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Zusammenfassung

In der vorliegenden Arbeit wird ein Verfahren vorgestellt, die kosmische Expansionsrate und den
linearen Wachstumsfaktor, der die kosmische Strukturbildung beschreibt, aus verschiedenen kos-
mologischen Messungen ohne Bezug auf ein besonderes Friedmann-Modell und seine Parameter
einzuschränken. Zuerst wurde eine modellunabhängige Rekonstruktionstechnik entwickelt, um
die Expansionsrate aus Daten für die Leuchtkraftdistanz abzuschätzen: Sie konvertiert die In-
tegralbeziehung zwischen der Expansionsfunktion und der Leuchtkraftdistanz in eine Volterra-
Integralgleichung, welche bekanntermaßen eine eindeutige Lösung besitzt, die als Neumann-Reihe
beschrieben werden kann. Indem Observable, wie die Leuchtkraftdistanzen zu Supernovae vom
Typ Ia, in eine Reihe orthonormaler Funktionen entwickelt werden, kann die Integralgleichung
gelöst und die kosmische Expansionsrate innerhalb der Fehlergrenzen der Daten bestimmt werden.
Die Leistungsfähigkeit des Verfahrens wird durch Anwendung auf synthetische Daten mit steigen-
der Komplexität demonstriert, die ein künstliches Modell mit einem plötzlichen Sprung in der
Expansionsrate beinhalten. Unter der zusätzlichen Annahme von lokaler Newton’scher Dynamik
kann die Wachstumsrate der kosmischen Strukturbildung aus der Abschätzung der Expansionsrate
auf einem Rotverschiebungsintervall, in dem Supernovae zugänglich sind, berechnet und für die
Analyse von Daten der kosmischen Scherung benutzt werden. Kombiniert mit einer traditionellen
Analyse desselben Datensatzes, die auf dem ΛCDM-Modell basiert, erlaubt dieser Ansatz, die Be-
dingungen an den Parameter Ωm, der die kosmische Materiedichte beschreibt, und an σ8, der die
Normalisierung des Leistungsspektrums parametrisiert, zu stärken. Außerdem kann das Verfahren
zur Rekonstruktion der Expansionsrate aus Daten der Winkeldurchmesserdistanz von Messungen
der Wellenlänge baryonischer akustischer Oszillationen angewendet werden. Eine Optimierung des
Satzes orthonormaler Funktionen, die im Algorithmus zum Einsatz kommen, wurde mittels einer
Hauptkomponentenanalyse durchgeführt.

Abstract

This work proposes a method to constrain the cosmic expansion rate and the linear growth factor
for structure formation from different cosmological measurements, without reference to a specific
Friedmann model and its parameters. First, a model-independent reconstruction technique to
estimate the expansion rate from luminosity distance data has been developed: it converts the
integral relation between the expansion function and the luminosity distance into a Volterra integral
equation, which is known to have a unique solution in terms of a Neumann series. Expanding
observables such as the luminosity distances to type-Ia supernovae into a series of orthonormal
functions, the integral equation can be solved and the cosmic expansion rate recovered within the
limits allowed by the accuracy of the data. The performance of the method is demonstrated through
application to synthetic data sets of increasing complexity, including a toy model with a sudden
transition in the expansion rate. With the additional assumption of local Newtonian dynamics,
the growth rate for linear structure formation can be calculated from the estimate of the expansion
rate, in the redshift interval over which supernovae are available, and employed in the analysis of
cosmic shear data: combined to a traditional, ΛCDM analysis of the same data set, this approach
allows to tighten the constraints on the matter density parameter, Ωm, and the normalisation of
the power spectrum, σ8. Furthermore, the method to reconstruct the expansion rate can be applied
to angular-diameter distance data from baryon acoustic oscillation experiments; an optimisation
of the orthonormal function set employed in the algorithm has also been performed, by means of
a principal component analysis.
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Introduction

The past decade witnessed an authentic revolution in the field of observational cos-

mology, with the collection and analysis of huge amounts of data, probing with

unprecedented precision the spatial distribution and time evolution of several differ-

ent astronomical objects, based on completely different physical mechanisms. The

outcome of this amazing experimental effort resulted in a completely new awareness

of the constituents and the dynamics of the universe.

The first hint of evidence that the cosmic expansion has recently entered a phase

of acceleration was provided by measurements of the distance-redshift relation from

type-Ia supernovae (Riess et al., 1998; Perlmutter et al., 1999), and possibly ex-

plained invoking the existence of a cosmological constant, i.e. a component with

negative pressure, thus able to drive such an accelerated expansion. After this first

claim, results from a plethora of different observations followed: outstanding mea-

surements of temperature anisotropies in the cosmic microwave background (Spergel

et al., 2003, 2007; Komatsu et al., 2009) and of the large-scale matter power spec-

trum from galaxy redshift surveys (Cole et al., 2005; Percival et al., 2007b), along

with observations of the evolution of galaxy clusters (Allen et al., 2003, 2004), the

detection of the baryonic acoustic feature in the galaxy distribution (Eisenstein

et al., 2005; Percival et al., 2007a) and of the cosmic shear signal due to the gravita-

tional lensing effect of the large scale structure on the background galaxy population

(Hoekstra et al., 2006; Semboloni et al., 2006; Fu et al., 2008), all point towards what

is currently referred to as the “concordance” model for cosmology.

Based on this impressive amount of observational information, the universe is
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described as composed by only a tiny amount of baryonic matter: a quarter of it

is made up by a non-electromagnetically interacting component, the so-called dark

matter, and to account for the remaining three quarters one has to resort to Ein-

stein’s cosmological constant, or to even more exotic explanations (quintessence and

modified gravity, just to name a few) which go under the name of dark energy.

The challenge for the next decade is to investigate the very nature of this dark

energy: several ambitious surveys are currently being realised and planned, including

space-based projects, with the goal of understanding whether the dark energy is

truly a cosmological constant or evolves in time, whether an exotic explanation is

required to describe its dynamics and, if that is the case, which theoretical model

would better suit the observations. The possible scenarios from a theoretical point

of view are many, but it is still possible to say only very little to discern amongst

them. Even with the high accuracy promised by future data sets, the possibility of

introducing theoretical prejudice in the data analysis, thus obtaining biased results,

is not at all ruled out (Maor et al., 2001; Bassett et al., 2004).

In this rather obscure context, model-independent techniques to analyse the data

without assuming a particular model for the dark energy stand out as a fundamental

approach to reconstruct the cosmic functions underlying the measurements without

being driven by a bias coming from theory (see, e.g. Starobinsky 1998; Huterer &

Turner 1999, 2000; Tegmark 2002; Wang & Tegmark 2005; Huterer & Starkman

2003; Simpson & Bridle 2006).

The two fundamental functions in cosmology are the cosmic expansion rate and

the growth factor for linear density perturbations: any measurement involving dis-

tances or the distribution of matter on large scale carries information about them.

The information is clearly encoded in the measurements in different ways, depending

on the specific physical properties of the objects under consideration: the fact that,

however, the underlying functions are the same, suggests the possibility of devel-

oping a common formalism in order to estimate them from different observational

probes.



Introduction III

The work developed in this thesis has exactly this purpose: to parameterise the

contribution of the expansion rate and the growth factor to different cosmological

measurements, namely type-Ia supernovae, cosmic shear and baryon acoustic oscil-

lations, and to reconstruct them in a model-independent way.

The central object of this work is a reconstruction technique, which provides an

estimate of the cosmic expansion rate from luminosity-distance data, without any

reference to Friedmann models. The only two assumptions the method relies on

are the following: the universe is on average homogeneous, isotropic and topolog-

ically simply connected, and the expansion rate is reasonably smooth. The core

of the method is the transformation of the integral relation between the expansion

function and the luminosity distance into a Volterra integral equation of the second

kind, whose solutions are known to exist and can be uniquely described in terms of

a convergent Neumann series. This guarantees that the method returns the unique

expansion rate of the universe within the accuracy limits allowed by the data. In

order to be solved, the integral equation must be fed with the derivative of the data:

hence, the data need to be appropriately smoothed, and this is achieved via expan-

sion into a basis of orthonormal functions. The basis is in principle arbitrary, but it

can be optimised in order to concentrate all the relevant information in a very small

number of parameters (Mignone & Bartelmann, 2008).

Additionally, in the assumption of local Newtonian dynamics, the linear growth

factor of density perturbation can be obtained as a solution of a second-order differ-

ential equation which essentially depends on the expansion rate and its first deriva-

tive. Empirical knowledge of the expansion rate, even based on data available in a

finite redshift interval, can be thus translated into an estimate of the growth factor,

valid only in the aforementioned redshift interval but independent of any parameter-

isation of the energy content in the universe. Hence, the method developed in this

work represents a tool to extract information from purely geometric tests, such as

those probing the distance-redshift relation, and to insert into the analysis of other

cosmological probes, involving the large-scale distribution of matter in the universe,
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thus the growth of structure.

The work is organised as follows: in Chapter 1 the main features of the standard

cosmological model are summarised, with particular emphasis on the two functions

mentioned above, namely the cosmic expansion rate and the linear growth factor of

density perturbations; Chapter 2 contains a review of the main observational tests,

which represent evidence in favour of the so-called “concordance” model, namely

type-Ia supernovae, baryonic acoustic oscillations, big-bang nucleosynthesis, cosmic

microwave background and cosmic shear. Chapter 3 presents the framework from

which this work originates: along with the main theoretical explanations to the

observed accelerated trend of cosmic expansion, the current and future efforts ex-

erted by the observational community are described. In this context, the need for a

model-independent approach to cosmological data sets is highlighted.

The model-independent technique to reconstruct the cosmic expansion rate from

luminosity-distance data is detailed and demonstrated with several examples in

Chapter 4: applications to synthetic and real samples of supernovae of type-Ia

are shown, along with its capability to recover sudden irregularities in the expan-

sion function. The application of this empirical estimate of the expansion rate to

evaluate the linear growth factor is discussed in Chapter 5: a method to analyse cos-

mic shear data employing both these reconstructed quantities in order to constrain

the matter density parameter and the normalisation of the power spectrum is also

presented. Chapter 6 contains two possible extensions of the model-independent

reconstruction technique: first, an application to angular-diameter distances esti-

mated from baryon acoustic oscillation data is illustrated; then, an optimisation of

the orthonormal function set employed in the reconstruction, by means of a principal

component analysis, is discussed. Finally, the conclusions of this work are outlined

in Chapter 7.



Chapter 1

Unfolding the Universe:

the Expansion Rate and the

Growth of Structure

In this chapter, the theoretical background for what is currently acknowledged as

the standard cosmological model is presented, with particular emphasis on two fun-

damental functions, namely the cosmic expansion rate and the growth rate of cosmic

structures. These two functions are extremely important, being the mathematical

objects underlying all cosmological measurements, thus they influence any constraint

that can be inferred from observations. Some reference textbooks have been used

throughout the first two chapters, namely Coles & Lucchin (2002), Dodelson (2003),

Weinberg (2008), as well as some review papers (Bartelmann, 2009; Carroll, 1997).

1.1 The Robertson-Walker Metric

Cosmology studies the evolution of the universe on very large scales, and on these

scales the universe is governed solely by gravity. In the framework of general rela-

tivity, the best current theory for gravity, the space-time is characterised as a four-

dimensional manifold, with a metric, gµν , which is a dynamical field, i.e. space-time

dependent. The dynamics of the metric is governed by Einstein’s field equations,
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which connect the metric to the energy and matter in the universe.

In order to fully specify the metric, two fundamental assumptions are usually

made, which are justified on observational grounds: (1) when averaged over suf-

ficiently large scales, the spatial properties of the universe are isotropic, i.e. no

preferred direction exists; (2) our position in the universe is by no means preferred

to any other, also known as Cosmological Principle. Because of the latter assump-

tion, the first one must hold for any point in the universe, hence the universe is also

homogeneous.

The metric tensor gµν is symmetric, thus only 10 of its 16 components are inde-

pendent. The assumption that space is isotropic and homogeneous is clearly not true

in the locally observed universe, but holds on large scales, and helps simplifying the

specification of the metric: it allows, in fact, to find a preferred class of observers,

to whom the universe appears isotropic. Isotropy requires that only its time-time

and space-space components are non-zero, i.e. g0i = gi0 = 0, otherwise a particular

direction in space could be identifies, related to the three vector vα with components

g0α; furthermore, clock synchronisation arguments for these fundamental observers

imply g00 = c2. The invariant line element ds is reduced to

ds2 = c2dt2 + gijdx
idxj , (1.1)

which allows a particular foliation of the four-dimensional space-time into spatial

hyper-surfaces which are homogeneous and isotropic at a given time. The spatial

hyper-surfaces can be scaled by a function, a(t), which depends on time only because

of homogeneity, and they have to be spherically symmetric because of isotropy.

Having defined polar coordinates (χ, θ, φ), where χ is the radial coordinate and

(θ, φ) are the polar angles, the line element can be written in its most general form

as

ds2 = c2dt2 − a2(t)
[
dχ2 + f 2

K(χ)
(
dφ2 + sin2 θdφ

)]
; (1.2)
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Figure 1.1: The expansion of the universe: the comoving distance between points on the grid

stays constant as expansion proceeds, whereas the physical distance is proportional to the comiving

distance times the scale factor, thus increasing as time evolves. From Dodelson (2003).

because of homogeneity, the function fK(χ) must be of the form

fK(χ) =


sinχ (K = 1)

χ (K = 0)

sinhχ (K = −1) ,

(1.3)

with the constant K determining the curvature of the spatial hyper-surfaces (spher-

ical, flat or hyperbolic, respectively). The metric in Eq. (1.2), which describes a

homogeneous and isotropic universe, is referred to as Robertson-Walker metric.

It is evident, from the form of Eq. (1.2), that the factor a2(t) acts as a gen-

eral expansion or contraction factor. In Fig. 1.1 space is pictured as a grid, which

expands (or contracts) uniformly in time: points on the grid maintain their coor-

dinates, and the difference between coordinates, usually referred to as comoving

distance, stays constant. However, the physical distance clearly evolves, and it does

so proportionally to the scale factor a(t).
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1.2 The Friedmann Equations

The metric evolves according to Einstein’s field equations, a set of differential equa-

tions which relate it to the energy and matter content of the universe:

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c2
Tµν . (1.4)

On the left-hand side of Eq. (1.4), the Einstein tensor Gµν depends on the metric:

the Ricci tensor Rµν is a combination of first and second derivatives of gµν , and the

Ricci scalar is the trace of the Ricci tensor, R ≡ gµνRµν . On the right-hand side,

instead, the matter and energy contribution described by in the energy-momentum

tensor Tµν , which combines the constituents of the universe.

In the case of a Robertson-Walker metric, the dynamics of the metric reduces

to the dynamics of the scale factor a(t), as apparent from Eq. (1.2). The energy-

momentum tensor is that of a perfect fluid, with pressure p and energy density ρ;

since the left-hand side of Eq. (1.4) has to obey homogeneity and isotropy, so does

the right-hand side, therefore p and ρ can be functions of time only.

Due to the symmetries of the Robertson-Walker metric, there are only two inde-

pendent Einstein equations, the time-time one and the space-space one. From the

first one and a combination of both, the two Friedmann equations are obtained:(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
, (1.5)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
. (1.6)

The scale factor a(t) can be determined by solving these two equations, once its

value at a certain point in time has been fixed; usually a = 1 is assumed at the

present time. A combination of the Friedmann equations yields the equation for

energy conservation, which reads

d

dt

(
a3ρc2

)
+ p

d

dt

(
a3
)

= 0 ; (1.7)

this clearly means that any two of the three equations above are independent.

A Robertson-Walker metric whose scale factor a(t) obeys Eqs. (1.5, 1.6, 1.7) is

called Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric.
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1.3 Components of the Universe

The relation between the pressure and the energy density, p = p(ρ), is called the

equation of state. For all cosmologically relevant fluids, it takes the simple form

p = wρc2 , (1.8)

where w = 0 in the case of collisionless, non-relativistic matter, and w = 1/3 in the

case of radiation (or other forms of relativistic matter, e.g. neutrinos).

The equation of state, together with the conservation of energy stated in Eq. (1.7),

gives the evolution of the density as a function of the scale factor:

ρ ∝ a−3(1+w) , (1.9)

which translates to ρm ∝ a−3 for matter and ρr ∝ a−4 for radiation, respectively.

It is useful to consider also another form of energy-momentum tensor, namely

that of vacuum, for which T vac
µν ∝ gµν : in this case, p = −ρ, which corresponds to a

fluid characterised by a rather exotic equation of state, with w = −1, i.e. negative

pressure. This component is also referred to as cosmological constant, or Λ, since,

according to Eq. (1.9), its energy density is independent of the scale factor, ρΛ ∝
const. With the addition of a cosmological constant, Einstein’s equations read

Gµν =
8πG

c2
Tµν + Λgµν , (1.10)

where

T vac
µν =

Λc2

8πG
gµν ; (1.11)

Eq. (1.10) can also be written in a form similar to that of Eq. (1.4), with an effective

energy-momentum tensor formally given by T eff
µν = Tµν + T vac

µν .

A more general class of models with negative equation-of-state parameter w,

either constant or varying in time, which goes under the name of dark energy (or

quintessence), can be derived in the context of scalar fields and has gained increasing

importance in the last decade; a more detailed discussion about dark energy will

follow in Chapter 3.
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1.4 The Expansion Rate

The general arguments adduced in the previous sections did not give any indication

whether the scale factor a(t) is increasing, decreasing, or constant: this information

has to be sought observationally. The first evidence that the universe is expanding,

i.e. that ȧ > 0 in the present epoch, was presented in 1929 by Hubble.

The relative cosmic expansion rate is defined as

H(a) =
ȧ

a
, (1.12)

and it evolves according to Eq. (1.12); it is also referred to as Hubble function, and

its value at present time is the Hubble constant, H0 = H(a = 1).

The quest for an accurate value of H0 has always been extremely challenging, due

mainly to the basic difficulty of establishing accurate distances over cosmologically

significant scales. The most recent attempt comes from the HST Key Project: based

on a Cepheid calibration of several secondary distance determination methods, they

found H0 = 72± 8 km s−1 Mpc−1 (Freedman et al., 2001). As the Hubble constant

is still not known to great accuracy, it is conventional to denote the ignorance about

it through the dimensionless parameter h, such that H0 = 100h km s−1 Mpc−1.

The first Friedmann equation, Eq. (1.5), shows that a particular value of the

energy density exists, such that the curvature vanishes, namely

ρcr =
3H2

8πG
. (1.13)

The critical density evolves in time, since H does, and its value at the present epoch

is ρ0,cr ' 1.9 × 10−29 h2 g cm−3. It is useful to scale the density relative to each

component of the universe in units of the critical density, thus defining the density

parameter Ω = ρ/ρcrit.

After inserting the density parameters, Eq. (1.5) reads

H2 = H2
0

[
Ωr0

a4
+

Ωm0

a3
+ ΩΛ0 +

Ωk0

a2

]
≡ H2

0E
2(a) , (1.14)

where Ωr0, Ωm0, ΩΛ0 and Ωk0 are the density parameters for radiation, matter, cos-

mological constant and curvature, respectively, calculated at the present day. In the
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last step of Eq. (1.14), the normalised expansion function E(a) has been defined,

which carries the information about the cosmic expansion history.

The expansion rate is the central object in this work. Efforts to observationally

constrain its evolution over time have been very intense in the past few years, and

will surely increase dramatically in the upcoming future. After all, as will be de-

tailed in the next sections, E(a) plays a crucial role in every quantity accessible to

astronomical measurements and related to cosmology. Most of the current analyses

tend to infer the shape of the expansion function by constraining the density pa-

rameters Ω0 of the different species; this work, instead, aims at reconstructing E(a)

from observations without having specialised it to a particular Friedmann model,

thus introducing as little theoretical prejudice as possible.

1.5 Expansion Regimes

The total value of the density parameter Ω, including all contributions but curvature,

is related to the spatial geometry of the universe. By means of Ω, Eq. (1.5) can be

written as

Ω− 1 =
Kc2

a2H2
, (1.15)

which shows that the sign of K is in fact determined by whether Ω is greater, equal

or less than one: ρ < ρcr, i.e. Ω < 1, corresponds to K = −1, i.e. open geometry;

ρ = ρcr, i.e. Ω = 1, corresponds to K = 0, i.e. flat geometry; ρ > ρcr, i.e. Ω > 1,

corresponds to K = +1, i.e. closed geometry.

The Friedmann equations can be solved exactly in a few, simple cases. The

qualitative behaviour of some, particularly interesting regimes will be outlined in

this section.

A property of universes made from fluids with −1/3 < w < 1 is the so-called Big

Bang singularity, i.e. a point in time for which a = 0 and % diverges. In such cases,

Eq. (1.6) shows that ä < 0 is valid for any value of the scale factor; this condition,

along with the observational confirmation of the expansion of the universe, i.e. ȧ > 0,
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Figure 1.2: The evolution of the energy density as a function of the scale factor for the different

components of the universe: non-relativistic matter, radiation and cosmological constant. The time

of matter-radiation equality, aeq, is indicated with an arrow, whereas the matter-Λ equivalence is

visible on the rightmost part of the plot. From Dodelson (2003).

reveals the existence of such a singularity in the past (see the sketch in the left panel

of Fig. 1.3). The deceleration is due to the gravitational attraction acting against

the expansion. If the cosmological constant term is non-zero, some combinations

of parameters exist, such that a could, theoretically, never vanish. However, these

scenarios are ruled out by the observation of very distant quasars and the existence

of the cosmic microwave background (Boerner & Ehlers, 1988).

Friedmann’s equation also shows that fluids with w < −1/3, such as a cosmolog-

ical constant or more exotic components, accelerate the cosmic expansion instead of

decelerating it (ä > 0).

The different dependence of density on the scale factor for the various compo-

nents of the universe, discussed in Sect. (1.3) and summarised in Fig. 1.2, suggests
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Figure 1.3: Left panel: The concavity of a(t), along with its derivative being positive today,

implies the existence of a singularity at a finite time in the past, when a = 0. Right panel: The

evolution of the scale factor, with eternal expansion in the case of an open or flat universe, and an

eventual recollapse in a closed universe; all three models have a vanishing cosmological constant.

From Coles & Lucchin (2002).

that the cosmic evolution can be seen as a succession of several epochs, each of them

characterised by the dominance of a different component. Radiation dominates in

the early universe, because of its scaling ∝ a−4 : substituting its contribution as the

only relevant one in Eq.(1.14) and integrating over time yields the time evolution

of the scale factor in this epoch, a ∝
√
t. At some point, referred to as matter-

radiation equality (a = aeq), the radiation contribution equals that of matter, and

becomes less and less important afterwards: matter starts dominating and, in the

flat case (or before curvature becomes important), a ∝ t2/3, called the Einstein-de

Sitter limit. A possible Λ-dominated phase can occur later in the evolution of the

universe: in this case, known as de Sitter limit, the cosmological constant makes the

universe expand exponentially, a ∝ exp t.

In a universe with no cosmological constant, the evolution of the scale factor in

the future strictly depends on the geometry. For open and flat models (K ≤ 0),

Eq. (1.5) implies that ȧ 6= 0 always, which, along with the expansion observed today,

means ȧ > 0 for any value of the scale factor: such models expand forever, with a

constant deceleration in the flat case and with an expansion asymptotically linear
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in time in the open case, respectively. In the case of closed universes (K = +1),

instead, an upper bound for the scale factor exists: the expansion ceases at a = amax,

and the scale factor starts decreasing, reaching a = 0 inevitably again. These three

regimes are summarised in the right panel of Fig. 1.3. An additional, non-vanishing

cosmological constant clearly modifies this strict classification, allowing for mixed

scenarios (e.g. an open universe that recollapses).

1.6 Redshift and Distances

Observationally, two measurable quantities are directly related to the expansion rate

and can, thus, be employed to probe its evolution: the redshift and the distance to

astrophysical objects.

The expansion of the universe causes light, which propagates from an emitting

source to an observer, to be redshifted: the wavelength of a photon changes by the

same amount as the scale of the universe changes while it travels. If λe is the emitted

wavelength, it is related to the observed wavelength λo via

λo

λe

=
a0

a
=

1

a
, (1.16)

where emission is associated to a generic value a of the scale factor, whereas obser-

vation is supposed to happen at present time, a0 = 1; the redshift z is defined as

the relative change in wavelength, namely

z ≡ λo − λe

λe

=
1

a
− 1 . (1.17)

The redshift z and the scale factor a can thus be used in a totally equivalent way,

bearing in mind that a = 1/ (1 + z); evidently, at present time z = 0.

The redshift can be measured from spectroscopical observations, comparing the

wavelength of the spectral lines in the radiation coming from astronomical sources

to their rest-frame wavelength, which is measurable in the laboratory. Spectra,

however, are “expensive” to acquire from an observational point of view, since very

long exposure times are needed in order to collect enough light. Redshift can also
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be measured from combination of photometric observations performed in different

wavelength bands: photometric redshifts are technically easier to obtain, but are

affected by significantly larger uncertainties.

The definition of distance is not unique in a non-flat space-time: different mea-

surements imply, in fact, different definitions of distance. The difference between

physical distance, which changes over time according to the expansion, and the co-

moving distance, which stays constant, has already been outlined at the beginning

of the chapter. In a more rigourous way, the proper distance Dprop(z1, z2) between

a source object at redshift z2 and an observer at z1 < z2 is the distance measured

by the light-travel time, defined as dDprop = −c dt, which translates to

dDprop = −c da

ȧ
= −c da

aH (a)
→ Dprop (z1, z2) =

c

H0

∫ a1

a2

da′

a′E (a′)
, (1.18)

where the definition of the expansion rate (Eq. (1.12)) has been employed.

The comoving distance is, instead, measured on the comoving grid and is thus

unaffected by the cosmic expansion: it is defined as dDcom = −c dt/a, which yields

Dcom (z1, z2) =
c

H0

∫ a1

a2

da′

(a′)2E (a′)
= χ (z1, z2) . (1.19)

However, none of the two distance measures defined above accurately describes

most of the processes of interest. A classic way to determine distances in astronomy

is to measure the angle subtended by a source of known physical size. The angular-

diameter distance DA is defined in analogy to the relation, which holds in Euclidean

space, between the area δA and the solid angle δω of an object, δωD2
A = δA.

Comparing this to Eq. (1.2), the solid angle of a sphere of constant radial coordinate

χ has to be scaled by a2f 2
K(χ):

δA

4πa2
2f

2
K [χ (z1, z2)]

=
δω

4π
, (1.20)

which implies

DA (z1, z2) =

(
δA

δω

)1/2

= a2fK [χ (z1, z2)] . (1.21)

Hence, the angular-diameter distance reads

DA (z1, z2) = a2fK [Dcom (z1, z2)] = a2
c

H0

fK

[∫ a1

a2

da′

(a′)2E (a′)

]
, (1.22)
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Figure 1.4: Four distance measures in a flat, expanding universe, as a function of redshift:

proper distance (red solid curves), comoving distance (greed long-dashed curves), angular-diameter

distance (blue short-dashed curves) and luminosity distance (magenta dotted curves). The light

curves represent a model with no cosmological constant, with Ωm0 = 1, ΩΛ0 = 0, whereas the

heavy curves represent a Λ-dominated universe, with Ωm0 = 0.3, ΩΛ0 = 0.7.

while the comoving angular-diameter distance is simply dA = fK (Dcom).

Another way of inferring distances in astronomy is to measure the flux F emitted

by a source of known luminosity L, which, in Euclidean space, are related via the

following relation:

F =
L

4πD2
L

, (1.23)

where DL is the luminosity distance. Again, generalising the Euclidean relation

in order to hold in curved space yields the following expression for the luminosity

distance,

DL (z1, z2) =

(
a1

a2

)2

DA (z1, z2) , (1.24)

which is known as Etherington relation and holds for any space-time (Etherington,

1933). The luminosity distance can thus be written as

DL (z1, z2) =

(
a2

1

a2

)
c

H0

fK

[∫ a1

a2

da′

(a′)2E (a′)

]
. (1.25)
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The four distances defined above are sketched in Fig. 1.4. It is worth noticing

that, for small redshifts, i.e. z � 1, all these distance measures coincide:

D =
cz

H0

+O(z2) , (1.26)

where the linear evolution of the distance with redshift, which only holds locally, is

referred to as Hubble law.

As is evident from the definitions of luminosity distance and angular-diameter

distance, they are related to redshift via the expansion rate: sampling distances and

redshifts from several distant sources is, thus, a powerful tool to probe the expan-

sion history and the geometry of space. The distance-redshift relation is, in fact,

one of the most important cosmological tests, as will be described in more detail in

Chapter 2.

Furthermore, a very important scale in the universe is the size of the horizon,

i.e. the maximum distance that photons can travel in the time since the Big Bang:

because of the existence of such a singularity, time is finite in models with a Big

Bang, thus causally connected regions are finite, too. The size of the horizon is

given by rH = c/H(a), and its present value, referred to as the Hubble radius, is

approximately c/H0 = 3h−1 Gpc; the comoving horizon size reads dH = c/aH(a),

instead.

1.7 The Growth Rate of Linear Density Pertur-

bations

Evidently, observations on relatively small scales show that the “local” universe is

very far from being homogeneous and isotropic: the standard cosmological model

has to allow deviations from smoothness. The current scenario for the formation

of cosmic structures assumes that they arose from primordial, small fluctuations,

which are supposed to have originated from quantum fluctuations during an early

phase of accelerated expansion called inflation. These seed fluctuations then grew



14

via gravitational instability, leading to the large scale distribution of structure in

the universe.

The density fluctuations are described by the density contrast

δ (~x, a) =
ρ (~x, a)− ρ̄ (a)

ρ̄ (a)
, (1.27)

which quantifies the density inhomogeneity at comoving coordinates ~x relative to

the mean density ρ̄(a). As long as δ � 1, the fluctuation can be considered as a

small perturbation to the homogeneous and isotropic background it is embedded in,

and it can be treated within linear perturbation theory.

The growth of perturbations in the cosmic fluid should, in principle, be treated

in a fully general-relativistic fashion, but since the perturbations are much smaller

than the typical scale of the universe, the curvature effects can be neglected and a

Newtonian treatment is sufficient. In order to describe the dynamics of the fluid, the

continuity and Euler equations must be solved, along with Poisson’s equation; by

decomposing each variable (density, velocity, pressure and gravitational potential)

into its homogeneous background value plus a small perturbation about it, these

three equations can be brought into a single differential equation for the density

contrast:

δ̈ + 2Hδ̇ =

(
4πGρ̄δ +

c2
s∇2δ

a2

)
, (1.28)

where an adiabatic equation of state for the fluid has been specified, p = c2
sρ, with

sound speed cs, and ρ̄ represents the background value of the density. Decomposing

the density contrast into plane waves, δ(~x, a) = δ(a) exp(−i~k · ~x), Eq. (1.28) can be

written as

δ̈ + 2Hδ̇ = δ

(
4πGρ̄− c2

sk
2

a2

)
, (1.29)

where the expansion of the universe acts as a friction term, thus slowing down

gravitational instability. Depending on the background model, a time-dependent

frequency can be derived from Eq. (1.29), either real or imaginary, with a limiting

wave number kJ discriminating between oscillating and evolving solutions: only per-

turbations larger than the corresponding length scale, λJ = 2π/kJ, called the Jeans
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length, can grow (or decay).

As pointed out by several different empirical facts, a very important one of which

is the amount of anisotropy observable in the cosmic microwave background radia-

tion, it is legitimate to describe the density of the late universe as being dominated

by cold dark matter (CDM), i.e. a pressure-less, weakly interacting matter compo-

nent. In this case, Eq. (1.29) reduces to

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 ; (1.30)

cold dark matter has vanishing Jeans length, i.e. perturbations of any scale can

grow. In the Einstein-de Sitter limit, which is, in any case, a good approximation

for the early universe after matter domination, inserting a power-law ansatz for

the time evolution of the density contrast, δ ∝ tn, into Eq. (1.30) yields either

n = 2/3 or n = −1: the first of the two cases identifies the growing mode, which

implies δ ∝ a, whereas the decaying mode is clearly not interesting in the context of

structure formation. The growing mode is usually described by the growth factor,

D+(a), which quantifies the growth of the density contrast from an initial value δ0:

δ(a) = D+(a)δ0.

For later times, when the Einstein-de Sitter limit is no more a good approxima-

tion, Eq. (1.30) must be solved separately for each cosmological model to obtain the

growth factor. For LCDM models, i.e. models with cold dark matter and a non-

vanishing cosmological constant, a very good approximation to the growth factor is

given by a fitting formula, depending on the parameters Ωm and ΩΛ, due to Car-

roll et al. (1992). A more rapid expansion, as the one induced by the cosmological

constant term, retards the growth of structure, as can be read from Fig 1.5.

It is worth noticing that Eq. (1.30), thus the growth factor, depends only on

the expansion rate, H(a), and on the evolution of the background density, ρ̄(a),

which, in turn, depends again on the expansion rate, and on the matter density

parameter Ωm0. Underlying any measurement involving the distribution of matter

on large scales, the growth rate of linear structure formation is one of the two most

important functions in cosmology, along with the expansion rate, which is, however,
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Figure 1.5: The linear growth rate for a variety of models: the red line corresponds to an

Einstein-de Sitter model, where the rate is constant in time; the green and blue lines correspond

to two flat ΛCDM models, with increasing contribution from a cosmological constant, and show

that the growth rate is higher at early times and lower at later times, indicating that structure

forms earlier in models with a lower matter density parameter.

required to calculate the growth factor itself.

As long as only scales well within the horizon are considered, Eq. (1.30) can

be obtained also from relativistic perturbation theory, as was mentioned at the

beginning of this section. It can also be derived in the presence of a cosmological

constant (or any other smooth background), which would change the unperturbed

gravitational potential, but not its perturbation: the additional contribution would

appear in the expansion rate, whereas ρ̄ and δ would still denote matter density

only.

1.8 The Power Spectrum

The central limit theorem, a powerful statistical tool, states that the superposition of

several random processes drawn from the same probability distribution, in the limit
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of infinitely many processes, turns into a Gaussian, if the variance of the parent

distribution is finite. Since the current belief agrees that density anisotropies in

the universe derive from inflationary quantum fluctuations, which fulfil the above

requisites, it is reasonable to assume that the density field is a Gaussian random

field: it is thus characterised by two quantities, namely its mean, which vanishes

because of the definition of δ, and its variance.

In the linear regime, perturbations grow in place, i.e. their comoving scale is

preserved: hence, it is convenient to study the evolution of density perturbations in

Fourier space. The variance of δ in Fourier space defines the power spectrum P (k):

〈δ̂(~k)δ̂∗(~k′)〉 = (2π)3P (k)δD(~k − ~k′) , (1.31)

where δ̂ is the Fourier transform of the density contrast δ, whereas δD is Dirac’s

delta distribution, which guarantees that modes relative to different wave numbers

are uncorrelated, in order to preserve homogeneity; on the other side, P (k) does

not depend on the direction of ~k because of isotropy. Back in real space, the back-

transform of the power spectrum is the two-point correlation function,

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉 , (1.32)

which measures the coherence of the density contrast for all points in the universe

separated by a distance r; the correlation function is averaged both over all positions

~x and over all orientations of ~r, and does only depend on the modulus of ~r, because

of isotropy.

Historically, the normalisation of the matter power spectrum is expressed in

terms of the variance of the density contrast within spheres of radius R = 8h−1 Mpc,

where the variance within spheres of generic radius R is given by

σ2
R =

∫ ∞
0

d3k

(2π)3
P (k)W 2

R(k) , (1.33)

where WR(k) is a window function, selecting the modes contributing to the variance,

and is usually either a Gaussian or a step function in Fourier space. Because of the

special value of 8h−1 Mpc, the normalisation of the power spectrum is referred to

as σ8, and the observational determination of this parameter is a largely debated
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subject in modern cosmology.

Along with the expansion of the universe, the size of causally connected regions

grows, thus also the scale of perturbations which can be in causal contact: a per-

turbation of (comoving) wavelength λ is said to “enter the horizon” when λ = dH.

In Sect. (1.7) it was explained that, during matter domination, perturbations

grow like δ ∝ a; it can be analogously derived that, during radiation domination,

they evolve faster, δ ∝ a2. The time of matter-radiation equivalence plays, in fact, a

special role in this context. If a perturbation enters the horizon before equivalence,

its collapse time-scale is determined by the dark matter density, but the expansion

time-scale is determined by the radiation density, which is higher and prevails: the

growth is interrupted, and will start again only when matter begins dominating.

Therefore, perturbations that are small enough to enter the horizon before aeq,

experience a suppression of growth with respect to larger perturbations. The horizon

size at equivalence sets a scale k0 = 2π/dH(aeq): perturbations with k > k0 stop

growing when they enter the horizon (a = aenter) and continue after equivalence,

whereas larger perturbations (k < k0) can grow all the time. Since larger modes

continue growing ∝ a2 during radiation domination, the relative suppression of

smaller modes is given by

f =

(
aenter

aeq

)2

=

(
k0

k

)2

; (1.34)

in the last equality of Eq. (1.34) use was made of k ∝ 1/λ, and of

λ ∝

 aenter (aenter � aeq)

a
1/2
enter (aeq � aenter � 1) ,

(1.35)

because of the different evolution of the horizon size before and after equivalence.

The matter power spectrum evolves quadratically with density: hence, P (k) ∝ a4

during radiation domination and P (k) ∝ a2. Starting from a primordial value of

the power spectrum P0(k), at aenter it has changed to Penter(k) = k−4P0(k); be-

cause of what Eq. (1.35) states, this last result is independent of radiation or matter

domination. It is reasonable to assume that the total power of the density fluctu-

ations entering the horizon should be independent of time, i.e. k3Penter(k) = const,
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which, along with the previous considerations, implies that the primordial power

spectrum must scale linearly with the wave number, P0(k) ∝ k. This spectrum is

scale-invariant and is usually referred to as Harrison-Zel’dovich-Peebles power spec-

trum (Harrison, 1970; Peebles, 1982; Peebles & Yu, 1970; Zeldovich, 1972); it is

also in agreement with the most credited inflationary models, which predict that

fluctuations should arise from inflation with an (almost) scale-invariant spectrum.

Because of the suppression of growth on small-scales, the final expression of the

power spectrum reads

P (k) ∝

 k (k � k0)

k−3 (k � k0) .
(1.36)

1.9 Non-Linear Evolution

When the density contrast approaches unity, linear theory is no longer sufficient

to describe the growth of structures. The so-called Zel’dovich approximation is

a formalism to describe the onset of non-linear evolution, which treats the fluid

kinematically, decomposing it into particles and following their trajectories. The

main result stated by the Zel’dovich approximation is that the non-linear collapse

of structures is anisotropic, leading to the formation of sheets and filaments.

As non-linear evolution proceeds, also this approach breaks down, not being able

to describe the gravitational interaction after particle trajectories cross. In order

to perform detailed studies, the use of numerical simulations is required: in the

past two decades, great progress in this field has been achieved, thanks to both

increased computer performances and the development of sophisticated numerical

algorithms. Structure formation over cosmological times and extremely large vol-

umes has been simulated by several different teams, confirming that matter in the

universe is extremely clustered, with highly non-linear, bound structures, known

as galaxy clusters, forming at the intersection of filaments: filamentary structures

fragment into smaller lumps, which stream towards higher-density regions, leaving

behind giant voids. A representation of the cosmic web, as this picture of the large-

scale universe is referred to, can be observed in Fig.1.6: it shows the output of the
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Figure 1.6: The dark matter density field on various scales, as achieved by the Millennium Run,

a simulation which followed the evolution of ∼ 1010 dark matter particles from z = 127 to the

present, within a cubic volume with 500h−1 Mpc side. From the Virgo Consortium.
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Figure 1.7: Matter power spectrum for a ΛCDM universe: the solid, red curve represents the

linear power spectrum, whereas the dashed, blue line shows the increased power on small scales due

to non-linear effects. The non-linear power spectrum has been calculated using the prescription

by Peacock & Dodds (1996).

Millennium simulation, one of the largest ones performed so far, realised by Springel

et al. (2005). As evident from the background of the image, the structure on large

scale is extremely homogeneous and isotropic, whereas the sequence of close-ups,

centred on one of the many galaxy clusters present in the simulation, reveals the

high degree of clumpiness on smaller scale. The bright dots correspond to high con-

centrations of dark matter, which are associated with sites where baryonic matter

collects in gaseous form and, eventually, condenses, giving rise to the formation of

stars and galaxies.

During non-linear evolution, overdense regions contract, i.e. matter is trans-

ported from larger to smaller scales: the assumption that, during linear regime,

perturbations grow in place, is thus no longer valid. This mode coupling enhances

the amplitude of the power spectrum on small scales, at the expense of intermediate

scales, whereas large scales continue to evolve linearly and independently, as shown

in Fig. 1.7.
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A first attempt to achieve an analytic description of non-linear clustering evolu-

tion, carried out by Hamilton et al. (1991), assumed that the two-point correlation

functions in the linear and non-linear regimes are simply related by a scaling rela-

tion. A generalisation of this assumption to non-flat models, calibrated on N -body

simulations, has been presented, along with analytic formulae describing the non-

linear deviation of P (k) on small scales, by Peacock & Dodds (1996), and a more

precise and updated version followed (Smith et al., 2003).



Chapter 2

Measuring the Universe:

Observational Tests for Cosmology

In this Chapter, the main observational tests representing strong motivation in

favour of the standard cosmological model are reviewed, along with an explanation

of the physical mechanism underlying each of these measurements. The use of type-

Ia supernovae as standard candles and of the baryon acoustic oscillations (BAO)

as standard ruler, along with the extremely powerful tool offered by cosmic shear,

i.e. the gravitational lensing effect due to the large scale distribution of matter in

the universe, are treated in detail, being the main objects of investigation in this

work. For the sake of completeness, also the main results coming from the cos-

mic microwave background (CMB) and from big-bang nucleosynthesis (BBN) are

outlined.

2.1 Type-Ia Supernovae

As anticipated in Section 1.6, the distance-redshift relation is a very powerful tool

to probe the expansion of the universe. Measuring redshifts is straightforward,

whereas the determination of distances to objects of unknown intrinsic brightness

is more tricky. One of the most popular techniques is to identify a class of objects

which have the same intrinsic brightness, usually referred to as standard candles:
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probably the most reliable standard candles that can be observed up to high redshifts

are supernovae of type Ia. Reviews on the cosmological implications of type-Ia

supernovae can be found in Leibundgut (2001) and Perlmutter & Schmidt (2003).

2.1.1 Standard Candles and Cosmology

For an object of known absolute magnitude M , a measurement of its apparent

magnitude m at a given redshift z yields an estimate of the luminosity distance,

DL(z), called the distance modulus:

µ = m−M = 5 log(DL) +K + 25 , (2.1)

where the K-correction appears because the emitted and detected photons from the

receding object have different wavelength. The luminosity distance also depends on

the underlying cosmology through the expansion rate, as shown in Eq. (1.25).

The effect of the cosmological parameters on the luminosity distance is illus-

trated in Fig. 2.1, where the distance modulus is plotted for four different models

with various combinations of Ωm0 and ΩΛ0: the models share the same linear be-

haviour at very low z, but become clearly distinguishable for intermediate and high z.

However, degeneracies amongst the parameters arise, since different combina-

tions of Ωm0 and ΩΛ0 might yield similar luminosity distances, at least over certain

redshift ranges. The contours of constant apparent magnitude in the (Ωm0, ΩΛ0)

plane, for two standard candles located at z = 0.5 and z = 1, respectively, are plot-

ted in Fig. (2.2): one measurement of m narrows the range of possible values for Ωm0

and ΩΛ0 to a strip between two of the contour lines shown in the plot, depending on

the measurement uncertainty; two measurements at different z define two different

strips, whose crossing identifies a more narrowly constrained allowed region for the

parameters, shown as a shaded rhombus. Clearly, such degeneracies can be lifted

either with a better accuracy of the measurements or with the collection of distance

measurements over several different redshifts.
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Figure 2.1: Top panel: The distance modulus as a function of redshift for four different cos-

mological models: an empty universe with Ωm0 = 0, ΩΛ0 = 0 (solid line), an open universe with

Ωm0 = 0.3, ΩΛ0 = 0 (short-dashed line), and two flat universes with Ωm0 = 0.3, ΩΛ0 = 0.7

(hatched line) and Ωm0 = 1, ΩΛ0 = 0 (long-dashed line), respectively. Bottom panel: The empty

universe has been subtracted from the other models to highlight the differences. From Perlmutter

& Schmidt (2003)

0.0 0.5 1.0 1.5 2.0
ΩM

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Ω
Λ

21.9
7

22.0
2

22.0
7

22.1
7

22.2
2

22.2
7

22.3
2

22.3
7

25
.0

025
.0

525
.1

025
.1

525
.2

025
.2

525
.3

025
.3

525
.4

0

z=0.5

z=1.0

0.0 0.5 1.0 1.5 2.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0
     

 

 

 

 

 

 

 

Figure 2.2: Contours of constant apparent magnitude (in the R band) in the (Ωm0, ΩΛ0) plane:

the dashed lines show the predicted values for a standard candle at z = 0.5, and the solid line for

one at z = 1, respectively. The dark-shaded region represents the allowed region for a measurement

uncertainty of 0.05 mag on both objects, whereas the grey-shaded region refers to an uncertainty

of 0.1 mag. From Goobar & Perlmutter (1995)
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2.1.2 Type-Ia Supernovae as Standard Candles

A supernova is a stellar explosion, observable as a sudden rise in brightness followed

by a gentle decline; the rise in brightness is so intense that the supernova reaches,

at its peak, the luminosity of an entire galaxy (L ∼ 1010 · · · 1011L�).

Several types of supernova exist, related to different explosion dynamics. How-

ever, for historical reasons the classification does not directly reflect the different

explosion mechanisms. It refers to differences in the observed spectra, instead: su-

pernovae of type II have hydrogen lines in their spectra, whereas supernovae of type I

have no hydrogen; furthermore, type Ia supernovae have silicon lines, type Ib have

no silicon but helium lines, type Ic have neither silicon nor helium.

Supernovae of type II, Ib and Ic originate from the collapse of the core of a mas-

sive star, followed by the generation of a shock wave and the ejection of the stellar

envelope, and the difference in the spectral composition is due to a possible loss of

the outer envelope prior to explosion. Supernovae of type Ia, instead, arise by the

thermonuclear explosion of a white dwarf (the final evolutionary stage of low-mass

stars, with M < 8M�) which accretes mass from a companion in a binary system

and reaches the Chandrasekhar mass limit of MCh ∼ 1.4M�. When the mass is close

to MCh, nuclear burning begins in isolated places in the degenerate core: due to the

degenerate environment, it produces a dramatic rise in temperature, followed by a

thermonuclear runaway and an explosion, or more precisely a deflagration, which

completely destroys the system. During the thermonuclear runaway, the carbon

and oxygen in the core are converted into 56Ni, which then decays into 56Co and,

eventually, 56Fe. For further details about supernova Ia explosion, see the review by

Hillebrandt & Niemeyer (2000).

The existence of an approximately fixed amount of mass, namely MCh, to trigger

the explosion, suggests that the amount of energy released during the process is also

fixed: hence, type-Ia supernovae are expected to be standard candles. Observation-

ally, a substantial scatter in the absolute luminosity has been observed: until the

early ’90s, it was commonly believed that this was due to observational errors, but
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Figure 2.3: A series of light curves of type-Ia supernovae from the Calán/Tololo Supernova

Survey. In the upper plot the scatter in absolute luminosity is evident, along with its correlation

with the width of the light curve; in the bottom plot the scatter is substantially reduced after

rescaling the luminosity according to the stretch of the light curve. From the Supernova Cosmology

Project.

subsequent technical improvements demonstrated that such a difference does exist.

However, observations of local samples of supernovae Ia revealed the existence of an

empirical relation between the absolute luminosity at maximum and the rate of the

luminosity decline, i.e. the width of the light curve: a brighter object corresponds

to a broader light curve (Phillips, 1993; Phillips et al., 1999). This tight correla-

tion, as illustrated in Fig. 2.3, allows a calibration of the absolute luminosity of the

supernovae, which are thus not standard, but standardisable candles.

The width-luminosity relation of type-Ia supernovae has been long employed as
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purely empirical, since a thorough theoretical explanation was lacking; recently, how-

ever, detailed, time-dependent radiative transfer calculations have been performed,

shedding light on its origin. Kasen & Woosley (2007) have shown that the faster

decline of luminosity in cooler, dimmer supernovae is not only due to their lower

opacity, which translates into shorter diffusion time for photons, but mainly to their

faster ionisation evolution: supernova colours evolve towards the red, driven by

blanketing due to FeII/CoII lines, more rapidly in dimmer objects, where the onset

of such lines happens earlier due to their lower temperature.

2.1.3 Type-Ia Supernovae as Cosmological Probes

The 1990s witnessed the compilation of the first large samples of local type-Ia su-

pernovae, followed by the observation of a handful high-z objects, which showed

that distant supernovae appear to be fainter than their local counterparts (Riess

et al., 1998; Perlmutter et al., 1999). This first, claimed evidence for an accelerated

expansion of the universe was initially controversial, and other, non-cosmological

explanations for the dimming of distant supernovae were sought.

A possible astrophysical effect which could explain distant supernovae being

fainter than nearby ones is absorption due to dust in the intergalactic medium:

a grey dust, which absorbs equally at all wavelengths, could mimic the effect of

an accelerating universe, while remaining undetected to multi-colour photometry.

Such a behaviour is possible when the dust grains are larger than the wavelength (a

diameter of 0.1 µm is sufficient in the optical); however, the dust would re-emit the

absorbed radiation in the infrared, and the very high density required to falsify the

cosmological effect would be detectable in observations of the infrared background,

where such a signal has not been detected. Hence, grey dust alone is not enough

to explain the overall dimming of distant supernovae; however, a detailed model for

the intergalactic dust is a crucial ingredient, in order to obtain accurate constraints

on the cosmological parameters.

Another possible systematic effect which might influence the cosmological con-
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straints inferred from the analysis of supernovae Ia is evolution: supernovae are, in

fact, calibrated at low-redshifts, but their properties are then extrapolated to higher

redshifts, which is not straightforward to assume. The evolution effects involve the

metallicity, expected to be lower at higher z, and the colours, expected to be bluer

at higher z. Again, there is no compelling evidence that such effects could falsify

the overall cosmological conclusions; however, accurate analyses of possible evolu-

tion are performed on the supernova samples in order to keep this systematic under

control.

Also gravitational lensing, i.e. the deflection of light due to an intervening mass

distribution (for a more thorough discussion see Section 2.5), affects distant super-

novae and has to be taken into account in the calculation of systematic errors, but

does not rule out any of the cosmological interpretations of the supernova data.

In the past decades, a few other samples of supernovae Ia have been compiled,

including more objects, improved control over systematics and increasingly smaller

error bars: it is worth mentioning the “Gold” sample (Riess et al., 2004, 2007),

the SuperNova Legacy Survey (SNLS, Astier et al. 2006), the ESSENCE sample

(Wood-Vasey et al., 2007; Davis et al., 2007) and a recent compilation of data from

all of the above, namely the “Union” sample (Kowalski et al., 2008). All of them,

as the early data sets, but now with significantly higher precision, point towards

a late-time phase of accelerated expansion, thus suggesting the existence of a non-

vanishing cosmological constant, or an alternative, more exotic component which

would produce such an effect. As an example, the results from the SNLS first-year

data release are shown in Fig. 2.4.

2.2 Baryon Acoustic Oscillations

As standard candles can be used to probe the redshift evolution of the luminosity

distance, objects of known physical size located at different z allow to probe the

evolution of the angular-diameter distance: such objects, if they exist, are referred

to as standard rulers. It was proposed by Kellermann (1993) to employ compact
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Figure 2.4: Left panel: The distance modulus as a function of redshift for the SNLS and nearby

type-Ia supernovae, compared to a flat, Λ-dominated universe (solid line) and a flat, matter-

dominated one (dashed line), with the residuals for the best fit to a ΛCDM model below. Right

panel: The contours at the 1-σ, 2-σ and 3-σ confidence level in the (Ωm0, ΩΛ0) plane from the

SNLS data alone (solid lines), from the Baryon Acoustic Oscillations (BAO, see Section 2.2 for

more details) from the SDSS LRG sample alone (Eisenstein et al. 2005, dotted lines), and the joint

contours (dashed lines). From Astier et al. (2006).
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radio sources for this purpose, assuming that their properties, and particularly their

average size, do not strongly depend on redshift; very soon, however, the weakness

of this assumption and the large scatter in the data were pointed out, thus ruling

out the possible conclusions obtained from this method. Although it is not at

all obvious that astronomical objects feasible as standard rulers should exist, the

cosmological scale to be measured need not be the size of an actual object: it can

also be a characteristic scale imprinted e.g. on the distribution of matter on large

scales, such as that of the baryonic acoustic oscillations observable in the matter

power spectrum, already detected using current quality data.

2.2.1 Standard Rulers

The comoving sizes of an object, or feature, located at redshift z in the line-of-sight

(r‖) and transverse (r⊥) directions are related to the observed sizes ∆z and ∆θ

through the expansion rate and the angular-diameter distance, respectively:

r‖ =
c∆z

H (z)
, r⊥ = (1 + z)DA (z) ∆θ . (2.2)

If the true scales, r‖ and r⊥, are somehow known, a measurement of the observed

dimensions, ∆z and ∆θ, provides an estimate of H(z) and DA(z), which can be

then used to probe cosmology.

It is worth emphasising that, if the size of the standard ruler can be measured in

both directions, i.e. parallel and perpendicular to the line of sight, this geometrical

test provides two independent probes of the expansion rate.

2.2.2 Baryon Acoustic Oscillations as Standard Rulers

Baryon acoustic oscillations are a feature of the power spectrum of large scale struc-

ture, first pointed out by Peebles & Yu (1970) and Sunyaev & Zeldovich (1970), and

represent an excellent candidate for the standard ruler test, as proposed by Blake

& Glazebrook (2003) and Seo & Eisenstein (2003).
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Prior to the epoch of recombination, the baryons in the universe are coupled

to the photons, and the interaction between radiation pressure and gravitational

instability, due to overdensities in the dark matter component, produces a series of

sound waves in the baryon-photon fluid. After recombination, baryons and photons

evolve separately: the acoustic oscillations are not only imprinted in the cosmic mi-

crowave background, as discussed in Section 2.4, but also in the spacial distribution

of baryonic and, eventually, non-baryonic dark matter. The acoustic feature is in

fact detectable as an enhancement in the statistical correlation at a certain separa-

tion, given by the scale of the sound horizon at the time of recombination, i.e. the

comoving distance that a sound wave can travel before recombination:

s =

∫ trec

0

cs (1 + z) dt =

∫ arec

0

cs da

aH (a)
, (2.3)

where trec and arec refer to the epoch of recombination, and cs is the speed of sound.

Hence, the characteristic scale of baryon oscillations is determined once the epoch

of recombination and the sound speed of the fluid, which depends on the baryon-to-

photon ratio, are known: since these two quantities are very precisely constrained

by CMB measurements, the acoustic oscillation scale can be calibrated and used as

a standard ruler.

The series of acoustic oscillations in the power spectrum is visible in Fig. 2.5.

The theoretical value of the BAO scale is rather straightforward to calculate, and

corresponds roughly to s = 150h−1 Mpc, whereas its measurement from a power

spectrum analysis of a galaxy redshift survey is complicated by several factors. First,

the matter power spectrum is estimated through the power spectrum of galaxies,

therefore a bias to describe the clustering of galaxy has to be assumed: a linear

bias, i.e. Pgal = b2 Pδ, is often used, motivated by observations of the matter power

spectrum and of weak gravitational lensing (see, e.g. Lahav et al. 2002; Simon et al.

2007). Then, non-linear growth of perturbations smoothes out the acoustic features

on small scales: at z ∼ 0, only the first two peaks are not erased, whereas at

higher z many more features are preserved outside of the region affected by non-

linear effects, as indicated by the arrows in Fig. 2.5. The harmonic sequence in the
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Figure 2.5: The linear power spectrum for two different cosmological models, divided by a

baryon-free power spectrum in order to enhance the wiggles. The error bars correspond to forecast

measurements obtained from a planned survey at z = 3, with survey parameters as indicated in

the figure. The arrows at the bottom show the scale where non-linear effects set in, thus washing

out the acoustic peaks, as a function of redshift, along with the scales probed by the CMB satellite

experiments WMAP and Planck. From Seo & Eisenstein (2003).

power spectrum translates into a single peak in the correlation function, and the

effect of non-linearities is to broaden this peak. Another effect which contributes

to the broadening of the peak is the redshift-space distortion due to the peculiar

velocities of galaxies, since the measured position of a galaxy in redshift space might

not correspond to its initial position. Additionally, the redshift data need to be

converted into real space in order to compute the two-point correlation function,

and this process requires a cosmological model to be assumed: an incorrect choice

of the background parameters would lead to a distorted power spectrum and the

acoustic peaks would appear in the wrong places, although it has been proven that

this effect is not dramatic, at least at low z.

2.2.3 Baryon Acoustic Oscillations as Cosmological Probes

The detection of the baryon acoustic peak requires the statistical measurement of a

small signal, hence the mapping of millions of objects over very large volumes, and
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Figure 2.6: The first detection of the BAO feature in the correlation function from the SDSS

LRG sample, plotted along with four different cosmological models: from top to bottom, the first

three, with Ωmh
2 = 0.12 (green line), = 0.13 (red line), and = 0.14 (blue line), all have a baryonic

contribution of Ωbh
2 = 0.024, whereas the fourth is a pure CDM model, with Ωmh

2 = 0.105 and

no baryons, hence no acoustic peak (magenta line). From Eisenstein et al. (2005).

it was only possible with the last-generation of galaxy redshift surveys, such as the

Two-Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001) and the

Sloan Digital Sky Survey (SDSS, York et al. 2000).

Eisenstein et al. (2005) first measured the BAO feature using a spectroscopic

sample of over 40,000 luminous red galaxies (LRG) from the SDSS, covering the

redshift range 0.16 < z < 0.47. The LRG are the brightest and reddest galaxies

in the universe, and can be easily seen up to z > 0.2, which is typically the limit

for galaxies in the main SDSS galaxy survey: the LRG sample thus probes a much

larger volume. The detection of the peak in the correlation function, at a separation

of ∼ 100h−1 Mpc, is illustrated in Fig. 2.6; this result confirmed once more the stan-

dard cosmological model. The peak also provided a standard ruler to measure the

distance to a single, intermediate redshift, z = 0.35, which can be used to constrain
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cosmology, especially in combination with other, independent measurements.

Analogously, Percival et al. (2007a) also detected the baryon acoustic signature

in a combination of the 2dFGRS and SDSS main galaxy samples, and used it to

measure the distance to z = 0.2. This measurement, along with the one at higher z

from Eisenstein et al. (2005), was employed to constrain parameters in ΛCDM mod-

els, achieving results slightly different from those obtained using type-Ia supernovae

from the SNLS: BAO data seem to require a stronger cosmic acceleration at low

redshift.

Future galaxy surveys are expected to detect the BAO signature in several red-

shift bins, thus yielding a measurement of the standard ruler at more than one

(or two) values of z; spectroscopic surveys will be able to measure the scale both

in the radial and transverse direction, thus providing independent estimates of the

angular-diameter distance and of the expansion rate for each redshift bin, whereas

photometric surveys, due to their much larger uncertainties in z, will only be sensi-

tive to the transverse direction, thus probing only DA(z).

2.3 Big-Bang Nucleosynthesis

In the very early universe, which was extremely hot and dense, there were no neu-

tral atoms nor bound nuclei: any atom or nucleus which could be possibly produced

would be immediately destroyed by collisions with high energy photons. As the uni-

verse cooled down, well below the typical binding energies of nuclei (of order ∼MeV),

the nucleosynthesis of light elements set in. The abundance of the emerging nuclides

depend on the duration of the event, on the density and the thermal properties of

the components involved: hence, knowledge of the conditions of the early universe,

which can be computed from the Friedmann equations, and of the relevant nuclear

cross-sections allows to calculate the expected primordial abundance of all the rele-

vant species, namely deuterium (D), 3He, 4He and 7Li.

The simplest, standard model for big-bang nucleosynthesis has only one free

parameter, namely the density of baryons: the predicted abundance for the afore-

mentioned light elements are shown in Fig. 2.7 as a function of the baryon density.
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Figure 2.7: Theoretical predictions from the standard BBN model for the abundance of 4He, D,
3He and 7Li as a function of baryon density, along with observational bounds. The vertical band

is fixed by deuterium measurements only. From Burles et al. (1999).

The plot also shows a fair agreement between the theoretical predictions and obser-

vational bounds, thus being a remarkable confirmation of the big bang.

A comparison between the measured abundance of these light elements and the

theoretical expectation is a probe of baryon density, but is not at all trivial, since

each of the nuclei experienced a different evolution after the end of the primordial nu-

cleosynthesis phase. Deuterium is the best baryometer, because it is only destroyed

during stellar processes, thus its post-BBN evolution is monotonically decreasing

and any measurement of its abundance provides a lower bound to the primordial

one. The post-BBN evolution of the other elements is more complicated, instead:

3He is also produced in the interior of stars, and may survive and return to the

interstellar medium; the abundance of 4He also increases, being the main product of

hydrogen fusion in stars; 7Li is both burned and formed in stellar interiors. Hence,

detailed stellar and galactic evolution models are required, in order to infer accurate

cosmological information from BBN.

As shown by the vertical band in Fig. 2.7, deuterium abundance represents the
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best diagnostic of baryon density, yielding values which closely match those from

current non-BBN data, such as from measurements of the cosmic microwave back-

ground: the most up-to-date result is 0.0207 ≤ Ωbh
2 ≤ 0.0234, or 0.0399 ≤ Ωb ≤

0.045. For further details on BBN, see the reviews by Kneller & Steigman (2004)

and Steigman (2007).

2.4 Cosmic Microwave Background

The nuclear fusion of 4He and other light nuclei in the early universe, described in

the previous section, is necessary to explain the fact that about a quarter of the

baryonic matter in the universe is composed of 4He, and that such a high abun-

dance cannot be produced only by fusion in stars. Big-bang nucleosynthesis is only

possible if the temperature of the early universe was hot enough for a sufficiently

long period. This fact, along with some simple considerations, allows to predict that

the current temperature of the universe should be of order T0 ≈ 1 · · · 5 K (Alpher

& Herman, 1949). The predicted cosmic microwave background was first detected

serendipitously by Penzias & Wilson (1965), and this detection was sufficient ev-

idence in favour of the big bang universe. Following measurements of the energy

density in this radiation did nothing but confirm this result, showing that the CMB

photons have a perfect black-body spectrum (as reported by the FIRAS experiment

was placed on-board the COBE satellite, Mather et al. 1994). The temperature of

the CMB today is T0 = 2.726 K, which constrains the present value of the radiation

density parameter in photons: Ωr0 = 8.51× 10−5.

The CMB offers a look at the universe when photons, until then tightly bound

to electrons, as the black-body spectrum confirms, last scattered off electrons and

started travelling freely through space: this happened when the universe was only

380,000 years old, corresponding to a redshift of z ≈ 1100. The CMB is thus one

of the most powerful probes of the early universe, but it also carries a huge load of

additional information, since its photons have traversed almost the whole universe

after the last scattering epoch.
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2.4.1 Structures in the Cosmic Microwave Background

Although extremely close to being perfectly isotropic, the CMB deviates from isotropy

on several different levels, because of various reasons. First, the peculiar motion of

the Earth, which moves towards the Virgo Cluster along with the Solar System, the

Galaxy and the whole Local Group, imprints a dipolar pattern on the CMB with a

relative amplitude of order ≈ 10−3. A series of cosmologically relevant anisotropies

follow, characterised by an even smaller amplitude, of order ≈ 10−5.

The matter density fluctuations from which cosmic structure formed via gravita-

tional instability also leave an imprint on the temperature fluctuations of the CMB:

photons which were in an overdense region at last scattering lose energy, becoming

cooler, whereas those that were in an underdense region gain energy, becoming hot-

ter. This source of anisotropy, particularly effective on very large scales, is called

the Sachs-Wolfe effect (Sachs & Wolfe, 1967).

As already mentioned while introducing the BAO feature in the matter power

spectrum (see Section 2.2.2), before the epoch of recombination the cosmic fluid

underwent a series of acoustic oscillations: the overdensities in the dark-matter

component, in fact, compressed the fluid due to their gravity, whereas the radiation

pressure of the tightly coupled baryon-photon fluid acted against gravity, driving

the fluctuations apart (Peebles & Yu, 1970; Sunyaev & Zeldovich, 1970).

The power spectrum of the CMB is obtained by decomposing the relative tem-

perature fluctuations into spherical harmonics: the coefficients

alm =

∫
d2θ

δT

T
Ylm(~θ) (2.4)

are averaged over m (which is allowed because of isotropy) to form the angular power

spectrum

Cl =
1

2l + 1

l∑
m=−l

|alm|2 . (2.5)

The acoustic oscillations imprint a series of peaks and troughs in the power spectrum,

whose amplitude and position depend on the background cosmology. Since only

fluctuations smaller than the comoving sound horizon s at recombination are affected

by acoustic oscillations, this defines a characteristic angular scale of θ = s/w(arec) =
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0.66 deg, which can be read off the first peak in the power spectrum and, being a

standard ruler, is a powerful probe of the geometry of the universe.

On smaller scales, fluctuations are damped due to the increase of the photon

mean free path as recombination proceeds, which is not an instantaneous process:

structures smaller than the diffusion scale, which corresponds to an angular scale of

θ ≈ 10 arcmin, are damped (Silk damping, Silk 1968).

The three physical mechanisms described above are visible in the power spectrum

of the CMB, shown in Figs. 2.8 and 2.9.

Other anisotropies, usually referred to as secondary, are due to propagation

effects of the CMB photons and carry information about the distribution and for-

mation of cosmic structure. The integrated Sachs-Wolfe effect is determined by the

fact that photons travel through potential fluctuations which evolve in time: the

depth of the potential well can be different when the photon enters and leaves it,

thus yielding a non-zero net effect. The Sunyaev-Zel’dovich effect, instead, is due to

Thomson scattering of CMB photons off electrons in the hot gas of galaxy clusters,

which modifies the spectrum of the CMB observed in the line of sight of a cluster

(Sunyaev & Zeldovich, 1972). These and other effects, which represent noise to

those who are interested in the CMB as a probe of the early universe physics, are

extremely important for studies of galaxy clusters and large-scale structure.

It is worth mentioning that, since it arises from Thomson scattering, which is

sensitive to polarisation, the CMB is also expected to have a polarised intensity of

order 10% of the total intensity, which carries much additional information on the

properties of the early universe.

2.4.2 The Cosmic Microwave Background as a Cosmological

Probe

The first 25 years of CMB observations yielded an extremely smooth picture: no

anisotropies had been detected, besides the dipole. Anisotropies due to matter

fluctuations in the early universe were long sought for, but not detected. If matter

is tightly coupled to radiation, such fluctuations must have a relative amplitude of
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Table 2.1: Some of the cosmological parameters obtained from the 5-year WMAP data (Komatsu

et al., 2009), without and with the additional constraints imposed by BAO (Percival et al., 2007a)

and type-Ia supernovae (Kowalski et al., 2008). Only the estimate of Ωtot does not assume spacial

flatness; the further parameters are estimated assuming K = 0 and w = −1. Adapted from

Komatsu et al. (2009).

Parameter WMAP-5 alone WMAP-5 + BAO + SNe

Ωtot 1.099+0.100
−0.085 1.0052± 0.0064

Ωm 0.258± 0.030 0.274± 0.015

Ωb 0.0441± 0.0030 0.0456± 0.0015

ΩΛ 0.742± 0.030 0.726± 0.015

h 0.719+0.026
−0.027 0.705± 0.013

σ8 0.796± 0.036 0.812± 0.026

order ≈ 10−3: the fact that they were not detected suggested the hypothesis that

the universe must be dominated by a matter component which does not interact

with light, i.e. dark matter (Peebles, 1982).

The first detection of cosmologically motivated anisotropy in the CMB was pos-

sible with the satellite experiment COBE (Smoot et al., 1992). Since then, ground-

based balloon experiments and interferometers made great progress in the field of

CMB observations; the final breakthrough is represented, though, by the NASA

satellite WMAP (Wilkinson Microwave Anisotropy Probe), launched in 2001.

The first-year results from WMAP (Spergel et al., 2003) already represented a

striking evidence in favour of an almost flat ΛCDM model, and the following anal-

yses, based on the 3-year and 5-year data, respectively, achieved even more precise

constraints on the cosmological parameters (Spergel et al., 2007; Komatsu et al.,

2009). Results from the 5-year WMAP data are presented in Fig. 2.8: the all-sky

map of temperature fluctuations is shown in the left panel, whereas the measured

power spectrum is shown in the right panel, with its prediction in the best-fit ΛCDM

cosmology superimposed (the parameters of the model are listed in Tab. 2.1).
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Figure 2.8: Left panel : The cosmic microwave temperature fluctuations from the 5-year WMAP

data seen over the full sky. The average temperature is 2.726 K, and the colours represent temper-

ature fluctuations: red regions are warmer and blue regions are colder. Right panel : The angular

power spectrum of CMB temperature fluctuations from the 5-year WMAP data, with its prediction

in the best-fit ΛCDM cosmology superimposed. From the NASA/WMAP Science Team.

Flat

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

H0
(km s–1Mpc–1)

40

0.0

0.2

0.4

0.6

0.8

1.0

50

30

60
70
80
90

100

Figure 2.9: Left panel : The CMB power spectrum from the first-year WMAP data (filled circles)

and the prediction in four nearly degenerate models, with Ωk = 0.0, −0.05, −0.10, −0.20 (solid

lines). From Efstathiou (2003). Right panel : Range of non-flat cosmological models consistent

with the three-year WMAP data only. The different colours correspond to values of the Hubble

constant as indicated in the figure. From Spergel et al. (2007)
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It is worth remarking that the Hubble constant cannot be independently mea-

sured from CMB data alone: it can be estimated from the location of the first peak

only if a flat model is assumed and a dark-energy equation of state w = −1. The

result, H0 = 70.1 ± 1.3 km s−1 Mpc−1, is in perfect agreement with that achieved

by the HST Key Project (Freedman et al. 2001, see Section 1.4). Turning the ar-

gument around, the position of the first peak alone is not able to constrain the

geometry of the universe: as pointed out by Efstathiou (2003), the location of the

peak depends on the size of the sound horizon, thus on the expansion rate at re-

combination. It is therefore affected by a strong degeneracy between the matter

density, the dark-energy density and curvature, which precludes reliable estimates

of either the dark-energy density parameter or the Hubble constant from CMB data

alone, even under the assumption of w = −1. The left panel of Fig.2.9 shows the

CMB power spectrum for four different models, with different curvature and Hubble

constant, which are all nearly degenerate, apart from the very low multipoles, and

all fit well the first-year WMAP data. As illustrated in the left panel of Fig. 2.9,

the CMB data constrain a very tight treck in the (Ωm,ΩΛ) plane, which is slightly

tilted with respect to the line identifying flat universes; however, fixing the Hubble

constant from an external experiment, narrows down the constraints significantly.

Whereas the 3-year WMAP data alone do not disfavour models with no cosmologi-

cal constant, when combined with the value of H0 from the HST Key Project they

strongly point towards Λ-dominated, spatially flat universes.

The future of CMB observations lies in the European satellite mission Planck,

expected to be launched in early April 2009: with its extended frequency coverage

and an angular resolution of ≈ 5 arcmin, it will achieve unprecedented control over

the subtraction of foregrounds, one of the most delicate issues in CMB data analysis,

and is also expected to measure the polarisation signal and to detect thousands of

galaxy clusters through the Sunyaev-Zel’dovich effect (Tauber, 2004; Valenziano

et al., 2007).
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2.5 Cosmic Shear

The phenomenon of gravitational lensing, i.e. the deflection of light rays coming

from distant sources by the gravitational effect of foreground massive bodies, is a

powerful tool for cosmology. In particular, weak gravitational lensing due to the

large-scale distribution of matter, usually referred to as cosmic shear, proved to be

a very promising probe to test cosmological models and constrain their parameters.

2.5.1 Basics of Gravitational Lensing

This section introduces the basic formalism to describe gravitational lensing, follow-

ing the review by Bartelmann & Schneider (2001), to which the reader is referred

for a more detailed treatment.

The simplest example of a gravitational lens is a point mass M : in this case, the

deflection experienced by a light ray is quantified through the deflection angle

α̂ =
4GM

c2ξ
, (2.6)

where ξ is the impact parameter, assumed to be much larger than the Schwarzschild

radius of the lens, ξ � RS ≡ 2GM/c2.

In the case of a weak gravitational field, the field equations of general relativity

can be linearised and the deflection due to an ensemble of point masses can be

described as the sum of the deflections due to the individual point masses. Hence,

the total deflection angle for a three-dimensional mass distribution with volume

density ρ(~r), where ~r = (ξ1, ξ2, r3) and the incoming light ray propagates along r3,

reads

~̂α(~ξ) =
4G

c2

∫
d2ξ′

∫
dr′3 ρ(ξ′1, ξ

′
2, r
′
3)

~ξ − ~ξ′

|~ξ − ~ξ′|2
; (2.7)

in the derivation of the previous equation, the actual light path, which is deflected,

has been approximated as a straight line in the neighbourhood of the lens, since

the deflection is small, in analogy to the Born approximation. The inner integral in

Eq. (2.18) defines the surface mass density, i.e. the mass density projected onto a

plane perpendicular to the incoming light ray,

Σ(~ξ) =

∫
dr3 ρ(ξ1, ξ2, r3) , (2.8)
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Figure 2.10: Sketch representing a typical gravitational lens system in the thin-lens approxima-

tion. From Bartelmann & Schneider (2001).

which allows to rewrite Eq. (2.18) as

~̂α(~ξ) =
4G

c2

∫
d2ξ′Σ(~ξ′)

~ξ − ~ξ′

|~ξ − ~ξ′|2
. (2.9)

This expression is valid in most astrophysical situations, where the deflecting

body is a well defined object (e.g. a galaxy or a galaxy cluster) and the deflection of

light rays within the mass distribution is much smaller than the scale on which the

properties of the mass distribution vary significantly; this is, however, not the case

when considering the deflection due to the large scale structure, which is discussed

in the following section.

The geometry of a typical gravitational lens system is illustrated in Fig. 2.10,

where a mass concentration, placed at redshift zd (or at angular-diameter distance

Dd), deflects light rays coming from a source, placed at redshift zs (or at angular-

diameter distance Ds), and Dds represents the angular-diameter distance between

the lens and the source; in general, Dds 6= Ds − Dd. In the absence of other,
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neighbouring deflecting bodies and in the thin-lens approximation, i.e. if the extent

of the lens is much smaller than both Dds and Ds, the light rays can be approximated

by two straight lines with a kink near the deflector: the magnitude and the direction

of the kink are described by the deflection angle ~̂α. The lens and source planes are

defined as planes perpendicular to a straight line from the observer to the lens, which

is referred to as the optical axis of the system.

In Fig. 2.10, the source position on the source plane is denoted by the two-

dimensional vector ~η and the impact parameter of light rays on the lens plane by ~ξ,

which are related to the deflection angle through

~η =
Ds

Dd

~ξ −Dds
~̂α(~ξ) ; (2.10)

defining the angular coordinates ~β and ~θ such that ~η = Ds
~β and ~ξ = Dd

~θ, Eq. (2.10)

can be rewritten as

~β = ~θ − Dds

Dd

~̂α (Dd
~θ) ≡ ~θ − ~α(~θ) ; (2.11)

where the last step defines the reduced deflection angle ~α(~θ). Eq. (2.11) is referred

to as the lens equation, and it means that a source with true angular position ~β can

be seen by an observer at angular positions ~θ which satisfies Eq. (2.11). Due to the

non-linearity of the lens equation, multiple solutions may exist for a fixed ~β, giving

thus rise to multiple images of the same source. The capability of a lens to produce

multiple images is quantified by the dimensionless surface mass density, also referred

to as convergence:

κ(~θ) =
Σ(Dd

~θ)

Σcr

, (2.12)

where Σcr = (c2/4πG) · (Ds/DdDds) is the critical mass density and depends on the

configuration of the lens system. If Σ ≥ Σcr somewhere in the lens, it produces

multiple images and is referred to as “strong”.

The reduced deflection angle, in terms of the convergence, reads

~α(~θ) =
1

π

∫
d2θ′κ(~θ′)

~θ − ~θ′

|~θ − ~θ′|2
, (2.13)

which implies that ~α can be written as ~α = ∇ψ, where

ψ(~θ) =
1

π

∫
d2θ′κ(~θ′) ln |~θ − ~θ′| (2.14)
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is the deflection potential; ψ is the two-dimensional analogue of the Newtonian grav-

itational potential and satisfies Poisson’s equation ∇2ψ = 2κ.

Since the true position ~β of the source is unknown, the deflection angle ~α itself

cannot be measured: the observable quantities are the distortions induced by the

deflection, which, to first order, are described by the Jacobian matrix

A(~θ) =
∂~β

∂~θ
=

(
δij −

∂2ψ(~θ)

∂θi∂θj

)
=

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 , (2.15)

where the shear components are defined as

γ1 =
1

2

(
∂2ψ

∂θ2
1

− ∂2ψ

∂θ2
2

)
, γ2 =

∂2ψ

∂θ1∂θ2

, (2.16)

and the convergence is related to the lensing potential through Poisson’s equation,

κ =
1

2

(
∂2ψ

∂θ2
1

+
∂2ψ

∂θ2
2

)
. (2.17)

Eq. (2.15) shows that the convergence produces an isotropic distortion of the shape

of an extended source, while the shear contribution is anisotropic.

2.5.2 Cosmological Light Deflection

As illustrated in a rather intuitive way in Fig. 2.11, any density perturbation along

the line of sight contributes to deflect light rays coming from distant sources. Assum-

ing that the perturbations are very well localised in an otherwise homogeneous and

isotropic background, that the Newtonian potential of the perturbations is small,

Φ� c2, and that the velocities are much smaller than the speed of light, the deflec-

tion angle is given by

~α(~θ, w) =
2

c2

∫ w

0

dw′
fK(w − w′)
fK(w)

∇⊥Φ[fK(w′) ~θ, w′] . (2.18)

The deflection angle is thus a weighted integral over the gradient of Φ, taken in the

direction perpendicular to the line of sight: the weight is determined by a ratio of

comoving angular-diameter distances, from the deflecting potential to the source,

fK(w − w′), and from the observer to the source, fK(w).
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Figure 2.11: A representation of cosmic shear: the light rays coming from distant galaxies are

deflected while travelling through the large-scale distribution of matter in the universe, yielding

distorted images of the sources. From the NIC group at IAP.

In analogy to the thin-lens case, an effective convergence can be defined deriving

the deflection angle with respect to ~θ. Omitting the details, the result reads

κeff(~θ) =
3H2

0 Ωm0

2c2

∫ wH

0

dw W̄ (w) fK(w)
δ[fK(w) ~θ, w]

a(w)
, (2.19)

where δ is the density contrast as defined in Section 1.7, and the upper integration

bound, wH, stands for the horizon distance, i.e. the comoving distance to infinite

redshift; in addition, the weighting function W̄ (w) takes into account that sources

are distributed in redshift:

W̄ (w) =

∫ wH

w

dw′ n(w′)
fK(w′ − w)

fK(w′)
, (2.20)

where n(w)dw = nz(z)dz is the distribution function of the sources.

Although it is not possible to achieve a prediction of the light deflection rela-

tive to a particular line of sight, since the mass distribution along that light path

is unknown, the statistical properties of weak lensing due to the large-scale mass

distribution can be predicted from the power spectrum of the density perturbations.
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Limber’s equation, which relates the power spectrum of a three-dimensional field to

any weighted projection of it onto two dimensions, allows to derive the convergence

power spectrum Pκ(l) in terms of the matter density power spectrum, Pδ(k):

Pκ(l) =
9H4

0 Ω2
m

4c4

∫ wH

0

dw

(
W̄ (w)

a(w)

)2

Pδ

(
l

fK(w)
;w

)
. (2.21)

It is worth mentioning that Limber’s equation is derived assuming that the weight

function varies on scales much larger than the typical scales in the considered field,

and that this assumption is satisfied in this case, since W̄ is smooth compared to δ.

Again, in analogy to the thin-lens case, the components of the shear γ can be

defined, which can be estimated from the ellipticity of the sources, opposite to the

convergence, which is almost impossible to quantify. It can be shown that the

power spectrum of the shear is identical to that of the convergence: Pκ can thus be

evaluated, if the ellipticity of distant galaxies can be measured, and its estimate can

constrain the matter power spectrum Pδ.

2.5.3 Cosmic Shear Estimators

The two-point correlation function of the shear is defined as

ξγ(φ) =

∫
ldl

2π
Pγ(l) J0(lφ) , (2.22)

where Pγ is the shear power spectrum, and J0 is the zero-th order Bessel function

of the first kind.

The two-point correlation function of the shear can be measured from the com-

parison of the ellipticity of all possible pairs of galaxies separated by an angle φ.

The separation direction is used to define the tangential and cross components of

the shear, namely γ+ = γ cos 2α and γ× = γ sin 2α, where α is the angle between the

above mentioned direction and the major axis of the ellipse, and the factor 2 takes

into account that an ellipse is mapped onto itself by a rotation of π. The tangential

and cross shear define the two correlation functions

ξ++(φ) = 〈γ+(θ)γ+(θ + φ)〉 =
1

2

∫ ∞
0

ldl

2π
Pκ(l) [J0(lφ) + J4(lφ)] (2.23)
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and

ξ××(φ) = 〈γ×(θ)γ×(θ + φ)〉 =
1

2

∫ ∞
0

ldl

2π
Pκ(l) [J0(lφ)− J4(lφ)] , (2.24)

where J0,4 are again Bessel functions of the first kind; one can also define a mixed

correlator, which is expected to vanish, ξ+×(φ) = 0. The following two combinations

are, though, more convenient to use: ξ± = ξ++±ξ××, which are related to the power

spectrum through

ξ+(φ) =

∫ ∞
0

ldl

2π
Pκ(l) J0(lφ) (2.25)

and

ξ−(φ) =

∫ ∞
0

ldl

2π
Pκ(l) J4(lφ) . (2.26)

Other two-point statistics of cosmic shear can be derived from averaging the

shear within a circular aperture and can be written in a similar form as Eqs. (2.22-

2.26), i.e. as filtered versions of the convergence power spectrum. However, for

cosmological purposes, the best estimator of Pκ proved to be ξ+, which is also the

one used in this work.

2.5.4 Cosmic Shear Measurements

Observations of cosmic shear are rather challenging, mainly due to the distortion

being very weak. In addition, the observable quantity used to estimate the shear,

namely the ellipticity of a galaxy, contains a non-negligible noise contribution: galax-

ies are not circular, thus the measured signal is the sum of the effect of gravitational

lensing and an intrinsic ellipticity, which is unknown. In the assumption that galaxy

shapes are not correlated, it is possible to average the signal over several sources,

thus averaging out the intrinsic ellipticity and leaving only the shear signal. Clearly,

the standard deviation of the intrinsic ellipticity distribution contributes to the er-

rors on the estimate of the shear, along with the number of sources over which

the averaging process is performed for each angular separation, which is evidently

smaller for a survey which can achieve a large galaxy number density; of course, also

the surveyed area is an important parameter for error estimation.
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Other systematics affecting the measurement of cosmic shear are related to in-

strumental issues: having travelled from the source throughout the large-scale mat-

ter distribution of the universe, the light rays still have to pass through the atmo-

sphere of the Earth, which is turbulent, and through the optics of the telescope,

which might not be perfect; also the CCD which eventually detects the signal may

not be flawless. All these effects, which degrade the image of the source hence

the estimate of the shear signal, can be taken into account, and removed, through

an accurate monitoring of the point-spread function (PSF), i.e. the response of a

point-like source, typically a star, to the atmosphere-optics-detector system.

Further possible systematic effects are taken care of through a comparison of the

so-called E and B-modes: since the gravitational deflection is described by second-

order derivatives of a scalar potential, only curl-free (E) modes are allowed; the

detection of any significant curl component (B-modes) is supposed to be due to

residual systematics in the data.

2.5.5 Cosmic Shear as a Cosmological Probe

The first detection of the cosmic-shear correlation function was reported almost

simultaneously by several groups (see, e.g. Bacon et al. 2000; Van Waerbeke et al.

2000), and the data were immediately used to estimate cosmological parameters. In

particular, as evident from Eqs. (2.21-2.26), two-point statistics of cosmic shear are

sensitive to the normalisation of the power spectrum, σ8, and to the matter density

parameter, Ω0m: more precisely, cosmic shear constrains the product σ8 Ωα
0m, hence

it is degenerate in these two parameters.

Ever since these first detections, a large number of cosmic-shear surveys have

been realised: the most up-to-date, namely the Canada-France-Hawaii-Telescope

Legacy Survey (CFHTLS), has achieved measurements of the cosmic-shear cor-

relation function with very small error bars over a wide range in angular scales

(see Hoekstra et al. 2006; Semboloni et al. 2006 for the first results). The project

is still ongoing, and a recent analysis of the three-year data managed to detect the

signal at very large separations, up to 230 arcmin, i.e. well into the linear regime,
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Figure 2.12: Left panel: The two-point correlation function from the three-year CFHTLS data:

E-modes are plotted in red, and B-modes, which are compatible with zero, in black. Right panel:

Consequent constraints on Ω0m and σ8 using three different two-point statistics of the cosmic shear;

the analysis assumes a flat ΛCDM model. From Fu et al. (2008).

thanks to the unprecedented width of the contiguous area of the survey (Fu et al.,

2008). The two-point correlation function and the constraints in the (Ω0m, σ8) plane,

where the degeneracy is evident, are shown in Fig. 2.12.

With current and future data quality, one of the main remaining uncertainties is

related to the non-linear modelling of the matter power spectrum: this is the reason

why the “very weak lensing” signal detected by Fu et al. (2008) on very large scales

is so promising; another issue on which cosmological inference depends crucially is

the determination of the exact redshift distribution of the background sources.

The combination of cosmic shear with other cosmological probes allows to lift

the aforementioned degeneracy between Ω0m and σ8: in particular, a joint analysis

with CMB data is extremely powerful, since the two probes yield complementary

constraints. This was first pointed out by Contaldi et al. (2003), and an analogous

investigation with more recent data is present also in Fu et al. (2008); both results

are shown in Fig. 2.13. Combining weak lensing data with other observations also

allows to test different cosmological models and to constrain the possible dynamics

of dark energy: an example is the combined analysis of CFHTLS cosmic shear data
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Figure 2.13: Two-dimensional likelihoods in the (Ω0m,σ8) plane from cosmic shear and CMB

data, showing the remarkable gain in information achievable through a joint analysis. Left panel:

the contours from cosmic shear only (data from the Red-sequence Cluster Survey) are plotted in

orange, those from CMB only (data from WMAP-1, CBI and ACBAR) are plotted in blue and

the joint contours are in green (Contaldi et al., 2003); Right panel: the contours from cosmic shear

only (data from the CFHTLS) are plotted in blue, those from CMB only (data from WMAP-3)

are plotted in green and the joint contours are in orange (Fu et al., 2008). Both analyses assume

a flat ΛCDM model.

with galaxy clustering measurements from SDSS performed by Doré et al. (2007)

in order to test alternative theories for gravity. Since the gravitational lensing sig-

nal depends not only on the intervening mass distribution, but also on the relative

distances between observer, lenses and sources, it probes at the same time the expan-

sion history and the growth of structures: the additional sensitivity to the growth

factor enables to break some degeneracies that affect geometrical tests, such as type

Ia supernovae or baryon acoustic oscillations, which have no power to distinguish

between different models with the same expansion history.

For further details about the cosmological implications of cosmic shear, see the

dedicated reviews by Van Waerbeke & Mellier (2003); Munshi et al. (2008).



Chapter 3

Solving the Cosmic Puzzle: an

Alternative Approach to

Dark Energy

This chapter reviews how the observational evidence for cosmic acceleration ac-

cumulated during the past decade and eventually converged towards the so-called

“concordance” model for cosmology, consisting of a universe made up of dark energy

and dark matter, and but a handful of ordinary, baryonic matter. The main possi-

ble theoretical scenarios to account for acceleration are briefly presented, along with

some of the observational projects which are currently being developed and planned

in order to solve the dark-energy puzzle. In this rather obscure context, the quest for

a direct, model-independent reconstruction of the cosmic functions underlying the

astronomical measurements stands out as a key approach, even more fundamental

than the commonly used parametrisations, which rely on models that are still only

poorly understood.

3.1 The Evidence for Acceleration

As already outlined in Chapter 2, the first evidence for cosmic acceleration dates

back to a decade ago, with the compilation of large sets of distances to type-Ia su-
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pernovae (Riess et al., 1998; Perlmutter et al., 1999). These samples showed that,

unexpectedly, distant supernovae appear to be fainter than their local counterparts,

thus implying the occurrence of a recent phase of accelerated expansion of the uni-

verse. One of the first Hubble plots, from the Supernova Cosmology Project, is

shown in Fig. 3.1; as described in the previous chapter, the significant improve-

ments achieved in the field of supernova cosmology since these early results did

nothing but confirm the original claim that cosmic expansion has been accelerating

since roughly z ∼ 1.

Along with the direct probe of acceleration coming from supernovae of type Ia,

the past ten years have witnessed an outstanding convergence of several observa-

tional tests, based on very different physical mechanisms, towards the existence of an

additional, unknown component with negative pressure, adding up to roughly 70% of

the universe and driving the current, accelerated expansion. This indirect evidence

results from a simple shortfall in the cosmic budget. Perhaps unduly simplifying

the picture, the typical angular size of CMB temperature fluctuations constrains

the overall spatial curvature and thus the sum of all energy density contributions,

which is very close to critical (Spergel et al., 2007; Komatsu et al., 2009), whereas

the the total matter density, constrained by the large-scale galaxy power spectrum

(Cole et al., 2005; Percival et al., 2007b) and the evolution of galaxy clusters (Allen

et al., 2003, 2004), is only a third critical: the difference between the total energy

density and the matter density is attributed to the cosmological constant or the dark

energy. The outstanding convergence of the latest results towards the concordance

model is depicted in the top panel of Fig. 3.2, and the sketch in the bottom panel

summarises what is currently believed to be the cosmic inventory.

3.2 Dark Energy and Other Scenarios

Although the evidence for the existence of a dark-energy component is almost con-

clusive, very little is known about its properties; furthermore, there is currently no

compelling theoretical explanation for it.
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Figure 3.1: Top panel: Hubble diagram for 42 high-redshift type-Ia supernovae from the Super-

nova Cosmology Project, and 18 low-redshift ones from the Calán/Tololo Supernova Survey. The

theoretical predictions for models with different values of Ωm,ΩΛ are also shown. Central panel:

magnitude residuals from the best-fit flat cosmology (Ωm = 0.28, ΩΛ = 0.72); the inconsistency

between the data and a flat model without a cosmological constant is evident. Bottom panel:

uncertainty-normalised residuals from the best-fit flat cosmology. From Perlmutter et al. (1999)
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Figure 3.2: Top panel: Likelihood contours in the Ωm,ΩΛ plane: extremely tight constraints

are obtained from a combination of type-Ia supernovae, baryon acoustic oscillations and the 5-

year WMAP cosmic microwave background data, when the equation of state of the dark energy is

fixed to be w = −1. From Kowalski et al. (2008). Bottom panel: A pie diagram illustrating the

current composition of the universe, dominated by dark energy and, regarding the matter sector,

by non-baryonic dark matter. From NASA/WMAP Science Team.



Solving the Cosmic Puzzle: an Alternative Approach to
Dark Energy 57

The simplest possibility is that the universe is permeated by an energy density

which is uniform in space and constant in time: the famous cosmological constant Λ,

with equation of state w = −1. It was originally introduced by Einstein in the field

equations to allow a static solution, in an epoch when the expansion of the universe

as an observational fact was still ignored; after the expansion was first detected, Ein-

stein removed the Λ term from his theory. Decades later, the cosmological constant

appeared again, to explain another “anomalous” expansion behaviour suggested by

observations, namely the recent phase of acceleration. However, general arguments

from particle physics predict that, if Λ is not zero, it is expected to be 120 orders

of magnitude larger than what is actually measured. This delicate fine-tuning is-

sue, along with the so-called coincidence problem, i.e. the unclear reason why, of all

epochs, the cosmological constant started to dominate right “now”, has triggered a

rich proliferation of more exotic theoretical explanations to the dark-energy problem.

Alternatively to the cosmological constant scenario, dark energy can be explained

in terms of a dynamical fluid with an equation of state w < −1/3, possibly time

dependent, w(a) = p(a)/ρ(a) c2, usually referred to as quintessence. Many different

theories of dynamical dark energy, characterised by their differing predictions for

the evolution of w(a), can be derived in the context of fundamental theories. A

particularly interesting candidate for quintessential dark energy is a scalar field

slowly rolling down a potential, which poses strong challenges to fundamental physics

from an experimental point of view.

It is worth noticing that, in the case of a time-evolving dark energy, its contri-

bution to the expansion rate in Eq. (1.14) is no longer constant in terms of the scale

factor, but evolves proportionally to a function

F (a) = exp

[
−3

∫ a

1

(1 + w(a′))
da′

a′

]
, (3.1)

which takes into account the time evolution of the equation of state. The expansion

rate is thus an integrated function of w(a); since almost all cosmological tests mea-

sure an integrated function of the expansion rate itself (e.g. distance measurements),

the information they carry on the (possible) time evolution of the equation of state



58

is integrated twice.

To date, no model providing a natural explanation to the fine-tuning or the

coincidence problems outlined above has yet been presented: hence, there is no

compelling reason to choose quintessence above the LCDM model.

Attempts to explain the recent acceleration without invoking a dark energy field

have also been developed: within the framework of general relativity, either an

inhomogeneous world model, with a metric different from the FLRW one, or the

“back-reaction” effect from non-linear structure formation might be able to produce

the observed late-time acceleration. A more radical approach to the problem of

the accelerated expansion is the idea that general relativity itself breaks down on

large scales. Modified gravity theories involve a modification of Einstein’s field

equations on the geometric side (Gµν) rather than on the matter side (Tµν): the

two main classes of models are scalar-tensor theories and higher-dimensional brane-

world models, both motivated in the context of string theory. For a more thorough

discussion about modified gravity, see e.g. the review by Durrer & Maartens (2008).

The study of such models goes well beyond the scope of this work. It will

suffice mentioning that, in modified gravity theories, the differential equation for the

evolution of linear density fluctuations is no longer governed simply by Eq. (1.30):

if, on one side, the expansion rate of any modified gravity model can be reproduced

by a suitably chosen LCDM model, the growth rate of linear perturbation, on the

other side, is able to discern between the two models. This fundamental property

confirms the importance of combining different observational tests, probing both

distances and the growth of structure, in order to investigate the dynamics of dark

energy.

3.3 Current and Future Observational Efforts

The vast number of possibly viable models described in the previous section, ranging

from the simple cosmological constant to scalar fields and modified gravity, point

out the deep implications that questions about the nature of dark energy represent
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for fundamental physics. It is not possible, however, to attempt a conclusive answer

at present: even the latest results from ground- and space-based observations are

not able to decisively determine which one, amongst the many alternative models,

describes at best the currently accelerating universe.

As was already pointed out, the combination of different techniques, possibly

probing different physical processes and measuring both the expansion rate and

the growth of structure, stands out as the main promise of the current and future

observational efforts. In order to investigate the nature of dark energy, its possible

time evolution and potential deviations from general relativity, the key observational

tests are type-Ia supernovae, baryon acoustic oscillations, cosmic shear and galaxy

clusters (see, e.g. the Dark Energy Task Force Report, Albrecht et al. 2006).

One of the main projects which are currently ongoing, targeting the issue of

the nature of dark energy, is the Canada-France-Hawaii Telescope Legacy Survey

(CFHTLS): its key science drivers are the monitoring of about 2000 type-Ia su-

pernovae, i.e. the SuperNova Legacy Survey (SNLS, see Astier et al. 2006 for the

first-year data release), and an exploration of the dark matter power spectrum and

its evolution with redshift by means of the gravitational distortion exerted by the

large scale structure on the distant galaxy population (for the first cosmic shear

analysis results, see Hoekstra et al. 2006; Semboloni et al. 2006; Fu et al. 2008).

Regarding the properties and the large-scale distribution of galaxies, great suc-

cess has been achieved through the completion of the two largest galaxy surveys to

date, the Two-Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001)

and the Sloan Digital Sky Survey (SDSS, York et al. 2000). In particular, the SDSS

is now entering its stage III operations, including the Baryon Oscillation Spectro-

scopic Survey (BOSS), a dedicated survey which will target the clustering of galaxies

on large scales, mapping the BAO signature and its evolution with redshift (for more

details, visit www.sdss3.org).

The next decade will witness an even larger effort to address the problem of

dark energy from the observational point of view: huge international collaborations
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are planning space-based missions in order to probe the properties of dark energy

and measure how cosmic expansion has changed over time. The need to go to

space is motivated by different reasons for the different observational tests: cosmic

shear studies need a small and stable point spread function (PSF), along with ob-

servations in infrared bands in order to achieve more accurate photometric-redshift

estimations; the search for supernovae at z > 1 is almost impossible with ground-

based telescopes, since the typical spectral feature of SiII used to identify type-Ia

supernovae is redshifted into the infrared; in order to probe baryon acoustic oscilla-

tions, a large sky coverage is needed, and the possibility to observe in the infrared

yields a deeper survey.

The European Space Agency (ESA) has approved the Euclid project, which

joined two previously separated mission concepts, namely the Dark Universe Ex-

plorer (DUNE) and the Spectroscopic All-sky Cosmology Explorer (SPACE): the

realisation of both a photometric and a spectroscopic survey will allow extreme ac-

curacy in all the different measurements (supernovae, cosmic shear, BAO), and their

combination is expected to yield a very tight estimate of the expansion and growth

rate (for further details, see Refregier 2008; Cimatti et al. 2008). An analogous

project planned by NASA is the Joint Dark Energy Mission (JDEM): one of its

parts is SNAP, the SuperNova Acceleration Probe, a space-based observatory which

should target supernovae and cosmic shear (Aldering & the SNAP collaboration,

2004). All these projects are currently undergoing preliminary design studies, and

are forecasted to be launched not earlier than 2016.

Along with the ambitious space missions, several ground-based projects to be

realised in the upcoming future include also dark energy amongst their science

goals: the Dark Energy Survey (DES, see www.darkenergysurvey.org), a dedi-

cated project which will use the CTIO telescopes in Chile, and the Large Synoptic

Survey Telescope (LSST, Ivezic et al. 2008), another telescope to be built in Chile,

will both target galaxy clusters, supernovae and the distribution of galaxies on

large scale, in order to probe cosmic shear and the evolution of the matter power

spectrum with redshift; the Square Kilometer Array (SKA, Schilizzi et al. 2008), a
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Figure 3.3: An artistic impression of the satellite observatory Euclid proposed to ESA on the

left side, and of the NASA project SNAP on the right side.

future-generation radio telescope, has several science objectives spanning various ar-

eas of astrophysics, and in the context of dark energy it will yield redshift estimates

for roughly one billion galaxies up to z ∼ 1.5, allowing accurate measurements of the

acoustic oscillation features in the galaxy distribution, along with a measurement

of the cosmic shear distortion imprinted on radio continuum sources (Blake et al.,

2004).

3.4 A Model-Independent Approach

The goal to determine the very nature of dark energy, driving the many challenging

observational projects discussed in the previous section, seems to have focused all

efforts uniquely on the determination of one function, namely the equation of state

w(a). While a detection of a more or less significant variation from −1 would clearly

represent a striking discovery, this approach is not free of pitfalls.

The infinite dimensional space of dark energy models is usually compressed into

a small set of parameters to characterise w(a) and place it into the cosmic expansion

rate in Eq. (1.14), substituting the conventional cosmological-constant term with the

function F (a) in Eq. (3.1). In the last years, a very popular parametrisation turned
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out to be

w(a) = w0 + wa(1− a) , (3.2)

where w0 represents the current value of w and wa takes into account its time evo-

lution, as proposed by Chevallier & Polarski (2001) and, later, by Linder (2003).

As already pointed out, the equation of state is related via a double integra-

tion to the actually measurable quantities: distances and the growth factor depend

thus only weakly on the details of w(a). Regarding distance measurements, Maor

et al. (2001) first described the theoretical limitation in using them to determine

the value and possible time evolution of the equation of state. As shown in Fig. 3.4,

the luminosity distance up to z = 2 is nearly identical for a set of nine different

models: the central panel shows that the percentage deviation from a fiducial model

with constant equation of state is less than 1%, whereas the bottom panel shows

the wide range of w(a) underlying the different models. If w is artificially restricted

to be constant in analysis of the data, the range of models collapses to the nar-

row region between the dashed lines in the bottom panel, thus giving a misleading

impression that w(a) is well resolved. Similarly, Bassett et al. (2004) investigated

the possible dangers deriving from the compression of the dark energy space into

low-dimensional subspaces: they concluded that standard one- and two-parameter

compressions are prone to yield misleading results, particularly regarding the possi-

bility of rapid evolution in w(a), which they cannot follow; this suggests to consider

additional higher-order terms, although an extension of the parameter space may

lead to severe degeneracies, making the parametrisation unable to constrain the

space of dark energy models.

Reconstructing w(a) is doubtlessly reasonable when testing specific dark-energy

models; however, especially in sight of the above mentioned pitfalls and limitations,

the question remains interesting what can be inferred on the cosmic expansion rate

H(a) from observations without any reference to a specific model for the energy

content of the universe and how it may affect cosmic dynamics.

This work follows the latter approach. As it was stressed in the previous chapters,
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Figure 3.4: The dependence of the luminosity distance on a double integration over the equation

of state w(z): the top panel shows the luminosity distance for nine choices of the dark-energy

equation of state, whose evolution in redshift is shown in the bottom panel ; the central panel shows

the percentage deviation from a fiducial model with constant w = −0.7. From Maor et al. (2001).
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the expansion function is the central mathematical object underlying all cosmolog-

ical measurements, augmented by the assumption of local Newtonian dynamics if

structure growth in the late universe is to be included. This suggests that mea-

surements of the function H(a) itself, without any reference to Friedmann models,

should be possible and much more fundamental than the common constraints of

cosmological parameters entering the expansion function once the density contribu-

tions to the Friedmann models are specified.

The importance of a model-independent reconstruction of the cosmic expansion

rate from luminosity distance data has been largely discussed in the literature. The

possibility of reconstructing the potential of dark-energy from H(a) or δ(a) was

first pointed out by Starobinsky (1998), where the relations between the observa-

tional data and the expansion rate are presented. Several different techniques have

been developed since then to appropriately treat the data in order to perform such

a reconstruction (see, e.g., Huterer & Turner 1999, 2000; Tegmark 2002; Wang &

Tegmark 2005), all of them employing a smoothing procedure in redshift bins; an

example of these results is shown in Fig. 3.5. Also principal component analysis

(PCA) has been used to reconstruct the dark energy equation of state as a function

of redshift (see, e.g., Huterer & Starkman 2003; Crittenden & Pogosian 2005; Simp-

son & Bridle 2006).

As already pointed out in Sect. (1.7), from the expansion rate the growth rate of

linear density fluctuations can be inferred: besides a model-independent reconstruc-

tion of H(a), this work presents the resulting constraints on D+(a) as well. This is

particularly interesting in sight of future missions, like Euclid, which are expected to

constrain the growth rate tightly: a comparison of a direct measurement of D+(a)

with its reconstruction obtained from the expansion rate could shed light on issues

concerning the dynamics of dark energy.

Parallel to this work, similar attempts employing different techniques have been

developed elsewhere: it is worth mentioning that a non-parametric reconstruction
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Figure 3.5: The expansion rate reconstructed in uncorrelated redshift bins from supernova data,

using current (top panel) and future (central panel) samples; the window functions employed for

the reconstruction in each bin are also shown (bottom panel). From Wang & Tegmark (2005).
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reconstructed from supernova and baryon acoustic oscillation data, for a synthetic LCDM model

with current (dashed area) and future (hatched area) observational standards. From Alam et al.

(2008).
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algorithm, which recovers the expansion function from distance data, has been devel-

oped in Shafieloo et al. (2006) and Shafieloo (2007), making use of data smoothing

over redshift with Gaussian kernels, and it has been generalised by Alam et al. (2008)

to reconstruct the growth rate from the estimated expansion rate. Their results are

summarised in Fig. 3.6.



Chapter 4

Model-Independent

Reconstruction of the Expansion

Rate Using Type-Ia Supernovae

This chapter introduces the reconstruction technique that has been developed in

the course of this work, in order to achieve an estimate of the expansion rate from

luminosity distance data without any reference to a particular model for the dark

energy. The details of the method and the assumptions it relies on are presented,

along with its performance on synthetic and real type-Ia supernova data. The results

presented in this chapter have been published in Mignone & Bartelmann (2008).

4.1 A Model-Independent Approach to the Ex-

pansion Rate

If space-time is on average homogeneous and isotropic and topologically simply

connected, it must be described by a Robertson-Walker metric characterised by a

time-dependent scale factor a(t), as described in Eqs. (1.2) and (1.3). General rel-

ativity enters when the scale factor is to be related to the energy content of the

universe. However, the geometry of space-time, in particular the distance measures,

are determined already once the scale factor and its first derivative are specified by
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the expansion function H(a).

Instead of specifying a particular Friedmann model and constraining the param-

eters contained in H(a) as outlined in Eq. (1.14) and its possible generalisation to

quintessence models, shown in Eq. (3.1), the goal of this work is to recover the

expansion rate of the universe, H(a), as a function of the scale factor a, without as-

suming any specific parameterisation for it. For simplicity of notation, the curvature

parameter is put K = 0, hence the comoving angular-diameter distance coincides

with the comoving distance, i.e. fK(χ) = χ, according to Eq. (1.3); this is a first-

order approximation even in the case of small K 6= 0. This simplification could be

dropped if necessary without any change of principle.

Recalling Eq. (1.19), the comoving distance between an observer at the present

epoch and an astronomical source, identified by a value a of the scale factor, reads

χ(a) =
c

H0

∫ 1

a

da′

a′2E(a′)
; (4.1)

due to Etherington’s relation, presented in Eq. (1.24), the luminosity distance, in

the case of K = 0, can be written as

DL(a) =
c

H0

1

a

∫ 1

a

dx

x2E(x)
≡ c

H0

1

a

∫ 1

a

dx

x2
e(x) , (4.2)

where the inverse expansion rate e(a) ≡ E−1(a) has been defined. For the sake of

simplicity, the normalising Hubble length c/H0 is dropped in the following discus-

sion, thus scaling the luminosity distance by the Hubble length.

Differentiating Eq. (4.2) with respect to a, and dropping c/H0, the following

relation is obtained,

D′L(a) = − 1

a2

∫ 1

a

dx

x2
e(x)− e(a)

a3
, (4.3)

which can be brought into the generic form of a Volterra integral equation of the

second kind for the unknown function e(a),

e(a) = −a3D′L(a) + λ

∫ a

1

dx

x2
e(x) , (4.4)
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with the inhomogeneity f(a) ≡ −a3D′L(a) and the simple kernel K(a, x) = x−2. The

general parameter λ will later be specialised to λ = a. As detailed e.g. in Arfken &

Weber (2005), Eq. (4.4) can be solved in terms of a Neumann series,

e(a) =
∞∑
i=0

λiei(a) , (4.5)

where a possible (but not mandatory) choice for the functions ei is

e0(a) = f(a) , en(a) =

∫ a

1

K(a, t)en−1(t)dt . (4.6)

The first guess for e0(a) is equivalent to say that the integral or the parameter

λ in Eq. (4.4) is small. This crude approximation, which is valid in all relevant

cosmological cases, is then improved iteratively until convergence is achieved.

4.2 Application to Type-Ia Supernovae

As explained in Section 2.1, after application of the empirical relation between light-

curve width and luminosity, observations of type-Ia supernovae yield measurements

of the distance moduli µi and redshifts zi for a set of N objects, which can be

converted into a set of luminosity distances DL(ai) dependent on the scale factors

ai = (1 + zi)
−1.

The model-independent technique outlined in the previous section requires taking

the derivative of the luminosity distance with respect to the scale factor, as evident

from Eq. (4.3). Due to measurement errors and scatter of the data about the

fiducial model, it is not feasible to directly differentiate the luminosity distance

data, since the result would be extremely noisy and any estimate of D′L(a) unreliable.

Thus, the data need to be appropriately smoothed. It is here proposed to do so by

fitting a suitable function DL(a) to the measurements DL(ai) and approximating

the derivative in Eq. (4.4) by the derivative of DL(a). This choice is justified under

the assumption that the derivative of the fitted data is in fact a good representation

of the actual derivative of the data.
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For doing this in a model-independent way, it is convenient to expand DL(a) into

a series of suitably chosen orthonormal functions pj(a),

DL(a) =
M−1∑
j=0

cjpj(a) . (4.7)

The M coefficients cj in Eq. (4.7) are estimated via minimisation of the χ2 function

χ2 =
(
~Dobs − D̄(~a)

)T
C−1

(
~Dobs − D̄(~a)

)
, (4.8)

where ~Dobs is a vector containing the N measured luminosity distances, ~a is a vector

of the measured scale factors, and

D̄(ai) ≡
M−1∑
j=0

cjpj(ai) ≡ (P~c)i (4.9)

is the vector of model luminosity distances to the scale factors ~a.

In the final expression of Eq. (4.9), P is an N ×M matrix with elements Pij ≡
pj(ai), and ~c is the M -dimensional vector of expansion coefficients. Using the fact

that the covariance matrix C−1 is symmetric, the set of coefficients minimising χ2

is

~c =
(
P TC−1P

)−1 (
P TC−1

)
~Dobs . (4.10)

In this representation of the data, the derivative of the luminosity-distance function

is simply given by

D′L(a) =
M−1∑
j=0

cjp
′
j(a) , (4.11)

thus avoiding the noise which would be introduced by a direct differentiation of the

data.

Using the linearity of the integral equation (4.4), it can be solved for each mode

j of the orthonormal function set separately. Inserting the derivative of a single

basis function p′j(a) in place of D′L(a) in Eq. (4.4), its contribution to the solution

is given in terms of the Neumann series

e(j)(a) =
∞∑
k=0

ake
(j)
k (a) , (4.12)
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with

e
(j)
0 (a) ≡ −a3p′j(a) , e(j)

n (a) =

∫ a

1

e
(j)
n−1(x)x−2dx (4.13)

according to Eq. (4.6). These modes of the inverse expansion function can be com-

puted once and for all for any given orthonormal function set {pj(a)}. Due to the

linearity of the problem, the final solution is then given by

e(a) =
M−1∑
j=0

cje
(j)(a) . (4.14)

4.3 Error Analysis

It is now explained how the errors on the supernova distance measurements propa-

gate into the expansion coefficients cj and eventually into the expansion rate. The

Fisher matrix of the χ2 function given in Eq. (4.8) reads

Fij ≡
〈
∂2χ2

∂ci∂cj

〉
, (4.15)

which is, in this particular case, given by

Fij =
N∑
k=0

pi(ak)pj(ak)

σ2
k

, (4.16)

where k runs over all supernova measurements and the σ2
k are the individual errors

on the luminosity distances. By the Cramér-Rao inequality, the errors ∆ci satisfy

(∆ci)
2 ≥ (F−1)ii . (4.17)

These errors will propagate into the estimate e(a) of the (inverse) expansion

function given in Eq. (4.14),

[∆e(a)]2 =
M−1∑
j=0

[
∂e(a)

∂cj

]2

(∆cj)
2 =

M−1∑
j=0

[
e(j)(a)

]2
(∆cj)

2 . (4.18)

Since the expansion rate is E(a) = 1/e(a), its error is finally given by

[∆E(a)]2 =
[∆e(a)]2

e4(a)
. (4.19)
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4.4 Application to Synthetic Data Sets

In this section, it is demonstrated using synthetic data sets how the method performs

in two different model cosmologies, an Einstein-de Sitter and a standard ΛCDM

model, using simulated samples with the characteristics of both current and future

surveys.

4.4.1 Illustration: Einstein-de Sitter Model

In order to illustrate the proposed method in detail, a simple and unrealistic model

cosmology is employed, i.e. an Einstein-de Sitter universe with matter-density pa-

rameter Ωm0 = 1, vanishing cosmological constant ΩΛ = 0 and Hubble constant

h = 0.7. The expansion function is

E(a) = a−3/2 , e(a) = a3/2 , (4.20)

and the luminosity distance is simply

DL(a) =
2

a
(1−

√
a) (4.21)

in units of the Hubble radius c/H0. A suitable choice for the orthonormal function

set could start from the linearly independent set

uj(x) = xj/2−1 , (4.22)

which can be orthonormalised by the usual Gram-Schmidt procedure. The orthonor-

malisation interval should be [amin, 1], where amin = (1 + zmax)−1 is the scale factor

of the maximum redshift zmax in the supernova sample: a set of orthonormal func-

tions, {pj(a)}, is thus obtained. Projecting the distance in Eq. (4.21) onto the basis

functions, it is straightforward to see that only the first two modes p0 and p1 have

non-vanishing coefficients. The derivatives of p0 and p1 are then used to construct

the corresponding Neumann series following Eq. (4.13), and from them the (inverse)

expansion rate can be recovered. Further details are presented in the last section of

this chapter.
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Figure 4.1: The reconstructed expansion rate for a simulated sample of supernovae in an Einstein-

de Sitter universe. The observational characteristics of the sample resemble those of the first-year

SNLS data. The green shaded area represents the reconstruction with 1-σ errors thereof, the blue

curve represents the model. The bottom plot shows the residuals between the reconstruction and

the model.

The procedure described above has been applied to a synthetic sample of type-Ia

supernovae in the Einstein-de Sitter universe. The observational characteristics of

the sample, such as its size, the redshifts and the distribution of typical errors of

individual measurements, are adapted to those of the first-year SNLS data (Astier

et al., 2006). Thus, the synthetic sample consists of 120 supernovae up to redshift

z = 1. It enables one to determine the expansion coefficients c0 and c1 with relative

errors of order (1-2)%. The reconstructed expansion rate H(a) is shown in Fig.4.1.

The purpose of this simplified example is to show that it is possible to achieve

a robust and highly accurate reconstruction of E(a) when the relevant expansion

coefficients can be obtained from the data with suitable significance.
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4.4.2 ΛCDM model

The preceding analysis is now repeated in a more realistic case, namely with a

synthetic sample simulated in a standard ΛCDM universe with Ωm0 = 0.3, ΩΛ0 = 0.7

and h = 0.7. The expansion function is

E(a) =
(
Ωm0a

−3 + ΩΛ0

)1/2
. (4.23)

In this case the first two modes of the basis {pj(a)} chosen before are insufficient

to reproduce DL(a) accurately. Calculating the true coefficients of the expansion

of DL(a), which are obtained by projecting it onto the different basis functions,

it is evident that at least the first five coefficients are significantly different from

zero. This is illustrated in Fig. 4.2, where the model luminosity distance to its

reconstruction using the basis functions and the true coefficient of its expansion are

compared. If only three or four coefficients are included, the reconstruction deviates

significantly from the model even at low redshift.

However, the measurement errors on the data play a crucial role in this analysis.

With current standard data sets, only the first three coefficients can be determined

significantly, while more than just three are needed to achieve an accurate recon-

struction with the proposed basis functions. The reconstructed expansion function,

obtained including three coefficients, is shown in the top panel of Fig. 4.3, where it

is compared to the expansion rate of the underlying cosmological model. If only the

first three modes are considered, all the coefficients are statistically significant, al-

though it is known from the theoretical model that the reconstruction is incomplete.

The errors on the first two coefficients c0 and c1 are of order (1-2)%, increasing to

8% on c2. The errors on higher-order coefficients are larger than the coefficients

themselves, indicating that they become compatible with zero and should therefore

be excluded from the reconstruction.

The precision with which coefficients can be determined from the data is likely

to improve dramatically with future generation, space-based supernova surveys such

as the SNAP mission (Aldering & the SNAP collaboration, 2004), which is expected

to measure high-quality light curves and spectra for ≈ 2000 type-Ia supernovae in
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Figure 4.2: The expansion rate in a ΛCDM model with Ωm0 = 0.3 and ΩΛ = 0.7 (solid line)

and its reconstruction obtained using the true coefficients (dashed line), truncated up to the third

(top panel), fourth (central panel) and fifth (bottom panel) coefficient, respectively. The difference

between the reconstruction and the model is shown in the bottom panels. When the fifth coefficient

is included, the two curves nearly coincide up to a = 0.4.
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the redshift range 0.1 < z < 1.7. With data of such high quality it will become

possible to achieve an extremely accurate reconstruction of the expansion rate with

this method. As discussed above, at least five coefficients are needed in order to re-

construct the expansion rate of an underlying ΛCDM model with the set of functions

described above.

Following the expected SNAP redshift distribution reported in Shafieloo et al.

(2006), a synthetic data set with SNAP characteristics has been produced. As done

in Shafieloo et al. (2006), also 25 more supernovae with z < 0.1 have been added,

which are supposed to be observed by future low-redshift supernova experiments.

Applying this reconstruction technique, the first five coefficients are significantly

constrained, with errors on the first two coefficients being of order 0.1%. The result,

obtained using five coefficients, is shown in the bottom panel of Fig. 4.3 together

with 1-σ errors.

The choice of the orthonormal function set is in general arbitrary. Obviously,

for each underlying model there will be a preferred function set, in the sense that

the number of coefficients required to reproduce the expansion rate is minimal when

using such a set. It is certainly possible to find a more suitable function set for

the ΛCDM model, but since the ultimate goal of this work is to reconstruct the

expansion rate from the observed data introducing as little theoretical prejudice as

possible, finding the most suitable function set to reproduce the ΛCDM expansion

rate is not the primary interest of this analysis. Hence, all the results presented in

this Chapter made use of the basis described in Sect. 4.4.1; a possible refinement of

the method, employing principal component analysis, is presented in Chapter 6.

4.4.3 Convergence of the Neumann Series

A separate, but related issue is to what power of the parameter λ the Neumann

series has to be followed, or, equivalently, to what power k of the scale factor a

the expansion in Eq. (4.12) has to proceed. The truncation criterion must again be

based on the quality of the data. Convergence of the series is achieved at different

powers k for different redshift intervals. In order to achieve convergence on the
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Figure 4.3: The reconstructed expansion rate for a simulated sample of supernovae in a ΛCDM

universe with observational characteristics resembling those of two different surveys, namely the

first-year SNLS data (top panel ; three coefficients used), and the forecast SNAP experiment (bottom

panel ; five coefficients used), respectively. The green shaded area represents the reconstruction

with 1-σ errors thereof, the blue curve represents the model. The bottom plot shows the residuals

between the reconstruction and the model.
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interval 0.5 ≤ a ≤ 1, the series can be truncated after k = 4. However, the inclusion

of a fourth-order term produces a difference to the preceding three orders which is

already within the error bars, and can therefore be neglected. This trend is clearly

enhanced when more coefficients are included in the reconstruction, since in this

case the errors are larger.

4.5 Recovery of Sudden Transitions in the Expan-

sion Rate

As emphasised above, this method can obtain the expansion function E(a), or rather

its reciprocal e(a), based on a representation of the derivative of the measured data.

It is here argued that dealing with the derivative of luminosity distance data is not

expected to cause a major problem, based on the reasonable assumption that the lu-

minosity distance is a very smooth function. As it is evident from Eq. (4.2), DL(a) is

related to the expansion function via an integral. Hence, even if E(a) had a peculiar

feature at some intermediate redshift, this would be smoothed out by the integration.

The issue is addressed by means of a toy model where the expansion function has

indeed a sudden transition. The toy model has been constructed starting from the

expansion rate of the Einstein-de Sitter model and deforming it by a gentle jump at

some intermediate value a∗ of the scale factor,

E(a) =

 − arctan [γ (a− a∗)] + δ (a > ã)

a−3/2 + 1 (a ≤ ã) .
(4.24)

Using Eq. (4.2), the corresponding luminosity distance has been obtained, which

is quite smooth and deviates from its Einstein-de Sitter counterpart in a way de-

pending on a∗. The expansion rate and the luminosity distance of this toy model

are plotted in Fig. 4.4, compared to those of the Einstein-de Sitter model.

Again, a synthetic sample of type-Ia supernovae within this model has been pro-

duced, with the same observational characteristics of either SNLS or SNAP, and the
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Figure 4.4: The expansion rate of the toy model compared to the Einstein-de Sitter one (left

panel), and the corresponding luminosity distance (right panel). The parameters for the toy model

are: a∗ = 0.7, ã = 0.6, γ = 11, δ = 2.3.

reconstruction procedure applied to it. In order to reproduce the transition feature,

more than three coefficients are needed. This is not feasible with SNLS-like data

because coefficients beyond the third lose significance. With a SNAP-like sample

instead, the expansion rate can be recovered. The results obtained with both syn-

thetic samples, with three coefficients for the SNLS and six for the SNAP case, are

shown in Fig. 4.5 together with their 3-σ errors. Figure 4.5 shows that this method

can also recover expansion histories with unexpected transitions, even though the

reconstruction is less accurate than that of a perfectly smooth expansion rate.

An attempt to fit this sample to a flat ΛCDM model and explore the parameter

space spanned by Ωm0 and w has also been carried out. The dark-energy equation-

of-state parameter w is allowed to differ from −1, first assuming that it is constant in

redshift and then parameterising its time evolution according to the parametrisation

mentioned in Eq. (3.2), namely w(a) = w0 + wa(1 − a). All the models considered

are found to be capable of producing good fits to the luminosity distance data, but

they all fail to reproduce the underlying expansion rate when the best fit parameters

are inserted back into Eq. (1.14). In most cases, the likelihood has more than one

maximum, since different combinations of the considered parameters constrain the

two different branches of the expansion rate. Unless the time evolution of the dark-

energy equation-of-state is modelled ad hoc, it is very unlikely to reproduce the
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Figure 4.5: The expansion rate of the toy model (blue curve) and its reconstruction, with 3-σ

errors thereof (green shaded area), obtained from a SNLS-like data set with three coefficients (top

panel), and from a SNAP-like data set with six coefficients (bottom panel). The bottom plots show

the residuals between the reconstruction and the model.
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Figure 4.6: Top panel: The luminosity distance of the toy model (cyan curve) together with the

SNAP-like simulated sample (black points), compared to the model-independent fit (blue dashed

curve) and three other cosmological fits (red curves). The bottom plot shows the residuals between

the different fits and the model. Bottom panel: The expansion rate of the toy model, of the model-

independent reconstruction and of the other models. The different red curves correspond to three

different fits to a flat ΛCDM: in case #1 (red dashed curve) it is imposed w = −1 only Ωm0 is

allowed to vary, in case #2 (red dotted curve) both Ωm0 and w (constant in redshift) are allowed

to vary, and in model #3 Ωm0, w0 and wa are allowed to vary, according to Eq. (3.2).
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sudden feature of the toy model in this way. However, the method developed in this

work achieves this because the parameters involved in the fit trace the relation the

between luminosity distance and the expansion rate. The different results obtained

with the usual approach and this method for the fit to the luminosity distance and

for the expansion rate are displayed in Fig. (4.6).

4.6 Application to Real Data: the First-Year SNLS

The method was finally applied to the first-year SNLS data (Astier et al., 2006). The

sample consists of 71 new supernovae observed from the ground with the Canada-

France-Hawaii Telescope, the farthest being at redshift z = 1.01, plus 44 nearby

supernovae taken from the literature. Thus, the total sample contains 115 super-

novae in the redshift range 0.015 < z < 1.01.

Assuming a flat, ΛCDM universe with constant w = −1, Astier et al. (2006)

obtained a best fit of Ωm0 = 0.263 ± 0.037. Releasing the flatness assumption and

adding constraints from the baryon acoustic oscillations (BAO) measured in the

SDSS (Eisenstein et al., 2005), they obtained Ωm0 = 0.271 ± 0.020 and ΩΛ0 =

0.751 ± 0.082. Furthermore, they investigated models with constant equation of

state w 6= −1: assuming flatness and the BAO constraints, their best-fit parameters

are Ωm0 = 0.271± 0.021 and w = −1.023± 0.087.

The fit to the luminosity-distance data obtained applying the model-independent

method to this sample, with the orthonormal function set described in Sect. 4.4.1, is

shown in the top panel of Fig. 4.7. It yields three significant expansion coefficients

because the data quality, especially at high redshift, does not allow constraints of

higher-order modes, as discussed in Sect. 4.4.2.

The expansion rate reconstructed with this method is compared in the bottom

panel of Fig. 4.7 to that of the best-fit model of the SNLS analysis, i.e. a flat ΛCDM

with Ωm0 = 0.263.
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Figure 4.7: Top panel: The 1st year SNLS sample and our fit for the luminosity distance. Bottom

panel: The model-independent reconstruction of the expansion rate and 1-σ errors thereof (gray

shaded area), compared to the expansion rate of a ΛCDM model with the best fit parameter from

Astier et al. (2006), Ωm0 = 0.263± 0.037, and 1-σ errors thereof (red curves).
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4.7 Extending the Sample Beyond z = 1

Another interesting problem concerns what could improve the performance of the

method. Clearly, both a larger sample of supernovae and a better accuracy in the

individual measurements would help reducing the errors on the coefficients, which

would eventually enable a significant estimate of more coefficients, and thus a more

precise reconstruction of the expansion rate. From a mathematical point of view,

adding more objects and reducing the uncertainties are equivalent: a sample four

times larger than another yields the same results obtained with the smaller sample,

if its error bars were to be reduced by one half. However, since the measurement

accuracy cannot be indefinitely shrunk below a given limit, because of systematic

uncertainties, a long run strategy to make best use of the method would be to

increase the size of the sample.

Extending the sample to higher redshift can also help reducing the errors on the

estimated coefficients. The issue is addressed by means of an extremely simplified

example: an additional set of 20 objects, uniformly distributed between z = 1 and

z = 1.7, has been added to the previously described simulated ΛCDM SNLS-like

sample of supernovae, which only goes up to z = 1. The excess in the Fisher matrix

due to the inclusion of the higher-z sample influences the errors on the coefficients,

reducing the first by ∼ 10% and the following ones by ∼ 20%, whereas if only 20

more objects with z ≤ 1 were added, the gain would be smaller. However, this still

does not allow more than three coefficients to be significantly pinned down, with

the orthonormal function set described in Sect. 4.4.1.

The method has also been applied to a supernova sample which extends beyond

z = 1, namely the one compiled by Davis et al. (2007), including the combined

ESSENCE/SNLS/nearby dataset from Wood-Vasey et al. (2007) and the HST data

from Riess et al. (2007). It contains 192 supernovae, of which 15 fall within 1 <

z < 1.75. Although this sample contains more objects than the SNLS and extends

to higher redshifts, the quality of the reconstruction achieved is not better than

the one obtained using the SNLS data set. In fact, the errors on the coefficients
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are slightly larger, because the individual uncertainties on the distance moduli in

the extended ESSENCE sample are significantly higher than the SNLS ones (at

least for z < 0.8), due to the different way luminosity distances are estimated

from the photometric data by the two groups (a review on the different supernova

light-curve fitters is given in Conley et al. 2007). The two different data sets and

the corresponding reconstructions of the expansion rate are shown in Fig. 4.8; the

disagreement between the two reconstructions at very low redshifts is due not only to

differences in the data sets, but also to the fact that the method does not marginalise

over the normalisation constant, H0, thus slightly underestimating the error bars on

H(a).

4.8 Exact Solution for the Einstein-de Sitter Case

It is here shown how to construct the (inverse) expansion rate of the Einstein-de

Sitter model from the first two modes of the function set obtained applying Gram-

Schmidt orthonormalisation to the set of linearly independent functions specified by

Eq. (4.22). The first two modes are

p0(x) =
1√
α

1

x
, p1(x) =

1√
C

(
1√
x

+
2β

x

)
, (4.25)

with

α =
1− amin

amin

,

C = 4− 8

1−√amin

− ln amin ,

β =
1√
α

−1 +
√
amin√

1− amin

. (4.26)

It is straightforward to see, by projecting the distance in Eq. (4.21) onto the basis

functions, that only the first two modes are needed, i.e.

DL(a) =
1∑
j=0

c̃jpj(a) , (4.27)

where c̃j =
∫ 1

amin
DL(a)pj(a)da stands for the j-th true coefficient of the expansion.

In this case c̃0 = 2(1 + 2β)
√
α and c̃1 = −2

√
C.
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From the derivative of p0(a),

p′0(x) = − 1√
α

1

x2
, (4.28)

the zero-th order Neumann series can be constructed following Eq. (4.6):

e
(0)
0 (a) = −a3p′0(a) =

1√
α
a ,

e
(0)
1 (a) =

∫ a

1

dx

x2
e

(0)
0 (x) =

1√
α

ln a ,

e
(0)
2 (a) =

∫ a

1

dx

x2
e

(0)
1 (x) =

1√
α

a− 1− ln a

a
. (4.29)

Up to second order, the zero-th order Neumann series for the (inverse) expansion

rate is

e(0)(a) =
2∑

k=0

ake
(0)
k (a) (4.30)

=
1√
α

(a+ a ln a+ a(a− 1)− a ln a) =
1√
α
a2 . (4.31)

Again, from the derivative of p1(a)

p′1(x) = − 1√
C

(
1

2x3/2
+

2β

x2

)
, (4.32)

the first-order Neumann series can be constructed:

e
(1)
0 (a) = −a3p′1(a) =

1√
C

(
a3/2

2
+ 2βa

)
,

e
(1)
1 (a) =

∫ a

1

dx

x2
e

(1)
0 (x) =

1√
C

(√
a+ 2β ln a− 1

)
,

e
(1)
2 (a) =

∫ a

1

dx

x2
e

(1)
1 (x) =

=
1√
C

(
1

a
− 2√

a
− 2β

ln a+ 1

a
+ 1 + 2β

)
. (4.33)

The first-order Neumann series up to second order thus reads

e(1)(a) =
2∑

k=0

ake
(1)
k (a) =

1√
C

(
−a

3/2

2
+ (1 + 2β)a2

)
. (4.34)

Now Eqs. (4.30) and (4.34) can be employed, along with the true coefficients of

the expansion, and recalling the relations in Eq. (4.26), the inverse expansion rate
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for an Einstein-de Sitter universe is recovered:

e(a) =
1∑
j=0

c̃je
(j)(a) =

=
2√
α

(1 + 2β)
√
αa2 − 2

√
C

1√
C

(
−a

3/2

2
+ (1 + 2β)a2

)
=

= a3/2 . (4.35)



Chapter 5

Reconstruction of the Linear

Growth Factor and Application to

Cosmic Shear

This chapter explains how the reconstructed expansion rate obtained from supernova

data, following the details presented in Chapter 4, can be employed to estimate the

linear growth factor for structure formation. Such a reconstruction of the growth

factor, as well as the one of the expansion rate, does not depend on any assumption

about dark energy. The expansion rate and the linear growth factor are the two

main ingredients to describe the weak gravitational lensing signal due to the large

scale structure: the results of a model-independent analysis of synthetic cosmic shear

data are presented, showing that this approach, combined with a traditional ΛCDM

analysis, contributes to tighten the constraints on the parameters Ωm and σ8.

5.1 A Model-Independent Reconstruction of the

Linear Growth Factor

As already outlined in Section 1.7, in the standard scenario of structure formation

the density constrast δ of a linear dark matter perturbation evolves according to

Eq. (1.30), a second-order differential equation where the expansion rate H acts as
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a friction term:

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 , (5.1)

where dots indicate derivatives with respect to time. Recalling the Hubble expansion

function H(a) = H0E(a) = ȧ/a = da/(adt), Eq. (5.1) can be rewritten in terms of

derivatives with respect to the scale factor a:

δ′′ +

(
3

a
+
E ′(a)

E(a)

)
δ′ − 3

2

Ωm

a5E2(a)
δ = 0 . (5.2)

The solution to Eq. (5.2) can be calculated analytically for an Einstein-de Sitter

model, where E(a) = a−3/2 and δ(a) ∝ a. It is worth mentioning that this result

is independent of Ωm, in the sense that, due to the form of Eq. (5.2), the solution

would still be δ(a) ∝ a even if the expansion rate had the form E(a) =
√

Ωm a
−3/2,

which is an approximation for any ΛCDM model (even quintessence models with

non-evolving dark energy) at very early times.

The Einstein-de Sitter solution is usually employed also when dealing with other

models, to calculate plausible initial conditions, since, at very early time, it is rea-

sonable to assume an Einstein-de Sitter-like expansion. From δ(a) ∝ a one finds

δ(aearly) = aearly, δ′(aearly) = 1, where it is usually assumed aearly = aeq, i.e. the time

of matter-radiation equality.

In the literature, Eq. (5.2) is integrated numerically after choosing a cosmological

model; in the case of a ΛCDM, a fitting formula for the growth factor, provided by

Carroll et al. (1992), is generally used.

The approach chosen here is different: the solution to Eq. (5.2) is calculated

by making use of the expansion rate from the empirical reconstruction detailed in

the previous chapter, together with independent information on the matter density

parameter Ωm. The estimate of the growth factor for linear density perturbations

achieved in this way does not rely on any specific model for the dark energy; it

depends, though, on the assumptions underlying Eqs. (5.1) and (5.2).
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Figure 5.1: The reconstructed expansion rate for a simulated sample of supernovae in a ΛCDM

universe, analogous to the one plotted in the top panel of Fig. 4.3 but extended to earlier epochs.

The green contours stand for the reconstruction with 1-σ errors thereof, the pink contours for the

3-σ errors, and the blue curve represents the model. Note the logarithmic scale.

5.1.1 Initial Conditions

A delicate issue in this process is the choice of the right initial conditions to solve

the differential equation. Although the method described in Chapter 4 yields, in

principle, a reconstruction of E(a) for any value of the scale factor, the expansion

function will be strongly constrained by the data only in the redshift range where

supernovae are observable, as is evident from Fig. 5.1, which shows the same result

as the top panel of Fig. 4.3 but extended to a → 0. The reconstruction, which

reproduces the underlying model very accurately up to a = 0.5, becomes clearly

unreliable at a < 0.4, even at the 3-σ confidence level.

A possible approach to overcome such a complication is to solve the differential

equation only over the redshift range where the data are defined, but in this case the

initial conditions at the value of a corresponding to the maximum redshift of the su-

pernova sample must be provided, and they cannot be determined without assuming
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a cosmological model, nor using the Einstein-de Sitter approximation, which is man-

ifestly not valid at such low redshits. This is shown in the top panel of Fig. 5.2, which

shows the expected growth factor D(a), normalised such that D = 1 at present, in

a ΛCDM (red solid line) and in an Einstein-de Sitter model (magenta dotted line),

along with the growth factor obtained integrating Eq. (5.2) using the exact ΛCDM

expansion function, but imposing the initial conditions at a = 0.5, instead than at

aeq. Both Einstein-de Sitter-like initial conditions (i.e. δ(a = 0.5) = 0.5, δ′ = 1;

blue dashed line) and the correct value for δ′ as expected in ΛCDM (black dotted

line) have been used, in order to emphasise how the knowledge of the derivative of

δ improves the result significantly.

In this work it has been chosen, instead, to solve the equation over a larger

redshift range, going backwards in time enough in order to be able to set Einstein-

de Sitter-like initial conditions. As evident from the bottom panel of Fig. 5.2, the

latter approach (i.e. using the reconstructed E(a) and Einstein-de Sitter-like initial

conditions at an early time, plotted in light blue) yields an accurate estimate of the

growth factor over a much larger redshift range with respect to the previous one

(i.e. using the exact expression for E(a) but Einstein-de Sitter-like initial condition

at later times, plotted in blue).

5.1.2 Dependence on Ωm

The previous discussion assumes a perfect knowledge of the matter density param-

eter. The top panel of Fig. 5.3 shows the solution to Eq. (5.2), obtained by making

use of the exact expression of the expansion rate and different values for Ωm, ranging

beteween 0 and 1, where the correct value is Ωm = 0.3 (plotted in light blue). It

is also shown, in the bottom panel, how the choice of Ωm influences the solution

obtained by making use of the reconstructed expansion rate instead of the exact

one.
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Figure 5.2: Top panel: The growth factor, normalised to = 1 at the present epoch, as expected

in a ΛCDM (red solid line) and Einstein-de Sitter (magenta solid line) model, and as reconstructed

solving Eq. (5.2), employing the exact model expansion rate and imposing the following initial

conditions at a = 0.5: δ ∝ a, δ′ = 1 (blue dashed line) and δ ∝ a, δ′ = δ′true(a = 0.5) ≈ 0.85 (black

dashed line), respectively. Bottom panel: Analogously, the growth factor as expected in a ΛCDM

(red solid line) and as reconstructed solving Eq. (5.2), employing the exact model expansion rate

and imposing Einstein-de Sitter-like initial conditions at a = 0.5 (blue dashed line), and employing

the expansion rate reconstructed from a ΛCDM simulated sample of SNe Ia and imposing Einstein-

de Sitter-like initial conditions at a = 0.05 (cyan squares), respectively.
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Figure 5.3: Top panel: The growth factor, normalised to = 1 at the present epoch, as expected in

a ΛCDM with Ωm = 0.3 (cyan solid line) and as reconstructed solving Eq. (5.2), employing the exact

expression for the expansion rate but assuming several different values for the matter density pa-

rameter (plotted in red: Ωm = 0, 0.1, 0.2, ..., 1.0; plotted in blueblue: Ωm = 0.25, 0.26, 0.27..., 0.35).

Bottom panel: The growth factor as expected in a ΛCDM with Ωm = 0.3 (red solid line) and as

reconstructed solving Eq. (5.2), employing the empirical estimate for the expansion rate and the

exact value Ωm = 0.3 (cyan dashed line), and an incorrect value Ωm = 0.3 ± 0.05 (blue dashed

lines).
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respectively; the black dashed line represents the growth factor of the underlying ΛCDM model.

The value of Ωm is here assumed to be known without uncertainty.

5.1.3 Dependence on the errors on E(a)

Furthermore, the solution for the growth of density fluctuations is here obtained

starting from an estimator of the expansion rate, and the errors on it (i.e. on the

expansion coefficients) propagate into errors on the growth factor D(a) as follows:

∆D(a) =

√√√√M−1∑
i,j=0

∂D(a)

∂ci

∂D(a)

∂cj
∆ci∆cj . (5.3)

This is shown in Fig.(5.4), where the reconstructed growth factor, here obtained

assuming perfect knowledge of Ωm, is plotted with 1, 2 and 3-σ error bars thereof:

up to very early times (a ≥ 0.1) the reconstructed growth factor agrees with that of

the model at the 2-σ confidence level, or better.
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5.2 A Novel Method to Combine Supernova and

Cosmic Shear Data

As already mentioned in Section 2.5, the weak gravitational lensing signal imprinted

on distant galaxies by large scale structures, usually referred to as cosmic shear, is

an extraordinary tool to probe the matter content of the universe. Being able to

provide an unbiased description of the matter density distribution from linear to

non-linear scales, over the redshift range covered by the lensed sources, cosmic shear

is a powerful probe to constrain cosmological parameters, such as the matter density

parameter, Ωm, and the amplitude of the matter power spectrum, σ8. However, as

pointed out in Section 2.5.5, current data sets suffer from a significant degeneracy

between these two parameters, which may be lifted through the combination with

independent measurements, such as CMB anisotropy data.

This work presents a novel method to overcome the aforementioned degeneracy

between Ωm and σ8, making use of a combination of cosmic shear and type-Ia su-

pernova data. It is based on the method described in Chapter 4, which is able to

reconstruct the cosmic expansion rate E(a) from luminosity distance data without

reference to a specific Friedmann model, and yields a robust reconstruction even

using a sample of type-Ia supernovae of current quality. This reconstruction tech-

nique can be employed to calculate distances, to be then applied in the analysis of

other cosmological datasets without assuming a specific model but relying directly

on empirical evidence, with the limitations being set only by the quality of the data.

In particular, this method can be employed to calculate the distances involved

in the cosmic shear signal and, with the assumption that gravity is described by

Newtonian dynamics on small scales, also to calculate the growth factor for linear

matter perturbations, to be then used in computing the cosmic shear power spectrum

on linear scales. Hence, the cosmic shear signal on linear scales is parametrised in

terms of the matter density parameter, Ωm, and of the amplitude of the matter

power spectrum, σ8, in a different way than usual when a ΛCDM model is assumed:

regarding the dynamics of structure growth, the dependence of the signal on σ8 and
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Ωm is the same, but Ωm does not enter into the specification of the geometry. The

information that can be extracted following this approach is thus complementary to

the one inferred within the ΛCDM assumption.

5.3 Cosmic Shear parameterisation

As already discussed in Section 2.5, the underlying quantity beneath the cosmic

shear signal is the three-dimensional power spectrum of the dark matter distribu-

tion: its projection along the line of sight, referred to as the convergence (κ) power

spectrum, is

Pκ(l) =
9H4

0 Ω2
m

4c4

∫ wH

0

dw

(
W̄ (w)

a(w)

)2

Pδ

(
l

fK(w)
;w

)
, (5.4)

where w is the comoving radial coordinate, wH refers to the horizon, a(w) is the scale

factor, and fK(w) is the comoving angular-diameter distance. Furthermore, Pδ is

the dark matter power spectrum, and W̄ (w) is a weight function taking into account

the ratio of angular-diameter distances between lens and source, and observer and

source, averaged over the redshift distribution of sources n(w):

W̄ (w) =

∫ wH

w

dw′ n(w′)
fK(w′ − w)

fK(w′)
. (5.5)

The convergence power spectrum is related to the observed two-point statistics,

such as the shear correlation functions ξ±, in the following way:

ξ±(θ) =
1

2π

∫ ∞
0

dl l Pκ(l) J0,4(lθ) , (5.6)

where θ is the angular separation between galaxy pairs, and J0,4 are Bessel functions

of the first kind.

As Eq. (5.4) points out, distances and the matter power spectrum are the basic

ingredients to calculate Pκ: hence, at least on scales where the linear regime is still

valid, knowledge of E(a) and D(a) is sufficient to perform cosmic-shear analyses.

Distances are calculated from the expansion rate via

w(a1, a2) =
c

H0

∫ a1

a2

da

a2E(a)
, (5.7)
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Figure 5.5: The redshift distribution of galaxies used for the weak lensing analysis of the third-

year CFHTLS Wide data release. From Fu et al. (2008).

whereas the growth factor contributes quadratically to the matter power spectrum,

taking into account its temporal evolution on linear scales: Pδ(k, a) = [D(a)]2 Pδ(k).

Regarding the contribution due to non-linear evolution in the power spectrum,

it has initially not been included, in order to preserve the model-independence of

the method, since current data sets allow to probe scales which are well within the

linear regime. However, the integration in Eq. (5.6) goes up to very large l, and

is thus sensitive to the inclusion (or not) of the non-linear evolution; the issue is

addressed in Section 5.6.

In the following work, E(a) is estimated from a simulated sample of type-Ia su-

pernovae with observational characteristics similar to the SNLS (Astier et al., 2006)

but luminosity distances drawn from a ΛCDM model: the reconstructed function is

plotted in the top panel of Fig. 4.3 and employs three coefficients.

The sample contains data up to z ≈ 1, and the reconstructed expansion rate

is compatible with that of the model up to higher redshifts (z ≈ 1.5), within 1-σ

error bars. It is thus possible to apply it to the cosmic shear data, since the source

redshift distributions from state-of-the-art surveys peak around z ≈ 0.8 and decline

quite rapidly for z > 1, as shown in Fig. 5.5.
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5.4 Likelihood Analysis

5.4.1 General Remarks

This section presents the likelihood surfaces in the (Ωm, σ8) plane obtained from

the same sample of simulated cosmic shear data, analysed assuming on one hand

a flat ΛCDM model, and on the other hand the empirical parameterisation based

on the model-independent reconstruction of E(a) presented in Chapter 4. In the

ΛCDM case, the non-linear power spectrum is modelled after the prescription by

Peacock & Dodds (1996), whereas in the case of the empirical parameterisation, no

correction for the non-linear evolution has been employed. The observable quantity

is the two-point correlation function ξ+ as a function of angular scale θ, and only

scales θ > 10 arcmin have been considered, so that the assumption of linear density

evolution is valid.

The log-likelihood is calculated as follows:

χ2
1,2 =

1

2

∑
i,j

(
ξ̄i − ξ(1;2)

i

) (
C−1

)
i,j

(
ξ̄j − ξ(1;2)

j

)
, (5.8)

where ξ̄i represents the simulated data vector, the indices (1, 2) refer to the ΛCDM

model and the empirical parameterisation, respectively, and C is the covariance

matrix of the two-point correlation function ξ+, calculated according to the formula

provided by Joachimi et al. (2008), which is valid under the assumption of Gaussian

density fluctuations.

5.4.2 The Simulated Samples

First, a sample with characteristics similar to the most up-to-date measurements has

been considered, with reference to Fu et al. (2008); a possible future experiment,

with technical specifics reasonably within the reach of future ground and space-

based projects, has also been examined, in order to fully probe the potential of the

method. The observational characteristics of the two data sets are listed in Tab. 5.1,

and the corresponding two-point correlation functions are plotted in Fig. 5.6. The



100

Table 5.1: The characteristics of the two simulated surveys considered in the course of this work.

State-of-the-art Survey Future Survey

Survey area 34.2 deg2 100 deg2

Galaxy number density 13.3 arcmin−2 30 arcmin−2

Intrinsic ellipticity dispersion 0.42 0.3

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 1  10  100

ξ

θ(arcmin)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 1  10  100

ξ

θ(arcmin)

Figure 5.6: The two-point shear correlation function for the two synthetic data sets used in this

analysis: from a state-of-the-art survey similar to the one analysed by Fu et al. (2008) (top panel)

and from a possible future survey (bottom panel).
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reference cosmology is, in both cases, a flat ΛCDM model, with Ωm = 0.3, ΩΛ = 0.7,

h = 0.7, w = −1 and σ8 = 0.8.

The redshift distribution of the sources n(z), which appears in Eq. (5.5), has

been chosen to match the fitting formula presented in Fu et al. (2008):

n(z) = A
za + zab

zb + c
, (5.9)

where the normalisation A was calculated integrating up to the maximum redshift

of the catalogue, zmax = 6. The fit to the data obtained by Fu et al. (2008) is shown

in Fig. 5.5, where the values of the parameters in Eq. (5.9) are A = 1.555, a = 0.612,

b = 8.125 and c = 0.620, respectively.

5.4.3 Nuisance Parameters

In other cosmological studies of cosmic shear data, the parameters of the source

redshift distribution (in this case a, b, c) are treated as nuisance parameters in the

likelihood analysis and then marginalised over; for the sake of simplicity, the follow-

ing analysis considers, instead, a lower-dimensionality likelihood, where the source

redshift distribution parameters are fixed to their best-fit values. The inclusion of

such parameters in the analysis does not change its principle, but only renders it

more lengthy.

Regarding the empirical parameterisation, an additional set of parameters need

to be taken into account, namely the expansion coefficients {ci}. In principle, these

should be treated as nuisance parameters and marginalised over. Fortunately, the

particular dependence of the likelihood on the coefficients makes it possible to cir-

cumvent this step. In the special case of interest, where three coefficients are taken

into account, the two-dimensional projections of the five-dimensional likelihood

L5(Ωm, σ8; {ci}) on the two parameters Ωm, σ8 and on each one of the coefficients

are either planes or very close to planes, in the space of the other two coefficients.

This suggests factorising the dependence on the coefficients in the following way:

L5 (Ωm, σ8; {ci}) ≈ L0 (Ωm, σ8; {ĉi}) · f ({ci}) , (5.10)
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where L0 indicates the two-dimensional likelihood, calculated as a function of Ωm

and σ8 only, having fixed the values of the coefficients to their best-fit values coming

from the supernova analysis, {ĉi}. The dependence on the coefficients is taken into

account through

f ({ci}) =
∑
i

(ci − ĉi)αi + 1 , (5.11)

where the parameters αi depend on the projections of the five-dimensional likelihood

on the individual coefficients. In order to achieve a two-dimensional likelihood, L5

has to be marginalised over the coefficients:

L2 (Ωm, σ8) =

∫
d~c P (~c)L5 (Ωm, σ8; {ci}) . (5.12)

If the priors P (~c) on the coefficients are chosen to be Gaussian, inserting the above

assumption into Eq. (5.12) yields

L2 (Ωm, σ8) ≈ L0 (Ωm, σ8; {ĉi})
∫

d~c P (~c) f ({ci}) = L0 (Ωm, σ8; {ĉi}) , (5.13)

meaning that the marginalised, two-dimensional likelihood L2(Ωm, σ8) can be ap-

proximated with the two-dimensional likelihood L0(Ωm, σ8; {ĉi}), where the values

of the coefficients have been fixed to their best-fit values.

5.4.4 Separate Analysis

In Fig. 5.7 the likelihoods in the (Ωm, σ8) plane are shown, with both the traditional

ΛCDM parameterisation and the empirical parameterisation developed in the course

of this work; the top plots, with broader contours, refer to a state-of-the-art data

set, whereas the bottom plots, with tighter contours, refer to a hypothetic, future

survey.

The empirical parameterisation is not able to lift the degeneracy between the

two parameters. It is however evident, in the results derived from both surveys,

that the two approaches suffer from different degeneracies: cosmic shear typically

constrains the product Ωα
m σ8, with α ≈ 0.6 in the ΛCDM case, and α ≈ 0.9 in the

case of the empirical parameterisation. The reason for that is the different param-

eterisation of the geometric part of the cosmic shear signal, which translates into
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Figure 5.7: The two-dimensional likelihood in the (Ωm, σ8) plane for a state-of-the-art (top

panels) and a future (bottom panels) survey, obtained by making use of the traditional ΛCDM

parameterisation (left panels) and the empirical parameterisation developed in this work (right

panels). The fiducial model, with Ωm = 0.3 and σ8 = 0.8, is indicated.
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a different dependence on Ωm. The complementarity of these results suggests that

a combination of them might yield significantly tighter constraints on Ωm and σ8,

especially in the case of a future survey.

It has to be remarked that the results of the empirical parameterisations are

slightly biased towards lower Ωm and higher σ8: this is due to the total lack of

information about the non-linear evolution in the matter power spectrum, which is

more thoroughly discussed in Section 5.6.

5.5 Combined Analysis

The likelihood analyses performed in the two different cases yield complementary

results: it is possible to combine them, using the tools of multimodel inference.

The basic concepts which are employed in the following analysis of the cosmic shear

data are outlined; for further details about the theoretical framework of multimodel

inference, see Burnham & Anderson (2004) and references therein.

5.5.1 Multimodel Inference Theory

Multimodel inference arises from the simple consideration that ordinary inference,

based on one model only, namely the best model found during model selection, treats

this model as if it were the only one considered, thus ignoring uncertainty coming

from the model selection process itself. The introduction of an explicit criterion to

define what is a best model allows to attach a weight to each fitted model, taking

into account the uncertainty that each of these models is the target best model: in

this way, inference based on the full set of models is possible.

The Akaike information criterion (Akaike, 1973, 1974) is an unbiased tool for

model selection:

AIC = −2 log(L(θ̂|data)) + 2K , (5.14)

where K is the number of estimable parameters in the chosen model and θ̂ is the
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maximum likelihood exstimator of the parameter θ based on the assumed model

and given the data. When K is large relative to the size of the sample n, the Akaike

information criterion is scaled to take into account the smallness of the sample:

AICc = −2 log(L(θ̂|data)) + 2K +
2K(K + 1)

n−K − 1
, (5.15)

which asymptotically tends to Eq. (5.14) for large n. The individual values of AIC

(or AICc, respectively) contain arbitrary constants and are affected by the size of

the sample, therefore they are usually rescaled to the minimum value, AICmin, over

the different models:

∆i = AICi − AICmin . (5.16)

Clearly, ∆ = 0 for the best model in the set, and ∆i quantifies the loss of information

due to the choice of the i-th model rather than the best one. For each model,

L(θ|data, i) = exp(−∆i/2) (5.17)

is a measure of the likelihood over the model set, i. e. over the parameter space,

given the data and the i-th model.

The model likelihoods are usually normalised such that their sum equals 1 and

they can be treated as probabilities: hence, the Akaike weights are defined as

wi =
exp(−∆i/2)∑
j exp(−∆j/2)

. (5.18)

5.5.2 Joint Constraints

Multimodel inference can be employed when a parameter is in common over all

models, as are Ωm and σ8 in the case of this work, and it is particularly useful

when two or more models have nearly equal support. In particular, in the assump-

tion that both models, i.e. the ΛCDM and the empirical parameterisation, are a

good description of the underlying universe, the results obtained assuming the two

models separately can be combined in order to tighten the constraints on Ωm and σ8.
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The Akaike weights are calculated for each point ~p in the (Ωm, σ8) plane, ac-

cording to Eq. (5.18), for both models i = 1, 2:

wi (~p) =
exp [−∆i (~p) /2]∑

j=1,2

∫
d~p exp [−∆j (~p) /2]

; (5.19)

the total probability is given by Ptot(~p) =
∑

i=1,2wi, whereas Pjoint(~p) =
∏

i=1,2wi

identifies the probability that both models are true. The Akaike weights for the

two separate models are shown in the top panel of Fig. 5.8, in the case of a future

cosmic shear survey; the bottom panel of Fig. 5.8 shows, instead, the points where

the joint probability is significantly different from zero, i.e. the values of Ωm and σ8

which are more plausible given the data and the assumption of both models.

The additional information coming from the model-independent reconstruction

of the expansion rate from supernova data is crucial to break the degeneracy and

obtain very tight constraints on Ωm and σ8, even though the assumption that the

underlying model is well described by a ΛCDM has not been released.

As already mentioned, the slight bias in the determination of the best-fit value

for (Ωm, σ8) is due to the fact that no information on the non-linear evolution of

the power spectrum is included in the empirical parameterisation.

5.6 Including Non-Linear Evolution

This section presents the results of an analysis almost identical to the one performed

in the previous sections, with the only difference that a correction for the non-linear

evolution of the power spectrum on small scales is applied here also to the empirical

parameterisation.

The prescription proposed by Peacock & Dodds (1996) for the non-linear evolu-

tion only needs as an input the linear growth factor and the linear power spectrum,

hence it can in principle be calculated using the empirical estimate of D(a) achieved

from the expansion rate.
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Figure 5.8: The Akaike weights, or probabilities, for the two different models (top panels) and

the joint probability (bottom panel) in the (Ωm, σ8) plane, for a synthetic data set coming from a

future cosmic shear survey. The fiducial model, with Ωm = 0.3 and σ8 = 0.8, is indicated.
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It has to be mentioned that this prescription makes use of the growth factor

normalised such that D = a at early times. The method detailed in Section 5.1

can reconstruct, to very high accuracy, the shape of the growth factor and, thus,

the growth factor normalised such that D = 1 today, at least on the redshift range

where supernova data are available; it is, however, unable to determine the absolute

normalisation of the growth factor at early epochs, since the expansion rate used to

solve the differential equation is absolutely unconstrained, thus significantly under-

estimated, at such epochs. Neglecting this fact slightly underestimates the power

spectrum, on small scales, at z = 0, with respect to the exact form given by Pea-

cock & Dodds (1996), and yields virtually no effect at higher z (e.g. z ∼ 0.3, which

is most relevant for lensing). This approach is however better than ignoring the

non-linear evolution at all: the mismatch between the non-linear power spectrum

and this estimate of it is in fact smaller, by a factor ∼ 5, than the one between the

non-linear and the linear power spectrum.

In full analogy to Fig. 5.8, the top panel of Fig. 5.9 shows the Akaike weights

for the two separate models, in the case of a future cosmic shear survey; the bottom

panel of Fig. 5.9 shows the combined results: it is clearly evident that the bias,

present in Fig. 5.8, has disappeared, and that the very tight constraints point towards

the fiducial values for Ωm and σ8.
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Figure 5.9: Analogous to Fig. 5.8, but including the non-linear evolution of the power spectrum

from Peacock & Dodds (1996) also in the empirical parameterisation: the bias has disappeared.





Chapter 6

Extending the Model-Independent

Reconstruction of the Expansion

Rate: BAO and PCA

This chapter describes two separate, further applications of the model-independent

reconstruction technique described in Chapter 4. First, a feasibility study of a pos-

sible application of the method to future-generation BAO data sets is presented: the

angular-diameter distance is here employed, analogously to the luminosity distance

in the supernova case, to estimate the expansion rate, and the reconstruction is then

compared to the direct estimate of the expansion rate, also achievable from BAO

data (for this part of work the collaboration of Licia Verde is acknowledged). Then,

the issue of whether an optimal basis function set for the reconstruction method ex-

ists is addressed: principal component analysis (PCA) is employed to derive a basis

of functions which maximises the separability of different cosmological models in the

analysis of a generic data set, and this basis is eventually inserted in the algorithm

described in Chapter 4 to reconstruct the expansion rate (this part of work has been

carried out in collaboration with Matteo Maturi).
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6.1 The Expansion Rate from Baryon Acoustic

Oscillations

The model-independent technique developed during this work and described in

Chapter 4 makes use of luminosity distance data in order to reconstruct the cos-

mic expansion rate, H(a), without assuming any specific model for the dark energy.

Because of Etherington’s relation, Eq. (1.24), which relates the luminosity distance

to the angular-diameter distance, it is straightforward to generalise the method, so

that it can be applied to observational probes of the latter, such as baryon acoustic

oscillations. As described in Section 2.2, future (spectroscopic) BAO experiments

are expected to yield independent estimates of DA and H in redshift bins: it is

thus interesting to compare the direct estimate of the expansion rate to the one

reconstructed using distance data drawn from the same galaxy survey.

6.1.1 Simulating the Data Set

The future BAO experiment simulated in this work is the Baryon Oscillation Spec-

troscopic Survey (BOSS), which will run from 2009 to 2014 at the SDSS telescope

and will cover the redshift range z = 0−0.7 (for further details visit www.sdss3.org).

The cosmological distance errors are calculated following Seo & Eisenstein (2007)

and the public C-program provided by the authors: the power spectrum is assumed

to have Gaussian statistical errors, which are constructed straightforwardly from the

finite volume of the survey and the incomplete sampling of the underlying density

field with galaxies, and these errors are then propagated to the cosmological distance

scale using the Fisher matrix formalism. The key element of such a method, besides

the survey specifications, is the inclusion of non-linear effects which, as described in

Section 2.2.2, tend to degrade the BAO signature.

The formalism to include non-linearities, developed by Eisenstein et al. (2007),

assumes that the erasure of the acoustic signature can be understood in terms of

motions of matter and galaxies relative to the initial preferred separation, caused
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by either cluster formation or coherent motions, such as bulk flows. The smearing

of the BAO peak, due to these small-scale motions, is modelled by means of the

distribution of the differences of the Lagrangian displacements of pairs of particles

initially separated by a separation equal to the sound horizon. The rms radial

displacement across (Σ⊥) and along (Σ‖) the line of sight are well predicted by a

simple model:

Σ⊥ = Σ0 D , (6.1)

Σ‖ = Σ0 D(1 + f) , (6.2)

where Σ0 = 12.4(σ8/0.9)(Mpc/h), f = d(lnD)/d(ln a) ≈ Ωm(z)0.6, and D is the

growth factor normalised such that D = 1/(1 + z) at very high z, i.e. D = 0.758

at z ≈ 0. The enhancement of the displacement along the line of sight is due to

the fact that velocities and displacements are well correlated on large scales, hence

the same velocity that gives the real-space displacement also alters the position in

redshift space.

If the transverse displacements are approximated as being the same as the radial

ones, the distribution of the displacement vector is nearly an elliptical Gaussian. To

the extent that Σ0 is treated as a constant, the effect on the correlation function

becomes a simple convolution, and the modification of the power spectrum is simply

a multiplication by a Gaussian:

P (~k) = Plin(~k) exp

(
−
k2
‖

2Σ2
‖
− k2

⊥
2Σ2
⊥

)
. (6.3)

The resulting formalism to calculate errors in the cosmological distance scale is

function of the surveyed volume V , of the shot noise nP , where n is the comoving

number density of galaxies and P the power spectrum, and of the parameters Σ⊥

and Σ‖, taking into account the non-linear effects; also needed are the bias factor,

b, and the redshift distortion parameter, β = Ωm(z)0.6/b.

The fitting formulae provided by Seo & Eisenstein (2007) are applied to calculate

a 2-dimensional Fisher matrix, which yields the fractional errors on the measure-

ment of the sound horizon scale along (s‖) and across (s⊥) the line of sight, which
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Figure 6.1: The simulated measurements of distance (left panel) and expansion rate (right panel),

obtained using the technical specifics of the BOSS survey.

are equivalent to fractional errors on DA/s and H · s, respectively, where s is the

sound horizon scale determined by the CMB, s = 153.3 ± 2 Mpc (from Tab. 3 of

Komatsu et al. 2009).

A synthetic set of measurements of DA(z) and H(z), with values drawn from

a flat ΛCDM model (Ωm = 0.3, ΩΛ = 0.7, h = 0.7, w = −1) and error bars

calculated using the formalism described above, is shown in Fig. 6.1 for 7 equally

spaced redshift bins between z = 0 and z = 0.7. In order to reproduce the planned

specifics of the BOSS survey, the following parameters have been used: a survey

area of 10, 000 sq.deg., a mean galaxy density of 2.6 × 10−4 (h/Mpc)3, a shot noise

nP ≈ 2 and a bias factor b = 1.6 (L. Verde, private communication). Due to the

scarcity of data points in redshift, no scatter has been added about the fiducial

model, in order to avoid the introduction of a non-physically motivated bias.

6.1.2 The Expansion Rate: Reconstruction and Direct Es-

timate

In order to apply the reconstruction algorithm described in Chapter 4 to the BAO

data detailed in the previous section, the angular-diameter distance has to be trans-

lated into luminosity distance:

DL(z) = DA(z) (1 + z)2 , (6.4)
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Figure 6.2: Left panel : The expansion rate reconstructed from simulated, BOSS-like distance

data (blue filled contours) and directly estimated from the same survey (red points). Right panel :

The expansion rate reconstructed from simulated BAO distance data, reproducing the future survey

BOSS (blue filled contours) and from simulated supernova data, reproducing the state-of-the-art

SNLS survey (red filled contours); the thick red line represents the model.

along with the errors thereof:

∆DL(z) = (1 + z)2

√
∆DA(z)2 + 4

∆z2DA(z)2

(1 + z)2
≈ (1 + z)2∆DA(z) ; (6.5)

the last step is only valid for spectroscopic surveys, where the uncertainty on the

redshift estimation, ∆z, is negligible.

The result of the reconstruction of the expansion rate applied to the BAO dis-

tance data is shown in the left panel of Fig. 6.2, along with the direct measurements

of the expansion rate from the detection of the BAO feature in the radial direc-

tion: the results are clearly consistent, but the use of the reconstruction technique

yields no significant gain to the direct measurement, with the reconstruction hav-

ing smaller error bars than the direct measurement at lower redshifts and larger at

higher redshifts.

Photometric surveys targeting baryon acoustic oscillations are unable to yield

a direct, independent measurement of H(z): had the error bars achieved from this

reconstruction of H(z) using only distance data been significantly smaller, over the

whole redshift range, than those of the direct measurement, this method could have

represented an alternative to probe the expansion rate without the need for spec-
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troscopy. Unfortunately, this did not turn out to be the case.

The quality of the BAO data used in this work allows to estimate the first

three coefficients of the expansion, analogous to the SNLS-like sample of type-Ia

supernovae described in Section 4.4.2; however, in the BAO case the errors on the

coefficients, and thus on the recovered expansion rate, are larger, as shown in the

right panel of Fig. 6.2. The method is in fact sensitive to the number of data points,

hence it performs significantly better with supernova data than with BAO; for the

same reason, the addition of the seven data points from BAO to a supernova sample

does not improve any better the constraints obtained from supernovae alone.

6.2 Optimisation of the Basis Function Set with

Principal Component Analysis

This section presents an application of principal component analysis, aimed at the

definition of the best linear transformation to perform an optimal dimensionality

reduction of any cosmological data set: this approach is able to construct a basis

function set which maximises the power to discern between different cosmological

models and to highlight the possible existence of unexpected features not foreseen

when a specific model is adopted. In particular, the case of luminosity-distance data

sets is considered, and the optimised basis is then used to improve the reconstruction

technique described in Chapter 4 to derive the expansion rate from distance data.

The following formalism has been derived having in mind the analysis of cos-

mological data sets, but its application is completely general. For further details

regarding principal component analysis techniques, also known as Karhunen-Loève

methods, see Tegmark et al. (1997) and references therein.

6.2.1 An Optimised Basis Function Set for Cosmology

Following the formalism developed by Maturi & Mignone (2009), any data set can

be represented as a vector ~d ∈ Rn, whose dimension n corresponds to the number
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of available data points in the set. In order to investigate this space, it is sampled

with a set of M vectors which model the data, hereafter referred to as the training

set T : {
~ti ∈ T | i = 1, ...,M

}
with ~ti ∈ Rn ; (6.6)

the sampling of the model vectors ~ti is the same as the one of the data vector to be

analysed, and it can be discrete and irregular, depending on the quality of the data.

Once the possible models which are spanned by the data have been sampled, the

extraction of the information they contain can be optimised via a linear transforma-

tion, W : Rn → Rn, which maps the training set vectors into a space, referred to as

the feature space, where their projections ~τi = W T~ti ∈ Rn (hereafter referred to as

features) have the maximum scatter in very few components. This linear transfor-

mation is given by a set of n orthonormal vectors, {~wi ∈ Rn | i = 1, ..., n}, known

as principal components.

The principal components are found by solving the following eigenvalue problem:

~wi = λi S ~wi , (6.7)

and by sorting them in descending order, i.e. |λi| ≥ |λi+1|, to ensure the largest

feature separation in the very first components. The so-called scatter matrix,

S =
M∑
i=1

(
~ti − ~tref

) (
~ti − ~tref

)T ∈Mn×n , (6.8)

encodes the differences (or scatter) between each training vector ~ti, i.e. a given

model, and a reference vector, ~tref , around which the scatter is maximized. The ref-

erence vector defines the origin of the feature space and is usually set as the average

of the training set, ~tref ≡ 〈~t〉, but a different ~tref can be used instead, depending on

the specific problem at hand.

The model vectors ~ti can in principle be a set of arbitrary functions, but it

is convenient to consider models that at least weakly resemble the data set. The

training set is, in this work, based on Friedmann ΛCDM cosmologies with different
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cosmological parameters, but of course other kind of cosmological models can be

used as well, such as e.g. cosmologies with dynamical dark energy, based on modified

gravity theories, or even a mixture of different cosmological models.

It is worth remarking that the principal components derived in this way consti-

tute a full basis system for the training-set cosmologies only. They are, however, very

flexible and able to reproduce trends which are unknown to the models belonging to

the training set. Furthermore, the principal components ~wi have no direct physical

meaning, since they are, by construction, linear combinations of the same observ-

able in different models: this preserves a certain degree of model-independence in

the formalism.

6.2.2 Principal Components as an Optimisation Problem

The derivation of the principal components, as outlined in the previous section,

can be interpreted as a constrained optimisation problem, where the subset of the

linear orthonormal transformation W which maximizes the separation between dif-

ferent cosmologies is sought. This is achieved by maximising the following quantity,

L = ~wTi S ~wi + λ̃i(~w
T
i ~wi − 1), with respect to ~wi, i.e. by looking for the solution of

δL/δ ~wTi = 0. This leads to the eigenvalue problem expressed by Eq. (6.7), with

λi = −1/λ̃i , and consequently to the principal components ~wi.

If the number of training vectors is smaller than their dimension, i.e. M < n, only

the first M principal components will be associated to non-vanishing eigenvalues.

Therefore, only the first M principal components need to be derived: this is achieved

by computing the M eigenvectors ~w′i of the matrix S ′ = ∆T ∆ ∈ MM×M , where

∆ = (~ti−~tref) ∈Mn×M . These are related to the first M eigenvectors of the scatter

matrix S, namely ~wi = ∆ ~w′i ∈ Rn, with i = 1, ...,M .

The increase in computational speed is especially remarkable for large data sets,

where M � n. In addition, all the relevant information is, in most cases, constrained

by a very small number of independent components, m < M (usually up to three

for this kind of applications), allowing an even stronger dimensionality reduction.
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6.2.3 Cosmological Applications

Although, in the framework of this work, the approach described so far is only ap-

plied to luminosity distance data, it has been derived in a fully general fashion: it

allows in fact a straightforward way to combine different observables for a joint data

analysis, by simply redefining the data vector and training set in order to include all

the contributions from different experiments (e.g. distances to type-Ia supernovae,

values of the cosmic shear correlation function and CMB multipoles).

The features ~τ , obtained by projecting the cosmological observables on the prin-

cipal components, represent a very convenient cosmological parametrization. These

parameters are, in fact, fully independent, their number is minimised with respect to

the data quality and they provide the best discriminatory power between different

cosmological models. Moreover, they can be used as a common parametrisation to

compare and describe cosmological data sets without reference to a specific model,

since only the properties of the observables, but not the physics behind them, are

parametrised.

In any case, it is possible to univocally associate the features ~τ , which do not

have any physical meaning, to the physical properties of any given model, by simply

mapping the feature space with the projection of the investigated model (or models),

thus establishing a precise relation between any point of the feature space and the

cosmological parameters of a given model.

Two examples of features are shown in Fig. 6.3: the training set consists in

the luminosity distance from type-Ia supernovae in the left panel, and in the CMB

power spectrum in the right panel. Both examples are based on non-flat ΛCDM

models where the Hubble constant, the equation of state of dark energy and the

normalisation of the matter power spectrum are fixed to h = 0.7, w = −1, σ8 = 0.8,

respectively, and only the matter and dark-energy density parameters are allowed

to vary in the range 0.1 < Ωm < 0.5 and 0.5 < ΩΛ < 0.9, respectively. Each point

in Fig. 6.3 represents a different cosmology and the separation between the points

is maximised by definition; the reference cosmology, ~tref , sits in the origin of the
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Figure 6.3: Features for a series of ΛCDM cosmologies with h = 0.7, w = −1, σ8 = 0.8,

0.1 < Ωm < 0.5 and 0.5 < ΩΛ < 0.9. The left panel refers to type-Ia supernova data (with the

same sampling as in the SNLS, Astier et al. 2006), and the right panel to CMB data (computed

on the multipoles of the WMAP-3 data release, Hinshaw et al. 2007).

feature space. It is worth noticing that, for the CMB data, at least three features

would be necessary for a satisfactory description because of the rich complexity of

the data set.

6.2.4 Reconstruction of the Expansion Rate

The reconstruction algorithm described in Chapter 4 requires the luminosity-distance

data to be smoothed, and does it by expanding DL(a) into a basis of orthonormal

functions. The choice of the basis is arbitrary: for illustrative reasons, it was chosen

to adopt the linearly independent set of functions uj(a) = aj/2−1, orthonormalised

using the usual Gram-Schmidt procedure. However, the basis {pj(a)}, which ap-

pears in the equations of Section 4.2, can be defined such as to minimise the number

of necessary modes and to have them ordered according to their information content.

A good choice fulfilling these criteria is represented by the principal components de-

fined in Section 6.2.1, which can be optimised for a specific cosmology or for a set

of cosmological models based on different physical assumptions.

The stability of the principal components with respect to the number of models

used in the training set has been tested, and as an example, Fig. 6.4 shows the
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Figure 6.4: Example showing the stability of the principal components against the number

of models used in the training set. The first 4 principal components, derived for a luminosity-

distance data vector sampled at the redshifts covered by the SNLS, are shown. The training set

was produced by sampling the parameter space 100 times in the left panel and 5 times in the right

panel, respectively, in the two intervals 0.1 < Ωm < 0.5 and 0.5 < ΩΛ < 0.9.

first four principal components derived for a luminosity-distance data vector with

SNLS-like sampling. The training set is based on non-flat ΛCDM models with

h = 0.7, w = −1 and the matter and dark-energy density parameters sampling the

ranges 0.1 < Ωm < 0.5 and 0.5 < ΩΛ < 0.9, respectively; as a reference cosmology,

the average of the training set has been used. The (Ωm,ΩΛ) space was regularly

sampled by the training set 10, 000 times to produce the functions in the left panel

and only 25 times in the right panel. Clearly, the principal components are very

stable against the training set size and only depend on the range sampled by the

cosmological parameters of the training set.

The information content of each principal component is quantified by the corre-

sponding eigenvalue, which in this case are λ1 = 1, λ2 = 2.0× 10−4, λ3 = 1.4× 10−7

and λ4 = 1.2×10−10. Hence, all the information and discriminatory power is concen-

trated in the very first components, thus allowing a strong dimensionality reduction,

from n = 117 (i.e. the number of supernovae in the data set) to 1 or 2 dimensions for

this specific case. By increasing the number of the cosmological parameters or by

sampling larger ranges in parameter space while constructing the training set, the

power is distributed towards higher orders, but is still fairly concentrated in very

few components.
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The reconstruction of the expansion rate using the principal components applied

to the formalism described in Section 4.2 requires less coefficients to be estimated,

hence yields smaller error bars with respect to the use of the basis funtions described

in Chapter 4. The increased accuracy is particularly evident at lower redshifts, where

measurement errors are smaller, since the information in this case is localised on the

points where the data are defined. The result of its application to a synthetic sample

drawn from a ΛCDM model, with SNLS-like characteristics, and to the real SNLS

data are shown in Fig. 6.5, along with the results obtained on the same samples

in Chapter 4: the need to fit for one coefficient, rather than three, improves the

reconstruction. The successful performance of the method on a simulated sample

based on the toy model described in Section 4.5 and with SNAP-like characteristics

is also shown.

6.2.5 Searching for Hidden Features in Cosmological Data

Sets

As described in Section 6.2.1, the scatter matrix is usually computed with respect to

the average training model, ~tref =
∑m

i=1
~ti/m, so that the overall scatter among all

cosmologies belonging to the training set is maximised. However, any other model

can be chosen for this purpose: by fixing ~tref to a specific reference cosmological

model, the feature space origin is set to coincide with the adopted reference cosmol-

ogy and the principal components maximise the discrimination power with respect

to this model. This provides a straightforward way to verify whether the adopted

reference model, for example the concordance ΛCDM model, is successful in describ-

ing the observations or if the data contain unforeseen features. If the latter is the

case, the projected observations are not consistent with the feature space origin, i.e.

the features ~τ are not compatible with zero. The power of the method consists in

the fact that the information from the whole data set is compressed in a very small

number of quantities.
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Figure 6.5: Left panels: synthetic and real samples of type-Ia supernovae (black points), with the

fit obtained in Chapter 4 (red lines) and result achieved using PCA (blue squares). Right panels:

The recovered expansion rate obtained in Chapter 4 (red shaded area), using the PCA approach

(blue squares) and that of the model (or best-fit; black lines). The data sets, from top to bottom,

are a synthetic, ΛCDM model sample with SNLS-like characteristics, the SNLS sample (Astier

et al., 2006), and a synthetic, toy-model sample with SNAP-like characteristics, respectively.
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Figure 6.6: Detected missing features in the best-fit Friedmann ΛCDM model, from the analysis

of a synthetic sample of type-Ia supernovae with luminosity distances drawn from the toy model

with a sudden transition in the expansion rate, described in Section 4.5.

In order to illustrate the method, it is applied to an extreme case, namely the toy-

model cosmology described in Section 4.5, characterised by a sudden transition in

the expansion rate. The simulated data set, with SNLS-like characteristics, under an

ordinary χ2 analysis, fitting for Ωm and ΩΛ and assuming flatness, is compatible with

a standard Friedmann ΛCDM cosmology (with χ2 = 1.016). The result is of course

misleading, since the background cosmology has a completely different nature: a

standard χ2 approach is clearly not always capable of revealing unexpected features

possibly hidden in the data.

The principal component approach is then used, adopting the best-fit ΛCDM

model achieved from the standard χ2 analysis as the reference cosmology in the

definition of the scatter matrix, in order to verify the compatibility of the data

with such a model and to search for possible hidden features. In this case, the

three components required to successfully fit the data are not compatible with zero

at a 3.2 − σ level, providing substantial evidence for the existence of unforeseen

features and showing how the best-fit ΛCDM model might not be sufficient for a

full description of such a data set. The detected features are plotted in Fig. 6.6,

which shows the deviation of the data from the expected ΛCDM model.



Chapter 7

Conclusions

This thesis work proposes a method to constrain the expansion function of the

universe without assuming any specific model for Friedmann-type expansion. If

the universe is isotropic, homogeneous and simply connected, it is described by a

Robertson-Walker metric. Cosmological measurements can generally only constrain

one of two functions of time, the expansion rate and the growth of structures. It is

shown here how the expansion function can be observationally constrained without

reference to specific assumptions on the time evolution of the terms in Friedmann’s

equation and their parameterisation in terms of density parameters. The issue may

become important in search of constraints for a dynamical dark energy component,

whose behaviour is so far only very poorly known. Since it is unclear how its energy

density contribution to the cosmic fluid may change in time, any guessed parameter-

isation may be erroneous, hence a parameter-free recovery of the cosmic expansion

rate may turn out advantageous.

The method is first demonstrated using the luminosity-distance measurements

obtained from type-Ia supernovae as a model. Since the luminosity distance is a

cosmological observable depending on space-time geometry only, the dynamics of

structure growth does not enter yet. The method proceeds in two essential steps.

First, the integral relation between the expansion function and the luminosity dis-

tance is transformed into a Volterra integral equation of the second kind. Under the
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relevant conditions, its solutions are known to exist and to be uniquely described in

terms of a convergent Neumann series. In other words, the method is guaranteed to

return the unique expansion rate of the universe within the accuracy limits allowed

by the data.

The drawback of the transformation to a Volterra integral equation is that the

derivative of the luminosity distance with respect to the scale factor is needed to start

the Neumann series. Derivatives of data are notoriously noisy and should be avoided.

It is here proposed to expand the luminosity distance into an initially arbitrary

orthonormal function set, fit its expansion coefficients to the data and then use

the derivative of the series expansion instead of the derivative of the data. Suitable

orthornormal function sets can be constructed by Gram-Schmidt orthonormalisation

from any linearly independent function set. The only condition so far is that the

number of coefficients required to fit the data should be minimal.

Once the orthonormal function set is specified, the Neumann series can be con-

structed beforehand for all its members. The measured coefficients of the series

expansion directly translate to the solution for the expansion function. The conver-

gence criterion for the Neumann series is determined by the data quality, as is the

number of orthonormal modes in the series expansion of the data.

Applications to synthetic data samples of increasing complexity are very promis-

ing. In particular, it has been shown that an expansion function containing a sudden

transition can be faithfully recovered by this method provided sufficient quality of

the input data, whereas it may well go unnoticed if one of the most popular param-

eterisations for the dark-energy equation of state is assumed. The method has also

been applied to the first-year SNLS data and to the extended ESSENCE sample,

and the recovered expansion functions are shown.

Furthermore, the model-independent reconstruction of the expansion rate ob-

tained from luminosity-distance data is employed to estimate the growth factor for

linear structure formation, which represents the other fundamental function under-

lying all cosmological measurements, along with the expansion rate. In the standard

scenario for structure formation, the linear growth factor is the solution of a second-
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order differential equation which only depends on the expansion rate and on the

matter density parameter, Ωm.

In this work, it has been shown that the empirical estimate of the expansion rate,

along with external information on Ωm, is sufficient to achieve an accurate recon-

struction of the linear growth factor in the redshift range where the expansion rate

is constrained by the luminosity-distance data, even though the initial conditions

imposed while solving the differential equation require to extrapolate the expansion

function to much earlier times.

The redshift interval over which supernova data are currently available is roughly

the same as the one relevant for cosmic shear. It is thus reasonable to apply the

empirical estimate of the expansion function, and consequently of the linear growth

factor, to the analysis of cosmic shear data on linear scales, in order to constrain the

matter density parameter and the power spectrum normalisation, σ8. Analogously

to what happens with the usual, ΛCDM parameterisation, also in this case the

result of such an analysis suffers from a degeneracy in the (Ωm, σ8) plane. Due

to the different way Ωm enters in the two different parameterisations, however, the

two degeneracies identify different tracks in the parameter space. This suggests to

combine them, in the assumption that both models, i.e. the ΛCDM and the empirical

parameterisation, are a fair representation of the underlying universe.

This procedure, although restricting the range of possible models to flat ΛCDM

cosmologies, makes use of the information provided by the model-independent ap-

proach to break the aforementioned degeneracy and achieve tight constraints on both

the matter density parameter and the power spectrum normalisation. Application to

synthetic data sets with technical requirements within the reach of next-generation

cosmic shear experiments are remarkably promising, especially when a prescription

for the non-linear evolution is also included in the parameterisation of the matter

power spectrum.

A generalisation of the model-independent reconstruction technique, in order to

include not only luminosity-distance but also angular-diameter distance data has
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been developed and applied to the results of future-generation galaxy surveys tar-

geting baryon acoustic oscillations. Although an accurate estimate of the expansion

rate can be achieved from such data, the precision is much worse than that obtained

from the application of the same method to supernova data; furthermore, spectro-

scopic surveys targeting baryon acoustic oscillations are also able to directly measure

the expansion rate as a function of redshift, with precision higher or comparable to

that achieved applying the model-independent reconstruction technique to the dis-

tance data. Hence, the application of the method to baryon acoustic oscillation data

did not prove to be a particularly interesting case.

In the formalism developed to reconstruct the expansion rate, the specification

of the orthonormal function set into which the data set is decomposed is arbitrary.

The question was still open, though, whether an optimal set of functions for this

method exists: the issue has been investigated by means of a principal component

analysis, allowing to construct a basis whose very first few components are enough

to describe the data sets. Thanks to this dimensionality reduction, a more precise

reconstruction of the expansion rate is possible. The principal component approach

is also powerful in detecting unexpected features in the data, such as a sudden

transition in the expansion rate, which might be overlooked by a standard analysis

assuming an erroneous parameterisation for the dark-energy component.

Current and future observational projects aim at collecting extremely large data

sets in order to determine the very nature of the dark energy and of the accelerated

expansion of the universe. In sight of these challenges, it is advisable to pursue a

model-independent approach to interpret the astronomical measurements and the

cosmological functions underlying them. With the choice of a suitable function set,

the reconstruction technique developed in this work stands out as a novel and ad-

vantageous method to analyse cosmological data sets of various nature, introducing

as little theoretical prejudice as possible. It can, in principle, be generalised and ap-

plied to other measurements carrying information about the expansion rate and the

linear growth factor, such as the anisotropies in the cosmic microwave background
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or the evolution of the galaxy cluster population. The model-independent recon-

struction can also be combined to other approaches and contribute, with additional

information, to the estimate of cosmological parameters, as shown in the application

to cosmic shear.
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