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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entstehung von Scheibengalaxien, welche
sich durch ihre geordnete Rotation von anderen Galaxienarten unterscheiden. Im
Fokus steht die Überprüfung theoretischer Vorhersagen, welche zu erklären versuchen
wie diese Scheibengalaxien zu ihrem Drehimpuls kommen. Ein wesentlicher Teil
der Arbeit ist die Untersuchung wie sich Galaxienformen sinnvoll und korrekt quan-
tifizieren lassen. Dies ist eine wesentliche Voraussetzung für die automatisierte und
reproduzierbare Klassifikation von Scheibengalaxien in umfangreichen Datensätzen.
Besonders vertieft wird der Ansatz Galaxienmorphologien in orthonormale Basis-
funktionen zu zerlegen, welche auf einem realistischen Lichtprofil beruhen – dem
Sérsicprofil. Der Hauptteil der Arbeit befasst sich mit der statistischen Analyse der
Drehimpulse mehrerer Tausend Scheibengalaxien aus dem Sloan Digital Sky Sur-
vey. Hierbei wird besonderer Wert auf die korrekte Behandlung aller relevanten
Fehlerquellen gelegt. Es wird detailliert aufgezeigt, dass bisherige Untersuchungen
die wesentlichen Fehlerquellen unzureichend betrachtet haben und folglich eine un-
zutreffende Bestätigung theoretischer Vorhersagen lieferten. Bei Berücksichtigung
dieser Fehlerquellen findet sich keine statistische Evidenz für die Korrektheit dieser
Vorhersagen. Die hierbei entwickelten Methoden lassen sich leicht auf andere astro-
physikalische Fragestellungen verallgemeinern. Die Arbeit schließt mit einer detail-
lierten Analyse möglicher Verbesserungen und einer Beobachtungsstrategie, welche
die Datenlage hinreichend verbessern sollte, sodass die theoretischen Vorhersagen in
absehbarer Zeit mit größerer Genauigkeit überprüft werden können.

Summary

This thesis is concerned with the formation of disc galaxies, a special type of galax-
ies characterised by ordered rotation. The main focus is on testing predictions of
theories that try to explain the angular-momentum acquisition of these galaxies. A
major issue concerns the proper quantification of galaxy morphologies. This is of vi-
tal importance for automated and reproducible classification of disc galaxies in large
data samples. The most promising approach is to expand galaxy morphologies into
orthonormal basis functions based on a well motived light profile – the Sérsic pro-
file. In the main part of this thesis, the angular momenta of several thousand disc
galaxies from the Sloan Digital Sky Survey are analysed. It is demonstrated that
previous investigations lacked a rigorous account for the relevant error sources, which
lead to unjustified confirmations of theoretical predictions. If all relevant errors are
considered, there is no statistical evidence confirming these predictions. The methods
developed here are also relevant in a wider context, as they are applicable to other
astrophysical investigations. This thesis concludes with a detailed discussion of po-
tential improvements of measurements and an outline of an observational strategy
that will allow for a more decisive empirical test of the theoretical predictions.
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3.2.5 Definition of polar sérsiclets . . . . . . . . . . . . . . . . 45

3.2.6 Real-valued models . . . . . . . . . . . . . . . . . . . . . 46
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CHAPTER 1. INTRODUCTION

1
Introduction

Disc galaxies constitute a significant part of the galaxy population in the
nearby universe. Bamford et al. (2009) find a number fraction as high as≈ 40%
of galaxies with redshifts z ≤ 0.2 to be disc galaxies in the spectroscopic sam-
ple of the Sloan Digital Sky Survey (York et al. 2000). This type of galaxies is
supported against gravity by rotation of its baryonic matter. Considering the
stars and gas of the galaxy as a fluid, it is then obvious that rotational flatten-
ing forms a galactic disc. Conversely, spheroidal galaxies – another significant
part of the galaxy population – are supported by the velocity dispersion of
their stellar constituents and are generally considered to form through hier-
archical merging (e.g. Toomre & Toomre 1972; Dressler 1980). Consequently,
ordered rotation is an essential and defining property of disc galaxies. Under-
standing angular-momentum acquisition therefore provides the key to learn
how a significant part of the galaxy population has formed. The current theo-
retical model explaining the angular-momentum acquisition of disc galaxies –
the tidal-torque theory – predicts that the angular-momentum vectors of disc
galaxies should be aligned to a certain extent, i.e., the orientations and incli-
nations of disc galaxies at small separations are not supposed to be completely
random (for a recent review see Schäfer 2009).

The basic theoretical picture is rather simple. In the current cosmological
framework, galaxies reside in the centres of non-baryonic dark-matter host
haloes. These dark-matter haloes evolved from primordial density fluctua-
tions as observed in the cosmic microwave background and have formed under
gravitational collapse. In contrast to collisionless dark matter, baryonic mat-
ter can cool through dissipative processes and sink deeper into the potential
well of the assembling halo, eventually reaching densities large enough to form
stars and galaxies. However, this formation process does not take place in
isolation. The collapsing proto-halo is embedded into the large-scale struc-
ture of the universe which exerts tidal gravitational forces during the collapse.
These tidal forces cause the collapsing proto-halo to acquire angular momen-
tum. Numerical simulations (van den Bosch et al. 2002) have shown that
the angular momentum of the dark-matter host halo is largely inherited by
the baryonic matter, i.e., the angular momenta of the resulting disc galaxy
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CHAPTER 1. INTRODUCTION

and its host halo are approximately aligned. This enables us to estimate the
angular-momentum orientation of the dark-matter host halo from the angular-
momentum orientation of the disc galaxy residing in that halo.

The alignment effects arise naturally in this theoretical framework. If two
disc galaxies formed in each other’s vicinities, their dark-matter haloes col-
lapsed in the same large-scale environment, i.e., both haloes were subject to
potentially similar tidal forces imprinting the angular momenta. Consequently,
theory predicts that the angular momenta of the disc-galaxy population con-
tain cosmological information inherited from the large-scale structure of the
universe.

Detecting this alignment effect of disc galaxies is the principal goal of this
project. Starting out with a simple setting, it will be tested whether the an-
gular momenta of the four large disc galaxies in the Local Group – Milky
Way, Andromeda (M31), M33 and the Large Magellanic Cloud – are consis-
tent with purely random orientation or not. Sophisticating the simple test in
the Local Group by using spatial two-point correlation functions, alignment
effects are searched in a large sample of disc galaxies taken from the SDSS. A
successful detection of such alignment effects would confirm our understand-
ing of disc-galaxy formation, which places the angular-momentum acquisition
of individual disc galaxies into a larger cosmological context. Conversely, a
non-detection might enforce a critical reassessment and modification of our
theoretical picture. Moreover, understanding alignment effects of disc galax-
ies is also important for investigations of gravitational weak lensing. Disc
alignment can cause systematic effects in shear measurements of weak-lensing
surveys (e.g. Crittenden et al. 2001; Blazek et al. 2011), thereby compromis-
ing the estimation of cosmological parameters. Therefore, a detailed under-
standing of disc-galaxy alignment may enable us to correct for this bias in
weak-lensing studies.

In this thesis, it is necessary to touch on several important issues in-
volved in the search of the theoretically predicted alignment effects. First
and foremost, it is necessary to investigate how disc galaxies can be identified
and separated from other types of galaxies in practice. This requires some
discussion about the classification of galaxy morphologies. However, before
galaxy morphologies can be classified, they have to be parametrised first. The
parametrisation of galaxy morphologies is a highly non-trivial task, since the
galaxy population exhibits a very rich diversity of morphologies. Therefore,
different approaches to the parametrisation of galaxy morphologies are pre-
sented. Categorising these different approaches, the method most promising
for the task of classifying disc galaxies is identified and elaborated in detail.
The basic idea of this method is to decompose a given galaxy image into differ-
ent components which are the modes of an orthonormal set of basis functions.
This method by design excels in high flexibility which is necessary to provide
a faithful parametrisation of the morphology typically exhibited by disc galax-
ies, which includes spiral-arm patterns, bulges, galactic bars and rings, as well
as star-forming regions. It is investigated in great detail if this method indeed
can provide reliable parametrisations. Another important aspect concerning
galaxy morphologies is the seemingly trivial question of how to estimate a
galaxy’s ellipticity. Such an ellipticity estimate is required in order to infer
the orientation of the angular-momentum vector of the rotating disc. Con-
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CHAPTER 1. INTRODUCTION

sequently, the investigation of galaxy morphologies naturally forms the first
major part of this thesis.

After disc galaxies have been identified and their angular-momentum ori-
entations estimated, the task is to search for alignment effects by estimating
two-point correlation functions. The second major part of this thesis is there-
fore dedicated to this estimation process. Here, it is necessary to rigorously
assess and propagate all potentially important sources of errors, namely clas-
sification uncertainties and errors in estimates of redshift and ellipticity, in
order to obtain correlation estimates with marginal errors which enable us to
test theoretical prediction against data. Previous results (e.g. Slosar et al.
2009; Lee 2011) did not account for these error sources. Consequently, the
reported errors necessarily underestimate the real errors and therefore lead
to overly optimistic significance levels of the detected correlations. This ev-
idently corrupts any tests of the presence of alignment effects. Therefore, a
methodological objective of this thesis is to understand how all these errors
can be propagated through the parameter-estimation process.

After these excursions into fundamental work this thesis has established
the required tools for estimating marginal autocorrelation functions and will
then apply this to real data. Evidence of autocorrelations of spiral-arm hand-
edness is then searched in a sample of 30,154 spiral galaxies, while evidence
of autocorrelations of angular-momentum-orientation vectors is searched in a
sample of 4,216 Scd galaxies. The resulting correlation estimates can be used
to try to constrain free parameters in the theoretical model (Pen et al. 2000;
Lee & Pen 2008; Schäfer & Merkel 2011). However, as these parameter values
are yet unknown, this investigation cannot be considered as an empirical test
of the theory, since at this point in time the tidal-torque theory is still free
to adopt to almost any experimental result. Hence, this study is only a first
step to constrain the model parameters and a second future test is required for
an empirical test. In particular, the hypothesis test in the Local Group using
the three large disc galaxies is an important sanity check but it does not pro-
vide an astrophysically independent test of the theory. The thesis concludes
by investigating the potential of future sky surveys to enhance these corre-
lation estimates, thereby improving observational constraints on theoretical
parameters.

In detail, this thesis is organised as shown in Fig. 1.1: The first part fo-
cusses on the parametrisation of galaxy morphologies with focus on the task of
classification. Chapter 2 recapitulates several common classification schemes
and scrutinises their reliability. Chapter 3 then elaborates in more detail on the
method that has previously been identified as the most promising approach.
The second part of this thesis is then dedicated to the actual investigation of
disc alignment. As an initial test, the angular momenta of the disc galaxies
in the Local Group are studied in Chapter 4. Chapter 5 presents the SDSS
data used for the main analysis. The correct methodology and results are then
discussed in Chapter 6. Chapter 7 discusses potential of future sky surveys
to improve estimates of disc alignment. Finally, Chapter 8 summarises and
discusses the results and provides an outlook.
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Figure 1.1: Roadmap of this thesis.
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2
Parametrising galaxy

morphologies

In this section, we discuss several methods for parametrising galaxy morpholo-
gies. This is necessary since modern sky surveys such as the Sloan Digital Sky
Survey (SDSS) compile databases with millions of galaxies. Consequently,
traditional classification of galaxy morphologies through visual inspection is
becoming infeasible and at the same time, an objective or at least reproducible
classification mechanism becomes desirable. However, an automated classifi-
cation requires a parametrisation of the observed morphologies of galaxies.
Given the rich variety of galaxy morphologies, parametrisation is a very chal-
lenging task and many different approaches have been attempted. Evidently,
a parametrisation method has to be robust, flexible and reliable in order not
to compromise morphological classification. We therefore rigorously test the
most popular parametrisation methods in this section. Ideally, this may enable
us to choose a suitable parametrisation method that automatically identifies
disc galaxies in a given galaxy sample in order to investigate their potential
alignment. If neither methods turns out to perform with satisfying reliability,
we can at least expect to learn how to construct a better method than the
existing ones.

2.1 Galaxy morphologies

There are two key diagnostics in modern astrophysical research concerning
the formation and evolution of galaxies – morphology and star formation.
Galaxy morphology by itself is not a fundamental physical parameter of a
galaxy, though it correlates weakly with other more physical parameters such
as star formation (e.g., Kennicutt 1998) or environment (e.g., van der Wel et al.
2010). However, morphology provides a direct observable, whereas, e.g., star-
formation rates are derived quantities based on additional assumptions and
extrapolations (e.g., Rosa-González et al. 2002). For instances, star-formation
rates – which are used extensively as astrophysical diagnostics – rely on the
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following assumptions:

• An initial mass function (IMF) that is identical for all types of galaxies
at all cosmological times, i.e., a universal IMF.

• Knowledge of the star-formation history of the galaxy under considera-
tion.

• Knowledge of the mass-luminosity relation of stars in the observed part
of the spectrum.

In particular, the assumption of a universal IMF appears to be a somewhat
näıve oversimplification and recently has been challenged by observational
data (van Dokkum & Conroy 2010, 2011).1 Apparently, the estimation of1As will be discussed by An-

drae et al. (in prep.), com-
mon attempts to estimate
the IMF are flawed to dif-
ferent extents, e.g., by inap-
propriate binning of data, a-
priori unphysical models (e.g.
Kroupa 2002) or omission of
errors in stellar-mass esti-
mates. Hence, the IMF is
in fact unknown and its pro-
claimed universality may be
inherited from poor method-
ology.

star-formation rates is not the best manifestation of one of the basic rules of
good scientific practice, namely the restriction to an absolute minimum of well-
justified assumptions. The merit of this practice is obvious, since the fewer
assumptions are involved, the less likely is a failure of the method. Therefore,
studies of galaxy morphologies are an important complementary means for
understanding the physics of galaxies. Furthermore, certain investigations are
solely based on morphologies, e.g., weak-lensing measurements (e.g., Bernstein
& Jarvis 2002) or studies of alignment of disc galaxies in this thesis.

The morphology of a galaxy is specified by the characteristics of its two-
dimensional light distribution, i.e., the shape of the galaxy projected onto the
plane of the sky. Apart from the projection, an observed galaxy morphology
is also influenced by the point-spread function of the observing instrument,
pixellation on the CCD chip and the addition of Poissonian background noise
which originates from the counting of photons. Some morphological observ-
ables are:

• steepness of the radial light profile,

• ellipticity, i.e., orientation angle and axis ratio,

• asymmetry, e.g., lopsidedness,

• substructures, e.g., spiral-arm patterns, bars, rings, star-forming re-
gions, etc.,

• galaxy size.

The centroid position is an important morphological observable as well, since it
is often required to derive other morphological estimators (cf. Table 2.1). For
decades galaxy morphologies have been studied in the visual regime where all
these observables are reasonably well defined. In the visual or optical regime
– at least the red part – the light distribution is dominated by stellar emission
and not by dust or gas. However, with increasing observational coverage of
the electromagnetic spectrum, it became evident that morphology is a strongly
varying function of wavelength. For instance, in the UV we observe mostly
star-forming regions and dust extinction, such that galaxies can look patchy
and highly irregular. On the other hand, in the far infra-red regime, there is
almost no stellar but only dust emission. In the radio regime, morphologies
may even be dominated by jets extending far beyond the actual galaxy (e.g. Lin
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et al. 2010). Hence, radio morphologies do not correlate with the distribution
of stars and are therefore very different from optical morphologies.

There has been substantial effort to define automated parametrisation
schemes for galaxy morphologies (e.g., Sérsic 1968; Abraham et al. 1996, 2003;
Bershady et al. 2000; Conselice 2003; Lotz et al. 2004, 2008, to name just a
few). Unfortunately, these parametrisation schemes usually invoke rather re-
strictive assumptions, such that they lack the flexibility to describe the huge
variety of different galaxy morphologies present in modern databases. Al-
though we are well able to parametrise the morphologies of individual galaxies
of certain types (e.g. Simmat et al. 2010), finding a parametrisation scheme
that is flexible enough to describe arbitrary galaxy morphologies is a com-
pletely different task.

2.2 Parametrisation schemes

In order to assess the advantages and deficits of different parametrisation
schemes we now briefly summarise the most common approaches. We di-
vide them into model-independent and model-based methods. The most im-
portant difference is that the model-based approaches try to model the two-
dimensional light distribution of an image and are thus mostly descriptive.
Model-independent – or “non-parametric” – approaches more directly try to
extract physical information, hence mixing description and inference. The
current paradigm favours model-independent methods, hailing their seeming
simplicity in comparison with model-based approaches which require fitting
a model to data. We conclude this section by summarising the assumptions
involved in the different parametrisation schemes.

2.2.1 Model-independent schemes I: CAS

A widely used set of morphological parameters is provided by the CAS sys-
tem, which is based on the so-called concentration, asymmetry and clumpiness
indices (Abraham et al. 1994, 1996; Bershady et al. 2000). The concentration
index is defined as

C = 5 log10

(
r80

r20

)
, (2.1)

where r80 and r20 are the radii of circular (or elliptical) apertures containing
80% and 20% of the total image flux.2 The concentration index is always 2There are several variations

of the concentration index:
Sometimes it is based on the
ratio of r90 and r50. Some
authors (e.g. Bershady et al.
2000) consider the whole im-
age for estimating C, others
(e.g. Scarlata et al. 2007) es-
timate C only within a region
given by one Petrosian radius.

strictly positive since r80 > r20. Furthermore, the asymmetry index is defined
as

A =

∑
pixels |I(~x)− I180◦(~x)|∑

pixels I(~x)
, (2.2)

where I180◦ denotes the image I rotated by 180◦. Technically, the asymmetry
index is bound in the interval [0, 2]. In practice, A is bound to [0, 1] because
the observed photon fluxes cannot be negative. Finally, the clumpiness index
is defined as

S = 10

∑
pixels |I(~x)− Iσ(~x)|∑

pixels I(~x)
, (2.3)
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where Iσ has been convolved by a Gaussian of width σ. The specific choice
of σ is somewhat arbitrary within a certain range, being sensitive to clumps
of varying spatial extent. As far as the author knows, there is no systematic
investigation of the impact of the choice of σ on the parametrisation results,
i.e., it is in fact unknown what kind of information the clumpiness index
actually is responding to.

2.2.2 Model-independent schemes II: M20 and Gini

Two further model-independent morphological parameters are M20 and the
Gini coefficient. We define the second-order moment of pixel n with value In
at position ~xn as (Lotz et al. 2004)

Mn = In (~xn − ~xc)2 , (2.4)

where ~xc denotes the reference position. Summation of the Mn over all pixels
yields the total second moment Mtot with respect to ~xc. There is a theoretical
preference to choose the reference position ~xc to be the centre of light, because
this choice minimises Mtot. Then, M20 is defined as

M20 = log10

(∑
iMi

Mtot

)
, (2.5)

where the summation
∑

iMi is over the pixels in descending order I1 ≥ I2 ≥
. . . ≥ IN and stops as soon as

∑
i Ii ≥ 0.2

∑N
n=1 In, i.e., as soon as 20% of

the total flux is reached. This design of M20 is meant to estimate the spatial
distribution of the most luminous parts of a galaxy image.

The Gini coefficient was defined by Lotz et al. (2004, 2008) based on
Glasser (1962) as

G =

∑N
n=1(2n−N − 1)|In|
(N − 1)

∑N
n=1 |In|

, (2.6)

where N is the number of image pixels and |I1| ≤ |I2| ≤ . . . ≤ |IN | are the
absolute values of the pixel fluxes sorted in ascending order. In contrast to
M20, Gini does not require an estimate of the centroid position. The Gini
coefficient is supposed to estimate the distribution of the pixel values over
the image. However, as was shown by Lisker (2008), it strongly depends on
the signal-to-noise distribution within a galaxy’s image and is thus a highly
unstable morphological estimator.33In fact, Lisker (2008) con-

cludes somewhat ironically
that “the Gini coefficient
could serve as a sophisticated
measure of the S/N distribu-
tion within a galaxy’s image,
if it did not depend so much
on the galaxy’s morphology.”

2.2.3 Model-based schemes I: Sérsic profile

We now discuss the first model-based parametrisation scheme. The radial
light profiles of many galaxies are found to be reasonably well described by
the Sérsic profile (see Sérsic 1968; Graham & Driver 2005, for a compilation
of relevant formulae),

I(R) = Iβ exp

{
−bn

[(
R

β

)1/nS

− 1

]}
, (2.7)
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Figure 2.1: Three examples of Sérsic profiles.

We show a Gaussian profile (nS = 0.5, solid line), an exponential profile (nS = 1,

dashed line), and a de Vaucouleur profile (nS = 4, dashed-dotted line).

where nS is the Sérsic index and β is the scale radius. The scale radius is
expressed in units of pixels, i.e., β−1 is the pixel size relative to the object
size. The constant bn is usually chosen such that the radius β encloses half of
the total light. Iβ is the intensity at the half-light radius β. For fixed nS , bn
is then given by (e.g. Graham & Driver 2005)

Γ(2nS) = 2γ(2nS , bn) , (2.8)

where Γ and γ denote the complete and incomplete gamma functions. For
nS > 0.5 one can approximate bn ≈ 2nS − 1

3 (Ciotti & Bertin 1999). The
Sérsic profile corresponds to a Gaussian profile if nS = 0.5, to an exponential
profile if nS = 1, and to a de Vaucouleur profile if nS = 4. Figure 2.1 displays
these example profiles. The exponential profile is of particular interest because
it resembles the radial light profile of disc galaxies (e.g. MacArthur et al.
2003; Elmegreen et al. 2005). Similarly, the steeper de Vaucouleur profile
is found to resemble the light profile of elliptical galaxies (de Vaucouleurs
1948). Hence, the Sérsic profile unifies these empirical laws. As is discussed
in Sect. 3.2.3, the Sérsic profile is the first-order Taylor expansion of any
(differentiable) light profile. Consequently, it is not surprising that it provides
a good approximation to radial light profiles of real galaxies. Moreover, this
provides a mathematical justification for the Sérsic profile, whereas the other
methods discussed so far are mere ad-hoc constructions.

Figure 2.1 reveals that Sérsic profiles decline very slowly for large Sérsic
indices, wherefore we need to introduce a truncation. Throughout this chapter
we use the truncated Sérsic profile of the form

Ĩ(R) =

{
I(R)− I(5β) ⇔ R ≤ 5β
0 otherwise

(2.9)

such that all profiles are 0 for R > 5β but still continuous. A discontinuous
cut-off would cause severe problems with Fourier transforms which are required
for PSF convolutions in Sect. 2.4.2.
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Figure 2.2: Definition of scale radii for Sérsic profiles.

Radii rX where Sérsic profile takes values I(rX)/I(0) = 1/X for X = 2, 4, 10 and bn

given by Eq. (2.8) (panel a) and bn = log 4 (panel b).

2.2.3.1 Redefining bn and β

It is important to note that bn and β in Eq. (2.7) are completely degenerate.
We are free to make any choice of bn that is different from Eq. (2.8), thereby
redefining the model and changing the meaning of β. There are two reasons
why Eq. (2.8) potentially is not a good choice for bn:

1. When fitting imaging data, half-light radius and Sérsic index are not
independent of each other but strongly correlated (e.g. Caon et al. 1993;
Trujillo et al. 2001). Due to this correlation, half-light radii β are not
comparable for different values of nS , i.e., the size of one galaxy relative
to a second galaxy can be inferred from their scale radii if and only
if both Sérsic models use identical nS .4 However, in practice this is4Strictly, even this is not cor-

rect. A comparison of half-
light radii inferred from Sérsic
fits requires to marginalise
out the Sérsic index.

rarely a problem, since studies usually compare only sizes of galaxies
of similar Hubble types, e.g., in studies of the size-evolution of disc
galaxies. Figure 2.2 shows that the radii where the profile reduces to 1

2 ,
1
4 , and 1

10 of its value at r = 0 vary over several orders of magnitude
for different nS . For instances, panel (a) shows that a de Vaucouleur
profile (nS = 4) that drops to one tenth of its central value within 10
pixels distance from the centre has a half-light radius of only ≈ 10−3

pixels. Such small numbers seem to be counter-intuitive at first glance
and may in fact cause investigators to falsely reject a correct fit result.
This peculiar behaviour has to be kept in mind when using half-light
radii, i.e., Eq. (2.8). The scale radius β could be defined more intuitively
such that

I(β)

I(0)
= 1/X (2.10)

for some X > 0 independent of nS . This can be achieved by setting
bn = logX for all nS . Equation (2.10) enforces that the Sérsic profile
drops to a certain value, which corresponds to the actual meaning of a
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Figure 2.3: Artificial correlations of Sérsic index and scale radius.

The χ2/dof-manifolds demonstrate how Eq. (2.8) induces the artificial correlation of

nS and β. Panel a: χ2/dof manifold for bn defined by Eq. (2.8). The white diamond

indicates the optimum. The dashed white line is given by bn/β
1/nS = const and

approximately follows the valley, thereby illustrating that the correlation of nS and

β is artificial. Panel b: Same as in (a) but for bn = log 4 for all nS . The valley is

approximately parallel to the nS-axis, i.e., the correlation is gone. Both panels use

the same artificial light profile with low noise level to evaluate the χ2/dof manifold.

It is much easier to find the optimum in panel (b) than in panel (a). The optimal

values of nS are identical in (a) and (b), whereas the optimal values of β are different

due to the different choice of bn. χ2/dof is not a simple quadratic form, because the

Sérsic profile is a nonlinear model.

scale radius. Panel b of Fig. 2.2 shows that in this case the radii for
different nS change by less than two orders of magnitude and hence can
be compared much better.

2. The strong correlation of nS and β is problematic for many fit algo-
rithms. This correlation of nS and β is almost completely induced by
Eq. (2.8), i.e., it is artificial. We can remove this correlation by setting
bn = logX for all nS , thereby simplifying the fit problem. We demon-
strate this in Fig. 2.3 showing χ2 manifolds for fitting an artificial light
profile once using Eq. (2.8) (panel a) and once using bn = logX for all
nS (panel b). The noise level in this simulation is low (the signal-to-
noise ratio of the central peak is 100). Higher noise levels do not change
the curvatures of the χ2 “valleys” in Fig. 2.3 but only broaden them
and reduce their depth.

These issues are not fundamental and there is no theoretical preference for
choosing between these approaches. In fact, it is possible to convert to and
fro the definitions of Eqs. (2.8) and (2.10) via b/β1/nS = const. However,
using Eq. (2.10), we encountered serious problems with fitting galaxy images,
wherefore we do not further pursue this approach.
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Figure 2.4: Initial guess for fitting Sérsic profiles.

Relation of Sérsic index and the ratio of Petrosian radius RPetro over half-light radius

R1/2. If Eq. (2.8) is used, then R1/2 = β.

2.2.3.2 Initial guess for fitting Sérsic profiles

As the Sérsic profile defined in Eq. (2.7) is a nonlinear model, it cannot be fit-
ted to data analytically but only through iterative optimisation. This requires
an initial guess of the model parameters and a good initial guess is of obvi-
ous interest since it reduces the number of required iterations till convergence
and hence reduces the computational effort. For general Sérsic profiles, the
Petrosian radius (Petrosian 1976)5 can be computed through numerical inte-5For a radial profile f(r), the

Petrosian radius RPetro is de-
fined via f(RPetro) = 0.2 ·

2π
πR2

Petro

∫ RPetro

0
dr r f(r).

gration (Graham & Driver 2005). The Sérsic index and the ratio of Petrosian
radius over half-light radius are then related as is shown in Fig. 2.4. As Pet-
rosian radius and half-light radius are both observables that can be estimated
model-independently from a given galaxy image (Bertin & Arnouts 1996), this
relation can be used in order to obtain an initial guess for the model parame-
ters when fitting a Sérsic profile. However, there are two caveats: First, pixel
noise in the given galaxy image may corrupt estimates of both radii such that
their ratio exceeds the value ≈ 2.2 and strictly no solution for the Sérsic index
exists. In this case, a fair initial guess would be nS ≈ 1.5, i.e., where the
maximum of the relation is situated. Second, for several ratios there are two
possible Sérsic indices. In this case, both solutions have to be tried and the one
which produces a better fit is used as an initial guess. Hence, we can deduce
an initial guess for the Sérsic index. The half-light radius directly provides an
initial guess for the Sérsic scale radius β, if we employ Eq. (2.8).

2.2.4 Model-based schemes II: Basis functions

An alternative model-based parametrisation approach is the expansion into
basis functions. The most important advantage of this concept is that the
parametrisation is more flexible, whereas all previous schemes are highly spe-
cialised for certain morphologies. For instance, the Sérsic profile is only a
radial profile that ignores any azimuthal structures usually exhibited by disc
galaxies. Conversely, a good set of basis functions should be able to fit almost
anything, provided the signal-to-noise ratio of the given data is sufficiently
high. Hence, this approach should in principle be favoured when the task at
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hand is to parametrise arbitrary morphologies. Basis functions also by design
can describe azimuthal structures such as spiral-arm patterns of disc galaxies.
Therefore, these methods are of particular interest in the context of this thesis.
In fact, Chapter 3 is dedicated to discuss basis-function expansions such that
we do not elaborate in detail here. In the following, we only briefly comment
on several example sets of basis functions, leaving all the details to the next
chapter.

2.2.4.1 Shapelets

Shapelets were introduced by Réfrégier (2003). They are a scaled version of
Gauss-Hermite polynomials, i.e.

Bn(x;β) =
(
2nn!
√
πβ
)−1/2

Hn

(
x

β

)
exp

[
− x2

2β2

]
, (2.11)

where Hn denotes the Hermite polynomial of order n and β is the shapelet
scale size. A centroid can be introduced via x → x − x0. All basis functions
take identical parameters ~θn = ~θ = (x0, β) in order to allow for orthogonality.
From this definition, we can build two-dimensional basis functions, namely
Cartesian shapelets and polar shapelets.

The Gaussian weight function of shapelets leads to very nice analytical
properties. For instance, shapelets are nearly invariant under Fourier trans-
formation, which makes any convolution or deconvolution a closed and analytic
operation in shapelet space, as described in Melchior et al. (2009). However,
in the presence of pixel noise we cannot fit an infinite number of basis func-
tions but have to truncate the basis expansion at a certain maximum order.
This limitation of basis functions due to pixel noise has a severe consequence:
Shapelets employ a Gaussian weight function (cf. Eq. (2.11)), but real galaxies
have typically much steeper profiles, e.g., see exponential and de Vaucouleur
profiles in Fig. 2.1. This gives rise to characteristic modelling failures that
typically manifest themselves in ring-like artefacts in the shapelet reconstruc-
tions of galaxies with exponential or steeper light profiles. This severely limits
the diagnostic power of shapelets (cf. Melchior et al. 2010) and we therefore
exclude them from our subsequent simulations.

Despite these fundamental problems, shapelets demonstrate a very impor-
tant aspect of basis-function expansions: For highly resolved galaxies of high
signal-to-noise ratios Sérsic profiles are incapable of providing excellent models
as they are not flexible enough to account for azimuthal substructures such as
spiral-arm patterns, i.e., their residuals do not always reach noise level. In the
case of shapelets – as an example of basis functions – this is fundamentally
different. They are highly flexible and reach noise level even for galaxies that
are very large, highly resolved and bright (e.g. Andrae et al. 2010b).

2.2.4.2 Sérsiclets

Given the problematic impact of the Gaussian profile on shapelets, a set of
basis functions based on the Sérsic profile is an obvious means to overcome
the limitations of shapelets. The resulting basis functions are called sérsiclets.
Ngan et al. (2009) were the first to realise the potential of this approach, which
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is capable of accounting for all morphological observables listed in Sect. 2.1.
However, for technical reasons their implementation of sérsiclets was flawed (cf.
Sect. 3.2.2). We postpone a detailed investigation of sérsiclets to Chapter 3.

2.2.4.3 Outlook: Template libraries

In practice, no basis set – apart from the pixel grid itself – is actually complete
due to the limitations induced by pixel noise. Now, we want to briefly touch
– without going into details – on a set of basis functions that is finite and
thus incomplete from the beginning. The motivation is very simple: For both
shapelets and sérsiclets the basis functions lack a physical interpretation. Why
not use basis functions that directly correspond to spiral arms, galactic bars or
rings? We can use a set of such templates – a template library – to form linear
models and decompose the image, resulting in a set of coefficients that form a
vector space. The individual templates do not even need to be orthogonal, but
just as linearly independent as possible in order to avoid heavy degeneracies
during the fitting procedure. Unfortunately, the direct physical motivation is
also the major drawback of this approach, since we are strongly prejudiced and
lack flexibility in this case. For instance, template libraries are likely to have
severe problems in decomposing irregular galaxies, i.e., they are inappropriate
for parametrising arbitrary morphologies. Moreover, the set of morphological
features is very large, hence such a library has to contain numerous templates.
Currently, such a template library is not within reach.

2.2.5 Assumptions

Using a certain method, it is crucial to be aware of all invoked assumptions,
since if a method fails, it usually fails because one or more of its assumptions
break down. Furthermore, the rules of good scientific practice clearly argue
that the number of assumptions should be minimised and that those assump-
tions that are indispensable should be well justified. In the case of model-based
approaches, the assumptions are usually rather obvious from the model de-
sign and therefore can be easily challenged. Conversely, the assumptions of
model-independent approaches are implicit and often well hidden. This may
lead to the misapprehension that model-independent schemes were superior
since they required fewer or even no assumptions.

Table 2.1 shows our categorisation of parametrisation schemes. Based on
this table and the definitions given in the previous sections, we now work out
the assumptions of all schemes from a theoretical point of view. In practice,
it is virtually impossible to satisfy all assumptions. Whether the violation
of some assumption leads to a breakdown of a certain method depends on
the specific question under consideration, the desired precision, the details
of the method’s implementation, and the quality of the data. In detail, the
assumptions are:

• Concentration index: There are no azimuthal structures such as spiral-
arm patterns or galactic bars6 such that a curve of growth and radii6This assumption is prob-

lematic since we want to
parametrise disc galaxies.

containing certain percentages of the total galaxy flux can be defined
meaningfully. The pixel noise is negligible and the object is not grossly
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model-based n n n n n y y y
centroid estimate necessary y y n y n y y y
account for steepness of light profile n n n n n y n y
account for ellipticity y(1) y(2) y(3) n n y y(4) y
account for substructures n y y n n n y y

Table 2.1: Characteristics of parametrisation schemes.
(1) We can employ elliptical isophotes to estimate C.
(2) A is invariant under all operations that are symmetric under rotations by 180◦.

Ellipticity is such an operation.
(3) It is possible to use an elliptical Gaussian for convolution.
(4) There is also a spherical shapelet formalism.

asymmetric such that a centroid is well defined (cf. Sect. 2.3.4). The
scheme can be enhanced using elliptical apertures.

• Asymmetry index: A centre of rotation is well defined. The pixel noise
is negligible. Both issues have been addressed by Conselice et al. (2000).
The asymmetry of interest is visible under rotations of 180◦.

• Clumpiness index: The functional type of the convolution kernel matches
the galaxy profile. The width of the kernel is chosen such that the in-
formation of interest is extracted. The ellipticity of the kernel matches
the ellipticity of the object.

• M20: The pixel noise has negligible impact on the estimates of centroid
and second moments.7 The centre of light and the object’s centre coin- 7In fact, pixel noise can have

a severe impact on estimates
of centroid an second mo-
ments, in particular for disc
galaxies with shallow light
profiles.

cide, i.e., there is no substantial asymmetry. The structures dominating
M20 are of circular shape with the centroid at their centres (see term
(~xn − ~x0)2 in Eq. (2.4)).

• Gini coefficient: The pixel noise is negligible (see Lisker 2008).

• Sérsic profile: The Sérsic profile is a good match of the object’s light pro-
file. In particular, this means that the object’s light profile is symmet-
ric, monotonically decreasing and the steepness is correctly described
by the model, and there are no azimuthal structures such as spiral-arm
patterns, galactic bars or rings. As the Sérsic profile is the first-order
Taylor expansion of any differentiable radial light profile (Sect. 3.2.3),
this assumption is well justified in the limit of low resolution and low
signal-to-noise ratios, where azimuthal structures are usually wiped out.

• Shapelets: The Gaussian weight function fits galaxy profiles.

We now clearly see that model-independent schemes implicitly make assump-
tions, too. Evidently, a general statement that model-independent or model-
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based approaches rely on fewer assumptions is not possible. We also want
to emphasise that shapelets – as an example of basis functions – can model
asymmetries.

2.3 Intertwinement of morphological observ-

ables

The basic idea of model-independent schemes is to estimate the different mor-
phological observables listed in Sect. 2.1 independently of each other, thereby
simplifying the problem. However, in this section, we argue that these mor-
phological observables are intertwined, which means that it is impossible to
measure them independently of each other. Even if we try to measure only a
single observable using a method unaware of the other observables, the mere
presence of these other observable features influences the results. The no-
tion of intertwinement should not be confused with redundancy. For instance,
Sérsic index and concentration index are perfectly redundant (Sect. 2.3.1) but
asymmetry index and concentration index are not (Sect. 2.3.4). Of course, for
some observables the intertwinement may be stronger than for others. This
intertwinement is not of physical origin but stems from the fact that usu-
ally all morphological observables are present simultaneously, such that the
assumptions listed in Sect. 2.2.5 are never truly satisfied.

We carry out noise-free simulations of the different parametrisation schemes,
revealing several systematic misestimations – in particular of the concentra-
tion index which is commonly used for morphological classification (e.g. Gauci
et al. 2010; Huertas-Company et al. 2011). Pixel noise in real data may hide
these biases to some extent, but they will still be present. All simulations
invoke Sérsic profiles that are the first-order Taylor expansions of real light
profiles (see Sect. 3.2.3) but we want to explicitly emphasise that it is not
necessary for real galaxies to actually follow Sérsic profiles.88To be more precise, it is per-

fectly valid to use idealised
simulations to discover and
isolate these biases, but in or-
der to correct for them more
realistic simulations are nec-
essary.

2.3.1 Example I: Sérsic profile vs. concentration in-
dex

We begin with comparing Sérsic profiles and the concentration index, estab-
lishing a relation between both schemes that allows us to assess systematic
effects on the concentration. The Sérsic index estimates how steeply the radial
light profile falls off, while the concentration index estimates the concentration
of the radial light profile. Consequently, Sérsic index and concentration index
are essentially two estimators for the same morphological feature, namely the
steepness of the light profile. This is also evident from the fact that both
schemes have almost identical assumptions (cf. Sect. 2.2.5), e.g., both ignore
azimuthal structures. In fact, we can compute the concentration of a two-
dimensional Sérsic profile using numerical integration, i.e., Sérsic index and
concentration index are perfectly redundant (see also Trujillo et al. 2001). Nu-
merically integrating the Sérsic profile to infinite radius yields the power law

C ≈ 2.770 · n0.466
S , (2.12)
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Figure 2.5: Comparing concentration and Sérsic indices.

Values of 31,288 COSMOS galaxies from the Zurich Structure & Morphology cat-

alogue (Sargent et al. 2007) (points) with the numerical solution (solid curve) and

power-law fit of Eq. (2.13) (dashed curve). Shown are unflagged galaxies with

I < 22.5, and valid axis ratios (0 < q ≤ 1). Concentration indices are predicted

from analytic Sérsic profiles using numerical integration out to one Petrosian radius.

which provides a good approximation for the exact numerical solution for
0.5 ≤ nS ≤ 7. The resulting concentration values of nS = 0.5, 1 and 4 are
identical to those given by Bershady et al. (2000). Integrating the Sérsic profile
to one Petrosian radius instead of infinity, the approximate solution is

C ≈ 2.586 · n0.305
S . (2.13)

Obviously, any declining radial profile can be mapped onto the concentra-
tion index this way, irrespective of whether or not it is a good description of a
galaxy. Therefore, Fig. 2.5 also compares this theoretical expectation with the
estimated concentration indices and Sérsic indices of 31,288 COSMOS galax-
ies from the Zurich Structure & Morphology catalogue (Scarlata et al. 2007;
Sargent et al. 2007).9 Evidently, the independent estimates of concentration 9http://irsa.ipac.

caltech.edu/data/COSMOS/

datasets.html
indices conducted by Scarlata et al. (2007) and of Sérsic indices conducted by
Sargent et al. (2007) are in excellent agreement with the theoretical predic-
tion of Eq. (2.13). This clearly demonstrates that concentration and Sérsic
indices are not only theoretically equivalent parametrisations but, in the case
of COSMOS galaxies, also providing largely unbiased estimates of similar qual-
ity. Nevertheless, this single example does not supersede a detailed study of
potential biases that may occur in practice. In particular, the COSMOS data
shown in Fig. 2.5 exhibits a large scatter that may hide biases.
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2.3.2 Simulating ellipticity and lopsidedness

Presently, we want to simulate two-dimensional Sérsic profiles exhibiting ellip-
ticity and a certain type of asymmetry, namely lopsidedness, which essentially
describes an offset between peak of light and centre of light. In order to intro-
duce ellipticity and lopsidedness analytically, we apply the shear and flexion
transformations from gravitational weak lensing (Goldberg & Bacon 2005)
which are briefly resumed now.

Given the complex ellipticity, ε = ε1 + i ε2, the ratio of semi-minor axis b
over semi-major axis a is

q =
b

a
=

1− |ε|
1 + |ε|

≤ 1 (2.14)

and the orientation angle θ is

θ =
1

2
arctan

(
ε2
ε1

)
. (2.15)

Then, the “sheared” coordinates, (x′1, x
′
2), are given by(

x′1
x′2

)
=

(
1− ε1 −ε2
−ε2 1 + ε1

)
·
(
x1

x2

)
. (2.16)

For given pixel coordinates (x1, x2), we then evaluate the model at (x′1, x
′
2).

Similarly, the flexion transformation is parametrised by the first flexion

F = F1 + iF2 (2.17)

and the second flexion

G = G1 + iG2 . (2.18)

Given these parameters, we compute the derivatives of the gravitational shear
γ = (γ1, γ2),

γ1,1 =
1

2
(F1 +G1) (2.19)

γ2,2 =
1

2
(F1 −G1) (2.20)

γ1,2 =
1

2
(G2 − F2) (2.21)

γ2,1 =
1

2
(G2 + F2) . (2.22)

Based on these derivatives, we compute the two matrices

Dij1 =

(
−2γ1,1 − γ2,2 −γ2,1

−γ2,1 −γ2,2

)
(2.23)
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Figure 2.6: Impact of ellipticity on concentration estimates.

Panel a shows the distribution of axis ratios q = b/a for 2,272 SDSS galaxies from

the data sample of Fukugita et al. (2007). Panel b shows concentration estimates

using circular isophotes for elliptical Sérsic profiles with nS = 0.5 (solid line), nS = 1

(dashed line), nS = 2 (dotted-dashed line), and nS = 4 (dotted line).

and

Dij2 =

(
−γ2,1 −γ2,2

−γ2,2 2γ1,2 − γ2,1

)
. (2.24)

Using these matrices, we do not evaluate a flexed Sérsic profile at position
~x = (x1, x2), but rather at position

x′i = xi +
1

2
Dijkxjxk . (2.25)

The scaling of the coordinates by the scale radius β of the Sérsic profile is
applied prior to this flexion transformation. In fact, the flexion transformation
of Eq. (2.25) produces a second solution of ~x′ = 0, which corresponds to a
secondary image in weak lensing. We only consider cutouts with just one
image, where the other image resulting from the second solution to ~x′ = 0 is
far away.

2.3.3 Example II: Steepness of light profile vs. el-
lipticity

Our second example is the intertwinement of the steepness of the radial light
profile and the ellipticity. These two are certainly the most important morpho-
logical observables listed in Sect. 2.1, having the largest impact on parametri-
sation results.

It is obvious that estimates of the steepness of the radial light profile must
take into account ellipticity. Therefore, it is necessary to use elliptical isophotes
in the case of the concentration index or to fit a two-dimensional Sérsic profile
that is enhanced by an ellipticity parameter. Unfortunately, in the case of the
SDSS, the aperture radii containing 50% and 90% of the total image flux given

– 21 –



CHAPTER 2. PARAMETRISING GALAXY
MORPHOLOGIES

in the SDSS database are chosen as circular apertures (Strauss et al. 2002).
This implies that estimates of the concentration index drawn from these val-
ues may be biased. In fact, this bias was already discussed by Bershady et al.
(2000). They investigated how the concentration index changes with axis ra-
tio for samples of real galaxies of similar morphological types. Bershady et al.
(2000) claim that using circular apertures causes an overestimation of concen-
tration indices of at most 3% and is therefore negligible. We investigate this
effect in Fig. 2.6 for a realistic range of axis ratios, as is evident from panel a.
Panel b shows how the concentration index is influenced by the axis ratio for
Sérsic profiles with fixed Sérsic indices, corresponding to galaxy samples of
similar morphologies as in Bershady et al. (2000).10 Evidently, for q & 0.5 –10Obviously, Sérsic profiles

are rather idealised and by far
not as realistic as the sam-
ple used by Bershady et al.
(2000). However, this does
not hamper the validity of
this test, but rather serves the
purpose of isolating this bias.
Apart from that, there is no
difference in both studies.

which is the majority of galaxies in the given set – the bias is negligible. There
are galaxies with q < 0.5, which are typically disc-like galaxies with shallow
light profiles. For those objects, concentration estimates based on circular
isophotes are substantially overestimated (≈ 30% for nS = 1). This bias is not
negligible. Moreover, this systematic overestimation of concentration indices
would cause highly inclined disc galaxies to be confused with roundish galaxies
that actually exhibit steeper light profiles, as is evident from Fig. 2.6. Con-
sequently, this bias is problematic when using concentration indices in order
to classify disc galaxies. Bershady et al. (2000) based their investigation on
estimated concentration indices of real galaxies. Hence, the most likely origin
of this discrepancy in our results is that the intrinsic scatter in the real data
used by Bershady et al. (2000) hid this bias. Considering ellipticity and circu-
lar concentration index together – instead of using an elliptical concentration
index – is not likely to solve this problem. The reason is that incorporating
an ellipticity estimate may add information about the cause of the bias of
the circular concentration index, but it does not provide information about
the effect of this bias. Finally, we want to emphasise that Fig. 2.6 must not
be used to calibrate the biased concentration estimates resulting from circu-
lar apertures. The reason is that such a correction would require that real
galaxies are indeed Sérsic profiles. Moreover, also the study of Bershady et al.
(2000) cannot be used for such a purpose, because the bias clearly depends
on the intrinsic concentration index. This means that such a correction would
require prior knowledge about the object’s true concentration.

Vice versa, Melchior et al. (2010) showed in the context of weak gravita-
tional lensing that ellipticity measurements using shapelets are strongly biased
in the case of steep profiles. In other words, shapelets fail to provide reliable
ellipticity estimates because they do not properly account for the steepness of
the radial light profile. This impressively demonstrates that these two observ-
ables are closely intertwined.

2.3.4 Example III: Impact of lopsidedness on cen-
troid estimation

As a third example for the intertwinement of morphological observables, we
consider the impact of lopsidedness on centroid estimates and the resulting pa-
rameter estimation using two-dimensional flexed Sérsic profiles. The strength
of the flexion transformation is parametrised by F1, F2, G1, and G2. There
is no pixel noise in this simulation. Figure 2.7 shows Gaussian profiles result-
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Figure 2.7: Gaussian profiles of different lopsidedness.

The applied flexions are F1 = 0.0 (left panel), F1 = 0.0325 (centre panel), and

F1 = 0.065 (right panel). The resulting profiles exhibit realistic lopsidedness. All

profiles are evaluated on a 1000×1000 pixel grid using a scale radius of β = 50.

White diamonds indicate the maximum position.

ing from this transformation. The resulting distortions are not unrealistically
strong.

In Fig. 2.8 we investigate the impact of this type of asymmetry on the
centroid, the asymmetry index and the concentration index. The first and
foremost consequence is that in the presence of asymmetry the maximum
position and the centre of light as given by

~̂x0 = 〈~x〉 =

∑
n fn~xn∑
n fn

, (2.26)

where ~xn and fn denote the position vector and value of pixel n, do not coincide
anymore. Hence, we call this special type of asymmetry “lopsidedness”. The
centre of light ~xcol = 〈~x〉 and the maximum position ~xmax coincide if and
only if the light distribution is symmetric. As is evident from Fig. 2.8, the
lopsidedness is stronger for steeper profiles, where the maximum lopsidedness
is |~xcol − ~xmax|/β ≈ 0.25. Moreover, Fig. 2.8 demonstrates that, especially for
steep profiles, estimates of asymmetry and concentration strongly depend on
the choice of centroid. Asymmetry indices estimated with respect to maximum
and centre of light may differ substantially in the presence of lopsidedness
considering the allowed parameter range.11 Moreover, Fig. 2.8 reveals that 11The steps in panel (c) are

due to the computation of
Acol, since ~xcol is changing as
F1 increases. Whenever ~xcol

enters a new pixel, the set
of pixels used for computing
Acol changes. There are also
steps in Ccol, but they are
very small.

the concentration estimated with respect to the maximum position is almost
insensitive to lopsidedness, whereas the concentration estimated with respect
to the centre of light can be biased low by up to 15%. In Fig. 2.5, the observed
concentration indices were estimated with respect to to the centre of light
rather than the maximum position (cf. Scarlata et al. 2007). This may provide
an explanation for the large scatter in Fig. 2.5.

We have demonstrated that the parametrisation results differ significantly
depending on whether we use the centre of light or the maximum position
as centroid. How do we resolve this ambiguity? And how do we estimate
the maximum position in practice, when we suffer from pixel noise? If the
parametrisation scheme was model-based, the model would define the centroid
during the fit procedure – even in the presence of pixel noise. For instance, the
Sérsic profile should use the maximum position as centroid, whereas shapelets
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Figure 2.8: Impact of lopsidedness on various morphological quantities.
Impact on centroid (a), asymmetry with respect to maximum (b), absolute difference
of asymmetries with respect to centre of light and maximum (c), concentration with
respect to maximum (d), and relative difference of concentrations with respect to
centre of light and maximum (e). Lopsidedness leads to a difference in maximum
position and centre of light. Furthermore, lopsidedness creates asymmetry. Asymme-
tries evaluated with respect to the maximum or centre of light can differ substantially
given that A ∈ [0, 2]. The concentration evaluated at the maximum position is almost
insensitive to lopsidedness. However, the concentration with respect to centre of light
is strongly underestimated. All Sérsic profiles are evaluated on a 1000×1000 pixel
grid using β = 50. See footnote for explanation of the steps in panels (c) and (e).

can use both maximum position or centre of light. However, since C, A and
M20 are not model-based, we have to resort to convention or ad-hoc solutions.
Concerning the asymmetry index, Conselice et al. (2000) solved this problem
by searching for the position that minimises the value of the asymmetry index,
also considering resampling the image on a refined pixel grid. They were able
to show that there are usually no local minima of asymmetry indices and hence
that their method is stable. In the case of the concentration index, using the
maximum position appears to be more plausible than the centre of light, since
Cmax appears to be robust against lopsidedness. Unfortunately, the concen-
tration index does not provide us with model and residuals, hence we cannot
estimate the most likely maximum position in the presence of noise. However,
we can apply the same ad-hoc solution that Conselice et al. (2000) introduced
for the asymmetry index, by searching the position that maximises the con-
centration estimate. Nevertheless, this method increases the computational
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Figure 2.9: Impact of lopsidedness on ellipticity estimates.

The real parts are biased (a) while the imaginary parts are not (b). Considering

0 ≤ |χ̂col| < 1, the real part is strongly biased by the lopsidedness. The imaginary

part is unbiased due to the geometry of F1 (cf. Fig. 2.7). All Sérsic profiles are

evaluated on a 1000×1000 pixel grid using β = 50.

effort tremendously such that the required computation time is approximately
of the same order as, e.g., fitting a Sérsic model. Evidently, concentration
and asymmetry estimates are neither easy to implement nor computationally
faster than model-based approaches.

2.3.5 Example IV: Impact of lopsidedness on ellip-
ticity estimates

As our last example, we discuss the impact of asymmetry on estimators of
ellipticity. Again, we simulate asymmetry as lopsidedness as in the previous
section. We apply flexion transformations to two-dimensional Sérsic profiles
without noise. However, we do not apply shear transformations, i.e., all pro-
files have no intrinsic ellipticity. From the pixellised images we then estimate
the second moments of the light distribution,

Qij =

∑
n In(xn,i − x0,i)(xn,j − x0,j)∑

n In
, (2.27)

where ~x0 is the point of reference, e.g., centre of light or maximum position.
Using the second moments, we compute the ellipticity estimator (e.g. Bartel-
mann & Schneider 2001)

χ̂ =
Q11 −Q22 + 2iQ12

Q11 +Q22
. (2.28)

This estimator is related to the axis ratio via q = b
a =

√
1−|χ̂|
1+|χ̂| ≤ 1 and to the

orientation angle θ via tan(2θ) = =(χ̂)
<(χ̂) . If this estimator detects any ellipticity,

it is completely artificial, i.e., it indicates a bias.
Figure 2.9 shows results of this simulation. For perfectly symmetric profiles

(F1 = 0) the estimator indeed does not detect any ellipticity. However, if F1
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increases, the ellipticity estimator will be biased. The bias is stronger for
steeper profiles. The maximum bias is <(χ̂col) ≈ 0.13, which corresponds to
an axis ratio of b/a ≈ 0.877 and is substantial.

We conclude from this simulation that asymmetries have a potentially
strong impact on ellipticity estimates, i.e., asymmetry and ellipticity are in-
tertwined. For instance, this is relevant in the case of using elliptical isophotes
for estimating the concentration index.

2.3.6 Reliability assessment

In the previous sections we have demonstrated that some important morpho-
logical observables cannot be measured independently of each other. Given
this insight, it cannot be guaranteed that estimates of an individual observ-
able result in a parametrisation which is unbiased by the other observables.
As all the parametrisation schemes mentioned in Sect. 2 are derived on rather
restrictive assumptions (cf. Sect. 2.2.5), their flexibility in describing arbitrary
galaxy morphologies is therefore limited. Consequently, it cannot be expected
that these schemes provide accurate descriptions of all individual objects in a
given data sample.

Can we assess the quality or reliability of the parametrisation results for
individual objects, i.e., can we detect objects where the parametrisation failed
in order to sort them out?12 If we are using a model-based parametrisation12Note that this task is com-

pletely different from testing
the reliability using simula-
tions. Such simulations al-
low to assess and calibrate
a parametrisation scheme in
general, but they do not help
in detecting parametrisation
failures for individual objects.

scheme (e.g., shapelets or Sérsic profiles), the residuals of the resulting best fit
provide us with an estimate of the goodness of fit. For instance, a residual map
can reveal systematic mismodelling. However, if the parametrisation scheme is
not model-based – as in the case of CAS, M20 and Gini – we have no residuals
and hence we have no way of assessing the reliability for individual objects.13

13Note that reliability as-
sessment and error estima-
tion are two different tasks.
Error estimation is possible
for model-independent ap-
proaches, e.g., via bootstrap-
ping the imaging data.

2.3.7 How to disentangle observables

As we showed above, morphological observables are intertwined and cannot
be measured independently. Nevertheless, there is a way to get disentangled
estimates.

Let us consider two morphological observables A and B (e.g., Sérsic index
and ellipticity). Intertwinement means that the joint probability of A and B
does not factorise, i.e.

prob(A,B|data) 6= prob(A|data) prob(B|data) . (2.29)

Using Bayes’ theorem, we can rewrite the joint probability of A and B,

prob(A,B|data) =
prob(A,B) prob(data|A,B)

prob(data)
, (2.30)

where prob(A,B) denotes the joint prior probability of A and B,
prob(data|A,B) is the likelihood function and prob(data) a normalisation fac-
tor. A model that simultaneously measures A and B provides us with the
likelihood function. For instance, in the case of Gaussian residuals, this like-
lihood is

prob(data|A,B) ∝ e−χ2/2 . (2.31)
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We then get independent estimates of A and B via marginalisation

prob(A|data) =

∫
dB prob(A,B|data) , (2.32)

prob(B|data) =

∫
dAprob(A,B|data) . (2.33)

Obviously, this only works for model-based parametrisation schemes, since
otherwise we do not have residuals, i.e., the concept of a likelihood function is
undefined. In other words, even if we found a model-independent parametri-
sation scheme that accounts for all observables simultaneously, we would not
know how to disentangle the estimates. In addition to reliability assessment,
this is another strong argument in favour of model-based approaches.

The marginalisation integrals of Eqs. (2.32) and (2.33) are usually very
hard to evaluate, unless we use Markov-Chain Monte-Carlo methods (e.g.
MacKay 2008). Using such methods for model fitting, we get the marginali-
sations for free, without any further effort.

2.4 Impact of PSF on the concentration in-

dex

In Sect. 3, we introduced the notion of intertwinement that may systematically
influence morphological parameters. Another important origin of systematic
effects is the point-spread function (PSF), as we illustrate in this section. The
fact that parameters such as the concentration index may be influenced by
the PSF is not new but has been long known. For instance, Scarlata et al.
(2007) find that the PSF has a significant effect for objects with half-light radii
smaller than two FWHM of the HST ACS PSF and with high Sérsic index,
while the effect is negligible for larger objects. In an attempt to overcome
this bias, Ferreras et al. (2009) applied an ad-hoc correction to the estimated
concentration index, based on the half-light radius. The aim of this section is
to reassess the impact of the PSF on estimates of the concentration index.

2.4.1 Forward vs. backward PSF modelling

In the case of model-based parametrisation schemes it is standard practice to
account for the PSF by forward modelling, i.e., to fit a convolved model to the
convolved data. In the case of parametrisation schemes that are not model-
based this is impossible and we have to resort to backward PSF modelling, i.e.,
we deconvolve the data before the actual parametrisation is done. However,
deconvolution in the presence of pixel noise is numerically unstable, so forward
PSF modelling is to be favoured if possible. This is another practical disad-
vantage of parametrisation schemes that are not model-based, because they
need to perform either an unstable backward modelling or they need to invoke
another ad-hoc correction calibrated in simulations. Such simulation-based
calibrations introduce a further assumption into the parametrisation process.
Model-based schemes are much more rigorous in this respect, since they allow
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Figure 2.10: Impact of PSF on estimation of concentration index.

Bias Ĉ−C for different PSF sizes and Sérsic profiles. All Sérsic profiles are evaluated

on a 1000×1000 pixel grid using β = 50 and bn = 2nS−1/3. With increasing PSF size

with respect to the object size the concentration index estimated from the convolved

image is increasingly underestimated.

for a mathematically well-defined PSF treatment that does not introduce any
further assumption.

2.4.2 Impact on concentration index

In the case of the ZEST, Sargent et al. (2007) accounted for the PSF by for-
ward modelling when estimating the Sérsic index, while Scarlata et al. (2007)
neglected the PSF when estimating the concentration index. The fact that the
results shown in Fig. 2.5 are in agreement with theoretical predictions suggests
that in the case of the COSMOS data the PSF can indeed be neglected for
estimates of the concentration index. Therefore, the theoretical prediction
supports the claim by Scarlata et al. (2007). Nevertheless, this single exam-
ple should not mislead us to generalise this conclusion. It is not guaranteed
that the PSF will have no impact on the concentration index for data sets
other than COSMOS that exhibit different signal-to-noise ratios, PSF, and
resolution.

In order to test the impact of the PSF on the concentration index, we
generate two-dimensional Sérsic profiles with nS = 0.5, 1, 2, 4 and convolve
these profiles with a Gaussian kernel of increasing FWHM.14 We expect that14We are aware that the

COSMOS PSF is not a Gaus-
sian. This test is meant to
demonstrate the principle of
this effect.

the concentration indices of very steep Sérsic profiles are severely underesti-
mated, since the PSF washes out the sharp peak. For lower Sérsic indices this
effect becomes smaller. For nS = 0.5, the concentration index should not be
affected at all, since convolution of a Gaussian with a Gaussian yields a Gaus-
sian, i.e., the steepness of the profile does not change. Figure 2.10 confirms
our expectation. If we ignore the PSF, we can significantly underestimate the
concentration index in particular for very compact objects such as elliptical
galaxies. Hence, this bias can be problematic when using the concentration
index for morphological classification, since it can cause elliptical galaxies to
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look more similar to disc galaxies than they actually are.

We conclude from this test that although the PSF is indeed negligible in the
case of the ZEST, this cannot be generalised to other data sets. Consequently,
a PSF treatment is always necessary at least when using the concentration
index. In particular concerning ground-based telescopes, the PSF is usually
not small compared to the peak exhibited by highly concentrated objects.

2.5 Parametrisation and classification

We now discuss the parametrisation of galaxy morphologies in the context
of classification, since our primary interest in this subject is to separate disc
galaxies from other types of galaxies. First, we show that if we do not account
for all morphological observables simultaneously, the effects discussed in the
previous sections can dilute discriminative information. Second, we show that
all parametrisation schemes discussed here form nonlinear or even discontinu-
ous parameter spaces. Third, we comment on the problem of high-dimensional
parameter spaces.

2.5.1 Loss of discriminative information

The conclusion from our investigation of the intertwinement was: If a parametri-
sation scheme does not account for all morphological observables simultane-
ously, the results will be systematically altered, i.e., biased. How does this in-
fluence classification results? For a large sample of objects, the origins of these
systematic effects have random strength. Consequently, we have to expect an
increase in the scatter of the resulting parameters. The sample distributions
of the parameters are broadened due to the additional scatter, i.e., peaks in
the distributions are reduced and troughs between different peaks are washed
out. In other words, we are loosing discriminative information.

We now demonstrate this broadening of parameter distributions: We gen-
erate samples of two-dimensional Sérsic profiles with fixed Sérsic indices of
nS = 1, 2, 3, 4. We then add a random ellipticity and a random lopsided-
ness via the flexion transformation of Eq. (2.25). The flexion parameter F1 is
drawn from a uniform distribution on the interval [−0.065, 0.065]. The ellip-
ticity is drawn from the joint distribution of Sérsic indices and axis ratios of
2,000 COSMOS galaxies randomly drawn from the Zurich Structure & Mor-
phology catalogue. We then sample the Sérsic profiles on a 1,000×1,000 pixel
grid using a scale radius of β = 50. We convolve the resulting image with a
Gaussian PSF of FWHM= 37.5 chosen such that the effects of Fig. 2.10 are
present but moderate. There is no pixel noise in this simulation. From the
pixellised image we then estimate the concentration index with respect to the
peak of light and the centre of light, since Sérsic index and concentration are
two different estimators for the same morphological feature. Concentration
estimates also take into account elliptical isophotes, where the ellipticity is
estimated via Eq. (2.27) with respect to the maximum position and the centre
of light, respectively.

Figure 2.11 shows the results of this simulation. The distributions of con-
centration indices have a finite width, in contrast to the distribution of the
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Figure 2.11: Discriminative information of concentration index.

Normalised sample distributions of concentration indices estimated with respect to (a)

the maximum position of unconvolved image, (b) the centre of light of unconvolved

image, and (c) the centre of light of convolved images. The modes in the distributions

correspond to samples of 10,000 profiles each with fixed Sérsic indices of exactly

nS = 1, 2, 3, 4 (from left to right). The finite widths of all modes in all distributions

indicate the loss of discriminative information. This is particularly evident in panel

(b), where the modes of very compact objects are substantially broadened. All Sérsic

profiles were evaluated on a 1000×1000 pixel grid using a scale radius of β = 50. The

Gaussian convolution kernel for panel (c) was evaluate on the same pixel grid with

FWHM= 37.5.

Sérsic indices, which are infinitely thin δ-peaks. Consequently, we are indeed
loosing discriminative information. In reality this loss may be even more se-
vere, since the distribution of Sérsic indices has itself a finite width. Moreover,
Fig. 2.11 reveals that the loss of discriminative information is stronger for the
concentration index evaluated at the centre of light. Especially for large Sérsic
indices the peaks are lowered and broadened. This is a strong argument to
evaluate the concentration at the maximum position (if it were accessible),
since we conserve more discriminative information. In the presence of an un-
considered PSF, the parameter space is substantially biased. This has the
advantage of reducing the width of the distributions, but it also shifts the dif-
ferent modes closer together. If the distribution of Sérsic indices had a finite
width, this would wash out the troughs separating the peaks.

This simulation demonstrates that an incautious use of the concentration
index (ignoring asymmetries and the PSF) can lead to a substantial loss of
discriminative information. In practice, this loss causes sample distributions
of the concentration index to be of low modality, despite the diversity of the
galaxy population – a problem already mentioned by Faber et al. (2007).
Consequently, the concentration index can only provide a lower bound on the
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number of classes in a given data sample. If the sample distribution of the
concentration is unimodal, this does not imply that all objects are of the same
type.

2.5.2 Nonlinear parameter spaces

This section highlights an additional problem, which is independent of the pre-
vious considerations. It is based on the fact that all parametrisation schemes
discussed here are nonlinear in the data. Consequently, the resulting mor-
phological parameters inevitably form nonlinear spaces. For instance, Fig. 2.5
demonstrates that COSMOS galaxies populate a nonlinear submanifold in the
two-dimensional parameter space spanned by concentration index and Sérsic
index. In fact, the nonlinear submanifold is described by Eq. (2.13), i.e., it
is known which is a rare situation. If the parameter space is nonlinear, the
distance metric will be nonlinear, too. Although this fact may be known, it is
typically ignored in practice. Usually, the Euclidean metric is employed when-
ever a distance-based algorithm is used, e.g., a principal components analysis
(Scarlata et al. 2007) or classification algorithms (e.g. Gauci et al. 2010). The
crucial question is: Does ignoring the nonlinearity and employing the Eu-
clidean distance leads us to misestimate the true distances between galaxy
morphologies in the parameter space? If so, galaxies may seem to be more
similar or less similar than they actually are and hence distance-based classifi-
cation algorithms may face serious problems. There are only few classification
algorithms that do not rely on distances (e.g. Fraix-Burnet et al. 2009).

2.5.2.1 Definition of nonlinearity

Let us consider a parametrisation P (I) of an image I. This parametrisation
is said to be linear in the image data, if

P (α IA + β IB) = αP (IA) + β P (IB) (2.34)

for any two images IA and IB and any real-valued α and β. Otherwise P is
nonlinear.

We begin by considering CAS (Eqs. (2.1)–(2.3)). Apart from the obvious
nonlinearities in C due to the logarithm and the ratio of radii, the computation
of the radii containing 20% and 80% of the total flux itself is highly nonlinear.
The nonlinearities in A and S are caused by the fractions and absolute values
in the numerators. Gini coefficient (Eq. (2.6)) and M20 (Eq. (2.5)) are both
nonlinear in the data, too. For both of them the major nonlinearity is hidden
in the sorting of the pixel values. The Sérsic model given by Eq. (2.7) contains
the Sérsic index and the scale radius as nonlinear parameters.

The nonlinearity of (spherically symmetric) shapelets is due to the scale
radius β and the centroid ~x0. Both enter the basis functions nonlinearly, as is
evident from Eq. (2.11). The nonlinearity of shapelets has been investigated
in detail by Melchior et al. (2007), so we do not need to elaborate on this here.
In the case of sérsiclets, the Sérsic index is another nonlinear model parameter
in addition to the scale radius.
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Figure 2.12: Profiles used for demonstration of nonlinearity.

All objects are lopsided and have been evaluated on a 1,000×1,000 pixel grid with

scale radius β = 50. No intrinsic ellipticity was applied. All maximum positions are

identical. Profile I1 (left) has flexion G1 = 0.1 and nS = 0.5. Profile I2 (centre) has

flexion F1 = 0.05 and nS = 1, i.e., it resembles a disc galaxy. Profile I3 (right) has

flexion G1 = −0.1 and nS = 4, i.e., it resembles an elliptical galaxy.

2.5.2.2 Demonstration of nonlinearity of C, A & Gini

As emphasised above, CAS, Gini, M20 and the Sérsic index are nonlinear in
the data. The crucial question is: Is the nonlinearity severe or can we assume
local flatness in the parameter space and use the Euclidean metric as an ap-
proximation? In order to answer this question, we now show a demonstration
using three Sérsic profiles with different Sérsic indices and different flexion
values as shown in Fig. 2.12. There is no pixel noise in this simulation. We
perform a linear transformation in the image space such that two images IA
and IB linearly transform into each other, i.e.

I(α) = (1− α)IA + αIB , (2.35)

where α ∈ [0, 1] parametrises this linear transformation. In reality, the su-
perpositions of this linear transformation may not represent viable galaxy
morphologies, e.g., α = 0.5 for I1 ↔ I3. A proper trajectory should be a
geodesic on the submanifold of viable morphologies. If this submanifold is lin-
ear, the trajectory defined by Eq. (2.35) will pass through viable morphologies
only. If it is nonlinear, it will add additional nonlinearity to this test. This
means that even though Eq. (2.35) passes through unrealistic morphologies in
this setup, it provides a lower limit to the nonlinearity. For 100 equidistant
values of α ∈ [0, 1] we evaluate the mixed image I(α) in pixel space and then
estimate the concentration and asymmetry indices with respect to the maxi-
mum position. We also estimate the Gini coefficient. Figure 2.13 shows the
trajectories in the subspaces of C, A and Gini. Examples I1 and I2 have very
similar Sérsic indices and flexion parameters, hence their transition produces
trajectories that are only moderately nonlinear. However, example I3 is very
different from I1 and I2 and thus its transitions produce trajectories that ex-
hibit substantial nonlinearities. As example I3 uses a de Vaucouleur profile
and thus resembles an elliptical galaxy, while example I2 uses an exponential
profile and thus resembles a disc galaxy, this nonlinearity leads us to under-
estimate the difference between both galaxy types when using the Euclidean
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Figure 2.13: Trajectories in CA-Gini subspaces revealing nonlinearities.

Top left: Trajectories in CA space. Top right panel: Trajectories in Gini-A space.

Bottom left: Trajectories in C-Gini space. In this simulation the nonlinearity is

induced by the different lopsidedness of all objects (cf. Fig. 2.12). The asymmetry

is evaluated with respect to the maximum position, whereas the concentration is

evaluated with respect to the centre of light.

metric. Note that the nonlinearities in Fig. 2.13 are primarily induced by the
lopsidedness via the asymmetry parameter, as is evident from the centre panel
where A is not shown and virtually all nonlinearity is gone.

2.5.2.3 Discussion

We conclude from this simulation that for galaxy morphologies exhibiting real-
istic asymmetries the Euclidean distance is a very poor approximation to dis-
tances in parameter space. Consequently, any algorithm based on Euclidean
distances would severely underestimate the true distances, i.e., objects would
appear more similar than they actually are. This may be an explanation why
the drop in the spectrum of eigenvalues of the principal components analysis
of Scarlata et al. (2007) (their Fig. 2) – which justifies the reduction of dimen-
sionality – is not very decisive. This is no particular drawback of C, A and
Gini, but applies to all other parametrisation schemes discussed here. It is
highly questionable whether a “calibration” of the Euclidean distance in order
to account for the nonlinearity is possible. The reason for this is that, due to
nonlinearity, the distance is an unknown function of the positions of both ob-
jects in parameter space, i.e., the distance depends on the morphology.15 One 15If galaxies were Sérsic

profiles, we could deduce
the metric of the parameter
space spanned by Sérsic and
concentration index from
Eq. (2.13).

possible solution is to try to estimate the true distance via a linear transforma-
tion as given by Eq. (2.35), although that is computationally very expensive.
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Figure 2.14: Discontinuity of concentration index and M20.

For poor sampling (small β), concentration index (top) and M20 (bottom) exhibit

substantial discontinuities. For better sampling (larger β) the discontinuities decrease.

The transition was between two Sérsic profiles with nS = 1 and nS = 3 and no

intrinsic ellipticity or lopsidedness. The scale radii were β = 5, β = 10 and β = 15,

respectively, for the exponential profile. The scale radii for nS = 3 are a factor of 3

larger as the profile is more compact. We used Eq. (2.8) in this test, i.e., the scale

radii quoted here are half-light radii. The profiles were evaluated on a 500×500 pixel

grid.

Another option is to employ a method called “diffusion distance” (Richards
et al. 2009) in order to estimate the true nonlinear distances.

2.5.3 Discontinuous parameter spaces

In Fig. 2.13 we used images simulated on a 1,000×1,000 pixel grid. What hap-
pens if we reduce the object size? In Fig. 2.14 we investigate the behaviour
of concentration index and M20 under a linear transformation between two
Sérsic profiles with nS = 1 and nS = 3, i.e., a profile resembling a disc galaxy
and steeper profile resembling an elliptical galaxy. In fact, the linear transfor-
mation between both profiles corresponds to varying bulge-disc compositions
and thus can be interpreted as a morphological sequence from bulge-less disc
galaxies (Scd) over bulge-dominated discs (Sa) towards elliptical galaxies with-
out any disc. C and M20 exhibit substantial discontinuities due to pixellation
effects. These effects increase for decreasing resolution, i.e., decreasing β in
Fig. 2.14.

In the case of C, the discontinuities occur because the radii containing
20% and 80% of the total image flux can only change in discrete steps. With
increasing resolution, the pixel size decreases and the discontinuities of R20 and
R80 become smaller. Hence, this is not a problem for well resolved galaxies
as in Fig. 2.13. However, it is a problem for poorly sampled galaxies. In
this case, we can overcome this problem by interpolating the pixellised image
and integrating numerically. Unfortunately, this would drastically increase the
computational effort. In fact, the discontinuity of the concentration index has
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already been observed by Lotz et al. (2006) but they used real galaxy images
in their investigation, wherefore they could neither isolate this effect and nor
infer resolution limits.

In the case of M20, the origin of the discontinuity is the sum over the
second-order moments in the numerator of Eq. (2.5), which stops as soon as
20% of the total flux are reached. This threshold is the problem, as it causes
the set of pixels fulfilling this criterion to change abruptly during the linear
transformation. Again, the discontinuities of M20 decrease with increasing
resolution. However, for poorly sampled galaxies we cannot overcome these
discontinuities by interpolation, since the definition of M20 only makes sense
for pixellised images.

A parametrisation scheme forming discontinuous parameter spaces is prob-
lematic because it is not guaranteed that objects with similar morphologies
end up in neighbouring regions of the parameter space. This implies that
distances in the space formed e.g., by M20 do not necessarily correlate with
the similarity of galaxy morphologies. We need similar morphologies to have
smaller distances than dissimilar morphologies, but this is not guaranteed for
C and M20 if the resolution is poor. Figure 2.14 suggests that such discon-
tinuities become important when disc galaxies are smaller than 10 pixels in
half-light radius and elliptical galaxies smaller than 30 pixels in half-light ra-
dius, maybe even earlier depending on the precise morphology. This applies
to ≈ 35% of all COSMOS galaxies with 0.5 ≤ nS ≤ 1.5 and ≈ 97.7% of all
COSMOS galaxies with 2.5 ≤ nS ≤ 3.5.16 Evidently, the problem of discon- 16The impact on elliptical

galaxies is so large because
these galaxies are very com-
pact in comparison to disc
galaxies.

tinuity is substantial in this case and neither concentration index nor M20

should be employed for morphological classification of the COSMOS galaxy
sample. In this case, we even cannot rely on hard-cut classifications and it is
highly questionable whether meaningful classification is possible at all in these
parameter spaces.

2.5.4 High-dimensional parameter spaces

Concerning classification, the current paradigm appears to favour low-
dimensional parameter spaces (e.g. Scarlata et al. 2007) that simplify the
analysis or even allow a visual representation. However, we have to keep in
mind that a high-dimensional parameter space may be necessary in order to
differentiate between different groups of galaxy morphologies. There is no as-
trophysical reason to expect that a two- or even three-dimensional parameter
space should be able to host such groups without washing out their differ-
ences. This solely depends on the complexity of the physics governing galaxy
morphologies.

On the other hand, basis-function expansions typically form parameter
spaces of high dimensionality. For instance, the morphological parameter space
used by Kelly & McKay (2005) had 455 dimensions. Apart from problems with
visualisation, we suffer from what is commonly called the curse of dimension-
ality (Bellman 1961): The hypervolume of a (parameter) space grows expo-
nentially with its number of dimensions.17 Consequently, the density of data 17Consider a hypercube of

edge length L in d dimen-
sions. Its hypervolume Ld

grows exponentially with d.

points in this parameter space is suppressed exponentially. In fact, a parame-
ter space with a hundred or more dimensions is virtually empty, regardless of
how many data is populating this space. Therefore, it is impossible to reliably
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model a data distribution in a parameter space of several hundred dimensions,
no matter how much data is available. Nevertheless, it is preferable to employ
a parametrisation scheme that produces a high-dimensional parameter space.
Loosely speaking, it is better to start with too much information than with
too little. We can overcome the curse of dimensionality, if we compress the
parameter space, i.e., if we reduce its number of dimensions by identifying
and discarding unimportant or redundant information. For instance, Kelly
& McKay (2004, 2005) applied a principal component analysis in order to
reduce the dimensionality of their parameter space. Unfortunately, principal
component analysis is inappropriate in the context of classification because
it diagonalises the sample covariance matrix, i.e., it assumes that the whole
data comes from a single Gaussian distribution. This assumption obviously
contradicts the goal of assigning objects to different classes. An alternative
approach to overcome the curse of dimensionality is to employ a kernel ap-
proach by describing the data using a similarity matrix. We demonstrated
in Andrae et al. (2010b) that this yields excellent results, e.g., allowing us to
classify 84 galaxies populating a 153-dimensional parameter space into three
classes.

The bottom line
� Morphological observables are intertwined and cannot be estimated indepen-

dently without introducing potentially serious biases, questioning the concep-
tion of most model-independent parametrisation schemes. Intertwinement can
wash out discriminative information in the classification context.

� Model-based approaches allow for forward PSF modelling, disentangling ob-
servables through marginalisation, and reliability assessment via model resid-
uals. Model-independent approaches do not and are therefore questionable.

� All parametrisation schemes form nonlinear parameter spaces with a poten-
tially highly nonlinear and unknown metric. Classification algorithms which
employ the Euclidean metric underestimate distances and therefore suffer from
a loss of discriminative information.

� For poorly resolved galaxies, concentration index and M20 form discontinuous
parameter spaces that do not conserve neighbourhood relations of morpholo-
gies and may therefore fool classification algorithms. This problem applies
to ≈ 38% of disc galaxies and ≈ 98% of elliptical galaxies in the COSMOS
sample.

� Concerning methods for parametrisation and classification of galaxy morpholo-
gies, there is a clear tendency towards oversimplification. Methodological
sophistication is necessary in order to optimally exploit the large databases
accumulated in the recent past and by future surveys.

� A model-based parametrisation scheme is required which accounts for all rel-
evant morphological observables and is highly flexible. In particular, it has to
account for azimuthal substructures such as spiral-arm patterns, since we are
interested in the classification of disc galaxies.
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3
Polar sérsiclets and beyond

As we have seen in the previous chapter, there has been substantial effort to
define automated parametrisation schemes for galaxy morphologies. Unfortu-
nately, we have also seen that these parametrisation schemes usually invoke
rather restrictive assumptions such that they lack the flexibility to describe the
huge variety of different galaxy morphologies present in modern databases. In
particular, none of these schemes is capable of representing the rich azimuthal
structure of disc galaxies, whereof spiral-arm patters are of particular inter-
est for our investigations of angular-momentum correlations because through
the handedness of their winding they enable us to estimate the rotation sense
of the disc. Conversely, basis-function expansions are explicitly designed to
model this rich azimuthal structure. However, the shapelet basis functions
suffer from severe modelling failures since their Gaussian weight function is
not a good match for the radial light profiles of real galaxies, as was shown
by Melchior et al. (2010). Consequently, it is obvious to set up a set of basis
functions which are an orthogonalisation of the Sérsic profile. This set of basis
functions is called sérsiclets. It was first introduced by Ngan et al. (2009)
but they faced severe implementation problems that prevented them to get
this method to work. Given the conclusions from the previous chapter, this
appears to be to most promising approach to faithfully parametrise and hence
classify disc galaxies.

3.1 General formalism

In this section, we describe the general recipe how to build a set of basis func-
tions, starting from the orthonormalisation of a chosen weight function. We
then briefly discuss the pros and cons of Cartesian and polar basis functions,
before touching on the issues of incorporating ellipticity and basis expansion.
This discussion is wholly general and we do not specialise on any basis func-
tions yet.
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3.1.1 Weight function and orthonormalisation

The first step for building a set of basis functions is to choose a weight function.
For the sake of simplicity, let us consider the one-dimensional case where we
want to build basis functions on the domain x ∈ D. In this case, the one-
dimensional basis function, Bn, of order n takes the generic form

Bn(x) = pn(x)w(x) , (3.1)

where pn denotes a polynomial of order n in x and w(x) is the weight function.
Therefore, the different modes of a set of basis functions only differ in their
polynomial parts, whereas the weight function is identical for all modes.

The second step is to orthonormalise these polynomials with respect to
the chosen weight function. Employing the Dirac notation from quantum
mechanics, we define

〈Bn|Bm〉 =

∫
D
dx p∗n(x)w∗(x)pm(x)w(x) , (3.2)

where ∗ denotes complex conjugate. It is straightforward to show that this
integral is a complex-valued scalar product, i.e., it is a positive-definite, Hermi-
tian, sesquilinear form on the linear space of complex-valued functions defined
on the domain x ∈ D. The squared absolute value of the weight function
w∗(x)w(x) = |w(x)|2 acts as a kernel or metric in this scalar product. The
desired result of the orthonormalisation is

〈Bn|Bm〉 = δmn . (3.3)

For certain weight functions, the orthonormal polynomials are known ana-
lytically, e.g. Hermite polynomials for a Gaussian weight function. For other
weight functions an analytic solution often does not exist and the orthonormal
polynomials have to be constructed numerically, e.g., using the Gram-Schmidt
procedure (see Sect. 3.7.2).

3.1.2 Cartesian basis functions

As galaxy images are two-dimensional, two-dimensional extensions of basis
functions are required. The first intuitive choice for building two-dimensional
basis functions are those that are separable in Cartesian coordinates (x, y),
since they are real-valued and naturally fit the rectangular pixel grid. Let us
consider the Gaussian weight function, which satisfies

e−x
2/2 · e−y2/2 = e−(x2+y2)/2 = e−r

2/2 , (3.4)

i.e., this Cartesian weight function is also spherically symmetric. In fact, the
Gaussian profile is the only possible weight function satisfying

w(x)w(y) = w(r) . (3.5)

All other Cartesian weight functions cannot be spherically symmetric. As an
example, Fig. 3.1 compares the Cartesian ground states (lowest order basis
function or 0-0 mode) when using the Gaussian profile and the Sérsic profile
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Figure 3.1: Cartesian ground states using different weight functions.

In the left panel the weight function is a Gaussian profile and it is a Sérsic profile

with nS = 2 in the right panel. Both ground states have a scale radius β = 15 and

are evaluated on a 101×101 pixel grid. Unless we employ the Gaussian profile, the

Cartesian weight function is not spherically symmetric.

as weight function. While the former provides a fair initial guess of some
galaxy’s morphology and therefore acts as useful ground state, the latter does
not resemble any known galactic shape. From these considerations we have to
conclude that Cartesian basis functions – apart from Gaussian-weighted – are
inappropriate for describing galaxy morphologies.

3.1.3 Polar basis functions

As we have seen, general Cartesian basis functions are ruled out by their
unphysical ground states. The alternative is to build basis functions that are
separable in polar coordinates (r, ϕ). Employing the language of quantum
mechanics again, polar basis functions are the eigenfunctions of the angular-
momentum operator and are specified by the eigenstate quantum numbers l
and m. These polar basis functions take the generic form

Blm(~x) = Blm(r, ϕ) = (2π)−1/2Rl(r)e
imϕ . (3.6)

We explain in Sect. 3.2.6 how to build real-valued models from these complex-
valued basis functions. The radial functions Rl(r) are real-valued and or-
thonormal, i.e.,∫ ∞

0
dr r Rl(r)Rl′(r) = δl,l′ . (3.7)

Note the functional determinant dr r which arises from integration in polar
coordinates. The Rl depend on the choice of the weight function,

Rl(r) = pl(r)w(r) , (3.8)

where pl(r) is a polynomial of order l in the radial coordinate r. The azimuthal
part does not depend on the weight function and is orthonormal due to∫ 2π

0
dϕ ei(m−m

′)ϕ = 2π δmm′ . (3.9)
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In fact, this is nothing else than the orthonormality of Fourier modes. Obvi-
ously, basis functions with ±m are their complex conjugates and thus linearly
independent of each other.

For a given maximum order Nmax, the radial index ranges from
l = 0, 1, . . . , Nmax and the azimuthal index from m = −l,−l + 2, . . . , l − 2, l,
i.e., m changes in steps of ∆m = ±2. The reason is that the polar ba-
sis functions are simultaneous eigenstates of the angular-momentum and the
Hamiltonian operator. Consequently, the creation of a right-handed quantum
is always accompanied by the destruction of a left-handed quantum and vice
versa. Moreover, if we allowed for ∆m = ±1, the resulting azimuthal ba-
sis functions would exhibit non-orthogonalities and the resulting coefficients
would be strongly correlated.

3.1.4 Elliptical basis functions

Due to the presence of pixel noise in real data and the finite resolution of
objects, we cannot decompose a given galaxy image into infinitely many basis
functions. Instead, we have to truncate the basis expansion at a certain maxi-
mum order. However, Melchior et al. (2010) pointed out that truncated series
of spherical basis functions give rise to a systematic underestimation of intrin-
sic ellipticities, i.e., ellipticity estimates are biased low. Consequently, we seek
to incorporate ellipticity into the design of our basis functions. The ellipticity,
ε, is introduced as a complex-valued quantity as described in Sect. 2.3.2 via
the shear transformation of Eq. (2.16). Axis ratio and the orientation angle of
the ellipse can then be computed from the complex ellipticity via Eqs. (2.14)
and (2.15).

3.1.5 Basis expansion

For the moment, let us assume that the set of basis functions is complete,
which means we can decompose an arbitrary image. Using Dirac notation,
completeness is expressed as

∞∑
l=0

l∑
m=−l,−l+2,...

|Blm〉〈Blm| = δ2(~x− ~x′) , (3.10)

where δ2(~x) denotes the two-dimensional Dirac delta function. Let us consider
a given image I(~x), which is a scalar-valued function of the two-dimensional
pixel position vector ~x. Then we can use the completeness relation of Eq.
(3.10) to derive

clm = 〈Blm|I〉 =

∫
d2xB∗lm(~x)I(~x) , (3.11)

where clm denotes the coefficient of basis function Blm in the linear expansion

I(~x) =

∞∑
l=0

l∑
m=−l,−l+2,...

clmBlm(~x) . (3.12)

– 40 –



CHAPTER 3. POLAR SÉRSICLETS AND BEYOND

This identity of I(~x) and its basis expansion will only hold strictly, if either we
can indeed fit infinitely many basis functions or I(~x) is the superposition of a
finite number of basis functions. In practice, neither is the case and Eq. (3.13)
is only an approximation

I(~x) ≈
Nmax∑
l=0

l∑
m=−l,−l+2,...

clmBlm(~x) (3.13)

that converges to I(~x) with increasing maximum order Nmax. Testing this
convergence enables us to assess whether a given set of basis functions indeed
satisfies the completeness relation defined by Eq. (3.10). Furthermore, the
integral in Eq. (3.11) turns into a summation in practice, due to the pixellation
of the imaging data.

3.2 Shapelets and sérsiclets

After introducing the general formalism, we now discuss the pros and cons of
specific choices for the weight function. We briefly comment on shapelets and
a prior attempt to introduce sérsiclets, also justifying the choice of the Sérsic
profile for orthonormalisation from a mathematical point of view. Finally, we
give our definition of polar sérsiclets.

3.2.1 Pros and cons of the Gaussian profile

When choosing the Gaussian profile as the weight function, we end up with
shapelets (Réfrégier 2003; Massey & Réfrégier 2005). This choice has some
important advantages: First, as discussed in Sect. 3.1.2, Cartesian shapelets
are the only reasonable Cartesian basis functions in the context of galaxy
morphologies. It is easier to fit and handle Cartesian basis functions than
polar ones. Second, as already mentioned in Sect. 2.2.4.1, shapelets are nearly
invariant under Fourier transformation, which renders convolution and espe-
cially deconvolution from the point-spread function an analytic operation in
shapelet space (Melchior et al. 2009). Third, due to the Gaussian, shapelets
also excel in further nice analytic properties other than analytic convolution.

However, as was shown by Melchior et al. (2010), shapelets can suffer from
strong biases that originate from the radial light profiles of galaxies potentially
being much steeper than a Gaussian profile, in particular for early-type galax-
ies. These biases manifest themselves as ring-like artefacts in the models and
the residual maps (cf. Fig. 3.6). They are able to wash out virtually all
the information about ellipticity of an object and are likely to affect other
morphological quantities in a similar way.

3.2.2 The first attempt to introduce sérsiclets

Given these findings about shapelets, it was obvious to employ the Sérsic
profile as weight function which is a much better match to the radial light
profiles of real galaxies. Consequently, this is likely to remove the strong biases
exhibited by shapelets. The resulting basis functions are called sérsiclets and
were first investigated by Ngan et al. (2009).
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Figure 3.2: Radial basis functions used by Ngan et al. (2009).

Radial basis functions orthonormalised on integration interval r ∈ [0, β] using a Sérsic

profile with nS = 2 as weight function. The vertical dashed lines indicate r = β, where

the orthonormalisation interval ends. The Sérsic profile is not able to suppress the

polynomials outside the orthonormalisation interval.

However, Ngan et al. (2009) faced a severe problem with sérsiclets. In a
simple test case, Ngan et al. (2009) observed that the polar sérsiclets were
incapable of fitting a given object. Even when increasing the number of basis
functions used for the decomposition, the model did not converge to the given
image data. This directly implies that the basis functions constructed by Ngan
et al. (2009) are not complete. This problem originates from the fact that Ngan
et al. (2009) orthonormalised their basis functions out to one half-light radius –
not on the interval r ∈ [0,∞[ – but then extended their basis functions beyond
this range. Figure 3.2 shows what happens in this case. In the inner region,
the basis functions may be orthonormal, but for larger radii the leading order
monomial in the radial polynomials dominates over the Sérsic profile. This
creates an artificial bump outside the region of orthonormality, which appears
in all modes of order l > 0 and becomes the dominant feature. Consequently,
these basis functions loose their linear independence, which explains the non-
convergence observed by Ngan et al. (2009).

Ngan et al. (2009) suggested to solve this problem by discarding all modes
with m 6= 0, i.e., all modes with azimuthal structure, and only maintain the
radial modes. While this approach may be viable for weak-lensing appli-
cations, where azimuthal structures are rarely visible, it does not solve the
actual problem, which is the extension beyond the orthonormalisation inter-
val. Moreover, the resulting basis functions may still represent an expansion
into radial modes, but it is not only radial structure of galaxies that is inter-
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esting. Rather, a description of azimuthal structures is required in order to
faithfully parametrise and classify disc galaxies. In fact, it is the ability to
describe azimuthal structure in a (theoretically) well defined way that makes
basis-function expansions of galaxy morphologies such a compelling approach.

3.2.3 Mathematical justification

The empirical relation found by Sérsic (1968) is a surprisingly good match to
the radial light profiles of real galaxies. This is the motivation to orthonor-
malise the Sérsic profile. We are now going to demonstrate that the Sérsic
profile is the first-order Taylor expansion of any light profile, which is a new
insight.18 First, this naturally explains why this profile is such a good fit to 18Ciotti & Bertin (1999) also

investigate a Taylor expan-
sion of the Sérsic profile in
their Appendix A. However,
they expand the profile in
powers of Sérsic index, not in
powers of radius.

real galaxies. Second, it provides a mathematical justification for an orthonor-
malisation of the Sérsic profile. Later in Sect. 3.7, we are also going to consider
higher-order Taylor expansions, going beyond the first-order expansion.

Let us consider the real, two-dimensional light profile of a galaxy I(~x)
projected onto the sky, which may exhibit arbitrary radial and azimuthal
structures. Due to observational effects, such as PSF, background noise and
pixellation, the observed light profile Iobs(~x) is degraded. For observations of
low quality, we cannot identify azimuthal structures anymore and only the
radial decline is left, i.e., Iobs(~x) ≈ Iobs(r). Let us further consider a rescaling
of the observed light profile p(r) = Iobs(r)/Iobs(0), such that 0 < p(r) ≤ 1.
Then we can take the logarithm of p(r) and due to log p(r) ≤ 0, for r > 0 we
can also take the logarithm a second time, introducing

p̃(r) = log(− log p(r)) . (3.14)

We now Taylor expand this function p̃(r) in log r at a characteristic radius
log β to first order, i.e., a constant plus the first nontrivial term,

p̃(r) ≈ A+B(log r − log β) = A+ log(r/β)B . (3.15)

Let us transform backwards now,

log p(r) = −ep̃(r) ≈ −eA(r/β)B (3.16)

and hence

p(r) ≈ exp
[
−eA(r/β)B

]
. (3.17)

All we need to do now is to identify the coefficients A and B of the Taylor
expansion in Eq. (3.15). If we simply rename these constants by B = 1/nS
and A = log(bn), then we have arrived at the definition of the Sérsic profile

pS(r) = exp

[
−bn

(
r

β

)1/nS
]

. (3.18)

This differs from Eq. (2.7) only by a constant factor of Iβe
bn . Evidently, the

Sérsic profile is the first-order Taylor expansion at radius β > 0. In other
words, in the limit of low resolution and low signal-to-noise ratios (where
substructures are negligible) any radial light profile is approximately a Sérsic
profile.19 19This is not true for radial

profiles that are not differen-
tiable, i.e., where no Taylor
expansion exists. However,
such profiles are unphysical.
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CHAPTER 3. POLAR SÉRSICLETS AND BEYOND

3.2.4 Mathematical derivation of radial parts

The crucial idea to overcome the problems faced by Ngan et al. (2009) is to
realise that we cannot expect a galaxy’s structure being well captured within
one half-light radius (see discussion in Sect. 2.2.3.1). For instance, disc galax-
ies may exhibit spiral-arm patterns in their outskirts. Therefore, we demand
orthonormality on the full interval r ∈ [0,∞[. Apart from solving the prob-
lems reported by Ngan et al. (2009), this also has the advantage that the
orthonormal polynomials exist analytically as we are going to show now. Our
starting point is the scalar product of two radial modes of orders l and l′,

〈l|l′〉 =

∫ ∞
0

dr r Rl(r/β)Rl′(r/β) exp

[
−b
(
r

β

)1/nS
]

(3.19)

where we have adopted Dirac notation from quantum mechanics. Rl(r) de-
notes the radial polynomials we are looking for and the Sérsic profile acts as
the weight function or “metric” of this scalar product. Note the functional
determinant dr r, which is due to our integration in polar coordinates. We
now change variables according to

u(r) = b

(
r

β

)1/nS

, (3.20)

such that

dr r = β2 nS
b2nS

u2nS−1du . (3.21)

The limits of integration do not change under this transformation. Then Eq.
(3.19) reads

〈l|l′〉 = β2 nS
b2nS

∫ ∞
0

du R̃l(u)R̃l′(u)u2nS−1e−u . (3.22)

The “new” weight function of this transformed scalar product is now of the
form uke−u, where k = 2nS − 1, and the corresponding set of orthogonal
polynomials are the associated Laguerre polynomials,

Lkl (u) =
euu−k

l!

dl

dul

(
e−uul+k

)
. (3.23)

The Lkl exist if and only if k > −1. This is guaranteed, since k = 2nS − 1 and
the Sérsic index satisfies nS > 0. The normalisation factor is∫ ∞

0
duLkl (u)Lkl (u)uke−u =

Γ(l + k + 1)

l!
, (3.24)

where Γ denotes the Gamma function. Consequently, the radial parts of the
sérsiclets read

Rl(r) =
1

Nl
L2nS−1
l

[
b (r/β)1/nS

]
exp

[
− b

2
(r/β)1/nS

]
(3.25)

with normalisation factor

Nl =

√
β2nS
b2nS

Γ(l + 2nS)

l!
. (3.26)
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Mind the factor of 1/2 in the exponent of Eq. (3.25), which arises from our
definition that the Sérsic profile is the weight function in Eq. (3.19). We could
also have defined Eq. (3.25) with a pure Sérsic profile, resulting in a factor
2 arising in Eq. (3.19). Fit results obtained from both definitions will not
differ, since these factors are absorbed in the parameter b. In the special case
of polar shapelets these expressions simplify. First, for nS = 0.5, we note that
k = 2nS − 1 = 0, which implies Γ(l + k + 1) = Γ(l + 1) = l! and simplifies
the associated Laguerre polynomial Lkl to the “normal” Laguerre polynomial
L0
l = Ll. Second, in order to obtain shapelets, we need to set b = 1. Therefore,

the radial parts of polar shapelets read

Rl(r) =
1√
β2/2

Ll

[
(r/β)2

]
exp

[
− r2

2β2

]
. (3.27)

The basis functions introduced by Massey & Réfrégier (2005) as “polar

shapelets” (their Eq. (8)) differ from Eq. (3.25) by using x|m|L
|m|
(l−|m|)/2(x2)

instead of Ll(x
2). These two expressions are not identical, e.g., consider any

state with l > 0 and m = 0. Consequently, the “polar shapelets” defined by
Massey & Réfrégier (2005) are incorrect and their basis functions cannot be
orthogonal. For instance, consider the scalar product

〈l = 1,m = 1|l = 2,m = 0〉 ∝
∫ ∞

0
dr r e−r

2
r|1|L1

0(r2)r|0|L0
1(r2) , (3.28)

which equals −
√
π/8 6= 0, i.e., the two states |l = 1,m = 1〉 and |l = 2,m = 0〉

are not orthogonal. However, the linear independence is preserved because
no two states with identical values of m (otherwise the azimuthal parts eimϕ

would differ) and different values of l can have identical x|m|L
|m|
(l−|m|)/2(x2).

3.2.5 Definition of polar sérsiclets

Given the radial parts derived in the previous section, the basis functions of
polar sérsiclets read

Bl,m(r, ϕ) =
1√
2π
Rl(r)e

imϕ . (3.29)

Figure 3.3 displays an example of sérsiclet basis functions. Apart from the
linear expansion coefficients, sérsiclets have the following nonlinear model pa-
rameters:

• The maximum order Nmax of the expansion.

• The Sérsic index nS .

• The scale radius β.

• The centroid position ~x0.

• The complex ellipticity ε.
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It is advantageous to use the real and imaginary parts of the complex ellipticity
as model parameters, rather than orientation angle and axis ratio. Using the
orientation angle as parameter would cause severe problems with convergence
in the case of nearly spherical objects.

In the case of nS = 0.5 and b = 1 the polar sérsiclets reduce to the special
case of polar shapelets. Furthermore, for nS = 1 and b = 1, we get a set of
basis function that could be called “disclets”, since they have an exponential
profile as weight function. Similarly, we could define “de Vaucouleurlets”,
though elliptical galaxies usually do not exhibit azimuthal structures and a
basis expansion is not necessary. All these sets are special cases of Eq. (3.29).
Finally, we emphasise that when fitting a sérsiclet model, we always also fit a
Sérsic model, which is the ground state of the sérsiclets.

3.2.6 Real-valued models

Given the definition of polar sérsiclets in Eq. (3.29), these basis functions are
generally complex-valued. This is unphysical because observed galaxy images
always have real-valued pixel. Therefore, we have to impose a constraint that
removes the complex values. In the case of polar basis functions such as
sérsiclets, the model f(~x) of the data I(~x) takes the generic form

f(~x) =
∑
l,m

clmBlm(~x;β) , (3.30)

where the expansion coefficients

clm = alm + i blm (3.31)

are in general complex-valued, too, and alm, blm ∈ R. As the data is real-
valued, we impose the constraint

cl,−m = c∗l,+m (3.32)

onto the coefficients. It is easily shown that Eq. (3.30) becomes real-valued
under this constraint. The constraint of Eq. (3.32) limits the degrees of
freedom in our model as follows: For fixed l there are l + 1 possible values
of m, i.e., there are l + 1 coefficients clm of this radial order l. Equation
(3.31) suggests that there are 2(l + 1) free parameters, namely the real and
imaginary parts of every coefficient. Now, if l is an odd integer, there will
be no coefficient with m = 0 and thus Eq. (3.32) will half the number of
free parameters down to l + 1. If l is an even integer, the same argument
will apply to those coefficients with m 6= 0. For m = 0, Eq. (3.32) implies
that cl,pm0 is real-valued, i.e., the number of free parameters is halved, too.
Consequently, Eq. (3.32) ensures that there are only l+ 1 free parameters for
each l. Therefore, the polar model has

P =

Nmax∑
l=0

(l + 1) =
1

2
(Nmax + 1)(Nmax + 2) (3.33)

free parameters, which is the same number as in the case of a Cartesian model
of maximum order Nmax.
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Figure 3.3: Polar sérsiclet basis functions.

The model parameters are nS = 1, b = 1 and ε = 0. The real components of the

complex-valued basis functions are shown in the left panel, the imaginary components

in the right panel. The basis functions with m = 0 are wholly real. We note that the

polar basis functions exhibit lots of substructure in the central region which becomes

very small with increasing radial order l.

3.2.7 Interpretation of the Sérsic index

In the case of sérsiclet basis functions, the Sérsic index nS changes its inter-
pretation. First, nS regulates the steepness of the weight function, which is
a normal Sérsic profile. Second, via the steepness of the weight function, nS
also regulates the spatial scale on which the associated Laguerre polynomials
oscillate as is evident from Eq. (3.25). In simple words, there is a fixed relation
between steepness of the weight function and oscillation scale of the polynomi-
als. However, real galaxy morphologies do not necessarily obey such a relation.
For instance, viewing the same disc galaxy under different inclination angles,
the (apparent) steepness of the light profile varies while the scale of visible
substructures along the (apparent) semi-major axis remains constant. Fur-
thermore, the steepness of a disc galaxy’s bulge does not generally correlate
with the size and distribution of star-formation knots or spiral-arm patterns.
In practice, this can lead to modelling problems, if the steepness of the profile
and the range of oscillation scales required for a faithful description of a given
galaxy morphology do not match.

3.3 Measures and operations in sérsiclet

space

One advantage of modelling data is that certain operations and part of the
scientific inference can then be conducted in model space, rather than data
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space. We now briefly discuss several important operations in the model space
of sérsiclects.

3.3.1 Image flux and second moments

We now explain how to estimate flux and second moments from sérsiclet mod-
els. The flux F and the second moments Qij of a model image I(~x) are defined
as

F =

∫
d2x I(~x) (3.34)

and

Qij =
1

F

∫
d2xxixj I(~x) , (3.35)

respectively. Given the analytic form of polar sérsiclets, it is possible to derive
analytic expressions for F and Qij . However, for reasons that we are going to
explain in Sect. 3.5.4, we do not recommend using these analytic expressions.
Instead, we recommend estimating F and Qij from the best-fitting sérsiclet
model by sampling the model on the pixel grid of the data. These estimates
are then given by summations over the pixel grid,

F̂ =
∑
n

I(~xn) (3.36)

and

Q̂ij =
1

F̂

∑
n

xi,nxj,nI(~xn) . (3.37)

From the second moments we can then estimate the following morphological
parameters:

• The complex ellipticity of the overall model,

ε̂ =
Q̂11 − Q̂22 + 2iQ̂12

Q̂11 + Q̂22 + 2
√
Q̂11Q̂22 − Q̂2

12

. (3.38)

• The ratio q = b/a of semi-minor axis b to semi-major axis a according
to Eq. (2.14).

• The orientation angle θ according to Eq. (2.15).

• The root-mean-squared (RMS) radius,

R̂RMS =

√
Q̂11 + Q̂22 . (3.39)
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Figure 3.4: Rotation and parity flip in sérsiclet space.

Panel a: A random sérsiclet model. Panel b: The original model of panel a rotated

by 30◦. Panel c: The original model of panel a flipped.

3.3.2 Rotations in model space

One of the major advantages of polar basis functions is that rotations are
easily performed in model space, where we do not suffer from pixellation.
Essentially, rotating a model counter-clock wise by some angle α amounts to
replacing the azimuthal angle ϕ by ϕ′ = ϕ + α. From Eq. (3.6) it is evident
that the transformed coefficients are then given by

c′lm = clme
imα . (3.40)

The rotated coefficients still satisfy Eq. (3.32), which ensures that also the
rotated model is purely real-valued. Moreover, we also need to transform the
complex ellipticity, ε. Rewriting ε = |ε| e2iθ, where θ is the orientation angle
(θ 6= ϕ), it is obvious that the rotated ellipticity is given by

ε′ = |ε| e2i(θ+α) = ε e2iα . (3.41)

This transformation only changes the orientation but not the axis ratio, since
|e2iα| = 1. However, Fig. 3.4 displays a sérsiclet model and a rotated version
of it. Evidently, the rotated model looks strikingly different from the original
model. We need to understand the origin of this problem.

3.3.3 Parity flips in model space

Another advantage of polar basis functions is that parity flips are easy to
perform. For instance, parity flips are useful in order to estimate the similarity
of galaxy morphologies (Andrae et al. 2010b). Here we consider only parity
flips along the x-axis. A flip along any other axis is performed by combining
model rotations and the flip technique we are describing now.

A parity flip along the x-axis is equivalent to replacing y by −y. In polar
coordinates this implies ϕ→ −ϕ. From Eq. (3.6) it is evident that the coeffi-
cients transform via complex conjugation. In other words, we can easily per-
form a parity flip by changing the sign of the imaginary parts of all coefficients,
while leaving the real parts unchanged. Again, we also need to transform the
complex ellipticity. Its orientation angle undergoes the same transformation,
θ → −θ, i.e., the complex ellipticity also transforms via complex conjugation.
Figure 3.4 also shows an example of flipping a sérsiclet model. Evidently, there
is a discrepancy here, too, which needs to be understood.
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3.3.4 Forward PSF modelling

As discussed in Sects. 2.4 and 2.5.1, a PSF treatment is always necessary
when dealing with steep light profiles as exhibited by elliptical galaxies. In
the case of shapelets, the PSF treatment can be performed analytically in
shapelet space, as was shown by Refregier & Bacon (2003). This is possible
because Gauss-Hermite polynomials are invariant under Fourier transform and
convolution in real space is equivalent to multiplication in Fourier space. For
general sérsiclets with nS 6= 0.5, this invariance under Fourier transform is
lost and hence an analytic PSF treatment is impossible. We account for the
PSF by forward modelling, i.e., we convolve the sérsiclet model with the PSF
and fit the convolved model to the given image data. The advantage of this
approach is that the convolution of the model does not suffer from pixel noise,
since there is no noise in model space.

3.3.5 Inferring spiral-arm handedness

As we shall see in Chapter 6, it is possible to test alignment effects of disc
galaxies via the statistical distribution of spiral-arm handedness. This re-
quires a handedness estimate for numerous spiral galaxies. The Galaxy Zoo
project (Land et al. 2008) obtained such handedness estimates via visual clas-
sification. However, this approach is very time-consuming. Therefore, we now
discuss how spiral-arm handedness can be inferred from basis-function expan-
sions, which does not require human interaction, is trivial to parallelise, and is
objective and reproducible. We discuss this for general polar basis functions
and do not specialise on sérsiclets.

A first näıve approach is to exploit the analogy to quantum mechanics,
where polar basis functions are eigenfunctions of the angular-momentum op-
erator. In particular, a polar state |l,m〉 will yield m|l,m〉, if the operator L̂z
acts on it. The expectation value of L̂z is exactly what we are interested in.
If this expectation value is positive, the spiral arms are right-handed and they
are left-handed, if the expectation value is negative.20 Given a galaxy image20This assumes that spiral

arms are always leading. This
assumption is discussed in
Sect. 6.2.6.

decomposed into polar basis functions,

|I〉 =
∑
l,m

clm|l,m〉 , (3.42)

we can easily evaluate the expectation value of L̂z. The result is

〈I|L̂z|I〉 =
∑
l,m

m |clm|2 . (3.43)

Unfortunately, the constraint of Eq. (3.32) that enforces real-valued models
also enforces that this expectation value is always zero. Consequently, we
cannot estimate spiral-arm handedness this way.

A more promising approach is to employ parity flips, which have been
introduced in Sect. 3.3.3. Unfortunately, the parity flip cannot be cast into a
simple operator acting on the polar basis, whose expectation value could then
be computed analytically. In order to estimate the spiral-arm handedness of a
given spiral galaxy, its model can be compared to the actual and flipped model
of a galaxy with known handedness. A useful metric for this comparison has
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been introduced by Andrae et al. (2010b), where the scalar product of the
expansion-coefficient vectors of two galaxies is taken as a similarity measure.
Spiral-arm handedness is a purely azimuthal feature, i.e., this information
should be solely encoded in the expansion coefficients. For two decomposed
galaxies with coefficient vectors ~c1 and ~c2, a distance measure is given by,

d = arccos

(
~c1 · ~c2

|~c1| |~c2|

)
. (3.44)

As discussed in Andrae et al. (2010b), this distance metric is invariant against
size and brightness of both galaxies. In the case of sérsiclets, it is also invariant
against ellipticity and steepness of the radial profiles, as these two features are
– at least theoretically – encoded in other model parameters but not in the
expansion coefficients. By evaluating this distance for a galaxy of unknown
handedness and galaxies or templates of known handedness, one can then
construct a handedness estimator. In fact, this is a traditional classification
problem, where a classifier is calibrated on a training sample. However, also
this approach may be severely hampered by the problems with parity flips
shown in Fig. 3.4, whose origin is still to be determined.

3.4 Optimisation procedure for sérsiclet ex-

pansion

We now discuss how to fit polar sérsiclets to a given galaxy image. First, we
discuss the maximum-likelihood solution in the case of given nonlinear model
parameters. Second, we explain how to fit the nonlinear model parameters.
Finally, we discuss how to estimate errors of the model parameters.

3.4.1 Maximum-likelihood solution

For the moment, we assume that we are given estimates of the nonlinear
model parameters (Nmax, nS , β, ~x0, ε). Let us rewrite Eq. (3.30) as f(~x) =∑

l,m flm(~x), where the flm(~x) = clmBlm(~x) denote partial models. Due to
Eq. (3.32), we can rewrite this summation where for m > 0 we get terms like

fl,+m(~x) + fl,−m(~x) = 2 (alm<(Blm(~x))− blm=(Blm(~x))) (3.45)

and for m = 0

fl,0(~x) = al,0<(Bl,0(~x)) . (3.46)

These two equations now define the “partial” models of each of the P fit
parameters. We now proceed as usual: We define a vector ~c of free parameters
that form the linear expansion coefficients. Furthermore, we write the image
as a vector ~y of size N , where N denotes the number of pixels in the given
image. Finally, we define the so-called N ×P design matrix X, such that Xnp

is the p-th partial model21 (cf. Eqs. (3.45) and (3.46)) evaluated at the n-th 21The index p is given by the
“quantum numbers” l and m
according to a sorting conven-
tion. Different sorting con-
ventions are possible and do
not change the result.

image pixel (after forward convolution with the PSF). If the basis functions
depend on certain parameters θ, e.g., scale radius β, centroid position ~xc, etc.,
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then X will depend on θ, too. With these definitions, we can now write the
residual vector

~R(θ) = ~y −X(θ) · ~c , (3.47)

which is an vector of size N itself and also depends on θ. Here “·” denotes
matrix multiplication. As the pixel noise of modern imaging data is usually
Gaussian in excellent approximation, we are allowed to define

χ2(θ) = ~RT (θ) · Σ−1 · ~R(θ) , (3.48)

where Σ denotes the N×N pixel covariance matrix. In the case of uncorrelated
Gaussian noise with constant variance σ2 in all pixels, Σ takes the simple form
Σ = diag(σ2, . . . , σ2) = σ2I. It is straightforward to show that the maximum-
likelihood estimate that minimises χ2 is given by

~̂c = (XT · Σ−1 ·X)−1 ·XT · Σ−1 · ~y . (3.49)

The matrix XT · Σ−1 · X has a special meaning: It is the P × P covariance
matrix of the coefficients ~c, which would follow from a Fisher matrix analysis.
In this formalism, we get this information for free. The advantage of expressing
the maximum-likelihood solution in terms of matrix operations is that we can
employ fast and efficient linear-algebra algorithms.

3.4.2 Optimising the nonlinear parameters for given
Nmax

We now assume that we are given an estimate of the maximum order, Nmax,
and need to get estimates of (nS , β, ~x0, ε) by minimising Eq. (3.48). These
estimates are derived from a Simplex algorithm (Nelder & Mead 1965) that we
incorporate from the GNU Scientific Library (GSL)22. The Simplex algorithm22http://www.gnu.org/

software/gsl/manual/ is a very robust but not very efficient optimisation algorithm that does not
employ derivatives but only evaluations of χ2. We also employ priors to restrict
the model parameters to reasonable values. These priors in detail ensure that:

• The Sérsic index is in the range 0.1 ≤ nS ≤ 8.

• The scale radius satisfies β > 0.

• The object centroid ~x0 is within the pixel grid.

• The complex ellipticity satisfies |ε| < 1.

Within these allowed parameter ranges, we employ a non-informative flat prior
which assigns equal prior probability to all values.

3.4.3 Estimating the maximum order

In the case of shapelets, the maximum order, Nmax, is estimated via a reduced
χ2. However, demanding that χ2 equals the number of degrees of freedom is
justified if and only if the model is purely linear (e.g., Barlow 1993; Andrae
et al. 2010c). In the case of sérsiclets, this assumption is definitely violated,
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since sérsiclets contain many nonlinear fit parameters. We rather recommend
to estimate Nmax by comparing the normalised residuals for models of different
maximum orders. The optimal Nmax is then defined by the model whose
normalised residuals are closest to a Gaussian with mean zero and variance
one (Andrae et al. 2010c).

Concerning large samples of galaxy images, one can also decompose all
objects using identical Nmax. This approach may be favourable because many
techniques to analyse the resulting catalogue of models require that all coeffi-
cient vectors have the same dimensionality (e.g. clustering analysis, cf. Kelly
& McKay 2004, 2005; Andrae et al. 2010b).

3.4.4 Error estimation

As we are going to point out in Sect. 3.5.4, error estimation for the best-
fit parameters is crucial. Given the best-fit parameters resulting from the
optimisation using the Simplex algorithm, we employ a Markov-chain Monte-
Carlo (MCMC) algorithm to derive error estimates. MCMC algorithms are
iterative algorithms. Loosely speaking, we can interpret an MCMC algorithm
as a random walk inside a potential, where the potential is given by the χ2-
manifold. The number fraction of iteration steps spent at a certain place in
parameter space is directly proportional to the likelihood of these parameter
values. Consequently, the covariance of the Markov chain is identical to the
covariance of the χ2-manifold.

A technical remark: The Metropolis-Hastings algorithm – a special kind
of MCMC algorithm – is inappropriate in this context because it involves
stepsizes in parameter space that need to be fine-tuned in order to allow an
efficient sampling of the χ2-manifold. This fine-tuning of stepsizes is very
hard to automatise in many dimensions and for fitting numerous objects (e.g.,
Miller et al. 2000). Therefore, we employ a slice-sampling algorithm (Neal
2003) – another kind of MCMC algorithm – that does not involve pre-defined
step sizes.

3.5 Testing sérsiclets

Before we can apply sérsiclets to scientific questions, we need to investigate
the performance of sérsiclets in some detail.

3.5.1 Completeness

First, we need to test the completeness of sérsiclets in order to proof that we
indeed overcome the problems reported by Ngan et al. (2009). We decompose
three real galaxy images from the Sloan Digital Sky Survey into sérsiclets with
increasing maximum order. If the χ2-values do not decrease with increasing
maximum order, then our basis functions cannot be linearly independent, i.e.,
they cannot be complete. Figure 3.5 shows the results. First and foremost,
the χ2-values of sérsiclets are decreasing with increasing maximum order, i.e.,
we indeed set up a set of basis functions that are linearly independent. Fur-
thermore, it is interesting to compare the residuals of sérsiclets with those of
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Figure 3.5: Testing the completeness of the sérsiclet basis.

Dependence of χ2 of sérsiclet decomposition (solid lines) and shapelet decomposition

(dashed lines) on maximum order for the spiral galaxy, the edge-on disc, and the

elliptical galaxy shown in Fig. 3.6. The horizontal dotted line indicates the number

of pixels.

circular shapelets. In the case of the spiral galaxy, sérsiclets yield residuals
comparable to shapelets. This is not surprising, because shapelets excel in
modelling extended objects with lots of substructure, such as a face-on spiral
galaxy. However, in the case of the edge-on disc and the elliptical galaxy, the
χ2-values of sérsiclets are substantially lower. Evidently, sérsiclets outperform
shapelets in modelling galaxies of these types.

3.5.2 Image decompositions

We have seen in the previous section that sérsiclet decompositions produce
substantially lower residuals than (circular) shapelet decompositions when it
comes to modelling galaxies that exhibit steep profiles, such as elliptical galax-
ies or edge-on discs. However, we still have to check whether sérsiclets indeed
overcome the ring-like artefacts produced by shapelets.

Figure 3.6 compares the best-fitting models and residuals of (circular)
shapelets and (elliptical) sérsiclets using Nmax = 8 for the three test galaxies,
namely a face-on spiral galaxy, an edge-on disc, and an elliptical galaxy. As
expected from the similar χ2-values, in the case of the spiral galaxy, both
shapelets and sérsiclets perform well in modelling the spiral-arm patterns.
Sérsiclets fit the central region better than shapelets, whereas shapelets tend
to describe the outskirts better. As expected from a sérsiclet model with
nS > 0.5, the polynomial oscillations appear on smaller scales than for the
shapelet model with nS = 0.5. Concerning the edge-on disc, sérsiclets are
clearly superior. First, the ring-like artefacts of shapelets are gone. Second,
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Figure 3.6: Comparing example fits of shapelets and sérsiclets.

Models and residual maps resulting from sérsiclets and shapelets for the spiral galaxy

(top row), the edge-on disc (central row), and the elliptical galaxy (bottom row). All

models used Nmax = 8. For the sake of visualisation, the colour code of the model and

data maps is nonlinear and ranges from −4.5σ to the maximum value. The colour

code of the residual maps is linear and ranges from −4.5σ to +4.5σ, where σ denotes

the standard deviation of the background noise. The peak significance of the imaging

data is 132σ for the spiral galaxy, 101σ for the edge-on disc, and 610σ for the elliptical

galaxy.

the intrinsic ellipticity of the sérsiclet model allows the basis functions to also
describe the outermost regions of the disc, whereas these regions go almost
unfitted by circular shapelets. In the case of the elliptical galaxy, the ring-like
artefacts are very prominent in the shapelet residuals. Conversely, the sérsiclet
residuals do not exhibit any artefacts of this kind, i.e., the steepness of the
light profile is indeed described properly.

3.5.3 Orthonormality and sampling

In order to get the maximum-likelihood estimate of the expansion coefficients
from Eq. (3.49), the matrix XT · Σ−1 · X – or XT · X for uncorrelated and
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Figure 3.7: Demonstrating undersampling for polar shapelets.

Determinant of XT ·X for Cartesian (dashed lines with squares) and polar (solid lines

with dots) shapelets for increasing maximum order Nmax and different scale radii β

and grid sizes. Panel a: At large Nmax both Cartesian and polar shapelets deviate

from det(XT · X) = 1. Panel b: Cartesian shapelets maintain det(XT · X) = 1 for

all Nmax, proving that boundary effects are now negligible. Panel c: Polar shapelets

still differ from det(XT ·X) = 1 at large Nmax on this enlarged grid, i.e., this is not

a boundary effect. Panel d: Polar shapelets now also maintain det(XT ·X) = 1, i.e.,

the remaining effect was due to undersampling.

constant pixel noise – needs to be invertible. If it were not for pixellation, finite
image grids, and the PSF, XT · X should be an identity matrix due to the
orthonormality of the basis functions. We now investigate the orthonormality
of sérsiclets in two tests.

First, we compare the orthonormality of polar shapelets (sérsiclets with
nS = 0.5 and b = 1) and Cartesian shapelets of Melchior et al. (2007). We
sample polar and Cartesian shapelets of constant scale radius β = 5 on pixel
grids of sizes 50×50, 100×100, and 500×500 and compute the determinant of
XT · X for maximum orders 0 ≤ Nmax ≤ 16, where det(XT · X) < 1 indi-
cates a violation of orthonormality. Figure 3.7 shows the results of this test.
In the case of the 50×50 grid (panel a) both Cartesian and polar shapelets
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Figure 3.8: Demonstrating undersampling for general sérsiclets.

Smallest (solid line) and largest (dashed line) diagonal elements of matrix XT ·X as

a function of β at Nmax = 12. Deviation from unity (dotted line) indicates the loss

of orthonormality. The image size was 100×100 pixels (left columns) and 1000×1000

pixels (right column). We used b = 2 log 3, such that at one scale radius the weight

function drops to one third of its central value.

suffer from non-orthonormality for increasing Nmax. In particular, for polar
shapelets and Nmax ≥ 8 the determinant of XT ·X is zero, i.e., XT ·X is not
invertible and the estimator of the expansion coefficients given by Eq. (3.49)
breaks down. This problem can be caused either by boundary truncation or
undersampling of higher-order modes (with rapidly oscillating polynomials).
Therefore, in panel b we increase the pixel grid from 50×50 to 100×100. The
non-orthonormality of Cartesian shapelets is now cured, i.e., it has indeed been
caused by boundary truncation. However, polar shapelets still exhibit non-
orthonormality. Therefore, in panel c we increase the pixel grid again now from
100×100 to 500×500. The behaviour of polar shapelets is unchanged, i.e., the
non-orthonormality is not caused by boundary truncation. In order to demon-
strate that the non-orthonormality is caused by undersampling, we increase
in panel d the object size from β = 5 to β = 25 while keeping the 500×500
pixel grid. The non-orthonormality of polar shapelets is now almost cured,
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which verifies that this was indeed an undersampling effect. Evidently, under-
sampling has a larger impact on polar shapelets than on Cartesian shapelets.
The reason is that polar basis functions exhibit most of their structure in the
central region (cf. Fig. 3.3) and therefore suffer strongly from pixellation.
Loosely speaking, polar basis functions do not appreciate being sampled on a
Cartesian pixel grid.

Second, having attested problems of polar shapelets with orthonormal-
ity due to undersampling, we now investigate the orthonormality of (polar)
sérsiclets in general. We compare the value of the largest and smallest diagonal
element of XT ·X, respectively, repeating the same test as Berry et al. (2004)
did for shapelets. We evaluate sérsiclet models of maximum order Nmax = 12,
Sérsic indices nS = 0.5, 1, 2, 4 and axis ratios q = 1, 0.8, 0.6, 0.4 on a 100×100
pixel grid for varying scale radii β. There is no PSF in this test. Figure 3.8
shows test results. For the moment, we only consider the first row in Fig. 3.8,
which corresponds to polar shapelets. The results agree with Fig. 3.7, reveal-
ing undersampling effects for small β and boundary truncation for large β (cf.
Melchior et al. 2007, and discussion therein). Furthermore, we can see that the
axis ratio has only a mild impact on the orthonormality. However, inspecting
the other rows corresponding to steeper profiles (nS = 1, 2, 4), Fig. 3.8 reveals
serious violations of orthonormality. Obviously, for nS ≥ 1 the undersampling
regime is not overcome before the boundary effects set in. This is confirmed
by the right-most column in Fig. 3.8, which used an enlarged pixel grid while
keeping the resolution (scale radius β) constant. In this case, sérsiclets with
nS = 1 exhibit decent orthonormality on this larger grid, while the cases with
nS > 1 still to not reach an acceptable level of orthonormality. The reason for
this peculiar behaviour is the argument b (r/β)1/nS of the associated Laguerre
polynomials in Eq. (3.25). It implies that the polynomials are only slowly
varying with r for large values of nS . Consequently, polar sérsiclets have a
serious problem with orthonormality, especially for large Sérsic indices.

3.5.4 Impact of undersampling

We have seen that undersampling is a fundamental problem of polar sérsiclets.
The only way to avoid undersampling is to ensure critical sampling of the ba-
sis functions, i.e., to ensure that all galaxy images that are to be analysed
using sérsiclets have high resolution. This is not always possible to guarantee
(especially in the case of weak-lensing studies), so we now need to understand
the impact of undersampling. There are four major consequences of under-
sampling, ordered by importance:

1. As we have seen in Fig. 3.7, undersampling compromises the invertibility
of XT ·X. If det(XT ·X) is too close to zero, numerical inaccuracies will
dominate its inversion and the estimate of the expansion coefficients us-
ing Eq. (3.49) will catch up random biases. Consequently, this increases
the uncertainty in the model parameters. We demonstrate this in Fig.
3.9, where we compare the dependence of χ2 on the scale radius β for
Cartesian and polar shapelets fitting the same galaxy. Evidently, the
minimum of χ2 is much sharper for Cartesian shapelets than for polar
shapelets. We conclude that an error estimate as described in Sect. 3.4.4
is crucial for any sérsiclet analysis. In the worst case, if det(XT · X)
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Figure 3.9: Impact of undersampling on parameter estimation.

We show the dependence of χ2 per pixel on the scale radius β for Cartesian (solid

curve) and polar (dashed curve) shapelets for a given face-on disc galaxy. Both types

of shapelets used identical Nmax = 12, identical centroids and zero intrinsic ellipticity.

approaches zero, not only the orthonormality is seriously violated but
also the linear independence of the basis functions breaks down.

2. Figure 3.9 shows that Cartesian shapelets also reach lower values of χ2

than polar shapelets. The reason is that the computation of χ2 for polar
shapelets only considers pixel noise, but not the additional uncertainty
introduced by undersampling (random sampling).

3. Estimates of flux and second moments should not be derived mathe-
matically from the abstract models, since they can vary substantially
because of the sampling. We rather recommend to sample the best-
fitting model on the same pixel grid where the fit was performed and
then estimate flux and second moments from the sampled model. These
estimates still do not suffer from pixel noise.

4. As described in Sects. 3.3.2 and 3.3.3, we can perform rotations and par-
ity flips in model space. However, because of undersampling rotated and
flipped models may look dramatically different from the original model
when sampled on the same pixel grid, as demonstrated by Fig. 3.4.
This effect also compromises estimates of spiral-arm handedness as dis-
cussed in Sect. 3.3.5, i.e., we cannot estimate spiral-arm handedness
from sérsiclet models.

The impact of undersampling could be alleviated by sampling the model sev-
eral times within each pixel.23 However, in the limit of infinitely fine sam- 23This corresponds to a

Riemann integration of the
model within one pixel.

pling this amounts to a convolution of the model with the pixel-response func-
tion. As the undersampling problem stems from a key feature of the employed
sérsiclet model, namely rapid polynomial oscillations, an oversampled model
may better approximate the image data. But the information about the galaxy
morphology contained in the expansion coefficients degrades as the subpixel
oscillations are washed out. As we require meaningful information from the
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expansion coefficients, we will not further pursue this approach. If one wants
to employ this approach, one has to bear in mind, that the additional convo-
lution will lead to covariances among the coefficients and therefore render the
fitting procedure more complicated.

3.5.5 Analogy to Nyquist frequency

In order to avoid the undersampling problem, we want to derive a lower limit
to the scale radius β of a sérsiclet model. This limit is given by comparing the
pixel size to the scale on which the radial components of sérsiclets – essentially
the Laguerre polynomials – vary. In fact, this is an analogy to the Nyquist
frequency in the case of Fourier transform.

The key to set this lower limit is to identify the shortest scale on which
a Laguerre polynomial varies. This scale can be inferred from the roots of
the Laguerre polynomial. An associated Laguerre polynomial Lkl (x) of order
l has l real-valued, positive roots within the interval (0, l+ k+ (l− 1)

√
l + k].

The smallest scale that can be resolved by an associated Laguerre polynomial
is given by the distance between x = 0 (the peak of the radial component)
and the first root x1 > 0. Unfortunately, the roots of associated Laguerre
polynomials are not known analytically, so the first root x1 has to be in-
ferred numerically. As the argument of the associated Laguerre polynomial is
x = b(r/β)1/nS , given x1, we can infer the radius of the first root to be
r1 = β(x1/b)

nS . Hence, the distance between r = 0 and the first root is

∆r = r1 − 0 = r1 = β(x1/b)
nS . (3.50)

This scale ∆r should be well resolved by the pixel grid in order to avoid
undersampling. The absolute lower limit is ∆r = 1, i.e., the radial component
drops from its central peak to its first root within a single pixel.24 Setting24Actually, the region where

the profile drops from its
maximum to its first root
should be resolved by several
pixels.

∆r = 1 and solving for the minimal β, we obtain,

β ≥ βmin = (b/x1)nS , (3.51)

where β and hence βmin are given in units of pixels. Table 3.1 provides values
of βmin for some realistic values of nS and polynomial order l. Considering this
table, we also have to keep in mind that the image grid has to be large enough
such that several scale radii fit into it. Evidently, as nS increases, the limit
becomes larger and larger. This can also be inferred qualitatively from Fig.
3.8, but Eq. (3.51) provides a quantitative result. Obviously, for nS ≥ 2 the
lower limit becomes extraordinarily large. In particular, nS = 4 would require
an extremely well resolved object with radius of several thousand pixels.

In the case of shapelets, it is standard practice to choose a maximum or-
der Nmax for a decomposition according to signal-to-noise ratio and resolution.
For sérsiclets, the resolution constraint plays a much more important role and
restricts models with large ns to low Nmax, with which complicated morpho-
logical features could receive improper description. As elliptical galaxies rarely
exhibit such features, this restriction may not be overly problematic.
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l nS = 0.5 nS = 1.0 nS = 2.0 nS = 3.0 nS = 4.0
1 0.8165 0.8333 0.8403 0.8424 0.8435
2 1.0668 1.3145 1.7599 2.2042 2.6658
3 0.3256 1.7810 2.9324 4.3311 6.0286
4 1.4377 2.2423 4.3625 7.3782 11.537
5 1.5904 2.7011 6.0513 11.499 19.888
6 1.7296 3.1586 7.9993 16.848 31.873
7 1.8584 3.6151 10.207 23.577 48.375
8 1.9787 4.0712 12.674 31.841 70.372
9 2.0921 4.5268 15.400 41.792 98.931
10 2.1996 4.9821 18.386 53.584 135.22
11 2.3021 5.4373 21.632 67.371 180.49
12 2.4002 5.8922 25.137 83.305 236.08
13 2.4944 6.3471 28.902 101.54 303.46
14 2.5853 6.8018 32.926 122.23 384.13
15 2.6730 7.2565 37.210 145.53 479.75
16 2.7579 7.7110 41.754 171.59 592.02
17 2.8403 8.1656 46.557 200.57 722.76
18 2.9204 8.6201 51.620 232.61 873.87
19 2.9983 9.0745 56.943 267.88 1047.4
20 3.0742 9.5289 62.525 306.52 1245.3

Table 3.1: Minimal scale radii avoiding undersampling.

Lower limits of scale radii β in units of pixels for different radial orders l according

to Eq. (3.51). Here we used b = 2nS − 1/3.

3.6 Application to weak-lensing data

Given the fact that shapelets were also intended for shear measurements in
weak-gravitational lensing (e.g., Refregier & Bacon 2003; Chang et al. 2004),
we now study the potential of sérsiclets in this field of research. From the
simulated Great08 data (Bridle et al. 2009) we selected ten sets of artificial
galaxies, whose shear values are given in Table 3.2.25 The data sets were 25This restriction on only

ten sets was necessary,
because analysing the
whole Great08 data set
would have been too time-
consuming.

taken from the Great08 RealNoiseKnown branch, for which the galaxies are
modelled as either of bulge or disc type, i.e., having Sérsic index of nS = 1 or
nS = 4, respectively. Every set contains 10,000 objects sampled on a 40×40
pixel grid. Within such a set the applied shear is constant and the aim is to
retrieve the correct value. Furthermore, all objects have been convolved with
a PSF that is a truncated Moffat profile,

IMoffat(R) =

{ (
1 + (R/Rd)

2
)−β

if R < Rc
0 else

, (3.52)

with β = 3.5, Rd chosen such that FWHM = 2.85 pixels, cut-off radius Rc of
twice the FWHM, and intrinsic ellipticity ε = 0.019− 0.007i (cf. Bridle et al.
2010).

We decompose all objects into sérsiclets with maximum orders Nmax =
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Set g1 g2

0007 0.0005405 0.0069236
0026 -0.0527875 -0.0090224
0035 0.0166067 -0.0045223
0048 0.0708862 -0.0377040
0056 0.0325078 0.0978346
0091 -0.0246346 -0.0488837
0126 0.0170977 -0.1383142
0135 0.0596913 0.0416342
0268 -0.0653126 -0.0883511
0281 -0.0431769 0.0462176

Table 3.2: Data sets chosen from the Great08 sample.

We also quote the complex shears g = g1 + ig2 of each set. The selected sets have

shear values spanning the diversity of Great08 samples.

Figure 3.10: Test results of applying sérsiclets to the Great08 data.

Offset a (top) and deviation from unity slope b − 1 (bottom) of Great08 data sets

given in Table 3.2 for different maximum orders, Nmax, of sérsiclet decomposition.

Horizontal dashed lines indicate the ideal case of a = 0 and b = 1. Errors of a and b

were estimated by bootstrap fitting of ĝ = a + b · ginput to the estimated and input

shear values.

0, 2, 4, 6, taking into account the PSF as described in Sect. 3.3.4. For each
set, we estimate the mean ellipticity ε̂ from the 10,000 artificial galaxies via
the ellipticity parameter of the sérsiclet model, which provides us with an
unbiased estimator of the gravitational shear (cf. Bartelmann & Schneider
2001). Consequently, the error estimate is the error of the mean value (see
Sect. 6.3.2). The goodness of the shear estimate ĝ with regard to the known
input shear ginput is parametrised by a straight-line model

ĝ = a+ b · ginput . (3.53)

A perfect shear estimator yields a = 0 and b = 1. If a real shear estimator
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yields an offset a 6= 0, i.e., a shear is detected although the input shear was
zero, this typically implies that the PSF is not properly corrected for. If b < 1,
the true shears are underestimated.

Figure 3.10 shows the test results for offset a and deviation from unit
slope b − 1. Evidently, the sérsiclets perform best for Nmax = 0, where the
offset a is consistent with zero, while the slope b is consistent with 1. This is
not surprising, because for Nmax = 0 sérsiclets reduce to pure Sérsic profiles,
which were used to simulate this subset of the Great08 data. However, the
real lesson from Fig. 3.10 is that for Nmax > 0 the shear estimates correlate
less strongly with the input shears, i.e., the slopes are significantly below 1.
Obviously, the higher-order modes of sérsiclets do more harm than good in this
case. The likely explanation is that using higher-order modes, we are suffering
from the undersampling problem. As we have seen comparing Cartesian and
polar shapelets in Fig. 3.9, undersampling washes out the optimum of the
χ2 manifold and may therefore lead to misestimations of parameters. Low
resolution is a generic feature of weak-lensing data, i.e., shear estimates based
on sérsiclet decompositions will always suffer from substantial undersampling
effects. Oversampling of the model within each pixel could cure this, but is –
at least in our implementation – computationally infeasible.

3.7 Orthonormalising higher-order Taylor

expansions

We have seen in Sect. 3.2.3 that the Sérsic profile is the first-order Taylor
expansion of any light profile. This naturally leads us to the expectation that
with improving imaging quality the Sérsic profile may not provide a good
match anymore because it is “only” a first-order expansion. Consequently,
an obvious strategy to enhance the Sérsic profile is to allow for higher orders
in the Taylor expansion of Eq. (3.15). Such higher-order radial profiles of
course can also be used for orthogonalisation in order to describe azimuthal
structures.

3.7.1 Third-order profiles

A realistic profile has to be unity at r = 0 and it has to approach zero for
r →∞. As the Taylor expansion is in log r, only expansions where the leading
order term is of odd power in log r and has a positive expansion coefficient can
satisfy these constraints. Therefore, the next useful higher-order expansion
beyond the Sérsic profile is a third-order expansion,

p̃(r) ≈ A+B log(r/β) + C log2(r/β) +D log3(r/β) (3.54)

or rather

p(r) ≈ exp
[
−eA+B log(r/β)+C log2(r/β)+D log3(r/β)

]
, (3.55)

where D > 0 and A, B, and C are arbitrary. The coefficient A and the scale
radius β are fully degenerate and we can freely set A to some value, very much
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Figure 3.11: Third-order profile vs. Sérsic profile.

We compare a Sérsic profile with nS = 2 (dashed line) to a third-order profile with

B = 1/nS = 0.5, C = 0.1 and D = 0.25 (solid line).

Figure 3.12: Fitting Sérsic and third-order profile to an elliptical galaxy.

The panels denote residual map of Sérsic fit (a), Sérsic model (b), original data

(c), best-fitting third-order profile (d), and residual map from third-order profile (e).

Panels, b, c, and d have identical scaling. The residual maps (panels a and e) both

use plot ranges from −5σ to 5σ.

like scale radius and bn in the case of a Sérsic profile (see Sect. 2.2.3). Fig-
ure 3.11 shows an example of such a third-order profile in comparison to an
exponential disc profile. Evidently, the third-order profile can overcome two
essential problems of pure Sérsic profiles, since it (a) exhibits a central cusp,
which is also observed in real galaxies, and, (b) approaches zero for increas-
ing radii faster than the pure Sérsic profile. Therefore, we may speculate that
such higher-order Taylor expansions could provide a reasonable generalisation,
if deviations from the normal Sérsic profile are observed while azimuthal struc-
tures are still absent. For instance, this may help to describe the light profiles
of elliptical galaxies or unbarred S0 galaxies.

In Fig. 3.12 we compare the performances of the third-order profile and the
Sérsic profile by fitting an elliptical galaxy from the SDSS database. Clearly,
the residual map of the third-order profile is almost perfectly random noise
whereas the residual map of the Sérsic profile reveals systematic mismodelling.
Correspondingly, the ratio of χ2-values of the third-order profile over Sérsic
fit is χ2

3/χ
2
S ≈ 0.48. In fact, the third-order profile fits the data so well that

we need to check that it is not an overfit. For this purpose, Fig. 3.13 displays
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Figure 3.13: Model comparison via distributions of normalised residuals.

The blue histogram shows the distribution of normalised residuals from the Sérsic

fit. The red histogram are the normalised residuals from the third-order profile. The

dashed line is a unit Gaussian.

the distributions of normalised residuals for both models in comparison to
the unit Gaussian. Evidently, the normalised residuals of the Sérsic profile
have a broader distribution than the unit Gaussian, i.e., the Sérsic fit is an
underfit. The normalised residuals of the third-order profile are closer to the
unit Gaussian, i.e., they are closer to the truth. However, their distribution
does not peak sharper than the unit Gaussian, i.e., the third-order profile is
not an overfit.

3.7.2 Numerical orthonormalisation

Third-order profiles such as Eq. (3.55) can be orthonormalised, too. Unfortu-
nately, it is not possible to do this orthonormalisation analytically. The reason
is that the substitution step in Sect. 3.2.4 does not work anymore. In order to
understand this, let us consider the scalar product

〈l|k〉 =

∫ ∞
0

dr r Rl(r)Rk(r) exp
[
−2eA+B log r+C log2 r+D log3 r

]

=

∫ ∞
−∞

duRl(e
u)Rk(e

u) exp
[
2u− 2eA+Bu+Cu2+Du3

]
, (3.56)

where we already substituted u(r) = log r. In order to bring the weight func-
tion into the generic form e−v, we have to substitute

v(u) = 2eA+Bu+Cu2+Du3 − 2u . (3.57)

However, substitution now requires to solve analytically for u as a function of
v, which is plainly impossible in this case as shown in Fig. 3.14. Therefore,
the orthonormalisation has to be performed numerically.

The brute-force Gram-Schmidt algorithm starts from a set of linearly in-
dependent but not orthogonal vectors. In our case, these are the radial mono-
mials (r0, r1, r2, r3, . . .). Using the definition of the scalar product according
to Eq. (3.19), the algorithm then reads:
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Figure 3.14: Non-invertibility of substitution variable.

We plot v(u) as given by Eq. (3.57) for the profile parameters of Fig. 3.11. Clearly,

v(u) is not injective, i.e., there is no unique solution of u for a given v. Consequently,

v(u) is not bijective, i.e., it is not invertible.

Algorithm 3.1 Brute-force Gram-Schmidt.

Step 1: Initialise the ground state |0〉 = |r0〉
〈r0|r0〉 .

Step 2: Iterate from l = 1 to ∞,

|l〉 = |rl〉 −
l−1∑
k=0

〈k|rl〉 |k〉 (3.58)

and normalise such that 〈l|l〉 = 1.

This algorithm creates a set of orthonormal basis functions. However, simple
to understand as this algorithm may be, it is highly inefficient from a compu-
tational point of view. We therefore chose the following three-term recurrence
relation:

Algorithm 3.2 Three-term recurrence relation.

Step 1: Initialise the ground state |0〉 = |r0〉
〈r0|r0〉 .

Step 2: Compute |1〉 = (r̂ − 〈0|r̂|0〉) |0〉 and normalise.
Step 3: Iterate from l = 2 to ∞,

|l〉 = (r̂ − 〈l − 1|r̂|l − 1〉) |l − 1〉 − 〈l − 1|r̂|l − 2〉|l − 2〉 . (3.59)

and normalise such that 〈l|l〉 = 1.

Here, we used the expectation of the operator r̂ over the radial basis functions
Bk and Bl

〈k|r̂|l〉 =

∫ ∞
0

dr r Bk(r)r Bl(r) . (3.60)

In order to compute a basis set up to maximum order L, the first algorithm
requires the evaluation of 1

2L(L+1) projection integrals and L+1 normalisation
integrals. Conversely, the second algorithm also requires the evaluation of
L+ 1 normalisation integrals but only 2L− 1 projection integrals. First, this
has the trivial advantage of being computationally faster.26 Second, and more26For example, let us consider

L = 12 where the first al-
gorithm requires the evalua-
tion of 91 integrals, whereas
the second algorithm only in-
volves 36 integrations.

importantly, the three-term recurrence relation is numerically more stable than
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Figure 3.15: Performance of numerical orthonormalisation algorithms.

We compare the brute-force Gram-Schmidt algorithm (dashed line) and the three-

term recurrence relation (solid line). In the top panel, we show the determinant of

the projection matrix, which should be unity. In the bottom panel, we show the

maximum absolute value of the off-diagonal elements, which should be zero.

the first algorithm. In the first algorithm, the computation of a single basis
function requires numerous integrations such that numerical errors quickly
accumulate. We demonstrate this by investigating the projection matrix

plk = 〈l|k〉 (3.61)

for orthonormalisations of different maximum orders using both algorithms.
If the basis set is indeed orthonormal, this projection matrix should be an
identity matrix. For the profile parameters of Fig. 3.11 and maximum radial
orders up to L = 30, Fig. 3.15 compares the performances of both algorithms.
Evidently, for maximum orders larger than 20, the brute-force Gram-Schmidt
algorithm breaks down whereas the three-term recurrence relation is still nu-
merically stable up to maximum order of 25. When exactly both algorithms
break down depends on the parameters of the weight function. Nevertheless,
the three-term recurrence relation is generally more stable and also computa-
tionally faster, so it is the preferred method.

3.7.3 Revisiting the problems of sérsiclets

The conceptual problem of sérsiclets was the postulated fixed relation of steep-
ness of the weight function and scale of polynomial oscillations that is not
obeyed by real galaxies. This fixed relation is loosened by the third-order pro-
files. Of course, the Sérsic index – or rather B = 1

nS
– still has an influence

on the oscillation scale of the radial polynomials. However, now there are two
further model parameters C and D which also influence the polynomials. Con-
sequently, basis functions based on third-order profiles are much more flexible
and do not impose such a rigid relation as sérsiclets do.

The practical problem of sérsiclets was undersampling, in particular for
Sérsic indices nS ≥ 1. In fact, Fig. 3.11 already suggests that third-order
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Figure 3.16: Undersampling test for third-order profiles.

We compare basis sets of the Sérsic (dashed lines) and third-order profile (solid lines)

shown in Fig. 3.11. The test is performed on a 100×100 pixel grid and the weight

function has no intrinsic ellipticity. In contrast to Fig. 3.8, we have chosen b = 4−1/3

in this case. Panel a: Determinant of projection matrix XT · X which should be 1.

Panel b: Largest and smallest diagonal elements of XT ·X which should be 1. Panel

c: Largest absolute value of off-diagonal elements of XT ·X which should be 0.

profiles can overcome this problem. The undersampling problem of sérsiclets
stems from the fact that the weight function is strongly peaked in the centre
for nS ≥ 1, thereby concentrating the weight and squeezing the polynomials
to rapid oscillations. Conversely, third-order profiles can exhibit central cusps
instead of peaks. Therefore, the weights are not as highly concentrated and the
polynomials do not oscillate as rapidly. We demonstrate this by repeating the
orthonormality test of Fig. 3.8 for the third-order profile with parameters given
in Fig. 3.11 and its set of basis functions. In direct comparison to sérsiclets
with nS = 1

B = 2, the orthonormalised third-order profile indeed suffers less
strongly from undersampling, which is most obvious for the determinant of
XT ·X. In particular, we can see that there appears to be a regime 5 ≤ β ≤ 15
where undersampling is roughly overcome and boundary truncation has not yet
set in. Such a regime does not exist for the corresponding set of sérsiclets shown
here for comparison. Consequently, third-order profile can indeed overcome
the undersampling problem of sérsiclets. Nevertheless, there are parameter
choices for third-order profiles where the undersampling problem is as bad as
for sérsiclets, e.g., when C = D = 0 and the third-order profile reduces to a
Sérsic profile. However, by choosing appropriate priors it might be possible to
exclude such parameter values in order to avoid undersampling.
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3.7.4 Computational feasibility

We have shown that orthonormalisations of third-order profiles can indeed
overcome the limitations of sérsiclets while preserving their mathematical jus-
tification. However, we have not yet mentioned a serious practical limitation
of this novel approach: The numerical orthonormalisation of third-order pro-
files is computationally highly expensive. Fitting a galaxy on a, say, 100×100
pixel grid while freely adjusting all model parameters is completely infeasi-
ble on a standard computer. A problematic work-around would be to first
fit a simple third-order profile to the galaxy and then only orthonormalising
the best-fit profile in order to model the data’s deviation from the mean pro-
file. However, this step-wise approach by construction is very unlikely to find
the best-fitting basis-function expansion. Fitting a third-order profile does
not provide a “mean” profile whereof the basis functions could account for
the “deviations” from the mean profile. Instead, it provides a biased profile.
Another work-around would be to set up a library of basis functions for all
realistic parameter values of third-order profiles, such that numerical orthonor-
malisation has not to be conducted “on-the-fly” during the fit. This approach
is hampered by the fact that third-order profiles have three free parameters
such that a decently detailed sampling of this three-dimensional parameter
space – which is necessary in order to provide reliable fits – would produce
an extensive library. The best solution is certainly to maintain the numerical
orthonormalisation during the fit and to employ Graphics Processing Units
(GPUs) instead of normal CPUs. For such pure “number crunching” like nu-
merical orthonormalisation, GPUs impressively outperform CPUs (Fluke et al.
2011).

3.8 Assumptions

Resuming our critical assessment of assumptions in Sect. 2.2.5, how do sérsiclets
and orthonormalised higher-order profiles fare in comparison to other parametri-
sation schemes? Both approaches are basis-function expansions, i.e., they can
handle azimuthal structures and do not need to assume a radial profile like,
e.g., the concentration index. As discussed above, sérsiclets assume that the
steepness of the radial profile is tightly correlated with the scales of substruc-
tures and that the galaxy is well resolved. This first assumption is absolutely
unrealistic, while the second is certainly problematic in practice. Orthonor-
malised third-order profiles cure both of these problems and effectively make
no assumptions here. However, both methods assume that their radial weight
functions are realistic. In contrast to other basis-function approaches such
as shapelets (Réfrégier 2003) or Chebyshev rational functions (Jiménez-Teja
& Beńıtez 2011), this assumption is well justified since these radial profiles
are the Taylor expansions of the true yet unknown light profiles of galaxies
(Sects. 3.2.3 and 3.7.1). Consequently, orthonormalised third-order profiles
effectively involve only a single assumption that is backed up by mathematics.
In fact, they would present an excellent example of good scientific method-
ology, if they did not also involve the “pseudo-assumption” that excessive
computational power is available.
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CHAPTER 3. POLAR SÉRSICLETS AND BEYOND

The bottom line
� Basis-function expansions are designed to faithfully represent the azimuthal

structure of galaxies, e.g., enabling us to infer the handedness of spiral-arm
patters of disc galaxies in order to estimate their sense of rotation.

� Being the first-order Taylor expansion of any radial profile, the Sérsic profile
is a better match to real galaxies than the Gaussian profile, i.e., sérsiclets
by design overcome the limitations of shapelets. Furthermore, this provides
a mathematical justifications to orthonormalise the Sérsic profile, whereas
shapelets are a pure ad-hoc construction.

� From general Sérsic profiles we can only build polar basis functions because
the ground states of Cartesian basis functions do not exhibit the azimuthal
symmetry required in the context of galaxy morphologies.

� The polar sérsiclet basis functions can be computed analytically.

� Polar sérsiclets postulate a fixed relation between steepness of the weight func-
tion and spatial scale of polynomial oscillations that is not obeyed by real
galaxy morphologies. This will give rise to modelling biases which are not
generally predictable.

� Polar sérsiclets suffer strongly from undersampling effects on Cartesian pixel
grids. For steep weight functions, polar sérsiclets require incredibly high res-
olution in order to maintain orthogonality and linear independence. In par-
ticular, this problem corrupts estimates of spiral-arm handedness based on
sérsiclet expansions of observed spiral galaxies.

� Orthonormalisations of higher-order Taylor expansions overcome the under-
sampling problem and loosen the tight coupling of steepness of the weight
function and scale of polynomial oscillations. However, their numerical or-
thonormalisation is computationally expensive. This renders this method as
computationally infeasible.
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4
Disc alignment in the Local

Group

As we want to investigate disc alignment, the Local Group provides a natural
first testbed. The Milky Way Galaxy is not an isolated field galaxy but part of
a galaxy group – the Local Group. Apart from numerous dwarf galaxies, the
Local Group consists of four disc galaxies, namely the Milky Way, Andromeda
(M31), M33, and the Large Magellanic Cloud (LMC), all with pairwise dis-
tances of less than 1Mpc. Therefore, if theory predicts disc alignment on
spatial scales of 1Mpc, we might well use the Local Group as a simple test
case. However, given the limited diagnostic power of only four disc galaxies,
this is meant more as an introduction and motivation for our later analysis of
much larger sample of disc galaxies.

4.1 Angular-momentum-orientation vector

of the Milky Way

Figure 4.1 shows an artist’s impression of the Milky Way. In order to esti-
mate the angular-momentum-orientation vector of the Milky Way, we need
two ingredients:

1. The unit vector ~r� pointing from the Galactic centre to the position of
the Sun.

2. The unit vector ~v� of the Sun’s velocity on its trajectory around the
Galactic centre.

From these two ingredients, and the well justified assumption that the Sun’s
orbit lies inside the Galactic disc, we can then compute the Milky Way’s
angular-momentum-orientation vector via

~LMW = ~r� × ~v� . (4.1)
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Figure 4.1: Artist’s impression of the Milky Way.

The Hubble type of the Milky Way is SBc, i.e., it is a barred spiral with a less

prominent bulge in its centre and rather open spiral arms. Source: NASA public

domain.

We can infer ~r� from the equatorial coordinates of the Galactic centre,
αGC ≈ 266.416833◦ and δGC ≈ −29.007806◦. These are the coordinates of
the radio source Sagittarius A, which marks the position of the central super-
massive black hole of the Milky Way (e.g. Shen et al. 2005). Here, we have
to keep in mind that these coordinates are pointing from the Sun towards the
Galactic centre, i.e., ~r� is the inverted direction,

~r� = −

 cosαGC sin(90◦ − δGC)
sinαGC sin(90◦ − δGC)

cos(90◦ − δGC)

 . (4.2)

Note that this vector is defined in a global coordinate system
(Sect. 6.2.3). This coordinate system is centred at the Earth’s position and
– apart from its radial coordinate – its two spherical angles are ϕ = α and
ϑ = 90◦−δ.27 Such a global coordinate system is necessary in order to compare27This means the xy-plane

coincides with the equato-
rial plane and the x-direction
points towards a right ascen-
sion of α = 0◦. The z-
direction points towards the
North Pole where the declina-
tion angle is δ = 90◦.

angular-momentum-orientation vectors of different galaxies. The unit vector
~v� has to be inferred from the rotation of the Galactic disc. B. Lindblad and
J. H. Oort investigated the rotation of stars in the Galactic disc in 1926/27
and their results can be found in any astronomy textbook. By definition, ~v�
points into the direction specified by Galactic longitude ` = 90◦ and Galactic
lattitude b = 0◦ (e.g. Brunthaler et al. 2005). In equatorial coordinates, this
direction is given by αv ≈ 318.004563◦ and δv ≈ 48.329553◦, such that

~v� =

 cosαv sin(90◦ − δv)
sinαv sin(90◦ − δv)

cos(90◦ − δv)

 . (4.3)
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Inserting these values into Eq. (4.1), we obtain the following estimate of the
angular-momentum-orientation vector of the Milky Way,

~LMW ≈

 0.86771
0.19878
−0.45560

 . (4.4)

We conduct two cross-checks: First, the two unit vectors ~r� and ~v� should be
orthogonal and indeed their scalar product is ~r� ·~v� ≈ 0.00097. Second, ~LMW

by construction should be normal to the plane of the Galactic disc, i.e., it
should be parallel or antiparallel to the unit vector pointing into the direction
of the Galactic North pole

~uNP =

 cosαNP sin(90◦ − δNP)
sinαNP sin(90◦ − δNP)

cos(90◦ − δNP)

 , (4.5)

whose equatorial coordinates are given by αNP ≈ 192.859508◦ and
δNP ≈ 27.128336◦. Indeed, the scalar product is ~LMW · ~uNP ≈ −0.9999992,
i.e., both vectors are almost perfectly antiparallel. If the Sun’s orbit did not
lie in the plane of the Galactic disc, this projection value would be a highly
unlikely coincidence.

4.2 Angular-momentum-orientation vectors

of Andromeda, M33, and the LMC

In order to estimate the angular-momentum orientations of Andromeda, M33,
and the LMC, we use the formalism described in Lee (2011) which is based on
ellipticity estimates and the assumption of intrinsically circular galactic discs.
The details of this formalism are discussed later in Sect. 6.2.

4.2.1 Andromeda (M31)

We now estimate the angular-momentum-orientation vector of Andromeda
(M31). Figure 4.2 displays a GALEX Near-UV image of the Andromeda
galaxy. We adopt an inclination angle of 77◦ (Walterbos & Kennicutt 1988)
and an orientation angle of 38◦ (Walterbos & Kennicutt 1987). Furthermore,
dust lanes in the foreground of stellar emission enable us to identify the front-
edge of Andromeda’s galactic disc, as indicated in Figure 4.2. Our front-edge
estimate agrees with the result of Iye & Ozawa (1999) who investigated the
reddening of globular clusters as a function of height above the major axis.
Given its equatorial coordinates αM31 ≈ 10.684708◦ and δM31 ≈ 41.268750◦,
the angular-momentum-orientation vector of Andromeda then reads

~L± ≈ ±

 −0.08031
−0.79651

0.59926

 . (4.6)

As Andromeda does not exhibit spiral arms, we cannot break the
±-degeneracy this way. However, Chemin et al. (2009) published spatially
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Figure 4.2: GALEX Near-UV and false-colour image of Andromeda.

Left panel: The estimated orientation angle is θ ≈ 38◦ and the inclination angle is

≈ 77◦, as indicated by the yellow dashed lines. Source: SkyView, NASA. Right panel:

The false-colour image enables us to estimate the front-edge via identification of dust

lanes. Source: NASA.

resolved HI spectra of M31, which enable us to infer the disc rotation directly.
Their Figs. 5 and 6 and in particular their velocity field of Fig. 8 clearly show
that the North-Eastern part of the disc has larger radial velocity, whereas
the South-Western part of the disc has smaller radial velocities. This directly
implies that the North-Eastern part is receding from us, whereas the South-
Western part is rotating towards us. Consequently, the angular-momentum-
orientation vector of Andromeda points South-East in Fig. 4.2 and into the
plane of the paper away from the reader. Therefore, if we project ~LM31 onto
the unit direction vector pointing from the Milky Way towards Andromeda,
this projection must be positive. We can understand this by considering the
rotation near the front-edge. There, the velocity vector points towards North-
East, such that ~L = ~r×~v points into the plane of the paper and thus away from
the Milky Way. Given the position vector of Andromeda, his condition selects
the “–” in Eq. (4.6) such that the angular-momentum-orientation vector of
Andromeda is given by

~LM31 ≈

 −0.08031
−0.79651

0.59926

 . (4.7)

Hence, the angular-momentum-orientation vector of Andromeda is fully known
like in the case of the Milky Way.

4.2.2 Triangulum Galaxy (M33)

Concerning M33, we adopt an inclination angle of 49◦ and an orientation angle
of 21◦ (Corbelli & Schneider 1997). M33 clearly is a right-handed (Z-wise)
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Figure 4.3: GALEX Near-UV image of M33.

The estimated orientation angle is θ ≈ 21◦ and the inclination angle is ≈ 49◦, as

indicated by the yellow dashed lines. There are no obvious dust lanes such that we

cannot estimate the front-edge. Source: SkyView, NASA.

spiral. This rotational sense agrees with the results of Brunthaler et al. (2005)
who observed the proper motion of two H2O masers in M33. It also agrees
with the results of Putman et al. (2009), who measured the radial-velocity field
of HI gas in M33. Again, this implies that the projections of both possible
front-edge configurations of ~LM33 onto the unit direction vector pointing from
the Milky Way towards M33 have to be positive. Unfortunately, M33 does
not exhibit dust lanes, such that the front-edge cannot be identified this way.
This is not surprising since M33 is not as highly inclined as Andromeda such
that we are less likely to observe a dust lane. From dust reddening of C-
rich AGB stars Cioni et al. (2008) concluded that there is weak evidence that
the North-Western side of M33 is the front-edge. Assuming this front-edge
and given its equatorial coordinates, αM33 ≈ 23.46◦ and δM33 ≈ 30.66◦, the
angular-momentum-orientation vector of M33 then reads

~LM33 ≈

 0.67170
−0.47655

0.56721

 . (4.8)

However, the front-edge estimate of Cioni et al. (2008) is still rather uncertain
(see their Fig. 9).

4.2.2.1 M33 front-edge estimation using parallaxes

Given the distance of M33 of ≈ 0.8Mpc to the Milky Way, what is the required
angular resolution to measure parallax distances of individual stars? Given a
baseline of 2 astronomical units and the distance of M33, the parallax angle
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Figure 4.4: Front-edge estimation of M33 via Cepheid distances.

We plot distance modulus mI −MI over height above or below the major axis of

M33 for the 563 Cepheids of Pellerin & Macri (2011). Error bars indicate errors in

apparent I-band magnitudes, assuming that Cepheid periods and therefore absolute

I-band magnitudes have negligible errors. The two front-edge configurations a and b

are indicated. The dashed line corresponds to a linear fit whose slope is b = −(8.94±
8.92) · 10−3pixel−1 marginalised over 100 bootstrap samplings.

is given by

δ ≈ sin δ =
1AU

0.8Mpc
≈ 1.3 · 10−6 arcsec . (4.9)

Clearly, this is way beyond the resolution limits of existing instruments such as
the Hubble Space telescope (≈ 80 · 10−3 arcsec) or Hipparcos
(≈ 2 · 10−3 arcsec). It is also beyond the planned resolution limit of the Gaia
satellite (≈ 20 · 10−6 arcsec). Consequently, it is currently impossible to esti-
mate the front-edge of M33 directly via parallaxes.

4.2.2.2 M33 front-edge estimation using Cepheid distances

As parallax estimates are limited by resolution, we try to estimate the front-
edge of M33 using Cepheid distances from the Direct project (Macri et al.
2001) and its recent extension by Pellerin & Macri (2011). This database
contains 563 Cepheids in M33 with equatorial coordinates, period estimates
P , and estimates of the apparent HST I-band magnitude mI . In the absence of
metallicity dependence, Freedman et al. (2001) defined the following relation
between absolute I-band magnitude and Cepheid period in units of days

MI = −(2.962± 0.020)(logP − 1)− (4.904± 0.010) . (4.10)

Given the absolute magnitude and an observed apparent magnitude, we can
then employ the distance modulus

mI −MI = −2.5 log10

(
F (d)

F (10pc)

)
= 5 log10

(
d

10pc

)
(4.11)

which increases with distance becausemI increases. There is no need to correct
the distance modulus for foreground dust extinction in this case, since all
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Cepheids are affected equally due to their very similar equatorial coordinates.
If we plot the distance modulus mI −MI vs. the height above or below the
major axis of M33, we should observe a slope which enables us to estimate
the front-edge. The side with larger distance modulus is further away from
the Milky Way. Figure 4.4 shows that the distance moduli exhibit a very
large scatter, though the cloud of data points exhibits a weak “tail” in the
lower right regime. Nevertheless, there is very weak evidence – barely 1σ – for
a negative slope, favouring the front-edge configuration b, i.e., North-West in
Fig. 4.3. Although this is not a reliable result, it demonstrates that a front-edge
estimation via Cepheids is indeed feasible. However, more Cepheid variables
would be required in order to reduce the uncertainties. Due to the geometry
of the front-edge degeneracy, observing a small number of Cepheids at very
large heights above and below the major axis may indeed suffice to place
decisive constraints. Moreover, our results using Cepheid distances point into
the same direction as results obtained by Cioni et al. (2008) from carbon-rich
AGB stars. As aforementioned, also Cioni et al. (2008) find only weak evidence
for a North-Western front-edge (see their Fig. 9). However, the agreement of
our and their results is sufficient for this exercise.

4.2.3 Large Magellanic Cloud (LMC)

Concerning the LMC, we adopt an inclination angle of 35◦ and an orientation
angle of 123◦ (van der Marel & Cioni 2001). Furthermore, van der Marel &
Cioni (2001) find clear evidence that the North-Eastern side of the disc is the
front-edge (their Fig. 5). The rotational sense of the LMC is right-handed as
is evident from observed velocity fields (e.g. Olsen & Massey 2007). Given its
equatorial coordinates αLMC ≈ 80.8938◦ and δLMC ≈ −69.7561◦, the angular-
momentum-orientation vector of the LMC then reads

~LLMC ≈

 −0.29699
−0.46945
−0.83152

 . (4.12)

4.3 Hypothesis test of random orientation

Are the angular-momentum-orientation vectors in the Local Group compatible
with the null hypothesis of random orientation? In order to test this, we
investigate the distribution of projection values using a KS-test (e.g. Press
et al. 2002). For the four disc galaxies, there can only derive three statistically
independent projections. We choose the projections onto the Milky Way:

• ~LMW · ~LM31 ≈ −0.5010

• ~LMW · ~LM33 ≈ +0.2297

• ~LMW · ~LLMC ≈ +0.0278

Adding further projection values, e.g., ~LM31 · ~LM33, would introduce correla-
tions, thereby compromising the KS-test. These three projection values pro-
vide an unbiased estimate of the cumulative distribution of projection values,
as shown in Fig. 4.6. The null hypothesis of random orientation predicts that
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Figure 4.5: KS-test of randomly oriented angular momenta in the Local Group.

Step function: Empirical (unbiased) estimate of cumulative distribution for the Local

Group. Dashed line: Cumulative distribution of null hypothesis of random orienta-

tions. The maximum KS-distance is Dmax ≈ 0.385.

all projection values are equally likely, i.e., its cumulative distribution is a
straight line also shown in Fig. 4.6. The maximum vertical distance between
empirical and predicted cumulative distribution is then Dmax ≈ 0.385. For
three projection values, this yields a p-value of ≈ 0.648 (Press et al. 2002).
Consequently, with 64.8% probability we make a mistake if we reject the null
hypothesis of randomly oriented angular-momentum-orientation vectors in the
Local Group.

How do these results change if we only consider the spin axes, ignoring
the rotational sense? In this case, we have to investigate the cumulative dis-
tribution of absolute values of the projections given above. Again, the null
hypothesis of random orientation predicts a uniform distribution of projected
spin axes, i.e., its cumulative distribution is again a straight line. Both cu-
mulative distributions are shown in Fig. 4.6. The maximum vertical distance
is now Dmax ≈ 0.499, which yields a p-value of ≈ 0.32. This still cannot be
considered as evidence against the null hypothesis.

4.4 The next step

This simple test case showed no evidence for disc alignment in the Local
Group. Our results are consistent with randomly oriented angular momenta.
However, we analysed the data of only four disc galaxies. We could only
have detected such alignment effects, if they had been very strong. Conse-
quently, the next step is to investigate a larger sample of disc galaxies. Such
a sample also enables us to refine the search for alignment effects. Instead
of just comparing pairwise angular-momentum projections, we can estimate
angular-momentum correlations and their dependence on galaxy-galaxy sepa-
ration. In other words, using a large sample of disc galaxies, we can test disc
alignment via the autocorrelation function of angular-momentum-orientation
vectors. This will be the major part of this thesis and is described in Chapter 6.
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Figure 4.6: KS-test of randomly oriented spin axes in the Local Group.

Step function: Empirical (unbiased) estimate of cumulative distribution for the Local

Group. Dashed line: Cumulative distribution of null hypothesis of random orienta-

tions. The maximum KS-distance is Dmax ≈ 0.499.

The bottom line
� For Milky Way, Andromeda (M31) and the Large Magellanic Cloud, the

angular-momentum-orientation vectors are fully known. For M33, the angular-
momentum-orientation vector is only known up to the two-fold front-edge de-
generacy, which cannot be resolved decisively.

� Given the projection values of angular-momentum-orientation vectors, the null
hypothesis of random orientations has a p-value of 0.65. If we consider only
spin axes, neglecting rotational sense, the null hypothesis of random orienta-
tions has a p-value of 0.32.

� Concerning the Local Group, there is no evidence that the hypothesis of ran-
dom orientation is incorrect. However, this does not rule out the presence
of disc alignment. A more elaborate investigation is necessary, using a large
sample of disc galaxies.
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5
The data

In the previous chapter, we have seen that a large sample of disc galaxies is
required in order to detect potential alignment effects. This means, a large
database of galaxies including a morphological classification is needed. In
this chapter, we present the data we are using for our investigation of disc
alignment. As we want to investigate alignment effects in two ways – for
general disc galaxies and specialised for spiral-arm handedness – corresponding
morphological classifications have to be accessible. We justify our choice of
data and present its details. Finally, we briefly explain the details of the
cosmological model used to infer distances from cosmological redshifts.

5.1 Choice of data set

In order to investigate disc alignment in the galaxy population, we require a
large data sample that contains a sufficient number of disc galaxies. Further-
more, theory predicts that angular-momentum vectors should be correlated on
distance scales of approximately 1Mpc (Schäfer & Merkel 2011). Therefore,
the galaxy sample has to cover a decently large volume in space. Finally, in-
vestigations of disc alignment are compromised by weak gravitational lensing
at redshifts z > 0.3 or even earlier (Crittenden et al. 2001), i.e., the galaxy
sample has to be restricted to the local universe. These three requirements
have to be satisfied.

We have already met the Cosmic Evolution Survey (COSMOS) galaxy
sample in Sect. 2.3.1. Is the COSMOS database suitable for such an investi-
gation? First, the COSMOS survey contains 31,288 galaxies with valid mor-
phological parametrisations but not all of them are disc galaxies and many lie
beyond z = 0.3. Second, the survey area is a square of only 2 square degrees.
At a maximum allowed redshift of z = 0.3 having an angular-diameter distance
of ≈ 900Mpc/h, this survey area corresponds to a square with edge length of
only ≈ 20Mpc/h. In comparison to the theoretically predicted correlation
length of 1Mpc/h, this box size is rather small and allows only for a little
amount of disc galaxies. We clearly prefer a survey with much larger field of
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Figure 5.1: Distribution of galaxy redshifts in SDSS DR 7.

We show the distribution of 929,483 galaxies from the spectroscopic sample. These

objects are taken from the SpecObjAll table and have been classified as galaxies.

view. We conclude that the COSMOS survey is not suitable for investigations
of disc alignment.

The Sloan Digital Sky Survey (SDSS) covers roughly one fourth of the
full sky and contains approximately one million galaxies with spectroscopic
redshifts (Data Release 7, Abazajian et al. 2009). In contrast to the COSMOS
survey which is deep but small, the SDSS survey is wide and “shallow”. The
distribution of galaxy redshifts is shown in Fig. 5.1. The SDSS database
contains 818,722 galaxies with spectroscopic redshift z < 0.3. Consequently,
the SDSS database satisfies all our requirements and we therefore use this
catalogue for our investigation of disc alignment in the local universe.

Initially, we envisioned to use the PanSTARRS survey for our investiga-
tion. While SDSS covers only one quarter of the sky, the PanSTARRS survey
is planned to be a fully-sky survey. Furthermore, PanSTARRS at its final
depth will be able to detect somewhat fainter objects than SDSS. All in all, we
can expect that the PanSTARRS catalogue will contain at least three times
more galaxies than the SDSS catalogue.28 Unfortunately, the PanSTARRS28The Milky Way covers

roughly one quarter of the
sky such that PanSTARRS
cannot detect galaxies in this
area.

survey was delayed and the first test measurements suffered from severe prob-
lems in the data-reduction pipeline. Therefore, we decided not to wait for
PanSTARRS but to opt for SDSS. Moreover, in the course of this work it
turned out that PanSTARRS cannot be used for investigations of disc align-
ment because it only provides photometric redshift estimates. Photometric
redshifts are not accurate enough for this task (see Sect. 7.3).

5.2 Sloan Digital Sky Survey

Using SDSS data, we have to acquaint ourselves with the relevant technical
characteristics of the SDSS instruments to some extent.

5.2.1 Telescope and instrument

The Sloan Digital Sky Survey (SDSS; York et al. 2000; Abazajian et al. 2009,
DR 7) was one of the first large sky surveys, commenced in the year 2000 and
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Figure 5.2: SDSS filter response functions.

finished in 2008 (SDSS-II). The SDSS covered an area of 8,400 square degrees
and contains imaging and spectra of 930,000 galaxies, 120,000 quasars, and
225,000 stars. The survey used the 2.5m telescope at the Apache Point Ob-
servatory, New Mexico, USA, to observe the Northern Galactic Cap and along
the equator. The telescope uses a 1m secondary mirror and its instruments are
set up in Cassegrain focus which allows a short and compact design. However,
in contrast to a standard Cassegrain telescope with concave-parabolic primary
mirror and convex-hyperbolic secondary mirror, primary and secondary mir-
rors are shaped differently in order to enlarge the field of view and provide
in-focus imaging.29 The 120-megapixel CCD camera was able to detect objects 29http://cas.sdss.org/

dr7/en/sdss/telescope/

telescope.asp
to a flux limit of r ≈ 22.5mag, and spectroscopic observations of galaxies were
possible down to r ≈ 17.77mag. The camera has five bands (u′, g′, r′, i′,
and z′), whose filter response functions are shown in Fig. 5.2. We note that
the u′ and z′ bands have very poor response, i.e., these bands are very noisy
compared to the other three bands. The camera is operated in drift mode,
i.e., the telescope shutter remains open and the telescope in fixed positioning
such that the observed objects drift over the CCD from West towards East
during the night. The CCD is continuously read out synchronised such that
pixel columns are read out continuously while the object drifts from one to
the next pixel column.

5.2.2 Imaging data and meta-information

SDSS imaging data is publicly accessible.30 However, the imaging data is pro- 30http://www.sdss.org/

vided in a way that is far from convenient or ready-to-use. One possibility is
to download whole imaging plates. The tasks of locating the desired target
object, e.g., a disc galaxy, and making a cutout is “outsourced” to the user.
Downloading the full imaging plates is very time-consuming and requires a fast
internet connection and lots of hard-disk memory, in particular since we are
interested in imaging data of numerous galaxies. Conversely, the NASA/IPAC
infrared science archive31 offers a web interface to download object cutouts for 31http://irsa.ipac.

caltech.edu/Missions/

sdss.html
given coordinates. However, this tool is limited to 20 objects per query and is
therefore also inappropriate to download imaging data of thousands of galax-
ies, which is necessary for our investigation. Nevertheless, we used this web
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interface to download imaging data of the 500 largest galaxies in our sample.

The SDSS database also provides a wealth of additional information apart
from pure imaging data. The access to these additional information is public,
too, but this time it is conveniently provided by a MySQL-database interface.
In particular, the SDSS table Galaxy provides us with Petrosian radii and
ellipticity estimates based on isophotes and second moments of the galaxy’s
light distribution. Furthermore, the SDSS table SpecObjAll contains spec-
troscopic redshift estimates and its errors for many SDSS galaxies.

5.3 Galaxy Zoo

For reasons discussed in Chapters 2 and 3, we are unsatisfied with the parametri-
sation of galaxy morphologies for the task of automated classification. There-
fore, we resort to visual classification by human beings in order to separate
disc galaxies from other galaxy types. Such a catalogue of visual classifications
of galaxy morphologies is provided by the Galaxy Zoo project.

5.3.1 Project description

The Galaxy Zoo project32 provides visual classifications of approximately32http://zoo1.galaxyzoo.

org/ 900,000 galaxies from the SDSS spectroscopic sample (Lintott et al. 2008,
2011), whose redshift distribution is shown in Fig. 5.1. This enormous effort
has been accomplished with the help of the internet community. The crucial
idea of the Galaxy Zoo project was to show galaxy images to non-expert inter-
net users and let them classify these objects according to a simple pre-defined
classification scheme. Every object has been classified by more than a sin-
gle person, reaching 39 votes on average for all 900,000 galaxies (Land et al.
2008). In fact, 98% of the sample have at least 20 votes per galaxy (Bamford
et al. 2009). These multiple votes per galaxy provide a direct estimate of
the galaxy’s class probabilities. In detail, the Galaxy Zoo database provides
probabilistic assignments to the following morphological classes:

• elliptical galaxy, pGZ
ell , including S0 galaxies,

• disc galaxy, pGZ
disc,

• edge-on disc galaxy, pGZ
edge,

• clock-wise/Z-wise spiral galaxy, pGZ
Z ,

• anti-wise/S-wise spiral galaxy, pGZ
S ,

• merger, pGZ
mg .

Of particular interest are the handedness classifications of spiral-arm patterns,
pGZ

Z and pGZ
S . All probabilities that are taken from Galaxy Zoo are denoted

with a “GZ” superscript. The normalisation is given by

pGZ
ell + pGZ

disc + pGZ
edge + pGZ

Z + pGZ
S + pGZ

mg = 1 . (5.1)
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5.3.2 How to operate Galaxy Zoo

The classification provided by Galaxy Zoo offers probabilistic object-to-class
assignments which naturally account for the uncertainty in the classification.
As we argued in Andrae et al. (2010b), this is the only meaningful and clean
way to classify galaxy morphologies. Our line of argument was that hard
“either–or” object-to-class assignments are inappropriate because, first, ob-
servational effects wash out differences between classes creating class overlap,
and, second, that also theoretically galaxy evolution should produce overlap-
ping morphological classes.33 In simple words, galaxy morphologies cannot 33For instances, consider

bulged disc galaxies or
galaxy mergers.

be clearly assigned to morphological types in general – apart from singular
prototypical examples of very obvious morphology. Nevertheless, hard assign-
ments are easier to carry out and interpret, wherefore many astronomers have
a natural affinity to this approach. Sometimes, astronomers are so used to
hard-cut classifications that even the probabilistic assignments of Galaxy Zoo
have been converted into hard cuts, which is inappropriate for above reasons
(e.g. Slosar et al. 2009; Lee 2011). Even Bamford et al. (2009) themselves do
not fully understand their own work when they claim that the probabilities
“cannot provide classifications for individual objects”, instead recommending
to threshold or cut the probabilities for this purpose.34 A probabilistic object- 34Such a cut would only be

justified, if the classification
probabilities were biased and
the nature of this bias was un-
derstood. However, if such a
bias is understood, it will be
better to correct the probabil-
ities instead of cutting them
(see Sect. 5.5.1).

to-class assignment is all we can get. As we demonstrated in Andrae et al.
(2010b), cutting probabilistic classifications in the presence of overlap can lead
to substantial biases. We address this problem in Sects. 6.4.4.2 and 6.4.5.2.

5.3.3 Criticism

The major point of criticism usually raised against Galaxy Zoo is the fact
that the visual classification has been performed by non-experts. However,
that is really not an argument at all for two reasons: First, Lintott et al.
(2008, 2011) made an effort to weight the contributions of every internet user
according to hers/his performance in comparison to all other users. This
reduces the influence of individual persons misclassifying objects. Second,
a single expert classifier might indeed produce better results than a single
non-expert, but a group of non-expert users eventually also produces highly
accurate results. This combination of many “weak learners” to form a “strong
learner” is well known from ensemble learning (e.g. Hastie et al. 2009), a
subfield of machine learning which has created several modern and highly
successful learning algorithms.35 35This principle is also known

as “wisdom of crowds”. Some
quiz shows even exploit it via
“audience jokers”.

A real criticism of Galaxy Zoo is that the project is neither reproducible
nor scalable. The project was an enormous success because it quickly gathered
the interest of the internet community. However, as quickly as the internet
community can gain interest in something, it can also loose this interest very
rapidly. Therefore, it appears highly questionable whether it would be possible
to repeat such an exercise, e.g., with a different or refined classification scheme.
This brings us to the second problem: The success of Galaxy Zoo is not
scalable, meaning it is impossible to do something similar with a galaxy sample
10 times as large as SDSS. Although the internet community is very powerful,
classifying 900,000 galaxies took already more than two years to complete. We
dare say that the Galaxy Zoo project is an impressive mark placed right at
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the limit where visual classification becomes infeasible.

5.4 Classifications by Huertas-Company et

al. (2011)

Similar to the Galaxy Zoo project, Huertas-Company et al. (2011) performed a
morphological classification on the SDSS spectroscopic galaxy sample.36 There36http://gepicom04.

obspm.fr/sdss_

morphology/Morphology_

2010.html

are two important differences with respect to Galaxy Zoo. First, instead of
visual inspection, a support-vector machine, i.e., an automated classification
algorithm, has been used in order to classify the galaxies. The classifica-
tion was based on several morphological and non-morphological parameters,
namely colours, isophotal axis ratio, goodness of de Vaucouleur fit, and con-
centration index. The classification algorithm was trained on a sample of 2,253
SDSS galaxies visually classified by Fukugita et al. (2007). Although based
on a problematic parameter like concentration index (see Sects. 2.3, 2.4, and
2.5), Huertas-Company et al. (2011) can show that the resulting probabilis-
tic galaxy-to-class assignments are robust and reliable. In particular, their
classifications are in good agreement with the Galaxy Zoo results, as far as
both classification schemes are comparable. Second, the classification scheme
is slightly different from Galaxy Zoo. The morphological classes are:

• elliptical, pHC
ell ,

• S0 galaxy, pHC
S0 ,

• Sab disc galaxy, pHC
Sab,

• Scd disc galaxy, pHC
Scd, including irregulars.

Of particular interest is the classification of Scd disc galaxies, pHC
Scd. All proba-

bilities taken from the catalogue of Huertas-Company et al. (2011) are denoted
with a superscript “HC”. The normalisation reads

pHC
ell + pHC

S0 + pHC
Sab + pHC

Scd = 1 . (5.2)

As mentioned in Huertas-Company et al. (2011), Sect. 3.1 therein, the “Scd”
class not only contains Scd galaxies but also irregular galaxies, since there
were not enough irregulars in the training sample to make up their own class.

5.5 Data selection

Not all objects in the two catalogues presented above can be used for our anal-
ysis. Some objects have to be removed for various reasons. We now describe
the data selection for this investigation of disc alignment. Our investigation
essentially aims at two different approaches, namely looking for statistically
significant autocorrelations of spiral-arm handedness and angular-momentum-
vector orientations, respectively. Separate galaxy samples are required for
both tasks.
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5.5.1 Handedness sample

A fully automated handedness estimation as outlined in Sect. 3.3.5 is not pos-
sible, due to the severe limitations of sérsiclets as discussed in Sect. 3.5.4.
Fortunately, Galaxy Zoo provides us with a classification of the winding sense
of spiral-arm patterns in disc galaxies. However, Land et al. (2008) reported a
bias in the handedness classifications, pGZ

Z and pGZ
S , where more spiral galaxies

are classified as S-wise than as Z-wise.37 This bias is corrected in an asymmet- 37The exact origin of this bias
remains unknown, though
one option considered by
Land et al. (2008) is a psy-
chological effect.

ric, additive fashion by Land et al. (2008) and Slosar et al. (2009) in order to
enforce that the proportions of Z-wise and S-wise spirals are equal with regard
to the whole sample. In contrast to this, we employ a symmetric, additive bias
correction of the form

pZ = pGZ
Z + b and pS = pGZ

S − b , (5.3)

where b is chosen such that the numbers of Z-wise and S-wise spirals are
approximately identical. There are two reasons:

1. The symmetric correction preserves the normalisation of Eq. (5.1). This
is important because in contrast to Slosar et al. (2009) we are han-
dling the Galaxy Zoo results fully probabilistically in our analysis (cf.
Sect. 6.4.2).

2. Demanding that the proportions of Z-wise and S-wise spirals are equal
only provides a single condition, such that an asymmetric correction
with two biases, bZ and bS, is not fully constrained and therefore arbi-
trary.

Slosar et al. (2009) argued correctly that such a bias can only lead to a con-
stant offset in the handedness autocorrelation function, but it cannot feign a
distance-dependent autocorrelation, which is the desired astrophysical signal.

First, starting from the complete Galaxy Zoo sample, we select a subsample
galaxies with either pGZ

Z ≥ 0.778 or pGZ
S ≥ 0.8, which results in 36,999 galaxies.

This preselection is necessary in order to minimise the number of galaxies
for which we have to retrieve metainformation. We only select these objects
but we do not cut their class probabilities. The probability thresholds are
chosen this way in order to allow for some flexibility in the correction of the
handedness bias. Like Slosar et al. (2009), we do not restrict the redshift in
our selection.

Second, for all galaxies we tried to download the r-band Petrosian radii
from the SDSS Galaxy table, the spectroscopic redshift estimate and its
error estimate from the SDSS SpecObjAll table. Actually, all objects in
the Galaxy Zoo sample have been selected from the SDSS spectroscopic sam-
ple. Strangely though, we could not find 103 objects in the Galaxy table
and another 5,106 objects were untraceable in the SpecObjAll table.38 This 38Cross-matching was done

by retrieving the SpecObjID
from the Galaxy table or
– if this label was unavail-
able – by matching the given
ObjID with the BestObjID
from the SpecObjAll table.

leaves us with 31,790 objects with r-band Petrosian radius and estimates of
spectroscopic redshift and its error.

Third, we remove multiple objects from the sample, i.e., very extended
galaxies that have been shredded by the SDSS pipeline producing multiple en-
tries of a single object. Evidently, such multiple entries would compromise the
handedness-correlation estimate by causing artificial positive correlations on

– 89 –



CHAPTER 5. THE DATA

short distances. We automatically removed galaxy pairs whose angular sepa-
rations were less than 1.5 times the maximum r-band Petrosian radius of both
galaxies, by randomly dropping a single of the two partners. Furthermore,
Slosar et al. (2009) removed another 69 objects through visual inspection.
This list has been kindly provided by Anže Slosar such that we are capable of
removing these objects, too. This leaves us with 31,621 galaxies.

Finally, we apply the additive and symmetric bias correction of the hand-
edness classifications given by Eq. (5.3) to the 36,999 galaxies from the prese-
lected sample. Näıvely interpreting any galaxy with pZ ≥ 0.8 as likely Z-wise
spiral and any galaxy with pS ≥ 0.8 as likely S-wise spiral, we end up with
15,083 Z-wise and 15,071 S-wise spirals for a bias correction of b = 0.0105.3939Note that the preselection

pGZ
Z ≥ 0.778 or pGZ

S ≥ 0.8 was
only intended to minimise the
amount of objects requiring
metainformation. The pres-
election was not our actual
data selection.

Therefore, our sample is slightly smaller than the one used by Slosar et al.
(2009) (18,074 Z-wise spirals and 18,052 S-wise spirals, Land et al. 2008) for
reasons unknown to us. The most likely explanation for this discrepancy is
that Slosar et al. (2009) used a slightly different version of the SDSS database.

5.5.2 Angular-momentum-orientation sample

Concerning correlations of angular-momentum-orientation vectors, one goal is
to reproduce the results reported by Lee (2011). Therefore, we have to apply
the same data selection criteria. Based on the catalogue of morphological
classifications by Huertas-Company et al. (2011), we select those galaxies with
spectroscopic redshifts 0 < z ≤ 0.02 and probability pHC

Scd > 0.5 to be a galaxy
of type Sc or Sd. The redshift cut ensures completeness, i.e., our sample
contains virtually all Scd galaxies out to redshift z ≤ 0.02.40 This leaves us with40The limiting r-band mag-

nitude is approximately
rmax ≈ 18.

4,236 galaxies satisfying these criteria, the same number of objects as reported
by Lee (2011). For 25 of these objects we could not find any information in the
SDSS database, i.e., estimates of r-band Petrosian radii, Stokes parameters,
their errors, and error estimates of spectroscopic redshift are missing. For
these objects, we set the spectroscopic redshift error to 10−4, which is a typical
value for this sample. Petrosian radii are set to zero. Using the automated
method described above, we find 20 rogue pairs of shredded galaxy parts in
this sample. For each rogue pair, we randomly discard one of the two galaxies,
such that we are left with a sample of 4,216 Scd galaxies.

5.6 Cosmological model

For the analyses carried out in the next chapters, we have to infer cosmological
distances from estimates of cosmological redshift. The sample of Scd galaxies
with z ≤ 0.02 is well in the linear regime of the simple Hubble law. However,
the handedness sample contains galaxies from the whole SDSS spectroscopic
sample whose redshifts also explore the nonlinear regime as is evident from
Fig. 5.1. This requires the specification of a cosmological model because differ-
ent cosmological models exhibit different space-time curvatures and therefore
lead to different relations of redshift and distance.

We employ a flat ΛCDM cosmology with Dark-Energy density
ΩΛ = 0.734 and Dark-Matter density Ωm = 1−ΩΛ (Larson et al. 2011). Fur-
thermore, we use the standard parametrisation of Hubble’s constant
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Figure 5.3: Comoving distance and linear Hubble distance.

The redshift range is the same as for the SDSS spectroscopic sample (Fig. 5.1).

H0 = 100h km s−1Mpc−1. For a given spectroscopic redshift estimate, ẑ, we
then estimate the comoving distance,

d(ẑ) =
c

H0

∫ ẑ

0

dz

(1 + z)2
√

(1 + z)3Ωm + ΩΛ

. (5.4)

We use the comoving distance because it is the spatial distance at fixed time
of two objects comoving with the cosmic expansion.41 Figure 5.3 shows the 41As the concept of simul-

taneity does not exist in rela-
tivity, the fixed time is speci-
fied by the observer.

comoving distance as a function of redshift for the relevant redshift regime.

The bottom line
� For investigating disc alignment, a galaxy sample with numerous galaxies at

cosmological redshift z < 0.3 is required. The Sloan Digital Sky Survey (SDSS)
satisfies these requirements.

� Classifications of galaxy morphologies in SDSS are available through the
Galaxy Zoo project and the work of Huertas-Company et al. (2011).

� We select a sample of 15,083 Z-wise and 15,071 S-wise spiral galaxies from
Galaxy Zoo. Furthermore, we select a sample of 4,216 Scd galaxies from the
catalogue of Huertas-Company et al. (2011).

� From spectroscopic redshifts we estimate comoving distances using a
ΛCDM cosmology with parameters ΩΛ = 0.734, Ωm = 1 − ΩΛ and
H0 = 100h km s−1Mpc−1.
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6
Measurements and results

In this chapter, the central results of testing disc alignment via autocorre-
lations of spiral-arm handedness and angular-momentum-orientation vectors
are presented. We start with a brief review of previous work, motivating our
own approach. Then, the details of inferring angular-momentum-orientation
vectors from the data are explained. We proceed by rigorously investigating
the impact of various sources of errors.

6.1 Previous work and motivation

Disc alignment explains angular-momentum acquisition of disc galaxies par-
tially by the influence of environment on the collapsing dark-matter halo.
Therefore, galaxies close to each other reside in haloes which were influenced
by the same environment, thereby giving rise to autocorrelation effects on
short distance scales. The search for such alignment effects is not new. For in-
stances, Sugai & Iye (1995) and Land et al. (2008) investigated the distribution
of spiral-arm handedness over the sky via multipole expansion, searching for
signatures of disc alignment. More recently, Slosar et al. (2009) looked for au-
tocorrelations of spiral-arm handedness in the Galaxy Zoo sample and reported
the discovery of positive autocorrelations on distance scales of 0.5Mpc/h at a
statistical significance level of ≈ 3σ. Furthermore, positive autocorrelations
of angular-momentum orientations at similarly low statistical significance lev-
els have been reported, e.g., by Lee (2011). Unfortunately, the recent work
by Slosar et al. (2009) and Lee (2011) did not take into account several im-
portant sources of errors, namely errors in redshift estimates, morphological
classification and – in the case of angular-momentum orientations – elliptic-
ity estimates. Consequently, these investigations systematically underestimate
the errors of their correlation estimates, leading to overly optimistic estimates
of statistical significance. In this chapter, we investigate the impact of these
errors on the correlation estimates. The crucial question is whether we can
still find statistical evidence for the existence of such correlations.

Why is it worth looking for such autocorrelations? Indeed, their discov-
ery of such correlations could be regarded as important confirmation of disc
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Figure 6.1: Local coordinate system for inferring angular-momentum orientation.

Line of sight and x-direction coincide. Shown is a cross-section through the inclined

galactic disc with apparent axis ratio q = b/a. The inclination angle α appears in

both dashed triangles.

alignment. However, a non-detection could be explained by suitable values of
theoretical parameters producing correlations which are too weak to be de-
tectable with current data. Therefore, the only valid scientific approach is
to use this experiment to constrain the theoretical parameters from the data,
and to device a second future test of the constrained theory. Consequently, the
task is well defined: Estimate these autocorrelations in order to constrain the-
oretical parameters which enable us to device a future more decisive empirical
test.

6.2 From axis ratio to angular-momentum

orientation

The orientation of the angular-momentum vector of a disc galaxy is not an
observable. It has to be inferred from the observed galactic disc by invoking
several assumptions. We now explain how to estimate the angular-momentum
orientation from observables, as described in Lee & Erdogdu (2007) or Lee
(2011). In fact, we used this formalism already earlier in Sect. 4.2. Let us
emphasise that we can only infer the orientation of the angular-momentum
vector but not its absolute value. The latter would require knowledge of the
density distribution and precise dynamics of the galaxies in our sample.

6.2.1 Local Cartesian coordinates

Assuming a circular and infinitely thin disc, the observed axis ratio q = b/a ≤ 1
enables us to directly estimate the disc’s inclination angle α (cf. Fig. 6.1),

cosα = q . (6.1)

We choose a local Cartesian coordinate system – “local” because it is dif-
ferent for every individual galaxy – where the line-of-sight (from us towards
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the galaxy) points along the x-direction, while the semi-minor axis of the
observed inclined disc points along the y-direction (cf. Fig. 6.1). The angular-
momentum-orientation vector then reads

~Lloc =

 ± cosα
sinα

0

 =

 ±q√
1− q2

0

 . (6.2)

The ± stems from the geometric degeneracy caused by our ignorance of which
edge of the inclined disc is pointing towards us (the front edge). If we assign
probabilities pa and pb to both possible configurations of the front edge, we
can write

~Lloc =

 (pa − pb) cosα
sinα

0

 =

 (pa − pb)q√
1− q2

0

 , (6.3)

where pa + pb = 1. If no estimate of the front edge is available, we set pa =
pb = 1/2, such that ~Lloc has no x-component on average.

6.2.2 Disc orientation

Apart from the inclination angle α ≈ arccos(q) the observed disc galaxy also
has an orientation angle θ that can be estimated from the imaging data along
with the axis ratio q. Therefore, we need to rotate Eq. (6.3) by θ around the
x-axis, which yields

~L′loc =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ·
 (pa − pb) cosα

sinα
0



=

 (pa − pb) cosα
cos θ sinα
sin θ sinα

 =

 L′loc,x

L′loc,y

L′loc,z

 . (6.4)

This means for an orientation angle of θ = 0 the semi-major axis of the disc
points into y-direction, whereas it points into z-direction for θ = +90◦.

6.2.3 Global coordinate system

Next, we need to transform from the local coordinate system – where the
line-of-sight points along the x-axis and which therefore differs from galaxy
to galaxy as the line-of-sights are different – to a global coordinate system
which is identical for all galaxies. This global coordinate system is chosen
best in spherical coordinates (r, ϕ, ϑ), where the azimuthal/longitude angle ϕ
is identified with the right ascension, whereas the latitude angle ϑ is identified
with 90◦ minus the declination. Then L′loc,x always points into r-direction,
while L′loc,y points into ϕ-direction and L′loc,z into ϑ-direction. Consequently,
the angular-momentum vector in global coordinates is given by

~L = L′loc,x~er + L′loc,y~eϕ + L′loc,z~eϑ , (6.5)

– 95 –



CHAPTER 6. MEASUREMENTS AND RESULTS

where we have used the spherical unit vectors,

~er =

 cosϕ sinϑ
sinϕ sinϑ

cosϑ

 , ~eϕ =

 − sinϕ
cosϕ

0

 and

~eϑ =

 cosϕ cosϑ
sinϕ cosϑ
− sinϑ

 .

Following the notation of Lee (2011), we denote the two possible orientations
of the front edge by ~La and ~Lb,

~La = +L′loc,x~er + L′loc,y~eϕ + L′loc,z~eϑ , (6.6)

and

~Lb = −L′loc,x~er + L′loc,y~eϕ + L′loc,z~eϑ = ~La − 2(~La · ~er)~er , (6.7)

which only differ in the sign of their radial components.

6.2.4 Thick-disc approximation

Equation (6.1) assumes circular and infinitely thin discs. In reality, however,
disc galaxies are not infinitely thin. First, galactic discs have a non-zero scale
height. Second, disc galaxies typically exhibit a central bulge. Therefore, disc
galaxies are not infinitely thin even when viewed edge-on. If we want to make
this inference more physical by allowing for circular thick discs, all we need to
do is to change Eq. (6.1). Let p denote the thickness parameter of the disc,
we can redefine (e.g. Lee & Erdogdu 2007; Lee 2011)

cos2 α =

{
q2−p2
1−p2 if q > p

0 else
. (6.8)

The value of p depends on morphological type. Haynes & Giovanelli (1984)
quote values of p that continuously decrease from 0.23 down to 0.1 over the
morphological sequence Sa, Sab, Sb, Sbc, Sc, Scd. In fact, Lee (2011) decided
to restrict the investigations of angular-momentum-orientation correlations on
Scd galaxies only, since those galaxies by definition do not exhibit prominent
bulges. Consequently, Scd galaxies can provide an unbiased estimate of the
disc ellipticity, depending on the ellipticity estimator as discussed in Sect. 7.1.
For later purposes, we note that Heidmann et al. (1972) compared different
estimates of the intrinsic axial ratios and find values between p = 0.083 and
0.145 for Scd galaxies.

6.2.5 Geometric degeneracies

We have already met the geometric degeneracy originating from the ambiguity
of the front edge (cf. Fig. 6.2). This degeneracy can in principle be broken by
searching for an asymmetric dust extinction, which would indicate the front
edge (see Sect. 7.5).
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inclined disc
(1) (2)

(3) (4)

?

(front)

Figure 6.2: Geometric degeneracies in estimating the angular-momentum orientation.

Observing only the inclined disc allows four different configurations. If we knew

the lower edge of the inclined disc were the front edge pointing towards us, this

would eliminate options (2) and (3). If we observed spiral arms with the sketched

handedness, this would eliminate options (1) and (2) (“right-hand rule”, ~L points

along the right thumb). Knowledge of the front edge and handedness together would

enable us to identify (4) as the only possible configuration in this case.

There is yet a second geometric degeneracy originating from our ignorance
of the rotational sense. In fact, Eq. (6.5) only tells us the plane of rotation,
such that ±~L are both possible options (cf. Fig. 6.2). This degeneracy can be
broken by observing the rotational sense of the disc. One possibility to do this
is to employ spatially resolved spectroscopy and study the distribution of radial
velocities within the disc. However, obtaining spatially resolved spectroscopy
for hundreds of thousands of disc galaxies is infeasible. In fact, the ambitious
Califa project aims at assembling spatially resolved spectra of ≈ 600 galaxies
(Sánchez et al. 2010). A less expensive approach is to look for spiral-arm
patterns. We can infer the rotational sense of the disc from the winding sense
of spiral arms, assuming that spiral arms are always trailing. We discuss this
issue in further detail in the following section.

6.2.6 Leading spiral arms

As mentioned in the previous section, inferring the rotational sense of a disc
galaxy from the handedness explicitly assumes that all spiral arms are trailing
arms. In fact, Pasha (1985) found that 4 out of 190 spiral galaxies have leading
arms.42 As counting the number of leading spiral arms is a Bernoulli trial 42In fact, all four objects

with leading arms were found
to dynamically interact with
companions, wherefore Pasha
(1985) argued that leading
arms may be induced by in-
teractions.

and its outcome is given by a binomial distribution, this yields a maximum-
likelihood estimate of f̂ = 4/190 ≈ 2.1% for the fraction of leading arms. The
99% cumulative confidence is given by f99 ≈ 6.0%, i.e., there is a 1% chance
that the true fraction of leading spiral arms is larger than 6.0%. Similarly,
the 1% cumulative confidence is f1 ≈ 0.7%, i.e., there is a 1% chance that the
true fraction of leading spiral arms is smaller than 0.7%.43

43These confidence levels
have been estimated by
numerical integration of the
beta distribution without
any approximation (Cameron
2010).

What is the impact of a small fraction of leading spiral arms on the es-
timator given by Eq. (6.24)? Slosar et al. (2009) showed that it leads to a
constant multiplicative bias of

b = 4

(
f − 1

2

)2

, (6.9)

which stems from the fact that for a pair of galaxies a bias in the handedness-
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correlation estimate only appears if exactly one spin was randomly reversed,
but not if both were reversed. Consequently, this effect cannot feign a distance-
dependent correlation. Furthermore, a multiplicative bias does not interfere
with an assessment of statistical significance in a detected signal because the
multiplicative bias also applies to the error of the correlation estimate and
therefore cancels out. As b < 1, the possibility of leading spiral arms causes us
to underestimate the correlation while the true correlation is actually larger.
In order to assess the impact of leading arms, we may use the two extremes
f1 and f99, which yield b1 ≈ 0.97 and b99 ≈ 0.77, respectively.

6.3 Correlation estimators

We now introduce the general correlation estimators for angular-momentum-
orientation vectors and handedness. We also explain how to estimate errors
in general. We start by explaining the general formalism and then specialise
on both angular-momentum orientations and handedness.

6.3.1 General correlation estimator

Given two random variates X and Y , we want to estimate their correlation
ξXY and its error. If N pairs (x1, y1), (x2, y2), . . . , (xN , yN ) have been drawn
from (X,Y ), a general correlation estimator is given by,

ξ̂XY = 〈(X − 〈X〉)(Y − 〈Y 〉)〉 = 〈XY 〉 − 〈X〉〈Y 〉 , (6.10)

where the hat on ξXY indicates an estimator and the expectation values are
approximated by sample means,4444Expectation values are in-

tegrals over probability dis-
tributions. Mean values
are averages over samples
drawn from probability distri-
butions. Their equality only
holds for large data samples.

〈XY 〉 =
1

N

N∑
n=1

xnyn , (6.11)

〈X〉 =
1

N

N∑
n=1

xn and 〈Y 〉 =
1

N

N∑
n=1

yn . (6.12)

Strictly, Eq. (6.10) defines a covariance estimator instead of a correlation es-
timator. In order to obtain a true correlation estimator, we actually need to
normalise Eq. (6.10) by the factor

√
(〈X2〉 − 〈X〉2)(〈Y 2〉 − 〈Y 〉2). However,

this is usually not done in practice and Eq. (6.10) is nevertheless referred to
as an estimate of the correlation of X and Y .

6.3.2 Error estimation

Merely obtaining a value of the correlation ξ̂XY via Eq. (6.10) alone is not
informative in any way. A meaningful result also requires an error estimate
of ξ̂XY , e.g., in order to assess the confidence of the correlation value. ξ̂XY is
the mean of the random variate

Z = (X − 〈X〉)(Y − 〈Y 〉) . (6.13)
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If we were interested in estimating the random variate Z, we would employ
its mean 〈Z〉 and its variance 〈Z2〉 − 〈Z〉2. However, in this case we are not
interested in estimating Z but in estimating the mean of Z and the variance of
ξ̂XY = 〈Z〉 equals the variance of Z divided by the number of samples drawn
from Z. We can understand this very easily assuming that Z were subject to
a Gaussian distribution – for the sake of argument. If we are given N samples
z1, z2, . . . , zN drawn from Z we would estimate the mean µ of Z via minimising
χ2,

∂χ2

∂µ
=

∂

∂µ

N∑
n=1

(zn − µ)2

σ2
Z

= −2
N∑
n=1

zn − µ
σ2
Z

= 0 , (6.14)

where σZ denotes the Gaussian standard deviation of Z. Solving the last
equation for µ yields the maximum-likelihood estimate of the mean of Z,

µ̂ =
1

N

N∑
n=1

zn , (6.15)

which corresponds to our correlation estimate of Eq. (6.10). An error estimate
σ̂µ of µ̂ is then given by a Fisher analysis (e.g. Heavens 2009). Taking the
second derivative of χ2 with respect to µ, we obtain

1

σ̂2
µ

=
1

2

∂2χ2

∂µ2
=

N∑
n=1

1

σ2
Z

=
N

σ2
Z

, (6.16)

and therefore

σ̂2
µ = σ2

Z/N (6.17)

or rather σ̂µ = σZ/
√
N .45 In this particular case, we assumed that Z were 45Loosely speaking, if we

draw more samples from Z,
the distribution of Z does
not change, in particular its
width (variance) stays con-
stant. However, drawing
more samples from Z enables
us to estimate the mean of the
distribution more accurately.

subject to a Gaussian distribution such that for fitting the linear mean value
there is no approximation involved. In practice, Z is usually not Gaussian.
However, the central-limit theorem ensures that the likelihood of the mean
ξ̂XY = 〈Z〉 is approximately Gaussian if the number N of samples drawn from
Z is large enough. This guarantees that Eq. (6.17) is a valid approximation
also in the more general case. Consequently, for the correlation estimate of
Eq. (6.10) we obtain an error estimate of

σ̂(ξ̂XY ) =
σ̂((X − 〈X〉)(Y − 〈Y 〉))√

N
. (6.18)

Here, we assume that N is large enough such that the likelihood function of
the mean 〈(X−〈X〉)(Y −〈Y 〉)〉 is approximately Gaussian and we are allowed
to take the square-root of the variance in order to obtain a standard deviation
“σ”.

6.3.3 Angular-momentum orientation

Our aim is to estimate the scalar two-point autocorrelation function of angular-
momentum orientations, ξ̂LL(r). Here, we assume spherical symmetry such
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that ξ̂(~r) = ξ̂(r). This is a first-order approximation because the spatial
distribution of galaxies in the universe is not isotropic on short scales (“Cosmic
Web”). Usually, the following estimator is employed (e.g. Pen et al. 2000; Lee
2011),

ξ̂LL(r) = 〈pap′a|~La · ~L′a|2〉+ 〈pap′b|~La · ~L′b|2〉

+〈pbp′a|~Lb · ~L′a|2〉+ 〈pbp′b|~Lb · ~L′b|2〉 −
1

3
, (6.19)

where primes indicate the data of the second galaxy in the pair and subscripts
a, b denote the two possible orientations of the disc’s front edge with proba-
bilities pa and pb. The constant 1

3 is subtracted because ~La/b · ~L′a/b = cosα

where α is a random angle. Hence, 〈(~La/b · ~L′a/b)
2〉 equals

〈cos2 α〉 =

∫ 1
−1 cos2 α d cosα∫ 1
−1 d cosα

=
1

3
. (6.20)

Introducing the abbreviation Z = (pap
′
a|~La · ~L′a|2 + pap

′
b|~La · ~L′b|2 + pbp

′
a|~Lb ·

~L′a|2 + pbp
′
b|~Lb · ~L′b|2), an error estimate of ξ̂LL(r) is given by,

σ̂(ξ̂LL) =
σ̂(Z)√
N

, (6.21)

where N denotes the number of galaxy pairs in the relevant distance bin. The
division by

√
N stems from the fact that the correlation is the mean of the

random variate Z and not Z itself.4646The subtracted constant 1
3

has no impact on the error es-
timate.

6.3.4 Handedness

We also want to estimate the two-point autocorrelation function of handedness
ξ̂HH(r). Again assuming spherical symmetry, a general estimator is given by,

ξ̂HH(r) = 〈hh′〉 , (6.22)

where we have defined the handedness

h = pZ − pS , (6.23)

based on Eq. (5.3). As explained in Sect. 5.5.1, the mean handedness of galax-
ies is zero in the whole sample, i.e., 〈h〉 = 〈h′〉 = 0. Handedness alignments
cannot change this in individual distance bins, if the number of galaxy pairs
is large enough.

For the moment, let us assume that the spiral-arm handedness is known
precisely, i.e., h = ±1. In every distance bin, n+ denotes the number of galaxy
pairs with hh′ = +1 and n− the number of galaxy pairs with hh′ = −1. We
can then rewrite Eq. (6.22) to read

ξ̂HH(r) =
n+ − n−
n+ + n−

= f+ − f− = 2f+ − 1 , (6.24)

where f± = n±/(n+ + n−) denotes the fraction of galaxy pairs with positive
or negative handedness products, respectively. An error estimate of ξ̂HH(r)
is obtained from the fact that counting positive handedness products is a
Bernoulli trial, i.e., n± are subject to the binomial distribution while f± are
subject to the beta distribution (e.g. Cameron 2010).
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Figure 6.3: A sketch of conditional and marginal errors.

Shown is a Gaussian error ellipse for two correlated parameters θ1 and θ2. Slicing

at θ2 = 0, we obtain a conditional error for θ1 of ≈ 0.86. Furthermore, slicing at

θ2 = 0.87, we obtain another conditional error for θ1 of only ≈ 0.42. Projecting the

Gaussian ellipse onto the θ1-axis, we obtain a marginal error for θ1 of ≈ 1.718. This

sketch has been inspired by a similar figure in Press et al. (2002).

6.4 The impact of errors

As we are going to demonstrate in this section, previous estimates of correla-
tions in handedness and angular-momentum orientations neglected the most
important sources of errors. Consequently, their results are overly optimistic
concerning the statistical significance of the detections. First, we introduce
some important statistical terminology. Second, we discuss the additional
sources of errors that have to be taken into account. Finally, we investigate
their impact on estimates of handedness correlations and angular-momentum-
orientation correlations.

6.4.1 Conditional vs. marginal errors

Our criticism of earlier investigations of alignment effects via correlations func-
tions (e.g. Slosar et al. 2009; Lee 2011) can be formulated as: Previous esti-
mates are only conditional instead of marginal estimates. Consequently, we
now need to briefly explain the conceptual difference between conditional and
marginal errors.

For the sake of simplicity, let us consider fitting data D with Gaussian
noise using a model with two linear parameters θ1 and θ2. In this case, the
likelihood function L(D|θ1, θ2) is a bivariate Gaussian whose 2× 2 covariance
matrix

Σ =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
(6.25)

can be estimated from a Fisher analysis (e.g. Heavens 2009). Here, σ1 is the
standard deviation of this Gaussian if sliced at the optimal value of θ2 and
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vice versa, whereas −1 ≤ ρ12 ≤ 1 is the correlation coefficient. Therefore,
σ1 is the conditional error of θ1, “conditional” because it depends on where
the Gaussian has been sliced, i.e., the optimal value of θ2. Conversely, the
marginal error of θ1 is independent of the value of θ2. This marginal error
is obtained by projecting the bivariate Gaussian onto the θ1-axis, instead of
slicing it. Marginal errors are never smaller than conditional errors. Figure 6.3
shows a simple example.

In practice, one is always interested in either marginal errors or Σ as a
whole. Statements like “assuming the value of θ2 is ..., we obtain a conditional
error for θ1 of σ1” are interesting, if and only if θ2 has zero or negligible error.4747In fact, if θ2 has zero or neg-

ligible error, this means that
the conditional error of θ1 ac-
tually is a “quasi-marginal”
error.

Otherwise, the conditional error σ1 underestimates the true error on θ1, which,
for instances, compromises any estimate of statistical significance.

6.4.2 Error sources

We now briefly discuss various error contributions that have not been taken
into account in previous studies (e.g. Slosar et al. 2009; Lee 2011) and assess
their importance and effects.

6.4.2.1 Uncertainties in classifications

The morphological classifications of Galaxy Zoo and Huertas-Company et al.
(2011) are probabilistic, i.e., every object is assigned a probability to belong
to either of the possible morphological types. Conversely, non-probabilistic or
“hard” assignments clearly assign a certain type to every object. As argued
in Sect. 5.3.2, the morphological types are overlapping and hard classification
schemes become inappropriate. For instances, a galaxy with pZ = 0.8 still has
a 20% chance not to be a Z-spiral – or a disc galaxy at all. In fact, Slosar
et al. (2009) turned the probabilistic assignments of Galaxy Zoo into hard as-
signments by introducing a hard cut: For the clean sample, every galaxy with
pZ ≥ 0.8 is considered as Z-wise spiral and every galaxy with pS ≥ 0.8 is con-
sidered as S-wise spiral, while all other galaxies are discarded. Similarly, Lee
(2011) considers every galaxy with pHC

Scd > 0.5 as an Scd galaxy. Discarding the
classification uncertainty by introducing a hard cut pretends that the data is
more accurate than it actually is. This inevitably leads us to underestimate the
errors, thereby compromising estimates of statistical significance. We explain
in Sects. 6.4.4 and 6.4.5 how to account for these classification uncertainties
in estimating the correlation functions of handedness and angular-momentum
orientations.

6.4.2.2 Errors in spectroscopic redshift estimates

Both autocorrelation functions require estimates of distances of galaxy pairs
and these distances are uncertain due to errors in the redshift estimates. In
order to assess the impact of redshift errors, we randomly select a single galaxy
and draw 10,000 random samples from its redshift-error distribution. For ev-
ery sampled value of redshift, we compute the comoving distance and monitor
its distribution. As is evident from Fig. 6.4, the errors in the comoving dis-
tances are of the same order of magnitude as the typical distance scale of the
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Figure 6.4: Errors in estimates of comoving distance.

We show the likelihood function of comoving distance for a galaxy with spectroscopic

redshift of z = (6.5993±0.0078) ·10−2. The likelihood has been estimated by drawing

10,000 random samples from the error distribution of the spectroscopic redshift and

is approximately Gaussian with mean (183.16± 0.20)Mpc/h.

correlations reported in the literature. Consequently, these errors are impor-
tant and must not be neglected. We explain in Sect. 6.4.3 how to propagate
redshift errors by Monte-Carlo sampling.

6.4.2.3 Errors in ellipticity estimates

Errors in ellipticity estimates clearly have an impact on the estimation of
angular-momentum-orientation vectors and their correlation function. We now
try to estimate these errors. We explain in Sect. 6.4.3 how to propagate
ellipticity errors by Monte-Carlo sampling.

First, considering the isophotal ellipticities used by Lee (2011), the SDSS
database unfortunately does not offer error estimates.48 Consequently, employ- 48In fact, the table galaxy

contains columns for the er-
rors of the isophotal elliptic-
ities. However, for the rel-
evant objects these columns
are only filled with invalid de-
fault values.

ing isophotal ellipticities, the SDSS database actually does not enable us to
estimate a marginal autocorrelation function. In order to get a rough estimate
of the errors in isophotal ellipticities, we make use of the rogue pairs in the
SDSS database, i.e., multiple entries of identical galaxies. Starting out from
698,420 galaxies in the classification table provided by Huertas-Company et al.
(2011), we identify rogue pairs as galaxy pairs whose angular separation is less
than 0.4arcsec, which equals one pixel size. We find 1,596 such pairs. We then
monitor the difference in axis ratios and orientation angles of every pair. The
resulting distributions are shown in Fig. 6.5. As rough error estimate for the
isophotal axis ratio, we obtain a standard deviation of

σ̂(qiso) ≈ 0.0562 . (6.26)

The distribution of differences in orientation angles is not Gaussian but has
more prominent wings. We therefore model the likelihood function of orien-
tation angles with mean angle θ0 as a mixture of two Gaussians of different
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Figure 6.5: Errors in isophotal-ellipticity estimates.

Distributions of differences in isophotal axis ratios (top) and isophotal orientation

angles (bottom) for the 1,596 rogue pairs in the catalogue of Huertas-Company

et al. (2011). The top panel is well approximated by a Gaussian with mean zero

and standard deviation of ≈ 0.0795 (dashed line), which yields an error estimate of

σ̂(qiso) = 0.0795√
2
≈ 0.0562. The distribution of differences in orientation angles (bot-

tom panel) is not Gaussian, but described by the ad-hoc model of Eq. (6.28) (dashed

line) based on Eq. (6.27) with manually adjusted parameters α̂ ≈ 0.73, σ̂1 ≈ 2.7◦ and

σ̂2 ≈ 15.0◦.

width,

L(θ|θ0, σ1, σ2, α) = αN(θ|θ0, σ1) + (1− α)N(θ|θ0, σ2) . (6.27)

The bottom panel of Fig. 6.5 displays the distribution of differences of two
values drawn from Eq. (6.27), whose likelihood is obtained by convolving
L(θ|θ0, σ1, σ2, α) with itself. The resulting likelihood function then reads

L(∆θ|σ1, σ2, α) = α2N(∆θ|0,
√

2σ1)

+2α(1− α)N(∆θ|0,
√
σ2

1 + σ2
2) + (1− α)2N(∆θ|0,

√
2σ2) . (6.28)

Manually adjusting the model parameters of Eq. (6.27), we obtain a rough
error estimate for the isophotal orientation angle with parameters α̂ ≈ 0.73,
σ̂1 ≈ 2.7◦ and σ̂2 ≈ 15.0◦. If we required an angular separation of 0, i.e.,
identical coordinates, we would still end up with 17 pairs exhibiting similar
scatter in both parameters. Clearly, this error estimate is only a work-around.
However, given the information provided by the SDSS database, this is all we
can do.
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Second, the correction for intrinsic disc thickness of Scd galaxies is subject
to uncertainties, too. As mentioned in Sect. 6.2.4, Heidmann et al. (1972) find
a scatter of intrinsic disc thickness for Scd galaxies in the range from 0.083 to
0.145. Wherever we neglect ellipticity errors, we also neglect errors in intrinsic
disc thickness and simply adopt the value 0.1 for p in Eq. (6.8). Conversely,
if we take into account ellipticity errors, we will automatically also take into
account errors in the intrinsic disc thickness. In this case, we assume that p
is drawn from a uniform distribution over the interval [0.083, 0.145].

6.4.2.4 Truly negligible error sources

There are further sources of errors which could be taken into account but are
not relevant in our case.

For instances, uncertainties in the cosmological parameters have an impact
on the comoving distances (see Sect. 5.6). In our case, this is irrelevant because
all galaxies are affected the same way. However, if the task is to use marginal
autocorrelation functions in order to do cosmological inference, it may in fact
be mandatory to also incorporate uncertainties of cosmological parameters
into the Monte-Carlo sampling described in Sect. 6.4.3. We experienced that
this increases the error in comoving distances by approximately a factor of
two.49 49At first glance, it may be

surprising that an error ΩΛ =
0.734± 0.030 only leads to an
error of 0.4/183.2 ≈ 0.2% in
comoving distance. However,
at a redshift of z ≈ 0.066 we
are in a regime where nonlin-
ear effects and thus the im-
pact of ΩΛ are still small (see
also Fig. 5.3).

Another negligible error source is the position estimate of a galaxy in
equatorial coordinates. Given the pixel size of ≈ 0.4arcsec of SDSS, at a
redshift of z = 0.066 and comoving distance of d = 183Mpc/h one pixel
misestimation corresponds to a transversal error of 0.35kpc/h. This is several
orders of magnitude below the theoretically expected correlation length of
roughly 1Mpc/h (Schäfer & Merkel 2011). Consequently, this error source is
completely negligible.

6.4.3 Propagating errors numerically

We now explain how to incorporate errors in redshift estimates and ellipticity
estimates. The crucial problem is that both errors cannot be propagated
analytically because it is infeasible to express the final correlation estimate as
an analytic function of all input redshifts and ellipticities.

We propagate the measurement errors of spectroscopic redshift and ellip-
ticity by drawing 1,000 Monte-Carlo realisations from the error distributions of
both parameters and averaging the results over all Monte-Carlo realisations.50 50Sampling from the error

distribution centred at the
observed instead of the true
value, we convolve the er-
ror distribution with itself.
Consequently, this technique
slightly overestimates the er-
rors. However, given the
rules of scientific method-
ology, overestimated errors
are an unfortunate necessity
where analytic error propa-
gation is impossible, whereas
underestimated errors are out
of the question.

A value for the intrinsic disc thickness is drawn from the uniform interval
[0.083, 0.145] once for every Monte-Carlo realisation, i.e., in each realisation
all galaxies have the same correction for intrinsic disc thickness. This Monte-
Carlo sampling is in fact a marginalisation over the errors of both observables,
spectroscopic redshift and ellipticity. Propagating these errors is inevitable
in order to obtain correlation estimates with marginal errors. Typically, both
error sources are neglected (e.g. Slosar et al. 2009; Lee 2011), which yields cor-
relation estimates with conditional errors – conditional because they assume,
e.g., the observed redshifts were the true ones.

A final remark on the correlation estimation in this case: We monitor
the distribution of the correlation values ξ̂ resulting from the 1,000 Monte-
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Carlo realisations. However, a fundamental difference to Eq. (6.18) is that
now ξ̂ itself is a random variate. Consequently, we are now interested in the
variance of ξ̂ but not in the variance of the mean of ξ̂. The difference is a
factor of 1,000 in the variances. Otherwise, we could make the resulting errors
arbitrarily small by increasing the number of Monte-Carlo realisations.

6.4.4 Impact on autocorrelation of handedness

Estimates of handedness autocorrelation do not involve ellipticity information.
Consequently, we only need to investigate the impact of uncertainties of hand-
edness classification and redshifts. Our ultimate goal is a marginal estimate of
the handedness autocorrelation function, where errors of morphological clas-
sification and redshift estimates have been marginalised out.

6.4.4.1 Reproducing former results

First, we use the hard estimator from Slosar et al. (2009), which neglects un-
certainties in classification and redshift. This estimator cuts the probabilities
for handedness h at a certain level and thereby unambiguously assigns a clear
handedness to every galaxy, whose two possible values we denote by h = ±1.
We then look for pairs of galaxies, bin them according to their distance in
real space and finally evaluate the correlation estimator of Eq. (6.24). Fig-
ure 6.6 (blue circles) shows our estimate of this autocorrelation function for
the Galaxy Zoo clean sample. Qualitatively, our results agree with the results
of Slosar et al. (2009). We observe positive correlations, i.e., an alignment
of handedness, on short distances, too. However, we also observe an oscilla-
tory pattern of the correlation function with distance, which is not present in
the result of Slosar et al. (2009). First, Slosar et al. (2009) only show their
correlation function for distances smaller than 3Mpc/h, while we show the
correlation for distances of up to 10Mpc/h. Second, we use equidistant bins,
whereas Slosar et al. (2009) use fewer and non-equidistant bins without giving
details or providing a justification. As we are going to demonstrate later in
this section, most of the substructure of the correlation functions are likely
to be noise features enhanced by the binning. Furthermore, our maximum
correlation on short scales is smaller than that in Slosar et al. (2009), while
our error bars are larger. This may also be an effect of the different binning.

6.4.4.2 Taking into account classification uncertainties

Second, we now take into account uncertainties in the handedness classifica-
tions, but still ignore the errors in redshifts. In every distance bin, we compute
the handedness products

hh′ = (pZ − pS)(p′Z − p′S) = pZp
′
Z + pSp

′
S − pZp

′
S − pSp

′
Z , (6.29)

which can now take any value in the interval [−1, 1]. The correlation estimator
of Eq. (6.24) is unchanged. However, n± now are not the number of pairs where
hh′ = ±1, but are rather defined by

n+ =
∑
pairs

(pZp
′
Z + pSp

′
S) and n− =

∑
pairs

(pZp
′
S + pSp

′
Z) . (6.30)
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Figure 6.6: Conditional estimates of the handedness autocorrelation.

Circles: Conditional estimate accounting for number statistics but neglecting classi-

fication uncertainties and redshift errors. Squares: Conditional estimate accounting

for number statistics and classification uncertainties but neglecting redshift errors.

Circles and squares are slightly offset with respect to each other for the sake of visu-

alisation but in fact mark identical distance bins.

Note that if N denotes the number of galaxy pairs in a given distance bin,
then n+ + n− ≤ N . Consequently, this reduces the “effective” number of
galaxy pairs in a given distance bin because the contribution of every galaxy
pair is downweighted by the probability that either galaxy is not a spiral
with handedness. Furthermore, reducing the effective number of galaxy pairs
also increases the error of the correlation estimate through the beta distri-
bution (e.g. Cameron 2010). Results of this estimator are shown in Fig. 6.6
(red squares). The error bars are indeed slightly larger. However, ignoring
uncertainties in the handedness classifications has negligible impact in this
particular case. This is not surprising since the handedness probabilities were
cut at 80%.

6.4.4.3 Taking into account redshift errors

Third, we consider the uncertainty in the redshift estimates. As described in
Sect. 6.4.3, we draw 1,000 Monte-Carlo realisation from the error distributions
of the spectroscopic redshift estimates. The redshift errors are given in the
SDSS database and we interpret these values as one-sigma intervals of a Gaus-
sian distribution. Every Monte-Carlo realisation then represents a database
on its own. For every realisation and in every distance bin, we then evaluate
the expectation value of the estimator of Eq. (6.24). The handedness autocor-
relation is then estimated by the distribution of values of Eq. (6.24), which is
found to be Gaussian in excellent approximation. This greatly simplifies the
error estimation. Figure 6.7 shows the resulting estimate of the handedness
autocorrelation. In comparison to Fig. 6.6, the autocorrelation function now
looks remarkably smooth. The explanation is very simple: Errors in redshift
cause uncertainties in the distances, i.e., the data points are “smeared out”
along the x-axis by galaxy pairs ending up in different distance bins in different
realisations. Consequently, the most likely explanation for all the small sub-
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Figure 6.7: Conditional estimate of the handedness autocorrelation.

This estimate accounts for number statistics and redshift errors but not for classi-

fication uncertainties. Results have been averaged over 1,000 Monte-Carlo samples

drawn from the error distribution of spectroscopic redshifts. The dots indicate mean

values and the error bars correspond to one Gaussian standard deviation.

Figure 6.8: Marginal estimate of the handedness autocorrelation.

This final estimate takes into account number statistics and uncertainties in redshift

and handedness classification. Results have been averaged over 1,000 Monte-Carlo

samples drawn from the error distribution of spectroscopic redshifts. The dots indi-

cate mean values and the error bars correspond to one Gaussian standard deviation.

Although the error bar of the innermost distance bin is not small compared to the

allowed interval [−1, 1], the distribution of Monte-Carlo samples is still well approxi-

mated by a Gaussian.

structures in Fig. 6.6 is that they are noise features that have been enhanced
by binning.

6.4.4.4 Final result: Marginal handedness autocorrelation

Unfortunately, Fig. 6.7 is still not our desired marginal estimate of the handed-
ness autocorrelation. The reason is very simple: We have taken into account
redshift errors. However, we did not take into account the uncertainty in-
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duced by the number statistics of galaxy pairs in every distance bin, because
we averaged the realisations over the maximum-likelihood values of Eq. (6.24),
ignoring the fact that these maximum-likelihood values have errors themselves.
This effect caused the errors in Fig. 6.6. For instance, let us consider the case
where the redshift errors are zero, i.e., the true redshifts are known. In this
case, all 1,000 Monte-Carlo realisations are identical, the pairs in all distance
bins are always the same and hence the error bars in Fig. 6.6 would be zero.
For every realisation and in every distance bin, we therefore draw a random
sample from the beta distribution defined by n± instead of merely taking the
maximum-likelihood value of Eq. (6.24). Finally, this results in the desired es-
timate of the marginal autocorrelation function, which takes into account all
important sources of uncertainty. This final marginal autocorrelation function
is shown in Fig. 6.8. As a major result of this thesis, it is obvious that the
error bars are so large that no statistically significant positive correlation of
handedness can be detected, though we can see an indication for this effect.
Therefore, we have to conclude that the only reason why Slosar et al. (2009)
were capable of detecting such a positive correlation is that they did not ac-
count for the uncertainties in the redshift estimates. Given the present SDSS
data, there is no statistically significant evidence that spiral-arm handedness
is correlated for nearby spiral galaxies. Consequently, this result does not
confirm this prediction of the tidal-torque theory.

6.4.5 Impact on autocorrelation of angular-momentum
orientation

We again start by reproducing former results in order to validate our method.
We then proceed to take into account the important error contributions.

6.4.5.1 Reproducing former results

First, we start by reproducing the autocorrelation estimate of Lee (2011). The
only difference is that we have removed 20 objects from the galaxy sample in
order to eliminate rogue pairs. Figure 6.9 (blue circles) shows our resulting
estimate of the autocorrelation via Eq. (6.19). Our result is perfectly identical
to the one of Lee (2011). This implies that, first, our method is working
correctly, and, second, that rogue pairs have negligible impact on the results
of Lee (2011).

6.4.5.2 Taking into account classification uncertainties

We now study the impact of uncertainties of morphological classification. For-
mally, the estimator defined in Eq. (6.19) does not change. The impact of clas-
sification uncertainties is again a reduction of the effective number of galaxy
pairs in all redshift bins as discussed in the case of handedness correlations in
Sect. 6.4.4. Considering a single of the four terms in Eq. (6.19), we change the
definition

〈pqp′a|~La · ~L′a|2〉 =

∑
pairs p

HC
Scdp

HC
Scd
′
pqp
′
a|~La · ~L′a|2∑

pairs p
HC
Scdp

HC
Scd
′ . (6.31)
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Figure 6.9: Conditional angular-momentum-orientation autocorrelations.

Circles: Hard estimator from Lee (2011) which accounts for number statistics only

but neglects errors in classification, redshifts and ellipticities. Squares: Probabilistic

estimator which accounts for number statistics and classification uncertainties but

neglects error in redshifts and ellipticities. Estimates are based on the sample of

4,216 Scd galaxies. Error bars correspond to one Gaussian standard deviation in

good approximation. The dashed horizontal line indicates zero correlation. Circles

and squares are slightly offset with respect to each other for the sake of visualisation

but in fact mark identical distance bins.

This weights the contribution of every pair by the probability pHC
Scdp

HC
Scd
′

that
both galaxies are Scd galaxies. Furthermore, the number N of pairs in the dis-
tance bin are replaced by the sum of weights

∑
pairs p

HC
Scdp

HC
Scd
′ ≤ N . Obviously,

this weighting also affects the error estimate of Eq. (6.21). The red squares
in Fig. 6.9 show the probabilistic correlation estimate. Evidently, the hard
estimator used by Lee (2011) substantially underestimates the errors, thereby
compromising estimates of statistical significance. It is not surprising that the
impact is larger than in Sect. 6.4.5.2, since here, class probabilities were cut
at pHC

Scd > 0.5 whereas Slosar et al. (2009) cut the handedness probabilities at
0.8.

6.4.5.3 Taking into account redshift errors

Now, we “switch on” the error in spectroscopic redshift by drawing 1,000
Monte-Carlo realisations from the redshift’s error distribution. For every sin-
gle Monte-Carlo realisation, we then estimate the correlation and its error in
every distance bin. Finally, we estimate the correlation over all 1,000 Monte-
Carlo samples by drawing randomly a single value from the error distribution
of each realisation’s correlation. This ensures that the error bars did not ap-
proach zero, if the spectroscopic redshifts were known precisely. Consequently,
the resulting correlation estimate accounts for uncertainties in classification,
number statistics and redshift errors. Nonetheless, it is still only a conditional
estimate, as it does not yet include errors in ellipticity estimates. Further-
more, we now restrict the correlation to maximum distances of 10Mpc/h –
instead of 40Mpc/h as in Fig. 6.9 – in order to reduce the required hard-disk
memory. The resulting conditional estimate is shown in Fig. 6.10 (blue cir-
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Figure 6.10: Conditional and marginal angular-momentum-orientation autocorrela-
tions.

Circles: Conditional estimate that takes into account number statistics, classification

uncertainties and redshift errors but still neglects ellipticity errors. Squares: Marginal

estimate that accounts for all error sources. Results have been averaged over 1,000

Monte-Carlo samples drawn from the error distribution of spectroscopic redshifts. The

dots indicate mean values and the error bars correspond to one Gaussian standard

deviation. Again, circles and squares mark identical distance bins but are slightly

offset with respect to each other for the sake of visualisation. The solid line indicates

a fit to the binned marginal correlation function (see Sect. 6.4.6).

cles). Apparently, the impact of redshift errors on the correlation estimate
of angular-momentum orientations is not as severe as in the case of hand-
edness (cf. marginal estimate of Fig. 6.8). There are two reasons: First,
the conditional correlation signals have larger statistical significance in this
case. Second, the binsize in Fig. 6.10 is much larger than in Fig. 6.8, because
here we are studying a smaller galaxy sample and therefore have fewer galaxy
pairs. In Fig. 6.8), the equidistant binsize is 0.3Mpc/h, while the smallest
bin in Fig. 6.10 has a width of 0.36Mpc/h and thus is already slightly larger.
Nonetheless, the estimated errors have indeed increased, which is obvious for
the first distance bin. As the binning is logarithmic in distance, this is not
surprising because the first distance bin has the smallest binsize and is thereby
strongest affected by redshift errors “smearing out” galaxy pairs along the hor-
izontal axis. We would not expect distance errors of the order of 0.2Mpc/h (cf.
Fig. 6.4) to have a large impact on a distance bin of 1Mpc/h binsize. However,
such large binsizes are clearly inappropriate to resolve a theoretically predicted
correlation length of 1Mpc/h (Schäfer & Merkel 2011).

6.4.5.4 Taking into account ellipticity errors

As mentioned in Sect. 6.4.2, the SDSS database actually does not provide error
estimates for the isophotal ellipticities. Hence, we need to proceed using the
work-around described in Sect. 6.4.2. We adopt the rough error estimates of
Eqs. (6.26) and (6.27) as well as the uniform error in intrinsic disc thickness
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Figure 6.11: Distribution of Monte-Carlo realisations in distance bins.

For the six distance bins of the marginal autocorrelation estimate of Fig. 6.10, the

distributions of 1,000 Monte-Carlo realisations are well approximated by Gaussians

(solid lines). In every panel, the ticks indicate mean µ and µ ± 3σ. The vertical

dashed lines indicate zero correlation.

for all galaxies in the data sample and proceed by Monte-Carlo sampling
as described in Sect. 6.4.3 from the catalogue of 4,216 Scd galaxies. This
enables us to estimate a marginal autocorrelation function. Figure 6.10 (red
squares) shows the resulting marginal estimate of the angular-momentum-
orientation autocorrelation function. We show the distribution of correlation
values for the 1,000 Monte-Carlo realisations in Fig. 6.11, which confirms that
the errors are indeed Gaussian in excellent approximation. In comparison
to the conditional estimate also shown in Fig. 6.10, there is only a minor
increase in the error bars. However, we would not put too much faith into the
marginal estimate shown in Fig. 6.10 because the error estimate of ellipticities
is rather handwavy. As the final result, we directly compare our marginal
estimate to the conditional estimate of Lee (2011) in Fig. 6.12. Evidently, the
marginal estimate differs substantially from the conditional estimate and there
are no statistically significant autocorrelations. Again, we have to conclude
that Lee (2011) obtained a seemingly significant detection because important
error contributions were not taken into account. Given the present SDSS
data, there is no statistically significant evidence that angular-momentum-
orientation vectors are correlated for nearby disc galaxies. Consequently, this
result also does not confirm this prediction of the tidal-torque theory.

6.4.6 Consequences for parameter estimation

The autocorrelation of angular-momentum orientations can be used to esti-
mate free parameters in the tidal-torque theory (e.g. Lee & Pen 2008). As
discussed in Sect. 6.1, such a parameter estimate is necessary in order to put
the constrained theory to a second future empirical test. Let ξ(r,R) denote
the two-point correlation function of Scd galaxies, smoothed over scale R. In
this case, one can derive a model prediction for the linear regime (e.g. Pen
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Figure 6.12: Marginal autocorrelation estimate vs. results of Lee (2011).

Blue circles show the conditional autocorrelation estimate of angular-momentum-

orientation vectors published by Lee (2011). Red squares show our marginal estimate

that takes into account all relevant error contributions. This figure brings together

results shown in Figs. 6.9 and 6.10 and is solely meant to facilitate a direct comparison.

et al. 2000)

ξLL(r) ≈ a2

6

ξ2(r,R)

ξ2(r, 0)
, (6.32)

where a is a free model parameter. For the nonlinear regime, Lee & Pen (2008)
derived the following model prediction

ξLL(r) ≈
a2

L

6

ξ2(r,R)

ξ2(r, 0)
+ εNL

ξ(r,R)

ξ(r, 0)
, (6.33)

where aL and εNL are free model parameters describing the linear and nonlin-
ear contributions. Estimating values for these model parameters is important
in order to constrain the tidal-torque theory.51 The impact of the additional 51In fact, this is the rea-

son why Lee (2011) restricts
the sample to galaxies with
z ≤ 0.02 in order to obtain a
volume-limited sample. Oth-
erwise, the density field of
galaxies cannot be meaning-
fully defined and ξ(r,R) can-
not be estimated.

error sources on this parameter estimation is devastating. First, the marginal
estimate of ξLL(r) has large errors. Second, errors in redshift estimates and
morphological classification also affect the estimation of the two-point corre-
lation function ξ(r,R) of Scd galaxies. Given these considerations, we have to
conclude that it is impossible to place decisive constraints on the parameters
in Eqs. (6.32) or (6.33).

The same argument applies to the generic autocorrelation model proposed
by Schäfer & Merkel (2011),

ξLL(r) = A exp

[
−
( r
R

)C]
, (6.34)

which contains a linear amplitude A and two nonlinear model parameters R
and C that cannot be constrained properly. Figure 6.13 demonstrates this by
showing the marginal likelihoods of fitting Eq. (6.34) to the data of Fig. 6.10.
Evidently, the (marginal) uncertainties in all model parameters are so large
that they cover almost the complete allowed parameter ranges. Hence, this
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Figure 6.13: Marginal likelihoods of fitting the marginal angular-momentum-
orientation autocorrelation.

The model given by Eq. (6.34) is fitted to the binned version of the marginal auto-

correlation of Fig. 6.10. Top panel: Marginal likelihood of amplitude with maximum

at A = 0.0034+0.0057
−0.0027. Centre panel: Marginal likelihood of correlation length with

maximum at R = 2.5+0.8
−2.3. Bottom panel: Marginal likelihood of exponent with max-

imum at C = 0.71+2.40
−0.38. The asymmetric errors denote 68% confidence intervals. The

parameter estimation has been conducted on a three-dimensional brute-force grid.

As the distributions of Monte-Carlo realisations in every distance bin are Gaussian

in excellent approximation as shown in Fig. 6.11, the fit is done via χ2-minimisation.

The likelihood is then given by L ∝ e−χ2/2.

fit poorly constrains the model parameters. Nevertheless, the marginal likeli-
hood of the correlation length is compatible with the theoretical prediction of
1Mpc/h from Schäfer & Merkel (2011). For later purposes, we note the best
fitting model,5252Note that the maximum of

the joint likelihood does not
coincide with the maxima of
the marginalised likelihoods
shown in Fig. 6.13.

ξLL(r) ≈ 0.026 · exp

[
−
(

r

0.34Mpc/h

)0.46
]

. (6.35)

This fit is also shown in Fig. 6.10. We explicitly emphasise that we do not
claim that this were by any means a model of the true correlation function.
This fit is solely meant to provide us with some model that is compatible with
the SDSS data. Such a model is later required in order to conduct simulations.
This is also the reason why we do not need to estimate errors for the fit given
by Eq. (6.35).
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The bottom line
� The SDSS data contains no statistically significant evidence for theoretically

predicted autocorrelations, neither in spiral-arm handedness nor in angular-
momentum-orientation vectors. However, given the data, it appears plausible
that such autocorrelations could exist and exhibit a correlation length of the
order of 1Mpc/h as theoretically predicted.

� Marginal autocorrelation estimates of spiral-arm handedness and angular-
momentum-orientation vectors require to account for errors in morphological
classification, redshift estimates and estimates of ellipticities. If these errors
are not taken into account, the resulting conditional autocorrelation function
exhibits errors that are substantially underestimated. This leads to an overly
optimistic assessment of statistical significance.

� The evidence for correlations in the SDSS data is so weak that theoretical
parameters cannot be constrained decisively from this experiment.
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7
Improvements and potential

of future surveys

As an outlook, we discuss possible improvements of ellipticity estimates and
briefly elaborate on the potential of future sky surveys in this chapter. Namely,
we discuss the potentials of PanSTARRS, LSST and EUCLID to improve the
estimates of handedness and angular-momentum-orientation autocorrelations.
We discuss the estimation of ellipticities and the impact of number statis-
tics. Furthermore, we discuss the impact of possible improvements of redshift
estimates and the potential of front-edge estimation.

7.1 Biased ellipticity estimates from sec-

ond moments

Given the marginal autocorrelation estimate of angular-momentum-orientation
vectors shown in Fig. 6.12, it is evident that a reduction of noise in any of the
error sources would be of great interest. Isophotal ellipticity estimates have
the disadvantage that they strongly depend on the choice of the particular
isophote. Typically, this isophote is chosen in the outskirts of the imaged
galaxy where the signal-to-noise ratio is low. Conversely, ellipticity estimates
based on the second moments of the galaxy’s light distribution, e.g., as given
by Eqs. (2.27) and (2.28), seem to be more promising, since no isophote is
required and the complete data enters the estimate. Consequently, we may
expect that ellipticity estimates based on second moments are more robust
against pixel noise than isophotal ellipticities. In this section, we demonstrate
that ellipticity estimates based on second moments of the light distribution are
so strongly biased that they cannot be used for investigations of disc alignment.
In particular, this bias would cause us to overestimate the correlation due to
alignment such that, e.g., we would overestimate its impact on weak-lensing
studies. However, this bias does not impair investigations of gravitational
weak lensing.
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Figure 7.1: Angular-momentum-orientation autocorrelation biased by second mo-
ments.

The marginal correlation estimate like in Fig. 6.10 but now using ellipticity estimates

based on second moments of the galaxies’ light distribution instead of isophotal ellip-

ticities.

7.1.1 Revealing the bias

We also downloaded the ellipticity estimates based on unweighted second mo-
ments of the galaxies’ light distributions from the SDSS database. Further-
more, SDSS offers error estimates for these parameters. Figure 7.1 shows the
resulting autocorrelation estimate of angular-momentum-orientation vectors.
The most striking difference to Fig. 6.12 is that Fig. 7.1 exhibits correlations
that are substantially larger. This difference stems from systematic differences
in the axis ratios resulting from second moments and isophotal contours, which
is shown in Fig. 7.2. Evidently, axis ratios estimated from second moments are
systematically larger than isophotal axis ratios. This implies that in Fig. 7.1
galaxies are generally considered to be rounder and therefore their angular-
momentum-orientation vectors are bent into the line-of-sight, thereby feigning
these strong correlations. Figure 7.2 also reveals that second moments tend to
prefer axis-parallel orientation angles, which might be caused from pixellation
effects of poorly sampled disc galaxies. Our scepticism is further raised by
the enormous statistical significance of the correlations, which still seems to
hold at separations as large as 10Mpc/h substantially exceeding the theoret-
ical prediction. Finally, we note that the background correlation estimated
from randomly shuffling the galaxy positions in the sample (cf. Lee 2011) in
Fig. 7.1 is not zero. This suggests the presence of a strong bias, corrupting
the correlation estimate of Fig. 7.1.

7.1.2 Point-spread function

Is this bias an effect of the point-spread function (PSF) which makes galaxies
look rounder than they actually are? This is unlikely because all our objects
are large compared to the size of the PSF. The median r-band Petrosian radius
of the 4,211 Scd galaxies with SDSS data is 15.8 pixel, whereas the r-band
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Figure 7.2: Comparing ellipticities estimated from second moments and isophotes for
Scd galaxies.

Left panel: Axis ratios estimated from (unweighted) second moments are systemati-

cally larger than those estimated from isophotal contours. As we defined axis ratios

as semi-minor over semi-major axis, this means that second moments find the disc

galaxies to be rounder. Right panel: Orientation angles for second moments prefer

axis-parallel values (0◦, 90◦, 180◦) due to the seeming roundness.

Figure 7.3: PSF biasing ellipticities from second moments.

Impact of circular Gaussian PSF with Petrosian radius of 1.3 pixel onto convolved

axis ratios qcon and orientation angles θcon of exponential-disc profiles with Petrosian

radii of 15.8 pixels and intrinsic axis ratios 0.1 ≤ qint ≤ 1 and orientation angles

θint = 30◦. All profiles have been truncated at five scale radii. There was no noise

in this simulation. The PSF leads to an overestimation of the axis ratios by at most

1.2% for highly elongated objects. As the PSF was circular in this test, orientation

angles are not affected.

Petrosian radius of the SDSS PSF is approximately 1.3 pixel.53 Consequently, 53The r-band Petrosian ra-
dius of the SDSS PSF has
been estimated as the me-
dian r-band Petrosian radius
of 100,000 stars downloaded
from the SDSS database.

the impact of the PSF should be small. This prediction is supported by
Fig. 7.3, where we simulate the impact of a Gaussian PSF with Petrosian
radius 1.3 pixel onto exponential-disc profiles with Petrosian radii of 15.8 pixel
and different intrinsic axis ratios. We find a maximum overestimation of axis
ratios of only 1.2%, which is not enough to explain the strong bias in Fig. 7.1
or the discrepancy in Fig. 7.2.
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Figure 7.4: Bulge-disc decomposition of an example Scd galaxy.

We used g-band imaging data. The bulge is a circular de Vaucouleur profile, while

the disc component is an exponential profile with ellipticity. The bulge is pinned

to the pixel of the peak-of-light whereas the centroid of the disc component is free.

Panel (a) shows the original galaxy. Panel (b) is the disc component, while panel (c)

is the bulge component. Panel (d) displays the fit residuals. The fit was performed

by χ2-minimisation using a Simplex algorithm (Nelder & Mead 1965) and reached a

minimum value of 3.18 per pixel.

7.1.3 Galactic bulges

We now argue that the heavily biased correlation estimate of Fig. 7.1 stems
from the galactic bulges biasing the second moments and thereby the ellipticity
estimates. At first glance, this may seem to be a rather unlikely explanation,
since we explicitly selected only Scd galaxies in order to minimise the impact of
galactic bulges. However, this hypothesis can explain the substantial discrep-
ancy between isophotal axis ratios and axis ratios based on second moments
revealed by Fig. 7.2. If bulges were an issue, they would affect the second mo-
ments and would lead us to overestimate axis ratios, since bulges are typically
of spheroidal shape or their ellipticity is misaligned with the disc ellipticity.
On the other hand, isophotal ellipticity estimates should be almost unaffected
by the presence of bulges as long as the isophote used is situated inside the
disc component.

We demonstrate that the presence of a bulge can bias the estimate of axis
ratio based on second moments. For this purpose, we perform a bulge-disc
decomposition of a prototypical Scd galaxy from our data sample, which is
shown in Fig. 7.4. Indeed, the axis ratio estimated from the second moments
of the complete model (including bulge) is qb+d ≈ 0.48, whereas the axis ratio
used by the disc model is only qdisc ≈ 0.38. The g-band axis ratio noted in the
SDSS database for this example galaxy is qiso ≈ 0.41 estimated from isophotes
and qmom ≈ 0.63 estimated from second moments (Stokes parameters).54 We54The discrepancy of the

bulge-disc decomposition
is the consequence of non-
optimal modelling. We used
a de Vaucouleur profile for
the bulge and an exponential
profile for the disc.

conclude that the bulge is well capable of biasing the ellipticity estimate sub-
stantially, even in the case of Scd galaxies.

As a final test for our hypothesis to pass, we compare the axis ratios
based on isophotes and second moments for Sab galaxies from the catalogue of
Huertas-Company et al. (2011). As Sab galaxies have more prominent bulges
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Figure 7.5: Comparing ellipticities estimated from second moments and isophotes for
Sab galaxies.

We selected 8,496 galaxies with pSab ≥ 0.8 from the catalogue of Huertas-Company

et al. (2011). Left panel: Misestimation of axis ratios. The bimodal distribution of

axis ratios agrees well with their Fig. 2. The bias of axis ratios estimated from second

moments is stronger than for Scd galaxies in Fig. 7.2. Right panel: Orientation angles

are unbiased.

than Scd galaxies, we would expect a stronger bias than in Fig. 7.2. We select
all galaxies with pSab ≥ 0.8 and download the r-band ellipticities (Stokes
parameters) from the SDSS database, if available. For the resulting 8,496 Sab
galaxies, Fig. 7.5 shows the comparison of axis ratios estimated from isophotes
and second moments. Evidently, the second moments are biased, too, and the
bias is also more pronounced than in Fig. 7.2, meaning there is less scatter.
This confirms our expectation.

7.1.4 Simulating pairs of angular-momentum-orientation
vectors

Presently, we want to simulate the bias that second moments create in correla-
tion estimates of angular-momentum orientations. Therefore, we now explain
how to simulate pairs of angular-momentum-orientation vectors which exhibit
a given input correlation. This requires some cumbersome arithmetic.

7.1.4.1 Pairs of uncorrelated orientation vectors

As the orientation vectors indicate directions, the samples are drawn from the
uniform distributions ϕ ∈ [0, 2π) and cosϑ ∈ [−1, 1] of the two polar angles ϕ
and ϑ. A random orientation vector is then given by

~̀
1 =

 cosϕ sinϑ
sinϕ sinϑ

cosϑ

 . (7.1)

This vector is normalised, i.e., ~̀1 ·~̀1 = 1. Sampling a uniform angle φ ∈ [0, 2π),
a second random orientation vector is

~̀
2 = sinφ

 − sinϕ
cosϕ

0

+ cosφ

 cosϕ cosϑ
sinϕ cosϑ
− sinϑ

 . (7.2)
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This vector is again normalised, i.e., ~̀2 · ~̀2 = 1, and also orthogonal to the
first, i.e., ~̀1 · ~̀2 = 0.

7.1.4.2 Pairs of correlated orientation vectors

In the first step, we sample a pair of uncorrelated angular-momentum-
orientation vectors ~̀1 and ~̀

2 as described in the previous section. In the
second step, we mix these two uncorrelated vectors such that we obtain two
correlated vectors,

~La = cosα ~̀1 + sinα ~̀2 , (7.3)

~L′a = cosβ ~̀1 + sinβ ~̀2 , (7.4)

and their counter-parts due to the front-edge degeneracy,

~Lb = cosα
[
~̀
1 − 2(~er · ~̀1)~er

]
+ sinα

[
~̀
2 − 2(~er · ~̀2)~er

]
, (7.5)

~L′b = cosβ
[
~̀
1 − 2(~e ′r · ~̀1)~e ′r

]
+ sinβ

[
~̀
2 − 2(~e ′r · ~̀2)~e ′r

]
, (7.6)

where ~er and ~e ′r are unit vectors pointing from the coordinate origin towards
the positions of both galaxies. Due to the orthonormality of ~̀1 and ~̀

2, all
these vectors are unit vectors. The two mixing angles α and β have to be
chosen such that the desired input correlation

ξinput =
1

4

(
〈(~La · ~L′a)2〉+ 〈(~La · ~L′b)2〉+ 〈(~Lb · ~L′a)2〉

+〈(~Lb · ~L′b)2〉
)
− 1

3
(7.7)

is exhibited by the sampled pairs of orientation vectors. This provides only
a single constraint, i.e., we are allowed to freely choose one mixing angle.
For convenience, we choose α = 0 such that ~La = ~̀

1, which simplifies the
calculations. We now need to compute the four expectation values.

7.1.4.3 Computing the first term

We start by computing 〈(~La·~L′a)2〉, which is the simplest term and also presents
the basic arithmetic steps. Evidently,

~La · ~L′a = cosβ ~̀1 · ~̀1 + sinβ ~̀1 · ~̀2 . (7.8)

Using ~̀1 · ~̀1 = 1 and ~̀1 · ~̀2 = 0, this expression simplifies to

~La · ~L′a = cosβ . (7.9)

The autocorrelation is then given by

〈(~La · ~L′a)2〉 = cos2 β . (7.10)
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7.1.4.4 Computing the other terms

The other three terms in Eq. (7.7) are computed in precisely the same way.
Using

〈(~̀1 · ~e ′r)2〉 =
1

3
, 〈(~̀1 · ~e ′r)4〉 =

1

5
, (7.11)

〈(~̀1 · ~̀2)(~̀1 · ~e ′r)(~̀2 · ~e ′r)〉 = 0 , (7.12)

〈(~̀1 · ~e ′r)2(~̀2 · ~e ′r)2〉 =
1

15
, (7.13)

and

〈(~̀1 · ~e ′r)(~̀2 · ~e ′r)〉 = 〈(~̀1 · ~̀2)(~̀1 · ~e ′r)2〉 = 〈(~̀1 · ~e ′r)3(~̀2 · ~e ′r)〉 = 0 , (7.14)

we obtain

〈(~La · ~L′b)2〉 =
7

15
cos2 β +

4

15
sin2 β . (7.15)

As the correlation estimate is invariant under exchanging the pair, we can
directly conclude that

〈(~Lb · ~L′a)2〉 =
7

15
cos2 β +

4

15
sin2 β , (7.16)

as well. In order to compute the last term, 〈(~Lb · ~L′b)2〉, we need the following
expectation values:

〈(~̀1 · ~er)(~̀1 · ~e ′r)〉 =
1

3
~er · ~e ′r (7.17)

〈(~̀1 · ~̀2)2〉 = 0 (7.18)

〈(~̀1 · ~er)(~̀2 · ~e ′r)〉 = 0 (7.19)

〈(~̀1 · ~̀2)(~̀1 · ~er)(~̀1 · ~e ′r)〉 = 〈(~̀1 · ~̀2)(~̀1 · ~er)(~̀2 · ~e ′r)〉 = 0 (7.20)

〈(~̀1 · ~er)2(~̀1 · ~e ′r)2〉 =
2

15
(~er · ~e ′r)2 +

1

15
(7.21)

〈(~̀1 · ~er)2(~̀1 · ~e ′r)(~̀2 · ~e ′r)〉 = 0 (7.22)
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〈(~̀1 · ~er)2(~̀2 · ~e ′r)2〉 =
2

15
− 1

15
(~er · ~e ′r)2 (7.23)

〈(~̀1 · ~er)3(~̀1 · ~e ′r)〉 = 〈(~̀1 · ~er)(~̀1 · ~e ′r)3〉 =
1

5
~er · ~e ′r (7.24)

〈(~̀1 · ~er)(~̀1 · ~e ′r)2(~̀2 · ~e ′r)〉 = 0 (7.25)

〈(~̀1 · ~er)3(~̀2 · ~e ′r)〉 = 0 (7.26)

〈(~̀1 · ~er)2(~̀1 · ~e ′r)(~̀2 · ~er)〉 = 0 (7.27)

〈(~̀1 · ~er)(~̀1 · ~e ′r)(~̀2 · ~e ′r)2〉 = 〈(~̀1 · ~er)2(~̀2 · ~er)(~̀2 · ~e ′r)〉 =
1

15
~er · ~e ′r (7.28)

〈(~̀1 · ~er)(~̀1 · ~e ′r)(~̀2 · ~er)(~̀2 · ~e ′r)〉 =
1

10
(~er · ~e ′r)2 − 1

30
(7.29)

Given these expectation values, we can finally compute

〈(~Lb · ~L′b)2〉 =

(
7

15
− 8

5
(~er · ~e ′r)2 +

32

15
(~er · ~e ′r)4

)
cos2 β

+

(
4

15
+

4

5
(~er · ~e ′r)2 − 16

15
(~er · ~e ′r)4

)
sin2 β , (7.30)

which depends on the angular separation ~er · ~e ′r of the galaxy pair that is
simulated. This dependence is inherited from flipping the radial component
of both angular-momentum-orientation vectors due to an unknown front edge.

7.1.4.5 Determining the mixing angles

We now have all ingredients to derive the mixing angle β from the imposed
correlation of Eq. (7.7). Inserting Eqs. (7.10), (7.15), (7.16) and (7.30), we
obtain

cosβ =

√
1

3
+

20ξinput

16(~er · ~e ′r)4 − 12(~er · ~e ′r)2 + 8
. (7.31)

where α = 0 has been chosen previously. The denominator is always strictly
positive because 0 ≤ (~er · ~e ′r)2 ≤ 1. Furthermore, there is a maximum input
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Figure 7.6: Angular autocorrelations of angular-momentum-orientation vectors.

The autocorrelation estimate is now in angular separation not in real-space distance.

Top panel: Angular autocorrelation for ellipticity estimates based on second mo-

ments. The bias model of Eq. (7.34) with 1σ errors is shown. Bottom panel: Angular

autocorrelation for ellipticity estimates based on isophotes.

correlation where cosβ = 1. Given the minimal value of the denominator of
3
8 , the maximum input correlation is given by

ξmax =
1

80
= 0.0125 . (7.32)

The existence of such an upper limit is obvious, since with unknown front edges
it is impossible to reach full correlation. Similarly, there is also a minimal input
correlation where the square-root becomes zero. Given the maximal value of
the denominator for (~er · ~e ′r)2 = 1 which is 12, this minimal input correlation
is

ξmin = −1

5
= −0.2 . (7.33)

The existence of a lower limit is obvious, too, since the correlation is the
squared projection of orientation vectors, i.e., it is impossible to reach full
anticorrelation. Wherever we use this simulation method, we explicitly check
that the result indeed exhibits the input correlation correctly.

7.1.5 Bias simulation

From our hypothesis of bulges biasing second moments, we can deduce the
following prediction: If galactic bulges indeed bias second moments such that
angular-momentum-orientation vectors are bent into the line of sight, the an-
gular correlation function should exhibit a bias of the form

b(θ) = A+B cos2 θ , (7.34)
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Figure 7.7: Debiasing the autocorrelation function of angular-momentum-orientation
vectors.

Top panel: The biased autocorrelation function based on ellipticity estimates from

second moments. Middle panel: “Debiased” correlation function where Eq. (7.34)

has been subtracted from all pairwise projections. The solid line is the fit given by

Eq. (7.35). Bottom panel: Autocorrelation function based on isophotal ellipticities.

where θ now denotes the angular separation of two galaxies. The parameters
A and B depend on the details of the bias caused by the galactic bulges
and are not generally predictable. This mathematical form stems from the
bending of orientation vectors, such that the scalar product ~L ·~L′ is on average
equal to the cosine of the two galaxies’ separation angle. This prediction is
confirmed by Fig. 7.6 which strongly suggests that ξ̂LL(θ) is dominated by
this bias. Moreover, it would be difficult to find an alternative astrophysical
explanation why the correlation increases for separation angles larger than
90◦. This suspect behaviour is also exhibited by the autocorrelation function
in real space, as shown in the top panel of Fig. 7.7. Concerning isophotal
ellipticities, Fig. 7.6 also shows that ξ̂LL(θ) does not exhibit such a bias.5555Note that the angular cor-

relation estimate in Fig. 7.6
looks worse than the spa-
tial correlation estimate of
Fig. 6.10. This is due to the
fact that the angular correla-
tion function does not use dis-
tance information.

Is it possible to debias the autocorrelation function by subtracting Eq. (7.34)
from all pairwise projections of angular-momentum-orientation vectors? We
investigate this question in Fig. 7.7, where we show the biased and debiased
autocorrelation function. Indeed, the debiased autocorrelation function looks
very promising. For later modelling purposes, we parametrise the debiased
autocorrelation function by

ξLL(r) ≈ (0.013 + 0.002r − 0.00036r2) exp

[
− r

6.1Mpc/h

]
, (7.35)

where no error estimate is required since we only use this fit as input in
simulations.

Is the debiased autocorrelation function trustworthy? For comparison,
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Figure 7.8: Self-consistency test of debiasing the autocorrelation function.

Panel (a): The input autocorrelation function as given by Eq. (7.35), validating our

simulation technique. Panel (b): The biased autocorrelation function. Panel (c): The

debiasing of the autocorrelation function in angular space. Panel (d): The debiased

autocorrelation function, which exhibits significant deviations from the input.

Fig. 7.7 also shows the unbiased autocorrelation function based on isophotal
ellipticities. Evidently, the debiased and isophotal autocorrelation functions
do not agree. However, this does not necessarily rule out the debiased auto-
correlation function. We actually expect that ellipticity estimates based on
second moments are less noisy than isophotal ellipticity estimates since they
use the whole light distribution instead of a single isophote. Hence, it is not
a-priori implausible that the debiased autocorrelation function exhibits more
information than the isophotal autocorrelation function. However, we did not
account for the biases in orientation angles which are evident from Fig. 7.2.
This bias favoured axis-parallel orientation angles, i.e., it may implant an or-
thogonality for pairs of angular-momentum-orientation vectors. In fact, the
negative values observed in the debiased autocorrelation function of Fig. 7.7
require such an orthogonality.

In order to assess the trustworthiness of the debiased autocorrelation es-
timate, we conduct the following self-consistency test: We take the original
galaxies as in Fig. 7.7, maintaining their true spatial positions, but when esti-
mating the autocorrelation function, we replace the actual angular-momentum-
orientation vectors by simulated vectors which exhibit the correlation function
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given by Eq. (7.35). This simulation is described in Sect. 7.1.4. Panel (a) of
Fig. 7.8 validates our simulation method. We then simulate the bias of sec-
ond moments. For every galaxy, we take the simulated angular-momentum-
orientation vector and infer the actual axis ratio qtrue from it. Motivated by
the left panel of Fig. 7.2, we then replace the true axis ratio by an “overesti-
mate” drawn from the uniform distribution over the interval [qtrue, 1]. Using
this biased axis ratio, we recompute the angular-momentum-orientation vector
and estimate the correlations. As shown in panel (b) of Fig. 7.8, the resulting
biased autocorrelation function closely resembles the observation from Fig. 7.7.
For debiasing, we then also estimate the autocorrelation in angular space, as
shown in panel (c) of Fig. 7.8. Indeed, the estimate is dominated by a bias of
the form of Eq. (7.35), i.e., our bias simulation is realistic. We then estimate
the debiased autocorrelation function, which is shown in panel (d). Evidently,
the debiased result exhibits systematic and significant deviations from the in-
put autocorrelation function. We emphasise that the debiased result is not an
obscured version of the input correlation function. Neither their difference nor
their ratio is a constant, i.e., the debiasing was not successful. In simple words,
the debiased result is not “weaker” than the input, it is “different”. Conse-
quently, the debiasing is not self-consistent and the debiased autocorrelation
estimate shown in Fig. 7.7 is not trustworthy.

7.1.6 Discussion

We demonstrated that ellipticity estimates based on second moments are
strongly biased by galactic bulges even for Scd galaxies. In fact, Fig. 7.6 sug-
gests that correlation estimates based on second moments are completely dom-
inated by this bias which swamps the desired astrophysical signal. Therefore,
we conclude that ellipticity estimates based on second moments overestimate
axis ratios and thereby corrupt estimates of angular-momentum-orientation
autocorrelation. This bias also corrupts similar correlation estimates, such as
ellipticity autocorrelations (e.g. Blazek et al. 2011), leading us to overestimate
the impact of disc alignment on weak-lensing studies. What are alternative
ellipticity estimators? The bias also applies to adaptive moments (Bernstein &
Jarvis 2002; Hirata & Seljak 2003) in this context. Furthermore, model-based
ellipticity estimates are problematic, since nearby disc galaxies usually exhibit
rich azimuthal structures, which are virtually impossible to model faithfully.
The only kind of model designed to describe such rich azimuthal structure are
basis-function expansions (e.g. Massey & Réfrégier 2005; Ngan et al. 2009),
which unfortunately suffer from other severe conceptual problems (Melchior
et al. 2010, Sects. 3.2.7 and 3.5.4). We have to conclude that isophotal el-
lipticities – though relying on a somewhat arbitrarily chosen isophote56 – are56The SDSS pipeline uses

the 25 magnitudes per square
arcsec isophote.
http://www.sdss.org/

dr6/algorithms/classify.

html#photo_stokes

the only useful ellipticity estimates for investigations of angular-momentum-
orientation autocorrelation, since they are closest to the desired disc ellipticity.

There is yet another serious conceptual issue we have to face. In the weak-
lensing context galaxies are usually rather small with radii of a few pixels
only. In our case, however, we are considering large extended disc galaxies.
These galaxies usually exhibit substructures such as galactic bars, rings or
star-forming regions. In particular, the Scd galaxies considered by Lee (2011)
and in this work typically exhibit very open spiral-arm patterns and other
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Figure 7.9: Impact of number statistics on the errors of handedness correlations.

We show how the errors of the innermost three distance bins in the marginal hand-

edness autocorrelation function changes with number of galaxies. The x-axis shows

the fraction of galaxy pairs selected from all pairs, which is equivalent to a survey

covering the same fraction of the total survey area. Both axes are in logarithmic scale,

i.e., the dependence of the errors is approximately a power law for all three bins. The

dashed line indicates a power law according to N−1/2, where N is the number of pairs

in every bin.

prominent azimuthal structures such as bars or star-forming regions. For such
objects, azimuthal structures are not a negligible second-order effect and “disc
ellipticity” is not a well defined concept anymore.

7.2 Improving number statistics

An obvious strategy to improve estimates of handedness or angular-momentum-
orientation autocorrelations is to increase the number of galaxies in the data
sample. For instances, SDSS and thereby Galaxy Zoo cover approximately
one quarter of the full sky. How would an extension to an all-sky survey im-
prove the autocorrelation estimates? If we assume identical depth, this areal
extension leaves the galaxy density unchanged, it only increases the number
of galaxy pairs in all distance bins.

In order to study the improvement of a survey with larger coverage, we
draw subsamples from the Galaxy Zoo database and estimate their handed-
ness autocorrelations. A larger database is not available, so we use smaller
databases to demonstrate the impact of number statistics. In fact, we do
not draw the subsamples from the database itself, which would correspond
to reducing the galaxy density. Instead, we randomly draw the subsamples
from the list of galaxy pairs.57 Figure 7.9 clearly shows that the errors in the 57Actually, we should select

the galaxies by equatorial
coordinates, defining subre-
gions. However, our approach
is equivalent and requires no
new evaluation of the Galaxy
Zoo data.

handedness autocorrelation function are indeed dominated by number statis-
tics, since the errors depend on sample size with a power law of exponent −1

2 .
Consequently, an extension from SDSS to full-sky coverage with SDSS quality
would increase the database approximately threefold (the Milky Way obscures
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roughly one quarter of the sky) and thereby would decrease the errors by a
factor of

√
3 ≈ 1.7. Given the results of Fig. 6.8, this would clearly be a major

break-through in the measurability of potential handedness autocorrelation.

7.3 Improving redshift estimates

Substantial errors in redshift estimates clearly have an impact on the errors
in the autocorrelation functions. However, for instances, the redshift error
of σz = 7.8 · 10−5 at z = 6.5993 · 10−2 quoted in Fig. 6.4 corresponds to an
error in the radial-velocity estimate of σv = c σz

(1+z)2
≈ 20.6km/s. Given the

typical velocity dispersion of galaxies in small groups of (202±10)km/s and in
large clusters of (854± 102)km/s (Becker et al. 2007), the spectroscopic red-
shift estimates of SDSS are already picking up peculiar motions of individual
galaxies instead of cosmological expansion. Consequently, further improving
the accuracy of spectroscopic redshift estimates cannot improve estimates of,
e.g., the handedness autocorrelation function.

Given the impact of uncertainties in spectroscopic redshift estimates on
autocorrelation estimates (Sects. 6.4.4.3 and 6.4.5.3), it is obvious that larger
surveys with photometric redshift estimates cannot help to improve the situa-
tion. Typically, uncertainties in photometric redshift estimates are two orders
of magnitudes larger than uncertainties in spectroscopic redshift estimates
(e.g. Csabai et al. 2003). Considering Fig. 6.4, this would lead to an error
in the comoving distance of several tens of Mpc/h. Moreover, though there
are many more galaxies with photometric redshift estimates than galaxies
with spectroscopic redshift estimates (typically at least one order or magni-
tude more objects), these additional objects are typically also much fainter
because selection for spectroscopic observations is usually triggered by the
galaxy’s brightness. The faintness of these additional objects would therefore
also complicate the morphological classification. For a disc galaxy, the fainter
the object, the more difficult it is to identify the disc. Consequently, sur-
veys that offer only photometric but no spectroscopic redshift estimates are
of no use to estimate handedness autocorrelation functions. This essentially
rules out PanSTARRS58 and LSST59 because these surveys rely exclusively58http://pan-starrs.ifa.

hawaii.edu/

59http://www.lsst.org

on photometric redshifts. Conversely, the EUCLID mission60 will gather of

60http://sci.esa.int/

euclid/

the order of 100 million spectroscopic redshifts of galaxies. Unfortunately, the
galaxy sample observed by EUCLID will have redshifts between 0.5 and 2. As
was shown by Crittenden et al. (2001), estimates of handedness and angular-
momentum-orientation correlations are compromised by weak-lensing signals
for z > 0.3.

7.4 Morphological classification in future

surveys

Evidently, autocorrelation estimates of handedness and angular-
momentum orientation require some morphological classification in future sur-
veys. As we cannot probe high-redshift galaxies for this purpose, the morpho-
logical classes used by Galaxy Zoo or Huertas-Company et al. (2011) will be
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sufficient and no further diversification is necessary. In particular, this implies
that we can build on these two morphological catalogues to classify galaxies in
future surveys: First, we match for the galaxies of known morphological types
in a new survey. Second, we use a new survey’s imaging or spectroscopic data
to estimate those galaxy’s parameters. Finally, using these parameters and
the galaxies of known morphological types as a training sample, we can set up
a probabilistic classification algorithm to extend this classification scheme to
a new survey catalogue. In fact, this is precisely the same exercise as Huertas-
Company et al. (2011) did, but on much larger scale. In particular, the Galaxy
Zoo sample with approximately 900,000 visually classified galaxies would pro-
vide an extremely valuable training sample. Gauci et al. (2010) demonstrated
that modern classification algorithms perform excellently in reproducing the
visual classifications of the Galaxy Zoo sample. This strategy has several
advantages: It is easily conductible, it does not require much computational
time, and it is highly accurate and objective.

7.5 Front-edge estimation

With so little information in the data, using additional information can be
very helpful. Such additional information is provided by an estimate of the
disc’s front edge, i.e., which side of the semi-minor axis is pointing towards us.
If we can estimate the front-edge, we can use the results as weights pa and pb
in the correlation estimator of Eq. (6.19). Evidently, if we knew the front edge
of every galaxy in our data sample, this would break the geometric degeneracy
in the angular-momentum-orientation vector and thereby would improve the
correlation estimate.

7.5.1 Visual classification

We estimate the front-edge by looking for dust extinction, in particular dust
lanes. We visually inspect g-band images, since of all five SDSS bands this
band is most strongly affected by dust extinction while still being of decent
depth. The outcome of such a visual inspection is as follows:

• Equal weights pa = pb = 1
2 if we are uncertain.

• Weight of 0.6 to indicate a somewhat uncertain trend.

• Weight of 0.9 if we believe to be certain.

We do not assign a weight of 1 in the last case, since there is always some
uncertainty. By construction, this method works best for strongly inclined
discs, since face-on discs may display dust lanes but a front-edge does not
exist. Unfortunately, knowing the front-edge would have a larger impact for
nearly face-on discs than for edge-on discs (see definitions in Lee 2011). We
visually inspected g-band images of the 500 largest galaxies, sorted by their
Petrosian radii.61 For smaller galaxies, the resolution is not good enough to 61We do not find evidence for

psychological preference in vi-
sual front-edge classifications
similar to the bias in handed-
ness classifications reported
by Land et al. (2008).

identify dust lanes. This yields a sample of 40 disc galaxies with certain front-
edge classifications (weight 0.9) and 39 disc galaxies with somewhat uncertain
results (weight 0.6). Given these numbers of only very few decisive front-edge
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classifications, we find no substantial improvement of the marginal correlation
estimate. Nevertheless, future sky surveys may have an improved imaging
quality, such that a visual front-edge classification is possible for more objects.

7.5.2 Automated classification

It would definitely be beneficial to obtain a front-edge classification for galaxies
with intermediate inclinations, since the rounder the object the larger the in-
formation gain. Unfortunately, visual classification via dust lanes is restricted
to highly inclined discs. Therefore, the front edge needs to be inferred in
a different way, which should ideally be fully automated in order to ensure
objectiveness. One potential approach is front-edge classification via colour
gradients from dust extinction. However, this requires highly accurate pho-
tometric positions. In simple tests, we experienced that already coordinate
offsets between the different bands of a hundreth of a pixel along the semi-
minor axis can compromise such estimates, due to the rapidly falling radial
light profiles of galaxies. Another approach is front-edge classification via dust
extinction in single-band photometry. In the case of SDSS, this would ideally
be the g-band, where the impact of dust extinction is larger than in r, i, z
whereas the g-band is not as shallow as the u-band. This front-edge estimator
would compare the fluxes above and below the major axis, which could differ
due to unequal dust extinction. In contrast to colour-based methods, this ap-
proach does not rely on accurate photometric positions. We tested a number
of simple implementations but the results were very poor. Apparently, the
desired signal was not large enough, such that other effects, e.g., star-forming
regions in the galaxy or foreground stars, compromise colour gradients and flux
differences. These effects are the major obstacles which have to be overcome
in order to set up a reliable front-edge classification algorithm.
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The bottom line
� Second moments of the light distribution are strongly biased by galactic bulges

even for Scd galaxies. More precisely, galaxies seem to be less inclined using
ellipticity estimates based on second moments than using estimates based on
isophotes. This bends the angular-momentum-orientation vectors into the
line-of-sight, thereby creating artificial correlations. For instances, this leads
us to overestimate the impact of disc alignment as a systematic effect in grav-
itational weak lensing.

� It is possible to reduce the errors in the correlation estimates by increasing
the number of galaxies in the data sample. Already going from SDSS to a
full-sky survey of SDSS quality or better would reduce the errors to an ex-
tent that autocorrelations in handedness and angular-momentum-orientation
vectors could become statistically significant.

� Photometric redshift estimates have too large uncertainties. Although typi-
cally there are many more galaxies with photometric redshift estimates than
with spectroscopic redshift estimates, these number statistics do not outweigh
the increase in errors. Unless the accuracy of photometric redshift estimates
is substantially improved in comparison to SDSS, spectroscopic redshift esti-
mates are required. This rules out the use of PanSTARRS and LSST.

� Future surveys will compile galaxy catalogues surpassing the SDSS database
in sky coverage and depth. Recent work successfully demonstrated that visual
classifications of galaxy morphologies can be used to train fully automated
classification algorithms which can then be used to classify more galaxies. In
particular, the Galaxy Zoo sample provides a powerful training sample.

� Front-edge classification of inclined disc galaxies would help to optimally ex-
ploit the given data because it breaks one geometric degeneracy involved in
the inference of angular-momentum-orientation vectors. For highly inclined
disc galaxies, front edges can be detected using dust lanes. For less inclined
disc galaxies, the overall dust extinction may provide a proxy. However, this
turned out to be a challenge that definitely requires a sophisticated solution.
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8
Summary and outlook

As we have seen in Chapter 4, the angular momenta of the four large disc
galaxies in the Local Group – Milky Way, Andromeda (M31), M33, and the
Large Magellanic Cloud – are consistent with the null hypothesis of random
orientation. Motivated from these results, we expanded our test of disc align-
ment to the SDSS spectroscopic galaxy sample using autocorrelation functions
of spiral-arm handedness and angular-momentum-orientation vectors, respec-
tively. We have seen that there are several important error sources that have to
be taken into account, namely uncertainties in morphological classification, er-
rors in redshift estimates and errors in ellipticity estimates. From our detailed
investigations of the impact of these errors, we conclude that it is inevitable
to incorporate them into the estimation process. Propagating all these error
sources, we obtain marginal autocorrelation functions which do not exhibit
statistically significant autocorrelations. Our results therefore falsify previous
reports of such findings (Slosar et al. 2009; Lee 2011). Nevertheless, we could
test the theoretically predicted autocorrelation length of 1Mpc/h (Schäfer &
Merkel 2011), which is consistent with our data. However, due to the large
errors in the autocorrelation estimates, the constraint on the autocorrelation
length is subject to large uncertainties. We have to conclude that the SDSS
data – which is the currently best database for such investigations – does
not enable us to place decisive constraints on theoretical parameters of disc
alignment or even to confirm the presence of alignment effects.

Do our results falsify the prediction of the tidal-torque theory? Not nec-
essarily. The prediction concerns the alignment for angular momenta of dark-
matter haloes and not for the disc galaxies residing inside these haloes. For
instances, van den Bosch et al. (2002) find a median misalignment of angular
momenta of disc galaxies and their host haloes of ≈ 30◦. Furthermore, even
minor mergers can significantly disturb the angular momenta of disc galaxies
by transferring orbital angular momentum (e.g. Moster et al. 2010). Hence,
numerical simulations suggest that an initial alignment is perturbed and may
not survive. Conversely, we could speculate whether there is some relaxation
mechanism, e.g., compensating for perturbations by mergers, which has not
been taken into account by numerical simulations. However, we do not want
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to push this discussion too far because we are wary of turning the tidal-torque
theory from an empirical into a “vampirical” hypothesis (Gelman & Weakliem
2009), where virtually any observational result can be explained such that an
empirical falsification becomes impossible. The best strategy is certainly to
enlarge the database of disc galaxies in order to reduce the errors through
number statistics.

Furthermore, we have revealed a systematic misestimation of ellipticities
based on second moments of the light distribution which is induced by an
ellipticity gradient between galactic disc and galactic bulge (Bernstein 2010).
This leads to a substantial bias in the autocorrelation function of angular-
momentum-orientation vectors which overwrites a potential astrophysical sig-
nal by roughly an order of magnitude.

Our results concerning the relevance of errors sources for estimates of au-
tocorrelation functions also applies to further astrophysical and cosmological
investigations, other than disc alignment. This is very typical for methodolog-
ical investigations which are to some extent independent of the astrophysical
or cosmological question. For instances, auto- and cross-correlation functions
of real and imaginary parts of complex ellipticities in investigations of weak
gravitational lensing need to take into account these error sources (e.g. Blazek
et al. 2011). Furthermore, our findings also apply to two-point autocorre-
lation functions of galaxies in investigations of baryonic acoustic oscillations
(e.g. Blake et al. 2011). Such autocorrelation functions need to account for
uncertainties in redshift estimates, too. It may also be mandatory to account
for uncertainties in the star-galaxy classification.

In preparation of data selection for estimates of autocorrelation functions,
we were also concerned with the parametrisation of galaxy morphologies. Such
a parametrisation is necessary in order to automatically identify disc galaxies
in large data samples containing numerous galaxies such as the SDSS cata-
logue. In Chapter 2, we studied the performance of several very popular mor-
phological parameters, e.g., the concentration index. However, we revealed
the existence of an intertwinement of morphological observables such as light
concentration, ellipticity and asymmetry. This intertwinement questions the
conceptual setup of most of these parametrisation schemes and severely lim-
its their practical application. Our findings challenge the current paradigm
which favours model-independent parametrisation schemes due to their seem-
ing simplicity. Based on these results, we identified basis-function expansions
as a very promising approach due to its high flexibility in describing azimuthal
structures such as spiral-arm patterns which are exhibited by disc galaxies.
Unfortunately, the astrophysical interpretation of the expansion coefficients of
such basis functions is not obvious and more work is needed here as soon as a
reliable set of basis functions has been identified. We continued by orthonor-
malising the Sérsic radial profile in Chapter 3. We investigated this promising
approach in great detail but revealed two severe problems, namely that these
“sérsiclets” are prone to undersampling and that they impose an unphysical
relation between steepness of the radial bulge profile and spatial scale of disc
patterns such as spiral arms. Therefore, we were forced to enhance the simple
Sérsic radial profile and orthonormalise these profiles. Indeed, the resulting
set of basis functions overcomes both problems of sérsiclets but turns out to
be computationally infeasible. Another promising approach was recently pub-
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lished by Jiménez-Teja & Beńıtez (2011) who expand galaxy morphologies into
Chebyshev rational functions. However, their handling of the scale radius is a
work-around and the authors also did not investigate how their basis functions
perform in the regime of low resolution. Further investigations are necessary
in order to assess the reliability of this approach.

Moreover, we demonstrated in Chapter 2 that all these parametrisation
schemes form nonlinear parameter spaces. This is a severe problem because
virtually all classification algorithms require the definition of a distance met-
ric (e.g. Fraix-Burnet et al. 2009). We have shown that the näıve Euclidean
metric is a very poor approximation, while the true nonlinear metric remains
unknown. Even worse, we have seen that several morphological parameters
form discontinuous parameter spaces, i.e., similar galaxy morphologies are
not guaranteed to have similar parameter values. Evidently, this can corrupt
any classification attempt. Dissatisfied with these problems of morphological
parametrisation schemes in the classification context, we resorted to visual
classifications of galaxy morphologies, which are provided by the Galaxy Zoo
project. In general, we have to conclude that the field of parametrising galaxy
morphologies is still open. So far, there appear to be no trustworthy parametri-
sation schemes, although many (over-)simplified workarounds are often used
uncritically. More work and sophistication is required in order to fully exploit
the information content of galaxy morphologies, which provide an important
diagnostic and are a direct observable.

8.1 Outlining an observational strategy

As we have discussed earlier, there are no planned or upcoming sky surveys
that provide spectroscopic redshift estimates of sufficiently large numbers of
galaxies in the relevant redshift regime. This would imply that testing the
existence of disc alignment through autocorrelation functions would remain
an unsolved problem for the unforeseeable future. This situation is of course
unacceptable, wherefore we now outline an observational strategy. This strat-
egy aims at assembling a database which enables us to test disc alignment
with autocorrelation functions.

The strategy builds on upcoming photometric surveys such as
PanSTARRS or LSST. As mentioned before, these surveys only provide pho-
tometric redshift estimates and imaging data but no spectroscopic redshifts.
However, we can use these surveys to build a sample of galaxies which can
in the future be targeted specifically in order to take spectra and estimate
spectroscopic redshifts. Photometry can be used for morphological classifica-
tion in order to identify Scd galaxies, as described in Sect. 7.4. Furthermore,
photometry already enables us to estimate ellipticities of identified Scd galax-
ies. Photometric redshifts can then be used to identify Scd galaxies in the
relevant redshift regime. Here, we have to account for the completeness of the
Scd-galaxy sample. In the case of SDSS, Scd galaxies are complete up to the
redshift z ≈ 0.02 and Lee (2011) found ≈ 4, 000 Scd galaxies in this regime.
Consequently, a full sky survey of SDSS depth would contain ≈ 12, 000 Scd
galaxies in this redshift regime.62 This would require to take spectra of ≈ 8, 000 62The Milky Way covers

roughly one quarter of the
sky, such that the increase is
only a factor of three not four.

additional target objects distributed primarily over the Southern hemisphere.
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Figure 8.1: 6dF survey of spectroscopic redshifts on southern hemisphere.

Top panel: Distribution of spectroscopic redshifts. Bottom panel: Distribution of

target galaxies over the southern hemisphere.

As PanSTARRS is planned to be slightly deeper than SDSS, completeness
will also hold up to redshifts slightly larger than z ≈ 0.02, i.e., more distant
Scd galaxies can be included. In total, the final number of Scd galaxies which
require spectral redshifts to be estimated will not exceed 15,000 to 20,000. In-
creasing the data sample by approximately a factor of four therefore approxi-
mately halves the errors in the marginal autocorrelation estimates. Given the
marginal autocorrelation estimates of angular-momentum-orientation vectors
shown in Figs. 6.11 and 7.7, this would be a major breakthrough because then
the currently weak indications might become detections of high statistical sig-
nificance. Such an investigation would be highly relevant for our understanding
of disc-galaxy formation in the cosmological context.

Unfortunately, spectral observations of 20,000 targets distributed over the
souther hemisphere is an infeasible task. The southern hemisphere is 32,400
square degrees large, i.e., on average there is less than one target per square
degree. Consequently, multi-object spectroscopy would not be possible and
almost every target object would require its own telescope pointing. Given a
typical exposure time of 20-30 minutes in order to obtain a decent spectrum,
this would require 10,000 hours of observation time. Fortunately, many of
these additional 20,000 Scd galaxies might by contained in the 6dF survey
(Jones et al. 2004) which estimated spectroscopic redshifts of 150,000 galaxies
in the southern hemisphere.63 Figure 8.1 shows that the distribution of spec-63http://www.aao.gov.au/

local/www/6df/ troscopic redshifts is very similar to the redshift distribution of SDSS shown
in Fig. 5.1. However, the survey area of 6dF is twice as large as the survey
area of SDSS though the 6dF catalogue contains a factor of ≈ 6 fewer ob-
jects than the SDSS spectroscopic sample. Consequently, the 6dF survey is
much shallower than the SDSS survey, i.e., Scd galaxies will not be complete
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out to redshift z ≤ 0.02. Nevertheless, joining photometric information from,
e.g., PanSTARRS, and spectroscopic redshift estimates from the 6dF survey,
we may be able to increase the database of Scd galaxies sufficiently in or-
der to improve the statistical significance of autocorrelation estimates in the
foreseeable future.

– 139 –



CHAPTER 8. SUMMARY AND OUTLOOK

– 140 –



Acknowledgements

First and foremost, I whole-heartedly thank my wife Ellen Andrae for her con-
tinuous support both privately and professionally. We had lots of discussions
on my work, concerning pros and cons of different methods and the inter-
pretation of the results. Furthermore, she was (almost) always very tolerant
whenever a sudden “inspiration” overcame me and I sat down to work – re-
gardless of late evenings or weekends. Of course, I also thank my newborn son
Thomas for being such a cute, quiet, sleepy, and well-behaved baby. Both of
them enabled me to largely concentrate on finishing my research and writing
up my thesis.

This work would not have been possible without the support of my supervi-
sor Knud Jahnke. He offered guidance and useful insights into the observer’s
perspective whenever it was necessary. Otherwise, he allowed me to follow
my own research interests and to independently navigate between dead ends,
the falsification of previous results, and all sorts of superpositions of these
two. Knud exhibited an admirable patience with a stubborn theoretician and
methodologist like myself who was always ready at hand with extremist con-
victions about “suboptimal” scientific work. He also offered me the unique
opportunity to participate in real astronomical observations at Calar Alto,
Spain. In the beginning, I was not overwhelmingly excited about this, but
once there the original fascination of astronomy returned and today I consider
it as a very important and interesting experience. Furthermore, Knud bought
a modern multi-core server for his group, whose considerable computational
power I could use almost alone. This great technical facility certainly also
contributed to the fast progress of my work.

I also thank my co-advisers Matthias Bartelmann and Coryn Bailer-Jones
for their support in PhD committee meetings and whenever else I asked for
their help. Matthias was the one who suggested that I should apply to the
Klaus-Tschira Foundation for a PhD scholarship, which allowed me to con-
centrate on my research without having to care about finances and contracts.
As former dean of the physics faculty, Matthias was also a valuable source of
information concerning the bureaucratic issues of the PhD. Furthermore, after
certain unpleasant (and unjustified) feedback, it was Matthias who restored
my enthusiasm and zeal to continue with my scientific work. Likewise, Coryn
supported me in my understanding of methodology as a crucial part of science
and eventually offered me a great position in his Gaia group at MPIA that

141



perfectly matches my interests in statistical inference from data.
Many thanks also go to all with whom I had the pleasure to work together.

Primarily, I would like to thank Peter Melchior who taught me a lot of how to
construct scientific lines of arguments and especially the philosophy of mer-
cilessly exposing any method to rigorous and profound testing. Furthermore,
Peter also provided the LaTeX source for the fancy bottom lines at the end
of each chapter. I am also very thankful for the numerous interesting discus-
sions about data analysis with Tim Schulze-Hartung, especially concerning the
falsification of a recently claimed “discovery” of an Earth-like planet in the
habitable zone of Gliese 581. Tim told me a lot about the problems involved
in the detection of exoplanets.

My current and former officemates also have their share in my thesis. In
an office housing five students, work could have been very hard for various
reasons. Fortunately, I never experienced any annoyances and it was always a
great pleasure to enter the office and work there. Due to this excellent working
atmosphere, I am much obliged to Marie-Helene Nicol, Jan Pitann, Dading
Nugroho, Natalia Kudryavtseva, Tim Schulze-Hartung and Gabriele Maier.

I would also like to thank everyone in Knud’s Emmy-Noether group, namely
Katherine Inskip, Dading Nugroho and Mauricio Cisternas. In our regular
group meetings, I learned a lot of reducing observational data in particular
spatially resolved spectra. They also were very patient listening to the some-
times somewhat theoretical excursions of my own work.

As member of the International Max-Planck Research School (IMPRS) I
want to thank the IMPRS coordinator Christian Fendt for his commitment
and ready help, e.g., concerning organisational and bureaucratic aspects. Fur-
thermore, I would like to thank my fellow students from the fifth IMPRS gener-
ation: Ellen Andrae, Paul Boley, Federica Capranico, Gustavo Dopcke, Aram
Giahi, Philipp Girichidis, Alessandra Grassi, Oleksiy Golubov, Meiert Grootes,
Raoul Haschke, Mathias Jaeger, Fazeel Mahmood Khan, Ervin Kafexhiu, Na-
talia Kudryavtseva, Eva Lefa, Chia-Chun Lu, Johannes Ludwig, Iwona Mo-
chol, Faviola Molina, Natalie Raettig, Daniel Seifried, Jochen Tackenberg,
and Tessel van der Laan. Together, we endured long seminars, enjoyed post-
seminar beers, explored the city of Amsterdam, made the Eurovision Song
Contest sufferable with self-made cocktails, and baked German cookies before
Christmas. Together, we also mourned for our fellow student Crystal Brasseur
who deceased in Spring 2011.

Last but not least, I also thank the Klaus-Tschira Foundation for their
financial support and the internet community for helpful tips on LaTeX to
design this thesis layout.

142



Bibliography

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009,
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