulation time and
depends only weakly on the distance to the central SMBH. Therefore we used for the semi-analytic
simulations with Intgc constant mean values for the circular orbits. The local scale length of run
E1 entering the Coulomb logarithm is smaller than the distance to the center, which is the limiting
value, because R0 = 0.7 is close to the scale radius. The orbital decays are very well reproduced
in R and in L. A comparison with the standard values lnΛs and χs show a significant deviation
mainly due to the different χ function.

6.3 Outskirts of the Plummer Sphere

The background distribution is a self-gravitating Plummer sphere and the outskirts are described
by eq. 4.25. We place the orbits of the circular run P1 and eccentric run P2 far outside the
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Table 6.2: Parameters of the SUPERBOX runs.
Run M0 a rcut N m dt dc R0 Vc,0 V0/Vc,0 a90 lnΛ0

109 M� kpc kpc 107 Myr pc kpc km/s pc
P1 0.970 0.1 10 1 7 0.3 16.1 0.7 77.2 1.0 0.538 2.87
P2 0.970 0.1 10 1 7 0.3 16.1 0.7 77.2 0.7 0.869 2.87
D1 0.826 0.1 1 1 6 0.1 16.7 0.4 94.2 1.0 0.186 2.48
D2 0.826 0.1 1 1 6 0.1 16.7 0.4 94.2 0.7 0.207 2.48
D3 0.128 1.0 10 1 8 0.1 2.78 0.3 42.8 1.0 1.24 4.75
D4 0.128 1.0 10 1 8 0.3 2.78 0.3 42.8 0.7 1.70 4.44
H1 0.197 1.0 10 1 7 1.0 16.1 0.7 34.8 1.0 6.0 3.68
H2 0.197 1.0 10 1 7 0.3 16.1 0.7 34.8 0.56 9.7 3.46
H3 0.052 1.0 10 1 8 0.1 4.76 0.3 30.3 1.0 2.13 3.64
H4 0.052 1.0 10 1 8 0.1 4.76 0.3 30.3 0.9 2.39 3.53

Note. All quantities are given in physical units. For all cases, the total mass Mtot inside the
cutoff radius rcut is 10

9M� and mass of the supermassive black hole is 106M�, M0 is the
enclosed mass at the initial distance R0, a is the scale radius, N is the particle number, 2m is the
number of cells per dimension in each grid, and dc is the cell size of the middle grid. The initial
value of a90 from Eq. 4.28 is calculated for the exact model.

Plummer radius in order to be very close to the power law density with η0 − 3 = −5 and a Kepler
potential according to eqs. 4.25. Since the number density is very small, we cannot use a PP code.
Instead we use Superbox with ten million particles. The parameters of all Superbox runs are
listed in table 6.2.

Due to the very long orbital decay time the density distribution evolves slowly. In steep
cusps the representation of the local density in the semi-analytic calculations is the most critical
parameter. This affects the decay time scale via the local density and also the enclosed mass (Eq.
5.1). In the Kepler limit the enclosed mass is given by the constant central mass Mc. In lowest
order the density evolution can be modeled by a linear expansion of the Plummer radius. The
analytic solution of circular orbits is still given by equation 5.11 with the substitution t → s(t)
with ν = 2 (see Eq. 5.13). By fitting the density profiles at different times we find ta = 11.3 Gyr.

The numerical results of the circular run P1 are compared in figure 6.9 to the analytic solution
of Eq. 5.6 in the Kepler limit using an expanding Plummer profile. For the calculations with
intgc we correct additionally for the decreasing enclosed mass. Since in these simulations a90
is not resolved by the grid cell size dc, we determined the best value for the minimum impact
parameter to be bmin = dc/2. The same factor 1/2 is used for all other Superbox runs. In the
lower panel of figure 6.9 the orbits with standard Coulomb logarithm lnΛs and standard χs as in
figure 6.6 are shown for comparison. In figure 6.10 the orbital evolution is shown for the eccentric
run P2.

In both cases we find a satisfying agreement of the numerical results and our analytic predic-
tions. With the standard formula the decay is significantly delayed (figures 6.9 and 6.10). Here
the corrections due to the correct χ function and the new Coulomb logarithm have a different sign
and cancel each other partly. In the circular run both corrections are equally important. In the
eccentric run the correction by the χ function dominates, but the additional correction due to the
new lnΛ is also significant.

6.4 Outskirts of Dehnen Models

The background distribution is a self-gravitating Dehnen model with η = 1.5 in the inner cusp.
We place the orbits of the circular run D1 and the eccentric run D2 (table 6.2) far outside the
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Figure 6.9: Orbital decay of a BH in the outskirts of a self-gravitating Plummer sphere for the
Superbox runs of the circular orbit P1 in r(t) (left panel) and in L(t)/L0 (right panel). The
Superbox run is compared to the semi-analytic results with intgc. Same notation as in figure
6.6. The left panel shows additionally the analytic approximation from equation 5.7.

scale radius in order to be very close to the power law density with η0 − 3 = −4 and a Kepler
potential according to Eqs. 4.24.

The numerical results are compared in figures 6.11 and 6.12 with the semi-analytic calcula-
tions using intgc. In the numerical simulations the inner cusp becomes shallower and shrinks
considerably leading to a decreasing enclosed mass and increasing density in the outer parts. We
correct for that in intgc. In these simulations a90 is not resolved as in the Plummer case. The
numerical results are in good agreement with the analytic predictions using the same minimum
impact parameter bmin = dc/2. The orbital resonances seen in figure 6.11 are connected to a
motion of the density center of the cusp, which is used as the origin of the coordinate system.
Therefore the angular momentum of the orbit oscillates due to the accelerated zero point.

6.5 Self Gravitating Cusps

Here we study the orbital decay of a BH in self-gravitating cusps of Dehnen models using Su-
perbox without a central SMBH. We performed two runs (one circular and one eccentric) for a
Hernquist (η = 2) and a Dehnen-1.5 (η = 1.5) model each. For the semi-analytic calculations we
use again the same minimum impact parameter bmin = dc/2 in Eq. 4.26.

6.5.1 Dehnen-1.5 Model

We studied the decay of a circular and an eccentric orbit in the inner cusp of a Dehnen model with
η = 1.5 (D3 and D4 in table 6.2). A comparison of dc/2 and a90 shows that the close encounters
are marginally resolved. For this reason and because the transition of the inner and outer power
law regimes is very wide, the analytic approximation of a self-gravitating cusp shows systematic
deviations. With intgc we find nevertheless a very good match to the Superbox results of the
circular run D3 (see Fig. 6.11) and for the eccentric run D4 (see Fig. 6.12). In the upper panel of
Fig. 6.11 we show also the circular run with a larger time-step in Superbox, where for the close
encounters with impact parameter comparable to the cell length dc the motion of the perturber
are not resolved in time. This leads to a larger effective minimum impact parameter and a slower
orbital decay.
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Figure 6.10: Same as in figure 6.9 but for the eccentric orbit P2. The top panels show r(t) for two
time intervals with higher resolution and the bottom panel shows Lz(t) for the full calculation.
Same notation as in figure 6.6.
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Figure 6.11: Same as in figure 6.9 but for the orbit D1 in the outskirts of a Dehnen model. Same
notation as in figure 6.6.

6.5.2 Hernquist Model

The Hernquist model with shallower cusp (η = 2) is even more complicated, because X2
c (see

equation 4.10) is not constant and the χ function depends on the outer boundary conditions. For
the two runs H1 (circular) and H2 (eccentric) the parameter range is similar to the Dehnen-1.5 case
with marginally resolved a90. The orbits of H3 (circular) and H4 (eccentric) are further in and the
grid resolution is higher leading to a fully resolved a90. All orbits are reproduced reasonably well
by intgc using the correct χ function and taking the correct velocity dispersion in a90 Tremaine
et al. (1994) into account (see figures 6.15 – 6.18).

6.6 Velocity Distribution Functions

The local velocity distribution functions are crucial for the dynamical friction force. Therefore we
check here the numerical realization of the distribution functions. The best way to measure the
distribution function is to determine the χ function in a spherical shell at the distance of the BH
for different times. In figure 6.19 the χ functions are shown for a few examples. The top panel
shows the Kepler cases and the bottom panel the self-gravitating cusps.

In the Kepler case we present the circular runs in the Bahcall-Wolf cusp (BW, A1, A3), the
Plummer case P1, and the Dehnen case D1. In the Bahcall-Wolf cusp the final distribution function
of A1 is very close to the theoretical line. The χ functions of the eccentric runs B1, B2 are very
similar and therefore not plotted here. In the runs A2 and A3, where the density profile flattens
slightly, a bump in the χ function at velocities below the circular velocity can be observed. It
is more pronounced in run A3. The χ value at the circular speed is not influenced dramatically
showing that the orbital delay is caused entirely by the reduced local density. The distribution
functions in the outskirts of the Plummer and Dehnen cases are very stable and well represented
by the theoretical expectations.

The lower panel of figure 6.19 shows the χ functions of the self-gravitating cusps for the circular
runs H1 and D3. Here we added the case of the eccentric run D4 to demonstrate the stability of
the velocity distribution functions independent of the shape of the orbit.

Overall the velocity distribution functions are very robust and well reproduced in the numerical
simulations.
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Figure 6.12: Same as in figure 6.11 but for the eccentric orbit D2. Same notation as in figure 6.6.
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Figure 6.13: Orbital decay in distance (left panel) and angular momentum (right panel) for the
circular orbit D3 in the self-gravitating inner cusp of the Dehnen-1.5 model. Same notation as in
figure 6.6. In the left panel there is additionally the orbit with insufficient time resolution shown.
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Figure 6.14: Same as in figure 6.13 but for the eccentric orbit D4.
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Figure 6.15: Same as in Fig. 6.13 for the circular orbit H1 in the self-gravitating inner cusp of the
Hernquist model.
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Figure 6.16: Same as in Fig. 6.15 for the eccentric orbit H2.
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Figure 6.17: Same as in Fig. 6.15 for the circular orbit H3 with resolved a90.
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Figure 6.18: Same as in Fig. 6.17 for the eccentric orbit H4.
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Figure 6.19: Left:Initial and final χ functions for the circular runs in the Bahcall-Wolf cusp (BW,
A1, A3), the Dehnen case D1, and the Plummer case P1. Right:Same for the self-gravitating cusps
with Dehnen-1.5 (D3, D4) and Hernquist profiles (H1).

Key findings of the study

1. The new Coulomb logarithm combined with self-consistent velocity distribution functions
in the Chandrasekhar formula fits very well for wide range of power law indices (-1 ... -5).

2. The orbital decay of SMBH caused by dynamical friction is delayed when compared to
theoretical predictions once the mass enclosed by the SMBH orbit becomes less than the
mass of SMBH.

3. In the phase where the delay in orbital decay is noticed, eccentricity of the SMBH orbit
tends to increase. The cause of this increase in eccentricity is not known and needs to be
investigated further.

4. For the cases, where the minimum impact parameter a90 is not resolved, fits to the
numerical study suggest that one should use 1.5 times the softening length for PP code
and half the cell size for PM code as minimum impact parameter.
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Chapter 7

Evolution of SMBH Binaries in
Equal Mass Galaxy Mergers

Contents of this Chapter

1. Evolution of the SMBHs at the center of isolated spherical galaxy models and study of the
N -dependence of the SMBH binary hardening rates.

2. Equal mass galaxy mergers and evolution of supermassive black holes in stellar dynamical
regime.

3. Study of the N -dependence of the binary hardening rates in galaxy merger study and
comparison with evolution in spherical galaxy models.

4. Analysis of the shapes of the merger remnant and its relation to the SMBH binary hard-
ening rates.

5. The estimate of the coalescence time of the SMBH binary for each of our galaxy merger
simulations.

Note: The contents of this Chapter are based on paper by Khan, F. M., Just, A., &
Merritt, D. 2011, ApJ, 732, 89

In this chapter we present the results of the two sets of N -body experiments performed to
study the evolution of supermassive black holes. In first study we introduce two SMBHs in the
center of a single spherical galaxy on almost circular orbit and study the evolution of the binary
in late hard binary phase. In the second case we follow the evolution of two SMBHs in the merger
of two spherical galaxies. In both cases we study the effect of different particle number N used
to represent the galaxy model and measure the binary’s hardening rates for each model. In the
case of galaxy mergers we also analyze the shapes of the merger remnant and estimate the time
it takes the SMBHs to coalesce in each of our models.

7.1 Numerical Methods and Initial Conditions

Our initial conditions are based on spherical galaxy models following Dehnen’s (1993) density law
already described in section 3.1.3. Here we use the power law index γ for density profile and it is
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related to η through γ = 3− η.

ρ(r) =
(3− γ)Mgal

4π

r0
rγ(r + r0)4−γ

, (7.1)

and with cumulative mass profile

M(r) = Mgal

(
r

r + r0

)3−γ

, (7.2)

where Mgal is the total mass of the galaxy, r0 is a scale radius, and γ defines the slope of inner
(inside r0) density profile. We adopted γ = 1, corresponding to a Hernquist model (Hernquist
1990), for all initial models. A massive particle representing a SMBH was placed at the center of
each galaxy model. The isotropic distribution function reproducing ρ(r) in the combined potential
of the stars and the SMBH in dynamical equilibrium was computed numerically and used to
generate Monte-Carlo positions and velocities for the stars. In what follows, we adopt “model
units” such that Mgal = G = r0 = 1.

The models can be scaled to physical units by fixing galaxy mass Mgal and scale radius r0
combined with the relations

[T ] =

(
GMgal

r30

)−1/2

= 1.5Myr

(
Mgal

1011M�

)−1/2 (
r0
kpc

)3/2

, (7.3)

[V ] =

(
GMgal

r0

)1/2

= 655km s−1

(
Mgal

1011M�

)1/2 (
r0
kpc

)−1/2

(7.4)

We use following relation (Gualandris & Merritt 2008) to scale our models to the physical systems:

Reff ≈ 1.2kpc(
Mgal

1011M�
)0.075 (7.5)

In a Hernquist model the effective (projected half-mass) radius Reff is ∼ 1.81r0. For a typical,
luminous (MB ≈ −20) elliptical galaxy or bulge, Reff ≈ 1.5 kpc, Mgal ≈ 1011M� and [T ] ≈
1.1Myr. Effective radii scale very weakly with galaxy luminosity (though with considerable scatter;
e.g. Ferrarese et al. (2006)) and in the case of 109M� galaxy, whose SMBH would have a mass
more suited to detection by LISA, the physical unit of time would be closer to 6 Myr. In the latter
case, the length of our longest integrations amounts to ∼ 1.5 Gyr.

Two sets of simulations were carried out. In the first set, a single spherical galaxy was created,
with a central SMBH of mass M•1 = 0.001 (Model A) or 0.01 (Model B). A second SMBH, of the
same mass (M•2 = M•1), was then placed at a distance of 0.5 from the center on a circular orbit.
Integrations were continued until a time tmax = 100.

In the second set, two identical spherical models were created, each containing a single central
SMBH, and the two galaxies were merged. Here again, two values for SMBH mass were used:
M•1 = 0.001 (Model C) or 0.01 (Model D) and the integrations were continued until a time
tmax = 250.

In order to test the dependence of the results on particle number N , all simulations were carried
out with N = (32, 64, 128, 256, 512) × 103. Tables 7.1 and 7.2 summarize the parameters of the
two sets of runs.

The N -body integrations were carried out using φ-GRAPE (see section 3.3.1 for details). The
time-step parameter η was set to 0.01 for all our runs. The choice of parameters was motivated by
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Table 7.1: Parameters of the single-galaxy integrations

Run N M•1 Run N M•1
A1 32k 0.001 B1 32k 0.01
A2 64k 0.001 B2 64k 0.01
A3 128k 0.001 B3 128k 0.01
A4 256k 0.001 B4 256k 0.01
A5 512k 0.001 B5 512k 0.01

Note. Columns from left to right read: the galaxy model; number of particles used in galaxy
model; The mass of the supermassive black hole used in the model; galaxy model; particle

number N ; SMBH mass.

Berczik et al. (2005) who found that integration accuracy is more sensitive to η than to softening
length ε. Those authors adopted η = 0.01 and ε = 1 × 10−4 for their study of SMBH binary
evolution. In order to resolve the orbit of the massive binary in our simulations down to a semi-
major axis a ≈ 10−4 we adopted the smaller softening length ε = 10−5. With these choices of η
and ε, the relative energy error in our simulations was ∼ 10−8. For a more detailed discussion of
these issues we refer the reader to section 2 of Merritt et al. (2007) .

The N -body integrations were carried out on three, special-purpose computer clusters. Titan,
at the Astronomisches Rechen-Institut in Heidelberg, and gravitySimulator, at the Rochester
Institute of Technology are both 32-node clusters employing GRAPE accelerator boards. Some
calculations were also carried out on the GPU-enhanced cluster “Kolob” at the University of
Heidelberg. For the latter runs we used the modified version of the φ-GRAPE code including the
SAPPORO library (Gaburov et al. 2009).

7.2 Isolated Models

Evolution of a binary SMBH in a gas-free galaxy can be divided into three phases (Begelman et al.
1980) and is described in detail in section 2.2. In first phase, the SMBHs are unbound to each
other and move independently in the galaxy potential. The evolution of the individual SMBH
orbits during this phase is governed by dynamical friction against the background stars. The
second phase begins when the two SMBHs are close enough together to form a bound pair. In this
phase, the separation between the SMBHs decreases very rapidly due to the combined effects of
dynamical friction and ejection of stars by the gravitational slingshot. (For a detailed discussion
of this phase, we refer the reader to the careful analysis in Milosavljević & Merritt (2001).) At
the end of the second phase, the two SMBHs form a hard binary, defined as a binary that ejects
passing stars with positive (unbound) energies. Phase three consists of slow evolution of the binary
as depleted orbits are repopulated, via two-body scattering or some other process. In a spherical
galaxy with large N , the timescale for orbital re-population is essentially the two-body relaxation
time which scales as ∼ N/ lnN .

Figure 7.1 plots the separation R between the two SMBH particles versus time in the isolated
galaxies, Models A and B. Here we can see the three phases of binary evolution described above.

(1) In the first phase, the separation between the two SMBHs decreases due to dynamical
friction. This phase ends when R ≈ rh, the gravitational influence radius. rh can be defined as
the radius of a sphere around the binary SMBH that encloses a stellar mass equal to twice the
binary mass. For Models A, M•1 = 0.001 and rh ≈ 0.07. From Figure 7.1, we can see that the
first phase ends indeed when R ≈ 0.07. Here we want to emphasize that this estimate does not
take into account the changes in the galaxy that are induced by the presence of the second SMBH.

For Models B, the radius of influence is ∼ 0.25. From the right panel of Figure 7.1, it is clear
that the first phase ends when R ≈ 0.25. Here the dynamical friction phase is very short-lived
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Figure 7.1: Evolution of the relative separation between the SMBHs, in ten N -body integrations
of isolated spherical galaxies with different particle numbers according to Table 7.1. Models A
(left) have M•1 = M•2 = 0.001 and models B (right) have M•1 = M•2 = 0.01.

because the initial separation of the two SMBHs is only ∼ 2rh.
(2) In the second phase, the separation between the two SMBHs decreases very rapidly. Dy-

namical friction, and the ejection of stars by the gravitational slingshot, act together to efficiently
extract angular momentum from the massive binary. These processes are not well defined in the
regime where the massive binary is neither very hard nor very soft; equations (13) and (14) of
Milosavljević & Merritt (2001) give approximate expressions for the rate at which energy is trans-
ferred to stars by the two mechanisms. For Models A this process continues until t ≈ 40 while for
Models B, this phase ends at t ≈ 20. The motion of two SMBHs in this phase is approximately
Keplerian. We define the semi-major axis a and eccentricity e via the standard relations:

1

a
=

2

R
− v2

µ
, (7.6)

e =

√
1 +

2h2

µ2

[
v2

2
− µ

R

]
. (7.7)

where µ = G(M•1 +M•2), v is the relative speed, and h is the specific angular momentum of the
relative motion.

(3) The rapid phase of binary hardening comes to an end when a ≈ ah, where ah is the
semi-major axis of a “hard binary”:

ah =
q

(1 + q)2
rh
4

(7.8)

(e.g. Merritt et al. 2007). Here q = M•2/M•1) is the mass ratio of two SMBHs; for both Models
A and B, q = 1. For Models A, ah ≈ 0.004 with a−1

h ≈ 250 and for Models B, ah ≈ 0.016 with
a−1
h ≈ 65.
From Figure 7.2, we see that there is no clear dependence of the binary hardening rate on N

until the binary becomes hard, a < ah. For Models A this happens around t = 25 and for Models
B around t = 30. Beyond these times the binary hardening rate exhibits a clear N dependence
in the sense that hardening is slower for larger N . Similar N -dependence has been seen in other
studies of binary evolution in spherical galaxies (e.g. Makino & Funato 2004, Berczik et al. 2005,
Merritt et al. 2007). For real spherical galaxies, with much larger N , the binary would stop
evolving beyond this point. This is the origin of final parsec problem (see section 2.3 for details).

We estimated the hardening rate s in the N -body integrations, where

s ≡ d

dt

(
1

a

)
, (7.9)
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Figure 7.2: Evolution of the inverse semi-major axis of the massive binary in the isolated models
for models A and B.
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Figure 7.3: N -dependence of the binary hardening rate in the isolated galaxy models. Left: Models
A; Right: Models B.

by fitting straight lines to a−1(t) in an interval ∆t = 50 from t = 50 to t = 100. Figure 7.3 shows
the N -dependence of s. We see that for N > 50k, the hardening rate is a decreasing function of
N ; scaling as ∝ N−0.6; this is consistent with the scalings found by other authors in the same N -
range, e.g. Berczik et al. (2005), Merritt et al. (2007). The Figure 7.3 also shows lower hardening
rates for Model B (right panel) when compared with Model A (right panel), by roughly an order
of magnitude. For large N , the two-body relaxation time is long compared with orbital periods
of stars near the massive binary, and the loss cone around the binary is nearly empty. In this
regime, and in the asymptotic (large-N) limit, the rate of binary evolution is predicted to scale as

∼ [(M•1 +M•2)]
−1

(e.g. equation (32) of Merritt et al. (2007)). Given that a is roughly a factor
ten smaller, at a given time, in Models A as compared with Models B, there is an additional delay
in the early phase of the hard binary evolution. However this delay is negligible for the decay time
t0 until which the semimajor axis reaches a0, when energy loss by GWs start to dominate.

7.3 Galaxy Mergers

We studied the evolution of binary SMBHs in merging galaxies by creating two identical galaxy
models, each with a central SMBH, and placing the two galaxies on bound relative orbits. Table
7.2 summarizes the parameters of the galaxy merger models. The initial separation of the two
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Table 7.2: Parameters of the galaxy merger simulations

Run 2 × N M•1
C1 64k 0.001
C2 128k 0.001
C3 256k 0.001
C4 512k 0.001
D1 64k 0.01
D2 128k 0.01
D3 256k 0.01
D4 512k 0.01

Note. Columns from left to right read: the galaxy merger model; Total number of particles used
in galaxy merger; The mass of the supermassive black hole used in each of the merging galaxies.

galaxy centers was 20r0. The initial relative velocity of the two galaxies was chosen such that the
SMBH separation at first peri-center passage was ∼ r0; in other words, the initial orbit of the
binary galaxy was substantially eccentric. This was done in order to reduce the computational
time required to bring the two SMBHs close together; in fact, a galaxy merger from such nearly
“head-on” initial conditions is unlikely.

Figure 7.4 illustrates the merging of two galaxies. The two galaxies merge due to violent
relaxation. In the initial phase (top panels) the two SMBH particles remain strongly associated
with their respective density cusps. As a consequence dynamical friction is much more efficient
in bringing the two black holes together than if they were naked. This is because the effective
mass that goes into the dynamical friction is higher. Dynamical friction cannot be distinguished
from violent relaxation due to the deformation of the galaxies. The two cusps merge and form
a new galactic center. The density profile of the newly formed galaxy as a result of the merger
is identical to those of initial merging systems (both merging galaxies have Hernquist profile).
Homology following a merger of galaxies with SMBHs at their centers was already found by
Milosavljević & Merritt (2001). The homology is short lived and the profile changes drastically
in the sphere of influence of SMBHs after they form the binary. This change is attributed to the
transfer of energy from the SMBH binary to surrounding stars.

Fig. 7.5 shows the density profile for model A5 where core scouring is done by the binary in
individual galaxy and model C4 where we notice same effect for the cusp which is formed by the
galaxy merger. This depleted cusp is already reported by (e.g. Makino & Funato 2004, Merritt
et al. 2007) studying the evolution of binary in a single spherical galaxy model and by Milosavljević
& Merritt (2001) while studying binary SMBH evolution in merger of steep cusps (ρ ∝ r−2). The
central logarithmic slope of the density profile has dropped from −1 to ∼ −0.3 (model C4). This
drop in the central density is caused by the transfer of SMBH binary’s energy to stars that interact
with it, hence providing an explanation of mass deficiency in the centers of giant elliptical galaxies.
In the next Chapter (section 8.3), we present the estimates of the mass ejected from the center of
galaxies by the SMBH binaries using a large set of N -body simulations.

7.4 SMBH Binary Evolution in Galaxy Mergers

Figure 7.6 shows the separation between the two SMBHs in the merger models. The first peri-
center passage occurs around t ≈ 80. As the galaxies merge, the two SMBHs remain centrally
located in their respective density cusps, until coming close enough together that a binary SMBH
forms, at t ≈ 100, or slightly earlier in the case of Model D (phase one). The separation between
the two SMBHs then decreases very rapidly due to the combined effects of dynamical friction and
slingshot ejection of stars (phase two). Once the hard binary is formed, the hardening rate of
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-25 0 25
Figure 7.4: Density contours projected onto the initial orbital plane for Model C3 (M• = 0.01).
First row: t = (0, 70, 90). The two black holes spiral in centered at their respective cusps. Second
row: t = (110, 150, 200). The two cusps undergo violent relaxation and merge into one. The
density of the newly-formed cusp drops rapidly as the stars in the central region gain energy from
SMBH binary.
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Figure 7.5: Left: Spatial density profile for model A5 averaged over five different time steps
(t = 60, 68, 76, 84, 92). The figure also shows the initial density profile (γ = 1) and a fit to the
data using Eq. 7.1 with γ = 0.6 and r0 = 0.8. The central density drops as the binary ejects mass
from the core. Right: Spatial density profile for model C4 averaged over five different time steps
(t = 140, 160, 180, 200, 220). The figure also shows the initial density profile (γ = 1) and a fit to
the data using equation 7.1 with γ = 0.3 and r0 = 0.6.

85



CHAPTER 7. SMBH BINARIES IN EQUAL MASS GALAXY MERGERS

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  50  100  150  200  250

R

time

C1

C2

C3

C4

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  50  100  150  200  250

R

time

D1

D2

D3

D4

Figure 7.6: Evolution of the relative separation between the two SMBHs in the galaxy merger
simulations. For models C the peri-center of the bound SMBH orbit is just above 10−5 which is
the softening used in the code. For models D the peri-center is well above 10−5.
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Figure 7.7: Evolution of the inverse semi-major axis of the binary SMBH during the galaxy merger
simulations. Clearly the binary evolution does not depend on the number of particles used in both
model C and model D.

the binary decreases (phase three). This behavior is qualitatively similar to what was seen in the
isolated galaxy models.

However there is one important difference between the binary evolution in the isolated and
merging galaxies. Figure 7.7 shows the evolution of the inverse binary semi-major axis. One can
notice a striking difference in the long term evolution of SMBH binary evolution in galaxy merger
runs when compared with the evolution in those of single galaxy models, i.e SMBH binary
evolution does not depend on the number of particles N used in galaxy mergers.
All the models C with different particle numbers produce same evolution of the SMBH binary’s
semi-major axis except model C1 which has very small number of particles (N = 64 K). Same is
true for models D.

Figure 7.8 shows the binary hardening rates in the galaxy merger simulations; the latter were
computed in the same way as in the isolated galaxy models, by linear fit of 1/a in the range
150 ≤ t ≤ 200. In the galaxy merger models, there is essentially no dependence of the
binary hardening rate on particle number. Furthermore, in Models C and D, the hardening
rates are much higher – more than five times higher than in the Models A and B, respectively,
when N = 512k. Also the (M•1 + M•2)

−1 dependence of binary hardening rates noticed in the
spherical galaxy models is still present for the galaxy mergers. The N -independent hardening in
galaxy mergers simulations imply that our results can be extrapolated to the much larger N of real
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Figure 7.8: Binary hardening rates in the galaxy merger simulations (left panel: Model C, right
panel: Model D). The binary hardening rates are calculated by fitting straight lines to the inverse
semi-major axis in final phase of the binary evolution. For both models C and D the hardening
rates are N -independent. Also the hardening rates are approximately 10 times smaller for models
D which has 10 times more massive SMBH binary than for models C.

galaxies. The SMBH binary can efficiently harden through stellar dynamical interactions alone in
the centers of merged galaxies, hence providing a plausible solution to the final parsec problem.

A likely explanation for this difference is that the non-spherical shapes of the merger remnants
provide an additional source of torque on the stellar orbits, allowing them to interact with the
central binary on a timescale shorter than the two-body relaxation time. It has been argued
(Merritt & Poon 2004, Berczik et al. 2006) that allocating even a small fraction of the stellar
orbits to a “centrophilic” family could lead to binary hardening rates that are much larger than
those that result from two-body relaxation alone. In galaxies with non spherical shapes the angular
momentum of the stars is not conserved. This produces a whole wealth of stellar orbits including
the orbits that can pass very close to the center.

We evaluated the shapes of the merged galaxies in a number of ways. The central density
contours for Model C3 are shown in Figure 7.9. Departures from axisymmetry are evident. Fig-
ure 7.10 shows the principle axis ratios of the merger remnant in Model C3 as a function of time;
these were defined as the axis ratios of a homogeneous ellipsoid with the same inertia tensor.
The departures from spherical symmetry are modest, but definite, and they appear to be nearly
independent of time toward the end of the simulation. Presumably, the non-spherical shapes of
merger remnants reported in this study result in a large population of stars on centrophilic orbits.
Inside the influence radius of SMBH, the centrophilic orbit family includes saucer or cone orbits
in the axisymmetric potentials (Sridhar & Touma 1999) and pyramids orbits (angular momentum
close to zero) in triaxial potentials (Merritt & Vasiliev 2011). Outside the influence radius, most
of the centrophilic orbits are chaotic in a triaxial potential (Poon & Merritt 2001).

The evolution of binary eccentricity in the merger models is presented in Figure 7.11. We notice
high eccentricities for both models as soon as the SMBHs become bound, approaching unity for
models D. The high eccentricities are due in part to the high eccentricity (e = 0.95) of the galaxies
relative orbit prior to the merger, and, in some runs, to post-merger evolution. The high values
of eccentricity in these models have potential implications for the SMBH binary evolution. The
rate of orbital energy loss due to gravitational wave emission increases very steeply for the value
of eccentricity approaching unity (see equation 7.10). As a consequence the eccentric binary will
coalesce much faster than a circular binary.
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10-1

Figure 7.9: Density contours of the central region for galaxy merger model C3 at t = 150, projected
on xy plane(left), xz plane(center), yz plane(right). Departures from spherical symmetry are
clearly evident.
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Figure 7.10: Ratio of intermediate to major (b/a) and minor to major (c/a) axes for Run C3,
calculated at a distance of 1 (in model units) from the center of mass of the SMBH binary. As the
two individual cusps merge at time around 110 (see figure 7.4), the axes ratio of the newly formed
galactic nuclei remain constant with time.
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Figure 7.11: Evolution of binary eccentricity for models C (left) and models D (right). The SMBH
binary has very eccentric orbit for both models. For models D the value of eccentricity approaches
unity.

7.5 Estimates of Coalescence Time for SMBHs

SMBH binaries are a potentially important source of gravitational wave (GW) emission. Gravi-
tational waves extract energy and angular momentum from the binary, hence changing its orbital
elements. Peters (1964) gives approximate, orbit-averaged expressions for the rates of change of a
binary’s semi-major axis and eccentricity due to GW emission:

(
da

dt

)
GW

= −64

5

G3M•1M•2(M•1 +M•2)

a3c5(1− e2)7/2
×(

1 +
73

24
e2 +

37

96
e4
)
, (7.10)(

de

dt

)
GW

= −304

15
e
G3M•1M•2(M•1 +M•2)

a4c5(1− e2)5/2
×(

1 +
121

304
e2
)
. (7.11)

We define tGW(a0, e0) as the time required, according to the coupled equations (7.10, 7.11), for
the binary semi-major axis to shrink to zero under the influence of GW emission, starting from
the initial values (a0, e0). This time is a strong function of e0 for e0 ≈ 1, as it is in some of our
simulations.

The full time to coalescence, tcoal, includes also the time from the start of the simulation until
the GW regime is entered. We estimated tcoal as follows. In the N -body merger models, the
post-merger hardening rate of the binary, s, is essentially independent of a and N (Figures 7.7,
7.8). The rate of change of the binary semi-major axis in this regime is approximately(

da

dt

)
NB

≈ −sa2, s ≈ const. (7.12)

Given values for Mgal and r0, this dimensionless rate can be converted into physical units. At
some time in the simulation, a will have fallen to such a small value that (da/dt)NB as given by
equation (7.12) will equal (da/dt)GW, where the latter quantity is computed from both a and e. We
define t0 as the time at which these two rates are equal. The full time to coalescence, tcoal, is the
time from the start of the simulation until t0, plus tGW(a0, e0), where a0 ≡ a(t = t0), e0 ≡ e(t = t0).
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Table 7.3: Time to Gravitational Wave Coalescence

Run afinal sfinal e0 a0 (pc) t0 (Gyr) tcoal (Gyr)
C1 1.2× 10−4 120.3 0.51 (2.6× 10−3, 1.2× 10−2) (11.5, 0.54) (15.9, 0.94)
C2 7.2× 10−5 115.2 0.96 (1.2× 10−2, 8.5× 10−2) (2.6, 0.21) (5.1, 0.29)
C3 7.3× 10−5 108.3 0.80 (4.9× 10−3, 3.3× 10−2) (7.5, 0.35) (10.8, 0.41)
C4 6.8× 10−5 118.2 0.95 (1.0× 10−2, 8.3× 10−2) (2.8, 0.22) (5.7, 0.30)
D1 5.2× 10−4 13.0 0.97 (9.0× 10−2, 6.7× 10−1) (2.7, 0.21) (5.5, 0.35)
D2 4.0× 10−4 11.2 0.88 (4.4× 10−2, 3.0× 10−1) (6.7, 0.26) (10.8, 0.47)
D3 5.1× 10−4 10.7 0.95 (7.2× 10−2, 5.4× 10−1) (4.0, 0.22) (7.6, 0.38)
D4 4.7× 10−4 11.0 0.98 (9.0× 10−2, 9.1× 10−1) (2.2, 0.23) (4.7, 0.26)

Note. (col 1) galaxy merger model, (col 2) the value of semi-major axis of massive binary at the
end of the simulation, (col 3) binary hardening rate, (col 4) The value of the eccentricity at the

end of the run, (col 5) the estimated value of semi-major axis at which stellar dynamical
hardening becomes equal to the hardening due to GW emission (given here for two galaxy

models with masses 109M�, 10
11M� respectively), (col 6) time spend by the SMBH binary in

classical hardening regime, (col 7) The total time to coalescence calculated from the time of
formation of SMBH binary till the final merger of the two SMBHs.

Table 7.4: Time to Gravitational Wave Coalescence (Run C3)

e0 a0 (pc) tcoal (Gyr)
0.5 (2.6× 10−3, 1.8× 10−2) (14.96, 0.65)
0.0 (1.9× 10−3, 1.3× 10−2) (20.46, 0.86)

Note. columns from left to right read: col(1) eccentricity e used to calculate GW hardening rates
and estimate coalescence time for the SMBHs, col(2) the estimated value of semi-major axis at
which stellar dynamical hardening becomes equal to the hardening due to GW emission (given
here for two galaxy models with masses 109M�, 10

11M� respectively), col (3) SMBH binary’s
time to coalescence for the two galaxy models with masses 109M�, 10

11M� respectively.

In most cases, t0 exceeded the final time tfinal of the simulation. In these cases, the time ∆t
between tfinal and t0 was assumed to be

∆t = s(tfinal)
−1

(
1

a0
− 1

afinal

)
. (7.13)

In such cases, we also assumed that e(t) was constant, e(t) = e(tfinal), for t > tfinal when computing
tGW.

Computation of the GW evolution rates required adoption of particular values for the physical
units of length and time because speed of light c introduces a physical scale. We fix mass of
the galaxy Mgal and effective radius Reff by using equation 7.5. Table 7.3 gives results for two
different assumed values of the galaxy mass: Mgal = (109, 1011)M�.

For low mass-galaxies (109M�), the total time to merge the SMBHs exceeds ∼ 1Gyr, whereas
for high-mass galaxies (1011M�) the coalescence time is well below 0.5Gyr. For Models D with
higher SMBH masses, the total decay times are comparable to those in Models C, because the
energy loss due to GWs increases with BH mass compensating for the delay due to the reduced

hardening rate s. Both phases t0 and tGW scale with M
1/5
• . Because of the strong dependence of

tGW on eccentricity, Table 7.4 gives aGW and ∆t, for run C3 only, under two different assumptions
about e0: e0 = 0.5 and e0 = 0. The total decay time increases by a factor of 2–3 if the orbit is
assumed circular at the start of the GW phase.
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Key Findings of The Study

• For the evolution of the SMBH binary in isolated spherical galaxy models, we rediscovered
the N -dependence in the hardening rates.

• The N -dependence in SMBH binary hardening rates found in spherical galaxy models,
disappears in galaxy mergers suggesting that stellar dynamics alone can solve final parsec
problem.

• The SMBH binary hardening rates are approximately 5 times higher for galaxy mergers
when compared to those of isolated spherical galaxy models.

• The hardening rates scales as ∼ M−1
• with the mass of the binary if the masses of the

merging galaxies remain fixed.

• The newly formed galaxy as a result of the merger of two galaxies is mildly triaxial and
ensures a constant supply of stars to interact with massive binary on timescales much
shorter than relaxation time.

• The estimated coalescence time for billion solar mass SMBH binaries is less than 1 Gyr
for all our models and for those with mass of a million solar mass it is few Gyr.
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Chapter 8

Unequal Mass Galaxy Mergers
and SMBH Binaries

Contents of this Chapter

1. Direct N -body simulations of galaxy mergers having different mass ratios and density
profiles of the merging galaxies.

2. The dependence of SMBH binary hardening rate on mass ratios of merging galaxies as
well as on the density profiles.

3. Study of the shape of the merger remnant formed as a result of the merger of galaxies with
different mass ratios and density profiles.

4. The density profiles of newly formed galaxies as a result of the merger and estimates of
mass deficits obtained by comparing the cumulative mass profile at various times.

5. Estimate of the SMBH binary coalescence time for different masses of SMBHs and impli-
cations for GW detection by LISA.

6. Post Newtonian simulations to test the accuracy of the estimated coalescence times for
few selected cases.

Note: The contents of this Chapter are based on paper by Khan, F. M., Preto, M., Berczik,
P., Berentzen, I., Just, A., & Spurzem, R. submitted to ApJ

In previous chapter we have shown that galaxies which form via equal mass mergers are mildly
triaxial. We have also shown that hardening rates of SMBH binaries resulting from equal-mass
mergers are substantially higher than those found in spherical nuclei, and are independent of the
total number N of stars, thus allowing us to extrapolate our results to real galaxies. This scenario
also needs to be investigated for unequal mass mergers of galaxies.

The slingshot ejection of stars by the central SMBH binary drives the binary inspiral. As
a result the central density profile of the merger remnant becomes very shallow. On energetic
grounds it can be shown that in order for the binary to reach coalescence, it needs to eject an
amount of stellar mass of order of its own mass, Mej ∼ α × M•, where α = O(1) and M• =
M•1 + M•2 (Merritt & Milosavljević 2005, Perets & Alexander 2008). Merritt (2006b) studied
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the mass deficits created by SMBH inspirals evolving in spherical symmetric nuclei and found an
average α ∼ 0.5. However, unless their mass M• . few× 106M�, the evolution of SMBH binaries
in gas-poor spherical galaxies tends to stall due to depletion, on the (local) dynamical timescale, of
the pool of stars whose orbits intersect the binary (e.g. Milosavljević & Merritt 2003a, Makino &
Funato 2004, Berczik et al. 2005, Khan et al. 2011, Preto et al. 2011); as a consequence, the binaries
studied by Merritt (2006b) did not reach coalescence, and therefore the analysis of mass deficits
in that study was restricted to the early phases of the hard binary inspiral – thus compromising
the interpretation of its final α. Merritt et al. (2007) extended the latter study by following the
inspiral of binaries up to coalescence in the lower mass range using an approximate Fokker-Planck
description for stellar scattering. They find substantially higher mass deficits than before, albeit
restricting their calculations to spherical models and very shallow cusps (with initial γ ∼ 1/2)
in strong contrast with the larger γ typical of compact low-mass nuclei. More precise estimates
of α from more realistic galaxy merger studies are therefore certainly needed; in particular, ones
that do not rely on any of the following approximations: spherical symmetry, low γ, crude model
for inferring the mass ejected from the increase in the binary’s orbital energy, or those generally
inherent to the Fokker-Planck formalism.

In this chapter, we present the results of detailed N -body simulations using a range of more
realistic models of merging galactic nuclei with varying mass ratio q and central logarithmic slopes
γ. We restrict the simulations to q = Mgal,s/Mgal,p = M•2/M•1. We study the shape of the
merger remnant of galaxies having different density profiles and different mass ratios. For each of
our models, the hardening rate of the SMBH binary, the axis ratios of the merger remnant and the
resulting mass deficit are calculated. The coalescence timescales for binary SMBHs from the time
of formation of binary till the full coalescence of SMBHs due to emission of gravitational waves
are also estimated and for few cases confirmed by using simulations which include PN terms up
to 3.5 orders.

8.1 Initial Conditions and Numerical Methods

Our aim is to study the dependence of the hardening rates with the mass ratios and central
concentration of the nucleus – as well as the resulting imprint of the SMBH inspiral on the stellar
distributions of post-coalescence nucleus. Here we describe setup for our galaxy models, numerical
methods and hardware used for dynamical numerical modeling of SMBHs and their host galaxies.

8.1.1 The Host Galaxies and Their SMBHs

Following closely the initial set-up of our previous numerical experiments (see chapter 7), we
represent the individual galaxies or galactic nuclei by spherically symmetric Dehnen (1993 )N -
body models (see equations 7.1 and 7.2) .

In addition, we represent the SMBHs by massive particles with zero velocity placed at the
center of both the primary and the secondary galaxies. The masses of the SMBHs are set to
be 0.5 percent of their host galaxy, a choice made to be consistent with the observed ratio of
SMBH mass to bulge mass (Kormendy & Richstone 1995, Ferrarese & Ford 2005). Thus the two
SMBHs in the simulations have the same mass ratio q as their host galaxies. The Dehnen models
have an isotropic distribution function of velocities (no net rotation), are spherically symmetric
and are initially set-up to be in dynamical equilibrium with a gravitational potential given by
Φ(r) = −GM•/r +Φ∗(r), where Φ∗(r) is the gravitational potential due to the stars alone.

The galaxies size ratio scales with the corresponding mass ratio as R2/R1 ∝
√
M2/M1 . By

choosing four different values of γ = 0.5, 1.0, 1.5, 1.75, the central part of our galaxy models
represent the variety of observed density profiles in both early and late type galaxies.

For Dehnen models the ratio of the effective radius (projected half-mass radius) Reff to the
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Table 8.1: Model parameter and properties of the primary galaxy.

Model N γ r1/2 Reff

A 128k 0.5 3.13 2.35
B 128k 1.0 2.41 1.81
C 128k 1.5 1.69 1.27
D 64k 1.75 1.35 1.01

NOTE — Columns from left to right show the model name, the particle number N , the
half-mass radius r1/2 and the effective radius Reff , respectively, for our primary galaxy models.

half-mass radius r1/2 is given approximately as

Reff

r1/2
≈ 0.75, (8.1)

and shows only a weak dependence on γ (Dehnen 1993). In the following we refer to the more
massive galaxy as the primary galaxy and the lighter one as the secondary. In our model units
we use for our primary galaxy a total mass and scale radius of Mgal,p = r0,p = 1. We also set the
gravitational constant to G = 1.

In the absence of relativistic effects on the binary’s orbit, our models are scale-free and can be
a posteriori scaled to galaxies of different total mass and size. However, the inclusion of radiation
reaction effects on the binary due to GW emission introduces an absolute scale associated to the
universal value of the speed of light. Such scalings are described in detail in section 8.4 when
coalescence times are explicitly computed.

We have performed a series of N -body experiments where we vary the mass ratio of the galaxies
and SMBHs q and the inner density slope γ. In Table 8.1 we summarize the model parameters
and properties for the primary galaxies used in our simulations. The computational wall-clock
time increases with increasing cuspiness (higher γ) of the density profile since particles in the
center need very small numerical time steps in order to resolve accurately the (locally) strongly
varying gradients of the gravitational potential. In order to keep the computational time within
reasonable limits we built our model D (highest γ = 7/4) with only half as many particles as the
other models.

The secondary galaxies used in our merger simulations have the same density profile, i.e., the
same γ, as the primary galaxies, but have different masses Mgal,s and scale radii r0,s. Both primary
and secondary galaxy models have equal number of particles N.

8.1.2 Galaxy Merger Setup

The initial center of mass positions and velocities for the two galaxies are calculated from the
Keplerian orbit of the equivalent two-body problem, with given apo- and peri-centers, ra and rp,
respectively. The two galaxies start at the apo-center of their relative orbit. The initial separation
between the center of mass of the two galaxy is ∆r = 15r0,p; and since the half-mass radius of
each nucleus is R1/2 . 2.5, this choice ensures that the galaxies are initially well separated while,
at the same time, we minimize computing time. The initial relative velocity of the two galaxies
is chosen such that the SMBH separation at first peri-center passage is ∼ 2r0,p; in other words,
the initial orbit of the binary galaxy has eccentricity ∼ 0.75, which corresponds to a circularity
parameter value of ε = L/Lc ∼ 0.66 .
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Table 8.2: Parameters of the galaxy mergers study
Run Ntot γ q r0,s

A1 256k 0.5 0.1 0.316
A2 256k 0.5 0.25 0.5
A3 256k 0.5 0.5 0.707
A4 256k 0.5 1.0 1.0

B1 256k 1.0 0.1 0.316
B2 256k 1.0 0.25 0.5
B3 256k 1.0 0.5 0.707
B4 256k 1.0 1.0 1.0
B5 256k 1.0 0.05 0.22

C1 256k 1.5 0.1 0.316
C2 256k 1.5 0.25 0.5
C3 256k 1.5 0.5 0.707
C4 256k 1.5 1.0 1.0

D1 128k 1.75 0.1 0.316
D2 128k 1.75 0.25 0.5
D3 128k 1.75 0.5 0.707
D4 128k 1.75 1.0 1.0

NOTE. — Col.(1) Galaxy merger model. Col(2) Number of particles. Col(3) Central density
profile index γ. Col(4) Mass ratio of merging galaxies and their black holes. Col(5) Scale radius

of secondary galaxy.

8.1.3 Numerical Methods and Hardware

We used φ-GRAPE (see section 3.3) to carry out N -body integrations. As φ-GRAPE does not
include the regularization (Mikkola & Aarseth 1998) of close encounters or binaries, we have to
use a gravitational (Plummer-)softening for all particles. The softening length is chosen to be
sufficiently small (i.e. 5×10−5 in our model units) to keep the (dense) stellar system as collisional
as possible/necessary. Only in the few runs in which we include the PN terms added to the
equations of motion of the binary, the softening between the SMBH particles is equal to zero.

The N -body integrations were carried out on three computer clusters. “titan”, at the As-
tronomisches Rechen-Institut in Heidelberg, the GPU-enhanced cluster “kolob” at the University
of Heidelberg and “laohu” in Beijing.

8.2 Evolution of SMBH Binaries

Figure 8.1 shows the relative separation R between the two black holes during a galaxy merger.
According to the equivalent two-body trajectory used to set up the initial galaxy orbital parame-
ters, the galaxy centers, and hence the SMBHs, should reach a separation of 2r0,p during the first
peri-center passage. However, as figure 8.1 shows, in case q & 1/2, the SMBH separation shrinks
well below 2r0,p during the galaxy merger phase. As q decreases, and hence the mass of the
secondary galaxy decreases as well, the galaxies reach the first pericenter passage after following
more closely the corresponding two-body orbit. In the same figure the color of the arrows signals
the time T at which the two SMBHs in a particular model form a binary system. As q decreases,
the arrows move from left to right signaling the longer interval of time between the start of merger
and formation of the binary. Neither the time T nor Rperi are as sensitive to γ as they are to q.

When the SMBHs become bound their separation is R ≈ rh. Once a SMBH binary is formed,
dynamical friction and the ejection of stars by the gravitational slingshot, act together to efficiently
extract angular momentum from the massive binary and the binary separation shrinks rapidly.
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Figure 8.1: Evolution of the separation between the SMBHs, in N -body integrations of galaxy
mergers for γ = 0.5 (top left), 1.0 (top right), 1.5 (bottom left) and 1.75 (bottom right) according
to Table 8.2. The arrows represent the time (T = 0) at which the two black holes become
gravitationally bound for each model. Time and R are measured in N -body units.
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Figure 8.2: Evolution of the inverse semi-major axis of SMBH binary, in N -body integrations of
galaxy mergers for γ = 0.5 (top left), 1.0 (top right), 1.5 (bottom left) and 1.75 (bottom right)
according to Table 8.2.

When the semi-major axis a ≈ ah, this initial rapid phase of binary hardening comes to an end
as the pool of stars whose orbits cross the binary orbit gets depleted on the (local) dynamical
timescale.1

The subsequent hardening of the binary occurs only if the loss cone orbits are replenished.2

In a spherical galaxy with no gas, the only dynamical mechanism for replenishing loss cone orbits
is two-body relaxation, with the corresponding timescale for repopulating the loss cone orbits
scaling as ∼ N/ lnN (Binney & Tremaine 2008), and the inspiral rate thus becomes strongly
N -dependent (Makino & Funato 2004, Berczik et al. 2005). In Chapter 7, it was shown that the
hardening phase, in the case of a mildly triaxial remnant nuclei resulting from a galaxy merger,
is essentially N -independent – which allows our results to be scaled to real galaxies whose typical
number of stars, Nstar, is always several orders of magnitude larger than the maximum number
reachable with state-of-the-art direct N -body simulations. Furthermore, it was also shown in
Chapter that the flux of stars into the loss cone in a triaxial remnant is also consistently higher
than in the spherical case, meaning the binary evolution and coalescence can occur much faster
than in spherical models.

Figure 8.2 shows the time evolution of the binary’s inverse semi-major axis 1/a from the time
T when the two black holes become bound. An initial phase with faster binary hardening becomes
more evident for steep inner density profiles (γ = 1.5, 1.75) – presumably corresponding to the
clearing of the original loss cone (Yu 2002). The inverse semi-major axis increases very rapidly

1The semi-major axis a and eccentricity e of the binary are defined here via the standard Keplerian relations,
i.e., neglecting effects of the field stars.

2The loss cone is the region of phase space corresponding, roughly speaking, to orbits that cross the binary, i.e.
with angular momentum J . Jlc =

√
GM•fabin, where f = O(1) (Lightman & Shapiro 1977).
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with increasing γ and seems to be more or less independent of q.

The binary hardening rates s are calculated by fitting straight lines to a−1(t) in the late phase
of binary evolution from T = 60 − 100. The results are shown in Figure 8.3. The hardening
rates depend very weakly on the mass ratio of the binary SMBHs, in contrast with the ∼ M−1

•
dependence found in equal mass merger study (Chapter 7). By changing q from 0.1 - 1, M•
changes by almost a factor of 2, but we do not see a factor of 2 difference in the hardening rates
for fix value of γ. On the other hand, the value of s(t) increases significantly for higher values of
γ. Note that for the single run with the smallest mass ratio in our sample, q = 0.05 and γ = 1,
the hardening rates are significantly weaker than the remaining γ = 1 models.

The SMBH binary hardening rate, which is a measure for the energy loss of the binary, is given
by

s(t) ≡ d

dt

(
1

a

)
≈ 2m∗〈C〉

M•a

∫ +∞

0

dEFlc(E, t), (8.2)

where Flc(E, t) is stellar flux into the loss cone, 〈C〉 = O(1) is a dimensionless quantity obtained
from three-body scattering experiments (Quinlan 1996) and E = GM•/r + Φ∗(r)− 1/2 v2 is the
(specific) energy of each star (E > 0 for bound stars). The behavior of the hardening rates can
thus be qualitatively understood as follows. The flux Flc(E, t), and its time evolution, depends
on the degree of symmetry in the underlying gravitational potential (or, equivalently, the orbit
families supported by it) – including the radial density distribution of stars around the binary.
On the other hand, the flux of stars into the loss cone is expected to peak around rh (Perets &
Alexander 2008). For a given energy E and fixed M•, Flc(E, t) ∝ n(E, t)/τ(E, t) where n(E, t) is
the number of stars of energy E per unit (specific) energy, while τ(E, t) is equal, in the spherical
case, to τrlx ∝ σ3/ρ ∝ rγ−3/2 (Binney & Tremaine 2008) or, in the triaxial case, to the star’s

orbital precession time τprec(E, t) ∝ M
−1/2
∗ (< r) ∝ r(3−γ)/2, for r . few × rh (Yu 2002). Note

that, for typical nucleus parameters, τprec � τrlx. As a result, and since for more concentrated
nuclei (higher γ) n(Eh, t) is higher and τ(E, t) is shorter, so more concentrated nuclei experience
higher Flc and higher s(t).

The triaxiality also plays an important role in determining the hardening rate. This is because
of its role in supporting centrophilic orbits; in fact, at fixed n(E, t) only a fraction of the stars will
be on centrophilic orbits, and this fraction is an increasing function of increasing triaxiality. As q
decreases, the triaxiality of the remnant also decreases as shown in the bottom panel of Figure 8.3.
This results presumably in a weaker hardening rate since the fraction of stars on centrophilic orbits
is smaller. This effect partially explains why the dependence of the hardening rate on M• is much
weaker than expected based on the results obtained in Chapter 7 for equal-mass mergers.

We analyze the shape of the merger remnant by calculating principal axis ratios and density
profiles for galaxy merger models. Figure 8.3 shows the principle axis ratios of the merger remnant;
these were defined as the axis ratios of a homogeneous ellipsoid with the same inertia tensor.
The departures from spherical symmetry become more apparent for mergers with larger q. For
q = 0.05 and 0.1, the merger-induced triaxiality becomes residual and the remnant results only
a slightly flattened system. The dynamical effect of this transition seems to be abrupt, as the
hardening rates shown in top panel of Figure 8.3 are essentially independent of mass ratio down
to q ∼ 0.1. In such minor mergers, the secondary galaxy gets tidally disrupted within a few
peri-center passages, and eventually the naked black hole of satellite spirals in due to dynamical
friction. The evolution of SMBH binary in such a merger results very similar to those of binaries
embedded in spherical galaxy models. Nevertheless in reality situations such as these are not very
likely to happen as both galaxies would surely retain some triaxiality or flattening from a previous
major merger.

The density profiles of the newly formed galaxies as the result of the merger are shown in
figure 8.4. As a result of the galaxy merger and the ejection of stars from the central galaxy region
by the inspiraling black holes, the merger remnant nuclei have significantly shallower inner slopes
than those of its progenitors. The “damage” caused by in-falling black holes increases with their
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Figure 8.3: TOP — Average hardening rates for γ = 0.5, 1.0, 1.5 and 1.75 according to Table 8.2.
The average is measured between T = 60 and T = 100 in N -body units. See text for details.
BOTTOM — Ratio of intermediate to major (b/a, upper series of points) and minor to major
(c/a, lower series of points) axes for γ = 0.5, 1.0, 1.5 and 1.75 according to Table 8.2.
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Figure 8.4: Density profiles of merger remnant for γ = 0.5 (top left), 1.0 (top right), 1.5 (bottom
left) and 1.75 (bottom right) according to Table 8.2.

mass. The values of γf are calculated by fitting Dehnen’s model to merger remnant right after
the time when phase of rapid binary hardening ends. Table 8.3 presents the final inner slopes for
merged galaxies.

8.3 Mass Deficits

Observations of nearby galaxies show that Sérsic functions provide remarkably accurate fits for
the major axis brightness surface profiles over the main bodies of bulges and early-type galaxies.
This has been confirmed with increased accuracy and dynamic range over the last decade or so
(Kormendy et al. 2009). Moreover, detailed state-of-the-art simulations of merging galaxies also
generate profiles which are consistent with Sérsic functions (Hopkins, Lauer, Cox, Hernquist &
Kormendy 2009, Hopkins, Cox, Dutta, Hernquist, Kormendy & Lauer 2009). Even though there
is not a complete theoretical understanding for the remarkable regularity of these profiles, their
apparent generality and robustness led people to identify and interpret departures from Sérsic fits
and use them as a probe of the physics underlying the co-evolution of galaxies and their massive
black holes.

Cores tend to be found in giant ellipticals and are loosely defined as the central region in a
bulge or early-type galaxy where the surface brightness deviates and it is below the values that
would result from the extrapolation of the Sérsic profile from the main body of the object down
to its innermost region. Typically they are associated to shallower cusps with γ . 0.5 − 1. One
possible explanation of a central core in a gas poor galaxy can be attributed to the ejection of
stars by a hard SMBH binary. The destruction caused by the inspiraling massive black hole in
the center of galaxy can be measured in-terms of missing mass called “mass-deficit”. Graham

101



CHAPTER 8. UNEQUAL MASS GALAXY MERGERS AND SMBH BINARIES

(2004) and Ferrarese et al. (2006) measured the mass-deficits from the difference in flux between
the observed galaxies light profiles at the center and the inward extrapolation from their outer
Sérsic profiles. Estimated mass-deficits from these studies yield Mdef ∼ (1− 2)M•, and values as
high as ∼ (4− 5)M• were uncommon. More recent studies obtained larger values with an average
value 〈Mdef/M•〉 ∼ 11 and an error in the mean of about 18% (Kormendy et al. 2009).

Top panel of figure 8.5 shows the cumulative mass profile for model C1 at different time of its
evolution. The merger of a secondary galaxy with the primary causes some changes in the inner
profile of the latter. This can be seen by comparing the profiles at times t = 0 and t = 100, between
which there is a noticeable drop in the stellar density around rh due to the merging of the two
galaxies. Then, as the secondary is being tidally disrupted, after a few peri center passages, the
profile of the resulting merger remnant remains stable. Once, at time t ∼ 202, the two black holes
become bound and form a binary, the stars inside the loss cone start to be cleared by the binary
and a rapid evolution of the mass profile ensues till t ∼ 240. This drop in the central density is due
to the slingshot ejection of stars by the binary. As a result, the the mass inside ∼ few × rh drops
rapidly hence changing the mass-profile there. Once this phase of rapid mass ejection ends, the
density profile – notably inside rh – remains almost constant as the binary continues its inspiral.
This can be understood as follows. Inside rh, the gravitational potential is approximately spherical
and thus the stars residing there can enter the loss cone only by diffusing in energy and angular
momentum space through two-body encounters. The corresponding timescale is the relaxation
time which scales as τrlx,J ∼ σ3/ρ ∼ rγ−3/2 (Spitzer 1987); since γ . 3/2 for all models at almost
all times of interest, this implies that τrlx increases towards the center. The timescale for such stars
to enter the loss cone is thus much longer than the typical precession time needed for centrophilic
orbits of stars, resident at distances & rh, to come sufficiently close to interact with the binary.
As a result, the density profiles well inside rh remain essentially constant during the remainder of
the inspiral so the damage impinged on the cusp by the SMBH inspiral following a merger is less
severe than naive spherical model scenarios might let expect. The conclusion is that it is not very
likely that a hole in the stellar distribution will ever be created by such mergers.

We calculate the mass-deficits for each of our galaxy mergers as the difference between the
stellar mass enclosed at a given radius at the time when the binary first becomes bound and at
the end of the runs. The end of the run is a priori a somewhat arbitrary choice since not all runs
end at exactly the same point in the binary’s inspiral. However, when we compare the four cases
(A2, A4, B3 and B4) for which we followed the binary up to final coalescence, we realize that most
of the change in the density profiles happens at a relatively early stage in the evolution of the
binary, and this is mostly covered in almost all of the runs. The conclusion is that the derived mass
deficit is quite insensitive to the exact final time of the runs, provided this occurs at a time when
the binary’s semi-major axis already reached a separation which is orders of magnitude shorter
than the influence radius rh. It is also worth pointing out that the final density profile shown the
top panel of Figure 8.5 has a central density slope γ ∼ 1. This means that a single inspiral is not
enough to turn a steep cusp (γ & 1.5) into a core (γ . 0.5).

Ours and the (several) observational definitions of mass deficit are obviously not equivalent,
but they are surely somehow related provided the assumption that the mass is ejected by the
binary holds true. We will not attempt to dwell into the intricacies of a detailed comparison, but
will instead use the mass deficits obtained from our simulations as qualitative indicators regarding
the evolution of the galactic nuclei as they undergo minor/major dry mergers.

The bottom panel of the Figure 8.5 shows the resulting mass-deficits measured out to various
radii for model C1. Mass-deficits have a maximum value at around 2−3rh for each model. We are
showing the value of mass-deficit at different radii in table 8.3 for all the runs. First, we can see
that the mass-deficits are clearly larger for more concentrated (higher γ) models. They are also
increasing with the mass ratio q. Note that what we are directly measuring from the runs is the
effect of the inspiraling binary on the stellar distribution, not the total amount of mass ejected by
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Table 8.3: Mass Deficit Analysis

Run rh γf afinal Tfinal Mdef,1 Mdef,1.5 Mdef,2 Mdef,2.5 Mdef,3

A1 0.19 0.34 6.4× 10−4 180 0.51 0.76 0.84 0.93 0.72
A2 0.19 0.26 5.5× 10−4 180 0.50 0.94 1.20 1.20 1.05

A2(PN ) 0.19 0.23 merged 160 0.48 0.91 1.11 1.14 1.01
A3 0.19 0.22 5.9× 10−4 210 0.68 1.21 1.49 1.40 1.34
A4 0.22 0.18 9.7× 10−4 220 0.58 0.76 1.05 1.50 1.86

A4(PN ) 0.22 0.15 merged 204 0.59 0.74 1.06 1.47 1.81
B1 0.155 0.61 2.9× 10−4 140 0.50 1.18 1.31 1.38 1.64
B2 0.14 0.57 3.0× 10−4 110 0.83 1.19 1.35 1.12 1.35
B3 0.115 0.51 4.0× 10−4 115 1.33 1.73 2.0 2.13 1.87

B3(PN ) 0.115 0.45 merged 168 1.69 1.75 2.10 2.30 1.91
B4 0.13 0.48 3.9× 10−4 230 0.80 2.0 2.9 3.50 3.26

B4(PN ) 0.13 0.43 merged 189 1.05 2.05 2.80 3.34 3.21
C1 0.066 0.86 1.25× 10−4 090 0.71 1.18 1.42 1.51 1.29
C2 0.066 0.80 1.2× 10−4 090 0.96 2.50 2.88 2.60 2.40
C3 0.067 0.77 1.4× 10−4 080 1.03 1.52 2.26 2.40 2.26
C4 0.069 0.70 1.02× 10−4 140 1.10 2.3 3.9 4.80 5.30
D1 0.045 1.15 8.3× 10−5 080 0.91 1.27 1.82 2.01 1.89
D2 0.046 1.06 7.1× 10−5 100 1.15 1.85 2.56 3.04 3.28
D3 0.046 1.04 7.0× 10−5 112 1.39 2.36 3.14 3.81 3.97
D4 0.047 1.01 7.9× 10−5 130 1.50 2.84 3.88 4.96 5.62

NOTE. — In this table the columns from left to right represent: (1) Galaxy merger model, (2)
the influence radius, (3)The inner density slope γf for merger remnant, (4) semi-major axis of

SMBH binary at the end of the run, (5) time at the end of the run in N -body units, (6–10) mass
deficits Mdef,n in units of the mass of the binary M• measured within n× rh ; rh is calculated at

the time of the formation of the SMBH binary.
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the binary. The latter value should, by simple energetic arguments and given a fixed total binary
mass, be on average the same regardless of the detailed properties of the surrounding nucleus.
The damage incurred by the stellar cusps in more concentrated nuclei, however, is expected to be
greater as stars on loss cone orbits at small radii will represent a larger fraction of the (local) total
stellar mass than those more outside. Major mergers (q & 0.25) of galaxies with shallow cusps
(γ = 0.5, 1) lead to mass deficits of order Mdef/M• ∼ 1−3. Taking our results at face value would
imply that at least a few major mergers are required to create the average value 〈Mdef/M•〉 ∼ 11
found in Kormendy et al. (2009)’s sample.

8.4 Coalescence Times for SMBH Binaries

In this section we want to derive an estimate for the coalescence times of the SMBH binaries in
our simulations, similar to what has been done in previous chapter. Here we equate the stellar
dynamical and GW hardening rates to find the value of a0 because we measure s directly from
our simulations. To test the accuracy of our estimates made here, we repeat four of our N -body
simulations of merging galaxies – this time including the post-Newtonian equations of motion for
the SMBHs up to order 3.5PN (see Sec. 8.4.1).

In Fig. 8.2 one can see the rate of change of the binary’s inverse semi-major axis during the
hard binary phase is approximately independent of time, so we can write

sNB = − 1

a2

(
da

dt

)
NB

≈ const., (8.3)

a value which we can measure directly from each run.
The corresponding hardening rate due to GW emission alone is given as:

sGW =
64

5

G3M•1M•2M•

a5c5(1− e2)7/2
×(

1 +
73

24
e2 +

37

96
e4
)
, (8.4)

To calculate the coalescence time in our simulations we divide the evolution into two distinct
regimes: (1) the classical regime, in which the hardening is driven by stellar-dynamical effects and
(2) the relativistic regime in which the GW emission is dominant. We define this latter regime,
starting from a time t0 when

sNB = sGW . (8.5)

The semi-major axis a0 at time t0 can be calculated from Eq. 8.5 by assuming that both sNB

and eccentricity e(t) remain roughly constant3 during the stellar dynamical hardening phase, as
supported by our simulations.

We find that a0 is typically smaller than afinal, the semi-major axis at the time tfinal at which
our simulations end. Therefore, t0 usually exceeds tfinal and the time interval ∆t between tfinal
and t0 can be derived as

∆t = s−1
NB

(
1

a0
− 1

afinal

)
. (8.6)

With this, the full time to coalescence, tcoal, in our (Newtonian) simulations takes into account
(1) the time from when the two SMBHs become gravitationally bound (T ) until they enter the
GW regime t0 and (2) the binary‘s lifetime tGW until the final coalescence. The lifetime tGW of an

3Note that if e(t) (slightly) increases as suggested by scattering experiment by Quinlan (1996) then the full time
to coalescence shall be smaller than our estimatedtcoal. Therefore, our results here should be interpreted as upper
bounds to the true coalescence times.
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Table 8.4: Physical Scaling of our Models

Model Galaxy M•(M�) rh(pc) T (Myr) L(kpc) M(M�) speed of light(c)
A M87 3.6× 109 460 1.9 2.3 7.2× 1011 257
B N4486A 1.3× 107 31 1.4 0.3 2.6× 109 1550
D M32 3.1× 106 3 0.75 0.12 6.2× 108 2011

NOTE. — Columns from left to right; (1) Primary galaxy model, (2) Observed galaxy used to
scale our model, (3) Observed mass of SMBH in the galaxy in column 2, (4) observed influence

radius, (5)time unit, (6) length unit, (7) mass unit and (8) speed of light in model unit.

isolated relativistic binary can be calculated from Equations 7.10 and 7.11 for a given semi-major
axis a0 and corresponding eccentricity e0, respectively (see Eq. 5.14 in Peters 1964).

In order to compute the GW evolution rates one requires to adopt some physical units, e.g., of
length and mass. In Chapter 7, we equated the effective radii of our models to the effective radii of
observed galaxies to fix the mass (Mgal) and the length (r0) units. Here to compute the coalescence
times, we select three different elliptical galaxies (M32, M87, NGC4486A) to scale our models to
physical units (Table 8.4). We use the observed mass of the SMBH and its influence radius and
compare it to the mass and influence radius of the primary galaxy in our models to fix Mgal,p and
r0,p. Model A’s which have a very shallow slope are scaled with M87, model B’s with NGC4486A
and model D’s are scaled with M32. The choice of galaxies for our models scaling is consistent
with the fact that bright ellipticals have very shallow inner slopes and faint ellipticals have steep
cusps. The estimated coalescence times for SMBH binaries in our simulations obtained through
the procedure described above are presented in Table 8.5. We find that the time interval spend
in the Newtonian and in the relativistic regime, respectively, are always comparable in almost all
our simulations (see column 7 in Tab. 8.5). This can be understood as follows: binaries with high
eccentricities reach the relativistic regimes earlier than with low eccentricity and thus shortening
the stellar dynamical phase. Also the higher eccentricities mean that the GW emission becomes
more efficient which then shortens the relativistic inspiral phase. The black hole of M32 with a
mass ∼ 3×106M� corresponds to possible sources detectable by LISA. The coalescence timescales
for low mass black hole binaries are less than a Gyr (see table 8.5) which suggests that prompt
coalescence of binary SMBH detectable by LISA should be very common at high redshifts. Even
at the high mass end our models suggest the coalescence timescales ∼ Gyr or even less depending
on the eccentricity of the binary. These timescales are short enough that SMBH binaries in these
galaxies should achieve full coalescence before a subsequent galaxy merger occurs. The coalescence
times for SMBHs at low mass end are significantly (∼ 10×) shorter than the ones presented in
Chapter 7. The reason for this discrepancy is the weak dependence of effective radii with galaxy
luminosity relation adopted there, which was optimized for nuclei with & 108M� black holes, but
would lead to overestimate the influence radius of the Galactic center (or similarly compact nuclei)
by an order of magnitude. Naturally, the coalescence times at high mass end of binary SMBHs
are in nice agreement for both studies.

8.4.1 Post-Newtonian Simulations

In order to verify the accuracy of our estimate for the coalescence times given in Table 8.5, we
select the two cases A2 and A4 from Table 8.5 (plus two other cases, B3 and B4, not shown) and
re-started these runs with exactly same initial conditions. The choice of these runs is motivated
by their relative short coalescence times compared to other runs.

We have implemented the relativistic effects to the MBH binary only by using the PN equations
of motion written in the inertial frame of binary center of mass including all the terms up to 3.5PN
order
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Table 8.5: Time to Gravitational Wave Coalescence
Run afinal sfinal e0 a0 (pc) t0 (Gyr) t0/tGW tcoal (Gyr)
A1 6.4× 10−4 9.10 0.50 3.5× 10−1 1.30 2.1 1.89
A2 5.5× 10−4 10.8 0.98 3.9× 100 0.12 1.1 0.23
A3 5.9× 10−4 10.3 0.70 6.9× 10−1 0.63 1.2 1.15
A4 9.7× 10−4 9.60 0.88 1.6× 100 0.30 1.1 0.57
B1 2.9× 10−4 23.3 0.62 7.4× 10−3 2.10 1.3 3.70
B2 3.0× 10−4 21.9 0.98 7.1× 10−2 0.24 0.5 0.77
B3 4.0× 10−4 20.4 0.95 4.5× 10−2 0.39 1.4 0.66
B4 3.9× 10−4 22.2 0.96 6.3× 10−2 0.27 0.7 0.64
D1 9.2× 10−5 75.7 0.69 2.1× 10−3 0.48 1.0 0.98
D2 7.1× 10−5 69.8 0.66 2.4× 10−3 0.43 1.0 0.82
D3 7.6× 10−5 69.5 0.61 2.6× 10−3 0.41 1.4 0.70
D4 7.5× 10−5 59.9 0.60 3.3× 10−3 0.38 1.3 0.67

NOTE. — Columns from left to right; (1) Galaxy mergers model, (2) semi-major-axis (in model
units) at the end of simulation tfinal, (3) hardening rate (model units), (4) eccentricity at tfinal,
(5) semi-major axis of the binary at which the stellar dynamical hardening becomes equal to the
hardening due to GWs, (6) Life time of binary in classical stellar dynamical hardening phase, (7)
ratio between the time spend in classical regime and the time spend in GW regime and (8) Full

time to coalescence of SMBHs.

dv

dt
= −GM•

r2
[(1 +A)n12 + Bv12] +O(1/c8), (8.7)

where n = r/r, the coefficients A and B are complicated expressions of the binary’s relative
separation and velocity (Blanchet 2006). The Post-Newtonian approximation is a power series
expansion in 1/c: the 0th order term corresponds to the dominant Newtonian acceleration. The
1PN , 2PN and 3PN order terms are conservative and proportional to c−2, c−4 and c−6. The
dissipative 2.5PN and 3.5PN terms, which are proportional to c−5 and c−7, cause the loss of
orbital energy and of angular momentum due to the gravitational wave radiation reaction. We
treat the SMBHs as point particles (no spin) and thus we neglect any spin-orbit or spin-spin
coupling which in general is taken into account in the 1.5PN (spin-orbit), 2PN (spin-spin) and
2.5PN (spin-orbit) terms in our common PN implementation.

Figure 8.6 shows the evolution of the inverse semi-major axis 1/a and eccentricity e of the
SMBH binary for run A2 with and without PN corrections. Hardening of the binary due to GWs
emission starts to dominate at 1/a ∼ 1000 which is slightly larger than the estimated 1/a0 (all in
model units). This is due to the slightly higher value of eccentricity reached during the run without
PN which is then used to estimate a0. For the correct value of eccentricity obtained from run with
PN , the estimated 1/a0 matches accurately with the value where hardening due to GWs starts
to dominate. The full coalescence time for the binary in our PN simulations is 0.25 Gyr which is
very close to estimated tcoal ∼ 0.23 Gyr. The inverse semi-major axis and eccentricity evolution
for model A4 are shown in figure 8.7. If we look at the evolution of the inverse semi-major axis
for this run then we see that hardening due to GW becomes important at estimated 1/a0, as the
average eccentricity evolution matches almost perfectly between the PN and non-PN runs.

We find very good agreement between our estimated coalescence times and those found using
full PN terms in our merger runs. We can see both from Figure 8.1 and Table 8.5 that the binary
eccentricities tend to be lower (e ∼ 0.6−0.65) for γ = 7/4, and indeed in equal mass merger study
of Chapter 7, the binaries reached very often values e & 0.9 (in accordance to values obtained
in this Chapter for γ = 1). The dependence on eccentricity of the coalescence time under GW
emission is Tcoal,GW ∼ (1− e2)7/2 could easily account for a decrease of an order of magnitude or
so when the binaries are very eccentric.
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Key Results of The Study

• The merger induced triaxiality fades away as the ratio of merging galaxies q become smaller
and for q = 0.05, we have a spherical merger remnant.

• For galaxies having same γ, the hardening rates are independent of the mass ratios of
SMBHs in binary.

• The hardening rates increase significantly with the steepness of the density profiles of the
merging progenitors.

• The merger of galaxies always leads to shallower density profiles at the center and the
merger of steep density profile galaxies still preserve a profile which is close to Hernquist
profile.

• The eccentricity of SMBH binary in the merger of shallow density profile galaxies is always
very high (e ∼ 0.8 − 0.99) and approaches almost unity in some cases where as for the
SMBH binaries evolving in the steep density profile galaxy mergers it is mild (e ∼ 0.5−0.7).

• The estimated mass deficit increases both with the mass of the coalescing binaries and for
the galaxies with steeper density profiles.

• The estimated coalescence time is less than 1 Gyr for all range of SMBHs masses (M• =
106M� − 109M�) suggesting that prompt coalescence of SMBH binaries in galaxy merger
may be very common.

• The estimated coalescence times match very nicely with the coalescence times obtained
from full PN simulations for all 4 of our selected cases.
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Chapter 9

SMBH Binary Evolution in a Late
Type Galaxy Merger

Contents of this Chapter

1. Selection of initial conditions from the merger study of (Callegari et al. 2011) for direct
N -body simulations of SMBH binary evolution in the merger remnant of a late type galaxy
merger.

2. Numerical methods and choice of softening for different components (dark matter, stars,
SMBHs).

3. Evolution of SMBH binary (semi-major axis and eccentricity), estimated hardening rate
and shape of the merger remnant.

4. Estimate of the coalescence time for the SMBHs.

9.1 Initial Conditions

We study the evolution of binary Supermassive Black Holes using the final phase of galaxy mergers
simulations of Callegari et al. (2011) as initial conditions. The reference galaxy model was a Milky
Way type disk galaxy consisting of three components: i) a spherical and isotropic NFW profile
dark matter halo, ii) an exponential disk of stars and gas and iii) a spherical Hernqusit bulge.
Callegari et al. (2011) studied the pairing of binary SMBHs in a 1 : 10 merger of two Milky
Way type disk galaxies using smooth particle hydrodynamics (SPH) simulations. They adopted a
gravitational softening of 45 pc for both dark matter and baryonic particles in the larger galaxy
and 20 pc in the smaller galaxy. The SMBH were represented by a point mass particle at the
center of each galaxy. The adopted masses for the SMBHs were 6×105M� and 6×104M� for the
larger and smaller galaxy respectively, consistent with M•-Mbulge relation (Häring & Rix 2004).
The simulations also include the effects of both star formation and gas accretion by the SMBHs,
as well as feedback from both processes. The final separation of the two SMBHs at the end of the
simulations was ∼ 30 pc, comparable to the softening used in the simulations. For more details of
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construction of galaxy models and the set up for initial orbit of galaxy merger we refer reader to
Callegari et al. (2011).

In this study we evolved the system from an earlier time, when the separation between the
two black holes is 700 pc and the black holes are still embedded in separate cusps. We selected
∼ 3 millions particles in the central 5 kpc region of the merger remnant. Our sample also includes
all particles that have peri-center passage smaller than 3 kpc (Fig. 9.1). Most of the gas in
the central region is already converted into the stars. The gas particles which have a order of
magnitude less presence (Fig. 9.2) in mass in the central region are also treated as stars in our
simulations .

Because of the fact that state of the art simulations can only use ∼million particles to represent
the galaxy, a number that is several orders of the magnitude smaller than number of stars in real
galaxies, each particle in these simulations is much more massive than a real star. Because of the
small number of particles the masses of individual dark matter particles in the primary galaxy
were comparable to the mass of SMBH in less massive galaxy. This leads to unrealistic mass
segregation of the dark matter and to unphysical scattering for the SMBH binary. To avoid such
high mass particle encounters with the SMBH binary (when it forms in the final phase), we split
each dark matter particle in the major galaxy into ten particles. The split particles have mass
1/10 of the parent particle. The split particles are distributed over a 10 pc (εd) sphere having
same velocities as their parent particles. Numerical tests show that split particles do not form
bound systems.

9.2 Numerical Methods

We use Φ-GPU to carry out the direct N -body simulations. The code itself is described in section
3.3. In order to achieve full coalescence of the SMBH binary it is important to have zero softening
for SMBHs. But the use of zero softening for the stars and dark matter leads to the formation
of binaries in the system which though is more realistic but causes the enormous slow down of
simulations because of small time steps needed to resolve the orbits of these binaries. Φ-GPU
supports the use of different softening lengths for different components. We use three different
softenings (ε): εbh = 0 when calculating the pairwise forces between the two SMBHs, εs = 0.01
pc for star star interactions and εdm = 10 pc for dark matter - dark matter interactions. For the
interactions between two different components, we adopt the following criteria:

• To calculate the forces between dark matter particles and stars, the softening εds =
√
(ε2d + ε2s)/2

is used.

• To calculate the forces between dark matter particles and the SMBHs, the softening εdb =√
(ε2d + ε2b)/2 is used.

• To calculate the forces between the SMBHs and star particles, the softening εbs = 0.1 ·√
(ε2b + ε2s)/2 is used.

A softening of 0.001 pc is necessary to bring the SMBH binary separation to milli parsec
regime where GW emission become efficient. The time step criteria for for individual particles is
optimized for the case in which the total mass of the system is ∼ unity. So we change the units
of system from physical unit to model units. In our model units, the total mass of the galaxy
(3.3× 1010M�) Mgal = 1, the length unit is 1 kpc, resulting in a time unit = 2.6 Myr and speed
of light = 795.0 in model units.

9.3 SMBH Binary Evolution

We started our high resolution run at a time (T = 0), when the two SMBHs are still embedded
in their respective cusps. Figure 9.1 shows the particle positions (top panel) and projected stellar
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9.3. SMBH BINARY EVOLUTION

Figure 9.1: Particles positions (inner 5 kpc) projected on initial orbital plane (top) and projected
stellar densities (bottom). The two high density regions are clearly visible around the two SMBHs
(green points) in the center.
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Figure 9.2: Comparison of mass in different components enclosed inside the inner 1 kpc at the
start of our run.

densities (bottom panel) on initial orbital plane. The phases of evolution for the SMBH binary in
our study are explained below:

• In the first phase, the two black holes centered in their respective galaxy’s cusps are not
bound to each other and move independently in the potential of galaxy. Dynamical friction
against background dark matter and stars is very effective in bringing the two SMBHs closer.
At about T = 40 Myr the individual cusps have merged and the two SMBHs are located
in a single cusp (Fig. 9.3). Earlier studies show that the SMBHs form a binary when their
relative separation, ∆RBH , is ∼ rh , where rh is the gravitational influence radius defined
to be the radius of sphere around the two black holes enclosing a stellar mass equal to twice
the SMBHs masses. Figure 9.4 shows the evolution of binary separation. At time about T
= 40 the separation of the two SMBHs is roughly about rh and a SMBH binary system is
formed (Fig. 9.5 top).

The SMBH binary separation shrinks very rapidly due to the combined effect of dynamical
friction and the gravitational slingshot effect, which efficiently draws energy and angular
momentum away from the SMBH binary. Judging from figure 9.4, this phase of rapid
binary evolution ends somewhere around T = 110− 120 Myr. The contribution from these
two mechanisms (i.e. dynamical friction and gravitational slingshot effects) in this phase is
difficult to disentangle however equations (13) and (14) of Milosavljević & Merritt (2001) give
approximate estimates of energy transfer from the binary to the stars by these mechanisms.
The motion of SMBH binary in this phase is approximately Keplarian.1

• Once the binary semi-major axis reaches a ≈ ah, where ah is semi-major axis of a hard
binary, the phase of rapid evolution of the SMBH binary comes to an end.

In this case rh is 15 pc, ah ≈ 0.3 pc and a−1
h ≈ 3.5 pc−1. From figure 9.5, we see that indeed,

the rapid hardening comes to an end when inverse semi-major axis of the massive binary is
approximately 4 pc−1.

1The semi-major axis a and eccentricity e of the binary are defined again via the standard Keplerian relations,
i.e., neglecting effects of the field stars.
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Figure 9.3: Projected density (inner 5kpc) on initial orbital plane at T = 40 Myr. Both SMBHs
clearly are surrounded by single cusp around them.
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Figure 9.4: Relative separation between the two SMBHs as a function of time. The red arrow
shows the estimated value of influence radius rh.

The subsequent evolution of the massive binary is governed by encounters of individual stars
(three body encounters) with the binary. For spherical galaxy models this phase of binary
hardening is reported to depend on particle number and for realistic particle numbers, the
binary should stall at a separation where its semi-major axis a ∼ ah. However it has been
shown in previous two Chapters that for galaxy merger simulations this N -dependence disap-
pears, which suggests that results obtained in galaxy merger simulations can be extrapolated
to real galaxies. At T = 200 we reduce the particle number from ∼ 3 million to ∼ 1.15 mil-
lion by selecting the particles that have their peri-centers in the inner 1 kpc to increase the
computational speed (Zurich-2). In order to determine whether our selection has introduced
some changes in the mass distribution, we plot the cumulative mass distribution at various
time steps after the new selection of particles sample (figure 9.6). The cumulative mass pro-
file looks very stable in the inner parts. Only in the outer parts are there small deviations.
Also we start the new run (zurich-2) 20 Myr earlier to see if we reproduce the evolution of
the binary found in the earlier run (zurich-1). Figure 9.5 shows that both inverse semi-major
axis and eccentricity evolution are well reproduced for the period where the two runs overlap.

The binary’s inverse semi-major axis evolves at a constant rate, which is consistent with
our earlier studies where we follow the evolution of SMBH binary by merging two spherical
galaxies. We fit a straight line to calculate the binary’s hardening rate s = d

dt (1/a) in the
late phase. The value of the hardening rate is 84.3 in model units and 32.42 kpc−1 Myr−1

in physical units.

This value of hardening rate when compared to the value for similar mass of SMBHs in
spherical galaxy model having mass Mgal of unity is approximately 8 times higher. We
attribute the higher hardening rate to the non spherical shape of the merger remnant. The
departure from spherical symmetry (as discussed in previous Chapters) supports a large
fraction of stars on centrophilic orbits. For this merger of two late type galaxies, we again
analyzed the shape of merger remnant by calculating axes ratios defined for a homogeneous
ellipsoid with the same inertia tensor. Figure 9.7 shows the intermediate to major (b/a) and
minor to major (c/a) axes ratio at various distances from the center (top panel) and also at
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Figure 9.6: Stability of the mass profile after the selection of new particle sample at T = 182 Myr.
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different times (bottom panel). The merger remnant is considerably flattened compared to
the remnants that result from the merger of the two spherical galaxy progenitors of Chapters
7 and 8. Hence we expect that the SMBH binary should evolve at a constant rate, driven by
the centrophilic stellar orbits family rather than the relaxation effects alone. This means that
it is safe to extrapolate our results for the merger of late type galaxies with realistic number
of stars and hence can predict the coalescence time for the SMBHs using the estimated
hardening rates in both the stellar dynamical phase and in GW regime.

• At small enough separation, the exact value of which depends on the mass of the SMBH
binary and eccentricity of the binary, gravitational waves extract energy and angular momen-
tum efficiently from the binary, and make its coalescence inevitable. It is worth mentioning
that LISA will be most sensitive for SMBHs with masses comparable to those that are ad-
dressed in this Chapter. The SMBH with such masses (105 − 106M�) are found in centers
of late type galaxies. Therefore in this study we follow the evolution of massive binary in an
interesting mass regime starting from a consistent initial set up of merging galaxies.

9.4 Time for the Coalescence of SMBH Binary

To calculate the time to coalescence in our simulations we use a similar approach to that used in
section 8.4. First we calculate a0 - the value of the semi-major axis at which the stellar dynamical
hardening of the SMBH binary becomes equal to the hardening caused by gravitational wave
emission (see equation 8.5). Again in order to compute a0, we assume that eccentricity and
hardening rate remain almost constant during the phase of stellar dynamical hardening. In this
case the eccentricity of the SMBH binary at the end of our simulation is efinal = 0.97 and the
hardening rate is 32.42 kpc−1 Myr−1. The time at the end of simulation is tfinal = 710 Myr. In our
case, the predicted value of the semi-major axis where the stellar dynamical and GW hardening
rates are equal, is a0 = 1.73 × 10−5 kpc. This value is smaller than the semi-major axis of the
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SMBH binary at the end of our simulation afinal = 3.57 × 10−5 kpc. The time t0 to reach the
semi-major axis value a0 is the sum of the time tfinal at the end of our simulation and the time
∆t required by the binary to reach a0. The time interval ∆t can be calculated by using equation
7.13 and in this case is 860 Myr. This leads to a total time spent by the SMBH binary in the
classical regime of 1.57 Gyr. The lifetime, tGW, of an isolated relativistic binary can be calculated
from Equations (7.10) and (7.11) for a given a0 and corresponding eccentricity, e0 (see Eq. 5.14
in Peters 1964). In our case the life time of SMBH binary in GW regime is tGW = 1.31 Gyr and
leads to the full coalescence time for the massive binary of Tcoal = 2.88 Gyr.

9.5 Discussion

Starting from the results of Callegari et al. (2011), we studied the merger of two gas rich disk
galaxies (gas fraction in disk 30 percent) on coplanar orbit having SMBHs at their centers from
an initial separation of 60 kpc to a final separation of 0.01 pc. Initially the mass ratio between
the galaxies and SMBHs is 0.1. During the merger the two SMBHs accrete gas and increase their
masses in the process. The mass of the SMBH in the satellite galaxy increases almost 8 fold as the
gas in the secondary galaxy is funneled towards the center due to the tidal force of the primary
galaxy at each peri-center passage. The perturbations produced by the passages of secondary
galaxy are not significant for the primary galaxy so the SMBH in the primary galaxy accretes gas
steadily and the mass of SMBH here grows by a factor of 2. At the end of SPH simulations, the
mass ratio between the two SMBHs is approximately 0.3 (see figure 1 of Callegari et al. (2011)).

At the start of our directN -body simulations the separation between the two SMBHs is roughly
700 pc and a binary is not formed at this time. We use particle splitting to reduce the mass of
dark matter particle to avoid both mass segregation and unphysical encounters of high mass dark
matter particles with SMBHs. Dynamical friction is very efficient in bringing the two SMBHs to
separation where they form a binary. The subsequent hardening at a constant rate is governed by
individual stars interacting with the massive binary. We artificially suppress the contribution of
dark matter to the hardening of the SMBH binary by introducing a large softening (εd = 10 pc).
Although we split the dark matter particles, the mass of a dark matter particle is only a factor
10 smaller than the mass of the SMBH in secondary galaxy. Thus the large softening is used to
obtain a smooth evolution of the binary. The analysis of shape of merger product shows a flattened
system at the center. The SMBH binary hardening rates are comparable to those obtained for
our galaxy merger studies in Chapters 7 and 8 for similar density profiles. This suggests that the
stalling of the SMBH binary should not be an issue for this more realistic scenario of the galaxy
mergers. The eccentricity is very high as was observed for the shallow density profile (γ ≤ 1.0)
galaxy merger simulations performed in Chapters 7 and 8. The reason for this high eccentricity
is not clear and needs further investigations.

The coalescence time of 2.88 Gyr, although longer when compared to the times obtained for
similar mass binaries in previous Chapter, is still short enough to have a few 1:10 mergers of
SMBHs in late type galaxy mergers in the range at which LISA is most sensitive. From previous
Chapter we know that binary hardening rates depend strongly on the adopted density profile. For
steep density cusps having an inner power law density index γ = 1.75, the study shows a factor of
4-5 higher value of s when compared to γ = 1.0. In the current study the adopted density profile
at the start of the merger simulation was a Hernquist profile, which has γ = 1.0. This slope is
observed in bright elliptical galaxies which host SMBHs having masses ∼ 108−109 M�. The faint
bulges/ellipticals which host smaller SMBHs with masses ∼ 106 − 107 M� typically have steep
cusps (γ ∼ 1.5− 1.75). So for an appropriate density profile, we can expect the coalescence times
to be much shorter, comparable to the ones that were obtained in the last Chapter for the merger
of steep power law density profile galaxies.

Currently the simulation is still running and we plan to obtain a full coalescence of SMBHs
including PN terms to the force calculations of SMBHs. This will be the first study where the
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coalescence of SMBHs starting at separation of 60 kpc is followed in a realistic galaxy merger
scenario.

Key Findings of the Study

• The idea of splitting the study of SMBH binary evolution into two parts (study of galaxy
merger using SPH code followed by a study of the SMBH binary using direct N -body
code), motivated by the fact that state of art simulations cannot cover the whole range of
physical scales of interest, seems to work successfully.

• The splitting of dark matter particles and proper selection of a sub-sample of particles in
the central region of merger remnant does not change the mass profile in the center.

• The hardening rates obtained for the SMBH binary are 8 times higher than found in a
similar study of binary evolution in spherical galaxy model.

• The flattening found in the central region of merged galaxy system is significant and is
perhaps responsible for high hardening rates.

• The estimated coalescence time is less than 3 Gyr and can be of the order of 1 Gyr if a
proper density profile were to be adopted for progenitor galaxy bulges at the start of the
simulation.
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Chapter 10

Conclusion

This study uses N -body simulations to investigate different aspects of the dynamical evolution
of supermassive black holes in galaxy mergers. This Chapter summarizes the study, discusses the
astrophysical implications of our investigations and considers the outlook for future investigations.

Summary
In this study we quantitatively tested the effect of using the self-consistent velocity distribution

function in χ and a general analytic formula for lnΛ derived by Just & Peñarrubia (2005). We
performed high-resolution numerical simulations, using both particle-mesh and direct N -body
codes, of the orbital evolution of a massive black hole in a variety of stellar distributions. We
investigated circular and eccentric orbits in self-gravitating cusps (Dehnen models), in cusps in
a central Kepler potential (so-called Bahcall-Wolf cusps) and in the Kepler limit of steep power
law density profiles in the outskirts of stellar systems. The background distributions cover a large
range of power law indices between −1 · · · − 5 of the density profile.

The application of the self-consistent χ functions leads to correction factors in the orbital decay
times in the range between 0.5 . . . 3 (Fig. 4.3). The main new feature in the improved general form
of the position and velocity dependent Coulomb logarithm (Eq. 4.26) is the use of the local scale
length Dr of the density profile as maximum impact parameter. In most applications the effect of
the new lnΛ is a significant delay in the orbital decay. A detailed comparison with orbital decay
calculated using the standard values lnΛs and χs shows that the corrections are very different
for the different cases and lead to a general improvement of the orbit approximation. In a few
cases, such as circular orbits in a Bahcall-Wolf cusp with a resolved minimum impact parameter
the standard formula can still be used. But even in this case a measurable difference already
occurs for eccentric orbits. We like to point out the generality of the new formula such that a
fit of individual orbits is no longer necessary. We find a general agreement between the orbital
decay in the numerical simulations and the analytic predictions at the 10% level. This holds for
circular as well as eccentric orbits in all background distributions in both self-gravitating and
Kepler potentials.

Another more technical finding concerns the best choice of the minimum impact parameter,
bmin, measuring the numerical resolution. It should be remembered, that from the structure of
lnΛ there is implicitly one common scaling factor for bmax, bmin, a90 that is free. Thus the
normalization of one of these quantities must be fixed in order to determine the other two. Here
we fixed bmax = Dr and proved that a90 is the correct effective minimum impact parameter in the
numerically resolved cases. On that basis, we determined the numerical resolution for the different
codes in terms of the softening length ε or grid cell size dc. We find bmin = 1.5ε for the PP code,
consistent with the results of other authors, and bmin = dc/2 for the PM code Superbox.
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The new formula can be used for extensive parameter studies of orbital decay, where it is
computationally impossible to use a high numerical resolution to resolve the dynamical friction
force. Although we did not test the formula for extended objects like satellite galaxies or star
clusters in this article, we expect it to work equally well in these cases. Since lnΛ is generally
smaller in these applications, the correction due to the maximum impact parameter would be more
significant. Additional effects like mass loss in the satellite galaxies must be taken into account
(Fujii et al. 2006, 2008). The new Coulomb logarithm also works for non-isotropic background
distributions.

We studied the evolution of SMBH binaries in spherical galaxies as well as in galaxy mergers
using direct N -body simulations. We focused on the orbital decay of hard binaries. In the case of
spherical galaxies we recover the N -dependent shrinking of the separation of the binary that shows
the evolution is driven by relaxation effects. For real galaxies with a large number of stars, the
evolution of the SMBH binary should stall and lead to the “final parsec problem”. By contrast,
the N -independence and higher hardening rates found in merger models suggest large pool of stars
on centrophilic orbits. The stalling that occurs in the long-term evolution of massive binary black
holes at the centers of spherical stellar systems, does not occur when the binary is created via a
galaxy merger. The formation of a triaxial merger remnant is a generic outcome in our galaxy
merger models. Apparently, even modest departures from axisymmetry in the merged galaxy
are sufficient to drive stars into the center, overcoming the orbital depletion that occurs in the
spherical geometry. This result provides a plausible solution to the “final parsec problem”.

Direct N -body simulation of mergers of spherically symmetric galaxies with different mass ra-
tios were performed to investigate the evolution of binary SMBHs from the onset of merger through
the stellar hardening phase until the eventual relativistic coalescence. The merging galaxies have
different initial density profiles varying from shallow (γ = 1/2, 1) to steep cusps (γ = 3/2, 7/4)
– thus covering the range of stellar distribution typically observed in the centers of bulges or
early-type galaxies. In Chapter 8, we have shown that merger-induced triaxiality could support
a purely stellar dynamical solution to the FPP in the case of equal-mass mergers. In order to
assess the prospects for such a solution in the more general unequal-mass case, we measured both
the hardening rate and merger-induced triaxiality for mass ratios in the range q ∈ [0.05, 1]. The
merger-induced triaxiality found for equal-mass mergers is still present in unequal (q < 1) merg-
ers, albeit it becomes weaker as q decreases. Minor mergers with q . 0.05 of spherical progenitor
galaxies leave the primary almost unperturbed, so the subsequent binary evolution follows suit
in an almost spherical background nucleus. The classical FPP could well show up in such cases.
This transition seems to be abrupt, as the measured hardening rates are essentially independent
of the mass ratio q until it suddenly declines at a value somewhere between q = 0.05 and 0.1 –
thus indicating that only a very modest triaxiality (or substantial flattening) is needed for driving
the binary inspiral at rates consistently higher than in a spherical nucleus. It is also not surprising
that we find that the hardening rate increases substantially for high γ, as more concentrated nuclei
will have larger numbers of centrophilic orbits due to their higher central densities.

We have produced estimates of coalescence times using a simplified prescription for the late
relativistic phase of the inspiral – i.e. adopting the Peter’s (1964) equations for the evolution of
an isolated binary and ignoring the late stellar-driven hardening and eccentricity evolution. We
assessed the accuracy of these approximations by including Post-Newtonian terms (up to 3.5PN
order) to the equations of motion of the binary in a few representative cases of our sample. At
least in these few selected cases, the agreement is remarkably good, and this is mainly due to
the fact that the eccentricity evolution is almost identical in the PN and non-PN runs. One
should add a little note of caution though. The eccentricity evolution may be a quite sensitive
function of the properties of the surrounding stellar cluster (slope γ, mass ratio q, amount of net
rotation, etc) and on the initial conditions of the binary. Previous studies indeed indicate that
one could expect significant evolution of the eccentricity during the hardening phase (Sesana 2010,
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Preto et al. 2011). The coalescence times resulting from our calculations are consistently shorter
than a Hubble time at a given redshift (up to z ∼ 2 − 3 for all masses and up to z ∼ 6 − 10 for
those in the LISA mass range). Coalescence times for binaries of ∼ 106M� are all shorter than
1 Gyr; for the most massive ∼ 109M� they range between hundreds of millions of years (highly
eccentric ones) to ∼ 1− 2 Gyr (less eccentric ones). Therefore SMBH binaries are very promising
sources of GWs for LISA both at low and high redshift. The coalescence times obtained here
– especially those from models D – may be effectively an upper bound if the mild eccentricity
growth observed in these runs is not generic (we have only four runs). The detailed properties of
the distribution of coalescence times hinges in part on the dependence of the eccentricity evolution
on the properties of the surrounding cluster. The question of whether eccentricity grows, decays
or remains approximately constant during the hardening phase remains still uncertain and we
are currently pursuing it. Interestingly, the duration of the stellar dynamical hardening phase of
SMBH binaries and the relativistic one are roughly equal due an eccentricity regulated process.
This means that SMBH binaries on highly eccentric orbits have a lower probability at detection in
the classical regime but at the same time are sources of strong GW signals to be detected. On the
other hand, binaries with low eccentricities remain longer in the Newtonian regime and therefore
are more likely to be observed in this phase, but may only be luminous GW sources in the final
phase of coalescence.

We study the evolution of SMBH binary in late type galaxy merger in two parts. First part
uses SPH simulations including important physics, such as star formation and gas accretion on to
the supermassive black holes (Callegari et al. 2011) while the second part uses direct N -body code
combined with the particle splitting and no additional physics. This approach is adopted due to
large distance scales (from 100 kpc to 10−6 pc), different physical processes (stellar dynamics, the
gas dynamics, relativistic dynamics) involved and the fact that the current numerical codes that
treat only few of these physical processes can handle only 106 − 107 particles. In the first phase of
galaxy merger the two SMBHs grow in mass due to the accretion of gas and the mass ratio of the
two black holes changes from 0.1 to 0.3. The results obtained for the SMBH binary evolution in
the merger remnant of the gas rich disk galaxies (Chapter 9) are qualitatively similar with those
obtained for the mergers of spherical galaxies. The hardening rates are higher compared to the
ones reported for the binary evolution in the center of spherical galaxies. The merger remnant is
more flattened when compared to those of 1:10 mergers of spherical galaxies. The eccentricity of
the binary is also very high (approximately 0.97) consistent with those observed in the spherical
galaxy mergers described in Chapters 7 and 8. The estimated SMBH binary coalescence time is
about 3 Gyr, which can be a factor 3-4 smaller if a steeper central density profile (observed in
late type galaxies) were to be adopted for the merging galaxies. Currently, we are continuing the
simulation to the full coalescence of the SMBHs, thus producing a unique study where SMBHs
coalescence is achieved in a realistic merger scenario starting at a separation of several tens of
kilo-parsecs.

With our results we move one step closer to a consistent stellar dynamical solution to the FPP
and providing a solid dynamical support for cosmological scenarios where prompt coalescences
are the norm during SMBH-galaxy co-evolution. If our results hold true in real galaxies, the
bottleneck to SMBH coalescences – if any – is likely to be associated with the long timescales
needed for SMBHs to become a bound pair in galaxy mergers of unequal-mass – especially in case
where q . 0.1 and gas fractions are low (Callegari et al. 2011). These results are promising for
SMBH binaries being abundant LISA sources at high redshift.

In our study “mass deficits” induced in the centers of gas-free galaxies by inspiraling SMBH
binaries are found to be of order ∼ (1−5)M•, depending on the slope of central stellar distribution
and on the mass ratio of SMBHs. This is consistent with the picture that cores in giant ellipticals
are scoured by SMBH binary inspirals during successive merger events – assuming only that
relaxation times are long enough in those systems for the results from different mergers to be
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cumulative. For galaxies in the mass range of the Milky Way the picture is different. Since the
amount of mass depletion in a single merger event only partially destroys a steep inner cusp, even
if a major merger were to have happened in the Galactic center at redshift z = 1 or larger, it
would have had enough time to regrow a mass segregated Bahcall & Wolf cusp since then (Preto
& Amaro-Seoane 2010).

Astrophysical Implications
The evolution of SMBHs over the cosmic history is one of the most fascinating puzzles among

the many of large scale structure formation in the universe. SMBHs profoundly effect the galaxy
formation and evolution by feedback processes. The formation of supermassive black holes is
thought to be associated with multistage mergers together with accretion. However early theoret-
ical and numerical studies of SMBH binary evolution suggested that following the merger of two
galaxies, the SMBHs may stall at a separation of 1 pc (FPP). If the SMBH binaries do not coalesce
faster than the rate at which galaxies merge, the next galaxy merger would bring another SMBH
or SMBH binary to the center. This would lead in a 3-body or 4-body gravitational slingshot.
Thus non efficient merger of SMBH binaries would result in a much larger scatter in the observed
M• - Mσ and M• - Mbulge relations. In this study we show that stellar dynamics alone can bring
the SMBH binaries (over all observed mass range of SMBHs) to coalescence in the centers of
merged galaxies, hence solving final parsec problem. Our results support a cosmological scenario
where prompt coalescence is the norm during SMBH-galaxy co-evolution.

Another very interesting aspect of the SMBH coalescence is the emission of gravitational ra-
diation. The coalescing SMBH binaries are very promising sources of GWs for pulsar timing
arrays (PTA) and future space borne gravitational wave detectors. Recent interests in the study
of SMBH binary evolution is also motivated by the fact that gravitational waves shall be detected
by LISA. Binary SMBH mergers constitute highest signal to noise ratio among the possible LISA
sources. Assuming the prompt coalescence of SMBH binaries Sesana et al. (2004) estimated the
SMBH merger rate from the galaxy merger rate (from z = 20 to present) in the Λ CDM cos-
mology. Gravitational wave events, integrated over observable universe, can be as frequent as
102 per year. The coalescence time for SMBH binaries in Chapters 8 and 9 suggest that these
estimates are reliable. LISA will provide strong constraints on the mechanisms by which SMBH
masses evolve over time in the centers of galaxies by observing the masses of SMBHs experiencing
binary SMBH coalescences as a function of the redshift. This will help to trace the early merger
history of galaxies. At the moment of coalescence, a SMBH binary represents the most extreme
transfer of mass into energy produced by any process in the universe. The two SMBHs, in the
last few orbits before coalescence, have velocities close to velocity of the light and will provide
exceptionally strong tests of the prediction of general relativity.

The inspiral of SMBHs following galaxy merger leaves characteristic imprints on the morphol-
ogy of the galaxy. The brightness profiles of elliptical galaxies fit remarkably well by Sérsic function
(Ferrarese et al. 2006, Kormendy et al. 2009). Although there is no astrophysical explanation for
this fit, the fact that Sérsic function fits well all the elliptical galaxies led to identification and
interpretation of departures from the function as diagnostic of galaxy formation and evolution
(Graham 2004, Kormendy et al. 2009). At small radii two kind of deviations from Sérsic function
are observed. The bright elliptical galaxies (MV T ≤ −22) have cores while faint elliptical galaxies
(MV T ≥ −21) have cuspy profiles. A power law cusp in spatial density (ρ ∝ r−γ) with γ = 1
projects to core in surface brightness (Dehnen 1993). While power law cusps with γ > 1 retain
power laws in projection as well.

The numerical simulations of dry galaxy mergers performed in Chapter 8 demonstrate that
steep power law cusps in density (γ = 1.75) transform into shallow cusps (γ ' 1.0). The merger
of two galaxies with shallow cusps (γ ≤ 1.0) in density results in cores (γ < 0.5). Early numerical
simulations of the galaxy mergers without SMBHs at the center found homology (the merger
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product preserves the profile of its progenitors) following the merger (Barnes 1999, Milosavljević
& Merritt 2001). The shallow cusps reported in Chapters 7 and 8 are caused by the energy input
from inspiraling SMBHs in the center of merger remnant - flinging stars away. Similar destruction
of the cusps at the center is earlier reported in the simulations of SMBH binary evolution in
a single spherical galaxy and is thought to responsible for appearance of core in giant elliptical
galaxies (Milosavljević & Merritt 2001, Makino & Funato 2004, Merritt 2006b). The removal of
the stars causes a decrease in surface brightness at the center of the galaxy experiencing a SMBH
merger. The galaxies preserve this profile because of the very long relaxation time, which exceeds
a Hubble time by orders of magnitudes for giant elliptical galaxies (Merritt & Milosavljević 2005).

The missing light in the centers of galaxies is measured in terms of the mass deficits. The most
recent estimates of mass deficits are 〈Mdef/M•〉 ∼ 11 found in Kormendy et al. (2009)’s sample.
In our simulations of the dry galaxy mergers, we found Mdef/M• ∼ 1− 5 depending on the initial
density profile of the merging galaxies. If galaxies undergo a series of mergers as suggested by
the hierarchical galaxy formation scenario, then the mass deficits should add up because the time
required to fill in the gap (removal of stars by inspiraling SMBH binary) is essentially of the order
of relaxation time. The mass deficit following N dry mergers is N · (Mdef/M•) so the estimated
mass deficits obtained from our simulations imply that at least few (N = 2 − 3) major mergers
are required to create 〈Mdef/M•〉 ∼ 11 reported by Kormendy et al. (2009). Asymmetric emission
of gravitational waves by a coalescing SMBH binary leads to a recoil of the merged SMBH.
The sinking of the displaced SMBH back to the center caused by dynamical friction displaces
additional stellar mass during repeated central passages (Gualandris & Merritt 2008). The cores
at the center of bright elliptical galaxies can be attributed to the combined effect of these two
mechanisms discussed.

Both core and power law galaxies satisfy M• − σ relation so the power law galaxies are also
believed to be formed by galaxy mergers. The results of our numerical simulations suggest that
mergers of steep power law galaxies result in relatively shallower power law cusps, which is in
contradiction to the steep density profiles observed at the centers of these galaxies. Faint elliptical
galaxies are believed to be the end product of wet galaxy mergers (Kormendy et al. 2009) and
it is proposed that core scouring by the SMBH inspiral is swamped by the starburst resulting
from the gas funneled to the center by the mergers (Mihos & Hernquist 1994, Mayer et al. 2010,
Callegari et al. 2011). This idea can be tested by N -body simulations that include gas dynamics
and can resolve both stellar and gas dynamics to the scales where a hard SMBH binary is formed.
Our simulations show that the profile does not change considerably after the formation of a hard
binary.

The same mechanism that creates cores in the stellar profile may also be responsible for cores
observed in the dark matter profile at the centers of galaxies. This can provide a potential solution
to famous “core-cusp” problem.

Outlook
• Currently we are running the simulation which we started from the merger product of an

earlier high-resolution smoothed particle hydrodynamics simulation that included star for-
mation and gas accretion onto the SMBHs (Chapter 9). Using the direct N -body code
Φ-GPU, we evolved the binary to separation of about 0.01 pc. Our aim here is to achieve
full coalescence using post-Newtonian (PN ) corrections to the gravitational force between
the binary black holes.

• We are also studying the evolution of SMBH binaries by carrying out a large set of simulations
of merger of galaxies that have initial mass function (IMF) of stars. We are studying the
impact of the IMF on SMBH binary hardening rates and dynamical cusp regeneration after
the binary coalescence.

• The eccentricity evolution of SMBH binaries seems to be very sensitive to the density profile
of the stellar system hosting SMBH binary evolution. The merger of two galaxies with shal-
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low density cusps leads to very high eccentricities of SMBH binaries while steep cusp mergers
produce only mild values of binary eccentricities. The SMBH binary coalescence time de-
pends sensitively on the value of eccentricity, particularly for high e. Therefore the exact
eccentricity distribution as a function of merger parameters requires further investigation.

• The solution of final parsec problem hinges on the triaxiality and flattening of the merger
product in which the SMBH binary evolves. It is worthwhile carrying out galaxy merger
simulations starting from the triaxial galaxy progenitors and investigating the shapes and
hardening rates in this more realistic scenario. Also the investigations of the phase space
distribution of stars interacting with SMBH binaries in galaxy mergers is still missing and a
goal of our further studies.

• A big step forward in the study of evolution of SMBH binaries in galaxy mergers would be
N -body simulations that resolve both stellar and gas dynamics to milli parsec regime where
the emission of GWs dominate the binary evolution.
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Schoenmakers, A. P., de Bruyn, A. G., Röttgering, H. J. A., van der Laan, H. & Kaiser, C. R.
(2000), ‘Radio galaxies with a ‘double-double morphology’ - I. Analysis of the radio properties
and evidence for interrupted activity in active galactic nuclei’, Month. Not. Roy. Astr. Soc.
315, 371–380.

Schwarzschild, M. (1979), ‘A numerical model for a triaxial stellar system in dynamical equilib-
rium’, Astrophys. J. 232, 236–247.

138



BIBLIOGRAPHY

Sesana, A. (2010), ‘Self Consistent Model for the Evolution of Eccentric Massive Black Hole Bina-
ries in Stellar Environments: Implications for Gravitational Wave Observations’, Astrophys. J.
719, 851–864.

Sesana, A., Haardt, F. & Madau, P. (2006), ‘Interaction of Massive Black Hole Binaries with Their
Stellar Environment. I. Ejection of Hypervelocity Stars’, Astrophys. J. 651, 392–400.

Sesana, A., Haardt, F., Madau, P. & Volonteri, M. (2004), ‘Low-Frequency Gravitational Radi-
ation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies’, Astrophys. J.
611, 623–632.

Shapiro, S. L. & Lightman, A. P. (1976), ‘The distribution of stars around a massive black hole’,
Nature 262, 743–745.

Shaw, M., Axon, D., Probst, R. & Gatley, I. (1995), ‘Nuclear bars and blue nuclei within barred
spiral galaxies’, Month. Not. Roy. Astr. Soc. 274, 369–387.

Sillanpaa, A., Haarala, S., Valtonen, M. J., Sundelius, B. & Byrd, G. G. (1988), ‘OJ 287 - Binary
pair of supermassive black holes’, Astrophys. J. 325, 628–634.

Spinnato, P. F., Fellhauer, M. & Portegies Zwart, S. F. (2003), ‘The efficiency of the spiral-in of
a black hole to the Galactic Centre’, Month. Not. Roy. Astr. Soc. 344, 22–32.

Spitzer, L. (1987), Dynamical Evolution of Globular Clusters, Princeton Univ.Press, New Jersey,
USA.

Springel, V., Wang, J., Vogelsberger, M., Ludlow, A., Jenkins, A., Helmi, A., Navarro, J. F.,
Frenk, C. S. & White, S. D. M. (2008), ‘The Aquarius Project: the subhaloes of galactic
haloes’, Month. Not. Roy. Astr. Soc. 391, 1685–1711.

Springel, V., Yoshida, N. & White, S. D. M. (2001), ‘GADGET: a code for collisionless and
gasdynamical cosmological simulations’, New Astronomy 6, 79–117.

Spurzem, R. (1999), ‘Direct N-body Simulations’, Journal of Computational and Applied Mathe-
matics 109, 407–432.

Sridhar, S. & Touma, J. (1999), ‘Stellar dynamics around black holes in galactic nuclei’,
Month. Not. Roy. Astr. Soc. 303, 483–494.

Tremaine, S. D. (1976), ‘The effect of dynamical friction on the orbits of the Magellanic clouds’,
Astrophys. J. 203, 72–74.

Tremaine, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V.,
Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J., Pinkney, J. &
Richstone, D. (2002), ‘The Slope of the Black Hole Mass versus Velocity Dispersion Correlation’,
Astrophys. J. 574, 740–753.

Tremaine, S. et al. (1994), ‘A family of models for spherical stellar systems’, Astron. J. 107, 634–
644.

Valluri, M. & Merritt, D. (1998), ‘Regular and Chaotic Dynamics of Triaxial Stellar Systems’,
Astrophys. J. 506, 686–711.

Valtaoja, E., Teräsranta, H., Tornikoski, M., Sillanpää, A., Aller, M. F., Aller, H. D. & Hughes,
P. A. (2000), ‘Radio Monitoring of OJ 287 and Binary Black Hole Models for Periodic Outbursts’,
Astrophys. J. 531, 744–755.

139



BIBLIOGRAPHY

Valtonen, M. J. (2008), OJ287: a binary black hole system, in ‘Revista Mexicana de Astronomia
y Astrofisica Conference Series’, Vol. 32 of Revista Mexicana de Astronomia y Astrofisica, vol.
27, pp. 22–24.

Valtonen, M. J., Lehto, H. J., Nilsson, K., Heidt, J., Takalo, L. O., Sillanpää, A., Villforth, C.,
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