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Zusammenfassung

Diese Arbeit widmet sich Untersuchungen zur Auflösung von Sternhaufen im Gezeitenfeld
der Milchstraße und insbesondere ihres Zentrums. Es wird zunächst der Fluchtprozess von Ster-
nen aus Sternhaufen im Rahmen chaostheoretischer Überlegungen betrachtet. Schon in der lin-
earen Gezeitenapproximation ist es möglich, “Flucht-Basins” und den chaotischen Sattel für das
System zu berechnen. Nachdem Sterne den Sternhaufen verlassen haben, bilden sie aufgrund
der differentiellen Rotation der Galaxie Gezeitenarme. Für Sternhaufen auf Kreisbahnen wird
der theoretische Rahmen zur Untersuchung der Eigenschaften der Gezeitenarme diskutiert. Die
Theorie wird auf einen Modell-Sternhaufen im Zentrum der Milchstraße angewandt. Zu diesem
Zweck wurde ein neues N -Körper-Programm namens nbody6gc entwickelt. Der Algorithmus
wird im Detail beschrieben und die Resultate der durchgeführten N -Körper-Simulationen disku-
tiert. An bestimmten Stellen in den Gezeitenarmen bilden sich aufgrund der Epizykelbewegung
der Sterne wohldefinierte Klumpen. Die Positionen der Klumpen werden mit der analytischen
Theorie berechnet. Darüber hinaus wird eine Klassifikation der Haufensterne nach Radius und
spezifischer Jacobi-Energie vorgestellt, um die Auflösungszeiten zu erklären, und es werden einige
Resultate hinsichtlich des “Paradoxes der Jugend” formuliert.

Abstract

This thesis is concerned with investigations on the dissolution of star clusters in the tidal
field of the Galaxy and in particular its center. At first the escape process of stars from star
clusters is studied in the framework of chaos-theoretical considerations. Already in the linear
tidal approximation it is possible to compute the basins of escape and the chaotic saddle for
the system. After the stars have left the star cluster they form tidal arms (or tails) due to the
differential rotation of the Galaxy. For star clusters on circular orbits the theoretical framework
for the investigation of the properties of tidal arms is discussed. The theory is applied for a star
cluster model in the Galactic center. For this purpose a new N -body program called nbody6gc
has been developed. The algorithm is described in detail and the results of N -body simulations
are discussed. At certain positions, well-defined clumps develop in the tidal arms due to the
epicyclic motion of the stars. The positions of the clumps are calculated with the analytical
theory. Furthermore, a classification of the cluster stars according to radius and specific Jacobi
energy is introduced in order to explain the dissolution times and a few results on the “paradox
of youth” are formulated.
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Chapter 1

Preface

The dissolution of star clusters is a problem with a long history in stellar dynamics. The pioneering
works are by Ambartsumian (1938) [1] and Spitzer (1940) [2]. Many other stellar dynamicists
worked on the dissolution of star clusters since that time, as Chandrasekhar, King, Hénon, Wielen,
Fukushige, Heggie and Baumgardt. A brief historical overview of their investigations will be given
in the introduction to Chapter 3 of this thesis. While the author worked on his diploma thesis on
the dynamical evolution of rotating star clusters [3, 4] in the years 2004/05 at the Astronomisches
Rechen-Institut (ARI) in Heidelberg, he became more and more interested in the fascinating
problem of escape of stars from a star cluster. Can the process of escape lead to the complete
dissolution of a star cluster until a single binary star remains as a remnant?

The analysis of the escape process presented in Chapter 3 of this thesis shows that it can be
studied in the framework of chaos theory. For certain values of the Jacobi energy, a star cluster
in the tidal field of a galaxy is a dynamical system with a divided phase space: Both regular
and chaotic orbits can be found. The Poincaré surfaces of section show the effect of a Coriolis
asymmetry between regular and chaotic orbits. Most of the retrograde orbits with respect to the
motion of the star cluster around the galaxy are regular (Fukushige & Heggie 2000 [5]). The regular
orbits are bound to the region of the star cluster by a non-classical integral of motion. On the other
hand, the chaotic orbits escape if their Jacobi energy exceeds a certain threshold. Since the stars
can leave the star cluster in two different directions while they pass one of the two Lagrange points
L1 or L2 it is possible to obtain basins of escape similar to basins of attraction in dissipative systems
or the well-known Newton-Raphson fractals (see Appendix B for two examples). The chaos in the
escape process from star clusters is related to a fractal structure in the phase space which has the
form of a Cantor set (Cantor 1884 [6]) and is called the chaotic saddle. It contains hyperbolic
points which belong to unstable periodic orbits. As is well-known, the unstable periodic orbits
introduce chaos into a dynamical system (e.g. Contopoulos 2002 [7]).

The escaping stars form tidal arms (or tails) which extend along the potential wall of the
effective galactic potential. A famous observation of tidal tails has been published in the works
by Odenkirchen et al. (2001 [10], 2003 [8]) on the tidal tails of the star cluster Palomar 5. The
tidal tails of Palomar 5 are shown in Figure 1.1. One can see that they are not homogeneous but
show well-defined clumps at positions where the density has local maxima. Such clumps have been
noticed in computer simulations (Capuzzo-Dolcetta, di Matteo & Miocchi 2005 [11], di Matteo,
Capuzzo-Dolcetta & Miocchi 2005 [9]; see also Figure 1.2). The existence of clumps in the tidal
tails of star clusters is related to the shape of the orbits of the escaping stars (e.g. Küpper et
al. 2008 [12]). The position of the clumps can be calculated from the angular momenta of the
stars in the tidal tails (Just et al. 2009 [13]). The detailed analytical theory based on Taylor
expansions is presented in Chapter 4 of this thesis. We use the theory in order to calculate the
positions of the clumps for the special case of a dissolving star cluster close to the Galactic center.
The simulations are carried out with a new N -body program called nbody6gc. The algorithm
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CHAPTER 1. PREFACE

Figure 1.1: Tidal tails of the star cluster Palomar 5. From Odenkirchen et al. (2003) [8].

is in detail described in Chapter 8. The results of several N -body simulations with the program
nbody6gc are presented in Chapter 9 of this thesis.

The Galactic center is currently a field of very intensive research. The Galactic center region
spans roughly nine orders of magnitude in galactocentric radii ranging from a rough outer ra-
dius of the central molecular zone (RCMZ ≈ 200 pc, Morris & Serabyn 1996 [14]) down to the
Schwarzschild radius of the Galactic super-massive black hole (R• ≈ 4 × 10−7 pc) which resides
at the position of the strong radio source named Sgr A*. This large range in radial scales already
suggests that the physics in the Galactic center region is extremely rich in content. Two young
star-burst clusters named Quintuplet (Nagata et al. 1990 [15], Okuda et al. 1990 [16]) and Arches
(Nagata et al. 1995 [17]) have been discovered at projected distances less than 35 pc away from
the Galactic center. They have quite extraordinary properties and stellar contents. Their forma-
tion still requires clarification. However, both clusters are located (at least, in projection) near
the Galactic center “Radio Arc” (Yusef-Zadeh, Morris & Chance 1984 [18], Timmermann et al.
1996 [19]), which is a region rich in molecular clouds and gaseous filaments (Morris & Serabyn
1996 [14], Lang et al. 2005 [20]).

Young stars have been discovered in the central parsec around the Galactic center. Their
presence in the close vicinity of the Galactic supermassive black hole (M• ≈ (3− 4)× 106 M�) is
currently a heavily disputed topic within the astrophysical community. For example, the comoving
groups IRS 13E (Coker & Pittard 2002 [21], Maillard et al. 2004 [22]), IRS 16SW (Tamblyn & Rieke
1993 [23], Krabbe et al. 1995 [24], Lu et al. 2005 [25]) and IRS 13N (Mužić et al. (2008) [26]),
which consist of young, massive stars, orbit Sgr A* at a distance smaller than one parsec. In
addition, Wolf-Rayet stars, Ofpe/WN9 stars, luminous blue variables and, recently, many OB
stars (Paumard et al. 2006) have been identified within a radius of one parsec around Sgr A*.
Also, the cluster of S stars roughly resides within the central arcsecond around Sgr A* (Ghez et al.
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CHAPTER 1. PREFACE

Figure 1.2: Clumpy substructures in globular cluster tidal tails. From di Matteo, Capuzzo-Dolcetta
& Miocchi 2005 [9].

2005 [27], Eisenhauer et al. 2005 [28]). Star formation within the central parsec of our Galaxy is
problematic because of the presence of the super-massive black hole, since its tidal field dissolves
gas clouds from which stars could form by gravitational collapse. The required high mean number
densities can only be achieved by a strong compression of the gas and are not present within the
central parsec. Rather, the cavity within the circum-nuclear ring contains only atomic and ionized
hydrogen. The raw material for star formation is currently lacking (Morris 1993 [29]). For these
reasons one may wonder why we observe young stars in the central parsec: Their presence in the
central parsec constitutes the “paradox of youth” (Ghez et al. 2003 [30]).

Gerhard (2001) [31] proposed that young stars formed in a massive 106M� star cluster in
a sufficiently large distance from Sgr A* which spiralled into the Galactic center by dynamical
friction within the lifetime of its most massive stars and dissolved there. The young stars in the
central parsec could be remnants of such a dissolved star cluster. It may be that comoving groups
like IRS 13E, IRS 16SW or IRS 13N are remaining cores of such star clusters, as some authors
proposed. To test the star cluster inspiral scenario was the initial motivation for this thesis.

With two examples of very massive (Mcl = 106 M�) star clusters at initial galactocentric radii
of Rg(0) = 20 pc - one on a mildly eccentric and one on a circular orbit -, numerical evidence
will be given for the fact that realistic values of the Coulomb logarithm of dynamical friction lead
to ratios of inspiral to dissolution time scales which are far too large to make the star cluster
inspiral scenario probable. Instead, a different scenario is considered. The author demonstrates
numerically that a star cluster with a small mass on a very eccentric orbit can indeed transport
stars into the central parsec within the lifetime of its most massive stars. In the “eccentric star
cluster orbit scenario”, the eccentricity of the star cluster orbit is crucial for the transport of young
stars into the central parsec and not its orbital decay due to dynamical friction.
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Chapter 2

Stellar systems theory

2.1 Spherically symmetric models

If a stellar system is spherically symmetric, spherical coordinates (r, θ, φ) are the appropriate
coordinates. Gravitational potential Φ(r), cumulative mass M(r), and density ρ(r) do not depend
on θ and φ, and they are related in a particularly simple way. In the following discussion, we use
the Poisson equation for a spherically symmetric system,

∇2Φ(r) =
1
r2

∂

∂r

(
r2 ∂Φ(r)

∂r

)
= 4πGρ(r) (2.1)

where ∇2 is the Laplacian operator and G is the gravitational constant. Since the vector field of
specific gravitational force f(r) (or force on a unit mass) is conservative,1 it can be written as the
gradient of the scalar gravitational potential Φ(r),

f(r) = −∇Φ(r) = −∂Φ(r)
∂r

r
r

= f(r)
r
r

(2.2)

where ∇ is the gradient operator, and Equation (2.1) can be written as

∇ · f(r) = − 1
r2

∂

∂r

(
r2f(r)

)
= −4πGρ(r) (2.3)

where ∇ · is the divergence operator.

Starting from a known potential, we have

∂Φ(r)
∂r

=
GM(r)

r2
= −f(r) (2.4)

ρ(r) =
1

4πr2

∂M(r)
∂r

(2.5)

we have used Newton’s second theorem (see Binney & Tremaine 1987 [32], p. 34f.) together with
Newton’s law of gravitation in the first step.
Starting from a known density distribution, we have

1A force is conservative (i.e. it has a potential) if and only if its curl vanishes. Central forces are conservative if
and only if they are spherically symmetric:

∇×
h
f(r) ·

r

r

i
=

f(r)

r
∇× r +

»
∇

f(r)

r

–
× r

We have ∇× r = 0. The second term vanishes only for spherically symmetric equipotential surfaces.

4



CHAPTER 2. STELLAR SYSTEMS THEORY 2.1. SPHERICALLY SYMMETRIC MODELS

M(r) =
∫ r

0

dM(r′) = 4π

∫ r

0

ρ(r′)r′2dr′ (2.6)

Φ(r) = −G

∫ ∞

r

M(r′)
r′2

dr′ (2.7)

where we assume in the last step limr→∞ Φ(r) = 0.
Other useful quantities are circular velocity vc(r) and escape velocity ve(r)

v2
c (r) =

∂Φ(r)
∂ ln(r)

= r
∂Φ(r)

∂r
=

GM(r)
r

(2.8)

v2
e(r) = 2|Φ(r)| (2.9)

The total potential energy W is given by the equivalent integrals

W =
4π

2

∫ ∞

0

ρ(r)Φ(r) r2 dr (2.10)

= − 1
2G

∫ ∞

0

∣∣f(r)
∣∣2 r2 dr = −G

2

∫ ∞

0

M2(r)
r2

dr (2.11)

= −4πG

∫ ∞

0

ρ(r)M(r) r dr = −G

∫ ∞

0

M(r)
r

dM(r). (2.12)

For details of the derivation of the above integrals, please see chapter 2 of Binney & Tremaine
1987 [32]. If the system is in virial equilibrium, the value of W determines the values of total
kinetic energy K = −W/2 and the total energy E = −K = W/2.
From (2.12) follows the root mean squared escape speed,

〈v2
e〉 = 2〈|Φ|〉 = −4W

M
, (2.13)

provided that the total mass M is finite.
If the velocity dispersion tensor is isotropic, we can recover the velocity dispersion by integrating

the equation of hydrostatic equilibrium (i.e., the Jeans equation involving the second moment of
the velocity distribution),

d
(
ρ(r)σ2(r)

)
dr

= −ρ(r)
dΦ(r)

dr
. (2.14)

Therefore the velocity dispersion is in this case given by the integral

σ2(r) =
G

ρ(r)

∫ ∞

r

ρ(r′)M(r′)
r′2

dr′. (2.15)

The total kinetic energy due to random motion is given by the integral

Π =
3
2
· 4π

∫ ∞

0

ρ(r)σ2(r)r2dr = 2πr3ρ(r)σ2(r)
∣∣∣∞
0︸ ︷︷ ︸

C

−2π

∫ ∞

0

d

dr

[
ρ(r)σ2(r)

]
r3dr = C − W

2
, (2.16)

where we2 have carried out an integration by parts in the first step and plugged in the condition
(2.14) of hydrostatic equilibrium in the second step. It turns out that if

Π finite ⇔ C = 0 (2.17)

and the virial theorem is fulfilled.
2We means Dr. Patrick Glaschke and I.
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2.2. SCALE FREE MODELS CHAPTER 2. STELLAR SYSTEMS THEORY

2.2 Scale free models

Spherically symmetric scale free models (i.e. models which are self-similar under scaling of lengths)
can be represented by potential/mass/density distributions, which are power laws in radius R,

Φ(u) =
{

Φ0 uα−1 α 6= 1,
Φ′0 ln u α = 1 (2.18)

M(u) = M0 uα (2.19)
ρ(u) = ρ0 uα−3 (2.20)

where

u =
R

R0
, ρ0 =

α

4π

M0

R3
0

, Φ0 =
1

α− 1
GM0

R0
=

4πG

α(α− 1)
ρ0R

2
0 (α 6= 1), (2.21)

α is the power law exponent of the cumulative mass profile, G is the gravitational constant and
R0 is a length unit (which is not inherent in nature but simply a human convention). The circular
frequency ω is given by

ω(u) = ω0u
(α−3)/2, ω0 =

√
4πGρ0

α
(2.22)

The ratio of the epicyclic frequency κ to the circular frequency ω is given by

βS =
κ

ω
=

√
2
[
d ln ω

d ln u
+ 2
]

=
√

α + 1 (2.23)

The angular momentum of the circular orbit is given by

Lz(u) = L0u
(α+1)/2, L0 = ω0R

2
0. (2.24)

Probably the most well-known example of a scale free model in stellar dynamics is the singular
isothermal sphere with α = 1. Except for the case α = 0, which corresponds to the ideal case of
a point mass at u = 0, scale free models always have an infinite total mass. In general, a model
with a finite mass cannot be scale free but must show a “scale violation”3: It must contain a
physically significant intrinsic length scale, at which a transition from α > 0 to α = 0 occurs.
The magnitude of this length scale influences the value of the total mass of the system, which is
obtained by integrating the density over all space.

2.3 Plummer model

The most well-known potential-density pair for a star cluster model with a finite mass is the
Plummer model. It is an analytic solution of the Lane-Emden equation and corresponds to a
stellar polytrope of index n = 5. Its distribution function is given by (e.g. Spitzer & Shull
(1975) [33])

fPl(E) =
{

FE7/2, E > 0;
0, E ≤ 0,

(2.25)

which depends on the phase space coordinates only through the relative energy E = −v2/2−Φ(r) >
0 (see Binney & Tremaine 1987 [32], p. 222f.) and therefore is a steady state solution of the

3This term is borrowed from particle physics.
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collisionless Boltzmann equation. Since it satisfies both the Poisson equation and the collisionless
Boltzmann equation, the Plummer model is a self-consistent model of a stellar system.
The gravitational potential, cumulative mass and density are given by

Φ(y) = −Φ0
1√

1 + y2
= −Φ0 cos φ (2.26)

M(y) = M
y3

(1 + y2)3/2
= M sin3 φ (2.27)

ρ(y) = ρ0
1

(1 + y2)5/2
= ρ0 cos5 φ (2.28)

with y = r/rPl ≥ 0, φ = arctan(y) and the Plummer radius

rPl =
GM

Φ0
=
(

3M

4πρ0

)1/3

(2.29)

where M is the total mass, −Φ0 is the central potential and ρ0 the central density, all of them
being finite. The length scale rPl occurs in (2.26), (2.27) and (2.28).4 For the Plummer model, we
have limr→0 α = 3 and limr→∞ α = 0, where α is the power law index of the mass profile. Such a
model fits the observed density profiles of some globular clusters fairly well. From (2.27) we find
the half mass radius

yh =
(

22/3 − 1
)−1/2

= tan
(

arcsin 3
√

1/2
)
≈ 1.30476603 (2.30)

The circular speed is given by

v2
c (y) = Φ0

y2

(1 + y2)3/2
= Φ0 sin2 φ cos φ (2.31)

The total potential energy is given by the integral (2.12),

W = −4πG r2
Pl ρ0 M

∫ ∞

0

y4 dy

(1 + y2)4︸ ︷︷ ︸
π/32

= −3π

32
GM2

rPl
, (2.32)

In the isotropic case, the velocity dispersion can be obtained by integrating the equation of hy-
drostatic equilibrium. It is then given by the integral (2.15),

σ2(y) =
Φ0

6
1√

1 + y2
=

Φ0

6
cos φ (2.33)

Therefore the relation

v2
e(y) = 12σ2(y), (2.34)

where ve is the escape velocity, strictly holds at any radius. The total kinetic energy due to random
motion can now be evaluated according to the integral (2.16),

Π =
3
2

4πρ0
Φ0

6
r3
Pl

∫ ∞

0

y2 dy

(1 + y2)3︸ ︷︷ ︸
π/16

=
3π

64
GM2

rPl
= −W

2
. (2.35)

4Note that the identities (A.1) and (A.2) given in the appendix have been used in the trigonometric parametriza-
tion of the Plummer model.
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The result shows that a Plummer model is in virial equilibrium.
The distribution function (2.25) implies the isotropic velocity distribution

fPl(x) =
512
7π

x2
(
1− x2

)7/2
, (2.36)

where x = v/ve is the velocity in units of the escape velocity. Its first few moments are

N =
∫ 1

0

fPl(x)dx = 1 (2.37)

〈x〉 =
∫ 1

0

xfPl(x)dx =
1024
693π

≈ 0.470345344 (2.38)

〈x2〉 =
∫ 1

0

x2fPl(x)dx =
1
4

(2.39)

The maximum probability is at

xmax =
√

2
3
≈ 0.471404521, (2.40)

which is very close, but not identical to the mean.
The χ function for dynamical friction (cf. Appendix D.2) is given analytically as well by

χ(x) =
∫ x

0

fPl(x′)dx′

=
2

105π

[
x
√

1− x2
(
−105 + 1210x2 − 2104x4 + 1488x6 − 384x8

)
+105 arcsin(x)] (2.41)

In N -body units (G = 1,Mcl = 1, E = −1/4), we have

rPl =
3π

16
≈ 0.589048623 (2.42)

rh =
3π

16

(
22/3 − 1

)−1/2

≈ 0.768570631 (2.43)

ve(0) = 2

√
8

3π
≈ 1.84263546 (2.44)

for the Plummer radius, the half-mass radius and the maximum escape speed, respectively. The
Plummer model has been first used in 1911 by Plummer (1911) [34]. Generalizations of Plummer
models with axial symmetry and anisotropy have been introduced by Miyamoto & Nagai (1975)
[35] and Dejonghe (1987) [36], respectively.

2.4 King model

Another example for a self-consistent model with finite mass is the King model discussed by King
(1966)[37]. The distribution function of a King model is given by

fK(E) =
{

F
[
exp

(
E/σ2

K

)
− 1
]
, E > 0;

0, E ≤ 0,
(2.45)

where E = Ψ(r) − v2/2 is the relative energy, and we chose a constant Φt such that the relative
potential Ψ(r) = Φt − Φ(r) vanishes at the outer boundary of the King model (see Binney &
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Figure 2.1: Relation between concentration and King parameter

Tremaine 1987 [32], p. 222). Zero relative energy corresponds then to an ability barely to reach
the outer boundary of the King model, where its density drops to zero. The distribution function
(2.45) is sometimes called a “lowered Maxwellian” because of the cutoff of the Boltzmann factor
at small relative energies, i.e. at large radii leading to a finite total mass of the King model. Since
the distribution function (2.45) depends on the phase space coordinates only through the relative
energy, the King model is, as the Plummer model, also a steady-state solution of the collisionless
Boltzmann equation.

A King model is characterized by the dimensionless King parameter

W0 =
Ψ0

σ2
K

(2.46)

where Ψ0 is the central potential and σK is the King velocity dispersion. The concentration of a
King model is given by

c = log10(rt/rK), (2.47)

where rt is the tidal radius of the King model, i.e. the radius where its density approaches zero.
The relation between W0 and c is shown in Figure 2.1.

The King radius is given by

rK =

√
9 σ2

K

4πGρ0
, (2.48)

where ρ0 is the finite central density and G is the gravitational constant.
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W0 c rK [Nbu] rh [Nbu] rt [Nbu]
1 0.2954 0.6703 0.8575 2.565
2 0.5049 0.6115 0.8491 2.797
3 0.6720 0.5426 0.8390 3.131
4 0.8400 0.4653 0.8267 3.621
5 1.029 0.3815 0.8140 4.357
6 1.254 0.2931 0.8040 5.464
7 1.527 0.2031 0.8115 6.975
8 1.832 0.1210 0.8717 8.326
9 2.117 0.06329 0.9801 8.354
10 2.348 0.03304 1.029 7.409
11 2.545 0.01868 1.011 6.606
12 2.736 0.01132 0.9788 6.208

Table 2.1: Parameters of King models. The King parameter W0 and the concentration c are
dimensionless. The King radius rK , the half-mass radius rh and the tidal radius rt are given in
N -body units (G = Mcl = −4E = 1). Columns 3-5 from M. Freitag (priv. comm.).

King models fit the observed density profiles of globular clusters even better than Plummer
models. The density as a function of the relative potential is given by (cf. Binney & Tremaine
1987 [32], p. 232)

ρK(Ψ) =
4πρ1

(2πσ2
K)3/2

∫ √
2Ψ

0

[
exp

(
Ψ− 1

2v2

σ2
K

)
− 1
]

v2dv

= ρ1

[
exp

(
Ψ
σ2

K

)
erf

(√
Ψ

σK

)
−

√
4Ψ
πσ2

K

(
1 +

2Ψ
3σ2

K

)]
. (2.49)

We can plug the density (2.49) into the Poisson equation and integrate it numerically, starting
in the center with the King parameter W0 and a flat core as initial conditions to obtain the
potential as a function of radius. Then, we obtain the density as a function of radius by plugging
the potential into the expression (2.49). One also obtains the cumulative mass as a result of the
decomposition of the second-order Poisson equation into a system of two first-order differential
equations. The profiles of density, cumulative mass and potential of King models are shown in
Figure 2.2. In Table 2.1, some parameters of King models are given, which will be used later.
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tral density, the total mass and the central potential, respectively. The slopes for the singular
isothermal sphere are also shown.
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Chapter 3

Escape and chaos theory

This chapter is based on the paper by A. Ernst, A. Just, R. Spurzem, O. Porth, Escape from the
vicinity of fractal basin boundaries of a star cluster, MNRAS 383, 897 (2008) [38].

3.1 Introduction

The dissolution process of star clusters is an old problem in stellar dynamics. Once a star cluster
has formed somewhere in a galaxy, it tends to lose mass due to dynamical interactions until it
has completely dissolved. If a star cluster of finite mass were isolated, in virial equilibrium (i.e.
〈v2

e〉 = 12σ2
1D) and the velocity distribution given by a Maxwellian

fM (X) =
4√
π

X2 exp(−X2), (3.1)

where X = v/(
√

2σ1D) and v, ve and σ1D are the velocity, the escape velocity and the velocity
dispersion, respectively, the fraction of stars which are faster than the rms escape speed were given
by

χe =
∫ ∞

√
6

fM (X)dX = 2

√
6
π

exp(−6) + erfc
√

6 ≈ 0.00738316. (3.2)

where erfc(x) is the complementary error function. This simple analytical result was published
by Ambartsumian (1938) [1] and two years later, independantly by Spitzer (1940) [2] who named
this effect “evaporation”. A process which can bring stars above the escape speed and let them
evaporate, is two-body relaxation. The time scale of relaxation, which determines the rate of
dynamical evolution of a star cluster, yields thus an upper limit to the lifetime of any star cluster.
However, since χe is so small (and relaxation time relatively long), the evaporation time is much
longer than a Hubble time for typical globular clusters. Following a suggestion of Chandrasekhar
(1942) [39], King (1959) [40] studied the effect of “potential escapers”. These are stars which
have been scattered above the escape energy but which have not yet left the cluster. These
may be scattered back to negative energies within a crossing time and remain bound. Hénon
(1960 [41], 1969 [42]) stressed the importance of few close encounters between stars for the rate
of mass loss of star clusters. The Fokker-Planck approximation, which is widely used to study
the dynamical evolution of star clusters, neglects strong encounters by construction. Nevertheless,
close encounters could still be interpreted statistically as a certain discontinuous Markov process
(Tscharnuter 1971 [43]). However, direct N -body models seem to be ideally suited to study this
phenomenon in more detail. Spitzer & Shapiro (1972) [44] estimate that “close encounters may
produce effects perhaps as great as 10 percent of the “dominant” distant encounters” and ignore
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CHAPTER 3. ESCAPE AND CHAOS THEORY 3.1. INTRODUCTION

Figure 3.1: Effective potential in the tidal approximation (z = 0 plane). The Lagrangian points
at L1 = (−1, 0) and L2 = (1, 0) can be seen. The escapers pass these saddle points while they
leak out. The equipotential lines connecting them mark the tidal boundary of the star cluster.
The details of the model are given in Section 3.3.

them. An additional process which can raise the energy of stars in a star cluster is the mass loss
of the star cluster itself since it changes the gravitational potential.

Nature provides an environment for star clusters in which the escape rate is typically strongly
enhanced as compared with the slow evaporation rate of isolated star clusters: The tidal field of a
galaxy induces saddle-like troughs in the walls of the potential well of a star cluster (cf. Figure 1).
It therefore lowers the energy threshold in star clusters above which stars can escape from zero
to a negative value (Wielen 1972 [45], 1974 [46]). Moreover, if we consider a star cluster in the
tidal field of a galaxy as a dynamical system, the tidal field can change the system’s dynamics in
a dramatical way as compared with an isolated system.

In general, the escape process from star clusters in a tidal field proceeds in two stages: (1)
Scattering of stars into the “escaping phase space” by two-body encounters or a drift into the
“escaping phase space” due to a changing cluster potential and (2) leakage through openings in
the equipotential sufaces around saddle points of the potential. The “escaping phase space” is
defined as the subset of phase space, from which escape is possible. It seemed well understood that
the time scale for a star to complete stage (1) scales with relaxation time. However, the energy
change due to a changing cluster potential may also change the energy of stars on a different time
scale. The importance of this second process has not yet been investigated in detail. On the other
hand, the time scale for a star to complete stage (2) depends mainly on its energy (but also on
its location in phase space as we will see). When we neglect the effect of two-body relaxation or a
time-dependent cluster potential for the consideration of stage (2), the motion of a single star in
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3.1. INTRODUCTION CHAPTER 3. ESCAPE AND CHAOS THEORY

the star cluster is determined between times t1 and t2 only by the smooth gravitational potential
in which the star moves. The potential itself is generated by the other stars in the star cluster
disregarding their “grainyness” and by the superposed galactic gravitational field, which is due
to the matter distribution of the galaxy. Within this framework, we will study stage (2) of the
escape process in this chapter. In this connection, the work of Fukushige & Heggie (2000) [5] is of
major interest. Their main result is an expression for the time scale of escape for a star in stage
(2) which has just completed stage (1). The dependance of the escape process on two (or more)
time scales which scale differently with the particle number N imposes a severe scaling problem
for N -body simulations (see Section 7.2). The scaling problem is of relevance since the it is on
today’s general-purpose hardware architectures not yet simply feasible to simulate the evolution
of globular clusters with realistic particle numbers of a few hundred thousands or even millions of
stars by means of direct N -body simulations. The result of Fukushige & Heggie has been applied
in Baumgardt (2001) [47] to solve the important scaling problem for the dissolution time of star
clusters in the special case of circular cluster orbits. The obtained scaling law tdis ∝ t

3/4
rh , where

tdis and trh are the dissolution and half-mass relaxation times, respectively has been verified, e.g.
in Spurzem et al. (2005) [48].

The problem of escape has also a long history in the context of the theories of dynamical systems
and chaos. It is well-known for a long time, that certain Hamiltonian systems allow for escape of
particles towards infinity. Such “open” Hamiltonian systems have been studied by Rod (1973) [49],
Churchill et al. (1975) [50], Contopoulos (1990) [51], Contopoulos & Kaufmann (1992) [52], Siopis
et al. (1997) [53], Navarro & Henrard (2001) [54] and Schneider, Tél & Neufeld (2002) [55]. The
related chaotic scattering process, in which a particle approaches a dynamical system from infinity,
interacts with the system and leaves it, escaping to infinity, was investigated by many authors, as
Eckhardt & Jung (1986) [56], Jung (1987) [57], Jung & Scholz (1987) [58], Eckhardt (1987) [59],
Jung & Pott (1989) [60], Bleher, Ott & Grebogi (1989) [61] and Jung & Ziemniak (1992) [62].
Typically, the infinity acts as an attractor for an escaping particle, which may escape through
different exits in the equipotential surfaces. Thus it is possible to obtain basins of escape (or
“exit” basins), similar to basins of attraction in dissipative systems or the well-known Newton-
Raphson fractals (see Appendix B for two examples). Special types of basins of attraction (i.e.
“riddled” or “intermingled” basins) have been explored by Ott et al. (1993) [63] and Sommerer &
Ott (1993 [64], 1996 [65]). Basins of escape have been studied by Bleher et al. (1988) [66], and they
are discussed in Contopoulos (2002) [7]. Research on escape from the paradigmatic Hénon-Heiles
system has been done by de Moura & Letelier (1999) [67], Aguirre, Vallejo & Sanjuán (2001) [68],
Aguirre & Sanjuán (2003) [69], Aguirre, Vallejo & Sanjuán (2003) [70], Aguirre (2004) [71] and
Seoane Sepúlveda (2007) [72]. These papers served as the basis of this chapter. Relatively early, it
was recognized, that the key to the understanding of the the chaotic scattering process is a fractal
structure in phase space which has the form of a Cantor set (Cantor 1884) [6] and is called the
chaotic saddle. Its skeleton consists of unstable periodic orbits (of any period) which are dense
on the chaotic saddle (e.g. Lai 1997 [73]) and introduce chaos into the system (e.g. Contopoulos
2002) [7]. The properties of chaotic saddles have been investigated by different authors, as Hunt
(1996) [74], Lai et al. (1993) [75], Lai (1997) [73] or Motter & Lai (2001) [76]. Both hyperbolic
and non-hyperbolic chaotic saddles occur in dynamical systems. In the first case, there are no
Kolmogorov-Arnold-Moser (KAM) tori, which means that all periodic orbits are unstable. In the
second case, there are both KAM tori and chaotic sets in the phase space (J. C. Vallejo, priv.
comm. and e.g. Lai et al. 1993 [75]). We note that all of the above references on the chaotic
dynamics are exemplary rather than exhaustive since there exists a vast amount of literature on
these topics.
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3.2 Tidal approximation

The “tidal approximation” which is widely used in stellar and galactic dynamics for studies of
stellar systems in a tidal field is nothing else than a simple approximation which, historically, has
been applied already in the 19th century in “Hill’s problem” (e.g. Stumpff 1965 [77], Szebehely
1967 [78], Siegel & Moser 1971 [79]) in the context of the (rather intricate) lunar theory. The
difference to the tidal approximation lies merely in the form of the gravitational potentials which
are used. The assumption that a star cluster moves around the Galactic center on a circular orbit
allows to use the epicyclic approximation to calculate steady linear tidal forces acting on the stars
in the star cluster. As in the circular restricted three-body problem the appropriate coordinate
system is a rotating reference frame in which both the star cluster center and the Galactic center
(i.e., the primaries) are at rest. Its origin is the star cluster center, sitting in the extremum
of the effective galactic potential. The x-axis points away from the Galactic center; the y-axis
points in the direction of the rotation of the star cluster around the Galactic center; the z-axis
lies perpendicular to the orbital plane and points towards the Galactic North pole. We define
corotating coordinates (x, y, z) as

x = (R−RC) , y ≈ RC (φ− ωCt) , z = z′ (3.3)

where (R,φ, z′) are galactocentric cylindrical coordinates, RC and ωC are the radius and the
frequency of the circular orbit, respectively, the subscript “C” denotes physical quantities at RC

in the following discussions and t is time (in the context of “Hill’s problem” cf. Glaschke 2006 [80]).
Since the coordinate system is rotating, centrifugal and Coriolis forces appear according to classical
mechanics. In addition, tidal forces enter the equations of motion for stellar orbits near the origin
of coordinates. To first order, we have in the rotating frame

ẍ = −∂Φcl

∂x
−
(

∂2Φg

∂R2

)
(RC ,0)

x + ω2
Cx + 2ωC ẏ (3.4)

ÿ = −∂Φcl

∂y
− 2ωC ẋ (3.5)

z̈ = −∂Φcl

∂z
−
(

∂2Φg

∂z2

)
(RC ,0)

z (3.6)

where Φcl(x, y, z) and Φg(R, z′) are the star cluster potential and the axisymmetric galactic poten-
tial, respectively. The second-last term on the right hand side in (3.4) is the centrifugal force and
the last terms in (3.4) and (3.5) are Coriolis forces. According to Binney & Tremaine (1987) [32],
the epicyclic frequency κC and the vertical frequency νC are given by

κ2
C =

(
∂2Φg

∂R2

)
(RC ,0)

+ 3ω2
C , ν2

C =
(

∂2Φg

∂z2

)
(RC ,0)

(3.7)

Thus the equations of motion can be written as

ẍ = fx − (κ2
C − 4ω2

C)x + 2ωC ẏ (3.8)
ÿ = fy − 2ωC ẋ (3.9)
z̈ = fz − ν2

Cz, (3.10)

where (fx, fy, fz) = −∇Φcl is the (specific) force vector from the other cluster member stars which
typically depends non-linearly on the coordinates. It is of interest for the following discussion that
the equations of motion (3.8) - (3.10) are invariant under time reversal.1 Note that under a time

1The invariance under time reversal is related to the existence of a discrete group with only two elements, which
acts on the space of solutions of the equations of motion (3.8) - (3.10). In our case, the effective potential (3.12)
and the Coriolis forces are time-symmetric, which implies the same symmetry of the equations of motion.
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reversal the frequencies also change their sign. Also, the equations of motion (3.8) - (3.10) admit
an isolating integral of motion, the Jacobian

EJ =
1
2
(
ẋ2 + ẏ2 + ż2

)
+ Φeff(x, y, z), (3.11)

where

Φeff(x, y, z) = Φcl(x, y, z) +
1
2

(κ2
C − 4ω2

C)x2 +
1
2
ν2

Cz2 (3.12)

is the effective potential, which is plotted in Figure 1 for the 2D case. Other isolating integrals
are not given in the form of a simple analytical expression. However, some solutions of (3.8) -
(3.10) are subject to a non-classical integral (Hénon & Heiles 1964) [81], as has been demonstrated
numerically by Fukushige & Heggie (2000) [5], who calculated a Poincaré surface of section. In
principle, one may obtain power series expansions of such non-classical integrals2, see the original
works by Gustavson (1966) [82] and Finkler, Jones & Sowell (1990) [83] and the review in Moser
(1968) [84]. Also, third integrals can be related to the existence of Killing tensor fields which are
well-known in General Relativity (Clementi & Pettini 2002 [85]). At last, the tidal radius (King
1962) [86]

rt =
(

GMcl

4ω2
C − κ2

C

)1/3

(3.13)

where Mcl is the star cluster mass, provides a fundamental length scale of the problem. It is the
distance from the origin of coordinates to the Lagrangian points L1 and L2 (which lie on the x
axis, see Figure 3.1).

3.3 A simple model

The characteristic frequencies ωC , κC and νC arise as properties of the galactic gravitational
potential. Throughout the paper, we use the values of the characteristic frequencies in the solar
neighborhood. All of them can be expressed in terms of Oort’s constants A and B (see, e.g.,
Binney & Tremaine 1987 [32]): ω2

C = (A − B)2, κ2
C = −4B(A − B), κ2

C − 4ω2
C = −4A(A − B),

ν2
C = 4πGρg +2(A2−B2). The vertical frequency νC can be derived from the Poisson equation for

an axisymmetric system (see Oort 1965 [87]) and ρg is the local Galactic density, which contributes
to the dominant first term. We obtain both dimensionless parameters κ2

C/ω2
C ≈ 1.8 and ν2

C/ω2
C ≈

7.6 using the values of Oort’s constants given in Feast & Whitelock (1997) [88] and the value for
local Galactic density given in Holmberg & Flynn (2000) [89]. It is then convenient to choose the
following system of units:

G = 1, ωC = 1, Mcl = 2.2 (3.14)

The resulting length unit is the tidal radius rt and the formulation of the dynamical problem with
its equations of motion is completely dimensionless. For the star cluster, we use a Plummer model,
the most simple analytic model for a star cluster. The density profiles of King models which have a
cutoff radius, where the density drops to zero, fit the measured density profiles of globular clusters
better than Plummer models (King 1966 [37]). Since they are tidally limited by construction, they
are at first glance ideally suited for our purpose. However, the gravitational force field can only
be tabulated from a numerical integration of a non-linear differential equation. We have made a
compromise which is not relevant for the interesting physics: We choose the Plummer radius in
such a way, that the Plummer model (see Section 2.3) is the best fit to a King model with W0 = 4
(i.e. with concentration c = log10(rt/rK) ≈ 0.840), which completely fills the Roche lobe in the

2e.g. adelphic or third integrals
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tidal field, i.e. the density of the King model approaches zero at the tidal radius (3.13). The fit of
the density profiles is quite acceptable for density contrasts of log10(ρc/ρ(r)) . 3, where ρc and
ρ(r) are the central density and the density as a function of radius, respectively. For the deviation
between the King density profile and the Plummer fit we obtain (ρPl(r)− ρK(r))/ρc < 1.2%. The
ratio of the Plummer radius to the King radius and the “concentration” of the Plummer model
(which can only be defined because of the existence of a tidal radius) are then rPl/rK ≈ 1.257
and cPl = log10(rt/rPl) ≈ 0.741, respectively. In our units, the Plummer radius is therefore
rPl ≈ 0.182.

As a more technical remark, the author notes that he used an 8th-order Runge-Kutta scheme
for the orbit integrations. The relative error in the Jacobian EJ was always limited to ∆EJ/EJ <
10−10 for all orbit integrations.3

3.4 Poincaré surfaces of section

A critical Jacobi constant

EJ,L = Φeff(rt, 0, 0) = Φeff(−rt, 0, 0) (3.15)

is given by the value of the effective potential (3.12) at the Lagrangian points L1 and L2. For our
model we have EJ,L = −3.264444506. For a Jacobian EJ > EJ,L the equipotential surfaces are
open and particles can escape. Furthermore, we define the dimensionless deviation from EJ,L by

ÊJ = (EJ,L − EJ)/EJ,L, (3.16)

where EJ is some other value of the Jacobian. The dimensionless deviation ÊJ is positive for
EJ > EJ,L if EJ and EJ,L are both negative, which is always the case in this paper. A first insight
can be gained by calculating Poincaré surfaces of section which are shown in Figure 3.2 for two
different Jacobi constants: The upper left surface of section is at the critical Jacobian EJ,L at
which all orbits still remain within a bounded area in phase space and we have no escapers. We
can see that this is a system with divided phase space, i.e. we have both chaotic and regular orbits.
It is striking that the left half of the surface of section is almost completely occupied by regular,
quasiperiodic orbits. These orbits are retrograde with respect to the orbit of the star cluster around
the galactic center (Fukushige & Heggie 2000 [5]), as can be seen by looking at the sketch in Figure
3.4, and they are subject to a non-classical integral of motion. On the other hand, most of the
prograde orbits are chaotic apart from a few smaller regular islands. Since the effective potential
is mirror-symmetrical with respect to both the x- and y-axes (see Figure 3.1), the asymmetry
seen in the surfaces of section must be due to the Coriolis forces. Thus such a behavior might
be termed a “Coriolis asymmetry” (cf. Innanen 1980 [90]). The Coriolis forces are special in the
sense that their direction is not perpendicular to the tangent plane to the equipotential surfaces
but to the velocity of a particle. The upper right surface of section is at a higher Jacobi constant.
The particles can leak out through the openings in the equipotential surfaces and escape towards
infinity (positive x-direction) or the galactic center (negative x-direction). It is remarkable, that
only the chaotic orbits escape, while the regular, quasiperiodic orbits remain within the tidal
boundary of the star cluster, since the non-classical integral restricts their accessible phase space
and hinders their escape. In star clusters, two-body relaxation may scatter stellar orbits beyond
the critical Jacobi constant. However, if the orbits are retrograde, the stars will remain bound
to the star cluster with high probability until two-body relaxation further scatters them into the
escaping phase space. The two lower surfaces of section in Figure 3.2 indicate the orbital structure
in position space at EJ = EJ,L, where all orbits are restricted to the region within the almond-
shaped tidal boundary of the star cluster (cf. Figure 3.1). One notes that certain parts of the

3Erratum: Due to a sign neglection in the evaluation of the relative error in the Jacobian it was stated wrongly
in the paper.

17



3.5. THE BASINS OF ESCAPE CHAPTER 3. ESCAPE AND CHAOS THEORY

Plot (Figure 3.5) Black Red Yellow
Top left 25.4 36.6 38.0
Top right 12.5 19.3 68.2
Middle left 36.9 31.5 31.5
Middle right 21.4 36.8 41.8
Bottom left 40.9 29.5 29.6
Bottom right 27.2 36.2 36.6

Table 3.1: Fraction of orbits (in percent) belonging to the intersection of the basins of escape with
Poincaré surfaces of section which are shown in Figure 3.5.

chaotic regions of the lower surfaces of section are less densely filled by stellar orbits which is a
common property of dynamical systems.

Figure 3.3 shows typical examples of the two main types of orbits. The regular orbit resembles
a rosette orbit in an axisymmetric potential or a loop orbit which suggests that the non-classical
integral is some sort of generalization of angular momentum (Binney & Tremaine 1987 [32]). We
found indeed that the angular momentum is approximately conserved for the left orbit of Figure
3.3, while it is not at all conserved for the right orbit. Other types of orbits can be found which are
associated with the smaller regular islands in the surfaces of section and which may look rather
interesting. At last, the author remarks that the difference between retrograde and prograde orbits
appears prominently in N -body models of dissolving rotating star clusters within the framework
of the tidal approximation: Where either the regular or the chaotic domains in phase space are
more strongly occupied by stellar orbits due to the existence of a net angular momentum of the
cluster in one direction (see Ernst et al. 2007 [4]).

3.5 The basins of escape

Figure 3.5 shows the basins of escape for a tidally limited star cluster within the framework of the
tidal approximation. For the plots on the left-hand side, ∼ 3 × 105 orbits have been integrated;
for the plots on the right-hand side, it were ∼ 6 − 8 × 105 orbits, depending on the area of the
surface of section containing initial conditions. The phase space is divided into the escaping phase
space (red and yellow regions) and the non-escaping phase space (black regions). The red regions
denote initial conditions, where the escaping stars pass L1 while the yellow regions represent initial
conditions, where the escaping stars pass L2. The black regions show those initial conditions,
where stars do not escape. These are first and foremost the regular regions where a non-classical
integral is present. Note that the stable manifold of the chaotic saddle is not marked in black,
since it is of Lebesgue measure zero (cf. next Section). Since there exist regular regions (with
KAM tori), the system is non-hyperbolic, i.e. there exist stable periodic orbits with corresponding
elliptic points in the surfaces of section (cf. Section 3.4 and Figure 3.2). We can see that in the
escaping phase space there exist regions, where we have a very sensitive dependence of the escape
process on the initial conditions, i.e. a slight change of the initial conditions makes the star escape
through the opposite Lagrangian point. This is the classical indication of chaos. It is interesting
to note that these regions arise from immediate vicinity of the black regions where orbits are
regular. In these domains of phase space the red and yellow regions are completely intertwined
with respect to each other: The boundary between these regions is fractal. The volume in phase
space occupied by these regions (with sensitive dependence on the initial conditions) increases
as the Jacobian EJ approaches the critical Jacobi constant EJ,L (i.e. in the limit ÊJ → 0) and
the exits become smaller. At ÊJ → 0 there is a maximal “fractalization” of phase space; when
the system approaches the limit of small exits the basins become uncertain (Aguirre & Sanjuán
2003 [69]). The term “uncertain” means that we become unable to follow the real trajectory of a
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particle by means of numerical integration.4 Moreover, the following theorem can be formulated:
“For all points P in the escaping phase space of an open Hamiltonian system, and for all δ > 0
(precision of the experiment), there exists a critical size of the exits wc > 0 such that for all w ≤ wc

we can find a point P ′ in a ball centered in P and radius δ that belongs to a different basin than
P” (Aguirre & Sanjuán 2003 [69]).

Table 3.1 shows the fraction of orbits (in percent) belonging to the intersection of the basins
of escape with Poincaré surfaces of section which are shown in Figure 3.5. It can be seen that in
the limit ÊJ → 0 the fractions of particles passing L1 and L2 tend to be equal while this must
not be the case if there are large areas without sensitive dependence of the escape process on the
initial conditions.

Figure 3.6 shows how the escape times are distributed on surfaces of section. The longest
escape times correspond to initial conditions near the boundaries between the basins of escape of
Figure 3.5. The shortest escape times have been measured for the ordered regions without sensitive
dependence on the initial conditions, i.e. those far away from the fractal basin boundaries.

Figure 3.7 shows the fraction of remaining (non-escaped) orbits Ne(te > t)/Ne,0 after time t
corresponding to the basins of escape shown in Figure 3.5. Only the escaping orbits have been
used for the statistics. The orbits corresponding to the regions without sensitive dependence on
the initial conditions shown in Figure 3.5 have short escape times as can be seen in Figure 3.6. For
these orbits, the decay law is a power law as shown in the inlays for the solid curve (ÊJ = 0.1). On
the other hand, the decay law is exponential for the chaotic orbits near the fractal basin boundaries
(i.e. the orbits with long escape times which correspond to the regions with sensitive dependence
on the initial conditions). The slopes of the exponentials (i.e. the decay constants) depend on the
value of ÊJ but are identical for both surfaces of section. The exponential decay law indicates
that the underlying process is of a statistical nature similar to the radioactive decay of unstable
nuclides or that of bubbles in beer foam.

3.6 The chaotic saddle

The stable manifold of the chaotic saddle is shown in the top row of Figure 3.8 for two Poincaré
surfaces of section. The stable manifold coincides with the fractal basin boundaries of Figure 3.5
and therefore acts as a separatrix between the exit basins.. With data points of finite size, the top
row shows orbits which do not escape for time t →∞, although, strictly speaking, their Lebesgue
measure is zero. The unstable manifold of the chaotic saddle is shown in the middle row of Figure
3.8. These are orbits which do not escape for time t → −∞. Note that the stable and unstable
manifolds are symmetric with respect to each other, since the equations of motion (3.8) - (3.10)
are time-symmetric. For the plots in the middle row of Figure 3.8, the sign of the time step in the
Runge-Kutta integrator has been reversed, The bottom row of Figure 3.8 shows the intersection
of the chaotic saddle (i.e. a non-hyperbolic chaotic invariant set) with the two Poincaré surfaces
of section. It is the invariant set of non-escaping orbits for time t →∞ and t → −∞. The chaotic
saddle has the form of a Cantor set (Cantor 1884 [6]) which is formed by the intersection of its
stable and unstable manifolds. The fact that the system is non-hyperbolic implies that there are
tangencies between the stable and unstable manifolds, i.e. that their angle is not always bounded
away from zero (Lai et al. 1993 [75]). The unstable (hyperbolic) points in the intersection of the
Poincaré surface of section with the chaotic saddle correspond to unstable periodic orbits. As is
well-known (e.g. Contopoulos 2002) [7], these introduce chaos into the system since they repel
the orbits in their neighborhood in the direction of their unstable eigenvectors. The remarkable
similarity of our system with the Hénon-Heiles system (see Aguirre, Vallejo & Sanjuán 2001 [68])
is that the fractal dimension of the chaotic saddle tends to three in the limit ÊJ → 0 (i.e. the black
areas in Figure 3.8 grow until we have a maximal fractalization of the phase space, cf. Aguirre
& Sanjuan 2003 [69]), which is the dimension of the hypersurface of phase space with constant

4In other words, the computer fails here to be a Laplacian demon (Laplace 1814 [91]).
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Jacobian. At ÊJ = 0 there is a sudden transition where the non-hyperbolic invariant set abruptly
fills the whole non-regular subset of phase space within the last closed equipotential surface and
no escape is possible any more. This situation can be seen in the Poincaré surfaces of section in
Figure 3.2 in Section 3.4 which shows the chaotic domains of phase space as a dotted area.
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Figure 3.2: Poincaré surfaces of section. Top left: At ÊJ = 0 for orbits crossing y = 0 with ẏ > 0,
Top right: Same as top left, but at ÊJ = 0.1, Bottom left: At ÊJ = 0 for orbits crossing ẋ = 0
with ẏ > 0, Bottom right: At ÊJ = 0 for orbits crossing ẏ = 0 with ẋ > 0. The variable ÊJ is
defined in Equation (3.16).
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Figure 3.3: The two main types of orbits at ÊJ = 0. Left: Regular retrograde orbit, Right:
Chaotic prograde orbit. The variable ÊJ is defined in Equation (3.16).

Galactic Centre
x

y

L2L1 y > 0

retrograde prograde

y > 0

Star  cluster

Feff > EJ,L

Star cluster 
orbital direction

• •

Figure 3.4: Sketch of the coordinate system. The escapers leak out through the openings in the
equipotential surfaces passing either L1 or L2. Only schematically, two orbits are shown which
cross the x axis with ẏ > 0.
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Figure 3.5: The basins of escape. Top left: At ÊJ = 0.1 for orbits crossing y = 0 with ẏ > 0, Top
right: At ÊJ = 0.1 for orbits crossing ẏ = 0 with ẋ > 0, Middle row: As the upper row, but at
ÊJ = 0.01, Botton row: As the middle row, but at ÊJ = 0.001. The red regions denote initial
conditions, where the escaping stars pass L1 while the yellow regions represent initial conditions,
where the escaping stars pass L2. The black regions show those initial conditions, where stars do
not escape. The variable ÊJ is defined in Equation (3.16).
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Figure 3.6: Distribution of escape times te on surfaces of section for ÊJ = 0.01. Top: For the
x− vx surface of section of Figure 3.5, Bottom: For the x− y surface of section of Figure 3.5. The
darker the color, the longer the escape time.

Figure 3.7: Histogram of the fraction of remaining (non-escaped) orbits Ne(te > t)/Ne,0 after time
t. Top: For the x− vx surfaces of section of Figure 3.6, Bottom: For the x− y surfaces of section
of Figure 3.6, Solid: ÊJ = 0.1, Dashed: ÊJ = 0.01, Dotted: ÊJ = 0.001. The inlays with two
logarithmic axes show the early phase for the solid line (i.e. for ÊJ = 0.1). The variable ÊJ is
defined in Equation (3.16).
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Figure 3.8: The non-hyperbolic invariant set and its stable and unstable invariant manifolds at
ÊJ = 0.01. Top row: Stable manifold, Middle row: Unstable manifold, Bottom row: Invariant
set. The variable ÊJ is defined in Equation (3.16).
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Chapter 4

Theory of tidal arms

This chapter is based on the paper by A. Just, P. Berczik, M. Petrov, A. Ernst, Quantitative
analysis of clumps in the tidal tails of star clusters, MNRAS 392, 969 (2009) [13]. The theoretical
ideas which are presented here in greater detail stem from A. Just.

4.1 Taylor expansions

We calculate Taylor expansions of the potential and other physical quantities. The subscript “C”
denotes physical quantities at the radius of the circular orbit in the following discussion.

4.1.1 R-expansions

We define

β =
κ

ω
, β′ =

dβ

d ln R
(4.1)

where κ and ω are the epicyclic and the circular frequencies, respectively. We have

β2 = 2
(

2 +
d ln ω

d ln R

)
,

dω

dR
=

β2 − 4
2

ω

R
. (4.2)

The derivatives of the galactic potential are given by

dΦg

dR
= Rω2 (4.3)

d2Φg

dR2
= (β2 − 3)ω2 (4.4)

d3Φg

dR3
=

[
(β2 − 3)(β2 − 4) + 2ββ′

] ω2

R
(4.5)

We define x = ∆R = R − RC , where RC is the radius of the circular orbit. Then the Taylor
expansion of the galactic potential is given up to third order by

Φg(R) ≈ Φg(RC) + ω2
CRCx +

1
2

(β2
C − 3)ω2

Cx2 +
1
6
[
(β2

C − 3)(β2
C − 4) + 2βCβ′C

] ω2
C

RC
x3 (4.6)

The centrifugal potential is given by

Φc = −1
2
ω2

CR2 (4.7)

26



CHAPTER 4. THEORY OF TIDAL ARMS 4.1. TAYLOR EXPANSIONS

Figure 4.1: Equipotential lines of the effective potential in the tidal approximation (z = 0 plane).
Shown is a larger area than in Figure 3.1. The parabolic potential wall of the effective potential
can be seen in more detail. The star cluster lies in the middle of it.

It is second-order and the direction of the corresponding force is opposite to the gravitational
force. Its derivatives are given by

dΦc

dR
= −ω2

CR (4.8)

d2Φc

dR2
= −ω2

C (4.9)

Thus the Taylor expansion of the effective potential is given by

Φeff(R) = Φg(R) + Φc(R) (4.10)

≈ Φeff(RC) +
1
2

(β2
C − 4)ω2

Cx2 +
1
6
[
(β2

C − 3)(β2
C − 4) + 2βCβ′C

] ω2
C

RC
x3 (4.11)

up to third order. The first-order term vanishes.
We can also Taylor expand the angular momentum. We have

dL

dR
=

β2

2
ωR (4.12)

d2L

dR2
=

[
1
4
β2(β2 − 2) + ββ′

]
ω (4.13)
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Thus the angular momentum difference is given by

∆L

LC
≈ β2

C

2
∆R

RC
+

1
2

[
1
4
β2

C(β2
C − 2) + βCβ′C

]
∆R2

R2
C

(4.14)

to second order, where ∆L = L− LC .
Similarly, we can Taylor expand the angular speed. We have

dω

dR
=

β2 − 4
2

ω

R
(4.15)

d2ω

dR2
=

[
1
4

(β2 − 4)(β2 − 6) + ββ′
]

(4.16)

Thus the angular speed difference is given by

∆ω

ωC
≈ β2

C − 4
2

∆R

RC
+

1
2

[
1
4

(β2
C − 4)(β2

C − 6) + βCβ′C

]
∆R2

R2
C

(4.17)

to second order, where ∆ω = ω − ωC .
The Taylor expansion of the kinetic energy of the circular orbit is necessary in order to expand

the energy. The derivatives are given by

d

dR

(
ω2R2

2

)
=

β2 − 2
2

ω2R (4.18)

d2

dR2

(
ω2R2

2

)
=

[
1
2

(β2 − 2)(β2 − 3) + ββ′
]

ω2 (4.19)

Thus the R-expansion of the kinetic energy is given by

ω2R2

2
≈ ω2

CR2
C

2
+

β2
C − 2

2
ω2

CRC∆R +
1
2

[
1
2

(β2
C − 2)(β2

C − 3) + βCβ′C

]
ω2

C∆R2 (4.20)

From (4.6) and (4.20) follows

E = Φg(R) +
ω2R2

2
(4.21)

≈ Φg(RC) +
ω2

CR2
C

2
+

β2
C

2
ω2

CRC∆R +
1
2

[
1
2
β2

C(β2
C − 3) + βCβ′C

]
ω2

C∆R2 (4.22)

For the Jacobi energy we obtain

EJ = E − ωCL ≈ Φg(RC)− ω2
CR2

C

2
+

1
8
β2

C(β2
C − 4)ω2

C∆R2 (4.23)

The first-order term and the term involving β′C vanish.

4.1.2 η-expansions

We define η = 1/R, ηC = 1/RC and

β̇ =
dβ

d ln η
= −β′ (4.24)
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We have

β2 = −2
d ln L

d ln η
,

dL

dη
= −β2

2
L

η
. (4.25)

The derivatives of the galactic potential are given by

dΦg

dη
= −ηL2 (4.26)

d2Φg

dη2
= L2(β2 − 1) (4.27)

d3Φg

dη3
= −2

L2

η

[
β2(β2 − 1)− 2ββ̇

]
(4.28)

We define ∆η = η − ηC = 1/R− 1/RC . Then the Keplerian approximation (Dekker 1976 [92]) of
the galactic potential is given up to third order by

Φg(η) ≈ Φg(ηC)− ηCL2
C∆η +

1
2
L2

C(β2
C − 1)∆η2 − 1

6
L2

C

ηC

[
β2

C(β2
C − 1)− 2βC β̇C

]
∆η3 (4.29)

In the Keplerian approximation, the centrifugal potential is given by

Φc(η) = −1
2
η4

CL2
C

1
η2

(4.30)

Its derivatives are given by

dΦc

dη
= η4

CL2
C

1
η3

(4.31)

d2Φc

dR2
= −3η4

CL2
C

1
η4

(4.32)

d3Φc

dR3
= 12η4

CL2
C

1
η5

(4.33)

Thus the effective potential in the Keplerian approximation is given by

Φeff(η) = Φg(η) + Φc(η) (4.34)

≈ Φeff(ηC) +
1
2
L2

C(β2
C − 4)∆η2 − 1

6
L2

C

ηC

[
(β2

C − 4)(β2
C + 3)− 2βC β̇C

]
∆η3 (4.35)

up to third order. The first-order term vanishes. Note that the centrifugal potential propagates
to higher orders.

4.1.3 L-expansions

The Taylor expansions with respect to ∆L = L − LC are useful, because ∆L is easy to measure
in simulations. We use the following relations,

L = ωR2,
dL

dR
=

β2

2
ωR =

β2

2

√
ωL,

dω

dL
=

β2 − 4
β2

ω

L
,

dβ

dL
=

2β′

β2

1
L

. (4.36)
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The derivatives of the galactic potential are given by

dΦg

dL
=

2
β2

ω (4.37)

d2Φg

dL2
=

2
β4

(
β2 − 4− 4

β′

β

)
ω

L
(4.38)

Thus the Taylor expansion is given by

Φg(L) ≈ Φg(LC) +
2

β2
C

ωC∆L +
1

β4
C

(
β2

C − 4− 4
β′C
βC

)
ωC

LC
∆L2 (4.39)

up to second order. We can also expand the kinetic energy of the circular orbit in powers of ∆L.
We have

d

dL

(
ωL

2

)
=

(
1− 2

β2

)
ω (4.40)

d2

dL2

(
ωL

2

)
=

1
β4

[
(β2 − 2)(β2 − 4) + 8

β′

β

]
ω

L
(4.41)

Thus the Taylor expansion is given by

ωL

2
≈ ωCLC

2
+
(

1− 2
β2

C

)
ωC∆L +

1
β4

C

[
1
2

(β2
C − 2)(β2

C − 4) + 4
β′C
βC

]
ωC

LC
∆L2 (4.42)

up to second order.
The energy follows from Equations (4.39) and (4.42),

E ≈ Φg(RC) +
ωCLC

2
+ ωC∆L

[
1 +

β2 − 4
2β2

∆L

LC

]
(4.43)

It is interesting to note that the term involving β′ vanishes.
For the radius we obtain

dR

dL
=

2
β2

R

L
(4.44)

d2R

dL2
= − 2

β4

(
β2 − 2 + 4

β′

β

)
R

L2
. (4.45)

This yields

∆R

RC
≈ 2

β2
C

∆L

LC
− 1

β4
C

(
β2

C − 2 + 4
β′C
βC

)
∆L2

L2
C

. (4.46)

Assuming that β′ = 0 we obtain

∆R

RC
≈ 2

β2
C

∆L

LC
− 1

β4
C

(
β2

C − 2
) ∆L2

L2
C

+
2

3β6
C

(β2
C − 1)(β2

C − 2)
∆L3

L3
C

. (4.47)

to third order.
The angular speed difference is obtained by
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dω

dL
=

β2 − 4
β2

ω

L
(4.48)

d2ω

dL2
= − 4

β4

[
β2 − 4− 4

β′

β

]
ω

L2
(4.49)

These expressions yield

∆ω

ωC
≈ β2

C − 4
β2

C

∆L

L
− 2

β4
C

[
β2

C − 4− 4
β′C
βC

]
∆L2

L2
C

(4.50)

to second order.
If we assume that β′ = 0 we obtain

∆ω

ωC
≈ β2

C − 4
β2

C

∆L

L
− 2

β4
C

(
β2

C − 4
) ∆L2

L2
C

+
2

3β6
C

(β2
C − 4)(β2

C + 4)
∆L3

L3
C

(4.51)

to third order.
The expansion of 1/ω is also useful. We have

d

dL

(
1
ω

)
= −β2 − 4

β2

1
ωL

(4.52)

d2

dL2

(
1
ω

)
=

2
β4

[
(β − 2)(β − 4)− 8

β′

β

]
1

ωL2
(4.53)

and obtain

1
ω
≈ 1

ωC

{
1− β2

C − 4
β2

C

∆L

LC
+

1
β4

C

[
(β2

C − 2)(β2
C − 4)− 8

β′C
βC

]
∆L2

L2
C

}
. (4.54)

Under the assumption that β′ = 0 we obtain

1
ω
≈ 1

ωC

{
1− β2
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(4.55)
to third order.

We can also expand the circular speed V in order to calculate the shear flow in the vicinity of
the circular orbit. We have V = L/R, VC = LC/RC and

d
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L

R

)
=

β2 − 2
β2

1
R

(4.56)
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This yields

V ≈ VC
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If we assume that β′ = 0 we obtain
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(4.59)
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to third order.
In the corotating reference frame we therefore have

V − ωCR = ∆ωR ≈ VC
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(4.60)

to second order.
Under the assumption that β′ = 0 we obtain

V − ωCR = ∆ωR ≈ VC

{
β2

C − 4
β2

C

∆L

LC
− 1

3β6
C

(β2
C − 2)(β2

C − 4)
∆L3

 L3
C

}
(4.61)

to third order. The second-order term vanishes. If we multiply the expressions (4.60) and (4.61)
with a time scale, we obtain arc lengths for the shear flow in the vicinity of the circular orbit.

4.1.4 ω-expansions

For completeness the author also gives two Taylor expansions with respect to ∆ω = ω−ωC , where
ωC is the frequency of the circular orbit. We use

dβ

dω
=

2β′

β2 − 4
1
ω

(4.62)

The derivatives of the galactic potential are given by

dΦg

dω
=
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β2 − 4
(4.63)
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Thus the Taylor expansion is given by
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up to second order.
The angular momentum difference is obtained from
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(4.66)
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This yields
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to second order.

32



CHAPTER 4. THEORY OF TIDAL ARMS 4.2. DYNAMICS IN TIDAL ARMS

4.1.5 Other expansions

The energy for the apo- and pericenter xm of an oscillation around a circular reference orbit is
given by

E = Φg(RC + xm) +
L2

C

2(RC + xm)2
(4.69)
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2R2
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− 4
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m

R3
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+ ...

)
(4.70)

With Equation (4.6) and EC = Φg(RC) + L2
C/(2R2

C) we find the energy difference with respect to
the reference energy EC ,

∆E = E − EC ≈ β2
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2
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to third order. Similarly, we obtain
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] L2
C

ηC
∆η3
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in the ηm-expansion, where ηm = 1/xm.

4.2 Dynamics in tidal arms

A comparison of the first-order terms in the Taylor expansions yields the relations between the
logarithmic differentials,

∆R
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≈ −∆η

ηC
≈ 2

β2
C
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LC
≈ 2

β2
C − 4

∆ω

ωC
≈ 2

β2
C − 2

∆V
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. (4.73)

to first order.
For the tidal approximation, Figure 4.2 shows that the stars in the tidal arms move on cycloids.

These are the analytical solutions of the linear system of equations of motion (3.8) - (3.10) for
a vanishing cluster force (e.g. Küpper et al. 2008 [12]). In the following discussion, we denote
physical quantities at the epicenter of the cycloid with subscript “E”. For star clusters far away
from the Galactic center (where the tidal approximation holds), the tangential distance of the
pericenters of the cycloid orbits with period Tκ = 2π/κ is given by

y(Tκ) = RC∆ωTκ ≈
2π

βC
RC

∆ω

ωC
(4.74)

≈ 2π

βC

β2
C − 4

2
∆R ≈ 2π

βC

β2
C − 4
β2

C

RC
∆L

LC
(4.75)

to first order.
As a further example, we consider the Galactic center case. We need to be more precise here,

since the epicyclic frequencies κC and κE differ considerably. However, for a scale free model (see
Section 2.2) of the Galactic center region we have β′ = 0 and the ratio βS = βC = β is constant,
where the subscript “S” denotes the scale free model. It is more appropriate to calculate instead
of the tangential distance y(Tκ) the angle ϕ between the clumps as seen from the Galactic center.
It is given by
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Figure 4.2: Sketch of the escape process into the tidal arms. The particles in the tidal arms move
on cycloids (e.g. Küpper et al. 2008 [12], Just et al. 2009 [13]).
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to third order, where βS is given in Equation (2.23) and we have used the expansion (4.55).
If we measure the Jacobi energy of the particles in addition, we can calculate the epicyclic

amplitude xm. The Jacobi energy EJ of a star is given by

EJ = E − ωCL (4.78)

The Jacobi energy difference with respect to the effective potential at the cluster center is given
by

∆EJ = EJ − Φeff(RC) = E − EC − ωC(L− LC) = E − EC − ωC∆L (4.79)

The energy difference ∆E with respect to the epicenter energy EE determines the amplitude of
the epicycle. We obtain
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Figure 4.3: Clumps in the tidal tails of a dissolving star cluster. The simulation and the figure
are by Peter Berczik [13].

∆E = E − EE = E − EC −∆EE = ∆EJ + ωC∆L−∆EE (4.80)
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where ∆EE = EE −EC and the second line follows from Equation (4.43) and the third line from
Equations (4.22) and (4.17). According to Equation (4.71) the amplitude of the epicycle is given
approximately by
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=
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4
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For the Galactic center case we have to use the expression

x2
m ≈ 2∆E

β2
Eω2

E

(4.85)

instead, where βE and ωE are evaluated at the epicenter radius RE .
Figure 4.3 shows an application of the theory considered in this chapter. The tidal tails in

the simulation by Peter Berczik show well-defined clumps at the positions of the loops or turning
points of the cycloid orbits. The theory applies well. However, we will use it in order to study the
tidal arms of dissolving star clusters in the Galactic center.
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Chapter 5

The Galactic center

The center of the Milky Way is currently a field of very intensive research. Observations have
to be carried out in other wavelengths than visual due to the huge extinction (AV ≈ 30 mag).
Directly in the Galactic center resides the strong radio source Sgr A* at the location of the
Galactic supermassive black hole (M• ≈ (3 − 4) × 106 M�, e.g. Genzel et al. 2000 [98], Ghez
et al. 2000 [99], Schödel et al. 2002 [100], Ghez et al. 2003 [30], Eckart et al. 2005 [101], Ghez
et al. 2005 [27], Beloborodov et al. 2006 [102]). Different galactocentric radial scales are shown
in Figure 5.1. They range from a rough outer radius of the central molecular zone (RG ≈ 200
pc, Morris (1996) [14]) down to the Schwarzschild radius of the Galactic supermassive black hole
(RG = GM•/c2 ≈ 3.4 × 10−7 pc), where c is the speed of light. The central molecular zone
(CMZ) is a region which is rich in high-density molecular gas (n & 104 cm−3, Morris (1996) [14])
as is suggested by high-resolution observations of the CO molecule. Two young star clusters have
been discovered near the Galactic center: The starburst clusters named Quintuplet (Nagata et al.
1990 [15], Okuda et al. 1990 [16]) and Arches (Nagata et al. 1995 [17]) at projected distances less
than 35 pc away from Sgr A*. According to dynamical models of Portegies Zwart et al. 2002 [97],
the Arches cluster may be at a distance between 50 and 90 pc from the Galactic center. Much closer
to the Galactic center, between Rg ≈ 7 down to 1.5 pc, there is the circum-nuclear ring which is
an association of several clouds or filaments of warm and dense molecular gas with temperatures
of several hundred Kelvin and densities up to 107 cm−3 [96]. Inside Rg = 1.5 pc there is a cavity
where only atomic and ionized hydrogen has been detected. Several clumps and filaments of gas
seem to be on in-falling trajectories towards the central parsec. Those which have reached the
central parsec form a structure which resembles a distorted spiral and is called the “mini-spiral”.
It contains a few tens of solar masses of gas and dust. The mini-spiral is shown in red in Figure
5.2 which is a multi-wavelength (near-infrared) picture of the central parsec around Sgr A*. The
stars in the very center of our Galaxy form the nuclear stellar cluster. According to star counts,
its stellar density decreases as ρ? ∝ r−1.8 to −2 (e.g. Lindqvist et al. 1992 [103], Mezger, Duschl
& Zylka 1996 [104], Genzel 2003 [105] or Schödel 2007 [95]). outwards from a central stellar cusp
radius (Rg = 0.22 pc, Schödel et al. (2997) [95]). The influence radius R•,inf = GM•/σ2 of the
Galactic supermassive black hole, where σ is the velocity dispersion of stars which are far enough
away to be unaffected by the black hole’s gravity, is R•,inf ≈ 2± 0.8 pc (Frank & Rees 1976 [106]
and Krabbe et al. 1995 [24] for the velocity dispersion). In the central arcsecond is the cluster of S
stars which orbit the supermassive black hole on elliptic Keplerian orbits. Two orbital elements of
the S2 star are shown in Figure 5.1 (Rg,peri ≈ 0.546×10−3 pc, Rg,apo ≈ 8.754×10−3pc, Mouawad
et al. (2005) [94] and N. Mouawad, priv. comm.).

The aim of observations of stars within the Galactic center, and, in particular the central parsec
of the Milky Way is twofold: 1. The classification of stars, i.e. the determination of their spectral
type and luminosity class. 2. The determination of the 3-dimensional structure and dynamics of
this region. Projected distances with respect to the Galactic center can be measured with high
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Figure 5.1: Different galactocentric radial scales. Sources: Black hole mass from Ghez et al.
(2005) [27], velocity dispersion in the Galactic center from Krabbe et al. (1995) [24], distance
between the Sun and the Galactic center from Eisenhauer et al. (2003) [93], orbital elements of S2
from Mouawad et al. (2005) [94] and N. Mouawad, priv. comm., extent of central stellar cusp from
Schödel et al. (2007) [95], Circum Nuclear Ring radii from [96], Central Molecular Zone radius
from Morris & Serabyn (1996) [14], location of Arches from Portegies Zwart et al. (2002) [97].

precision. An accurate measurement of the “Line-of-sight” coordinate is still impossible. However,
it is possible to determine the full 3D velocities of stars in the Galactic center by means of radial
velocity and proper motion measurements with high accuracy.

5.1 The paradox of youth

Towards the very end of the last millennium, young stars (a few Myr old) have been discovered in
the central parsec around Sgr A*. Their presence in the close vicinity of the Galactic supermassive
black hole is currently a heavily disputed topic within the astrophysical community. For example,
the comoving groups IRS 13E (Coker & Pittard 2002 [21], Maillard et al. 2004 [22]), IRS 16SW
(Tamblyn & Rieke 1993 [23], Krabbe et al. 1995 [24], Lu et al. 2005 [25]) and and IRS 13N (Mužić
et al. (2008) [26]), which consist of young, massive stars, orbit Sgr A* at a distance smaller than
one parsec. In addition, Wolf-Rayet (WR) stars, Ofpe/WN9 stars, luminous blue variables (LBVs)
and, recently, many OB stars (see Paumard et al. 2006 [107]) have been identified within a radius
of one parsec around Sgr A*. In addition, there is the cluster of S stars within the central arcsecond
around Sgr A* (Ghez et al. 2005 [27], Eisenhauer et al. 2005 [28]). Star formation within the
central parsec of our Galaxy is, because of the presence of the Galactic supermassive black hole
problematic, since the tidal field dissolves gas clouds with mean number densities of
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Figure 5.2: Two narrow band images (at 2.18 µm and 2.36 µm) were combined with a broad band
image at 3.8 µm to obtain this pseudo-colored image of the central parsec of the Milky Way. From
NACO / VLT [96].

n < ncrit = 107 cm−3 (1.6 pc/RG)1.8 (5.1)

from which stars could form by gravitational collapse (Morris 1993 [29]). The physical reason is
simply that the strength of the tidal field and the self-gravity of the cloud are of the same order at
the critical mean number density ncrit. Such high mean number densities can only be achieved by
a strong compression of the gas (e.g. through cloud collisions, strong winds or supernova shocks).
Also, they are not present within the central parsec today. Rather, the cavity within the circum-
nuclear ring contains only atomic and ionized hydrogen. The raw material for star formation is
currently lacking (Morris 1993 [29]). For these reasons one may wonder why we observe young
stars in the central parsec: Their presence in the central parsec constitutes the “paradox of youth”
(Ghez et al. 2003 [30]).

Gerhard (2001) [31] proposed that young stars formed in a massive 106M� star cluster in
a sufficiently large distance from Sgr A* which spiralled into the Galactic center by dynamical
friction within the lifetime of its most massive stars and dissolved there. The young stars in the
central parsec could be remnants of such a dissolved star cluster. It may be that the comoving
groups IRS 13E, IRS 16SW or IRS 13N are remaining cores of such star clusters, as some authors
proposed. In this thesis, we undertake an attempt to check the viability of Gerhard’s star cluster
inspiral scenario with direct N -body simulations.
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Figure 5.3: Schematic view of the sizes and locations of the He I sources within the central parsec
of the Milky Way. From Krabbe et al. (1991) [115].

Aside from the star cluster inspiral scenario, another scenario has been proposed recently:
The accretion disk scenario (Levin & Beloborodov 2003 [108], Goodman 2003 [109], Genzel et al.
2003 [105], Milosavljević & Loeb 2004 [110], Nayakshin et al. 2004 [111], Nayakshin & Cuadra
2005 [112], Nayakshin & Sunyaev 2005 [113], Nayakshin 2006 [114]). According to this scenario,
the young stars in the central parsec formed in situ in one or more unstable accretion disks. In
an accretion disk, the necessary densities for the gravitational collapse of a molecular cloud could
be sustained despite the strong shear forces of the supermassive black hole (Milosavljević & Loeb
2004 [110]). However, the question remains, why we do not observe such an accretion disk any
longer in the Galactic center. This can be explained by the presence of strong stellar winds and
the tendency of such a disk, to be accreted onto the supermassive black hole through angular
momentum losses due to viscous dissipation.

5.2 He I emission line stars

In 1991, Krabbe et al. [115] reported in a short paper the observation of a group of a dozen
sources of He I emission (transition of neutral He I: n = 21P → n = 21S with a wavelength of
2.0581µm) in the Galactic center1. The complex named IRS 16 interpreted Krabbe et al. as a
central concentration of a star cluster of He I emission line stars with a diameter of roughly one

1Named IRS 11-S, AHH-NW, AHH, IRS 6-H II, IRS 7-W, IRS 13(H II), IRS 2-H II, IRS 15-SW, IRS 15-NE,
IRS 21/16-SW, IRS 16-C, IRS 16-NE, IRS 9(H II), IRS 1-W(H II), IRS 10-H II, IRS 5-H II, IRS 4-H II.
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parsec in the center of the Milky Way. The location of IRS 16 can be seen in Figure 5.2. They
note that their data prove that, within the last few Myr, massive star formation has occurred in
the center of the Milky Way. Two years later, Tamblyn & Rieke [23] published models of stellar
populations for the complex IRS 16 which show that the age of the IRS16 stars is consistent with
models with an age of 7-8 Myr. In a follow-up paper Krabbe et al. in 1995 [24] confirmed all
except one2 of the He I emission sources listed in their 1991 paper. They reported that the star
cluster of He I stars has at least 14 but maybe as much as 20 members. Maillard et al. (2001) [116]
and Paumard et al. (2001) [117] present some new results on the He I star cluster. Three new
sources have been discovered and several stars previously considered as Helium stars have been
discarded.

5.3 Comoving groups

5.3.1 IRS 13E

The location of the IRS 13 complex can be seen in Figure 5.2. It lies at a projected distance of
roughly 0.144 pc southwest of Sgr A* and is (aside from the second brightest source IRS 13W which
is notedly weaker) dominated by the source IRS 13E, which is visible in IR and X-rays. People
were uncertain for a long time about the nature of this source (Coker & Pittard 2000 [118], Coker
et al. 2002 [21]). They speculated whether it could be an X-ray binary or a Post-LBV Wolf Rayet
double star. However, in 2004 IR observations with high accuracy (using adaptive optics) revealed
the true nature of the source IRS 13E: IRS 13E is a group of 7 individual sources, whose proper
motions have been measured. Because of the common West direction and the amplitudes of proper
motions with a mean of ≈ 280 km s−1 (of the main components), Maillard et al. (2004) [22] argue
that the individual sources 13 E1, 13 E2, 13E3A/B and 13E4 form a bound system. In addition,
they determined the types of these hot, massive individual sources, whose spectral types vary from
O to WR. They proposed an IMBH as the reason for the fact that the comoving group is bound.
According to a simple estimate of Maillard et al. (2004), its mass should be ≥ 1300M�. It may
be of interest to note that such a proposition had been made earlier by the theoreticians Hansen
& Milosavljević (2003) [119]). With their hypothesis about the origin of the comoving group IRS
13E, Maillard et al. follow the theoretical works of Gerhard (2001) [31] and McMillan & Portegies
Zwart (2003b) [120] and suggest that IRS 13E is the remaining core of a star cluster which has
spiralled into the Galactic center by dynamical friction where it dissolved.

Schödel et al. (2005) [121] give a lower limit of ≈ 104M� for the mass of the IMBH from an
estimate M ≈ 〈v2〉R/G over the internal velocity dispersion of IRS 13E and a method of Leonard
& Merritt. However, for two reasons, Schödel et al. (2005) [121] are skeptical about the presence
of a stabilizing IMBH in IRS 13E: If IRS 13E would be the remnant of a star cluster, in which
an IMBH of mass > 104M� has formed through runaway growth, the original star cluster had
to have a mass of order 106M� according to the dynamical N -body models of Portegies Zwart &
McMillan (2002b) [122]. This seems to be unrealistic according to Schödel et al. [121], probably
because of the results of McMillan et al. (2003) [120]. In addition, they invoke the results of
VLBA observations of Reid & Brunthaler (2004) [123], which gave limits on the proper motion
of Sgr A* which exclude an IMBH with mass > 104M� with high probability (see also Hansen
2003 [119]).

Paumard et al. (2006) [107] measured surface densities in the Galactic center. The surface
density in the central cusp around Sgr A* (rGC < 0.7′′) is 32.3 ± 4.7 stars per square arcsecond.
Centered around the core of IRS 13E (rIRS13E < 0.68′′), the surface density is 17.9 ± 3.5 stars
per square arcsecond, i.e. a surface density which is only by a factor ≈ 1.8 lower. Paumard et
al. conclude that the probability that IRS 13E is a background fluctuation is only ≈ 0.2 %. In
addition, Paumard et al. calculate the tidal radius rt = (M∗/M•)1/3R of IRS 13E in the tidal

2IRS 11

40



CHAPTER 5. THE GALACTIC CENTER 5.4. CWS AND CCWS

field of Sgr A* (where M• is the mass of Sgr A*). They use an estimate M∗ ≈ 400M� for the
mass of stars of IRS 13E (without IMBH) and a pericenter distance of R = 4′′ for the orbit of IRS
13E. They find a remarkable similarity of the tidal radius and the measured core radius rc ≈ 0.17′′

(i.e. the radius where the surface density has dropped to half of its central value) of IRS 13E. For
R ≥ 4′′, IRS 13E could be a long-lived constellation. Their argument against the mass estimate
from the virial theorem is that for a statistics of IRS 13E not enough (only 4!) sources are known.

5.3.2 IRS 16SW

Lu et al. (2005) [25] considered one of the two brightest members of the IRS 16 complex, IRS
16SW and the stars in the surroundings of this source. Together with IRS 13E, this is the second
group of young stars with coherent proper motions. The argument of Lu et al is based on the
fact that a 2D velocity dispersion map has a sharp minimum of approximately 71 km s−1 in the
center of the sources IRS 16SW-E and IRS 16SW which is in contrast with a velocity dispersion of
100−250 km s−1 of the stars which constitute the ambient medium. Such a minimum would be a
clear indication of ordered motion. Following the suggestion of Maillard et al., Lu et al. note the
possibility that the comoving group around IRS 16SW is also the remaining core of a star cluster
which has spiralled into the Galactic center.

However, Paumard et al. (2006) [107] criticize the result of Lu et al. (2005) [25] with the
following argument: For the determination of the 2-dimensional velocity dispersion at the position
x one has to use a smoothing kernel which has a peak at position x. According to the observations
of Paumard et al. (2006) [107], there is a “hole” in the counter clockwise system (CCWS, see next
section) at the position of IRS 16 such that the true 2-dimensional velocity dispersion within the
clockwise system was measured. However, in the surroundings of IRS 16, Lu et al. considered stars
of both clockwise and counter clockwise system which would result in a higher velocity dispersion.

5.3.3 IRS 13N

IRS 13N is a small cluster of unusually red compact sources which is located approximately 0.5”
north of IRS 13E and 3.2” of Sgr A*. The group consists of several Wolf-Rayet and O-type stars.
Mužić et al. (2008) [26] present first proper motion measurements. They show that six of seven
sources show a common proper motion indicating that IRS 13N is a new comoving group of stars
in the central parsec around Sgr A*. However, they conclude that IRS 13N is probably not a
bound system but currently in the process of dissolution.

5.4 CWS and CCWS

The status of more than one decade of intensive observations of the central parsec of the Galactic
center is the following: The massive stars of younger type with a common age of probably ≈ 6± 2
Myr at Rg = 0.05 − 0.5 pc seem to reside in two well-defined disk structures with thickness
〈|h|/R〉 ≈ 0.14 which are inclined with respect to each other by an angle of 115o ± 7o (Paumard
et al. 2006 [107]). The first disk constitutes the “Clockwise System” (CWS), i.e. the stars
move clockwise on the sky (Levin & Beloborodov 2003 [108]). It has been further investigated by
Beloborodov et al. 2006 [102] who derived a mass estimate for the Galactic supermassive black
hole. The second disk constitutes the “Counter-Clockwise System” (CCWS), i.e. the stars move
counter-clockwise on the sky. The existence of the second disk is still a matter of debate and has
not yet been confirmed by an independent group. The disk structures cannot be inferred from
the spatial positions of the stars, since the line-of-sight coordinate cannot be measured with the
necessary precision. However, the disk structures can be inferred from the 3D velocity vectors,
which can be determined from accurate measurements of radial velocities and proper motions:
The velocity vectors of stars which move clockwise on the sky accumulate around one plane which
is only possible if the stars constitute a disk-like population (Levin & Beloborodov 2003 [108],
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Beloborodov et al. 2006 [102]). Most of the brighter stars of the complex IRS 16 are members of
the CWS, while different stars of the complex IRS 13 (in particular IRS 13E) seem to belong to
the CCWS (Paumard et al. 2006 [107]).

5.5 Young stars

5.5.1 WR stars, Ofpe/WN9 stars and LBVs

Wolf-Rayet (WR) stars, Ofpe/WN9 stars and luminous blue variables are highly evolved objects
which are not so hard to detect because of their broad emission features. WR stars are massive,
very hot (up to ≈ 5× 104 M�) and luminous (up to 106 L�), have strong stellar winds with high
speeds and very high mass loss rates of 10−5 to −4 M� per year. In fact, their surface is dominated
by helium. Since the WR phase is short (≈ 2−5 Myr, Meynet 1995 [124]), WR stars are signposts
for recent star formation. WR stars are classified into three classes, WN stars (nitrogen dominant),
WC stars (carbon dominant) and WO stars (C/O < 1). Ofpe/WN9 stars are also very massive
and eject CNO-cycle products from their surface into their circumstellar environment. In contrast
to WR stars, they have slower winds. The mass loss rates range from 2 to 5 × 10−5 M�/yr.
Lumoinous blue variables (LBVs) are rare stars in a presumably short phase of evolution between
the main sequence and the WR phase. Only a few are known in the Galaxy or the Magellanic
clouds (Conti 1984 [125], Figer 1999 [126]). There exists already a sample of these stars in the
Galactic center and, in particular, the central parsec given in Genzel et al. (1996) [127], (2000)
[98], (2003) [105] and Paumard et al. (2001) [117], (2006) [107].

5.5.2 OB stars

Paumard et al. (2006) [107] published the spectroscopic identification of ≈ 40 OB super giants,
giants (mK ≈ 11−13) and main sequence stars (mK ≈ 13−15) in the central parsec of the Galactic
center. They report a firm detection of 29 OB supergiants (luminosity class I+II), 12 OB stars of
luminosity class III+IV and 18 OB candidates whose identification they regard as tentative. All
these stars are characterized by weak absorption features of He I (λ = 2.058, 2.113, 2.163 µm) and
H I Brγ and have been detected by visual inspection of 2D continuum-subtracted line maps.

5.5.3 S stars

Figure 5.4 shows the July 20, 2007 location of the S stars. Most of them reside within the central
arcsecond (or the central light-month) around the Galactic supermassive black hole. Eisenhauer
et al. (2005) [28] took spectra. It turned out that nine of the 10 K ≤ 16 stars within 0.4 arcsec
exhibited prominent Brγ absorption lines characteristic of the infrared properties of early-type
stars. The brighter stars also exhibited He I absorption. Over the central 0.7 arcsec in projection
there were 14-15 early type stars and 9 late-type stars. It must be remarked that the measurement
of the 3D velocities of the stars is essential in order to make sure that they are not foreground
stars. Using the 3D velocities in addition, it turned out that within 0.7 arcsec there were 10
early-type stars and no late-type stars at all with K ≤ 16. This increased yet further the paradox
of youth. The spectral properties of the early-type S stars were identical to normal, main-sequence
B0-B9 stars. The orbits of a few S stars within the central 0.5 arcsec are shown in projection in
Figure 5.5. They are randomly oriented in angular momenta and apsides. Four of the six stars
in the left panel have eccentricities higher than 0.85. The star S2 has the lowest orbital period of
15.24± 0.36 yr (Eisenhauer et al. 2005 [28]). Its orbit closed in 2007 after fifteen years of position
measurements. According to Martins et al. (2008) [129] it is an early B dwarf (B0-2.5V). Recently,
different physical mechanisms have been proposed to explain the origin and properties of the S
stars (e.g. Löckmann, Baumgardt & Kroupa 2008 [130], Chang 2008 [131], Merritt, Gualandris &
Mikkola 2008 [132]).
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Figure 5.4: The cluster of S stars. The figure is based on a natural guide star adaptive optics
image using NACO of the VLT on July 20, 2007 in the H band. From Gillessen et al. (2008) [128].

5.6 Masers

Masers are interesting objects since they can be classified without larger problems and their ra-
dial velocities and proper motions are relatively simple to measure. Therefore they are suited for
accurate measurements of the trigonometric parallax using earth-bound very long baseline inter-
ferometry. Masers are ideal targets since these measurements of the trigonometric parallax require
very strong and compact sources (Rygi 2008 [133]). H2O masers have been used to determine the
distance to the Galactic center, methanol masers are considered to be signposts of ongoing star
formation and OH masers have been used to constrain the mass profile of the Galactic center
region.

5.6.1 OH masers

The Galactic center has been extensively searched for OH/IR stars in the past two decades (Van-
hollebeke et al. 2006 [134]). OH/IR stars in the Galactic center can be easily detected by the
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Figure 5.5: Orbits of a few S stars within 0.5 arcsec around Sgr A*. Left: From Eisenhauer et al.
(2005) [28], Right: From Ghez et al. (2005) [27].

characteristic double peaked profile if they have strong OH emission lines at 1612 MHz.3 OH/IR
stars are highly evolved low and intermediate mass stars (. 9 M�) with very dense circumstellar
envelopes, located at the tip of the asymptotic giant branch (Lindqvist et al. 1992a [135], Sjouw-
erman et al. 1999 [136]). Typical ages of OH/IR stars range from 100 Myr to 10 Gyr and more (L.
Sjouwerman, priv. comm.). Habing et al. (1983) [137] detected already 34 OH/IR stars within
150 pc (i.e one degree) around the Galactic center. Lindqvist et al. 1992b [103] found a sample of
134 OH/IR stars within the range of ≈ 5 to 100 pc around the Galactic center. Sjouwerman et al.
(1998) [138] list 155 double peak OH maser detections (from which 52 were previously unknown)
within ≈ 40 projected parsecs of Sgr A*. However, no OH/IR stars have been found in the central
parsec around Sgr A* and only a few in the circum-nuclear disk (in projection, L. Sjouwerman,
priv. comm.). The OH/IR stars near the Galactic center cannot be used to determine the dis-
tance to the Galactic center since the angular sizes of the OH/IR stars near the Galactic center
are strongly affected by scattering due to electrons in the intervening interstellar medium (Reid
1993 [139]). However, they have been used by Lindqvist et al. (1992b) [103] to constrain the mass
distribution within 0.3 - 100 pc from the Galactic center. In addition to the sources mentioned
above, Pihlströhm & Sjouwerman (2006) [140] report a few 1720 MHz OH masers which probably
are associated with the circum-nuclear disk which is rich in warm gas and contains supernova rem-
nants. However, they also note that 1720 MHz OH masers do not seem to belong necessarily to
star-forming regions and SNR/ISM interactions. Yusef-Zadeh et al. (2007) [141] further searched
for maser activity within the circum-nuclear disk. They found four Supernova remnant (SNR)
OH(1720 MHZ) masers, G0.0+0.0 (Sgr A East), Sgr D (G1.13-0.1), G1.4-0.1 and G359.1-0.5.

5.6.2 H2O masers

Water masers are found in star forming regions and around late-type stars (Taylor et al. 1993 [142]).
In a search in the inner 4× 4 degrees of the Galaxy, 30 H2O masers have been detected (Taylor et
al. 1993 [142]). Levine et al. (1995) [143] report the detection of a late-type supergiant within 2
pc of the Galactic center and having circumstellar H2O maser emission at 22.2 GHz. The proper

3We briefly note that the hydroxyl molecule has another spectral line at 1667 MHz.
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Figure 5.6: The young star clusters Arches and Quintuplet near the Galactic center.

motions of H2O masers in the Galactic center have been used to determine the distance to the
Galactic center (see Reid 1993 [139] for a review).

5.6.3 Methanol masers

It is now well established that Methanol masers are signposts of ongoing massive star formation
throughout the Galaxy (Yusef-Zadeh et al. (2007) [141]). They are thought to be pumped by
emission from warm dust which is heated by a young stellar object (Rygi et al. 2008 [133]). In
the inner 2 degrees of the Galactic center, 23 class II methanol masers have been detected by a
survey at 6.7 GHz (Caswell 1996 [144]). However, the inner 30 pc of the Galactic center show no
evidence of any class II methanol masers (Yusef-Zadeh et al. (2007) [141]) .

5.7 Young star clusters

The starburst clusters Arches and Quintuplet are two young star clusters at projected distances less
than 35 pc from the Galactic center. They are shown in Figure 5.6 and have quite extraordinary
stellar contents and properties. Their formation still requires clarification. However, Figure 5.7
shows that both clusters are located (at least, in projection) near the Galactic center “Radio Arc”
(Yusef-Zadeh et al. 1984 [18]), which is a region rich in molecular clouds and gaseous filaments
(Morris & Serabyn 1996 [14], Lis et al. 2001 [145], Yusef-Zadeh et al. 2002 [146], Lang et al.
2005 [20]).

5.7.1 Quintuplet

The Quintuplet cluster borrows its name from its five brightest stars in the infrared wavelengths.
It has been detected in 1990 in a near-infrared survey (Nagata et al. 1990 [15], Okuda et al.
1990 [16]) and lies ≈ 30 pc in projection away from the Galactic center along the line of sight
toward the crossing of the Galactic center “Radio Arc” with the Galactic plane (see also Figure
5.7). Figer et al. (1999) [126] gave convincing arguments that the Quintuplet cluster is indeed
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Figure 5.7: The location of Arches and Quintuplet with respect to the Galactic center “Radio
Arc”. From Lang et al. (2005) [20].

close to the Galactic center and not only in projection. They also took spectra and identified
young stars, e.g. OB stars, WR stars, Ofpe/WN9 stars and one LBV star. Being slightly older
than the Arches cluster (see Tables 5.1 and 5.2), the Quintuplet cluster contains probably the
largest accumulation of WR stars in the Galaxy (Figer et al. 1999 [126]). Most probably, it also
contains the Pistol star with luminosity ≈ 107 L� which is considered to be the most massive
star in the Galaxy and has been classified as an LBV star (Figer et al. 1998 [148], Geballe et al.
2000 [149]). Table 5.1 summarizes some properties of the Quintuplet cluster according to recent
observations.

5.7.2 Arches

The Arches cluster borrows its name from its proximity to the “thermal Radio Arc” or “thermal
Arches” (Timmermann et al. 1996 [19]). It has been detected in 1995 in near-infrared wavelengths
and was first called “Object #17” (Nagata et al. 1995 [17]). It lies ≈ 25 pc in projection away
from the Galactic center at the eastern edge of the thermal “arched filaments” (see Figure 5.7). It
contains very young and luminous stars. The observations by Serabyn et al. 1998 [153] showed that
Arches is a rich stellar cluster with a substantial overdensity above the surrounding background
stars. They estimate that it contains a total of 120 massive O stars (≥ 20M�) of which a dozen
may have evolved to the WR phase. Thus the Arches cluster is the most massive agglomeration
of O stars in the Galaxy (Serabyn et al. 1999 [155]). The estimate for the total mass would then
be (1.5 − 6) × 104 M� which is comparable to that of a small globular cluster (Mandushev et
al. (1991) [156]). The Arches cluster is one of the most luminous clusters in the Galaxy (Figer
et al. 2002 [151]). It is also the most compact star cluster known in the Galaxy. Serabyn et al.
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Quantity Value Lower limit Upper limit Remarks Ref.
Proj. distance from GC ≈ 30 pc [147]
Age 4 Myr 3 Myr 5 Myr [147], [126]
Total mass 0.6× 104M� mlower = 1.0 [126]

1.6× 104M� mlower = 0.1 [126]
1.3× 104M� 6.3× 103M� [147]

Luminosity ≈ 107.5 L� total [126]
Ionizing flux ≈ 8× 1050 photons s−1 [126]

Table 5.1: Properties of the Quintuplet cluster.

(1998) [153] estimate its average stellar density to be ≈ 3× 105 M� pc−3. The mass function of
the Arches cluster has been extensively analyzed by Stolte et al. (2002) [157], Stolte (2003) [158]
and Stolte et al. (2005) [150]. Stolte et al. (2007) [154] measured the proper motion of the
Arches cluster with respect to the surrounding field to be 212±22 km/s. The 3-dimensional space
motion turned out to be v3D = 232 ± 30 km/s, directed away from the Galactic center to the
North-East and away from the sun. Furthermore, the authors find that the high orbital velocity
is inconsistent with a circular orbit in a spherically symmetric potential of the Galactic center
region and speculate that Arches is on a transitional trajectory between x1 and x2 orbits.4 Table
5.2 summarizes some properties of the Arches cluster according to recent observations.

5.8 Numerical works

Portegies Zwart et al. (2002) [97] studied the evolution of star clusters like Arches and Quintuplet
using the starlab software environment. The internal dynamical evolution of their star cluster
models (King models with three different concentrations) has been followed with direct N -body
models. The stellar evolution of single and binary stars has been followed as well with special rou-
tines. Furthermore, the effect of a steady tidal field was considered at three different galactocentric
radii. They neglected the effect of dynamical friction, since a simple estimate shows already that
the time scale of dynamical friction is for a cluster like Arches more than one power of ten larger
than its measured age. The main results of the work by Portegies Zwart et al. are the following:
1. The more compact the cluster is, and the closer it is located to the Galactic center, the longer is
the density contrast with respect to the stellar background’s density of the bulge stars high enough
that the cluster may be detected by observations. The Arches cluster must therefore reside in a
region within 50 − 90 pc away from the Galactic center. 2. Mass segregation and core collapse
happen within 2 Myr for such clusters 3. The observed characteristics of the Arches cluster are
consistent with a normal initial mass function.

McMillan & Portegies Zwart (2003) [120] present semi-analytical calculations of star clusters
in order to test the star cluster inspiral scenario. They consider star clusters with (a) constant
mass, (b) mass loss due to relaxation (i.e. dynamical interactions) and (c) mass loss due to stellar
evolution which spiral into the Galactic center. The results of this work are as follows: 1. Only
massive star clusters (i.e. with mass & 105M�) can reach the Galactic center from an initial
distance & 60 pc within a few Myr. 2. A 106M� star cluster needs a few times 10 Myr to
reach the Galactic center from an initial distance of & 30 pc. 3. The most promising star cluster
candidates would be those which have a mass of . 105M� which have formed . 20 pc away from
the Galactic center 4. The time for Arches and Quintuplet to reach the Galactic center would be
one power of ten higher than the lifetime predicted by N -body models in [160]. We may remark
here, that only circular star cluster orbits have been considered in this work and that the Coulomb
logarithm in the dynamical friction formula was very high.

4See Contopoulos & Papayannopoulos (1980) [159] for the discussion of the families of orbits in bar potentials
of different strengths.
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Quantity Value Lower limit Upper limit Remark Ref.
Proj. distance from GC ≈ 25 pc [150]
Age 2 Myr [150]

2.5 Myr 2 Myr 3 Myr [151]
∼ 2 Myr 4 Myr [152]

2 Myr 1 Myr 3 Myr [147]
5 Myr if WR stars are present [153]

Totel mass ≈ (1.5− 6)× 104 M� mlower = (2− 0.1) M� [153]
≈ 104 M� [147]

1.08× 104 M� mlower = 1.0 M� [147]
1.2× 104 M� mlower = 0.1 M� [147]

7× 104M� within 0.23 pc [151]
1D velocity dispersion 22 km s−1 [151]
Central density 3× 105 M� pc−3 [147]
Core radius 0.2 pc Rg,� = 8 kpc [150]

0.23 pc Rg,� = 8 kpc [153]
Outer cutoff radius ≈ 0.35 pc Rg,� = 8 kpc [153]
Luminosity ≈ 107.8 L� total [151]
Ionizing flux 4× 1051 photons s−1 [151]

4× 1051 photons s−1 [153]
Number of O stars ≈ 160 [147]

≈ 120 [153]
Proper motion 212 km/s 190 km/s 234 km/s Rg,� = 8 kpc [154]
Radial velocity 95 km/s 87 km/s 103 km/s [151]

Table 5.2: Properties of the Arches cluster.

Portegies Zwart et al. (2003) [161] explore with direct N -body simulations with semi-analytically
implemented dynamical friction the origin of of the complex IRS 16. One of their results is that a
cluster, whose core remained as the observed IRS 16 complex, must be a core-collapsed cluster to
reach the order of the critical core density of ρc & 107M�pc−3 necessary to survive in the Galactic
center and which must be much larger than the local density of the stellar background. According
to their results, the star cluster inspiral scenario might be viable.

Portegies Zwart et al. (2004) [162] model the Arches cluster with direct N -body simulations
using the starlab software environment. An external galaxy potential has been implemented
semi-analytically, and they consider different orbital eccentricities. Their main aim are insights
about the time evolution of the mass spectrum of the model clusters and a comparison with the
observed mass function of the Arches cluster (Stolte et al. 2002 [157], Stolte et al. 2003 [158].
The result is that mass segregation can explain the abundance of heavy stars within the Arches
cluster.

Kim et al. (2004) [163] present N -body models of star clusters with an embedded intermediate-
mass black hole (IMBH). The result is that an IMBH weakens the demand for the requirement of
high central densities of inspiralling star clusters if the mass of the IMBH is of the order of 10 %
of the cluster mass. However, this value is two orders of magnitude higher than the values for the
collapsed core mass from which an IMBH could form (Portegies Zwart et al. 2002 [122], Guerkan
et al. 2004 [164]).

Gürkan & Rasio (2005) [165] present Monte-Carlo simulations of star clusters in the Galactic
center with a semi-analytically implemented inspiral rate to find the initial conditions for the star
cluster inspiral scenario. Their result is that clusters which form at a galactocentric radius of & 10
pc must have a mass of 106M� and must be very concentrated, i.e. with W0 & 8, to collapse.

The discussion whether the comoving group IRS 13 could contain a stabilizing IMBH (Maillard
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et al. 2004 [22], Schödel et al. 2005 [121] and the discovery of a large population of transient X-
ray binaries in the central parsec stimulated the paper by Portegies Zwart et al. 2006 [166].
They simulated the inner 100 pc of the Milky Way to make predictions about the formation and
frequency of star cluster populations and IMBHs. Their predictions are as follows: 1. Some of
the transients may contain IMBHs.5 2. The cores of ≈ 10 % of star clusters which have formed
within 100 pc around the Galactic center form IMBHs while they collapse within the lifetime of
the clusters. 3. The region within < 10 pc around Sgr A* could contain ∼ 50 IMBHs of mass
∼ 103 M�.

Fujii et al. (2008) [168] performed fully self-consistent N -body simulations of star clusters near
the Galactic center using the Bridge code for four models. Using a variable Coulomb logarithm

ln Λ = ln
(

RSC

1.4εSC

)
(5.2)

according to Hashimoto et al. (2003) [169], where RSC is the distance of the star cluster from
the Galactic center and εSC is the size of the star cluster, they find that the inspiral time scale of
the star cluster is shorter than that from the “traditional” simulations and that the core collapse
helps the cluster survive in the tidal field.

5Ultra-luminous X-ray sources (ULXs) are currently under intensive investigation since a possible connection
to IMBHs may exist (e.g. Körding 2005 [167]). That ULXs with a luminosity of less than 1040 erg s−1 contain
IMBHs may be rather improbable (E. Körding, priv. comm.).
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Chapter 6

Strong tidal field

In this chapter, we use the parameters given in Table 6.1. For convenience1 we have set the length
unit R0 of the scale free model of the Galactic center region equal to the radius RC of the circular
orbit, i.e. we have R0 = RC .

6.1 Effective potential

Since we are considering a circular orbit, it is adequate to study the physics in a reference frame
which is co-rotating with the frequency ωC = ω0 of the circular orbit. The star cluster center
is taken as the origin of coordinates. Similarly to the procedure in Chapter 3, we choose a
right-handed coordinate system where the x-axis points away from the Galactic center and the
y-axis points in the orbital direction of the star cluster orbit around the Galactic center. In this
reference frame, centrifugal and Coriolis forces naturally appear according to classical mechanics.
The potential in which a particle moves is the superposition of the effective tidal potential and
the star cluster potential. For short we will will call this the effective potential.

The effective potential is shown in Figure 6.1. It is given by the expression

Φeff (x, y, z) = Φ0

(√
(x + R0)2 + y2 + z2

R0

)α−1

− 1
2
ω2

0

[
(x + R0)2 + y2 + z2

]
− GMcl√

r2
Pl + x2 + y2 + z2

(6.1)

Note that Φ0, ω0 and R0 are related by Φ0 = ω2
0R2

0/(α−1). In Equation (6.1), the first term is the
gravitational potential of the Galactic center region, the second term is the centrifugal potential
and the last term is the Plummer potential of a star cluster with mass Mcl and Plummer radius
rPl. The potential of the Galactic center region is not well behaved in the limit R0 → 0 if there
is no black hole. However, the physics considered in this thesis happens close to the radii of
the circular orbits. The Jacobi energy per unit mass EJ =

(
ẋ2 + ẏ2 + ż2

)
/2 + Φeff(x, y, z) is a

conserved quantity in the co-rotating reference frame. It is of utmost interest to note that the star
cluster potential breaks the axisymmetry of the effective tidal potential. This symmetry breaking
implies that the angular momentum conservation is also broken locally to some extent.

The tidal terms (i.e. the first two terms on the right-hand side) of Equation (6.1) can be
expanded in a Taylor series around the star cluster center (x, y, z) = (0, 0, 0). Up to 5th order,
the 3D Taylor expansion of the effective tidal potential for the scale free model is given by

1of a theoretician
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Parameter Value Parameter Value
α 1.2 C(L1) [pc2Myr−2] 1.67546e5
R0 [pc] 20 C(L2) [pc2Myr−2] 1.67592e5
M0 [M�] 1.67459e8 C(L3) [pc2Myr−2] 1.65965e5
ρ0 [M�pc−3] 1998.90 Φeff,tid(R0) [pc2Myr−2] 1.69502e5
Φ0 [pc2 Myr−2] 1.88335e5 x(L1) [pc] -2.66618
ω0 [Myr−1] 9.704 x(L2) [pc] 2.78522
Mcl [M�] 106

rPl [pc] 1.20213 G [pc3 M−1
� Myr−2] (222.3)−1

Table 6.1: Parameters used for the scale free model of the Galactic center region (Section 2.2) and
the Plummer models (Section 2.3) which are used in Sections 6.1 and 6.2. C(Li) and x(Li) the
value of the effective potential at the Lagrange point Li and its location, respectively and G is the
gravitational constant.

Φeff,tid ≈ 1
2
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where R0 and ω0 are the radius and the frequency of the circular orbit. This solution is shown in
Figure 6.4 (which may be compared with Figure 6.1). It can be seen that this Taylor expansion
cannot be used to study the structure of tidal arms in the Galactic center. For extended tidal
arms the exact expression of the effective potential should be used. Alternatively, one may use an
expansion in cylindrical coordinates and for the radial asymmetry the exact potential.

It is easy to verify that the expansion up to the 2nd order is consistent with the tidal approx-
imation, i.e. we have for the scale free model (α − 3)ω2

0 = (κ2
0 − 4ω2

0), where κ0 is the epicyclic
frequency.

Figure 6.2 shows a zoom into the equipotential lines around the star cluster region of Figure
6.1. Figure 6.2 also shows the location of the Lagrange points L1 and L2. As usual, L1 lies on the
negative x-axis (between the cluster center and the Galactic center) while L2 lies on the positive
x-axis. L1 and L2 are saddle points of the effective potential. It can be seen that at the locations
of L1 and L2, the surface in Figure 6.1 is curved differently along the x− and y−axes.

Figure 6.3 shows the effective potential in the star cluster region along the line connecting
the Galactic center with the star cluster center. The dashed line shows only the effective tidal
potential Φeff,tid. The corresponding 1D Taylor series of Φeff,tid along the x-axis around x = 0
(y = z = 0) is given by the power series

Φeff,tid ≈ 1
2

(
3− α

α− 1

)
ω2

0R2
0 +

1
2

(α− 3)ω2
0x2 +

∞∑
k=3
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k∏

l=2

(α− l)

]
ω2

0

Rk−2
0

xk

k!

}
(6.3)
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Figure 6.1: Effective potential for a star cluster in the Galactic center (z = 0 plane). The large
potential well is due to the Galactic center and the small one is due to the star cluster.

Higher-order terms lead to an asymmetry with respect to x = 0 which becomes important in the
vicinity of the Galactic center. A non-linearity in the tidal forces is related to this asymmetry.
Such non-linear effects can be seen in Poincaré surfaces of section. The solid line in Figure 6.3
shows the full effective potential. It is the superposition of the effective tidal potential and the star
cluster potential. The Lagrange points L1 and L2 lie at slightly different energies and at slightly
different distances from the star cluster center whose position the author denoted as as L3. The
energies and locations of the Lagrange points are given in Table 6.1.

We stress that this picture is only valid for a star cluster orbit which is exactly circular. The
region above the tidal effective potential (dashed line in Figure 6.3) is energetically forbidden
for the cluster orbit. As soon as it becomes eccentric, the cluster center no longer remains at the
position of the extremum of the effective tidal potential but oscillates around x = 0 and is reflected
either at the centrifugal or the gravitational barrier. This oscillation leads to oscillations of the
Jacobi energies of the Lagrangian points L1 and L2 on the orbital time scale of the star cluster
orbit and can change the dynamics dramatically.

6.2 Poincaré surfaces of section

Figure 6.5 shows a few Poincaré surfaces of section for the circular star cluster orbit with Parame-
ters given in Table 6.1. The upper row contains surfaces of section in the space of a phase portrait
while the lower row shows the orbital structure in the configuration space, similar to Figure 3.2.

The left column of Figure 6.5 shows two Poincaré surfaces of section at a Jacobi energy deep
in the potential well of the star cluster. The equipotential line corresponding to this Jacobi energy
(which corresponds to the envelope of the lower surface of section in the left column of Figure
6.5) almost has a circular shape. The Poincaré surfaces of section at this Jacobi energy show
that all orbits are regular and confined to invariant curves by a non-classical integral. Such a
non-classical integral can usually be represented by a power series expansion where the lowest
order is the angular momentum which would be exactly conserved if the system were spherical.
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Figure 6.2: Zoom into the equipotential lines around the star cluster region of Figure 6.1. The
star cluster center lies in the origin of coordinates and the Galactic center at (x, y) = (−20 pc, 0).

Since the system is in fact not exactly spherical, the angular momentum slightly oscillates around
some value.

The middle column of Figure 6.5 shows two Poincaré surfaces of section at the Jacobi energy
EJ = EJ(L2) which corresponds to the Lagrange point L2. The equipotential lines are open
around L1 and particles can escape towards the Galactic center. The phase space is divided
between regular and chaotic regions.

The right column of Figure 6.5 shows two Poincaré surfaces of section at a Jacobi energy
which is higher than the value of the effective potential at both Lagrange points L1 and L2. The
equipotential lines are wide open around L1 and L2 and particles can escape in both directions
either into the leading or the trailing tidal arm. All orbits are chaotic.
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Figure 6.3: Zoom into the star cluster region of Figure 6.1 along the x axis with y = 0. The
Galactic center lies at x = −20 pc. It can be seen that the Lagrangian points L1 and L2 lie at
different energies and at different distances from the cluster center due to the asymmetry of the
effective potential with respect to x = 0. The dashed line marks the effective tidal potential. The
solid line is the full potential with the added contribution of the star cluster potential.
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Figure 6.4: Taylor expansion (6.2) of the effective tidal potential for the scale free model up to
the 5th order. The superposed star cluster potential has not been expanded in a Taylor series.

Figure 6.5: Poincaré surfaces of section. Left column: Deep in the potential well of the star cluster
at EJ = 1.66638e5 pc2/Myr2. Middle column: At EJ = EJ(L2). Right column: Above the Jacobi
energies of L1 and L2 at EJ = 1.68845e5 pc2/Myr2.
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Chapter 7

Gravitational N-body models

7.1 The gravitational N-body problem

The gravitational N -body problem is a classical dynamical problem. That is, to find the solution
of the system of 3N Newtonian equations of motion

r̈i = G

N∑
j=1
j 6=i

mj
rji

|rji|3
, (7.1)

where N , G, rji = rj − ri, mj are the particle number, the gravitational constant, the relative
position vector between the ith and jth particles and the mass of the jth particle, respectively.

As is known for a long time now, the system of ordinary differential equations (7.1) can, in
general, only be solved numerically for N > 2. The pioneering works of Sebastian von Hoerner
(1960 [170], 1963 [171]) at the Astronomisches Rechen-Institut (ARI) in Heidelberg opened up
a whole field of computational N -body simulations of stellar systems. It was of much historical
interest to the author that von Hoerner (1919-2003) was a doctoral student of Carl Friedrich
von Weizsäcker (1912-2007) at the University of Göttingen and completed his PhD in 1951 [172].
He came to the ARI in 1957, where he completed his “Habilitation” in 1959 on the rate of star
formation [173]. At the same time, he began to solve the N -body problem on a Siemens 2002
during a visit at the University of Tübingen. As von Hoerner reports, the ARI had already
ordered a Siemens 2002 but the waiting time was long. A historical review on the solution of the
N -body problem with the first generation of computers and ‘How it all started’ can be found in
von Hoerner (2001) [174]. In addition, a short historical treatise on the N -body problem with
a special focus on the development of regularization techniques is given in Chapter 1 of Sverre
Aarseth’s book [175]. Sverre Aarseth was a student of Fred Hoyle and continued von Hoerner’s
work at the Insitute of Astronomy in Cambridge (see Aarseth 1963 [176]) and dedicated his
entire scientific life to the development of a series of highly efficient N -body programs (Aarseth
1999 [177], 2003 [175]). The latest computer program of Aarseth’s series, nbody6, uses adaptive
and individual time steps, which are organized in hierarchical block time steps, the Ahmad-
Cohen neighbor scheme (Ahmad & Cohen 1973 [178]), Kustaanheimo-Stiefel regularization of
close encounters (Kustaanheimo & Stiefel 1965 [179]) and Chain regularization (Mikkola & Aarseth
1990 [180], 1993 [181], 1996 [182],1998 [183]). To describe the wealth of physical ideas which went
into nbody6 is beyond the scope of this thesis. nbody6 has been adapted to massively parallel
computer architectures by Rainer Spurzem (Spurzem 1999 [184]) using MPI routines. The parallel
variant of nbody6 has been called nbody6++, and it is the basis of the code variant nbody6gc
which is used in this thesis.
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N trh/tV N trh/tV
1k 41 70k 1504
5k 152 100k 2067
10k 275 150k 2971
20k 500 200k 3847
30k 712 500k 8810
50k 1117 1M 16569

Table 7.1: Half-mass relaxation time trh in N -body time units tV according to Equation (7.8) for
γ = 0.11 in the Coulomb logarithm.

7.2 The scaling problem

On general purpose computer architectures which are available today it is not yet simply feasible to
simulate the evolution of globular clusters with realistic particle numbers N , which may contain a
few hundred thousands or even millions of stars. Thus, it is highly desirable to have a procedure to
scale the results of low-N simulations up to higher particle numbers. In principle, theory provides
means to solve this scaling problem. It is necessary to identify the underlying physical process and
its dependence on the particle number N . For example, if the process proceeds on the dynamical
(crossing) time scale tcr, the related simulation results are independent of N . On the other hand,
if the process proceeds on the relaxation time scale trx, the related simulation results need to be
scaled, since

trx ∝
N

ln(γN)
tcr. (7.2)

The scaling problem becomes intricate, if a physical process depends on different time scales which
scale differently with N . A few examples in stellar dynamics are

• The relaxation-driven escape process from star clusters. It proceeds in two stages: (1) A
star is scattered into the escaping phase space on the relaxation time scale trx. (2) The star
physically leaves the star cluster across the tidal radius on the dynamical (crossing) time
scale tcr. This process has been studied in the work by Baumgardt (2001) [47]. It turns
out that the dissolution time should scale as tdis ∝ t

3/4
rh for the special case of circular star

cluster orbits in a steady tidal field.

• Accretion of stars onto supermassive black holes in galactic nuclei. There are two limiting
cases: In the full loss cone (“pinhole”) regime accretion proceeds on the dynamical time
scale tdyn. In the empty loss cone (“diffusive”) regime the refilling of the loss cone proceeds
on the relaxation time scale trx and the accretion rates are N -dependent. For a review of
the theory see Porth (2007) [185]

• Dynamical effects of mass loss due to stellar evolution. Stellar evolution proceeds on the
nuclear time scale tnuc ∝ m?c

2/L, where m?, c and L are the mass of the star, the speed
of light and the luminosity, respectively. In the course of their evolution, the stars lose a
significant fraction of their mass by a stellar wind (e.g. Prialnik 2000 [186]). This stellar
mass loss has an influence on the dynamical evolution of star clusters which proceeds on the
relaxation time scale trx.

7.3 N-body units

In the field of star cluster dynamics, dimensionless N -body units are frequently used. These are
given by
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G = Mcl = −4E = 1, (7.3)

where G is the gravitational constant, Mcl is the total mass of the star cluster and E the total
energy (Heggie & Mathieu 1986 [187]). The resulting length unit is the virial radius

rV = −GM2
cl

4E
, (7.4)

which is independant of the total mass of the system (because E ∝ M2
cl) and of the order of the

half-mass radius of a star cluster (cf. Table 2.1 and Table 1 in Guerkan et al. 2004 [164]). The
resulting time unit is then given by

tV =
(

GMcl

r3
V

)−1/2

=
GM

5/2
cl

(4|E|)3/2
. (7.5)

The half-mass relaxation time can be expressed in N -body units as follows. We have

trh =
8π

3

[√
2|E|/Mcl rV

]3
N

15.4 G2 M2
cl ln(γN)

. (7.6)

with γ = 0.11 (Giersz & Heggie 1994 [188]). The above definition (7.6) is based on Equation (5)
of the paper by Spitzer & Hart (1971) [189] with

n =
3N

8πr3
V

, vm =

√
2|E|
Mcl

, m =
Mcl

N
(7.7)

for the mean value of the particle density inside rV , the root mean squared stellar velocity (i.e. the
3D velocity dispersion) and the mean stellar mass, respectively. In terms of tV , (7.6) can therefore
be written as

trh =
2
√

2 πN

3 · 15.4 ln(γN)
tV . (7.8)

In Table 7.1 a few values for the half-mass relaxation time trh are given in N -body time units tV .
The crossing time at the virial radius is given by tcr = 2rV /vm = 2

√
2 tV .

7.4 Regularization

The idea of regularization will be briefly sketched in this section. We closely follow Aarseth
1971 [190], 1999 [177]. As two particles closely approach each other, the relative distance tends
to vanish and the force goes to infinity. The adaptive time step becomes tiny and a large amount
of the computing time would be required to integrate close encounters. This problem is solved by
the KS regularization (Kustaanheimo & Stiefel 1965 [179]).

We introduce a time transformation

dt = |r|dτ (7.9)

where r = (x, y, z, 0) is the relative physical separation vector between two particles with a van-
ishing fourth component and τ is a fictitious time. Furthermore, we introduce the Levi-Civita
matrix,

L(u) =


u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1

 (7.10)
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The physical coordinates and velocities are obtained by the transformations

r = L(u)u (7.11)

ṙ =
2
|r|
L(u)u′ (7.12)

The fourth components of r and ṙ are zero and the prime denotes differentiation with respect to
τ . It turns out that

|r| = u2
1 + u2

2 + u2
3 + u2

4 (7.13)

The regularized equations of motion are given by

u′′ =
h

2
u +

|r|
2
LT (Fi − Fj), (7.14)

where Fi and Fj are the perturbations from the stellar system on the two particles in physical
units and h is the binding energy per unit mass,

h = [2u′ · u′ − (mi + mj)] /|r|, (7.15)

where mi and mj are the masses of the two particles.
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Chapter 8

Numerical methods

8.1 The computer program nbody6gc

The computer program nbody6gc which is used in this thesis is a variant of the N -body program
nbody6++ (Aarseth 1999 [177], 2003 [175], Spurzem 1999 [184]) which is suited for massively
parallel computers.1 The program nbody6++ is a parallelized variant of the direct N -body
program nbody6 (Aarseth 1999 [177], 2003 [175]) for single-processor machines. A fourth-order
Hermite scheme, applied first by Makino & Aarseth (1992) [191], is used for the direct integration
of the 3N Newtonian equations of motion of the N -body system. It uses adaptive and individual
time steps, which are organized in hierarchical block time steps, the Ahmad-Cohen neighbor
scheme (Ahmad & Cohen 1973 [178]), Kustaanheimo-Stiefel (KS) regularization of close encounters
(Kustaanheimo & Stiefel 1965 [179]) and Chain regularization (Mikkola & Aarseth 1990 [180],
1993 [181], 1996 [182],1998 [183]).

8.1.1 Cluster orbit

In this thesis, the radii, velocities and accelerations related to the Galactic center will be denoted
with capital letters and those related to the star cluster with small letters. Figure 8.1 shows the
geometry of the problem: A star cluster is orbiting around the Galactic center. The potential in
which the star cluster moves is the superposition of the Kepler potential of a super-massive black
hole and a scale free potential of the central region of the Galactic bulge (cf. Section 2.2).2 The
two first-order equations of motion for the star cluster orbit read

Vg(t) = Ṙg, (8.1)

V̇g(t) = −∇Φg(|Rg|) + Adf , (8.2)

where Rg,Vg, Φg and Adf are the position vector, velocity vector, gravitational potential of the
Galactic center region and deceleration due to dynamical friction and the dot denotes the derivative
with respect to time. The equations of motion (8.1) and (8.2) for the star cluster orbit with
respect to the Galactic center are solved using an 8th-order composition scheme (McLachlan
1995 [192]; for the idea see Yoshida 1990 [193]) with implicit midpoint method (e.g. Mikkola &
Aarseth 2002 [194]), thereby including a realistic dynamical friction force. Although the symplectic
composition schemes are by construction suited for Hamiltonian systems, they can be used for

1The author remarks that nbody6gc is based on a code variant called nbody6tid which has been developed
by R. Spurzem in collaboration with O. Gerhard and K.-S. Oh (unpublished). The author switched to another
integrator for circular and very eccentric cluster orbits and improved the treatment of dynamical friction for studies
in the Galactic center.

2The program nbody6gc is written in a way that any analytical galactic potential can be implemented.
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++

+

Rg

Rgi = Rg + ri
ri

Black hole Bulge Star cluster

Vg

Mbh
rL

Figure 8.1: Sketch of the geometry of the problem in the galactocentric reference frame. The
vector Rg points from the Galactic center to the star cluster center. The vector ri points from
the star cluster center to the position of the ith star. The orbital velocity of the star cluster has
been denoted as Vg and rL is the tidal radius.

dissipative systems as well if the dissipative force is not too large. In our case, four iterations
turned out to be sufficient to guarantee an excellent accuracy of the scheme.

We use a cluster membership criterion such that the dynamical friction force is based only on
the total mass of the cluster members. We define a membership radius rm by the condition

ρcl =
3Mcl(rm)

4πr3
m

= ρg(Rg) (8.3)

as the radius where the mean density ρcl in the star cluster is equal to the local bulge density at
the cluster center which is located at radius Rg. This radius differs from the tidal radius rL (King
1962 [86]) only by a factor of order unity. Stars within twice the membership radius as measured
from the star cluster center are defined as cluster members.

8.1.2 Stellar orbits

On the other hand, the equations of motion for the orbits of stars in the star cluster are solved
by the standard nbody6/nbody6++ routines using the 4th-order Hermite scheme (Makino &
Aarseth 1992 [191]), KS or chain regularization including the full 3D tidal forces from the super-
massive black hole and the Galactic bulge. The tidal force is added as a perturbation to the KS
regularization. The following quantities are involved:

1. The specific force on the ith particle due to all other stars (cluster members and non-
members) is given by

ai = G
N∑

j=1
j 6=i

mj
rji

|rji|3
, (8.4)

where N , G, rji = rj − ri, mj are the particle number, the gravitational constant, the
relative position vector between the ith and jth particles and the mass of the jth particle,
respectively.
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2. The specific force due to the Galactic center at the position of the cluster center is

Ag = −
(

GC

R2−α
g

+
GMbh

R2
g

)
Rg

Rg
, (8.5)

where C, Mbh and α are the normalization of the scale free bulge mass profile (see Section
2.2), the mass of the super-massive black hole and the cumulative mass profile power law
index.

3. The specific force exerted on particle i due to the Galactic center is given by

Agi = −

(
GC

R2−α
gi

+
GMbh

R2
gi

)
Rgi

Rgi
, (8.6)

4. The deceleration due to dynamical friction is given by

Adf = −4πG2ρgMcl

V 2
g

ln Λ χ(Vg)
Vg

Vg
(8.7)

where ρg, Mcl, Vg and Vg are the local bulge density at the position of the star cluster
center, the star cluster mass and the velocity vector and modulus of the Galactic center,
respectively. Furthermore, ln Λ is the Coulomb logarithm which results from the integral
over impact parameters and χ(vg) =

∫ Vg

0
f(v)d3v is the result of the integration of the

distribution function f(v) of light particles over velocity space. For the Coulomb logarithm
ln Λ, the author uses according to Just & Peñarrubia (2005)

ln Λ = ln (b1/b0) , (8.8)
b2
1 = b2

0 + L2, b0 = rV , L = ρg/|∇ρg| (8.9)

where b1, b0, L are the maximum and minimum impact parameters and the local scale length
of the bulge density profile, respectively, and rV = GM2

cl/(4|Ecl|) ≈ rh is the virial radius of
the star cluster (where Ecl is the internal energy of the star cluster and rh is the half-mass
radius).

In the galactocentric reference frame, the total force on the ith particle would be given by

Atot,i,gc = ai,gc + Agi,gc + Adf,gc members (8.10)
Atot,i,gc = ai,gc + Agi,gc non−members (8.11)

where the subscript “gc” denotes “galactocentric”. However, we choose the cluster rest frame
as reference frame for our simulations. This is necessary, because Aarseth’s family of N -body
programs is adapted to this reference frame and assumes that the cluster center is close to the
origin of coordinates. This guarantees a sufficient accuracy of the Hermite scheme which is used
for the orbit integration. On the other hand, this choice of the reference frame implies that the
Galactic center is modelled as a pseudo-particle which orbits around the cluster center. We keep
in mind that a transformation from the galactocentric frame to the cluster rest frame implies that
ri, Rg, Vg and Rgi in (8.4) - (8.7) change their sign. This implies that

ai,cl = −ai,gc, Ag,cl = −Ag,gc, (8.12)
Agi,cl = −Agi,gc, Adf,cl = −Adf,gc (8.13)
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where the subscript “cl” denotes the cluster frame. It is then convenient for the force computations
to transform to a reference frame in which the initial cluster center is force-free. Since this frame
is accelerated, an apparent force

Aapp = −Ag,cl −Adf,cl memb. (8.14)
Aapp = −Ag,cl non−memb. (8.15)

appears. In the accelerated cluster frame the total force on the ith particle is therefore given by

Atot,i,acl = −Atot,i,gc + Aapp (8.16)

where the subscript “acl” denotes the accelerated cluster frame. Thus the second-order equations
of motion for the orbits of the cluster stars read

Atot,i,acl = ai,cl + Agi,cl −Ag,cl memb. (8.17)
Atot,i,acl = ai,cl + Agi,cl −Ag,cl −Adf,cl non−memb. (8.18)

It can be seen that in the accelerated cluster frame an individual star experiences only the differ-
ential tidal force between its own location and the cluster center.

A density center correction is applied in certain intervals to correct for the displacement of
the density center (see Section 8.4). This was done in order to retain a consistent treatment of
dynamical friction since the dynamical friction force is determined from the approximation that
the star cluster mass is concentrated in the origin of coordinates.

8.2 Integrators

8.2.1 Hermite scheme

The Hermite scheme is a 4th-order predictor-corrector scheme applied first in Makino & Aarseth
(1992) [191]. Positions and velocities of the ith particle are predicted according to

rp
i,1 = ri,0 + vi,0∆t +

1
2
ai,0∆t2 +

1
6
ȧi,0∆t3, (8.19)

vp
i,1 = vi,0 + ai,0∆t +

1
2
ȧi,0∆t2, (8.20)

where the superscript “p” stands for “predicted” and the subscripts “0” and “1” for the current
time t0 and the following time t1, respectively. The acceleration ai,0 and jerk ȧi,0 have been
calculated from positions ri,0 and velocities vi,0 at time t0 according to the analytical formulas

ai(t) =
N∑

j=1
j 6=i

Gmj
rji

r3
ji

(8.21)

ȧi(t) =
N∑

j=1
j 6=i

Gmj

(
vji

r3
ji

− 3(vji · rji)
r5
ji

rji

)
(8.22)

where rji = rj − ri and vji = vj −vi are relative positions and velocities between the ith and jth
particles, respectively. Acceleration ap

i,1 and jerk ȧp
i,1 at time t1 can be calculated as well from the

predicted positions (8.19) and velocities (8.20) using the analytical formulas (8.21) and (8.22).
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A second way to write down ap
i,1 and ȧp

i,1 approximately is by a Taylor series expansion which
contains higher-order derivatives of acceleration:

ap
i,1 = ai,0 + ȧi,0∆t +

1
2
a(2)

i,0 ∆t2 +
1
6
a(3)

i,0 ∆t3, (8.23)

ȧp
i,1 = ȧi,0 + a(2)

i,0 ∆t +
1
2
a(3)

i,0 ∆t2. (8.24)

Since we know the quantities ∆t, ai,0, ȧi,0, ap
i,1 and ȧp

i,1, we can solve the system of equations
(8.23) – (8.24) to obtain the Hermite interpolation of the higher-order derivatives of acceleration:

1
2
a(2)

i,0 = −3
ai,0 − ap

i,1

∆t2
−

2ȧi,0 + ȧp
i,1

∆t
, (8.25)

1
6
a(3)

i,0 = 2
ai,0 − ap

i,1

∆t3
+

ȧi,0 + ȧp
i,1

∆t2
. (8.26)

With these quantities, positions and velocities from the prediction step can be corrected to higher
orders,

rc
i,1 = rp

i,1 +
1
24

a(2)
i,0 ∆t4 +

1
120

a(3)
i,0 ∆t5, (8.27)

vc
i,1 = vp

i,1 +
1
6
a(2)

i,0 ∆t3 +
1
24

a(3)
i,0 ∆t4, (8.28)

where the superscript ”c” stands for ”corrected”.

8.2.2 Composition scheme

The idea of a composition scheme will be sketched in this section. We closely follow Yoshida
(1990) [193]. For simplicity we assume that the phase space is only 2-dimensional and define
Poisson brackets as

{X, Y } =
∂X

∂q

∂Y

∂p
− ∂X

∂p

∂Y

∂q
, (8.29)

where q and p are position and momentum, respectively. We define operators with a hat as

Ẑ = { · , Z} , (8.30)

where · denotes a placeholder. Furthermore, the dynamical vector is given by

z =
(

q
p

)
. (8.31)

According to classical mechanics, its time evolution is governed by

ż = Ĥz (8.32)

where H is the Hamiltonian of the system under consideration and the dot denotes differentiation
with respect to time t, as usual. Note that (8.32) are the Hamiltonian equations of motion. Their
solution is given formally by

z(t) = exp
(
tĤ
)
z(0) (8.33)
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where exp
(
tĤ
)

is called the “flow” and z(0) is the initial condition. We assume now that the
Hamiltonian can be split in two parts,

H = T (p) + V (q), (8.34)

where T and V are kinetic and potential energy, respectively, as usual. According to Yoshida
(1990) [193] we can look for coefficients (c1, c2, ..., ck) and (d1, d2, ..., dk) such that the following
equality holds,

exp
(
tĤ
)

= exp
(
t(T̂ + V̂ )

)
=

k∏
i=1

exp
(
citT̂

)
exp

(
ditV̂

)
+O

(
tn+1

)
(8.35)

where n is the order of the integrator. To find the coefficients (c1, c2, ..., ck) and (d1, d2, ..., dk) we
use the Baker-Campbell-Hausdorff (BCH) identity: For any non-commutative operators X and
Y , the product of their exponentials can be expanded as

exp (X) exp (Y ) = exp (Z) (8.36)

where

Z ≈ X + Y +
1
2

[X, Y ] +
1
12

([X, X, Y ] + [Y, Y,X]) +
1
24

[X, Y, Y, X]

− 1
720

([Y, Y, Y, Y,X] + [X, X, X,X, Y ]) +
1

360
([Y, X,X,X, Y ] + [X, Y, Y, Y,X])

+
1

120
([X, X, Y, Y, X] + [Y, Y,X, X, Y ]) + ... (8.37)

and where the single and multiple commutators are defined as [X, Y ] = XY −Y X and [X, X, Y ] =
[X, [X, Y ]], respectively.

By repeated application of the BCH identity (8.36) – (8.37) one obtains

exp (X) exp (Y ) exp (X) = exp (Z ′) (8.38)

where

Z ′ ≈ 2X + Y +
1
6

([Y, Y,X]− [X, X, Y ]) +
7

360
[X, X, X,X, Y ]− 1

360
[Y, Y, Y, Y,X]

+
1
90

[X, Y, Y, Y,X] +
1
45

[Y,X,X,X, Y ]− 1
60

[X, X, Y, Y, X]

+
1
30

[Y, Y,X, X, Y ] + ... (8.39)

It is of interest to note that only odd orders in X and Y occur in (8.39). If we set k = 2 in the
equality (8.35) and use (8.38) – (8.39) we immediately recover the 2nd-order leapfrog integrator
with the coefficients c1 = c2 = 1/2, d1 = 1, d2 = 0, i.e. we have

exp
(
tĤ
)

= exp
(
t
(
T̂ + V̂

))
= exp

(
1
2
tT̂

)
exp

(
tV̂
)

exp
(

1
2
tT̂

)
+O(t3) (8.40)

We define the operator for the 2nd-order integrator as

S2(t) = exp
(

1
2
tT̂

)
exp

(
tV̂
)

exp
(

1
2
tT̂

)
(8.41)

≈ exp
(
tα1 + t3α3 + t5α5 + ...

)
(8.42)
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No. Value No. Value
w1 0.74167036435061295345 w9 w7

w2 −0.40910082580003159400 w10 w6

w3 0.19075471029623837995 w11 w5

w4 −0.57386247111608226666 w12 w4

w5 0.29906418130365592384 w13 w3

w6 0.33462491824529818378 w14 w2

w7 0.31529309239676659663 w15 w1

w8 1− 2
∑7

i=1 wi

Table 8.1: Coefficients by McLachlan (1995) [192] of the 8th-order composion scheme.

where the second line follows from (8.38) – (8.39) and

α1 = T̂ + V̂ , (8.43)

α3 =
1
12

[
V̂ , V̂ , T̂

]
− 1

24

[
T̂ , T̂ , V̂

]
, (8.44)

α5 =
7

5760

[
T̂ , T̂ , T̂ , T̂ , V̂

]
+ ... (8.45)

A 4th-order integrator can then be obtained by applying formulas (8.38) – (8.39) on a symmetric
repetition of the expansion (8.42) of the 2nd-order integrator,

S4(t) = S2(k1t)S2(k0t)S2(k1t) (8.46)

where we include terms up to 3rd-order. Note that the determining equations for the coefficients
k1 and k0 become non-linear. In the same way, symplectic integrators of arbitrary even order
can be obtained. Coefficients for composition schemes of different orders can be found in Yoshida
(1990) [193], Suzuki 1990 [195], McLachlan (1995) [192], Kahan & Li (1997) [196] or in the review
by Sutmann (2006) [197]. We use in this thesis the coefficients obtained by McLachlan (1995) [192]
for an 8th-order composition scheme. The coefficients are given in Table 8.1.

8.2.3 Implicit midpoint method

Symplectic integrators are by construction suited for Hamiltonian systems. However, they may
also be used for dissipative systems if the dissipative force is not too large. Following the suggestion
in Mikkola & Aarseth (2002) [194] the author implemented a velocity-dependant friction force (i.e.,
dynamical friction) into the composition scheme. The differential equations have the form

Ẋ = V, V̇ = −∇Φ + f(V) (8.47)

where X,V, Φ are position, velocity and potential, respectively, and f(V) is a velocity-dependent
force. These can be solved by the implicit midpoint method:

V1 = V0 + ∆t (−∇Φ + f(Va)) , Va =
V0 + V1

2
(8.48)

where the subscripts “0” and “1” refer to the current time t0 and the following time t1, respectively.
The method is implicit in the following sense: The “kick” step in velocity uses a force which
depends implicitly on the velocity at the end of the “kick” step (which is not yet known). This
force can be approximately obtained by a fixed point iteration. In our application, four iterations
turned out to be sufficient.
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1 DO WHILE (TIME.GE.TCEN)
2 DO I =1 ,15 ! Loop over compos i t ion c o e f f i c i e n t s
3 DTCEN = . 5D0∗W0COEFF( I ) ! h a l f s tep
4 DO K=1,3
5 XG(K) = XG(K) + DTCEN∗VG(K)
6 ENDDO
7 DO J=1,4 ! I t e r a t i o n ( implicit midpoint method )
8 DO K=1,3
9 VA(K) = VG(K) + DTCEN∗AG(K)

10 ENDDO
11 CALL GCFORCE(XMCL,XG,VA,AG,AGNEWT,AGFRIC,TMP3)
12 ENDDO
13 TCEN = TCEN + DTCEN
14 DTCEN = W0COEFF( I ) ! f u l l s t ep
15 DO K=1,3
16 VG(K) = VG(K) + DTCEN∗AG(K)
17 DEFRIC = DEFRIC − DTCEN∗XMCL∗AGFRIC(K)∗VA(K)
18 ENDDO
19 DTCEN = . 5D0∗W0COEFF( I ) ! h a l f s tep
20 DO K=1,3
21 XG(K) = XG(K) + DTCEN∗VG(K)
22 ENDDO
23 TCEN = TCEN + DTCEN
24 ENDDO
25 ENDDO ! whi l e

Listing 8.1: Code fragment containing the integrator.
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8.3 Energy balance

8.3.1 Friction and mass loss

The energy of a mass losing star cluster orbiting in a spherically symmetric time-independent
potential Φ = Φ(|R|) is given by

E =
1
2
Mcl(t)V2(t) + Mcl(t)Φ (8.49)

where t is time, Mcl is the cluster mass and R and V the position and velocity of the cluster
center, respectively. We use the real energy, not the specific energy. Then we have

Ė =
1
2
ṀclV2 + MclV · V̇ + ṀclΦ + Mcl (∇Φ) ·V (8.50)

=
Ṁcl

Mcl
E + Mcl V ·Adf , (8.51)

where the dot denotes differentiation with respect to time t and we have inserted the equation of
motion (8.2) in the last step. The energy change is therefore given by

dE = Ėdt = E d ln(Mcl) + Mcl V ·Adf dt. (8.52)

8.3.2 Energy checking

The energy check in nbody6gc is done in the galactocentric reference frame. The energy of the
N -body system in the tidal field has different terms. We define

Ekin =
1
2

N∑
i=1

miv2
i (8.53)

Epot =
1
2

N∑
i=1

miΦi,int with Φi,int = −G

N∑
j=1
j 6=i

mj

|ri − rj |
(8.54)

Eg,kin =
1
2

N∑
i=1

miV2
g (8.55)

Eg,mixed =
N∑

i=1

mivi ·Vg (8.56)

Eg,pot =
N∑

i=1

miΦi,ext (8.57)

∆Efric =
N∑

i=1

∫ t

0

mi Adf · (Vg + vi) dt′ (8.58)

where mi, vi, Vg, Φi,int, Φi,ext, t and adf are the particle mass, the internal velocity, the velocity
of the Galactic center pseudo particle, the internal potential of the N -body system, the external
potential of the Galactic center region, the evolution time and the deceleration due to dynamical
friction. We define

Eint = Ekin + Epot (8.59)
Etide = Eg,kin + Eg,mixed + Eg,pot − Etide,0 (8.60)
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+

+

Rg

Rgi = Rg + ri
ri

Black hole Bulge Star cluster

Vgrd

Mbh

Figure 8.2: Sketch of the density center correction. The new density center of the star cluster has
been denoted as rd.

where Etide,0 is a normalization such that the tidal energy Etide vanishes in the beginning. The
total energy is then given by

E1 = Eint + Etide (8.61)

On the other hand, the orbital energy E2 of the star cluster in the galactocentric reference
frame is given by

E2 =
1
2
MclV 2

g + MclΦext (|Rg|) +
∫ t

0

Mcl Adf ·Vg dt′ +
∫ t

0

Ṁcl

Mcl
E2 dt′ (8.62)

where the last two terms on the right-hand side are due to dynamical friction and tidal mass loss
of the star cluster, respectively (see Section 8.3.1).

Both energies E1 and E2 are checked at regular intervals for conservation.

8.4 Density center correction

The program nbody6gc applies a density center correction in certain intervals. The origin of
coordinates (0, 0, 0) is translated back into the density center rd of the star cluster. This was done
in order to retain a consistent treatment of the dynamical friction force which is determined from
the approximation that the star cluster mass is concentrated in the origin of coordinates of the star
cluster rest frame. Our routine is based on the routine cmcorr of nbody6 (Aarseth 1999 [177],
2003 [175]). It proceeds as follows

1. Calculate the position of the density center rd (using the method by Casertano & Hut
1985 [198]).

2. Transform all positions ri, Rg and Rgi (cf. Section 8.1) to the density center frame.

3. Re-determine all former positions and velocities consistently.

4. Resolve all regularized pairs for consistency.
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Figure 8.3: Examples of star cluster orbits of different eccentricities close to the Galactic center
(integrated with intgc). For each orbit the initial velocity is given in units of the circular velocity
at the initial galactocentric radius. Top row: Without dynamical friction. Bottom row: With
dynamical friction.

We remark that all galactocentric distances of the stars and the distances between the individual
stars remain invariant under the density center correction. A correction with respect to the velocity
of the density center turned out not to be necessary.

8.5 The computer program intgc

The author developed the integrator intgc whose functionality is identical to the integrator for the
star cluster orbit in nbody6gc. It uses as well the 8th-order composition scheme with implicit
midpoint method (see Sections 8.2.2 and 8.2.3). However, since it does not solve the N -body
problem for the star cluster but only the equations of motion (8.1) and (8.2) for the star cluster
orbit around the Galactic center, it is very simple and fast. The program intgc has been used to

1. Test the star cluster orbit integration in nbody6gc.

2. Explore the parameter space.

3. Determine orbital and dynamical friction time scales numerically.

Figure 8.3 shows a few examples of star cluster orbits close to the Galactic center which have
been integrated with intgc. The top row shows how the orbit would look like without dynamical
friction while the bottom row shows the effect of a dynamical friction force on the orbit.
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8.6 Tidal arm coordinate system

Based on routines from Numerical Recipes (NR, Press et al. 2001 [199]), the author developed
the eigensolver eigentid which calculates numerically a 1D coordinate system along the tidal
arms and evaluates characteristic dynamical quantities along this coordinate system. We denote
the coordinate along the tidal arms as w, where negative values refer to the leading arm and
positive values to the trailing arm. The NR routine tred2 uses the Householder reduction of a
real symmetric n × n matrix to convert it to a tridiagonal form. The NR routine tqli uses the
QL algorithm to determine the eigenvalues and eigenvectors of the matrix which has been brought
into tridiagonal form before (see NR, Chapters 11.2 and 11.3). We use the tensor of inertia and
denote the eigenvectors corresponding to the minimum eigenvalue c, the medium eigenvalue b and
the maximum eigenvalue a as the minimum, medium and maximum eigenvectors, respectively.
Then the algorithm proceeds as follows:

1. Read snapshot with particle masses, positions and velocities in the cluster rest frame.

2. Calculate optionally gravitational potential and density (using the method by Casertano &
Hut 1985) for this snapshot.

3. Start calculation in the origin of coordinates (0, 0, 0).

4. Obtain a neighbor sphere with radius Rcut and calculate its center of mass (xcm, ycm, zcm).

5. Calculate physical quantities averaged over the neighbor sphere: Mean specific angular mo-
mentum, mean specific energy, mean density, velocity dispersion, mean potential. Write all
quantities to a data file.

6. Calculate the tensor of inertia of the neighbor sphere with respect to the center of mass of
the neighbor sphere. It is given by

Θjk =
Nnb∑
i=1

mi

 ∆y2
i + ∆z2

i ∆xi∆yi ∆xi∆zi

∆xi∆yi ∆x2
i + ∆z2

i ∆yi∆zi

∆xi∆zi ∆yi∆zi ∆x2
i + ∆y2

i

 (8.63)

where ∆xi = xi − xcm, ∆yi = yi − ycm and ∆zi = zi − zcm are the relative positions of the
ith particle in the neighbor sphere with respect to its center of mass and mi is the mass of
the ith particle.

7. Calculate the eigenvalues and eigenvectors of Θjk.

8. Go along the direction of the maximum/medium eigenvector until a critical density is reached
to find the new Rcut.

9. Check for acute angle between previous and current minimum eigenvector. If the angle is
acute, change the sign of the eigenvector.

10. Go one step along the direction of the minimum eigenvector.

11. Repeat from 4. until the particle number within the neighbor sphere drops below a certain
threshold as the first tidal arm ends.

12. Start from 3. for the second tidal arm.

We remark that the inertia ellipsoids of the neighbor spheres have an oblate shape, i.e. the three
eigenvalues a, b, c of Θjk satisfy a ≈ b > c. Also, a weighting exponent can be assigned to the
particle mass in the expression (8.63). In this case, the eigensolver follows the mass distribution
within the tidal arms in a different way. This method has been applied for Figure 9.11.
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Chapter 9

Simulations

9.1 A test case

The left panel of Figure 9.1 shows the orbit of the test case model E1 which has been integrated
for tint = 12 Myr with the integrator intgc and then with the large N -body program nbody6gc
until the dissolution time tdis ≈ 1.1 Myr was reached (which turned out to be much shorter
than tint). The orbit for the model E1 is a rosette orbit with an initial galactocentric radius of
Rg(0) = 20 pc which decays due to dynamical friction. The initial velocity has been taken to
be Vg(0) = 0.5 Vc(Rg(0)), where Vc is the circular velocity. For the star cluster a King model
with W0 = 6 and a half-mass radius of rh = 1.64 pc has been adopted. The particle number is
N = 5×104. The distribution of masses mi is given by a Kroupa (1993) [201] initial mass function
with 0.01M� ≤ mi ≤ 120M�. Throughout this chapter the parameters of the scale free model of
the central region of the Galactic bulge are the same as in Table 6.1 in Chapter 6. The decay of
the orbit due to dynamical friction with the modified Coulomb logarithm according to Equations
(8.8) - (8.9) is rather slow as compared with the dissolution time scale. Assuming a constant star
cluster mass, the apocenter radius reaches half of its initial value at tdf,hapo = 6.21 Myr and the
orbit approaches the central parsec at tdf,1pc = 10.4 Myr. At that time, the cluster has already
dissolved in the tidal field for a long time. We note that the orbit of the real N -body simulation
differs from that of Figure 9.1. In nbbody6gc, the calculation of the dynamical friction force is
based on the mass of the particles which are contained in a sphere with a radius which equals
twice the membership radius rm of Equation (8.3). On the other hand, the star cluster mass stays
constant in the orbit computation with intgc.

Figure 9.2 shows the dissolution of the star cluster in the N -body simulation of model E1 as
snapshots at different times. The color coding is according to the logarithm1 of the stellar density
in units of M�/pc3. The rosette orbit is marked as a solid line. In the second row one can see
a bifurcation in the trailing tidal arm. Probably it is due to the eccentricity of the orbit. The
inner branch of the bifurcation may be related to the apocenter passage of the star cluster while
the outer branch may be related to the pericenter passage. The leading tidal arm wraps around
the Galactic center. However, it can be seen that the stars do not reach the central parsec in the
snapshots which are shown in the figure. The star cluster orbit is not eccentric enough and the
dynamical friction force too weak due to small values of the Coulomb logarithm.

Figure 9.3 shows the time evolution of the dynamical friction variables for the N -body simula-
tion with nbody6gc. The quantities Rg, Vg, ρg, χ and ln Λ are the current Galactocentic radius,
the orbital velocity of the star cluster, the local Galactic density, the χ function and the Coulomb
logarithm, respectively. All quantities oscillate on the orbital time scale of the eccentric cluster
orbit. For the definition of the χ function and the Coulomb logarithm see Appendix D. The χ

1to the base 10
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Figure 9.1: Star cluster orbits integrated with intgc for 12 Myr. Both orbits decay due to
dynamical friction with a Coulomb logarithm based on Just & Peñarrubia (2005) [200]. Left
panel: For the eccentric orbit of the example model E1. Right panel: For the circular orbit of the
model C9 (see next sections). The star cluster mass is Mcl = 106M� in both cases. The rosette
orbit in the left panel decays faster as compared with the circular orbit in the right panel since
the dynamical friction force is stronger in the pericenter than in the apocenter.

function takes on values between 0 and 1 as in Figure D.3. The Coulomb logarithm roughly varies
between 1.7 and 0.7. We have also plotted the product ρgχ ln Λ which is the relevant quantity for
dynamical friction. It oscillates with the orbital frequency between approximately two orders of
magnitude.

At t ≈ 1.1 Myr the density center of the star cluster is no longer clearly defined and the
evolution of the dynamical variables in Figure 9.3, in particular Rg, becomes noisy. The density
center correction breaks down which indicates that the end of the simulation has been reached.2

The top panel of Figure 9.4 shows the time evolution of the core radius, the membership radius
of Equation (8.3) and a few Lagrangian radii for the model E1. The core radius is defined as

rc =

√√√√∑ eN
i=1 |ri − rd|2ρ2

i∑ eN
i=1 ρ2

i

(9.1)

where ri is the position of the ith particle, rd is the position of the density center and ρi is the
stellar density at ri calculated from the distance to the fifth nearest neighbor (Casertano & Hut
1985 [198]). Note that the summation is only over Ñ particles within a certain cutoff radius. The
Lagrangian radii are defined as the radii of spheres which contain a fraction of the total mass of
all stars in the simulation. The outer Lagrangian radii expand due to the formation of tidal arms.
The core of the star cluster collapses due to heat transport from the core to the halo. As is well
known, the reason for the heat transport is two-body relaxation. For the theory of the gravothermal
instability, which leads to the core collapse of star clusters we refer to the original works of Antonov
(1962) [202], Lynden-Bell & Wood (1968) [203] and Hachisu et al. (1978a [204]/b [205]). It is
nowadays also described in many textbooks such as Binney & Tremaine 1987 [32] or Heggie &

2We can use the fact that the density center correction breaks down at some point in time as the criterion for
the dissolution of the star cluster: When the evolution of certain dynamical variables (e.g. those shown in Figure
9.3) becomes noisy the dissolution time scale has been reached.
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Hut (2003) [206]. The core collapse is stopped by the formation of a few binaries in the core of
the star cluster by three-body processes (Giersz & Heggie 1994b [207], 1996 [208]). These produce
heat at a rate slightly higher than the rate of energy loss due to two-body relaxation, thereby
cooling the cluster core which has negative heat capacity. The bottom panel of Figure 9.4 shows
that the number of regularized pairs in the N -body simulation increases as the core of the star
cluster collapses.

Figures 9.5 and 9.6 show the time evolution of energies for the model E1. In Figure 9.5, the
total energy is splitted into different terms. The definitions of the different terms of the energy
balance are given in Section 8.3.2 (in Chapter 8). E′

kin and E′
pot are the internal kinetic and

potential energies of the N -body system, where every regularized pair is represented by a single
center of mass particle. Its mass is given by the sum of both individual masses and its position
by the center of mass of the regularized pair. Ebin is then the binding energy of all regularized
pairs based on Equation (7.15).3 The time evolution of E′

kin shows the effect of tidal heating,
since the time evolution of Etide follows that of E′

kin closely after the first pericenter passage. On
the other hand, the time evolution of E′

pot shows that the potential well of the star cluster gets
shallower as the cluster dissolves. Etide is the tidal energy. Its different terms will be discussed
below. E1 = Ebin + Ekin −Epot + Etide is the total energy. It is slightly deviating from the value
E1 = −0.25. The reason is an energy scale problem. The physical situation of a star cluster
orbiting in the tidal field of a galaxy has two energy scales which are of different orders: The
internal cluster energy of the N -body problem and the external energy of the star cluster orbit
in the tidal field. Tidal heating can convert external potential energy into internal kinetic energy.
Therefore the energy balance above contains terms of different orders of magnitude. The energy of
the cluster orbit is E2 = 87.2584 (cf. Section 8.3.2). If we normalize to this energy, we obtain an
average energy error of ∆E1/E2 ≈ 2× 10−4 per crossing time while ∆E1/E1 ≈ 0.06 per crossing
time for all (!) particles. The large contributions to the energy error are due to the particles in the
tidal arms. The energy error is lower for the particles which are deep in the potential well of the
star cluster and which are not subject to strong tidal forces. Figure 9.4 shows that the numerical
error of the integration does not suppress two-body relaxation within the star cluster.

In Figure 9.6, the tidal energy Etide is splitted into its different terms. Eg,kin is the orbital
kinetic energy of the Galactic center particle. It oscillates with the orbital frequency within
a range of approximately two orders of magnitude, since it scales as the square of the orbital
velocity (which is shown in in Figure 9.3). Eg,mixed is the mixed kinetic energy term. The increase
of its modulus is only marginal in the beginning. Then the increase becomes significant, and one
can see oscillations with the orbital frequency. Eg,pot is the external potential energy term. It
slightly oscillates with the orbital frequency. ∆Efric is the energy loss due to dynamical friction.
Its modulus increases marginally until the first pericenter has been reached. Then, the increase
becomes significant but is rather slow. Etide = Eg,kin + Eg,mixed + Eg,pot−Etide,0 is the total tidal
energy.

Figure 9.7 shows the relative energy error ∆E2/E2 of the cluster orbit integration. Its absolute
value stays below 10−13.

3The author neglected the splitting of the internal cluster energy in the energy of the center of mass particles
and the binding energy of the regularized pairs in Section 8.3.2 for the sake of clarity. However, it is an internal
feature of nbody6 on which nbody6gc is based.
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Figure 9.2: Dissolution of the star cluster in model E1.
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Figure 9.3: Time evolution of dynamical friction variables for model E1. Rg, Vg, ρg, χ and ln Λ
are the current Galactocentic radius, the orbital velocity of the star cluster, the local Galactic
density, the χ function and the Coulomb logarithm, respectively.
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Figure 9.4: Top panel: Time evolution of the core radius rc, the membership radius rm and a few
Lagrangian radii for the model E1. The core of the star cluster collapses. The outer Lagrangian
radii expand due to the formation of tidal arms. Bottom panel: Number of regularized pairs as a
function of time. Several binaries form while the core of the star cluster collapses.
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Figure 9.5: Energy balance (I) for model E1. E′
kin and E′

pot are the internal kinetic and potential
energies of the N -body system, where every regularized pair is represented by a single center of
mass particle. Ebin is the binding energy of all regularized pairs. Etide is the tidal energy (cf.
Figure 9.6) and E1 = Ebin + Ekin − Epot + Etide is the total energy. For more information see
Section 8.3.2.
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Figure 9.6: Energy balance (II) for model E1. Eg,kin =
∑

i miv2
g is the orbital kinetic energy of

the Galactic center particle, Eg,mixed =
∑

i mivi · vg is the mixed kinetic energy term, Eg,pot =∑
i miΦi,ext is the external potential energy term, ∆Efric is the energy loss due to dynamical

friction, Etide = Eg,kin + Eg,mixed + Eg,pot + ∆Efric − Etide(0) is the total tidal energy, where
Etide(0) is a normalization such that Etide = 0 in the beginning. For more information see Section
8.3.2.
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Figure 9.7: Relative energy error of the star cluster orbit integration with the 8th-oder composition
scheme with dissipation. The absolute value of the relative energy error stays below 10−13.
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9.2 Properties of tidal arms

Figure 9.8: The model C9 at t = 0.22 Myr. The Galactic center is marked with a cross. The
star cluster orbit is shown as a solid line. The dashed lines mark once and twice the membership
radius. We look in the direction of the Galactic north pole. The short and long marks of the tidal
arm coordinate system correspond to multiples of 1 and 5 pc, respectively.

The parameters of the N -body models of Sections 9.2 and 9.3 are given in Table 9.1. Figures
9.8 - 9.11 show the formation of the tidal arms for model C9. The initial 90% Lagrangian radius
has been taken to be equal to the membership radius rm in Equation (8.3). The star cluster
dissolves in a spiral-like structure. The leading tidal arm consists of particles which pass the inner
Lagrange point L1, while the trailing arm is formed by particles which pass the outer Lagrange
point L2. The galactocentric radius RC of the circular orbit is shown as a solid line. It decays
very slowly due to dynamical friction with the Coulomb logarithm which was modified according
to Equations (8.8) and (8.9). The initial value for the model C9 is ln Λ ≈ 1.7. Most particles of
the leading arm have galactocentric radii less than RC while most particles of the trailing arm
have radii larger than RC . The dashed lines mark once and twice the membership radius rm.

The author has introduced a local coordinate system according to the description in Section
8.6. We denote the coordinate along the tidal arms as w, where negative values refer to the leading
arm and positive values to the trailing arm. The short and long marks correspond to multiples of
1 and 5 pc, respectively.

The color coding is according to the logarithm of the stellar density. The density clearly peaks
in the cluster center. However, one can observe clumps in the tidal arms where the density has
local maxima. An indication for the presence of such clumps in tidal arms can already be found
in the observations of Palomar 5 (Odenkirchen et al. 2001 [10], 2003 [8]). The clumps have been
noticed in computer simulations by Capuzzo Dolcetta, di Matteo and Miocchi (2005) [11] and were
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Figure 9.9: Further evolution of the model C9. Top panel: At t = 0.43 Myr. Bottom panel: At
t = 0.87 Myr. The dotted lines from the Galactic center show the angles between density maxima
in the leading and trailing arm, respectively, with respect to the star cluster center.
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Figure 9.10: A standing density wave has developed in the model C9. Top panel: At t = 0.87
Myr. A spherical cloud of tracer particles has been placed into the first clump (brown colored).
Bottom panel: At t = 1.30 Myr (without the tracer particles).
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Figure 9.11: The model C9 at t = 1.74 Myr. The tracer particles have traveled further while the
wave maximum still persists. The leading and trailing arms have wound up. They are separated
by the potential wall of the effective potential. The tip of the leading arm has hit the remnant
of the star cluster again. The author applied a weighting exponent to the particle mass in the
expression (8.63).

King models:
In general: W0 = 6,Mcl = 106M�, rh = 1.64 pc;
C1 (N = 103), C2 (N = 2× 103), C3 (N = 5× 103),
C4 (N = 104), C5 (N = 2× 104), C6 (N = 3× 104),
C7 (N = 5× 104), C8 (N = 7× 104), C9 (N = 105)

Table 9.1: Parameters of the N -body runs with King models on circular orbits with a dynamical
friction force based on Just & Peñarrubia (2005) [200]. W0, Mcl, rh and N are the dimensionless
central potential, the total cluster mass, the half-mass radius and the particle number of the King
model, respectively. The distribution of masses mi is given by a Kroupa (1993) [201] initial mass
function with masses 0.01M� ≤ mi ≤ 120M�.
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Figure 9.12: Top panel: Motion on cycloids within the tidal arms for a few particles in the model
C9. The particles escape from locations near the cluster center at (-20,0) either into the leading or
the trailing arm. Bottom panel: Amplitude as a function of time for the same orbits. The small
deviations from the harmonic motion may be apparent deviations due to the slight change of the
orbital frequency by dynamical friction.
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Figure 9.13: Histograms for model C9 (I). Top panel: Epicenter radius distribution. All parti-
cles within twice the initial membership radius have been excluded from the statistics. Bottom
panel: Epicyclic period distribution. All particles within the initial membership radius have been
excluded from the statistics. The bin frequency has been set equal to the data output frequency
of nbody6gc in order to avoid an unphysical higher harmonic in the histogram.
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Figure 9.14: Histograms for model C9 (II). Top panel: Distribution of Jacobi energies. Bottom
panel: Histogram of peri- and apocenter radii of the cycloid orbits in the tidal arms.
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Figure 9.15: Histograms for model C9 (III). Distribution of ∆L/LC for the first clump in the
leading and trailing arm, respectively. All particles outside of 25 degrees around the density
maximum have been excluded from the statistics. The same has been done for the second clump
in the leading arm (not shown). For more explanations see the text.

Figure 9.16: The z-component of angular momentum with respect to the Galactic center for a few
orbits. In the cluster the angular momentum is not conserved since the cluster potential breaks
the axisymmetry of the effective tidal potential. In the tidal arms the angular momentum is only
approximately conserved.

88



CHAPTER 9. SIMULATIONS 9.2. PROPERTIES OF TIDAL ARMS

investigated further by di Matteo, Capuzzo Dolcetta & Miocchi (2005) [9]. They noted already
the wave-like nature of this phenomenon.

The top panel of Figure 9.10 shows a spherical cloud of tracer particles (coloured brown).
Figure 9.11 shows how the tracer particles have travelled further into the tidal arm while the
position of the density maximum in the clump stayed (approximately) constant. Thus the clumps
can be interpreted as wave knots of a density wave similar to density waves in spiral galaxies
although the formation mechanism is completely different.

A theoretical explanation for such clumps was published in Küpper, Macleod & Heggie (2008) [12].
The top panel of Figure 9.12 shows for a few particles that they move on cycloids. The clumps
appear at the position where many of the loops or turning points of the cycloids overlap. For a
more detailed theory, see Just et al. (2009) [13] or Chapter 4. The bottom panel of Figure 9.12
shows the radius as a function of time. We find approximate harmonic motion in the tidal arms.

The dotted lines from the Galactic center in Figures 9.9, 9.10 and 9.11 show the angles ϕ0

between density maxima in the leading and trailing arm. In order to plot these angles the author
determined the w coordinate of the maxima in the mean density (cf. the top panel of Figure 9.18
below) and obtained the corresponding Cartesian coordinates from the data files.

Figure 9.13 shows the histogram of the epicenter radii RE0 and the the epicyclic periods Tκ0 of
the cycloid orbits for different times. For the epicenter radii (and the epicyclic periods), stars within
twice (and once) the membership radius were not included in the statistics. The epicenter radii
are given by the arithmetic mean of the last maximum and minimum in the epicyclic amplitude.
The epicyclic period is given by the time between the last two minima in the epicyclic amplitude.
Note that at t = 0.87 Myr not all particles have completed one epicyclic period.

Figure 9.14 shows the distribution of Jacobi energies EJ and the histogram of apo- and peri-
center radii of the cycloid orbits in the tidal arms.

Figure 9.15 shows the distribution of the dimensionless angular momentum differences ∆L/LC =
(L−LC)/LC for the first clump in the leading and trailing arm, respectively, where LC is the an-
gular momentum of the circular orbit. For the dimensionless angular momentum differences only
stars within 25 degrees around the density maximum in the clump where included in the statistics.
This has been done in order to select particles which have left the star cluster in a certain time
window. Due to the dynamical evolution of the star cluster, a difference between the first and
second clump should be detectable. In Figure 9.15 one can see two side lobes corresponding to
the leading and trailing arms.

For the scale free model, the angle ϕ0 can be expressed exactly as

ϕL = Tκ∆ω =
2π

βS

[
1− ωC

ω

]
=

2π√
α + 1

[
1−

(
1 +

∆L

LC

) 3−α
α+1
]

(9.2)

where Tκ is the epicyclic period, ∆ω = ω−ωC , ωC and ω are the circular frequencies at the radius
RC of the circular orbit and in the vicinity of RC , βS is given by Equation (2.23) and ∆L/LC is
the most frequent dimensionless angular momentum difference. Note that the subscript “L” refers
in the following discussion to quantities which are expressed as a function of ∆L/LC .4

The epicenter radius of the cycloids is given by

REL = RC

(
1 +

∆L

LC

) 2
α+1

. (9.3)

For the Galactic center case, the epicyclic amplitude in a scale free model can be expressed as

∆xL ≈
1

ωE

√
2

α + 1

[
3− α

2α + 2
R2

Cω2
C

∆L2

L2
C

+ ∆EJ

]
(9.4)

4except for the case of the tidal radius rL, where the subscript “L” refers to the Lagrangian points L1 and L2
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where 1/ωE is the reciprocal of the angular frequency of the circular orbit at the epicenter radius
which can be expressed exactly with

1
ω

=
1

ωC

(
1 +

∆L

LC

)−α−3
α+1

(9.5)

for the scale free model or approximated by the Taylor expansion (4.55) to the desired accuracy.
Furthermore, ∆EJ = EJ −Φeff,tid(RC) is the Jacobi energy difference with respect to the effective
tidal potential at RC (Just et al. 2009 [13] and Chapter 4).

Table 9.2 shows a comparison of the measured angles, epicenter radii, epicyclic amplitudes, peri-
and apocenters and the theoretical estimates from the dimensionless angular momentum difference.
Values are given for the first and second clump in the leading arm and for the first clump in the
trailing arm. The second clump in the trailing arm is not well defined. Given is the measured angle
ϕ0, the estimate ϕL according to Equation (9.2), the error ∆ϕ/ϕ0 = (ϕ0 − ϕL)/ϕ0 in percent,
the most frequent epicenter radius RE0 in Figure 9.13, the epicenter radius REL according to
Equation (9.3), the most frequent epicyclic period Tκ0 in Figure 9.13 and the theoretical epicyclic
period Tκ(REL) using Equation (2.22) with the epicenter radius REL. Furthermore, the tidal
radius rL =

{
GMcl/

[
(4− β2)ω2

C

]}1/3 (King 1962), the arc length y0 = RCϕ0, the A factors (Just
et al. 2009 [13]),

Ay0 =
1
π

√
α + 1

3− α

y0

rL
, AL =

|RE,L −RC |
rL

(9.6)

where Ay0 is a first-order approximation and the error ∆A/Ay0 = (Ay0 − AL)/Ay0 in percent
are given. Stated are also the most frequent peri- and apocenter radii RP0 and RA0 from Figure
9.14, the most frequent scaled Jacobi energy difference ∆EJ/ω2

E from Figure 9.14, the epicyclic
amplitude ∆xL from Equation (9.4) and the obtained peri- and apocenter radii RPL and RAL,
where |RPL −REL| = |RAL −REL| = ∆xL.

There are systematic errors in both ϕL and AL and also in RPL and RAL. The reason is
shown in Figure 9.16. In the tidal arms the angular momentum is only approximately conserved.
The reason is the influence of the cluster potential which breaks the axisymmetry of the effective
potential. However, in the cluster the angular momentum changes on a much shorter time scale.
An estimate for the cumulative perturbation ∆L of L is given by

∆L =
∣∣∣ ∫ (R× a) dt

∣∣∣ ≈ R Φcl

Vdrift
. (9.7)

where a, R = |R|, Φcl and Vdrift are the acceleration, galactocentric radius, potential energy of
the cluster and the drift velocity, respectively. Thus a slow drift velocity increases the change in
L. Here a more detailed theory is desirable.

For Figures 9.17 - 9.19, the author averaged over spheres with a radius which was approximately
equal to the width of the tidal arms in the xy plane (see Section 8.6 for the details). Since the
Figures were still noisy, the author has used a median smoothing in addition. The width of the
smoothing kernel has been taken to be twice the membership radius rm defined in Equation (8.3).

For four different times, the top panel of Figure 9.17 shows the z-component of the dimension-
less mean specific angular momentum difference [lz(w)− lz(0)] /lz(0) along the tidal arms. The
specific angular momentum was calculated with respect to the Galactic center. In order to show
the asymmetry between the leading and trailing arms, the lines for the leading arm have been
rotated by 180 degrees about the origin and replotted in grey. This kind of asymmetries arise from
the geometry of the effective potential.

The bottom panel of Figure 9.17 shows the same for the mean specific energy (i.e., energy per
unit mass) difference [e(w)− e(0)] /e(0). The specific energy was calculated with respect to the
Galactic center. For the definition of the energy, see Section 8.3.2. A positive energy difference
corresponds to the trailing arm while a negative energy difference corresponds to the leading arm.
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# t [Myr] Arm Clump ∆L/LC |ϕ0| [deg.] |ϕL| [deg.]
1 0.87 lead. 1 -0.232 57.5 47.1
2 ” lead. 2 -0.273 67.6 55.7
3 ” trail. 1 0.320 68.6 61.9
4 1.30 lead. 1 -0.215 57.5 43.6
5 ” lead. 2 -0.227 53.3 46.1
6 ” trail. 1 0.276 68.4 53.6
7 1.74 lead. 1 -0.209 52.6 42.4
8 ” lead. 2 -0.205 51.5 41.5
9 ” trail. 1 0.273 64.2 53.0
# ∆ϕ/ϕ0 [%] RC(t) [pc] RE0 [pc] REL [pc] Tκ0 [Myr] Tκ(REL) [Myr]
1 18.1 19.0 14.9 14.9 0.32 0.35
2 17.6 ” ” 14.2 ” 0.34
3 24.2 18.8 24.2 24.5 0.55 0.55
4 24.2 18.8 14.7 15.1 0.33 0.36
5 13.5 ” ” 14.9 ” 0.35
6 21.6 ” 24.7 23.5 0.51 0.53
7 19.4 18.6 14.7 15.0 0.32 0.36
8 19.4 ” ” 15.1 ” 0.36
9 17.4 ” 24.0 23.2 0.51 0.53
# rL(t− Tκ0) [pc] y0 [pc] Ay0 AL ARE0 ∆A/Ay0 [%]
1 2.67 19.1 1.88 1.54 1.54 18.1
2 ” 22.4 2.20 1.80 ” 18.1
3 2.87 22.7 2.07 1.92 1.81 7.2
4 2.40 18.9 2.07 1.54 1.71 25.6
5 ” 17.5 1.91 1.63 ” 14.7
6 2.63 22.4 2.23 1.79 2.24 19.7
7 2.21 17.1 2.03 1.63 1.76 19.7
8 ” 16.7 1.98 1.58 ” 20.2
9 2.29 20.8 2.38 2.01 2.36 15.5

# RP0 [pc] RA0 [pc] ∆EJ/ω2(REL) [pc2] ∆xL [pc] RPL [pc] RAL [pc]
1 16.6 13.6 3.80 2.8 17.7 12.1
2 ” ” 3.46 2.9 17.1 11.3
3 21.3 26.2 9.25 5.3 19.2 29.8
4 16.5 13.3 6.50 3.1 18.2 12.0
5 ” ” 6.39 3.1 18.0 11.8
6 22.1 26.2 14.4 5.1 18.4 28.6
7 16.5 13.3 11.5 3.7 18.7 11.3
8 ” ” 11.6 3.7 18.8 11.4
9 21.4 26.0 25.2 6.0 17.2 29.2

Table 9.2: Comparison of measurements and theory for the angles of the density maxima, the A
factors and the epicyclic amplitudes. For explanations see the text.
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Figure 9.17: Top panel: Time evolution of the angular momentum difference between the cluster
center and the position in the tidal arm for the model C9. The angular momentum difference
is normalized by the angular momentum of the cluster center. In order to show the asymmetry
between the leading and trailing arms, the lines for the leading arm have been rotated by 180
degrees about the origin and replotted in grey. Bottom panel: As in the top panel, but for the
energy (internal and external) difference between the cluster center and the position in the tidal
arm for the model C9. The energy difference is normalized by the energy of the cluster center.
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Figure 9.18: Top panel: Time evolution of the mean density of stars along the tidal arms for the
model C9. One can see that several density wave maxima develop with time. Bottom panel: Time
evolution of the 1D velocity dispersion along the tidal arms for the model C9. The characteristic
features in the mean density (top panel) can also be seen in the velocity dispersion.
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Figure 9.19: Time evolution of the mean star cluster potential along the tidal arms for the model
C9. One can see that the potential well is deeper in the beginning but gets shallower as the cluster
loses mass.
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This is in accordance with the positive normalization in Equation (2.21) for the scale free potential
in Equation (2.18). This Figure also shows an asymmetry between leading and trailing arm. What
can be seen in this plot is that with the time more and more particles with a low energy difference
with respect to the cluster center stream into the tidal arms. Thus the modulus of the mean energy
difference falls off with time. In this connection it is worthwhile to mention that the particles with
a low Jacobi energy stream into the tips of the tidal arms. This can be seen in Figure 9.11 (and
in the top panel of Figure 9.23 below): The stars in the tips of the tidal arms are far away from
the potential wall of the effective tidal potential which lies below the solid line of the orbit of the
star cluster center.

The top panel of Figure 9.18 shows the density profile along the tidal arm coordinate w. At
t = 0.43 Myr, one clump can be seen in the leading arm. At t = 0.87 Myr, two clumps can be
seen in the leading arm and one in the trailing arm. At t = 1.30 Myr, three clumps can be seen
in the leading arm and two in the trailing arm.

The bottom panel of Figure 9.18 shows the profile of the 1D velocity dispersion along the tidal
arm coordinate w. The velocity dispersion profile also exhibits local maxima at the positions of
the density maxima. This is in accordance with the notion that the clumps in the tidal arms occur
at the positions where many of the loops or turning points of the cycloid orbits overlap. At these
positions, the random velocities should exhibit maxima as well. Note that the first maximum in
the leading arm at t = 0.43 Myr cannot yet be seen clearly in the bottom panel of Figure 9.18.
Figure 9.9 shows that this density maximum is still in the process of building up.

Figure 9.19 shows the profile of the cluster gravitational potential along the tidal arm coordinate
w at four different times. One can see that the potential well of the star cluster is deeper in the
beginning but gets shallower as the cluster loses mass.

Figure 9.20 shows the evolution of the cluster mass contained within the tidal radius for the
model C9. In addition, the mass in the tidal arms is shown as a function of time. It can be seen
that more particles escape into the trailing arm than into the leading arm. In the relaxation-
driven dissolution scenario this would be paradoxical since the inner Lagrange point L1 is at a
lower energy than the outer Lagrange point L2 according to Figure 6.3. However, most stars are
in the high-energy regions of the star cluster (see next Section). For these particles the phase
space for escape into the trailing arm is larger than that for escape into the leading arm. The
calculation of the basins of escape would give a hint for the understanding. A 3D calculation is
necessary in order to calculate the fraction of orbits which escape into the leading and trailing
arms, respectively.
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Figure 9.20: Evolution of the cluster mass within the tidal radius and the mass in the tidal arms
for the model C9. It can be seen that more particles escape into the trailing arm than into the
leading arm. The ratio of leading arm mass to trailing arm mass is always roughly 85%. The thin
vertical dotted lines correspond to t = 0.22, 0.43, 0.87, 1.30 and 1.74 Myr.
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Figure 9.21: Scaling of the ratio of half-mass time thalf to crossing time tcr as a function of the
particle number N for the models C1 - C9. The errors correspond to 1 crossing time tcr. We have
tcr = 0.123 Myr in all models. The “third-” and “fifth-mass” times are also shown.

9.3 Lifetime scaling and RE classification

Figure 9.21 shows the scaling of the half-mass time as a function of the particle number. The half-
mass time is the time after which the star cluster has lost half of its initial mass due to escaping
stars. It also shows as dots the times, when the cluster has one third or one fifth, respectively, of
its initial mass. The particle number in Figure 9.21 ranges from N = 103 up to N = 105. The
χ2 fit of a power law shows that the half-mass time depends only slightly on the particle number
N . This is in contrast to the relaxation-driven dissolution of star clusters. If the dissolution is
relaxation-driven, the stars are scattered above the escape energy (or a critical Jacobi energy) by
two-body relaxation before they can escape through exits in the equipotential surfaces around the
Lagrangian points L1 and L2. In this case the half-mass or dissolution time should depend more
strongly on the particle number than in Figure 9.21. Baumgardt 2001 [47] developed a detailed
theory for the relaxation-driven dissolution of star clusters on circular orbits in a steady tidal field
with back-scattering of potential escapers in which the half-mass time scales as thalf ∝ t

3/4
rh .

Fukushige & Heggie (2000) [5] give a hint for the understanding of the scaling of the half-mass
time in our models. In Figure 9.22 one can see that the cluster fills the energetic region above the
total effective potential of Figure 6.3 in Chapter 6. Many stars are initially outside of the tidal
radius rL = [x(L1) + x(L2)] /2 and most particles have Jacobi energies EJ per unit mass which
are higher than the mean effective potential EJ,L = [EJ(L1) + EJ(L2)] /2 of both Lagrange points
L1 and L2. We initially have for the model C9 the following ratio of particle numbers:
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Nr>rL

Nr<rL

≈ 0.37 and
NEJ>EJ,L

NEJ<EJ,L

≈ 1.80. (9.8)

The stars which are outside of rL and the high-energy particles with respect to the critical Jacobi
energy EJ,L can leave the cluster relatively fast as compared with the relaxation time, provided
they are not bound by a non-classical integral of motion which would hinder their escape. Figure
6.5 shows that above a certain Jacobi energy threshold in the high-energy regions all orbits are
chaotic and not subject to a non-classical integral of motion.

It is possible to classify the particles initially according to their membership to one of four
regions:

1. Large Radius High Energy (LRHE) region

2. Small Radius High Energy (SRHE) region

3. Large Radius Low Energy (LRLE) region

4. Small Radius Low Energy (SRLE) region

The distinction between these regions is shown with dashed lines in Figure 9.22. We call this the
Radius-Energy (RE) classification. The classification arises due to the existence of the Lagrange
points L1 and L2 at proximate (or equal) Jacobi energies. For the model C9 with N = 105, we
initially have the following occupation numbers of the four regions,

NLRHE = 24370, NSRHE = 39854, NLRLE = 2831, NSRLE = 32945. (9.9)

The top panel of Figure 9.23 shows that the particles in the LRLE region move into the tips of
the tidal arms. The bottom panel shows that most particles in the LRHE region have also moved
towards the tips of the tidal arms, but it is interesting to note that many particles of this region
are still bound to the cluster after t = 1.74 Myr even though their initial location is outside the
tidal radius. These particles belong to retrograde orbits which are bound to the star cluster by a
non-classical integral of motion. The calculation of Poincaré surfaces of section shows indeed that
there exist regular retrograde orbits for particles in the LRHE region.

Furthermore, the division of the stellar mass into the four regions seems to play a crucial role
in the dissolution process. Particularly the ratio

αM =
MLRLE + MLRHE + MSRHE

MSRLE
(9.10)

determines the physics of the dissolution process, where MLRLE, MLRHE, MSRHE and MSRLE are
the occupation masses of the four regions. If αM is close to zero the main process which leads to the
dissolution of the cluster is two-body relaxation, which scatters stars from the SRLE region into
the two high-energy regions. The larger the particle number N is, the slower is this process. The
author speculates that αM was very small for the old globular clusters in the halo of the Milky Way
and that their dissolution is relaxation-driven, but that many young star clusters (open clusters)
with larger values of αM may form at all times in the Milky Way and dissolve fast as compared
with the Hubble time. If αM is sufficiently large, mass loss from the SRLE region seems to be
dominated by a self-regulating process of increasing Jacobi energy due to the weakening of the
potential well of the star cluster, which is induced by the mass loss itself (Just et al. 2009 [13]). A
simple estimation shows that the critical Jacobi energy EJ,L increases more slowly with time as
compared with the Jacobi energy EJ of a star in the non-stationary gravitational potential of the
star cluster. While the LRLE, LRHE and SRHE regions of the star cluster dissolve, particles are
continually shifted from the SRLE region into the two high-energy regions as the potential well of
the star cluster gets shallower (cf. Figure 9.19). In addition, a fraction of particles is scattered from
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the SRLE region into the high-energy regions by two-body relaxation. The two-body relaxation
leads to the small slope 0.127 ± 0.030 in Figure 9.21. It is small since αM is very large for the
models C1 - C9. From the values in (9.9) we obtain αM ≈ 2 for the model C9 with the valid
assumption that the particles of different mass are initially uniformly mixed in radius and Jacobi
energy per unit mass.

If the physical tidal radius is equal to the radius where the density of the star cluster (King)
model vanishes, we have NLRLE = NLRHE = 0 and only two of the four regions are occupied with
particles. This is the standard case used in N -body simulations of star clusters in a tidal field so
far (e.g. Baumgardt & Makino 2003 [209], Trenti, Heggie & Hut 2007 [210], Ernst et al. 2005 [3]).
On the other hand, Tanikawa & Fukushige (2005) [211] adopted initial models where the King
cutoff radius was not equal to the physical tidal radius.

The author argues that the situation that the cluster is divided into the four regions of the
RE classification (with certain occupation numbers and masses) is the typical situation for newly
formed star clusters. A first crucial question is whether stars can form in all regions. The an-
swer is yes, if the condition for star formation is fulfilled. According to the modern picture of
gravo-turbulent star formation (e.g. Mac Low & Klessen 2004 [212], Ballesteros-Paredes et al.
2007 [213]), supersonic turbulence and shocks create initial density enhancements in a molecular
cloud. The formed molecular cloud core contracts gravitationally and fragments eventually. Fi-
nally, protostellar seeds form, accrete in-falling material and become main sequence stars. The
condition for star formation is independent of the distinction between high- and low-energy regions
of the effective potential. Thus one would expect that stars form initially in the high-energy regions
and the SRLE region slowly builds up as more material moves towards the center of the new star
cluster. Due to the turbulent structure within the molecular cloud it is also possible that a small
fraction of stars forms in the LRLE region. Predictions about the fractions of stars which belong
to the four different regions (i.e., the occupation numbers and masses) may be an important result
of the emerging theory of star cluster formation. What are typical ratios of occupation numbers
and masses in regions with efficient star formation? How do the occupation numbers and masses
differ between open and globular clusters? From the side of stellar dynamics the scaling problem
of the dissolution times (see Section 7.2) needs to be solved for the new dissolution mechanism
due to a non-stationary gravitational potential combined with the effect of two-body relaxation.

In the Galactic center, the supersonic shock and turbulent velocities must be high enough to
form mean densities which withstand the tidal shear forces. According to Morris (1993) [29], the
critical mean number density for gravitationally bound clouds in the Galactic center region is
given by

ncrit = 107 cm−3

(
1.6 pc

Rg

)1.8

, (9.11)

where Rg is the galactocentric radius.
The picture sketched above would be similar if the star cluster formation in the Galactic

center is triggered by the collision of two clouds. For typical parameters (e.g. for the formation of
clusters like Arches and Quintuplet) the rate of such cloud collisions in the Galactic center is low
as compared with the reciprocal of the lifetime of OB stars and can be crudely estimated to be

Rcol = 5× 10−8 yr−1

(
Mcloud

106 M�

)−1(
NH2

1023 cm−2

)−1(
σv

20 km s−1

)
(9.12)

where Mcloud, NH2 and σv are the mass, the column density and the velocity dispersion of a cloud
(Hasegawa et al. 1994 [214], Stolte et al. 2008 [154]).

Finally, we note that the Jeans time scale is of the same order as the dissolution times of the
author’s models in the Galactic center. According to Hartmann (2002) [215], who explored an
earlier idea by Larson (1985) [216], the Jeans (or fragmentation) time scale of a gaseous filament
can be written as
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τ ≈ 3.7
(

T

10 K

)1/2

A−1
V Myr (9.13)

where T is the temperature and AV ≈ 5 is the visual extinction through the center of the filament
(see also Klessen et al. 2004 [217]).
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Figure 9.22: Projection of initial Jacobi energies of stars onto the x−Φeff plane of Figure 6.3 for the
model C9. The dashed lines mark the different regions of the Radius-Energy (RE) classification.
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Figure 9.23: The model C9 at t = 1.74 Myr. The tracer particles (brown colored) have moved into
the tidal arms. Top panel: The tracer particles are the particles which were initially in the LRLE
region. Bottom panel: The tracer particles are those which were initially in the LRHE region.
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9.4 Eccentric star cluster orbit scenario

Figure 9.24: Evolution for the eccentric orbit of model E2 as snapshots from t = 0 Myr to t = 2.2
Myr. The orbit of the star cluster center is shown as a solid line.

In Section 9.2 we have seen in the case of the model C9 with the large cluster mass of Mcl =
106M� that the inspiral time scale due to dynamical friction with the modified Coulomb logarithm
according to Just & Peñarrubia (2005) [200] was very slow as compared with the dissolution
time. The modified Coulomb logarithm was more than a factor of five smaller than than the
value ln Λ = 10 which had been adopted in Gerhard (2001) [31]. This fact makes the star cluster
inspiral scenario improbable for circular orbits with realistic star cluster masses and realistic initial
galactocentric radii.

In this section, a case of a different scenario is investigated: The eccentric star cluster orbit
scenario. In this scenario, the eccentricity of the star cluster orbit is crucial for the transport
of young stars into the central parsec and not the orbital decay due to dynamical friction as in
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Figure 9.25: Cumulative and non-cumulative logarithmic histograms of galactocentric distances
of all cluster stars at t = 2.20 Myr for the model E2. The pericenter radius Rp of the star cluster
orbit, the tidal radius rL of the star cluster and the central parsec are marked with dotted lines.

Figure 9.26: Snapshot of model E2 at t = 2.20 Myr in the x− z plane. The dotted lines mark ±3
pc in z-direction.

104
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the star cluster inspiral scenario (Gerhard 2001 [31]). For the model E2, an extremely eccentric
star cluster orbit with an initial galactocentric radius of Rg(0) = 10 pc has been chosen. The
initial verlocity for the model E2 is Vg(0) = 0.25 Vc(Rg(0)), where Vc is the circular velocity. The
parameters of the scale free model of the central region of the Galactic bulge are the same as in
Table 6.1 in Chapter 6. For the star cluster, a King model with W0 = 6 and a half-mass radius
of rh ≈ 0.1 pc has been adopted. For this model the physical tidal radius is initially equal to the
100% Lagrangian radius, beyond which the density of the N -body realization of the King model
vanishes. The particle number is N = 3× 104. If we assume a mean stellar mass of 〈m〉 = 0.4M�,
the total mass would be Mcl = 1.2 × 104 M�. For such a small mass dynamical friction is not
effective. It has been switched off. Therefore it was possible to switch off the density center
correction as well in order to follow the evolution beyond the dissolution of the cluster.

Figure 9.24 shows snapshots of the evolution of model E2 from t = 0 to t = 2.2 Myr. The orbit
of the star cluster is shown as a solid line. It can be seen that the leading tidal arm wraps around
the Galactic center. The angular momentum of the stars with respect to the Galactic center is not
conserved due to the symmetry breaking effect which has been mentioned in Chapter 6.5 While
the leading arm wraps around the Galactic center, the trailing arm extends well beyond the initial
apocenter radius of the orbit of the star cluster center after some time.

Figure 9.25 shows a logarithmic histogram of the galactocentric distances of the stars at t = 2.20
Myr. It can be seen that a fraction of stars (≈ 200) resides within the central parsec around the
Galactic center. However, no star has reached a galactocentric distance smaller than 0.5 pc.

Figure 9.26 shows a snapshot of model E2 at t = 2.20 Myr in the x − z plane. The spatial
extent is less than 3 pc in both positive and negative z-direction as marked by the dotted lines.
One is tempted to conclude that the stars in the central parsec resemble a disk-like configuration.
A further inspection of Figure 9.24 shows that there are local maxima in the density of stars
corresponding to both the galactocentric peri- and apocenter radii of the stellar orbits in the tidal
arms. If the stars of the CWS (and CCWS?) have been members of a star cluster on a very
eccentric orbit, it should be possible to detect additional spots of enhanced density of young stars
which correspond to the galactocentric apocenter radii of the stellar orbits in the tidal arms. Since
the stellar density of the background stars decreases as ρg ∝ R−1.8

g outwards (Mezger, Duschl &
Zylka 1996 [104]) the detection should be theoretically possible according to Figure 9.24. Thus it
is conceivable to test the eccentric star cluster orbit scenario observationally.

5However, the theoretical framework from Chapter 6 has not yet been extended to eccentric star cluster orbits.
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Chapter 10

Conclusions

The author has studied the chaotic dynamics within a star cluster on a circular orbit which
is embedded in the tidal field of the Milky Way. He calculated within the framework of the
tidal approximation Poincaré surfaces of section, the basins of escape and the chaotic saddle as
the intersection of its stable and unstable invariant manifolds. The system is non-hyperbolic
which has important consequences for the dynamics, i.e. there are orbits which do not escape
if relaxation and the change of the star cluster potential with time are neglected. These are
mainly the retrograde orbits as has been shown earlier by Fukushige & Heggie (2000) [5]. Since
the corresponding asymmetry in the Poincaré surfaces of section is due to the Coriolis forces, it
may be termed a Coriolis asymmetry (cf. Innanen 1980 [90]). The escape times are longest for
initial conditions near the fractal basin boundaries. The decay law is a power law for those stars
which escape from the regions without sensitive dependence on the initial conditions in Figure
3.5 (i.e. with short escape times, as can be seen in Figure 3.6). On the other hand, the decay
law is exponential for orbits which escape from the regions with sensitive dependence on the
initial conditions (i.e. with long escape times). The effect of relaxation (i.e. a diffusion in the
Jacobi energy and the non-classical integral among different stellar orbits) and a changing star
cluster potential on the chaotic dynamics which has been investigated in this work may be a very
interesting topic for future research.

Also, the dissolution of star clusters in an analytic background potential of the Galactic center
has been studied by means of direct N -body simulations. The author described in detail the algo-
rithm of the new parallel N -body program nbody6gc which is based on Sverre Aarseth’s series
of N -body codes (Aarseth 1999 [177], 2003 [175], Spurzem 1999 [184]). It includes a realistic dy-
namical friction force with a variable Coulomb logarithm based on the work by Just & Peñarrubia
(2005) [200]. The initial value for the circular orbit of the model C9 is ln Λ ≈ 1.7. It turns out
that, even for a 106 M� cluster, the dynamical friction force is too weak to let a cluster on a
circular orbit at RC = 20 pc spiral into the Galactic center within the lifetime of its most massive
stars.

The author has studied in detail the dynamics of dissolving star clusters on circular orbits in
the Galactic center. The key to the understanding of this dynamical problem is the gravitational
potential which is the superposition of the effective tidal potential and the star cluster potential.
Along the orbit of the star cluster, the effective tidal potential resembles a parabolic wall. However,
in the close vicinity of the Galactic center there are deviations from the parabolic shape due to
higher-order terms in the Taylor expansion of the effective tidal potential around the ring of local
maxima corresponding to the circular orbit. Due to this asymmetry, the Lagrange points L1 and
L2 lie at different energies.

The properties of the tidal arms of a dissolving star cluster in the Galactic center have been
studied in detail. The density wave phenomenon found by Capuzzo Dolzetta, di Matteo & Miocchi
(2005) [11] and di Matteo, Capuzzo Dolcetta & Miocchi (2005) [9] appears in our model C9. The
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angles of the clumps can be calculated with the analytical theory in Just et al. (2009) [13] and
Chapter 4.

The author has presented a method to study the structure of tidal arms by using an eigensolver.
The eigensolver computes numerically a 1D coordinate system along the tidal arms and evaluates
characteristic dynamical quantities along this coordinate system.

The half-mass times of the author’s models C1 - C9 depend only weakly on the particle number
which indicates that two-body relaxation is not the dominant mechanism leading to the dissolution.
The reason is that the initial models are divided into four different regions in radius and specific
Jacobi energy space. This division has been termed the Radius-Energy (RE) classification. The
division of a newly formed star cluster into the four regions of the RE classification is probably
a typical situation according to the modern picture of gravoturbulent star formation (e.g. Mac
Low & Klessen 2004 [212], Ballesteros-Paredes et al. 2007 [213]). If the ratio αM (which has been
defined in Section 9.3) is large enough, the dissolution is no longer relaxation-driven but the mass
loss is governed by a self-regulating process of increasing Jacobi energy due to the weakening of
the potential well of the star cluster, which is induced by the mass loss itself (Just et al. 2009 [13]).

It may be of interest to note that more particles escape into the trailing tidal arm than into
the leading tidal arm. For the high-energy particles the phase space for escape into the trailing
arm is larger than that for escape into the leading arm. The reason is probably non-trivial. A 3D
computation of the basins of escape can shed light on this issue.

Finally, the author briefly investigated a case of the eccentric star cluster orbit scenario. In this
scenario, the eccentricity of the star cluster orbit is crucial for the transport of young stars into the
central parsec of our Galaxy and not the orbital decay due to dynamical friction. The eccentric
star cluster orbit scenario can be tested observationally by the detection of spots of enhanced
density of young stars corresponding to the galactocentric apocenters of the stellar orbits in the
tidal arms.
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Appendix A

Useful expressions

A.1 Constants and units

1 pc = 3.08567802× 1018 cm
1 Myr = 3.1558149984× 1013 sec
1 M� = 1.989× 1033 g

G = 6.672× 10−8 cm3g−1 sec−2,

= (222.3)−1 pc3M−1
� Myr−2

1 pc Myr−1 = 0.977775320 km sec−1

1 km sec−1 = 1.02272984 pc Myr−1

A.2 Formulas

cos (arctan φ) =
1√

1 + φ2
(A.1)

sin (arctan φ) =
φ√

1 + φ2
(A.2)

cos
(

φ

2

)
=

√
1
2

(1 + cos φ) (A.3)

sin φ = 2 sin
(

φ

2

)
cos
(

φ

2

)
(A.4)

arcsin(1) = arccos(0) = 2 arctan(1) =
π

2
(A.5)

∫ 2π

0

cos θ dθ =
∫ 2π

0

sin θ dθ = 0 (A.6)

∫ b1

0

b db

b2
0 + b2

=
1
2

ln
(

1 +
b2
1

b2
0

)
(A.7)

ln
(
1 + Λ2

)
≈ 2 ln Λ for Λ � 1 (A.8)
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Appendix B

Basins of attraction

Figure B.1: Example of basins of attraction for the motion of a particle in a double well potential
Φ(x) = −αx2 + βx4 (α = 1, β = 1/400) with a simple friction force f(vx) = −vx/τfric, where vx is
the velocity and τfric = 1 is a time scale. The two colors denote the two potential wells in which
the particle can be captured.
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Figure B.2: Newton-Raphson fractal for the algebraic equation x17 = 1. The 17 colors denote the
basins of attraction of the roots in the complex plane. In 1796, Gauß showed how to construct
the corresponding polygon with 17 corners with compass and straightedge.
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Appendix C

GRID computing

Today, in the 21th century, large-scale scientific research relies heavily on High-Performance Com-
puting (HPC). Massively parallel supercomputer architectures exist in most European countries,
providing an infrastructure for scientific computing in many fields of science, including astro-
physics. The idea that all these supercomputers could be connected to one huge European GRID
led to the DEISA initiative (“Distributed European Infrastructure for Supercomputing Applica-
tions”). A similar GRID initiative called TeraGrid exists in the US. In addition, there are smaller
GRID initiatives on a national level in many countries including the D-GRID initiative in Ger-
many, which is subdivided into smaller community projects corresponding to different branches of
science, e.g. the AstroGrid-D for astrophysical applications.

The N -body simulations which are presented in this thesis have been carried out on supercom-
puters within the DEISA GRID. For the historian, the author lists some of the properties of the
systems which were used.

Properties of the “Jump” system (see Figure C.1):

• Location: Research Center Jülich, Germany

• IBM p690 system

• 1312 Power4+ processors with 1.7 GHz

• 32 processors and 128 GB memory per node

• Gigabit-Ethernet network with 10 Gbit/s bandwidth

• Peak performance: 8.9 Tflops/s

Properties of the “Louhi” system (see Figure C.2):

• Location: CSC Espoo, Finland

• Cray XT4 system

• 1012 dual-core AMD Opteron 2.6 GHz compute nodes

• 1 GB memory per core

• Cray SeaStar2TM interconnect with 6.4 GB/s bandwidth

• Peak performance: 10.5 Tflops/s
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Figure C.1: The IBM p690 cluster “Jump” at the John von Neumann Institute for Computing at
the Research Center Jülich, Germany.

Figure C.2: The Cray XT4 system “Louhi” at CSC, Finland.

Properties of the “Huygens” system (see Figure C.3):

• Location: SARA Computing and Networking Services, Amsterdam, the Netherlands

• IBM clustered SMP system

• 1920 Power5+ processors with 1.9 GHz

• 8 processors and 64 GB memory per node

• Infiniband network with 4.5 µs latency and 1.2 GB/s bandwidth

• Peak performance: 14.6 Tflops/s
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Figure C.3: The IBM cluster “Huygens” at SARA, the Netherlands.
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Appendix D

Dynamical friction

Historically, dynamical friction has been derived in Chandrasekhar (1943) [218]. Dynamical fric-
tion is the result of a polarization effect as is illustrated in the sketch on the left-hand side of Figure
D.1. If a massive particle moves with a certain velocity through a medium of light particles, the
orbits of the light particles will be deflected, and a polarization cloud of light particles forms
behind the massive perturber. This “wake” decelerates the perturber by exerting a gravitational
force on it.

In the derivation of dynamical friction in the classical particle picture the author follows the
excellent lecture notes by Hénon (1973) [219] and the treatment in Binney & Tremaine 1987 [32].
The test particle which suffers the dissipative drag force will be labelled with subscript “1” and the
field particles with subscript “2”. Suppose the test particle with mass m1 is moving with relative
velocity v21 (with respect to the field particles) along the x axis (see Figure D.2) encountering
field particles with mass m2 which deflect it.

At first we consider one single encounter and use the classical theory of the two-body problem.
The sketch on the right-hand side of Figure D.1 depicts a hyperbolic encounter between two
particles and shows the quantities which are involved. After one encounter the velocitiy of the
test star will be deflected by an angle β which is given by

tan
(

β

2

)
=

G(m1 + m2)
bv2

21

=
b0

b
(D.1)

where G is the gravitational constant, b the impact parameter and b0 = G(m1 + m2)/v2
21 a

fundamental length scale of the problem. It is the impact parameter where the deflection equals
90 degrees. We switch now into the center of mass system between the test particle and one field
particle it encounters. In this system, the velocities of the test particle and the field particle,
respectively, are given by

v1 =
m2v21

m1 + m2
v2 = − m1v21

m1 + m2
(D.2)

Assuming that all field stars have velocity v2, the situation can be depicted as in the sketch in
Figure D.2. It is convenient to introduce a system of cylindrical coordinates x, b, θ. After one
encounter, the velocity of the test particle will be deflected by an angle β given by (D.1) in the
plane xOP . The velocity of the test star after one encounter will be v′1:

v1 =

 v1

0
0

 , v′1 =

 v1 cos β
v1 sin β cos θ
v1 sin β sin θ

 (D.3)

Thus the velocity change is given by
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b
b

b

+
1

1

2

2

Figure D.1: Left sketch: A polarization cloud forms. Right sketch: Hyperbolic encounter between
two stars.

∆v1 = v′1 − v1 = v1

 cos β − 1
sin β cos θ
sin β sin θ

 =
2v1

b2
0 + b2

 −b2
0

b0 b cos θ
b0 b sin θ

 (D.4)

where we have used the trigonometric identities (A.1), (A.3) and (A.4) given in Appendix A in
the last step.

So far we have considered only one encounter. We apply now the statistics over many encoun-
ters. The differential probability for the test star to encounter a field star with impact parameter
b and angle θ within a time interval dt is simply

dp = nσv21dt (D.5)

where the number density n of field stars and the cross section σ are given by

n =
∫

f(v2)d3v2, σ = b db dθ, (D.6)

and f(v2) is the phase space distribution function of field stars.
The mean velocity change is then given by

〈∆v1〉 =
∫

∆v1dp

=
∫ 2π

0

∫ b1

0

2v1

b2
0 + b2

 −b2
0

b0 b cos θ
b0 b sin θ

n b db dθ v21 dt

= −2πG2(m1 + m2)m2

v2
12

v21

v21
ln
(

1 +
b2
1

b2
0

) 1
0
0

 dt

∫ v21

0

f(v2)d3v2 (D.7)

where b1 is the maximum impact parameter and we have used the integrals (A.6) and (A.7) given
in Appendix A in the last step. The non-vanishing mean change of velocity in the direction
opposite to the velocity itself is called dynamical friction. We define the ratio of maximum and
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v1

v2q

x

y

z

P
b

O

Figure D.2: Sketch of the coordinate systems. It is convenient to introduce a system of cylindrical
coordinates x, b, θ. After one encounter, the velocity of the test particle will be deflected by an
angle β given by Equation (D.1) in the plane xOP .

minimum impact parameters as Λ = b1/b0 and use the approximation (A.8) given in the Appendix
to simplify the argument of the logarithm. For a Maxwellian distribution of field stars, the integral
over velocity space is readily carried out. The dynamical friction is then given by

dv1

dt
= −4πG2(m1 + m2) m2 ln Λ n0

v2
1

[
erf(X)− 2X√

π
exp(−X2)

]
v1

v1
(D.8)

where X = v1/(
√

2σ) and we have dropped the subscript “2”.

D.1 Variable Coulomb logarithm

The Coulomb logarithm is the result of an integration over impact parameters. A variable Coulomb
logarithm has been introduced by Just & Peñarrubia (2005) [200]. A crucial assumption in the
derivation of dynamical friction is the local approximation of the distribution function of field
stars. It is the notion that there exists an infinite homogeneous medium of field stars whose
distribution function is everywhere equal to the local distribution function (Binney & Tremaine
1987 [32], p. 510). The expression in (D.6) for the number density n of field stars is essentially
based on the local approximation of the distribution function which breaks down if the maximum
impact parameter b1 is larger than the local scale length L of the density profile, i.e. one should
postulate that

b1 < L =
n

|∇n|
=

ρ

|∇ρ|
. (D.9)

where n and ρ are number and mass densities, respectively. Thus, the local scale length of the
density profile serves as a physically significant upper cutoff of the integral over impact parameters.

D.2 Realistic χ function

The χ function is the result of an integration over velocity space. It is given by
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χ =
∫ v1

0

f(v2)d3v2. (D.10)

It depends on the velocity v1 of the test particle through the upper limit in the integral and
is not constant for eccentric orbits of the test particle. The χ function is shown for different
models in Figure D.3. For the Plummer model with a flat core, the χ function is given by the
analytical expression (2.41). In the derivation of dynamical friction we used a Maxwellian velocity
distribution. For the Dehnen and Hernquist models, which are suitable for cuspy galactic bulges
(see Hernquist 1990 [220], Dehnen 1993 [221], Tremaine et al. 1994 [222]) the integral has to be
calculated numerically.

The spherically symmetric Dehnen models (Dehnen 1999 [221], Tremaine et al. 1994 [222]
are characterized by a dimensionless parameter γ and a length scale a. We define the following
quantities,

Φ0 =
GM

a
, ve(r) =

√
2|Φ(r)|, x =

v

ve
, p =

Φ
Φ0

, y = p(1− x2) (D.11)

where Φ0 is the energy unit, G is the gravitational constant, M is the total mass, ve is the escape
speed, Φ(r) is the potential and x, p and y are the dimensionless velocity, potential and energy,
respectively. The distribution function of the Hernquist model which is a special case of the
Dehnen model with γ = 1 is (Hernquist 1990 [220])

f(y) =
M

4 (2π2GMa)3/2

1
(1− y)5/2

[
3 arcsin (

√
y)−

√
y(1− y)

(
3 + 2y − 24y2 + 16y3

)]
(D.12)

and we have

pmax = −Φ(0)/Φ0 = 1, xmax = 1, (D.13)

since the potential for Dehnen models with γ < 2 is finite at r = 0. The distribution function for
the Dehnen model with γ = 3/2 is (Dehnen 1993 [221])

f(y) =
3M

2 (2π2GMa)3/2

√
y

(2− y)4

[
− 9

16
− 99

16
y +

405
8

y2 − 3705
56

y3 +
561
14

y4 − 181
14

y5

+
15
7

y6 − 1
7
y7 +

3
(
3 + 32y − 8y2

)
8
√

y(2− y)
arcsin

(√
y

2

)]
(D.14)

and we have
pmax = −Φ(0)/Φ0 = 2, xmax = 1. (D.15)

Using the trapezoidal rule, we can numerically integrate over velocity space by calculating

y(p, x) = p
(
1− x2

)
χ(p, x) =

∫ x

0

f(y(p, x′))x′2dx′ (D.16)

This gives the χ functions for dynamical friction which are shown in Figure (D.3).
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Figure D.3: The χ function for dynamical friction for different models of stellar systems. The
quantities v, ve and p are the velocity, the escape velocity and the potential in units of the central
potential, respectively. For the Hernquist and Dehnen models, the normalized potential decreases
from left to right. For the singular isothermal sphere we made the ad hoc assumption that the
isothermal sphere were of finite mass and in virial equilibrium (i.e., 〈v2

e〉 = 12σ2
2) which makes it

possible to define an escape velocity from the velocity dispersion. The data for the Hernquist and
Dehnen models are by A. Just (priv. comm.).
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Appendix E

New Subroutines

Subroutine Function Called by subroutine
GALCEN GC external force on star cluster REGINT, KSPERT
GCBULGE Calculates all bulge quantities OUTPUT, GCINIT, GCINT, GCCHECK,

GCLMASS, GCCHI, GCXCOUL
GCCHECK GC energy check ADJUST, OUTPUT
GCCHI Calculates current value of χ GCINT, OUTPUT
GCENERGY Calculate GC energy GCCHECK, GCINIT, GCINT, GCLMASS
GCFORCE Calculate GC force GCINIT, GCINIT, GALCEN
GCFPR Time transformation (optional) GCINIT, GCINT
GCINIT GC initializations START
GCINT GC integrator INTGRT
GCIPOL Interpolation of GC jerk GCINT
GCLMASS Update star cluster mass and memberships GCINIT, GCINT
GCXCOUL Calculates current value of ln Λ GCINIT, OUTPUT

Table E.1: New subroutines of nbody6gc.
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Appendix F

Input file: galcen.dat

1.0 0.0 0.25 25.0 2.0 2
0 7 1 2 10.0 1.0
0.589048 100. 0. 1.2 0.1 10.0 10.0

ETAG,GAMMA,VCIRC,RGAL,XTIDAL,ICLUST
NBULGE,NCB,NCHI,VARI,XCOUL,QFIT
CB(K)

--------------------------------------------------------------------------
ETAG: Accuracy parameter for GC integration
GAMMA: Optional potential energy exponent for time transformation

(=0.0 constant time steps)
VCIRC: Tangential cluster velocity in units of circular velocity at

cluster position (=1.0 circular orbit)
RGAL: Distance of cluster from GC in units of the virial cluster radius
XTIDAL times RTIDAL is assumed as spherical cluster boundary
ICLUST select how to treat cluster mass:

=0 constant mass
=1 tidal radius approximation using XTIDAL
=2 with tidal radius and dyn. fr. only for cluster members

NBULGE: Bulge model (see model-par.txt)
NCB: Number of CB(K) parameters
NCHI: Type of Chi function for dynamical friction (see model-par.txt)
VARI: Type of variable Coulomb logarithm (see model-par.txt)
XCOUL: Coulomb Logarithm
QFIT: Fitting factor for Coulomb Logarithm [see Just & Penarrubia,

A&A 431, 861 (2005)]
CB(K): Bulge parameters (see model-par.txt)
--------------------------------------------------------------------------
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Documentation file: model-par.txt

NBULGE: Type of bulge
0 Scale free with black hole
1 Kepler
2 Homogeneous sphere
3 Isotermal with core and cutoff
4 Dehnen model
5 Plummer model
6 Scale free without black hole

NCHI: Type of chi function
0 from file chi(v,phi) (e.g. Dehnen models)
1 Maxwell with 2*sig^2=vcirh^2
2 King model (not yet implemented)
3 Plummer model

VARI: Type of Coulomb logarithm
0 fixed Coulomb logarithm
1 linearly increasing during first orbit?
2 variable Coulomb logarithm [Just & Penarrubia, A&A 431, 861 (2005)]

CB(K): Bulge parameter in N-body units
1 rcore (isothermal), a (Dehnen, Plummer)
2 rcut (isothermal, Dehnen)
3 sigma0 (isothermal)
4 Power index for galactic bulge mass profile (Scale free)
gamma (Dehnen)

5 rho (homogeneous sphere)
6 Galactic bulge mass at 1 pc (Scale free)
Total mass in units of star cluster mass (Dehnen, Plummer, isothermal)

7 Black hole mass (Scale free, Kepler)
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Setting up a run

Choose star cluster parameters:

1. Particle number N

2. Type of model (King, Plummer) → rh/rV [see Table 1 in Gürkan (2004) [164]]

3. Half-mass radius rh [pc] → rV [pc], RBAR

4. Star cluster mass Mcl [M�] → ZMBAR

Choose bulge parameters:

1. Type of model (Scale free, Dehnen, Kepler, Plummer)

2. CB constants (see model-par.txt, note that some constants depend on Mcl!)

Choose dynamical friction treatment

1. Fixed / Variable Coulomb logarithm

2. Type of χ function

Choose initial conditions of star cluster orbit:

1. Initial galactocentric radius Rg(0) [rV ]

2. Initial velocity Vg(0) [Vc]

Determine time scales:

1. N -body time unit tV ≈
√

222.3 RBAR3/ZMBAR Myr

2. Orbital time scale of star cluster torb (use intgc)

3. Half-mass relaxation time trh ≈ 0.192N/ ln(γN) tV

4. Crossing time inside the star cluster tcr = 2
√

2 tV
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Appendix I

Abbreviations

Abbreviation Meaning
ARI Astronomisches Rechen-Institut, Heidelberg, Germany
BCH Baker-Campbell-Hausdorff (identity)
CMZ Central molecular zone
CWS Clockwise system
CCWS Counter clockwise system
DEISA Distributed European Infrastructure for Supercomputing Applications
GC Galactic center
HPC High performance computing
IMBH Intermediate-mass black hole
IRS Infrared source
KS Kustaanheimo-Stiefel (regularization)
LBV Luminous Blue Variable
LRHE Large Radius High Energy (region)
LRLE Large Radius Low Energy (region)
NR Numerical Recipes in Fortran 77, Press et al. (2001) [199]
RE Radius-Energy (classification)
SMBH Supermassive black hole
SRHE Small Radius High Energy (region)
SRLE Small Radius Low Energy (region)
SNR Supernova remnant
ULX Ultra-luminous X-ray source

Table I.1: Abbreviations used in this thesis.
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Computing, Jülich, Germany, 2006), p. 159.

[198] S. Casertano and P. Hut, Ap. J. 298, 80 (1985).

[199] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in
Fortran 77 (Cambridge University Press, Cambridge, 2001).
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