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Abstract

A thorough knowledge of the connection between the mass of dark matter haloes and the

properties of their central galaxies is crucial to understand the physics of galaxy formation.

The kinematics of satellite galaxies is an excellent technique to measure the dark matter halo

masses. However, the kinematics can be measured with high signal-to-noise only by stacking

the signal around central galaxies with similar properties, which results in various systematic

biases and complicates the interpretation of the signal. This thesis presents an analytical frame-

work that accounts for systematic biases and selection effects and aids in the interpretation of

the kinematics of satellite galaxies. A new method is established to obtain the average scaling

relations between halo mass and central galaxy properties, and the scatter in these relations si-

multaneously. After a thorough testing of this method using a realistic mock galaxy catalogue,

it is applied to the Sloan Digital Sky Survey to extract the halo mass-luminosity and halo mass-

stellar mass relationship of central galaxies and their scatter. Comparisons with other probes

of these scaling relations, such as galaxy−galaxy lensing, show good agreement which implies

that these scaling relations are well established and supported by various astrophysical probes.

Physical insights about these scaling relations, in particular their scatter, gained by the anal-

ysis of a semi-analytical model for galaxy formation are also presented. Finally, the inferred

scaling relations crucially depend on the transparency of the Universe. By performing a test

of the “Etherington relation” between the distances measured by standard rulers and by stan-

dard candles, a quantitative measure of the cosmic transparency, which is relatively free from

astrophysical assumptions, is obtained.

Zusammenfassung

Um die physikalischen Mechanismen der Galaxienentwicklung zu verstehen, müssen die

Zusammenhänge zwischen der Masse eines Dunkle-Materie-Halos und den Eigenschaften seiner

Zentralgalaxie bekannt sein. Die Bestimmung der Kinematik von Satellitengalaxien ist eine

etablierte Methode zur Messung von Halomassen. Allerdings sind kinematische Messungen

mit hoher Signifikanz nur dadurch möglich, dass die Signale über viele Zentralgalaxien mit

ähnlichen Eigenschaften gemittelt werden. Dies hat systematische Fehler zur Folge und er-

schwert die Interpretation kinematischer Beobachtungen. In dieser Dissertation wird ein ana-

lytisches Modell vorgestellt, mit dessen Hilfe systematische Verzerrungen und Auswahleffekte

korrigiert werden können, was die Auswertung kinematischer Daten von Satellitengalaxien er-

leichtert. Hieraus folgt ein Verfahren zur Bestimmung der Skalierungsvorschrift zwischen Halo-

masse und Eigenschaften der Zentralgalaxie, die gleichzeitig die Streuung über diese Relation



vorhersagt. Diese Gültigkeit dieses Verfahrens wird anhand eines künstlichen Galaxienkata-

logs mit bekannten, aber realistischen Eigenschaften verifiziert. Aus der Anwendung auf die

Beobachtungen der Sloan Digital Sky Survey werden die Skalierungsvorschriften zwischen

Halomasse einerseits und Leuchtkraft sowie stellarer Masse andererseits für Zentralgalaxien

mitsamt dazugehöriger Streuung bestimmt. In Vergleichen zeigt sich eine gute übereinstimmung

mit anderen Messverfahren für diese Vorschriften, wie z.B. der Beobachtung von Gravitation-

slinseneffekten der Zentralgalaxien auf andere Galaxien. Dies bestätigt die Zuverlässigkeit der

hier vorgestellten Skalierungen. Darüber hinaus ergeben sich aus der Analyse eines semi-

empirischen Modells für Galaxienentstehung neue Erkenntnisse über die physikalischen Ur-

sachen der vorgestellten Skalierungen und insbesonderere ihrer Streuung. Schlielich hängen

die aus unserem Modell erhaltenen Skalierungen entscheidend von der Transparenz des Univer-

sums ab. Vermittels einer überprüfung des “Etherington’schen Gesetzes” für den Zusammen-

hang zwischen Entfernungen, die aus Standardlängen beziehungsweise Standardkerzen bes-

timmt werden, wird die kosmische Transparenz in einer Weise bestimmt, die relativ unabhängig

von astrophysikalischen Annahmen ist.
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Chapter 1

Introduction

1.1 Galaxy Formation in a Dark Universe

The vast ocean of space is full of starry islands called galaxies, such as our own Milky Way.

Galaxies act as lighthouses in this vast ocean, serving as an interface with which we can explore

and understand our Universe. The majesty and the variety of galaxies has often boggled the

human mind. It is more curious however that, in our current understanding, galaxies form a

very small portion of the energy content of the Universe. Most of the energy content of the

Universe today is “dark” − the two dominant components “dark energy” and “dark matter”

account for nearly 95 percent of the energy density of the Universe. The rest is ordinary matter

primarily present in the form of gas in the intergalactic medium and around galaxies (referred

to as baryons). How do galaxies come into existence in this dark Universe and how do they

evolve? What is the relation of galaxies to the dark components in the Universe? What shapes

the properties of different galaxies? How are different properties of galaxies correlated with

each other and what is the physics that drives these correlations? These questions, among

others, currently drive the research field of galaxy formation and evolution.

The origin and the nature of both the dark components of the Universe is still a mystery.

Although the presence of dark matter can be motivated theoretically from (currently untested)

ideas in particle physics that are based upon supersymmetry (Preskill et al. 1983; Ellis et al.

1984), the presence of dark energy and its ubiquitous nature has little theoretical motivation

(see e.g., Dolgov 2004). The evidence for the presence of both the components is purely astro-

physical. Dark energy manifests itself through the recently-discovered accelerated expansion

of the Universe (Riess et al. 1998; Perlmutter et al. 1999; Kowalski et al. 2008) while dark

matter makes its presence felt only through its gravitational effects (Zwicky 1933; Rubin et al.

1982). All attempts to detect the elusive dark matter through a wide range of non-gravitational

experiments have largely been inconclusive (see e.g., Benoit et al. 2002; Akerib et al. 2003,

2004; Sanglard et al. 2005). These negative results have led some to favour the radical approach

of modifying Newton’s theory of gravity in the weak field limit (Milgrom 1983a,b,c) and its

relativistic version (Bekenstein 2004). Whether this approach can explain all the observed as-

1



2 1. INTRODUCTION

trophysical phenomena which suggest the presence of dark matter − the jury is still out (see

e.g., McGaugh & de Blok 1998; Sanders & McGaugh 2002; Sanders 2003; Clowe et al. 2004;

Klypin & Prada 2009).

In the simplest picture, that conforms to a wide range of astrophysical observations, dark

energy is assumed to be an all-pervading, non-clumpy form of energy and is generally attributed

to the vacuum. Dark matter, on the other hand, is supposed to be dynamically cold and collision-

less, but clumpy due to the effects of gravity. These two dark components form the backbone

of the ΛCDM theory (Λ stands for dark energy, CDM for cold dark matter). According to this

theory, the early Universe started off as a dense hot soup of elementary particles and underwent

a rapid inflationary phase where the tiny fluctuations of a (hypothesized scalar) quantum field

were stretched to cosmologically large scales. These fluctuations were imprinted onto the initial

density field of the particles. Dark matter, the most abundant gravitationally unstable compo-

nent in the Universe, was then responsible for the formation of structure in the Universe. The

tiny initial fluctuations in the density field grew over time by the action of gravity and formed

bound structures (haloes). Baryons were trapped within the gravitational potential of these dark

matter haloes and they underwent a series of complex physical processes to form the galaxies

that we observe today.

The great thing about the ΛCDM theory is its ability to make testable predictions. Given

the power spectrum of the initial density fluctuations and the energy density parameters of the

various components of the Universe, the statistical properties of the dark matter distribution can

be accurately predicted (see e.g., Eisenstein & Hu 1999). As the dark matter distribution is not

directly observable, establishing the link between the observable galaxies to their dark matter

haloes is central to test this prediction (see e.g., Tegmark et al. 2004). The theory also predicts

that the properties of dark matter haloes, in particular the mass, should shape the properties of

galaxies that form within them. Precise measurements of the scaling relations between different

galaxy properties with the mass of a dark matter halo can also provide key insights into the

galaxy-dark matter connection predicted by this theory. This is precisely the aim of this thesis.

We wish to investigate the connection between different galaxy properties and their dark matter

haloes.

There are various approaches to study the galaxy-dark matter connection. One approach is

to study such a connection via direct numerical simulations (see e.g., Katz et al. 1992; Evrard

et al. 1994; Frenk et al. 1996, 1999; Katz et al. 1996; Navarro et al. 1997; Pearce et al. 1999;

Kravtsov 1999). This involves following the evolution of the density field and its fluctuations,

and the various astrophysical processes that transform the baryons into luminous galaxies. In

this approach, the gravitational and hydrodynamical equations need to be solved in full general-

ity. The resultant population of galaxies can then be compared with the observed population of

galaxies in the Universe. One drawback of this approach is the tremendous computational ex-

pense of simulating a cosmologically meaningful volume with sufficient resolution and within

a reasonable amount of time.
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The second approach, called semi-analytical modelling, improves upon the former by sepa-

rating the evolution of the dark matter component and the baryonic component (see e.g., White

& Rees 1978; White & Frenk 1991). The evolution of the dark matter component is followed

numerically (or by using Monte-Carlo techniques) while the evolution of the baryonic com-

ponent in the distribution of dark matter is followed by using simple analytical recipes. This

approach of modelling the formation of galaxies can be used to compute the properties of a large

population of galaxies and establish their link to the underlying dark matter distribution (e.g.,

White & Frenk 1991; Kauffmann & White 1993; Cole et al. 1994; Kauffmann 1996; Kauff-

mann et al. 1997; Baugh et al. 1998; Somerville & Primack 1999; Cole et al. 2000; Benson

et al. 2002; Springel et al. 2005; Croton et al. 2006; De Lucia & Blaizot 2007). The advantage

of this method is its flexibility. It is relatively easy to test the effects of the various assumptions

and parameters involved in the modelling on the final properties of the modelled galaxies (see

e.g., Cole et al. 2000). The first approach is complementary to the semi-analytical approach,

because the simple analytical recipes often have to be calibrated against high resolution hydro-

dynamical simulations which focus on a small volume. One drawback of the semi-analytical

approach is that any back reaction of the baryons on the dark matter haloes are either neglected

or are included a posteriori.

The third approach to investigate the link between galaxies and their dark matter haloes is

statistical in its nature. In this approach the connection between galaxies and dark matter haloes

is specified by a halo occupation model (for an excellent review, see Cooray & Sheth 2002).

The model uses a few parameters to specify the distribution of various properties of galaxies as

a function of the mass of the halo in which they reside. Given the properties of the dark matter

haloes, such as their abundance, their clustering strength and their density profiles (usually

obtained from dark matter only numerical simulations), these models can be easily used to make

analytical predictions for various observational properties of galaxies. The observed properties

of the real-world galaxies can then be used to constrain the parameters of the halo occupation

model and thus establish the link between galaxies and their dark matter haloes (Bullock et al.

2002; Berlind & Weinberg 2002; Berlind et al. 2003; Wang et al. 2004; Abazajian et al. 2005;

Zheng et al. 2005; van den Bosch et al. 2007; Zheng et al. 2007; Cacciato et al. 2009). In this

thesis, we will focus on this third approach and infer the halo occupation distribution of galaxies

by probing the dark matter haloes of galaxies.

Various observational probes can be used to measure the masses of dark matter haloes and

subsequently connect it to the properties of the galaxies. These include various methods that

focus on measuring the kinematics of a tracer population in the halo around individual galaxies.

For example, kinematic measurements of the gas around spiral galaxies observed in the optical

and the radio wavelengths have been traditionally used as a strong evidence for the presence of

dark matter haloes (e.g., Shostak 1973; Roberts & Whitehurst 1975; Bosma 1978; Rubin et al.

1978, 1982; Sofue & Rubin 2001). Unfortunately, these probes do not trace the entire extent

of the dark matter halo and hence can at best be used to measure the masses of only the inner
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regions of the haloes. The X-ray emission from hot gas in clusters can also be used to measure

the dark matter halo masses in these systems under simplifying assumptions of hydrostatic

equilibrium and spherical symmetry (e.g., Mushotzky et al. 1978). Strong gravitational lensing,

manifested by the presence of multiple images or highly magnified arcs of background objects,

is yet another important probe of the halo masses in individual systems (see e.g., Schneider

et al. 1992). Being a purely gravitational effect, lensing has the advantage of being able to

probe mass without the need for simplifying assumptions about the relaxedness of the system

under consideration. However, degeneracies in the modelling of lens systems and projection

effects can cause some trouble in the interpretation of the lensing observations.

With the advent of large scale galaxy redshift surveys in the last decade, such as the the

Sloan Digital Sky Survey (SDSS; York et al. 2000) and the Two degree Field Galaxy Redshift

Survey (2dFGRS; Colless et al. 2001), new methods have been developed to investigate the

galaxy-dark matter connection. These methods do not focus on individual systems but rather

examine the statistical properties of the galaxy distribution to infer the halo mass properties

on average. The galaxy redshift surveys can be used to reliably determine the abundance of

galaxies as a function of their properties such as luminosity or stellar mass (e.g., Norberg et al.

2002b; Bell et al. 2003; Blanton et al. 2003b; Panter et al. 2004). Another statistical property is

the clustering of the galaxy distribution, given by the two-point correlation function measured

as a function of galaxy properties (e.g., Zehavi et al. 2002; Norberg et al. 2002a; Madgwick

et al. 2003; Zehavi et al. 2004, 2005; Wang et al. 2007). Since the abundance and clustering

of dark matter haloes is a function of the mass of the halo, the abundance and clustering of

galaxies can also be used to constrain the halo occupation distribution of galaxies (e.g., Jing &

Suto 1998; Peacock & Smith 2000; Bullock et al. 2002; Berlind & Weinberg 2002; Wang et al.

2004; Abazajian et al. 2005; van den Bosch et al. 2007; Zheng et al. 2007; Cacciato et al. 2009).

The dark matter haloes around galaxies can cause weak tangential distortions in the shapes

of background galaxies. This effect known as galaxy-galaxy lensing is yet another statistical

way to probe the dark matter haloes around galaxies (e.g., Tyson 1987; Brainerd et al. 1996;

dell’Antonio & Tyson 1996; Hudson et al. 1998; Hirata et al. 2004; Mandelbaum et al. 2006b).

Measurements of the galaxy−galaxy lensing signal can be used to constrain the properties of

dark matter haloes around galaxies (e.g., Schneider & Rix 1997; Wilson et al. 2001; Guzik &

Seljak 2002; Parker et al. 2007; Cacciato et al. 2009). Since this effect is very weak, a stacking

procedure has to be adopted in which the signal around galaxies of similar properties is added

to improve the signal-to-noise ratio. Such a measurement then probes the average dark matter

halo of galaxies as a function of the property used to stack the galaxies.

In this thesis, we scrutinize another powerful method that involves measuring the kinematics

of satellite galaxies that orbit the dark matter haloes of central galaxies to measure the masses

of these haloes. Satellite galaxies trace the dark matter halo in its entirety and hence are useful

to probe the dark matter haloes around galaxies. This method is of historical significance as

its application to the Coma cluster of galaxies had led to the discovery of dark matter (Zwicky
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1933). Precise measurement of the kinematics of satellite galaxies is only possible in systems,

such as clusters, that have a large number of satellites (e.g., Carlberg et al. 1996, 1997). The

number of satellites in low mass systems is too small to provide a reliable measure of the

kinematics. However, stacking methods were soon pioneered that enabled the measurement of

the kinematics of satellites of central galaxies in low mass haloes stacked by their luminosities

(Erickson et al. 1987; Zaritsky et al. 1993; Zaritsky & White 1994; Zaritsky et al. 1997). These

studies involved a modest number of satellite galaxies (. 100), but were nevertheless succesful

in establishing the presence of extended dark matter haloes around spiral galaxies.

The sample of satellite galaxies used to measure the kinematics received an order of mag-

nitude boost in number after data from large scale redshift surveys became available (McKay

et al. 2002). This has led to a number of interesting studies that have measured the scaling

relations between galaxy properties and their dark matter haloes (Brainerd & Specian 2003;

Prada et al. 2003; van den Bosch et al. 2004; Becker et al. 2007; Conroy et al. 2007; Norberg

et al. 2008). Qualitatively all studies agree on the fact that the velocity dispersion of satellites

correlates positively with the property (luminosity/stellar mass) used to stack central galaxies

which in turn implies that the mass of dark matter haloes increases as a function of the stacking

property. However, there are quantitative disagreements about the exact scaling relations that

are inferred by these studies. The contrast between the results of different studies was recently

highlighted in Norberg et al. (2008). The differences between various studies were attributed to

the different criteria used to select the samples of centrals and satellites by the previous studies.

The research work presented in this thesis aims to understand how selection effects and

systematic biases affect the kinematics of satellite galaxies and establish a new method based

on satellite kinematics that can be used to measure the scaling relations between dark matter

haloes and central galaxies in an unbiased manner. We also discuss the implications of these

results on the physics of galaxy formation.

1.2 Thesis Overview

Chapter 2 introduces the reader to the theoretical framework that can be used to analyse the

kinematics of satellites around central galaxies stacked according to their properties. In this

chapter, we present a degeneracy problem that has been hitherto ignored in the analysis of

satellite kinematics. We show that the kinematics of satellite galaxies cannot be used to infer

a unique relation between halo masses and the property used to stack central galaxies if the

scatter in this relation is unknown. In this chapter, we also present a novel method that has the

potential to break this degneracy and measure both the average scaling relation and its scatter

from the kinematics of satellite galaxies.

In Chapter 3, we test the feasibility of the application of the method presented in Chapter 2

to realistic galaxy surveys. For this purpose, we first create an artificial universe by populating

galaxies in a dark matter only simulation. By mimicking the flux limited nature of galaxy
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observations in redshift surveys, we create a mock galaxy catalogue from this artificial universe.

This mock catalogue is then used to test how various selection effects affect the measurement

of the kinematics of satellite galaxies. We also show that the new method we proposed can

reliably recover both the average scaling relation between halo masses and luminosity and its

scatter originally present in the mock catalogue.

The next two chapters deal with the application of these methods to actual data from the

SDSS. Chapter 4 focusses on the halo mass−luminosity relationship of central galaxies and

infer this relation from the kinematics of satellite galaxies. The focus of Chapter 5 is the halo

mass-stellar mass relationship of central galaxies. We show that the average scaling relations

derived by our method are in excellent agreement with several other probes of these relations.

We find that both the relations demonstrate an appreciable scatter and present quantitative mea-

surements of the same. The scatter in these relations is a result of the stochasticity in galaxy

formation.

In Chapter 6, we attempt to gain physical insights on the origin of the stochasticity in galaxy

formation that we constrained using satellite kinematics. For this purpose, we use a semi-

analytical model of galaxy formation. We analyse the scatter in the merger histories of haloes

of similar masses and explore its effects on the properties of the galaxies that form at its center.

We quantify the merger histories of haloes by considering various definitions for the formation

times of haloes and show that haloes that form earlier on average host central galaxies that have

a larger stellar mass.

The properties of galaxies that we observe such as their luminosity are often based upon

the assumption that the Universe is transparent. In Chapter 7, we obtain a quantitative mea-

sure of the transparency of the local Universe in the optical bands. We perform a test of the

“Etherington relation” by checking for the consistency of the luminosity distances obtained by

supernova Ia experiments and the angular diameter distances obtained by experiments that de-

tect the baryon accoustic feature in the power spectrum of galaxies. Note that, such measures

of the transparency of the universe are important given the fact that the only evidence of the

presence of dark energy is the dimming of distant supernovae in the Universe and this could be

mimicked by the presence of opacity in the Universe.

Finally, in Chapter 8, a summary of the results obtained in this thesis is presented with a

short discussion on the possibilities of future work in this field.



Chapter 2

Satellite Kinematics: The Analytical
Formalism

The contents of this chapter are based upon the article More et al. (2009b) published in the

Monthly Notices of the Royal Astronomical Society. The reference is

More, S., van den Bosch, F. C., & Cacciato, M. 2009, MNRAS, 392, 917.
The introduction from the article published above has been slightly modified to avoid repetition

of material from the introductory chapter in the thesis.

2.1 Introduction

According to the current paradigm, the mass of a dark matter halo is believed to strongly influ-

ence the process of galaxy formation and thus shape the properties of the galaxies that form and

reside at their centres (hereafter referred to as central galaxies). Hence, a reliable determination

of scaling relations between halo mass and properties of their central galaxies can provide im-

portant constraints on the physics of galaxy formation. Determination of such scaling relations

require precise measurements of the halo mass. Numerous methods are available to probe the

masses of dark matter haloes (see Chapter 1). In this thesis, we scrutinize in detail the method

which uses the kinematics of satellite galaxies that orbit within the halo of their central galaxies,

to measure the masses of dark matter haloes.

The kinematics of satellite galaxies in individual cluster-sized haloes can be reliably mea-

sured as they host a large number of satellite galaxies which properly sample the line-of-sight

(hereafter los) velocity distribution of their haloes. The extension of this analysis to group-scale

and galaxy-scale haloes necessitates the use of stacking methods (Erickson et al. 1987; Zaritsky

et al. 1993; Zaritsky & White 1994; Zaritsky et al. 1997). Under the assumption that galax-

ies with similar properties (e.g. luminosities) reside in haloes of similar mass, these methods

combine the velocity information of satellite galaxies that revolve around such central galax-

ies. The kinematics of such a stacked system is then used to infer the average halo mass of the
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stacked central galaxies. More recent studies (McKay et al. 2002; Prada et al. 2003; Brainerd &

Specian 2003; van den Bosch et al. 2004; Conroy et al. 2007; Becker et al. 2007) apply similar

stacking procedures to central galaxies selected from the large homogeneous galaxy redshift

surveys such as the Sloan Digital Sky Survey (SDSS; York et al. 2000) and the Two degree

Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2001). All these studies find that the los

velocity dispersion of satellite galaxies, σsat, increases with the luminosity of the host (central)

galaxy, Lc. This is in agreement with the expectation that more massive haloes host more lumi-

nous centrals. In a recent study, Norberg et al. (2008) have shown that there exist quantitative

discrepancies between these previous studies and these discrepancies arise mainly due to the

differences in the criteria used to select central hosts and their satellites. This underscores the

necessity for a careful treatment of selection effects in order to extract reliable mass estimates

from satellite kinematics.

Except for van den Bosch et al. (2004), all previous studies have been extremely conser-

vative in their selection of hosts and satellites. Consequently, despite the fact that the redshift

surveys used contain well in excess of 100,000 galaxies, the final samples only contained about

2000 − 3000 satellite galaxies. This severely limits the statistical accuracy of the velocity dis-

persion measurements as well as the dynamic range in luminosity of the central galaxies for

which halo masses can be inferred. The main motivation for using strict selection criteria is to

select only ‘isolated’ systems, with satellites that can be treated as tracer particles (i.e., their

mass does not cause significant perturbations in the gravitational potential of their host galaxy).

Let P (M |Lc) denote the conditional probability distribution that a central galaxy of luminosity

Lc resides in a halo of mass M . If the scatter in P (M |Lc) is sufficiently small, preferentially

selecting ‘isolated’ systems should yield an unbiased estimate of 〈M〉(Lc), which is the first

moment of P (M |Lc). However, very little is known about the actual amount of scatter in

P (M |Lc) and different semi-analytical models for galaxy formation make significantly differ-

ent predictions (see discussion in Norberg et al. 2008). If appreciable, the scatter will severely

complicate the interpretation of satellite kinematics, and may even cause a systematic bias (van

den Bosch et al. 2004; More et al. 2009c). Furthermore, even if the scatter is small, in practice,

satellites of central galaxies stacked in finite bins of luminosity are used to measure the kine-

matics. If the satellite sample is small, one has to resort to relatively large bins in order to have

sufficient signal-to-noise. Therefore, even if the distribution P (M |Lc) is relatively narrow, this

still implies mixing the kinematics of haloes spanning a relatively large range in halo masses.

In this chapter, we demonstrate that whenever the scatter in P (M |Lc) is non-negligible,

the σsat(Lc) inferred from the data has to be interpreted with great care. In particular, we

demonstrate that there is a degeneracy between the first and second moments of P (M |Lc), in

that two distributions with different 〈M〉(Lc) and different scatter can give rise to the same

σsat(Lc). Therefore, a unique 〈M〉(Lc) cannot be inferred from satellite kinematics without a

prior knowledge of the second moment of P (M |Lc). However, not all hope is lost. In fact, we

demonstrate that by using two different methods to measure σsat(Lc), one can actually break
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this degeneracy and thus constrain both the mean and the scatter of P (M |Lc). In this chapter

we introduce the methodology, and present the analytical framework required to interpret the

data, taking account of the selection criteria used to identify the central host galaxies and their

satellites. In Chapter 4, we apply this method to the SDSS to infer both the mean and the scatter

of P (M |Lc), which we show to be in good agreement with the results obtained from clustering

and galaxy−galaxy lensing analyses. In addition, in Chapter 4 we demonstrate that (i) the scat-

ter in P (M |Lc) can not be neglected, especially not at the bright end, and (ii) the strict isolation

criteria generally used to select centrals and satellites result in a systematic underestimate of the

actual 〈M〉(Lc).

This chapter is organized as follows. In Section 2.2, we present two different schemes to

measure the velocity dispersion, the satellite-weighting scheme and the host-weighting scheme.

In Section 2.3, we present a toy model which serves as a basis for understanding the dependence

of velocity dispersion estimates on the different parameters of interest. In Sections 2.4 and 2.5

we refine our toy model by including selection effects and by using a realistic halo occupation

distribution (HOD) model for the central galaxies. We use these more realistic models to in-

vestigate how changes in the halo occupation statistics of central galaxies affect the velocity

dispersion of satellite galaxies, and we demonstrate how the combination of satellite-weighting

and host-weighting can be used to infer both the mean and the scatter of the mass−luminosity

relation. We summarize our findings in Section 2.6. Throughout this chapter, M denotes the

halo mass in units of h−1M�.

2.2 Weighting Schemes

In order to estimate dynamical halo masses from satellite kinematics one generally proceeds as

follows. Using a sample of satellite galaxies, one determines the distribution P (∆V ), where

∆V is the difference in the line-of-sight velocity of a satellite galaxy and its corresponding

central host galaxy. The scatter in the distribution P (∆V ) (hereafter the velocity dispersion),

is then considered to be an estimator of the depth of the potential well in which the satellites

orbit, and hence of the halo mass associated with the central. In order to measure the velocity

dispersion as a function of central galaxy luminosity, σsat(Lc), with sufficient signal-to-noise,

one has to combine the los velocity information of satellites which belong to centrals of the

same luminosity, Lc. This procedure is influenced by two effects, namely mass-mixing and

satellite-weighting, which we now discuss in turn.

Mass-mixing refers to combining the kinematics of satellites within haloes of different

masses. The mass−luminosity relation (hereafter MLR) of central galaxies can have an ap-

preciable scatter, i.e., the conditional probability distribution P (M |Lc) is not guaranteed to be

narrow. In this case, the satellites used to measure σsat(Lc) reside in halo masses drawn from

this distribution, and σsat(Lc) has to be interpreted as an average over P (M |Lc).

In most studies to date, the technique used to measure σsat(Lc) implies satellite weighting.
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This can be elucidated as follows. Let us assume that one stacks Nc central galaxies, and that

the jth central has Nj satellites. The total number of satellites Nsat is given by
∑Nc

j=1Nj . Let

∆Vij denote the los velocity difference between the ith satellite and its central galaxy j. The

average velocity dispersion of the stacked system, σsw, is such that

σ2
sw =

∑Nc
j=1

∑Nj

i=1(∆Vij)2∑Nc
j=1Nj

=
1

Nsat

Nc∑
j=1

Njσ
2
j . (2.1)

Here σj is the velocity dispersion in the halo of the jth central galaxy. The velocity dispersion

measured in this way is clearly a satellite-weighted average of the velocity dispersion σj around

each central galaxy 1. Although not necessarily directly using Eq. (2.1), most previous studies

have adopted this satellite-weighting scheme (McKay et al. 2002; Brainerd & Specian 2003;

Prada et al. 2003; Norberg et al. 2008).

In principle, the satellite-weighting can be undone by introducing a weight wij = 1/Nj for

each satellite−central pair in the los velocity distribution (van den Bosch et al. 2004; Conroy

et al. 2007). The resulting host-weighted average velocity dispersion, σhw, is such that

σ2
hw =

∑Nc
j=1

∑Nj

i=1wij(∆Vij)
2∑Nc

j=1wijNj

=
1
Nc

Nc∑
j=1

σ2
j , (2.2)

and it gives each halo an equal weight.

Consider a sample of central and satellite galaxies with luminositiesL > Lmin. The velocity

dispersions in the satellite-weighting and host-weighting schemes can be analytically expressed

(see also van den Bosch et al. 2004) as follows:

σ2
sw(Lc) =

∫∞
0 P (M |Lc) 〈Nsat〉M 〈σ2

sat〉M dM∫∞
0 P (M |Lc) 〈Nsat〉M dM

, (2.3)

σ2
hw(Lc) =

∫∞
0 P (M |Lc) 〈σ2

sat〉M dM∫∞
0 P (M |Lc) dM

. (2.4)

Here 〈Nsat〉M denotes the average number of satellites with L > Lmin in a halo of massM , and

〈σ2
sat〉M is the square of the los velocity dispersion of satellites averaged over the entire halo.

Consider a MLR of central galaxies that has no scatter, i.e. P (M |Lc) = δ(M − M0),

where M0 is the halo mass for a galaxy with luminosity Lc. In this case both schemes give an

equal measure of the velocity dispersion, i.e., σ2
sw = σ2

hw = 〈σ2
sat〉M0 . Most studies to date

have assumed the scatter in P (M |Lc) to be negligible, and simply inferred an average MLR,

M0(Lc) using σ2
sw(Lc) = 〈σ2

sat〉M0 (McKay et al. 2002; Brainerd & Specian 2003; Prada et al.

2003; Norberg et al. 2008). However, as shown in van den Bosch et al. (2004), and as evident

from the above equations (2.3) and (2.4), whenever the scatter in P (M |Lc) is non-negligible,

1Note that the velocity dispersion should always be averaged in quadrature as is evident from Eq. (2.1).
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σ2
sw(Lc) and σ2

hw(Lc) can differ significantly2 (see also Chapter 3).

In this chapter, we show that ignoring the scatter in the MLR of central galaxies can result

in appreciable errors in the inferred mean relation between mass and luminosity. We show,

though, that these problems can be avoided by simultaneously modeling σ2
sw(Lc) and σ2

hw(Lc).

In particular, we demonstrate that the ratio of these two quantities can be used to determine the

actual scatter in the MLR of central galaxies.

2.3 Toy Model

In the previous section, we have shown that both σ2
sw(Lc) and σ2

hw(Lc) can be analytically

expressed in terms of the probability function, P (M |Lc), the satellite occupation, 〈Nsat〉M ,

and the kinematics of the satellite galaxies within a halo of mass M specified by 〈σ2
sat〉M . In

fact, the inversion of equations (2.3) and (2.4) presents an opportunity to constrain P (M |Lc)
using the observable σ2

sw and σ2
hw. In this section we use a simple toy model to demonstrate that

the combination of σ2
sw and σ2

hw can be used to constrain the first two moments (i.e., the mean

and the scatter) of P (M |Lc).

For convenience, let us assume that P (M |Lc) is a lognormal distribution

P (M |Lc) dM =
1√

2πσ2
lnM

exp

−
 ln(M/M0)√

2σ2
lnM

2 dM
M

. (2.5)

Here M0 is a characteristic mass scale which obeys

lnM0 =
∫ ∞

0
P (M |Lc) lnMdM = 〈lnM〉 , (2.6)

and σ2
lnM reflects the scatter in halo mass at a fixed central luminosity and is given by

σ2
lnM =

∫ ∞
0

P (M |Lc)(lnM − lnM0)2dM. (2.7)

In addition, let us assume that both 〈σ2
sat〉M and 〈Nsat〉M are simple power laws,

〈Nsat〉M = Ñ

(
M

1012

)α
, (2.8)

〈σ2
sat〉M = S̃2

(
M

1012

)β
. (2.9)

with α and β two constants, Ñ the average number of satellites in a halo of mass 1012 h−1M�,

and S̃ the corresponding los velocity dispersion.

2Note that σ2
sw 6= σ2

hw is a sufficient but not a necessary condition to indicate the presence of scatter in P (M |Lc);
after all, if 〈Nsat〉M does not depend on mass then σ2

sw = σ2
hw independent of the amount of scatter.



12 2. SATELLITE KINEMATICS: THE ANALYTICAL FORMALISM

Substituting Eqs. (2.5), (2.8) and (2.9) in Eqs. (2.3) and (2.4) yields

σ2
sw(Lc) = S̃2

(
M0

1012

)β
exp

[
σ2

lnMβ
2

2

(
1 + 2

α

β

)]
, (2.10)

σ2
hw(Lc) = S̃2

(
M0

1012

)β
exp

[
σ2

lnMβ
2

2

]
. (2.11)

The velocity dispersions σsw(Lc) and σhw(Lc) depend on both M0 and σlnM , elucidating

the degeneracy between the mean mass M0(Lc) and the scatter σlnM (Lc) of the distribution

P (M |Lc). In particular, if only σsw(Lc) or σhw(Lc) is measured, one cannot deduce M0(Lc)
without having an independent knowledge of the scatter σlnM (Lc). However, the latter can be

inferred from the ratio of the satellite-weighted to the host-weighted velocity dispersion. In

particular, in the case of our toy model,

σ2
lnM =

1
αβ

ln
(
σ2

sw

σ2
hw

)
(2.12)

Thus, by measuring both σsw(Lc) and σhw(Lc) one can determine both M0(Lc) and its scatter

σlnM (Lc), provided that the constants α and β are known. Since virialized dark matter haloes

all have the same average density within their virial radii, β = 2/3 (e.g. Klypin et al. 1999; van

den Bosch et al. 2004). Previous studies have obtained constraints on α that cover the range

0.7 <∼ α <∼ 1.1 (e.g. Yang et al. 2005a; van den Bosch et al. 2007; Tinker et al. 2007; Yang et al.

2007). Since σ2
lnM ∝ α−1, this uncertainty directly translates into an uncertainty of the inferred

scatter. Therefore, in Chapter 4, we do not use the constraints on α available in the literature to

infer the mean and scatter of the MLR from real data. Instead, we treat α as a free parameter

and use the average number of observed satellites as a function of the luminosity of central as an

additional constraint. Note that the relation between σlnM and the ratio of σsw to σhw specified

by Eq. (2.12) is model-dependent, i.e. we have assumed particular functional forms for the halo

occupation statistics of centrals and satellites to arrive at Eq. (2.12). Furthermore, we have not

accounted for any selection effects. In what follows, we present a careful treatment of selection

effects and more realistic halo occupation models.

2.4 Selection Effects

The toy model presented in the previous section illustrates that measurements of the satellite-

weighted and host-weighted kinematics of satellite galaxies can be used to infer the mean and

scatter of the MLR of central galaxies, P (M |Lc). However, in practice one first needs a method

to select central galaxies and satellites from a galaxy redshift survey. In general, central galaxies

are selected to be the brightest galaxy in some cylindrical volume in redshift space, and satellite

galaxies are defined as those galaxies that are fainter than the central by a certain amount and

located within a cylindrical volume centered on the central. In this section we show how these
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selection criteria impact on σ2
sw and σ2

hw, and how this can be accounted for in the analysis.

No selection criterion is perfect, and some galaxies will be selected as centrals, while in

reality they are satellites (hereafter ‘false centrals’). In addition, some galaxies will be selected

as satellites of a certain central, while in reality they do not reside in the same halo as the

central (hereafter ‘interlopers’). The selection criteria have to be tuned in order to minimize the

impact of these false centrals and interlopers. Here we make the assumption that interlopers can

be corrected for, and that the impact of false centrals is negligible. Using mock galaxy redshift

surveys, van den Bosch et al. (2004) have shown that one can devise adaptive, iterative selection

criteria that justify these assumptions (see also Chapter 3). Here we focus on the impact of

these iterative selection criteria on the satellite kinematics in the absence of interlopers and

false centrals. Our analytical treatment for selection effects follows the one presented in van

den Bosch et al. (2004) except for the averaging of velocity dispersions in quadrature and the

inclusion of an extra selection effect. We state and quantify these differences in Section 2.A.

For completeness, we outline our treatment below.

In general, satellite galaxies are selected to lie within a cylindrical volume centered on

its central galaxy, and specified by Rp < Rs and |∆V | < (∆V )s. Here Rp is the physical

separation from the central galaxy projected on the sky and ∆V is the los velocity difference

between a satellite and its central. Usually, (∆V )s is chosen sufficiently large, so that it does not

exclude true satellites from being selected. However, in the adaptive, iterative selection criteria

of van den Bosch et al. (2004), which we will use in the subsequent chapters, the aperture radius

is tuned so that Rs ' 0.375 rvir, where rvir is the virial radius of the dark matter halo hosting

the central−satellite pair. This means that 〈Nsat〉M and 〈σ2
sat〉M in Eqs. (2.3) and (2.4) need to

be replaced by 〈Nsat〉ap,M and 〈σ2
sat〉ap,M , respectively. Here 〈Nsat〉ap,M is the average number

of satellites in a halo of mass M that lie within the aperture, and 〈σ2
sat〉ap,M is the square of the

los velocity dispersion of satellite galaxies averaged over the aperture.

The number of satellites present within the aperture, 〈Nsat〉ap,M , is related to the number of

satellites given by the halo occupation statistics, 〈Nsat〉M , via

〈Nsat〉ap,M =

{
fcut 〈Nsat〉M if Rs < rvir

〈Nsat〉M if Rs ≥ rvir

(2.13)

with

fcut =
4π

〈Nsat〉M

∫ Rs

0
R dR

∫ rvir

R
nsat(r|M)

r dr√
r2 −R2

. (2.14)

Here nsat(r|M) is the number density distribution of satellites within a halo of mass M , which

is normalized so that

〈Nsat〉M = 4π
∫ rvir

0
nsat(r|M) r2 dr . (2.15)

Under the assumption that the satellites are in virial equilibrium within the dark matter

halo, and that the velocity dispersion of satellite galaxies within a given halo is isotropic, the
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los velocity dispersion of satellites within the cylindrical aperture of radius Rs is given by

〈σ2
sat〉ap,M =

4π
〈Nsat〉ap,M

∫ Rs

0
dRR∫ rvir

R
nsat(r|M)σ2

sat(r|M)
r dr√
r2 −R2

. (2.16)

Here σsat(r|M) is the local, one-dimensional velocity dispersion which is related to the poten-

tial Ψ of the dark matter halo via the Jeans equation

σ2
sat(r|M) =

1
nsat(r|M)

∫ ∞
r

nsat(r′|M)
∂Ψ
∂r′

(r′|M) dr′. (2.17)

The radial derivative of the potential Ψ represents the radial force and is given by

∂Ψ
∂r

(r|M) =
4πG
r2

∫ r

0
ρ(r′|M) r′2 dr′ , (2.18)

with ρ(r|M) the density distribution of a dark matter halo of massM . The assumptions of virial

equilibrium and orbital isotropy are supported by results from numerical simulations which

show that dark matter subhaloes (and hence satellite galaxies) are in a steady state equilibrium

within the halo and that their orbits are nearly isotropic at least in the central regions (Diemand

et al. 2004). Furthermore, van den Bosch et al. (2004) have demonstrated that anisotropy has a

negligible impact on the average velocity dispersion within the selection aperture.

Finally, there is one other effect of the selection criteria to be accounted for which has not

been considered in van den Bosch et al. (2004) or in Eq. (2.4). When selecting central−satellite

pairs, only those centrals are selected with at least one satellite inside the search aperture. This

has an impact on the host-weighted velocity dispersions that needs to be accounted for. The

probability that a halo of mass M , which on average hosts 〈Nsat〉ap,M satellites within the

aperture Rs, has Nsat ≥ 1 satellites within the aperture, is given by

P (Nsat ≥ 1) = 1− P (Nsat = 0)

= 1− exp [−〈Nsat〉ap,M ]

≡ P(〈Nsat〉ap,M ). (2.19)

Here, for the second equality, we have assumed Poisson statistics for the satellite occupation

numbers. Note that, in the satellite-weighting scheme, haloes that have zero satellites, by def-

inition, get zero weight. Therefore only the host-weighted velocity dispersions need to be cor-

rected for this effect.

Thus, in light of the selection effects, Eqs. (2.3) and (2.4) become

σ2
sw(Lc) =

∫∞
0 P (M |Lc) 〈Nsat〉ap,M 〈σ2

sat〉ap,M dM∫∞
0 P (M |Lc) 〈Nsat〉ap,M dM

, (2.20)
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and

σ2
hw(Lc) =

∫∞
0 P (M |Lc)P(〈Nsat〉ap,M ) 〈σ2

sat〉ap,M dM∫∞
0 P (M |Lc)P(〈Nsat〉ap,M ) dM

. (2.21)

Note thatP(〈Nsat〉ap,M ) ' 〈Nsat〉ap,M when 〈Nsat〉ap,M → 0. This implies that |σsw−σhw| →
0 for faint centrals (i.e. whenLc becomes comparable toLmin, the minimum luminosity adopted

to select the satellites). Therefore, the ability to detect the difference between σsw and σhw

depends on how brightLc is compared toLmin. In principle, this can be overcome by decreasing

Lmin (detecting faint satellite galaxies), such that 〈Nsat〉ap,M � 0 and P(〈Nsat〉ap,M ) → 1.

However, faint satellite galaxies can only be detected out to a very small distance due to the flux

limit of a survey. The number of galaxies in a volume-limited sample with low Lmin is small.

This in turn makes the detection of the difference between σsw and σhw difficult due to small

number statistics. Therefore, there is a trade-off involved in the choice of Lmin, which limits the

significance with which one can detect the difference between σsw and σhw. Since this selection

effect was not taken into account in Section 2.3, Eq. (2.12), which relates the ratio σsw/σhw to

the scatter in halo masses, σlnM , does not reveal this dependence on Lmin.

2.5 More Realistic Models

Using the methodology described above, we now illustrate how satellite kinematics can be

used to constrain the mean and the scatter of the MLR of central galaxies, P (M |Lc). We

improve upon the toy model described in Section 2.3 by considering a realistic model for the

halo occupation statistics and take the impact of selection criteria into account.

As is evident from the discussion in the previous section, calculating σ2
sw(Lc) and σ2

hw(Lc)
requires the following input:

• the density distributions of dark matter haloes, ρ(r|M)

• the number density distribution of satellites, nsat(r|M)

• the halo occupation statistics of centrals, P (M |Lc).

We assume that dark matter haloes follow the NFW (Navarro et al. 1997) density distribu-

tion

ρ(r|M) =
M

4πr3
sµ(c)

(
r

rs

)−1(
1 +

r

rs

)−2

. (2.22)

Here, rs is a characteristic scale radius, c = rvir/rs is the halo’s concentration parameter, and

µ(x) ≡ ln(1 + x)− x

1 + x
. (2.23)

Throughout we use the relation between c and M given by Macciò et al. (2007).



16 2. SATELLITE KINEMATICS: THE ANALYTICAL FORMALISM

Figure 2.1: The satellite-weighted (σsw) and host-weighted (σhw) velocity dispersions of satel-
lite galaxies for model G1. Note that σsw(Lc) > σhw(Lc) at the bright end, indicating that the
MLR of central galaxies, P (M |Lc), has a non-negligible amount of scatter.
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Table 2.1: Different models for the HOD of centrals
Model σlogL γ1 γ2 L0 M1

G1 0.14 3.27 0.25 9.94 11.07
G2 0.25 3.27 0.25 9.94 11.07
G3 0.14 1.80 0.40 9.80 11.46

Three different models describing the MLR of centrals used to predict σsw(Lc) and σhw(Lc).

We assume that the number density distribution of satellite galaxies is given by the gener-

alised NFW profile,

nsat(r|M) ∝
(

r

Rrs

)−γ (
1 +

r

Rrs

)γ−3

, (2.24)

where γ represents the slope of the number density distribution of satellites as r → 0 andR is a

free parameter. In this chapter, we assume γ = 1 andR = 1, i.e. the number density distribution

of satellite galaxies is spatially unbiased with respect to the distribution of dark matter particles.

Note that this is a fairly simplistic assumption. We address the issue of potential spatial antibias

of satellite galaxies in Chapter 4.

Substituting ρ(r|M) and nsat(r|M) in Eqs. (2.18) and (2.17) gives

σ2
sat(r|M) =

c V 2
vir

R2µ(c)

(
r

Rrs

)γ (
1 +

r

Rrs

)3−γ ∫ ∞
r/rs

µ(x)dx
(x/R)γ+2(1 + x/R)3−γ ,

where Vvir = (GM/rvir)1/2 is the circular velocity at rvir.

The final ingredient is a realistic model for the halo occupation statistics of centrals and

satellites. To that extent, we use the conditional luminosity function (CLF) presented in Cac-

ciato et al. (2009). The CLF, denoted by Φ(L|M)dL, specifies the average number of galaxies

with luminosities in the range L ± dL/2 that reside in a halo of mass M , and is explicitly

written as the sum of the contributions due to central and satellite galaxies, i.e. Φ(L|M) =
Φc(L|M) + Φs(L|M). From this CLF, the probability distribution P (M |Lc) follows from

Bayes’ theorem according to

P (M |Lc) =
Φc(Lc|M)n(M)∫∞

0 Φc(Lc|M)n(M) dM
, (2.25)

with n(M) the halo mass function, while the average number of satellites with L ≥ Lmin in a

halo of mass M is given by

〈Nsat〉M =
∫ ∞
Lmin

Φs(L|M) dL . (2.26)
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Figure 2.2: Comparison of three models with different HODs for the central galaxies. In all
panels the solid line corresponds to model G1, the dotted line to model G2 and the dashed
line to model G3 (see Table 1 for the parameters). Panels (a), (b) and (c) show 〈logLc〉(M),
〈logM〉(Lc) and σlogM (Lc), respectively. Panels (d) and (e) show the predicted satellite-
weighted and host-weighted velocity dispersions as function of luminosity, and panel (f) shows
the logarithm of the ratio between σsw and σhw. See text for a detailed discussion.
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The parametric forms for Φc(L|M) and Φs(L|M) are motivated by the results of Yang et al.

(2008, hereafter YMB08), who determined the CLF from the SDSS group catalogue of Yang

et al. (2007). In particular, Φc(L|M) is assumed to follow a log-normal distribution

Φc(L|M)dL =
log e√

2π σlogL

exp

−[ log(L/L∗c)√
2σlogL

]2
 dL

L
, (2.27)

with σlogL a free parameter that we take to be independent of halo mass, and

L∗c(M) = L0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
(2.28)

which has four additional free parameters: two slopes, γ1 and γ2, a characteristic halo mass,

M1, and a normalization, L0. Note that, L∗c ∝Mγ1 forM �M1 andL∗c ∝Mγ2 forM �M1.

Cacciato et al. (2009) constrained the free parameters, σlogL, γ1, γ2, M1 and L0, by fitting the

SDSS luminosity function of Blanton et al. (2003b) and the galaxy−galaxy correlation lengths

as a function of luminosity from Wang et al. (2007). The resulting best-fit parameters are listed

in the first row of Table 1, and constitute our fiducial model G1. We also consider two alternative

models for Φc(L|M), called G2 and G3, the parameters of which are also listed in Table 1. For

Φs(L|M) we adopt the model of Cacciato et al. (2009) throughout, without any modifications:

i.e. models G1, G2, and G3 only differ in P (M |Lc) and have the same nsat(r|M).

Having specified all necessary ingredients, we now compute the satellite weighted and host-

weighted satellite kinematics for our fiducial model G1 using Eqs. (2.20) and (2.21). The results

are shown as solid and dotted lines in Fig. 2.1, where we have adopted a minimum satellite

luminosity of Lmin = 109h−2 L�. At the faint-end, the velocity dispersions σsw and σhw

are equal, this simply reflects the fact that 〈Nsat〉M → 0 if Lc → Lmin. At the bright end,

though, the non-zero scatter in P (M |Lc) causes the difference between σsw and σhw to increase

systematically with increasing Lc. This is a generic trend for any realistic halo occupation

model (see also van den Bosch et al. 2004). It is important to note here that the difference

between σsw and σhw depends upon the central galaxy luminosity and how bright this luminosity

is compared to Lmin (see discussion at the end of Section 2.4). In Chapter 3, we show that

the difference between the velocity dispersions in the two schemes is detectable from current

datasets. Previous studies (McKay et al. 2002; Brainerd & Specian 2003; Prada et al. 2003;

Conroy et al. 2007; Norberg et al. 2008) did not have sufficient number statistics to detect the

difference between the two schemes given the measurement errorbars.

The upper panels of Fig. 2.2 show the mean and scatter of the MLR of central galaxies in

models G1 (solid lines), G2 (dotted lines) and G3 (dashed lines). Panel (a) plots 〈logLc〉(M) =
log(L∗c), which reveals the double power-law behavior of Eq. (2.28), panel (b) shows the inverse

relation,

〈logM〉(Lc) =
∫ ∞

0
P (M |Lc) logM dM . (2.29)
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and panel (c) shows the scatter in the MLR, σlogM (Lc), deduced by using

σ2
logM =

∫ ∞
0

P (M |Lc) [logM − 〈logM〉(Lc)]
2 dM . (2.30)

Note that σlogM (Lc) increases with increasing Lc, even though the scatter σlogL is constant

with halo mass. This simply owes to the fact that the slope of 〈logLc〉(M) becomes shallower

with increasing Lc, as illustrated in Fig. 2.3.

The comparison between models G1 and G2 illustrates the effect of changing the scatter

σlogL in Φc(L|M). Both models have exactly the same 〈logLc〉(M) (the solid line overlaps

the dotted line in panel a). However, because the scatter σlogL in G2 is larger than in G1 (see

Table 1), the 〈logM〉(Lc) of G2 is significantly lower than that of G1 at the bright end (∼
0.5 dex at the bright end). This is due to the shape of the halo mass function. Increasing the

scatter adds both low mass and high mass haloes to the distribution P (M |Lc) (cf. Eqs. [2.25]

and [2.29]), and the overall change in the average halo mass depends on the slope of the halo

mass function. Brighter galaxies live on average in more massive haloes where the halo mass

function is steeper. In particular, when the halo mass range sampled by P (M |Lc) lies in the

exponential tail of the halo mass function, an increase in the scatter adds many more low mass

haloes than massive haloes, causing a shift in the average halo mass towards lower values. On

the other hand, fainter galaxies live in less massive haloes, where the slope of the halo mass

function is much shallower. Consequently, a change in the scatter does not cause an appreciable

change in the average mass. Finally, as expected, the scatter in the MLR, σlogM (Lc), in G2 is

higher than for G1 at all luminosities (see panel c).

Panels (d) and (e) of Fig. 2.2 show the analytical predictions for σsw(Lc) and σhw(Lc),

respectively. Note that models G1 and G2 predict satellite kinematics that are significantly

different (which can be distinguished given the typical measurement errors in Chapter 4), even

though both have exactly the same 〈logLc〉(M). In particular, model G2 predicts larger σsw

and σhw at the faint end, but lower σsw and σhw at the bright end. The trend at the faint is

due to the fact that the scatter σlogM (Lc) is higher in G2 than in G1. Quantitatively, this is

evident from Eqs. (2.10) and (2.11), which demonstrate that both the satellite weighted and host

weighted satellite kinematics increase with increasing scatter. At the bright end, however, the

drastic decrease in 〈logM〉(Lc) for G2 with respect to G1 overwhelms this boost and causes

σsw and σhw to be lower in G2.

Now consider model G3. This model has the same amount of scatter as model G1, but

we have tuned its parameters (γ1, γ2,M1, L0) that describe 〈logLc〉(M) such that its σsw(Lc)
closely matches that of model G2 (the dotted and dashed curves in panel (d) are almost over-

lapping). As is evident from panels (a)−(c), though, the MLR of G3 is very different from that

of G2. Note that the higher values of 〈logM〉(Lc) for G3 are compensated by its lower values

of σlogM (Lc), such that the satellite-weighted kinematics are virtually identical. This clearly

illustrates the degeneracy between the mean and the scatter of the MLR: One can decrease the
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Figure 2.3: Illustration of the MLR of central galaxies. The solid black line indicates the mean
of the Lc-M relation, while the gray scale region reflects the scatter. In this particular case the
scatter in P (Lc|M) (indicated by vertical arrows) is taken to be constant with halo mass. Note,
though, that the scatter in P (M |Lc) (indicated by horizontal arrows) increases with increasing
Lc; this simply is due to the fact that the slope of the mean Lc-M relation becomes shallower
with increasing halo mass.
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mean of the MLR and yet achieve the same σsw by increasing the scatter of the MLR. It also

shows that σsw alone does not yield sufficient information to uniquely constrain the MLR.

Note, though, that although σsw is the same for models G2 and G3, their host-weighted

satellite kinematics, σhw(Lc), are different at the bright end. In fact, the ratios σsw/σhw for

models G2 and G3 are clearly different. The logarithm of this ratio, shown in panel (f), follows

the same trend as σlogM (Lc), i.e. it is higher for model G2 than for G3. This is in agreement

with our toy model, according to which the ratio σsw/σhw increases with the scatter σlogM (Lc)
(cf. Eq. [2.12]). This illustrates once again that the combination of σsw and σhw allows one to

constrain both the mean and the scatter of the MLR simultaneously (see also Chapter 4).

2.6 Summary

The kinematics of satellite galaxies is a powerful probe of the masses of the dark matter haloes

surrounding central galaxies. With the advent of large, homogeneous redshift surveys, it has

become possible to probe the mass−luminosity relation (MLR) of central galaxies spanning a

significant range in luminosities. Unfortunately, since most centrals only host a few satellite

galaxies with luminosities above the flux limit of the redshift survey, one generally needs to

stack a large number of central galaxies within a given luminosity bin and combine the veloc-

ity information of their satellites. Because of the finite bin-width, and because the MLR has

intrinsic scatter, this stacking results in combining the kinematics of satellite galaxies in haloes

of different masses, which complicates the interpretation of the data. Unfortunately, most pre-

vious studies have ignored this issue, and made the oversimplified assumption that the scatter is

negligible.

Using realistic models for the halo occupation statistics, and taking account of selection

effects, we have demonstrated a degeneracy between the mean and the scatter of the MLR: one

can change the mean relation between halo mass, M , and central galaxy luminosity, Lc, and

simultaneously change the scatter around that mean relation, such that the observed satellite

kinematics, 〈σsat〉(Lc), are unaffected.

We have also presented a new technique to break this degeneracy, based on measuring the

satellite kinematics using two different weighting schemes: host-weighting (each central galaxy

gets the same weight) and satellite weighting (each central galaxy gets a weight proportional

to its number of satellites). In general, for central galaxies close to the magnitude limit of the

survey, the average number of satellites per host is close to zero, and the satellite-weighted

velocity dispersion, σsw, is equal to the host-weighted velocity dispersion, σhw. This is because

only those centrals with at least one satellite are used to measure the satellite kinematics. For

brighter centrals, however, σsw > σhw and the actual ratio of these two values is larger for

MLRs with more scatter (see Eq. [2.12] and panels c and f of Fig. 2.2). Hence, the combination

of σsw(Lc) and σhw(Lc) contains sufficient information to constrain both the mean and the

scatter of the MLR of central galaxies. In Chapter 3, we apply this method to a mock catalogue,
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and show that the difference between σsw and σhw can be detected with sufficient significance

to constrain both the mean and the scatter of the MLR of central galaxies. In Chapter 3, we also

address the issues of measurement errors, sampling effects and interlopers. In Chapter 4, we

apply this method to data from the SDSS and show that the MLR and its scatter inferred from

the data are in excellent agreement with other, independent constraints.

In a recent study, Becker et al. (2007) analyzed the kinematics of MaxBCG clusters (Koester

et al. 2007) and inferred the mean and the scatter of the mass−richness relation (here richness is

a measure for the number of galaxies that reside in the cluster). Becker et al. (2007) combined

the kinematics of satellite galaxies in finite bins of cluster richness and measured the second and

fourth moments of the host-weighted velocity distribution. They used these two moments si-

multaneously to determine the mean and the scatter of the mass−richness relation. This method

is complementary to that presented here, and it will be interesting to compare both methods and

investigate their relative strengths and weaknesses. We intend to address this in a future study.

Finally we emphasize that the scatter in the conditional probability function P (M |Lc) is

expected to increase with increasing Lc. This is due to the fact that the slope of 〈Lc〉(M),

which is the mean of P (Lc|M), becomes shallower with increasing halo mass. Hence, when

stacking haloes according to the luminosity of the central galaxy, one cannot ignore the scatter

in M , even when the scatter in P (Lc|M) is small. This has important implications for any

technique that relies on stacking, such as satellite kinematics and galaxy−galaxy lensing (see

e.g. Tasitsiomi et al. 2004; Cacciato et al. 2009)

Appendix

2.A Comparison with van den Bosch et al.

The analytical treatment of the selection effects presented in Section 2.4 closely follows van den

Bosch et al. (2004, hereafter vdB04) except for two subtle differences. First of all, vdB04 incor-

rectly averaged the velocity dispersion directly rather than in quadrature as done here (Eqs. 2.16,

2.20 and 2.21). Secondly, vdB04 failed to account for the factor P(〈Nsat〉ap,M ) (hereafter P
for brevity) that corrects for the centrals that do not host any satellite and hence do not contribute

to the host-weighted velocity dispersion of satellites (Eq. 2.21).

Fig. 2.4 quantifies the error in the estimates of vdB04 due to these differences. The dotted

line shows the relative error on σhw caused due to direct averaging instead of averaging in

quadrature. Direct averaging leads to an underestimate of the velocity dispersion which is

negligible at the faint end, but grows to ∼ 5% at the bright end. The satellite-weighted velocity

dispersion is also underestimated by a similar amount. In their paper, vdB04 only compared

the analytical estimate of the satellite-weighted velocity dispersion to real data. Fortunately, the

small error in the estimate of the satellite-weighted velocity dispersion due to direct averaging

does not change any of their conclusions.
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Figure 2.4: The relative error in the estimates of the host-weighted velocity dispersion by
vdB04. The dotted line shows the error caused due to direct averaging of the velocity dispersion.
The dashed and the dot-dashed lines show the error when P is ignored for Lmin = 109 h−2L�
and Lmin = 3× 107 h−2L� respectively.

The dashed line in Fig. 2.4 shows that σhw is underestimated by ∼ 10% if the factor P in

Eq. (2.21) is ignored. The factorP depends on the minimum luminosity, Lmin, adopted to select

the satellites: lower values ofLmin result in larger number of satellites, which implyP → 1. For

the dashed line, Lmin = 109 h−2L�. However, vdB04 adopted Lmin = 3× 107 h−2L� in their

analysis. In this case (shown with the dot-dashed line), the relative error decreases to < 5%.

Note that the factorP affects only the host-weighted velocity dispersion (see Section 2.4). Since

vdB04 only compared their estimates of the satellite-weighted velocity dispersion to data, their

results are not influenced by the fact that they failed to account for P in their equations for

host-weighting.



Chapter 3

Satellite Kinematics: Tests on a Mock
Catalogue

The contents of this chapter are based upon the article More et al. (2009c) published in the

Monthly Notices of the Royal Astronomical Society. The reference is

More, S., van den Bosch, F. C., Cacciato, M., et al. 2009b, MNRAS, 392, 801.
The original article also contains the results of the analysis with SDSS data. To maintain a co-

herent flow in this thesis these results are presented in the next chapter. In addition, unnecessary

repetition of certain equations is avoided by referring to the previous chapter.

3.1 Introduction

According to the standard picture of galaxy formation, galaxies form in dark matter haloes. The

complex astrophysics of galaxy formation and evolution is primarily believed to be governed

by the mass of the dark matter halo in which it occurs. Quantifying scaling relations between

central galaxy properties and their dark matter halo masses is, hence, an important stepping

stone towards understanding galaxy formation. The kinematics of satellite galaxies is a powerful

probe of the halo masses of central galaxies and can be used to determine the scaling relations

between central galaxy properties and their halo masses.

In the past, several studies have used the kinematics of satellite galaxies to determine the

halo mass−luminosity relation (MLR) of central galaxies (McKay et al. 2002; Brainerd & Spe-

cian 2003; Prada et al. 2003; van den Bosch et al. 2004; Conroy et al. 2005, 2007) and to study

the density profiles of dark matter haloes (Prada et al. 2003; Klypin & Prada 2009). Although

the results obtained by these studies appear consistent with each other, Norberg et al. (2008,

hereafter N08) have demonstrated a quantitative disagreement in the kinematice obtained by

these studies and showed that this disagreement is largely due to subtle differences in the selec-

tion criteria used to identify central and satellite galaxies. Therefore, it is crucial to understand

how selection effects bias the MLR of central galaxies inferred from satellite kinematics and
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to test the methods used to quantify the kinematics of satellites in order to identify potential

systematic biases that can affect the measurements.

The present chapter is aimed at understanding the various selection biases that affect the

analysis of the kinematics of satellite galaxies and the subsequent determination of the halo

mass−luminosity relationship (MLR). We construct a realistic mock galaxy catalogue for this

purpose. In this chapter, we create an analysis pipeline, which takes a galaxy redshift catalogue

as input, performs the analysis of the kinematics of satellite galaxies and outputs both the mean

and the scatter of the MLR of central galaxies based upon the the novel method presented in

Chapter 2. This analysis pipeline is rigorously tested using the mock galaxy catalogue. In

particular, we show that our central−satellite selection criteria and the method to measure the

kinematics reliably recover the true kinematics present in the mock catalogue. We also show

that the mean and the scatter of the MLR inferred from the kinematics match the corresponding

true relations in the mock catalogue. In the subsequent chapters, this analysis pipeline will be

used on data from the Sloan Digital Sky Survey (SDSS).

This chapter is organized as follows. In Section 3.2 we describe the construction of the

mock catalogue that is used to test our method of analysis of the kinematics of satellites. In

Section 3.3 we briefly outline the iterative selection criteria used to select centrals and satellites.

In Section 3.4 we describe and test the method used to measure the kinematics of satellites as

a function of the central luminosity. The inference of the MLR from the kinematics of satellite

galaxies requires the knowledge of the number density distribution of satellites within a halo.

In Section 3.5 we show that this distribution can also be inferred from the selected satellites. In

Section 3.6 we describe our model to interpret the measured velocity dispersions and show that

this model is able to recover the true mean and scatter of the MLR of central galaxies from the

mock catalogue. We summarize our results in Section 3.7.

3.2 Mock Catalogue Construction

It is important to carefully identify central and satellite galaxies from a redshift survey in order to

study the kinematics of satellite galaxies. Furthermore, it is also important to reliably quantify

the kinematics of the selected satellites as a function of central luminosity which in turn can

yield the MLR of central galaxies. We monitor the performance of our method of analysis for

each of these tasks using a realistic mock galaxy catalogue (MGC) which serves as a control

dataset. The halo occupation of galaxies in the MGC is known a priori, thereby allowing an

accurate assessment of the level of contamination of the selected sample of centrals and satellites

due to false identifications and also a comparison between the kinematics recovered from the

selected satellites and the actual kinematics present in the MGC.

The two essential steps to construct a MGC are to obtain a distribution of dark matter haloes

and to use a recipe to populate the dark matter haloes with galaxies. For the former purpose, we

use a numerical simulation of dark matter particles in a cosmological setup. For the latter, we
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use the conditional luminosity function (CLF) which describes the average number of galaxies

with luminosities in the range L± dL/2 that reside in a halo of mass M .

A distribution of dark matter haloes is obtained from a N−body simulation for a ΛCDM

cosmology with the following parameters, matter density Ωm = 0.238, energy density in the

cosmological constant ΩΛ = 0.762, the linearly extrapolated root mean square variance of the

density fluctuations on scales of 8 h−1Mpc σ8 = 0.75, the spectral index of the initial density

fluctuations ns = 0.95 and the Hubble parameter h = H0/100 km s−1 Mpc−1 = 0.73. The

simulation consists of N = 5123 particles within a cube of side Lbox = 300 h−1Mpc with

periodic boundary conditions. The particle mass is 1.33 x 1010 h−1M�. Dark matter haloes are

identified using the friends−of−friends algorithm (Davis et al. 1985) with a linking length of

0.2 times the mean inter−particle separation. Haloes obtained with this linking length have a

mean overdensity of 180 (Porciani et al. 2002). We consider only those haloes which have at

least 20 particles or more.

To populate the dark matter haloes with galaxies, we need to know the number and the

luminosities of galaxies to be assigned to each halo. Furthermore, we also need to assign phase

space coordinates to each of these galaxies. We use the CLF described in Cacciato et al. (2009)

for the first purpose. The CLF is a priori split into a contribution from centrals and satellites,

i.e. Φ(L|M) = Φc(L|M) + Φs(L|M). Here, Φc(L|M)dL denotes the conditional probability

that a halo of mass M harbours a central galaxy of luminosity between L and L + dL, and

Φs(L|M)dL denotes the average number of satellites of luminosity between L and L + dL.

The parameters that describe the CLF are constrained using the luminosity function (Blanton

et al. 2005) and the luminosity dependence of the correlation length of galaxies (Wang et al.

2007) in SDSS.

Let us consider a halo of mass M . The luminosity of the central galaxy within this halo is

sampled from the distribution Φc(L|M). The average number of satellites that have a luminosity

greater than Lmin = 109 h−2L� and reside within haloes of mass M is given by

〈Nsat〉(M) =
∫ ∞
Lmin

Φs(L|M)dL . (3.1)

We assume Poisson statistics for the occupation number of satellites (Kravtsov et al. 2004; Yang

et al. 2005a, 2008) and assign Nsat galaxies to the halo where Nsat is drawn from

P (Nsat|M) = exp(−µ)
µNsat

Nsat!
, (3.2)

with µ = 〈Nsat〉(M). The luminosities of these satellite galaxies are drawn from the distribu-

tion Φs(L|M).

Phase space coordinates are assigned to the galaxies in the following manner. The central

galaxy is assumed to reside at rest at the centre of the halo. Therefore, it has the same phase

space coordinates as the parent dark matter halo. As in Chapter 2, we assume that the halo
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is spherical and that the dark matter density distribution, ρ(r|M), follows the universal NFW

profile (Navarro et al. 1997) given by Eq. (2.22). Similarly the number density distribution of

satellite galaxies, nsat(r|M), is assumed to follow the profile given by Eq. (2.24) which has

two additional parameters γ and R which allow the satellite galaxies to be spatially biased

with respect to dark matter particles. For populating the MGC, we adopt γ = R = 1 which

implies that the satellites trace the dark matter density distribution in an unbiased manner. The

distribution, nsat(r|M), is normalized such that

〈Nsat〉(M) = 4π
∫ rvir

0
nsat(r|M) r2 dr . (3.3)

The radial coordinates of the satellite galaxies with respect to the center of the halo are sampled

from the distribution nsat(r|M). The satellite distribution around centrals is assumed to be

spherically symmetric and random angular coordinates are assigned to the satellite galaxies. At

the assigned position for every satellite galaxy, velocities along each of the three axes are drawn

from a Gaussian,

f(vj) =
1√

2πσsat(r|M)
exp

[
−

v2
j

2σ2
sat(r|M)

]
, (3.4)

where vj denotes the relative velocity of the satellite with respect to the central along axis j

and σ2
sat(r|M) denotes the radial velocity dispersion at a distance r from the centre of the

halo. Here isotropy of orbits is assumed, i.e. the velocity dispersion along the jth axis, σ2
j ,

equals σ2
sat(r|M). The radial velocity dispersion is related to ρ(r|M) and nsat(r|M) via the

Jeans equation. We use Eq. (2.25) from Chapter 2 to determine the radial velocity dispersion,

σ2
sat(r|M), within the halo. The radial velocity dispersion is used in the distribution given by

Eq. (3.4) to assign velocities to satellites. The entire procedure of assigning central and satellite

galaxies is repeated for all the dark matter haloes within the simulation.

Our aim is to construct a mock redshift survey that mimics the SDSS. Therefore, 2x2x2

identical galaxy−populated simulation boxes (which have periodic boundary conditions) are

stacked together. A (RA,DEC) coordinate frame is defined with respect to a virtual observer

at one of the corners of the stack. The apparent magnitude of each galaxy is computed according

to its luminosity and distance from the observer. The line-of-sight (los) velocity of the galaxy

is calculated by adding its peculiar velocity to the velocity of the cosmological flow. A random

velocity drawn from a Gaussian distribution with a dispersion of 35 km s−1 is further added

along the los to account for the spectroscopic redshift errors present in the SDSS. The redshift as

seen by the virtual observer is then computed using the total velocity. We only consider galaxies

with an observed redshift z < 0.15 and an apparent magnitude brighter than 17.77. This flux

limited catalogue is denoted henceforth by MOCKF and has 289,500 galaxies above an absolute

luminosity of 109 h−2L�. MOCKF is used in Appendix 3.A to investigate potential selection

biases associated with the selection of central galaxies. In addition to MOCKF, we construct a

volume limited sample, MOCKV, of galaxies that lie in the redshift range 0.02≤ z ≤ 0.072 and
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have luminosities greater than 109.5 h−2L�. It consists of 69,512 galaxies. In what follows, we

use the volume limited sample MOCKV to validate our method for quantifying the kinematics

(Section 3.4), to validate the method to infer the number density distribution of satellites (Sec-

tion 3.5) and finally to confirm that the mean and scatter of the MLR can be reliably recovered

using the kinematics of satellites (Section 3.6).

Note that we have made the simplifying assumption that the satellites are unbiased tracers

of the dark matter for the construction of our mock catalog. The effects of a bias in the satellite

number density distribution were investigated in detail by van den Bosch et al. (2004). In

particular, they have shown that if the satellites are spatially antibiased with respect to the dark

matter, then the velocity dispersion of satellites is systematically higher than the dark matter

velocity dispersion. In Chapter 4, when we use data from SDSS to constrain the MLR, we do

take into account the fact that satellite galaxies may be spatially antibiased with respect to the

dark matter. We have also assumed that the angular distribution of satellites is uniform which

is not realistic. Note that this is not a concern as the random stacking of haloes to infer the

kinematics of satellite galaxies will wash away any non-uniformities.

3.3 Selection Criteria to identify Centrals and Satellites

Large-scale galaxy redshift surveys such as the SDSS allow the selection of a statistically sig-

nificant sample of satellites. Since the observed galaxies cannot be a priori classified as centrals

and satellites, it is important to use selection criteria that can correctly identify central galaxies

and the satellites which orbit around them. In this section, we describe the selection criteria that

we use to identify the central and satellite galaxies.

A galaxy is identified as a central if it is at least fh times brighter than every other galaxy

within a cylindrical volume specified by R < Rh and |∆V | < (∆V )h (see Fig. 3.1). Here,

R is the physical separation from the candidate central galaxy projected on the sky and ∆V is

the los velocity difference. Around each of the identified centrals, satellites are those galaxies

that are at least fs times fainter than their central galaxy and lie within a cylindrical volume

specified by R < Rs and |∆V | < (∆V )s. The identification of the central galaxies depends on

the parameters Rh, (∆V )h and fh, while the selection of satellites depends on the parameters

Rs, (∆V )s and fs. The values of these parameters also determine the level of contamination

of the sample due to falsely identified centrals and falsely identified satellites (hereafter in-

terlopers). The false identification of centrals can be minimized by choosing large values of

Rh, (∆V )h and fh so that the selected central is the dominant galaxy in a large volume. On the

other hand, minimizing the interlopers requires small values of Rs and (∆V )s. A large value of

fs further guarantees that the selected satellites are small and do not dominate the kinematics

of the halo (i.e. can safely be considered as test particles). Although stricter restrictions yield

cleaner samples, they also reduce the sample size significantly. This makes the velocity dis-

persion measurements noisy. Thus, there is a tradeoff between the contamination level and the
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Figure 3.1: Schematic diagram of a selection criterion. Two coaxial cylinders are defined around
each galaxy (represented by a solid dot). The axis is along the los while the face of each cylinder
is parallel to the plane of the sky.

sample size.

Most authors have chosen fixed values for the selection criteria parameters, independent of

the luminosity of the galaxy under consideration (McKay et al. 2002; Prada et al. 2003; Brain-

erd & Specian 2003; Norberg et al. 2008). Since brighter centrals on average reside in more

extended haloes, van den Bosch et al. (2004) advocated an aperture which scales with the virial

radius of the halo around the galaxy. They used iterative criteria which scale the cylindrical

aperture based upon the estimate of the velocity dispersion around the central after every it-

eration. In this thesis, we also use these iterative criteria to select centrals and satellites. In

Appendix 3.A, we compare the performance of our iterative criteria with the restrictive selec-

Table 3.1: Selection criteria
SC Rh (∆V )h fh Rs (∆V )s fs

Mpc/h km/s Mpc/h km/s
ITER 2.0 4000 1.0 0.5 4000 1.0

0.8σ200 1000σ200 1.0 0.15σ200 4000 1.0
N08 1.0 2400 2.0 0.4 1200 8.0

The parameters used to specify the inner and the outer cylinders around a galaxy for the selec-
tion criteria used in this chapter (ITER) and the selection criteria used in N08. The first row
for ITER denotes the parameters used in the first iteration, while the second row denotes the
parameters used in subsequent iterations. The velocity dispersion, σsat in units of 200 km s−1

is denoted by σ200 and is used to scale the cylinders in every iteration.
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tion criteria used by N08 in there analysis. The parameter set {Rh, (∆V )h, fh, Rs, (∆V )s, fs}
that defines the inner and outer cylinders for the iterative criteria (ITER) is listed in Table 3.1.

The first row lists the parameters for the first iteration while the next row lists the scaling of

these parameters in the subsequent iterations. In short, we proceed as follows:

1. Use fixed values of the aperture size to select centrals and satellites in the first iteration.

2. Fit the velocity dispersion of the selected satellites as a function of the central galaxy

luminosity, σsat(Lc), with a simple functional form (see Section 3.4.1).

3. Select new centrals and satellites by scaling the inner and the outer cylinders based on the

estimate of the velocity dispersion.

4. Repeat 2 and 3 until σsat(Lc) has converged to the required accuracy.

For step 3, we adopt the aperture scalings used in van den Bosch et al. (2004). These aperture

scalings were optimised to yield a large number of centrals and satellites, but at the same time

reduce the interloper contamination. The values chosen for Rh and Rs approximately corre-

spond to 2 and 0.375 times the virial radius, rvir.

3.4 Satellite Kinematics

In this section, we describe how to measure and model the velocity dispersion−luminosity

relation, σsat(Lc), using the satellites identified by the selection criteria. The relation σsat(Lc)
can be measured either by binning the satellites by central galaxy luminosity or by using an

unbinned estimator. We use the unbinned estimate after every iteration of the selection criteria

to scale the selection aperture. However, to quantify the kinematics of the final sample of

satellites, we use the binned estimator, for reasons which we describe further in the text. In

the following subsections, we describe the unbinned and the binned estimators for σsat(Lc) and

finally an analytical model for the same.

3.4.1 Unbinned Estimates

We use a maximum likelihood method to estimate the relation σsat(Lc) from the velocity infor-

mation of the selected satellites after every iteration of the selection criteria. Let σ200 denote

σsat(Lc) in units of 200 km s−1 and L10 denote the luminosity of the central galaxy in units of

1010 h−2L�. Following van den Bosch et al. (2004), we parametrize σ200 as,

σ200(logL10) = a+ b (logL10) + c (logL10)2. (3.5)

Let fint denote the interloper fraction and assume that this fraction is independent of the lu-

minosity of the central galaxy and ∆V . The probability for a selected satellite to have a los
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Table 3.2: Selection criteria parameters
Sample a b c
MOCKV 2.06 0.45 0.25
MOCKF 2.05 0.50 0.23

The parameters used in Eq. (3.5) to define σ200 as a function of the luminosity of a galaxy in
the final iteration for samples MOCKV and MOCKF.

velocity difference of ∆V km s−1 with respect to the central is then given by

P (∆V ) =
fint

2(∆V )s
+

1− fint

ω̄
exp

[
−(∆V )2

2σ2
eff

]
, (3.6)

where, σeff = [σ2
sat + σ2

err]
1/2 is the effective velocity dispersion in the presence of the redshift

errors and the factor

ω̄ =
√

2πσeff erf
[

(∆V )s√
2σeff

]
, (3.7)

is such that the P (∆V ) is properly normalized to unity. In our attempt to mimic SDSS, we

have added a Gaussian error of 35 km s−1 to the velocity of each galaxy in the mock catalog.

Therefore, the error on the velocity difference, ∆V , of the central and satellite galaxies is σerr =√
2 × 35 km s−1 which adds in quadrature to σsat to yield σeff .

We use Powell’s direction set method to determine the parameters (a, b, c, fint) that maxi-

mize the likelihoodL =
∑

i ln[P (∆V )]i, where the summation is over all the selected satellites.

This yields a continuous estimate of σsat(Lc) without the need to bin the los velocity informa-

tion of satellites according to the luminosity of the central galaxy. The parameter set (a, b, c)

fitted in the last but one iteration determines the size of the apertures used to select the final

sample of satellites. The values of these parameters for the samples investigated in this chapter

are listed in Table 3.2.

3.4.2 Binned Estimates

We use a binned estimator to quantify the kinematics of the final sample of satellites. The binned

estimator allows us to relax the simplistic assumption of fint being independent of Lc. More

importantly, the binned estimator allows us, in a straightforward manner, to measure σsat(Lc)
using two different weighting schemes − satellite-weighting and host-weighting. Most studies

in the literature have used one of these two weighting schemes to infer the mean of the MLR.

However, as demonstrated in Chapter 2, the mean of the MLR inferred from the velocity disper-

sion in any one of these two schemes is degenerate with the scatter in the MLR. This degeneracy

can be broken by modelling the velocity dispersions in both schemes simultaneously. In what

follows, we briefly explain these two weighting schemes in turn and then verify that the velocity

dispersions in both schemes can be accurately recovered from the MGC.
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Figure 3.2: Scatter plot of the velocity difference, ∆V , between the satellites and their centrals
as a function of the central galaxy luminosity. The satellites were obtained by applying the
iterative selection criteria to MOCKV.

To measure the velocity dispersion of satellites in the satellite-weighting scheme, we obtain

the distribution of velocities of the satellites, P (∆V ), with respect to their centrals for several

bins of central galaxy luminosity. Each bin has a width ∆ log[Lc] = 0.15. In this scheme, the

centrals that have a larger number of satellites clearly contribute more to the P (∆V ) distribu-

tion than those which have a smaller number of satellites. Therefore, the resulting scatter in

P (∆V ) is a satellite-weighted average of the velocity dispersions around the stacked centrals

(see Chapter 2 for a detailed discussion). The dispersion obtained using this scheme is denoted

henceforth by σsw.

One has to undo the satellite-weighting described above in order to measure the host-

weighted velocity dispersion. This can be accomplished by introducing a weight w = N−1

for each central−satellite pair while constructing the P (∆V ) distribution (van den Bosch et al.

2004; Becker et al. 2007; Conroy et al. 2007). Here, N denotes the number of satellites selected

around the central under consideration. Therefore, in this scheme each central receives a total

weight of unity irrespective of the number of satellites it hosts. The scatter in this weighted

P (∆V ) distribution is the host-weighted velocity dispersion and is denoted henceforth by σhw.

The procedure to obtain the scatter in the P (∆V ) distributions is the same for both the

satellite-weighted and the host-weighted case. This procedure must account for the interlopers

and the redshift errors present in MOCKV. In what follows, we illustrate this procedure only for

the satellite-weighted case.
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Figure 3.3: The satellite-weighted P (∆V ) distributions of satellites around centrals selected in
several luminosity bins from MOCKV. The average log(Lc/ h

−2L�) for each bin is indicate
at the upper right corner of every panel. The (brown) dot-dashed line at the bottom of each
distribution shows the contamination of the P (∆V ) distributions due to the interlopers. The
(blue) dashed lines indicate the double-Gaussian fits.
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Figure 3.4: Upper panels show the satellite-weighted and the host-weighted velocity dispersions
recovered from MOCKV. The (red) circles show values recovered from a single Gaussian fit
while the (black) triangles show those from the double Gaussian fit. The solid line shows the
variance of the true satellites and the dot-dashed line shows the analytical prediction using the
halo occupation statistics of centrals from the MGC. The bottom panels show the percentage
deviation of the single and double Gaussian fits from the variance of the true satellites.

Fig. 3.2 shows the scatter plot of velocity difference ∆V of the selected satellites and the

centrals as a function of the luminosity of the centrals. The satellite-weighted P (∆V ) distri-

butions of the satellites selected from MOCKV for several central luminosity bins are shown

in Fig. 3.3. Dot-dashed lines show the contamination of the P (∆V ) distributions due to in-

terlopers and are barely visible at the bottom of each distribution. This confirms the claims in

van den Bosch et al. (2004) that the iterative criteria yield a small fraction of interlopers with a

weak dependence on Lc and that the interlopers can be modelled as a constant contribution to

the velocity distribution independent of ∆V .

A simple way to estimate the scatter of a P (∆V ) distribution is to fit a Gaussian plus a
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constant model given by

P (∆V ) = a0 + a1exp
[
−(∆V )2

2σ2
eff

]
. (3.8)

Here, a0 denotes the constant (with respect to ∆V ) interloper background, a1 is the normaliza-

tion of the Gaussian and σeff is the effective dispersion in the presence of the redshift errors.

The velocity dispersion obtained using a single Gaussian plus constant model fit can be

systematically affected if the P (∆V ) distribution is intrinsically non-Gaussian. Diaferio &

Geller (1996) demonstrated that the velocity distribution can be non-Gaussian partly due to

mass mixing (which is the result of stacking haloes of different mass) and partly due to the

unrelaxed state of a halo. The second moment of such a non-Gaussian distribution can be

estimated with a double Gaussian plus a constant model (Becker et al. 2007) given by

P (∆V ) = a0 + a1exp
[
−(∆V )2

2σ2
1

]
+ a2exp

[
−(∆V )2

2σ2
2

]
. (3.9)

The scatter, σeff , in this case is such that

σ2
eff =

a1σ
3
1 + a2σ

3
2

a1σ1 + a2σ2
= σ2

sw + σ2
err. (3.10)

The dashed lines in Fig. 3.3 show the double-Gaussian fits to the P (∆V ) distributions, respec-

tively.

Fig. 3.4 shows the velocity dispersions obtained from the satellite-weighted P (∆V ) distri-

butions in the upper left panel and those obtained from the host-weighted P (∆V ) distributions

in the upper right panel. The (red) circles and the (black) triangles indicate the single and the

double Gaussian fits respectively. Since the true satellites of centrals selected from MOCKV

are known, they can be used to judge the goodness of the fits. The satellite-weighted and the

host-weighted velocity dispersions of the true satellites (among the satellites selected using the

iterative criteria) are obtained using

σ2
true =

∑Nc
j=1

∑Nj

i=1wij(∆V )2
ij∑Nc

j=1

∑Nj

i=1wij
− σ2

err. (3.11)

Here, Nc denotes the number of true centrals, Nj denotes the number of true satellites of the

jth central and (∆V )ij denotes the los velocity difference of the jth central with respect to

its ith satellite. The weight wij = 1 for the satellite-weighted case and wij = N−1
j for the

host-weighted case. The true velocity dispersions thus obtained are shown as solid curves in

Fig. 3.4.

The bottom panels of Fig. 3.4 show the percentage deviation of both the single and the

double Gaussian fits from the velocity dispersions of the true satellites. The single Gaussian

fit (the dotted line) underestimates the dispersions systematically by about 5 − 10%. The dou-
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ble Gaussian fit (the solid line) on the other hand gives an unbiased estimate of both velocity

dispersions. Therefore, in what follows, we use the double Gaussian fit for measuring both the

satellite-weighted and the host-weighted velocity dispersions (cf. Becker et al. 2007).

3.4.3 Analytical Estimates

We now compare the velocity dispersions obtained from the satellite-weighted and the host-

weighted schemes to their analytical expectation values. As detailed in Chapter 2, the satellite-

weighted and the host-weighted velocity dispersions depend on the distribution of halo masses

of central galaxies specified by P (M |Lc). The analytical expressions describing the velocity

dispersion in these two weighting schemes are

σ2
sw(Lc) =

∫∞
0 P (M |Lc) 〈Nsat〉ap,M 〈σ2

sat〉ap,M dM∫∞
0 P (M |Lc) 〈Nsat〉ap,MdM

, (3.12)

σ2
hw(Lc) =

∫∞
0 P (M |Lc)P(〈Nsat〉ap,M ) 〈σ2

sat〉ap,M dM∫∞
0 P (M |Lc)P(〈Nsat〉ap,M ) dM

. (3.13)

Here, the average number of satellites and the average velocity dispersion of satellites, within

the aperture Rs in a halo of mass M , are denoted by 〈Nsat〉ap,M and 〈σ2
sat〉ap,M , respectively.

We use results from Chapter 2 to describe these quantities. In particular, we use Eqs. (2.13) and

(2.14) to describe 〈Nsat〉ap,M , and Eq. 2.16 to describe 〈σ2
sat〉ap,M .

Note that, when measuring the host-weighted velocity dispersions only satellites of those

centrals that have at least one satellite within the search aperture are used. The fraction of such

centrals is denoted by P(〈Nsat〉ap,M ) and is given by the probability that a halo of mass M ,

which on average hosts 〈Nsat〉ap,M satellites within the aperture Rs, has Nsat ≥ 1 within the

aperture. We assume that the satellite occupation numbers (cf. Eq. 3.2) follow Poisson statistics,

which is supported by numerical simulations (Kravtsov et al. 2004) and by results from group

catalogs based on SDSS (Yang et al. 2005a, 2008) and use the expression for P(〈Nsat〉ap,M )
given by Eq. 2.19 from Chapter 2. The factor P(〈Nsat〉ap,M ) is not considered in the analytical

estimate in the satellite-weighting scheme as haloes with zero satellites, by definition, contribute

zero weight.

From the analytical description presented in Chapter 2, it is clear that the analytical esti-

mates for the velocity dispersions require the knowledge of

• the density distribution of dark matter haloes, ρ(r|M)

• the number density distribution of satellites, nsat(r|M)

• the halo occupation statistics of centrals, P (M |Lc), and the halo occupation number of

satellites, 〈Nsat〉(M).

We assume that the density distribution of dark matter haloes is given by Eq. (2.22) and that

the number density distribution of satellites is given by Eq. (2.24) with γ = R = 1. The halo
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Figure 3.5: The projected number density distributions of the satellites selected from MOCKV
as a function of the projected radius in the brightest central luminosity bins. The average lumi-
nosity of the bin is indicated at the top right corner in each panel. The errorbars assume Poisson
statistics for the number of satellites in each bin. The (black) solid lines indicate the analytical
predictions and assume that the satellite number density distribution follows the dark matter
distribution in an unbiased manner, i.e. R = 1 and γ = 1 in eq. (2.24). For comparison, the
(red) dotted lines show the analytical predictions that assumeR = 2 and γ = 0.
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occupation statistics of centrals, P (M |Lc) is given by

P (M |Lc) =
Φc(Lc|M)n(M)∫

Φc(Lc|M)n(M)dM
(3.14)

where Φc(Lc|M) is the conditional luminosity function of central galaxies and n(M) is the

halo mass function. The number of satellite galaxies in a halo of mass M is given by Eq. (3.1).

We adopt the Φc(Lc|M) and Φs(L|M) that were used in Section 3.2 to populate the MGC.

With this input, we compute the analytical estimates for the velocity dispersions of satellites

as a function of luminosity using Eqs. (3.12) and (3.13). The results thus obtained are shown

as dot-dashed curves in the corresponding panels of Fig. 3.4. Overall the agreement with the

velocity dispersions obtained from the satellites in the MGC is very good, except at intermediate

luminosities where the analytical estimates are∼ 5 percent higher than σtrue. This indicates that

the central galaxies selected from the MGC do not properly sample the full P (M |Lc). This can

be due to two reasons: (i) a systematic problem with the criteria used to select central galaxies,

or (ii) cosmic variance due to the finite volume probed by MOCKV. As we demonstrate in

Appendix 3.A our iterative criteria accurately sample the true P (M |Lc), except for the fact

that it misses the haloes of those centrals which have zero satellites. However, this sampling

effect is accounted for in our analytical model via Eq. (2.19). In fact detailed tests show that the

discrepancies between σtrue and our analytical estimates are entirely due to cosmic variance in

the MGC.

In Appendix 3.A, we also show that the strict selection criteria, that have been abundantly

used in the literature, lead to a sample of central galaxies that is biased to reside in relatively

low mass haloes. Consequently, the resulting MLR of central galaxies is similarly biased, and

has to be interpreted with great care.

3.5 Number Density Distribution of Satellites

As described above, the number density distribution of satellite galaxies, nsat(r|M), is a nec-

essary input to analytically compute the velocity dispersions. The projected number density

distribution of satellites, Σ(R|Lc), around centrals of a given luminosity, directly reflects the

functional form of nsat(r|M). The distribution Σ(R|Lc) can be directly measured by com-

bining the satellites around centrals of a given luminosity, Lc, chosen by the selection crite-

ria. However, it is necessary to first assess the impact of the interloper contamination on the

measurement of Σ(R|Lc), for which we again make use of the satellite sample selected from

MOCKV.

Fig. 3.5 shows, for the five brightest luminosity bins, the azimuthally averaged projected

number density distributions of the satellites selected from MOCKV. The errorbars reflect the

Poisson noise on the number of satellites in each radial bin. The abrupt cutoff at large R is an

artefact due to the parameter Rs in the selection criteria which describe the maximum projected
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radius within which satellites get selected. Note that, since Rs depends upon the luminosity of

central galaxies under consideration, this cutoff shifts to larger R with increasing central galaxy

luminosity.

The projected number density distribution of satellites around centrals stacked according to

luminosity, Σ(R|Lc), can be analytically expressed as,

Σ(R|Lc) =
∫
P (M |Lc) Σ(R|M) dM∫

P (M |Lc)P(〈Nsat〉(M)ap,M ) dM
. (3.15)

Here, Σ(R|M) is the projection of nsat(r|M) along the line-of-sight and is given by

Σ(R|M) =
∫ rvir

R

nsat(r|M) 2r dr√
r2 −R2

, (3.16)

Using nsat(r|M) given by Eq. (2.24) with R = γ = 1 and the true P (M |Lc) present in the

MGC, we analytically compute the expected number density distribution of satellites around

centrals of a given luminosity. The solid lines in Fig. 3.5 show the results of this analytical

expectation. The small differences between the measured and the analytically obtained distri-

butions are due to the interlopers in the sample. However, the differences become negligible in

the brighter luminosity bins. For comparison, the (red) dotted lines show the expected Σ(R|Lc)
for R = 2 and γ = 0. This shows that the parameters R and γ, that characterize the number

density distribution of satellites, can be inferred from the projected number density distributions

of the selected satellites.

3.6 Mass−Luminosity Relationship

In the previous sections, using a mock catalog, we have demonstrated that the satellite-weighted

velocity dispersions, the host-weighted velocity dispersions and the projected number density

distributions of satellites around centrals of a given luminosity can be reliably measured starting

from a volume limited redshift catalogue of galaxies. Next, we attempt to infer the MLR of

central galaxies from the velocity dispersions measured from MOCKV. The aim is to invert

Eqs. (3.12) and (3.13) which describe the dependence of the velocity dispersions on the MLR

of central galaxies. In addition to the velocity dispersions, we also measure the average number

of satellites per central of a given luminosity, 〈Nsat〉(Lc), and use this as a constraint. The

dependence of 〈Nsat〉(Lc) on the MLR of central galaxies is given by

〈Nsat〉(Lc) =

∫∞
0 P (M |Lc)〈Nsat〉ap,MdM∫∞

0 P (M |Lc)P(〈Nsat〉ap,M )dM
. (3.17)

In this section, we first describe the model we use to infer the mean and the scatter of the MLR

from the observables σsw, σhw and 〈Nsat〉. Next, we use this model to infer the mean and the

scatter of the MLR in the MGC and compare it to the true relations present in the MGC.
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Figure 3.6: The results of the MCMC analysis of the velocity dispersions obtained from
MOCKV. Crosses with errorbars in the upper panels denote the data used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the average number of satellites per central in panel (c). The relations
recovered from the MCMC analysis are shown in the bottom panels; 〈logLc〉(M) in panel (d),
〈logM〉(Lc) in panel (e) and σlogM (Lc) in panel (f). In each panel, the blue and purple colours
denote the 68% and the 95% confidence levels. The solid lines in the lower panels denote the
true relations present in MOCKV.



42 3. SATELLITE KINEMATICS: TESTS ON A MOCK CATALOGUE

Table 3.3: MOCKV: Parameters recovered from the MCMC
Parameter Input 16% 50% 84%
log(L0) 9.93 9.64 10.01 10.32
log(M1) 11.04 10.48 11.28 11.69
γ2 0.25 0.18 0.26 0.32

σlogL 0.14 0.13 0.15 0.17

The input parameters that describe P (Lc|M) are compared to the 16th, 50th and the 84th per-
centiles of the corresponding distributions of parameters obtained from the MCMC.

3.6.1 The Model

As mentioned earlier, the analytical computation of σsw, σhw and 〈Nsat〉 requires the knowledge

of the density distribution of dark matter haloes, the number density distribution of satellites and

the halo occupation statistics of centrals and satellites. We assume that the density distribution

of dark matter haloes follows the NFW profile given by Eq. (2.22). For the number density

distribution of satellites within a halo of mass M , nsat(r|M), we use Eq. (2.24) withR = γ =
1. As shown in Section 3.5, the projected number density distributions of satellites selected

from MOCKV is consistent with this analytical expression. Next, we describe our model for

the halo occupation statistics of the centrals, specified by P (M |Lc), and the satellites, specified

by 〈Nsat〉(M).

The distributionP (M |Lc) is related to the complementary distribution, P (Lc|M), by Bayes’

theorem

P (M |Lc) =
n(M)P (Lc|M)∫
n(M)P (Lc|M)dM

, (3.18)

where n(M) is the halo mass function. We follow Cacciato et al. (2009) and parametrize the

distribution P (Lc|M)1 as a lognormal in Lc,

P (Lc|M)dLc =
log(e)√
2πσlogL

exp

[
−(log[Lc/L̃c])2

2σ2
logL

]
dLc

Lc
. (3.19)

Here, log L̃c(M) denotes the mean of the lognormal distribution and σlogL is the scatter in this

distribution. We use four parameters to specify the relation L̃c(M): a low mass end slope γ1, a

high mass end slope γ2, a characteristic mass scale M1, and a normalisation L0, such that

L̃c = L0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
. (3.20)

We assume the scatter σlogL to be independent of mass. We do not explore the faint end slope

(γ1) in our analysis as the velocity dispersions at the faint end are very uncertain due to low

1Note that the distribution P (Lc|M) is equivalent to the CLF for central galaxies. We model P (Lc|M) using a
few parameters and use Eq. (3.18) to infer P (M |Lc).
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number statistics. Instead, we keep it fixed at 3.273, which is the value obtained from the analy-

sis of the abundance and clustering of galaxies (see Cacciato et al. 2009). This parametrization

is motivated by results of Yang et al. (2008) who measure the conditional luminosity function

from the SDSS group catalogue described in Yang et al. (2007).

We model the satellite occupation number, 〈Nsat〉(M), as a power law distribution, given

by

〈Nsat〉(M) = Ns

(
M

1012 h−1M�

)α
, (3.21)

which adds two more parameters (Ns, α). Thus, in total, our model has six free parameters

(σlogL, L0, M1, γ2, Ns, α). Given these parameters and the radial number density distribution

of satellites (specified byR and γ), the velocity dispersions σsw(Lc) and σhw(Lc) as well as the

number of satellites per central, 〈Nsat〉(Lc) in an aperture of a given size can be computed using

Eqs. (3.12), (3.13) and (3.17) and compared to the measured values. Crosses with errorbars in

panels (a), (b) and (c) of Fig. 3.6 show σsw, σhw and 〈Nsat〉 as a function of the luminosity of

the central obtained from MOCKV, respectively. We use these measurements to constrain the

six free parameters of our model.

3.6.2 Monte-Carlo Markov Chain

To determine the posterior probability distributions of the 6 free parameters in our model, we

use the Monte-Carlo Markov Chain (hereafter MCMC) technique. The MCMC is a chain of

models, each with 6 parameters. At any point in the chain, a trial model is generated with the

6 free parameters drawn from 6 independent Gaussian distributions which are centred on the

current values of the corresponding parameters. The chi-squared statistic, χ2
try, for this trial

model, is calculated using

χ2
try = χ2

sw + χ2
hw + χ2

ns , (3.22)

with

χ2
sw =

10∑
i=1

[
σsw(Lc[i])− σ̂sw(Lc[i])

∆σ̂sw(Lc[i])

]2

, (3.23)

χ2
hw =

10∑
i=1

[
σhw(Lc[i])− σ̂hw(Lc[i])

∆σ̂hw(Lc[i])

]2

, (3.24)

χ2
ns =

10∑
i=1

[
〈Nsat〉(Lc[i])− N̂sat(Lc[i])

∆N̂sat(Lc[i])

]2

. (3.25)

(3.26)
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Here, X̂ denotes the observational constraint X and ∆X̂ its corresponding error. The trial step

is accepted with a probability given by

Paccept =

{
1.0, ifχ2

try ≤ χ2
cur

exp[−(χ2
try − χ2

cur)/2], ifχ2
try > χ2

cur

(3.27)

where χ2
cur denotes the χ2 for the current model in the chain.

We initialize the chain from a random position in the parameter space and discard the first

104 models allowing the chain to sample from a more probable part of the distribution. This is

called the burn-in period for the chain. We proceed and construct a chain of models consisting

of 10 million models. We thin this chain by a factor of 104 to remove the correlations between

neighbouring models. This leaves us with a chain of 1000 independent models that sample

the posterior distribution. We use this chain of models to estimate the confidence levels on the

parameters and relations of interest.

In Table 3.3, we compare the 16th, 50th and 84th percentiles of the distributions of pa-

rameters, which characterize P (Lc|M), obtained from the MCMC with the corresponding true

values of these parameters present in MOCKV. The true parameter values have been recovered

within the 68% confidence intervals. The 68 and 95% confidence levels in panels (a), (b) and

(c) of Fig. 3.6 show that the models from the MCMC accurately fit the velocity dispersions,

σsw and σhw, as well as the average number of satellites per central, 〈Nsat〉 as a function of

central galaxy luminosity. The confidence levels for the average luminosity of the centrals as

a function of the halo mass, L̃c(M), are shown in panel (d). The confidence levels on the

mean, 〈logM〉(Lc), and the scatter, σlogM (Lc), of the distribution P (M |Lc), i.e. the MLR of

central galaxies are shown in panels (e) and (f), respectively. They have been calculated using

Eq. (3.18) and

〈logM〉(Lc) =
∫ ∞

0
logM P (M |Lc) dM , (3.28)

σlogM (Lc) =
[∫ ∞

0
(logM − 〈logM〉)2 P (M |Lc) dM

]1/2

. (3.29)

The solid lines in the lower panels show the corresponding true relations present in MOCKV.

Clearly, our method is able to accurately recover the true MLR.

This completes our tests with the MGC. Employing a variety of tests on a realistic MGC,

we have established a proof-of-concept that, starting from a redshift survey of galaxies, one can

reliably select central and satellite galaxies, quantify the kinematics of the selected satellites

around central galaxies and use this information to infer an unbiased estimate of the mean and

the scatter of the MLR of central galaxies.
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3.7 Summary

The kinematics of satellite galaxies can be used to statistically relate the mean halo masses of

central galaxies to their extensive properties. In this chapter, using a realistic mock catalogue,

we showed that it is indeed possible to recover the average and the scatter of the scaling relation

between halo mass and a central galaxy property (such as the luminosity) using the kinematics

of satellites. We thoroughly tested the analysis method at every step. We first tested the perfor-

mance of the iterative selection criteria, advocated by van den Bosch et al. (2004), to identify

central and satellite galaxies and our method to measure the kinematics of the selected satellites.

We showed that the kinematics recovered from the selected satellites are a fair representation of

the true kinematics of satellite galaxies present in the mock catalogue. We presented an analyti-

cal model that properly accounts for the selection biases and showed that the predictions of this

analytical model are in good agreement with the measured kinematics of the selected satellites.

In Chapter 2, we have shown that the velocity dispersion of satellites can be measured using

two different weighting schemes: satellite-weighting and host-weighting. We have demon-

strated a degeneracy between the mean and the scatter of the MLR obtained from either the

satellite-weighted or the host-weighted velocity dispersion alone. However, we have also shown

that this degeneracy can be broken by using the velocity dispersions in the two schemes simul-

taneously. In this chapter, we first tested our method using a mock galaxy catalogue. We

fitted the measured satellite-weighted and host-weighted velocity dispersions simultaneously

using a parametric model for the halo occupation statistics of central and satellite galaxies, and

demonstrated that we can reliably obtain confidence levels on the true mean and scatter of the

mass−luminosity relation of central galaxies.

In the next two chapters of this thesis, we apply the method developed in this chapter to

data from the Sloan Digital Sky Survey. In Chapter 4, we use satellite kinematics to infer the

scaling relation between halo mass and luminosity of central galaxies and quantify the scatter

in this scaling relation. In Chapter 5, we use satellite kinematics to learn more about the scaling

relation between halo mass and the stellar mass of central galaxies along with the scatter in this

relation.

We would like to conclude this chapter by emphasizing that, satellite kinematics need not

be restricted to the study of isolated haloes of galaxies as is routinely done in the literature.

By using a relaxed criteria to identify central−satellite systems and properly accounting for the

selection biases, we have shown that satellite kinematics can be effectively used to probe the

halo masses in a wide range of environments.
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Appendix

3.A Sampling of Central Galaxies

The ultimate goal of satellite kinematics is to probe the halo mass−luminosity relationship

(MLR) of central galaxies. In principle, an unbiased estimate for the MLR requires that the

central galaxies identified by the selection criteria are an unbiased (sub-)sample with respect to

their corresponding dark matter haloes. In this section, we investigate, using the MGC, how

our iterative criteria perform in this respect and compare them with the strict criteria used in the

literature.

For reasons that will become clear later, we use the flux-limited sample MOCKF for this

test. The solid lines in Fig. 3.7 show the distributions of halo masses, P (M |Lc), for all central

galaxies in MOCKF divided in 5 luminosity bins. The average logarithm of the luminosities

of central galaxies in each bin is indicated at the top right corner. The dotted lines show the

distributions, P (M |Lc), for all central galaxies that have at least one satellite in the selection

aperture defined by our iterative selection criteria. Finally, the histograms show the distribu-

tions, P (M |Lc), of the centrals selected by our iterative criteria. Clearly, the centrals selected

by our iterative criteria sample the distribution of halo masses from the dotted lines (and not the

solid lines). However, as discussed in Section 3.4.3, this bias is taken into account while mod-

elling the kinematics (see Eq. [2.19]) and therefore allows us to make an unbiased estimate. As

shown in Section 3.6, we indeed recover an unbiased MLR from the kinematics of the selected

satellites measured around the centrals selected by our iterative criteria.

For comparison, we now repeat this exercise using the strict criteria employed in previous

studies. In particular, we adopt the criteria N08 (see Table 3.1) used in Norberg et al. (2008).

These criteria identify a galaxy as a central if it is at least fh = 2 times brighter than any other

galaxy in a fixed (irrespective of the luminosity of the galaxy) aperture cylinder (see Table 3.1)

around itself. Satellites are identified as those galaxies that are at least fs = 8 times fainter

than the centrals and reside in a smaller aperture cylinder defined around the centrals. The

values of fh and fs in the N08 criteria are conservative, as the principle goal of their study

was to select isolated central galaxies. Applying the N08 criteria to MOCKV selects only 126
satellites around 96 central galaxies. Therefore, to do a meaningful comparison, we apply the

N08 criteria to MOCKF for which it selects 657 satellites around 395 centrals. For comparison,

our iterative criteria yields 39, 951 satellites around 21, 206 centrals.

Solid lines in the lower panels of Fig. 3.7 are the same as in the upper panels and show

the distributions of halo masses, P (M |Lc), for all central galaxies in MOCKF divided in 5

central luminosity bins. The dotted lines show the P (M |Lc) for those centrals that have at

least one satellite around them which is fs(= 8) times fainter than themselves. There is a

negligibly small difference in the dotted lines in the two rows due to different values of fs.

Finally, the histograms show the P (M |Lc) distributions of the sample of centrals selected by

the N08 criteria. Clearly, these do not sample the distributions shown by the dotted lines and the
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Figure 3.7: Comparison of the sampling of central galaxies using the iterative selection criteria
(ITER) used in this chapter and the criteria used in N08. The histograms in the upper (bottom)
panel show the distributions of halo masses of central galaxies selected according to ITER
(N08). The average log(Lc/ h

−2L�) for central galaxies in each bin is indicated at the top
right corner of each panel. The solid lines show the true distributions of halo masses for all
the central galaxies and the dotted lines show the distribution of halo masses of those central
galaxies that have at least one satellite more than fs times fainter than themselves in the inner
cylinder defined by the selection criteria.
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distributions are clearly biased towards the low mass end, especially, in the bright luminosity

bins. This owes to the fact that Norberg et al. (2008) adopt fh = 2, which preferentially

selects centrals that do not have satellite galaxies of comparable brightness. This biases the

distributions towards the low mass end. Note, though, that this is not a critique regarding

their selection criteria; after all, as Norberg et al. (2008) clearly described in their paper, their

principal goal is to study the kinematics around isolated galaxies. However, it does mean that it

is not meaningful to compare their MLR, which is only applicable to isolated galaxies, to that

obtained here, which is representative of the entire central galaxy population.



Chapter 4

The Halo Mass−Luminosity
Relationship

The contents of this chapter are partially based upon the article More et al. (2009c) published

in the Monthly Notices of the Royal Astronomical Society. The reference is

More, S., van den Bosch, F. C., Cacciato, M., et al. 2009, MNRAS, 392, 801
The original article does not contain the results of the colour dependence of the Halo mass−Luminosity

relationship of central galaxies. This analysis is part of a manuscript in preparation. The

manuscript will be submitted as:

Satellite Kinematics III: Colour and Stellar Mass Dependence
More, S., van den Bosch, F. C., Cacciato, M., et al. 2009

4.1 Introduction

According to the standard framework of galaxy formation, dark matter haloes form gravitational

potential wells in which baryons collapse, dissipate their energy and form stars and galaxies

(White & Rees 1978; Blumenthal et al. 1984). The complex process of galaxy formation and

evolution is believed to be governed by the mass of the dark matter halo in which it occurs. To

understand the halo mass dependence of this process, it is important to statistically relate the

observable properties (e.g. luminosity) of galaxies to the masses of their dark matter haloes.

The kinematics of satellite galaxies, stacked according to the property of their centrals (e.g.

luminosity), can be used to determine the scaling relation between central galaxy properties

and halo mass. However, the stacking procedure complicates the interpretation of the kinematic

signal in terms of the halo mass.

The scaling relation between halo mass and the luminosity of the central galaxies (halo

mass−luminosity relation MLR) can, more generally, be specified in terms of the conditional

probability P (M |Lc), which describes the probability for a central galaxy with luminosity Lc

to reside in a halo of mass M . For a completely deterministic relation between halo mass and



50 4. THE HALO MASS−LUMINOSITY RELATIONSHIP

central luminosity, P (M |Lc) = δ(M−M0), where δ denotes the Dirac−delta function andM0

is a characteristic halo mass corresponding to centrals of luminosity Lc. The velocity disper-

sion, σ(Lc), measured by stacking centrals with luminosity Lc, then translates into a mass M0

according to the scaling relation σ3 ∝ M . However, galaxy formation is a stochastic process

and the distribution P (M |Lc) is expected to have non-zero scatter. If this scatter is apprecia-

ble then the stacking procedure results in combining the kinematics of haloes spanning a wide

range in halo mass. This complicates the interpretation of the velocity dispersion. We addressed

this issue in Chapter 2 (More et al. 2009c); where we investigated a method to measure both the

mean and the scatter of the MLR of central galaxies1 using satellite kinematics. We outlined two

different weighting schemes to measure the velocity dispersion of satellites, satellite-weighting

and host-weighting, and showed that the mean and the scatter of the MLR can be inferred by

modelling the velocity dispersion measurements in these two schemes simultaneously.

In Chapter 3, we carried out a series of tests on a realistic mock galaxy catalogue to validate

our method to infer the MLR of central galaxies from a redshift survey using satellite kinemat-

ics. In particular, we showed that our central−satellite selection criterion and the method to

measure the kinematics reliably recovers the true kinematics present in the mock catalogue. We

also showed that the mean and the scatter of the MLR inferred from the kinematics match the

corresponding true relations in the mock catalogue.

In this chapter, we apply this method to the spectroscopic galaxy catalogue from SDSS

(Data Release 4) in order to determine both the mean and the scatter of the MLR of central

galaxies. In addition, we also analyse the kinematics of the satellites of central galaxies sep-

arated on the basis of their colour. This allows us to investigate the impact of the scatter in

the colour of central galaxies at a particular luminosity on the scatter in the MLR of central

galaxies.

This chapter is organized as follows. In Section 4.2, we describe the SDSS data and apply

the iterative criteria described in Section 3.3 to identify central and satellite galaxies for our

analysis of the kinematics. We form three different samples to analyse the kinematics of satel-

lites around (i) all central galaxies, (ii) red central galaxies only and (iii) blue central galaxies

only. The measurements of the velocity dispersion as a function of the luminosity for central

galaxies in each of these samples are presented in Section 4.3. The number density distribu-

tion of satellites is an essential ingredient to infer the MLR from the kinematic measurements

of the satellites around their centrals. In Section 4.4, we present the projected number density

distribution of satellites around centrals from the SDSS data. The results obtained from the

MCMC analysis of the kinematics of satellites are presented and compared with results from

independent studies in Section 4.5. A summary of all the results is presented in Section 4.6.

For the analysis presented in this chapter, we assume the cosmological parameters from

the 3 year data release of WMAP (Spergel et al. 2007), Ωm = 0.238, ΩΛ = 0.762, h =

1The term MLR refers to the distribution P (M |Lc). The mean and the scatter of the MLR refer to the average
of this distribution and its scatter respectively.
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H0/100 km s−1 Mpc−1 = 0.734, the spectral index of initial density fluctuations ns = 0.951
and normalization σ8 = 0.744.

4.2 Central and Satellite Samples from the SDSS

The SDSS (York et al. 2000) is a joint five−passband (u, g, r, i and z) imaging and medium

resolution (R ∼ 1800) spectroscopic survey. The observations are carried out using a dedicated

2.5-m telescope at the Apache Point Observatory in New Mexico. The SDSS is designed to

cover one quarter of the entire sky and obtain images of around 100 million objects and obtain

the spectra of around 1 million objects. Data are made available to the scientific community

through periodic data releases.

In this study, we use the New York University Value Added Galaxy Catalogue (Blanton

et al. 2005, hereafter NYU−VAGC), which is based upon SDSS Data Release 4 (Adelman-

McCarthy et al. 2006) but includes a set of significant improvements over the original pipelines.

The magnitudes and the colours of the galaxies are based upon the standard SDSS Petrosian

technique and have been k−corrected and evolution corrected to z = 0.1 using the method

described in Blanton et al. (2003a,b). The notations 0.1(g − r) and 0.1Mr − 5 log h are used to

denote the resulting (g − r) colour and the absolute magnitude of the galaxies. The magnitude

limit of the spectroscopic sample is 17.77 in the 0.1r band.

From this catalogue, we select all galaxies in the main galaxy sample with redshifts in the

range 0.02 ≤ z ≤ 0.072 and with a redshift completeness limit C > 0.8. We construct a volume

limited sample of galaxies with r-band luminosities above Lmin = 109.5 h−2L�. This sample

consists of 57, 593 galaxies and is henceforth denoted as SDSSV.

In Fig. 4.1, we show the scatter plot of the 0.1(g − r) colour and the luminosity of galaxies

in this sample. The galaxy distribution follows a bimodal distribution in the colour−luminosity

scatter plot (Baldry et al. 2004; Blanton et al. 2005; Li et al. 2006). The solid line shows the

separation criteria between red and blue galaxies obtained in Yang et al. (2009) by fitting a

binormal distribution to the 0.1(g−r) colour as a function of luminosity. The separation criteria

is given by
0.1(g − r) = 1.022− 0.0651x− 0.00311x2 (4.1)

where x =0.1 Mr − 5 log h + 23.0. The sample SDSSV consists of 30, 383 red galaxies and

27, 210 blue galaxies.

We apply the iterative criteria (ITER) outlined in Section 3.3 of Chapter 3 to select centrals

and their satellites from SDSSV for the analysis of the MLR of central galaxies without a

split in colour. For every iteration, the selection criteria is adjusted based upon the velocity

dispersion estimate in the previous iteration. The sample of centrals and satellites identified in

this manner is denoted by LA. For the analysis of the MLR around red (blue) central galaxies,

a separate sample of central and satellite galaxies is formed by applying a selection criteria

which is iteratively tuned using the estimate of velocity dispersions around the red (blue) central
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Figure 4.1: Scatter plot of the 0.1(g − r) colour and the absolute luminosities of galaxies in the
SDSS. To avoid overcrowding, a random subset of 10,000 galaxies was used to make this plot.
The red line shows the separation criterion from Yang et al. (2009) that was used to classify the
galaxies into red and blue.

galaxies only. The sample that contains the red (blue) central galaxies and their satellites is

denoted by LR (LB).

The parameters (a, b, c) in Eq. (3.5) that define the aperture used in the final iteration of

the central−satellite selection for samples LA, LR and LB are listed in Table 4.1. Sample LA

consists of 3, 863 central galaxies that host at least one satellite galaxy. The total number of

satellite galaxies in Sample LA is 6, 101. The number of red central galaxies that host at least

one satellite in Sample LR (LB) is 2, 503 (1, 221). The number of satellites in Sample LR (LB)

is 4, 599 (1, 449).

4.3 Velocity Dispersion−Luminosity Relation

The scatter plot of the velocity difference, ∆V , between the satellites and the corresponding

centrals as a function of the central luminosity in Sample LA is shown in Fig. 4.2. The scatter

plots obtained from Samples LR and LB are shown in the left and the right panels of Fig. 4.3

respectively. The scatter in the velocities of satellites with respect to their centrals clearly in-

creases with central galaxy luminosity for all the three samples. The scatter plot of Sample LB

is markedly different from that of Sample LR, not only in terms of the number of satellites but

also the amount of scatter in the velocity differences, ∆V at fixed luminosity.

To quantify the velocity dispersion−luminosity relation, we obtain the P (∆V ) distribu-
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Table 4.1: Selection criteria parameters
Parameters Samples

LA LR LB
a 2.20 2.25 2.12
b 0.38 0.37 0.44
c 0.33 0.31 0.32

The parameters a, b and c that define the criteria used
to select central and satellite galaxies for the three sam-
ples used in this Chapter.

Table 4.2: Sample LA: Velocity dispersion measurements
log(Lc) σsw ∆σsw σhw ∆σhw

h−2L� km s−1 km s−1 km s−1 km s−1

9.61 108 20 107 20
9.73 148 26 146 25
9.88 159 19 155 18

10.03 162 14 159 12
10.17 214 43 203 20
10.31 254 11 220 11
10.45 272 15 247 13
10.59 412 35 287 39
10.72 470 28 378 73
10.87 650 54 574 254

The velocity dispersion measurements in the satellite-weighted and host-weighted schemes to-
gether with the associated errors for sample LA.

tions in both the satellite-weighting and the host-weighting schemes by combining the velocity

differences, ∆V , of satellites within luminosity bins of uniform width ∆ log[Lc] = 0.15 for

Samples LA and LR, and 0.13 for Sample LB. The satellite-weighted and the host-weighted

velocity dispersions are estimated from these distributions by fitting a model that consists of

two Gaussians and a constant as described in Section 3.4.2. Fig. 4.4 shows these dispersions

as a function of central luminosity for Sample LA. The values of σsw, σhw and their associ-

ated errors are listed in Table 4.2. Both the satellite-weighted and the host-weighted velocity

dispersions increase with the luminosity of the central galaxy. Note that the satellite-weighted

velocity dispersions are systematically larger than the host-weighted velocity dispersions. As

is evident from Eqs. (2.20) and (2.21), this is a sufficient condition to indicate the presence of

scatter in the MLR of central galaxies (see Chapter 2 for a detailed discussion).

The left (right) panel of Fig. 4.5 shows the comparison between the satellite-weighted

(host-weighted) velocity dispersions around red and blue central galaxies separately. Both the

satellite-weighted and the host-weighted velocity dispersions of satellites around red centrals
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Figure 4.2: Scatter plot of the velocity difference, ∆V , between the satellites and their central
galaxies in sample LA as a function of the central galaxy luminosity.

Figure 4.3: Scatter plot of the velocity difference, ∆V , between the satellites and their central
galaxies in sample LR sample LB as a function of the central galaxy luminosity are shown in
the left and the right panels respectively.
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Figure 4.4: The satellite-weighted (red triangles) and the host-weighted (blue squares) velocity
dispersions as a function of the central galaxy luminosity obtained from satellites in the sample
LA.

Figure 4.5: Comparison between the satellite-weighted (host-weighted) velocity dispersions as
a function of the luminosity of the central galaxy obtained from Sample LR and Sample LB is
shown in the left (right) panel.
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Table 4.3: Sample LR: Velocity dispersion measurements
log(Lc) σsw ∆σsw σhw ∆σhw

h−2L� km s−1 km s−1 km s−1 km s−1

9.61 99 27 95 28
9.74 157 19 155 19
9.88 166 19 166 21

10.03 177 16 169 12
10.17 230 19 209 15
10.31 272 11 238 17
10.45 292 19 251 16
10.59 436 29 315 39
10.72 471 29 406 83
10.87 683 64 603 253

The velocity dispersion measurements in the satellite-weighted and host-weighted schemes to-
gether with the associated errors for sample LR.

Table 4.4: Sample LB: Velocity dispersion measurements
log(Lc) σsw ∆σsw σhw ∆σhw

h−2L� km s−1 km s−1 km s−1 km s−1

9.60 67 27 67 27
9.72 113 26 113 25
9.86 106 19 107 19
9.99 134 14 132 15

10.12 159 13 154 12
10.25 180 23 159 16
10.38 206 17 189 19
10.52 220 32 201 36
10.65 302 113 272 137
10.78 260 166 561 310

The velocity dispersion measurements in the satellite-weighted and host-weighted schemes to-
gether with the associated errors for sample LB.
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Figure 4.6: The projected number density distributions of satellites around centrals in Sample
LA for the five bright luminosity bins (average log(Lc/ h

−2L�) in right corner). The (black)
solid curves indicate the expected distributions if the number density distribution of satellites
follows the dark matter density, i.e. R = γ = 1 in Eq. (2.24). The (red) dotted curves in turn
indicate the expected distributions for a model in which the satellite galaxies are a factor 2 less
concentrated than dark matter and have a central core in the number density distribution i.e.
R = 2, and γ = 0.

are larger than those around blue centrals. This figure captures the difference between Sample

LR and LB observed in the scatter plots of Fig. 4.3. The velocity dispersion measurements for

Sample LR and for Sample LB are listed in Tables 4.3 and 4.4, respectively.

4.4 Number Density Distribution of Satellites in SDSS

The model to infer the MLR of central galaxies from the kinematics requires the radial number

density distribution of satellites, nsat(r), as an input. In Chapter 3, to infer the MLR of central

galaxies from the mock catalog, we used a model of nsat(r) that follows the density distribution

of the dark matter in an unbiased manner, i.e., γ = R = 1 in Eq. (2.24). However with SDSS, it

is not clear what functional form of nsat(r) should be used. In fact, various studies have shown

that the satellite galaxies are spatially antibiased with respect to the dark matter (Yang et al.

2005b; Chen 2007, 2008). Rather than including γ and R as free parameters in our model, we

seek to constrain these parameters using the observable Σ(R|Lc). Fig. 4.6 shows the projected



58 4. THE HALO MASS−LUMINOSITY RELATIONSHIP

Figure 4.7: The projected number density distributions of satellites around red centrals from
Sample LR for the five bright luminosity bins (average log(Lc/ h

−2L�) in right corner).
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Figure 4.8: The projected number density distributions of satellites around blue centrals from
Sample LB for the five bright luminosity bins (average log(Lc/ h

−2L�) in right corner).
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number density distributions of the satellites in Sample LA for the five brightest luminosity

bins. As can be seen from the analytical expressions that describe Σ(R|Lc) (see Eq. 3.15),

predicting Σ(R|Lc) requires the knowledge of P (M |Lc), which is the principle goal of our

study. Furthermore, it also requires the knowledge of 〈Nsat〉(M). Both these quantities are

unknown.

To proceed, we use the P (M |Lc) and 〈Nsat〉(M) from the CLF model of Cacciato et al.

(2009) which was also used to populate the mock catalogue in Chapter 3. We explore two

different models for nsat(r), one with R = γ = 1, where the number density distribution of

satellites follows the dark matter density distribution, and the other with R = 2 and γ = 0,

where the number density distribution of satellites is spatially antibiased with respect to the

dark matter distribution. The former model is shown as a (black) solid line while the latter with

a (red) dotted line in Fig. 4.6. Clearly, the latter model is favoured by the data. Therefore, we

use R = 2 and γ = 0 to specify nsat(r) for the analysis of the velocity dispersions to infer the

MLR of central galaxies from Sample LA.

The projected number density distributions of satellites in Sample LB and LR are shown

in Figs. 4.7 and 4.8, respectively. These distributions also show a similar behaviour with a

flattening of the projected number density distributions at the center. We use the same values of

R = 2 and γ = 0 for the analysis of both Sample LR and Sample LB.

4.5 Results from the MCMC Analysis

Next, we use the parametric model described in Section 3.6.1 and constrain it using the mea-

sured velocity dispersions, σsw and σhw, and the number of satellites per central, 〈Nsat〉 as a

function of the luminosity of centrals for the Samples LA, LR and LB. As shown in Chapter 3,

this allows us to determine both the mean and the scatter of the MLR of central galaxies in these

three samples. We use a Monte−Carlo Markov Chain to recover the relations 〈logM〉(Lc),

σlogM (Lc) and 〈logLc〉(M).

4.5.1 The Halo Mass−Luminosity Relation

First, we present the results obtained from the MCMC analysis of the velocity dispersions mea-

sured from Sample LA. The 16th, 50th and the 84th percentiles of the distributions of the pa-

rameter values that describe the distribution P (Lc|M) for the central galaxies in this sample are

listed in Table 4.5. Fig. 4.9 shows the results of the MCMC analysis. The upper row of panels

shows the data that was used to constrain the parameters. In the bottom row, panel (d) shows

the confidence levels on the relation L̃c(M) while panels (e) and (f) show the confidence levels

on the inferred mean and scatter of the distribution P (M |Lc) (i.e the MLR), respectively. The

values of 〈logM〉(Lc) and σlogM (Lc) together with their 1-σ errors are listed in Table 4.6.

Clearly, the average masses of dark matter haloes increase with central galaxy luminosity,

as expected. Interestingly, the scatter in halo masses also increases systematically with the lu-
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Figure 4.9: Results of the MCMC analysis of the velocity dispersions obtained from Sam-
ple LA. Crosses with errorbars in the upper panels show the data points used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the mean number of satellites per central as a function of luminosity
in panel (c), all measured by using the satellites in Sample LA. The blue and purple bands rep-
resent the 68% and 95% confidence regions respectively. The bottom panels show the relations
inferred from the MCMC; the average log(Lc) is in panel (d), and the mean and the scatter in
the MLR of central galaxies in panels (e) and (f) respectively. The median relations obtained
from the MCMC are shown using dashed lines. The relations obtained from the best-fit CLF
model of Cacciato et al. (2009), are shown using solid lines. The squares in panels (e) and (f)
indicate the values obtained from the semianalytical model of Croton et al. (2006).
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Table 4.5: MLR of central galaxies: Parameters recovered from the MCMC
Sample Parameter 16% 50% 84%

LA log(L0) 9.69 10.05 10.33
log(M1) 10.85 11.74 12.01
γ2 0.19 0.28 0.35

σlogL 0.12 0.16 0.19
Ns 0.09 0.14 0.21
αs 1.17 1.32 1.46

LR log(L0) 9.58 9.78 10.05
log(M1) 10.75 11.35 11.83
γ2 0.26 0.31 0.37

σlogL 0.17 0.20 0.21
Ns 0.07 0.11 0.17
αs 1.27 1.41 1.54

LB log(L0) 9.63 9.91 10.27
log(M1) 10.87 11.34 11.71
γ2 0.10 0.26 0.47

σlogL 0.18 0.27 0.35
Ns 0.29 0.47 0.68
αs 0.56 0.83 1.07

The 16th, 50th and 84th percentiles of the distributions of our model parameters for the three
samples analysed in this chapter.

Table 4.6: Sample LA: MLR of central galaxies
log(Lc) 〈log M〉 ∆〈log M〉 σlog M ∆σlog M

h−2L� h−1M� h−1M� h−1M� h−1M�
9.61 12.06 0.35 0.12 0.06
9.73 12.16 0.32 0.13 0.07
9.88 12.28 0.29 0.15 0.08

10.03 12.44 0.26 0.18 0.10
10.17 12.60 0.23 0.22 0.10
10.31 12.80 0.21 0.26 0.11
10.45 13.01 0.19 0.30 0.10
10.59 13.24 0.19 0.34 0.09
10.72 13.47 0.21 0.36 0.08
10.87 13.74 0.23 0.38 0.07

The mean and scatter of the halo masses as a function of the central galaxy luminosity inferred
from the MCMC analysis. The errors on each of the inferred quantities correspond to the 68%
confidence levels.
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minosity of the central galaxy. At the bright end, this scatter is roughly half a dex. Therefore,

stacking central galaxies by luminosity amounts to stacking haloes that cover a wide range in

masses. This justifies the need to account for this scatter in the analysis of the satellite kinemat-

ics. Neglecting this scatter leads to an overestimate of the halo mass at a given central luminos-

ity (see Chapter 2). Most previous studies dealing with satellite kinematics have neglected this

scatter which has resulted in a biased estimate of the halo mass-luminosity relationship. As we

have shown in the Appendix 3.A of Chapter 3, their use of strict selection criteria to identify the

centrals and satellites have further biased their estimate of the MLR of central galaxies.

In a recent study, Cacciato et al. (2009) have constrained the CLF using the abundance and

clustering of galaxies in SDSS. They have shown that this CLF is also able to reproduce the

galaxy−galaxy lensing signal and is further consistent with the MLR obtained from a SDSS

group catalogue (Yang et al. 2008). As a consistency check, we compare the results of their

study with the results obtained here from satellite kinematics. In panels (e) and (f) of Fig. 4.9,

dashed lines show the mean and scatter of the distribution P (M |Lc) (MLR), obtained from

satellite kinematics, while the solid lines show the relations obtained from the best−fit CLF

model of Cacciato et al. (2009). The agreement with the results obtained here using the kine-

matics of satellite galaxies is not perfect. However, given the errorbars it is certainly consistent

with 68% confidence. Amongst others this consistency provides further support that the halo

mass assignment in the SDSS group catalogue of Yang et al. (2007) is reliable (Wang et al.

2008).

Since the mean and scatter of the MLR reflect the physics, and in particular the stochas-

ticity, of galaxy formation, it is interesting to compare the results obtained here to predictions

from semi-analytical models (SAM) of galaxy formation. To that extent we use the SAM of

Croton et al. (2006), which has been shown to match the observed properties of the local galaxy

population with reasonable accuracy2. Using a volume limited sample of galaxies selected from

the SAM with the same luminosity and redshift cuts as SDSSV, we measure the mean and the

scatter of the distributions of halo masses for central galaxies in several bins of r-band lumi-

nosity. The results are shown in panels (e) and (f) of Fig. 4.9 as open squares. The agreement

with our constraints from the satellite kinematics is remarkably good. It is both interesting and

encouraging that a semi-analytical model, which uses simple, physically motivated recipes to

model the complicated baryonic physics associated with galaxy formation, is able to reproduce

not only the mean of the MLR of central galaxies but also the correct amount of stochasticity in

this relation.

In our model, the stochasticity of galaxy formation is best described by the parameter σlogL,

which indicates the amount of scatter in the luminosity of central galaxies given the mass of a

halo, i.e. the scatter in the distribution P (Lc|M). The histogram in Fig. 4.10 shows the posterior

probability of σlogL, obtained from our MCMC, which yields σlogL = 0.16 ± 0.04 (68%

2Note that Croton et al. (2006) adopted a slightly different cosmology than the one used in our data analysis
which can have a small impact on the MLR.
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Figure 4.10: Posterior distribution of the parameter σlogL as obtained from the MCMC analysis
of the satellite velocity dispersions. The 1-σ constraints on the parameter σlogL obtained from
other independent methods are shown as shaded regions. Region GC indicates the SDSS group
catalogue result by Yang et al. (2008), region CLF indicates the result obtained by Cooray
(2006) with an independent CLF analysis and region SAM shows our measurement of σlogL

from the semi-analytical model of Croton et al. (2006).
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Figure 4.11: Results of the MCMC analysis of the velocity dispersions obtained from Sam-
ple LR. Crosses with errorbars in the upper panels show the data points used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the mean number of satellites per central as a function of luminosity in
panel (c), all measured by using the satellites from Sample LR. The blue and purple bands rep-
resent the 68% and 95% confidence regions respectively. The bottom panels show the relations
inferred from the MCMC; the average log(Lc) is in panel (d), and the mean and the scatter in
the MLR of central galaxies in panels (e) and (f), respectively.

confidence levels). Note that we have made the assumption that σlogL is independent of halo

mass. The same assumption was made by Cooray (2006), who obtained that σlogL = 0.17+0.02
−0.01

using the luminosity function and clustering properties of SDSS galaxies (see also Cacciato

et al. 2009). Using a large SDSS galaxy group catalogue, Yang et al. (2008) obtained direct

estimates of the scatter in P (Lc|M), and found that σlogL = 0.13 ± 0.03 with no obvious

dependence on halo mass. Finally, we also determined σlogL in the SAM of Croton et al.

(2006): using several bins in halo mass covering the range 1010 h−1M� ≤ M ≤ 1016 h−1M�,

we find that σlogL = 0.17 ± 0.02, once again with virtually no dependence on halo mass. All

these results are summarized in Fig. 4.10. Not only do they support our assumption that σlogL

is independent of halo mass, they also are in remarkable quantitative agreement with each other.
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Figure 4.12: Results of the MCMC analysis of the velocity dispersions obtained from Sam-
ple LB. Crosses with errorbars in the upper panels show the data points used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the mean number of satellites per central as a function of luminosity in
panel (c), all measured by using the satellites from Sample LB. The blue and purple bands rep-
resent the 68% and 95% confidence regions respectively. The bottom panels show the relations
inferred from the MCMC; the average log(Lc) is in panel (d), and the mean and the scatter in
the MLR of central galaxies in panels (e) and (f), respectively.
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Table 4.7: Sample LR: MLR of red central galaxies
log(Lc) 〈log M〉 ∆〈log M〉 σlog M ∆σlog M

h−2L� h−1M� h−1M� h−1M� h−1M�
9.61 11.81 0.36 0.20 0.06
9.74 11.95 0.33 0.22 0.07
9.88 12.11 0.31 0.26 0.07

10.03 12.30 0.28 0.30 0.08
10.17 12.49 0.25 0.33 0.08
10.31 12.70 0.23 0.37 0.09
10.45 12.92 0.20 0.40 0.08
10.59 13.15 0.18 0.42 0.08
10.72 13.38 0.16 0.43 0.08
10.87 13.64 0.15 0.44 0.07

The mean and scatter of the halo masses as a function of the central galaxy luminosity inferred
from the MCMC analysis of red central galaxies. The errors on each of the inferred quantities
correspond to the 68% confidence levels.

Table 4.8: Sample LB: MLR of blue central galaxies
log(Lc) 〈log M〉 ∆〈log M〉 σlog M ∆σlog M

h−2L� h−1M� h−1M� h−1M� h−1M�
9.60 11.66 0.25 0.25 0.10
9.72 11.76 0.24 0.27 0.10
9.86 11.88 0.23 0.31 0.11
9.99 12.02 0.22 0.34 0.12

10.12 12.15 0.22 0.38 0.12
10.25 12.28 0.23 0.41 0.12
10.38 12.42 0.25 0.43 0.12
10.52 12.57 0.27 0.46 0.12
10.65 12.70 0.30 0.48 0.12
10.78 12.84 0.33 0.49 0.12

The mean and scatter of the halo masses as a function of the central galaxy luminosity for blue
central galaxies inferred from the MCMC analysis. The errors on each of the inferred quantities
correspond to the 68% confidence levels.
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Figure 4.13: Comparison of the average halo masses and the scatter in halo masses of central
galaxies split by colour as a function of their luminosity. The results for red central galaxies are
shown with (red) squares and those for blue central galaxies are shown with (blue) triangles.

4.5.2 The Colour Dependence of the Halo Mass−Luminosity Relation

Next, we present the results of the MCMC analysis of the velocity dispersions obtained from

Samples LR and LB respectively. The 16th, 50th and 84th percentiles of the distributions of the

parameter values that describe the distribution P (Lc|M) for the red central galaxies and for blue

central galaxies are listed in Table 4.5. In Fig. 4.11, we show the results of the MCMC analysis

of velocity dispersions around red central galaxies while in Fig. 4.12 we show the corresponding

results for blue central galaxies. The values of 〈logM〉(Lc) and σlogM (Lc) together with their

1-σ errors for samples LR and LB are listed in Table 4.7 and Table 4.8, respectively.

The mean luminosity of red central galaxies scales with halo mass as Lc ∝ M0.31±0.06

while that of blue central galaxies scales as Lc ∝ M0.3±0.2 at the bright end (see Panel (d) in

Figs. 4.11 and 4.12). The scaling between the luminosity and halo mass is poorly constrained

for the blue galaxies at the bright end as the data does not contain many bright blue centrals. The

value of the scatter in the distribution P (Lc|M) for red central galaxies is σlogL = 0.20+0.02
−0.02

and that for blue central galaxies is σlogL = 0.27+0.09
−0.07. The value of the scatter for blue central

galaxies is rather poorly constrained due to the poor quality of the velocity dispersion data

(smaller satellite sample).

The average halo mass of central galaxies increases with the luminosity of the central galaxy

irrespective of their colour (Panel e in Figs. 4.11 and 4.12). However, the MLR of blue central

galaxies differs from the MLR of red central galaxies. The blue central galaxies exhibit a shal-

lower scaling relation than their red counterparts (see Fig 4.13). This shows that the luminosity

of a central galaxy alone is not a good proxy for its halo mass. Furthermore, the scatter in

halo masses at fixed luminosity is non-negligible, and increases as a function of the luminosity
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for both the red and the blue central galaxies. Thus, even after central galaxies are stacked on

the basis of their luminosities and colours, the MLR shows a considerable amount of scatter.

This further emphasizes the need to model this scatter when interpreting results of studies that

involve stacking.

Next, we compare the results obtained using satellite kinematics with results from the group

catalogue of Yang et al. (2007). These authors have assigned group halo masses based upon

either the total stellar mass or the total luminosity content of each group. We use this group

catalog and investigate the MLR of central galaxies, with and without the split into red and blue

by colour. The solid lines in Fig. 4.14 correspond to the MLR of central galaxies in their group

catalogue where the halo masses have been assigned using the total stellar mass content of the

group. The dashed lines, in turn, show the MLR of central galaxies in the group catalogue

where the halo masses have been assigned according to the luminosity content of the group.

The MLR for central galaxies obtained in this chapter are shown with shaded areas (68 percent

confidence region).

The MLR of all central galaxies (top left panel in Fig. 4.14) inferred from satellite kinemat-

ics is in good agreement with the results from the group catalog. There exists a slight tension

at the bright end between the MLR obtained from the group catalogue and that from satellite

kinematics for red central galaxies and this problem is worse for the blue central galaxies. Since

the central galaxy colour information was not used in the construction of the galaxy group cata-

logue, we believe this to be an artefact in the group catalogue. The group catalogue can reliably

reproduce the average properties of the entire galaxy sample, however it may not be reliable to

deduce the average properties of a subset of galaxies.

Galaxy−galaxy lensing is yet another technique to probe the halo masses and hence the

MLR of central galaxies. Mandelbaum et al. (2006) presented the weak lensing signal around

galaxies stacked by luminosity. The galaxies were split into early (red) and late (blue) types

based upon their morphology. The results obtained from their analysis of the weak lensing sig-

nal are shown in Fig. 4.14 as squares with errorbars. These results are in excellent agreement

with our results from satellite kinematics. The potential disagreement for the brightest luminos-

ity bin of red centrals from their sample is most likely a result of the different criteria used to

separate red and blue central galaxies.

4.6 Summary

The kinematics of satellite galaxies have been widely used to statistically relate the mean halo

masses of central galaxies to their luminosities (Zaritsky et al. 1993; Zaritsky & White 1994;

Zaritsky et al. 1997; McKay et al. 2002; Brainerd & Specian 2003; Prada et al. 2003; Norberg

et al. 2008). These studies use strict criteria to identify central and satellite galaxies that reside

preferentially in isolated environments. van den Bosch et al. (2004) have advocated the use

of a relaxed but adaptive selection criterion to identify centrals and their satellites, not only in
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Figure 4.14: Comparison of the MLR of central galaxies by different methods. The results ob-
tained from the weak lensing analysis are shown as squares with errorbars. The results obtained
from the group catalogue are shown with solid and dashed lines. The shaded areas represent the
results obtained in this chapter using the kinematics of satellites.
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isolated environments but also in massive groups and clusters. This has the potential to allow

the study of the kinematics of satellites over a wide range of central galaxy luminosity. In

this chapter, we applied a relaxed but adaptive selection criterion to a volume limited sample

from SDSS to identify centrals and their satellites, not only in isolated environments but also

in massive groups and clusters which allowed us to study the kinematics of satellites over a

wide range of central galaxy luminosity. We inferred both the mean and the scatter of the

mass−luminosity relationship of central galaxies from the kinematics of satellite galaxies both

with and without a split in the colour of central galaxies.

The analysis of the kinematics of satellites around centrals stacked without a split in their

colour shows that the mean of the mass−luminosity relation increases as a function of the

central host luminosity indicating that, as expected, brighter centrals reside in more massive

haloes. This result is in quantitative agreement with a recent study by Cacciato et al. (2009),

who use the abundance and the clustering properties of galaxies in SDSS to constrain the CLF,

and with the SAM of Croton et al. (2006). The satellite kinematics obtained in our study are

consistent with a model in which P (Lc|M) has a constant scatter, σlogL, independent of the

halo mass M . We obtain σlogL = 0.16 ± 0.04 in excellent agreement with other independent

measurements suggesting that the amount of stochasticity in galaxy formation is similar in

haloes of all masses. This is also suggested by the SDSS group catalogue of Yang et al. (2008)

and by the SAM of Croton et al. (2006). It is important to note that a constant scatter in

the distribution P (Lc|M) leads to a scatter in the distribution P (M |Lc) that systematically

increases with luminosity (see Chapter 2).

We also analysed the kinematics of satellite galaxies around red and blue central galaxies

separately to investigate the colour dependence of the MLR. We found that the MLR of central

galaxies is different for central galaxies of different colours. Red central galaxies on average

occupy more massive haloes than blue central galaxies. This shows that the scatter in the colour

of central galaxies is, to a certain extent, responsible for the scatter in halo masses at fixed

central galaxy luminosity. However, we also found that both red and blue central galaxies of

a given luminosity reside in haloes with a large scatter in their masses (∼ 0.4 dex) especially

at the bright end. Hence it is imperative to account for the scatter in any analysis that involves

stacking.

We compared the average MLR inferred from satellite kinematics with those inferred from

the SDSS group catalogue of Yang et al. (2008) for central galaxies. The average MLR of

central galaxies without a split in colour is in excellent agreement with the group catalogue

results. The average MLRs of central galaxies split by colour are in slight tension with those

present in the group catalogue which we believe to be an artefact of the group catalogue. The

group catalogue may not be reliable for deducing the average properties of subsets of galaxies.

We also compared the average MLRs of red and blue central galaxies obtained by us with the

results obtained using galaxy−galaxy lensing by Mandelbaum et al. (2006b) and showed that

these results are in excellent quantitative agreement with each other.
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Chapter 5

The Halo Mass−Stellar Mass
Relationship

The contents of this chapter are based upon an article which is in preparation. The article will

be submitted to the Monthly Notices of the Royal Astronomical Society as:

Satellite Kinematics III: Colour and Stellar Mass Dependence
More, S., van den Bosch, F. C., Cacciato, M., et al. 2009.

5.1 Introduction

Establishing scaling relations between the properties of central galaxies and their dark matter

halo properties is central to understanding the process of galaxy formation. In this thesis, we

have presented a systematic method that can be used to probe the halo masses of galaxies

that reside at the centre of dark matter haloes using the kinematics of their central galaxies

(Chapters 2 and 3). In Chapter 5, we have established the scaling relation between halo mass

and luminosity of central galaxies and the scatter in this scaling relation. In this chapter, we infer

the halo mass−stellar mass relationship of central galaxies (hereafter MSR) with and without a

split in their colour.

This chapter is organized as follows. In Section 5.2, we describe the samples of central and

satellite galaxies used in this chapter. In Section 5.3, we present the measurement of the kine-

matics of the satellites as a function of the stellar mass of the central galaxy. In Section 5.4, we

present the model we use to infer the MSR of central galaxies from the kinematics of satellites.

We present our results in Section 5.5 and also compare them with results from other independent

studies. Finally, we summarize our findings in Section 5.6.

For the analysis presented in this chapter, we assume the cosmological parameters from

the 3 year data release of WMAP (Spergel et al. 2007), Ωm = 0.238, ΩΛ = 0.762, h =
H0/100 km s−1 Mpc−1 = 0.734, the spectral index of initial density fluctuations ns = 0.951
and normalization σ8 = 0.744. We consider the dark matter halo mass to beM180, i.e. the mass

73
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enclosed within a spherical overdensity δρ/ρ̄ = 180, where ρ̄ denotes the mean matter density

of the universe.

5.2 Central and Satellite Samples from the SDSS

As in Chapter 4, we again use data from the NYU−VAGC (Blanton et al. 2005) which is

based upon Data Release 4 (Adelman-McCarthy et al. 2006) of the SDSS. We start from sam-

ple SDSSV, the volume limited sample of galaxies described in Section 4.2. The galaxies in

this sample were assigned a colour (red or blue), according to the separation criteria given by

Eq. (4.1) which was based upon the bimodal distribution of galaxies in the 0.1(g− r) colour at a

given luminosity. The stellar masses of these galaxies (denoted as M∗) are computed using the

relation between the stellar mass-to-light ratio and the 0.0(g − r) color provided by Bell et al.

(2003),

log
[

M∗
h−2M�

]
= −0.306 + 1.097 [0.0(g − r)]− 0.10

−0.4 (0.0Mr − 5 log h− 4.64). (5.1)

Here, 0.0(g−r) and 0.0Mr−5 log h denote the (g−r) colour and the r-band absolute magnitude

of galaxies k−corrected and evolution corrected to z = 0.0; 4.64 is the r-band magnitude of

the Sun in the AB system; and the −0.10 term is a result of adopting the Kroupa (2001) initial

mass function (see Borch et al. 2006).

For the analysis of the MSR, we use a slightly modified version of the iterative criteria

(ITER) outlined in Section 3.3 of Chapter 3 to identify centrals and their satellites from SDSSV.

Firstly, the modified criteria requires the central galaxy to be the largest in terms of the stellar

mass (instead of the brightest in terms of luminosity) in its neighbourhood (specified by (∆V )h

and Rh). Secondly, the unbinned estimate of the velocity dispersion as a function of the stellar

mass of the central galaxy is used to refine the search cylinders of the iterative criteria. We

use the method described in Section 3.4.1 to measure the unbinned estimate of the velocity

dispersion. The velocity dispersion (in units of 200 km s−1), σ200, is parametrized as,

σ200(logM∗10) = a+ b (logM∗10) + c (logM∗10)2 . (5.2)

HereM∗10 denotes the stellar mass of the galaxy in units of 1010h−2M�. During every iteration,

the parameters (a, b, c) are fit by using the velocity difference information between the satellites

and their centrals (see Section 3.4.1 for details). The parameters that define the search cylinder

are scaled for the subsequent iteration based upon the estimate of σ200(M∗10) (see criteria ITER

in Table 3.1).

Similar to Chapter 4, we form three different samples of centrals and their satellites for the

analysis of the MSR. The sample used to analyse the MSR around all central galaxies (without
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Table 5.1: Selection criteria parameters
Parameters Samples

SA SR SB
a 2.06 2.12 1.97
b 0.22 0.18 0.45
c 0.20 0.21 -0.07

The parameters a, b and c that are used to define the criteria used to select central and satellite
galaxies for the samples used in this chapter (see Table 3.1 for details of the selection criteria).

a split by colour) is denoted by SA. The samples used to analyse the MSR around red and

blue central galaxies are denoted by SR and SB, respectively. Note that the difference between

the three samples is the estimate of the velocity dispersion used to scale the search cylinders.

The search criteria used for sample SR (SB) are tuned based upon the estimate of the velocity

dispersion around the red (blue) central galaxies only. The parameters (a, b, c) in Eq. (5.2) that

define the aperture used in the final iteration of the central−satellite selection for samples SA,

SR and SB are listed in Table 5.1.

The number of central galaxies with at least one satellite is 3, 778 for Sample SA, 2, 877
for Sample SR and 805 for Sample SB. The number of satellite galaxies in Sample SA is 6, 104
while that in Sample SR and SB are 5, 061 and 912, respectively.

5.3 Velocity Dispersion−Stellar Mass Relation

The scatter plot of the velocity difference, ∆V , between the satellites and the corresponding

centrals as a function of the central galaxy stellar mass in Sample SA is shown in Fig. 5.1, while

those in Samples SR and SB are shown in the left and the right panels of Fig. 5.2, respectively.

For all the three samples, the scatter in the velocities of satellites with respect to their centrals

increases with central galaxy stellar mass. Its relatively clear from these figures that the scatter

of the velocities of satellites in Sample SB is smaller than that of satellites in Samples SR and

SA.

The P (∆V ) distributions for all the three samples, in both the satellite-weighting and the

host-weighting schemes are obtained in 10 bins of uniform width. For Sample SA the bin-

width is ∆ log[M∗c] = 0.18 while for Samples SR and SB we choose the bin widths to

be 0.16 and 0.15, respectively. All the P (∆V ) distributions are fitted using a model that

consists of two Gaussians and a constant, for reasons discussed in Section 3.4.2. The re-

sultant velocity dispersions and their errors for Sample SA are listed in Table 5.2 and those

for Samples SR and SB in Tables 5.3 and 5.4, respectively. The satellite-weighted and the

host-weighted velocity dispersions as a function of stellar mass for Sample SA are shown in
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Figure 5.1: Scatter plot of the velocity difference, ∆V , between the satellites and their central
galaxies in sample SA as a function of the central galaxy stellar mass.

Figure 5.2: Scatter plot of the velocity difference, ∆V , between the satellites and their central
galaxies in sample SR sample SB as a function of the central galaxy stellar mass are shown in
the left and the right panels respectively.
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Figure 5.3: The satellite-weighted (open hexagons) and the host-weighted (filled hexagons)
velocity dispersions as a function of the central galaxy stellar mass obtained from satellites in
the sample SA.

Fig. 5.3. The velocity dispersion−stellar mass relation shows a similar behaviour to the velocity

dispersion−luminosity relation. The satellite-weighted velocity dispersioins are systematically

larger than the host-weighted velocity dispersions at any given stellar mass, which signals the

presence of a non-negligible scatter in the MSR as well. The comparison between the velocity

dispersions around red and blue centrals is shown in Fig. 5.4. The velocity dispersions around

red centrals in both the schemes are systematically larger than the velocity dispersions around

blue centrals. As in Chapter 3, we also measure the average number of satellites as a function

of stellar mass and use it to constrain the MSR.

5.4 The Model

We use a very similar model to the one used in Chapters 3 and 4 to determine the MSR from the

measured velocity dispersions. The analytical expressions that describe the velocity dispersions

and the the average number of satellites as a function of stellar mass are the same as Eqs. (3.12),

(3.13) and (3.17) with P (M |Lc) replaced by P (M |M∗c), i.e.,

σ2
sw(M∗c) =

∫∞
0 P (M |M∗c) 〈Nsat〉ap,M 〈σ2

sat〉ap,M dM∫∞
0 P (M |M∗c) 〈Nsat〉ap,MdM

, (5.3)

σ2
hw(M∗c) =

∫∞
0 P (M |M∗c)P(〈Nsat〉ap,M ) 〈σ2

sat〉ap,M dM∫∞
0 P (M |M∗c)P(〈Nsat〉ap,M ) dM

, (5.4)

〈Nsat〉(M∗c) =

∫∞
0 P (M |M∗c)〈Nsat〉ap,MdM∫∞

0 P (M |M∗c)P(〈Nsat〉ap,M )dM
. (5.5)
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Figure 5.4: Comparison between the satellite-weighted (host-weighted) velocity dispersions as
a function of the stellar mass of the central galaxy obtained from Sample SR and Sample SB is
shown in the left (right) panel.

Table 5.2: Sample SA: Velocity dispersion measurements
log(M∗c) σsw ∆σsw σhw ∆σhw

h−2L� km s−1 km s−1 km s−1 km s−1

9.62 83 28 83 28
9.81 121 16 121 16
9.99 97 27 98 26

10.18 134 14 134 14
10.37 181 39 173 24
10.55 184 10 176 9
10.74 248 17 225 13
10.92 294 12 258 18
11.10 425 30 312 34
11.28 530 34 376 90

Velocity dispersion measurements in the satellite-weighted and host-weighted schemes together
with the associated errors for sample SA.
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Table 5.3: Sample SR: Velocity dispersion measurements
log(M∗c) σsw ∆σsw σhw ∆σhw

h−2L� km s−1 km s−1 km s−1 km s−1

9.91 162 64 162 64
10.05 122 24 123 25
10.21 171 38 157 38
10.36 172 14 168 15
10.53 193 20 182 15
10.68 216 23 209 17
10.84 289 15 255 22
10.99 311 18 260 14
11.14 429 30 334 47
11.31 567 38 434 129

Velocity dispersion measurements in the satellite-weighted and host-weighted schemes together
with the associated errors for sample SR.

Table 5.4: Sample SB: Velocity dispersion measurements
log(M∗c) σsw ∆σsw σhw ∆σhw

h−2L� km s−1 km s−1 km s−1 km s−1

9.57 129 92 129 92
9.73 74 41 74 41
9.88 109 23 109 23

10.03 114 42 102 40
10.18 114 14 114 14
10.33 120 14 121 15
10.48 154 18 148 14
10.62 172 15 166 16
10.76 179 39 155 38
10.91 192 24 174 35

Velocity dispersion measurements in the satellite-weighted and host-weighted schemes together
with the associated errors for sample SB.



80 5. THE HALO MASS−STELLAR MASS RELATIONSHIP

Figure 5.5: Projected number density distributions of satellites around centrals in Sample SA
for the five massive stellar mass bins (average log(M∗c/ h−1M�) in right corner).

The notations 〈Nsat〉ap,M and 〈σ2
sat〉ap,M describe the average number of satellites in the

aperture used to select the satellites and their aperture−averaged velocity dispersion in a halo of

massM used to select the satellites. The factorP adjusts the distribution P (M |M∗c) to account

for those centrals that do not host any satellite. We use the expressions derived in Section (2.4)

to calculate these quantities. Note that the calculation of 〈Nsat〉ap,M and 〈σ2
sat〉ap,M requires

us to specify the number density distribution of satellites in the halo. We use the generalised

NFW profile given by Eq. (2.24) for this purpose, keeping in mind that the parameters,R and γ

have to be fixed using the projected number density distribution, Σ(R), of satellites around their

centrals. Figs. (5.5)−(5.7) show the distributions Σ(R) of satellites in the samples SA, SR and

SB, respectively. These distributions resemble the projected number density distribution shown

in Fig. 4.6 in that they show a flattening of the distribution in the central parts. Based upon this

behaviour, we use the values ofR = 2 and γ = 0 in the further analysis.

We use the Bayes’ theorem to relate the distribution P (M |M∗c) to P (M∗c|M),

P (M |M∗c) =
n(M)P (M∗c|M)∫
n(M)P (M∗c|M)dM

, (5.6)

where n(M) is the halo mass function. The distribution P (M∗c|M) is modelled as a lognormal
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Figure 5.6: Projected number density distributions of satellites around red centrals from Sample
SR (average log(M∗c/ h−1M�) in right corner).
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Figure 5.7: Projected number density distributions of satellites around blue centrals from Sam-
ple SB (average log(M∗c/ h−1M�) in right corner).
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distribution in M∗c,

P (M∗c|M)dM∗c =
log(e)√

2πσlogM∗

exp

[
−(log[M∗c/M̃∗c])2

2σ2
logM∗

]
dM∗c
M∗c

. (5.7)

The quantities log M̃∗c(M) and σlogM∗ are the mean and the scatter of the lognormal distribu-

tion at a particular halo mass M . The scatter σlogM∗ is assumed to be independent of the halo

mass M and the relation log M̃∗c(M) is specified using four parameters: a low mass end slope

γ1, a high mass end slope γ2, a characteristic mass scale M1, and a normalisation M∗0;

M̃∗c = M∗0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
. (5.8)

Thus, the distribution P (M |M∗c) is completely specified by the five parameters (σlogM∗ , M∗0,

M1, γ1, γ2) and the halo mass function. The last ingredient of our model is the satellite occu-

pation number, 〈Nsat〉(M). We use a simple power law distribution given by,

〈Nsat〉(M) = Ns

(
M

1012 h−1M�

)α
. (5.9)

to specify the occupation number of satellites. Thus in total our model has seven free param-

eters. We use a MCMC to constrain the parameters and infer the MSR. Since the velocity

dispersions at the low stellar mass are not well measured, we do not expect to properly con-

strain the low mass end slope, γ1. Therefore, we impose a flat prior on γ1 and allow it to vary

in the interval [2.0, 4.0].

5.5 Results

5.5.1 The Halo Mass−Stellar Mass Relationship

We analyse the kinematics of satellite galaxies around their centrals in Sample SA to infer the

MSR for all central galaxies. Samples SR and SB are analysed to infer the MSR of central

galaxies split by colour into red and blue, respectively. The results from the MCMC analysis

are shown in Figs. 5.8, 5.9 and 5.10. The 16, 50 and 84 percentiles of the posterior distributions

of the parameters obtained in the MCMC analysis are listed in Table 5.5.

The stellar mass of all central galaxies scales as M0.38+0.08
−0.07 at the high mass end. This is

in excellent agreement with recent results from Moster et al. (2009) who fit the stellar mass

function of SDSS galaxies using a halo occupation model and obtain that the stellar mass of

central galaxies scales as M0.370±0.014 (see table 3 in Moster et al. 2009)1. In the case of red

central galaxies, the stellar mass scales as M∗ ∝ M0.39±0.08 and in the case of blue central

galaxies the stellar mass scales as M∗ ∝ M0.7+0.3
−0.2 . The halo mass−stellar mass scaling for

1Note that the parameter γc in the analysis of Moster et al. 2009 is related to the parameter γ2 in our analysis
such that γc = γ2 − 1.
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Table 5.5: MSR of central galaxies: Parameters recovered from the MCMC
Sample Parameter 16 percent 50 percent 84 percent

SA log(M∗0) 9.57 9.97 10.39
log(M1) 10.25 10.83 11.68
γ2 0.31 0.38 0.46

σlogP 0.18 0.21 0.23
Ns 0.11 0.15 0.20
αs 1.19 1.28 1.37

SR log(M∗0) 9.63 9.99 10.36
log(M1) 10.28 10.82 11.55
γ2 0.31 0.39 0.47

σlogP 0.21 0.23 0.25
Ns 0.06 0.09 0.13
αs 1.34 1.47 1.62

SB log(M∗0) 9.35 9.98 10.60
log(M1) 10.73 11.29 11.78
γ2 0.33 0.68 0.89

σlogP 0.13 0.27 0.41
Ns 0.16 0.22 0.28
αs 0.69 1.10 1.48

The 16, 50 and 84 percentile values of the posterior distribution for the parameters of our model
obtained from the MCMC analysis of the velocity dispersion data from Sample SA, Sample SR
and Sample SB.

Table 5.6: Sample SA: MSR of central galaxies
log(Lc) 〈log M〉 ∆〈log M〉 σlog M ∆σlog M

h−2L� h−1M� h−1M� h−1M� h−1M�
9.62 11.18 0.44 0.17 0.05
9.81 11.35 0.41 0.20 0.07
9.99 11.54 0.37 0.23 0.08

10.18 11.77 0.32 0.27 0.09
10.37 12.03 0.27 0.32 0.09
10.55 12.30 0.23 0.36 0.09
10.74 12.59 0.20 0.39 0.09
10.92 12.90 0.17 0.41 0.09
11.10 13.22 0.15 0.42 0.08
11.28 13.53 0.14 0.43 0.07

The mean and scatter of the halo masses as a function of the central galaxy stellar mass for all
central galaxies inferred from the MCMC analysis. The errors on each of the inferred quantities
correspond to the 68% confidence levels.
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Figure 5.8: The results of the MCMC analysis of the velocity dispersions obtained from Sam-
ple SA. Crosses with errorbars in the upper panels show the data points used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the mean number of satellites per central as a function of stellar mass
in panel (c), all measured by using the satellites in Sample SA. The blue and purple bands rep-
resent the 68% and 95% confidence regions, respectively. The bottom panels show the relations
inferred from the MCMC; the average log(M∗c) is in panel (d), and the mean and the scatter in
the MSR of central galaxies in panels (e) and (f), respectively.
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Figure 5.9: The results of the MCMC analysis of the velocity dispersions obtained from Sam-
ple SR. Crosses with errorbars in the upper panels show the data points used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the mean number of satellites per central as a function of stellar mass
in panel (c), all measured by using the satellites in Sample SR. The blue and purple bands rep-
resent the 68% and 95% confidence regions, respectively. The bottom panels show the relations
inferred from the MCMC; the average log(M∗c) is in panel (d), and the mean and the scatter in
the MSR of central galaxies in panels (e) and (f), respectively.
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Figure 5.10: The results of the MCMC analysis of the velocity dispersions obtained from Sam-
ple SB. Crosses with errorbars in the upper panels show the data points used to constrain the
MCMC; the satellite-weighted velocity dispersions in panel (a), the host-weighted velocity dis-
persions in panel (b) and the mean number of satellites per central as a function of stellar mass
in panel (c), all measured by using the satellites in Sample SB. The blue and purple bands rep-
resent the 68% and 95% confidence regions, respectively. The bottom panels show the relations
inferred from the MCMC; the average log(M∗c) is in panel (d), and the mean and the scatter in
the MSR of central galaxies in panels (e) and (f), respectively.
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Figure 5.11: Comparison of the average halo masses and the scatter in halo masses of central
galaxies split by colour as a function of their stellar mass. The results for red central galaxies
are shown with (red) squares and those for blue central galaxies are shown with (blue) triangles.

Table 5.7: Sample SR: MSR of red central galaxies
log(Lc) 〈log M〉 ∆〈log M〉 σlog M ∆σlog M

h−2L� h−1M� h−1M� h−1M� h−1M�
9.91 11.41 0.40 0.23 0.06

10.05 11.54 0.38 0.26 0.07
10.21 11.72 0.35 0.29 0.07
10.36 11.92 0.32 0.33 0.08
10.53 12.14 0.28 0.36 0.08
10.68 12.36 0.25 0.40 0.08
10.84 12.61 0.22 0.43 0.08
10.99 12.86 0.19 0.44 0.08
11.14 13.12 0.16 0.46 0.07
11.31 13.39 0.14 0.46 0.07

The mean and scatter of the halo masses as a function of the central galaxy stellar mass inferred
from the MCMC analysis of red central galaxies. The errors on each of the inferred quantities
correspond to the 68% confidence levels.
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Table 5.8: Sample SB: MSR of blue central galaxies
log(Lc) 〈log M〉 ∆〈log M〉 σlog M ∆σlog M

h−2L� h−1M� h−1M� h−1M� h−1M�
9.57 11.51 0.30 0.17 0.09
9.73 11.61 0.29 0.18 0.09
9.88 11.71 0.27 0.19 0.10

10.03 11.82 0.27 0.20 0.11
10.18 11.94 0.26 0.22 0.12
10.33 12.07 0.25 0.24 0.13
10.48 12.19 0.24 0.26 0.14
10.62 12.32 0.25 0.27 0.15
10.76 12.45 0.25 0.29 0.16
10.91 12.60 0.26 0.31 0.17

The mean and scatter of the halo masses as a function of the central galaxy stellar mass for blue
central galaxies inferred from the MCMC analysis. The errors on each of the inferred quantities
correspond to the 68% confidence levels.

blue galaxies at the massive end is poorly constrained as the sample does not consist of massive

blue central galaxies. The value of the scatter in stellar masses of all central galaxies at fixed

halo mass is 0.21+0.03
−0.02. The value of the scatter is 0.23+0.02

−0.02 for red central galaxies while it is

0.27+0.14
−0.13 for blue central galaxies.

The average halo mass of all central galaxies and that of red and blue central galaxies in-

creases as a function of the stellar mass and so does the scatter in halo masses. In Fig. 5.11,

we overplot the mean and the scatter of the MSR from Samples SA, SR and SB together. The

difference in the scaling relation between the average halo mass and the stellar mass for red and

blue galaxies is much less pronounced than that seen in the MLR. This demonstrates that when

stacked by stellar mass central galaxies on average occupy haloes of similar mass independent

of their colour and in this respect stellar mass is a better proxy for halo mass. We find that the

scatter in halo masses also increases as a function of the stellar mass, similar to the behaviour

seen as a function of the luminosity, and reaches about ∼ 0.4 dex at the massive end.

Finally, we would like to point out here that the velocity dispersion of satellite galaxies

around red central galaxies is always systematically higher than that around blue central galaxies

of the same stellar mass. However, the average MSR inferred from the analysis is roughly

similar in both cases. This shows that it is not straightforward to use the velocity dispersion as

a proxy for halo mass and that inferring the average halo masses demands a careful modelling

similar to the one presented in this thesis.

5.5.2 Comparison of MSR with Other Studies

In this section, we compare the MSR obtained using satellite kinematics with those obtained

with other independent methods. We first investigate the MSR of central galaxies, with and
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Figure 5.12: Comparison of the MSR of central galaxies by different methods. The shaded
areas represent the results obtained in this chapter using the kinematics of satellites. The results
obtained by analysing the group catalogue are shown with solid and dashed lines. The results
obtained from the weak lensing analysis are shown as squares with errorbars. The results ob-
tained by the analysis of satellite kinematics by Conroy et al. (2007) are shown using circles
with errorbars.
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without the split into red and blue colours in the SDSS group catalogue of Yang et al. (2007).

The solid lines in Fig. 5.12 correspond to the MSR of central galaxies in their group catalogue

where the halo masses have been assigned using the total stellar mass content of the group.

The dashed lines, in turn, show the MSR of central galaxies in the group catalogue where the

halo masses have been assigned according to the luminosity content of the group. The MSR

for central galaxies obtained in this chapter are shown with shaded areas (68 percent confidence

region). The MSR of all central galaxies (top left panel in Fig. 5.12) inferred from satellite

kinematics is overall in good agreement with the results from the group catalog. The MSR for

red centrals obtained in our study are in slight tension at the massive end while those for blue

centrals are in a fair agreement. As mentioned in the previous chapter, one has to be careful

while interpreting results from the group catalogue for a subset of galaxies because it may not

be reliable to deduce the average properties of a subset of galaxies (such as central galaxies split

by their colour).

The MSR of central galaxies from the galaxy−galaxy lensing by Mandelbaum et al. (2006b)

are shown in Fig. 5.12 as squares with errorbars. These results are also in fair agreement with

the results from satellite kinematics. The potential disagreement for the most massive stellar

mass bin from their sample is most likely a result of the different criteria used to separate red

and blue central galaxies. Unlike our sample, Mandelbaum et al. split the galaxies into early

(red) and late (blue) types based upon their morphology.

Using data from the SDSS and the DEEP2 survey, Conroy et al. (2007) used the kinematics

of satellite galaxies to determine the evolution of the stellar mass-to-light ratio of central galax-

ies from z ∼ 1 to z ∼ 0. They measured and modelled the radial dependence of the velocity

dispersion to infer the average mass of the halo as a function of the stellar mass of the central

galaxy. We compare the MSR at z ∼ 0 obtained by Conroy et al. (2007) with our results. Note

that the halo mass definition used by Conroy et al. (2007) corresponds to M200, i.e., the mass

of the halo within a radius which encloses an average density which is 200 times the critical

density of the Universe. We have converted their definition of the halo mass to our definition of

the halo mass following the procedure outlined in Hu & Kravtsov (2003). The stellar masses of

the galaxies were calculated using a stellar mass-to-light ratio based on a Chabrier initial mass

function. We have also converted these stellar masses to the ones based on the initial mass func-

tion obtained by Kroupa (2001) for consistency using results from Bell et al. (2003). The halo

mass−stellar mass relationship for all central galaxies obtained from the analysis of Conroy

et al. (2007) is shown in Fig. 5.12 using circles with errorbars. The average halo masses ob-

tained by their analysis are in agreement at the 2-σ level with the ones obtained in this chapter.

However, their halo mass measurements are always systematically larger than those obtained by

us. This could be a result of the fact that the scatter in the halo mass−stellar mass relationship is

assumed to be negligible in their analysis. This tends to overestimate the halo masses of central

galaxies (see Chapter 2).
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5.6 Summary

In this chapter, we used the kinematics of satellites galaxies to investigate the scaling relation

between the halo mass and the stellar mass of a central galaxy (the halo mass−stellar mass

relationship or MSR). We also investigated the dependence of the MSR on the colour of cen-

tral galaxies. The MSR shows similar trends as seen in the halo mass−luminosity relationship

(MLR, see Chapter 4). Both the mean and the scatter of the MSR of central galaxies increase

with the stellar mass of the central galaxy. However, when split by colour, the difference be-

tween the mean MSR of the red and the blue central galaxies is less pronounced than that seen

in the MLR. This implies that when stacked by stellar mass, the red and the blue central galax-

ies on average occupy similar mass haloes. We also found that the MSR of both red and blue

central galaxies, individually, have an appreciable scatter at the massive end.

We compared the average MSR of central galaxies obtained by our analysis of the kinemat-

ics of satellite galaxies with other independent studies. The average MSR we obtain is in good

quantitative agreement with results from galaxy−galaxy lensing (Mandelbaum et al. 2006b) and

with results from the SDSS group catalogue of Yang et al. (2007). This shows that the average

scaling relations that relate the stellar mass of galaxies to their dark matter halo masses are well

established and are supported by several different astrophysical probes.

The scatter in the MLR and the MSR of central galaxies that we have inferred from satellite

kinematics reflect the stochasticity of galaxy formation. In the next chapter, we investigate the

physical processes that are responsible for this scatter. With the help of a semi-analytical model

of galaxy formation, we investigate the scatter in the merger histories of dark matter haloes and

its effect on the properties of the central galaxies that form at their centres.



Chapter 6

On the Stochasticity of Galaxy
Formation

The contents of this chapter are based upon an article which is in preparation. The article will

be submitted to the Monthly Notices of the Royal Astronomical Society as:

Stochasticity of Galaxy Formation: Insights from Galaxy Formation Models
More, S., More, A., van den Bosch, F. C., et al. 2009

6.1 Introduction

Dark matter is the most abundant gravitationally unstable component in the Universe and is

therefore responsible for the formation of structure. The tiny initial fluctuations in the dark

matter density field grow over time by the action of gravity and form bound structures (haloes).

The baryons within these haloes undergo cooling and gradually transform into stars and form

galaxies (White & Rees 1978). The ratio of the mass in baryons to the mass in dark matter is

universal and each halo collapses with its “fair share” of baryons. If the efficiency with which

the baryons transform into stars is independent of the halo mass, it is a natural expectation that

extensive properties of galaxies such as the luminosity and the stellar mass correlate positively

with halo mass. However, each halo is unique, each has its own merger history and its own star

formation history and thus, haloes with similar mass need not harbour galaxies with the same

properties. It is certainly interesting to quantify and study this difference as it directly reflects

the stochasticity in the physics of galaxy formation.

In this thesis, we have used the kinematics of satellite galaxies to constrain the scaling

relations between halo mass and central galaxy properties. In Chapter 4, we inferred the mean

and scatter of the relationship between halo mass and the luminosity of central galaxies (MLR)

which occupy the centres of dark matter haloes. In Chapter 5, we inferred the mean and scatter

of the relationship between halo mass and the stellar mass of central galaxies (MSR). The results

show that the average halo mass increases with both the luminosity and the stellar mass of
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a central galaxy. In addition, the scatter in halo masses for galaxies of a particular luminosity

(stellar mass) also increases as a function of the galaxy luminosity (stellar mass). Understanding

the origin of this scatter can help us learn more about the physics of galaxy formation.

There exists a large scatter in the assembly histories of different dark matter haloes (see e.g.,

Lacey & Cole 1993; Kauffmann & White 1993; Lemson & Kauffmann 1999; van den Bosch

2002; Gao et al. 2005; Wechsler et al. 2006; Li et al. 2007, 2008). This scatter in the assembly

history is also reflected in the clustering properties of dark matter haloes such that haloes that

assemble earlier are more strongly clustered than those which assemble later (Gao et al. 2005;

Wechsler et al. 2006; Harker et al. 2006; Jing et al. 2007; Gao & White 2007). The scatter in

the assembly history of haloes possibly also reflects in a scatter in the star formation histories

of the galaxies, which may finally result in a scatter in their properties. Therefore, the scatter in

the assembly history of haloes is a plausible origin of the stochasticity of galaxy formation. A

semi-analytical model of galaxy formation (SAM) is an excellent tool to investigate the origin of

the scatter in the MLR/MSR of galaxies. A SAM considers the hierarchical merger histories of

dark matter haloes and implements simple physical recipes to model the astrophysical processes

that affect the baryons in these haloes (see e.g., White & Frenk 1991; Kauffmann & White

1993). The most recent versions of these models include processes such as radiative cooling,

star formation, energetic feedback from supernovae and active galactic nuclei, and galactic

outflows (see Section 6.2).

In this chapter, we only focus on the MSR of central galaxies and investigate the origin of

the scatter in the MSR using the semi-analytical model of De Lucia & Blaizot (2007, hereafter

DL07 ). This chapter is organized as follows. In Section 6.2, we explain the ideology behind the

use of semi-analytic methods to model galaxy formation and briefly explain the processes that

are commonly modelled in SAMs. In Section 6.3, we describe the numerical simulation used

by DL07 and describe the procedure used to construct the merger histories of haloes from this

simulation. The merger histories of haloes can be characterized by the formation times of the

haloes. In Section 6.4, we present various definitions for the formation times of haloes based

upon their merger histories. In Section 6.5, we investigate the effect of the scatter in the merger

histories of similar mass haloes on the stellar mass of central galaxies that form in these haloes.

We conclude in Section 6.6 with a discussion and a short summary of the results.

6.2 Semi-analytical Models of Galaxy Formation

The last decade has seen a remarkable progress on the observational front which has helped us

further our understanding of galaxy formation. Detailed observations of the local galaxy pop-

ulation (redshift z ∼ 0.0) via large scale galaxy redshift surveys coupled with observations of

galaxies at high redshifts (redshift 1 ≤ z ≤ 5) in various bands have resulted in a wealth of

observational results: e.g. the luminosity functions of local galaxies (Blanton et al. 2003b; Nor-

berg et al. 2002b) and galaxies at high redshifts (Drory et al. 2003; Gabasch et al. 2004; Drory
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et al. 2005; Faber et al. 2007), the spatial clustering of galaxies (Norberg et al. 2002a; Tegmark

et al. 2004; Zehavi et al. 2005), the stellar mass−metallicity relation of galaxies (Tremonti et al.

2004; Gallazzi et al. 2005), the bimodal distribution of galaxies in the colour−magnitude plane

(Baldry et al. 2004), the correlation between the mass of the central black hole and the bulge

in a galaxy (Häring & Rix 2004), the Tully−Fisher relation (Giovanelli et al. 1997) and the

the star formation rate history of the Universe (Madau et al. 1996). To understand and connect

these observations in the cosmological framework and to sketch a picture of the formation and

evolution of galaxies through cosmic time is a holy grail for the modern astrophysicist.

The initial conditions that describe a ΛCDM Universe are fairly simple and can be specified

by a handful of parameters (Dunkley et al. 2009): the energy density parameters of the different

components of the Universe (dark matter, dark energy and baryons), the parameters that specify

the power spectrum of small fluctuations in the initial density field (the normalization and the

spectral index), and the present rate of the expansion of the Universe (specified by the Hubble

parameter). The fluctuations in the dark matter component evolve purely due to gravity and can

be followed in a straightforward manner by using a numerical simulation (Davis et al. 1985).

However, following the evolution of baryons and resolving the formation of individual galaxies

in a cosmological volume is computationally very expensive. SAMs use a hybrid approach, in

which the evolution of the dark matter skeleton is followed by a numerical simulation and the

evolution of baryons is followed by using simple analytical recipes, to model the formation of

galaxies in a cosmological context (see e.g., White & Frenk 1991; Kauffmann & White 1993;

Cole et al. 1994; Kauffmann 1996; Kauffmann et al. 1997; Baugh et al. 1998; Somerville &

Primack 1999; Cole et al. 2000; Benson et al. 2002; Springel et al. 2005; Croton et al. 2006; De

Lucia & Blaizot 2007).

The internal structure of dark matter haloes, specified by the density profile and the angu-

lar momentum, is an important ingredient to model the galaxies that form within these haloes.

High resolution simulations have shown that the density profile of dark matter haloes is uni-

versal and can be described by Eq. 2.22 (Navarro et al. 1997) which has only one free pa-

rameter for a given mass, the concentration c. The concentration depends very weakly on the

mass (Bullock et al. 2001; Macciò et al. 2007), however this relation has a considerable scatter

which is correlated with the formation histories of haloes (Navarro et al. 1997; Wechsler et al.

2002; Zhao et al. 2003). Large scale tidal torques impart angular momentum to the dark matter

haloes. The angular momentum of a halo is quantified by the dimensionless spin parameter,

λ = J |E|0.5/GM2.5, where J , M and E are the angular momentum, mass and the energy of

the halo. The spin parameter follows a lognormal distribution with a mean and scatter which is

relatively independent of the mass of the halo (Barnes & Efstathiou 1987; Cole & Lacey 1996;

Lemson & Kauffmann 1999; Bullock et al. 2001; Macciò et al. 2007).

The amount of baryons in each dark matter halo is initially a fixed fraction of the halo mass

and is present in a diffuse form. The elemental composition of this gas in the halo is set by

the big bang nucleosynthesis. As haloes merge, the infalling gas is shock−heated. Numerical
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simulations show that this hot gas settles down to a isothermal density profile which has a

core at roughly one third the scale radius of the halo and with a temperature which is close

to the virial temperature (Navarro et al. 1995; Eke et al. 1998; Frenk et al. 1999). The rate

of cooling of gas depends upon the cooling function which is a function of the temperature,

density and the metallicity of the gas (Sutherland & Dopita 1993). By the virtue of its angular

momentum, the cold gas settles down into a disc which then fragments due to gravitational

instabilities and leads to the formation of stars (Kennicutt 1998). The initial mass function

specifies the distribution of masses of the newly formed stars (Salpeter 1955; Chabrier 2003;

Kroupa 2001). Stars are reservoirs of energy that constantly heat up their surroundings. They

also lose a fraction of their mass to the surroundings by stellar winds. In addition, young massive

stars undergo supernovae explosions and heat up the surrounding cold gas. The supernova ejecta

also enrich the metallicity of the surrounding gas. These baryonic processes which take place

in haloes are modelled using simple analytical prescriptions in a SAM.

Simple recipes are also required to determine the fate of the baryons in two haloes that

merge. Mergers are commonly classified as major or minor based upon the ratio of masses of

haloes that merge together. In case of a minor merger, the central galaxies and satellites in the

smaller halo become satellites of the bigger halo. Their individual (sub)haloes can be resolved

in a numerical simulation if they are above the detection limit of substructure specified in the

substructure finding routines. Once the subhalo masses fall below this limit, these galaxies are

merged with the central galaxy on a dynamical friction timescale (Chandrasekhar 1943). Any

cold gas in the satellite galaxies is added to the disc of the central galaxy. Minor mergers of

galaxies which have some cold gas are accompanied by minor bursts of star formation. Major

mergers between galaxies are more violent and can result in an extreme episode of star forma-

tion if any of the galaxies have a reservoir of cold gas. Such mergers destroy the discs present

in any of the haloes and the stars so formed are distributed in a spheroid.

The final ingredient we discuss are the supermassive blackholes which reside at the centres

of galaxies. The process of gas accretion on to supermassive blackholes results in the release

of a significant amount of energy. A high accretion rate, which can be a result of perturbations

such as bar instabilities induced during mergers, can cause the blackhole to be in a quasar phase.

In this phase, the blackhole emits a tremendous amount of energy which is transferred to the

surrounding gas via massive jets. A more quiescent accretion of the hot gas by the black hole

can cause low energy radio activity which pumps energy into the surroundings (Tabor & Binney

1993; McNamara et al. 2000, 2005). Both feedbacks have been shown to be effective in shaping

the bright end of the luminosity function of galaxies and preventing star formation in clusters

by suppressing cooling flows (Croton et al. 2006).

This concludes our very brief description of the various processes that are commonly mod-

elled in a SAM. We refer the reader to Cole et al. (2000) for an excellent overview on this

subject and to the papers by Springel et al. (2005), Croton et al. (2006) and De Lucia & Blaizot

(2007) for the details of the specific model that we use in our analysis. With this description,
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we hope to have conveyed the diversity of processes that shape the properties of galaxies and

that results in the stochasticity of galaxy formation in haloes of similar masses.

6.3 Numerical Simulation and Halo Merger Trees

The semi-analytical recipes that model the processes described in the previous section are im-

plemented in halo merger trees. DL07 use the halo merger trees derived from the Millennium

simulation which was carried out by the Virgo consortium (Springel et al. 2005). The Millen-

nium simulation tracks the positions and velocities of dark matter particles in a comoving cube

with length equal to 500 h−1Mpc on each side. The simulation is carried out assuming a flat

ΛCDM cosmology with the following cosmological parameters: density parameter for the cos-

mological constant ΩΛ = 0.75, matter density parameter Ωm = 0.25, baryon density parameter

Ωb = 0.045, h = H0/100 km s−1 Mpc−1, the linearly extrapolated root mean squared vari-

ance of density fluctuations on a scale of 8 h−1Mpc σ8 = 0.9 and the spectral index of the

initial density fluctuations ns = 1. The number of particles used to carry out the simulation is

21603 and the particle mass is 8.6× 108 h−1M�.

The particle positions and velocities from the Millennium simulation are stored at 64 dif-

ferent epochs. For each snapshot, a friends-of-friends (FOF) algorithm with a linking length

of 0.2 times the mean inter-particle separation is used to construct a catalogue of haloes. The

SUBFIND algorithm (Springel et al. 2001) is run on each of these FOF haloes to identify the

substructure in each halo. The smooth background halo is also identified as a substructure by

this algorithm. This catalogue which groups the simulation particles as subhaloes is the input

for the construction of the merger trees. Hereafter, we denote the smooth background haloes

identified by SUBFIND as central haloes and the rest of the substructure as satellite haloes. The

number of particles in each of these haloes is used to calculate the mass of the halo. Whenever

required, we explicitly use the notation “FOF haloes” to denote the haloes identified originally

by the FOF algorithm.

For every halo at a given snapshot, one must identify its progenitors at an earlier snapshot

to construct a merger tree. A haloH1 at redshift z1 is considered to be a progenitor of a haloH0

at a latter epoch with redshift z0, if a certain fraction of the most bound particles of the halo H1

are part of the halo H0. In this manner, any given halo at redshift 0 branches into its progenitors

at the previous redshift and these progenitors subsequently branch into their own progenitors at

higher redshifts. By following the growth of mass in dark matter haloes, merger trees capture

the assembly history of these haloes.

The merger trees of haloes from the Millennium simulation can be accessed online at the

URL http://www.g-vo.org/Millennium from a database table using the Sequential

Query Language (SQL). Another database table contains the output of the SAM of DL07. The

query execution times on the database are limited to 30 (500) seconds for unregistered (regis-

tered) users. The website also offers similar tables for a milli-version of the entire simulation

http://www.g-vo.org/Millennium
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which is 8× 8× 8 smaller than the original simulation but has the same mass resolution as the

larger simulation. The SQL queries that are run on the milli-version require a shorter execution

time compared to that on the original simulation because of the smaller volume. Therefore, we

carry out our analysis only using the milli-version. Eventually, we would like to use the entire

simulation to capture the full diversity of the merging histories of haloes.

6.4 Halo Formation Timescales

The merger trees of haloes with the same masses can be quite different in appearance. Our aim

is to quantify if the scatter in the properties of the central galaxies such as their luminosities

or stellar masses at fixed halo mass correlate with the scatter in the merger histories of their

haloes. One way to characterise the merger history of a halo is to consider its formation time.

The formation time of a halo is generally defined as the time when the halo has assembled a

fixed fraction of its final mass.

The growth of assembled mass in any merger tree can be studied in two different ways.

Starting from a halo at present time one can consider its most massive progenitor in the previ-

ous snapshot (see the red arrows in Fig. 6.1. This most massive progenitor has its own most

massive progenitor and so on. The linked list of the most massive progenitors of the most mas-

sive progenitors which lead to the formation of the final halo is called the main branch of the

merger tree. Alternatively, one can consider the linked list which connects the most massive

progenitor at every snapshot with the most massive progenitor at an earlier snapshot (see the

blue arrows in Fig. 6.1). Such a linked list may not always be a continous merging branch. This

list represents the growth of the “maximum progenitor”. Li et al. (2008) have presented eight

different definitions of the formation times for any given halo based either upon the main branch

or the linked list of the maximum progenitors and shown how these formation times vary with

the mass of the halo.

We use the following 4 different definitions of the formation redshift of the halo for the pur-

pose of our analysis. We have chosen to use these definitions for the relative ease of extracting

these formation redshifts from the database with the help of SQL queries.

1. z1/2,mp : This is the highest redshift at which the “maximum progenitor” has accumulated

a mass which is greater than or equal to one half of the final halo mass.

2. z1/2,t1 : This is the highest redshift at which the progenitors with at least 2% of the final

mass have collectively assembled a mass which is greater than or equal to one half of

the final halo mass. As noted by Li et al. (2008), such a definition of the formation time

of the halo has also been used by Navarro et al. (1997) to study the dependence of halo

concentrations on their formation times.

3. z1/2,t2 : This is the highest redshift at which half of the final halo mass has assembled

into progenitors above a fixed minimum mass, Mc. We use Mc = 1011.5 h−1M� because
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Figure 6.1: Schematic diagram of a merger tree. The haloes at different epochs are shown as
circles with radii roughly proportional to the cuberoot of the mass. The x-axis in this figure
is arbitrary. Each merger event is represented by a black solid line. The main branch of the
merger tree is shown with red arrows while the most massive progenitors at each redshift are
linked with blue arrows.



100 6. ON THE STOCHASTICITY OF GALAXY FORMATION

Figure 6.2: Scatter plot of the stellar mass of central galaxies against their halo masses at redshift
z = 0 predicted by the SAM of DL07.

star formation is the most efficient at this mass scale and this time marks the beginning of

the epoch when star formation prevails in the assembly history of a halo.

4. zcore : This is the highest redshift at which the maximum progenitor has assembled a mass

equal to Mc. This formation redshift thus marks the time when the maximum progenitor

becomes capable of hosting a bright central galaxy.

We use these definitions for the formation redshift of each halo to quantify its merger history

and investigate how it shapes the stellar mass of the central galaxy that forms in it.

6.5 Results

In Fig. 6.2, we first show a scatter plot of the stellar masses of central galaxies with respect to

the masses of their corresponding dark matter haloes predicted by the SAM of DL07. Note that

we are using the galaxies from the milli-Millennium database only. The use of a small volume

results in the plot being sparsely populated at the massive end. The stellar mass of the central

galaxy increases with the halo mass with roughly a constant scatter of ∼ 0.16 ± 0.06 dex at

fixed halo mass. This is in fair agreement with results for the MSR inferred from the kinematics

of satellite galaxies presented in Chapter 5.

The different formation redshifts of the halo defined in the previous section show a varied

dependence on the halo mass. In Fig. 6.3, we show the scatter plot of the logarithm of the scale

factor at the formation redshift (multiplied by -1) against the final mass of the halo for all haloes
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Figure 6.3: Dependence of various formation redshifts of dark matter haloes on their final mass.
The solid curves show the median relation between the formation redshifts and the final mass
of the halo while the dashed curves show the 20 and 80 percentiles.
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in the milli-Millennium database. The median of the distribution of formation redshifts as a

function of the halo mass is shown with a solid line in each panel. The dashed lines show the 20
and 80 percentiles of the distribution of the formation redshifts obtained by using bins of equal

width in the logarithm of the halo mass logMh. The different formation times of the haloes are

quite different from each other and each of these capture different aspects of the formation of

haloes.

The formation redshifts z1/2,mp and z1/2,t1 show a decreasing trend with the mass of a halo,

i.e. according to these definitions the most massive haloes on average form later than the low

mass haloes. The formation redshift, z1/2,t2 on the other hand shows a relatively flat behaviour

while the formation time zcore is highly correlated with the mass of the halo with a scatter which

is slightly less than that seen in the other definitions of the formation redshift.

In Fig. 6.4, we show the scatter plot of the logarithm of the scale factor at the formation

redshifts against the stellar mass of the central galaxy at the final epoch. The formation redshifts

z1/2,mp, z1/2,t1 and z1/2,t2 show a very little correlation with the stellar mass of the central

galaxy. However the formation redshift zcore is strongly correlated with the final stellar mass of

the central galaxy. This shows that the earlier the maximum progenitor reaches the mass Mc,

the more stars the central galaxy has at redshift zero.

We now investigate a possible correlation between the scatter in the formation redshifts of

the haloes and the scatter in the stellar masses of the central galaxies that form in these haloes.

Fig. 6.5 shows the scatter plot of the residuals around the mean relation between the stellar mass

and halo mass against the residuals around the mean relation between formation redshifts and

halo mass. The correlation between these residuals is quantified by the correlation coefficient

which is denoted at the bottom right corner of each panel in the figure. This figure shows that

at fixed halo mass the stellar mass of central galaxies is correlated with the formation time of

the halo. The formation redshift zcore shows the highest correlation with the formation time

of the halo. This correlation of the residuals can also be seen from Fig. 6.6, where we show

the stellar mass halo mass relation. In this figure, the points in each panel are colour coded

according to the residuals in the corresponding formation redshift halo mass plot. The red

points which correspond to haloes that form earlier lie preferentially above the mean relation

between halo mass and stellar mass while blue points which correspond to haloes that form later

lie below the mean relation. This shows that at fixed halo mass, haloes that form early typically

host central galaxies that have more stellar mass. However, as expected, the correlation is not

perfect. This implies that the scatter in the formation times of haloes is not the only reason for

the stochasticity of galaxy formation. In future, we plan to investigate this issue with the help of

semi-analytical modelling to find out the main reasons for the presence of scatter in the galaxy

property-halo mass scaling relations.
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Figure 6.4: Scatter plot of the stellar mass of central galaxies versus the various formation
redshifts of their haloes.
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Figure 6.5: Scatter plot of residuals in the formation redshift−halo mass relation versus the
residuals in the stellar mass−halo mass relation. The correlation coefficients between these
residuals are shown at the bottom right corner in each panel.
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Figure 6.6: Scatter plot of the stellar mass−halo mass relation colour coded according to the
residuals in the formation redshift−halo mass relation. The points in red correspond to haloes
with residuals ∆[log(1 + zf )] less than -0.05, green for haloes with residuals in the range
[−0.05, 0.05] and blue for haloes with residuals greater than 0.05. The red (blue) points lie
preferentially above (below) the mean relation.
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6.6 Summary

Extensive properties of galaxies such as the luminosity and the stellar mass correlate with the

mass of the halo in which they reside. However, there is a certain amount of scatter in these scal-

ing relations which reflects the stochasticity in the galaxy formation and evolution processes.

We investigated the origin of the scatter in the halo mass−stellar mass relationship of galaxies

that reside at the centre of dark matter haloes using the SAM of galaxy formation from DL07.

The stellar mass of galaxies can grow via two processes: (i) by the accretion of the stellar

content of satellite galaxies that merge with it and, (ii) by the formation of stars from its own

reservoir of cold gas and that brought in by its satellites. Mergers of galaxies are often accom-

panied with bursts of star formation. Therefore, merger histories of haloes play a central role

in building up the stellar mass of central galaxies. We explored the effect of the scatter in the

merger histories of haloes of similar masses on the properties of the central galaxies that form

in these haloes.

The merger history of a halo can be characterized by its formation time. We used several

different definitions of the halo formation time and investigated their behaviour with the halo

mass. The halo formation times show different behaviours as a function of mass depending upon

the definition used. However, at fixed halo mass, there is a large scatter in the formation times in

all the definitions. We correlated the residuals around the mean relation of halo formation time

and halo mass with the residuals around the halo mass−stellar mass relationship. We found a

positive correlation between these residuals which suggests that, on average, haloes that form

earlier harbour central galaxies that have more stellar mass. The correlation we find between

these residuals is certainly dependent on the particular SAM that we have used. In future, we

would like to investigate the aspect by considering results from several different SAMs and by

comparing them to each other.

We conclude by pointing out that a correlation between two variables does not necessarily

imply a causal relationship between the two. To give a definite answer to what causes the

scatter in the properties of central galaxies at fixed halo mass, it would be interesting to turn

off by hand the various stochastic components in a SAM (e.g., use the same spin parameter for

each halo) and explicitly quantify the effect each component has on the halo mass−stellar mass

relationship of central galaxies. We aim to perform such an analysis and present its results in a

forthcoming paper.



Chapter 7

Cosmic Transparency

This research work originated from a Galaxy Coffee talk given by David Hogg when he was

visiting MPIA last summer. The contents of this chapter are entirely based upon the article

More et al. (2009a) which has been accepted for publication in the Astrophysical Journal. The

reference is

More, S., Bovy, J., & Hogg, D. 2009, ApJ, in press, arXiv:0810.5553

7.1 Introduction

The transparency of the Universe is extremely good. A typical astronomical camera has a

shutter whose thickness is measured in microns; that shutter is far more opaque than the entire

line of sight to the majority of extragalactic sources, even at extremely high redshifts, despite—

in many cases—considerable column depths of dark matter, plasma, gas, and dust. There are,

however, very few quantitative measures of the transparency with contemporary astronomical

data.

There are several sources for photon attenuation that are clustered with matter. For exam-

ple, as stars eject heavy elements, they also eject photon-absorbing ash (called “dust”). The gas

and plasma in and around galaxies absorbs, scatters, and re-emits at longer wavelengths some

fraction of incident radiation. More speculatively, if the dark matter is an axion or axion-like

particle, it will in general have photon interactions, which can in principle produce effective ab-

sorption of photons in regions of high dark matter density and high magnetic fields. The sources

of attenuation—such as these—that are clustered with matter will be correlated with galaxies

and large-scale structure, and can be found with “angular difference” measurements that com-

pare the apparent properties of sources whose lines of sight have different impact parameters

with the correlated structure.

The Sloan Digital Sky Survey has permitted very sensitive angular difference measure-

ments, which find that the attenuation correlated with large-scale structure is very small and

consistent with being caused by dust, presumably the dust emitted by the stars in the galaxies

that populate the structure. Measurements in the literature constrain this in visible bandpasses
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at the part in 103 level (Ménard et al. 2008; Bovy et al. 2008). To be specific, these studies con-

strain differences in opacity along different lines of sight caused by absorbers correlated with

galaxies.

It is possible, however, that there might be unclustered or “monopole” sources of atten-

uation, that affect all lines of sight equally, for example if the non-matter contributors to the

cosmological energy-momentum tensor (the “dark energy” in modern parlance) have interac-

tions with photons, or if there are small violations of Lorentz invariance on cosmological scales.

These sources of attenuation are much harder to detect with differential experiments, but they

can be detected by “radial difference” experiments that compare cosmological sources of radi-

ation of known physical properties at different redshifts or radial distances.

A number of different mechanisms have been proposed during the last decade to explain

the observed dimming of type-Ia supernovae (SNeIa; Riess et al. 1998; Perlmutter et al. 1999)

without cosmic acceleration by employing exactly such unclustered sources of attenuation. The

mixing of photons with axions in extragalactic magnetic fields could lead to photons oscillating

into axions with a non-negligable probability over cosmological distances, thus reducing the

flux of SNeIa at large distances (Csáki et al. 2002). Alternatively, “gray” intergalactic dust

could be so gray as to evade detection through its reddening, while still being cosmologically

important because of its overall opacity (Aguirre 1999). In order to account for the observed

SNeIa dimming, these models predict violations of transparency at the order-unity level out to

redshifts of unity (Mörtsell et al. 2002).

Furthermore, even if there are no exotic absorbers in the Universe, it is difficult (and usually

model-dependent) to infer the total mean opacity from any absorbers that have been found

by angular difference experiments. Radial difference and angular difference experiments are

complementary, even when the absorbers are mundane; although radial difference experiments

are usually less precise, they provide irreplaceable information for measuring total opacity.

Radial difference experiments are sometimes known as “Tolman tests” because they are

variants of the test proposed by Tolman (1930) of the expansion of the Universe: a test of

the (1 + z)−4 (where z is redshift) dimming of bolometric intensity (energy per unit time per

unit area per unit solid angle; also called “bolometric surface brightness”) with redshift. The

intensity is closely related to the phase-space density of photons, which is conserved (in a

transparent medium) along the light path; that conservation plus Lorentz invariance implies the

(1 + z)−4 relation: one factor of (1 + z)−1 comes from the decrease in energy of each photon

due to the redshift, another factor comes from the decrease in photons per unit time, and two

more factors arise from the solid-angle effects of relativistic aberration. The Tolman test does

not really test for the expansion of the Universe—the result does not depend on cosmological

model, or even assumptions of isotropy or homogeneity—but rather for the combination of

conservation of photon phase-space density and Lorentz invariance.

In addition to models that violate transparency, there are models that violate Lorentz invari-

ance. Generically these models produce an energy-dependent speed of light and birefringence,
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breaking the perfect non-dispersiveness of the vacuum (Amelino-Camelia et al. 1998; Gambini

& Pullin 1999). These effects generally become larger with increasing energy, and observations

of high-energy sources such as active galactic nuclei (Biller et al. 1999; Aharonian et al. 2008;

Albert et al. 2008) and gamma-ray bursts (Schaefer 1999; Ellis et al. 2006) have shown that the

linear dispersion relation for photons is preserved to good accuracy at these energies. Therefore,

while these models do fail the Tolman test because of their non-trivial dispersion relations, the

effect will be unmeasurably small for low-energy (visible-band) photons.

By far the most precise radial difference test to date has been performed in the radio with

the cosmic background radiation. In contemporary cosmological models, the CBR comes from

redshift ∼ 1100 and is a near-perfect blackbody. The COBE DMR experiment established

that the spectrum and amplitude of this radiation is consistent with the blackbody expectation

at the < 10−2 level at 95-percent confidence (Mather et al. 1994). A source of attenuating

material, unless in perfect thermal equilibrium with the CBR, would tend to change either the

spectrum or the amplitude, so this result provides a very strong constraint on the transparency

at cm wavelengths (Mirizzi et al. 2005). Another test of transparency at cm wavelengths is the

increase in the CMB temperature TCMB according to the relation TCMB ∝ (1 + z). Srianand

et al. (2000) find consistency with a transparent Universe by measuring the CMB temperature

at z = 2.3. Of course, many sources of attenuation are expected to be wavelength-dependent,

so these beautiful results may not strongly constrain the opacity in the visible.

At visible wavelengths, there have been much less precise radial difference tests performed

with galaxies, whose properties would deviate from naive predictions under extreme attenu-

ation. After correcting for the evolution of stellar populations in galaxies, these studies find

consistency with transparency at the 0.5 mag level at 95-percent confidence (Pahre et al. 1996;

Lubin & Sandage 2001), which correspond to optical depth limits < 0.5 out to redshift z ∼ 1.

Unfortunately, the precision of these tests is not limited by the precision of the measurements,

but rather by the precision with which the evolution of galaxy stellar populations is known; the

results will not be improved substantially with additional or more precise observations.

Another test of transparency at visible wavelengths involves the measurement of the Cosmic

Infrared Background (hereafter CIB). The absorption of visible photons by a diffuse component

of intergalactic dust and its re-emission in the infrared contributes to the CIB. The amount of

dust required to explain the systematic dimming of SNeIa would produce most of the observed

CIB (Aguirre & Haiman 2000). However, discrete sources (e.g., dusty star-forming galaxies)

also emit in the infrared and account for almost all of the CIB, strongly constraining the role

of dust in the dimming of SNeIa. Any constraint on the transparency from the CIB requires a

careful subtraction of the discrete sources (Hauser & Dwek 2001).

The Tolman test can be re-written as a relationship among cosmological distance measures.

There are several empirical definitions of distance in cosmology (e.g., Hogg 1999); the most im-

portant for contemporary observables are the luminosity distance DL and the angular diameter

distance DA. The luminosity distance DL to an object is defined to be the distance that relates
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bolometric energy per unit time per unit area S (flux) received at a telescope to the energy per

unit time L (luminosity or power) of the source, or

S =
L

4πD2
L

. (7.1)

The angular diameter distance DA is the distance that relates the observed (small) angular size

Θ measured by a telescope to the proper size R of an object, or

Θ =
R

DA
. (7.2)

Because the ratio of flux to the solid angle is essentially the intensity, the (1 + z)−4 redshift-

dependence of the intensity is reflected in these distance measures by

DL = (1 + z)2DA . (7.3)

Both distance measures are strong functions of world model, but this relationship between

them—known sometimes as the “Etherington relation” (after Etherington 1933, who showed

that the result is valid in arbitrary spacetimes)—depends only on conservation of phase-space

density of photons (transparency) and Lorentz invariance. Fortunately, for some fortuitous types

of objects, these distances can be measured nearly independently.

A test of this type for transparency has been proposed and carried out previously (Bassett &

Kunz 2004a,b), with luminosity distances from SNeIa and angular diameter distances estimated

from FRIIb radio galaxies, compact radio sources, and x-ray clusters (Uzan et al. 2004; Jackson

2008). The results were imprecise because there are many astrophysical uncertainties in the

proper diameter estimates of these exceedingly complex astrophysical sources.

In the contemporary adiabatic cosmological standard model, there is a feature in the dark-

matter auto-correlation function (or the power spectrum) corresponding to the communication

of density perturbations by acoustic modes during the period in which radiation dominates

(Peebles & Yu 1970; Eisenstein et al. 2005). This feature has a low amplitude in present-

day structure (that is, the distribution of galaxies), but because it evolves little in comoving

coordinates, it provides a “standard ruler” for direct measurement of the expansion history. A

measurement of the baryon acoustic feature (BAF) in a population of galaxies at a particular

redshift provides a combined measure of the angular diameter distance to that redshift (from the

transverse size of the feature) and the Hubble Constant or expansion rate at that redshift (from

the line-of-sight size of the feature). As we discuss below, as signal-to-noise improves, the

BAF can be used to measure the angular diameter independently of the local Hubble rate. Most

importantly, because the BAF arises from extremely simple physics in the early Universe when

the growth of structure is linear and electromagnetic interactions dominate, the BAF measures

the angular diameter distance with far fewer assumptions than any method based on complex

astrophysical sources in the highly non-linear regime.
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At the same time, SNeIa have been found to be standard — or really “standardizable” —

candles, which can be used to make an independent direct measurement of the expansion history

(Baade 1938; Tammann 1979; Colgate 1979; Riess et al. 1998; Perlmutter et al. 1999). Up to an

over-all scale and some uncertainties about the intrinsic spectra and variability among SNeIa, a

collection of SNeIa measure the luminosity distance.

Given overall scale uncertainties, the most robust test of global cosmic transparency that can

be constructed from these two distance indicators is a measurement of the ratio of the distances

to two redshifts z1 and z2. That is, transparency requires

DL(z2)
DL(z1)

=
[1 + z2]2

[1 + z1]2
DA(z2)
DA(z1)

. (7.4)

This expression cancels out overall scale issues and is independent of world model. We perform

a very conservative variant of this test below, where we measure the left-hand side with SNeIa

and the right-hand side with the BAF, marginalizing over a broad range of world models.

The tests presented here are not precise, simply because at the present day BAF measure-

ments are in their infancy, and we make use of no cosmological data other than the BAF and

SNeIa. As we discuss below, when these measurements are made at higher redshifts and with

higher precisions, our limits on transparency and Lorentz invariance will improve by orders of

magnitude. Eventually they may be limited not by the data quality but by the cosmic variance

limit on the BAF measurement itself (Seo & Eisenstein 2007).

7.2 Data, Procedure, and Results

In surveys to date, where the BAF is measured at low signal-to-noise, the optimal extraction of

the signal best constrains not the angular diameter distance directly, but rather a hybrid distance

DV

DV =
[
c z [1 + z]2D2

A

H(z)

]1/3

, (7.5)

where DA is the angular diameter distance and H(z) is the Hubble expansion rate (velocity per

unit distance) at redshift z (Eisenstein et al. 2005).

Using data from the Sloan Digital Sky Survey and the Two Degree Field Galaxy Redshift

Survey, the power spectrum and BAF have now been measured in samples of massive, red

galaxies at two different redshifts: z = 0.20 and z = 0.35. The measured BAF at each redshift

z translates to a distance measure DV(z). Accounting for covariances in the measurements at

the two redshifts (which are not based on entirely independent data sets), the ratio of distances

is DV(0.35)/DV(0.20) = 1.812± 0.060 (68-percent confidence; Percival et al. 2007). .

We formed two samples of SNeIa data from a recent compilation (Davis et al. 2007). “Sam-

ple A” consists of all 7 SNeIa in the redshift range 0.15 < z < 0.25 and “Sample B” consists

of all 22 SNeIa in the redshift range 0.3 < z < 0.4. We estimate the distance-modulus DM at
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Figure 7.1: The distance-modulus–redshift relation. Filled black squares with uncertainty bars
show the SNeIa data (from Davis et al. 2007) used in Samples A (left panel) and B (right panel).
Open red squares show the distance moduli DM(0.20) = 40.14 ± 0.06 and DM(0.35) =
41.48± 0.07 (68-percent confidence) inferred from the fits to the data.

z = 0.20 and z = 0.35 by fitting a straight line to Samples A and B separately (Fig. 7.1), and

obtain a distance-modulus difference

∆DMobs = DMobs(0.35)−DMobs(0.20) = [1.34± 0.09] mag , (7.6)

where we are indicating that this is an observed value, and might differ from the true value if

there is opacity.

The distance modulus derived from the SNeIa is systematically affected by the presence of

any intervening absorber. Let τ(z) denote the opacity between an observer at z = 0 and a source

at redshift z due to such extinction effects. The flux received from this source is reduced by the

factor e−τ(z). The inferred (“observed”) luminosity distance differs from the “true” luminosity

distance:

DL
2
obs(z) = DL

2
true(z) eτ(z) . (7.7)

The ratio of the luminosity distances at two different redshifts z1 and z2 depends upon the factor

e[τ(0.35)−τ(0.20)]/2. The inferred (“observed”) distance modulus differs from the “true” distance

modulus:

DMobs(z) = DM true(z) + [2.5 log e] τ(z) . (7.8)

Taking differences of distance moduli at the two redshifts:

∆DMobs = ∆DM true + [2.5 log e] ∆τ , (7.9)

where ∆τ ≡ [τ(z2) − τ(z1)]. If the distance indicator from the BAF is unaffected by the
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absorption as we expect, then

∆τ =
ln(10)

2.5

[
∆DMobs − 7.5 log

(
DV(z2)
DV(z1)

)
+ 2.5 log

(
z2 [1 + z1]2H(z1)
z1 [1 + z2]2H(z2)

)]
.

(7.10)

The above equation can be used to determine ∆τ from z = 0.35 to z = 0.20 in light of the

ratio of the distancesDV obtained from the BAF observations (hereafterB) and the difference in

distance moduli obtained from the SNeIa observations (hereafter S) at these redshifts. However,

the last term in the above equation makes the result cosmology-dependent. Therefore, we follow

a Bayesian approach and assign posterior probabilities to 100 uniformly spaced values of ∆τ ∈
[0,0.5] by marginalising over 100×100 ΛCDM cosmologies uniformly spaced in the (ΩΛ,ΩM )
plane with ΩΛ ∈ [0,1] and ΩM ∈ [0,1]. Thus,

P (∆τ |S,B) =
∫

ΩΛ

∫
ΩM

P (ΩΛ,ΩM |B)P (∆τ,ΩΛ,ΩM |S) dΩM dΩΛ , (7.11)

where P (ΩΛ,ΩM |B) and P (∆τ,ΩΛ,ΩM |S) are the posterior probabilities of the set of model

parameters given B and S respectively. We assume that the uncertainties on B and S are Gaus-

sian and calculate the likelihood ofB and S for different sets of parameters in the (∆τ,ΩΛ,ΩM )

space. Assuming flat priors on ΩΛ and ΩM in the ranges 0 < Ω < 1, and flat prior on ∆τ in

the range 0 < ∆τ < 0.5, the posterior probabilities P (ΩΛ,ΩM |B) and P (∆τ,ΩΛ,ΩM |S) are

calculated from the likelihoods of the two datasets. Equation (7.11) yields the posterior for ∆τ ,

marginalized over all world models. Fig. 7.2 shows the posterior P (∆τ |S,B) for the differ-

ence in optical depths between redshifts 0.35 and 0.20 obtained from the procedure outlined

above. The posterior peaks at 0 and yields ∆τ < 0.13 at 95-percent confidence. The result

demonstrates the transparency of the Universe between these two redshifts, although not at high

precision.

The abundance and absorption properties of absorbers can be constrained using the dif-

ference in optical depths measured above. Let n(z) denote the comoving number density of

absorbers, each with a proper cross-section σ(z) at redshift z. The difference in optical depths

between redshifts z1 and z2 is then given by

∆τ =
∫ z2

z1

n(z)σ(z)DH
(1 + z)2

E(z)
dz , (7.12)

where DH is c/H0 and

E(z) ≡ H(z)
H0

=
√

ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ . (7.13)

In detail, the output of this integral depends on world model. For the concordance model,

Hubble Constant H0 = 100h km s−1 Mpc−1, and assuming n(z) and σ(z) to be independent

of redshift, ∆τ measured between redshifts 0.35 and 0.20 constrains nσ < 2× 10−4 h Mpc−1
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Figure 7.2: Posterior distribution of ∆τ between z = 0.35 and z = 0.20 obtained from the
Bayesian analysis described in Section 7.2. The 68, 95 and 99-percent confidence upper limits
are indicated by the corresponding dashed lines.

at 95-percent confidence.

A naive calculation of ∆τ using Equation (7.10) for the concordance ΛCDM model (ΩM =
0.258,ΩΛ = 0.742) obtained from the analysis of the 5-year WMAP data (Dunkley et al.

2009), yields ∆τ = −0.30 ± 0.26 at 95-percent confidence. This shows that there is a slight

tension between the results of current measurements of the BAF and of the SNeIa under the

currently accepted world model. More generally, a similar tension, i.e. a brightening of the SNe,

between measurements of the cosmological parameters by using standard rulers and standard

candles has been reported before (Bassett & Kunz 2004a,b; Percival et al. 2007; Lazkoz et al.

2008). SNe brightening is not impossible in models that involve axion-photon mixing (Bassett

& Kunz 2004b) or chameleon-photon mixing (Burrage 2008) if the corresponding particles

are abundantly produced during SNeIa explosions. However, a negative value of ∆τ could

also indicate the presence of a systematic bias in the distance measurements based upon the

SNeIa brightness or the BAF, e.g., overcorrection for extinction in the host galaxy of the SNeIa

brightnesses or magnification bias in the SNeIa selection (Williams & Song 2004). Note that

the prior, ∆τ > 0, improves the magnitude of the uncertainty on ∆τ (from 0.26 to 0.13). The

95-percent confidence interval shrinks with the prior because we sample only from the rapidly

falling tail of the posterior.

7.3 Future Constraints

In the future, the constraints from both the SNeIa and the BAF observations will improve in

accuracy and will cover a wider redshift range. The Baryon Oscillation Spectroscopic Survey
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(BOSS) is currently underway and plans to measure the BAF in luminous red galaxies at red-

shifts z = 0.35 and z = 0.6. The key improvements would be the larger redshift range and the

power to resolve the BAF both in the line-of-sight direction (constrains H) and the transverse

direction (constrainsDA). This would remove the weak world-model dependence in our present

analysis. The angular diameter distances to these redshifts would be measured to an accuracy

of ∼ 1 percent (http://www.sdss3.org/). In parallel, the Supernovae Legacy Survey (SNLS),

when complete, expects ∼ 700 SNeIa in the redshift range 0 < z < 1.7 (Astier et al. 2006).

The uncertainty on the estimate of the distance moduli to redshifts z = 0.35 and z = 0.6 will

be roughly four times better with the increased numbers. Using the test of the duality relation

described above, ∆τ between z = 0.35 and z = 0.6 would be constrained to better than 0.07
(95-percent confidence), independent of the adopted cosmological model. The constraint on

nσ would become nσ < 5.4× 10−5 h Mpc−1.

BOSS will also use the Ly-α forest in the spectra of bright QSOs to measure the BAF at

redshift z ∼ 2.5 with an accuracy of∼ 1.5 percent. No current or planned SNeIa surveys expect

to detect SNeIa at such a high redshift. However the highest redshift (∼ 1.7) measurements of

DL from the SNLS could potentially be used in conjunction with the DA measurement to get

a constraint on the transparency of the Universe by marginalizing over different world models.

Interestingly, there have been recent efforts to calibrate gamma-ray bursts (hereafter GRBs) as

standard candles and to extend the Hubble diagram to higher redshifts (Lazkoz et al. 2008).

The SNeIa at low redshift and the GRBs at high redshifts can provide a measurement of the

difference between the DM between redshifts 0.35 and 2.5. We optimistically assume that the

difference in the DM to these redshifts can be measured with an accuracy of ∼ 0.1 similar to

the one obtained from the analysis of SNeIa at z = 0.2 and z = 0.35 in Section 7.2. These

measurements shall then constrain ∆τ between redshifts 2.5 and 0.35 to an accuracy of 0.2 with

95 percent confidence. This translates into an accuracy on nσ of ∼ 1.1× 10−5 h Mpc−1.

In the optimistic future, the uncertainty on DL(z) could, in the absence of damaging sys-

tematics, diminish arbitrarily as the number of observed SNeIa grows. However, the precision

of any BAF measurement is limited by sample variance (the number of independent wave-

lengths of a given fluctuation that can fit in the finite survey volume is limited), even when the

uncertainty caused by incomplete sampling of the density field (shot noise) is negligible (Seo &

Eisenstein 2007). The sample variance error goes down with the square root of the volume of the

survey. To calculate a representative limit, we consider an optimistic all-sky survey covering the

redshift range 2.45 < z < 2.55. Such a survey can be used to determineDA(z = 2.5) to a frac-

tional accuracy of ∼ 0.004 (95-percent confidence). This will ultimately constrain the optical

depth to redshift z = 2.5 to τ < 0.008 and hypothetical absorbers to nσ < 4× 10−7 hMpc−1.
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7.4 Discussion

We have advocated and analyzed the expected future performance of a simple Tolman test or

test of the Etherington relation, that is, that the luminosity distance is larger than the angular

diameter distance by two powers (1 + z), using type Ia supernovae to measure the luminosity

distance and the baryon acoustic feature to measure the angular diameter distance. We have

shown that this test will eventually provide very precise measurements of the conservation of

photon phase-space density.

We performed the test with the limited data available at the present day. We used only the

ratio of distances at redshifts of z = 0.20 and 0.35 to remove uncertainties about the over-

all scale. We find consistency with a Lorentz-invariant, transparent Universe. Our results are

consistent with all other measures of transparency to date. This is in part because they are not

extremely precise. Our Tolman test also assumes that the measurements of the SNeIa and of

the BAF are not affected by systematic biases with magnitudes that are a significant fraction of

the magnitudes of the uncertainties. Our test is limited by the precision of the BAF measure-

ment and the redshift range over which it has been measured. As we have shown, experiments

planned and underway will increase the redshift range and improve the overall precision by an

order of magnitude.

The most precise transparency measurements at visible wavelengths today are statistical

angular difference measurements, which can only constrain attenuation correlated with specific

types of absorbing structures in the Universe (e.g., MgII absorbers, Ménard et al. 2008; clusters

of galaxies, Bovy et al. 2008). The simple Tolman test performed here limits the full, unclus-

tered, line-of-sight attenuation between two redshifts.

The technique used in this paper provides a test of transparency that is not very sensitive to

astrophysical assumptions, both because the BAF has a straightforward origin during an epoch

in which growth of structure is linear and the dominant physics is well understood, and because

there is no significant “evolution” with cosmic time for which we must account. This is in

contrast to other methods for measuring angular diameter distances and brightnesses, where

there are no precisely “standard” rulers, and evolution is dramatic with redshift. On the other

hand, the ultimate precision of any test of this type may come from the finite comoving volume

in the observable Universe. Cosmic variance will dominate the BAF error budget eventually.

The SNeIa samples have been corrected as best as possible for line-of-sight extinction by

fitting an empirical correlation of extinction with a change in color. However, there are a few

problems with this approach. First, this approach cannot correct for “gray” dust (Aguirre 1999).

Second, this approach can also not correct for a monopole component; it only corrects for

components that show variations around the mean level. Third, these corrections will be wrong

or fooled if there are intrinsic relationships between color and luminosity for SNeIa. Fourth, the

empirical corrections found by these projects tend to be odd in the context of what is expected

from the reddening and attenuation by dust in the Milky Way (Jöeveer 1982; Conley et al.

2007; Ellis et al. 2008; Nobili & Goobar 2008). The Tolman test is sensitive to any kind of
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absorber and makes no assumptions about the wavelength-dependence or fluctuations of the

opacity. Given that the SNeIa results have been corrected for a color–brightness relation, the

test presented here looks at the mean opacity towards SNeIa of the fiducial color to which the

compiled SNeIa have been corrected.

The best-fit value of ∆τ obtained from our analysis is negative, i.e. SNeIa are brighter than

expected from the angular diameter distance measurements using the BAF. A conversion of

dark sector particles into photons could provide a physical explanation for this result. However,

a systematic bias in either the SNeIa or BAF experiments cannot be ruled out and the Tolman

test is a useful tool to identify such biases.

At present, because the differences among competitive world models are not large over the

redshift range 0.20 < z < 0.35, our test is not yet sensitive enough to rule out extreme axion

or “gray” dust models that reconcile SNeIa results with an Einstein-de Sitter Universe by using

effective opacity to adjust the inferred redshift–luminosity-distance relation. However, these

models will all be severely constrained within the next few years (see also Corasaniti 2006).
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Chapter 8

Summary

It is now a well established fact that most of the matter in the Universe is dynamically cold,

collisionless and dark. It forms an ever-changing cosmic web of gravitationally bound structures

called haloes. Galaxies form and evolve in these dark matter haloes and are shaped by various

astrophysical processes which depend upon the properties of the dark matter halo they reside

in. A precise knowledge of the connection between galaxies and their dark matter haloes is

therefore crucial to improve our understanding of the physics of galaxy formation. In this

thesis, we have established scaling relations between the mass of dark matter haloes and the

properties of galaxies that reside at their centre.

Satellite galaxies are excellent tracers of the dark matter haloes around their central galaxies.

The kinematics of these satellite galaxies reflect the depth of the potential well in which they

orbit. Therefore, they can be used to measure the mass of the halo of central galaxies. A large

number of satellite galaxies is required to precisely measure the kinematics in individual haloes,

a condition which is easily met in cluster-sized haloes, but is rarely satisfied in haloes of low

mass. Under the assumption that central galaxies with similar properties reside in similar mass

haloes, one can stack central galaxies with similar properties, such as luminosity or stellar mass,

and combine the velocity information of their satellites that will allow a precise measurement

of the kinematics of satellite galaxies. However, galaxy formation is a stochastic process and

one expects a scatter in the relation between central galaxy properties and halo masses. This

implies that the stacking procedure results in combining the kinematics of satellite galaxies in a

wide range of halo masses. This complicates the interpretation of the kinematics signal.

Most studies that use the kinematics of satellite galaxies to probe the halo masses have made

the simplified assumption that the scatter in the halo masses of stacked centrals is negligible. In

this thesis, we have demonstrated that the inference of the halo masses from the kinematics of

satellite galaxies faces a degeneracy problem. The average relation between the halo mass of

central galaxies and their properties cannot be inferred without the knowledge of the scatter in

this relation. We have presented a novel method that can break this degeneracy. The method

involves the measurement of the kinematics of satellite galaxies using two different weighting

schemes: the satellite-weighting scheme and the host-weighting scheme. The ratio of the mea-

119
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surements in these two different schemes is sensitive to the scatter in the masses of the stacked

haloes. Therefore, a simultaneous modelling of the kinematics obtained with these two weight-

ing schemes can be used to measure both the average and the scatter in the scaling relation

between halo mass and the property of the central galaxy used for stacking.

The interpretation of the kinematics of stacked centrals is also complicated as a result of var-

ious selection effects which can bias the final determination of the halo masses. To understand

these biases carefully, a realistic mock catalogue of galaxies was constructed and analysed. We

compared the strict isolation criteria that have been abundantly used in the literature to select

central and satellite galaxies with our adaptive iterative criteria. The comparison shows that the

strict isolation criteria result in a preferential selection of low mass haloes. Another selection

bias that has been previously neglected is due to the fact that the kinematics of satellite galaxies

is always averaged over those haloes that host at least one satellite. This bias preferentially

misses low mass haloes. This implies that the kinematic studies carried out previously have

selected a sample which is not representative for the entire population of galaxies. The scaling

relations derived so far are, at best only valid for the sample of the isolated galaxies. We have

improved this situation and presented an analytical model which accounts for all these selection

effects. Tests using the mock catalogue have shown that the method proposed and used by us in

this thesis can be used to identify a representative population of central galaxies from a redshift

survey, quantify the kinematics of their satellites and use this kinematic information to reliably

infer the scaling relation between halo mass and central galaxy properties.

This method was then applied to data from the SDSS galaxy catalogue. The velocity

dispersion-luminosity relation for central galaxies was measured from the data and used to infer

the mean and the scatter of the halo mass−luminosity relation of central galaxies (MLR). The

results show that brighter central galaxies on average reside in more massive haloes and that the

scatter in halo masses is an increasing function of central galaxy luminosity. The investigation

of the colour dependence of the MLR showed that at fixed luminosity, red galaxies on average

occupy haloes that are more massive than their blue counterparts. A similar method was also

applied to infer the halo mass−stellar mass relationship of central galaxies (MSR) and its colour

dependence. Central galaxies that have more stellar mass on average reside in more massive

haloes and the scatter in halo masses increases as a function of the stellar mass too. The analysis

of satellite kinematics around centrals separated by colour shows that at fixed stellar mass, the

red and the blue centrals on average occupy similar mass haloes.

The existence of scatter in halo masses at fixed central galaxy property implies that haloes of

equal masses harbour central galaxies with a scatter in their properties. To investigate the origin

of this stochasticity in galaxy formation, a semi-analytical model was analysed. Haloes of sim-

ilar masses show a large scatter in their formation times. Our analysis shows that the residuals

around the average formation time−halo mass relation positively correlate with the residuals

around the halo mass−stellar mass relationship predicted by the semi-analytical model. This

implies that haloes that form early, on average, host central galaxies which contain more stel-
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lar mass. Thus, the scatter in the merger histories of haloes is a plausible explanation for the

stochasticity of galaxy formation. The dependence of this statement on the particulars of the

semi-analytical model are under investigation and a subject of future work.

The transparency of the Universe is also crucial to understand the galaxy-dark matter con-

nection as the observed properties of galaxies can be biased if the Universe is significantly

opaque. Transparency can be affected by intergalactic dust or interactions between photons

and the dark sector. Such effects cause a deviation from the Etherington relation which relates

the distances measured using standard candles to the distances measured using standard rulers

at a particular redshift. A test of this relation was carried out by using the currently available

observations of these distance measures to obtain a quantitative measure of the transparency of

the Universe. With the limited amount of data available, we find consistency with a transparent

Universe between redshifts 0.2 and 0.35. We analyzed the expected future performance of this

test and showed that as better distance measurements covering a wider range in redshift become

available, the test can provide a very precise measurement of the transparency of the Universe.

Such precise measurements ultimately can also be used to limit the cross-section of interactions

of the photons with the dark sector.

8.1 Future possibilities

8.1.1 Properties of Satellite Galaxies

In this thesis, we have used satellite galaxies to probe the connection between the properties of

their central galaxies and dark matter haloes. However, we did not investigate various proper-

ties of satellite galaxies themselves. In the hierarchical structure formation scenario, satellite

galaxies are interesting in their own right. The satellite galaxies may be affected due to various

physical process, such as dynamical friction, effects due to tidal fields, ram pressure stripping,

harrassment and strangulation (see e.g., Chandrasekhar 1943; Gunn & Gott 1972; Farouki &

Shapiro 1980, 1981; Larson et al. 1980; Byrd & Valtonen 1990). It would be interesting to

investigate the effects that these processes have on the properties of satellite galaxies.

The satellite galaxies selected in our samples can be used to study the abundance and radial

distribution of satellites in haloes. In Chapter 3, we have shown that our selection criteria is able

to recover the projected number density distribution of satellite galaxies around bright centrals

quite accurately. An analysis of how these number density distributions depend on the colour

of the satellite galaxies and the luminosities/stellar masses of the centrals can be carried out

with the help of our sample. Very preliminary analyses indicate that at fixed luminosity of

centrals, the number density distribution of blue satellites may be less concentrated than that of

the red satellite galaxies. However, the effects of fiber collisions and stacking biases need to be

carefully checked before interpreting these distributions. Our sample of satellites can also be

used to analyse the dependence of the blue satellite fraction on the colour and luminosity/stellar

mass of the centrals.



122 8. SUMMARY

In this thesis, we have always focussed on the aperture averaged velocity dispersions. How-

ever, it would also be interesting to study the radial decline of the velocity dispersions and

its dependence on the satellite-colour. Other interesting studies such as the measurements of

the higher order moments of the velocity distribution and their colour dependence can also be

carried out to investigate the orbital properties of satellite galaxies.

8.1.2 Shapes of Dark Matter Haloes

The existence of triaxial dark matter haloes is a firm prediction of the ΛCDM theory. These

triaxial haloes should appear flattened when seen in projection. If observed, the flattening of

haloes at large radii has a potential to discriminate between alternative theories of gravity such

as MOND because the potentials at large radii predicted by such theories are isotropic far away

from the stellar content of galaxies. Statistical measurements of dark matter halo shapes often

rely on the statistical alignment of the dark matter halo axis and the ellipticity of the central

galaxies that reside in them. There have been recent claims of the detection of ellipticities of

dark matter haloes inferred from the modelling of the azimuthal dependence of the weak lensing

signal around galaxies that are stacked by aligning their major axes, (see e.g., Hirata et al. 2004;

Parker et al. 2007). However, there exist several sources of systematics which can contaminate

this signal and lead to a spurious detection (Mandelbaum et al. 2006a). This makes it important

to have alternative confirmations of these results. It would be interesting to study the azimuthal

dependence of the velocity dispersions around central galaxies stacked by their properties and

aligned along their major axis and its interpretation.

8.1.3 Redshift Evolution of the Halo Occupation Distributions

The halo occupation distribution (HOD) is the end result of the complex baryonic physics in-

volved in the formation of galaxies. The halo mass-to-light ratio and the halo mass-to-stellar

mass ratio obtained from the HOD quantify the efficiency of dark matter haloes to turn the

baryons into stars (see e.g., Yang et al. 2003). The halo occupation distribution of galaxies is

expected to evolve with redshift. The time evolution of the HOD can reflect interesting changes

in the physics that takes place in dark matter haloes of different masses. Therefore, it is impor-

tant to obtain observational constraints on such evolution. Such constraints have the ability to

uncover new aspects in the physics of galaxy formation.

The satellite kinematics analysis presented in this thesis can be applied to high redshift

datasets such as that provided by the DEEP2 redshift survey. Conroy et al. (2007) have already

used the kinematics of satellite galaxies to derive the mass-to-light ratio (and the mass-to-stellar

mass ratio) of central galaxies in SDSS and DEEP2. They use these results to constrain the

evolution of the mass-to-light ratios. In light of the fact that their criteria were tuned to only

select isolated central galaxies and their method to analyse the kinematics of satellites may

have been systematically biased due to simplistic assumptions (see Section 5.5.2), it would be



8.1. FUTURE POSSIBILITIES 123

certainly interesting to revisit some of their conclusions on the redshift evolution of the mass-

to-light ratio. We are currently carrying out such an analysis. Preliminary investigation seems

to indicate that at high redshift the small number statistics will be a big problem. It may be

possibly to overcome this problem by an appropriate tuning of the parameters of the selection

criteria and/or by using flux limited samples.

I would like to conclude by pointing out the quotation from the Brihadaranyaka Upanishad

that was used to open this thesis. It is perfectly possible that dark components in our current

theory are figments of our imagination and a result of our ignorance about nature. The spirit of

curiosity and a constant questioning of our beliefs should always be kept alive to take us from

ignorance to the Truth, and from darkness towards Light.
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Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2006, ApJS, 162, 38

Aguirre, A. 1999, ApJ, 525, 583

Aguirre, A. & Haiman, Z. 2000, ApJ, 532, 28

Aharonian, F., Akhperjanian, A. G., Barres de Almeida, U., et al. 2008, Physical Review Letters,

101, 170402

Akerib, D. S., Alvaro-Dean, J., Armel, M. S., et al. 2003, PRD, 68, 082002

Akerib, D. S., Alvaro-Dean, J., Armel-Funkhouser, M. S., et al. 2004, Physical Review Letters,

93, 211301

Albert, J., Aliu, E., Anderhub, H., et al. 2008, Physics Letters B, 668, 253

Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V., & Sarkar, S. 1998,

Nature, 393, 763

Astier, P., Guy, J., Regnault, N., et al. 2006, A&A, 447, 31

Baade, W. 1938, ApJ, 88, 285

Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, 600, 681

Barnes, J. & Efstathiou, G. 1987, ApJ, 319, 575

Bassett, B. A. & Kunz, M. 2004a, ApJ, 607, 661

Bassett, B. A. & Kunz, M. 2004b, PRD, 69, 101305

Baugh, C. M., Cole, S., Frenk, C. S., & Lacey, C. G. 1998, ApJ, 498, 504

Becker, M. R., McKay, T. A., Koester, B., et al. 2007, ApJ, 669, 905

Bekenstein, J. D. 2004, PRD, 70, 083509

127



128 BIBLIOGRAPHY

Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 289
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