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Abstract

In this work we are investigating non-linear electromagnetic waves in two different physical
environments: laboratories on earth and the astrophysical objects known as pulsars.

In the first part of our work the interaction of electrons and positrons with strong waves in the
form of high intensity laser beams is analyzed. The possibility of emission of energetic radiation
which can result in prolific pair production in the focus of two short, counter-propagating ultra-
high intensity laser pulses is examined, taking into account several different possibilities for the
relative polarizations and the waveform of the beams. The conclusion is reached that in the
next generation laser facilities currently under construction mainly in Europe, like ELI and the
10PW Vulcan laser, pair production and electromagnetic pair cascades should be observed for
intensities as low as 1024Wcm−2.

In the second part of this work we focus on large amplitude, low frequency waves that are
emitted by pulsars. After a brief review of the current understanding of pulsar winds and the
problems inherent to it, we show that the interaction of a relativistic striped pulsar wind with the
the termination shock should result in reflection of electromagnetic energy in the upstream, which
can affect the outflow, creating a precursor. We then investigate the possible conversion of the
pulsar wind to a superluminal linearly polarized wave propagating upstream of the termination
shock and show that this will result in the transfer of energy from the fields to the outflow
particles in the precursor, lowering the magnetization of the outflow and opening the way for
further particle acceleration at the shock front.

Zusammenfassung

In dieser Arbeit untersuchen wir nicht-lineare elektromagnetische Wellen in zwei unter-
schiedlichen physikalischen Umgebungen: im Labor auf der Erde und in Pulsaren im Weltraum.

Im ersten Teil dieser Arbeit analysieren wir die Wechselwirkung von Elektronen und Positro-
nen mit hochintensiven Laserstrahlen. Wir untersuchen die Möglichkeit der Emission hoch-
energetischer Strahlung, welche im Fokus von zwei sich entgegengesetzt-propagierenden Laser-
strahlen zur Paarproduktion in der Lage ist. Dazu betrachten wir verschiedene Möglichkeiten
der relativen Polarisierungen und Wellenformen der Laserstrahlen. Wir zeigen, dass die nächste
Generation von Lasern die gerade konstruiert werden, wie z.B. ELI und der 10PW Vulcan
Laser, Elektonen-Positronen Paare und elektromagnetische Schauer bereits bei Intensitäten von
1024Wcm−2 erzeugen kann.

Im zweiten Teil dieser Arbeit konzentrieren wir uns auf Wellen mit grosser Amplitude und
niedrigen Frequenz, die von Pulsaren ausgesandt werden. Nach einem kurzen Überblick über
den momentanen Erkenntnisstand von Pulsarwinden und den damit verbundenen Problemen
zeigen wir, dass die Wechselwirkung von relativistischen (”striped”) Pulsarwinden mit dem
Schock, der sich bildet wenn der Wind auf das interstellare Medium trifft, eine Reflektion von
elektromagnetischer Energie erzeugt. Anschliessend betrachten wir die mögliche Umwandlung
des Pulsarwindes zu einer linear-polarisierten Welle mit Phasengeschwindigkeit grösser als die
des Lichtes, bevor der Wind den Schock erreicht. Durch diese Umwandlung wird Energie von
den Feldern auf die Teilchen übertragen, was zu einer Verringerung der Magnetisierung des
Ausflusses führt und somit den Weg frei macht für weitere Beschleunigung wenn der Schock
erreicht ist.
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Chapter 1

Introduction - Contents of this thesis

In this thesis we will investigate the properties of the motion of particles in strong waves and the

processes that take place during the interaction of particles with strong fields. In this opening

chapter we introduce the concepts of strong waves and fields, and we discuss the environments

in the laboratory and in astrophysics where they are relevant. At the end of the chapter we will

give an overview of this thesis.

We will treat exclusively electrons and positrons, and it is to be understood that these two

species of particles are meant whenever we refer to ”particles” or ”electrons”. The symbol e is

used for the magnitude of the electron charge, and the symbols m and c will be used throughout

to denote the electron mass and the speed of light, respectively.

1.1 Strong waves and the strength parameter

Strong waves are electromagnetic waves, propagating either in vacuum or in plasmas, which can

potentially accelerate particles to relativistic velocities within one wave period. This property

can be quantified by introducing the strength parameter

a =
eErms

mcω
(1.1)

with Erms being the root mean square electric field of the wave, and ω its angular frequency.

For a vacuum wave, the frequency is connected to the wavelength λ of the wave through the

relationship

λ =
2πc

ω

so the strength parameter can be expressed as

a =
eErms

2πmc2
λ (1.2)

From 1.2 we see that the strength parameter expresses the work done by the field of the wave

when the particle moves one wavelength in the root mean square electric field of the wave, in

units of the electron rest mass energy mc2. When a ≫ 1 we will refer to the wave as a ”strong

wave”, a wave which is capable of imparting to the particle energy much larger than its rest

mass energy.

9
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The equations of motion of a particle in the field of a strong vacuum wave are non linear in

the particle momentum. This is why the process of particle interaction with a strong wave is

often called ”Nonlinear Thomson/Compton Scattering”. Unlike classical Thomson scattering,

which is elastic, and Compton scattering, where a relativistic electron gains or loses energy

while downscattering or upscattering a photon, non-linear Compton scattering has as a result

the recoil of the particle in the direction of the wave and the gain of energy of the order of

magnitude ∼ amc2. Particles in a strong wave also gain a relativistic transverse momentum

component, as we will see in detail in a subsequent chapter. The radiation resulting from the

acceleration in a strong wave tends in the limit a ≫ 1 to a continuous spectrum containing high

harmonics of the wave’s frequency ω.

The a ≪ 1 limit will be referred to as the ”weak wave” regime.

1.2 Strong fields and the critical Schwinger field

In 1929 physicist Oscar Klein applied the Dirac equation to the problem of the scattering of

an electron by a potential barrier, a problem often encountered in non-relativistic quantum me-

chanics (see, for example [47]). The surprising result was that when the barrier became strong

enough then the probability of transmission of the particle was increasing, contrary to what is

expected classically. When the potential barrier approaches infinity then the transmission prob-

ability approaches unity and the reflection probability approaches zero. This counter-intuitive

result is known as the Klein paradox.

The characteristic field value for which this phenomenon becomes important is calculated as

the electric field which performs work equal to mc2 over a Compton wavelength ~/mc. Thus

this field is given by

F =
m2c3

~e
(1.3)

and corresponds to an electric field of Ecr = 1.3×1016Vcm−1. The corresponding magnetic field

is Bcr = 4.414 × 1013Gauss. We will refer to this value as the critical field.

Fields close to or above this value are referred to as ”strong fields”. Electric fields of magni-

tude close to Ecr are able to impart to an electron energy equal or greater to its rest mass in one

Compton wavelength. This implies the possibility of production of electron-positron pairs when

strong fields are probed by an electron, in the process referred to as trident pair production.

Pairs can also be produced in the interaction of photons of sufficient energy with static fields,

in a process called single-photon pair production.

When we discuss pair production by relativistic electrons, the relevant field is that in the

electron rest frame. This means that the critical Schwinger field can be approached if relativistic

particles are moving in a field the value of which is, in the laboratory frame, much lower than

the critical field. In the rest frame of the particle then, the field will be Lorentz boosted, so that

Ecr can be approached and strong-field phenomena like pair production can be observed. This

can be expressed by an invariant parameter, η, which for a particle moving with Lorentz factor

γ transversely to a constant electric field of magnitude E in the absence of a magnetic field is

η = γ
E

Ecr
(1.4)



1.3. PROBING STRONG WAVES AND STRONG FIELDS 11

When η approaches or exceeds unity, the probability of strong-field processes like those men-

tioned above rises.

Another aspect of the Klein paradox is that a sufficiently strong static field can impart

enough energy to virtual particles to make them real, causing pair creation out of the vacuum.

1.3 Probing strong waves and strong fields

1.3.1 Lasers

For the investigation of strong field phenomena, one would have to achieve an electric field of

magnitude close to Ecr. However, the critical field is too high to be achieved with today’s means

in the laboratory. This is why the use of relativistic particles in combination with moderately

strong fields is a more realistic approach to the problem. This corresponds to maximizing not

the field, but the parameter η introduced in the previous paragraph. To this end one would

need a particle accelerator and a source of an intense field: the ideal candidate for accelerating

particles and providing the electromagnetic field at the same time is a high-intensity laser.

The strength parameter of a linearly polarized laser pulse is expressed through its intensity

and its wavelength as

a = 605I
1/2
24 λµm (1.5)

where I24 is the intensity of the beam at focus in units of 1024Wcm−2 and λµm the laser wave-

length in micrometers.We see that for intensities close to 1024Wcm−2 and wavelengths of the

order of 1µm the strength parameter is much larger than unity, and particles interacting with

laser beams of such intensities would be accelerated to longitudinal Lorentz factors of the order

of several hundreds.

On the other hand, an intensity of 1024Wcm−2 corresponds to a field of E = 1.9×1013V/cm.

This means that to a particle of Lorentz factor of a few hundred, this field can appear boosted to

a value close to Ecr depending on the particle’s direction of motion. The parameter η, then, can

approach the value η = 1, where pair production by the processes mentioned above is possible.

In this way lasers can act in a dual sense: as accelerators of electrons, and as targets which

provide the field in which strong-field QED processes can occur.

The process of pair production, however, cannot proceed by injecting a non-relativistic elec-

tron in a single strong plane wave. The electron gets accelerated in the direction of the wave,

with the result that in its rest frame the wave appears red-shifted. This lowers the η parameter

and disfavours pair production. If a laser beam collides with a relativistic electron, however, the

conditions for pair production can be fulfilled, since the laser fields are boosted in the particle

frame. Strong waves can also be used to accelerate particles, with the strong field provided

by a different source. Laser beams of intensity ∼ 1020Wcm−2 have already been used for the

production of pairs, acting either as the accelerator of particles to high energy, or providing

the intense field in the laser focus for beams of ultrarelativistic particles produced by a linear

accelerator. The configuration of counter-propagating beams, however, achieves the advantages

of both approaches, as we will explain in a subsequent chapter. The calculation of pair creation

in counter-propagating laser beams is the subject of the first half of this thesis.
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1.3.2 Pulsars

Pulsars are rapidly rotating, strongly magnetized neutron stars, which have periods in the order

of magnitude of 10−3 − 1sec. If pulsars were large magnetic dipoles rotating in vacuum, then

they would emit strong electromagnetic waves. The strength parameter was first introduced in

connection to these objects by Gunn and Ostriker [29], who were investigating the acceleration

of particles by those waves. For the well-known Crab Pulsar, which has a surface magnetic field

of the order of 1012G and a rotation frequency ω = 190sec−1, the strength parameter close to the

stellar surface is of the order of magnitude a ∼ 1010. With these field magnitudes and strength

parameters, pulsars are the ideal astrophysical laboratory for the study of both strong-field

processes and strong electromagnetic waves.

Indeed, the very same processes for pair production that are mentioned above in association

with strong laser fields, are also in play in the vicinity of pulsars. The surface electric fields

of pulsars are so strong, that they are capable of extracting particles (electrons) from the star.

These particles can then produce secondary pairs through the energetic radiation emitted by

electrons as they are accelerated in the pulsar’s strong fields. The high energy photons interact

with the field lines to produce electron-positron pairs via the process of single-photon pair

production. Pulsar outflows consist mainly of these pairs.

The pair load of the pulsar magnetosphere dictates the type of outflow which the pulsar is

going to launch. If the pair load is high, a magneto-hydrodynamic description of the pulsar

wind is possible. In the opposite case the displacement current has to compensate for the

dearth of charged particles, and the strong wave emitted by the pulsar could be converted to

a superluminal mode, i.e. one which propagates with phase velocity βφ > 1. Such a mode

resembles more a vacuum wave, with the displacement current term dominating the convection

current, albeit one with superluminal phase speed. They have the advantage that they can

propagate in plasmas of lower density, and are the subject of the second half of this thesis.

1.4 Structure of this thesis

This thesis consists of two parts: in the first, including chapters 2-5, the possibility of pair

production using counter- propagating laser beams is discussed. The second part of the thesis

includes chapters 6-8, where the properties of superluminal waves in pulsar outflows are investi-

gated. We conclude with a summary of our results and a few words on possible future extension

of our work in chapter 9.

Part I: Pair-production in the laboratory: counter-propagating laser beams

In Chapter 2 we give an overview of the physics and applications of ultra-short pulse, high

intensity lasers. We present the evolution of laser intensities in the past decades and discuss

the expectations for the new laser facilities that are going to be available for experiments in the

next few years.

In Chapter 3 we introduce the physical processes which are relevant to particle radiation and

pair production in the laboratory using laser beams. The motion of a particle in a strong wave
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is analyzed, the use of classical physics for the calculation of particle trajectories is justified and

the formulae for the evaluation of pair production are presented.

In Chapter 4 we review the techniques that have successfully been used for pair production in

the laboratory. We argue that the proposed configuration of counter-propagating beams would

be much more efficient for pair production, leading to the initiation of electromagnetic cascades

in the laser focus. We review some previous results for circularly polarized beams, and present

an analogy with astrophysical sources.

In Chapter 5, we use realistic models of pulses to estimate the probability of pair production

by an electron accelerated in the focus of two counter-propagating beams. The results of these

calculations have been published in [44]. We argue that only a few particles are enough to initiate

cascades that could deplete the beams of their energy. We give an estimate of the threshold

intensity where these cascades would occur, and argue that linear polarization is superior to

circular as a means for pair production.

Part II: Non-linear waves in pulsar winds

In Chapter 6, we give a brief overview of pulsars and their outflows. We mention some of the

open issues in the field, and the solutions that have been proposed in the past years to address

them. We also introduce the conserved quantities in the pulsar winds and the approximations

we make in order to simplify the problem.

In Chapter 7 we describe the striped wind, the magneto-hydrodynamic outflow that is pre-

dicted to be launched by a pulsar, and its termination shock, which signifies the transition from

the relativistic wind to the pulsar wind nebula. Based on new estimates of the energy radiated

by a shock front in the vacuum-wave approximation, we argue that the interaction of the striped

wind with the termination shock will result in the reflection of Poynting flux in the upstream,

in the form of a transverse, linearly polarized wave with the pulsar’s frequency. We examine

the impact of these estimates on the interpretation of recent pic simulations of magnetic field

annihilation at shocks.

In Chapter 8 we investigate the conversion of the striped wind to a large amplitude, linearly

polarized wave in a background magnetic field. We present detailed results of modes which

propagate inwards from the termination shock, for different latitudes in the wind. We discuss

how the problems of current pulsar wind models can be addressed using these modes and how

this work can be extended in the future.

Conclusions

In Chapter 9 we give our conclusions in both the matters of electromagnetic cascade initiation

in the focus of two counter- propagating laser beams using next generation lasers, and the con-

version of a striped wind to a superluminal large-amplitude electromagnetic wave. We comment

briefly on the significance of our results and on possible continuation of and improvement of the

present calculations in the future.
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Chapter 2

Laser intensities: past, present and

future

2.1 Lasers: an introduction

Lasers are sources of radiation of high coherence. Their function is based on population inversion,

the phenomenon that occurs when a system exists in a state with more of its members in an

excited state than in the ground state. The members of the system can be for example atoms,

molecules or ions in a crystal lattice. Such a medium emits photons either by spontaneous

emission or by stimulated emission, which occurs when a photon of energy equal to the difference

in energy levels between the excited and the ground states perturbs an excited atom (or molecule,

or ion etc) and causes it to emit a photon of the same frequency and phase with the perturbing

one. The two photons are then said to be coherent. This is the mechanism of amplification of

radiation, which refers to the fact that the medium in population inversion emits more photons

that it absorbs.

The basic components of a laser system are the pump source, the gain medium and the

resonant cavity.

The pump source is a light source that provides energy to the laser system. This can be for

example a flashlamp, an arc lamp or even another laser of suitable type.

The gain medium absorbs the energy provided by the pump source and is excited, so that

a population inversion is induced. It is in this medium that stimulated emission takes place to

produce the phenomenon of light amplification. The gain medium can be a solid, a liquid, a gas

or a plasma and determines the wavelength of the laser radiation. It is placed in the resonant

cavity, which is a device responsible for the trapping of the radiation in order to provide feedback

to the mechanism of light amplification.

The simplest resonant cavity consists of two mirrors, one highly and one partially reflective,

which allow for the photons to be reflected several times in order to stimulate emission in the

gain medium, before they exit through the partially reflective mirror to produce the laser beam.

If radiation is viewed as electromagnetic waves, then an equivalent description is that a resonant

cavity allows for standing wave modes to exist for a long time, providing feedback on the light

amplification mechanism.

The first demonstration of radiation amplification though population inversion was achieved

17
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Figure 2.1: Evolution of laser intensities in the past decades.
This diagram shows the evolution of focused laser intensities in the decades from the 1960’s to
today. The plateau before the introduction of the Chirped Pulse Amplification (CPA) technique
is notable. The figure is taken from [51].

in 1954 by Townes, Gordon and Zeiger [28], who inserted a population of excited ammonia

molecules in a resonant cavity, the dimensions of which were constructed to be a multiple of

the radiation’s half wavelength. This device was called a maser, as an acronym of the phrase

Microwave Emission through Stimulated Emission of Radiation. Six years later the function of

the first ”optical maser” was demonstrated by T. Maiman using a synthetic ruby crystal, which

produces a very narrow emission line of wavelength 694.3nm [57]. This was named ”laser”,

replacing ”light” for ”microwave” in the above acronym. This name has prevailed ever since to

describe any device which emits highly coherent radiation, even if it operates in wavelengths

different than those of optical light.

2.2 Evolution of laser intensities

The first optical laser, which was operated in 1960, had a focused intensity of 108Wcm−2. Since

then laser intensities have been rising at a fast rate, as is readily seen in figure 2.1. This has

been achieved mainly through the decrease of the pulse duration, which has as a consequence

the rising of the laser power emitted in a single pulse.

At first pulses were compressed from the microsecond to the nanosecond regime, using a

technique called Q-switching [34]. The principle behind Q-switching is to keep the losses in the
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Figure 2.2: Schematic representation of the CPA and OPCPA concepts.
Stretching, amplifying and compression of pulses with the CPA and OPCPA techniques. The
figures are taken from [68].

resonator cavity high while pumping energy to the gain medium, so that stimulated emission

cannot occur. The losses are governed almost exclusively by spontaneous emission, and the

pumped energy is stored in the gain medium. Then when the stored energy reaches saturation

levels, the losses are reduced to a small value, allowing the fast build up of energy power in

the resonator cavity. The transition from the nanosecond to the picosecond (1ps = 10−12sec)

and even femtosecond (1fs = 10−15sec) regime was achieved with mode locking [64], a technique

in which the constructive interference between the modes in the resonating cavity is used to

produce periodic pulses of intense laser light.

However, with mode locking the point was reached where further increase of peak intensity

was not possible, due to non-linear effects in the gain medium [67]. This corresponds to the

plateau seen in figure 2.1. Thus the peak intensity remained at the 1014−1015Wcm−2 region for

two decades before a new technique called Chirped Pulse Amplification (CPA) revolutionized

the field [85].

The Chirped Pulse Amplification technique consists of three stages: first a seed laser pulse

is stretched in time by a factor of 103 − 105. The stretching does not change the pulse energy,

but it lowers the intensity so that non-linear effects in the gain medium are minimized. Then

the pulse is amplified by 106 − 1012 and subsequently compressed back to a duration close to its

original value [68].
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A variation of the CPA technique is Optical Parametric Chirped Pulse Amplification (OPCPA)

[18], which uses optical parametric amplification instead of regular optical amplification. In this

technique the stretched signal beam propagates through a non-linear crystal along with a pump

beam of higher energy photons. The photons of the pump beam then are converted into lower

energy signal photons and the same number of idler photons, the energy of which is the dif-

ference between pump beam and signal photon energy. As the energy of the pump beam is

converted to signal and idler photons, the signal beam is amplified. An advantage of optical

parametric amplification is the larger bandwidth gain which allows for shorter pulse duration,

something which contributes to the enhancement of intensity [68]. A schematic representation

of the principles of CPA and OPCPA is given in figure 2.2.

Today, by using CPA and tight focusing techniques [5] laser intensities of the order of magni-

tude of 1022Wcm−2 have been achieved. However, upgrades of current lasers and new facilities

are planned which will push laser intensities higher by several orders of magnitude. We review

some of them in a following section.

2.3 The future facilities

In the following we give some examples of facilities that are in the stage of planning or construc-

tion, which are going to achieve focused intensities of the order 1023Wcm−2 and beyond in the

next decade.

The Vulcan 10PW OPCPA project

One of the highest power lasers in operation today is the Vulcan Petawatt of the Central Laser

Facility in the Rutherford Appleton Laboratory in Oxford. Currently it consists of 8 beams,

two of which can operate in short-pulse mode giving pulses of energy up to 1PW and duration

∼ 500fs at the infrared wavelength of 1054nm.

At the moment the Vulcan Petawatt laser is able to provide pulses of ultra-high focused

intensity greater than 1021Wcm−2. An upgrade is planned, however, which will achieve a power

of 10PW. The project has two phases, with Phase 1 already completed: a front end has already

been developed that can deliver a broadband pulse of energy ∼ 1J using Optical Parametric

Chirped Pulse Amplification. In Phase 2 the pulse will be further amplified to energies of ∼ 300J

and compressed to a maximum duration of 30fs. The Vulcan 10PW will then be able to produce

pulses of intensity upwards of 1023Wcm−2 [35]. This project has a timeframe of a few years.

Extreme Light Infrastructure

The Extreme Light Infrastructure (ELI) is a project involving institutions from 13 European

countries, focused on science using ultra-high intensity lasers. ELI is focused on four areas of

physics using hexawatt (1016W) lasers, to each of which a facility is dedicated:

• The production of ultra-short energetic particle (10 GeV) and radiation (up to few MeV)

beams using compact laser plasma accelerators. The corresponding facility (ELI-Beamlines

facility) is under construction in Prague, Czech Republic.
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• Probing of extremely fast dynamic with attosecond (10−18sec) pulses and general research

with ultra-high intensity lasers. The facility (ELI-Attosecond facility) is under construction

in Szeged, Hungary.

• Research in the field of laser-based nuclear physics, through coupling of the laser with a

particle accelerator. The facility (ELI-Nuclear Physics facility) is under construction in

Magurele, Romania.

• Physics with the highest intensity (> 1023Wcm−2)laser beams. The location of this facility

(ELI-Ultra High Field facility) is going to be decided in the year 2012.

The first three sites are expected to be operational in the year 2015.

HiPER and other inertial confinement fusion facilities

An important area of study in the field of ultra-high intensity lasers is inertial confinement fusion,

a process where a target of Deuterium-Tritium is compressed and heated until nuclear reactions

begin. Several facilities are under construction or already in operation which are dedicated to

investigating the feasibility of nuclear fusion as a future energy source.

HiPER (High Power laser Energy Research facility) is a proposed facility involving the co-

operation of ten European countries and the United States of America. HiPER is dedicated

to the research on laser fusion but is also going to conduct science in other areas, like those

of materials science, astrophysics in the laboratory and laser-plasma interactions. The HiPER

facility is expected to provide 60 beams and achieve intensities of 5× 1024Wcm−2 using Optical

Parametric Chirped Pulse Amplification. The PETAL (Petawatt Aquitaine Laser) in the region

of Aquitaine, France, is acting as a forerunner to HiPER.

The National Ignition Facility in (NIF) in Lawrence Livermore National Laboratory, is a

192-beam facility already conducting experiments in inertial confinement fusion. Its purpose is

to be the first facility to achieve the extraction of more energy by fusion reactions in hydrogen

targets than is spent for the target’s heating, providing the conditions under which nuclear fusion

can become a viable future energy source. The NIF operates since 2009, with the first ignition

experiments having started in late 2010 [24]. It is capable of irradiating a fuel target with 1MJ

of energy.

Another facility dedicated to the research of nuclear fusion is the Megajoule Laser (LMJ)

in France, which is going to operate with 240 beams. It is currently under construction near

Bordeaux, France. It is expected that the LMJ is going to be able to deliver 1.8MJ of energy to

its targets, making it the largest laser fusion facility in the world. Its construction is expected

to be finished by the year 2012.
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Chapter 3

Physical Processes

3.1 Thomson scattering: from linear to non-linear

The simplest case of a particle-wave interaction to consider analytically in classical electrody-

namics is the motion of an electron or positron in a plane, linearly polarized harmonic vacuum

wave (see, for example [50]). The equation of motion of an electron in an electromagnetic field

is [48]:

m
dui

dτ
= −e

c
F ikuk (3.1)

where radiation reaction forces have been ignored. In 3.1, ui is the electron’s i−th component

of the four-velocity,

ui = (γ, γv/c)

with v the three-velocity vector. m,e and c symbolize the electron’s mass, magnitude of charge

and the speed of light, τ is the proper time and F ik are the components of the electromagnetic

tensor. In the non-relativistic limit the Lorentz factor becomes γ ≃ 1 and the spatial four-

velocity components are almost equal to the classical three-velocity components. Under these

approximations the above equations of motion become

dp

dt
=

e

c

(

E +
v

c
× B

)

(3.2)

where p = mv and the proper time has been replaced by laboratory time t. For a linearly

polarized plane vacuum wave E = B and thus in the non-relativistic limit the second term of

the right-hand side is much smaller than the first since v ≪ c so we can safely ignore it. This

way we arrive at the equation
dv

dt
=

e

mc
E (3.3)

where the velocity v has been normalized to the speed of light c.

In the case of a harmonic vacuum wave we have E = Eê cos ω(t − x/c) where ê is a unit

vector in the direction of the field and E the electric field magnitude. The wave propagates

in the positive x−direction and ê is perpendicular to the propagation direction. Normalizing

time to the inverse of the wave’s frequency, t′ = ωt and space to the inverse of the wavelength,

23
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Figure 3.1: Particle in a weak wave.
Depiction of the oscillation and radiation of a
particle in the field of a weak harmonic vac-
uum wave: the particle undergoes oscillations
in the direction of the electric field, and ra-
diates according to the classical Thomson for-
mula. The oscillation is non-relativistic and
the radiation is not beamed.

x′ = ωx/c we arrive to the equation

dv

dt′
= aê cos(t′ − x′) (3.4)

where we have introduced the parameter

a =
eE

mcω
(3.5)

This is a different definition of the strength parameter of the electromagnetic wave, using the

amplitude instead of the root mean square value of the field, and it differs from the definition we

gave in Chapter 1 by a multiplicative constant of order of magnitude unity, which depends on

the polarization of the beam. The strength parameter defined in this way is also known as the

wiggler or undulator parameter (in which case it is symbolized K). Introducing the invariant

phase of the wave φ = t′ − x′ we have

dφ

dt′
= 1 − vx

and imposing the initial condition of the electron being at rest at zero phase, vx = 0 at all times

and
dv

dφ
= aê cos φ (3.6)

The strength parameter then governs the magnitude of the particle’s velocity:

v = aê sin φ

The velocity amplitude is a, which means that for the approximations used above to hold, the

condition a ≪ 1 has to hold. In other words, if a ≪ 1 then the electric field is small enough

and the frequency of the wave is high enough so that in the time interval between field reversals

the particle cannot get accelerated to relativistic velocities. Such waves are referred to as weak

waves.

However for a sufficiently low frequency wave with a sufficiently large amplitude the strength

parameter can approach or exceed unity. This means that the particle can get accelerated

to relativistic velocities within a half-period of the wave. In this case the rest of the terms

of the equation of motion cannot be ignored any more, and the non-linear terms cannot be

approximated by their linear counterparts. The term v × B is going to start being significant

and will act to bend the particle’s trajectory away from its harmonic oscillation form.
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The equations of motion then become (see, for example [50]):

dγ

dτ
=

e

mc
u ·E (3.7)

du

dτ
=

e

mc
(γE + u× B) (3.8)

We consider the same harmonic wave, where E = B, and we take the electric field to be in

the y−direction and the magnetic field to be in the z−direction. Then dτ = dt/γ and we

normalize time again to the inverse of the wave frequency, keeping the symbols t and x for the

new dimensionless variables instead of t′ and x′. This way we arrive at the equations

dγ

dτ
=

dux

dτ
= auy cos(t − z) (3.9)

duy

dτ
= a(γ − ux) cos(t − z) (3.10)

duz

dτ
= 0 (3.11)

We immediately see from the first of these equations that there is a conserved quantity of the

motion:

Z = γ − ux

Using this property and changing the variable to the dimensionless phase φ = t − z we have

dφ

dτ
= γ − ux = Z (3.12)

and the equations of motion become:

duy

dφ
= a cos φ (3.13)

dγ

dφ
=

dux

dφ
=

a2

Z
cos φ sin φ (3.14)

duz

dφ
= 0 (3.15)

The solution to the above equations, for the initial condition (γ0, ux0, uy0, uz0) = (1, 0, 0, 0),

φ0 = 0, i.e. a particle at rest at the origin of space and time, is

γ = 1 +
a2 sin2 φ

2
(3.16)

ux =
a2 sin2 φ

2
(3.17)

uy = a sin φ (3.18)

uz = 0 (3.19)

which imply that the constant Z is in this case equal to 1. This solution is periodic in φ with

period 2π. It consists of a center-of-momentum motion with a constant velocity and the well

known ”figure-of-8” motion in the center-of-momentum frame as seen in figure 3.1. The temporal
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Figure 3.2: Particle in a strong wave.
The trajectory of a particle in a strong, linearly polarized vacuum wave, consists of a center of
momentum motion, shown left, which is a figure-of-eight motion, plus a uniform translation of
the center-of-momentum frame. The uniform translation will generally also include a drift which
is perpendicular to the propagation direction of the wave (not shown here).

period can be shown to be [50]:

T = 2π

(

1 +
a2

4

)

(3.20)

while the corresponding change in x in this amount of time is

xT = 2π
a2

4
(3.21)

Thus the mean recoil velocity in the wave direction is the ratio of these two quantities:

〈vx〉 =
a2

a2 + 4
c (3.22)

and for a ≫ 1 it is very close to the speed of light. We can define a center-of-momentum Lorentz

factor which corresponds to this velocity as

γcom =
1

√

1 − v2
x/c2

∼ a (3.23)

For a ≫ 1 the center-of-momentum frame is moving with a Lorentz factor comparable to the

strength parameter of the wave in the propagation direction of the wave. Qualitatively this can

be understood as following: since initially v ‖ E and the fields of a vacuum wave are perpen-

dicular to the direction of motion, the initial v × B acceleration is in the direction of motion.

The particle trajectory is continuously bent by the interplay of the E and v × B forces during

a half-period of the wave in such a way as to induce the mentioned center-of-momentum drift.

It is straightforward to show that, for a particle with initial Lorentz factor γ0 ≫ a which

propagates against the harmonic vacuum wave, the center-of-momentum Lorentz factor is re-

duced to the value γ ∼ γ0/a [52]. Thus particles picked up by the wave will be accelerated to

γcom ∼ a, while the center-of-momentum drift of high energy particles propagating against the

wave will decelerate, although the particles themselves still gain energy.
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Figure 3.3: Forces acting on a
particle in a strong linearly po-
larized vacuum wave.
The forces acting initially on a par-
ticle in the field of a strong vacuum
wave: the combination of the E and
v × B forces is responsible for the
drift in the wave direction.

This is why particles interacting with strong electromagnetic waves recoil in the propagation

direction of the wave. There is generally also a perpendicular drift which depends on the initial

conditions.

The strength parameter from a quantum mechanical point of view, represents the work done

by the field on the particle in one Compton wavelength eE~/mc divided by the energy quantum

of the wave ~ω. The obvious implication of this is that with the strength parameter rises the

probability of the absorption of more than one beam photons by an electron interacting with

the wave. The transition from the linear to the non-linear regime happens, as in the classical

case, around the value a ∼ 1. In the limit a ≫ 1 the number of photons absorbed by an

electron during a scattering is large enough to justify a classical description of the wave-particle

interaction.

3.2 Radiation reaction: the Landau-Lifshitz approximation

In order to get to the formulae describing the classical motion of electrons in a strong wave, the

equations of motion were solved in the previous section ignoring the force of radiation reaction.

This force is denoted as gi and if it is taken into account, 3.1 becomes

m
dui

dτ
=

e

c
F ikuk + gi. (3.24)

Then gi is given by [48]:

gi =
2e2

3c3

(

d2ui

dτ2
− uiuk d2uk

dτ2

)

(3.25)

Using the approximation that the radiation reaction force is small compared to the acceleration

force, which is the first term on the right hand side in 3.25 we can use equation 3.24 without

the radiation reaction term in order to substitute for d2ui/dτ2 in 3.25. The result is

gi =
2e3

3mc3

∂F ik

∂xl
uku

l +
2e4

3m2c5
F ilFklu

k +
2e4

3m2c5
(Fklu

l)(F kmum)ui (3.26)

This is the Landau-Lifshitz approximation for the radiation reaction force [48].

For ultrarelativistic particles ui ≫ 1, so the third term in 3.26 dominates all others. In this
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case we can write gi as:

gi =
2e4

3m2c5
(Fklu

l)(F kmum)ui = − 2e4

3m2c5
γ2 (E + β × B)2 ui (3.27)

We see that in the ultrarelativistic limit the radiation reaction force is opposite to the velocity

of the particle. The equations of motion can be then written as:

dui

dτ ′
= aF ikuk +

2

3
αfa

B0

Bcr
(F klul)(Fkju

j)ui (3.28)

where τ ′ = τω is the proper time normalized to the inverse of the wave’s frequency.

We now define the invariant parameter η which we have already met in the introduction in

the special case of an electron moving in a transverse electric field. In the general case it is given

by the expression:

η =
e~

m2c3

√

(Fµνuν)(Fµλuλ) (3.29)

η determines the importance of strong-field quantum effects. It expresses the work, in units of

mc2, performed by the external field over the Compton wavelength, in the particle’s rest system.

In other words, η is the ratio of the external field to the critical field in the particle’s rest frame.

If η ≪ 1 then strong-field quantum effects are negligible. As η approaches the value 1 for some

parts of the electron’s trajectory, then the probability of pair production either by the trident

process or by the emission of energetic photons and the process of single-photon pair production

becomes significant. With the help of η, gi can be expressed as

gi =
2

3
αf

m2c4

~
η2ui (3.30)

The Landau-Lifshitz prescription for the radiation reaction in a plane wave field is valid

if the first term dominates the second term in equation 3.24. Taking into account equation

3.30, this condition becomes αfη ≪ 1 (see also [48],[7]). Already at η ∼ 1, however, quantum

phenomena are apparent in the particle’s motion: the classical description of the trajectory is

not valid anymore. In this sense, the Landau-Lifshitz formula can be used whenever the classical

equations of motion are applicable to the interaction of a particle with a vacuum wave. This

is the regime we will be probing in the investigation of the motion of an electron in counter-

propagating laser beams: a ≫ 1 and η . 1.

The energy lost by an accelerated particle is determined by the term g0, which corresponds

to the equation showing the variation of the Lorentz factor. The emitted power is an invariant

and is given as
dE

dt
=

c2g0

γ
= −2e2

3c

duk

dτ

duk

dτ
(3.31)

If duk/dτ is given by the Landau-Lifshitz approximation, then the radiation calculated by 3.31

corresponds to the radiation power given by the well known Larmor formula [48].



3.3. PROCESSES IN STRONG STATIC FIELDS 29

3.3 Processes in strong static fields

The transition probabilities for various processes that an electron might undergo in the field of

a plane wave are functions of the two invariant parameters already mentioned in the previous

paragraphs, a and η. For arbitrary fields, the situation becomes more complicated. However,

there are two simplifications one can make:

The first simplification comes from the assumption of quasi-stationarity: if the coherence

time for an interaction is much shorter than the variation timescale of the field, then transition

probabilities for the processes in an arbitrary constant field can be used. The variation timescale

of the fields in laser beams is the inverse of the frequency 1/ω, and the coherence time is given

in the quantum regime by [76]:

tcoh ≃ Ecr

E0

~

mc2

It can be readily shown using this expression that the condition tcoh ≪ 1/ω is equivalent to

a ≫ 1, so that for the case of strong waves the quasi-stationarity condition holds and we can use

transition probabilities that are calculated for uniform, static fields [76]. It is interesting to note

that this coherence time coincides with the one calculated in the classical theory of radiation,

as the timescale of acceleration in a field of magnitude E0:

tcoh ≃ mc

eE0

(see equation 3.3).

The second simplification is that of weak fields: if the two invariants of the field

f =
|E2 − B2|

E2
cr

(3.32)

g =
|E · B|

E2
cr

(3.33)

satisfy the condition f, g ≪ 1, and if, moreover, Max(f, g) ≪ η2 then transition probabilities can

be calculated as if the process was taking place in a uniform, static field [76]. Since the fields

we will be discussing are in every case no greater than 10−3Ecr, we will consider that the weak

field approximation holds in our calculations. In a plane vacuum wave f = 0 and g = 0 so the

weak field approximation always holds.

In the following we give the expressions for synchrotron radiation and pair production, as cal-

culated for static fields. These are the expressions we will be using in our following calculations,

where the quasi-stationarity and weak-field conditions hold.

3.3.1 Synchrotron radiation

The rate of emission of synchrotron (or magnetic bremsstrahlung) photons by electrons of energy

γmc2 which are moving perpendicularly to a magnetic field B is given, under the conditions

mentioned above, by the following expression, reviewed in [20]:

d2N

dχdt
=

√
3αf

mc2

h

η

γ

F (χ, η)

χ
(3.34)
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where the synchrotron emissivity is given by the expression:

F (χ, η) =
2
√

3

π

(

2χ

3η2

)2

M(χ, η) (3.35)

M(χ, η) = Mi(χ, η)Ji(χ, η) (3.36)

and summation is over i = 1, 3. The functions Mi, Ji are given in Appendix A. In this expression

the parameter χ appears, which is analogous to η, but refers to an emitted photon instead of

the accelerated electron:

χ =
e~

2m3c4
|F ijkj | (3.37)

where kj is the four-momentum vector of the emitted photon. There is a difference in convention

for χ with respect to η, which consists in the factor 2 that appears in the denominator.

If the photon emitted has energy much lower than the electron energy, hν ≪ γmc2, then the

above expression can be approximated by

F (χ, η) =

(

1 − 2χ

η

)

κ(2ζ) (3.38)

where

κ(z) = z

∫ ∞

z
dxK5/3(x) (3.39)

where K5/3(x) is a modified Bessel function, and κ(z) is familiar from the classical synchrotron

emissivity:

Fcl(χ, η) = κ(2ζ) (3.40)

The argument 2ζ in the above expressions becomes, in the classical limit

2ζ ≃ 4χ

3η2
=

ν

νcr

where

νcr =
3

2
γmc2 B

Bcr

is the classical critical emission frequency which appears in Fcl. We see, therefore, that the

classical and quantum mechanical expressions in the limit 2χ/η → 0 are identical.

However, when hν is comparable to γmc2, which means that the photon energy can be

comparable to the electron’s energy, the two emissivities are not similar anymore. This comes

from the fact that the electron cannot emit radiation of energy higher than its own, thus giving

rise to a cutoff at χ = η/2, i.e. when hν = γmc2. This difference becomes apparent for η & 0.1

and we show it in figure 3.3.1 for two values of η.

The cutoff in the quantum synchrotron emissivity has as a consequence that the Lorentz

invariant power emitted by the particle is reduced with respect to the classical case. This can

be seen in figure 3.3.1 as a reduction of the area below the emissivity curve for the quantum

synchrotron case. The power emitted then, is

dE

dt
=

2

3
αfη2 m2c4

~
g(η) (3.41)
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Figure 3.4: Synchrotron emissivity in the classical and quantum mechanical case.
The classical synchrotron emissivity is plotted in blue and the quantum mechanical formula is
plotted in red for the two cases η = 0.1 and η = 0.9. The lines on the left correspond to the
value η = 0.1 while the ones on the right to η = 0.9. For the curves on the right the difference
between the two formulae is larger and corresponds to the fact that the energy of the emitted
photon cannot exceed the energy of the emitting electron. This is why the quantum mechanical
emissivity (red line) falls to the value of zero above χ = 0.5.

where

g(η) =
3
√

3

2πη2

∫ ∞

0
F (η, χ)dχ (3.42)

In the classical case the power is given by 3.41 with g(η) = 1. For small η the function g(η) can

be approximated by

g(η) ≃ 1 − 55
√

3

16
η (3.43)

3.3.2 Pair production in strong static fields

There are two processes which are relevant for pair production in the context of the interaction of

particles with vacuum waves. The first is trident pair production, which involves intermediate

virtual photons, and the second is pair production by the real synchrotron photons that are

emitted by the electron in the field of the laser beams, according to the formulae described

above. We give the pair production rates for these processes immediately below.

Trident pair production

The trident pair production rate for an electron of energy γmc2 is given by Erber [20]:

dNtr

dτ
= 0.64

mc2

h
α2

fηΩ̂(η) (3.44)
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Figure 3.5: The function T±(χ) and its approximations for χ ≪ 1 (gray), χ ≫ 1(red).

where Ntr denotes the number of pairs produced. Here we give the invariant rate per proper

time. The function Ω̂ is given in Appendix A, and for small η can be approximated as

Ω̂(η) =
π5/2

16
(3η)1/4 exp

(

− 8√
3η

)

(3.45)

Single photon pair production

Energetic photons emitted by the accelerated particles in the field of a laser can lead to pair

production. The attenuation coefficient is a function of the dimensionless photon energy χ and

the photon energy hν and is given by Erber [20] as

dτν

dt
=

αf

λc

mc2

hν
χT±(χ) (3.46)

where τν is the optical depth of photons of energy hν. The function T±(χ) is given approximately

as

T±(χ) ≃ 0.16
1

χ
K2

1/3

(

2

3χ

)

(3.47)

where K1/3(x) is the modified Bessel function of the second kind.

In the limits χ ≪ 1 and χ ≫ 1 we have

T±(χ ≪ 1) ≃ 0.46 exp

(

− 4

3χ

)

(3.48)

T±(χ ≫ 1) ≃ 0.6χ−1/3 (3.49)

The maximum of the attenuation coefficient 3.46 with respect to the photon energy is at the

value χ ∼ 6.



Chapter 4

Pair production in laser experiments

4.1 Pair production techniques

In the past few years, there have been reports of pair production in several experiments using

laser beams. The idea behind these experiments is to use laser beams either as targets for

relativistic electrons, or as the means to accelerate electrons.

The most well-known example of the first case is an experiment performed in the Stanford

Linear Accelerator Center, where 46.6GeV and 49.9GeV electron beams from the linear acceler-

ator were fired against an infrared and a green laser beam, of respective wavelengths 1053 and

527 nm [11]. In this experiment two strong-field processes were observed: non-linear Compton

scattering, and multi-photon Breit-Wheeler pair production.

These two processes have been introduced in the previous chapter, where we were concerned

with their mathematical formulation in the limit of large strength parameter, where the trajec-

tory of a particle in an external wave field can be treated classically, if η . 1. However, in

the SLAC experiment, the intensity of the beam was not high enough to achieve a ≫ 1. The

strength parameter, using the definition involving the root mean square field

a =
eErms

mcω
(4.1)

was only just comparable to unity, in the transition regime between weak and strong waves.

For a ∼ 1 only a few beam photons are participating in each process. Non-linear Thomson

scattering, in this case, refers to the scattering of a small number n of laser photons (symbolized

as ω, which is the laser frequency) by a relativistic electron to produce a high energy photon

(denoted as γ):

e + nω ⇒ e′ + γ (4.2)

Multi-photon Breit-Wheeler pair production is the process, in which the high-energy photon

previously emitted by the process of non-linear Compton scattering, interacts with more than

one low-energy beam photons to produce an electron-positron pair:

γ + n′ω ⇒ e+e− (4.3)

The strength parameter achieved in the SLAC experiment was a ≃ 0.4 corresponding to

33
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Figure 4.1: Schematic representation of the SLAC experiment.
A high intensity laser beam is fired into an electron beam from a linear accelerator. High energy
photons scattered by the non-linear Thomson mechanism are observed downstream of the particle
beam, while positrons created by the non-linear Breit-Wheeler process are deflected by magnets
and measured in the calorimeter PCAL. The figure is taken from [11].

peak laser intensities in the vicinity of 1018Wcm−2. It was calculated that on average n = 1.5

laser photons were scattered in process 4.2 and n′ = 4.7 were absorbed in process 4.3 to produce

e+ − e− pairs. In this experiment non-linear QED phenomena in vacuum were observed for the

first time.

Another way to produce pairs is to use the laser not as a target but as an accelerator. This

is based on the fact that a particle interacting with a strong intensity laser beam recoils in

the direction of the beam, as explained in Chapter 3. When the laser is focused on a solid

target of large atomic weight electrons from the surface of the target are accelerated and radiate

bremsstrahlung photons in the field of the heavy nuclei. These photons in their turn can produce

pairs in the electrostatic field of the nuclei (Bethe-Heitler process), while the electrons themselves

produce pairs via the trident process. This way pair cascades are initiated which result in the

production of a substantial number of positrons.

In one such experiment a short-pulse laser beam of intensity ∼ 1020Wcm−2 was used to

initiate cascades in an Au (gold) target [12]. The positron density achieved was estimated to be

of the order of magnitude 1016cm−3 inside the target, and the positrons achieved kinetic energies

up to 50MeV. A strong anisotropy in the angular distribution of the emerging positrons was

observed, with the largest numbers observed at the rear of the target. This was considered to

be an indication of jet-like expulsion of positrons from the target. A schematic representation

of the setup of the experiment is shown in figure 4.2.

A third mechanism which, however, cannot be tested in the laboratory yet, is pair production

out of the vacuum, as predicted by Schwinger [78]. While this process cannot operate in a single

beam because of the violation of momentum conservation, it can operate in counter-propagating

beams of intensity ∼ 1029Wcm−2 which corresponds to the critical Schwinger field, Ecr =

1.3×1018Vm−1. Such intensities are unattainable with today’s means or in the foreseeable future.

For this reason we will focus on the mechanisms of pair production mediated by relativistic

electrons, as described above.



4.2. COUNTERPROPAGATING BEAMS 35

Figure 4.2: Positron production by interaction of a high intensity laser with a heavy
target.
The figure on the left is taken from [12]. It shows the configuration of the experiment in which
pair production was achieved by firing a laser to a gold target. On the right a sketch of the
mechanism of trident pair production in the field of a nucleus is shown, taken from [80].

4.2 Counterpropagating beams

An electron which is picked up by a laser beam is accelerated in the direction of propagation

of the beam to a center-of-momentum Lorentz factor that is of the order of magnitude of the

strength parameter: γcom ∼ a. These electrons acquire large energies. Nevertheless, because of

this recoil the fields of the beam are weakened in the electron center of momentum frame, and

the wave itself appears redshifted. The field in the electron center of momentum (COM) frame

is of the order of magnitude E′ ∼ E/a.

Because of this, the parameter η which is crucial for pair-production becomes η ∼ aa−1E/Ecr =

E/Ecr for a particle in a single laser beam. This is unfavourable for pair production: the mo-

mentum gain from the particle recoil in the laser beam is counteracted by the reduction of the

field in the COM frame. A configuration is needed, for which the product of the Lorentz factor

and the perpendicular field in the COM frame becomes comparable to the critical field.

In the experiment where a laser beam was fired at a solid target, the laser was used as an

accelerator of electrons, while the heavy nuclei of the target provided the strong electrostatic field

in which pair production could occur. In the SLAC experiment, the electrons were accelerated

by a linear accelerator and fired against a laser beam. The laser in this case was used as a target,

and its field appeared boosted in the electron COM frame, creating conditions favourable for

pair production.

However, a potentially more efficiently and easily achievable configuration is to use laser

beams of the same intensity, and thus of the same strength parameter, both as accelerators and

targets as proposed in [7]. In this configuration because of the equal strength of the counter-

propagating waves, the COM frame coincides with the laboratory, and the perpendicular field

in the electron rest f frame becomes of the order of magnitude of the laboratory field times the

center-of-momentum Lorentz factor of the particle: η ∼ γb, where b = B0/Bcr and B0 is the field

amplitude in the laser beam. This way, for beams of a ≫ 1, even with fields of amplitude much

lower than the critical value Ecr, it is possible for η to approach unity, giving rise to observable

strong field phenomena.
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Figure 4.3: Contours traced by the tips of the electric and magnetic field vectors in
one 2π rotation.
In the case of circularly polarized beams, with one being left-handed and the other right-handed,
the result is a sinusoidal wave that rotates around the axis of the beams. The field amplitude is
constant in every point along the beam and rotates in one laser period. The amplitude at each
point ranges from 0 to 2E0, with E0 the single beam amplitude.

4.2.1 The paradigm of circular polarization

Bell and Kirk [7] estimated pair production initiated by electrons in counter-propagating beams

using as an example the trajectories of particles in the B−nodes of two counter-propagating

circularly polarized beams of equal frequency and intensity. The beams were assumed to be

monochromatic, infinitely long plane waves and to have polarizations of opposite handedness,

so that in the magnetic field node the electric field has constant magnitude equal to 2E0, where

E0 is the amplitude of each beam, and rotates by 2π in one laser period. The contours of the

standing wave are seen in figure 4.3.

The trajectories of electrons in the magnetic nodes are simple: the electric force is providing

the centripetal acceleration, and the particles perform circular motion around the node, with

a period of 2π/ω, where ω is the laser angular frequency. The radiation reaction force for

relativistic particles is, as has been discussed in the previous chapter, very nearly opposite to

the direction of motion, so the electric field is not perpendicular to the particle’s velocity: there

is a parallel component which exactly compensates the radiation reaction force, and it is the

perpendicular field that provides the centripetal acceleration. The particle’s Lorentz factor is

γ = a sin θ, where θ is the angle between the electric field and the particle’s velocity. In this case

a =
2E0e

mcω

where E0 is the field amplitude in each beam.

In [7] the criterion was set that the motion is radiation reaction dominated if θ < π/4. From

equation 3.28 it is seen that according to this criterion radiation reaction becomes important for
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Figure 4.4: Strength parameter lines on a wave amplitude-frequency plot.
The field is given in units of the critical field, b = B0/Bcr. The dashed red line θ = π/4
separates the regions of dominant and non-dominant radiation reaction. Roughly above the line
of constant η, η = 0.1 lies the region where strong field QED phenomena are expected. Next
generation lasers of wavelengths of the order ∼ 1µm and intensity 1023 − 1024Wcm−2 fall into
the region of strength parameter 102 − 104, and at the edge of the dominant radiation reaction
and strong field QED regions. The regions marked as AGN and PULSAR WINDS are drawn
taking into account the rotation frequency of the compact object (supermassive black hole and
pulsar, respectively) and a typical field value at the light cylinder of each object. The arrows then
show the direction of decrease in the strength parameter as one moves away from the compact
object towards regions of reduced field. The paradigm of circularly polarized counter-propagating
beams does not necessarily apply to the astrophysical objects: their presence on their diagram
serves the purpose of showing the strength parameters of waves associated with them.

αfγ2E/Ecr ∼ 1 or αfγ2b ∼ 1. This corresponds to

η ∼ 1

αfγ

Since the particle trajectories are identical to those when gyrating around magnetic field

lines, it is straightforward to calculate the peak frequency emitted according to the classical

synchrotron formula. The energy of the emitted photons corresponding to this frequency is [7]:

hνs = 0.29
3

2
γ2b sin θmc2 = 0.435ηγmc2

For the intensities that interest us, 1023 − 1024Wcm−2, η is less than unity and the emitted

photon energies are about one order of magnitude lower than the electron energy, justifying the

classical approach for the trajectory calculation. Bell and Kirk predicted that at the intensity
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1024Wcm−2 about one electron-positron pair would be created during one gyration of a particle

in the node of two counter-propagating lasers of wavelength 1µm. A cascade would then develop

which would feed on the lasers energy. The dominant process at these high intensities is pair

production via real synchrotron photons: the trident effect is more important at intensities

close to 1023Wcm−2, while pair production via real photon starts dominating already at 3 ×
1023Wcm−2 [7].

In figures 4.4 and 4.5 contours of constant γ, a and hνs are plotted, for a range of field

strengths b and angular frequencies Ω. The plots are made using the simple results from

the above calculations of particle motion and radiation in the B = 0 nodes of two counter-

propagating beams of opposite circular polarization. The position of next generation lasers of

intensity 1023 − 1024Wcm−2 is shown in the diagrams, along with the position of two astrophys-

ical sources which might be able to emit strong circularly polarized waves in vacuum: AGN

stands for Active Galactic Nuclei, in which case the source of the waves would be a rotating

supermassive black hole. In the case of pulsar winds, the source is a magnetized rotating neutron

star. For the astrophysical sources, Ω is the rotation frequency of the compact object, which

imposes the frequency of the emitted wave.

4.2.2 In search of more realistic beam configurations

The analysis of Bell and Kirk showed that electrons accelerated in the field of counter-propagating

laser beams of intensity 1023 − 1024Wcm−2 can initiate pair cascades which might be capable of

depleting the beams of their energy.

However the phenomena described in the previous paragraph are sensitive to the beam

geometry, and can only be significant at the rather limited area in the focus of the two counter-

propagating beams. Also, particles in vacuum waves generally drift in the perpendicular di-

rection to the wave propagation and might leave the region of strong field in the matter of

a few laser periods, or even a fraction of a period. The pulse trains are neither infinite, nor

monochromatic, but contain a certain spectrum of frequencies and have a finite duration. All

these characteristics of laser pulses should be taken into account in a more detailed calculation.

The most serious drawback of the two counter-propagating, circularly polarized beams con-

figuration, however, comes from the choice of polarization: trajectories directly at the nodes are

unstable, and particles beginning their motion anywhere but exactly on a magnetic field node

drift away from it and settle on the electric field node after some oscillations around it. The

number of pairs produced by these particles is quickly saturated, because the particles radiate

less and less until they come to rest at the electric node. This is one of the reasons that circular

polarization is not the most favourable for pair production.

In figures 4.6 and 4.7 this effect of saturation is shown.

In figure 4.6 the number of pairs as a function of intensity is shown, after 5 laser periods from

the beginning of motion. The particle is started from rest at three different points along the

beams: a magnetic node, at λ/5 and at λ/10 from the magnetic node, where λ is the wavelength

of the laser beams. The results have been calculated assuming that the beams are very long,

monochromatic plane waves of transverse radius R = λ. We can see that the farther the particle

is initially from the node, the fewer pairs are created through real photons at a given intensity.
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Figure 4.5: Emitted photon energy contours on a field amplitude-wave frequency
plot.
The blue lines indicate the peak photon energies emitted according to the classical synchrotron
formula. The region below a = 1 is shaded and corresponds to the weak waves. The dashed
lines are contours of the constant Lorentz factor of particles gyrating in the nodes of counter-
propagating circularly polarized vacuum waves. The regions denoted as AGN and PULSAR
WINDS have the same meaning as in figure 4.4. For the next generation lasers, the Lorentz
factors of electrons gyrating in the B-nodes is going to be of the order of magnitude 102 − 103.
The synchrotron photons emitted have energies in the range of MeV to GeV, and are energetic
enough to start pair cascades.

The number of pairs created through a real synchrotron photon versus time in units of

periods is shown in figure 4.7 for intensity 1024Wcm−2 for the same initial positions as those

used for figure 4.6. It is readily seen that away from the node the pair number is smaller and

saturates within a fraction of a period, close to the node it saturates somewhat later, but at the

node it keeps rising linearly with time. All trajectories initiated away from the B = 0 node are

going to drift away from it and towards the E = 0 node (see also [44]).

The problems of beam geometry and perpendicular drift are similar for all beam polariza-

tions, but the beam polarizations can be changed. Linear polarization is easier to create in

the laboratory, and the setup of counter- propagating beams can be achieved, for example, by

reflecting a laser pulse off a solid target. In this case the reflected beam is going to have the

same polarization as the incoming one. Therefore, in the following chapter we will investigate

electron trajectories and pair production in several configurations of counter-propagating beams

of linear polarization. The results will then be used to predict the possibility of development of

pair cascades using future laser facilities in the intensity range 1023 − 1024Wcm−2.
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Figure 4.6: Pair production at and away from an B = 0 node as a function of beam
intensity.
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Figure 4.7: Pair production at and away from an B = 0 node as a function of time
for intensity 1024Wcm−2.



Chapter 5

Calculation of pair production

The strength parameter of a laser pulse, expressed as a function of its intensity and its wavelength,

was given in equation 1.5. For beams of wavelength ∼ 1µm and intensity 0.1 < I24 < 1 with I24

the intensity in units 1024Wcm−2 the quasi-stationarity condition a ≫ 1 which we introduced in

Chapter 3 is well satisfied. This means that one can use the transition probabilities calculated

for a particle in a static field, as described in the same chapter. Also the largest value that the

invariants f , g can assume in counter-propagating beams of such intensities is of the order of

magnitude ∼ 10−5I24. This means that the weak field approximation also holds, so that we can

use the formulae of Chapter 2 for the calculation of radiation and pair production. The motion

of an electron in the field of the lasers is described classically, something that is a reasonably

good approximation as long as the parameter η that determines strong-field quantum effects is

not too large, η . 1.

It is true that in our calculation there exist points in space and time where the electric and

magnetic fields are simultaneously zero. At those points, the coherence time, defined in Chapter

3, is not small anymore, however processes relevant to the phenomena we are investigating

(radiation of high energy photons and pair production) are suppressed because of the weakness

of the fields. This is why the quasi-stationarity approximation is still generally valid for counter-

propagating vacuum waves of large strength parameter. A similar argument applies to the

largeness of η2 as compared to the invariants f and g: in the points where η is small, pair

production is suppressed anyway: strong-field QED effects start appearing at η ∼ 0.1. For these

values the weak-field condition always holds.

In the following sections, we will describe the numerical calculation of electron trajectories

and the possibility of pair production caused by the radiated synchrotron photons in the field

of two counter-propagating laser beams. The results of this work were published in Kirk et al.

2009 [44].

5.1 Set-up of the model

In order to achieve meaningful results, realistic models of laser beams have to be used in the

numerical calculations. We improve on the calculations of Bell and Kirk 2008, [7], by examining

three different possible experimental configurations.

The first two involve counter-propagating laser beams of frequency ω, in the first case with

41



42 CHAPTER 5. CALCULATION OF PAIR PRODUCTION

-50 0 50

-0.2

-0.1

0.0

0.1

0.2

Pulse Shapes

Figure 5.1: Examples of pulses.
On the left an example is shown of a harmonic
wave folded with an envelope function, equation
5.2. On the right a pulse is shown which is sim-
ulating a laser beam being reflected off a solid
target, equation 5.1, also folded with the same
envelope function. The two pulses are not plot-
ted to scale.

parallel linear polarizations and in the second with crossed polarizations, i.e. the polarization

vectors are in right angles to each other. In the third case the polarizations are again aligned,

but one of the pulses contains higher harmonics, in order to simulate a pulse that has been

reflected off a solid target. The Fourier series representing this wave is [4]:

E = ê
2

π

√√
3

2
f(φ)

(

nmax
∑

n=0

sin[(2n + 1)φ]

2n + 1
− 2 cos[(2n + 1)φ]

π(2n + 1)2

)

(5.1)

where φ is the phase of the wave and ê is a unit vector in the direction of polarization of the

wave. We continue to normalize space to c/ω and time to 1/ω, with ω the frequency of the

monochromatic wave that represents the beam, so that phase becomes φ+ = t − z for a wave

propagating in the positive z−direction and φ− = z + t for the counter-propagating pulse.

To take into account the finite duration of the pulses, we fold the monochromatic wave or,

in the reflected wave case, the Fourier series, with an envelope function:

f(φ) =
1

4

[

1 ∓ tanh

(

φ

∆

)] [

1 ± tanh

(

φ ± L

∆

)]

(5.2)

where φ is the phase of a pulse, L is the length of the pulse in phase units, and ∆ is the thickness

of the pulse edges, which shows how sharp the decrease is. In 5.2 the upper signs refer to the

pulse propagating in the positive direction, while the lower signs refer to the one propagating in

the negative direction. The reflected wave is, of course, also folded with the envelope function.

The pulses have also a finite transverse dimension. It is important to take this into account,

since electrons accelerated by vacuum waves drift perpendicularly to the propagation direction

of the beam, with the result that they might leave the pulse before they reach the interaction

region of the two pulses where radiation and pair production should take place. We do not take

into account the transverse decrease in intensity, however we assume a finite radius of the beam

within which the intensity is constant: this radius is set to be equal to one wavelength, and

trajectories of particles that drift out of a cylinder of this radius are terminated.

The electron trajectories are started from rest and are numerically calculated using equation

3.24 with radiation reaction given by the Landau-Lifshitz prescription 3.26. The parameter η

is calculated in every step, and the radiation reaction terms are multiplied by the function g(η)

given by 3.42 in order to take into account the reduction in emitted power in the strong field

regime.
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Figure 5.2: Probability of pair production for aligned polarizations.
The two pulses have aligned polarizations and the same shape. Plotted is the logarithm of the
probability that a certain number of pairs per electron is going to be produced for the initial
conditions described in the text.

When η is close to 1, the energy spread of the electrons becomes wider, leading to the

possibility of emission of photons of higher energies. This is an effect of the quantum mechanical

nature of radiation: the emission is no more continuous but episodic, and stragglers could emit

a photon of large energy, leading to a higher possibility of pair production, as investigated by

Shen and White [81]. However in this calculation we don’t take such effects of discreteness into

account.

5.1.1 Calculation of pair production

We have calculated the amount of pairs created by both the process of trident pair production,

and the process of pair production via real photons, as described in Chapter 2. Trident pair

production is directly calculated by equation 3.44. For the pair production by real photons, we

have to make use of the optical depth which is given by equation 3.46:

τ(ν) =
αf

λc

mc2

hν

∫ tesc

t0

dtχ(t)T±(χ(t)) (5.3)

where the integration has to take place over the straight trajectory of the photon from the

point of its emission t0 at the point (x0, y0, z0) to its leaving the beam at time tesc. Along this

trajectory χ changes, because although the frequency of the photon ν remains constant, the

perpendicular field that goes into the calculation of χ is a function of space and time:

χ(t) =
hν

2mc2

| E⊥ + k × B |
Ecr

(5.4)
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where k is the unit vector along the photon’s momentum. This is found assuming that in every

point in space and time, photons are emitted parallel to the instantaneous direction of motion

of the emitting electron. The number of pairs which are produced by synchrotron photons can

then be calculated by integrating the synchrotron photon spectrum over the range of photon

energies from χ = 0 to the maximum value of χ = η/2, weighted by the probability of the

photon being absorbed and creating a pair, which is 1 − e−τ :

dNr

dt
=

∫ η/2

0
dχ

dN

dχdt

(

1 − e−τ
)

(5.5)

Pair production stops when the photons leave the cylindrical region of radius λ since we assume

that the fields vanish there.

In the above calculation the quantum synchrotron spectrum was used, and the radiation

reaction was folded with the function g(η), in order to normalize the energy losses to the quantum

formula.

5.2 Computation and results

The equations of motion of the electrons, 3.24, along with the equations governing pair produc-

tion by the trident process and by real photons, were integrated numerically using the Bulirsch-

Stoer algorithm [74]. The interaction point of the pulses, defined as the point in space where

the two pulses completely overlap, if they have the same shape and polarization was set to be

z = 0. The length of the pulses was set to be L = 10π and the thickness of the edge of the

pulses was ∆ = 10π/3, with L and ∆ in phase units.

The pulses were started far away from the interaction region, and the electrons were started

from rest, in a region between the pulses. Because of their perpendicular drift, only electrons

that start off near the interaction region, where strong field effects are important, have a chance

of reaching it. This is why we started the electrons within an interval of a few wavelengths

around the interaction region.

In order to get results referring to the probability of pair production in counter-propagating

beams, we started 105 particles in the region between the pulses, with random initial positions.

The coordinates x and y were randomly chosen within a circle of radius one wavelength, x2+y2 =

λ2, while the coordinate along the propagation direction of the laser was chosen randomly in

the interval −8λ < z < 0. Also, the single beam intensity was chosen randomly in the interval

1023 − 1024Wcm−2. The variation in intensity will give information about the critical intensity,

where a cascade is likely to be initiated by particles in the beams.

In the figures 5.2, 5.3, 5.4 the results of our calculation can be seen. In these figures we

show in colour-coded plots the logarithm of the probability that a certain amount of pairs will

be created for a given logarithmic intensity interval, for the three beam configurations that we

have chosen. This probability is calculated by dividing the number of trajectories at a certain

interval of beam intensity that have given a certain number of pairs by the total number of

trajectories in the given intensity interval.

In the case of aligned polarizations and of the reflected beam, roughly 83% of all particles

leave the laser volume without having triggered pair production. In the case of the crossed
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Figure 5.3: Probability of pair production for crossed polarizations.

polarization this percentage is close to 75%. It can be seen from figures 5.2,5.4 and 5.3 that the

probability for the creation of one pair becomes substantial only for the highest intensities.

At I24 ∼ 0.86 for the case of aligned linear polarization, a threshold is reached: the probability

for the creation of one pair per electron is ∼ 0.3. This means that for every 10 electrons initiated

in a small region of the beam around the interaction point, three are going to produce electron-

positron pairs, i.e a number of pairs is expected to be produced of the order of magnitude of

the initial number of pairs in the beam. Moreover, some of these secondary particles, which are

produced in a strong field region, might produce pairs themselves. This is why it is reasonable

to assume that for intensities larger than this value, the phenomenon is going to have as a

result the production of more pairs than the ones injected in the laser beams and lead to a pair

avalanche at the focus of the beams, fed by the beams’ energy. For the case of the interaction

of a laser with a beam reflected by a solid target, the probability of the production of one pair

by one electron becomes unity at intensity 1024Wcm−2.

Why we expect cascading

Although we haven’t conducted a calculation of cascading in the laser beams, it is quite likely

that the phenomenon of pair production is going to be multiplied, possibly until the beams’

energy is depleted. Pair production happens in the interaction region of the beams. The pairs

that are produced are already in a region of high field intensity, and they are going to be

accelerated within a fraction of the laser’s period. Since the interaction of the beams lasts for

several periods, there is enough time for the process to be repeated several times: the secondary

particles will be accelerated themselves, and lead to pair creation of their own. The process will

continue until the pulses have separated.

For the higher intensities, close to 1024Wcm−2, the probability of pair production by an
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Linear polarisation, reflected wave
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Figure 5.4: Probability of pair production for aligned polarizations, with one beam
reflected off a solid target.

electron approaches unity. This can lead to exponentiation of the process, since every particle

now produced is going to pair-produce itself. The cascading process feeds on the beams’ energy

and might deplete it, if intensities are high enough for rapid pair production to occur. A

calculation of the critical intensity for the development of a QED cascade was undertaken in

[21], which, however, gave a threshold of 1025Wcm−2, because the first pair was assumed to be

created by the counter-propagating laser beams in vacuum, and not in a tenuous plasma, as in

our calculation.

In figure 5.2 we have plotted the points where the values η = 0.1 and η = 1 are first achieved

during an electron’s trajectory in a space-time (z-t) diagram of the interaction of the laser pulses.

The plot was made for 1000 electrons with random initial conditions and intensities as described

above. From this we can reach the conclusion that, since pair production happens where η

approaches unity, then it is likely that pair production happens at the interaction region of the

pulses, thus leading to cascades as described above.

5.2.1 Linear vs circular polarization

In order to further justify the choice of linear polarization, we have conducted the same calcu-

lation for two different configurations of circularly polarized beams.

The first corresponds to the configuration of Bell and Kirk [7], where the polarizations of

the beams are of the opposite sense, so that nodes of the electric and magnetic field would

occur in an infinitely long standing wave. The expressions for the circularly polarized beams

were folded with the same envelope functions, of the same duration and cutoff as in the linearly

polarized case, and again it was assumed that the transverse radius of the beam is equal to

one wavelength. The result of this calculation can be seen in figure 5.7. It is obvious that pair
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Figure 5.5: Spacetime plot showing the points where η = 0.1 and η = 1 are achieved.
The lines forming the ”X”-shape at the left are the positions of the front edges of the pulses,
while the corresponding lines to the right are the rear edges of the pulses. Trajectories have
been calculated for 1000 particles, with random initial conditions and intensities as described
in the text. Red dots signify the points where η exceeds 0.1 for the first time in a trajectory.
This happens in most cases around the intersection of the front ends of the pulses. Green dots
signify the points where η = 1 for the first time. It can be seen that the red points are more
numerous, while the green ones are in the middle of the pulse intersection area. Thus pairs are
likely to be produced at the beginning or during the interaction of the pulses, in a region of strong
field, leading in the rapid acceleration of the secondary particles, and the development of a pair
cascade.

creation is suppressed. The overwhelming majority of trajectories give no pairs at all.

The second configuration we tried is the one of two counter-propagating, circularly polarized

beams, with the same sense of polarization, so that there are no nodes in the wave resulting from

their superposition. This wave can be seen in figure 5.2. Again the same envelope function was

used and the same transverse dimension was assumed. The results of the computation for this

case can be seen in figure 5.8. It is obvious that the absence of nodes is of advantage, however

pair production is still suppressed by two orders of magnitudes in the high intensity edge, and

by much more at lower intensities.

The reason for the higher pair production in the linearly polarized beams is the fundamental

difference between particle trajectories in strong linearly polarized waves and in strong circularly

polarized waves: in the center of momentum frame in the first instance the particles undergo an

oscillation both in the transverse direction and in the direction of wave propagation. However

in a strong circularly polarized wave the center of momentum motion is circular, transverse to

the direction of propagation of the wave. In the linear polarized beams, then, the particle is
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Figure 5.6: Circular polarizations, no nodes.
In the case where the two beams have the same sense
of polarization, at every point in space the vector of
the electric (magnetic) field has a fixed direction and
oscillates between the values −2E0 and 2E0, where
E0 is the field amplitude in the single beam. On the
left the contour is shown which is created by the field
vectors at t0. The whole spiral structure is oscillating
in a harmonic way, i.e. the field has always the same
magnitude everywhere at a given point in time. This
plot corresponds to infinitely long pulses. In our cal-
culation the same envelope function was used as in
the case of linear polarization.

capable of excursions along the beams, which contribute substantially to its probing regions of

intense field.

This can be readily seen in the figure 5.3, where we compare two trajectories that were

calculated for identical beam intensities and initial conditions, in the case of linear aligned

polarizations and in the case of circular polarizations of opposite handedness. The trajectory

of the particle in the linearly polarized beam is more ”angular”, with more abrupt longitudinal

excursions, and these correspond to increases in η. The trajectory of the particle in the circularly

polarized beams, on the contrary, is much smoother, and the value of η remains one order of

magnitude lower throughout the calculation.

5.3 Limitations according to our model - work for the future

We have conducted the above calculations using the assumption of continuous energy emission

by the electrons, which is given by the formula of quantum synchrotron radiation. This way

we have taken into account one of the effects that appear in the quantum mechanical regime,

which is the reduction in total power of the emitted radiation, because of the cutoff at energy

approaching the electron’s own energy.

However, there is a second effect that we haven’t included in this treatment: this is the

episodic emission of photons. The stochastic nature of the photon emission leads to leaps in the

electron energy, which have as a result the broadening of the electron spectrum, as predicted

by Shen and White [81]. It has been recently shown using a Monte Carlo approach (Duclous et

al. 2010, [19]) that this spread in energy, which is known as straggling, leads to increased pair

production for given initial conditions and laser intensity in the case of circular polarizations with

B = 0 nodes. This happens because straggling causes occasional excursions of the η parameter,

which leads to increased energy of the emitted photons and as a result boosts pair production.

Straggling also slows the convergence of the electrons towards the E = 0 nodes, making them

stay for longer times in regions of stronger field where pair production can occur.

A full numerical treatment of the problem would involve larger scale simulations following

the initiation of a cascade in the focus of the beams, possibly combining a Monte Carlo algorithm
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Figure 5.7: Probability of pair production for circular polarization, for beams of
opposite handedness.

with a Particle In Cell (PIC) simulation. It remains to be seen if such a simulation will confirm

our predictions, and if pair cascades are going to be observed in the next few years at the new

ultra-high intensity laser facilities currently under construction.
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Circular polarization - no nodes
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Figure 5.8: Probability of pair production for circular polarization, for beams of the
same handedness.
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Figure 5.9: Comparison of trajectories for linear and circular polarizations.
Two trajectories with identical initial conditions, and identical single beam intensities are shown.
For the linearly polarized case, the parameter η reaches the value η = 1 for parts of the trajectory,
thereby giving a finite probability of pair creation. For the circular polarization case, η stays at
least one order of magnitude lower. In the first panel the coordinate z along the beam direction is
shown for the two trajectories. It can be seen that in the linear polarization case, the excursions
in z are more prominent, and they are connected with increases in η.
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Non-linear waves in pulsar winds

51





Chapter 6

Pulsars and their winds

The most natural environment to study large-amplitude waves in astrophysics are pulsars,

rapidly rotating neutron stars which have their rotational axis misaligned to the magnetic axis.

From their serendipitous discovery more than forty years ago until today they have been the

object of observation in all bands of the electromagnetic spectrum and the cause of many dis-

coveries in astrophysics. The most famous of these objects, the Crab Pulsar, along with the

nebula surrounding it, has been exhaustively studied, however has yet to reveal all its secrets,

as we will discuss below.

6.1 Introduction

In 1967, a new kind of radio source was observed using a new large radio telescope at the

Mullard Radio Astronomy Observatory. The discovery was announced in a 1968 Nature paper

[37], where it was proposed that the extreme regularity of the pulses of the new source might be

attributed to the radial pulsations of a white dwarf or a neutron star. Because of this regularity,

the sources were named pulsars. In the same year it was argued that a rotational origin of

the pulses is much more likely ([69],[25]). Very soon observations of pulsars in association with

the Vela and Crab supernova remnants, as well as theoretical arguments, lead to an increasing

acceptance of the idea that pulsars were to be identified with rotating magnetized neutron stars

([89],[49],[84]).

Ostriker and Gunn [72] subsequently showed that if the magnetic field of the pulsar is

approximated as a dipole and the magnetic and rotational axes are misaligned, then the observed

pulsar slowdown as expressed by the time derivative of the pulsar period Ṗ , is consistent with the

losses by magnetic dipole radiation. Furthermore, this luminosity was found to be of the same

order of magnitude of the synchrotron luminosity in the nebula in the case of the Crab pulsar.

Therefore the energy lost by the pulsar as measured by its rotational slowdown is transferred to

the nebula by some kind of outflow. The model of the pulsar as a rotating neutron star with its

magnetic moment at an angle to its rotational axes has since then prevailed.

The first ones to realize that pulsars would be the source of large amplitude electromagnetic

waves were Gunn and Ostriker, who in a seminal paper [29] argued that rotating magnetized

neutron stars in vacuum would emit electromagnetic waves of strength parameter a ≫ 1 close to

the star, and that particles could be accelerated by these waves to relativistic energies. However,

53
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it was soon realized [26] that pulsars can never be in vacuum: because of the pulsar’s rapid

rotation an electric field parallel to the magnetic field close to the pulsar surface arises, which

is strong enough to lift particles from the star’s surface into its magnetosphere, filling it with

charge. The number density of the charge carriers was calculated by the Goldreich and Julian

[26] to be:

nGJ =
| Ω ·B |

2πec
(6.1)

where Ω is the angular velocity expressing the star’s rotation and B the magnetic field.

Furthermore, pair cascades on the strong magnetic field close to the pulsar were predicted

(e.g.[13], [14],[77]), which would further contribute to the charge density surrounding the pulsar.

These cascades develop within the pulsar’s light cylinder, defined as the distance from the pulsar’s

equator, at which a corotating particle would reach the speed of light:

rLC =
c

Ω
(6.2)

where Ω is the pulsar’s rotational frequency. The cascades are initiated by electrons accelerated

along the curved magnetic field lines. These electrons emit high energy photons, which then can

pair produce on the neighbouring field lines. This way the pulsar’s magnetosphere was predicted

to fill with an electron-positron plasma. Thus the need for a magneto-hydrodynamic approach

of the pulsar system arose.

Rees and Gunn [75] gave a description of the generic pulsar outflow as a combination of a

relativistic magnetized wind and a wave modulated at the pulsar’s frequency. This outflow ends

at the termination shock, where the ram pressure of the wind equals the pressure in the nebula.

By this argument they estimated the location of the shock front in the Crab supernova remnant

to be at about 1/10 the radius of the nebula, or about 3× 1017cm ≃ 109rLC from the pulsar. In

their model, the pulsar’s magnetic axis was not aligned with the rotational axis, so it is a rather

general description of the outflow.

The first exact solution for a magneto-hydrodynamic wind arising from a rotating neutron

star was calculated by Michel [60]. His solution was considering the simple configuration of an

aligned rotator with a split monopole magnetic field. The two hemispheres of different polarity

in the neutron star wind in this solution are separated by a current sheet at the equator. The

existence of plasma in the star’s atmosphere plays a crucial role in the field configuration in the

wind. The plasma velocity cannot exceed that of light, so beyond the light cylinder the fluid

cannot rigidly corotate with the pulsar. The inertia of the plasma, then, exerts a drag on the

magnetic field lines beyond the light cylinder, causing them to bend backwards with respect to

the rotation, giving rise to an azimuthal field component Bφ.

Much later, Bogovalov [10] generalized this result for a misaligned rotator, again for a split

monopole configuration. Because of the misalignment of the axes, the equatorial current sheet

gets warped, creating an outflow which is the relativistic analogue to the solar wind with its spiral

structure. This pulsar wind is commonly referred to as the ”striped wind” [17]. The azimuthal

magnetic field component has a spiral form, as in the case of the aligned rotator, and in large

distances dominates the field in the wind. The reason for this is magnetic flux conservation in

the rotating split monopole model. For the radial field component, flux conservation dictates
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Figure 6.1: Transition from the monopole solution to the striped wind.
From right to left: the magnetic monopole, the split monopole solution with a current sheet at
the equator, and the misaligned rotator with the warped current sheet, creating the striped wind.

that Br ∝ 1
r2 , for an azimuthal field however Bφ ∝ 1

r . The poloidal field in the wind Bp, which

is the combined radial and polar field is much smaller than the toroidal field at regions far from

the light cylinder [6]:

Bp ∼ Bφ

(rLC

r

)

Far away from the pulsar, then, the poloidal field is negligible in comparison to the azimuthal

component. The warped current sheet is generally assumed to be very thin in comparison to

the wind’s wavelength, something that is supported by MHD simulations [83]. According to an

argument put forward by Michel [62], the J × B force on the sheet particles tends to push the

sheets to a thinner shape. As a result of this the magnetic field between the sheets tends to a

constant value and the wave assumes the shape of a square wave rather than a sinusoidal one.

In the striped wind model, there is a region around the equator which contains magnetic field

of alternating polarity, which is carried outwards with the wind as a wave. The opening angle

of this region in latitude (measured from the equator) corresponds to the angle of misalignment

of the rotational and magnetic axes of the pulsar. The wind, as a result, is not spherically

symmetric, but propagates inside a finite solid angle around the equator, which we will denote

Ωw. Inside Ωw there are stripes of alternating magnetic polarity (see figure 6.1), while outside

the field has a constant sign. It is generally supposed that there are enough current carriers in

the wind for this outflow to be described magneto-hydrodynamically as an entropy wave. In this

case, a radial Lorentz boost with velocity equal to the phase velocity of this wave brings us to

a frame of reference where the plasma is at rest. In this frame the electric field is zero, and the

structure is one of a time-independent wave with no mean magnetic field value at the equator.

This structure has been found to exist in force-free simulations of oblique rotators [83].

However, the point of view of the pulsar wind as an ideal magneto-hydrodynamic outflow

has two significant drawbacks. The first of these was noted by Michel [61] and has to do with

the current starvation of the outflow. This can be illustrated using Ampere’s law in the pulsar
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Figure 6.2: The square wave form
of the wave.
The J × B force on the particles of
the current sheet push the wave into a
square wave form. The magnetic field
is essentially constant between current
sheets.

wind frame, where the striped pattern is stationary:

B′ = ∆′ 4π

c
eN ′v′θ (6.3)

where primed quantities are measured in the wind frame, B′ is the azimuthal field, N ′ is the

particle number density, ∆′ is the thickness of the current sheet and v′θ is the three-velocity

of the current sheet’s particles, which is assumed to be purely in the polar direction. In the

laboratory frame N = ΓN ′, B = ΓB′ and ∆ = ∆′/Γ so the above equation translates to:

Bφ =
4π

c
∆eNΓv′θ (6.4)

The current carriers density falls as the inverse square of the distance from the pulsar, while

the field falls as 1/r. Then for the above equation to hold in a wind of constant Γ, v′θ ∝ r has

to apply. However, v′θ is a three-velocity and is bounded upwards by the speed of light, so the

above equation will cease to hold at a certain distance from the pulsar [62]. The two possibilities

that arise in that case are that either Γ ceases to be constant, or the wave stops being stationary,

and a displacement current term appears in Ampere’s law.

The Lorentz factor of the flow can rise through reconnection of the magnetic field in the

stripes, as shown in Lyubarsky and Kirk [53]. Another solution to the current starvation problem

that involves the appearance of a strong displacement current term was presented in the form of

large amplitude superluminal waves [2]. In contrast to the magnetohydrodynamical wind, these

waves propagate only if the density of the outflow is lower than a certain value, a subject which

we will return to in the following chapter. Melatos and Melrose [59] showed that at the distance

from the pulsar where ideal magnetohydrodynamics breaks down, the displacement current takes

over and the wind can be converted to a large amplitude transverse plasma wave propagating

in the background relativistic outflow. This wave is linearly polarized close to the equator

and circularly polarized close to the rotational poles. Kirk [43] investigated large amplitude,

superluminal, circularly polarized waves and found two modes: a ”free escape” mode,where the

radial momentum of the particles tends to a constant at large radii and the wave propagates

essentially as a vacuum wave in the background plasma, and a ”confined” mode, where the

particle radial momentum tends to zero at large radii and the wave retains the characteristics

of a plasma wave.

The second problem that arises through the magnetohydrodynamical description of the pul-

sar wind, as noted by Kennel and Coroniti [40], is that in an ultra-relativistic, radial magneto-

hydrodynamic wind, Poynting flux cannot efficiently be converted to particle kinetic flux ([8],
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[9]). However, observations of the nebula show that the conversion must indeed take place at

some point between the light cylinder and the termination shock.

In order to address this problem, Coroniti [17] proposed reconnection at the current sheets of

the striped wind as a possible mechanism for the dissipation of the magnetic flux in the stripes,

and found that dissipation occurs rapidly without the acceleration of the flow, so that the

Crab’s stripes don’t survive as far as its termination shock. However Lyubarsky and Kirk [53] in

a more detailed discussion showed that the wind accelerates during reconnection, thus dilating

the reconnection timescale and slowing down the process significantly. Kirk and Skjæraasen [46]

investigated several dissipation processes and found that dissipation depends on the injection

rate of pairs to the wind, so that it is still possible for the Crab’s wind to dissipate before it

reaches its termination shock, though one would have to assume a fast dissipation timescale and

a high injection rate. It is interesting that in the superluminal modes discussed by Melatos and

Melrose [59] or Kirk [43] the ratio of Poynting to kinetic energy flux either stays constant or

rises, rather than diminishes.

What happens at the interaction of the wind with the termination shock is far from clear. If

the dissipation of the field in the stripes wind is incomplete, then the outflow could arrive at the

pulsar’s termination shock accelerated to a high bulk Lorentz factor and still highly magnetized.

In this case the dissipation of the magnetic field, along with particle acceleration has to happen

at the shock, as proposed by Lyubarsky [56]. Pétri and Lyubarsky [73] have investigated this

process, both analytically and through particle-in-cell simulation, and found a condition under

which full dissipation of the stripes happens at the shock. We will return to this issue in a

following chapter.

If the stripes are completely dissipated by reconnection in the wind, then the outflow ends in

a weakly magnetized shock. There is no alternating field, and no wave component present in the

wind anymore. Then the shock can be described as an ideal magneto-hydrodynamic shock [40],

an infinitely thin discontinuity in the flow. If not enough particles are injected into the wind,

so that the dissipation process cannot continue all the way up to the termination shock, then

one returns to the problem of current starvation, and the possible conversion of the flow to a

different mode, where the displacement current dominates the conduction current. However, in

the following we will argue that the physical picture of the ideal MHD shock in a wind that carries

an alternating field is oversimplified. When an electromagnetic wave of any kind interacts with

a discontinuity, there should be some reflection of Poynting flux back to the upstream medium.

We will show there are indeed large amplitude superluminal wave modes that can propagate

in the upstream of a pulsar wind termination shock. These modes are linearly polarized, with

a mean field equal to zero at the equator, but rising towards the edges of the alternating field

zone. In the following, we will investigate the way these waves arise, their properties and their

relevance in addressing the problems described above.

6.2 Plane wave approximation

The pulsar wind can contain either a subluminal magneto-hydrodynamic wave, or a superluminal

plasma wave. Whichever is the case, the timescale of the variation τ is imposed by the rotator,

τ ∼ 1/Ω, and is associated with the length scale rLC , the light cylinder radius. Far away from
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Figure 6.3: X-ray images from the Crab and Vela pulsar wind nebulae.
The X-ray images of the Crab and Vela nebulae, as seen by the Chandra X-ray observatory. The
toroidal geometry is obvious in both images. A dark region inside the Crab nebula is assumed to
contain the pulsar wind.

the light cylinder, where r ≫ rLC, any length scale one could associate with the wave would be

much smaller than the radius. Also, the curvature of the wavefront at large distances from the

pulsar is of the order of magnitude of the inverse radius, and it is very low. For these reasons a

plane wave approximation of the wave at any given radius is enough to convey the characteristics

of the outflow, so long as we are far from the light cylinder.

We introduce a dimensionless radius variable, which is normalized to the light cylinder radius:

̺ =
r

rLC
(6.5)

When ̺ ≫ 1 we are at the zone where curvature effects can be ignored, and our plane wave

approximation is valid.

We will identify the radial direction with the x−direction of a cartesian system of coordinates.

The wind propagates then in the positive x−direction. In the striped wind, the azimuthal

magnetic field is represented by Bz and the electric field which is perpendicular to both the

propagation direction and the magnetic field is in the y−direction and symbolized by Ey. The

field in one stripe is in good approximation constant: the change of the field in one stripe is of

the order of magnitude ∼ 1/̺2 ≪ 1. For this reason, far from the light cylinder we can consider

the wave to be a plane square wave of constant amplitude even for regions which are significantly

larger than one wavelength, but still shorter than ∼ ̺.

6.3 Constants of the flow

The properties of a steady state, radial wind which can be described as a subluminal or superlu-

minal wave depend on four quantities: the phase-averaged particle flux 〈J〉, the phase averaged

radial energy flux, which we denote by 〈F 〉, the phase averaged radial momentum flux 〈K〉, and
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a fourth parameter 〈H〉 which we will set to be proportional to the square of the phase-averaged

electric field. Taking the phase average of Faraday’s law,

∇× E = −∂B

∂t

we find that the mean electric field Ey = E for the transverse waves we have already mentioned,

is proportional to the inverse square of the radius, i.e. E ∝ 1/r, and consequently Bφ ∝ 1/r, i.e.

the conservation of magnetic flux in an outflow with azimuthal field.

The quantity 〈F 〉 is the component T 01 of the stress-energy tensor of the outflow, which is

the sum of the stress-energy tensors of the particles and the electromagnetic field. 〈K〉 is the

component T 11 of the stress-energy tensor. The general expressions for these quantities for a

cold plasma (p = 0) take the following form:

〈J〉 = 〈nux〉c (6.6)

〈F 〉 = 〈nγux〉mc3 + c
〈(E × B)x〉

4π
(6.7)

〈K〉 = 〈nu2
x〉mc2 +

〈E2 + B2〉
8π

(6.8)

〈H〉 =
〈E〉2
8π

(6.9)

All four of these quantities depend on the distance from the pulsar as ∝ r−2. It is therefore, more

convenient to use dimensionless parameters which are generated by the above fluxes. These are

µ =
〈F 〉

mc2〈J〉 (6.10)

ν =
〈K〉

mc〈J〉 (6.11)

η =
〈H〉

mc2〈J〉 (6.12)

These are independent of radius and are conserved in a striped pulsar wind [43]. The wave

properties depend on these ratios and not on the specific values of 〈J〉,〈F 〉,〈K〉 and 〈H〉. This

is because the wave properties depend only on the ratio ω/ωp, with ω the wave frequency and

ωp the plasma frequency in the wind: µ, ν and η depend on this ratio, while 〈J〉,〈F 〉,〈K〉 and

〈H〉 depend on the frequency of the wave.

Once we have determined these ratios for the wave, we can fix the wave frequency using the

luminosity of the pulsar L and the distance from it, assuming as we have already mentioned

that the largest part of the energy emitted by the pulsar is transferred by the wind and ends up

in the nebula:

〈F 〉 =
L

Ωwr2
(6.13)

Alternatively, if we impose a wave frequency, we can calculate the radius at which the wave

can exist. In the pulsar system the rotation is imposed by the star, so the wave oscillates with

frequency equal to that of the pulsar. Equation 6.13 states that the luminosity of the pulsar is

evenly distributed in an outflow that expands in a solid angle Ωw.
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In the following chapters we will derive the expressions for 〈J〉,〈F 〉,〈K〉 and 〈H〉 for the cases

of the striped wind and the superluminal large-amplitude wave. Using equation 6.13 we will be

able to connect a plane-wave solution of given energy flux 〈F 〉 to a point in the wind, in order

to find the range of radii within which waves of a given kind can propagate.



Chapter 7

The striped wind and the

termination shock

The striped wind is a subluminal wave: a transformation with velocity βMHD = vMHD/c in the

radial direction brings us to a frame of reference where the wave is at rest. We will refer to this

frame as the ”wind frame” and denote it with S′. All primed quantities are in the wind frame

and unprimed ones are in the laboratory frame, which is set to coincide with the frame where

both the pulsar and the termination shock is at rest. In reality, the termination shock recedes

from the pulsar, but it does so at velocities much smaller than the ultra-relativistic velocity of

the wind. The coincidence of the two frames, therefore, is a satisfactory approximation.

7.1 The striped wind: an entropy wave

General properties

In the simplest incarnation of the striped wind model, the outflow consists of two species of

particles, electrons and positrons. The particles are cold everywhere in the wind, apart from the

current sheets separating regions of alternating magnetic field polarity. The magnetic pressure

in the cold part of the stripes is balanced by the thermal pressure of the particles in the current

sheets, where it is assumed that the field falls to zero. The current sheets are also assumed to be

very thin in comparison to the wind’s wavelength, so that the shape of the wave is approximated

by a square wave, as explained in the previous chapter.

The wind is launched close to the light cylinder with a frequency Ω that is imposed by the

pulsar’s rotation. Far from the light cylinder the magnetic field amplitude can be approximated

by the azimuthal component, and is given by

B(̺) =
BL

̺
(7.1)

where BL is an appropriate toroidal magnetic field value at the light cylinder.

The strength parameter of the striped wind can be defined as the strength parameter of

a vacuum wave carrying the same energy flux and of the same frequency as the striped wind.

The striped wind is a linearly polarized wave, so the corresponding vacuum wave would be
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linearly polarized and the strength parameter would be defined using the root mean square of

this linearly polarized wave. The wind has a square wave form, so the root mean square field is

equal to the amplitude and the strength parameter is:

a(̺) =
eB(̺)

mcΩ
=

aL

̺
(7.2)

where aL is the value of the strength parameter that corresponds to BL:

aL =
eBL

mcΩ

In the wind frame there is no electric field present, while in the laboratory frame there is an

electric field component given by the force-free MHD condition, which dictates that the plasma

has an infinite conductivity and all non- electromagnetic forces are negligible:

E = −−→
β MHD × B (7.3)

where βMHD ≃ 1 for an ultrarelativistic wind. The Lorentz factor corresponding to βMHD is the

bulk Lorentz factor of the outflow and is denoted by Γ:

Γ =
1

√

1 − β2
MHD

(7.4)

Since in the plane wave approximation E = Eŷ and B = Bẑ, E = βMHDB and for an ultrarela-

tivistic wind the electric field in the laboratory frame is only slightly smaller than the magnetic

field. The cold plasma is moving radially outwards with a velocity corresponding to βMHD. In

the plane wave approximation, the particle flux, energy flux density and momentum flux density

are:

〈J〉 = 2NβMHDΓc (7.5)

〈F 〉 = 2Nmc3βMHDΓ2 + cβMHD
B2

4π
(7.6)

〈K〉 = 2Nmc2β2
MHDΓ2 + (1 + β2

MHD)
B2

8π
(7.7)

In the derivation of the above expressions we have ignored the contribution of the hot current

sheets which is negligible if their width is much smaller than the wavelength of the striped wind,

which is λ ≃ rLC. We have, therefore, a cold wind with a proper particle density N for each

species. The fourth conserved quantity, 〈H〉, depends on the latitude in the wind and can be

expressed as

〈H〉 =
θ2β2

MHDB2

8π
(7.8)

where θ is a parameter that measures the ratio of the mean magnetic field in the stripes to the

field amplitude:

θ =
| 〈B〉 |
√

〈B2〉
(7.9)

At the equator, θ = 0, and the magnitude of θ rises as one moves away from the equator,
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becoming θ = 1 at the edge of the wind zone. At this point there is no wave anymore, but

rather an outflow with a constant field.

The quantities µ, ν, η are, then

µ = Γ(1 + σ) (7.10)

ν =
Γ2(1 + σ) − (1 + σ/2)√

Γ2 − 1
(7.11)

η =
ΓβMHDθ2σ

2
(7.12)

where σ is the magnetization parameter

σ =
B2

8πNΓ2mc2
(7.13)

which is the ratio of the Poynting flux to the particle energy flux. The magnetization parameter

was introduced by Kennel and Coroniti [39] in the context of the striped wind, and remains

constant in the flow, just like the bulk Lorentz factor Γ, if we ignore dissipation effects in the

current sheets. Another property of σ is that it is a Lorentz invariant parameter of the striped

wind.

Pulsar winds are Poynting-flux dominated and ultrarelativistic, with magnetization param-

eters and Lorentz factors much larger than unity. As discussed in Chapter 6, it is difficult to

convert the Poynting flux to kinetic energy flux, even if dissipation processes in the current

sheets are considered. It is therefore likely that σ and Γ remain large all the way out to the

termination shock of the wind. This causes a near-degeneration of µ and ν, because
√

Γ2 − 1 ≈ Γ

and

ν ≈ Γ(1 + σ) − 1 + σ/2

Γ
≈ µ

Validity of the cold outflow approximation

The approximation of the infinitely thin current sheets can be expressed as a requirement that

the width of the current sheets is negligible in comparison to the wind’s half-wavelength. The

minimum width of a current sheet is dictated by the gyration radius rg of the sheet particles in

the field of the square wave.

The particles in the current sheets are hot: if one assumes that the magnetic field is zero in

the current sheet and rises to its constant value outside of it, in the cold part of the outflow, then

there has to be pressure balance between the hot and cold parts of the outflow. Defining the

average Lorentz factor of the thermal motion of the current sheet particles, 〈γth〉, then pressure

balance can be expressed (in the wind frame, where the wave is stationary) as:

〈γth〉mc2 = kBT =
B′2

8π2N ′
(7.14)

where kB is the Boltzmann constant, T is the temperature in the current sheets and the particle

density is 2N ′, with N ′ being the density of each of the two species in the outflow. N ′ is

considered for simplicity to be equal in the hot and cold parts of the outflow.

The criterion that has to be satisfied, then, is that rg has to be much smaller than the wave’s
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half wavelength. In the wind frame this inequality can be written as:

rg =
〈γth〉mc2

eB′
≪ λ′ (7.15)

where γ is the mean Lorentz factor of the thermal motion in the hot current sheets.

Combining 7.15 and 7.14 and taking into account the Lorentz invariance of the magnetization

parameter we arrive at the condition

σ ≪ a (7.16)

where a is the strength parameter. This condition will almost certainly hold in the inner parts

of a pulsar outflow, close to the light cylinder. For the example of the Crab pulsar the strength

parameter at the light cylinder is of the order of magnitude aL ∼ 1011. Since the strength

parameter falls with distance from the pulsar, as the distance ̺ = aL/σ is approached the

above condition ceases to hold. Whether this happens before the wind reaches the termination

shock or not depends on the individual object we are considering, and from the dissipation

processes in the striped wind. For young pulsars with high magnetic fields and low periods or

for pulsars in binaries, where the separation between the stars limits the extent of the wind, the

above condition is likely to hold. For the Crab pulsar, the termination shock is at a distance

of ̺ ∼ 109 from the pulsar, and the strength parameter is of the order of magnitude a ≃ 102

at this distance. Another example is the pulsar PSR B1259-69 which is a member of a binary

system with a blue B2e star. The distance of the two stars varies between ̺ ∼ 104 and ̺ ∼ 107

between periastron and apastron, which means that the pulsar wind collides with the stellar

outflow while its strength parameter is still many orders of magnitude greater than unity.

7.2 The termination shock

The pulsar wind is thought to terminate in a shock, where the wind’s ram pressure balances

the pressure of the surrounding nebula [75]. This shock is usually modeled as an infinitely thin

discontinuity. Because the field of the outflow is very nearly toroidal, the shock is perpendicular,

which means that the magnetic field is perpendicular to the shock normal. Shocks are classified

as weak or strong, according to whether they convert a small or large amount of the energy of

the upstream flow to thermal energy in the downstream.

Kennel and Coroniti [39] noted that, although the pulsar’s wind is highly magnetized, with

σ ≫ 1, observations show that in the nebular flow the magnetization parameter is very low,

σ ∼ 10−3. They then investigated whether this jump in the magnetization parameter can be

explained using the MHD jump conditions of the shock. These connect the physical quantities

that characterize the flow upstream with the ones downstream, and are derived demanding

the conservation of particle, energy, momentum and magnetic fluxes in the transition from

the upstream to the downstream, without looking into the microphysics of the shock itself. The

result was that a large-σ shock is effectively weak. The flow remains relativistic downstream and

the magnetic field value remains almost unchanged. This can be quantified by the compression

ratio of the shock:

ρ =
B2

B1
=

v1

v2
=

N2

N1
(7.17)
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where B1 and B2 is the constant magnetic field upstream and downstream, respectively, v1,v2

are the respective magnitudes of the three-velocity of the flow and N1,N2 the particle number

densities. All the quantities refer to the shock frame. For an upstream flow of high magnetization

σ, the compression ratio can be expressed as

ρ ≃ 1 +
1

2σ
(7.18)

What this means is that a highly magnetized flow is going to remain highly magnetized after

passing through a perpendicular MHD shock. This is the basis of the σ−problem, which was

introduced in the previous chapter. Assuming, then, that the dissipation in the striped wind

is not enough to reduce the magnetization of the outflow, (see [46]), then the pulsar wind

termination shock might be expected to be a weak perpendicular shock.

Along the shock front there is a current sheet, which is assumed to be infinitely thin. This

sheet supports the jump in the magnetic field between the downstream and the upstream. The

application of the jump conditions for a perpendicular MHD shock to the termination shock

of a striped pulsar wind has an implicit assumption: that the jump conditions hold between

field reversals, and that during a reversal the current direction along the discontinuity changes

instantaneously. ”Instantaneously” in this context means that the timescale of the current

response to a field reversal is much shorter than the timescale of the field reversal itself. If we

consider the first to be the gyration period of particles in the magnetic field of the outflow and

the second to be the inverse of the wind’s frequency, then this condition brings us to the strong

wave limit:

a ≫ 1

If the striped wind is a strong wave, and under the assumption that during the ”instantaneous”

current reversal only a negligible amount of radiation is emitted, then its termination shock can

be considered in a steady state between field reversals.

7.3 Wind-shock interaction

The pulsar wind’s termination shock is a discontinuity, which carries an alternating current, as

we just argued. In the first approximation, the waveform follows the temporal variation of the

magnetic field as the stripes sweep the shock. Close to the termination shock, at the equator,

the fields are:

B = ẑBssq (x/βMHD − t) (7.19)

E = −βMHDx̂ × B (7.20)

where Bs is the magnetic field amplitude close to the termination shock and sq(x) is the square

wave given by

sq(x) = 2

+∞
∑

n=−∞

(

H(x − 2πn) − H(x − 2πn − π) − 1

2

)

(7.21)
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where H(x) is the Heaviside step function:

H(x) = 1, x > 0 (7.22)

H(x) = 0, x < 0 (7.23)

Here time is normalized to the inverse of the angular frequency 1/Ω and length to c/Ω, so we

have dimensionless time and length parameters. An expression for the square wave which will

be useful later is

sq(x) =
4

π

∞
∑

n=1

sin((2n − 1)x)

(2n − 1)
(7.24)

Thus the current is implied by 7.19 and 7.20:

J(r, t) = ŷδ(x − xs)J0sq

(

xs

βMHD
− t

)

= −ŷδ(x)J0sq (t) (7.25)

where the shock’s location is set to xs = 0 and

J0 =
(ρ − 1)Bs

4π

with Bs the magnetic field amplitude of the wind at the termination shock.

Wave emission by an alternating current

In vacuum, an alternating current like the one flowing along the shock discontinuity would be

the source of an electromagnetic vacuum wave. It is instructive to calculate the vector potential

of the radiation emitted by the alternating current. Its components are given by the integral

[48]:

Aω(r) =

∫

V
Jω(r′)

eik|r−r
′|

c | r− r′ |d
3r′ (7.26)

where the integration is over all space and Jω is the Fourier transform of the current:

Jω =

∫ 2π/Ω

0
J(t) exp−iωt dt

After calculating Aω from 7.26, the vector potential A is found using the inverse Fourier trans-

form. In order to arrive at the formula for Aω we need the following integral (from 7.26):

I =

∫

V
δ(x′)

eik|r−r
′|

c | r− r′ |d
3r′ (7.27)

and after the x′ integration

I =

∫ +∞

−∞

∫ +∞

−∞

eik
√

(z−z′)2+(y−y′)2+x2

c
√

(z − z′)2 + (y − y′)2 + x2
dz′dy′ (7.28)
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The form of the integral is simplified if we use cylindrical coordinates in the y − z plane:

y′ − y = ρ cos θ (7.29)

z′ − z = ρ sin θ (7.30)

dx′dz′ = ρdρdθ (7.31)

so I becomes

I =

∫ ∞

0
ρdρ

∫ 2π

0
dθ

eik
√

ρ2+x2

√

ρ2 + x2

A new substitution R =
√

ρ2 + x2 from which we get

dR =
ρ

√

ρ2 + x2
dρ

brings the integral to the simplified form

I = 2π

∫ ∞

|x|
dReikR

the result of which is”

I =
2πi

k
eik|x| (7.32)

The upper limit, which is infinity, was neglected on the physical grounds that physical quantities

of the problem cannot depend on effects at infinity [79].

We are interested in the upstream area, where x < 0. In that area the waves emitted by the

shock front propagate in the negative x-direction. Restoring dimensions, the vector potential is

given by:

A(r, t) = ŷJ0
4

π

∞
∑

n=1

cos(kn(x + ct))

ωn/Ω

π

ckn

where ωn/Ω = 2n − 1 and ωn = knc.

From the above result we can calculate the reflected fields. Because of equation 7.24 the

derivative of the above series with respect to t or z gives a square wave form again. Returning

to the dimensionless time and space variables the reflected fields are given by:

Br(z, t) = x̂B0sq(z + t) (7.33)

Er(z, t) = ẑ × Br (7.34)

where

B0 =
(ρ − 1)Bs

4

The fields referring to the reflected component as it is calculated for propagation is vacuum are

explicitly marked with the subscript r. It is straightforward to show by Fourier decomposition

that for any incoming wave the corresponding reflected one is going to have the same shape and

frequency but an amplitude diminished by (ρ − 1)/4.
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If full dissipation of the alternating field in the stripes happens at the shock, as proposed by

Lyubarsky, [56], then there’s no large scale magnetic field in the downstream. The amplitude of

the waves in this case would then be:

B0 = −Bs

4
(7.35)

The strength parameter of the reflected wave would be, in the absence of dissipation:

ar =
ρ − 1

4
a (7.36)

7.3.1 Linear and non-linear waves in a plasma

The alternating current along the termination shock would be the source of a wave in vacuum,

that has the same shape and frequency as the striped wind incident on the shock. The wave,

however, is not emitted in vacuum, but into a plasma which carries a magnetic field. Moreover

this wave can be a strong wave if the compression ratio is not too close to unity: for ρ & 1+4/a

the strength parameter of the reflected wave will be greater than unity. However, if we replace

for ρ in this inequality from the relation 7.18 we see that the reflected wave is going to be strong

if

σ . a (7.37)

which is guaranteed to hold in a striped wind because of the condition 7.16.

Moving now to the wind frame S′, a criterion is needed for the propagation of a strong

wave in a magnetized plasma. In S′ each stripe is longer by Γ2 than the laboratory wavelength,

and holds a constant magnetic field that corresponds to the field of the stripe in the laboratory

frame. It can be then considered as a uniform medium with a background field where the

propagation of a non-linear wave is investigated. This wave is going to propagate transversely

to the background field and is a transverse wave by the mechanism of its emission.

In the linear (low amplitude) limit, the cutoffs for the propagation of electromagnetic waves

in plasma have been extensively studied and can be found in standard textbooks (see, for

example, [22]). An electromagnetic wave can propagate in a cold unmagnetized plasma only if

its frequency is higher than the plasma frequency: ω > ωp. ωp depends on the particle density

n, in our case the density of electrons and positrons:

ωp =

√

4πne2

m

It has been shown that this cutoff is lower for strong waves (an explanation can be found in

[58]). In that case the condition for propagation becomes

ω >
ωp√

a

with a > 1 the strength parameter of the wave.

If the wave propagates in a background magnetic field, then the cutoff depends on whether

it propagates along or perpendicularly to the field lines. In the first case the mode is called the

ordinary mode or O-mode, while in the second case it is referred to as the extraordinary mode

or X-mode. The cutoffs for these waves in the case of electron-ion plasmas are well known [22].
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For the case of electron-positron plasmas, the cutoff for the linear X-mode is [38]:

ω >
√

Ω2
c + ω2

p (7.38)

where

Ωc =
eB

mc

is the cyclotron frequency in the background field with B the magnetic field amplitude. In

en electron-ion plasma, the X-mode is a hybrid wave, which means that it is neither purely

longitudinal nor purely transverse. This is however not true for the same mode in an electron-

positron plasma: in this case it is a purely transverse wave [38], like the non-linear mode we are

investigating. This is why we will identify the reflected wave with the non-linear X-mode and

investigate its propagation upstream.

Cutoff of the non-linear X-mode

Kennel and Pellat [41] have calculated the dispersion relation for the non-linear extraordinary

mode in the limit of massless particles. This limit applies to the case where the wave is strong

enough to make the particles ultrarelativistic, so their energy is much larger than their rest mass

energy. Their results can be applied to an electron-positron plasma. The cutoff frequency for

the non-linear X-mode can be calculated from the dispersion equation in the limit where the

phase velocity tends to infinity, βφ → ∞, and it is given in the wind frame S′ as [41]:

ω′ =
Ω′

c

2ar
+

1

2

√

(

Ω′
c

ar

)2

+
ω′2

p

ar
(7.39)

where Ω′
c = eB′/mc and B′ is the constant field of the stripe in the outflow frame, taken as the

background field. If

Ω′
r > ω′ (7.40)

where the frequency Ω′
r refers to the reflected component in S′, the wave propagates in the

upstream. However, the condition 7.16 is equivalent to:

Ω′
c ≪

√
arω

′
p

which means that in 7.39 the cyclotron frequency can be ignored. So the condition for the

propagation of a large amplitude wave in the upstream is reduced to the one for propagation in

an unmagnetized plasma already mentioned in the previous paragraph [58]:

Ω′
r >

ω′
p√
ar

(7.41)

Taking into account that B = ΓB′, n = Γn′ and Ω = Ω′/Γ, where n is the laboratory frame

density, the above condition transforms into

Γ4 >
ar

σ
(7.42)
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7.4 Dissipation at the shock front

Full dissipation

The calculations of the reflected wave have been performed assuming that the field downstream

is just the compressed upstream field. Lyubarsky [56] however, has proposed that the magnetic

field might dissipate at the shock front via reconnection caused by the compression of the

upstream flow as it enters the shock. Pétri and Lyubarsky [73] subsequently showed that the

alternating magnetic field dissipates completely at the strong shock front if the condition

Γ ≥ a

σ
(7.43)

holds. For full dissipation of the stripes the downstream large-scale field vanishes. The amplitude

of the reflected wave, then, is one fourth the amplitude of the field in the wind just before the

shock:

ar =
a

4

The condition 7.42 for propagation in the upstream becomes then:

Γ4 >
a

4σ
(7.44)

Comparing 7.43 and 7.44, we see that 7.44 always holds when 7.43 holds.

The first conclusion we can reach, therefore, is that when full dissipation occurs at the shock,

a strong wave is emitted and propagates upstream. This wave carries a Poynting flux with is a

fraction of ∼ 1/16 of that carried in the striped wind. If a ≫ 1 then ar ≫ 1 too, so the reflected

wave is also strong. A strong wave with a large Poynting flux is likely to have a significant effect

on the upstream flow, possibly imparting energy to the cold wind particles and leading to the

formation of a precursor. In that case the jump conditions for the ideal MHD shock are not

valid anymore, and an inconsistency arises: the description of the shock as a sharp discontinuity

obeying MHD jump conditions has as a result the prediction of a reflected wave, which will

create a precursor, thus rendering the approximation of the MHD shock insufficient.

Partial dissipation

Pétri and Lyubarsky have also found a condition under which partial dissipation of the upstream

field occurs at the shock. This is
a

4σ3/2
≤ Γ ≤ a

σ
(7.45)

At the left limit of this interval, at which dissipation disappears, the compression ratio of the

shock is given by the MHD jump conditions as calculated by Kennel and Coroniti, equation 7.18.

The strength parameter of the reflected wave is in this case

ar =
a

8σ



7.4. DISSIPATION AT THE SHOCK FRONT 71

ce
rta

in
 p

ro
pa

ga
tio

n

posible

propagation

Figure 7.1: Regions of full, partial and no dissipation and conditions for reflected
wave propagation in a log a-log Γ plot.
The plot is made for arbitrary magnetization σ. The three regions of full, partial and no dissi-
pation are separated by the dashed red lines, while the black dotted lines separate regions where
waves can propagate from the ones where it cannot (or we cannot know). The lower of these lines,
a = Γ44σ, refers to the regions of full and partial dissipation, while the upper one, a = Γ48σ2,
refers to the no dissipation region. This means that the region between the upper red line and
the two black ones is a region of propagation, while the degree of dissipation would decide the
propagation in the small triangle formed between the upper red line and the lower black one. In
the white region up left there is no wave propagation. The values of a at the points of intersection
of the lines with the a-axis where Γ = 1 are shown on the left of the axis.

The condition that has to hold for the reflected wave to propagate is then:

Γ4 >
a

8σ2
(7.46)

At the right limit of the interval, where dissipation becomes full, the condition becomes

stricter, and is given by 7.44 as explained in the above paragraph. Throughout this region of

partial dissipation, the generalized condition for the wave to propagate is

Γ4 > δ
a

4σ
(7.47)

1

2σ
≤ δ ≤ 1 (7.48)

The parameter δ is smaller than unity and depends on the degree of dissipation of the stripes

at the shock front, which is unknown. The only definitive conclusion we can get from the above

equation is that if Γ3 >
√

σ, then the wave propagates in the case of partial dissipation.
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No dissipation

The case where there is no magnetic field reconnection at the shock according to Pétri and

Lyubarsky is

Γ ≤ a/4σ3/2 (7.49)

The condition of propagation, then, is given by 7.46.

The above results are summarized in the following table:

Γ < a/(4σ3/2) a/(4σ3/2) ≤ Γ ≤ a/σ Γ > a/σ

ar = a/(8σ) ar = δa/4, ar = a/4

1/(2σ) < δ < 1

No dissipation Partial dissipation Full dissipation

ar propagates if Γ > a/(8σ2) ar propagates if Γ4 > α/(4σ) ar always propagates

( otherwise not ) ( otherwise uncertain )

The regions of full, partial and no dissipation can also be seen in figure 7.4, along with the

regions of propagation of the reflected wave.

7.5 A possible precursor

We have argued that the interaction of the striped wind with the termination shock is going to

produce a strong reflected component which, in most cases, is going to propagate in the upstream.

A self-consistent solution of the full magnetohydrodynamical problem of the interaction of two

strong, counter-propagating waves is a formidable problem analytically, which we will not try

to tackle here. Instead, we will give some simple arguments about the possibility of the creation

of an extended precursor to the shock. These are based on the motion of a single particle of the

wind in the field of the two counter-propagating waves, which is much similar to the motions

we have investigating in Part I of this thesis. Now the counter-propagating waves have different

strength parameters, and one of them (the striped wind) has a phase velocity βMHD which is

different than unity. However, βMHD is so close to unity, that it resembles a light wave for

particles that are not exactly in phase with it. The wind particles are indeed exactly in phase

with the striped wind, however even a small perturbation in their motion will change that. Such

a perturbation can be provided by the reflected wave.

Let us introduce the center of momentum frame, which will be defined as the frame moving

with respect to the laboratory frame with a lorentz factor

γcom =
1

√

1 − 〈βx〉2

where 〈βx〉 is the mean velocity in the direction of propagation of the wave.

Let us now think of the interaction of an electron with the reflected wave and the striped wind

as if the two interactions were independent of each other and were not happening simultaneously.
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The purpose of this is to get an estimate of the energy imparted to a test particle in the field of

the two waves.

If a wind electron were to be treated as a free particle with a Lorentz factor Γ, then its

interaction with a counter-propagating wave of strength parameter ar would have as a result the

change of its center-of-momentum Lorentz factor to the value γcom ∼ Γ/ar, provided that Γ > ar

(see [52] and [50]) or to γcom ∼ ar/Γ in the case that Γ < ar. In the second case the particle

would actually be initially accelerated backwards, against the flow. Let us assume that this is

indeed the initial recoil of a wind particle for the two cases mentioned when it first interacts

with the reflected wave. Now let us bring into the game the strong wave of the pulsar wind.

The particle now is out of phase with the wind and interacts with it as if it was a vacuum

wave, as explained above. The wind induces an oscillation of amplitude ∼ a (in four-velocity,

see Chapter 3 or [50]), in the direction of the electric field and also accelerates the particle in

its direction. For the two cases discussed above, a simple estimate gives, using as an initial

condition for the motion in the wind the mean velocities and Lorentz factors arising from the

interaction of a particle with the reflected wave:

• Γ > ar

The mean energy of the particle rises to

〈γ′〉 ∼
(

1 +
a2

a2
r

)

Γ

and the center-of- momentum Lorentz factor becomes

γcom ∼ aΓ

ar

• Γ < ar

Now the mean energy is

〈γ′〉 ∼ a2
r

Γ

and the center-of-momentum Lorentz factor is estimated to be

γcom ∼ ar

aΓ
+

aΓ

ar

Depending on the relationship between ar, Γ and aeff we can tentatively conclude that there

is the possibility that the particle gains a significant amount of energy from the interaction with

the two waves, and a large gain in momentum in the direction of the electric field can occur. It

is logical to assume that the center-of-momentum motion is always going to be in the direction

of the strongest wave, which in this case is always the striped wind, so these particles will always

propagate towards the shock.

If the reflected wave is neglected, i.e. if it is considered only as a perturbation that throws a

test particle out of phase with the wind, so that it is accelerated in the fields of the wind as in a

vacuum wave of strength parameter a ≫ 1, then the mean energy of the test electron becomes

[50]:

〈γ〉 ∼ Γa2
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and its center-of-momentum motion has a Lorentz factor of

γcom ∼ Γa

These results can be extracted from the above equations (in the first case Γ > ar) assuming

ar → 1 and a ≫ 1. The case ar < 1 is not relevant - as we have seen, a weak wave does not

change the longitudinal momentum of the particle.

The above estimates are based on considerations about the mean velocities and mean energies

of the motion of a single particle in the fields of two counter-propagating electromagnetic waves:

the striped wind and a wave reflected from the shock, both of which have been approximated

as light waves in vacuum. At best this treatment gives an estimate of the initial response

of single particles of the outflow to the reflection of Poynting flux from the shock. If indeed

individual particles can be accelerated in the process, then a precursor to the shock should be

expected, which changes the dynamics close to the discontinuity. It remains to be seen if future

simulations of the interaction of striped winds with a termination shock will reveal behaviour like

this described above, and if the precursors resulting from the wave interaction in the upstream

will strongly modify the MHD outflow.



Chapter 8

Superluminal waves in magnetized

plasma

In contrast to the previous chapter, where we studied the subluminal wave that is the pulsar’s

striped wind, in this chapter we will investigate superluminal non-linear waves of linear polar-

ization. These waves share some common features with the striped wind: they occupy the same

region around the equatorial plane, they are linearly polarized and the mean field rises from zero

at the equator until it reaches the value of the wave amplitude at a maximum latitude which

depends on the misalignment of the magnetic and rotational axes of the pulsar.

Kennel and Pellat [41] showed that superluminal waves can have arbitrarily large amplitudes.

Their analytical treatment, however is far from trivial. The main advantage of waves with

superluminal phase speed comes from the fact that one can move to a reference frame where

all space dependence vanishes, thus removing many of the nonlinearities that appear in the

equations, like for example the convective terms in the equation of motion as explained in

Clemmow 1974,1977 [15], [16]. We will name this frame ”homogeneous frame” and quantities

referring to it will be unprimed. The primed quantities now will refer to the laboratory frame.

In analogy with the wave reflected from the shock front in the case of the striped wind, we

will mainly be concerned with waves propagating inwards from the shock. These waves are not

additional to the wind, rather, we will investigate the possibility that the wind converts to such

a superluminal mode before reaching the shock. The direction of the phase velocity in itself

poses no contradiction, as long as the particle, energy and momentum fluxes and the magnetic

flux are conserved during the transition.

8.1 The homogeneous frame

In the investigation of waves of superluminal phase velocity βφc, it is useful to conduct all

calculations in the homogeneous frame where all space dependence vanishes. This is analogous

to the wind frame of the striped wind: in that case a Lorentz transformation with velocity

βMHDc in the direction of the wave brought us to a frame where the wave was static. In the

case of the superluminal wave one has to transform to a frame moving with velocity c/βφ in the

direction of the wave, to arrive in the homogeneous frame.

In the derivations in this section, we will follow the method used in Kennel and Pellat [41].

75
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However, we will work in the homogeneous frame, and all unprimed quantities refer to this frame.

In the following sections, where we need quantities in the shock frame we will simply conduct a

Lorentz transformation with velocity c/βφ.

The equations we have to solve are the fluid equations for a cold, two-species collisionless

plasma. These consist of Maxwell’s equations, the equations of motion and the continuity

equation for each species of particles:

∇ ·E = 4πρ (8.1)

∇ · B = 0 (8.2)

∇× E = −1

c

∂B

∂t
(8.3)

∇× B = 4πj +
1

c

∂E

∂t
(8.4)

γi

c

∂ui

∂t
+ ui · ∇ui =

qi

mic2
(γiE + ui × B) (8.5)

γi

c

∂γi

∂t
+ ui · ∇γi =

qi

mic2
ui ·E (8.6)

1

c

∂

∂t
(niγi) + ∇ · (niui) = 0 (8.7)

In the above we have used ρ as the charge density, not to be confused with the shock compression

ratio, j is the current density, (γi,ui) is the four-velocity of each species of particle, γi refers to

the Lorentz factor and ni is the proper number density. For the charge and mass we have used

the symbols qi and mi. However, since electrons and positrons have the same mass and charges

of equal magnitude and opposite sign, we will just write m for mass, e for the positron’s charge

and −e for the electron charge, following the conventions we have been using so far.

The charge and current densities are given by the expressions:

ρ =
∑

i

niqiγi = e(n+γ+ − n−γ−) (8.8)

j = c
∑

i

niqiui = ce (n+u+ − n−u−) (8.9)

where we have used the indices ”+” and ”−” to denote positrons and electrons respectively.

In the homogeneous frame there is no space dependence, therefore all space derivatives

disappear from the above equations. One gets then, taking into account 8.8 and 8.9:

4πe(n+γ+ − n−γ−) = 0 (8.10)

−1

c

dB

dt
= 0 (8.11)

4πce (n+u+ − n−u−) +
1

c

dE

dt
= 0 (8.12)

γi

c

dui

dt
=

qi

mic2
(γiE + ui × B) = 0 (8.13)

1

c

d

dt
(niγi) = 0 (8.14)
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An immediate result is that the magnetic field B is constant in the homogeneous frame. From

Coulomb’s law and the continuity equation, equations 8.10 and 8.14 we have:

n+γ+ = n0γ0 = n−γ− (8.15)

where the zero subscript indicates the initial condition which we take to be the same for the two

species.

We are looking for transverse modes with non-zero E′
y and B′

z components in the laboratory

frame for a wave propagating in the positive or negative x−direction. This corresponds to non-

zero Ey and Bz in the homogeneous frame, and from now on we will drop the subscripts and

write just E and B, where the y− and z−components are to be understood, respectively. We

do not treat longitudinal waves. As explained in the previous chapter, the linear extraordinary

mode in an electron-positron plasma is a purely transverse mode, and we will assume the same

for its non-linear counterpart. The z−component of the equation of motion becomes then

Puz

dt
= 0

and if we take the initial condition for uz+,− to be uz+,0 = uz−,0 = 0 then the z−component of

the four-velocity remains zero for all times. From Ampere’s law we have

dEx

dt
= 0 ⇒ n+ux+ = n−ux− (8.16)

From 8.15 and 8.16 we have
ux+

γ+
=

ux−

γ−
(8.17)

From the equations of motion for electrons and positrons we get then

duy+

dt
+

duy−

dt
=

e

mc

(

ux+

γ+
− ux−

γ−

)

B (8.18)

and because of 8.17 we see that uy+ = −uy− + uc where uc is a constant. A solution then with

uc = 0 can be found for which

n+ = n− = n (8.19)

ux+ = ux− (8.20)

uy+ = −uy− (8.21)

uz+ = uz− = 0 (8.22)

(8.23)

In the following we will write n0 for n+, γ for γ+, ux for ux+ and uy for uy+ and we will solve

the equations for the positron fluid.
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We introduce dimensionless electric and magnetic fields as

ν =
eE

mcω
(8.24)

Ω =
eB

mcω
(8.25)

where ω is the wave frequency. The correspondence with the strength parameter of the vacuum

waves is obvious, however here there are two such parameters, one of which (Ω) is constant in

the homogeneous frame, while ν is not constant. We will again normalize time t to the inverse

of the wave frequency using τ = ωt. From Ampere’s law then, 8.12, we get:

dν

dτ
= − uy

αγ
(8.26)

where

α =
ω2

2γ0ω2
p0

(8.27)

ω2
p0 =

4πn0e
2

m
(8.28)

with ω2
p0 is the rest frame plasma frequency of each species. The equations of motion become:

dγ

dτ
=

uy

γ
ν (8.29)

dux

dτ
=

uy

γ
Ω (8.30)

duy

dτ
= ν − ux

γ
Ω (8.31)

From those equations we can work to find an equation governing the behaviour of ν and all

other quantities as a function of ν, i.e. as a function of the electric field. Replacing from 8.26

we have for the first two equations:

dγ

dν
= −αν (8.32)

dux

dν
= αΩ (8.33)

We select the initial conditions ux|0 = p0, γ|0 = γ0 and uy|0 = 0 at the point where the electric

field reaches its largest modulus ν0. We also normalize the field to this modulus so that the new

field variable becomes y = ν/ν0. The modulus of y, then, is always less than or equal to unity,

and the initial condition for y is y0 = 1. The solutions for ux and γ are:

ux = p0 + αΩν0(1 − y) (8.34)

γ = γ0 +
αν2

0

2
(1 − y2) (8.35)

Now we need an expression for ν as a function of τ , in order to know the dependence of all

other quantities on τ , since uy is given by equation 8.31 as a function of ux, γ and ν, which
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depend only on ν. The same is true for the number densities n± which depend on ν through γ.

Squaring equation 8.26 we have

α2ν2
0

(

dy

dτ

)2

=
u2

y

γ2

Using the identity u2
y = γ2 − u2

x − 1 and the initial condition γ2
0 − p2

0 − 1 = 0 we get an equation

for the dimensionless electric field y that is basically the same that Kennel and Pellat derive,

but now expressed in the homogeneous frame:

α2ν2
0

(

dy

dτ

)2

=
(1 − y)2[(y + 1)2 − 4λ2 − q] + (1 − y)qQ

[q/2 + (1 − y2)]2
(8.36)

q =
4γ0

αν2
0

(8.37)

Q = 2

(

1 − p0

γ0
λ

)

(8.38)

λ =
Ω

ν0
(8.39)

where λ is equal to the ratio of the (constant) magnetic field to the amplitude of the electric field

and q is a ”weakness” parameter as defined by Kennel and Pellat. The limit q → 0 corresponds

to the strong wave limit in the case of the waves propagating in plasma. The main difference

between this parameter and the strength parameter of the vacuum waves, is that the initial

conditions for the particle proper density and Lorentz factor play a crucial role in whether the

wave is strong or weak. Another way to express it, which makes this dependence obvious, is:

q =
2(2γ0)

24πn0mc2

E2
0

(8.40)

We can see that it is likely that for a highly relativistic fluid, or for large densities, q is going to

be large, thus rendering the wave weak.

The dispersion equation for these waves can be found by demanding that the phase of the

wave (which is τ in the homogeneous frame) changes by π on the transition from the lowest to

the highest value of y, since dy/dτ does not depend explicitly on τ but only through y. As we

have already explained, the largest value of y is unity, and since | y |≤ 1 its lowest value, which

corresponds to the smaller amplitude of the wave, has to be in the interval (−1, 1). For a mean

magnetic field equal to zero the constants B = 0 and λ = 0 in the homogeneous frame, and the

mean values of electric and magnetic fields vanish in the laboratory or any other frame. The

oscillation of y then is symmetric around y = 0 and the integration is between the values −1

and 1.

Let us denote the lowest allowed value of y by y1. The demand that the change in phase is

π in half a cycle of the wave can be expressed as:

π =

∫ 1

y1

dy

dy/dτ
(8.41)

where y1 is another turning point of y, like the point y0 = 1 which is a root of the denominator

dy/dτ (uy = 0 at y = 1 from the initial conditions). The value y1 corresponds to another point
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where the denominator of 8.41 or equivalently uy becomes zero. In order, then, to find y1, one

must find a root of the denominator y1 that lies in the interval (−1, 1) and make sure that the

quartic polynomial in the numerator of 8.36 remains positive between y1 and 1. The numerator

of 8.36 is

(1 − y){(1 − y)[(y + 1)2 − 4λ2 − q] + qQ}

so one needs to find a root of the cubic equation

(1 − y)[(y + 1)2 − 4λ2 − q] + qQ = 0

in the interval (−1, 1). This can be achieved through the trigonometric solution to a cubic, in

the case that the cubic has three real roots, or by the reduction to a monic trinomial and then

to a binomial, if the cubic has only one root. To be complete, this standard material is briefly

presented in Appendix B.

Once the appropriate root has been found, the integration can be performed numerically,

taking care of the integrable singularities at y1 and y0 = 1. In a similar way one can calculate

the mean quantities in the wave. For some quantity A than depends on y, like ux or γ, the mean

can be calculated as

〈A〉 =
1

π

∫ 1

y1

A(y)

dy/dτ
dy (8.42)

8.2 Conserved quantities

The mathematical treatment of the non-linear extraordinary mode presented above was con-

ducted following the calculation of Kennel and Pellat [41]. Non-linear superluminal waves have

been investigated in their own right (see, for example [58], [15],[16]), or in relation to pulsar

outflows ([2],[3]), not, however, in the c context of the conversion of a striped wind to a different

wave mode. This is what we will attempt in the remainder of this chapter.

In the previous chapter, we introduced the three parameters µ, ν and η, which are connected

with the particle, energy, momentum and magnetic fluxes in the outflow. These are conserved

in the striped wind and have to be conserved also across the surface at which it converts to a

superluminal wave. This dictates the ”jump conditions” of the conversion, in analogy to the

conditions at a shock front. The quantities µ, ν and η, then, have to be expressed in terms of

the wave parameters.

We have worked in the homogeneous frame up to now, but the fluxes are expressed in the

laboratory frame. We introduce, therefore, the group velocity of the wave β∗, which is the velocity

of a Lorentz transformation that brings us from the homogeneous to the laboratory frame. The

magnitude of the group velocity is the inverse of that of the phase velocity: β∗ = 1/βφ. We take

the wave propagation to be inwards, i.e. from the shock and towards the pulsar. The reason

for this is that we are looking for non-linear waves which, as explained in the previous chapter,

arise through the interaction of the flow with the shock front and appear as a precursor to the

shock.

The quantities 〈F 〉 and 〈K〉, introduced in Chapter 6 and expressed in terms of striped wind

parameters in Chapter 7, are the phase-averaged components T 01 and T 11 of the sum of the
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stress-momentum tensors of the particles and the fields in the wave. The transformations of

these quantities from the homogeneous frame to a frame moving in the positive x−direction

with respect to it, i.e. the laboratory frame, are:

T ′01 = 〈F ′〉 = −β∗γ
2
∗

(

T 00 + T 11
)

+ γ2
∗

(

1 + β2
∗

)

T 01 (8.43)

T ′11 = 〈K ′〉 = γ2
∗

(

β2
∗T

00 + T 11
)

− 2β∗γ
2
∗T

01 (8.44)

where γ∗ is the Lorentz factor of the transformation from the homogeneous to the laboratory

frame

γ∗ =
(

1 − β2
∗

)−1/2

The quantity 〈H〉, which depends on the phase average of the electric field transforms as

〈H ′〉 =
γ2
∗(〈E〉 − β∗B)2

8π
(8.45)

and the particle flux is the x−component of the four-vector (nγ, nu) and is transformed in the

primed frame as

〈J ′〉 = 2γ∗(〈nux〉 − β∗〈nγ〉)c (8.46)

with n the proper density of each species. Taking advantage of the fact that the quantity nγ is

constant and equal to n0γ0 we can write the last equation as:

〈J ′〉 = 2n0γ0γ∗

(

〈ux

γ
〉 − β∗

)

(8.47)

The relevant components of the phased-averaged stress-momentum tensors of the particles

in the homogeneous frame is [63]:

T 00
part = 2mc2〈nγ2〉 = 2n0γ0mc2〈γ〉 (8.48)

T 01
part = 2mc2〈nγux〉 = 2n0γ0mc2〈ux〉 (8.49)

T 11
part = 2mc3〈nu2

x〉 = 2n0γ0mc3〈u
2
x

γ
〉 (8.50)

and for the electromagnetic field

T 00
EM =

〈E2〉 + B2

8π
=

〈y2〉 + λ2

8π
(8.51)

T 01
EM =

c〈E〉B
4π

=
c〈y〉B

4π
(8.52)

T 11
EM = T 00

EM (8.53)

where B does not need averaging since it is constant in the homogeneous frame, and

λ =
Ω

ν0
=

B

E0
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y =
ν

ν0
=

E

E0

Taking these equations into account we can calculate µ, ν and η by dividing 8.43,8.44 and

8.45 by the particle flux ??:

µ =
1

2n0γ0

(

〈ux

γ 〉 − β∗

)

[

−β2
∗γ∗

(

T 00 + T 11
)

+ γ∗
(

1 + β2
∗

)

T 01
]

(8.54)

ν =
1

2n0γ0

(

〈ux

γ 〉 − β∗

)

[

γ∗
(

β2
∗T

00 + T 11
)

− 2β∗γ∗T
01
]

(8.55)

η =
2γ0γ∗ (〈y〉 − β∗λ)2

q
(

〈ux

γ 〉 − β∗

) (8.56)

The constants µ, ν and η are specified for a given pulsar through equations7.12. In the

transition from the striped wind to the superluminal wave these quantities have to be conserved.

For given values of the conserved quantities and a group speed β∗, equations 8.54,8.55,8.56

constitute a non-linear system with three unknowns, which are the variables λ, q and p0. Here

we restrict ourselves to 0 ≤ β∗ < 1, i.e. for inwards propagating modes.

The system 8.54,8.55,8.56 can be solved numerically using the multi-dimensional Newton

Raphson method. However, in order that the method converges to a solution, one needs as

input a guess that is close enough to the real solution. In the next section we will describe a

way to get such a solution, for the case β∗.

8.3 The β∗ = 0 case

Waves propagating upstream from the termination shock have a minimum group velocity β∗ = 0,

which corresponds to infinite phase speed. In this case the homogeneous frame coincides with

the laboratory (shock) frame, which means that the wave is stationary in that frame, and one

can calculate µ, ν and η as:

µ =
T 01

mc〈J〉 (8.57)

ν =
T 11

mc2〈J〉 (8.58)

η =
〈y〉2E2

0

8πmc〈J〉 (8.59)

where all quantities are calculated in the homogeneous frame and can be derived from the

formulae given in the last section for β∗ = 0 and γ∗ = 1. The particle flux is

〈J〉 = 2n0γ0c〈
ux

γ
〉 (8.60)
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and 〈F 〉,〈K〉 and 〈H〉 are:

〈F 〉 = 2n0γ0mc2〈ux〉 + c
〈y〉λ
4π

E2
0 (8.61)

〈K〉 = 2n0γ0mc3〈u
2
x

γ
〉 +

〈y2〉 + λ2

8π
E2

0 (8.62)

〈H〉 =
〈y〉2E2

0

8π
(8.63)

From 8.34, 8.35 and 8.37 we have

〈ux〉 = p0 +
4λγ0

q
(1 − 〈y〉) (8.64)

〈γ〉 = γ0 +
2γ0

q

(

1 − 〈y2〉
)

(8.65)

Inserting these into the equations for 〈F 〉,〈K〉 and 〈H〉 and dividing by mc〈J〉 or mc2〈J〉 as

appropriate we arrive to the expressions for µ,ν and η:

µ = 〈ux

γ
〉−1

(

p0 + 4
γ0λ

q

)

(8.66)

ν = 〈ux

γ
〉−1

[

〈u
2
x

γ
〉 +

2γ0

q

(

〈y2〉 + λ2
)

]

(8.67)

η = 〈ux

γ
〉−1 2γ0〈y〉2

q
(8.68)

These equations involve integrals of the type 8.42, which are cumbersome to calculate analytically,

and even if one were to calculate them the solution of the above system of equations for (λ, q, p0)

would not be feasible analytically. In the next paragraph we will simplify these equations in order

to get simple approximate solutions for (λ, q, p0). These solutions will be used subsequently to

calculate accurate solutions by numerical root finding of the system 8.54, 8.55 and 8.56.

8.3.1 The large amplitude limit

In order to simplify the system of equations 8.66,8.67,8.68 we introduce the small parameter ǫ,

which is defined by q = 4γ0ǫ. For a large amplitude wave, q ≪ 1 and ǫ ≪ 1. We will assume

that the superluminal waves corresponding to the solutions of the above system of equations for

a pulsar wind fulfill the large amplitude wave criterion. This requires

λ

ǫ
≫ p0

and also

γ0 ≪ 1

ǫ

in which case 8.64 and 8.65 can be approximated as

〈ux〉 ≃
λ

ǫ
(1 − 〈y〉) (8.69)

〈γ〉 ≃ 1

2ǫ

(

1 − 〈y2〉
)

(8.70)
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Figure 8.1: λ as a function of θ2 in the q → 0 approximation.
Numerical solution of equation 8.78 for Γ = 100, σ = 100 as a function of θ2 in the case where
the homogeneous frame and the laboratory (shock) frame coincide. When θ = 0 we are at the
wind’s equator, and the mean magnetic field in the superluminal wave is zero, λ = 0. When
θ2 → 1 we move towards the highest latitude in the wind, where the magnetic field becomes
constant. Then for the superluminal wave solution λ ∼ 1: the magnitude of the magnetic field
is close to the electric field amplitude, and y1 → 1, which means that the wave disappears and
gives its place to a constant field solution. For Γ = 100, σ = 100 the solution for θ2 = 1 gives
λθ2=1 = 0.994.

These approximations hold so long as 〈y〉 and 〈y2〉 are not very close to unity. This condition

means essentially that the valid region to look for large amplitude wave solutions is away from

the latitudes where we would have θ ≃ 1 in the striped wind, where the oscillation of the electric

field is small and the field has an almost constant value. Practically, one can calculate solutions

of 8.54,8.55 and 8.56 for values of θ very close to unity, depending on the chosen values for µ

and ν, without encountering computational problems.

Using the approximation q → 0 one can simplify the differential equation for the field to:

α2ν2
0

(

dy

dτ

)2

=
(y + 1)2 − 4λ2

(1 + y)2
(8.71)

and the dispersion relation becomes

αν0 = π

(

∫ 2

y1

(1 + y)dy
√

(1 + y)2 − 4λ2

)−1

(8.72)
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Figure 8.2: The parameter ǫ = q/4γ0 as a function of θ2 in the q → 0 limit.
The logarithm of the parameter ǫ is plotted against θ2. It is seen that ǫ ≪ 1 for all but the
smallest θ2 values, i.e. for the whole wind apart from a small region around the equator.

where now y1 = −1 + 2λ. The integration yields

αν0 =
π

2
√

1 − λ2
(8.73)

Equations 8.66 and 8.68 become:

µ = 〈ux

γ
〉−1 λ

ǫ
(8.74)

η = 〈ux

γ
〉−1 〈y〉2

2ǫ
(8.75)

from which we can extract an equation for λ:

µ

η
=

2λ

〈y〉2 (8.76)

The integration of y gives

〈y〉 =
λ2

√
1 − λ2

ln Λ

where

Λ =
1 +

√
1 − λ2

λ
(8.77)

In this way we arrive at an algebraic equation for λ:

ln Λ −
√

2η

µ

√

1 − λ2

λ3
= 0 (8.78)
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Figure 8.3: The magnitude of the initial value of the normalized four-momentum p0

as a function of θ2. The logarithm |p0| is plotted.
The initial four-velocity as a function of θ2. The downwards spike corresponds to the point where
the value of p0 turns from negative (for smaller θ2 values) to positive (for larger θ2 values), and
then back to negative for θ2 approaching unity.

which can be solved numerically. The ratio 2η/µ that appears in 8.78 depends on the parameter

θ which rises from the equator to the edge of the wind region:

2η

µ
=

βMHDσθ2

1 + σ

For a highly magnetized ultrarelativistic outflow, σ ≫ 1 and βMHD ≃ 1 so that

2η

µ
≃ θ2

and 8.78 becomes

ln Λ −
√

θ2

√

1 − λ2

λ3
= 0 (8.79)

The parameter λ, therefore, that expresses the ratio of the magnetic field to the electric field

amplitude in a large amplitude superluminal wave in an ultrarelativistic, highly magnetized

wind, depends only on the ratio θ of the mean magnetic field to the amplitude of the magnetic

field in the striped wind which converts to a superluminal mode.

Equation 8.78 or 8.79 can be solved numerically for different values of θ2, in a wind with fixed

Γ and σ. We have solved 8.78 for σ = 100 and Γ = 100 using Mathematica for 0 < θ2 < 1 and the

result is plotted in figure 8.1. These values of Γ and σ will be used from now in our calculations.

We will use θ2 rather than θ as a free parameter, since θ can be positive or negative, depending

on which hemisphere of the wind it refers to, however results depend only on its magnitude, or
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Figure 8.4: The initial three-velocity given by β0 = p0/γ0 = p0/
√

1 + p2
0.

The initial velocity in the radial direction. For the lower θ2 values β0 is negative and it turns
positive for larger θ2. The particle flux is defined by the phase average of the quantity ux/γ and
is always positive.

equivalently, θ2.

From the approximate expressions for µ or η, 8.74 or 8.75 we can now calculate the small

parameter ǫ as a function of θ. To do this we need the expression:

〈ux

γ
〉 =

〈y〉
λ

=
λ√

1 − λ2
ln Λ

which has been calculated using the approximations 8.65 and 8.64. We have then

ǫ =
λ3/2

√
2µη

(8.80)

or, for Γ ≫ 1 and σ ≫ 1

ǫ ≃ λ3/2

Γσ|θ|

The value of ǫ as a function of θ2 calculated from 8.80 is shown in figure 8.2.

The third parameter we need to calculate is the initial four-velocity p0. We have not used the

equation for ν up to now. Due to the near-degeneracy of µ and ν for a striped wind with Γ ≫ 1

and σ ≫ 1 we can use equation 8.67 in order to calculate p0, by using the same approximations

we have used up to now in this section but keeping one first-order term in p0 in the numerator

of the ratio u2
x/γ, in order to make the last variable p0 appear in perturbing the zeroth-order
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approximation for u2
x/γ. This ratio is then approximated by

u2
x

γ
=

4p0λ(1 − y) + 2λ2/ǫ(1 − y2)

1 − y2
(8.81)

For the calculation of ν we also need the phase average of y2:

〈y2〉 =
1 + 8λ2

3
− 2

λ2

√
1 − λ2

ln Λ

Then p0 can be calculated as a function of ν, λ and ǫ:

p0 =
ν

2
− λ

2ǫ
− (1 − λ2)3/2

12ǫλ ln Λ
(8.82)

In figure 8.3 we have plotted the logarithm of the magnitude of p0. Because p0 changes sign in

the interval 0 < θ < 1 we have also plotted the x−component of the three-velocity β0 = p0/γ0

in figure 8.4.

In the way described in this section we have achieved to calculate a set of parameters (λ, q =

4γ0ǫ, p0) that approximately solve the set of equations 8.66,8.67,8.68 for each value of θ2 in a

wind of definite µ and ν. These values are approximate: they will be used as an initial guess

to the numerical calculation of the root of the equations 8.54, 8.55 and 8.56 for β∗ = 0 and

consequently for the general case β∗ 6= 0 in which the superluminal wave propagates in the

upstream.

8.4 Propagation in the upstream: exact solutions

The approximate solutions we calculated in the previous paragraph are to be taken with caution.

In keeping first-order terms in p0 in the expression of u2
x/γ we have ignored terms coming from γ0

in the full expression of γ in the denominator. For this reason we will not draw any conclusions

about the properties of the waves under investigation from them. Their sole purpose is to be

used as starting points for the iterative numerical solution of the exact equations 8.54-8.56.

Because these approximate solutions were reached under the condition β∗ = 0, the first step

in the numerical solution of the exact equations is to solve them for β∗ = 0 using the set of

parameters (λ, q, p0) calculated approximately, as a guess for the multi-dimensional Newton-

Raphson subroutine [74]. If a solution is reached, then we make a small step in β∗ and use

the values of (λ, q, p0) found for β∗ = 0 as a guess for the roots of the system 8.54-8.56 for the

new β∗ value. The iteration is continued in this way for small steps in β∗ using each time the

previous solution as a guess for the next value of β∗ It turns out that at some point no solution

can be found numerically once a maximum value of β∗ has been reached. This maximum value

corresponds to a minimum phase speed. After reaching this extremum we iterate back towards

smaller β∗. In this way we trace out a smooth curve in the four dimensional space (λ, q, p0, β∗).

In order to connect results in the laboratory frame with a radius in the pulsar wind, we have

to connect the luminosity of the wind to the energy flux at some radius. To achieve that we

make use of the condition of conservation of particle flux during the conversion of the striped
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wind to a superluminal wave:

〈J ′〉 = 2n0γ0cγ∗

(

〈ux

γ
〉 − β∗

)

= 2NΓβMHDc (8.83)

From equation 8.47 then, we have

F = µmc2〈J ′〉 = µ2n0γ0mc3γ∗

(

〈ux

γ
〉 − β∗

)

=
L

Ωwr2
(8.84)

or, using the normalized radius ̺

Lω2

Ωw̺2c2
= µ2n0γ0mc3γ∗

(

〈ux

γ
〉 − β∗

)

(8.85)

The rest frame number density n0 is an unknown, however it is possible to calculate it from the

dispersion equation 8.41 using 8.36. From those we can calculate the quantity αν0 as a function

of the solution (λ, q, p0) of our non-linear system of equations. Then we use:

αν0 =
ω2

2γ0ω2
p0

ν0 (8.86)

to which we can substitute ν0 from the definition of q:

ν0 =
4γ0

αν0q
(8.87)

which gives us

n0 =
2ω2

q(αν0)2
m

4πe2
(8.88)

Substituting this to the expression 8.85 we get

̺ = aLαν0

√

q

4γ0µ

[

γ∗

(

〈ux

γ
〉 − β∗

)]−1/2

(8.89)

where the parameter aL is defined as

aL =

√

4πe2L
Ωwm2c5

This corresponds to a strength parameter at the light cylinder aL = eEeff/(mcω) of a wave, the

electric field of which is given by E2
eff = 4π〈F 〉/c (see [43]).

Let us now introduce a new radius variable:

R =
̺
√

µ

aL
(8.90)

Now R depends only on q, p0, λ and the phase velocity:

R = αν0

√

q

4γ0

[

γ∗

(

〈ux

γ
〉 − β∗

)]−1/2

(8.91)
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Figure 8.5: The minimum βφ as a function of θ2.
The vertical green line is the limit θ2 = 0.432. The logarithm of the minimum phase speed is
plotted. For θ2 < 0.433 we have not found inward propagating solutions for the case Γ = 100,
σ = 100.

This variable is independent of the pulsar’s luminosity, and we will use it for our following plots.

8.4.1 Minimum phase velocity

As we have already mentioned, we have numerically solved the equations 8.54, 8.55 and 8.56

for the values Γ = 100 and σ = 100, which correspond to µ = Γ(1 + σ) = 10100 and ν =

(Γ2 − 1)−1/2
[

Γ2(1 + σ) − (1 + σ/2)
]

= 10099.995 and for a set of different θ2 values in the

interval 0 ≤ θ2 ≤ 1. Specifically, we have started from the value θ2 = 0.001 and have solved

the above equations for 1000 θ2 values, using the step δθ2 = 0.001. Using the method described

above, for each θ2 we started our iteration from the value β∗ = 0 which corresponds to βφ → ∞
and calculated the solution (λ, q, p0) for small steps in β∗. From the calculation it turns out that

for each value of θ2, to which a set of equations corresponds, there is a maximum value of β∗

for which there are solutions. This β∗,max corresponds to a minimum phase velocity βφ,min.

For θ2 = 1, βφ,min is very close to unity. However as one moves to lower θ2, βφ,min rises, until

for some value of θ2 βφ,min → ∞ and there is no solution of the equations 8.54,8.55,8.56 below

this value. For the example we have calculated, a finite βφ,min exists for θ2 ≥ 0.433. This is

shown in figure 8.5 where we have plotted the logarithm of βφ,min as a function of θ2. The large

rise towards lower θ2 is evident. Below the green line, θ2 ≃ 0.432 there is no inward propagating

solution, and also no standing wave solutions in the laboratory frame (solutions with β∗ = 0)

which means that the striped wind cannot convert to an inward propagating wave in the lower

latitudes.

Connecting solutions with the dimensionless radius R from the equations 8.89 and 8.90

we can plot the Lorentz factor γ∗ corresponding to the phase velocity of the wave through
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Figure 8.6: The Lorentz factor γ∗ as a function of the dimensionless radius R for
various values of θ2, in the case Γ = 100, σ = 100.
The peak of each curve corresponds to a maximum value of γ∗ which is connected to a minimum
value in phase velocity βφ, as seen in figure 8.5. Conversion from the striped wind to the
superluminal inwards propagating mode happens at each latitude inside of a finite range of radii,
which is smaller than an order of magnitude in R.

γ∗ = βφ/
√

β2
φ − 1. In figure 8.6 we show γ∗ as a function of R for different values of θ2. Here

we can see that the conversion of the wind into a wave, either standing or inward propagating,

is only possible for certain radius intervals. These intervals depend on θ2, however the variation

is not large: from the largest radius (for θ2 = 1) to the lowest where conversion can occur,

the difference in R is one order of magnitude, which means that the whole wind converts to a

superluminal wave within a restricted radius interval.

8.4.2 A new ”magnetization” parameter

In order to estimate how much energy is transferred from the fields to the particles in the

transition from the striped wind to the superluminal wave, we introduce a new ”magnetization

parameter” which is defined as the phase-averaged Poynting flux in the laboratory frame divided

by the phase-averaged kinetic energy flux in the same frame. In other words, it is the ratio of the

T 01 components of the stress-energy tensor of the fields and particles in the laboratory frame.

This parameter corresponds to the magnetization parameter in the striped wind σ which is

defined in the same way. We choose the symbol σw for this new parameter:

σw =
T 01

EM,lab

T 01
part,lab

=
4γ0

q

−β∗(〈y2〉 + λ2) + (1 + β2
∗)〈y〉λ

−β∗(〈γ〉 + 〈u2
x

γ 〉) + (1 + β2
∗)〈ux〉

(8.92)

If σw/σ < 1 then during the transition from the striped wind to the superluminal wave
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Figure 8.7: The maximum and minimum values of the ratio σw/σ as a function of θ2,
for the case Γ = 100 and σ = 100.

energy is transferred from the fields to the particles. In figure 8.7 we plot the logarithm of the

ratio σw/σ as a function of θ2. Plotted are the largest and lowest ratios for each θ2, which

depend on the phase velocity of the wave. It is readily seen that for all values of θ2 for which

there is a solution, σw is at least two orders of magnitude lower than σ. The ”magnetization”

in the wave is σw < 1, which means that the outflow is converted from Poynting-dominated to

kinetically dominated.

Another example: Γ = 1000, σ = 100

In order to investigate if results vary strongly when we vary parameters in the striped wind, we

repeated the above calculation for different values of µ and ν, corresponding to Γ = 1000 and

σ = 100. Some curves of γ∗ as a function of R for the same values of θ as in figure 8.6 are shown

in figure 8.8. The first result is that there is the same cutoff at values θ2 < 0.433, i.e. waves do

not propagate upstream for these values of θ2. The form of the curves γ∗ − R is very similar

in the two cases, but in the larger Lorentz factor case the dimensionless radius R is by half an

order of magnitude smaller.

Also, as we can see from figure 8.9, the drop in the magnetization is similar in the two cases:

the curves have a similar shape and the ratio σw/σ is of the same order of magnitude. The

magnetization drops also in this case by more than two orders of magnitude.

8.5 Discussion and implications for pulsar outflows

We have seen that the wind can convert to a superluminal mode in a certain allowed range of

latitudes as expressed by θ, and this conversion occurs at certain restricted range of radii. What
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Figure 8.8: The Lorentz factor γ∗ as a function of the dimensionless radius R for
various values of θ2, in the case Γ = 1000, σ = 100.
The same as 8.6, for larger Γ.

we have examined are essentially ”jump conditions”, similar to those holding for a shock, which

dictate that certain conservation laws have to hold during the transition of the wind from a

certain state (MHD striped wind) to another (superluminal wave). We have observed that this

transition can take place only in a limited range in radius. After the conversion, in order to

follow the evolution of the wave over several orders of magnitude in radii towards the termination

shock, one would have to solve the system of equations in spherical geometry, something that is

beyond the scope of the present work.

For the first case we have examined, Γ = 100, σ = 100, the dimensionless radius is confined in

the range R ∼ 10−1.7−10−0.7, while in the second case, Γ = 1000, σ = 100 it lies in the range R ∼
10−2.2 − 10−1.2. Most pulsars have spin-down luminosities in the range L ≃ 1033 − 1038erg/sec.

Assuming Ωw ∼ 1 we can see that the above intervals in radius translate to ̺ ∼ 102.8 − 103.8

in light cylinder radii for the lower luminosity end to ̺ ∼ 105.4 − 106.4 in the higher luminosity

end. In both the cases the result is roughly the same, because the half order of magnitude in R

is compensated by the value of
√

µ with which R is divided to get ̺. One can tentatively take

this as an indication that there is a characteristic radius of conversion, that depends only on

the pulsar’s luminosity and the solid angle Ωw, i.e. the inclination of the magnetic axis of the

pulsar with respect to its rotational axis. However, we have not examined if this radius changes

for a different value of the magnetization σ.

For a pulsar with luminosity comparable to the Crab pulsar’s, then, the conversion would

happen at a distance ∼ 106 light cylinder radii from the star. In Crab’s case, the termination

shock is estimated to be at a distance of ̺ ∼ 109 at the equator. However, the solutions we have

found correspond to larger latitudes, where the shock is predicted to be closer to the pulsar,
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Figure 8.9: The maximum and minimum values of the ratio σw/σ as a function of θ2,
for the case Γ = 1000 and σ = 100.

due to the diminished energy carried in higher latitudes in combination with the condition of

pressure balance between the nebula and the wind’s ram pressure at the shock (see for example

Lyubarsky 2002 [55] for a more detailed explanation). This non-spherical shape of the shock

is shown schematically in figure 8.6. This effect is strengthened by the fall of luminosity with

latitude. We have assumed in the previous chapter that the energy imparted by the pulsar

to the wind is evenly distributed in the solid angle Ωw. If, however, this is not true, then for

larger latitudes in the wind there will be an additional fall in the allowed range of R due to the

diminishing of the energy flux in the outflow.

In this way the possibility arises that the termination shock falls into the range of radii which

we have calculated above for the corresponding θ. Should this be the case, the conversion of the

striped wind to such a wave is possible, since as we have argued the wave is generated by the

interaction of the wind with its termination shock.

There is then, in principle, a mechanism that can convert a high σ flow to a low σ one

just before the outflow reaches the termination shock. The conversion of the striped wind to

a superluminal wave is, therefore, a highly efficient mechanism for particle acceleration, where

energy is extracted from the fields and is imparted to the cold particles of the outflow. This

could lead to an extended precursor to the shock, which thermalizes particles and converts the

high-σ wind to a flow with σw ∼ 0.1 − 1 (in the cases that we have investigated, which had

initial magnetization σ = 100, see figures 8.7 and 8.9). As we have already mentioned, a low σ

flow can produce a strong shock, one that has the capability of further thermalizing the outflow

[40]. This would be in agreement with observations of the Crab nebula, to name an example,

where the magnetization downstream is estimated to be of the order σ ∼ 10−3 [40].

The special quality of the modes we have examined is that they are propagating inwards (or
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Figure 8.10: The non-sphericality of the ter-
mination shock.
The termination shock, seen as the thick black
line, is much closer to the pulsar at high lati-
tudes, because the energy flux carried by the wind
decreases towards higher latitudes (not to scale).
The figure is taken from Lyubarsky 2002 [55].

the shock frame coincides with the frame where the wave is homogeneous). The motivation to

look for such waves came from the observation, made in Chapter 7, that reflection of Poynting

flux at the termination shock can have as a result the propagation of a wave upstream and that

the interaction of a wave carried outwards from the pulsar, with a wave propagating inwards from

the termination shock will have as a result a precursor in which particles would be accelerated

because of the energy transfer from the fields to the particles of the outflow. The direction of

the phase velocity of the modes found is not important, as far as the wave is able to carry the

wind’s energy, momentum and particles outwards towards the shock during the conversion, as

indeed we have shown is the case.

8.6 Other modes and future work

Apart from the modes we have been examining, one can assume that there will exist also

linearly polarized forward- propagating waves. These are the linearly polarized counterparts

to the circularly polarized modes investigated by Kirk 2010 [43]. They are expected to have a

mean magnetic field which is zero at the equator and would rise to a value close to unity at the

highest latitude where θ2 = 1, if indeed they exist for all latitudes (something which, as we have

seen, is not the case in the stationary and backwards propagating modes).

In the present work we have not investigated forward-propagating modes, but it is logical

to assume that they exist and might have characteristics similar to their circularly polarized

counterparts as examined in [43], at least in the case where the mean field is zero. A particularly

interesting question would be whether the ratio of Poynting to kinetic energy flux in this case

would rise or fall during a conversion, since a rise was predicted for the circularly polarized

modes.

In the present work we have refrained from investigating these modes, because we were

explicitly looking for waves propagating upstream, as a result of the interaction of the wind

with the termination shock. However, they could be the object of a future investigation, since

outgoing waves could exist where the ingoing ones cannot propagate, i.e. for the lower latitudes.

In the calculations presented in this chapter, we have attempted to give some meaningful
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results for two sets of realistic parameters in pulsar winds. The numerical calculation of these

results is difficult when the Lorentz factor of the outflow or the magnetization parameter become

large, due to the near-degeneracy of µ and ν. However, one might attempt to compute solutions

for realistic values of Γ and σ as inferred from observations and simulations of pulsar winds in

order to apply them to individual objects. In the case of isolated pulsars (for example the well-

known and well-studied Crab and Vela pulsars) the magnetization problem might be addressed,

while in the case of pulsars in binary systems (for example systems with a Be star like the TeV

binary PSR B1259-63) one could investigate the effects of the conversion to a superluminal mode

when two stellar winds collide.

A significant issue that arises here is that of radiation. Since the cold wind particles are

accelerated during the conversion process, they are expected to radiate in the electromagnetic

field of the wave. The particles are highly relativistic and the radiation will be beamed in the

direction of propagation of the wind, so it would be important to find out whether this radiation

is observable or not. Furthermore, since the wave has the frequency of the rotator, another

interesting question would be whether the radiation reaching an observer would be continuous

or pulsed.

Asseo et al. [1] have predicted that a superluminal linearly polarized plane wave in a rapid

rotator like the Crab pulsar will be damped within ∼ 10 wavelengths due to radiation reaction.

However their discussion was taking into account only outward propagating waves with a mean

magnetic field equal to zero. Since the outward and inward propagating modes are expected to

have different characteristics, it would be interesting to investigate whether radiation damping

would be significant for the modes examined in this chapter. The same investigation might be

applied to outward propagating waves with non-zero average fields, since the 〈B〉 = 0 case is

very special and applies only at a pulsar wind’s equator.



Chapter 9

Summary and Conclusions

In this last chapter we briefly summarize the methods and results of our research in the subjects

of pair production using counter-propagating laser beams of ultra-high intensity and the con-

version of a striped pulsar wind to a superluminal wave propagating upstream from the wind’s

termination shock.

9.1 The prospect of pair production in ultra-high intensity lasers

In the first part of this thesis we investigated the possibility of prolific electron-positron pair

production using next generation laser facilities like the Vulcan 10PW ultra-high intensity laser,

or the lasers under construction in ELI facilities. We showed that the ultra-short, ultra-high

intensity laser beams expected to be produced in these and other facilities would have strength

parameters of the order of hundreds and reviewed the processes of particle acceleration, radia-

tion and pair production in the fields of strong waves. We presented two experiments that have

already lead to pair production in the laboratory, using a high-intensity laser beam as an accel-

erator of electrons in one case, and as a target for high energy electrons from a linear accelerator

in the second case. We argued that a counter-propagating beam configuration would combine

the advantages of using lasers both as accelerators and targets. Taking as a starting point the

calculations of Bell and Kirk [7], which were restricted to particle trajectories on the magnetic

field nodes of two very long, counter-propagating, circularly polarized beams, we showed that

circular polarization is actually not ideal for pair production, and that other polarizations might

be more effective in this regard.

We then numerically calculated the acceleration of electrons and the probability of pair

production by one electron in the field of linearly polarized beams of a finite duration. The

length of these pulses was set to be a few wavelengths and the polarization vectors of the two

pulses were either parallel or perpendicular. We also included one case where the second pulse

was simulating one reflected from a solid surface. The results of these calculations were that,

for intensities approaching 1024Wcm−2 the probability of one particle producing one e+ − e−

pair in the field of the counter-propagating pulses is approaching unity. The results were not

substantially different for the three cases we studied, i.e. for different polarization alignments

and pulse shapes. Conducting the same calculation for circularly polarized pulses, either of the

same or of opposite handedness, the results showed that the number of pairs produced in this
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case is reduced by several orders of magnitude.

From the results described above we can conclude that not only pair production in the

focus of linearly polarized, counter- propagating laser beams by pre-existing electrons can be

a significant effect, but also that the secondary particles can be accelerated themselves and

produce new pairs, thus initiating an electromagnetic cascade. We have estimated the threshold

for this process to be at an intensity value of I ∼ 1023.86Wcm−2. These cascades could develop

rapidly in the focus of the beams, leading possibly to the depletion of their energy.

Encouraging as these results might be, one has to consider that our calculations did not take

into account the discontinuous nature of the particle trajectory due to quantum effects in the

strong field of the interacting beams. Throughout the calculation we have treated the motion

of the electron classically, the only quantum mechanical effect being the reduction in the total

emitted radiation in strong fields given by the quantum synchrotron formula. However, it has

been predicted [81] that the quantum effects in the particle trajectories lead to a significant

spread in the electron energy which will have a positive effect on pair production [19].

9.2 Pulsar winds as large amplitude superluminal waves

In the second part of this thesis we investigated the possibility of the conversion of a striped

pulsar wind to a superluminal large amplitude wave. The motivation for the search for such

modes were the following two observations: firstly, the pulsar wind’s magnetization (the ratio

of the Poynting flux to the kinetic energy flux) is predicted to be much higher than unity

upstream of the termination shock but lower than unity in the nebula, downstream of the shock.

Secondly, unless the wind is accelerated to a very high bulk Lorentz factor, the problem of

current starvation might arise, where the currents in the wind are not able to support the fields

any more, due to the rapid decrease of particle density with radius, and displacement currents

might appear.

After reviewing the model of the pulsar’s striped wind, and noting that it is a strong wave

with strength parameter decreasing with distance from the pulsar, we introduced a set of param-

eters that are conserved in the striped wind and also have to be conserved during the conversion

of the wind to a superluminal wave. This way we arrived at a set of ”jump conditions” for the

process discussed, to be used subsequently in fixing the characteristics of the superluminal wave

for any given pulsar wind with certain bulk Lorentz factor of the outflow Γ and magnetization

σ. Using the pulsar’s luminosity we showed how one can connect the wave solution to a certain

radius in the wind.

Consequently we derived the conditions necessary for the current sheets to be very thin

in comparison to the stripe’s wavelength, so that the wind’s field can be approximated at the

equator as a square wave, and we presented some well- known characteristics of perpendicular

shocks. We argued that, even in the absence of current starvation, where the striped wind

arrives at the shock front undisturbed, there is bound to be some reflection of Poynting flux

due to alternating currents at the shock. This wave, propagating upstream, might perturb the

trajectories of test particles in the cold wind in such a way as to cause their acceleration in the

field of the wind.
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However, an analytical description of the interaction of the two waves in a magneto- hy-

drodynamic outflow is not feasible. This is why we assumed that the interaction of the wind

with the reflected component can have as a result a new wave, propagating upstream with su-

perluminal phase speed, and investigated the possibility of the conversion of a pulsar striped

wind to this wave. We found that this conversion is not possible for all latitudes in the wind,

and there is a region around the equator where these waves cannot propagate. However, in the

region where propagation is possible, significant transfer of Poynting flux to kinetic energy flux

is predicted. This means that particles are accelerated during the conversion, and a precursor to

the termination shock is expected to form. The radii in a pulsar wind for which these solutions

exist, depend on the pulsar’s luminosity as stated above. For the Crab pulsar, these radii are

several orders of magnitude smaller than the radius of the termination shock at the equator, and

could be smaller if one takes into account the uneven distribution of luminosity with latitude.

However, the shock is expected to be closer to the pulsar’s rotational axis in higher latitudes,

for which we have found solutions. It is, therefore, possible, that a wave propagates upstream

from the shock at those latitudes, accelerating the flow, thermalizing particles and creating a

precursor where the magnetization parameter falls from a value much higher than unity to a

value slightly smaller than unity.

Even though these results are quite promising, one should take into consideration the fact

that inward-propagating solutions have not been found around the pulsar wind’s equator. It

is likely that outward propagating modes exist there, however if they behave similarly to their

circularly-polarized counterparts investigated by Kirk [43], they might not result in the transfer

of energy from the fields to the particles, but rather the opposite. Also the issues of particle

radiation and radiation damping in the superluminal waves have not been discussed in this thesis.

We leave these as a subject of a future work.
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Appendix A

Functions used in the calculation of

pair production

A.1 The functions Mi,Ji

The expressions for the functions Mi, Ji depend on combinations of the invariant parameters χ

and η. These are

ξ =
2χ

η

ζ =
2χ

3η(η − 2χ)

The functions, then, are given by the following expressions (as reviewed by Erber 1966, [20]):

M1(ξ) = 1 +
1

(1 − ξ)2
(A.1)

M2(ξ) =
2

1 − ξ
(A.2)

M3(ξ) =

(

ξ

1 − ξ

)2

(A.3)

and

J1(ζ) =
1

3ζ2

∫ ∞

ζ

sds
√

(

s
ζ

)2/3
− 1

K2
2/3(s) (A.4)

J2(ζ) =
1

3ζ

∫ ∞

ζ

(

s

ζ

)(1/3)
√

(

s

ζ

)2/3

− 1K2
1/3(s) (A.5)

J3(ζ) =
1

3ζ

∫ ∞

ζ

(

s

ζ

)

√

(

s

ζ

)2

− 1K2
1/3(s) (A.6)
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A.2 The function Ω̂(η)

The function Ω̂(η) which appears in the calculation of the trident pair production is given by

Ω̂(η) =
π

16
G6,0

2,6

(

16

9η2

1, 3/2

0 , 0 , 1/6 , 1/2 , 5/6 , 2

)

where G is the Meijer function, given by

Gm,n
p,q

(

x
a1 , . . . , ap

b1 , . . . , bq

)

≡ 1

2πi

∫

γL

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1 − aj + s)

∏p
j=n+1 Γ(aj − s)

∏q
j=m+1 Γ(1 − bj + s)

xsds

where Γ(x) is the gamma function and the contour γL lies between the poles of Γ(1 − aj + s)

and the poles of Γ(bj − s). The Meijer function has a very general formulation, which reduces

to simpler functions in many special cases.



Appendix B

Solution of a cubic equation with

three real roots

This is a standard way to solve a cubic equation with three real roots, which we include for the

sake of completeness (see for example [27]).

In order to solve the cubic, the first step is to eliminate the second-order term by a change

of variable. If the original equation is

x3 + ax2 + bx + c = 0

then the change of variable

x = u − 1

3
a

brings the equation to the form

u3 +

(

b − a2

3

)

u +

(

2a3

27
− ab

3
+ c

)

= 0

Renaming the coefficients of the first- and zero-order terms p and q respectively, the equation

to solve becomes now

u3 + pu + q = 0 (B.1)

Next we notice that for a complex number z with magnitude r and phase α, or real part x and

imaginary part y, the following expressions are true:

z = reiα = x + iy (B.2)

z3 = r3 (cos 3α + i sin 3α) (B.3)

z3 = x3 − 3xy2 − i(y3 − 3x2y) (B.4)

Taking into account that r2 = x2 + y2 B.4 becomes

z3 = x3 − 3x(r2 − x2) − i(y3 − 3x2y)
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and from B.3 and B.4 we get

4x3 − 3r2x = r3 cos 3α

Dividing by the coefficient of the first term, we finally get

x3 − 3r2

4
x − r3

4
cos α = 0 (B.5)

Equations B.5 and B.1 are of the same form, and we can equate the coefficients of the same

terms:

−3r2

4
= p (B.6)

−r3

4
cos α = q (B.7)

Solving these for r and α we have

r =

√

−4π

3
(B.8)

α =
1

3
arccos

(

−4q

r3

)

(B.9)

so that, for the cubic B.1 to have three real roots, the conditions p < 0 and

|4q
r3

| < 1

must hold.

The three roots are given, then, by:

u1 = r cos α (B.10)

u2 = r cos

(

α +
2π

3

)

(B.11)

u3 = r cos

(

α − 2π

3

)

(B.12)
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