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Zusammenfassung: In dieser Arbeit untersuchen wir die Kaiser-Squires-Broadhurst-
Methode (KSB) zur Abschützung der gravitativen Scherung anhand von Momenten
der Flächenhelligkeit kleiner und verrauschter Galaxienbilder. Wir zeigen, in welcher
Weise KSB auf einschränkenden mathematischen Annahmen beruht, die das Verhält-
nis von gefalteter zu ungefalteter Elliptizität, die Form der Punktbildfunktion des
Teleskops ebenso wie die Beziehung zwischen Elliptizität und Scherung betreffen
und von denen keine in Wirklichkeit erfüllt ist. Wir schlagen Verbesserungen des
ursprünglichen KSB-Verfahrens vor und zeigen, dass diese Erweiterungen Fehlein-
schätzungen in Scherungsmessungen deutlich reduzieren. Darüber hinaus diskutieren
wir die Unmäglichkeit, die Annahmen über die Form der Punkbildfunktion im Rah-
men von KSB abzuschwächen. Aus diesem Grund entwickeln wir eine neuartige Meth-
ode für Messungen des schwachen Gravitationslinseneffekts, DEIMOS, die auf einer
mathematisch exakten Entfaltung der Momente der scheinbaren Flächenhelligkeit von
der Punktbildfunktion beruht. Wir weisen durch eine Reihe spezailisierter Tests die
Genauigkeit und die Stärke dieser neuen Methode nach und zeigen anhand der Daten
des GREAT08-Wettbewerbs, wie konkurrenzfähig diese Methode ist.
Darüber hinaus stellen wir eine mögliche Anwendung von Scherungsmessungen auf
die Untersuchung der Eigenschaften von Galaxienhaufen dar. Sie beruht auf linearen
Filtertechniken und schätzt die innere Steigung des Dichteprofils in Halos aus dunkler
Materie ab. Wir finden, dass unter idealisierten Bedingungen die Genauigkeit der
Abschätzung bei 15 % liegt, wenn die Konzentration c des Halos bekannt ist, und
bei 30% falls nicht. Wenn die Signale vieler Halos überlagert werden können, sollten
ihre Dichteprofile daher durch den vorgeschlagenen linearen Filter gut bestimmt sein.
Gegenüber Analysen des starken Gravitationslinseneffekts hat diese Methode den
Vorteil, unempfindlich gegenüber Substrukturen in den Galaxienhaufen zu sein.

Summary: In this work we analyse the Kaiser-Squires-Broadhurst method (KSB)
to estimate gravitational shear from surface-brightness moments of small and noisy
galaxy images. We show how KSB relies on restrictive mathematical assumptions
concerning the relation between convolved and unconvolved ellipticity, the shape
of the telescope’s PSF as well as the relation between ellipticity and shear, neither
of which hold in practise. We propose improvements to the original KSB relations
and we demonstrate that this extension lowers substantially the biases in the shear
measurements. Moreover we discuss the impossibility to weaken the assumption on
the PSF shape in the KSB framework. For this reason we develop a novel method
for weak-lensing measurements, DEIMOS, which is based on a mathematically exact
deconvolution of the moments of the apparent brightness distribution of galaxies from
the PSFs. We demonstrate the accuracy and capabilities of this new method with a set
of specialized tests and show its competitive performance on the GREAT08 challenge
data.
Moreover we present a possible application of shear measurement for studying proper-
ties of galaxy clusters based on linear filtering techniques to constrain the inner slope of
the density profile of dark-matter halos. We find that under idealised assumptions, the
inner slope is constrained to ∼ 15% if the halo concentration c is known, and to <∼ 30%
if not. If the signals of many halos can be stacked, their density profiles should thus
be well constrained by the proposed linear filters with the advantage, in contrast with
strong lensing analysis, to be insensitive to the cluster substructures.



Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

Consider well the seed that gave you birth:
you were not made to live your lives as brutes,
but to be followers of worth and knowledge.

Dante (1265-1321) Inferno XXVI
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Introduction

Curiosity has often been the engine which has driven women and men
during centuries in the speculation about the universe, its origin and the
laws regulating its evolution. This Thesis is driven by the same curiosity
and tries to give a tiny little contribution to the understanding of the uni-
verse in which we find ourselves living. The knowledge of the fundamen-
tal principles regulating the cosmos, the way in which we look at Nature
as scientists, have been shaped during centuries by people’s mistakes and
intuitions. One of the first fundamental intuition was that, in order to un-
derstand how the universe works, it is necessary to record astronomical
phenomena. This idea can be traced back to Babylonian time (1900− 1200
B.C.) when for the first time eclipses, positions of the planets and rise and
setting of the Moon had been recorded. This approach, which we would
call today scientific, strongly influenced the Hellenistic and Greek astron-
omy in later times. Greeks were the first trying to connect all the available
observations of the universe to search for simple and universal laws. In
particular the conviction was that a geometrical explanation of the uni-
verse was possible. For example Plato (and other Greek thinkers later on)
attempted to reproduce the irregular observed motion of planets in the sky
employing a combinations of uniform circular motions. Aristotle on the
other hand thought that rotating spheres carrying the Moon, Sun, planets,
and stars around a stationary Earth could have been the explanation for
the observed motions. Plato’s and Aristotle’s ideas have been coded in
the Almagest1 by Ptolomey (100-175 A.D.) in the 150 A.D. All these ideas,
which we know nowadays to be wrong, influenced specially the western
science for almost thousand years.

A new era for cosmology started when Nasir al-Din al-Tusi (1201-1274)
proposed a geometrical technique, called Tusi-couple, which generates lin-
ear motion from the sum of two circular motions. This was a very im-
portant achievement since allowed to abandon the equant2 introduced by
Ptolomy to explain the observed motion of planets. Copernicus (1473-
1543) made use of this important result in 15433 when he formulated his
heliocentric model. Galileo Galilei (1564-1642), Tycho Brahe (1546-1601)
and Johannes Kepler (1571-1630) observations gave confirmations to this
new vision of the universe and Newton (1642-1726) explained with his law
of gravitation, either the laws that Kepler found about the motion of plan-

1Almagest’s name comes from the Arabic name ’El-kitab-ul-majisti’ meaning ’The Great
Compilation’

2The equant was a point near the center of a planet’s orbit which, if you were to stand
there and watch, the centre of the planet’s epicycle would always appear to move at the
same speed.

3De revolutionibus orbium coelestium
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Introduction

ets, as well as the observed anomalies in the orbits caused by gravitational
interaction between the planets.

Modern cosmology began in 1915 when Einstein published his the-
ory of General Relativity. Some years later, in 1922 Friedmann derived
a class of solutions from Einstein’s equation under the assumption that
the universe is homogeneous and isotropic. There were not any observa-
tions at that time supporting this assumption, and so it remained till 1964
when Penzias and Wilson (1965) discovered the a microwaves background
radiation (CMB) with almost the same intensity, ∼ 3K, in all directions
in the sky. Surprisingly for almost all scientists in the twenties, Fried-
mann solutions were not describing a static universe, but were suggesting
that the universe was expanding or contracting. Einstein realised that the
only possibility to produce a static universe was to introduce a constant
term into his equations, the so-called cosmological constant. However in
the 1930s Slipher, Hubble and Humanson discovered, observing distant
galaxies, that the recession velocity of the galaxies was proportional to
their distance from the earth, meaning that the universe was expanding
in a way compatible with Friedmann’s solutions. For this reason the idea
of a cosmological constant was quickly abandoned. Almost in the same
years (Zwicky, 1933), studying galaxy clusters, found the first evidence of
matter that interacts through gravitation but not through the electromag-
netism, so it emits no light. Due to this property it has been called "dark
matter". Current observations (e.g. Komatsu et al., 2009) show that almost
25% of the energy-density content of the universe is in this form, while
only few percent is in the form of normal baryonic matter. In the 1990s
two important results were achieved: WMAP showed that the universe
is spatially flat with very high precision and there was the first evidence,
coming from supernova studies (Riess et al., 1998), that the universe is ac-
celerating. This was the reason to re-introduce the cosmological costant,
which acting effectively as a term counteracting gravity, was able to ex-
plain the observed acceleration. Surprisingly enough it was discovered
that the cosmological constant (or dark energy as it has been called later
to include a larger class of cosmological models) constitutes 70% of the
energy-density of the universe nowadays. The current model of the uni-
verse, built on the evidence we just briefly mentioned above, is usually
called ΛCDM. Testing this model with high precision, and understand-
ing the very nature of dark matter and dark energy, is one of the greatest
challenge of modern cosmology.

Gravitational lensing has become in the last decade a competitive cos-
mological tool. Among other cosmological probes (CMB, supernovae,
baryonic acoustic oscillations,...) it has the peculiarity of tracing directly
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Introduction

the matter distribution in the universe, without any assumptions on how
light traces the underlying matter.

Significant lensing signals produced by the large scale structure of the
universe (the so-called cosmic shear), have been detected in many studies
(see Bacon et al., 2000; Kaiser, 2000; Benjamin et al., 2007, for recent exam-
ples), and evidence for accelerated expansion (Schrabback et al., 2010) has
also been found.

Moreover it has been shown that lensing can constrain properties of
dark matter halos and can be used to reconstruct the mass distribution
of galaxy clusters, without any assumption on their dynamical status
(Bartelmann and Schneider, 2001).

Gravitational lensing acts in practise as a coordinate transformation
which modifies the shape of a distant object when matter is present along
the line of sight. This transformation can be expressed, at low orders, in
terms of spinorial field, the shear, the convergence, the G-flexion and the
F -flexion, which are related to the derivatives of the gravitational poten-
tial. Each of these fields can be linked to a particular deformation of the
object’s shape.

Measuring those deformations, which are usually very tiny, is very
challenging, given the fact that the intrinsic shape of the objects is un-
known, blurring, noise and pixelation massively degrade the quality of
the image and moreover the signal is convolved with the telescope’s PSF.
We will extensively discuss this aspect in chapter 3.

Different methods have been developed in the last 15 years for measur-
ing the shear (e.g Kaiser et al., 1995; Refregier and Bacon, 2003; Miller et al.,
2007), but none of them turned out to perform well enough in terms of
precision and accuracy to be adopted by the whole community. Different
testing programs (Heymans et al., 2006; Massey et al., 2007b; Bridle et al.,
2010) have been recently set up in order to test the different pipelines. The
main result was that almost all the current methods, if properly calibrated,
perform well enough to exploit the current surveys. However it has been
shown that the present accuracy is not sufficient to fully exploit the next-
generation surveys (e.g. EUCLID4, JDEM5, DES6, LSST7), in particular if
the goal is to achieve percent accuracy on the dark energy equation of state
(Amara and Réfrégier, 2008).

Particularly concerning are systematic biases in shear estimates, which
do not vanish when averaged over a large ensemble of lensed galaxies.
These biases often stem from assumptions made in the derivation or im-

4http://sci.esa.int/euclid
5http://jdem.gsfc.nasa.gov
6http://www.darkenergysurvey.org
7http://www.lsst.org
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Introduction

plementation of shear estimation methods, which do not hold in reality.

In this Thesis I investigate the so-called model-independent methods,
which try to assume as little information as possible about the data to be
analysed, in contrast with the model-dependent approaches which require
assumptions on galaxy and PSF shapes.

The prototype of thosemethods is KSB (Kaiser et al., 1995) which forms
a shear estimator from the second-ordermoments of lensed galaxy images.
When doing so, it is not guaranteed that reasonable shear estimates can
be achieved for each galaxy. Consequently, KSB requires a careful setup,
which is adjusted to the characteristics of the data to be analyzed. More-
over KSB employs strong assumptions on the PSF shape, which are not
necessarily fulfilled for a given telescope or observation (Kuijken, 1999a).
I will show in chapter 4 how KSB relies on several other assumptions con-
cerning the relation between convolved and unconvolved ellipticity as well
as the relation between ellipticity and shear, neither of which hold in prac-
tice. Furthermore I will discuss how improvements to the original KSB
relations can be incorporated such that the shear estimates remain free of
bias in a wider range of galactic and PSF parameters.

This analysis left some opened questions in particular about the PSF
deconvolution.

I will present in chapter 5 a novel model independent method for
weak-lensing measurements (DEIMOS), which employs a mathematically
exact deconvolution of the moments of the apparent brightness distribu-
tion of galaxies from the PSF, never done in practise in the KSB framework.

In the last four years there have been attempts to include flexion in
the weak lensing analysis. Flexion is related to the third derivative of the
potential, and is a direct tracer of local variations of shear (G-flexion) and
convergence (F -flexion). Theoretical studies (Bacon et al. 2006, Goldberg
et al. 2007) demonstrated that gravitational flexion might be able to pro-
vide information in the intermediate regime between pure weak-lensing
(shear only) and strong lensing, allowing, for example, to improve cluster
mass reconstruction. Moreover, being sensitive to local variations of shear
and convergence, it can be used to detect substructures in galaxy clusters,
which are undetectable using only shear measurements.

Measuring flexion is even more challenging than measuring shear,
given the fact that higher moments of the surface-brightness distribution
have to be measured. In the last four years there have been different
attempts of extending the methods used for shear measurement to flex-
ion. In particular extensions of shapelets and KSB have been proposed
(Massey et al., 2007b; Okura et al., 2007).

I will present in chapter 3 some theoretical calculations demonstrating
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that measuring flexion is not only challenging from a practical point of
view, but also the interpretation of the measured signal might be prob-
lematic closed to the centre of galaxy clusters. In fact, in regions where
the shear is not small, the cross talk between shear and flexion can give
rise to fields with exactly the same spin properties of the flexion fields.
This leads to a possible contamination of the flexion field which has to be
taken into account.

In chapter 6 I will present a possible application of shear measure-
ments for studying properties of galaxy clusters. In particular I will present
two optimal filtering techniques which allow to constrain the inner slope
of dark matter halos using weak lensing information. I discuss in details
under which condition such methods can be applied and which are the
accuracy we expect to achieve under realistic conditions.

Part of the work presented in this Thesis is contained in 3 published
papers:

• Viola M., Melchior P., Bartelmann M. 2010 "Biases in, and corrections
to, KSB shear measurements"(arXiv:1006.2470, accepted for publication
by MNRAS)8

• Melchior P., Viola M., Schäfer B.M., Bartelmann M. 2010 "Weak grav-
itational lensing with DEIMOS"(arXiv:1008.1076, accepted for publi-
cation by MNRAS)9

• Viola M., Maturi M., Bartelmann M. 2010 "Constraints on the inner
density profile of dark-matter haloes from weak gravitational lensing" (MN-
RAS 403:859-869)10

8Part of chapter 3 and chapter 4
9Chapter 5
10Chapter 6
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Leva dunque, lettore, a l’alte rote
meco la vista, dritto a quella parte
dove l’un moto e l’altro si percuote0

Dante (1265-1321) Paradiso X 1
Cosmology

This first chapter is a collection of the most important equations and
ideas on which our understanding of the universe is based on. We will
not give here a complete and extended overview, for which we refer to
(Peacock and Murdin, 2002; Coles and Lucchin, 2002; Bartelmann, 2010),
but we will simply introduce the main concepts that are necessary to un-
derstand lensing theory and its applications discussed in the rest of the
Thesis.

1.1 General relativity and cosmological principle

General relativity is a description of gravity as a geometric property of
the space time and up to now is the best description of gravitation in
modern physics. The main idea on which the theory is based on may
be summarized as follows: "spacetime tells matter how to move and matter
tells spacetime how to curve"1 In mathematical terms this is described by the
so-called Einstein field equation:

Rµν −
1

2
gµνR+ Λgµν = KTµν (1.1)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric
of the spacetime, Tµν is the energy-density tensor and K and Λ are two
constants. The so-called Einstein tensor, Gµν = Rµν − 1

2 gµνR, expresses
the curvature of the spacetime, Tµν its energy-density content and Λgµν

is a term proportional to the metric which can be arbitrarily added since
it leaves unaffected the energy conservation law (T

µν
;ν = 0). The value of

K can be fixed requiring that, in the limit of weak gravitational field, the
Newton law is recovered. This leads to:

K =
8πG

c4
(1.2)

0Then, reader, lift your eyes with me to see/the high wheels; gaze directly at that
part/where the one motion strikes against the other

1This famous definition is by John Archibald Wheeler (1911-2008).
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CHAPTER 1. COSMOLOGY

where G = 6.673 × 10−11 m3kg−1s−2 is the gravitational constant, c =
299792458 m/s is the speed of light .

The value of Λ, which is historically known as cosmological constant, has
to be determined from observations. Setting Tµν = 0 in equation 1.1, Λgµν

can be interpreted as a source term for gravity corresponding to a vacuum
energy density2. There are however other possible interpretations such
that the source is not a density associated with the vacuum, but rather a
new field, Dark Energy, whose energy density may evolve with time.

In order to apply Einstein equation for describing our universe it is
necessary to make some assumptions about the metric of the spacetime
and about the content of the universe.

Many models for the universe are based on the so called Cosmological
principle, that is the universe is, on large scales (> 150 Mpc), homoge-
neous and isotropic in its spacial components. This very strong assump-
tion, done for the first time by Friedmann in 1922 just for the sake of sim-
plicity, is supported today by observations of the CMB (Penzias and Wilson,
1965; Smoot et al., 1992; Wu et al., 1999), and by the spatial distribution of
galaxies (Abazajian et al., 2003; Colless et al., 2001). The most general met-
ric for a space-time in which such a principle is valid is:

ds2 ≡ gµνdx
µdxν = −(cdt)2 + a(t)2

[

dw2+ f 2K(w)(dϑ2+ sin2 ϑdϕ2)

]

(1.3)

where w is a radial coordinate and

fK(w) =






K−1/2 sin(K1/2w) (K > 0)
w (K = 0)

|K|−1/2 sinh(|K|1/2w) (K < 0)
(1.4)

is a radial function which, to ensure homogeneity, can be either a trigono-
metric, linear or hyperbolic function of w according to the value of the
curvature K. The scale factor a(t) is responsible for the spatial stretching of
the 4-dimensional space-time and can be only function of time, such that
isotropy is not violated. The coordinates used here, in which the metric is
free of cross term dtdxi and the space-part of the metric is proportional to
a single function of the time, are called comoving coordinates. An observer

2Current cosmological observations gives the following value: Λ % (2 × 1042GeV)2,
leading to an energy density ρΛ = Λm2pl/8π % 10−47GeV4. However from quantum

mechanics the vacuum energy density can be estimated as: ρΛ % 1074GeV4. Up to now
there is no known natural way to derive the tiny cosmological constant used in cosmology
from particle physics

2



1.1. GENERAL RELATIVITY AND COSMOLOGICAL PRINCIPLE

who has xi = const is called comoving3. This metric is called Friedmann-
Lemaître-Robertson-Walker metric and can be used to derive from Einstein
equation a set of equations, describing the expansion of space filled by a
homogeneous and isotropic fluid with pressure p and rest energy density
ρc2. They are called Friedmann cosmological equations and read as :

ä = −4
3

πG

(
ρ + 3

p

c2

)
a+

Λc2

3
a (1.5)

ȧ2 + Kc2 =
8

3
πGρa2 +

Λc2

3
a2 (1.6)

These equations cover all contributions to ρ, from matter, radiation and
vacuum (or dark energy). Interestingly equation 1.6 reveals a connection
between the density of the universe and its global geometry4:

K

a2
=
1

c2

(
ȧ

a

)2(
ρ

ρc
− 1

)
(1.7)

where ρc is the critical density

ρc ≡
3

8πG

( ȧ
a

)2
=
3H2

8πG
(1.8)

and it can be formally defined as the density the universe must have to be
flat (K = 0). It’s value today is ρ0,c = 1.88 · 10−29 h2g/cm3. Furthermore
we defined the Hubble parameter as the relative expansion rate

H(t) ≡ ȧ

a
(1.9)

and its value at the present epoch is the so-called Hubble constant H(t0) =
H0. It is parametrized as follow:

H0 = h · 100 km · s−1 ·Mpc−1 (1.10)

Measuring H0 has always been very challenging, due to the difficulties of
measuring distances on cosmological scales and that was the main reason
which induced astronomers to parametrise it as shown in the equation
above. The best measure of the Hubble constant

H0 = 74.2± 3.6 km · s−1 ·Mpc−1 (1.11)

3This class of freely falling observer are the one seeing the universe homogeneous and
isotropic.

4Here we redefine the density such ρ −→ ρ − Λc2/(8πG)
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CHAPTER 1. COSMOLOGY

has been done by Riess et al. (2009) from a new calibration of six Cepheid
distances to nearby well-observed supernovae using the AdvancedCamera
for Surveys (ACS) and the Near-Infrared Camera and Multi-Object Spec-
trometer (NICMOS) on the Hubble Space Telescope (HST).

From equation 1.7 we can immediately conclude that the space section
of the spacetime will be closed, open or flat if the density parameter

Ω0 =
ρ0
ρc

(1.12)

defined as the ratio of the actual density ρ0 and the critical density will be
greater, smaller or equal to one.

1.2 The density of the universe

Friedmann equations are valid for a perfect fluid and can be solved as-
suming an equation of state relating the pressure to the energy density of
the fluid:

p = wρc2 (1.13)

The case w = 0 represents a pressurless material (dust) but is a good
approximation of any form of non relativistic fluid (e.g. dark matter). A
fluid made by ultra-relativistic particle in thermal equilibrium has w =
1/3, while w = −1 correspond to the vacuum. Any fluid driving the
acceleration of the universe (ä > 0) must have w(a) < −1/3 as it is clear
from equation 1.5.

We can combine equations 1.5 and 1.6 to yield:

d(ρ(t)a3(t)) = −3 p(t)
c2
a2(t)da (1.14)

Solving together equations 1.13 and 1.14 we get that the density changes
with the expansion as:

ρ(t)a3(1+w) = ρ0. (1.15)

We can now specify this equation for the different component of the uni-
verse, and from equation 1.6, setting K = 0, we can compute the evolution
of the expansion parameter with time in an universe dominated by a fluid
with a given equation of state w:

• Matter dominated universe (w = 0) :

ρm = ρm0(1+ z)
3 a(t) ∝ t2/3. (1.16)
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1.2. THE DENSITY OF THE UNIVERSE

• Radiation dominated universe (w = 1/3):

ρr = ρr0(1+ z)
4 a(t) ∝ t1/2. (1.17)

• Vacuum dominated universe (w = −1):

ρΛ = ρΛ0 a(t) ∝ exp(Ht). (1.18)

In the previous equations z is the redshift and it is linked to the expan-
sion parameter a in this way:

(1+ z) =
a(t0)
a(t)

(1.19)

The redshift between two events A and B is also defined as the frac-
tional change in wavelength:

z =
λB − λA

λA
(1.20)

Comparing the equations above we can conclude that the expansion of
the universe has been dominated in its first phase by radiation (up to
z ∼ 3400), then by matter and ultimately by the vacuum (or any form
of dark energy). Using equations 1.12, 1.16, 1.17 and 1.18, the second
Friedmann equation (equation 1.6) can be written in the equivalent form:

H2 = H20

[
Ωr0

a4
+

Ωm0

a3
+ ΩΛ0+

1− Ωm0 − Ωr0 − ΩΛ0

a2

]

≡ H20E
2(a) (1.21)

where Ωm0, Ωr0, ΩΛ0 are the present density parameter for matter (dark
matter and baryonic matter), radiation, and cosmological constant respec-
tively. E(a) is the so-called expansion function and carries information about
the expansion history. If instead of assuming that Λ is associated with the
vacuum energy density, we assume that it is associated with some form of
Dark Energy with a certain equation of state ω(a),the Hubble parameter
reads as:

H2 = H20

[
Ωr0

a4
+

Ωm0

a3
+ ΩDE0 exp

(
3
∫ a

1

da′

a′
(1+w[a′)]

)
+

1− Ωm0 − Ωr0 − ΩDE0

a2

]

≡ H20 Ẽ
2(a)

(1.22)

This equation follows from Einstein’s equation assuming Friedmann-
Lemaître-Robertson-Walker metric, which we assume to describe the uni-
verse at large scales. This means that the four parameters Ωm0, Ωr0,
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CHAPTER 1. COSMOLOGY

ΩDE0 and H0 can be used to fully characterised the universe. Determing
their values with high precision is one of the biggest challenge in modern
cosmology. Table 1.1, adapted from (Bartelmann, 2010), summarises the
most recent result coming from WMAP data in combinations with Bary-
onic Acoustic Oscillation (Percival et al., 2007) and type Ia-Supernovae
(Kowalski et al., 2008).

parameter symbol WMAP-5
alone + BAO + SNe

CMB temperature TCMB 2.728 ± 0.004K –
total energy density Ωtot 1.099 +

−
0.100
0.085 1.0052 ± 0.0064

matter density Ωm0 0.258 ± 0.03 0.279 ± 0.015
baryon density Ωb0 0.0441 ± 0.0030 0.0462 ± 0.0015
cosmological constant ΩΛ0 0.742 ± 0.03 0.721 ± 0.015
Hubble constant h 0.719 +

−
0.026
0.027 0.701 ± 0.013

power-spectrum normalisation σ8 0.796 ± 0.036 0.817 ± 0.026
age of the Universe in Gyr t0 13.69 ± 0.13 13.73 ± 0.12
decoupling redshift zdec 1087.9 ± 1.2 1088.2 ± 1.1
reionisation optical depth τ 0.087 ± 0.017 0.084 ± 0.016
spectral index ns 0.963 +

−
0.014
0.015 0.960 +

−
0.014
0.013

Table 1.1: Cosmological parameters obtained from the 5-year data re-
lease of WMAP (Komatsu et al., 2009), without and with the additional
constraints imposed by baryonic acoustic oscillations (Percival et al., 2007)
and type-Ia supernovae (Kowalski et al., 2008). Note that spatial flatness
(K = 0) was assumed in deriving most of these values. This table is
adapted from Bartelmann (2010).

1.3 Distances

Defining a metric in the spacetime allows us to locally define the distance
between two events in the spacetime. In an Euclidean spacetime the mean-
ing of "distance" between two events is also independent on the observable
used to evaluate it. This means, for example, that the distance calculated
measuring the flux emitted by a source of known luminosity, has the same
value of the distances calculated from the ratio between the source’s ac-
tual size and the angular size of the source as viewed from earth. If the
spacetime is not Euclidean this is not anymore true. In particular, looking
at the metric (equation 1.3), it is clear that distances will depend on the
expansion rate of the universe. We give here a summary of the most used
distance definitions used in cosmology.

• Proper distance Dprop: is the distance measured by the travel time
of a light ray which propagates from a source z2 to an observer at

6



1.3. DISTANCES

z1 < z2:

dDprop = −cdt = −cda
ȧ

= −c da

aH(a)

=⇒ Dprop(z1, z2) =
c

H0

∫ a1

a2

a′

a′E(a′)
da′

(1.23)

• Comoving distance Dcom: is the distance between two objects which
remains constant with epoch if the two objects are moving with the
cosmic flow:

dDcom = −cdt
a

= −cda
aȧ

= −c da

a2H(a)

=⇒ Dprop(z1, z2) =
c

H0

∫ a1

a2

(a′)2

a′E(a′)
da′

(1.24)

• Angular diameter distance DA : is defined as the ratio of an object’s
physical transverse size δA at z2 to its angular size δω as seen by an
observer at z1:

DA(z1, z2) =

(
δA

δω

)1/2
= a2 fK[w(z1, z2)] (1.25)

where in the last equality we made use of the fact that in a general
spacetime:

δA

4πa22 f
2
K[w(z1, z2)]

=
δω

4π
(1.26)

• Luminosity distance DL: is defined by the relationship between flux
F and bolometric luminosity L. It is possible to show that it is related
to the angular diameter distance in the following way5:

DL(z1, z2) =

(
L

4πF

)1/2
=

(
a1
a2

)2
DA(z1, z2) (1.27)

A sketch of the different distances in a (spatially) flat and expanding uni-
verse is given in figure 1.1.

In the limit of small redshift (i.e. in the limit in which the spacetime
can be considered almost euclidean) all the distances are the same:

D =
cz

H0
(1.28)

This relation, known as the Hubble expansion law, was empirically derived
for the first time by Hubble (1929) observing that the velocity at which
galaxies are receding from us is proportional to their distance from us.
Historically it has been the first evidence for the expansion of the universe.

5This result is valid in an arbitrary space time as shown by Etherington (1933)
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Figure 1.1: Distance measures in a (spatially) flat and expanding universe.
Red line represents the angular diameter distance, green line the luminosity
distance, blu line the comoving distance and magenta line the proper dis-
tance. In a perfect Euclidean spacetime all these distances would have the
same redshift dependence (black line).

1.4 Structure formation

All the solutions of Einstein equation derived in the previous chapters
are valid under the assumption that the universe is homogeneous and
isotropic. This assumption is correct on large scale, as we discussed be-
fore, but it is obviously wrong on small scale where we see stars, galaxies,
clusters of galaxies... In our current understanding of structure forma-
tion in the universe these inhomogeneities on small scales can be related
with the fluctuations in the temperature field seen in the CMB. These pri-
mordial fluctuations grow during the evolution and eventually collapse
forming clumps of matter, which throughout a series of mergers, give rise
to what we call today galaxies or clusters of galaxies. We will concentrate
in the following on the description of the linear growth of these primordial
perturbations and we will briefly explain how their non linear evolution
can be theoretically predicted.

1.4.1 Gravitational instability

A non-relativistic fluid can be described in Newtonian approximation
through the continuity equation, the Euler equation and the Poisson equa-
tion:

8



1.4. STRUCTURE FORMATION

∂ρ

∂t
+∇ · ρv̄ = 0 (1.29)

∂v̄

∂t
+ (v̄ ·∇)v̄+

1

ρ
∇p+∇φ = 0 (1.30)

∇2φ − 4πGρ = 0 (1.31)

where ρ is the fluid density, v̄ is its velocity and p is the pressure. The
system has a static solution ρ = ρ0, v̄ = 0, p = p0 and ∇φ = 0. The idea
is now to perturb infinitesimally that solution and to study the first order
solution of the perturbed system. We decompose the density contrast δ in
plane-waves:

δ(x̄, a) ≡ ρ(x̄, a)− ρ̄

ρ̄
= δ(a) exp(−ik̄x̄) (1.32)

Using this decomposition the perturbed continuity equation, Euler equa-
tion and Poisson equation can be brought into a single differential equa-
tion for the density contrast δ :

δ̈ + 2Hδ̇ + (v2sk
2 − 4πGρ̄)δ = 0 (1.33)

The cosmic expansion, expressed here by the Hubble function, acts as a
damping term against the gravitational collapse. Looking at the term in
brackets we can identify a typical length scale λJ = vs

√
π/Gρ0, which

is called the Jeans length. For wavelengths λ > λJ equation 1.33 admits
two oscillating solution, while for λ < λJ the two solutions are stationary
waves one growing and one decaying in time. In a dark matter dominated
universe, Equation 1.33 reduces to:

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 (1.34)

which admits the growing solution δ ∝ t2/3 = a.
To compute the growth of fluctuation during the radiation dominated

epoch, a fully relativistic treatment is required and we refer to Peacock
(1999) for more details.

In general the growing mode, relevant for structure formation can be
described by the growth factor:

D+(a) ≡
δ(a)
δ0

(1.35)

which is often parametrise as:

D+ =
G(a)
G(1)

(1.36)
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Figure 1.2: Growth factor of linear density perturbations plotted versus
scale factor a for a ΛCDM model. Two different equations of state are
used for dark energy: red line represent the case w = −1 (cosmological
constant), while the green line shows the case of w = −0.8.

where

G(a) ≡ Ωm

[

Ω4/7
m − ΩΛ +

(

1+
Ωm

2

)(

1+
ΩΛ

70

)]−1

(1.37)

is a fitting formula (Carroll et al., 1992). If instead of Λ cosmological con-
stant some form of Dark Energy is assumed, the growth factor will have a
different behaviour as a function of time, as it is shown in figure 1.2.

1.4.2 Power spectrum

Inflationary theories predict that the primordial density contrast field is
almost a gaussian random field. Its mean vanishes by construction and
therefore the field is fully characterized by its variance. The variance of
the density contrast field in Fourier space is the so–called power spectrum:

〈δ̂(!k)δ̂"(!k′)〉 ≡ (2π)3PδδD(!k−!k′) (1.38)

In an isotropic universe, the spectrum of the density perturbation can-
not have a preferred direction, and therefore it must be isotropic. More-
over we can assume that there are not preferred length-scale in the power-
spectrum. This two conditions allow us to write the power spectrum in
the form:

〈δ̂(!k)δ̂"(!k′)〉 = 〈|δk|〉 ∝ kn (1.39)
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1.4. STRUCTURE FORMATION

The index n is the so-called spectral index and it indicates the balance be-
tween large and small-scale power. We showed before that in a matter
dominated universe the perturbations grow like δ ∝ a. Analogously it
is possible to show that in a radiation dominated universe they grow like
δ ∝ a2. We define the epoch of equivalence as the time when radiation density
is equivalent to matter density. If a perturbation of (comoving) wavelength
λ enters the horizon before the equivalence, its collapsing time-scale tcoll
is longer than the expansion time-scale driven by radiation texp:

tcoll ∼
√
GρDM >

√
Gρr ∼ texp (1.40)

The result is that the perturbation gets frozen till after the equivalence. As
a consequence smaller perturbations, which enter in the horizon before the
equivalence, experience a suppression with respect to large perturbations.
It is possible to show that the suppression factor is:

fsup =

(
aenter
aeq

)2
=

(
k0
k

)2

(1.41)

where k0 = d−1H (aeq) and in the last equality we used the fact that k ∝ 1/λ
and

λ = dH(aenter) =
c

aenterH(aenter)

{
aenter (aenter , aeq)
a1/2enter (aeq , aenter , 1)

(1.42)

In the previous equation dH(a) is the horizon size. It is defined as the size of
causally connected region in the universe and it is set by the distance that
a photon can travel in a time t after the Big Bang. We can compute now
the expected shape of the power spectrum. Let P0 be the primordial power
spectrum (immediately after the inflationary era). Since it is proportional
to δ2 it will grow as a4 during the radiation epoch and as a2 during the
matter dominated era. At aenter the spectrum has changed to:

Penter(k) = k−4P0(k) (1.43)

As we specified before we want the power spectrum to be scale invari-
ant, meaning k3Penter = const. therefore we conclude that the primordial
power spectrum should scale as P0(k) ∝ k. This scale invariant spectrum,
with n = 1, is called the Harrison-Zeldovich spectrum (Harrison, 1970;
Zeldovich, 1972). Because of the suppression of growth on small-scales,
the final expression of the power spectrum reads:

Pδ(k)

{
k (k , k0)
k−3 (k - k0)

(1.44)
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Figure 1.3: Linear (red line) and non-linear (green line) matter power spec-
trum for a standard ΛCDM cosmology. The non-linear power spectrum
has been calculated following Peacock and Dodds (1996)

The equation above defines the shape of the linear power spectrum. Its
amplitude is usually defined in term of the variance of the density contrast
within spheres of radius R:

σ2R = 4π
∫
k2dk

(2π)3
W2(kR)P(k) (1.45)

where W(kR) denotes a window function in Fourier space. Historically
the amplitude is measured on scale of R = 8h−1Mpc, since the variance
computed on that scale from the distribution of galaxies is roughly 1. σ8
is one of the crucial parameters in cosmology since it sets the time when
structures in the universe start forming.

1.5 Non-linear structure formation

When the density contrast δ approaches unity, the evolution becomes non-
linear and therefore equation 1.33 cannot be applied anymore to describe
structure formation. During this phase, in which over-densities collapse
under the action of gravity, there is a transfer of matter from large scales
to small scales, which translates in a transfer of power in the density per-
turbation field towards smaller modes. The result is a deformation of the
power spectrum at small scales as it shown in figure 1.3.

The evolution of the non–linear perturbations and the formation of
structures in the universe can be followed using the so-called N–body sim-
ulations, in which dark matter (and gas in some cases) are approximated
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1.5. NON-LINEAR STRUCTURE FORMATION

Figure 1.4: Snapshot from the Millennium Simulation (Springel et al.,
2005) showing the so-called cosmic web. The clustering of dark matter
happens along filaments at whom intersection sits dense clumps of mat-
ter, the galaxy clusters.

by a number N of point masses that move under the influence of their mu-
tual gravitational forces. First numerical simulations attempts have been
done in the seventies (Peebles, 1970; Press and Schechter, 1974; White,
1976) and in the last decades, thanks to the rapid growth of computer per-
formance and the implementation of more sophisticated algorithm, many
different groups simulated structure formation over cosmological time in
increasingly larger volume and employing an increasingly higher number
of particles (Springel, 2005; Gottlöber et al., 2006). All these studies con-
firmed that matter in the universe is clustered and that the clustering hap-
pens along filaments, at whose intersections sit highly non–linear bound
structures, which we call galaxy clusters. A representation of the so–called
cosmic web coming from cosmological simulations (Springel et al., 2005)
can be seen in figure 1.4.

Moreover during last ten years, collisionless dynamics has also been
coupled to gas dynamics (which effects are extremely important on small
scales), allowing a more direct link to observable quantities. New algo-
rithms for the collisionless system and the implementation of the gas dy-
namics into the simulation codes allow immense progress in the studies
of the non-linear gravitational clustering of dark matter, the formation of
galaxies and clusters of galaxies, the interactions of isolated galaxies, the
evolution of the intergalactic gas....(Borgani et al., 2006)

Numerical simulations are nowadays a fundamental tool to compute
the non-linear deviation of the power spectrum on small scale. There have
been however attempts to compute analytically such deviations, for exam-
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ple assuming that the two-point correlation function in the linear and non-
linear regimes are simply related by a scaling relation (Hamilton, 2001).
Generalisations of this work for different cosmological models have been
possible using numerical simulations for calibrating the theoretical results.
Analytic formulae describing the non-linear deviation of P (k) on small
scales have been derived by Peacock and Dodds (1996) and Smith et al.
(2003).

1.5.1 The structure of Dark matter halos

One of the prediction of ΛCDM model is the hierarchical growth of struc-
tures in the universe. This process is generally non-linear, as we discussed
in the previous section, and the basic unit of non-linear structure for-
mation are the so-called dark matter halos, which are highly concentrated
clumps of dark matter forming via a series of mergers starting from small
density perturbation in the early phase of the universe. Numerical simu-
lations of non-linear structure formation in a broad class of cosmological
models, even with different types of power spectra for the dark matter
density fluctuations, reveal a typical shape for the density profile of dark
matter halos (Navarro et al., 1997; Moore et al., 1998). As far as the nu-
merical resolution allows this statement, the density profile begins with
at least a mild singularity in the core, then falls off with a relatively flat
slope out to a characteristic radius where it gently steepens towards an
asymptotic behaviour ρ ∝ r−3 far away from the core:

ρ(r) =
ρs

(r/rs)α(1+ r/rs)3−α
(1.46)

Here rs is the scale radius, α the inner slope and ρs the scale density defined
as:

ρs = ρcrit(z)
200(3− α)(r200/rs)

31F2(3− α, 3− α, 4− α,−r200/rs)
, (1.47)

where 1F2(a, b, c, z) is a hypergeometric function and r200 is the radius en-
closing 200 times the critical density of the universe ρcrit. The halo concen-
tration is defined as

c200 =
r200
rs
. (1.48)

Following Keeton and Madau (2001) we interpret the scale radius as the
radius where the density profile reaches slope −2, i.e. d ln ρ/d ln r = −2.
For the profile of equation 1.46

r−2 = rs(2− α) (1.49)

and thus

c−2 =
r200
r−2

=
1

2− α
c200. (1.50)
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We note here that the density profile presented in equation 1.46 is just a
fitting formula. Up to now there is no theoretical argument justifying that
particular form. The value of the inner slope α is still a matter of debate
both theoretically and observationally. We will discuss in chapter 6 how it
is possible to measure it using weak lensing data. For α = 1 these formulae
reduce to the so-called NFW profile (Navarro et al., 1997). The profile is
fully characterized when the mass, the redshift, the concentration and the
inner slope of the halo are specified. However not all of these parameters
are independent. Numerical simulations show that it is possible to define
fitting formulae relating the concentration with the mass and the redshift
of the halo:

cvir =
c0
1+ z

(
M

M0

)−β

(1.51)

with β ∼ 0.1. The normalization depends on the non-linear mass, which is
the mass within spheres in which the rms fluctuation in the linear regime
is 1.68. We refer to Eke et al. (2001), Bullock et al. (2001a) and Neto et al.
(2007) for a more detailed treatment of the mass-concentration relation. In
numerical simulations was also found that for a fixed value of mass and
redshift, the concentration approximately follows a log-normal distribu-
tion

p(c)dc =
1√
2πσcc

exp

[
− (ln c− ln c̄)2

2σ2c

]
d ln c (1.52)

where σc is the 1-σ deviation of ∆(ln c) % 0.2 (Navarro et al., 1997; Bullock et al.,
2001a).
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Tu dubbi, e hai voler che si ricerna
in sì aperta e ’n sì distesa lingua
lo dicer mio, ch’al tuo sentir si sterna0

Dante (1265-1321) Paradiso XI 2
Weak gravitational lensing

The deflection of light rays by structures in the universe is called "gravita-
tional lensing". The earliest concept of gravitational lensing can be traced
back to Newton in 1704. First calculation had been done by Cavendish
around 1784 under the hypothesis that light was made by particles which
were experiencing the force of gravity. He was the first one calculating
the deflection of light induced by a body of a certain mass. However was
Johan Soldner in 1801 who published first the calculation about the de-
flection of light by the sun. At the same result arrived also Einstein in
1911, but based on the equivalence principle1 alone. However, he noted
in 1915 while he was completing General Relativity, that his (and thus
Soldner’s) 1911-result was only half of the correct value (Will, 2006). The
first observation of light deflection was performed in 1919 during a so-
lar eclipse by Sir Arthur Eddington observing the change in position of
stars as they passed near the Sun on the celestial sphere. Despite the big
uncertainties in the measurement the result seemed to confirm the deflec-
tion angle predicted by Einstein from general relativity. However only
in the 1960s, using radio observations, was possible to clearly discrimi-
nate between the Newtonian result and Einstein result. The first gravi-
tationally lensed object (the quasar SBS0957+ 561) was discovered only
in 1979 by Walsh et al. (1979) and collaborators using the Kitt Peak Na-
tional Observatory 2.1 meter telescope. Some years later there was the
first publication by Lynds and Petrosian (1986) about giant arcs (strong
gravitational lensing) in a survey of galaxy clusters, but was only in 1987
when Soucail et al. (1987) presented data of a blue ring-like structure in
Abell 370 and Paczynski (1987) proposed a gravitational lensing interpre-
tation. In figure 2.1 we show a more recent image of a massive cluster of
galaxies done by the Hubble Space Telescope (HST hereafter), in which

0You are in doubt; you want an explanation/in language that is open and expanded/so
clear that it contents your understanding

1All inertial and freely-falling reference frames are equivalent, and there is no (local)
experiment that can distinguish them.
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CHAPTER 2. WEAK GRAVITATIONAL LENSING

Figure 2.1: Hubble Space Telescope image of Abell 2218, a massive clus-
ter of galaxies. Many strong lensing features, such as arcs and multiple
images can be seen. Credit: NASA/ESA.

many strong lensing features, such as giant arcs and multiple images can
be seen.

The first cluster weak lensing analysis was done by Tyson et al. (1990).
They detected for the first time a systematic alligment of 20− 60 faint back-
ground galaxies centred on foreground galaxy clusters of high velocity dis-
persion. Only in 2000 several groups detected for the first time the light
deflection produced by the large scale structure in the universe (cosmic
shear) opening up the possibility to use weak gravitational lensing to con-
strain cosmological parameters (Wittman et al., 2000; Van Waerbeke et al.,
2000; Bacon et al., 2000; Kaiser, 2000).

This phenomenon constitutes nowadays an extraordinary tool in astro-
physics, since it allows to infer properties of the matter which induces the
deflection independently on its dynamical status. For example it is pos-
sible to trace directly the matter distribution in the universe, or to study
the properties of dark matter halos without any assumptions on how light
does trace the underlying matter.

Gravitational lensing however, even if it has a simple and nice math-
ematical treatment in the framework of general relativity, poses a lot of
observational challenges since measuring the deflection of light normally
means measuring tiny distortion in the shape of faint background galaxies.
We will discuss this crucial point in the following chapter.

2.1 Weak lensing basics

We present here a summary of the main concepts and equations which are
basic for gravitational lensing. In particular we concentrate on weak grav-
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2.1. WEAK LENSING BASICS

itational lensing, meaning the regime in which the distortion produced
by any intervening structure is small. For a complete overview on weak
lensing we refer to Bartelmann and Schneider (2001).

2.1.1 Deflection angle

From general relativity and geometrical optics in Einstein-Maxwell theory
we know that light rays propagate in the space-time along null geodesics 2;
massive objects produce distortion of the space-time such that the geodesics
are not any longer straight lines as they would be in a flat (euclidean)
space. If the light ray does not propagate through the strong gravitational
field close to the object’s horizon, general relativity predicts that the differ-
ence between the actual geodesic and the geodesic the light would follow
in a flat space-time is given by:

!̂α =
4GM

c2

!ξ

|!ξ|2
(2.1)

which is usually called deflection angle. Here M is the mass of the object
bending the space-time, G is the gravitational constant, c the speed of light
and !ξ is the impact vector, orthogonal to the geodesic, which denotes the
distance from the lens. In reality any light ray gets deflected by many
massive objects. Since the gravitational field can be considered weak the
field equation of general relativity can be linearised and therefore the total
deflection angle is just the vectorial sum of the deflection angles caused
by the single objects. In the continuum limit the sum becomes an integral
over the density field ρ along the line of sight. Furthermore in the limit
of small deflection angles we can make use of the Born approximation,
meaning we can approximate the potential along the deflected geodesic
with the potential along the undeflected geodesic:

!̂α =
4G

c2

∫
dz

∫
d2ξ′

(!ξ − !ξ′)ρ(!ξ′ , z)

|!ξ −!ξ′|2
(2.2)

If the distances between the observer, the lens, the source are much
larger than the dimension of the lens, we can use the thin screen approxi-
mation defining a projected mass density:

Σ(!ξ) =
∫

ρ(!ξ, z)dz (2.3)

2If an affine connection can be defined on the manifold, geodesic are curves whose
tangent vectors remain parallel if they are transported along it.
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CHAPTER 2. WEAK GRAVITATIONAL LENSING

which is the mass density projected onto a plane perpendicular to the line
of sight. Using this definition the deflection angle becomes:

!̂α =
4G

c2

∫
d2ξ′Σ(ξ′)

(!ξ −!ξ′)

|!ξ −!ξ′|2
(2.4)

2.1.2 Lens equation

Figure 2.2: Sketch of a typi-
cal lensing configuration from
Bartelmann and Schneider (2001)

Making use of the expression cal-
culated for the deflection angle we
can now relate the true position of
the source (η) to its observed posi-
tion in the sky (ξ). The situation in
sketched in figure 3.2 from which
we can read:

!η =
Ds
Dd

!ξ − Dds!̂α(!ξ) (2.5)

where Dd,s,ds are the angular-
diameter distances between the ob-
server and the lens, the observer
and the source, and the lens and
the source, respectively. We as-
sume here that the extent of the
lens is much smaller than both Dds
and Ds so that the light rays can be
approximated by two straight lines
with a kink near the deflector. We
can write the last equation in a more convenient way, introducing angular
coordinates by !η = Ds!β and !ξ = Dd!θ :

!β = !θ − Dds
Ds

!̂α(Dd!θ) ≡ !θ −!α(!θ) (2.6)

where we defined the scaled deflection angle !α(!θ). This fundamental
equation, relating the true position !β of a source and its observed posi-
tion !θ is non-linear and admits in general more than one solution. This
means that a source at a given position !β can have multiple observed
images. A sufficient, but not necessary condition for this to happen
(Subramanian and Cowling, 1986), is that the dimensionless surface mass
density, which we call convergence

κ(!θ) =
Σ(Ds!θ)

Σcr
(2.7)
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2.1. WEAK LENSING BASICS

is greater than unity. We defined here the critical surface mass density as :

Σcr =
c2

4πG

Ds
DdDds

(2.8)

We can use Σcr as a discriminant between the strong Σcr > 1 and weak
lenses Σcr < 1. In terms of κ the scaled deflection angle reads:

!α(!θ) =
1

π

∫
d2θ′κ(!θ′) ln |!θ −!θ′| (2.9)

This expression suggests that the scaled deflection angle can be written as
the gradient of the deflection potential

Ψ(!θ) =
1

π

∫
d2θ′Σ(!θ′) ln |!θ −!θ′|, (2.10)

as!α = ∇Ψ.

2.1.3 Local distortions

Suppose now to have an extended source (e.g a galaxy) which we observe
at some position !θ in the sky. In presence of matter along the line of the
sight we expect that the shape of the observed image will differ from the
shape of the source, since the rays are deflected differentially. If we assume
that the source is much smaller with respect to the scale on which the lens
properties change we can locally expand the lens equation and truncate
the expansion at low orders:

βi % θi − Ψ,ijθ
j − 1

2
Ψ,ijkθ

jθk (2.11)

In many weak lensing applications the expansion of the lens equation can
be safely truncated at first order. However if the sources are large or
in regions of the lens plane where the potential varies rapidly (e.g. in
proximity of a galaxy cluster), the second order terms become important.
The linearisation of the lens equation fails completely close to the centre of
galaxy clusters, where giant arcs occurs. In this case the full lens equation
has to be studied. The occurrence of giant arcs can be used as a visual
distinction between the weak and the strong lensing regime.

It is convenient to introduce at this point a complex notation for the rel-
evant lensing quantities which will appear in the following. We introduce
the complex mapping:

(
v1
v2

)
−→ v1 + iv2 = z (2.12)
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CHAPTER 2. WEAK GRAVITATIONAL LENSING

In polar form z reads as:

z =
√
v21 + v

2
2e
iφ with φ = arctan

v2
v1

(2.13)

We start defining a complex gradient operator Newman and Penrose (1962);
Bacon et al. (2006):

∂ =
∂

θ1
+ i

∂

θ2
≡ ∂1 + i∂2 (2.14)

which in polar coordinates it has the form

∂ = eiφ

(
∂

∂r
+
i

r

∂

∂θ

)
(2.15)

This representation shows clearly that when ∂ is applied to a spin s quan-
tity 3 it raises its spin by one. Analogously, ∂∗ lowers the spin by one.
Applying now this operator one time to the deflection potential we can
generate the deflection angle:

α = ∂Ψ (2.16)

which is a spin-1 field. Applying it twice we can generate the convergence
(spin-0)

κ =
1

2
∂∂∗Ψ =

1

2
(Ψ,11 + Ψ,22) (2.17)

and the shear (spin-2)

γ =
1

2
∂∂Ψ =

1

2
[(Ψ,11 − Ψ,22) + 2iΨ,12] (2.18)

while applying it three times is it possible to generate the so-called F -
flexion (spin-1)

F =
1

2
∂∂∂∗Ψ =

1

2
[(Ψ,111 + Ψ,122) + i(Ψ,112 + Ψ,222)] (2.19)

and the G-flexion (spin-3)

G =
1

2
∂∂∂Ψ =

1

2
[(Ψ,111 − 3Ψ,122) + i(3Ψ,112 + Ψ,222)] (2.20)

We can now use these new fields to re-write equation 2.11:

β % (1− κ)θ − γθ∗ − 1

4
F ∗θ2 − 1

2
Fθθ∗ − 1

4
G(θ∗)2 (2.21)

3We say that a quantity has spin s if it is invariant under a rotation of the Cartesian
coordinate frame by a rotation angle φ = 2π/s and s ∈ [1, 2, ...]. Vectors are spin-1 quanti-
ties.
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2.1. WEAK LENSING BASICS

Figure 2.3: Effect of shear and flexion on a circular source. The image is
taken from Bartelmann (2010, in preparation).

This equation relates the true and the observed position in terms of
quantities with well defined spin properties and linked to the deflection
potential. In the case of an extended source the shape will be determined
by solving the lens equation for each point within the source. One in-
teresting aspect of Liouville’s theorem is that lensing conserves the total
number of photons emmited by the source. Hence the surface-brightness
in the lens plane , I, and in source plane Is are related:

I(!θ) = Is[!β(!θ)] (2.22)

This equation, together with equation 2.21, tells how the global shape of
a source gets modified by lensing. For example circular sources, if flexion
can be neglected, will appear elliptical. The effect of flexion on a circular
source is to produce an arclet-shape, as can be seen in figure 2.3. The bot-
tom line here is that each of the fields we previously defined, is related
to a peculiar deformation of the object’s shape. Measuring these deforma-
tions permits to have information on shear and flexion. How this is done
in practise will be discussed in the next chapter.

Another interesting effect is the so-called magnification. It is defined
as the ratio between the flux computed in the lens plane and the flux
computed in the image plane. From 2.22 we have:

µ =
1

det A
(2.23)

where detA is the jacobian determinant of the lens equation. Its first order
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CHAPTER 2. WEAK GRAVITATIONAL LENSING

expansion around the origin reads as:

det A % (1− κ)2 − γγ" − θ

[
(1− κ)F " +

γ"F + γG"

2

]
−

θ"
[

(1− κ)F +
γ"G + γF "

2

]

+O(θ2)

(2.24)

2.2 Lens model

In the previous section we showed how the deflection angle is linked to
the density profile of the lens. If the lens is axially symmetric (i.e. the
surface brightness is independent on the position angle with respect to
the lens centre), the scale deflection angle has the following form:

α(x) =
M(ξ0x)

πξ20Σcr
1

x
≡ m(x)

x
(2.25)

where m(x) represents a dimensionless mass inside a radius x. Note that:

m(x) = 2
∫ x

0
dyyκ(y) (2.26)

where κ(y) is defined in equation 2.7. For an axially symmetric lens the
lens equation has a one-dimensional form, and using the previous equa-
tion it reads as:

y = x− m(x)
x

(2.27)

This form suggests that we can express all the lensing fields in terms of
m(x). Recalling the definition of shear and convergence we gave in the
previous section, it is easy to show that:

κ(x) =
1

2x

dm(x)
x

, (2.28)

γ(x) =
m(x)
x2

− κ(x) = κ̄(x)− κ(x) (2.29)

where κ̄(x) is the mean surface mass density inside a circle of radius x
centred on the lens.

2.2.1 NFW lensing properties

We can now specialise the equation we presented in the previous section
for a NFW profile. If we take ξ0 = rs, the density profile, defined in
equation 1.46, implies for the inner slope α = 1 the surface mass density

Σ(x) =
2ρsrs
x2 − 1 f (x) (2.30)
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Figure 2.4: Shear profile of a generalized NFW halo for three different
values of α. The case α = 1 corresponds to the usual NFW profile. Note
the strong dependence on the inner slope.

with

f (x) =






1− 2√
x2−1 arctan

√
x−1
x+1 (x > 1)

1− 2√
1−x2 arctanh

√
1−x
1+x (x < 1)

0 (x = 1)

(2.31)

as shown by Bartelmann (1996). Defining κs = ρsrsΣ−1
cr the convergence

reads as:

κ(x) = 2κs
f (x)
x2 − 1 (2.32)

and from equation 2.26 we can compute:

m(x) = 4κsg(x) (2.33)

where

g(x) = ln
x

2
+






2√
x2−1 arctan

√
x−1
x+1 (x > 1)

2√
1−x2 arctanh

√
1−x
1+x (x < 1)

1 (x = 1)

(2.34)

The shear can be then easily computed combining equations 2.29, 2.32 and
2.33.

If α 1= 1 it is generally not possible to find an analytic expression for the
shear profile and therefore equation 2.29 has to be computed numerically.
We show in figure 2.4 the shear profile for three values of α (0.5,1.0,1.5).
The inner shear profile depends sensitively on the inner slope α.
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The shear profile depends on the two parameters of the density profile,
of which the concentration depends mildly on the halo redshift. An addi-
tional and stronger dependence on halo and source redshifts is introduced
through the geometry of the lens system.

2.3 Cosmic shear

Up to this point we discussed how a bundle of light rays gets deflected by
the presence of a single mass along the line of sight. In order to derive the
deflection angle we made use of the thin lens approximation. However
in reality any light ray gets deflected by any density perturbation along
the line of sight. We summarise here how is possible to generalise the
results derived for a single mass to the case in which the deflector is given
by the large scale structures in the universe. First of all the thin lens
approximation used before cannot be employed since structures can be
elongated along the line of sight. However in the weak lensing regime the
deflection angle can be derived assuming that the gravitational potential is
slowly varying everywhere. Under this assumption it is possible to show
that the deflection angle

!α(!θ) =
2

c2

∫ w

0
dw′ fK(w− w′)

fK(w)
∇⊥Φ[ fK(w

′)!θ,w′] (2.35)

is given by a weighted integral of the perpendicular (to the line of sight)
potential gradient, where the weight is given by the ratio of comoving
angular-diameter distances, from the deflecting potential to the source,
fK(w− w′), and from the observer to the source, fK(w). This result is a
direct consequence of the geodesic equation in general relativity. In exact
analogy with the calculation done in the thin lens approximation, it is
possible to define an effective convergence:

κeff(!θ,w) =
1

2
∇!α(!θ,w) = 3H20Ωm

2c2

∫ wH

0
dwW̄(w) fK(w)

δ[ fK(w)!θ,w]
a(w)

(2.36)
where we used Poisson equation to replace the Laplacian of the potential
by the density contrast:

3 Φ =
3H2Ωm

2a
δ. (2.37)

The weighting function

W̄ ≡
∫ wH

w
dw′n(w′)

fK(w− w′)
fK(w)

(2.38)
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2.3. COSMIC SHEAR

Figure 2.5: Likelihood contour (1, 2σ) for Ωm and σ8 using different shear
correlation functions between 1 and 230 arcmin from Fu et al. (2008)

takes into account that the sources might have a redshift distribution n(w).
We refer to Bartelmann and Schneider (2001) for a derivation of the above
equation.

Eventually we are interested in the statistical properties of the effective
convergence, which we can describe using its power spectrum. Using
Limber’s equation 4 we can express the convergence power spectrum in
terms of the matter density power spectrum:

Pklκ (l) =
9H40Ω2

m

4c4

∫ wH

0
dw
W̄k(w)W̄l(w)

a2w
Pδ

(
l

fK(w)
,w

)
(2.39)

We make explicit here that the power spectrum can be computed con-
sidering one single redshift distribution for the galaxies k = l, or can be
computed after dividing the galaxy population in two or more bins with
redshift distribution nk(w) and nl(w). We discuss this second approach,
known as lensing tomography, in the next section. It is worth to note al-
ready at this point that equation 2.39 has been derived employing Limber’s
approximation, which requires that the redshift distribution must be suf-
ficiently wide to encompass many wavelenghts of the relevant fluctuation
2π/kl along the line of sight, where kl = lH0/DA(w) is the wavenumber
that projects onto the angular scale at distance w (Hu, 1999; Simon, 2007).

Typically weak lensing probes scales in the range θ ∈ [1, 100] arcmin,
which, assuming that the sources are at redshift 1, corresponds roughly

4It’s an approximation introduced by Limber (1953) used to relate any projected corre-
lation function to the spatial, three dimensional correlation function.
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to k ∈ [0.2, 20] hMpc−1. In this range, as can be seen from figure 1.3,
deviations from linearity in the power spectrum become important and
they turn to be dominant at scale θ < 10′ (or k > 2 hMpc−1).

Analogously to the effective convergence an effective shear can be de-
fined and it is possible to show that the shear power spectrum reads ex-
actly as the convergence power spectrum. The power spectrum, defined
in equation 2.39, is sensitive to cosmology in three different ways: explic-
itly in the pre-factor Ω2

m, in the geometrical factor f (w − w′)/ f (w), and
in the 3D matter power spectrum Pδ and in its evolution with time. It is
sensitive in particular to the normalization of the power spectrum σ8 in
combination with Ωm as can be seen in figure 2.5 (Fu et al., 2008). Since
weak lensing probes the non linear part of the power spectrum it is crucial
to have reliable and precise theoretical prediction on the non linear power
spectrum in order to extract sensible cosmological information.

A very interesting and promising approach to break the degeneracy
between σ8 and Ωm using weak-lensing, comes from the measurement of
cosmic magnification on galaxy by galaxy base, exploiting the fact that
the magnification power-spectrum scales with Ωm and not with Ω2

m as the
shear power-spectrum (van Waerbeke, 2010). In figure 2.6 are shown cos-
mological parameter constraints from shear and magnification exploiting
a 1500 sq. deg. survey.

In practical applications the measured quantity is not the power spec-
trum but the two-point shear correlation functions. They are defined by
considering pairs of positions θ and θ + dθ, and defining the tangential
and cross-component of the shear at position θ for this pair as

γt = −Re(γe−2iφ) γ× = − Im(γe−2iφ) (2.40)

where φ is the polar angle of the separation vector θ. The two point shear
correlation function is then defined as (Kaiser, 1992)

ξ±(!θ) = 〈γt(!θ′)γt(!θ −!θ′)〉± 〈γ×(!θ
′)γ×(!θ −!θ′)〉 =

∫
ldl

2π
Pκ(l)J0/4(lθ)

(2.41)
and the last equality shows how they are related to the lensing power-
spectrum. J0/4 are the zero-th and four-th order Bessel function of the first
kind and correspond to the "+" and "−" correlation function respectively.

All other possible two-point statistical measures of the cosmic shear,
such as the shear dispersion in a circle, in ring or the aperture mass dis-
persion, can be expressed as integrals over these two correlation functions
(Crittenden et al., 2002; Schneider et al., 2002; Eifler et al., 2009). We are
not interested here to go in more details and we refer for further informa-
tion about two point shear statistics to Bartelmann and Schneider (2001),
Munshi et al. (2008), Eifler et al. (2009).
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Figure 2.6: Cosmological parameters constraints from shear (green thin
solid contours) and magnification (blue thick contours) for a 1500 sq.deg.
survey. The filled contour shows the error contour obtains from a 750
deg2 shear analysis combined with a 750 deg2 magnification analysis. The
image is taken form van Waerbeke (2010).

The shear is not however a direct observable quantity, but it can be
inferred from measurement of the ellipticity of the galaxies as it will be
shown in the next chapter. Hence measuring the shear correlation func-
tion means in practise measuring the ellipticity correlation function. The
relation between shear and ellipticity χ correlation function is then:

〈χiχj〉 = 〈(χsi + γi)(χ
s
j + γj)〉 =

〈χsiχsj 〉+ 〈χsiγj〉+ 〈γiχsj 〉+ 〈γiγj〉 % 〈γiγj〉
(2.42)

We assumed here that the observed ellipticity of a galaxy can be written as
the sum of its intrinsic ellipticity χs and the shear5 and in the last step we
assumed that the intrinsic ellipticities of galaxies are randomly distributed
on the sky, so that they are correlated neither with the intrinsic ellipticities
nor with the shears of other galaxies. However galaxies can intrinsically
align (for example due to tidal forces of a common structure surrounding
them) and therefore have correlated intrinsic ellipticities. If this is the case
the term 〈χsiχsj 〉, known in literature as the I I signal, does not vanish.

Analogously if the galaxy ellipticities are correlated with the tidal grav-
itational field of their host halo, then the intrinsic ellipticity of a nearby
source galaxy will be correlated with the lensing shear acting on a more
distant source galaxy, leading a non-vanishing 〈γiχsj 〉 term. This effect has
been discussed for the first time by Hirata and Seljak (2004), and is known
as GI signal. Both the I I and the GI terms can be sources of systematics in

5We refer to the next chapter for a more detailed discussion.
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the derivation of the shear correlation function from the ellipticity corre-
lation function. We refer to Heavens and Peacock (1988),Crittenden et al.
(2001), Porciani et al. (2002), Hirata and Seljak (2004), Lee and Lee (2008),
Okumura et al. (2009), Schneider and Bridle (2010) for further discussion
about intrinsic alignment.

2.3.1 3D Weak lensing

The first cosmic shear analyses used only two dimensional shear informa-
tion (Bacon et al., 2000; Brown et al., 2003; Hamana et al., 2002; Jarvis et al.,
2003). However if photometric redshifts of the sources are known it is
possible to perform a full 3-dimensional lensing analysis. This allows to
improve the accuracy in the determination of cosmological parameter, in
particular there is a big gain in the constraint on the dark energy equation
of state w (Heavens, 2003), since the expansion history and the growth of
structures can be directly traced. The idea is to give a representation of
the 3D shear field in terms of spin-spherical harmonics:

γ1(!r)± iγ2(!r) =
√
2

π ∑
lm

∫
dkk2γlm(k)Y

m
l (!̂n)jl(kr) (2.43)

where jl(kr) is a spherical Bessel function, Y a spherical harmonic, k is
a wave-number, l is an integer, m = −l, ...l and !̂n represents the direc-
tion θ,φ. The coefficients γlm are related to the transform of the lensing
potential Ψ(!r) by:

γlm(k) =
1

2

√
(l + 2)!
(l − 2)!Ψlm(k) (2.44)

Using the fact that the lensing potential is related to the gravitational po-
tential by a radial integral and the gravitational potential is related to the
over-density δ via Poisson equation we can re-write the above equation in
the form :

γlm(k) = −1
2

√
(l + 2)!
(l − 2)!

3ΩmH
2
0

2c2k2

∫
dk′(k′)2ηl(k, k

′)δ0lm (2.45)

where

ηl(k, k
′) ≡ 4

π

∫ ∞

0
dw fK(w)jl(kw)

∫ w

0
dw′ jl(k

′w′)
fK(w)− fK(w′)

fK(w′
G(w′)
a(w′)
(2.46)

This equation relates the coefficients of the shear field to the underlying
linear over-density field. In practise a harmonic description of the data is
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given defining the following shear estimator:

ĝlm ≡
√
2

π ∑
galaxies g

γg jl(ksg)Y
m
l (!̂ng) (2.47)

where s is the radial coordinate given in terms of photometric redshift.
Following a similar procedure used to arrive to equation 2.45 it is possible
to relate the coefficient of the shear estimator to the linear over-density.
The covariance of this estimator is used then to compute cosmological pa-
rameters. The first attempt of a full 3D lensing analyses has been done on
COMBO-176 dataset (Kitching et al., 2008). Given the small size of the sur-
vey the constraints on the dark energy equation of state derived from this
analyses are very weak (wDE = −0.15+0.67−0.70). As clearly stated by the au-
thors this attempt was mainly a proof of concept and much larger surveys
are needed to reach percent accuracy in the determination of wDE.

An intermediate approach between 2D and 3D lensing is the so-called
lensing tomography. In this case the sources are divided in redshift slices
and then shear correlation functions are computed inside each slice and
between different slices (Schrabback et al., 2010). The description of the
shear power spectrum in terms of the matter power spectrum is given
by equation 2.39, where in general k 1= l. The number of slices used
in tomographic analyses is chosen considering the number of available
galaxies in the survey (there should be enough galaxies per slice to keep
small the shot noise) and the variation of the shear across the redshift
range of the whole distribution (if the lensing signal is almost constant
then having a lot of slices does not improve the analyses). Different at-
tempts to apply lensing tomography on real data have been done in the
last years Bacon et al. (2005); Semboloni et al. (2006); Massey et al. (2007b);
Schrabback et al. (2010). The lack of good photometric redshift informa-
tion and the small size of the surveys didn’t allow to really constrain the
dark matter equation of state. The best achieved result comes from the
analyses of the COSMOS field constrainig wDE < −0.41 at 90% confidence
level.

6The survey consists of five fields each covering 0.26 square degrees. We refer to
Wolf et al. (2001, 2004) for more details
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Per me si va ne la città dolente,
per me si va ne l’etterno dolore
per me si va tra la perduta gente0

Dante (1265-1321) Inferno III 3
Shear and flexion measurements

Measuring with high precision the lens-induced distortion in the galaxy
shapes is one of the most challenging aspect of weak lensing. Difficulties
arise in first place since galaxies are not intrinsically circular, but they have
their own shape. Therefore is not possible to disentangle, observing a sin-
gle object, the lensing-induced distortion from the intrinsic shape, which
is an inaccessible quantity. This means that the only possibility to extract
information about shear and flexion is to average over many galaxies in
a region where shear and flexion can be considered constant, assuming
that the average of the intrinsic galaxy ellipticity and intrinsic galaxy flex-
ion vanishes over a sufficient number of galaxies. Moreover any observed
image is the convolution of the real image and the Point Spread Function
(PSF). A spherically symmetric PSF causes a circularisation of the object,
while any anisotropies in the PSF translate in spurious ellipticity or in gen-
eral in spurious distortion of the object. Hence any attempt of measuring
shear and flexion should take properly into account those effects which
might cause severe systematics in the measurements. A sketch showing
the effect of intrinsic ellipticity, shear and PSF convolution on a circular
image is shown in figure 3.1

Furthermore observed images are pixelated and degraded by noise.
Both effects render very challenging, specially for faint sources, any at-
tempt of measuring shear and flexion.

3.1 Measuring ellipticity

We discussed in the previous chapter how a lensing transformation mod-
ifies the shape of a given source. In particular if the source is circular,
convergence acts to increase the average radius of the image, shear acts to
stretch the circle into an ellipse (see figure 3.2). Using equation 2.22 we

0Through me the way into the suffering city/through me the way to the eternal
pain/through me the way that runs among the lost
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CHAPTER 3. SHEAR AND FLEXION MEASUREMENTS

Figure 3.1: Effect of intrinsic ellipticity, shear and PSF convolution on a
circular image.

can compute the semi-major axis a and semi-minor axis b of the ellipse in
terms of shear and convergence:

a =
1

(1− κ + |γ|)

b =
1

(1− κ − |γ|)

(3.1)

These two number can be combined to form the ellipticity 1 of the ellipse

ε =
a− b
a+ b

=
|γ|
1− κ

≡ g (3.2)

This equation shows that the image’s ellipticity depends only on g,
the reduced shear, and not individually on the shear and the convergence.
Observationally this is the accessible quantity, as it might be clear also
by writing the jacobian of the linearised lensing equation in the following
way:

A ≡ ∂!β

∂!θ
=

(
δij −

∂2Ψ(!θ)
∂θi∂θj

)
= (1− κ)

(
1− g1 −g2
−g2 1+ g1

)
. (3.3)

1In mathematical term this is called also second flattening and it defines the degree of
"squashing", from no flattening (a perfect circle) to complete flattening (a straight line)
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3.1. MEASURING ELLIPTICITY

The multiplicative factor (1− κ) is responsible of rescaling the image, but
the distortion is generated by g.

Figure 3.2: Effect of shear and con-
vergence on a circular source from
Munshi et al. (2008)

In reality however galaxies are
generally not circular and there-
fore the relation between elliptic-
ity and shear is not as straightfor-
ward as presented in equation 3.2.
Seitz and Schneider (1997) showed
that if a galaxy has a non vanish-
ing intrinsic ellipticity εs, the re-
lation between observed ellipticity
and reduced shear reads as:

ε =
εs + g
1+ g"εs

(3.4)

Note that this relation is valid for
|g| ≤ 1. This nice mathemati-
cal relation is unfortunately useless
when applied to a single object, since is not possible to infer εs from any
observation. We will come back to this point in section 3.3.

The definition of ellipticity we gave above is note unique. Another
possible definition of the ellipticity is given by2:

χ =
a2 − b2
a2 + b2

=
2|g|

1+ |g|2 (3.5)

In this case the relation between ellipticity and reduced shear is more
complicated and in particular is non-linear. It will be clear later on in the
chapter the reason why this ellipticity definition has been introduced. If
the galaxy has a non vanishing intrinsic ellipticity χs, equation 3.5 becomes
more complicated:

χs =
χ − 2g+ g2χ"

1+ |g|2 − 2Re(gχ")
(3.6)

Schneider and Seitz (1995). ε and χ are related through:

ε =
χ

1+ (1− |χ|2)1/2

χ =
2ε

1+ |ε|2
(3.7)

Other possible definitions of ellipticity in terms of semi and major-axes
would be possible, but they are not used in weak-lensing applications. In
the following we will call "ellipticity" both ε and χ as is normally done in
the literature.

2In mathematical term this is called third eccentricity.
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3.1.1 PSF convolution

The observed shape of any object is the result of a convolution of its surface
brightness I0(!θ) with the point spread function P(!θ) due to instrumental
and atmospheric effects:

Icon(!θ) =
∫
I0(!θ′)P(!θ −!θ′)d2θ′. (3.8)

If the PSF is spherically symmetric, the convolution results in a smearing
of the surface brightness with the effect of rendering the object more cir-
cular. Moreover any anisotropy in the PSF shape will imprint a spurious
ellipticity in the observed surface brightness. Correcting for these effects
is a crucial step in any weak lensing analysis. Furthermore the PSF can
vary spatially and in time, and hence it must be measured and modelled
for each image individually. This can be done using stars in our own
galaxy present in the field. Since the number of stars in the field might
not be large enough to smoothly map the PSF variation across the field,
usually interpolating techniques between the points where stars appear on
the image are employed (Jarvis and Jain, 2004; Hoekstra, 2004; Jain et al.,
2006).

3.2 Available tools

In the last 15 years there has been a flourishing of different techniques
to extract lensing information from convolved and very noise images of
galaxies. The reason is that, as we mentioned already, having unbiased
shear estimation is of crucial importance to constrain cosmological param-
eters and in particular dark energy models. We will summarise here the
most used one and we refer to Bridle et al. (2009) for a more extended
presentation. A useful way to categorise different lensing estimates is by
introducing the concept of active and passive approaches (Massey et al.,
2007a). Active approaches start defining a model for the unlensed and
unconvolved source, they shear it and they convolve finally with a model
for the PSF. A minimisation procedure is then used to estimate the best-fit
lensing transformation parameters. Examples of methods using an active
approach are LENSFIT (Miller et al., 2007; Kitching et al., 2008) and the
method proposed by Bernstein and Jarvis (2002). Passive approaches on
the other are based on measurement of moments of the convolved galaxy
surface brightness. Combinations of second order moments are then used
to build up a shear estimator and corrections for the effect of the PSF are
employed. Prototype of those methods is KSB (Kaiser et al., 1995), which
was also the first proposedmethod for converting measurements of galaxy
ellipticity into shear.
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3.2.1 Model fitting approach

One of the most straightforward approaches to estimate the ellipticity of
galaxies is model fitting (Kuijken, 1999a; Bridle et al., 2002). The idea is
very simple and relies on the choice of a model for the source (typically an
elliptical Sérsic profile) and a model for the PSF. These two models have
to be convolved in order to describe the observed galaxy image. Usually a
Monte Carlo method is used to find best-fitting galaxy model parameters
for each individual galaxy. The basic rationale of this approach is that if
the family of models is a good representation of the true surface bright-
ness profile, the highest possible S/N of the result parameter should be
obtained. The most recent and developed tool employing a model fitting
approach is LENSFIT (Miller et al., 2007; Kitching et al., 2008). It performs
a Bayesian technique for model selection and the goal is to determine the
posterior probability distribution of the model parameters. In the Bayesian
approach the likelihood function has to be determined and a prior proba-
bility distribution for the ellipticity distribution has to be assumed. Nor-
mally the model encodes 6 free parameters: position (x and y), ellipticity
(x and y), brightness and radius. Miller et al. (2007) showed that if the fit
is done in Fourier space is possible to analytically marginalise over posi-
tion and brightness, hence one needs to marginalise only over the radius
to have the likelihood function for the ellipticity. Model-based approaches
often perform excellently for strongly degraded data because certain im-
plicit or explicit priors keep the results within reasonable bounds, e.g. the
source ellipticity smaller than unity. On the other hand, when impos-
ing these priors to data, whose characteristics differ from the expectation,
these approaches may also bias the outcome.

3.2.2 Shapelets

The basic idea here is to linearly decomposed galaxy images into a se-
ries of orthogonal basis functions (called shapelets), which are product
of Gaussian with Hermite or Laguerre polynomials (in Cartesian or polar
coordinate respectively). The same decomposition can be done for the con-
volution kernel and the convolution can be expressed in shapelet space as
a simple matrix multiplication. Hence a deconvolution can be done analyt-
ically simple by a matrix inversion (Refregier and Bacon, 2003). However
gaussian-based function requires a large number of coefficients to repro-
duce the extend wings of a typical galaxy. If the wings are truncated in
the model since they are hidden in the noise, galaxy ellipticities will be
systematically underestimated. Moreover it has been shown that shear es-
timate turns out to be biased if the shape to be described has too steep
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profile Melchior et al. (2010a)

3.2.3 Moments

Another possible approach to measure ellipticity of galaxies is based on
the moments of the surface brightness distribution. Historically this has
been the first method used in weak lensing analysis and it has been devel-
oped by Kaiser et al. (1995).

The shape of an extended source can be described by angular moments
of its surface brightness distribution I(!θ),

Qij...k =
∫
I(!θ)θiθj...θkd

2θ . (3.9)

Q is the total flux, Qi defines the centroid of the image, and higher-order
moments provide information on the image’s morphology. Without loss
of generality we assume, from now on, the distribution to be centred such
that the two first-order moments vanish. Combinations of second mo-
ments can be used to quantify the image’s ellipticity, which we introduce
as

χ =
(Q11 − Q22) + 2iQ12

Q11 + Q22
. (3.10)

If the ellipticity is defined according to equation 3.2, its representation in
terms of moments reads as:

ε =
(Q11 −Q22) + 2iQ12

Q11 + Q22 + 2(Q11Q22 −Q212)1/2
, (3.11)

Model-independent approaches do not – or at least not as strongly – as-
sume particular knowledge of the data to be analysed. They should there-
fore generalize better in applications, where priors are not obvious, e.g. on
the intrinsic shape of lensed galaxies. The traditional KSB method forms a
shear estimator from the second-order moments of lensed galaxy images.
When doing so, it is not guaranteed that reasonable shear estimates can
be achieved for each galaxy. Consequently, KSB requires a careful setup,
which is adjusted to the characteristics of the data to be analysed. KSB
furthermore employs strong assumptions on the PSF shape, which are not
necessarily fulfilled for a given telescope or observation (Kuijken, 1999a).
A detailed analysis of this method will be given in the next chapter.

3.3 From ellipticity to shear

Information on the intrinsic ellipticity of a single object is not accessible.
Hence in order to estimate the shear one has to average over many galaxies
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in a region where g can be considered constant, assuming that the average3

of χs vanishes,

0 = 〈χs〉 =
〈

χ − 2g+ g2χ∗

1+ |g|2 − 2Re(gχ∗)

〉
. (3.12)

This equation does not have a general analytical solution. Therefore
either a numerical solution for g is searched, either a Taylor expansion
around g ( 0 can be done:

g ( 〈χ〉
2

(
1

1− σ2χ

)

(3.13)

The term in bracket is the so-called shear responsivity and represents the
response of ellipticity to a small shear, while σχ is the dispersion of the
intrinsic ellipticity distribution. The last equation provides unbiased shear
estimates if the ellipticity of the single galaxies and the ellipticity disper-
sion are unbiased. Moreover the shear must be small otherwise a linear
approximation of equation 3.12 is not sufficient.

We introduced in the previous section another ellipticity estimator ε.
In this case it is possible to show (Seitz and Schneider, 1997) that:

〈εn〉 = gn (3.14)

This result leads to the fact that 〈ε〉, in contrast with 〈χ〉 is always an
unbiased local estimator of the shear. This means, in other terms, that
if ε is used as definition of galaxy ellipticity, the shear can be perfectly
recovered averaging over a sufficiently high number of sources without
any need of measuring the dispersion of the intrinsic ellipticity of the
considered population.

In practical applications χ and ε are both used as definition for ellip-
ticity. However methods based on moments measurement normally use χ
since it has a more simple representation in terms of moments and it turns
out to be less noisy than ε.

3.4 Accuracy

Typically the intrinsic ellipticity dispersion of galaxies is σχ ( 0.3. There-
fore one needs a large number N of galaxies to decrease the statistical
noise ∼ σχ/

√
N on the shear measurement.

The number of available galaxies for averaging depends on the analy-
ses one want to perform. In cluster lensing applications, the shear is usu-
ally estimated on a grid which covers the lens plane (Bartelmann et al.,

3we consider here a simple arithmetical mean
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Table 3.1: On going and future weak lensing experiments, with area cov-
erage, depth and number of galaxies with measurable shapes

Area/sq.deg. Median z Density1 Start date

DES2 5000 ∼ 0.7 ∼ 10 2011
JDEM3 2000 1 20− 30 2013

EUCLID4 20000 ∼ 0.9 40 2017
LSST5 20, 000 ∼ 1.2 40 2018

1996; Cacciato et al., 2006; Merten et al., 2009). The size of the grid is cho-
sen such that in each grid cell the lensing potential can be considered
almost constant. Normally this value is set to be ≈ 35′′. Assuming a typi-
cal number density of background galaxies of 30/arcmin2, this means that,
on average, in each grid cell there are ≈ 10 galaxies, leading to a noise in
the shear measurement around 10%.

In cosmic shear the quantity which is normally estimated is the two
point shear correlation function. The correlation is computed, as shown in
section 2.2, by averaging all possible galaxy pairs separated by an angular
scale dθ. Using a survey like COSMOS (Scoville et al., 2007), covering
1.64deg2 and with roughly 80 galaxies per squared arcminute, the average
can be done over approximately 103 − 104 pairs (Schrabback et al., 2010),
meaning that the statistical error drops to percent level. These numbers
are the state of the art for cosmic shear measurements nowadays. New
surveys will cover even large areas in the sky and they will detect even
fainter galaxies (see Table 3.1 for an overview of the characteristics of the
new generation lensing surveys) and therefore the impact of statistical
errors in cosmic shear measurement will drop below the per-mille level.

It is therefore crucial in order to fully exploit the future cosmic shear
analyses to be able to measure galaxy ellipticities with an accuracy of 1
part in 10−3.

The small statistical errors make cosmic shear an ideal tool for fu-
ture dark energy studies (Peacock et al., 2006; Albrecht et al., 2006), pro-
vided that the other systematics which might arising in shear measure-
ments will be of the same magnitude. In particular Amara and Réfrégier
(2008) showed that this is the requirement in order to get percent con-
straints on dark energy from a DUNE-like mission. These very tight re-
quirements challenged the community to test different pipelines used to

1Number of galaxies per squared arcminute
2http://www.darkenergysurvey.org
3http://jdem.gsfc.nasa.gov
4http://sci.esa.int/euclid
5http://www.lsst.org
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measuring galaxy ellipticities under realistic conditions and several test
programs have been established. The first one has been the Shear TEsting
Program (STEP) (Heymans et al., 2006; Massey et al., 2007b), followed by
the GRavitational lEnsing Accuracy Testing 2008 (GREAT08) (Bridle et al.,
2009). The main result of those tests is that the current pipelines are good
enough to exploit the current lensing survey but they cannot reach the
required per-mille accuracy necessary for the new generation of lensing
survey.

3.5 Flexion measurements

Flexion is related to the third derivative of the lensing potential (third-
order lensing effect) and is responsible for the skewed and arclike appear-
ance of lensed galaxies. We described the flexion formalism in section
2.1.3, where we showed that any third order distortion caused by a sin-
gle lens plane, can be expressed as a sum of a spin-1 field, namely the
F -flexion, and a spin-3 field, namely the G-flexion. F -flexion is a direct
local measurement of∇κ and therefore it is weaker and shorter range than
the G-flexion, which is a local measurement of ∇g. This behaviour can be
clearly seen in figure 3.3 where we computed the modulus of the flexion
fields expected for a NFW halo.

Following the representation of the ellipticity in terms of second mo-
ments of the surface-brightness, we introduce here some combinations of
higher moments of the surface brightness, which we will eventually re-
late to the flexion field. We will closely follow the notation presented by
Okura et al. (2007). We start defining two combinations of third moments

ζ̂ ≡ (Q111 + Q122) + i(Q112 + Q222)

δ̂ ≡ (Q111 − 3Q122) + i(3Q112 − Q222)
(3.15)

which have respectively spin-1 and spin-3. Since flexion has dimen-
sion of 1/L we need to normalise ζ̂ and δ̂ with a combination of moments
having spin-0 and dimension L4. Usually this is done defining the nor-
malisation factor as a combination of fourth moments:

ξ ≡ Q1111 + 2Q1122 +Q2222 (3.16)

Using this definition, the so-called HOLICS (in Okura et al. (2007) termi-
nology) read:

ζ ≡ ζ̂

ξ

δ ≡ δ̂

ξ

(3.17)
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Figure 3.3: Modulus of F -flexion (left panel) and G-flexion (right panel)
calculated for a NFW halo with M = 5× 1014M. at z = 0.5. The sources
are assumed here to be at z = 2. The black circle indicated the scale radius
of the halo.
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Another possible choice for the normalisation would be (TrQ)2 =
(Q11 + Q22)2, which has the advantage of being a combination of second
moments instead of fourth moments (which might be difficult to measure
in practise due to noise):

ζ̃ ≡ ζ̂

(TrQ)2

δ̃ ≡ δ̂

(TrQ)2

(3.18)

However using this normalisation renders the transformation of δ̃ and ζ̃
under lensing more complicated.

We compute now how ζ and δ transform under lensing. The compu-
tation is lengthy and relies on two steps:

• Computing the transformation of 3rd and 4th moments under lens-
ing. This computation can be done neglecting the centroid shift in-
duced by lensing:

Qsijk ( AilAjmAknQlmn +
1

2
(AilAjmDkno + AjmAknDilo

+ AilAknDjmo − 4AilAjmAknFo)Qlmno
(3.19)

Qsabcd ( AajAbmAcoAdqQjmoq+
1

2
(AajAbmAcoDdqr + AbmAcoAdqDajr

+ AajAcoAdqDbmr + AajAbmAdqDcor − 4AajAbmAcoAdqFr)Qjmoqr
(3.20)

where A is the jacobian matrix defined in equation 3.3 and Dijk =
Aij,k (Bacon et al., 2006).

• Correcting for the lensing induced centroid shift. The centroid shift
can be written at first order in shear and flexion as:

∆θ
i = TrQ

[
3

2
Fi +

5

4
(F"χ)i +

1

4
(Gχ")i

]
. (3.21)

We can use this result to relate the HOLICs computed using mo-
ments with respect to the true centre (ζ, δ) with the one computed
in the first step with respect to the apparent centre (ζ a, δa):

ζ = ζa + 2
TrQ

ξ
∆θ +

TrQ

ξ
(χ∆θ") ( ζa +

(TrQ)2

ξ

(

3F+ 4F"χ +
1

2

)

δ = δa + 3
TrQ

ξ
∆θ ( δa +

9

2

(TrQ)2

ξ
χF

(3.22)
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These calculations show that at first order in the flexion fields the trans-
formation of δ and ζ under a lensing transformation read as:

ζs =
1

(1− κ)(1− 4Re(g∗η)− 5Re(Fι∗I )− Re(Gι∗I I I))

×
[

ζ − 2gζ∗ − g∗δ − 1

4

(

8F∗η − 16(TrQ)
2

ξ
F∗χ

+ 9F− 12(TrQ)
2

ξ
F+ 2Gη∗ − 2(TrQ)

2

ξ
Gχ∗ + G∗λ

)]

,

(3.23)

δs =
1

(1− κ)(1− 4Re(g∗η)− 5Re Fι∗I − Re(Gι∗I I I))

×
[

δ − 3gζ − 1

4

(

10Fη + 7F∗λ − 18(TrQ)
2

ξ
Fχ + 3G

)]

,

(3.24)

where η and λ are dimensionless spin-2 and spin-4 quantities, respec-
tively, defined with 16-pole moments, and ι I and ιI I I are spin-1 and spin-3
quantities, respectively. They are defined as following:

η ≡ (Q1111 − Q2222) + 2i(Q1112 +Q1222)
ξ

(3.25)

λ ≡ (Q1111 − 6Q1122 +Q2222) + 4i(Q1112 −Q1222)
ξ

(3.26)

ιI ≡
(Q11111 + 2Q11122 + Q12222) + i(Q11112 + 2Q11222 + Q22222)

ξ
(3.27)

ιI I I ≡
(Q11111 − 2Q11122 − Q12222) + i(3Q11112 + 2Q11222 − Q22222)

ξ
(3.28)

Moreover ζs and δs denotes the intrinsic first and second flexion and the
reduced flexion has been defined as:

F ≡ F
1− κ

G ≡ G
1− κ

(3.29)

Equations 3.23 and 3.24, relating the intrinsic deformation (ζs, δs) with
the lens-induced deformation (ζ, δ), look complicated, involving high or-
der moments of the light distribution and different combinations of the
lensing fields. Normally they are simplified employing the following ap-
proximations:

• The expectation value of the intrinsic flexion vanishes;
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• η and λ are small;

• Terms containg 6-th moments are negligible;

• The shear is small.

Under these conditions a linear relation between the HOLICs and the flex-
ion fields can be found:

F (
〈

ζ

(9/4)− 3(trQ)2/ξ

〉

G ( 4

3
〈δ〉

(3.30)

3.5.1 Cross talk between shear and flexion

In the derivation of equations 3.30 all terms showing cross talk between
shear and flexion have been neglected. This approximation is certainly
valid for cosmic flexion and in the out-skirts of galaxy clusters, but we
expect them to break down in proximity of massive structures where both
the shear and the flexion cannot be considered small anymore. We re-
derive here the relation between the flexion estimators and the lensing
fields dropping the assumption that the shear-flexion cross talk is negligi-
ble. If those terms are not neglected we get to the following equation for
the G flexion.

0 = 〈δ〉 − 3g〈ζ〉 − (1/4)

[

10F〈η〉 − 18F
〈

χ(TrQ)2

ξ

〉

+ 3G

]

(3.31)

We assumed here that the convergence, the shear and the flexion are con-
stant in the area in which the average is taken, and that all terms in the
denominator of equation 3.24 can be neglected. Moreover we assume that
also the term G〈λ〉 can be neglected. We will comment on these assump-
tions in the next section. We can now write 〈ζ〉 in terms of F according to
equation 3.30. This approximation is sufficient here since any further cor-
rection would create terms which are second order in g. Moreover we can
use the well know relation 〈χ〉 ( 2g and the fact that 〈η〉 ( 3g as showed
by Okura and Futamase (2009) in order to write the relation between δ and
G in terms of g and F :

4

3
〈δ〉 ( G+ gF

(
19− 12

〈
(TrQ)2

ξ

〉)
− 6F

〈
χ
(TrQ)2

ξ

〉
(3.32)
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The terms TrQ and ξ are spin 0 quantities and give information about
the apparent size of the objects. Therefore if all the sources are of the same
size (which is a good approximation for ground base observation where
the apparent size of the objects is set by the PSF) then the term (TrQ) 2/ξ is
almost constant and therefore we can make the following approximation:

〈
χ(TrQ)2

ξ

〉

( (TrQ)2

ξ
〈χ〉 ( 2g

(TrQ)2

ξ
(3.33)

leading to the simpler expression:

4

3
〈δ〉 ( G+ gF

(

19− 24(TrQ)
2

ξ

)

(3.34)

Employing the same approximations we can compute a similar expression
for 〈ζ〉:

〈ζ〉 − 2g〈ζ"〉 = 9

4
F− 3

〈
(TrQ)2

ξ

〉

+
9

4
g"G

− 1

2
G

〈
(TrQ)2

ξ
χ"

〉
+ 6F"g− 4F"

〈
(TrQ)2

ξ
χ

〉

( F

(
9

4
− 3(TrQ)

2

ξ

)
+ g"G

(
9

4
− (TrQ)2

ξ

)
+ 2F"g

(
3− 4(TrQ)

2

ξ

)

(3.35)

3.5.2 On some approximations

This paragraph is a bit technical and gives a justification on the approxima-
tions made in order to arrive at equations 3.34 and 3.35. We concentrate
here on the assumptions we used to derive equation 3.34, but the same
line of argument can be used also for the derivation of equation 3.35. We
assumed in the previous section that:

• The term G〈λ〉 can be neglected.

• All the terms in the denominator of equation 3.24 are small, and
therefore can be neglected;

The first assumption is easy to justify since λ is a spin-4 quantity (i.e.
it has a directional dependence) and therefore the expectation value of
the intrinsic λ is assumed to vanish. Moreover the fact that λ is a spin-
4 quantity means that its lensing induced change can only be related to
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3.5. FLEXION MEASUREMENTS

terms like GF, g2,...or any combinations of the lensing fields producing a
spin-4 field. This implies that the term G〈λ〉 won’t be linear in the lensing
fields and therefore can be neglected for our purposes. In order to justify
the second assumption we perform a Taylor expansion of the denominator
of equation 3.24 and we compute the correction terms to equation 3.34
which are first order in the lensing field:

Cor = Re(g")

[

ηδ − 10Fη − 7F"λ + 18
(TrQ)2

ξ
Fχ − 3G

]

+ Re(Fι"I )[5δ − 15gζ] + Re(Gι"I I I)[δ − 3gζ]

(3.36)

The next step is to take the average of the correction terms Cor under the
usual assumption that the lensing fields are constant in the region over
which the average is taken:

〈Cor〉 = 4gi〈δηi〉 − Fgi

(

10〈ηηi〉 − 18
(TrQ)2

ξ
〈χηi〉

)

− 15gFi〈ζιIi〉

+ 7F"gi〈ληi〉+ 5Fi〈διIi〉+ Gi〈διI I Ii〉 − 3gGi〈ζιI I Ii〉
(3.37)

The first term (〈δηi〉) is an average between a spin-3 and a spin-2 quan-
tity, and therefore vanishes. Analogously vanish the second to last term
(〈διIi〉) and the last term (〈ζι I I Ii〉) being an average between a spin-1 and
a spin-3 field. From the previous section we know that η and χ are both
related to the source’s ellipticity. It is therefore a reasonable guess that
the terms 〈ηχ〉 and 〈ηη〉 are proportional to the ellipticity dispersion σ2ε .
Typically σε ( 0.3. This order or magnitude calculation tells us that the
terms in brackets in the equation above give only a percent contribution
to the gF term in equation 3.34. It is more difficult to argue about the
order of magnitude of the left over terms. They do not vanish since they
involve average of spin-1 quantities (〈ζιIi), spin-3 quantities (〈διI I Ii〉) and
spin-4 and spin-2 quantities (〈ληi〉). However we expect them to be very
small, since they all involve high-order moments of the light distribution.
Moreover all these terms are practically impossible to be measured since
noise dominates at large scales in any real galaxy image.

3.5.3 Tests

In this section we present some preliminary tests we did in order to quan-
tify the importance of the cross-talk between shear and flexion in a galaxy
cluster environment. We start discussing the possible contaminations to
the G-flexion signal. The first step is to study the relative importance
of the G term and the gF(24− 19(TrQ)2/ξ) term appearing on the right
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Figure 3.4: Ratio between Fg and G-flexion field and between Gg∗ and
F-flexion as a function of the distance from cluster centre. We assume here
that the density profile of the cluster is described by a NFW profile.

hand side of equation 3.34 as a function of the distance from the clus-
ter centre. We assume that the density profile of the cluster is described
by an NFW profile and we assume that all the sources have the same
size, such that equation 3.34 holds. Furthermore we assume that the pro-
file of the sources is a circular top hat. This is a very crude approxima-
tion, but for a source with this profile it possible to compute analytically
(TrQ)2/ξ = 3/4, which implies that (19− 24(TrQ)2/ξ) = 1. This means
that the relative importance between the two terms of the r.h.s. of equation
3.34 is given simply by ratio Fg/G. We plot its behaviour as a function of
the distance from the cluster centre in figure 3.4 (green curve). In general
we have (TrQ)2/ξ < 3/44, meaning that the result shown in figure 3.4 has
to be considered as a lower limit.

At scales smaller than half the scale radius of the cluster, the error
commited if one identifies the measured field δ with the flexion G is larger
than 10%. These scales are very interesting since are intermediate between
the pure weak lensing regime (shear only) and the strong lensing regime
and are the scales where most of the flexion signal is. Therefore it is
extremely important to have in mind that what δ probes at these scales is
a combination of G-flexion and a product between F-flexion and reduced
shear.

We can perform the same analyses for the F-flexion. We start noticing
that any measurement of ζ traces always the g"G field and not the F field,

4For a Sérsic type galaxies we find numerically (TrQ)2/ξ ( 0.3

48



3.5. FLEXION MEASUREMENTS

if the same assumptions about the source properties are employed (this is
clear substituting (TrQ)2/ξ) = 3/4 in equation 3.35). This field can have
up to half of the expected flexion field strength in the very central region
of the cluster as it it clear from figure 3.4 (red line).

As second step we considered a more realistic situation. We simulated
a triaxial galaxy cluster with substructures (Giocoli et al. in prep) and we
computed its lensing signal. We produced discrete maps of the conver-
gence, the shear and the flexion (128 × 128pixel), and for each pixel we
simulated 100 galaxies 5 with an intrinsic ellipticity dispersion of σ = 0.3,
following a Sérsic-type profile:

I(r) = I0 exp

[

−bns

((
r

Re

)1/ns
− 1

)]

(3.38)

where Re is the radius containing half of the flux and ns the Sérsic index
and bns is a constant which depends on ns. This type of profile is identical
to a Gaussian for ns = 0.5 and is steeper in the centre for ns > 0.5. In the
following test, we assume ns = 1.5, which represents the average value
for rather bright galaxies in the COSMOS field (Sargent et al., 2007). We
applied to each of them a lensing transformation according to the value
of the lensing fields in the pixel, we measured their surface brightness
moments after the transformation, and we computed for each of them δ
according to equation 3.24. We then take the average of δ inside each pixel
and we produced a "measured" G-flexion map. The result is shown in
figure 3.5. It is clear that there is a region (the one inside the big circle in
the figure), with radius almost the scale radius of the cluster, where the
measured G-flexion signal (top right panel) does not match the theoretical
one (bottom left panel). The difference between the two maps can be
explained if the Fg field (bottom right panel) is considered. This result
confirms the previous simple analyses: for scales smaller than the scale
radius, δ is not a tracer of the G-flexion, but rather of a combination of
G-flexion and F-flexion times shear, as it is clearly shown in equation 3.34.

3.5.4 Outlook

There are still a lot of open questions concerning flexion measurements
which we plan to address in the next future:

• The relative importance of the mixed terms (shear times flexion) in
equations 3.34 and 3.35 with respect to the flexion field depends
on the cluster properties (which determine the density profile) and

5We choose this very high number of object in order to have an almost negligible sta-
tistical error.
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CHAPTER 3. SHEAR AND FLEXION MEASUREMENTS

Figure 3.5: Top left panel: convergence map of a cluster of 1015M. with
substructure at redshift z = 0.5. The sources are assumed to be at z = 2.
Top right panel: map obtained averaging δ over 100 galaxies inside each
pixel. The galaxies follow a Sérsic profile and have an intrinsic ellipticity
dispersion of σ = 0.3. All of them are sheared and flexed according to the
shear and flexion value inside the pixel. Bottom left panel: Theoretical G-
flexion calculated from the potential of the simulated cluster. Bottom right
panel: Theoretical gF field calculated from the potential of the simulated
cluster. The larger circle represents the region in which the gF field is
not negligible anymore with respect to the G-flexion (gF/G > 10%). The
smaller circle encompasses the region of strong lensing. The size of all
images is 4Mpc/h.
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on the morphological properties of the source population via the
(TrQ)2/ξ term. Detailed investigations are planned in this direction.

• Measurements of F-flexion are tricky since any error in the centroid
determination seriously affects the estimation of ζ (which is a spin 1
field). With which precision do we have to know the centroid ?

• In order to measure (δ, ζ) is necessary to have information on the
4th moment of the light distribution of the source, since they appear
in the normalisation ξ. With which precision are we able to measure
those moments ?

• As we previously discussed it is possible to choose (TrQ)2 as nor-
malisation for the HOLICs instead of ξ. The obvious advantage of
this choice is that only 2nd and 3rd moments have to be measured.
But how are the new quantities (δ̃, ζ̃) related to the flexion and shear
fields ?

• Which is the intrinsic flexion dispersion ? This is a crucial informa-
tion to have since it determines the statistical error associated to any
flexion measurement.

Another key question, which requires a particular attention, concerns
the PSF deconvolution. There have been attempts to fully extend the KSB
formalism taking into account the effects of Gaussian weighting in calcu-
lation of noisy shape moments and higher order PSF anisotropy as well
as isotropic smearing (Okura et al., 2008). However strong assumptions
on the PSF shape have to be employed (i.e. the PSF is described by an
isotropic kernel and a small anisotropic part) and moreover this calcu-
lation shows that up to 8-moments of the light distribution have to be
measured in order to compute the required corrections. Computation of
such high moments might strongly limit the effective number of galaxies
usable for flexion measurement, since high signal to noise is required. An-
other possibility, which has been investigated in the last years, is to extend
the shapelets formalism for flexion measurements (Massey et al., 2007b).
The main advantage of shapelets is that an exact PSF deconvolution can be
done. However it has been shown that circular shapelets provide biased
shear estimator if the shape to be described is steeper than a gaussian.
The same problem might arise also for flexion estimator (Melchior et al.,
2010a).

In chapter 5 we will present a new method, based of moment mea-
surements but employing an exact PSF deconvolution, which might be
very useful for future flexion measurements.
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Apri la mente a quel ch’io ti paleso
e fermalvi entro; ché non fa scienza,
sanza lo ritenere, avere inteso.0

Dante (1265-1321) Paradiso V 4
Bias in, and correction to KSB shear

measurements

One of the most popular method to estimate gravitational shear from
surface-brightness moments of small, convolved and noisy galaxy im-
ages is KSB (Kaiser et al., 1995; Luppino and Kaiser, 1997; Hoekstra et al.,
1998). It derives galaxy ellipticites from the weighted second moment of
the observed images, and then gives an approximate correction for the
effect of the weighting function and for the effect of the PSF. The main
advantage of KSB is that it is easy to implement and it is very fast (which
is an important requirement specially for cosmic shear survey, where mil-
lion of galaxies have to be analysed). However its mathematical derivation
relies on three potentially problematic assumptions. These are:

• While gravitational shear must be estimated from averaged galaxy
images, KSB derives a shear estimate from each individual image
and then takes the average. Since the two operations do not com-
mute, KSB gives biased results.

• KSB implicitly assumes that galaxy ellipticities are small, while weak
gravitational lensing assures only that the change in ellipticity due
to the shear is small.

• KSB does not invert the convolution with the point-spread function,
but gives an approximate PSF correction which – even for a circular
PSF – holds only in the limit of circular sources.

In this chapter we quantitatively demonstrate the biases due to all as-
sumptions, extend the KSB approach consistently to third order in the
shear and ellipticity and show that this extension lowers the biases sub-
stantially. The issue of proper PSF deconvolution will be addressed the
next chapter.

0Open your mind to what I shall disclose,/and hold it fast within you; he who
hears,/but does not hold what he has heard, learns nothing.
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4.1 Standard KSB

We review in this section the standard KSB formalism, neglecting, for the
moment, PSF convolution. Any measurements of moments has to incorpo-
rate a weighting function in order to suppress the pixel noise dominating
at large spatial scales. The presence of weighting changes the definition of
ellipticity given in equation 3.10 to:

χα =
1

Tr(Q)

∫
d2θ Iobs(!θ)ηαW

(
|!θ|2
σ2

)
, (4.1)

with

ηα =

{
θ21 − θ22 if α = 1
2θ1θ2 if α = 2

. (4.2)

Note that also TrQ in equation 4.1 is evaluated using weighted moments.
Using equation 2.21, neglecting the flexion terms, and the conservation of
the surface brightness, Iobs(!θ) = Is(A!θ), we can infer the surface bright-
ness in the source plane. From its second moments,

Qsij =
∫
d2βIs(!β)βiβ jW

(
|!β|2
σ̂2

)

= (det A)AikAil

∫
d2θ Iobs(!θ)θkθl

× W

(
(|!θ|2 − 2ηαg

α + |!θ|2|g|2)
σ2(1+ |g|2)

)

, (4.3)

we form the ellipticity

χsα = C
∫
d2θ Iobs(!θ)ξαW

(
|!θ|2 − 2ηβg

β + |!θ|2|g|2

σ2(1+ |g|2)

)
, (4.4)

where

C =
(det A)(1− κ)2

Tr(Qs)
and (4.5)

ξα = ηα − 2gα|!θ|2 + (−1)αηα(g
2
1 − g22) + 2g1g2η†α . (4.6)

The relation between the two filter scales in equation 4.3 is given by σ̂2 =
(1− κ)2(1+ |g|2)σ2 and the multiplicative term (det A)(1− κ)2 in equation
4.5 will cancel out once Tr(Qs) is written in terms of Tr(Q). Note that
Einstein’s sum convention is not implied in (−1)αηα, and that

η†α =

{
η2 if α = 1
η1 if α = 2

. (4.7)
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We adopt this notation for a general tensor,

Ω†
αβ...ζ =

{
Ω2β...ζ if α = 1
Ω1β...ζ if α = 2

(4.8)

Combining equations 4.1 and 4.4 gives a more complicated relation
between ellipticities in the source and in the lens planes than equation 3.6
due to the presence of the weight function. Keeping only first-order terms
in g, this relation is

χα − χsα = gβPshαβ, (4.9)

(Kaiser et al., 1995; Hoekstra et al., 1998) with

Pshαβ = −2
χαLβ

Tr(Q)
− 2χαχβ + 2

Bαβ

Tr(Q)
+ 2δαβ (4.10)

and

Lβ =
1

σ2

∫
d2θ Iobs(!θ)W ′|!θ|2ηβ ,

Bαβ =
1

σ2

∫
d2θ Iobs(!θ)W ′ηαηβ . (4.11)

The notation we use here follows Bartelmann and Schneider (2001).

4.1.1 Shear estimates in KSB

Equation 4.9 directly relates the measured weighted ellipticity χ to the
shear g if the intrinsic ellipticity of the source χs is known. Since χ and χs

cannot be disentangled for individual galaxies, averages over ensembles
of images are necessary to estimate g,

〈χα〉 − 〈χsα〉 = 〈gβPshαβ〉 → 〈gα〉 = gα = 〈Psh〉−1αβ 〈χ
β〉 . (4.12)

The original KSB method actually performs the average of Psh, but this
requires all source characteristics like apparent size and morphology to be
locally constant. When considering convolution with the telescope’s PSF
(see section 4), this argument also applies to the shape of the PSF. Since
generally the PSF shapes are not sufficiently stable across different areas
of the image or even different observations, it is common – particularly for
cosmic shear applications – to interchange the averages,

〈g̃α〉 = 〈(Psh)−1αβ χβ〉 , (4.13)

Erben et al. (2001), assuming that 〈(Psh)−1χs〉 = 0. This condition is not
guaranteed since Psh itself depends on χ. The symbol g̃α in equation 4.13
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denotes the shear estimate obtained by solving equation 4.9 with χs = 0.
We introduce it since g̃ is not the true shear (which is inaccessible for a
single galaxy), but the shear one would measure if the source was circular.
The true shear g is then sought by averaging g̃. Equation (3.6) shows that
for χs = 0 andW(x) = 1, 〈g̃〉 is related to χ by

〈g̃〉 =
〈
1−

√
1− χ2

χ

〉

(
〈

χ

2
+

χ3

8
+

χ5

16
+ ...

〉
. (4.14)

In general, 〈g̃〉 differs from the true shear g computed in equation 3.13.
Assuming that g 0 1, meaning 〈χ〉 0 1, and the distribution of the

intrinsic ellipticities to be Gaussian with standard deviation σχ, the differ-
ence can be written as:

g− 〈g̃〉 ( 〈χ〉
2

(
σ2χ

1− σ2χ

)
−
3σ2χ〈χ〉
8

(4.15)

from which

〈g̃〉 ( g

(
1− 1

4
σ2χ

)
. (4.16)

For a realistic σχ ( 0.3, the bias introduced by averaging shear estimates
instead of ellipticities is ≈ 2%.

Moreover, averaging shear estimates does not allow one to assume that
g̃ is small, as done in the original derivation of Psh, since it is always of
the same magnitude as χ. In coordinates rotated such that g̃ has only
one non-vanishing component, and in absence of a weight function, the
relation between χ and g̃ provided by KSB1 in equation 4.9 is

g̃KSB ( χ1
2

+
χ31
2

+
χ51
2

+ ... . (4.17)

Obviously, this is correct only to lowest order. Comparing Eqs. (4.14)
and (4.17), the error made by KSB in the shear estimation is a func-
tion of the measured ellipticity and scales as (3χ3/8+ 7χ5/16). Typically,
|χ| ∈ [0.5...0.8], implying that the bias KSB introduces in the shear esti-
mate (without weight function) is in the range [6...33]%. The reason for
this bias comes from the fact that second- or higher-order terms in g have
been neglected in the derivation of equation 4.9, while terms like χ2g have
been kept. Once g is identified with g̃, these mixed terms are effectively of
the same order as the g3 terms. In a consistent first-order relation between

1Here and throughout this chapter the notation KSB refers to the solution of any equa-
tion following from equation 4.13. In applications to real data Psh has been treated how-
ever in many different ways by different authors. We refer to Heymans et al. (2006) for a
complete overview.
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χ and g̃, only the first-order term in χg can be considered. Then, Pshαβ looks
like

P
sh,(0)
αβ =

2Bαβ

TrQ
+ 2δαβ . (4.18)

We shall refer to this approximation as KSB1. In this case, the solution for
g̃ is

g̃KSB1 =
χ

2
. (4.19)

The error on the shear estimate made by KSB1 scales like (−χ3/8−χ5/16),
leading to an underestimate which is considerably smaller than the over-
estimate given by KSB. However, as discussed before, χ is practically never
small, meaning that first-order approximations may be poor.

In a frequently used variant of KSB, Pshαβ is approximated by half its
trace (KSBtr hereafter),

Pshαβ ( 1

2
Tr(Pshαβ)δαβ . (4.20)

This is usually justified saying that the trace is less noisy than the inverse
of the full tensor, as we shall show in Sect. 3.3. This statement is certainly
correct for large ellipticities. However, it turns out to work much better
than the full tensor even in the absence of noise, PSF and weighting. The
reason is that it leads to the relation

g̃KSBtr ( χ

2
+

χ3

4
+

χ5

8
+ ... (4.21)

between g̃ and χ, which biases the shear estimate by χ3/8+ χ5/16.

We can summarise the preceding discussion as follows:

1. KSB incorrectly approximates equation 3.6;

2. KSB1 is mathematically consistent;

3. KSBtr approximates equation 3.6 better even though it lacks mathe-
matical justification;

4. No KSB variant discussed so far is correct to third order in χ.

4.1.2 Third-order relation between g and χ

We now derive a consistent third-order relation between χ and g̃, includ-
ing the effects of the weight function. We follow closely the approach
in Sect. 4.6.2 of Bartelmann and Schneider (2001), and use Einstein’s sum
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convention. We start from equation 4.4 and Taylor-expand the weight
function around g = 0 to third order in g,

W

(
(|!θ|2 − 2ηαg

α + |!θ|2|g|2)
σ2(1+ |g|2)

)
(

W

(
|!θ|2
σ2

)

− 2W ′
(
|!θ|2
σ2

)
ηβg

β(1− |g|2)
σ2

+

2W ′′
(
|!θ|2
σ2

)
(ηβg

β)2

σ4
− 4

3
W ′′′

(
|!θ|2
σ2

)
(ηβg

β)3

σ6
+O(g4),

(4.22)

where
ηβg

β

(1+ g2)
( ηβg

β(1− g2) +O(g4) (4.23)

was used. Note that the derivatives of the weight function are taken with
respect to θ2. Truncating the series at a given order implies that the final
result will depend on the shape of the weight function.

We proceed with the calculation of χsαTr(Q
s) to third order in χg,

χsαTr(Q
s)

(det A)(1− κ)2
=

∫
d2θξα I(!θ)W

(
|!θ|2 − 2ηβg

β + |!θ|2g2

σ2

)

=

χαTr(Q)− 2gβBαβ + 2g
βgγDαβγ − 2gαTr(Q) + 4gαg

βLβ+

− 4Kβγgαg
βgγ + (−1)α(g22 − g21)χαTr(Q)

− 2(−1)αBαβ(g
2
2 − g21)gβ + 2g1g2χ

†
αTr(Q)+

− 4B†αβg
βg1g2 −

4

3
Uαβγδg

βgγgδ +O(g4),

(4.24)

where the definitions

Dαβγ =
1

σ4

∫
d2θ Iobs(!θ)W ′′ηαηβηγ ,

Uαβγδ =
1

σ6

∫
d2θ Iobs(!θ)W ′′′ηαηβηγηδ (4.25)

appear. Lα and Bαβ are given in equation 4.11. In the same way, we evalu-
ate

Tr(Qs)
(det A)(1− κ)2

( Tr(Q)(1+ |g|2)− 2gαLα + 2g
αgβKαβ−

2gαχαTr(Q) + 4g
αgβBαβ − 4Dαβγg

αgβgγ − 4

3
Jαβγg

αgβgγ

= Tr(Q)(1+ f (g)),

(4.26)
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where we implicitly defined f (g) and

Kαβ =
1

σ4

∫
d2θ Iobs(!θ)W ′′|!θ|2ηαηβ ,

Jαβγ =
1

σ6

∫
d2θ Iobs(!θ)W ′′′|θ|2ηαηβηγ . (4.27)

From these quantities, we compute

χα − χsα =
χαTr(Q)(1+ f (g))− χsαTr(Q

s)
Tr(Q)(1+ f (g))

. (4.28)

This equation holds exactly in absence of a weight function. If a weight
function is included, f (g) is at most of order 0.02, and we shall consider
equation 4.28 exact to third order. After some algebra we find

χα − χsα =
gβ[Pαβ + gγ(Rαβγ + gδSαβγδ)] + Ξα +O(g4)

1+ f (g)
(4.29)

where

Rαβγ = 2
χαKγβ

Tr(Q)
+ 4

χαBγβ

Tr(Q)
− 2

Dαβγ

Tr(Q)
− 4

δαγLβ

Tr(Q)
,

Sαβγλ =
2Kβγδαλ

TrQ
+
4

3

Uαβγλ

TrQ
, (4.30)

and

Ξα =

(

χα −
2Bαβg

β

TrQ

)

|g|2 − (−1)α(g22 − g21)
(

χα −
2Bαβg

β

TrQ

)

−

2g1g2

(

χ†α −
2B†αβg

β

TrQ

) (4.31)

Introducing second and third-order terms leads to a non-linear relation
between χ and g which needs to be solved numerically. Moreover, sixth-
order moments of the observed surface-brightness distribution appear in
Rαβγ and eight-order moments in Uαβγδ because of the Taylor expansion
of the weight function to third order. We discuss in the following Section
how to deal with the non-linear relation between shear and ellipticity and
possible noise issues due to the appearance of higher moments.

4.1.3 Tests

We now show the results of simple tests carried out to check how well
the four variants of KSB estimate the shear. We consider a circular source
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Figure 4.1: Shear estimate g̃1 as a function of the applied shear for noise-
free and unconvolved Sérsic-type galaxy images as provided by KSB (red
line), KSBtr (green line), KSB3 (blue line), and KSB1 (magenta line). In
the left panel no weighting function has been used to measure moments
of the light distribution, while in the right panel a Gaussian weighting
function has been employed with a width equal to the size of the object.
The effective galaxy radius was Re = 2 pixel, the Sérsic model was tenfold
oversampled, and the image side-length was 40 pixels.
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(χs = 0) with a Sérsic brightness profile, as defined in equation 3.38 with
ns = 1.5, which represents the average value for rather bright galaxies in
the COSMOS field (Sargent et al., 2007). We shear this profile by a variable
amount g̃1, keeping g̃2 = 0.1 fixed, using equation 2.21. Flexion is assumed
to vanish in these tests. For all following tests, the effective galaxy radius
was Re = 2 pixels, the Sérsic model was tenfold oversampled, and the
image side-length was set such as to not truncate the galaxy at the image
boundary. Then, we measure the ellipticity as defined in equation 3.10.
Since the model galaxy is intrinsically circular, the source ellipticity is en-
tirely generated by the applied shear which is varied in a wide range such
as to mimic the intrinsic ellipticity dispersion. The weight function has
been chosen as Gaussian with σ = 2Re. We repeated this test assuming
a flat weight function (W(x) = 1) in order to estimate how much the dif-
ferent approximations in deriving Psh affect the measurement. The results
are shown in figure 4.1.

In absence of a weight function (left panel of figure 4.1), the perfor-
mance of the four variants closely follows the analytic behaviour worked
out in section 4.1 and 4.1.1: KSB severely overestimates the shear for large
g̃1, while KSBtr and KSB1 better approximate the shear. KSB3 returns the
correct shear under this condition.

The weight function renders the image more circular and thus reduces
the measured χ. This means that the high-order terms in χ contribute less
to the shear estimate. Therefore, the deviation from the correct result is
significantly lower for all the methods (right panel of figure 4.1). This is
not true for KSB1, which allows only a first-order correction for the weight
function.

We also investigate the behaviour of the four KSB variants for realistic
pixel noise. The average result for 100 galaxies is shown in figure 4.2.

KSBtr is the only method for which no matrix inversion is required.
It is thus not surprising that it exhibits the lowest standard deviation for
all values of g̃. KSB and KSB3 have a comparable amount of noise even
though KSB3 involves the computation of 6th and 8th moments of the light
distribution. The reason is that these higher-order moments are computed
using the second and third derivatives of the weight function. There is
no price to be payed (in terms of measurement noise) in using KSB3 in-
stead of the simple KSB description. We also investigate how much the
measurement of one component of the shear is affected by the value of the
other component. For this case, we also studied the case of unweighted
and weighted moment measurements. The result is shown in figure 4.3.
The obvious cross-talk between the two components is not surprising for
KSB, KSBtr or KSB1 since all terms which mix g̃1 and g̃2 were neglected
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Figure 4.2: Shear estimate g̃1 as a function of the applied shear for noisy
but unconvolved Sérsic-type galaxy images as provided by KSB (red line),
KSBtr (green line), and KSB3 (blue line). The total flux of the source was
fixed to unity, the noise rms to 10−3. The average is taken over 100 objects.
Errorbars denote standard deviation of the mean.
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Figure 4.3: Shear estimation cross-talk for g̃2 as a function of the applied
shear g̃1 for noise-free and unconvolved Sérsic-type galaxy images as pro-
vided by KSB (red line), KSBtr (green line), KSB3 (blue line), and KSB1
(magenta line). In the left panel no weighting function has been used to
measure moments of the light distribution, while in the right panel a Gaus-
sian weighting function has been employed with a width equal to the size
of the object.
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Figure 4.4: Dependence of the shear estimate g̃1 on the size of the weight-
ing function width as a function of the applied shear for noise-free and
unconvolved Sérsic-type galaxy images as provided by KSB (red), KSBtr
(green), KSB3 (blue), and KSB1 (magenta). We consider a Gaussian weight-
ing function with width σ = [2Re, ...,∞]. The lower limits correspond to
σ = 2Re, and the upper limits are identical to the unweighted case shown
in figure 4.1.

in the calculation. Introducing third-order corrections, the estimate of one
shear component becomes almost independent of the other component.

Finally, we study how much the bias in the shear measurement de-
pends on the width σ of the weight functionW. We vary the width within
[2Re,∞). The result is shown in figure 4.4. KSB and KSB1 exhibit a strong
dependence on σ, while KSBtr is more robust, and KSB3 is almost inde-
pendent of σ. Due to the poor correction of the weight-induced change
of χ, KSB1 performs poorest in this test. For KSB, the reduction of χ due
to the weighting limits its strong non-linear response such that the bias
decreases for narrow weight functions. As KSB3 employs the best descrip-
tion of the weighting, it performs excellently in this test.

In all tests carried out so far, we have assumed that the intrinsic el-
lipticity of the object vanishes, χs = 0. This is of course idealised since
galaxies have an intrinsic ellipticity dispersion. In order to test the perfor-
mance of the four methods for an isotropic source-ellipticity distribution,
we apply the so-called ring test (Nakajima and Bernstein, 2007). We con-
struct an ensemble of test galaxies falling on a circle in the ellipticity plane,
shear them, measure their shapes, and take the mean. We choose an in-
trinsic ellipticity |χs| = 0.3 and apply the shear g = (0.1, 0.05). The result
is shown in figure 4.5. A perfect method would recover the correct shear
after averaging over all test galaxies. Not surprisingly, we find that KSB
is unable to recover the correct shear from the averaged individual shear
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Figure 4.5: Shear estimates of a sample of Sérsic-type galaxies with χs =
0.3 after shear g = (0.1, 0.05) is applied. Red dots are the results from
KSB, magenta dots from KSB1, blue dots from KSBtr, and green dots from
KSB3. The dots in the centre show the position of the ensemble averages
of the estimates. A zoom of the central region is shown in the small panel,
where the intersection of the dotted lines indicates the outcome of a perfect
measurement.

estimates since they depend non-linearly on χ. This leads to an average
overestimate of ≈ 35% if the shear is aligned with the intrinsic elliptic-
ity. As the other variants have lower non-linear error in the χ-g relation,
the mean values are biased by ≈ 20% (KSB1), ≈ 5% (KSBtr) and ≈ 1%
(KSB3).

4.2 PSF convolution

Any measured galaxy’s ellipticity is the result of three distinct physical
processes: intrinsic ellipticity, lensing, and PSF convolution. As discussed
above, lensing maps the galaxy’s light distribution from the source to the
lens plane, distorting its shape. The relation between galaxy ellipticity
and shear can be found solving equation 3.6 if there is no weight function,
or equation 4.29 if weighted moments are used to define the ellipticity.
In general, the equation one needs to solve to relate ellipticity to a shear
estimator g̃ has the implicit form

χ = f (g̃,χ) . (4.32)
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On the other hand, PSF deconvolution maps the observed ellipticity from
the image plane (on which the object is lensed and convolved with the
PSF) to the lens plane (on which the object is lensed only)

χ = h(χobs) . (4.33)

Thus, the relation between observed ellipticity and the shear estimator in
presence of PSF convolution is the solution of

χobs = h−1[ f (g̃, h(χobs))] . (4.34)

If the PSF is perfectly circular, the only effect of h is a circularisation
of the object, otherwise the PSF induces additional anisotropic distortions.
Therefore, it is crucial to properly correct these two effects in order to
reliably estimate the shear. We consider in the following the case of a
spherical PSF and briefly discuss the case of an anisotropic PSF in Sect.
4.2.1.

Instead of carrying out a proper PSF deconvolution first and then es-
timating the shear using the unconvolved ellipticity, as summarised by
equation 4.34, KSB links the observed ellipticity to the shear by the follow-
ing approach:

χobsα = χshα − χ
g
α, (4.35)

where χshα is given by equation 4.29, and χg is

χ
g
α = Psmαγ (P

sm,∗)−1γβ χsh,∗β . (4.36)

Psm is the so-called "smear polarisability tensor" and has the form

Psmαβ =
1

Tr(Q)

[(
M+

2Tr(Q′)
σ2

)
δαβ + Gαβ − χα(2Fβ + L

′
β)

]
, (4.37)

where

M =
∫
d2θ I(!θ)W

(
|!θ|2
σ2

)
,

Fα =
1

σ2

∫
d2θ I(!θ)W ′

(
|!θ|2
σ2

)
ηα, and

Gαβ =
1

σ4

∫
d2θ I(!θ)W ′′

(
|!θ|2
σ2

)
ηαηβ. (4.38)

L′α has to be interpreted as Lα calculated with the second derivative of
the weight function, while Tr(Q′) and Tr(Q) are calculated with the first
derivative of the weight function. We refer to Sect. 4.6.2 of Bartelmann and
Schneider (2001) for a complete derivation of equation 4.35.
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Since χsm encodes the action of lensing (cf. last Section on the appro-
priate forms of this mapping), we can rewrite equation 4.35 as

χobs = f (g̃,χobs)− χg(g̃,χobs). (4.39)

It is important to note that the lensing-induced mapping is now evaluated
with the observed, i.e. convolved, ellipticity instead of the unconvolved
ellipticity. This approach therefore requires the correction term χg, which
corresponds to a correct treatment of the PSF convolution (equation 4.34)
if and only if

χg(g̃,χobs) = f (g̃,χobs)− h−1[ f (g̃, h(χobs)]. (4.40)

We study now a very simple but instructive case. We assume a per-
fectly circular source, no weight function, an isotropic PSF, and shear ori-
ented in a single direction. Then, Psmαβ becomes diagonal,

Psmαβ =
M

TrQ
δαβ . (4.41)

In the next chapter we shall demonstrate how to do a proper PSF decon-
volution, using the moments of the PSF and the convolved object, and
show that the mapping h between the convolved ellipticity χobs and the
unconvolved ellipticity χ̃ in the lens plane is given by2

h(χobs) = χ̃ =
χobs

1− A(χobs)
, (4.42)

where

A =
M

TrQ

TrQ∗

M∗ (4.43)

is a function of the observed ellipticity (as shown in figure 4.6) and of the
size of the PSF (as shown in figure 4.7), and is bound to [0, 1]. If the shear
has a single component and there is no weight function involved in the
measurement, f (g̃,χobs) is

f (g̃,χobs) =
2g̃− 2(χobs)2g̃
1+ g̃2 − 2g̃χobs

(4.44)

According to equation 4.36, in the KSB formalism χg has the form:

χg(g̃,χobs) = A(χobs) f (g̃, 0). (4.45)

In particular, in standard KSB, χg(g̃,χobs) = 2g̃A(χobs).

2In order to derive this equation have a look to Table 5.1
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Substituting this expression for χg in the lhs of Eqs. (4.40), we can
conclude that KSB gives a proper description of PSF deconvolution only if
the function f (g̃,χobs) can be decomposed into a product of two functions,
one depending on g̃ only and one on χobs only. This is by no means
guaranteed. A detailed analysis reveals that there are two limiting cases
in which Eqs. (4.40) holds:

• The PSF width vanishes:

A(χobs) = χg(χobs) = 0⇒ χobs = χ.

• The observed ellipticity vanishes.

While the first case is trivial (but irrelevant), the second case can only
be realized – for any finite PSF width – by a conspiracy of intrinsic and
lensing-induced ellipticity.

To study in detail the error commited by KSB in the attempts to correct
for the PSF convolution, we solve equation 4.35 explicitly, employing the
four variants χsh of mapping χ onto g̃ presented in the previous Section,

g̃KSB ( χ̃0
2

+
χ̃20
2
A′(0) + (4.46)

+
χ̃30
2
[(1− A(0))(1+ A′′(0)/2) + A′(0)2]

+ O(χ̃40)

g̃KSB1 =
χ̃

2

g̃KSBtr ( χ̃0
2

+
χ̃20
2
A′(0) +

+
χ̃30
4
[(1− A(0))(1+ A′′(0)) + 2A′(0)2]

+ O(χ̃40)

g̃KSB3 ( χ̃0
2

+
χ̃20
2
A′(0) +

+
χ̃30
8
[1+ 4A′(0)2 + 2A′′(0)− 2A(0)(2+ A′′(0))]

+ O(χ̃40)

where

χ̃0 ≡
χobs

1− A(0)
(4.47)

and A′(0) and A′′(0) are the first and the second derivatives of A(χobs)
computed for χobs = 0. If the PSF correction works perfectly, the relation
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between χ̃ and g̃ has the same form as the exact unconvolved solution of
equation 3.13,

g̃ ( χ̃

2
+

χ̃3

8
+O(χ̃5). (4.48)

We note first of all that equation 4.46 is written in terms of χ̃0, while
equation 4.48 is written in terms of χ̃, meaning that in general the solutions
are different already at first order. However the error at first order (χobs 0
1) is mostly of order 10−4 and therefore negligible. In the limit of a very
wide PSF A(χ) ( A(0) we find the deviations from the exact solution
b = g̃− g̃KSB...,

bKSB =
3− 4A
8

χ̃3 +O(χ̃5)

bKSB1 = − χ̃3

8
+O(χ̃5)

bKSBtr =
1− 2A
8

χ̃3 +O(χ̃5)

bKSB3 = −A
2

χ̃3 +O(χ̃5)

(4.49)

It is worth noting that the PSF correction introduces a bias with preferred
direction: Shear estimates decrease as the PSF width increases.

4.2.1 PSF anisotropy

An anisotropic PSF introduces spurious ellipticity in the image plane which
must be corrected. The appropriate correction in KSB relies on the hy-
pothesis that the PSF can be considered almost isotropic. This enables its
decomposition into an isotropic part Piso and an anisotropic part q,

P(!θ) =
∫
d2φq(!φ)Piso(!θ − !φ) (4.50)

Even this decomposition can be problematic for certain PSFs (Kuijken,
1999b). For example, a PSF given by the sum of two Gaussians with con-
stant ellipticity does not fulfill the equation above. Assuming that equation
4.50 is valid, one can find a relation, valid to first order in q, between the
observed and the isotropic ellipticity,

χisoα = χobsα − (Psmαβ )q
β (4.51)

The term qα, carrying information on anisotropies in the PSF, can be de-
termined from the shape of stars using the fact that their isotropically
smeared images have zero ellipticity (χ∗,iso = 0),

qα = (P∗,sm)−1αβ χ∗,obs
β (4.52)
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Once q has been determined, we can use equation 4.51 to compute the
isotropic from the observed ellipticity. For a detailed calculation we refer
again to (Bartelmann and Schneider, 2001). In the derivation, all the terms
containing moments of q higher than the second have been neglected as
well as quadratic and higher-order terms in qij. If one wants to extend this
calculation to higher orders in q, derivatives of the observed surface bright-
ness Iobs would appear in the calculation because the assumed equality to
Iiso (hypothetical surface brightness for vanishing q) does not hold any
more. The fact that derivatives of the observed profile need to be consid-
ered renders it practically impossible to incorporate higher-order correc-
tions for q, since Iobs is a noisy quantity. This means that within the KSB
framework it is not possible to correct properly for highly elliptical PSFs.

If the determination of q is wrong, so is the estimate of χ iso (the ellip-
ticity of Iiso), and the error will propagate to the final shear measurement
in an almost unpredictable way (Erben et al., 2001; Kuijken, 1999b). This
could happen if the anisotropy of the PSF is too large for a linear treatment,
or if the PSF cannot be decomposed into an isotropic and an anisotropic
part.

4.2.2 Tests

We perform the same tests as in the previous Section, but with an addi-
tional convolution with a Moffat-shaped PSF,

P(r) = (1+ αr2)−β, (4.53)

where

α =
21/β−1

(FWHM/2)2
(4.54)

controls the size of the PSF and β regulates its steepness. In order to
ensure vanishing flux at large radii, the PSF is truncated at 5 FWHM, and
the appropriate value at that position is subtracted from P(r).

We begin studying the case of a flat weight function, W(x) = 1, for
which we derive the behaviour of the four KSB variants in equation 4.46.
The key quantity for describing a spherical PSF is given by A as defined
in equation 4.43, which is a function mainly of the PSF width and mildly
of its steepness for a given galaxy (see figure 4.7). We investigate the
performance of the four methods as a function of the shear for a fixed PSF
width. We choose FWHM = 0.5 Re and β = 2 to mimic a space-based
observation, and FWHM = 5 Re and β = 5 to mimic a ground-based
observation. The results are shown in figure 4.9. In the first case, KSB3
gives the best result, while KSBtr is the best approximation in the second
case, as expected from equation 4.49.
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We next investigate the response of the four methods to the size of
the PSF for a given g̃ (figure 4.8). We choose g̃1 = 0.4 and g̃2 = 0.1. As
expected from equation 4.49, KSB, KSBtr and KSB1 have the same limit
for large PSF (A → 1), while the bias for KSB3 is the largest in the limit
of a very wide PSF. As noted before, the PSF correction in all KSB vari-
ants introduces a negative bias which partly compensates (or even over-
compensates) the overestimate by KSB and KSBtr from the lens mapping.
Since KSB3 is essentially unbiased for unconvolved ellipticities, any PSF
correction necessarily lowers the shear estimate.

Finally, we introduce the weight function into the moment measure-
ment and study the response of the four methods in this situation. The
result is shown in figure 4.10 for a space-based (left panel) and a ground-
based observation (right panel). For narrow PSFs, the methods react on
weighting as in the previous Section, where the PSF was neglected (see
figure 4.4), while the response is milder for a wider PSF. For a narrow
PSF, KSBtr and KSB3 are essentially unbiased, and KSBtr remains fairly
unbiased when the PSF width increases. From the comparison between
Figs. 4.9 and 4.10 we can infer the effect of weighting on the shear es-
timates. The biases of most methods are lowered because the ellipticity
of the convolved source is lower, hence a circular weight function does
not significantly affect the ellipticity measurement. However, in particular
KSB1 shows concerning dependence on both the presence of a weighting
function and the width of the PSF: Even though KSB1 seems fairly un-
biased in the right panel of figure 4.10, other values of the width of the
weight function would lead to less optimal results.

We are aware that our tests are of somewhat approximate nature in
the sense that the characteristics of the simulated images only coarsely
resemble that of realistic survey data. The real-life performance of all KSB
variants will depend on peculiar properties of the surveys to be analyzed,
such as the shape of the PSF, the depth of the observation, etc. However,
two findings from our result can be considered robust: KSB3 shows the
least amount of bias and the weakest dependence on the width of the
weighting function, as long as the PSF remains narrow with respect to the
galaxy size. KSBtr has a more pronounced dependence on the weighting
function, but reacts only weakly on changes of the PSF width.

4.3 Conclusions

We have assessed the assumptions underlying the KSB method for mea-
suring gravitational shear from the images of ensembles of lensed galax-
ies. KSB has the great advantage of being model-independent since it ex-
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Figure 4.8: Shear estimate g̃1 as a function of the PSF size for a Sérsic-
type galaxy image as provided by KSB (red line), KSBtr (green line), KSB3
(blue line), and KSB1 (magenta line) for a fixed value of the pre-convolved
ellipticity corresponding to g̃ = (0.4, 0.1)).

presses the lensing-induced shape change by a combination of moments
of the surface-brightness distribution. However, several assumptions un-
derlying the derivation of the method and its practical implementations
turn out to be violated more or less severely in realistic situations. We can
summarise our results as follows:

1. KSB defines a shear estimate for each individual galaxy, defined as
the shear that would describe the observed ellipticity if the object
was perfectly circular prior to lensing. In other words, it is assumed
that the intrinsic ellipticity of the individual object vanishes. The
true shear is then computed averaging these shear estimates within
a region where g is assumed to be constant. This is in general not
equivalent to averaging the ellipticities of each individual object and
then computing the true shear: averaging observed galaxy elliptici-
ties and measuring the shear do not commute because not the indi-
vidual intrinsic ellipticities can be assumed to vanish, but only their
average. We show that the difference between the two approaches is
a function of the variance of the intrinsic ellipticity distribution. The
error introduced this way depends on the variants of KSB used, the
size of the PSF, and the width of the weight function. It is normally
in the percent range.

2. The definition of the KSB shear estimate relies on the assumption
that the shear is small. However, this is only true after averaging.
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Figure 4.9: Shear estimate g̃1 as a function of the applied shear for noise-
free Sérsic-type galaxy images as provided by KSB (red line), KSBtr (green
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ground-based observation. No weight function has been used to compute
moments.
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Figure 4.10: As in figure 4.9 but employing a weighting function in the
moments computation. The width of the weighting function was set to
the apparent size of the objects, σ =

√
Tr(Q)
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CHAPTER 4. BIAS IN, AND CORRECTION TO KSB SHEAR
MEASUREMENTS

For a single object, the reduced-shear estimate g is of the same order
as the ellipticity χ. This leads to a relation between g and χ which
is correct only to first order. This situation can be improved con-
sidering only linear terms in χg in the derivation of Psh (KSB1), or
considering consistently terms up to third order in χg (KSB3). We
also show that the approximation of Psh by half of its trace (KSBtr),
although not mathematically justified, yields a better g-χ relation
compared to KSB.

3. KSB, KSB1 and KSBtr in absence of PSF convolution tend to overes-
timate the shear, while KSB3 gives an almost perfect result.

4. KSB and KSB1 depend strongly on the width of the weight function
used in the moment measurements, while KSBtr is more robust and
KSB3 is almost independent of it.

5. KSB does not perform any PSF deconvolution, but gives only an ap-
proximate correction for the effects of the PSF. We show that this
correction would be equivalent to a proper deconvolution from a
circular PSF only in the case of a circular source, otherwise the im-
proper PSF correction lowers the shear estimate.

6. The overestimate due to the wrong relation between g and χ and
the underestimate due to the inappropriate PSF correction tend to
compensate each other. For a narrow PSF (space-based observation),
KSB3 is the variant with the least bias, while KSBtr is the best method
for wider PSFs (ground-based observation).

7. The choice of the width σ of the weight function could be utilized to
reduce the measurement bias. In principle, σ can be tuned according
to the size of the PSF and to the galaxy ellipicities such that the shear
estimate ends up to be almost unbiased. However, practically this is
only feasible for the galaxy ensemble as a whole, whereas choosing
σ such that shear estimates are unbiased for each individual galaxy
is of similar difficulty as estimating the shear.

8. KSB can correct only small anisotropies in the PSF (q 0 1). It is not
possible to extend the formalism to allow more precise corrections
since that would imply the calculation of derivatives of the observed
surface brightness, which is not feasible since Iobs is a noisy quan-
tity. An improper correction of the PSF anisotropy introduces a bias
which propagates to the final measurement of the shear in an almost
unpredictable way.
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Per correr miglior acque alza le vele
omai la navicella del mio ingegno,
che lascia dietro a sé mar sì crudele 0

Dante (1265-1321) Purgatorio I 5
Weak lensing with DEIMOS

We showed in the previous chapter how KSB relies on several assump-
tions concerning the relation between convolved and unconvolved ellip-
ticity as well as the relation between ellipticity and shear, neither of which
hold in practice. We proposed an extension of the original KSB method,
namely KSB3, which gives more accurate shear estimations at least in the
limit of small PSF. However we were not able to improve the KSB treat-
ment of the PSF corrections. In this chapter we present a novel method,
DEIMOS (DEconvolution In MOment Space), for shear (and flexion) esti-
mation, which maintains the strengths of model-independent approaches
by working with multipole moments, but does not suffer from the KSB-
shortcomings mentioned above and in particular does not reley on any
assumption about the shape of the PSF.

5.1 Notation

We introduce here a tensor-like notation to represent the moments of the
brightness distribution G(!x) since it turns to be more convenient for the
calculation we will present in this chapter:

{G}i,j ≡
∫
d2x G(!x) xi1x

j
2, (5.1)

The order of a moment is given by n = i + j. In this new notation the
second moments Q11, Q12, Q22 reads as {G}2,0, {G}1,1, {G}0,2.

0To course across more kindly waters now/my talent’s little vessel lifts her sails/leaving
behind herself a sea so cruel
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CHAPTER 5. WEAK LENSING WITH DEIMOS

5.2 The DEIMOS method

Any square-integrable one-dimensional function G(x), has an exact repre-
sentation in Fourier space,

G(x) → φG(k) =
∫
dx G(x) eikx . (5.2)

In the field of statistics, φG is often called the characteristic function of G
and has a notable alternative form1

φG(k) =
∞

∑
n

{G}n
(ik)n

n!
, (5.3)

which provides a link between the Fourier-transform of G and its moments
{G}n, the one-dimensional pendants to Equation 5.1. We can now employ
the convolution theorem, which allows us to replace the convolution by a
product in Fourier-space, i.e. by a product of characteristic functions of G
and of the PSF kernel P,

G"(x) ≡
∫
dx′ G(x) P(x− x′) → φG" = φG · φP. (5.4)

For convenience, we assume the PSF to be flux-normalized, {P}0 = 1.
Considering Equation 5.3, we get

φG"(k) =
[ ∞

∑
n

{G}n
(ik)n

n!

]
·
[ ∞

∑
n

{P}n
(ik)n

n!

]

=
∞

∑
n

n

∑
m

{G}m
(ik)m

m!
{P}n−m

(ik)n−m

(n−m)!

=
∞

∑
n

[ n

∑
m

(nm){G}m{P}n−m
] (ik)n

n!
,

(5.5)

where we applied the Cauchy product in the second step. The expression
in square brackets on the last line is by definition the desired moment,

{G"}n =
n

∑
m

(nm){G}m{P}n−m. (5.6)

Hence, we can now express a convolution of the function G with the ker-
nel P entirely in moment space. Moreover, even though the series in
Equation 5.3 is infinite, the order of the moments occurring in the com-
putation of {G"}n is bound by n. This means, for calculating all moments

1The summation indices in this work all start with zero unless explicitly noted other-
wise.
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5.3. NOISE AND WEIGHTING

of G" up to order n, the knowledge of the same set of moments of P and
G is completely sufficient. This results holds for any shape of G and P as
long as their moments do not diverge. For non-pathological distributions,
this requirement does not pose a significant limitation.

In the case of two-dimensional functions the result presented in equa-
tion 5.6 can be generalised to:

{G"}i,j =
i

∑
k

j

∑
l

( ik)(
j
l
){G}k,l{P}i−k,j−l . (5.7)

as also shown by Flusser and Suk (1998).

Deconvolution

To obtain the deconvolved moments required for the shear estimation via
the ellipticity χ, we need to measure the moments up to second order
of the convolved galaxy shape and of the PSF kernel shape. Then we
can make use of a remarkable feature of Equation 5.7, which is already
apparent from its form: Since l + m = k < n, the impact of convolution
on a moment of order i + j = n is only a function of moments of lower
order. We can therefore start in zeroth order, the flux, which is not changed
under convolution with a normalized kernel. With the accurate value of
the zeroth order, we can infer the corrections to the first-order moments
from the second line of Equation 5.7, and so on. The hierarchical build-
up of the deconvolved moments is the heart of the DEIMOS method. For
convenience, the set of equations, which need to be solved to obtain the
deconvolved second-order moments, is shown in Table 5.1.

It is important to note and will turn out to be crucial for weak-lensing
applications that with this deconvolution scheme we do not need to ex-
plicitly address the pixel noise, which hampers most other deconvolution
approaches in the frequency domain, simply because we restrict ourselves
to inferring the most robust low-order moments only.

5.3 Noise and weighting

In practice, the moments are measured from noisy image data,

I(!x) = G(!x) + N(!x), (5.8)

where the noise N can be considered to be independently drawn from
a Gaussian distribution with variance σ2n , i.e. 〈N(!xi)N(!xj)〉 = σ2nδij for
any two positions !xi and !xj. According to Equation 5.1, the image values
at large distances from the galactic centre have the largest impact on the
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CHAPTER 5. WEAK LENSING WITH DEIMOS

Table 5.1: Equations for deconvolving all moments up to order n = 2. The
shown equations are specializations of Equation 5.7 and obey all condi-
tions on the summation indices.
{G}0,0 = {G"}0,0
{G}0,1 = {G"}0,1 − {G}0,0 {P}0,1
{G}1,0 = {G"}1,0 − {G}0,0 {P}1,0
{G}0,2 = {G"}0,2 − {G}0,0 {P}0,2 − 2{G}0,1 {P}0,1
{G}1,1 = {G"}1,1 − {G}0,0 {P}1,1 − {G}0,1 {P}1,0 − {G}1,0 {P}0,1
{G}2,0 = {G"}2,0 − {G}0,0 {P}2,0 − 2{G}1,0 {P}1,0

〈I〉n if n > 0. For finite and compact brightness distributions G, these
values are dominated by the noise process instead of the galaxy, whose
moments we seek to measure. Consequently, centered weight functions
W of finite width are typically introduced to limit the integration range in
Equation 5.1 to regions in which I is mostly determined by G,

Iw(!x) ≡W(!x) I(!x). (5.9)

A typical choice for W is a circular Gaussian centered at the galactic cen-
troid,

W(!x) ≡ exp
(
− !x2

2s2

)
. (5.10)

Alternatively, one can choose to optimize the weight function to the shape
of the source to be measured. Bernstein and Jarvis (2002, see their sec-
tion 3.1.2) proposed the usage of a Gaussian, whose centroid !xc, size s,
and ellipticity ε are matched to the source, such that the argument of the
exponential in Equation 5.10 is modified according to

!x→ !x′ =

(
1− ε1 −ε2
−ε2 1+ ε1

)
(!x−!xc). (5.11)

As such a weight function represents a matched spatial filter, it optimizes
the significance and accuracy of the measurement if its parameters are
close to their true values. This can, however, not be guaranteed in pres-
ence of pixel noise, but we found the iterative algorithm proposed by
Bernstein and Jarvis (2002) to converge well in practice and therefore em-
ploy it to set the weight function within the DEIMOS method.

Unfortunately, a product in real space like the one in Equation 5.9
translates into a convolution in Fourier-space. We therefore have to expect
some amount of mixing of the moments of Iw. Even worse, an attempt to
relate the moments of Iw to those of I leads to diverging integrals. Hence,
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5.3. NOISE AND WEIGHTING

Table 5.2: Correction terms for deweighting moments of order n = i + j.
The deweighted moments {Idw}i,j are given by the sum of the correction
terms up to the limiting order nw.
nw correction terms

0 {Iw}i,j

2 1
2s2

[
c1{Iw}i+2,j − 4 ε2{Iw}i+1,j+1+ c2{Iw}i.j+2

]

4 1
8s4

[
c21{Iw}i+4,j − 8 c1ε2{Iw}i+3,j+1+

[
2 c1c2 + 16 ε22

]
, {Iw}i+2,j+2 −

8 c2ε2{Iw}i+1,j+3+ c22{Iw}i,j+4
]

6 1
48s6

[
c31{Iw}i+6,j − 12 c21ε2{Iw}i+5,j+1+

[
3 c21c2 + 48 c1ε

2
2

]
{Iw}i+4,j+2 −

[
24 c1c2ε2 + 64 ε32

]
{Iw}i+3,j+3 +

[
3 c1c22 + 48 c2ε

2
2

]
{Iw}i+2,j+4 −

12 c22ε2{Iw}i+1,j+5+ c32{Iw}i,j+6
]

there is no exact way of incorporating spatial weighting to the moment
approach outlined above. On the other hand, we can invert Equation 5.9
for I = Iw/W and expand 1/W in a Taylor series around the centre at
!x = 0,

W−1(!x) ≈ W−1(0)−W ′(0)
[ 2

∑
k=1

ckx
2
k + 4ε2x1x2

]
+

1

2
W ′′(0)

[ 2

∑
k,l=1

ckclx
2
kx
2
l − 8ε2 ∑

k=1

ckx
2
kx1x2 + (4ε2x1x2)

2
]
,

(5.12)

where we employedW ′(!x) ≡ dW(!x)
d!x2 and c1,2 ≡ (1∓ ε1)2+ ε22. We introduce

the parameter nw as the maximum order of the Tailor expansion, here nw =
4. Inserting this expansion in Equation 5.1, we are able to approximate the
moments of I by their deweighted counterparts {Idw}. For convenience
we give the correction terms for orders nw ≤ 6 in Table 5.2. This linear
expansion allows us to correct for the weighting-induced change in the
moments of a certain order n by considering the impact of the weight
function on weighted moments up to order n+ nw.

5.3.1 Deweighting bias

The truncation of the Taylor expansion constitutes the first and only source
of bias in the DEIMOS method. The direction of the bias is evident: As the
weight function suppresses contributions to the moments from pixel far
away from the centroid, its employment reduces the power in any moment
by an amount, which depends on the shape – particularly on the radial
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CHAPTER 5. WEAK LENSING WITH DEIMOS

profile – of the source and the width s. Additionally, if the ellipticity ε was
misestimated during the matching of W, the measured ellipticity of the
source χ before and after deweighting will be biased towards ε. Luckily,
the error of ε stems from pixel noise and has therefore a vanishing mean,
such that the χ remains free of ε-bias.

We investigate now the systematic impact of a finite nw on the re-
covery of the deweighted moments. For the experiments in this section
we simulated simple galaxy models following the Sérsic profile, as de-
fined in equation 3.38, while the PSFs are modeled from the Moffat profile
(equation 4.53). Both model types acquire their ellipticity according to
Equation 5.11

In the top panel of Figure 5.1 we show the error after deweighting a
convolved galaxy image from a matched elliptical weight function as a
function of its size s. As noted above, the bias is always negative and is
clearly more prominent for the larger disk-type galaxy (circle markers).
As the Taylor expansion becomes more accurate for nw → ∞ or s → ∞,
the bias of any moment decreases accordingly.

An important consequence of the employment of a weight function
with matched ellipticity is that the bias after deweighting does only very
weakly depend on the apparent ellipticity, i.e. all moments of the same
order are biased by the same relative factor ∆(n, s). This means any ratio
of such moments remains unbiased. This does not guarantee that the el-
lipticity is still unbiased after the moments have passed the deconvolution
step, which is exact only for unweighted moments. On the other hand, the
particular form of the equations in Table 5.1 becomes important here: If we
assume well-centered images of the galaxy and the PSF and a negligible
error of the source flux {G}0,0, the deconvolution equations for the rele-
vant second-order moments only mix second-order moments. If further-
more ∆G(2, s) = ∆P(2, s), the ellipticity χ (cf. Equation 3.10) will remain
unbiased after deconvolution even though the moments themselves were
biased. The aforementioned condition holds if the radial profiles of PSF
and galaxy are similar within the weight function, in other words: if the
galaxy is small. This behavior can clearly be seen in the bottom panel of
Figure 5.1, where the ellipticity estimate of the smaller elliptical galaxy (di-
amond markers) has sub-percent bias for nw ≥ 2 and s ≥ 3. The estimates
for the larger galaxy are slightly higher because |∆G(2, s)| > |∆P(2, s)|, i.e.
the deconvolution procedure overcompensates the PSF-induced change of
the moments. However, sub-percent bias is achieved for nw ≥ 4 and s ≥ 5.

For large galaxies, it might be advantageous to adjust the sizes of
galaxy and PSF independently as this would render ∆G(2, sG) more com-
parable to ∆P(2, sP). However, we found employing a common size s for
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5.3. NOISE AND WEIGHTING

Figure 5.1: Weighting-induced bias. Relative error of the PSF-convolved
and deweighted moment {Idw}1,1 (top) and of the estimated ellipticity af-
ter deconvolution (bottom) as a function of weight function size s. Colors
indicate the correction order nw, while markers denote the galaxy model
(circles for model 1, diamonds for model 2). The galaxy models are simu-
lated as Sérsic profiles with the following parameters: εs = (0.1, 0.4), ns =
1 (4), Re = 3 (1.5) for model 1 (2). The PSF was of Moffat-type with
ε = (0.05, 0.05), β = 3, FWHM = 3. The weight functions of galaxy and
PSF had the same size s, but individually matched ellipticities.
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CHAPTER 5. WEAK LENSING WITH DEIMOS

both objects to be more stable for the small and noisy galaxy images typ-
ically encountered in weak-lensing applications. We therefore adjust the
size s such as to allow an optimal measurement of the deweighted PSF mo-
ments. Since the main purpose of the weighting is the reduction of noise
in the measured moments, one could improve the presented scheme by
increasing s for galaxies with larger surface brightness such as to reduce
the bias when the data quality permits.

5.3.2 Deweighting variance

Being unbiased in a noise-free situation does not suffice for a practical
weak-lensing application as the image quality is strongly degraded by
pixel noise. We therefore investigate now the noise properties of the
deweighted and deconvolved moments.

The variance of the weighted moments is given by

σ2
(
{Iw}i,j

)
= σ2n

∫
d!x W2(!x) x2i x

2
j (5.13)

since the noise is uncorrelated and has a vanishing mean. It is evident from
Table 5.2 that the variance of the deweighted moments increases with the
number of contributing terms, i.e. with nw. Less obvious is the response
under changes of s. While each moment accumulates more noise with a
wider weight function, the prefactors of the deweighting correction terms
is proportional to s−nw such that their impact is reduced for larger s.

To quantitatively understand the impact of nw and s in a fairly realistic
scenario we simulated 10,000 images of the galaxy models 1 and 2 from
the last section. We drew their intrinsic ellipticities from a Rayleigh distri-
bution with σ|εs| = 0.3. Their flux was fixed at unity, and the images were
degraded by Gaussian pixel noise with variance σ2n . We ran DEIMOS on
each of these image sets with a fixed scale s. The results are presented in
Figure 5.2, where we show the dispersion of the measured χ in units of
the dispersion of χs. From the left panel it becomes evident that the at-
tempt of measuring unbiased ellipticities (large nw or s) comes at the price
of increased noise in the estimates. Considering also Figure 5.1, we infer
that in this bias-variance trade-off small values of s and large values of nw
should be favored since this provides estimates with high accuracy and a
moderate amount of noise.

In the right panel of Figure 5.2 we show the estimator noise as function
of the pixel noise. Equation 5.13 suggests that there should be a linear
relation between these two quantities, which is roughly confirmed by the
plot. Additional uncertainties in the moment measurement – caused by
e.g. improper centroiding – and the non-linear combinations of second-
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Figure 5.2: Noise of the deweighted and deconvolved ellipticity estimate as
a function of the weight function size s (left) and of the standard deviation
of the pixel noise σn (right). The color and marker code is explained in
Figure 5.1. The pixel noise is given in units of 10−3 for flux-normalized
sources. σn = 8 is close to the detection limit for this source model.

order moments to form χ lift the actual estimator uncertainty beyond the
linear prediction.

Even though the true errors of χ may not exactly follow the linear the-
ory, we will now exploit the fairly linear behavior to form error estimates.
We can express the deweighting procedure as a matrix mapping, from
which we can obtain the marginalized errors by

5.4 Shear accuracy tests

So far, we were concerned with the estimation of ellipticity. To test the
ability of our new method to estimate the shear, we make use of the ref-
erence simulations with realistic noise levels from the GREAT08 challenge
(Bridle et al., 2010). As the shear values in these simulations are fairly low,
we employ the linearized version of 3.6, corrected by the shear respon-
sivity of the source ensemble (equation 3.13), without any further weight-
ing of individual galaxies, to translate DEIMOS ellipticity measures into
shear estimates. The dispersion σ2χ is measured from the lensed and noisy
galaxy images and hence only coarsely describes the intrinsic shape dis-
persion (cf. Figure 5.2). We are aware of this limitation and verified with
additional simulations that it introduces sub-percent biases for the range
of shears and pixel noise levels we expect from the GREAT08 images.

We inferred the weight function size s = 4 and the correction order
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nw = 4 from the optimal outcome for a set with known shears. The actual
GREAT08 challenge data comprises 9 different image sets, which differ in
the shape of the PSF, the signal-to-noise ratio, the size, and the model-type
of galaxies. For each of these branches, there are 300 images with different
values of shear. We performed the DEIMOS analysis of all images keeping
the weighting parameters fixed to the values inferred before. The results
are shown in 5.3 in terms of:

• The GREAT08 quality metric Q:

Q =
10−4

〈(〈gmij − gtij〉j∈k)2〉 ikl
(5.14)

where gmij is the ith component of the measured shear for simula-

tion j, gtij is the corresponding true shear component, the inner angle
brackets denote an average over sets with similar shear value and
observing conditions j ∈ k and the outer angle brackets denote an
average over simulations with different true shears k, observing con-
ditions l and shear components i (Bridle et al., 2010). A Q value is
defined also for each simulation branch:

Q =
10−4

〈(〈gmij − gtij〉j∈k)2〉 ikl
(5.15)

In this case, the average over different observing conditions l is omit-
ted.

• The multiplicative shear accuracy parameters mi obtained from a
linear fit of the shear estimates g̃i to the true shear values gi as
defined in the STEP shear testing program (Heymans et al., 2006;
Massey et al., 2007b),

g̃i − gi = mi gi + ci. (5.16)

From 5.3 we clearly see the highly competitive performance of DEIMOS
with a typical Q > 200 in all but two branches. Single-component galaxy
models yield a particularly large Q-value, probably because the bulge-only
models are the most compact ones and thus favor the setting of a constant
s for PSF and galaxies. In terms of Q, there is no change between the
centered and the off-centered double-component galaxy models, but both
mi drop for the off-centered ones. As such galaxy shapes have variable
ellipticity with radius and DEIMOS measures them with a fixed weight
function size, we interpret this as a small but noticeable ellipticity-gradient
bias (Bernstein, 2010).
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Figure 5.3: GREAT08 Q metric and multiplicative shear accuracy mi for
the nine different branches of the GREAT08 challenge data with realistic
noise levels. In each panel, the scale on the left describes the values of Q
and the scale on the right the values of mi. The dotted line denotes mi = 0.
The dashed lines show the Q-value before we adjusted the weight-function
matching and deweighting parameters to the source characteristics of the
branch.
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The response to changes in the PSF shape is a bit more worrisome and
requires explanation. The fiducial PSF had ε1 > ε2, and the opposite is
true for the rotated one. From all panels of 5.3 we can see that typically
|m1| < |m2|. Such a behavior has already been noted by Massey et al.
(2007b): Because a square pixel appears larger in diagonal direction than
along the pixel edges, the moment {I}11 and hence ε2 suffer more strongly
from the finite size of pixels. From the discussion in 5.3.1, we expect a cer-
tain amount of PSF-overcompensation for small weighting function sizes.
As the PSF shape is most strongly affected by pixelation, the overcompen-
sation boosts preferentially those galaxy moments, which align with the
semi-minor axis of the PSF. In general, a larger PSF – or a larger PSF el-
lipticity – improves the shear estimates. It is important to note, that, as
in all other panels, the residual additive term ci was negligible for all PSF
models.

The response to changes in S/N or galaxy size is more dramatic: Par-
ticularly the branches 7 (low S/N) and 9 (small galaxies) suffer from a
considerable shear underestimation. This is not surprising as also most
methods from Bridle et al. (2010) showed their poorest performance in
these two sets. Since the Q metric strongly penalizes poor performance
in single GREAT08 branches, the overall Q = 7.7 for this initial analysis.

As this is the first application of DEIMOS to a weak-lensing test case,
we allowed ourselves to continue in a non-blind fashion in order to work
out how the DEIMOS estimates could be improved. Apparently, prob-
lems arise when the galaxies are small or faint. The obvious solution is
to shrink the weight function size. As discussed in section 5.3.2, improper
centroiding plays an increasing role in deteriorating shear estimates for
fainter galaxies. We therefore split the weight-function matching into two
parts: centroid determinations with a small weight function of size sc, and
ellipticity determination with s > sc. By choosing sc = 1.5 and s = 2.5,
we could strongly improve the performance for branches 7 and 9. Given
the high S/N of branch 6, we decided to rerun these images with nw = 6,
which yielded another considerable improvement. With these modifica-
tions to the weight-function matching and the deweighting parameters,
DEIMOS estimates achieve Q = 112, similarly to Lensfit with Q = 119, at
a fraction of the runtime (0.015 seconds per GREAT08 galaxy). We empha-
size that this is a somewhat skewed comparison as we had full knowledge
of the simulation characteristics. However, the changes to the initial analy-
sis are modest and straightforward. In particular, they depend on galactic
size and magnitude only, and not on the true shears.

Given the bias-variance trade-off from the deweighting procedure, the
outcome of this section also clearly indicates that a simple one size fits all
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approach is not sufficient to obtain highly accurate shear estimates from
DEIMOS. For a practical application, a scheme to decide on nw, sc, and
s for each galaxy needs to be incorporated. Such a scheme can easily be
learned from a small set of dedicated simulations, foremost because the
DEIMOS results depend only weakly on PSF and intrinsic galaxy shape.

5.5 Comparison to other methods

Because of the measurement of image moments subject to a weighting
function, DEIMOS shares basic ideas and the computational performance
with the traditional KSB-approach. In contrast to it, DEIMOS does not
attempt to estimate the shear based on the ellipticity of single galax-
ies2, nor does it need to assume that the PSF can be decomposed into
an isotropic and an anisotropic part, which introduces residual systemat-
ics into the shear estimation if the anisotropic part is not small (Kuijken,
1999a). DEIMOS rather offers a mathematically exact way of deconvolv-
ing the galaxy moments from any PSF, thereby circumventing the prob-
lems known to affect KSB (see previous chapter). Its only source of bias
stems from the inevitably approximate treatment of the weight function,
which requires the measurement of higher-order image moments. Since
DEIMOS measures all moments with the same weight function (instead
of with increasingly narrower higher derivatives of the weight function),
these higher-order correction terms suffer less from pixelation than those
applied in KSB. However, as we could see in 5.4, pixelation affects the
DEIMOS measurements, and an analytic treatment of it is not obvious.

The treatment of the convolution with the PSF on the basis of mo-
ments is very close to the one known from shapelets (Refregier and Bacon,
2003; Melchior et al., 2009). However, DEIMOS does not require the time-
consuming modeling process of galaxy and PSF, and hence is not subject
to problems related with insufficient modeling of sources, whose appar-
ent shape is not well matched by a shapelet model of finite complexity
(Melchior et al., 2010a).

In the RRG method (Rhodes et al., 2000), the effect of the PSF con-
volution is also treated in moment space. Furthermore, an approximate
relation between weighted and unweighted moments is employed, which
renders this approach very similar to the one of DEIMOS. The former dif-
fers in the employment of the KSB-like anisotropy decomposition of the
PSF shape.

As mentioned in 5.3, DEIMOS makes use of the same iterative algo-

2This demands setting χs = 0 in the non-linear Equation 3.6, which is only true on
average but not individually.
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rithm as ELLIPTO (Bernstein and Jarvis, 2002) to define the centroid and
ellipticity of the weight function. The latter additionally removes any PSF
anisotropy by applying another convolution to render the stellar shapes
circular, which is not necessary for DEIMOS.

The recently proposed FDNT method (Bernstein, 2010) deconvolves
the galaxy shape from the PSF in the Fourier domain, and then adjusts
centroid and ellipticity of the coordinate frame such that the first-order
moments and the components of the ellipticity – formed from second-
order moments – vanish in the new frame. FDNT restricts the frequencies
considered during the moment measurement to the regime, which is not
suppressed by PSF convolution. Because of the shearing of the coordinate
frame, additional frequencies need to be excluded, whereby the allowed
frequency regime further shrinks. This leads to reduced significance of the
shear estimates for galaxies with larger ellipticities. Furthermore, FDNT
requires complete knowledge of the PSF shape. In contrast, DEIMOS does
not need to filter the data, it extracts the lensing-relevant information from
the low-order moments of the galaxy and PSF instead. These differing
aspects indicate that DEIMOS should be more robust against pixel noise. It
should also be possible to incorporate the correction for ellipticity-gradient
bias suggested by Bernstein (2010) in the DEIMOS method.

5.6 Conclusions

For the presented work, we considered the most natural way of describing
the effects of gravitational lensing to be given by the change of the mul-
tipole moments of background galaxies. We directly estimate the lensed
moments from the measured moments, which are affected by PSF convo-
lution and the application of a weighting function. For the PSF convolu-
tion we derive an analytic relation between the convolved and the uncon-
volved moments, which allows an exact deconvolution and requires only
the knowledge of PSF moments of the same order as the galaxy moments
to be corrected. The weighting-induced changes of moments cannot be
described analytically, but for smooth weight functions a Taylor expansion
yields approximate correction terms involving higher-order moments.

We showed that the residual bias of the deweighted moments stem-
ming from an incomplete weighting correction is modest. Moreover, choos-
ing a weight function with matched ellipticities but same size for measur-
ing stellar and galactic moments yields ellipticity estimates with very small
bias even for rather small weighting function sizes, which are required to
reduce the impact of pixel noise to a tolerable level. In this bias-variance
trade-off, DEIMOS normally performs best with high correction orders nw
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at small sizes s, but data with high significance may need a different setup.
The choice of these two parameters is the trickiest task for a DEIMOS ap-
plication, but can be easily addressed with a dedicated simulation, which
should resemble the size and brightness distribution of sources to be ex-
pected in the actual data. Other properties of the sources, like their el-
lipticity distribution or, more generally, their intrinsic morphology, do not
need to be considered as the measurement of moments does neither imply
nor require the knowledge of the true source model.

There are certain restrictions of the method to bear in mind:

1. Setting s to be the same for galaxies and the PSF works best for small
galaxies, whose shape is dominated by the PSF shape.

2. Changes of the shape at large radii would fall outside of the weight
function and hence be ignored. When present in the PSF shape, this
could lead to a residual PSF contamination, but can be cured by
increasing the scale of the weight function at the expense of larger
noise in the galaxy moments. When present in galactic shapes, the
results become susceptible to ellipticity-gradient bias.

3. Direct measurement of the moments from the pixel values is in-
evitably affected by pixelation. For small, potentially undersampled
shapes this leads to biased moment and ellipticity measures and acts
more strongly in diagonal direction, i.e. on ε2.

4. The noise on the ellipticity estimates based on image moments is not
Gaussian, nor does it propagate easily into the shear estimate. When
dominant, it can create substantial biases of its own.

Only the first of these restrictions exclusively applies to DEIMOS, the oth-
ers are present in all non-parametric methods, which work directly on the
pixelated image. Model-based approaches could replace the coarsely sam-
pled moment measurements by ones obtained from the smooth models.

5.7 Outlook

We showed in this chapter how DEIMOS can be used to measure ellip-
ticities of galaxies. It is clear, looking at equation 5.9, that the method
can be easily extended for flexion measurements. Measuring flexion re-
quires measuring third and fourth moments of the light distribution (see
equation 3.23 and 3.24) for which deconvolving equations (as the ones
presented in Table 5.1) can be easily derived. Moreover, in order to opti-
mise the weighting function to the shape of the object, which we expect
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to show additional deformations induced by flexion, one have to modify
the exponential of the gaussian allowing for spin-1 and spin-3 distortion,
as was done in equation 5.13 for the spin-2 distortion. Extensive tests are
planned to investigate the noise properties of the 3rd and 4th moments
and the noise in F and G flexion measurements against the size of the
weighting function and against the standard deviation of pixel noise. We
are convinced, based on the results achieved so far, that DEIMOS is a very
promising method also for flexion estimation, specially if compared with
the extension of KSB to the HOLICs, which relies, as shown in the previ-
ous chapter, on very strong assumption specially on the PSF shape.
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Noi divenimmo intanto a piè del monte;
quivi trovammo la roccia sì erta,
che ’ndarno vi sarien le gambe pronte.0

Dante (1265-1321) Purgatorio III 6
Inner density profile of dark matter

halos

In this last chapter we want to discuss a possible application of shear
measurements for studying properties of galaxy clusters. Numerical sim-
ulations of non-linear structure formation reveal a typical shape for the
density profile of dark matter halos. In section 1.5.1 we showed how the
density profile is generally described by the so-called generalised NFW
profile. Do real halos behave in the same way as theory predicts?

Gravitational lensing should in principle be able to give the cleanest an-
swer to this question. Density profiles in galaxy-sized objects are expected
to be modified on small scales by baryonic physics, where they are likely
to approach the isothermal density slope ∝ r−2 instead of the generic dark
matter behaviour. On the mass scale of galaxy groups or clusters, how-
ever, baryonic physics should be constrained to the innermost region, leav-
ing the dark matter density profile almost intact. Galaxy-galaxy lensing
seems to show tentative evidence for this expectation (Mandelbaum et al.,
2006) : while the shear profile around low-mass halos is consistent with
an isothermal density profile, it seems to flatten towards the theoretical
expectation for dark matter halos around high-mass halos.

The question is important because it aims at a central prediction of
non-linear cosmological structure formation. Answering it is complicated
by the angular resolution limit of 20 arcsec of weak gravitational lens-
ing, set by the number density of background galaxies, and by the high
non-linearity of strong gravitational lensing. In fact, claims that strong
gravitational lensing, when combined with stellar dynamics, requires flat
halo cores have been made (Sand et al., 2004) and doubted. In particu-
lar (Meneghetti et al., 2007) showed how the measurement of the inner
slope can be systematically underestimated if halo’s substructure are not
taken into account. A weak lensing analysis, even if observationally more

0By this time we had reached the mountain’s base/discovering a wall of rock so
sheer/that even agile legs are useless there.
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challenging, has the advantage to be almost insensitive to cluster’s sub-
structures because of the intrinsic nature of the signal.

Previous studies based on weak lensing have followed an approach
where a shear profile was first measured and then fit to the shear profile
expected from certain three-dimensional density profiles, thus indirectly
constraining the density-profile models. Given the sparseness of lensing
information near the core of galaxy groups and clusters, we develop a
different approach here. Instead of constraining the shear profile, we only
wish to derive a single number from the shear data, namely the slope α
of the density profile within the characteristic radius, assuming that the
asymptotic outer slope is −3.

We pursue this approach with two linear filtering techniques. One of
them is specifically constructed below to return α as its only result. It
is thus made to combine all available information into its estimate and
should thus optimise the significance of the measurement. The other
varies the inner slope of the density profile until it finds the maximum
signal-to-noise ratio in a given sample of halos.

6.1 Methods to characterize the shear profile

In this section we describe two methods, based on optimal linear filters
(Sanz et al., 2001; Maturi et al., 2005), to estimate the inner slope of dark
matter halos using weak-lensing observations. The advantage of linear
filtering as opposed to standard profile fitting is that filters can be con-
structed such as to minimise noise caused by intervening structures along
the line-of-sight.

6.1.1 Optimal linear filtering

For a generic optimal linear filter, the data D(!θ) is modelled as the sum of
the signal to be measured and the noise

D(!θ) = S(!θ) + N(!θ), (6.1)

where S(!θ) = Aτ(!θ), A is the signal amplitude and τ(!θ) is a model for
its angular shape. In our application, the signal is the lensing shear of the
intervening dark matter halo (modelled with a generalised NFW profile)
and the noise is given by the intrinsic ellipticity of the background galax-
ies, their finite number and the contamination due to large-scale struc-
tures. The noise components are assumed to be Gaussian, random with
zero mean and isotropic since their statistical properties are independent
of the position in the sky (for further detail see (Maturi et al., 2005)). We
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now define a linear filter Ψ(!θ, α, !w) which, when convolved with the data,
yields an estimate for the amplitude of the signal at the position !θ:

Aest(!θ) =
∫
D(!θ′)Ψ(!θ −!θ′, α, !w)d2θ′, (6.2)

which is unbiased

b = A

[ ∫
Ψ(!θ, α, !w)τ(!θ, α, !w)d2θ − 1

]

= 0 (6.3)

and whose variance σ2

σ2 = b2 +
1

2π

[ ∫
|Ψ(!k, α, !w)|2PN(k)d2k

]
, (6.4)

is minimal. The filter Ψ satisfying these two conditions minimises the
Lagrangian L = σ2 + λb. It reads

Ψ(k) =
1

2π

[ ∫ |τ(!k, α, !w)|2
PN(k)

d2k

]−1
τ(!k, α, !w)
PN(k)

. (6.5)

where !w = (c,M, z) and Ψ̂ and τ̂ are the Fourier transforms of the filter
and the signal shape, respectively. Note that we have assumed in the
previous derivation that the mean values of the halo parameters (!w) are
well known. This is an idealising assumption and we refer to Sect. 6.2.1 for
a more detailed discussion. The filter depends only on the angular shape
of the signal τ(!k, α, !w) and the noise power spectrum PN. In particular it
is most sensitive to those spatial frequencies for which the signal τ is large
and the noise power spectrum is small. This filter is optimal in the sense
that it maximises the signal-to-noise ratio for the a given assumed signal
shape.

The left panel of figure 6.1 shows the filter’s shape calculated using
three different values of the inner slope, α = 0.7, 1.0, 1.3.

Dealing with non-linear signals

The filter described in the previous section can be used to measure quanti-
ties which appear linearly in equation 6.1 (e.g. the amplitude of the shear
signal). This is not the case for the inner slope α breaking the main as-
sumption on which the linear filter is based on. However, if we expand
the halo’s shear profile around a fiducial value of the inner slope, α0,

γ(x, α, !w) = γ(x, α0, !w) +
∂γ(x, α, !w)

∂α

∣∣∣∣∣
α0

∆α, (6.6)
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equation 6.1 reads

D(x)− γ(x, α0, !w) =
∂γ(x, α, !w)

∂α

∣∣∣∣∣
α0

∆α + N(x), (6.7)

such that ∆α appears linearly and the linear filtering scheme can be ap-
plied. The shear derivative with respect to α plays the role of the signal
shape, τ, and ∆α that of the amplitude A to be measured. This allows the
definition of the following estimator for the inner slope,

αest =
∫

∆γ(!x, α, α0, !w)Ψ(!x, (α0, !w)d
2x+ α0, (6.8)

where
∆γ(!x, α, α0, !w)) = γ(!x, α, !w)− γ(!x, α0, !w). (6.9)

The approximation applied in equation 6.7 implies that αest is a good
estimator of the inner slope only when α0 is close to the real value of α. If
this is not the case, the value of the inner slope tends to be overestimated
as we show in figure 6.2. If a single halo is considered, the error bars
associated to αest are so large that the overestimation can be neglected
for a large range of α0. However, if several halos are stacked, the error
bars shrink and the overestimation becomes important. In order to avoid
this problem, more measurements of the same halo have to be carried
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out sequentially: the first measurement starting with an arbitrary value of
α0, and the second using the estimate αest found previously as a fiducial
value. We tested that, for a reasonable guess of the first fiducial value, 2-3
measurements suffice to recover the correct slope.

6.1.2 Scale-adaptive filter

The linear expansion used in the previous section can be avoided by defin-
ing a scale-adaptive filter. Such a filter is defined similarly as the linear
filter from Sect. 6.1.1 with an additional constraint on the amplitude of the
signal Aest which must be maximised when the adopted inner slope fits
the data best,

ξ =
∂Aest

∂α

∣∣∣∣∣
α0

= 0. (6.10)

The minimisation of L = σ2 + λ1b+ λ2ξ leads to the filter

Ψ(k, α) =
1

2π

τ(k, α)
PN(k)

1

∆

[

2b+ c− (2a+ b)
d ln τ(k, α)
d ln α

]

(6.11)

with the constants

a =
1

2π

∫
dkk

τ(k, α)
PN(k)

(6.12)

b =
1

2π

∫
dkk

k

PN(k)
dτ(k, α)
d ln α

(6.13)

c =
1

2π

∫
dkk

1

PN(k)

(
dτ(k, α)
d ln α

)2
(6.14)

∆ = ac− b2 . (6.15)

Its defining property is thus to maximise the signal-to-noise ratio when
the correct inner slope is adopted. This implies that the inner slope can
only be determined indirectly from a sequence of measurements of the
shear amplitude Aest, searching for that value of α that maximises Aest.

The filter shape is plotted in the right panel of figure 6.1.

6.1.3 Dealing with parameters degeneracy

The twomethods presented in Sects. 6.1.1 and 6.1.2 assume a cluster model
with known mass, redshift and concentration. In a realistic situation, we
can assume to have sufficiently precise redshifts. Mass estimates would
have to be obtained from optical richness, kinematics of the cluster galax-
ies or X-ray scaling relations. Then, estimates for the concentration could
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Figure 6.3: 1-σ and 2-σ likelihood regions in the plane (α, c) computed
using the linear filter (left panel) and the scale-adaptive filter (right panel)
for a halo of M = 5× 1014M. at z = 0.3. The fiducial value is (1.0, 4.4).

be derived from the mass-concentration relation found in numerical sim-
ulations, albeit with a considerable scatter. The concentration depends
only very weakly on the mass, hence uncertainties in the mass estimate do
not strongly affect the concentration estimate, and thus the mass does not
need to be precisely known. However, numerical simulations suggest a
log-normal distribution of the concentration around its mean with a stan-
dard deviation of ∼ 0.2, which implies that concentration parameters of
real clusters can only be very poorly guessed.

Moreover, the inner slope, as the parameter we are aiming to measure,
is degenerate with the concentration. In fact, it is possible to describe a
halo with high central density with a large value of α and a small value
of c or vice versa, and so the problem is not well defined (Wyithe et al.,
2001). Thus, any attempt at measuring the profile’s inner slope depends
critically on the assumed halo concentration, which is uncertain in reality.

To cope with this problem, it is convenient to re-parametrise the profile
accounting for this model degeneracy, defining new parameters which can
be more precisely measured. In short, the logic behind the procedure
described below is as follows. In a realistic situation, we have no chance to
break the degeneracy between c and α. Rather, we can rotate the parameter
space such that one of its axes becomes parallel to the degeneracy direction
and the other perpendicular to it. The latter will define a new parameter
as a linear combination of c and α which observations can constrain best.
Comparisons with theory should then be performed on the basis of this
parameter rather than through c and α separately.
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This is achieved by a Fisher-matrix analysis. The Fisher matrix is

Fij =

〈
−∂2L

∂θi∂θj

〉

, (6.16)

where L is the logarithm of the likelihood function and !θ = (α, c) are the
free model parameters. In case of a Gaussian probability distribution, the
Fisher matrix can be written as

Fij =
1

2
Tr[AiAj + C

−1Mij] (6.17)

where C is the covariance matrix, Ai = C−1C,i and Mij = 2 ∂µ
∂θi

∂µ
∂θj
and µ

is the assumed model. Since C does not depend on the inner slope and
on the concentration, the first term in equation 6.17 vanishes. We evaluate
the Fisher matrix at a fiducial point (α0, c0). In particular, we assume
α0 = 1 and we calculate c0 using the prescription by (Eke et al., 2001).
We truncate the shear profile at an inner radius Rmin = 1/

√
ngal, which

is the minimum achievable resolution for a given number density ngal of
background galaxies and at an outer radius Rout = Rvir. Once Rout > Rs
the Fisher matrix depends negligibly on Rout since the derivative of the
shear profile with respect to alpha is zero and the derivative with respect
to the concentration is very small.

The eigenvectors (v1, v2) and (v3, v4), of the Fisher matrix, determining
the directions of largest and smallest degeneracy between the parameters
α and c, define a rotation of the parameter space and thus two new pa-
rameters

P1 = v1α + v2c (6.18)

P2 = v3α + v4c (6.19)

which are linear combinations of α and c. The two new parameters are
those which can be constrained best and worst, respectively, given the
model adopted in the Fisher-matrix estimate.

If the linear filter is used to measure the inner slope, the model µ is

µ = αest(α, c) =
∫
[γ(α, c)− γ(α0, c0)]Ψ(α0, c0)d

2x (6.20)

and thus
∂µ

∂θi
=

∫
∂γ(!x,!θ)

∂θi
Ψ(!x,!θ0)d

2x. (6.21)

The covariance matrix reduces in this case to the variance of the measure-
ment obtained from equation 6.4.
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Note that the Fisher matrix defined above is singular, i.e. its determi-
nant vanishes. The errors on the new parameters are given by 1/

√
λi,

where λi are the eigenvalues of the Fisher matrix. Since one of them is
vanishing the error on one parameter (taken to be P2) is infinite. This
means that the likelihood region in the plane (α, c) is an ellipse infinitely
elongated in the degeneracy direction. This is because there is more than
one way of fitting a single data set (∆α) by varying the two parame-
ters. In the right panel of figure 6.3 we show the result for a halo of
M = 5× 1014M./h at redshift z = 0.3 with concentration c = 4.4. The cor-
responding eigenvector components are v1 = v4 = 0.95 and v2 = −v3 =
0.30.

When the scale-adaptive filter is used, the measurable quantity is the
shear amplitude

A(α, c) =
∫
D(αH, cH;!x)Ψ(α, c0;!x)d

2x, (6.22)

and the value of the inner slope (αest) is then estimated looking for the
value of α maximising the amplitude. It is clear that it depends only on
the halo’s concentration c0 assumed in the filter. To find the degeneracy
direction between the inner slope and the concentration in this case, we
analyse the relation between αest and c around a fiducial point in the (α, c)
plane. The result is shown in the left panel of figure 6.3 for the same
halo as considered before. Here, too, we define two new parameters P1 =
0.97α + 0.22c and P2 = −0.22α + 0.97c. In this case, the error cannot be
calculated analytically since the measurement is indirect. Instead, we have
performed a Monte-Carlo simulation (see Sect. 6.2).

Since the shapes of the filters are different, so are the degeneracy di-
rections we find.

The probability distributions of P1 and P2 can be found convolving the
probability distributions of the concentration and the inner slope. Using
the degeneracy direction found for the linear filter and assuming a log-
normal distribution for the concentration with σc = 0.2 (Bullock et al.,
2001b) and a Gaussian distribution for the inner slope with σα = 0.15
(Diemand et al., 2004), we find that both probability distributions of P1
and P2 can be approximated as log-normal distributions with standard
deviations σP1 = 0.29 and σP2 = 0.33 respectively, as shown in figure 6.4.

6.2 Method uncertainties

Here, we discuss in detail possible error sources affecting the measurement
of the inner slope using the methods described in Sects. 6.1.1 and 6.1.2. We
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will show the error calculation for a halo of M = 5× 1014M./h, z = 0.3,
c = 4.4.

The statistical uncertainties arising from the data noise component N
are given by the intrinsic ellipticity of the background galaxies, their finite
number and from the contamination due to the intervening large-scale
structures. The filters we have defined minimise these uncertainties. They
are quantified by equation 6.4 for the linear filter and by a Monte-Carlo
analysis for the scale-adaptive filter since in this case α is measured indi-
rectly by estimating the location of the maximum in the estimated signal,
and an analytical computation of its variance is impossible.

The Monte-Carlo analysis has been performed generating 1000 realisa-
tions of a shear catalogue using randomly distributed background galaxies
with a density ngal = 30/arcmin2, placed at redshift zs = 1.0, on a 0.01 de-
gree field. The halo has been placed in the field centre. The noise due
to the intrinsic galaxy ellipticities (σε = 0.3) and the lensing effect due to
the intervening large-scale structure have been added. The latter noise is
calculated assuming that the large-scale structure can be described by a
Gaussian random field with a power spectrum determined by the linear
theory of structure growth.

We assume in our analysis that the magnification bias can be neglected,
allowing us to leave the effective number ngal of available galaxies un-

100



6.2. METHOD UNCERTAINTIES

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

n
ga

l(x
)/

n
0

x=r/rs

Effective number counts

& =1.0
& =0.9
& =0.7
& =0.5
& =0.3
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low in equation 6.23.

changed. This is justified only if the slope γ of the flux distribution of
faint galaxies

n0(> S) = aS−γ (6.23)

is unity as discussed by Bartelmann and Schneider (2001). The effective
number of galaxies neff scales with γ as

neff(> S)
ngal(> S)

= µγ−1 (6.24)

where µ is the magnification. Specifically, neff is lowered by at most 40%
compared to ngal near r = 0.2rs if γ is 0.5, as shown in figure 6.5. For
galaxies in the Hubble Ultra Deep Field (Beckwith et al., 2006) we estimate
γ ( 0.8 causing a magnfication bias of around 10%.

For each realisation we use equation 6.2 to estimate the shear ampli-
tude in the position corresponding to the halo’s centre using filters ini-
tialised with an inner slope in the range [0.6− 1.4]. The estimated inner
slope value is then defined as the value of α giving the maximum value
of the shear amplitude. We finally calculate their distribution and the dis-
persion around the mean value (the results are summarised in the fourth
column of Table 1).

We find that the standard deviation associated with the inner slope,
measured by the scale-adaptive filter, is 0.19. The analytical calculation
done for the linear filter gives a value of 0.14.
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Figure 6.6: Normalised distributions of the value of the inner slope com-
puted using the linear filter (left panel) and scale-adaptive filter (right panel).
A Gaussian distribution has been assumed for the mass and the redshift,
while a log-normal distribution has been adopted for the concentration.
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Filter Parameter Fiducial value σ (stat.) σ (stat.+model) Percentage error

SAF α 1.00 0.19 0.26 0.26
SAF P1 1.95 0.21 0.29 0.15
LF α 1.00 0.14 0.28 0.28
LF P1 2.31 0.15 0.30 0.13

Table 6.1: Statistical errors in the parameters measurement for a halo of
5× 1014M. at redshift z = 0.3. In the first column we indicate the used
filter, in the second column the parameter we constrain and in the third
column its fiducial value. In the fourth column are shown the expected
errors assuming randomly distributed background galaxies with intrinsic
ellipticity σε = 0.3 and random noise due to the large-scale structures. The
errors presented in the fifth column take also into account Gaussian errors
in the halo mass and redshift with standard deviations σM = 1.5× 1014 and
σz = 0.03, respectively, and a log-normal distribution for the concentration
with standard deviation σc = 0.2. When P1 is estimated the probability
distribution of P2 is calculated from the probability distribution of the
concentration assuming a Gaussian probability distribution for the inner
slope with σα = 0.15. In the sixth column we show the percentage error on
the parameter estimation.

The same calculation has been done considering halos of different
masses and at different redshifts. As shown in figure 6.8, the standard
deviation increases with respect to the redshift and decreases when the
mass is increasing. In particular for a halo placed at intermediate redshift
between the background sources and the observer, the standard deviation
varies in the range [0.2− 1.0] for a mass range [1015 − 5× 1013].

The preceding calculations show that errors on the inner slope due to
intrinsic ellipticities of background galaxies and due to contamination by
large-scale structures are large when computed for a single halo. However
stacking a large number of halos (10-100), it is possible to measure an
average value of α with a few percent accuracy.

A more accurate error evaluation has to consider also the scatter around
the fiducial value of the halo’s mass, redshift and concentration used in the
filter definition. For both methods, we perform a Monte-Carlo simulation,
following the procedure described above, assuming a Gaussian distribu-
tion for the halo mass (σM = 1.5× 1014) and redshift (σz = 0.03) and a
log-normal distribution for the concentration (σc = 0.2) following numeri-
cal simulations. The result is shown in figure 6.6.

One critical point that we have avoided so far concerns the choice of
the fiducial values for the halos parameter. We discuss this point in the
following section.
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Figure 6.8: Standard deviation for α as a function of the halo’s redshift and
mass.

6.2.1 Model sensitivity

Defining the filter requires the specification of a model. The estimator
(equation 6.2) we defined for the inner slope is unbiased only if the model
is correct. We investigate here what happens if the filter is defined using
a generalised NFW profile with wrong fiducial values of mass, redshift
and concentration. We study in particular the case in which the fiducial
redshift used in the filter differs from the real redshift by about 10 %, the
mass by about 30 %, and the concentration by about 20 %. We show the
results in the first three panels of figures 6.11 and 6.12 (blue lines) for the
linear and the scale-adaptive filter, respectively.

As expected, the inner-slope estimate is biased. This reflects the de-
generacy between the parameters, in particular between the scale radius
r−2 = r200(M, z)/c−2 and the inner slope. The scale radius depends only
slightly on the halo mass and redshift, while it is strongly affected by a
variation in the concentration.

This bias has to be compared with the statistical errors associated with
the measurement in order to assess whether uncertainties in the fiducial
halo parameters are important or not. If a single halo is considered, a
wrong assumption on the concentration (the most critical parameter) in-
troduces a bias that is on the same order as the statistical error. However,
if several halos are stacked (we show in figure 6.11 results after stacking
10 and 100 halos), the bias is a factor of 10 larger than the statistical uncer-
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tainty.

In Sect. 6.1.3, we discussed how it is possible to deal with degeneracies
between inner slope and concentration, defining two new parameters (P1,
P2), linear combinations of c and α, which are respectively the best and the
worst constrained parameters given our model. The measurement of the
new parameter P1 is almost unaffected by the choice of the other parameter
P2 as we show in the right panel of figure 6.11 and 6.12, while the effect
of a wrong assumption of halo mass and redshift produces a similar bias.
We recall that these latter quantities can be measured by means of other
observables, as discussed before.

Once the model had been re-parametrised in term of P1 and P2, we
estimated the error on P1 using a Monte-Carlo simulation in the same way
we have done before for α. The result is shown in figure 6.7.

6.3 Potential problems

We now want to point out the conditions under which the two methods
described can be successfully applied.

First of all, the reduced shear must be measurable at relatively small
angular scales (smaller than the scale radius of the halo) where the density
profile is sensitive to a change of the inner slope.

Towards the halo’s centre, the image distortion becomes non-linear
such that the galaxy ellipticities are no longer an unbiased estimator of
the shear. We quantify the expected deviation by a simple test: We use the
deflection-angle map of an NFW halo to lens a circular source (for which
we assumed a Sersic profile with n = 1.5 and r = 0.35arcsec) moving
radially towards the halo centre. We measure the ellipticity of its image
(using quadrupole moments) as a function of cluster-centric distance and
compare it to the true reduced shear. Figure 6.9 shows the result for three
different haloes (M = 1014, 5× 1014, 1015M./h). The conclusion is that up
to r = 0.2rs the measured ellipticity of galaxies is still an unbiased esti-
mator of the (reduced) shear while at smaller scales the contribution from
higher order terms start to be dominant. Therefore, r ≈ 0.2rs should be
taken as the minimum radius where the measured ellipticity can still be
considered to faithfully represent the reduced shear.

However measuring shear at these scales can be tricky even with a
high background galaxies density due to the possible dilution of the shear
signal caused by cluster galaxies. In order to avoid this problem, accurate
colour-magnitude information should be available so that it is possible
to well separate cluster members from non-members (Broadhurst et al.,
2005).
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We showed in the previous section that the error associated to the mea-
surement of the inner slope is high when computed for a single halo. Thus
several haloes need to be stacked together. The number of haloes to be
stacked depends strongly on the minimal radius where the shear can be
detected, and on the number of background galaxies. In Fig. 6.10, we plot
the relative error on the measurement of α as a function of these two pa-
rameters for a halo of M = 5× 1014M./h at redshift z = 0.3. Assuming
30 galaxies per square arc minute, the number of haloes to be stacked to
reach an accuracy of a few percent on the inner slope is between 10 and
100 going from rmin = 0.2rs to rmin = 0.8rs. We emphasise that the stacking
procedure can be affected by a wrong determination of the cluster centre
that causes a circularisation of the average cluster profile in its central part
(Kathinka Dalland Evans and Bridle, 2008).

Meneghetti et al. (2007) showed how the determination of the inner
slope can be biased if the triaxiality structure of the haloes are not taken
properly into account. However if many haloes are stacked together a
direct comparison with the projected DM average profile found using
stacked simulated clusters can be consistently done.

Moreover the effect of the baryons in shaping the density profile at this
scale is not negligible. We plan to attack this problem using numerical
simulation in order to study the effect of stacking and the presence of the
baryons on our results.

6.4 Conclusion

Starting from the question how the central density profiles of group or
cluster-sized, dark matter halos can best be constrained and compared to
observations, we have developed two methods based on linear filtering
of gravitational-shear data that aim at returning a single number, i.e. an
estimate of the inner slope α of density profile. One filter is constructed
to directly return this number, the other searches for the maximum of the
signal-to-noise ratio as a function of α. Our results are as follows:

• When applied to a single halo of 5× 1014M. near z = 0.3, the inner
slope of the density profile can be estimated with a 1-σ accuracy of
14% with the linear filter and 19% with the scale-adaptive filter, pro-
vided the halo concentration is known. Even though this situation
is unrealistically idealised, it is promising because it is based on a
single halo only.

• Taking the considerable uncertainty in halo concentrations into ac-
count increases the 1-σ error to between 25 . . . 30%.
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Figure 6.11: Left panels: Estimated inner slope of the halo (αest) as a func-
tion of the fiducial inner slope used in the filter (α0) with the 1− σ error
calculated for 10 (orange) or 100 (green line) halos using the Monte-Carlo
simulations described in Sect. 6.2. The black line shows the real value of
the halo’s inner slope. The first panel shows the bias caused by a fiducial
concentration 20 % larger or smaller than the real concentration. The sec-
ond panel shows the bias induced by a 50 % difference between the fiducial
and the real halo’s mass, while the third panel shows the bias caused by a
difference of 10 % between the fiducial and the real halo’s redshift. Right
panels: As the left panels, but for the new pair of parameters P1 and P2.
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Figure 6.12: Estimated shear amplitude (equation 6.2) normalised to unity
as a function of the inner slope (α) (left panels) and as a function of P1 used
in the filter definition (right panels). The black dashed curve represents the
case in which fiducial concentration, mass and redshift used in the filter
are correct. The blue curves represent the effect of defining the filter with a
wrong fiducial value for the concentration (first panel), the mass (second
panel) and the redshift (third panel). The errors on the measurement of
α were computed by Monte-Carlo simulation (see the text for details) and
are rescaled for 10 and 100 halos.
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• In reality, the halo concentration is at best roughly known. Based on
real data, there is an almost perfect degeneracy between α and the
halo-concentration parameter c: if c is assumed to be too large, α will
be underestimated and vice versa. Based on lensing data only, this
degeneracy cannot be lifted.

• To address this problem, we search for that combination of the pa-
rameters α and c that can best be constrained by observations. We
set up the Fisher matrix, rotate the two-dimensional parameter space
to diagonalise it and identify its smaller eigenvalue as that best-
constrained parameter, called P1. We find P1 = 0.95α + 0.30c for
the linear filter and P1 = 0.97α + 0.22c for the scale-adaptive filter.

• This parameter P1 is now constrained with a 1-σ relative accuracy
of ∼ 14% both with the linear and the scale-adaptive filters and the
measurement is almost insensitive to the value of the other parame-
ter P2.

While these results seem highly promising, in particular when applica-
tions to cluster samples rather than individual clusters are envisaged, we
consider our study as a first step. While we have taken into account that
image ellipticities measure the reduced gravitational shear rather than the
shear itself, measuring the reduced shear near the centres of galaxy groups
or clusters is severely hampered by the cluster galaxies themselves. It thus
appears necessary to stack the signal from several or many clusters to ar-
rive at a reliable estimate for α. Then, clusters with different masses, red-
shifts and concentration parameters will inevitably be combined, with the
tendency to blur the signal. However, the results derived and presented
above indicate that the principle of our approach is promising, which con-
sists in combining all available information into a single number, which is
thus well constrained. Further studies are required to address the issue of
stacking data in this context.
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Salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle0.

Dante (1265-1321) Inferno XXXIV 7
Conclusions

Weak gravitational lensing is a very powerful tool to study the distribu-
tion of matter in the universe and to understand the properties of dark
matter halos, the building-blocks of non-linear structure formation. It has
a very elegant mathematical treatment in terms of spinorial fields (conver-
gence, shear and flexion), which are related to the derivatives of the lens-
ing potential. Each of these fields can be ultimately related to a particular
deformation of a lensed object. Measuring these deformations with high
accuracy is one of the greatest challenge for any weak lensing application.

In this Thesis we analysed the KSB (Kaiser et al., 1995) method, which
aims at estimating gravitational shear from surface-brightness moments
of small and noisy galaxy images. In particular we investigated possible
biases coming from the restrictive mathematical assumptions on which
this method relies. We identified in particular four main problems:

1. While gravitational shear must be estimated from averaged galaxy
images, KSB derives a shear estimate from each individual image
and then takes the average. Since the two operations do not com-
mute, KSB gives biased results.

2. KSB implicitly assumes that galaxy ellipticities are small, while weak
gravitational lensing assures only that the change in ellipticity due
to the shear is small.

3. KSB does not perform any PSF deconvolution, but gives only an ap-
proximate correction for the effect of the PSF. We demonstrated that
this correction would be equivalent to a proper PSF deconvolution
from a circular PSF only in the case of a circular source, otherwise
the improper PSF correction lowers the shear estimate

0we climbed he first, I following until I saw/through a round opening, some of those
things/of beauty Heaven bears. It was from there/that we emerged, to see once more the
stars.
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4. KSB assumes that the PSF can be described by the convolution of a
compact anisotropic kernel and a large isotropic kernel. We showed
that is not possible to extend the formalism to allow more precise
corrections in case the PSF since that would imply calculation of the
derivatives of the observed surface brightness, which is not feasible
given the amount of noise in the data.

We showed that the effects of assumptions (2) and (3) partially counter-
act in a way dependent on the width of the weight function used to mea-
sure the moments and of the PSF. We quantitatively demonstrate the biases
due to all assumptions, extend the KSB approach consistently to third or-
der in the shear and ellipticity and show that this extension lowers the
biases substantially.

The inability to improve the PSF deconvolution performed by KSB
pushed towards a development of a newmethod, called DEIMOS. It main-
tains the strengths of a model independent approach by working with
multipole moments of the apparent brightness distribution, but being based
on a mathematically exact deconvolution of the moments of galaxies from
the PSF, has the big advantage of not relying on any assumption about the
shape of the PSF.

The (de)convolution equations we found out, are exact for unweighted
moments only, while in practice a compact weight function needs to be ap-
plied to the noisy images to ensure that the moment measurement yields
significant results. We showed that the change of the moments caused
by the application of the weight function can then be corrected by con-
sidering higher-order weighted moments of the same source. Because of
the form of the deconvolution equations, even an incomplete weighting
correction leads to an excellent shear estimation if galaxies and PSF are
measured with a weight function of identical size. We demonstrated the
accuracy and capabilities of this new method in the context of weak grav-
itational lensing measurements with a set of specialized tests and show
its competitive performance on the GREAT08 challenge data (Bridle et al.,
2010).

The formalism on which DEIMOS is based can easily be extended to
measure gravitational flexion (the next higher order distortion effects after
shear and convergence). The accuracy and the precision that DEIMOS can
achieve in the measurements of third (and fourth) moments, necessary
to build up any flexion estimator are still unclear and further studies are
planned in this direction.

We investigated in this Thesis some interesting theoretical aspects re-
garding flexion measurements in cluster environments. We showed in par-
ticular that close to cluster centres, where the shear and the convergence
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are high, the F -flexion and the G-flexion fields can be contaminated by the
appearance of other spin-1 and spin-3 fields caused by cross talk between
(reduced) shear and flexion. We demonstrated that the contamination can
be up to 50% and we showed how it depends on the morphological prop-
erties of the source population. Taking into account this effect is of extreme
importance when the "measured flexion" is compared to the true flexion.

Having reliable shear (and flexion) estimation is crucial to predict the
properties of dark matter halos. In this Thesis we investigate in particular
how much gravitational shear is able to constrain their density profiles,
as predicted by numerical simulations (Navarro et al., 1997; Moore et al.,
1998).

We constructed two linear filtering techniques based on weak gravita-
tional lensing to constrain the inner slope α of the density profile of dark-
matter halos, assuming that the profile has an outer slope of r−3. Both
methods combine all available information into an estimate of this single
number, without the necessity of measuring and then fitting the complete
shear profile, which might be problematic given the sparseness of lensing
information near the core of galaxy clusters. Furthermore the contamina-
tion of the cluster shear signal by the large scale structures can be naturally
taken into account. We found that, under idealised assumptions, α is con-
strained to ∼ 15% if the halo concentration c is known, and to <∼ 30%
if not. We argue that the inevitable degeneracy between density-profile
slope and halo concentration cannot be lifted under realistic conditions,
and showed by means of Fisher-matrix methods which linear combination
of α and c is best constrained by our filtering of lensing data. This defines a
new parameter, called P1, which is then constrained to ∼ 15% for a single
massive halo. The achievable accuracy for a single cluster suggests that
if the signals of many halos can be stacked, their density profiles should
thus be well constrained by the linear filters proposed here with the ad-
vantage, in contrast with strong lensing analysis, to be insensitive to the
cluster substructures.

It is however unclear which is the best way to stack data in this context.
In particular the estimation of the biases that stacking can introduce in the
final measurement has been left for further studies. The filtering tech-
niques, developed in this Thesis for the shear, can be extended to include
flexion with the aim to combine shear and flexion information in the inner
part of galaxy clusters to constrain the inner slope of dark matter halo.
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Appendix A

In this Appendix, we list expressions for the tensors defined in Chapter 4
in terms of moments of the light distribution:

P11 = − 2χ1L1
Tr(Q)

− 2χ21 + 2
B11
Tr(Q)

+ 2 (7.1)

P12 = −2 χ1L2
Tr(Q)

− 2χ1χ2 + 4
B11
Tr(Q)

(7.2)

P22 = −2 χ2L2
Tr(Q)

− 2χ22 + 8
Q′
1122

Tr(Q)
+ 2 (7.3)

R111 = 2
K11χ1
Tr(Q)
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B11χ1
Tr(Q)

− 2 D111
Tr(Q)

− 4 L1
Tr(Q)

(7.4)
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Tr(Q)
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(7.5)
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Tr(Q)
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Tr(Q)

+ 4
B12χ2
Tr(Q)

− 2 D122
Tr(Q)

− 4 L1
Tr(Q)

(7.10)

R222 = 2
K22χ2
tr(Q)

+ 16
Q′
1122χ2
tr(Q)

− 16Q
′′
111222

Tr(Q)
− 4 L2

Tr(Q)
(7.11)

L1 = Q′
1111 −Q′

2222 (7.12)
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111111 − 3Q′′

111122 + 3Q
′′
111122 − Q′′

222222 (7.20)

D112 = D121 = D211 =

= 2(Q′′
111112 − 2Q′′

111222 + Q
′′
222221) (7.21)

D122 = D212 = D221 = 4(Q′′
111122 −Q′′

112222) (7.22)

D222 = 8Q′′
111222 (7.23)

U1111 = Q′′′
11111111 − 4Q′′′

11111122 + 6Q
′′′
11112222

− 4Q′′′
11222222 + Q

′′′
22222222 (7.24)

U2111 = 2(Q′′′
11111112 − 3Q′′′

11111222

+ 3Q′′′
11122222 − Q′′′

12222222) (7.25)

U1211 = U1121 = U1112 = U2111 (7.26)

U2211 = 4(Q′′′
11111122 − 2Q′′′

11112222 +Q
′′′
11222222) (7.27)

U2112 = U2121 = U1122 = U1221 = U1212 = U2211 (7.28)

U2221 = 8(Q′′′
11111222 −Q′′′

11122222) (7.29)

U2122 = U2212 = U1222 = U2221 (7.30)

U2222 = 16Q′′′
11112222 (7.31)

Note that the moments Q ′
ij..k have to be computed using the first deriva-

tive of the weight function with respect to !θ2. Similarly, Q′′
ij..k must be

computed using the second derivatives of the weight function.
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M., Kauffmann, G., Kent, S. M., Kleinman, S. J., Knapp, G. R., Kniazev,
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