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Abstract

The evolution of galaxies represents a hitherto unsolved area of modern astrophysics.
Various dynamical effects play an important role in shaping galaxy centres making
them extremely interesting to study in detail. Nuclear star clusters are often a key
element of galaxy centres and feature both diverse and complex formation histories as
well as extremely high stellar densities. Many aspects of nuclear star cluster formation
are still uncertain and require new constraints to make full use of their ability as ideal
laboratories for studying galaxy evolution and the growth of massive black holes that
are located in their centres. An improved knowledge of nuclear star cluster assembly is
especially relevant today in order to properly interpret the vast amount of upcoming
data produced with all-sky surveys. I present in this dissertation various analyses of
high-resolution observational data sets from space-based missions ranging between
the X-ray and mid-infrared regimes and a new computer simulation of the assembly of
massive star cluster populations. The first analysis reveals tight correlations between
the properties of nuclear star clusters and old globular star clusters in the Milky Way
indicating a potential common formation mechanism of the two cluster types. In a
second analysis I identify nuclear star clusters with variable accretion signatures from
massive black holes within them and provide upper limits for lower-mass systems in
case of non-detections. I demonstrate in a third project that analysing the spectral energy
distribution of the nuclear star cluster in the nearby massive spiral galaxy Messier 74
constrains the assembly history of both the host galaxy and a potential massive black
hole in the star cluster’s centre. In addition to the projects that rely on observational
data sets, I introduce a new simulation that is based on a dark matter-only computation
and considers the co-formation of galaxies and massive star clusters. I show that
my simulation can reproduce a number of observational quantities such as the mass
function of young massive star clusters or the metallicity distribution of old globular
clusters, both in nearby galaxies. I conclude by summarising the contents of this
dissertation and by presenting future efforts that build on the presented observational
and numerical approaches.





Zusammenfassung

Die Entwicklung von Galaxien stellt einen bislang ungelösten Teilbereich der modernen
Astrophysik dar. Verschiedene dynamische Effekte beeinflussen die Entstehung von
Galaxienzentren, was diese besonders interessant macht. Oftmals sind Kernsternhaufen
ein Hauptelement von Galaxienzentren und zeichnen sich durch diverse und kom-
plexe Entstehungsgeschichten und extrem hohe stellare Dichten aus. Viele Aspekte
der Entstehung von Kernsternhaufen blieben bislang verborgen und wir benötigen
neue Erkentnisse, damit man sie als ideale Umgebungen zur Eingrenzung von Gala-
xienentwicklungsmodellen und dem Wachsen von massereichen Schwarzen Löchern,
welche sich in ihren Zentren befinden, nutzen kann. Das verbesserte Verständnis von
der Entstehungsgeschichte von Kernsternhaufen ist zu diesem Zeitpunkt besonders
relevant, um neue und umfangreiche Datensätze, die mit Hilfe von flächendeckenden
Himmelsvermessungen gewonnen werden, korrekt interpretieren zu können. In dieser
Dissertation präsentiere ich verschiedene Analysen von Beobachtungsdaten, die Daten
aus dem Wellenlängenbereich zwischen dem Röntgen- und mittleren Infrarotbereich
nutzen und von hochauflösenden Weltraumteleskopen aufgenommen wurden, sowie
eine neue Computersimulation, welche die Entstehung von Populationen von masserei-
chen Sternhaufen betrachtet. Die erste Analyse enthüllt eine enge Verbindung zwischen
den Eigenschaften von Kernsternhaufen und alten Kugelsternhaufen der Michstraße
und lässt einen vergleichbaren Entstehungsprozess zwischen beiden Sternhaufentypen
vermuten. In einer zweiten Analyse nutze ich Röntgendaten und identifiziere Kernstern-
haufen, die variable Akkretionssignale von massereichen Schwarzen Löchern aufweisen
und präsentiere maximale Akkretionsflüsse für andere Systeme in masseärmeren Ga-
laxien. In einem dritten Projekt demonstriere ich, dass sich durch die Analyse einer
spektralen Energieverteilung eines Kernsternhaufens in der nahegelegenden masserei-
chen Spiralgalaxie Messier 74 die Entwicklungsgeschichte der Galaxie, sowie eines
potentiell vorhandenen massereichen Schwarzen Lochs, eingrenzen lässt. Zusätzlich
zu den verschiedenen Analysen der Beobachtungsdaten führe ich ein neues Modell von
Galaxienentstehung ein, welches, basierend auf einer Berechnung der Verteilung von
dunkler Materie, analytische Gleichungen nutzt, um die Entstehung von Galaxien und
massereichen Sternhaufen zu simulieren. Ich zeige, dass mein Modell bereits in der
Lage ist die Eigenschaften von Kernsternhaufen in benachbarten Galaxien, wie zum
Beispiel die Massefunktion von jungen Sternhaufen oder die durchschnittliche Vertei-
lung der Metallizitäten von alten Kugelsternhaufen als Funktion der Galaxienmasse
zu erklären. Der Abschluß dieser Dissertation beinhaltet eine Zusammenfassung der
eingeführten Arbeiten und gibt einen Ausblick auf zukünftige Projekte, die durch neue
Beobachtungsdaten und numerische Ansätze erkundet werden können.
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Chapter 1
Introduction
A principal astrophysical research line revolves around how baryons assemble within
dark matter halos to eventually form the magnificent galaxies that we observe today.
This process of galaxy assembly involves a large range of energy-, time-, and physical
scales, which makes galaxies extremely complex objects. Galaxies are a result of the
combined action of a plethora of astrophysical phenomena that work simultaneously,
which makes it difficult to distinguish between the different processes and understand
galaxy formation as a whole. This complexity is directly revealed by, for example,
the occurrence of warps, triaxial components, halos with shell-like structures, clumps,
tidal tails, other (arbitrary) irregularities, and many galaxy constituents such as bars,
bulges, disks, or rings, both in nearby and distant galaxies.

One noteworthy galaxy constituent are massive star clusters, self-gravitating spheres
that contain more than a million individual stars, and have long survival times. By
analysing the properties of their stars, their internal kinematics, their trajectories within
their host galaxy, and their abundance, one can directly probe the properties of the
host galaxy itself, both today and at the time when these star clusters formed, which is
typically many billion years ago. This makes star clusters a suitable tracer for galaxy
evolution.

A special type of a massive star cluster is located in galaxy centres. These objects
are referred to as “nuclear star clusters” and frequently interact with their environment,
accrete cold molecular gas that forms stars within them, merge with other star clusters
that either formed in their proximity or migrated towards the galaxy’s centre, and
interact with massive black holes that are located within them. These processes are
believed to be absent for any other type of star cluster, making nuclear star clusters
unique and an interesting laboratory to study many astrophysical processes.

In order to use nuclear star clusters as probes of galaxy evolution it is essential to
understand how they relate to other types of star clusters and how they co-evolve with
massive black holes (or not). Many of these issues remain not fully constrained and
new results on nuclear star cluster evolution are necessary in light of the large increase
in observational data from large-scale surveys and big telescopes. For example, we find
high-redshift galaxies with many star clusters that contain a significant fraction of the
galaxy’s mass within a small volume and directly affect how the galaxy evolves until
today. Upcoming all-sky surveys will rapidly increase the number of transient events,
such as the tidal disruption of stars by a black hole or gravitational wave mergers from
(stellar mass) black holes. Both a high fraction of stars bound in star clusters and
the tidal disruption of stars by massive black holes benefit from dense environments,
and nuclear star clusters exhibit the highest stellar densities observed. Therefore, it is
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important to address open questions around nuclear star cluster assembly as soon as
possible.

The goal of this dissertation is to advance our knowledge of nuclear star cluster
assembly across a large galaxy mass range. I will demonstrate that high-resolution
imaging data across a large wavelength range is important for this goal and present a
new semi-analytical galaxy formation model for the build-up of star cluster populations
that may contribute to the build-up of a nuclear star cluster.

2



Chapter 2
Nuclear Star Clusters

Some of the earliest work that specifically focussed on galaxy centres was conducted
many decades ago but did not detect any separate components from extended galaxy
bulges that have been known for a few centuries. The first detections of distinct nuclear
components stem from Becklin and Neugebauer (1968) for the Milky Way and Light
et al. (1974) for Messier 31, the most massive galaxy in the Local Group. After these
initial discoveries it was found that other nearby galaxies contain such a separate
nucleus as well, both in nearby massive (e.g. Gallagher et al., 1982; Nieto & Auriere,
1982; O’Connell, 1983; Kormendy, 1985; Lauer, 1985) and lower-mass dwarf galaxies
in the Virgo galaxy cluster (e.g. Caldwell, 1983; Reaves, 1983; Binggeli et al., 1985).
It took another few years until the term “nuclear star cluster” (NSC hereafter) was
first used (Kormendy & Djorgovski, 1989), which is the common reference for the
“separate nucleus” in modern-day astronomy.

Definitions of NSCs face the same challenges as for globular clusters (GCs hereafter)
in that their properties overlap with other systems (Renaud, 2018). For example, some
NSCs clearly show similar star formation histories as GCs (such as KKs 58; Fahrion
et al., 2020b) and others are located at up to 10 % for the host galaxy’s half-light radius
(e.g. Poulain et al., 2021). This issue directly reveals an important question: what
differentiates NSCs from GCs? While there exist different definitions in the literature,
in this dissertation I classify a star cluster that formed within the galaxy as an NSC if
one of three conditions is met:

1. the star cluster experienced at least one merger event with another massive star
cluster, or

2. the star cluster contains multiple stellar populations of different metallicity and
age, or

3. the star cluster formed in the kinematic centre of its host galaxy and has a long
survival time.

The next sections outline the basic properties of NSCs and how they relate to other
systems, such as GCs, nuclear disks, or massive black holes within a galaxy. We will
raise different questions about NSC assembly whose answers are important for galaxy
evolution as a whole and may assist in solving related issues to the seeding and growth
mechanisms of massive black holes, tidal disruptions of stars, or gravitational wave
events. Current and future facilities will investigate and constrain these phenomena,
thus, motivating my detailed investigation of galaxy centres.
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1Figure 2.1. Nuclear star cluster frequency (or “occupation fraction”) as a function of host galaxy
stellar mass. Coloured lines in the left panel separate galaxies within different environments
with the Local Volume (distance ≲ 11 Mpc) being the least- and the Coma galaxy cluster the
most dense surrounding. The right panel separates galaxies by their morphological Hubble
𝑇-type where ellipticals have 𝑇 ≤ 0, spirals 0 < 𝑇 ≤ 8, and irregulars 𝑇 > 8. The shaded regions
give the 1-𝜎 uncertainty. The data are taken from Hoyer et al. (2021).

2.1 Properties

2.1.1 Frequency

NSCs are basically ubiquitous objects in galaxies of different types and masses. They
have already been detected in dwarf ellipticals (e.g. Binggeli et al., 1987) and irregulars
(e.g. Georgiev et al., 2009a), massive ellipticals (e.g. Côté et al., 2006) and spirals
(e.g. Carollo et al., 2002), and ultra-diffuse galaxies (e.g. Lambert et al., 2024; Khim
et al., 2025). NSCs occupy some of the least massive galaxies, such as Eridanus 2 with
a stellar mass of 𝑀⋆ ≈ 105 M⊙ (Contenta et al., 2018) to some of the most massive
galaxies such as IC 2006 with 𝑀⋆ ≈ 3 × 1010 M⊙ (Turner et al., 2012). Despite their
presence at all mass- and morphological type scales, the NSC frequency depends on
several global quantities.

Figure 2.1 shows the NSC frequency (or “occupation fraction”) as a function of
host galaxy stellar mass, separated by galaxy environment and morphological type.
In galaxies up to a few times 109 M⊙ the frequency increases up to a maximum of
approximately 80 % before declining for the most massive objects. The initial increase
in the dwarf galaxy regime shows a secondary dependency in that elliptical galaxies
in dense environments host NSCs more frequently than their irregular counterparts
in galaxy voids. The dependence on environment has mostly been attributed to a
difference in both the frequency (Sánchez-Janssen et al., 2019a) and number (Carlsten
et al., 2022) of GCs. This argument was used to explain the discrepancy between
elliptical and irregular galaxies of the same stellar mass as the former has a higher GC
specific frequency (a quantity for “GC richness”) than the latter (Jordán et al., 2007a;
Miller & Lotz, 2007; Peng et al., 2008).
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Assessing the NSC frequency in disk-dominated and irregular galaxies is influenced
by the presence of dust and star forming regions. These features often make it
challenging to both detect the NSC and to identify the location of the galaxy centre.
Additionally, while NSCs in more massive galaxies often reside in or close to the
kinematic centre of their host galaxy (Böker et al., 2002; Neumayer et al., 2011), this
is not necessarily the case for dwarf galaxies where NSCs can be located outside the
photometric centre by up to 10 % of the half-mass radius (Poulain et al., 2021; Khim
et al., 2024). This offset is also present in irregular dwarf galaxies (Fahrion et al.,
2022a) and further complicates detection. Furthermore, dense bulges in more massive
ellipticals can make a photometric detection of NSCs challenging, especially in distant
galaxies and lower-resolution imaging data. Therefore, the presented NSC frequencies
in Figure 2.1 mark lower limits.

At the massive galaxy end the NSC frequency decreases and is independent of galaxy
environment. One commonly referred to explanation is that these galaxies previously
contained NSCs that were eventually destroyed during a galaxy merger. During this
process the two NSCs would migrate towards each other due to dynamical friction,
a process that can be seen in NGC 7727 (Voggel et al., 2022), until they come into
contact with each other. Afterwards, during the coalescence of the two star clusters the
two massive black holes at their centres continue to sink towards each other, injecting
energy into surrounding stars and heating the clusters. This may eventually result in
the destruction of the cluster and lead the two black holes to enter the gravitational
wave regime at sub-parsec scales (e.g. Quinlan & Hernquist, 1997; Milosavljević &
Merritt, 2001; Merritt et al., 2007; Sesana et al., 2008; Bekki & Graham, 2010).

Notice that the decline in NSC frequency is not as clear for massive spiral galaxies.
Instead of a rapid decline the occupation fraction shows a slower decline and may even
remain constant (Ashok et al., 2023). This observation could corroborate the theory
that mergers of massive black holes predominantly destroy NSCs in elliptical galaxies,
as outlined above. It remains unclear, however, why the NSC occupation fraction
does not reach 100 % if major galaxy mergers are absent: which physical mechanisms
prevent NSCs to assemble?

2.1.2 Masses and Sizes

Early studies with the Hubble Space Telescope already revealed that NSCs feature
a variety of luminosities (or masses) and half-light radii (e.g. Carollo et al., 1998;
Böker et al., 2002): while some fraction of these objects have similar sizes to typical
GCs (approximately 3 pc) others are more massive and extended. By now many more
NSCs were studied with high-resolution imaging data, leading to the compiled data
sets presented in Figure 2.2. Typical NSCs have masses of the order of 106 M⊙ and
half-light radii of a few parsec, i.e. they are more massive but similarly sized as GCs.
However, some of the lowest-mass NSCs compare well to typical GC masses suggesting
a potential common origin and evolution of both star cluster types.

There are two factors that separate NSCs from GCs in the size-mass plane: (1) The
most massive NSCs are up to two orders of magnitude more massive than the most
massive (old) GCs, and (2) there exists a positive relationship between the half-light
radius and mass of NSCs that is absent in the presented GC sample.
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1Figure 2.2. Distribution of half-light radii and masses of nuclear (black; various galaxy
environments) and globular star clusters (gray; 1-, 2-, and 3-𝜎 contours; Virgo galaxy cluster).
Dotted lines give the average density within the half-mass radius. The data for nuclear star
clusters are compiled from Côté et al. (2006), Georgiev et al. (2009a), Georgiev and Böker
(2014), Georgiev et al. (2016), Spengler et al. (2017), Pechetti et al. (2020), and Ashok et al.
(2023). The data for globular clusters come from the ACSVCS survey (https://www.acsvcs.org;
Côté et al., 2004; Jordán et al., 2005; Peng et al., 2006).

The first observation indicates that the most massive NSCs do not assemble in similar
ways compared to GCs but receive additional mass contributions. As we discuss in
Section 2.2, an NSC may grow through star formation in-situ and via merging star
clusters. The contribution of both processes may be required at least for the most
massive NSCs as they exceed the upper mass limit for star cluster formation (of the
order of 108 M⊙; Norris et al., 2019).

The positive correlation between half-light radius and mass has been observed in
young massive clusters (e.g. Bastian et al., 2012; Ryon et al., 2015) and, thus, may be
related to their birth environments. Giant molecular clouds in the Milky Way, that may
eventually form star clusters, show roughly constant surface densities (i.e. 𝑅 ∝√𝑀;
Larson, 1981) and may contribute to the positive correlation. For NSCs, however,
the data indicate a more complex behaviour than both a constant density or constant
surface mass, potentially as high as 𝑅 ∝ 𝑀, but clearly with significant scatter at all
mass scales.

Other factors that play a role in setting the relationship between the half-light radius
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and mass include the NSC’s assembly history. On the one hand, if an NSC and a
migrating GC have similar mass one expects 𝑅 ∝√𝑀 after a single merger whereas
𝑅 ∝ 𝑀 in the limit of many GC mergers (Antonini et al., 2012). On the other hand,
in-situ star formation can occur in the centre of the NSC (e.g. Hannah et al., 2021),
thus increasing its central density and mass but not necessarily the half-mass radius.
If the star formation occurs outside the NSC’s centre the observed half-mass radius
may increase. Both effects become visible in UV- and optical filterbands where the
half-light radius and axis ratio of the NSC changes with wavelength (e.g. Carson et al.,
2015) and viewing angle (Seth et al., 2008a).

The NSC mass also increases as a function of host galaxy mass, which I show in
Figure 2.3. The scaling relation is not constant across the whole mass range and
displays a transition region around 𝑀⋆ ≈ 109.5 M⊙ where the relationship becomes
steeper. A simple linear regression to galaxies below this mass threshold yields

log10(𝑀NSC/M⊙) = 0.54 × log10(𝑀⋆/109 M⊙) + 6.55 . (2.1)

NSCs in more massive galaxies have typical masses above this relationship, which
indicates either an additional mass-contributing factor or a more efficient build-up of
the cluster. We discuss this observation again in Section 2.2.

Notice that the slope of the correlation is below unity, i.e. NSCs loose importance
for the mass budget of galaxies with increasing stellar mass. Therefore, it is important
to study the assembly of NSCs especially in dwarf galaxies to better understand dwarf
galaxy assembly itself. However, the (structural) properties of NSCs in this mass
regime are still relatively unexplored (c.f. Figure 2.2).

2.1.3 Stellar Populations

Many NSCs assemble in a complex way and contain multiple stellar populations with
different metallicities, ages, and kinematics. This is fundamentally different from GCs
that contain multiple stellar populations of the same age and comparable metallicities
and kinematics (but with other element variations; see Bastian & Lardo, 2018, and
references therein). For example, M 54, the NSC of the Sagittarius dwarf galaxy
that is currently in a merger process with the Milky Way, contains distinct stellar
populations with metallicities and ages differing by ≈ 2 dex and ≈ 12 Gyr, respectively
(Alfaro-Cuello et al., 2019).

I show examples of estimates for the metallicity and age of the main stellar population
of NSCs as well as three examples for NSC star formation histories in Figure 2.4. While
most NSCs have dominant stellar populations with 𝜏 ≈ 10 Gyr there exist other systems
with significantly younger ages, going down to 𝜏 ≈ 100 Myr. Similarly, the spread in
metallicity extends from [M/H] ≈ −2.5 to 0.5, thus, NSCs show a great diversity in
their dominant stellar populations.

There exists a secondary dependence on galaxy stellar mass (and, thus, NSC mass as
per Figure 2.3) in that NSCs in more massive galaxies have higher metallicity values.
At these high metallicity values the age spread is larger than for NSCs in lower-mass
galaxies. This mass dependence indicates that self-enrichment might play an important
role in NSC formation and that this process already occurs at the earliest stages of
galaxy formation.
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1Figure 2.3. Nuclear star cluster versus host galaxy stellar mass. The correlation below a galaxy
stellar mass of 109.5 M⊙ is described well by a linear relationship, as indicated in the top left
corner. The data represent galaxies in a variety of environments and were collected from
Georgiev et al. (2016), Spengler et al. (2017), Eigenthaler et al. (2018), Ordenes-Briceño et al.
(2018), Sánchez-Janssen et al. (2019a), Pechetti et al. (2020), Carlsten et al. (2022), Ashok
et al. (2023), and Khim et al. (2024).

Another observation is that some “uncertainties” of individual data points are larger
than for others. The magnitudes of the error bars do not reflect statistical but systematic
uncertainties from the modelling procedure. All spectra were fit with single stellar
populations, thus, a larger uncertainty correlates with a more prominent subpopulation.
This is exemplified for NGC 247, 3621, and 5102 in the right panel of Figure 2.4 where
their star formation histories vary greatly but their (mass-weighted) age estimates do
not.

Another evidence for the presence of multiple stellar populations in NSCs come
from kinematic analyses. As mentioned in the previous subsection, structural changes
in NSCs appear at different wavelength ranges. Such changes are captured by kinematic
analysis and reveal a great variety in rotation signatures (e.g. Seth et al., 2008a; Seth
et al., 2010; Lyubenova et al., 2013; Nguyen et al., 2018; Lyubenova & Tsatsi, 2019;
Pinna et al., 2021). In some cases the overall rotation of the NSC can also be off-axis
compared to the host galaxy’s rotation axis, indicative of an ex-situ origin from a galaxy
merger (Fahrion et al., 2019).

Detailed analyses of individual NSCs reveal differential rotation of stellar populations.
For example, the old and young stellar populations of M 54 show unequal rates of
rotation, which indicates separate formation mechanisms (Alfaro-Cuello et al., 2020).
Such complexity is present in the Milky Way’s NSC as well with a rotating substructure
perpendicular to the Galactic plane (Feldmeier et al., 2014).
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1Figure 2.4. Left panel: Light-weighted metallicity of the main stellar population of a nuclear
star cluster versus its light-weighted age, colour-coded by the host galaxy’s stellar mass. The
data are taken from Lyu et al. (2025). Right panel: Normalised star formation rate versus age of
nuclear star clusters in NGC 247, 3621, and 5102. The top panel provides the mass-weighted
estimates of the iron-abundance and age. The data are taken from Kacharov et al. (2018).

Overall, the presence of a wide metallicity and age distributions as well as kinematic
signatures of different stellar populations show that NSCs have a complex and variable
formation history. It is unclear if this complexity (e.g. the presence of individual
stellar populations) directly reflects galaxy-wide events, such as galaxy mergers or disk
instabilities, or whether most of the NSC’s evolution is distinct from large-scale galaxy
dynamics.

2.2 Formation Scenarios

All of the above mentioned properties point towards a complex formation history of
most NSCs. A majority of approaches that try to explain the assembly of NSCs can be
separated into two categories: accreted GCs (c.f. Section 2.2.1) and star formation in
galaxy centres (c.f. Section 2.2.2).

Note that the different formation scenarios are not mutually exclusive. Instead, it
is believed that both GC migration and central star formation contributes to NSCs at
basically all galaxy mass scales, although perhaps in different relative amounts. We
will discuss this point towards the end of this section.

2.2.1 Ex-situ Origin

The idea that a GC migrates towards a galaxy centre where it would transition to an
NSC was born shortly after the discovery of distinct nuclear components in nearby
galaxies (Tremaine et al., 1975). This scenario assumes that massive star clusters form
in the galaxy’s disk at larger radii of typically a few kpc and migrate towards the centre
due to an exchange of energy with nearby individual bodies (stars and dark matter
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particles) as well as gas, i.e. via dynamical friction. The star clusters loose mass during
their in-spiral, which is why only the most massive objects would not disrupt, thus,
potentially explaining why NSCs are often the most massive star cluster in a galaxy
(see e.g. Figure 2 in Neumayer et al., 2020).

Observational evidence suggests that this formation scenario is important and may
dominate in the dwarf galaxy regime, i.e. at galaxy stellar masses below 𝑀⋆ ≲ 109 M⊙.
For example, some galaxies show a deficit of GCs in their inner regions (e.g. Lotz et al.,
2001; Capuzzo-Dolcetta & Mastrobuono-Battisti, 2009) suggesting that they migrated
inwards and merged with each other. Other systems like UGC 7346 feature multiple
centrally-concentrated GCs that will likely merge with each other, resulting both in
the formation of an NSC and a lack of massive GCs in the galaxy’s central region
(Román et al., 2023). While these authors argue for dwarf galaxy mergers, Poulain et al.
(2021) do not detect any “shell”-like features, which could then suggest (1) a biased
formation of massive GCs in galaxy centres, or (2) a stalling of migrating GCs due to
too shallow slopes of the underlying density distribution. More examples of multiple
centrally concentrated star clusters are presented in Georgiev and Böker (2014), Pak
et al. (2016), and Euclid Collaboration (2024a) but the cause of this concentration of
GCs is unclear. Finally, most recently Poulain et al. (2025) disovered multiple NSCs
that feature tidal tails, which is indicative of recent star cluster mergers.

Some NSCs feature similar metallicities and ages compared to typical GCs (see
Section 2.1.3 and Fahrion et al., 2020b) and the presence of more metal-rich stars
in their direct surrounding (within the galactic body) indicate that the NSCs formed
outside the centre (Fahrion et al., 2021). From a statistical perspective, there exists a
tight correlation between the fraction of galaxies that host at least one GC and an NSC
(Sánchez-Janssen et al., 2019a; Carlsten et al., 2022). This demonstrates a tight link
between the two types of star clusters.

The dynamical friction-driven merger scenario of GCs has received great attention in
numerical studies as well, suggesting that massive GCs reach a galaxy’s centre within a
Hubble time (e.g. Capuzzo-Dolcetta, 1993; Oh & Lin, 2000; Agarwal & Milosavljević,
2011; Neumayer et al., 2011; Antonini et al., 2012; Arca Sedda & Capuzzo-Dolcetta,
2014; Gnedin et al., 2014; Abbate et al., 2018; Arca Sedda et al., 2020; Leaman & van
de Ven, 2022; Leveque et al., 2022). By using 𝑁-body similations, Hartmann et al.
(2011) argue that NSCs, which result from repeated GC mergers, exhibit a large variety
of structural properties, including masses, sizes, and rotation signatures that result in a
flattening of the light profiles (see also Tsatsi et al., 2017). As mentioned previously
(c.f. Section 2.1.3), such signatures are observed in NSCs, including the Milky Way’s
NSC (Feldmeier et al., 2014; Feldmeier-Krause et al., 2017b).

Other works also consider the 𝛾-ray excess in galaxy centres. As argued by Gao
et al. (2024), migrating GCs will merge with the NSC (or get tidally disrupted) and
place millisecond pulsars in the galaxy centre region. This process may then account
for observational constraints for the galaxy centres of the Milky Way (Abazajian et al.,
2014) and M 31 (Ackermann et al., 2017) when considering up to 100 GC merger
events (see also Arca Sedda et al., 2018; Fragione et al., 2018).

In summary, a great number of numerical works and observational studies support
the GC merger-driven scenario for the build-up of NSCs.
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2.2.2 In-situ Origin

One of the strongest arguments in favour of in-situ star formation is the presence of
young (𝜏 ≲ 100 Myr) stellar populations within NSCs. These populations have been
detected in massive galaxies (e.g. Loose et al., 1982; Rossa et al., 2006; Seth et al.,
2006; Walcher et al., 2006; Kacharov et al., 2018), including ellipticals (e.g. Nguyen
et al., 2017, 2019). More recent studies reveal that in-situ star formation contributes to
the mass budget of NSCs in dwarf irregulars (Fahrion et al., 2022a; Lyu et al., 2025) and
sometimes ellipticals (Paudel & Yoon, 2020) as well. As mentioned previously, young
populations are often detected in the centres of NSCs resulting in a more centrally
concentrated light emission in far-ultraviolet bands (Bender et al., 2005; Georgiev &
Böker, 2014; Carson et al., 2015; Hannah et al., 2021), including the Milky Way’s
NSC (Paumard et al., 2006; Feldmeier-Krause et al., 2015; Chen et al., 2023). This
shows that, overall, in-situ star formation is an important contributor to the build-up of
NSCs, potentially at all galaxy masses.

Using a hydrodynamical simulation, Guillard et al. (2016) discuss a hybrid scenario
where a star cluster that still retained some cold gas from its birth environment merges
with an NSC. The competing time scales of gas expulsion and migration require that
these young star clusters form in the NSC’s vicinity, diffusing the picture between
in-situ formation and an ex-situ origin. Observations indicate that this scenario may
still be at play in forming NSCs today. The nearby dwarf galaxy Henize 2-10 shows
signs for centrally concentrated massive star clusters (Johnson et al., 2000; Cresci et al.,
2010, 2017; Costa et al., 2021) that will merge with each other to form a yet absent
NSC (Nguyen et al., 2014; Arca-Sedda et al., 2015). More recently, Fahrion et al.
(2024) finds two young clusters in the vicinity of the NSC in NGC 4654 that may merge
with and contribute to the NSCs mass.

Cold gas in galaxy centres is required for central star formation to occur. Various
mechanisms have been proposed to fuel a galaxy’s centre with new cold gas, including
angular momentum-loss due to non-axisymmetric potentials like bars (Shlosman et al.,
1990), dynamical friction of star forming clumps (Bekki et al., 2006; Bekki, 2007),
supernovae-driven turbulence (Sormani et al., 2020; Tress et al., 2020), rotational
instabilities within a disk (Milosavljević, 2004), tidal compression in shallow density
profiles (Emsellem & van de Ven, 2008), and galaxy-merger induced in-spiral (Mihos
& Hernquist, 1994; Gray et al., 2024). The relative importance of the different fuelling
channels is unclear and numerical experiments that probe simultaneously the different
channels are challenging because of the multi-scale structure of the problem (but see
van Donkelaar et al., 2024, for a recent zoom-in simulation). Individual studies already
investigated gas in-flows (Hopkins & Quataert, 2010), self-regulation (McLaughlin
et al., 2006), or two-body relaxation (Aharon & Perets, 2015) but an emerging picture
is still missing.

The currently most-promising approach is to use semi-analytical models. Antonini
et al. (2015) simulate the co-formation of galaxies, massive black holes, and NSCs
based on dark matter-only merger trees and find that in-situ star formation plays an
important role in NSC assembly, especially in massive galaxies. In a similar vein,
Leaman and van de Ven (2022) consider GCs in an elliptical host galaxy and determine
the mass fraction of in-spiralling GCs that contribute to the build-up of an NSC. In
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1Figure 2.5. Estimated fraction of mass that formed in-situ versus nuclear star cluster (left) and
host galaxy stellar mass (right panel). The determination of the in-situ fraction is based on the
expected mass contribution from migrating globular clusters (Leaman & van de Ven, 2022).
The data are taken from Fahrion et al. (2022b).

turn, the residual mass between the expected value from the NSC to host galaxy stellar
mass relationship (c.f. Figure 2.3) and the merger-driven scenario should form in-situ.

The latter model by Leaman and van de Ven (2022) was applied to a compilation of
nearby galaxies to determine the in-situ fraction as a function of NSC and host galaxy
mass (Fahrion et al., 2022b). As I show in Figure 2.5, the in-situ fraction positively
correlates with NSC mass increasing from 𝑓in−situ ≈ 20 % at 𝑀NSC ≈ 105 M⊙ to
𝑓in−situ ≈ 100 % at 𝑀NSC ≈ 109 M⊙. At a given NSC mass the scatter in the correlation
can be quite significant, except for the lowest- and highest-mass NSCs, which is a result
of both the set-up of the theoretical model and the variety in galaxy systems. Given the
scaling relation between NSC and host galaxy stellar mass it is somewhat surprising to
find that the correlation between in-situ fraction and host galaxy stellar mass disappears.
This issue is likely related to the model assumptions of an isolated elliptical galaxy
where both secular and galaxy-merger driven gas migration are missing.

Overall, both in-situ star formation and migrating star clusters contribute to the
present-day properties of NSCs. While many specific details about e.g. the dominant
process for gas migration or the total number of GC mergers remain elusive, observations
indicate that the relative contributions significantly vary with mass and that in-situ star
formation becomes more important in massive NSCs.

2.3 Relation to Other Systems

2.3.1 Nuclear Disks

Nuclear stellar disks (NSDs) are disk-like structures with typical scale-lengths of≲ 200 pc and occupy some galaxy centres, including the Milky Way (e.g. Launhardt
et al., 2002; Schödel et al., 2014a). One may expect them to be related to NSCs given
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that they form stars and star clusters (e.g. Barth et al., 1995; Pérez et al., 2000; de Grijs
et al., 2017) with the latter potentially contributing to the build-up of the NSC if they
survive for significant times (but see counter-arguments in Portegies Zwart et al., 2001,
2002). For the best studied case, the Milky Way, Nogueras-Lara et al. (2020), Schödel
et al. (2020), and Schultheis et al. (2021) find that the NSC and NSD may differ in that
they host intermediate-age populations of different ages, which are absent from the
other nuclear type (Nogueras-Lara et al., 2019). However, Nogueras-Lara et al. (2023)
point out that both kinematic and metallicity gradients in the Milky Way centre point
towards a common origin of both structures.

NSDs are present in a number of external galaxies as well (e.g. Pizzella et al., 2002;
Gadotti et al., 2019), however, not always accompanied by an NSC. The formation
scenarios of NSDs are tightly linked to the above mentioned in-situ scenario for NSCs,
i.e. gas funnelling via bar structures (e.g. Binney et al., 1991; Knapen et al., 1999;
Fragkoudi et al., 2016) or galaxy mergers (Downes & Solomon, 1998; Mayer et al.,
2008). Additionally, van Donkelaar et al. (2024) find that gas-rich star clusters can
contribute both to the build-up of the NSC and NSD, directly linking both systems.
Finally, as pointed out in Trani et al. (2018), the presence of a massive black hole and
the properties of the NSC can directly influence the shape of circum-nuclear rings that
may shape the NSD.

2.3.2 Massive Black Holes

NSCs are directly related to MBHs by providing seeding mechanisms, influencing their
growth rate, and increasing the probability of transients. This makes NSCs a powerful
laboratory to study the assembly of MBHs, especially with upcoming surveys from the
Large Synoptic Survey Telescope, the Einstein Telescope, and the Laser Interferometer
Space Antenna.

The co-existence of MBHs and NSCs has been known for many decades, starting
with the Milky Way (Becklin & Neugebauer, 1968; Balick & Brown, 1974; Genzel
et al., 1997; Ghez et al., 1998). Detections and measurements of black hole masses in
NSCs in other galaxies come from modelling the velocity dispersion towards the NSC’s
centre, determining the enclosed mass and constraining the mass of black holes to
𝑀BH ≳ 105 M⊙ (e.g. Bacon et al., 1994; Bender et al., 2005; Seth et al., 2010; Nguyen
et al., 2017, 2018, 2019, 2022; Thater et al., 2023). A separate approach is to detect
electromagnetic accretion signatures from a MBH across various wavelength regimes
(Filippenko & Ho, 2003; Seth et al., 2008a; Shields et al., 2012; Foord et al., 2017;
Baldassare et al., 2022; Dullo et al., 2024). However, for this approach to work one
generally requires that the optical light emission is at most comparable to NSC in order
to be able to detect and characterise the star cluster.

Central densities of the order of 108 M⊙ pc−3 (Kritos et al., 2023) that are sometimes
present in nearby NSCs (Stone et al., 2017) may provide ideal conditions to generate
initial black holes masses (or “black hole seeds”) that could potentially explain the
observations of high-redshift quasars with inferred black hole masses of a billion solar
masses (e.g. Bañados et al., 2018; Zhang et al., 2024). The high stellar densities allow
for a collisional mass-growth of a very massive star that collapses to an intermediate-
mass black hole after a few million years (e.g. Katz et al., 2015; Sakurai et al., 2017;
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Schleicher et al., 2022) or via the merger of a cluster of black holes within the star
clusters centre (e.g. Gaete et al., 2024). Afterwards, the intermediate-mass black holes
in dense star clusters can merge with each other during cluster mergers to form even
higher-mass black holes, reaching the “super-massive black hole” range (e.g. Mapelli
et al., 2021; Fragione, 2022; Fragione et al., 2022; Mukherjee et al., 2023; Liu et al.,
2024; Torniamenti et al., 2024). These signatures can be traced by their emission of
gravitational waves (e.g. Liu & Bromm, 2021) and it appears likely that many detected
and future signals come from distant NSCs.

Once formed, the MBH can grow through multiple channels, which are influenced
by the NSC’s presence. For example, the high stellar densities can cause the (partial)
tidal disruption (Rees, 1988; Somalwar et al., 2024) or even direct plunge-ins of star
cluster members or stellar mass black holes (e.g. Atallah et al., 2023; Kıroğlu et al.,
2025). Other interesting phenomena include quasi-periodic eruptions (Evans et al.,
2023; Arcodia et al., 2024a; Guolo et al., 2024; Linial & Metzger, 2024a, 2024b; Linial
& Quataert, 2024) and extreme-mass-ratio in-spirals (see an overview in Rom & Sari,
2025). In some cases electromagnetic signals can be detected (e.g. Yao et al., 2023)
if the collisional body is not a black hole or if the star does not directly plunge into
the MBH. However, in case of a merger event with a compact object one may expect
to detect gravitational waves (e.g. Liu & Bromm, 2021). According to the numerical
study of Polkas et al. (2024), NSCs are a more important contributor to tidal disruption
event rates than bulges because of their higher densities and in-situ star formation that
may re-fill the loss-cone region. If true, this observation makes NSCs an important
environment for high-energy astrophysical phenomena.

Another channel for MBH growth is via the accretion of gas. The NSC can assist in
this growth channel as well by providing a deeper gravitational potential. As discussed
in Partmann et al. (2024), the deep potential wells of NSCs are important for black hole
growth in dwarf galaxies. In turn, this suggests that MBHs outside of NSCs (but within
dwarf galaxies) retain roughly their seeding mass and could be used to constrain the
initial MBH mass function (Greene et al., 2020). For more massive systems Naiman
et al. (2015) point out the importance of NSCs in galaxy-galaxy mergers resulting in
enhanced accretion rates of MBHs. Overall, NSCs are likely an important ingredient
in MBH growth.

Given their similarities it was speculated about 20 years ago that NSCs and MBHs
are more tightly linked and potentially belong to the same class of object, leading to the
creation of the term “central massive object”. This attempt at unifying the two types of
central objects had the idea that NSCs occupy the centres of dwarf and MBHs more
massive galaxies (e.g. Côté et al., 2006; Ferrarese et al., 2006; Wehner & Harris, 2006).
However, this idea was eventually refuted by Graham (2012), Leigh et al. (2012), and
Scott and Graham (2013). They argued that these two classes show distinct scaling
relations that could indicate different assembly channels. In general, though, it is
clear that both NSCs and MBHs interact with each other and influence their evolution.
Improving our understanding of NSC assembly can, therefore, improve our knowledge
of the assembly of MBHs and potentially constrain the mass distribution of black hole
seeds, a yet unsolved quantity.
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2.3.3 Ultra-Compact Dwarf Galaxies

Tidal stripping of galaxies during galaxy-galaxy interactions can disrupt the lower-mass
constituent while preserving its NSC. Depending on the initial conditions of the
interaction, the accreted nucleus can orbit its new host resulting in a phenomenon called
“ultra-compact dwarf galaxy” (UCD). These objects were first discovered in the nearby
Fornax galaxy cluster (Hilker et al., 1999; Drinkwater et al., 2000; Phillipps et al.,
2001) and have similar masses and sizes as massive star clusters and dwarf elliptical
galaxies, shaping their name (Norris et al., 2014).

One of the theories for the formation of UCD is the birth of young massive star
cluster outside of galaxy disks during galaxy-galaxy interactions (e.g. Fellhauer &
Kroupa, 2002). However, this scenario fails at explaining features of many UCDs,
such as extended star formation histories (Norris et al., 2015) with multiple stellar
populations (Janz et al., 2016), MBHs (Mieske et al., 2013; Seth et al., 2014; Ahn
et al., 2017, 2018; Taylor et al., 2025), and elevated mass-to-light ratios compared to
GCs (Dumont et al., 2022), and masses that exceed the speculated upper mass end of
GCs of 𝑀max

GC ≈ 5 × 107 M⊙ (Norris et al., 2019). Additionally, tidal streams around
UCDs, which could show the remnant of the stripped host galaxy, have been detected
strengthening the connection between NSCs and UCDs (Jennings et al., 2015; Voggel
et al., 2016; Paudel et al., 2023).

Some of the most massive GCs may be accreted NSCs as well. This includes M 54
that shows multiple stellar populations (Alfaro-Cuello et al., 2019, 2020), 𝜔Cen that
has a large metallicity and age spread (see Clontz et al., 2024; Nitschai et al., 2024, and
references therein) as well as an intermediate-mass black hole (Häberle et al., 2024),
and B23-G78, the most massive GC in M 31 that contains an MBH (Pechetti et al.,
2022).

Overall, UCDs are interesting objects that may assist in solving the riddle of NSC
formation and co-evolution of MBHs. This is especially true in the most massive
galaxies that lack an NSC (c.f. Figure 2.1) but are expected to harbour many UCDs
(Mieske et al., 2012).

2.4 Thesis Goals

There still exist many open questions about the formation of NSCs and how they
interact with MBHs and their host galaxies. For example, in the dwarf galaxy regime it
is unclear if NSCs share the same structural parameters as GCs, whether they contain
any MBHs or are responsible for the detection of off-centre AGN (e.g. Mezcua &
Domı́nguez Sánchez, 2020), or how their frequency is affected by the host galaxy
environment. It also needs to be explicitly demonstrated that the properties of an NSC
help to constrain the evolution of its host galaxy.

The goal of this dissertation is to make progress on these issues. First, in Chapter 3,
we investigate the properties of NSCs in dwarf galaxies. This work significantly expands
on the structural parameters in the low-mass regime, which is important for constraints
on e.g. tidal disruption events (as outlined in Hannah et al., 2024). Afterwards, we
probe the properties of the NSC of Messier 74 in Chapter 4, utilising imaging data from
the far-ultraviolet to the mid-infrared regime. The data will prove useful to constrain
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the metallicity and age of the NSC and, in turn, the assembly history of the host galaxy
itself and a potential MBH within the star cluster. In Chapter 5, we search for new
signatures of low-luminosity AGN in dwarf galaxies that host an NSC using soft X-ray
data from the eROSITA/SRG mission. Finally, in Chapter 6, we discuss the details of a
newly developed semi-analytical galaxy formation model that takes into account the
formation of massive star clusters. The chapter outlines the first results of the model,
focussing on the present-day star cluster populations in disk- and bulge-dominated
galaxies. In the last part (Chapter 7) I summarise the contents of this dissertation and
present an outline for future projects.

2.5 Chapter Summary

▹ Nuclear star clusters (NSCs) occupy many galaxy centres and are tightly linked to
globular clusters (GCs), massive black holes (MBHs), and ultra-compact dwarf
galaxies.▹ A typical NSC has a similar size but is more massive (and, thus, denser) than a
typical GC.▹ NSCs often show extended star formation histories with wide metallicity ranges.▹ A correlation between NSC and host galaxy stellar mass indicates a co-evolution
of both systems.▹ NSCs form either via in-situ star formation or via the accretion of migrating
GCs. These formation channels directly impact the seeding and growth of MBHs
within NSCs.▹ Interactions between star cluster members and an MBH result in electromagnetic
and gravitational wave emission that can be detected over cosmological distances.
The high central stellar densities and repeated in-situ star formation favour NSCs
as ideal laboratories to study such high-energy phenomena.▹ The projects discussed in this dissertation tackles multiple open questions about
NSC assembly and presents a basis for future investigations.
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Chapter 3
Nuclear Star Clusters in Nearby Dwarf
Galaxies

Declaration

The contents of this chapter were previously published in Hoyer et al. (2023a). All
co-authors provided commentary that improved the published work.

Abstract

We use high-resolution Hubble Space Telescope imaging data of dwarf galaxies in the
Local Volume (≲ 11 Mpc) to parameterise 19 newly discovered nuclear star clusters
(NSCs). Most of the clusters have stellar masses of 𝑀nsc

⋆ ≲ 106 M⊙ and compare to
Galactic globular clusters in terms of ellipticity, effective radius, stellar mass, and
surface density. The clusters are modelled with a Sérsic profile and their surface
brightness evaluated at the effective radius reveals a tight positive correlation to the host
galaxy stellar mass. Our data also indicate an increase in slope of the density profiles
with increasing mass, perhaps indicating an increasing role for in-situ star formation
in more massive hosts. We evaluate the scaling relation between the clusters and
their host galaxy stellar mass to find an environmental dependence: for NSCs in field
galaxies, the slope of the relation is 𝛼 = 0.82+0.08

−0.08 whereas 𝛼 = 0.55+0.06
−0.05 for dwarfs

in the core of the Virgo cluster. Restricting the fit for the cluster to 𝑀gal
⋆ ≥ 106.5 M⊙

yields 𝛼 = 0.70+0.08
−0.07, in agreement with the field environment within the 1𝜎 interval.

The environmental dependence is due to the lowest-mass nucleated galaxies and we
speculate that this is either due to an increased number of progenitor globular clusters
merging to become an NSC, or due to the formation of more massive globular clusters
in dense environments, depending on the initial globular cluster mass function. Our
results clearly corroborate recent results in that there exists a tight connection between
NSCs and globular clusters in dwarf galaxies.

3.1 Introduction

The central regions of galaxies are interesting because of the extreme objects they
host. Besides supermassive black holes (SMBHs), which are believed to be common
in high-mass galaxies (Kormendy & Ho, 2013), nuclear star clusters (NSCs) often
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occupy the centers of low- to intermediate-mass galaxies1. Their size of typically a
few parsecs (e.g. Georgiev & Böker, 2014; Carson et al., 2015; Pechetti et al., 2020)
and high stellar mass (𝑀nsc

⋆ ∼ 107 M⊙; e.g. Georgiev et al., 2016) make NSCs the
densest stellar systems known (see Neumayer et al., 2020, for a review). Similarities
between these objects and globular clusters (GCs) have led to the hypothesis that NSCs
are formed by the consecutive migration of GCs (Tremaine et al., 1975). However,
not all NSC properties can be explained by this formation scenario alone [e.g. young
stellar populations in the central regions both in the Milky Way (e.g. Lu et al., 2009;
Feldmeier-Krause et al., 2015) and other nearby galaxies (e.g. Bender et al., 2005; Seth
et al., 2006; Walcher et al., 2006; Carson et al., 2015; Nguyen et al., 2017; Kacharov
et al., 2018; Nguyen et al., 2019)]. Therefore, a second formation scenario, in-situ star
formation, was proposed (e.g. Milosavljević, 2004; Agarwal & Milosavljević, 2011).
Neumayer et al. (2020) established the idea that the relative importance of the two
scenarios changes as a function of galaxy mass: in dwarf galaxies (𝑀gal

⋆ ≲ 109 M⊙)
GC migration is the dominant formation scenario, whereas in high-mass galaxies
(𝑀gal
⋆ ≳ 109 M⊙) the majority of the NSC stellar mass is build-up in-situ. Most recently,

this transition was observed in dwarf early-type galaxies (Fahrion et al., 2020b, 2021).
In addition, using the theoretical framework of Leaman and van de Ven (2022) of the
build-up of NSCs through GC migration, Fahrion et al. (2022b) quantified the in-situ
fraction of NSCs which appears to decline towards low NSC masses.

NSC occurrence is not uniform and varies with host galaxy stellar mass, morpholog-
ical type, and environment. It is now well established that NSCs are most common
in galaxies with stellar masses of 𝑀gal

⋆ ∼ 109.5 M⊙ (Sánchez-Janssen et al., 2019a;
Neumayer et al., 2020; Hoyer et al., 2021) and that their rate of occurrence declines
towards lower and higher stellar mass. It is speculated that the rivalry between SMBHs
and NSCs at the high-mass end can lead to the evaporation of the cluster due to tidal
heating (e.g. Côté et al., 2006) and binary black hole mergers (e.g. Antonini et al.,
2015). At the low-mass end, it seems that NSCs and GCs are closely linked (e.g.
Sánchez-Janssen et al., 2019a; Carlsten et al., 2022) and that the lack of GCs in lower
mass galaxies drives the declining NSC frequency.

Numerous new detections were made over the last few years with ground-based
surveys, increasing the total number of NSCs beyond 1000 (Muñoz et al., 2015;
Venhola et al., 2018; Sánchez-Janssen et al., 2019a; Carlsten et al., 2020; Habas
et al., 2020; Poulain et al., 2021; Su et al., 2021). While ground-based surveys have
the clear advantage of rapidly increasing number statistics, with the exception of the
closest systems, their data cannot be used to determine structural parameters, and very
few structural parameter estimates are available for NSCs in low-mass galaxies. To
investigate this parameter space, high-resolution imaging data are required, as provided
by the Hubble Space Telescope (HST). In the past, numerous studies have used HST
data to analyse NSCs (e.g. Carollo et al., 1998; Böker et al., 1999a, 2002; Walcher
et al., 2005; Côté et al., 2006; Seth et al., 2006; Baldassare et al., 2014; Georgiev &
Böker, 2014; Pechetti et al., 2020), even in galaxies in the ∼ 100 Mpc distant Coma
galaxy cluster (den Brok et al., 2014; Zanatta et al., 2021).

1A few galaxies are known to host both objects; see Table 3 in Neumayer et al. (2020) for a recent
compilation.
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Recently, we analysed HST data for more than 600 galaxies to constrain the frequency
of NSCs in the Local Volume (Hoyer et al., 2021). During this analysis, we discovered
21 new NSCs that had not been previously catalogued. In this paper we present
structural parameter measurements of these 21 newly discovered NSCs. We investigate
possible relations of the NSCs’ parameters and their connection to the underlying host
galaxy.

Section 3.2 briefly introduces the data and describes the method of identifying
nucleated galaxies. Details regarding image processing, PSF generation, and the
fitting procedure are presented in Section 3.3. Section 3.4 discusses our results on
NSC parameters, their wavelength dependence, and scaling relations. We conclude
in Section 3.6. Additional remarks regarding uncertainties are given in Section 3.7.1.
All data tables are presented in Section 3.7.2 and are also available online in a
machine-readable format.

3.2 Identification of Nuclear Star Clusters

In Hoyer et al. (2021) we determined if galaxies have NSCs through a multi-step process
using HST ACS, WFPC2, and WFC3 data. In a first step, we visually inspected all
available imaging data. During this step, we removed galaxies with obscured centres or
if their centres were not visible on the data. Furthermore, we identified bright central
and compact objects as potential NSCs.

Next, we created multiple three- and two-dimensional figures, as well as a one-
dimensional surface brightness plot. The aim of these plots is to (1) indicate the
intensity of the compact source compared to its host galaxy, (2) check the position of
the compact source within the galactic body, and (3) visually inspect the extent of the
compact source and its host galaxy. As an example, Figure 3.1 shows these plots for the
ACS/WFC 𝐹814𝑊 data of NGC 2337, the most massive galaxy in our sample of newly
discovered NSCs. Given that NSCs are dense stellar systems close to the photometric
and kinematic centres of their hosts (Neumayer et al., 2011; Poulain et al., 2021), we
expect them to (1) have the highest intensity within the galactic body and (2) lie ‘close’
to the centres of elliptical isophotes which were fit to the galactic body, as visualised in
the middle panel of Figure 3.1. In this step, we removed potential NSC candidates if
they lay in the outskirts of their host galaxy (with typical distances of ≥ 1 kpc to the
galactic centre) or if several other compact sources had similar intensities, indicating
that the compact source is either a faint foreground star or one of many GCs.

In a third step we performed a two-dimensional fit to the data to extract the magnitude
and extent of the compact source. A point spread function (PSF) was generated at the
location of the compact object of the chip using TinyTim (Krist, 1993, 1995) and the fit
was performed with Imfit (Erwin, 2015). The PSF was then convolved with a Sérsic
profile (Sérsic, 1968) of the form

𝐼(𝑟) = 𝐼eff exp{ − 𝑏𝑛[( 𝑟
𝑟eff
)1/𝑛 − 1]} , (3.1)

and fit to the data. Here 𝑟eff is the effective radius, 𝐼eff the intensity at the effective
radius, 𝑛 the Sérsic index, and 𝑏𝑛 solves Γ(2𝑛) = 2𝛾(2𝑛, 𝑏𝑛) where 𝛾(𝑥, 𝑎) is the
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incomplete and Γ(𝑥) the usual Gamma function (see also Graham & Driver, 2005).
Such Sérsic profiles have been widely used in fitting nearby NSCs in the recent literature
(e.g. Graham & Spitler, 2009; Carson et al., 2015; Pechetti et al., 2020). If the extent
of the compact source was larger than 20 % of the width of the PSF (typically ≥1 pc),
we classified the compact object as an NSC and considered it for further analysis. In
total, 21 compact objects in the central regions of galaxies fulfilled all requirements
(including NGC 2337 in Figure 3.1), were classified as NSCs, and are new detections.
We show images of these 21 objects in Figure 3.2.

3.3 Analysis

3.3.1 Image Processing

For each galaxy, we combined single exposures using flat-fielded data products obtained
from the Hubble Legacy Archive2 (HLA). Instead of using the available final data
products, we prefer to combine the exposures ourselves to ensure a homogeneous
calibration process and to control the pixel scale of the drizzle output.

In a first step, we obtained the raw exposures from the ACS, WFPC2, and WFC3
instruments and updated the world coordinate system of each exposure using the
latest reference files. This step was required to obtain a sub-pixel accuracy between
individual exposures and to avoid a systematic broadening of the NSC. We fed the
aligned exposures to AstroDrizzle (Gonzaga et al., 2012) which combined them into
a single science product. No sky subtraction was performed. The program allows
the user to modify the pixel fraction and pixel scale of the final drizzled image. The
pixel fraction varies between zero and one where a value of zero corresponds to pure
interlacing and a value of one to shifting and addition of pixel values from individual
exposures. The drizzle algorithm (Fruchter & Hook, 1997) combines both techniques
and enables a gain in image resolution and reduction in correlated noise. We chose a
value of 0.75 for the pixel fraction which is the smallest value for which no artifacts
appeared in the weight map of the output image of AstroDrizzle. Increasing the value
towards one did not change the fit results.

In addition to the pixel fraction, we changed the pixel scale for the ACS data products.
The image resolution of the WFPC2 and WFC3 products remain unchanged. The
limiting factor in increasing the spatial resolution of our ACS data products is given by
the extent of the core of the theoretical PSF. This value is presented for the F550M
band in the ACS manual3. We determine the width of the PSF in a different filter
by constructing the ratio of the full-width-half-maximum between TinyTim-generated
PSFs in that filter and the F550M band. The pixel scale of the ACS images was chosen
to Nyquist sample the PSF full-width-half-maximum at each wavelength. It ranges
between 0.0415 arcsec pixel−1 and 0.0472 arcsec pixel−1, depending on the filter. The
final resolution of each data product is indicated in Table 3.2 in Section 3.7.2.

Finally, to perform the actual fit, we selected a square region of side length 100 pixels
around the position of the NSC. Depending on the image resolution and the distance

2URL: http://hla.stsci.edu/
3See Ryon et al. (2019) and https://www.stsci.edu/hst/instrumentation/acs.

21

http://hla.stsci.edu/
https://www.stsci.edu/hst/instrumentation/acs


NGC 2337
log10 (Mgal

⋆ /M⊙) = 8.97

ACS/WFC
F814W

20pc

LV J0956-0929
log10 (Mgal

⋆ /M⊙) = 8.29

ACS/WFC
F814W

20pc

[KK2000] 03
log10 (Mgal

⋆ /M⊙) = 8.16

ACS/WFC
F814W

20pc

UGC 09660
log10 (Mgal

⋆ /M⊙) = 8.16

ACS/WFC
F814W

20pc

UGC 04998
log10 (Mgal

⋆ /M⊙) = 8.13

WFPC2/PC
F814W

20pc

UGC 01104
log10 (Mgal

⋆ /M⊙) = 8.0

WFPC2/WF
F814W

20pc

LV J1205+2813
log10 (Mgal

⋆ /M⊙) = 7.92

ACS/WFC
F814W

20pc

DDO 133
log10 (Mgal

⋆ /M⊙) = 7.8

WFPC2/WF
F814W

20pc

UGC 07242
log10 (Mgal

⋆ /M⊙) = 7.75

ACS/WFC
F814W

20pc

PGC 154449
log10 (Mgal

⋆ /M⊙) = 7.7

ACS/WFC
F814W

20pc

ESO 553-046
log10 (Mgal

⋆ /M⊙) = 7.68

ACS/WFC
F814W

20pc

DDO 084
log10 (Mgal

⋆ /M⊙) = 7.65

ACS/WFC
F814W

20pc

BTS 76
log10 (Mgal

⋆ /M⊙) = 7.53

ACS/WFC
F814W

20pc

M 101-df4
log10 (Mgal

⋆ /M⊙) = 7.29

ACS/WFC
F814W

20pc

NGC 5011C
log10 (Mgal

⋆ /M⊙) = 7.24

ACS/WFC
F814W

20pc

LeG 09
log10 (Mgal

⋆ /M⊙) = 7.08

ACS/WFC
F814W

20pc

[KK2000] 53
log10 (Mgal

⋆ /M⊙) = 6.85

ACS/WFC
F814W

20pc

KK 96
log10 (Mgal

⋆ /M⊙) = 6.68

ACS/WFC
F814W

20pc

LV J1217+4703
log10 (Mgal

⋆ /M⊙) = 6.58

ACS/WFC
F814W

20pc

PGC 4310323
log10 (Mgal

⋆ /M⊙) = 6.55

ACS/WFC
F814W

20pc

dw 1335-29
log10 (Mgal

⋆ /M⊙) = 6.46

ACS/SBC
F150LP

20pc

Figure 3.2. Collage of the 21 newly discovered nuclear star clusters, sorted by host galaxy
stellar mass from top left to bottom right. Each image shows a square box of side length
100 pixel centered on the nucleus; 20 parsec at the distance to the galaxies are indicated in each
panel. North is up and East is left. The contour lines were derived from a smoothed version of
the data using a Gaussian kernel with standard deviation of three pixels.

22



to the galaxy, this square region covers an area between ∼ 50 parsec× ∼ 50 parsec and∼ 500 parsec× ∼ 500 parsec. As NSCs typically have effective radii of a few parsecs
(e.g. Neumayer et al., 2020) the selected area ensures that the wings of the NSCs are
well captured. Nevertheless, we verified that both doubling the side length of the square
and reducing it down to 60 pixels does not affect the final results.

3.3.2 PSF Generation

Detailed knowledge of the PSF at the location of the NSC is required to reliably measure
effective radii as they are generally compact and cover only a few pixels on the exposure.
The PSF can be recovered from stellar sources in the image or generated synthetically.
We decide to generate synthetic PSFs using TinyTim for three reasons:

1. It is difficult to find non-saturated stars in the proximity of the NSC. Stars far
away from the NSC should not be used as the HST PSFs vary significantly across
the chip.

2. The extracted PSF from stars may be subject to variations due to the positions of
the stars on the chip and their stellar type.

3. Extracting a PSF from stars results in an inhomogeneous treatment of using PSFs
across the whole NSC sample.

Synthetic PSFs avoid these issues and allow us to control the input parameters such as
position on the chip and the assumed stellar type.

To generate a PSF, we first determined the position of the NSC on each exposure.
PSFs were generated using TinyTim and the location of the NSC on the chips, while
assuming a G2V spectral type (𝑉 − 𝐼 = 0.71 mag) for the artificial star. After the PSF
generation, we created a copy of the science exposures and subtract the image data
from the first header file. The PSF was then added to the flattened image data at the
previous location of the NSC. We then fed the data to AstroDrizzle and executed the
program with the same settings as for the science data. This step ensures that the final
PSF, which was extracted from the output of the program, is processed in the same way
as the NSC on the science data.

Note that the inclusion of the AstroDrizzle processing step is crucial as the resulting
PSF will change depending on the chosen parameter settings. In our tests the core of
the resulting PSFs were slightly larger than the core of any of the TinyTim-generated
PSFs. Therefore, not performing this step results in systematically larger effective radii
compared to their ‘true’ values. We discuss this effect and other potential systematic
uncertainties, such as the spectral type of the artificial star or the uncertainty on
positioning the PSFs on the chips in Section 3.7.1.

3.3.3 Fitting Procedure

We assume that the NSC light distribution can be accurately modelled with a single
Sérsic profile (Sérsic, 1968), as is common practice in the literature (e.g. Turner et al.,
2012; Baldassare et al., 2014; Carson et al., 2015; Pechetti et al., 2020). For the
background light, which includes the galaxy itself, we used a flat background assuming
that local flatness holds in the proximity of the NSC. The only two exceptions are
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UGC 01104 and UGC 09660 where the fit required a second Sérsic profile for the
underlying galaxy.4 Using version 1.8.0. of Imfit, the Sérsic profile was convolved
with the PSF and fit to the data where the goodness of fit is evaluated via standard 𝜒2

statistics. The data were fit using a differential evolution solver with Latin hypercube
sampling (Storn & Price, 1997). The solver is less prone to be stuck in local minima
compared to other solvers available in Imfit and does not rely on initial parameter
estimates as parameter values are randomly sampled given lower and upper boundaries.
We list the chosen boundary values in Table 3.1 and note that they are kept the same
for all NSCs in all filters.

We additionally tested that other model functions do not significantly change the
resulting parameter estimates. For the NSC, the tests included a King profile, multiple
Sérsic profiles, point sources, nuclear rings, and various combinations. According to
the Bayesian Information Criteria, none of these fits significantly improved over a fit
with a single Sérsic profile. In addition, by adding a Sérsic profile to the flat background
component to account for the underlying galaxy, we found that the assumption of local
flatness is justified. We verified that using Cash statistics instead of the classical 𝜒2

statistics does not change the results. We defer to Section 3.7.1 for a detailed discussion
regarding the choice and justification of these models.

For each NSC, the fits in different filters were performed independently of each
other. However, in some cases the Sérsic index diverged towards the upper boundary
in one filter, but not in the other. In these cases (BTS 76, DDO 084, ESO 553-046,
[KK2000] 53, KK 96, LeG 09, LV J1217+4703, NGC 5011C), we kept all structural
parameters of the fit with the diverging Sérsic index fixed such that only the (𝑥, 𝑦)
position, the intensity at the effective radius, and the flat background component were
allowed to vary.

For a number of galaxies the Sérsic index diverged towards high values in all available
filters. This behaviour persisted when considering a single point source or a point
source in combination with a Sérsic profile, and also occurred independently of the
settings chosen for AstroDrizzle, TinyTim, and Imfit. As the NSCs are more extended
than the PSFs, no explanation for the diverging Sérsic index could be determined. To
quantify the extent of the affected NSCs, we fixed the Sérsic index to a value of 𝑛 = 2.
The choice of this value was motivated by the recent work of (Pechetti et al., 2020)
who classified their fits into three categories. NSCs which could be fit ‘well’ (their
‘Quality 0’ fits) have a mean / median value of 𝑛 = 1.9 /2.9. Although six out of their
17 NSCs have 𝑛 > 3, we decided to set 𝑛 = 2 and to determine a systematic uncertainty
based on fits using 𝑛 = 0.5 and 𝑛 = 3. In the parameter range 𝑛 ∈ [0.5, 3.0], the Sérsic
index does not correlate with the effective radius, allowing us to put constraints on it.
For larger Sérsic indices, the effective radius also increases in a non-linear way. We
give more details and discuss this choice further in Section 3.7.1. However, it will
become evident in Section 3.4 that the key results of this paper remain unchanged.

4If only a single Sérsic profile is used the fit ‘prefers’ to fit the underlying profile over the NSC.
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Table 3.1. Parameters and their boundaries supplemented to Imfit. The same values are used
for all galaxies and filters.

Parameter Boundary Unit Description

𝑥0 [45, 55] [pixel] NSC position
𝑦0 [45, 55] [pixel] NSC position
PA [−359.99, 359.99](a) [deg] Position angle
𝜖 [0.00, 0.99] -- Ellipticity
𝑛 [0.00, 15.00] -- Sérsic index
𝑟eff [0.00, 50.00] [pixel] Effective radius
𝐼eff [0.00, 𝐼max](b) [counts] Intensity at 𝑟eff

(a) Often the fit was stuck at a boundary of 0○, hence the extension towards negative values. If
the best fit position angle was negative, we added 180○ (twice) until it became positive.

(b) 𝐼max is the peak intensity of the nuclear star cluster.

3.3.4 Stellar Mass

Integrating Equation 3.1 over the radial component while assuming an ellipticity (𝜖)
yields the total intensity of the NSC (𝐿) as

𝐿 = 2𝜋(1 − 𝜖)𝑟2
eff 𝐼eff × 𝑛 e𝑏𝑛(𝑏𝑛)2𝑛 × Γ(2𝑛) . (3.2)

Combining 𝐿 with the zeropoint magnitudes and exposure times, which are both given
in Table 3.2, allows the calculation of apparent magnitudes.

We derived stellar masses using the 𝑉 − 𝐼 colour and, therefore, converted from HST
magnitudes to the 𝐵𝑉𝑅𝐼 system. Following the approach by Pechetti et al. (2020),
magnitudes were converted using different synthetic transformation. For the ACS/WFC
data, the magnitudes were transformed using Table 22 and Equation 12 of Sirianni et al.
(2005). WFPC2/WF and WFPC2/PC magnitudes were converted using Table 4 and
Equation 16 of Dolphin (2009).

Once the magnitudes were transformed, we corrected them for Galactic extinction
using a recalibrated version of the Schlegel et al. (1998) dust maps (Schlafly &
Finkbeiner, 2011) and assuming the reddening law of Fitzpatrick (1999) with 𝑅𝑉 = 3.1.
The corrected apparent magnitudes were then used to determine absolute magnitudes
via the galaxy distance estimates and the absolute magnitude of the Sun.5 All extinction
corrected apparent magnitudes are presented in Table 3.3.

The stellar mass-to-light ratio relies on the 𝐼-band luminosity and (𝑉 − 𝐼)0 colour
and is identical to the one used in Pechetti et al. (2020). This relation (𝑀⋆/𝐿𝐼 ) is based
on the work of Roediger and Courteau (2015) and reads

log10 (𝑀⋆/𝐿𝐼) = −0.694 + 1.335 × (𝑉 − 𝐼)0 , (3.3)

where the slope and intercept have been determined by fitting a linear relationship to
the underlying data which was provided by Joel Roediger (private communication).

5Obtained from http://mips.as.arizona.edu/∼cnaw/sun.html.
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The uncertainty on the NSC stellar masses are dominated by the uncertainty on the
mass-to-light ratio which we assume to be 0.3 dex (Roediger & Courteau, 2015). Other
uncertainties, which have been included via Gaussian error propagation, include the
statistical and systematic uncertainties of the fit (see Section 3.7.1), the uncertainty on
the absolute magnitude of the Sun (assumed to be 0.04 mag), and the uncertainty on
the distance estimates. All quoted uncertainties give the 1𝜎 interval. The resulting
parameter values and their uncertainties are presented in Table 3.3.

3.4 Results

In total, we derive NSC structural parameters for 19 objects. In the case of dw 1335-29,
the signal-to-noise ratio of the ACS/SBC F150LP data were to low to allow for an
accurate determination of NSC parameters. In the case of PGC 154449, we could
not determine parameter estimates from either the ACS WFC F606W or F814W data
as the effective radius was approaching the boundary of 50 pixel in all attempts. We
changed the size of the fitting region, the fitting routine, and applied various masks
without achieving a stable fit result. For UGC 01104, structural parameters could not
be determined in the ACS/WFC F300W band.

Furthermore, we derive colours and stellar mass estimates for 17 objects. The blue
colour estimate of ESO 553-046 [(𝑉 − 𝐼)0 ∼ −3.2 mag, c.f. Table 3.3] leads to an
unreliable estimate of the NSC mass. As no structural parameters could be estimated
in two filters for dw 1335-29, PGC 154449, and UGC 01104, we do not derive NSC
stellar masses. Finally, the stellar mass-to-light ratio of four NSCs is unreasonably high
(𝑀⋆/𝐿𝐼 ≳ 4M⊙/L⊙). These data points are excluded from the surface brightness and
mass density profiles (c.f. Section 3.4.4) and the determination of the scaling relation
between NSC and host galaxy stellar mass (c.f. Section 3.4.5).

3.4.1 Literature Data

We compare our results to other NSCs in the Local Volume, in massive late-type field
galaxies, and in dwarf ellipticals in the core of the Virgo cluster. For the Local Volume,
we selected all known nucleated galaxies and obtained their NSC parameters, where
available, from the most recent literature reference identified by Hoyer et al. (2021,
their Table D1). For NSCs in massive late-type field galaxies, we used the data tables
of Georgiev and Böker (2014). As the authors do not provide stellar masses, and to
avoid systematic differences to our approach, we adopted their F606W and F814W
apparent magnitudes and repeated the steps outlined in Section 3.3.4. Table 5 of
Sánchez-Janssen et al. (2019a) provides stellar masses for NSCs in dwarf ellipticals in
the core of the Virgo cluster. In addition, we adopt the data from Carlsten et al. (2022)
for dwarfs around massive late-type field galaxies. We compare to Galactic globular
clusters using the data from Harris (1996) and Baumgardt and Hilker (2018).

We present an overview of the parameters of other NSCs in Local Volume galaxies
in Table 3.4. NSC stellar masses for the sample of Georgiev and Böker (2014) are
presented in Table 3.5.

Galaxy stellar masses were adopted from Hoyer et al. (2021) for the whole Local
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Volume data set and the galaxy sample of Georgiev and Böker (2014). We take galaxy
stellar masses for dwarf ellipticals in the core of the Virgo cluster from Table 4 of
Sánchez-Janssen et al. (2019a).

3.4.2 Wavelength Dependence

We investigate whether NSC structural parameters are wavelength dependent by
comparing differences in parameter estimates between the most commonly available
F660W and F814W bands. Within the uncertainties, we find no significant differences
in both 𝜖 and 𝑟eff . The position angle changes insignificantly (ΔPA ≲ 30○) for most
NSCs.

3.4.3 Structural Properties

Here we investigate the structural properties of the new detections using the F814W
band. We compare to other data from the Local Volume and Georgiev and Böker
(2014) using the same band, if available.6 In addition, we compare to the globular
cluster population of the Milky Way (Harris, 1996; Baumgardt & Hilker, 2018).

Panel A of Figure 3.3 shows the ellipticity versus NSC stellar mass. Most of the
new detections have 𝜖 ∼ 0.1 but at most ∼ 0.3. With the exception of the most massive
NSCs, both the stellar mass and ellipticity compare to Milky Way GCs. The overall
increase of ellipticity with increasing mass is in agreement with Figure 24 of Spengler
et al. (2017). The new detections reveal that this trend does not continue down to
the lowest mass clusters, as suggested by the few existing Local Volume data points
from the literature. Similarly, the GC population of the Milky Way does not show a
correlation as well.

Panel B shows the effective radius versus NSC mass. The new detections occupy the
low-mass and compact-size region in the parameter space. While at higher NSC mass
there exists a correlation between the effective radius and NSC mass (e.g. Georgiev &
Böker, 2014; Georgiev et al., 2016; Neumayer et al., 2020), this relation appears to
break down at 𝑀nsc

⋆ ∼ 106 M⊙, as revealed by the new detections. The distribution of
Galactic GCs overlap with the new detections, corroborating a tight connection between
both types of systems in this mass range. Furthermore, the new detections appear to
follow the same trend as the GCs by increasing in effective radius with decreasing
mass.

There exist six data points with 𝑟eff ≥ 10 pc and 𝑀nsc
⋆ ≤ 106 M⊙, which partially

overlap with the distribution of Galactic GCs but are otherwise outliers from the NSC
distribution. If the NSCs truly reside in this part of the parameter space, one explanation
could be that their evolution is similar to that of the NSC of the Pegasus dwarf galaxy:
the cluster initially formed in the centre of their host galaxy, was relocated outside
of the central region where 𝑟eff increased due to the weaker tidal field, and migrated
back towards the centre (Leaman et al., 2020). For both UGC 08638 and NGC 4163,
this mechanism could still be in process as the projected distance of the NSC to the
photometric centre is ∼ 480 pc and ∼ 150 pc, respectively (Georgiev et al., 2009b). The

6For the Local Volume data set, we use the reddest band in case the F814W is unavailable.
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Figure 3.3. Panel A: Ellipticity (𝜖) versus nuclear star cluster (NSC) stellar mass (𝑀nsc
⋆

). We
compare the new detections (green diamonds) to NSCs in massive late-type spirals (Georgiev
& Böker, 2014), a compilation of NSCs in the Local Volume, and Galactic globular clusters
(Harris, 1996; Baumgardt & Hilker, 2018). The new detections are split into two categories,
depending on whether the Sérsic index (𝑛) needed to be fixed at 𝑛 = 2. Panel B: Effective radius
(𝑟eff) versus NSC stellar mass. The markers and color are the same as in panel A. Panel C:
Sérsic index versus effective radius. The data from Georgiev and Böker (2014) and Harris
(1996) and Baumgardt and Hilker (2018) are not available as the clusters were modelled with
King profiles. Most of the Local Volume data come from Pechetti et al. (2020). Panel D: Sérsic
index versus NSC stellar mass. A dashed black line gives the weak scaling relation identified
by Pechetti et al. (2020). The dotted line gives the best-fit linear relation including the new
detections. The Spearman correlation index 𝜌 and its associated 𝑝-value of thew new fit are
given in the lower left corner.
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projected distance of the other two galaxies (KK 197 and ESO 269-066) is close to 0 pc
(Georgiev et al., 2009b).

Panel C of Figure 3.3 shows the Sérsic index versus effective radius. There appears to
be a trend in that the index drops from 𝑛 ∼ 7 to ∼ 1 when the effective radius increases
from 𝑟eff ∼ 1 pc to ∼ 10 parsec. However, multiple NSCs occupy the high Sérsic index
and high effective radius parameter space, questioning a potential universal correlation.
More data and further studies are required to explore this parameter space.

Panel D shows the previously identified weak relationship between the logarithmic
Sérsic index and NSC stellar mass by Pechetti et al. (2020). We add the new detections
to the figure and fit the combined data sets with a linear function. The best fitting
relation reads

log10 𝑛𝐹814𝑊 = (0.52+0.50
−0.38) − (0.20+0.53

−0.29) × log10 ( 𝑀nsc
⋆

106 M⊙
) . (3.4)

The parameters differ significantly from the values found by Pechetti et al. (2020) and
question the presence of a tight correlation. Therefore, while the Spearman correlation
coefficient evaluates the trend as significant (𝑝 = 0.015), we recommend against using
the Sérsic index relation to parameterise NSCs.

3.4.4 Surface Brightness & Surface Mass Density Profiles

Combining the effective radius and stellar mass, we determine a mean surface density
for the new detections. We show this parameter space in Figure 3.4, comparing the new
detections with literature data from Norris et al. (2014) and Neumayer et al. (2020) for
other NSCs, and with Baumgardt and Hilker (2018) for Milky Way GCs. For the newly
detected NSCs, we fit the correlation using a linear function to find

log10 (Σeff/M⊙ pc−2) = ( − 2.72+0.61
−0.71) + (1.13+0.13

−0.12) × log10 (𝑀nsc
⋆ /M⊙) , (3.5)

where the parameter values are determined through 105 bootstrap iterations. We note
that although some of NSCs at 𝑀nsc

⋆ ∼ 108 M⊙ seem to follow this relation as well,
their overall distribution get wider and seems to flatten. At the low-mass end, the newly
detected NSCs overlap again with Galactic GCs. Note that about 65 % of these GCs
fall above the best-fit relationship.

Next, we explore the surface brightness of the star clusters. Panel A of Figure 3.5
shows the surface brightness as a function of radius where the profiles relate to the
Sérsic model fits from the F814W band. To highlight uncertainties, we plot the
profiles of 100 out of 500 bootstrap iterations, which we used to determine statistical
uncertainties (c.f. Section 3.7.1). Each set of profiles is colour-coded based on the host
galaxy stellar mass.

Similarly, panel B shows the surface mass profile versus radius. We convert the
profiles to stellar mass by using the mean colour of the NSCs. Note the assumption that
the mass-to-light ratio is radially constant, which is not the case for higher mass NSCs
in other Local Volume galaxies (e.g. Carson et al., 2015) and the Milky Way NSC
(Feldmeier-Krause et al., 2015, 2017a). However, as a function of wavelength, the size
or ellipticity does not differ significantly for the new detections and, therefore, using
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Figure 3.6. Surface mass profile evaluated at the nuclear star clusters effective radius versus
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relation (log10 𝜇 = 𝛼 + 𝛽 × log10 𝑀⋆) whose parameters, as determined through 105 bootstrap
iterations, are indicated in the panels. In addition, we show the Spearman correlation parameter
(𝜌) and its associated 𝑝-value. BTS 76, as indicated, does not fit the overall trend and was
excluded from the fits.

From both figures it becomes apparent that the surface brightness of the clusters
positively correlates with the host galaxy stellar mass. To quantify this observation
further, we show the surface mass profiles evaluated at the clusters’ effective radii versus
the host galaxy and NSC stellar masses in Figure 3.6. According to the Spearman
correlation coefficients, we find a clear correlation between both quantities. A fit using
a linear relationship yields

log10 (𝜇/M⊙ pc−2) = ⎧⎪⎪⎨⎪⎪⎩
(1.13+0.16

−0.14) − (5.3+1.0
−1.0) × log10 (𝑀/M⊙), for 𝑀 = 𝑀gal

⋆(1.29+0.10
−0.12) − (4.05+0.62

−0.62) × log10 (𝑀/M⊙), for 𝑀 = 𝑀nsc
⋆ ,

(3.6)
where the uncertainties are determined with 105 bootstrap iterations. Note that the
slope value for the relation using the NSC mass is steeper than one. This is related to
both the NSC versus host galaxy stellar mass relation (c.f. Section 3.4.5 below) and the
observation that the effective radius decreases with increasing NSC mass for the new
detections (c.f. Figure 3.3, panel B).

From both panels it is apparent that BTS 76 does not follow the relationship and
was excluded from both fits. Compared to other NSCs, the effective radius of this
nucleus is significantly larger. As discussed in Section 3.4.3, the NSC sub sample
with large effective radii and low stellar masses may have evolved differently from the
other clusters: if the cluster relaxes in a weaker tidal field (i.e. the outskirts of the host
galaxy), its central density may drop while the total mass of the cluster remains roughly
the same.

Note that Pechetti et al. (2020) investigated the three-dimensional density of high-
mass NSCs in higher-mass galaxies finding a similar trend: the NSC density positively
scales with the host galaxy stellar mass. Our data show that such a correlation appears
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to continue down to lower galaxy and NSC stellar masses, effectively extending the
existence of a relation from log10 (𝑀gal

⋆ /M⊙) ∼ 11 to log10 (𝑀gal
⋆ /M⊙) ∼ 6.5.

3.4.5 NSC Stellar Mass versus Galaxy Stellar Mass

In this section we investigate the scaling relation between the NSC stellar mass and
its host stellar mass. We combine literature data of the Local Volume, Georgiev and
Böker (2014), and Carlsten et al. (2022) with our new detections to gain statistical
significance. To this combined data set, we fit the function

log10 (𝑀nsc
⋆ /M⊙) = 𝛼 × log10 (𝑀gal

⋆ /109 M⊙) + 𝛽 , (3.7)

which has also been used previously (Georgiev et al., 2016; Neumayer et al., 2020). To
fit the data, we use the scipy implementation of the orthogonal distance regression,
which takes into account uncertainties on both axes (see also Boggs & Rogers, 1990).
The uncertainty on the stellar masses of literature data are assumed to be 0.3 dex if
no value is provided. As the slope 𝛼 of the relation in Equation 3.7 seems to steepen
for galaxies above 𝑀gal

⋆ ∼ 109.5 M⊙ (Georgiev et al., 2016; Neumayer et al., 2020),
we restrict the fit to 𝑀

gal
⋆ < 109.5 M⊙. Furthermore, from the fit we removed four

NSCs (DDO 133, LV J1205+2813, NGC 5011C, and UGC 04998) as they have high
stellar mass-to-light ratios (𝑀⋆/𝐿𝐼 ≳ 4M⊙/𝐿⊙). The final uncertainties of the fit were
determined via 105 bootstrap iterations.

Figure 3.7 shows the data set as well as the best-fit relationship for which we
find 𝛼 = 0.82+0.08

−0.08 and 𝛽 = 6.68+0.13
−0.13. This slope is steeper than what was found by

Neumayer et al. (2020, 𝛼 ∼ 0.48) who used data from various publications and a mix
of environments. Restricting the fit to the high-mass end yielded a value of 𝛼 ∼ 0.92,
which agrees with a previously reported value (Georgiev et al., 2016) and our value.

Our results and the observation that the fit by Neumayer et al. (2020) is dominated
by dwarfs in a dense cluster environment [Virgo (Sánchez-Janssen et al., 2019a) and
Fornax (Ordenes-Briceño et al., 2018)] could suggest that the environment of the
dwarf galaxies plays a role in the NSC versus host stellar mass relationship. To test
this hypothesis, we add the data set of Sánchez-Janssen et al. (2019a), exploring the
relationship for dwarfs in the core of the Virgo galaxy cluster. Only considering their
data, we find 𝛼 = 0.55+0.06

−0.05 and 𝛽 = 6.69+0.10
−0.09 using again 105 bootstrap iterations. As

expected, the slope is comparable to the value found by Neumayer et al. (2020) but
significantly smaller than the value for dwarfs in the field.

To check whether the origin for the difference between environments stems from
the lowest mass galaxies, we repeat the fit to the Virgo cluster data set forcing
𝑀

gal
⋆ ≥ 106.5 M⊙. This results in 𝛼 = 0.70+0.08

−0.07 and 𝛽 = 6.83+0.13
−0.11. As the slope is now

comparable to the one found for the field environment we conclude that the low-mass
galaxies in the Virgo cluster, which host more massive NSCs than in the field, are
responsible for environmental trends.

3.5 Discussion

We presented a comparison between the Milky Way GCs and the newly detected NSCs
in the previous sections and argue in Section 3.5.1 that dissipationless GC migration
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Figure 3.7. Nuclear star cluster (NSC) stellar mass (𝑀nsc
⋆

) versus host galaxy stellar mass
(𝑀gal
⋆ ) for the new detections (green diamonds), a compilation of Local Volume data (blue

squares), massive late-type galaxies in the field (Georgiev & Böker, 2014, gray up-pointing
triangles), dwarf galaxies around massive late-types (Carlsten et al., 2022, purple down-
pointing triangles), and dwarfs in the core of the Virgo galaxy cluster (Sánchez-Janssen et al.,
2019a, orange circles). Uncertainties are omitted for clarity. The combined data of new
detections, other Local Volume, and field galaxies are fit with a linear relationship, such that
log10 (𝑀nsc

⋆
/M⊙) = 𝛼 × log10 (𝑀gal

⋆ /109 M⊙) + 𝛽.

is the main formation scenario for NSCs in low-mass dwarf galaxies. Afterwards, in
Section 3.5.2, we discuss whether the NSCs are a merger product of multiple GCs or
whether they are not.

3.5.1 Formation Scenario

NSCs are believed to form via two mechanisms: at the low-mass end, GC migration
appears to dominate the formation of NSCs (e.g. Tremaine et al., 1975; Hartmann et al.,
2011; Antonini et al., 2015; Fahrion et al., 2022a) and in-situ star formation contributes
only a small part to the mass budget, if at all. With increasing galaxy stellar mass
in-situ star formation gains importance (e.g. Turner et al., 2012; Sánchez-Janssen et al.,
2019a; Neumayer et al., 2020) and will eventually dominate over the GC migration
scenario (Fahrion et al., 2021, 2022b).

We compared the structural properties of the newly detected NSCs with Milky Way
GCs in Figures 3.3 and 3.4 finding a similarity between both systems. More specifically,
the ellipticity, effective radius, stellar mass, and surface density of many of the new
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detections matches the distribution of Milky Way GCs. As speculated in the literature
already (e.g. Miller & Lotz, 2007; Sánchez-Janssen et al., 2019a), this is a direct hint
that the dissipationless GC migration scenario is the main formation mechanism of
these NSC.

We also found that the ellipticity remains roughly constant below 𝑀nsc
⋆ ∼ 106.5 M⊙

and starts to increase for higher mass clusters. An increase in ellipticity hints towards
in-situ star formation as the in-falling gas is expected to form stars in a flattened disk
due to its angular momentum. In observations, such a flattening has been observed
in combination with young stellar populations in edge-on spiral galaxies (e.g. Seth
et al., 2006). In simulations, Hartmann et al. (2011) showed that NSCs, which formed
through repeated GC mergers, typically are not very flattened. Crucially, as we show in
Figure 3.8, the measured ellipticity of the NSCs does not depend on the inclination of
the host galaxy at all stellar masses.

As is shown in Figure 3.7, the NSC versus host galaxy stellar mass correlation
appears to be affected by host environment with cluster members typically hosting
more massive NSCs than field galaxies. We found that the difference is greatest at the
low-mass end 𝑀gal

⋆ ≤ 106.5 M⊙ and becomes insignificant towards higher masses. If
in-situ star formation is unimportant at the lowest galaxy stellar masses, the difference
in NSC must arise from differences in the progenitor GCs.

There appear two possibilities to generate more massive NSCs:

1. The NSCs in dwarfs in dense environments experienced more GC merger events
than NSCs in a field environment, elevating their masses. We discuss this option
further in Section 3.5.2.

2. The difference in mass does not arise from a significant difference in mergers
but from a difference in progenitor GC mass.

The argument that the progenitor GC is more massive in a dense environment relies on
GC formation scenarios. The cluster formation efficiency (Bastian, 2008) positively
correlates with the surface density of star formation (see Stahler, 2018, and references
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therein) and leads to an elevated mass fraction of stars in clusters. From observations
it appears that this effect results in an increased number of GCs in present-day dwarf
galaxies in galaxy clusters (e.g. Peng et al., 2008) and not in differences in the GC mass
function (Carlsten et al., 2022). The GC luminosity function appears to be roughly
equivalent between the environments (Figure 7 in Carlsten et al., 2022) but this may
not be the case at high redshift (e.g. Parmentier & Gilmore, 2007; Kruijssen & Cooper,
2012).

If the GC mass function remains unchanged between environments at the time when
the NSC formed, the NSC’s mass may still be elevated due to the higher number of
GCs produced in a dense environment. When drawn from the same distribution, a
higher number of GCs correspond to a higher probability that the most massive GC in
a galaxy in a dense environment is more massive than its counterpart in a galaxy in a
loose environment.

We note that the differences in NSC stellar mass found at the low-mass end could
also be related to selection bias. Our data rely on a catalogue of galaxies in the Local
Volume (see Karachentsev et al., 2013, and references therein) while the Virgo cluster
data of Sánchez-Janssen et al. (2019a) relies on a uniform set of imaging data (Ferrarese
et al., 2012). The data of Carlsten et al. (2022) indicate that satellites around massive
field galaxies, where a significant mass fraction is contained by the NSC, do exist but
in fewer numbers than in the Virgo cluster. Whether this is also a selection effect is
unclear. Note that it appears unlikely that higher-mass galaxies were stripped by ∼ 1 dex
in mass in the galaxy cluster while the NSC mass remains unchanged (e.g. Smith et al.,
2016).

Truncated star formation during the galaxy infall may lead to a bias in the NSC
versus galaxy mass relationship as well: asynchronous formation timescales of the
NSC and its host galaxy leads to a higher cluster mass fraction if most cold gas is
removed during infall. This effect could partly be responsible for both the observed
environmental dependence of the stellar mass correlation as well as a higher NSC
occupation fraction in dense environments (Leaman & van de Ven, 2022). Whether
this effect can fully explain the observed environmental dependence remains unclear.

3.5.2 Are Our Newly Detected NSCs Merger Products of GCs?

A second method for forming NSCs is the process of repeated GC mergers. As
mentioned in the previous section, at fixed galaxy stellar mass, the number of GCs
is higher in a dense environment than in the field. Therefore, a present-day NSC in
a galaxy in a dense environment could have experienced more GC mergers than in a
loose environment, explaining its increased mass at the low-mass end of galaxies.

One argument in favor of this scenario is shown in Figure 3.4. We found that ∼ 65 %
of GCs fall above the mass density versus cluster mass relation. Antonini et al. (2012)
and Antonini (2013) showed that the merger product of two GCs results in an increase
in effective radius of the merger product where 𝑟eff ∝ √𝑀⋆. If two clusters merge
in the density versus mass parameter space, their mass will increase but the overall
density will drop, meaning that the data point moves towards the bottom right part in
Figure 3.4. Therefore, as the Milky Way GCs are, on average, denser at the same stellar
mass than our new detections, NSCs could be a merger product of multiple progenitor
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GCs. However, given the uncertainties of the data points it is not possible to prove this
scenario for individual objects.

If true in all environments, we would expect that the effective radius of NSCs in
the core of the Virgo cluster are more extended than in the field environment, as
they experienced more GC merger events. The data of the Next Generation Virgo
Cluster Survey (Ferrarese et al., 2012) obtained with MegaCam (Boulade et al., 2003,
March) have an effective resolution of ∼ 50 pc, prohibiting an analysis of the NSC sizes
(Ferrarese et al., 2020).

In a pure dissipationless merger scenario, the steepness of the slope of the cluster
may not exceed that of its progenitors (Dehnen, 2005). The slope of the density profiles
is determined by evaluating d log10 𝐼/d log10 𝑟 from Equation 3.1 and converting to
d log10 𝑀⋆/d log10 𝑟 and using the mass-to-light ratio,

d log10 𝑀
nsc
⋆

d log10 𝑟
= − ln 10

𝑟eff2

𝑏𝑛

𝑛
( 𝑟
𝑟eff
)1/𝑛

. (3.8)

For the new detections, we find an increase in this slope but the trends are not significant.
Based on a similar trend and a comparison to typical GC densities, Pechetti et al. (2020)
concluded that in-situ star formation plays a key role in the formation and evolution of
NSCs. For the majority of our clusters, it remains unclear whether in-situ star formation
contributes to the mass budget at all. Fahrion et al. (2022a) showed that most of the
mass fraction of NSCs in similar-mass galaxies comes from old, metal-poor stars but
that in-situ star formation may still be present.

If low-mass NSC structure argues for GC merging as the primary formation channel,
then at the highest NSC masses, we do see some evidence for in-situ formation. The
two highest-mass NSCs in our sample are denser than the densest GCs, including Milky
Way clusters (e.g. McLaughlin & van der Marel, 2005; Baumgardt & Hilker, 2018), and
many ultra-compact dwarfs (e.g. Norris et al., 2014). This hints towards a contribution
of in-situ star formation, supported by Fahrion et al. (2022b) who found that in-situ star
formation gains importance for log10 𝑀

nsc
⋆ /M⊙ ≳ 6.5 and may contribute 50 % of the

NSCs mass. The stochasticity of the contribution from in-situ star formation may also
be related to the observed ∼ 0.5 dex scatter in the NSC versus host galaxy mass relation
at 𝑀gal

⋆ ∼ 108 M⊙. It is plausible, that the objects in this mass range are primarily a
product of repeated GC mergers, but the steepening of the surface brightness profile
slopes (Figure 3.5) and the large scatter in NSC masses at this galaxy stellar mass
(Figure 3.7) may reflect the increased contribution from central in-situ star formation
(see also Turner et al., 2012; Georgiev et al., 2016; Sánchez-Janssen et al., 2019a;
Neumayer et al., 2020).

Combining all arguments, it appears to be clear that there is a fundamental connection
between GCs and NSCs in these low-mass galaxies. Although likely, it remains unclear
whether the lowest-mass NSCs are individual GCs, which experienced no merger events,
or whether the NSCs are the product of GCs mergers. At least the two most-massive
NSCs in our sample likely experienced in-situ star formation, elevating the steepness
of their profile slopes and making them denser than any Milky Way GC.
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3.6 Conclusions

In this work we presented an analysis of 21 newly discovered nuclear star clusters (NSCs)
in Local Volume galaxies using Hubble Space Telescope imaging data. We convolved
a TinyTim-generated point spread function with a Sérsic profile to determine structural
parameters. NSC stellar masses were determined based on integrated photometry in
different filters.

The new detections are compact with a typical effective radius 𝑟eff ≲ 12 pc and
populate the lower stellar mass end of the whole NSC population at 𝑀NSC

⋆ ≲ 107 M⊙.
We find that the correlation between 𝑀nsc

⋆ and 𝑟eff breaks down for the low-mass
galaxies, as indicated by Georgiev et al. (2016). In addition to their compact size, the
new detections have typically low- to moderate Sérsic indices (𝑛 ≲ 6), which compares
to other NSCs in the Local Volume. The linear relation between the ellipticity and
the mass of the clusters break down below 𝑀

gal
⋆ ∼ 106.5 M⊙ where the NSCs have

ellipticities of 𝜖 ∼ 0.1. A comparison to Milky Way globular clusters (Harris, 1996;
Baumgardt & Hilker, 2018) reveals that most of the newly detected NSCs have similar
ellipticity, effective radius, and stellar mass, corroborating a relation between both
types of clusters.

NSCs are the densest stellar systems (e.g. Walcher et al., 2005; Norris et al., 2014;
Neumayer et al., 2020) and we find central surface brightness values ranging between∼ 18 and ∼ 12 mag arcsec−2 in the F814W band, corresponding to central surface
masses of ∼ 3.2 and 6.2 M⊙ parsec−2, respectively. We find that both the surface
brightness and stellar mass profiles correlate with both the NSC and host galaxy stellar
mass. Furthermore, the slope of the profiles evaluated at their effective radii weakly
correlates with both the NSC and host galaxy stellar mass. A similar trend for three
dimensional slope values was observed by Pechetti et al. (2020) for more massive NSCs.
Our data reveal that this trend continues down to the lowest-mass nucleated galaxies.

Similar to the surface brightness profiles, the average surface mass density within
the effective radius correlates with NSC stellar mass as well. A linear fit reveals that
some denser and more massive NSCs follow the same trend, albeit their distribution
widens and flattens towards higher masses. Comparing to Milky Way globular clusters,
we find that about 65 % fall above the best-fit relation. Again, most of the lowest-mass
NSCs coincide with the distribution of Milky Way globular clusters.

We investigated the scaling relation of NSC versus host galaxy mass. A linear fit
revealed that the nucleated dwarfs in a field environment have a steeper relationship
(𝛼 = 0.82+0.08

−0.08) than dwarfs in the core of the Virgo galaxy cluster (𝛼 = 0.55+0.06
−0.05

Sánchez-Janssen et al., 2019a). However, forcing 𝑀gal
⋆ ≥ 106.5 M⊙ for the fit results in a

relationship with a steepness comparable to the value for dwarfs in the field environment
(𝛼 = 0.70+0.08

−0.07). Therefore, the environmental dependence in the 𝑀nsc
⋆ -𝑀nsc

⋆ relation is
caused by the lowest-mass nucleated galaxies.

Our results reinforce the connection between globular clusters and nuclear star
clusters. They also corroborate other studies in that globular cluster migration is the
main formation mechanism in dwarf galaxies and that in-situ star formation gains
importance with increasing mass (e.g. Neumayer et al., 2020).

We find a clear environmental dependence, such that in low-mass galaxies, the NSCs
are fractionally more massive in denser environments. We argue this extra mass is
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most likely explained by a larger pool of available GCs for mergers, or even just for
becoming the NSC. On the flip side, the high stellar density of our two most massive
NSCs suggest that in-situ formation, rather than merging, dominated their growth. This
interpretation fits well with other recent research, which shows that the in-situ fraction
of a nuclear star cluster increases with increasing stellar mass (Fahrion et al., 2022b,
2022a). Our data cannot reveal whether there also exists an environmental dependence
in the correlation between the NSCs’ in-situ fraction and stellar mass.

3.7 Appendix

3.7.1 Assessing Uncertainties

In this section we discuss statistical and systematic uncertainties and how we determined
them. If applicable, the final 1𝜎 uncertainties in the data tables consist of the sum of
the quadratic statistical and systematic uncertainties.

Statistical Uncertainties

For each fit, we determine the statistical uncertainties via bootstrapping. During each
iteration of bootstrapping Imfit generates a new data array where pixel values are
re-sampled from the original data. The new data array is then fit using Levenberg-
Marquardt minimisation to speed up the fit. We chose 500 bootstrap iterations which
resulted in a “good-enough” sampling of the confidence intervals; increasing the value
to 2500 iterations did not change the results.

The quoted uncertainties were determined by the 1𝜎 distribution of the bootstrap
results. However, to determine photometric parameter values and to convert the
effective radius from pixels to parsecs, the uncertainties needed to be propagated
forward. In the case of apparent magnitudes, we used the bootstrap distributions of all
required parameter values to determine the total intensity of the NSC (c.f. Equation 3.2).
The uncertainty on the zeropoint magnitude is small7 compared to the uncertainty of
the instrumental magnitude and was not taken into account. For the determination
of colours, we used Gaussian error propagation by assuming that the distributions of
apparent magnitudes follow a Gaussian distribution. We used the larger uncertainty of
the asymmetric parameter distribution as the symmetric uncertainty of the assumed
Gaussian-like distribution. For the apparent magnitudes, this choice seems to be
justified, as shown by the symmetry of the uncertainties of the apparent magnitudes
in Table 3.3. Afterwards, we determined absolute magnitudes and stellar masses via
Gaussian error propagation. The same scheme was applied to transform effective radii
from pixels to parsecs.

Systematic Uncertainties

To quantify systematic uncertainties in our work, we conducted various tests involving
the choice of model functions and the programs AstroDrizzle and TinyTim. We will
additionally discuss the correlation between the Sérsic index and the effective radius

7typically O(10−3 mag).
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and the induced uncertainty by fixating the index in some of our fits. All fits were
performed with Imfit and are independent of the chosen solver or fit statistic. Unless
otherwise stated, we chose the data of NGC 2337 in the ACS/WFC 𝐹814𝑊 band.

Model Functions We assumed that the NSCs can be represented well by a single
Sérsic function but this choice is rather arbitrary. Complex substructures may be present
in extragalactic NSCs but typically are unresolved given their distances and subsequent
angular sizes on the HST instruments. Nevertheless, in some cases individual stars
(e.g. [KK2000] 03) and extended emission around the NSC can be seen which are not
well represented by a single Sérsic profile.

We repeated most fits using different model functions for the NSC. We chose a single
King profile (King, 1962; King, 1966), a combination of a Sérsic profile and a point
source, two Sérsic profiles where the second profile fits the extended emission, and
two Sérsic profiles in combination with a point source. The addition of a point source
to the fits was tested for all NSCs but did not yield different structural parameters. In
most cases the intensity of the point source was insignificant compared to the intensity
of the Sérsic profile at the effective radius, thus not adding significant flux to the total
apparent magnitude.

Instead of using a Sérsic profile, we used a classical King profile to fit the NSC
of LeG 09 in the ACS/WFC 𝐹814𝑊 band. The boundaries for the core and tidal
radii were set to [0.01, 10] and [0.01, 50]. Fitting LeG 09 with a Sérsic profiles and
using 500 bootstrap iterations resulted in 𝑟sérsic

eff = 3.19+0.12
−0.24 pixel. Repeating the fit

with a King profile and using the transformation from Georgiev et al. (2019), which
connects the core and tidal radii of the King profile with the effective radius, results
in 𝑟king

eff = 3.05+0.06
−0.07 pixel. This value lies within the 1𝜎 statistical uncertainty of the

previous fit. Additionally, we added a second Sérsic profile to the fit resulting in
a similar result: the flux of the fit with two profiles had a higher flux by ∼ 1.6 %
which corresponds to a difference in magnitude of ∼ 0.007 mag which is far below the
statistical uncertainty. Therefore, based on this test, we conclude that the choice of a
single Sérsic profile seems to be justified and that the systematic uncertainties induced
by this choice are negligible.

Our fits also assume that a constant offset accounts for the underlying light profile
(background and galaxy). The only two exceptions are UGC 01104 and UGC 09660
where a second Sérsic profile needed to be added for the galaxy component. Not
including this second profile leads to a fit of the underlying galaxy profile and not the
NSC. In all other cases, the assumption of local flatness may not be justified, especially
for high surface brightness galaxies with complex central structures. For low surface
brightness galaxies, 𝑛 ≲ 1 (e.g. Carlsten et al., 2022) and 𝑟gal

eff ≫ 𝑟nsc
eff , and the assumption

of local flatness seems justified. Additionally, we only consider the proximity of the
NSC where the side length of the fitting area (e.g. 100 pixel) is considerably smaller
than 𝑟gal

eff . Also, as mentioned in Section 3.3.1, changing the extent of the fitting region
does not change the fit results.

To test the systematic uncertainty induced by assuming local flatness, we considered
NGC 2337 which features a prominent bar (c.f. Figure 3.1) and, thus, should be the
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most affected galaxy in the sample8. As shown in Figure 3.9, we selected a squared
region of 1000 pixel centered on the NSC and applied a 2D Gaussian smoothing
kernel with a standard deviation of 21 pixel to determine reliable parameter estimates.
Point or compact sources do not drastically influence the fit due to the applied
smoothing. Approximating the bar component with a Sérsic profile yields 𝑛 ∼ 1.0
and 𝑟bar

eff ∼ 470 pixel (third panel in Figure 3.9). We repeated the fit of the NSC on the
original science product (i.e. without applying the smoothing kernel) while keeping all
structural parameters for the Sérsic profile describing the bar component fixed. The
fit resulted in 𝑟eff = 1.01+0.12

−0.03 for the NSC, whereas we found 𝑟eff = 1.11+0.12
−0.08 pixel in

the fit without accounting for the bar. The difference in magnitude is ∼ 0.02 mag and
is smaller than the statistical uncertainty. Given these values we conclude that our
assumption of local flatness is justified.

Finally, the structure of the underlying light distribution of the galaxy could depend
on the filter used for fitting. We evaluated this potential issue by following Pechetti et al.
(2020) who fit the NSC in the reddest filter and kept the structural parameters fixed in
the bluer filters. For NGC 2337 we first fit the ACS/WFC F814W data followed by the
F606W data. The fit on the F606W data with the structural parameters of the F814W
yielded a difference in magnitude of ∼ 0.12 mag which is larger than the statistical
uncertainty on the magnitude. However, this magnitude is only used for determining
the colour of the NSC and eventually the stellar mass where the uncertainty budget is
dominated by the uncertainty on the stellar mass-to-light ratio (0.3 dex). Furthermore,
while the galactic background might change, the structural properties of the NSC,
such as the Sérsic index or effective radius, may change as well given the complexity
of NSCs and potentially radially varying stellar populations (e.g. Georgiev & Böker,
2014, and Section 3.4.2). Finally, as discussed further in Section 3.7.1, the Sérsic
index is unknown for this source and may change as a function of wavelength as
well. In conclusion, we note that for the apparent magnitude in the F606W the found
systematic uncertainty appears larger than the statistical uncertainty, but variations in
NSC structure could be the origin of these differences. We decide to not follow the
approach by Pechetti et al. (2020) and fit all filters independently of each other.

Tests on AstroDrizzle & TinyTim Using Simulated Data Other systematic uncer-
tainties could be induced by either AstroDrizzle or TinyTim. To test the chosen settings
for both programs, we generated mock NSC data using the makeimage function of
Imfit.

Simulated NSCs were created by convolving a Sérsic profile with a TinyTim-generated
PSF. We added a flat background component whose values were randomly drawn from
a Gaussian distribution. To test the influence of the settings of TinyTim, we fed this
model and the PSF to Imfit and tried to recover the initial Sérsic indices and effective
radii. To test the influence of AstroDrizzle, we took the science data of NGC 2337
and normalised it. We then superimposed the simulated NSC at the location of the
NSCs on each exposure and performed AstroDrizzle. Afterwards, the simulated NSC
was obtained from the output image of AstroDrizzle. The TinyTim-generated PSF was
processed in the same way. The output data of AstroDrizzle were fed to Imfit where we

8All other galaxies do not show such a bar and could be approximated by a single Sérsic profile.
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tried to recover the initial Sérsic index and the effective radius. We repeated the fits
for different Sérsic indices and effective radii starting from (𝑛 = 1, 𝑟eff = 10 pixel) and
going to (𝑛 = 3, 𝑟eff = 2 pixel) in steps of 𝛿𝑛 = 1 and 𝛿𝑟eff = −1 pixel (i.e. 27 different
settings). Two examples for the PSFs and the simulated NSCs are shown in the two left
columns of Figure 3.10. The middle column shows two simulated NSCs convolved
with the PSF and the right panels show the residual maps, including the recovered
structural parameters and their uncertainties, as determined via 500 bootstrap iterations.

TinyTim PSF
n = 1.0
reff = 10.0 pixel

Model
n = 1.0019+0.0017

−0.0015

reff = 10.0068+0.0080
−0.0079 pixel

Residual

n = 3.0
reff = 2.0 pixel

n = 3.07+0.04
−0.11

reff = 2.004+0.001
−0.046 pixel

Figure 3.10. Left panels: TinyTim-generated PSFs using a G2V star as stellar template. The
PSFs were superimposed on a normalised version of the science data of NGC 2337, processed
with AstroDrizzle and extracted from the output image. Both PSFs are identical. Middle panels:
2D Sérsic profiles which have been convolved with the PSFs shown in the left panels. In
addition, a flat background was added where the pixel values were randomly drawn from a
Gaussian distribution. The top panel shows an extended profile whereas the bottom one is more
compact and has a steeper centre, as indicated by the parameter values. The data processing
with AstroDrizzle is equal to the approach used for the PSFs shown in the left panels. Right
panels: Residual maps from fitting the Sérsic models (middle panels) using the PSFs shown in
the left panels with Imfit. The structural parameters of the fit should equal the values used to
generate the Sérsic models and are indicated in the central pictures.

If both the simulated NSC and the TinyTim-generated PSFs were not processed by
AstroDrizzle, we recovered the initial structural parameter values for all combinations
of 𝑛 and 𝑟eff to high precision. Once we include AstroDrizzle for both the simulated
NSC and the PSF, while using the same settings as for the science data, the structural
parameters are recovered within the 1𝜎 interval. The agreement with the initial
parameter values is best for large effective radii and small Sérsic indices and becomes
worse with more compact sources and steep profiles.
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The recovered parameters became worse once we did not process the PSF with
AstroDrizzle. In this case the PSFs were directly taken from TinyTim and rotated
according to the orientation of the AstroDrizzle output. The uncertainty of the fit
became larger and, in the case of a compact source with a steep inner slope, we were
unable to recover the Sérsic index within the 1𝜎 uncertainty distribution. Therefore,
a significant systematic uncertainty is induced if the TinyTim-generated PSF is not
processed in the same way as the science data.

We also tested settings related to TinyTim. We generated different PSFs assuming
stellar templates ranging from F6V (𝑉 − 𝐼 = 0.55 mag) to K4V (𝑉 − 𝐼 = 1.13 mag) which
covers the colour-range of typical NSCs (c.f. Figure 3.11). Using these different PSFs
on various science data yielded no significant differences in the resulting parameter
values.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Corrected colour: (V − I)0 [mag]
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G5V G8V K4V

Data sets
Georgiev & Böker (2014)
Local Volume
New detections

Figure 3.11. Nuclear star cluster(𝑉 − 𝐼)0 colour. We compare our
new detections (green) to other Local
Volume data (blue) and the data set
of Georgiev and Böker (2014) for nu-
clear star clusters in massive late-type
field galaxies (gray). In addition, we
highlight the colour of the different
stellar templates tested for the syn-
thetic point spread function. For the
analysis in the main part of the paper,
the template of a G2V star is used.

In addition, we evaluated whether the accuracy of placing PSFs onto normalised
science data is an issue. More specifically, taking TinyTim-generated PSFs and
superimposing them onto the normalised science data results in an accuracy of ±1 pixel.
Therefore, we generated subsampled PSF (with subsampling factor ten), superimposed
them on normalised single exposures (ACS/WFC data), processed the data with
AstroDrizzle, resized the PSFs to the resolution of the science data, and applied the
charge diffusion kernel. This approach should yield an accuracy of ∼ 0.1 pixel. After
fitting a few NSCs, we again found no significant differences and conclude that both
the settings chosen in TinyTim and the uncertainty induced by placing PSFs onto
normalised science exposures are insignificant.

Finally, we checked the modified AstroDrizzle parameters “pixel fraction” and
“resolution”. As briefly discussed in Section 3.3.1, we chose a value of 0.75 for the
pixel fraction and increased the final resolution according to the extent of the theoretical
PSF for the ACS/WFC products. We conducted tests where we changed both the pixel
fraction (between 0.5 and 1.0) and the final resolution [between 0.035 arcsec pixel−1

and 0.05 arcsec pixel−1 (original resolution)] but found no difference in the resulting
parameter values. However, artifacts appeared in the weight maps of the data when
choosing a low value for either the pixel fraction and resolution which indicate that
AstroDrizzle cannot find input pixels from the individual exposures to generate a pixel
value on the output grid. We verified that the different AstroDrizzle settings do not
change the recovered structural parameter values of our mock data.
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Sé

rs
ic

in
de

x

F814W data
NGC2337
LV J0956-0929
M101-df4

Figure 3.12. Fit results of three different
nuclear star clusters (NGC 2337: green,
LV J0956-0929: orange, M101-df4: blue)
with fixed Sérsic indices. The dashed
horizontal line shows the Sérsic value 𝑛 =
2 used to obtain an approximate value
for the effective radii of the NSCs. The
gray shaded area shows the range of Sérsic
values which we consider to be reasonable
given the indices of quality zero fits (i.e.
‘good’ fits) presented by Pechetti et al.
(2020).

In conclusion, we cannot find significant systematic uncertainties induced by our
approach. Note that systematic uncertainties can become significant once the PSF is
not processed in the same way as the science data.

Fixation of Sérsic Indices As discussed in Section 3.3.3, the Sérsic index of a
few NSCs diverges. To be able to approximate the effective radius of the NSCs, we
fixed the index to a value of 𝑛 = 2. This value roughly equals the median value of the
quality zero fits of the data set of Pechetti et al. (2020). We investigated the induced
systematic uncertainty of this choice in Figure 3.12 where we show the Sérsic index
versus effective radius. The plot shows three NSCs for which we repeated the fit with
varying Sérsic indices. You can see that the effective radius is only slightly affected
by the choice of Sérsic index between 𝑛 = 0.5 and 𝑛 = 3.5. At higher values of 𝑛
the effective radius increases and appears to diverge towards higher values. The only
exception is M 101-df4 for which 𝑟eff appears to remain constant.

The figure shows that there exists a systematic uncertainty induced by fixing the
Sérsic index to a value of 𝑛 = 2. Therefore, we determine the largest differences
between effective radius between 𝑛 = 0.5 and 𝑛 = 3 and add this value in quadrature to
the larger statistical uncertainty obtained from bootstrap iterations. If the ‘true’ Sérsic
index is larger than 𝑛 = 3, our quoted effective radii become systematically too small,
but as we show in Section 3.4.3, this issue does not affect our results.

Due to the choice of 𝑛 = 2, the apparent magnitudes of the NSCs are affected as well.
In our tests the difference in magnitude is typically 𝛿𝑚 ∼ 0.1 mag when setting 𝑛 = 0.5
and 𝑛 = 3. Therefore, for the cases where we set 𝑛 = 2 we add in quadrature to the
statistical uncertainty the statistical uncertainty 0.1 mag.

Finally, we tested the effect of fixing 𝑛 = 2 for the NSCs where the index did not
diverge in the fits. Repeating the fits and using 500 bootstrap iterations we find typical
differences of 𝛿𝑟eff ≲ 5 % which is comparable to the statistical uncertainty.
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3.7.2 Data Tables

Here we present the data tables underlying this article. Table 3.2 gives an overview
of the galaxies hosting the newly discovered NSCs and their available HST data.
Galaxy properties are adapted from Hoyer et al. (2021) and raw images, containing
exposure information, are taken from the HLA. Table 3.3 presents properties of the
newly discovered NSCs. Table 3.4 gives the parameters of other NSCs in the Local
Volume and in Table 3.5 we present the NSC stellar mass estimates of the data sample
of Georgiev and Böker (2014).
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Table 3.5. List of 𝑉- and 𝐼-band apparent magnitudes and stellar mass estimates of nuclear star
clusters (NSCs) in the galaxy sample of Georgiev et al. (2016). NSC structural parameters are
presented in the data tables of Georgiev and Böker (2014).

Name 𝑚 −𝑀 𝑚𝑉 𝑚𝐼 log10 𝑀⋆

[mag] [mag] [mag] [M⊙]

DDO 078 27.71 ± 0.03 19.44 ± 0.01 18.51 ± 0.01 5.87 ± 0.25
ESO 138-010 30.9 ± 1.1 -- -- --
ESO 187-051 31.32 ± 0.89 -- -- --
ESO 202-041 30.58 ± 0.58 -- -- --
ESO 241-006 31.32 ± 0.87 -- -- --⋮

3.8 Chapter Summary

▹ This work analysed 19 newly discovered NSCs in nearby dwarf galaxies with
archival HST data.▹ The analysis significantly increases the number of available structural information
of NSCs in dwarf galaxies, reaching down to galaxy masses of ≈ 106.5 M⊙.▹ There exists no apparent difference in structure or photometry between these
NSCs and GCs in the Milky Way, supporting the tight link between the formation
mechanism of both systems.▹ For the first time the data reveal a dependence of the 𝑀gal-𝑀NSC relationship as
a function of environment where, in the dwarf galaxy regime, NSCs in a dense
galaxy cluster environment are more massive than their counterparts in galaxies
located in a field environment.▹ Despite the clear link between NSCs and GCs it remains unknown whether
NSCs in dwarf galaxies typically form via GC mergers or in-situ as a random
realisation of the cluster initial mass function.
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Chapter 4
The Heart of M 74

Declaration

The contents of this chapter were previously published in Hoyer et al. (2023b). All
co-authors provided commentary that improved the published work and contributed to
the comparison between the NSCs of M 74 and the Milky Way. A. K. Leroy assisted
with calculations of the upper limit for the gas mass in the centre of M 74.

Abstract

We combine archival HST and new JWST imaging data, covering the ultraviolet to
mid-infrared regime, to morphologically analyze the nuclear star cluster (NSC) of
M 74, a grand-design spiral galaxy. The cluster is located in a 200 pc × 400 pc cavity,
lacking both dust and gas. We find roughly constant values for the effective radius
(𝑟eff ∼ 5 pc) and ellipticity (𝜖 ∼ 0.05), while the Sérsic index (𝑛) and position angle
(PA) drop from 𝑛 ∼ 3 to ∼ 2 and PA ∼ 130 to 90○, respectively. In the mid-infrared,
𝑟eff ∼ 12 pc, 𝜖 ∼ 0.4, and 𝑛 ∼ 1-1.5, with the same PA ∼ 90○. The NSC has a stellar
mass of log10 (𝑀nsc

⋆ /M⊙) = 7.06 ± 0.31, as derived through 𝐵 −𝑉 , confirmed when
using multi-wavelength data, and in agreement with the literature value. Fitting the
spectral energy distribution, excluding the mid-infrared data, yields a main stellar
population’s age of (8 ± 3)Gyr with a metallicity of 𝑍 = 0.012 ± 0.006. There is no
indication of any significant star formation over the last few Gyr. Whether gas and dust
were dynamically kept out or evacuated from the central cavity remains unclear. The
best-fit suggests an excess of flux in the mid-infrared bands, with further indications
that the center of the mid-infrared structure is displaced with respect to the optical
center of the NSC.

4.1 Introduction

Nuclear star clusters (NSCs) are massive and compact stellar systems in galactic nuclei.
The effective radii range from a few to tens of parsecs. Such radii are typical of globular
clusters and ultra-compact dwarfs (e.g. Georgiev & Böker, 2014; Norris et al., 2014;
Pechetti et al., 2020). Stellar masses may reach up to 109 M⊙ (e.g. Georgiev et al.,
2016), which, in combination with the small effective radii, lead to core-densities that
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can approach ≲ 108 M⊙ pc−3 (e.g. Stone et al., 2017) effectively making NSCs the
densest stellar systems known (see Neumayer et al., 2020, for a review).

The formation and growth of NSCs depends on host galaxy mass (Fahrion et al.,
2021), and potentially morphological type (Pinna et al., 2021). Two main scenarios
have been proposed in the literature: dissipationless globular cluster (GC) migration
dominates in the dwarf galaxy regime (𝑀gal

⋆ < 109 M⊙ Tremaine et al., 1975; Capuzzo-
Dolcetta, 1993; Agarwal & Milosavljević, 2011; Hartmann et al., 2011; Arca Sedda &
Capuzzo-Dolcetta, 2014; Antonini et al., 2015; Fahrion et al., 2020b, 2022b, 2022a) and
in-situ star formation in more massive galaxies (Milosavljević, 2004; Bekki et al., 2006;
Bekki, 2007; Turner et al., 2012; Sánchez-Janssen et al., 2019a; Neumayer et al., 2020).
The latter scenario requires gas inflow, which may be caused by non-axisymmetric
potentials (for example bars Shlosman et al., 1990), dynamical friction of star-forming
clumps (e.g. Bekki et al., 2006; Bekki, 2007), supernova driven turbulence (e.g. Sormani
et al., 2020; Tress et al., 2020), or rotational instabilities of the disk (Milosavljević,
2004). Once the gas settles at the center of the cluster and cools off, star formation
begins, leading to the observation of young stellar populations (e.g. Rossa et al., 2006;
Walcher et al., 2006; Seth et al., 2008b; Kacharov et al., 2018; Fahrion et al., 2021;
Hannah et al., 2021) and structural variations, such as a wavelength-dependent effective
radius (Georgiev & Böker, 2014; Carson et al., 2015). Young stellar populations
were also directly observed in various nuclei, including the Milky Way’s NSC (e.g.
Seth et al., 2006, 2008b; Do et al., 2009; Genzel et al., 2010; Carson et al., 2015;
Feldmeier-Krause et al., 2015; Kacharov et al., 2018; Nguyen et al., 2019; Hannah
et al., 2021; Henshaw et al., 2022). A combination of both GC migration and in-situ
star formation is also possible if the infalling GC keeps a gas reservoir and continues
star formation during inspiral (Guillard et al., 2016). Corroborated by scaling relations
between cluster properties and their host galaxies (e.g. Ferrarese et al., 2006; Seth et al.,
2008b; Erwin & Gadotti, 2012; Scott & Graham, 2013; Ordenes-Briceño et al., 2018;
Sánchez-Janssen et al., 2019b), studying nuclear clusters in detail reveals both their
formation history as well as that of their host galaxy. Drawing this connection in M 74
is one of the goals of this work.

NSCs appear frequently, albeit not ubiquitously, at galaxy masses of 109-1010 M⊙ in
various environments (Côté et al., 2006; Turner et al., 2012; Baldassare et al., 2014;
den Brok et al., 2014; Neumayer et al., 2020; Hoyer et al., 2021). While this fraction
decreases towards higher galaxy masses, there are indications that it drops at a slower
rate for late-type galaxies compared to early-types (Neumayer et al., 2020; Hoyer
et al., 2021). A majority of NSCs in high-mass galaxies were discovered in spiral
galaxies (e.g. Carollo & Stiavelli, 1998; Böker et al., 2002), likely due to high central
luminosities of massive elliptical galaxies.

One example for a nucleated, massive (𝑀gal
⋆ ∼ 2×1010 M⊙ Leroy et al., 2021) galaxy

is M 74 (NGC 0628), the object of this study. The NSC was analyzed previously by
Georgiev and Böker (2014) using Hubble Space Telescope (HST) WFPC2 imaging
data, but no in-depth analysis of all available high-resolution data has been performed
yet. With the advent of the James Webb Space Telescope (JWST) earlier this year, we
aim to study the NSC of M 74 across the optical and infrared regimes, analyzing both
its structural and photometric properties.

This grand-design spiral galaxy is located at a distance of 𝑑 = (9.84 ± 0.63)Mpc
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(McQuinn et al., 2017; Anand et al., 2021) at the edge of the Local Volume (≲ 11 Mpc).
Both its relatively isolated position (e.g. Briggs et al., 1980) and nearly face-on
orientation (𝑖 ∼ 8.9○; Lang et al., 2020) make the galaxy an optimal test-case for
detailed studies of galactic disks, and star- and cluster-formation in massive late-types
(see e.g. Elmegreen & Elmegreen, 1984; Condon, 1987; Grasha et al., 2015; Adamo
et al., 2017; Mulcahy et al., 2017; Kreckel et al., 2018; Sun et al., 2018; Schinnerer
et al., 2019; Vı́lchez et al., 2019; Zaragoza-Cardiel et al., 2019; Chevance et al., 2020;
Yadav et al., 2021).

Figure 4.1 shows an overview of the innermost 20 arcsec × 20 arcsec (approximately
950 pc × 950 pc) of M 74. Corroborated by AstroSat UV, MUSE H𝛼 (Emsellem et al.,
2022), and ALMA CO maps (Leroy et al., 2021), the HST and JWST data reveal a
spheroidal component, dust and gas reservoirs along prominent spiral arm structures,
and star-forming regions. Instead of continued spiral arms down to the smallest scales,
a central cavity of approximately 200 pc × 400 pc lacking both gas and dust is present.
The NSC of M 74 appears as a prominent bright source in the center of the galaxy.

Secular evolution plays a key role in the history of M 74, as indicated by the presence
of a circum-nuclear region of star formation with radius ∼ 25 arcsec (∼ 1.2 kpc; Sánchez
et al., 2011). While the formation of such a region can be related to the presence of a
bar (Piner et al., 1995; Sakamoto et al., 1999; Sheth et al., 2005; Fathi et al., 2007;
Sormani et al., 2015; Spinoso et al., 2017; Bittner et al., 2020), as argued to be present
in M 74 by Seigar (2002) and Sánchez-Blázquez et al. (2014), more recent work finds
that M 74 does not contain an obvious bar (Querejeta et al., 2021), despite an observed
metallicity gradient, which is related to mixing of gas induced by a bar-structure in
other late-type galaxies (Friedli & Benz, 1995; Martin, 1995; Dutil & Roy, 1999;
Scarano & Lépine, 2013). If not by a bar, the presence of a circum-nuclear region
of star formation may also be caused by past minor mergers, as speculated for other
unbarred late-types by Sil’chenko and Moiseev (2006). Indeed, dwarf galaxies are
known to exist around M 74 (Davis et al., 2021). It is also plausible that the galaxy
hosted a bar in the past, which was destroyed by minor mergers (Cavanagh et al., 2022).

The large, approximately 200 pc×400 pc large, central cavity remains challenging to
explain. Currently, it is unclear whether inflow of gas and dust is prohibited dynamically,
or whether the material has been expelled by star formation, supernovae, or a previously
accreting massive black hole. As motivated above, the NSC properties may inform us
on the evolution of M 74, if studied in detail. Therefore, one of the goals of this study
is to relate the NSC properties to the evolution of its host galaxy.

In this work, we combine archival HST and newly obtained JWST imaging data
to study the NSC of M 74 in great detail. Our data extend from the ultraviolet to the
mid-infrared regime (see Figure 4.2 and Table 4.1) and are of high-enough resolution
to resolve the cluster at all wavelengths. This study presents the first analysis of an NSC
with JWST data and highlights the telescope’s scientific value for studies of galactic
nuclei in the local Universe. Using the available data, we derive photometric and
structural parameters for all bands, and model the spectral energy distribution of the
NSC.

We introduce the data from both space telescopes in Section 4.2 and briefly discuss
the data processing pipelines as well as the generation of synthetic point spread
functions. Image analysis is described in Section 4.3 and the main analysis steps are
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detailed in Section 4.4. The results of the study are discussed in Section 4.5. We
conclude in Section 4.6.

4.2 Data

Our analysis is based on archival HST ACS & WFC3 taken from the Hubble Legacy
Archive1 and recently obtained JWST NIRCam & MIRI imaging data (Project ID 02107,
PI J. Lee; see Lee et al., 2023). A brief overview of the available data is given in
Table 4.1 and Figure 4.2. In the next three subsections we briefly describe the data
processing for each instrument, followed by the generation of point spread functions.

4.2.1 Hubble Space Telescope

We obtain all available flat-fielded single exposures from the HLA to combine them
into a single master frame. As a first step, the world coordinate systems of the ACS &
WFC3 received updates using the latest reference files. These updated files were fed
to AstroDrizzle (Fruchter & Hook, 1997; Fruchter et al., 2010; Gonzaga et al., 2012),
which combines them into a master science product given user-specified settings. As
tested and justified in other work (Hoyer et al., 2023a), we chose a pixel fraction of 0.75
but keep the pixel scale at their original resolutions (see Table 4.1).2 No additional sky
subtraction was performed as we account for background flux from the galaxy with a
Sérsic profile (Sérsic, 1968) and a plane offset.

4.2.2 James Webb Space Telescope

As part of the “Physics at High Angular resolution in Nearby GalaxieS” (PHANGS)
JWST Cycle 1 treasury program, M 74 was observed in various NIRCam and MIRI
bands on July 17, 2022 [see Table 4.1, and also Lee et al. (2023)]. Data reduction and
co-addition were carried out using a custom data reduction pipeline, which among
other things, improves the astrometric solutions and zero point offsets compared to
the publicly available data products. More specifically, the world coordinate system
(WCS) was updated to match the one from the HST and Gaia, and overall background
level were calibrated against e.g. IRAC4 8 µm and WISE3 12 µm fluxes (Leroy et al.,
2023). More detail of the customized version of the data reduction pipeline will be
presented in Lee et al. (2023).

4.2.3 Point Spread Functions

For all bands, we used artificially generated point spread functions (PSFs) instead of
determining them from non-saturated stars in the images. The main reason for this
choice was that no star is unaffected by dust and falls close to the location of the NSC
(see Figure 4.1). Especially the latter condition is important for HST data as the PSF is
known to vary significantly across the whole chip.

1URL: https://hla.stsci.edu/
2The pixel fraction controls how individual exposures are added: a value of zero corresponds to pure

interlacing whereas a value of one results in a “shift-and-add” style of pixel values.
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HST F435W, F555W, F658N, F814W JWST F200W, F300M, F335M All HST and JWST bands

AstroSat UV MUSE Hα ALMA CO
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Figure 4.1. Overview of the nuclear region of M 74 in different bands. Each panel gives the
central 20 arcsec × 20 arcsec (approximately 950 pc × 950 pc) of the galaxy, centered on the
nuclear star cluster. North is up and East is to the left. Color correlates with intensity. The
first row gives three color-images using HST and JWST bands, highlighting star-formation by
using the continuum-subtracted HST ACS F658N (H𝛼) filter. Dust lanes, where star formation
occurs, are clearly visible in the first and third panel, while only stellar emission is shown
in the second panel. The squared box of side length 5.5 arcsec in the third panel shows the
region we considered for the fit of the NSC. The second row highlights other available data sets,
namely the AstroSat ultraviolet emission, MUSE H𝛼, and ALMA CO. The first two panels trace
again star formation whereas the third panel shows the location of the molecular gas. Note the
absence of star formation and gas in the immediate vicinity of the nuclear star cluster, which
is marked with a white cross. The third and fourth rows show the HST data, increasing in
wavelength. Star forming regions, identified in the HST WFC3 F275W, become hidden behind
dust filaments in other bands. The sixth panel, showing the HST ACS F814W data, mainly
shows stellar emission. We show the newly obtained JWST NIRCam (fifth) and MIRI (sixth) in
the last two rows, again in increasing wavelength from the near-infrared to the mid-infrared.
The NIRCam data highlights the stellar emission while the MIRI data shows both stellar and
dust emission. As for the molecular gas (ALMA CO, second row), a central cavity exists and
dust is present in the spiral arms of M 74.
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Figure 4.2. Transmission of the HST and JWST bands.
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Table 4.1. HST and JWST data to analyse M 74.

Instrument Channel Filter PropID 𝑡exp pixel scale(a)

[s] [arcsec pixel−1]

HST WFC3 F275W 13 364 4962.00 0.040
HST WFC3 F336W 13 364 4962.00 0.040

HST ACS F435W 10 402 2716.00 0.050
HST ACS F555W 10 402 1716.00 0.050
HST ACS F658N 10 402 2844.00 0.050
HST ACS F814W 10 402 1844.00 0.050

JWST NIRCam F200W 2107 9620.16 0.031
JWST NIRCam F300M 2107 773.048 0.063
JWST NIRCam F335M 2107 773.048 0.063
JWST NIRCam F360M 2107 858.944 0.063

JWST MIRI F770W 2107 266.40 0.110
JWST MIRI F1000W 2107 366.30 0.110
JWST MIRI F1130W 2107 932.412 0.110
JWST MIRI F2100W 2107 965.712 0.110

(a) Original pixel values, which remained unchanged during data processing.

Following the approach by Hoyer et al. (2023a), PSFs were generated using TinyTim
(Krist, 1993, 1995) for HST bands. To minimize systematic differences in data
processing, we did not directly use the resulting PSF from TinyTim for deriving the
structural properties. Instead, we copied all input science frames and set their first
header extension (science data) to zero. We then generated PSFs at the location of
the NSC on each individual exposure and placed them into the previously normalized
frames, taking into account the orientation of the original science images. Afterwards,
we repeated the AstroDrizzle processing for the normalized frames in the same way
as for the science data. The final PSF was extracted from the output of AstroDrizzle.
In comparison to a PSF from TinyTim, the core of the extracted PSF is slightly more
extended due to the drizzling process. Taking this effect into account is important for
deriving accurate effective radii, as detailed in Hoyer et al. (2023a).

Generation of PSFs for JWST bands was performed with WebbPSF (Perrin et al.,
2012, 2014). To generate a star at the location of the NSC, we first generated a grid of
36 PSFs for the detector elements where the position of the NSC falls upon. The PSF
for the position of the NSC was evaluated based on interpolation of generated PSFs
using WebbPSF. This step is crucial as the PSF of JWST varies in both the spatial and
temporal dimension (Nardiello et al., 2022). By default, and in agreement with our
choice for the TinyTim-based PSFs, we chose a G2V star as the stellar template. As
explored in Hoyer et al. (2023a), the choice of stellar type plays little to no role on the
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fit results for HST data and we assume the same for JWST data.

4.3 Image Fitting

4.3.1 Approach and Model Function

Focusing on the center of M 74, we extracted a square region of side length 5.5′′
(equivalent to ∼ 260 pc) centered on the NSC to avoid the more dust- and gas-rich spiral
structure, as shown in the first row, right panel of Figure 4.1. Previous investigations
used various model functions to describe the light distribution of NSCs, including
King profiles [see King (1962) for the original definition; e.g. Matthews et al. (1999),
Seth et al. (2006), Georgiev et al. (2009b), and Georgiev and Böker (2014)], Gaussian
profiles (e.g. Carollo et al., 1997, 2002; Barth et al., 2009; den Brok et al., 2014), Nuker
profiles [see Lauer et al. (2005) for a definition; e.g. Carollo and Stiavelli (1998), Böker
et al. (1999b, 2002), and Butler and Martı́nez-Delgado (2005)], Sérsic profiles (e.g.
Côté et al., 2006; Baldassare et al., 2014; Carson et al., 2015; Spengler et al., 2017;
Pechetti et al., 2020), or point sources (e.g. Ferrarese et al., 2020; Poulain et al., 2021;
Zanatta et al., 2021; Carlsten et al., 2022). Here we use the Sérsic profile of the form

𝐼(𝑟) = 𝐼eff exp{ − 𝑏𝑛 [( 𝑟
𝑟eff
)1/𝑛 − 1]} , (4.1)

where 𝑟 is the radius, 𝑟eff the half-light or effective radius, 𝐼eff the intensity at 𝑟eff , and
𝑛 the Sérsic index. The parameter 𝑏𝑛 solves the equation Γ(2𝑛) = 2𝛾(2𝑛, 𝑏𝑛) where
𝛾(𝑎, 𝑥) is the incomplete and Γ(𝑥) the complete Gamma function. For 𝑛 ∈ (0.5, 10),
𝑏𝑛 = 1.9992𝑛 − 0.3271 is a good approximation (Capaccioli, 1989; Graham & Driver,
2005).

The background flux from the host galaxy and the sky was modeled with another
Sérsic profile and a plane offset. From our fits (see below), we found that in all
bands 𝐼gal

eff ≪ 𝐼nsc
eff , 𝑟gal

eff ≫ 𝑟nsc
eff , and 𝑛gal ≲ 1, such that the profile of the host galaxy

becomes flat in the very center, thus justifying the choice of models. As we describe in
Section 4.7.1, two Sérsic profiles describe the NSC worse than a single profile.

To fit the data, we convolved the profiles with the previously generated synthetic PSF
at the position of the NSC (see Section 4.2.3). The fit itself was performed with Imfit
(Erwin, 2015), a specialized program to fit astronomical images. For the minimization
technique, we chose the Differential Evolution solver with Latin hypercube sampling.
In comparison with other available options, the solver does not rely on initial parameter
values but randomly selects parameter values between user-specified boundaries (see
Storn & Price, 1997, for details). We list the boundaries for the parameters of the Sérsic
profile used for the NSC in Table 4.2. By default, Imfit evaluates the goodness of the fit
with standard 𝜒2 statistics.

Unless specified, Imfit assumes Poissonian statistics of the input data to generate a
noise map. We take this approach for all but the JWST MIRI data where noise maps
were generated by the previously mentioned custom data calibration pipeline. The
noise maps for the MIRI bands were determined from uncertainties of the input data,
the read noise and the flat fields, weighted by the fractional contribution to each pixel.
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Table 4.2. Sérsic parameters and their boundary values used to fit the data with Imfit. The
same values are used for all HST and JWST bands.

Parameter Boundary Unit Description

𝑥0 [45, 55] [pixel] NSC position
𝑦0 [45, 55] [pixel] NSC position
PA [−359.99, 359.99](a) [deg] Position angle
𝜖 [0.00, 0.99] -- Ellipticity
𝑛 [0.00, 5.00] -- Sérsic index
𝑟eff [0.00, 10.00] [pixel] Effective radius
𝐼eff [0.00, 𝐼max](b) [counts] Intensity at 𝑟eff

(a) To prevent the fit from running into boundaries at 0○, the lower boundary was
changed to negative values. In the case that the best-fit position angle was negative,
180○ (or 360○) was added.

(b) 𝐼max is the peak of the intensity of the NSC.

As a result, compared to the standard noise map generated by Imfit, the MIRI noise
maps give lower values for the nucleus itself, but higher values for the faint emission
by the background galaxy.

In Figures 4.3 and 4.4 we show the data, best-fit two-component models, and the
residuals for the HST ACS & WFC3, JWST NIRCam, and MIRI data, respectively.
For the JWST MIRI F2100W all attempts failed to find a stable fit. Instead, to get an
estimate for the apparent magnitude, we fit a Sérsic profile excluding PSF convolution.

4.3.2 Uncertainties

We determined uncertainties by repeating the fit 500 times using bootstrapping. During
each iteration of bootstrapping, Imfit generates a new data array where indices of pixels
are randomly sampled. During re-sampling, the pixel values of the input data as well
as their location are not considered. The quoted best-fit parameters equal the median
value of the parameter distribution and the uncertainties give the 1𝜎 interval.

For some physical parameters, such as the determination of NSC mass (see Sec-
tion 4.4.3) or the transformation of the effective radius to parsec, the bootstrapping
uncertainties were propagated forward. Based on the assumption that the underlying
probability distributions are Gaussians, we used the Gaussian error propagation.

The uncertainty of the zero point magnitudes for the HST bands is of the orderO(10−3) and can be neglected. However, recent analyses of early JWST data revealed
that there exist issues with the flux calibration. As detailed below, these issues persist
and remain significant.

For the JWST NIRCam data, the uncertainty on the flux calibration can be as high
as 0.2 mag (Boyer et al., 2022), depending on the band and detector. Most recent
analyses in the community try to solve this issue by introducing multiplicative correction

59



Data

F275W
F336W

F435W
F555W

F658N
F814W

ModelResidual

Figure
4.3.O

verview
ofthe

central5
.5arcsec×

5
.5arcsec

(1arcsec≈
47pc)ofM

74
in

six
differentH

ubble
Space

Telescope
bands.N

orth
isup

and
Eastis

left.Top
row

:D
ata

productsasused
forfitting.M

iddle
row

:M
odelim

agesofthe
bestfitusing

one
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factors for the data.3 We corrected the determined fluxes by the mean multiplicative
correction factor of G. Brammer and I. Labbe presented in Brammer (2022), 0.7845.
The correction factors are presented for the F090W, F115W, F150W, and F200W, that
is, only the last band overlaps between the filter sets. To remain consistent between
all four NIRCam bands, we did not change the value of the apparent magnitude, but
determine the uncertainty from the multiplicative correction factor itself. The final
uncertainty on the magnitude was then determined through Gaussian error propagation
of this systematic uncertainty and the statistical uncertainty obtained from the fit.
For the other three NIRCam bands, we assumed that the correction factor equals 0.8,
resulting in an uncertainty of ∼ 0.24 mag. As for the F200W, we combined this value
with the statistical uncertainty from bootstrapping for the final uncertainty.

For the JWST MIRI data, the background level was, as described in Section 4.2.2,
adjusted by comparing the F770W flux to the IRAC4 8 µm and WISE3 12 µm bands.
The estimated uncertainty on its value is ±0.1 mag (Leroy et al., 2023).

As pointed out in Section 4.2.3, we did not check the influence the calibration and
co-addition of the data have on the synthetic PSF generated by WebbPSF. Hoyer et al.
(2023a) found for the HST data that the co-addition of single exposures results in
a slight broadening of the core of the PSF, introducing a systematic overestimation
of the NSCs size. To repeat this experiment for the JWST data, we focused on the
NIRCam F200W band and repeated the fit introducing an additional jitter in the form
of a Gaussian function convolved with the synthetic PSF. In WebbPSF, we increased
the jitter by factors of two and five and repeated the fits using the new PSFs. The
result was that the structural parameters, as well as magnitude and color, remained well
within the 1𝜎 distribution of the original fits. Therefore, we conclude that our results
are reliable given the presented uncertainties.

4.4 Analysis

4.4.1 Photometry

Integrating Equation 4.1 with an assumed ellipticity (𝜖) yields the luminosity (𝐿;
photon count per energy band and time) as

𝐿 = 2𝜋 (1 − 𝜖) 𝐼eff 𝑟
2
eff

𝑛e𝑏𝑛(𝑏𝑛)2𝑛 Γ(2𝑛) . (4.2)

We use the equation

ZPAB = −2.5 × log10 (PHOTFLAM) − 5 × log10 (PHOTPLAM) − 2.408 , (4.3)

to calculate the zero point magnitudes for HST ACS / WFC3 bands. The values of
PHOTFLAM and PHOTPLAM are given in the header extensions of the fits files.4

3See, for example, https://github.com/gbrammer/grizli/pull/107.
4We find the following zero point magnitudes for the HST bands: ZPF275W = 24.159 mag,

ZPF336W = 24.689 mag, ZPF435W = 25.677 mag, ZPF555W = 25.722 mag, ZPF658N = 22.760 mag,
and ZPF814W = 25.950 mag.
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Pixel values in JWST data products have the unit [MJy sr−1], which we convert to Jy
by using Equation 4.2 and the pixel-to-steradian conversion factor PIXAR SR from the
header extension. The zero point magnitude is then derived using

ZPAB = −2.5 log10 (𝐿) + 8.9 . (4.4)

Foreground extinction is taken into account by using the re-calibrated version of the
Schlegel et al. (1998) extinction maps (Schlafly & Finkbeiner, 2011) and assuming
𝑅𝑉 = 3.1 (Fitzpatrick, 1999). Due to the apparent lack of dust in the center of M 74,
we do not attempt to correct for intrinsic extinction. For the HST bands, we derive
𝐴(𝜆) / 𝐴(V) with the model from O’Donnell (1994), which is based on Cardelli et al.
(1989).

Figure 4.5 shows spectral flux densities as well as the extinction-corrected apparent
magnitudes of the NSC in the AB-magnitude system. The NSC is faintest in the
ultraviolet regime and becomes brighter towards the near-infrared. The brightest
magnitude is reached at 2 µm after which the nucleus becomes fainter again.

To compare to the values by Georgiev and Böker (2014), we transform our magnitudes
from the AB- to the Vega-magnitude system using the approach outlined in Sirianni et al.
(2005) and applied in Pechetti et al. (2020) for NSCs. We find V0 = (17.85±0.04)mag
and I0 = (16.69 ± 0.05)mag. Georgiev and Böker (2014) present V0 = (17.88 ±
0.01)mag and I0 = (16.57±0.01)mag. While the V-band magnitudes agree with each
other, we find a significant difference in the I-band. The different magnitude is most
likely related to the extracted structural parameters (c.f. Section 4.4.4).

4.4.2 SED Modelling

The combined HST and JWST data cover the ultraviolet to mid-infrared spectrum and
enable the study of the spectral energy distribution (SED) in detail. To extract basic
parameters describing the stellar population, we set up a model assuming a delayed star
formation history, two commonly used different initial mass functions (Salpeter, 1955;
Chabrier, 2003), and the Bruzual and Charlot (2003) single stellar population model.

The fits were executed using CIGALE, a Python code for modeling the SEDs of
galaxies (see Burgarella et al., 2005; Noll et al., 2009; Boquien et al., 2019; Yang et al.,
2020, 2022), which has successfully been applied to star clusters (e.g. Fensch et al.,
2019; Turner et al., 2021). The program allows to adjust various physical properties
such as the age of the stellar populations or their metallicity. We test various parameter
values, as detailed in Table 4.3, to find the best possible fit to the data, as evaluated by
Bayesian statistics.

The fit was performed twice, excluding the MIRI data in one run. We do this to
test their influence to the fit result and disentangle emission from low-mass stars and
dust. The addition of a dust emission model yielded worse fits, as evaluated by both the
reduced 𝜒2 and Bayesian statistics, which is why we do not include it in the presented
results. We discuss this issue in more detail in Section 4.5.

For the fit including the MIRI data, we find that the mass-weighted age of the main
stellar population is (8 ± 2)Gyr with a metallicity of 𝑍 = 0.03 ± 0.01, more metal-rich
than the Sun (Asplund et al., 2009). The e-folding time of the main stellar population
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is (500 ± 500)Myr and the mass fraction of the late burst is consistent with zero. The
fit preferred a Chabrier (2003)-type initial mass function over a Salpeter (1955) one.

For the fit excluding the MIRI data, we find a mass-weighted age of the main stellar
population of (8 ± 3)Gyr with a metallicity of 𝑍 = 0.012 ± 0.006. The e-folding
time was determined to be (220+380

−220)Myr and the mass fraction of the late burst is
comparable to zero. The fit again preferred a Chabrier (2003)-type initial mass function.

According to the reduced 𝜒2 statistics, the fit excluding the MIRI data performed
better than the one including them. The results of both fits are consistent with each
other, indicating the presence of a 8 Gyr old stellar population with metallicity 𝑍 ∼ 0.02
and no presence of a young stellar population. We discuss the results obtained for the
mass of the stellar population in the next section.

Table 4.3. Parameter values for the spectral energy distribution fits. The values remain
unchanged between runs including and excluding the MIRI data.

Parameter Unit Values Best-fit
Incl. MIRI Excl. MIRI

Star formation history

tau main(a) [Myr] 1, 10, 100, 1000, 2000, 3000 500 ± 500 220+380
−220

age main(b) [Gyr] 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 8 ± 2 8 ± 3
tau burst(c) [Myr] 10, 20, 50, 100 57 ± 33 57 ± 33
age burst(d) [Myr] 10, 20, 50, 100 27 ± 17 27 ± 17
f burst(e) -- 0.0, 0.1, 0.2, 0.5 0 0

Simple stellar population

imf(f) -- 0, 1 1 1
metallicity(g) -- 0.004, 0.008, 0.02, 0.05 0.027 ± 0.013 0.012 ± 0.006

(a) 𝑒-folding time of the main stellar population
(b) Age of the main stellar population
(c) Time of the late star burst
(d) Age of the late star burst
(e) Mass fraction of the late burst
(f) Initial mass function (Salpeter, 1955; Chabrier, 2003)
(g) Metallicity of the stellar population

4.4.3 Stellar Mass

We determine the stellar mass of the NSC in three different ways: (1) we use 𝐵 −𝑉
color and its mass-to-light scaling relations, (2) we combine the apparent magnitude
in the F200W (roughly K-band) with a constant mass-to-light ratio ranging between
0.5 and 0.6 (in solar units), and (3) we extrapolate a stellar mass from SED fitting.
The resulting mass estimates and the literature value from Georgiev et al. (2016) are
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Figure 4.5. Spectral flux density (𝑆𝜈 , left axis) and AB magnitude (𝑚AB, right axis) versus
wavelength (𝜆). Different instruments are highlighted with marker symbols and colors. Red
pentagons give the results by Georgiev and Böker (2014) in the Vega-magnitude system.
Uncertainties are indicated with shaded areas. Two gray lines show the spectral energy
distribution fits to the data including (dashed line) and excluding (solid line) the JWST MIRI
data. The goodness of the fits is given by reduced 𝜒2 values in the panel. For both fits, we use
the Bruzual and Charlot (2003) stellar population model and a delayed star formation history.
The fit prefers a Chabrier (2003) initial mass function over the prescription by Salpeter (1955).
Both fits indicate the presence of a 8 Gyr old stellar population with metallicity 𝑍 ∼ 0.02. No
younger stellar population could be detected.

Table 4.4. Determined nuclear star cluster mass as well as the literature value.

Source Logarithmic stellar mass
[M⊙]

𝐵 −𝑉 7.06 ± 0.31
K-band 7.2 ± 1.1(a)

SED (incl. MIRI) 7.17 ± 0.10
SED (excl. MIRI) 7.11 ± 0.10
Georgiev et al. (2016) 7.05 ± 0.21

(a) The large uncertainty compared to the other values is caused by the high uncertainty
on the zero-point values for NIRCam data.

presented in Table 4.4.
Following Hoyer et al. (2021), we use four different 𝐵 −𝑉 color relations and the
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𝑉-band luminosity to obtain a stellar mass-to-light ratio. The original relations were
published by Bell et al. (2003), Portinari et al. (2004), Zibetti et al. (2009), and Into and
Portinari (2013) but we adopt the revised parameters from McGaugh and Schombert
(2014), which ensures consistency between the relations. An extended discussion and
the assumptions made are detailed in Hoyer et al. (2021).

First, the HST ACS F435W and F555W magnitudes were converted to the Johnson-
Cousin system (𝐵- and𝑉-band, respectively) using Equation 12 and Table 22 of Sirianni
et al. (2005). Absolute magnitudes were derived using the distance estimate of the
galaxy and the absolute magnitude of the Sun (Willmer, 2018).5

After transforming the HST magnitudes to the Johnson-Cousin system and using
magnitudes in the Vega-system, we find 𝐵0 = (18.59 ± 0.03)mag and 𝑉0 = (17.86 ±
0.04)mag with a color (𝐵 − 𝑉)0 = (0.73 ± 0.05)mag, which roughly matches the
color of a G8V-type star (𝐵 − 𝑉 ∼ 0.75 mag) and is consistent with the results from
the SED fits. From the four scaling relations, we determine individual masses and
combine them into one using the weighted average. The resulting mass estimate
is log10 (𝑀nsc

⋆ /M⊙) = 7.06 ± 0.31. The uncertainty budget is dominated by the
uncertainty assumed for the mass-to-light ratio, 0.3 dex (Roediger & Courteau, 2015).

An alternative approach is to use the magnitude in the K-band. McGaugh and
Schombert (2014) found that a constant mass-to-light ratio of ∼ 0.6 can be used to
estimate stellar masses as the near-infrared luminosity is only weakly dependent on
color. While we do not directly have a K-band magnitude, we estimate the mass
using the F200W band from JWST , centered on 2 µm. The K-band overlaps with the
F200W band such that we can use the mass estimate as a benchmark for the other mass
estimates.

Using the same four references as for the approach using the 𝐵 −𝑉 color (Bell et al.,
2003; Portinari et al., 2004; Zibetti et al., 2009; Into & Portinari, 2013) and their
re-calibrated values from McGaugh and Schombert (2014), we find a stellar mass
of log10 (𝑀nsc

⋆ /M⊙) = 7.2 ± 1.1. The uncertainty is much larger than for the mass
determined from the 𝐵 − 𝑉 relation due to the uncertainty on the zero point of the
NIRCam data.

From the SED fitting in the previous section, the mass of the star cluster was
determined as well. In the fit including the MIRI data, we find log10 (𝑀nsc

⋆, 1 /M⊙) =
7.17±0.10. In the fit excluding the MIRI data, we find log10 (𝑀nsc

⋆, 2 /M⊙) = 7.11±0.10.
As stated above, no young stellar population was found.

The mass of the NSC was previously determined by Georgiev et al. (2016) based
on the analysis of Georgiev and Böker (2014). To obtain stellar masses, the authors
use stellar population models from Bruzual and Charlot (2003) with solar metallicity
and an initial mass function of the type presented in Kroupa (2001). The reported
mass for the NSC of M 74 is log10 (𝑀nsc

⋆ /M⊙) = 7.05 ± 0.23, which agrees within the
uncertainty with our mass estimates.

Overall, we find agreement between all approaches finding that the NSC has a
stellar mass of ∼ 107 M⊙. In the following, we use the mass value log10 (𝑀nsc

⋆ /M⊙) =
7.06 ± 0.31.

5See http://mips.as.arizona.edu/∼cnaw/sun.html for an overview. The uncertainty on the values is
assumed to be 0.04 mag.
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4.4.4 Structure

Figure 4.6 shows the effective radius, ellipticity, Sérsic index, and position angle versus
wavelength (from Section 4.3). We also add the literature values by Georgiev and
Böker (2014).

In panel A, we show the effective radius versus wavelength. It remains roughly
constant at ∼ 5 pc in the ultraviolet and optical regime, but starts to slightly increase
towards ∼ 6 pc at 3.6 µm. This trend continues into the mid-infrared where 𝑟eff ∼ 12 pc.

Georgiev and Böker (2014) find different effective radii ranging from ∼ 2 pc to∼ 3.5 pc. They modeled the NSC light distribution by convolving a TinyTim-generated
PSF with King profiles of different concentration parameters (ratio of the tidal to
core radius: 5, 15, 30, and 100). Using ISHAPE (Larsen, 1999), they fit the data
and used the best-fit model, according to 𝜒2 residuals to derive the effective radius
of the cluster. In their fits, a concentration parameter of 100 gave the best results.
The final value for the effective radius was obtained by taking the geometric mean
of the full-width-half-maximum along the semi-minor and major axes and using a
transformation factor from ISHAPE’s manual.

In the ultraviolet and optical regime, the ellipticity is ∼ 0.05 (panel B in Figure 4.6).
It remains in this range at 2 and 3 µm, but starts to increase to ∼ 0.1 at 3.6 µm. At even
longer wavelengths, the ellipticity increases to ∼ 0.4 and is significantly different from
the other wavelength regimes. Our measurements in the optical are consistent with
the ones presented by Georgiev and Böker (2014), but are smaller than the typical
ellipticity for other NSCs in the same mass range (𝜖 ≳ 0.1, e.g. Seth et al., 2006; Carson
et al., 2015; Spengler et al., 2017; Hoyer et al., 2023a).

The Sérsic index (panel C) appears to vary with wavelength. In the ultraviolet and
optical regime, we find 𝑛 ∼ 3, but in the near-infrared the value drops to ∼ 2. At the
longest wavelengths, the value drops to ∼ 1.5, but is also consistent with an exponential
profile (𝑛 = 1). Georgiev and Böker (2014) used a King profile to approximate the light
distribution and no comparison can be made.

The position angle of the NSC (panel D) starts at ∼ 130○ in the ultraviolet regime.
Starting in the optical regime, the position angle drops to ∼ 100○ and shows a mild
anti-correlation with wavelength, dropping further to ∼ 90○ in the mid-infrared. Only
the data point from the HST WFPC2 PC F606W band by Georgiev and Böker (2014)
is consistent with our results. The other two data points are significantly elevated to∼ 135○ and ∼ 160○.

4.4.5 Astrometric Offset

From the previous section it is apparent that the nucleus shows an evolution with
wavelength, especially towards the mid-infrared regime. Here we investigate the
variability of the central position of the emission in different bands.

In Figure 4.7 we show the emission in the JWST MIRI F2100W band (gray scale
and white contour lines) and overlay the emission from the HST WFC3 F275W band.
The WCS of each band were taken from the bands header files. We find that there
exists an offset between the centers of the emission, separated by ∼ 0.2 arcsec, which
approximates to ∼ 9.5 pc at the distance to the galaxy.
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Figure 4.6. Structural properties of the nucleus of M 74: effective radius (panel A), ellipticity
(panel B), Sérsic index (panel C), and position angle (panel D) versus wavelength. Marker
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Red pentagons show literature values from Georgiev and Böker (2014).
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Figure 4.7. Main panel: Central 5.5′′ ×
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tions. Inset panel: Zoom into the nucleus
of M 74. The white and red contours high-
light again the emission in the F2100W
and F275W, respectively. The offset be-
tween the centers of the contours measures
approximately 0.2′′.

To test whether the offset persists in other bands, we perform the following experiment:
we determine the angular coordinates for other bands based on the central position of
the Sérsic profile fit to the light distribution. Figure 4.8 presents the resulting angular
separation using the HST WFC3 F275W band as reference. We find that the angular
separation is of the order of ≲ 0.1′′ (≲ 5 pc) in the optical, which is comparable to
the effective radius of the cluster. In the infrared the separation drops to ≲ 0.06′′ but
increases up to 0.21′′ in the mid-infrared regime.

Depending on the band used as reference, the angular separation can become
insignificant. For example, while using the F200W as reference, the offsets in the
MIRI bands are still significant, whereas they become insignificant, except for the
F1000W, when using the F335M as reference. This behavior could point towards
issues with the calibration of the WCS’: while we calibrated all HST data with the
most recent WCS solutions from MAST, no reliable solutions exist so far for the JWST
data. The PHANGS-internal versions of the data were calibrated in the following way:
The NIRCam data was calibrated using HST and Gaia astrometric solutions using
asymptotic giant branch stars. Furthermore, the direction of the separation is the same
in the MIRI bands, towards the North-West (as seen in Figure 4.7).

Compared to the HST data, the NIRCam calibration should yield “accurate” astro-
metric values (see below). The MIRI data are astrometrically aligned to the F335M
image by cross-correlating the images and solving for relative offsets. However, due to
variations in the polycyclic aromatic hydrocarbons emission structure between different
bands and the lack of point-like emission in the MIRI bands, the astrometric calibration
is less certain.

To further quantify the offsets and benchmark the values, we compute the angular
separation of (a) a star outside the central cavity, (b) multiple stars less than 1 arcsec
South of the NSC within the cavity, and (c) a GC about 10 arcsec South-West from the
NSC. The star outside the cavity has Gaia EDR3 designation 2 589 386 446 469 602 688,
is non-saturated in all but the HST ACS F435W, F555W, and F814W bands and lies
about 60′′ South-East of the NSC. For the star outside the cavity and the GC, we fit the
light distribution with a two-dimensional Gaussian function, which yields the position
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of the center of the sources, which we deem accurate within 0.5 pixel. For the other
stars close to the NSC, we extract the position manually.

In Figure 4.8 we show the offset of the star outside the cavity and the GC in addition
to the offsets for the NSC. If we use the HST WFC3 F275W data as reference, the
offsets are significant in both the NIRCam and MIRI data. The same result is found
if we use the F200W as reference. However, the offsets become insignificant in all
except two bands (F200W & F1000W) if we use the F335M data as reference. With
the currently available WCS calibrations, while there are hints of an astrometric offset,
we cannot conclude whether they are significant.

4.5 Discussion

One of the most striking features of the JWST observations of the center of M 74 is
that the prominent NSC sits in a nuclear stellar component that is devoid of gas and
dust. It appears that both gas and dust have been evacuated from the central cavity.
The mechanism that created this cavity is not obvious. There are no young stars that
could have blown out the gas recently. Alternatively, the central cavity could have been
created by consumption of the gas in the last star formation event, and the re-supply
of gas is hindered by a potential bar resonance, in case a bar is (or previously was)
present.6

6As mentioned in the introduction, Querejeta et al. (2021) find that M 74 hosts no bar.
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4.5.1 Nuclear Star Cluster Properties

We show the mass ratio (NSC mass divided by host galaxy mass) in the left panel of
Figure 4.9 where the NSC of M 74 is highlighted with a blue cross. Data from the
Local Volume (a field environment with distance ≲ 11 Mpc; Seth et al., 2006; Georgiev
et al., 2009a; Graham & Spitler, 2009; Baldassare et al., 2014; Schödel et al., 2014b;
Calzetti et al., 2015; Carson et al., 2015; Crnojević et al., 2016; Nguyen et al., 2017;
Baumgardt & Hilker, 2018; Nguyen et al., 2018; Bellazzini et al., 2020; Pechetti
et al., 2020) are added for comparison. Dwarfs around massive field galaxies and
Virgo cluster members are taken from Carlsten et al. (2022) and Sánchez-Janssen et al.
(2019a), respectively.7 Data for other massive late-type galaxies in the field are taken
from Georgiev and Böker (2014). The NSC of M 74 follows the overall trend in that
the NSC mass becomes insignificant compared to the host galaxy. However, other
late-types of the same host galaxy mass typically host more massive NSCs.

The effective radius of the NSC in M 74 also compares well to those of other NSCs
in late-type galaxies (in the F814W band; middle panel in Figure 4.9). Finally, the
ellipticity in the F814W band is smaller than the typical value in other late-types (right
panel). This figure shows there exists no apparent correlation with the inclination of the
host. Since the mass of the NSC is smaller than most other masses of such a cluster at
𝑀

gal
⋆ ∼ 1010 M⊙ and assuming that stars formed in-situ should dominate the mass budget,

we speculate that the NSC had a quiet evolution and that, compared to other NSCs, only
little mass formed in-situ over the last few Gyr. This speculation is corroborated by
our results in Sections 4.4.1, 4.4.2 and 4.4.4: the effective radius shows no wavelength
dependence from the ultraviolet to the near-infrared regime, staying roughly constant
at 5 pc. The color of the NSC was determined to be 𝐵 −𝑉 = (0.73 ± 0.05)mag, which
compares to a star of G8V-class. Finally, the resulting best-fit SED model indicate that
all stellar mass is assembled in an “old” stellar population, with the mass of the “young”
stellar population being consistent with zero. As indicated by the fit, “old” refers to an
age of 8 Gyr. If true, this could also mean that the cavity has existed for a few Gyr and
that any massive black hole in the center of M 74 did not grow significantly via gas
accretion over the same time period. So far, no reliable black hole mass measurement
is available (see also Section 4.5.3 below).

The SED fit indicates that the metallicity of the NSC is 𝑍 ∼ 0.02, which is comparable
to NSCs in similar mass galaxies (Koleva et al., 2009; Paudel et al., 2011; Spengler
et al., 2017; Kacharov et al., 2018; Neumayer et al., 2020), and also the Milky Way NSC
(Do et al., 2015; Feldmeier-Krause et al., 2017a). In combination with the age estimate
of the stellar population, this reveals that the NSC formed in a dense environment
where rapid enrichment took place. Such conditions could take place either during the
formation of the galaxy itself or during a past merger event.

As mentioned above, while in-situ star formation is expected to contribute a significant
mass fraction to the NSC, as measured in other galaxies, our results indicate that
no in-situ star formation occurred over the last few Gyr. This means that, since the
formation of the NSC, either no or very little amount of gas fell towards the center or

7Although not considered here, data for nucleated dwarf galaxies in the Fornax galaxy cluster is presented
by Muñoz et al. (2015), Eigenthaler et al. (2018), Ordenes-Briceño et al. (2018), Venhola et al. (2018),
and Su et al. (2021).
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that star formation was inefficient. One possibility is that the shape of the gravitational
potential limits the amount of inflow. Indeed, it is well known that in a viscous accretion
disk, the amount of inward mass transport depends on the amount of shear (e.g. Shakura
& Sunyaev, 1973; Lynden-Bell & Pringle, 1974). One way to limit the inflow of gas
is to have a low shear, meaning that the rotation curve is close to solid body rotation
(e.g. Lesch et al., 1990; Krumholz & Kruijssen, 2015). Note, however, that it is still
unclear what mechanism drives the ISM turbulence responsible for creating the required
viscosity (e.g. Klessen & Glover, 2016; Sormani & Li, 2020). Alternatively, it could
be that the in-flow is irregular and triggered by mergers or interactions with satellite
galaxies (e.g. Storchi-Bergmann & Schnorr-Müller, 2019). Multiple dwarfs are known
to reside around M 74 (Davis et al., 2021) and numerous accretion events occurred in
the galaxy’s history (Kamphuis & Briggs, 1992).

4.5.2 Comparison with the Milky Way

The obtained NSC size using near-infrared data seems to be very similar to the Milky
Way’s (MWNSC) with an effective radius of ∼ 5 pc (e.g. Fritz et al., 2016; Gallego-Cano
et al., 2020). However, the MWNSC also presents a similar size when analyzed with
Spitzer/IRAC mid-infrared data (Schödel et al., 2014a; Gallego-Cano et al., 2020),
which is in contrast to the significantly larger effective radius we obtained for the NSC
of M 74 from MIRI mid-infrared data. In addition, the mass estimates compare, with
the MWNSC having a mass of ∼ 2 × 107 M⊙ (Launhardt et al., 2002; Schödel et al.,
2014b; Feldmeier-Krause et al., 2017b).

The predominantly old (∼ 8 Gyr) and metal-rich (𝑍 ∼ 0.02) population detected
in M 74’s NSC is also in agreement with the results obtained for the MWNSC (e.g.
Feldmeier-Krause et al., 2017a; Schödel et al., 2020; Nogueras-Lara, 2022), though
recent work suggested a younger age for the MWNSC of ∼ 5 Gyr (Chen et al., 2022).
However, the MWNSC also shows recent star formation activity, about 6 Myr ago
(Paumard et al., 2006), which is not present in M 74’s NSC, according to the best-fit
SED model.

Overall, we find that little to no star formation occurred in the last few Gyr in M 74’s
center. This results in an under-massive NSC, compared to other similar-mass late-type
galaxies, a likely under-massive central black hole, if present, and that the central cavity
spanning approximately 200 pc × 400 pc existed for a similar period.

4.5.3 Nature of the Mid-Infrared Emission

While an old (8 Gyr) population with metallicity 𝑍 ∼ 0.02 accounts for the emission
in the ultraviolet to near-infrared regime, we found an excess of emission in the
mid-infrared bands (c.f. Figure 4.5), which cannot be explained by that same population.
In addition, the effective radius and ellipticity do not change with wavelength until
the mid-infrared regime, the Sérsic index shows a weak wavelength dependence, and
the position angle does not change significantly between the near- and mid-infrared
(c.f. Figure 4.6). We speculate about the nature of the emission in the following sections.
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Active Galactic Nucleus Contribution

One possibility is that the emission in the mid-infrared bands is caused by an active
galactic nucleus (AGN) once X-ray photons are absorbed by dust, which re-emits the
radiation at longer wavelengths.

The presence of a massive black hole in M 74 is still disputed: Dong and De
Robertis (2006) use the black hole mass versus bulge 𝐾S-magnitude relation to find
log10 (𝑀BH /M⊙) ∼ 6.7 but such a relation assumes that the bulge did not significantly
grow through secular processes, which is believed to be the case for M 74. She et al.
(2017) found an X-ray excess in the galaxy’s center, which they attribute to the presence
of an AGN with a black hole mass of log10 (𝑀BH /M⊙) ∼ 6.0. The X-ray luminosity
was determined to be log10 (𝐿2-10 keV /W) = 31.15+0.32

−0.19, as determined through the
hardness ratios of soft-, medium-, and hard X-ray bands.

We determine the spectral flux density of the emission in the mid-infrared by using
this luminosity and the scaling relation by Asmus et al. (2015), which connects the
X-ray luminosity of an AGN to the mid-infrared luminosity at 12 µm. The result is
𝑆BH
𝜈 ∼ 1.9 × 10−4 mJy. We compare this value to the difference between the observed

emission and the model flux excluding the MIRI data in the 11.3 µm band. The
difference equals Δ𝑆11.3 µm

𝜈 ∼ 0.06 mJy, far exceeding the expected flux density of an
AGN. Therefore, while the X-ray excess measured by She et al. (2017) originating from
a possible AGN could contribute to the mid-infrared emission, it cannot fully explain it
by itself. Furthermore, little to no dust is present in the NSC, making this scenario
unlikely.

Infalling Star Cluster

A possible scenario, which could perhaps explain the offset in Figure 4.7, if real, is
that we see the NSC and an in-falling star cluster, where the latter could be in a late
stage of tidal disruption by the more massive NSC. Such a scenario for the build-up of
NSCs has been proposed for a few decades (Tremaine et al., 1975) and is sometimes
referred to as the “dry-merger” scenario (e.g. Arca Sedda & Gualandris, 2018) with
ample observational and theoretical evidence in both the Galactic but also extragalactic
NSCs (e.g. Antonini, 2013, 2014; Arca-Sedda & Capuzzo-Dolcetta, 2017; Fahrion
et al., 2020b; Feldmeier-Krause et al., 2020).

The proposed scenario could occur as follows: the star cluster would form outside
the nuclear region and spiral inwards. During this time, the star cluster can be
considered self-gravitating, which implies that it evolved predominantly due to its
internal collisional dynamics. During the infall of the cluster, it will experience
gravothermal-gravogyro contraction and core-collapse (e.g. Kamlah et al., 2022), mass
segregate, and form a subsystem of black holes in its center, or even an intermediate-mass
black hole, if the star cluster is massive enough. The most-massive stars accumulate in
the star cluster’s center and lower-mass stars occupy the halo of the star cluster. Some
of these low-mass stars will be stripped by the tidal field of the surrounding field or
may be ejected through dynamical interactions, while the star cluster approaches the
NSC. Some of the stripped or ejected stars might be visible as asymptotic giant branch
(AGB) stars (see also Section 4.5.3) with their strong, dust-driven stellar winds (see
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Decin, 2021, and sources therein) in the near- to mid-infrared bands as single sources
scattered around the NSC (see Figure 4.4).

From 𝑁-body simulations by Arca Sedda and Gualandris (2018), modeling the
MWNSC and an infalling star cluster, we know what the infall, merger, and merger
product phases look like in spatial coordinates [Figure 2 in Arca Sedda and Gualandris
(2018) and Figure 1 in Arca Sedda et al. (2020)]. If the infalling star cluster has already
crossed the effective radius of the NSC, after which the star cluster becomes entirely
tidally disrupted and cannot be considered a self-gravitating system anymore (Arca
Sedda et al., 2020), the simulation snapshots could explain the potential astrometric
offset. The star cluster’s core would eventually fall into the core of the NSC and the
remaining halo stars would tidally disperse. Among these would be AGB stars that
may partly be responsible for the astrometric offset shown in Figure 4.7 and contribute
to the elliptical increase in panel B of Figure 4.6 (see also Section 4.5.3 below).

One counter-argument is that it is unlikely to witness such an event: Arca Sedda
(2020) simulated the infall of a star cluster on an NSC whose properties mimic the ones
of the Milky Way NSC. They find that the star clusters enters a region 10 pc around
the center of the NSC after 60 Myr and that the cluster is not a self-gravitating system
anymore after another 1 Myr. Note that the bulge component in their simulation is
likely more massive than the bulge-component of M 74 and that the time scale for
in-spiral will be longer. Nevertheless, the time scale will be short compared to the age
of the cluster, ∼ 8 Gyr.

Dust from AGB Stars

While on the AGB, the outer layers of a star expand drastically leading to a circum-stellar
envelope, which leads to an enrichment of the interstellar medium, contributing to the
mass budget for future star formation (e.g. Loup et al., 1997; van Loon et al., 1998).
Material from the stellar winds can produce dust, which cools off and becomes visible
in the mid-infrared regime. Note that the dust would reside “close” to the star (at a few
hundred stellar radii for a temperature of (∼ 100 K; Decin, 2021), thus not obscuring
the emission of other stars in the NSC, which is why we observe no dust obscuration in
the ultraviolet and optical regime. Here we explore whether AGB stars can account for
the emission in the MIRI bands (c.f. Figure 4.5).

We first determine the residual flux, which is not accounted for by the SED model
excluding the data. The residual values are Δ𝑆𝜈 = 0.096, 0.062, 0.049, and 0.014 mJy
in the F770W, F1000W, F1130W, F2100W, respectively. Next, we generate absolute
magnitudes of AGB stars using PARSEC tracks (Bressan et al., 2012), with 60 %
Silicate and 40 % AlOx for M-type stars, and 85 % AMC and 15 % SiC for C-type
stars (Groenewegen, 2006), long-period variabilities from Trabucchi et al. (2021), a
log-normal Chabrier (2003) initial mass function, and a metallicity of 𝑍 = 0.012.8 The
last two settings equal the results found from SED fitting. We then convert the absolute
magnitudes to spectral flux densities using the distance estimate to M 74 and Vega- to
AB-magnitude conversion factors for the Sun (Willmer, 2018).

8The models were calculated by using http://stev.oapd.inaf.it/cgi-bin/cmd 3.6 (Bressan et al., 2012;
Chen et al., 2014; Tang et al., 2014; Chen et al., 2015; Marigo et al., 2017; Pastorelli et al., 2019,
2020).
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cluster mass (log10 𝑓 ) versus AGB star
mass. Each data point is color-coded ac-
cording to the age of the star. Note that
all AGB stars are younger than the main
stellar population of the NSC, as identified
by fitting the spectral energy distribution.

First, we limit the AGB model stars to reside within the 1𝜎 interval of the measured
colors.9 Afterwards, we determine how many AGB stars are required to account for the
residual emission in the MIRI bands and multiply that number by the mass of the stars.
Figure 4.10 shows the logarithmic mass fraction of AGB stars compared to the total
NSC mass versus the mass of the individual AGB stars. The data are color-coded by
the age of the AGB stars. We find that both a few young and many old AGB stars could
be responsible for the emission in the mid-infrared. However, all model AGB stars that
satisfy the color-cuts are younger than 5 Gyr, which gives the lower uncertainty on the
age of the main stellar population of the NSC. Therefore, if AGB stars are responsible
for the emission in the MIRI data, there must have been star formation in-situ after the
initial formation of the NSC.

In case the AGB stars are old, meaning that many AGB stars are required to account
for the emission in the mid-infrared, it remains unclear why both the effective radius
and ellipticity change significantly, as the cluster with the AGB star should have relaxed
between their formation and today. In contrast, only few massive and young AGB
stars are required to account for the mid-infrared emission, which could explain the
increased effective radius and ellipticity, if they formed outside the center of the NSC.
However, this would require in-flow of gas in the past few Myr but we cannot detect the
presence of a young stellar population in the NSC. Therefore, it remains challenging to
explain both the structural and photometric parameters using only AGB stars.

A Circum-Nuclear Gaseous Disk

Another possibility is that the infrared emission originates from a circum-nuclear
gaseous disk or ring with a radius of a few pc, similar to the one present in the MW.
Indeed, the MW hosts a clumpy, asymmetric, inhomogeneous, and kinematically
disturbed concentration of molecular/ionized gas at 𝑅 ≲ 5 pc known as the circum-

9We use the six colors F770W −F1000W, F770W −F1130W, F770W −F2100W, F1000W −F1130W,
F1000W −F2100W, and F1130W −F2100W.
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nuclear disk (e.g. Lau et al., 2013; Hsieh et al., 2021). The MW circum-nuclear disk
occupies similar radii to its NSC, has a total mass of 𝑀disk

gas ≃ 104-105 M⊙ and it is
probably a transient structure (on a timescale of few Myr) originating from a series of
randomly oriented in-flow events (Requena-Torres et al., 2012). By analogy, we could
hypothezise that M 74 hosts a similar gaseous structure and that this is producing the
observed mid-infrared emission. While the emission from the gas disk could explain
the observed photometry, it is unclear why we do not detect a “young” (formed in
the last few Gyr) stellar population in the NSC. While the ALMA CO band does not
show significant emission in M 74’s center (see Figure 4.1), this may be related to
the sensitivity of the ALMA measurements and could not exclude a low-mass disk:
in the PHANGS–ALMA v4p0 “broad” CO (2-1) map, the intensity measurement at
the position of the NSC is 𝐼(CO)2−1 = (−0.3 ± 1.3)K km s−1. Given the beam size
(𝜃 = 1.12 arcsec) and distance to the target, translating this value to a 3𝜎 upper limit
to the CO (2-1) luminosity yields log10 𝐿(CO)2−1 /K km s−1 pc2 < 4.1. For a standard
Milky Way CO to H2 conversion factor and CO (2-1) to CO (1-0) line ratio appropriate
for M 74 (Bolatto et al., 2013; den Brok et al., 2021), this luminosity limit corresponds
to an upper mass limit of log10 𝑀H2 /M⊙ < 4.9. In comparison, the circum-nuclear
disk of the Milky Way has a mass of 𝑀gas ∼ 1.2×104 M⊙ (Requena-Torres et al., 2012).

Background Galaxy

It is also plausible that the emission in the MIRI data originates from a background
galaxy, which happens to be aligned with the NSC along the line of sight. Although an
alignment of the order 0.1′′ is unlikely, we investigate this scenario further based on
the photometry found in the MIRI data.

Hassani et al. (2023) investigate the properties of compact sources at 21 µm for all
four PHANGS–JWST targets for which data are available. Using a dendogram-based
algorithm, they find 1271 compact sources of which 115 are classified as “potential
background sources” (or HZ). This classification was performed using flux density
ratios between MIRI bands (their Equations 1 and 2). The MIRI structure coinciding
with the NSC of M 74 was also classified as a potential background object.

A search in the NASA Extragalactic Database10 revealed that the 114 sources were
previously detected by the WISE / ALLWISE mission (Wright et al., 2010; Cutri et al.,
2013) and all objects were classified as “infrared sources”. While these sources show a
galaxy-like morphology at 2 µm, their detailed properties remain unclear at this point.

To compare to the other potential background objects, we select the measured spectral
flux densities for the MIRI bands and subtract the extrapolated emission from the NSC
using the SED fit excluding the MIRI data (solid line in Figure 4.5). While the flux
density values compare to other potential background sources, their evolution with
wavelength does not: none of the 114 identified potential background objects follow a
similar trend in that the flux densities decrease with increasing wavelength.

Therefore, if the other 114 sources are background galaxies, the differences in the
evolution of flux densities with wavelength suggest that the MIRI emission coinciding
with the NSC of M 74 is not related to a background galaxy. Such a scenario becomes

10URL: https://ned.ipac.caltech.edu/
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more unlikely if we combine it with the probability of alignment with the NSC along
the line of sight.

4.6 Conclusions

In this work we analysed the nuclear star cluster (NSC) of M 74, a nearby late-type spiral
galaxy, with archival Hubble Space Telescope (HST) ACS & WFC3 and newly obtained
James Webb Space Telescope (JWST) NIRCam & MIRI data. The combined data cover
the ultraviolet to mid-infrared wavelength, enabling an unprecedented analysis of an
extragalactic NSC. Our findings can be summarized as follows:

1. Combining the 𝐵 − 𝑉 color with various mass-to-light relations results in an
NSC stellar mass of log10 (𝑀nsc

⋆ /M⊙) = 7.06 ± 0.31. We compare this number
to an estimate derived using the K-band magnitude (resulting in 7.2 ± 1.1) and
the results from fitting the spectral energy distribution (SED; resulting in ∼ 7.1).
These values are consistent with the literature value of 7.05 ± 0.21 (Georgiev
et al., 2016).

2. The effective radius and ellipticity of the NSC are ∼ 5 pc and ∼ 0.05, respectively,
across the ultraviolet, optical, and near-infrared regime. The Sérsic index drops
from ∼ 3 to ∼ 2 and the position angle drops from ∼ 130○ to ∼ 90-100○. These
values supersede literature values, which varied significantly across neighboring
bands (Georgiev & Böker, 2014).

3. In the mid-infrared bands, the effective radius and ellipticity increase to ∼ 12 pc
and ∼ 0.4, respectively. The Sérsic index drops further to ∼ 1.5 while being
consistent with an exponential profile, and the position angle remains unchanged
compared to the near-infrared.

4. We fit the SED from the ultraviolet to the near-infrared with a total of ten data
points to find an old stellar population of (8 ± 3)Gyr with a metallicity of
𝑍 = 0.012± 0.006. The fit indicates that no younger stellar population is present.

5. Fitting the SED with the inclusion of the MIRI data yields an overall worse fit,
as evaluated by 𝜒2 statistics. Nevertheless, the age and metallicity of the main
stellar population remain unchanged within the uncertainties. The differences in
both fits to the SED indicate that the MIRI data do not trace the stellar population
found in the lower wavelength regimes.

6. We find different angular separations between the center of the NSC in different
bands, being most significant in the mid-infrared data. However, depending
on the band from which the world coordinate system is taken as reference, the
separations become less significant. This could hint at persistent calibration
issues with the world coordinate systems of individual bands.

The color, age, and metallicity of the main stellar population of M 74 NSC indicate
that no star formation has taken place in the previous few Gyr in its center. This is
caused either by a dynamical mechanism preventing gas and dust inflow, or by central
feedback. The lack of a young stellar population hints that the central cavity, which
lacks both gas and dust and has a size of approximately 200 pc × 400 pc around the
NSC, has existed for the last few Gyr as well. The reason for the lack of recent in-situ
star formation and origin of the central cavity remains unknown.
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The nature of the emission in the mid-infrared bands remains a mystery as well.
From our SED fits it is clear that the old stellar population of the NSC cannot completely
explain the emission in JWST’s MIRI bands. We discussed five different mechanisms,
which may cause the emission: (1) contribution from a central active galactic nucleus,
(2) an infalling star cluster, (3) dust from asymptotic giant branch (AGB) stars, (4) the
presence of a circum-nuclear disk, and (5) alignment with a background galaxy.

The AGB scenario could explain the observed photometry. However, we find that
the AGB stars whose colors fit the measurements are younger than the main stellar
population. From a comparison to model AGB stars, we find that either a large number
of old or a small number of young stars are required. While the first scenario cannot
explain the wavelength dependence of the structural parameters, the latter scenario
requires recent (a few Myr ago) in-falling gas, however, no stellar population younger
than 5 Gyr was detected from SED fitting. In conclusion, none of the four discussed
scenarios can fully explain both the structural and photometric measurements.

Our analysis highlights the potential JWST data has for exploring galactic nuclei in the
nearby Universe. An ongoing analysis of the stellar population using PHANGS–MUSE
data can improve the situation, albeit it cannot resolve the NSC. To solve the riddle of
the nucleus of M 74 at long wavelengths, we will propose high-resolution spectroscopic
observations, ideally Integral Field Unit spectroscopic data with JWST , to determine
the kinematic properties of the NSC and its direct surroundings. In addition to the
nature of the structure in the mid-infrared bands, these data will constrain further the
presence of a young stellar population, the kinematic signature compared to the cluster,
and help to constrain the presence of a black hole in M 74 as there is currently no
available robust mass measurement or upper limit.

4.7 Appendix

4.7.1 Number of Sérsic Profiles

The description of the projected light distribution of NSCs is often approximated by a
single simple analytic function such as a Sérsic profile, with few exceptions (Nguyen
et al., 2018; Pechetti et al., 2022). With increasing spatial resolution at all wavelength
ranges, accurate descriptions of the light distribution of NSCs may warrant multiple
profiles. The NSC of M 74 was analyzed previously by Georgiev and Böker (2014)
and modeled with a single King profile, but the goodness of the fit was not indicated.

Here we explore whether adding a second Sérsic profile improves the fit compared
to a single Sérsic profile. The goodness of the two fits may not be compared via the
standard 𝜒2 statistics, as different number of free parameters are at play. To compensate
for the increased number of free parameters 𝑘 , a penalty is introduced by adding a term
linear in 𝑘 to the standard 𝜒2 evaluation. We use the Bayesian Information Criteria
(BIC, Schwarz, 1978), defined as

BIC = −2 ln L + 𝑘 ln 𝑁 , (4.5)

where L is the likelihood value and 𝑁 the total number of data points. Model (𝐴) is
generally preferred over model (𝐵) if ΔBIC = BIC𝐵 −BIC𝐴 > 0, but note that the BIC
is a heuristic approach and includes approximations.
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Table 4.5. Differences in the Bayesian Information Criteria (ΔBIC) between two (𝐴) and a
single Sérsic profile (𝐵) for the NSC of M 74.

Band BIC(𝐴) BIC(𝐵) ΔBIC
BIC
(𝐴)

BIC
(𝐵)

F275W 269 203 66 1.33
F336W 225 156 69 1.44
F435W 234 155 79 1.51
F555W 227 162 65 1.40
F658N 216 150 66 1.44
F814W 284 222 62 1.28

F200W 14 191 14 121 70 1.00
F300M 940 870 70 1.08
F335M 1167 1047 120 1.11
F360M 1133 1105 27 1.03

F770W 421 343 78 1.23
F1000W DNF(a) 382 -- --
F1130W DNF(a) 482 -- --
F2100W DNF(a) DNF(a) -- --

(a) The fit failed to terminate or parameter values ran into boundary conditions in all attempts.

We highlight the results for the single (labeled “A”) and double Sérsic profile (labeled
“B”) fits for the NSC in Table 4.5. The F2100W is excluded from the list as the fit with
two profiles for the NSC did not converge under any circumstance.

The conclusion from this experiment is that a single Sérsic profile is preferred over
fitting two Sérsic profiles for the NSC.

4.7.2 Data Table

In Table 4.6 we present the best-fit parameters using a single Sérsic profile.
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Table 4.6. Best-fit parameter estimates for the nuclear star cluster of M 74 using a single
Sérsic profile. The parameter values and their uncertainties were determined via 500 bootstrap
iterations, where the best-fit value gives the median and the uncertainties the 1𝜎 interval.

Band RA DEC PA 𝜖 𝑛 𝑟eff 𝑚0
(a)

[hms] [dms] [deg] [arcsec] [pc](b) [mag]

F275W 01:36:41.742 15:47:01.167 139+16
−25 0.13+0.03

−0.12 3.5+1.0
−1.5 0.17+0.03

−0.14 8.2+6.7
−6.7 21.38+0.31

−0.16
F336W 01:36:41.742 15:47:01.173 125.1+5.5

−5.7 0.056+0.009
−0.010 2.07+0.10

−0.11 0.099+0.002
−0.002 4.74+0.09

−0.09 20.18+0.02
−0.02

F435W 01:36:41.743 15:47:01.174 106.8+5.7
−6.1 0.066+0.013

−0.014 3.01+0.19
−0.18 0.107+0.003

−0.003 5.10+0.14
−0.14 18.54+0.02

−0.02
F555W 01:36:41.738 15:47:01.216 89+29

−23 0.020+0.011
−0.015 2.51+0.20

−0.29 0.103+0.003
−0.003 4.91+0.14

−0.14 17.89+0.04
−0.02

F658N 01:36:41.736 15:47:01.186 105+11
−10 0.049+0.020

−0.018 2.91+0.21
−0.31 0.103+0.003

−0.005 4.91+0.22
−0.22 17.45+0.04

−0.02
F814W 01:36:41.738 15:47:01.227 118.6+7.1

−7.2 0.066+0.015
−0.014 3.21+0.28

−0.43 0.113+0.004
−0.005 5.39+0.24

−0.24 17.12+0.04
−0.03

F200W 01:36:41.741 15:47:01.133 81+12
−12 0.036+0.013

−0.013 2.26+0.15
−0.02 0.111+0.004

−0.004 5.31+0.21
−0.21 16.54+0.27

−0.27
F300M 01:36:41.738 15:47:01.177 96+12

−10 0.053+0.022
−0.023 2.21+0.23

−0.37 0.122+0.006
−0.007 5.81+0.35

−0.35 17.41+0.25
−0.25

F335M 01:36:41.737 15:47:01.219 103+11
−3 0.074+0.027

−0.032 2.12+0.21
−0.28 0.122+0.008

−0.010 5.80+0.47
−0.47 17.54+0.25

−0.25
F360M 01:36:41.741 15:47:01.223 95.6+7.2

−5.8 0.099+0.029
−0.033 1.88+0.18

−0.21 0.129+0.007
−0.008 6.16+0.38

−0.38 17.65+0.25
−0.25

F770W 01:36:41.733 15:47:01.294 86.6+4.3
−4.5 0.296+0.034

−0.033 0.63+0.08
−0.08 0.173+0.007

−0.007 8.25+0.36
−0.36 18.53+0.02

−0.02
F1000W 01:36:41.733 15:47:01.245 93.2+5.0

−5.6 0.395+0.083
−0.045 1.45+0.71

−0.64 0.250+0.015
−0.022 11.9+1.0

−1.0 18.78+0.15
−0.15

F1300W 01:36:41.733 15:47:01.247 93.1+5.0
−3.9 0.393+0.071

−0.045 1, 46+0.63
−0.40 0.251+0.009

−0.015 11.99+0.72
−0.72 18.82+0.08

−0.08
F2100W(c) 01:36:41.728 15:47:01.231 -- -- -- -- -- 19.51+0.68

−0.68

(a) Apparent magnitude in the AB-magnitude system. The values are corrected for extinction.
(b) Uncertainties were determined based on the assumption that the parameter distribution is Gaussian.
(c) No fit to the data succeeded if PSF convolution was enabled. To determine the central position of the NSC and the

magnitude, the data were fit without PSF convolution.

4.8 Chapter Summary

▹ This work presents the first-ever analysis of an NSC using newly obtained JWST
and archival HST data, ranging from the far ultraviolet to the mid-infrared
regime.▹ The analysis provides structural information as well as a fit to the NSC’s spectral
energy distribution, resulting in estimates of the dominant stellar population’s
age and metallicity.▹ The NSC is relatively old (≈ 8 Gyr) and has roughly solar metallicity, which
agrees with stars in the “pseudo-bulge”.▹ Consequentially, the accretion history of the MBH within the NSC, if present,
was quiet over the last few Gyr given that no younger stellar population appears
to be present.▹ The data reveal a secondary extended and offset component that is prominent in
the mid-infrared. The data are inconclusive about the origin of this component,
requiring additional data in the mid-infrared.
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Chapter 5
Low-Luminosity Active Galactic Nuclei in
Nuclear Star Clusters

Declaration

The contents of this chapter were previously published in Hoyer et al. (2024). All
co-authors provided commentary that improved the published work.

Abstract

Massive black holes (MBHs) are hosted in the centres of massive galaxies but they
seem to become rarer in lower mass galaxies where instead nuclear star clusters (NSCs)
frequently appear. The transition region, where both an MBH and NSC co-exist,
is poorly studied and only a few dozens of galaxies are known to host them. One
avenue to detect new galaxies with both an MBH and NSC is to look for accretion
signatures of MBHs. Here we use new SRG/eROSITA all-sky survey eRASS:4 data
to search for X-ray signatures of accreting MBHs in NSCs, investigating also their
combined occupation fraction. We collect more than 200 galaxies containing an NSC,
spanning multiple orders in galaxy stellar mass and morphological type, within the
footprint of the German eROSITA Consortium survey. We determine the expected
X-ray contamination from binary stellar systems using the galaxy stellar mass and
star formation rate as estimated from far-ultraviolet and mid-infrared emission. We
find significant detections for 18 galaxies (∼ 8.3 %), including one ultra-luminous
X-ray source, however, only three galaxies (NGC 2903, 4212, and 4639) have X-ray
luminosities higher than the expected value from X-ray binaries, indicative of the
presence of an MBH. In addition, the X-ray luminosity of six galaxies (NGC 2903,
3384, 4321, 4365, and 4701) differs from previous studies and could indicate the
presence of a variable AGN. For NGC 4701 specifically, we find a variation of X-ray
flux within the eRASS:4 data set. Stacking X-ray non-detected galaxies in the dwarf
regime (𝑀gal

⋆ ≤ 109 M⊙) results in luminosity upper limits of a few times 1038 erg s−1.
The combined occupation fractions of accreting MBHs and NSCs become non-zero for
galaxy masses above ∼ 107.5 M⊙ and are slightly elevated compared to the literature.
Our data extent for the first time towards the dwarf elliptical galaxy regime and identify
promising MBH candidates for higher-resolution follow-up observations. At most
galaxy masses and with the exception of three cases, the X-ray constraints are consistent
with the expected emission from binary systems or an Eddington fraction of at most
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0.01 % assuming a black holes mass of 106.5 M⊙. This work confirms the known
complexities in similar-type of studies but provides an appealing alternative of using
X-ray survey data to in-depth observations of individual targets with higher-resolution
instruments.

5.1 Introduction

Since the first detections of massive compact objects in nearby galaxy centers almost
forty years ago (Tonry, 1984), it became evident that massive black holes (MBHs)
occupy many nearby galaxy centers (e.g. Kormendy & Richstone, 1995; Maggorian
et al., 1998; Tremaine et al., 2002; Kormendy & Ho, 2013). This insight was made
possible by significant advancements in the performance and capabilities of many
ground-based facilities [with examples including NIRC on Keck (Ghez et al., 1998;
Filippenko & Ho, 2003; Walsh et al., 2012), SHARP on NTT (Genzel et al., 2000;
Gillessen et al., 2009), GRAVITY (Abuter et al., 2017, 2021), SAURON (Bacon et al.,
2001a; van den Bosch & de Zeeuw, 2010), CFHT (Bender et al., 1996; Kormendy
et al., 1997), SINFONI (Nowak et al., 2008; Rusli et al., 2011; Saglia et al., 2016),
VLBI (Kuo et al., 2011), GEMINI/NIFS (Nguyen et al., 2018; Merrell et al., 2023), VLT
(Marconi et al., 2001)] and with the Hubble Space Telescope (HST; e.g. Devereux et al.,
2003; Gebhardt et al., 2003; Atkinson et al., 2005; Gültekin et al., 2009; Walsh et al.,
2010; Nguyen et al., 2019), as well as improvements in dynamical models of galaxy
centers (e.g. Cappellari & Emsellem, 2004; Thater et al., 2019; Cappellari, 2020;
Thater et al., 2022b, 2022a). These measurements were only performed on massive
galaxies as secure detections of MBHs towards the lowest galaxy masses become rare
both because of weaker observational signatures and an apparent decline in the MBH
occupation fraction, as suggested by observational (e.g. Miller et al., 2015a; Trump
et al., 2015; Nguyen et al., 2018) and theoretical (e.g. Volonteri et al., 2003; Bellovary
et al., 2011; Habouzit et al., 2017; Haidar et al., 2022) studies.1 Despite numerous
investigations (see e.g. Sharma et al., 2022; Beckmann et al., 2023; Spinoso et al., 2023,
for recent studies), the functional shape and value of the galaxy stellar (or halo) mass
of the decline of the occupation fraction from unity remains only loosely constrained.

Galaxy centres can also host dense stellar systems, known as nuclear star clusters
(NSCs), which are more commonly found in the dwarf galaxy regime, occupying about
80 % of 𝑀gal

⋆ ∼ 109 M⊙ galaxies in the local universe (Sánchez-Janssen et al., 2019a;
Neumayer et al., 2020; Hoyer et al., 2021; Ashok et al., 2023). Contrary to MBHs, their
occupation fraction rapidly declines in the most massive galaxies, where MBHs are
most common, potentially due to interactions between the two objects (e.g. Antonini
et al., 2015; Arca-Sedda & Capuzzo-Dolcetta, 2017) or tidal evaporation of progenitor
clusters (Leaman & van de Ven, 2022). Nevertheless, a transition region where both
types of nuclei are present exists and includes, for example, the Milky Way (e.g. Genzel
et al., 2010). As the functional shape of the MBH occupation fraction with respect to
the host galaxy stellar mass is currently unclear, the extent of this transition region is

1See Bustamente-Rosell et al. (2021) and Regan et al. (2023) for a discussion on a 106 M⊙ MBH in the
nearby Leo I (𝑀gal

⋆
∼ 107 M⊙) dwarf galaxy.
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unclear as well.
Due to observational constraints all firm MBH detections within NSCs are confined to

relatively nearby galaxies [see e.g. Figure 2 in Greene et al. (2020) and the compilation
of Neumayer et al. (2020)] and are located in the NSC’s centre with the exception of M 31
(e.g. Lauer et al., 1993; Bacon et al., 1994, 2001b; Bender et al., 2005). Consequently,
the total number of these systems is limited to a few dozens (e.g. Neumayer et al.,
2020; Nguyen et al., 2022; Thater et al., 2023), including ultra-compact dwarfs as
previous NSCs of accreted galaxies (e.g. Seth et al., 2014; Pfeffer et al., 2016; Ahn
et al., 2017; Pechetti et al., 2022). As we are now aware of more than 1000 nucleated
galaxies (Muñoz et al., 2015; Venhola et al., 2018; Sánchez-Janssen et al., 2019a;
Carlsten et al., 2020; Habas et al., 2020; Poulain et al., 2021; Su et al., 2021; Hoyer
et al., 2023a) and given the significant overlap between the NSC and MBH occupation
fractions, we should expect a significantly higher number of galaxies with both an
MBH and NSC. While dynamical measurements are important to obtain reliable mass
measurements for MBHs within NSCs, focusing on accretion signatures can help to
identify larger samples out to higher distances, including dwarf galaxies where NSCs
are most common (e.g. Kauffmann et al., 2003; Baldassare et al., 2018; Birchall et al.,
2020; Mezcua & Domı́nguez Sánchez, 2020; Mezcua et al., 2023; Cann et al., 2024).

Accretion events onto MBHs from gas or stars via tidal disruption events (Rees,
1988) leads to bright X-ray emission (e.g. Komossa & Bade, 1999; Esquej et al., 2008;
Maksym et al., 2010) which can be used to study the mass of the black hole (e.g.
Mockler et al., 2019) and potentially that of black hole binaries (Mockler et al., 2023).
Additionally, data from large-scale surveys was previously used to trace MBHs (e.g.
Miller et al., 2015b) and to constrain their occupation fraction (Miller et al., 2015a).
One avenue to detect more MBHs in NSCs is to combine optical and X-ray data to
detect and characterise the NSC and MBH, respectively, requiring an AGN that does
not outshine the NSC in the optical regime.

Previous work already took advantage of combining various wavelength regimes
(Seth et al., 2008a; Baldassare et al., 2022), using, among other instruments, Chandra
for X-rays. Another approach compared to using high-resolution archival and newly
obtained Chandra data is to perform a shallower wide-area survey, allowing us to
study a greater number of NSCs in galaxies of various masses and morphologies. The
“extended ROentgen Survey with an Imaging Telescope Array” (or eROSITA in short;
Predehl et al., 2021) aboard the Spectrum-Roentgen-Gamma (SRG; Sunyaev et al.,
2021) takes this approach and is the ideal laboratory for such a study. The poorer
resolution of eROSITA operating in its survey mode (half-energy width of 26′′; Predehl
et al., 2021) does not allow us to distinguish clearly between nuclear and off-nuclear
emission as securely as Chandra but can still be used to detect MBH candidates for
follow-up studies and to potentially probe MBH signatures in a large number of NSCs
directly.

In this paper, we explore these possibilities using the cumulative data from eROSITA’s
already completed four all-sky surveys (dubbed eRASS:4; Predehl et al., 2021) to locate
X-ray emission in a large sample of NSCs. We introduce the eROSITA, galaxy, and
literature data sets in Section 5.2 and analyse their properties in Section 5.3. Section 5.4
contains a discussion of the results and Section 5.5 concludes the paper.
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5.2 Data

5.2.1 Sample of Nucleated Galaxies

To generate an all-sky catalogue of nucleated galaxies, we first consider all galaxies up
to a distance of 100 Mpc, which are part of the HyperLEDA2 data base (Makarov et al.,
2014), containing approximately 63 000 objects. Based on this catalogue, we search
the Hubble Legacy Archive3 for available high-resolution imaging data (Advanced
Camera for Surveys, Wide Field and Planetary Camera 2, and Wide Field Camera 3).
Based on these data, we assign a nuclear classification to all galaxies, not taking into
account previous classifications in the literature. The HyperLEDA data base becomes
incomplete towards the dwarf galaxy regime, which is why we add to the classified
galaxy sample the data of den Brok et al. (2014), Muñoz et al. (2015), Sánchez-Janssen
et al. (2019a), Zanatta et al. (2021), and Su et al. (2022) for members of the Fornax,
Virgo, and Coma galaxy clusters. The combined catalogue contains 888 nucleated
galaxies across the whole sky, which we use to cross-match with the German footprint
of eROSITA.

5.2.2 eROSITA Observations: eRASS:4

We systematically extracted X-ray photometry at the input coordinates of the nucleated
galaxies in the cumulative eRASS:4 images within the footprint of the German eROSITA
Consortium (i.e. Galactic longitudes between 179.944 and 359.944). This led to a
starting sample of 239/888 galaxies, with mean exposure of ∼ 418 s and standard
deviation of ∼ 58 s (see Figure 5.1 for three examples). A detailed description of the
methodology is presented in Arcodia et al. (2024b) and we only outline here the basic
steps.

X-ray counts were extracted between 0.2-2.0 keV within a circular aperture of 30′′,
corresponding to ∼ 75 % of the encircled energy fraction of eROSITA’s point spread
function in the adopted energy band. The background contribution was estimated from
an annulus with inner and outer radii of 120′′ and 360′′, respectively. Contaminating
X-ray sources were masked following the prescription from Comparat et al. (2023,
Appendix A). For a small number of cases (21/239), >70 % of the source aperture was
masked out and the NSC is, therefore, excluded from the analysis. Consequentially, the
sample size of nucleated galaxies with extracted X-ray properties from the automated
pipeline reduced down to 239 − 21 = 218. We follow the method from Arcodia et al.
(2024b) and adopt as threshold for a significant detection 𝑃binom = 3 × 10−4, which
corresponds to a spurious fraction of ∼ 1 %.

eRASS:4 X-ray spectra were extracted from the same aperture using the srctool
task in the eROSITA Science Analysis Software System (eSASS; Brunner et al., 2022),
with products version 020. The spectral analysis was performed with the Bayesian
X-ray Analysis software (BXA) version 4.0.5. (Buchner et al., 2014), which connects
the nested sampling algorithm UltraNest (Buchner, 2019, 2021) with the fitting
environment XSPEC version 12.12.0. (Arnaud et al., 1996), in its Python version

2URL: https://leda.univ-lyon1.fr/
3URL: https://hla.stsci.edu/
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Figure 5.1. Cutouts of eROSITA eRASS:4 images (top panels) and of the DESI Legacy Imaging
Surveys (bottom panels) Data Release 10 [Legacy Surveys / D. Lang (Perimeter Institute)] of
three galaxies in our sample: NGC 4651, IC 3602 and LEDA 40679. Both images are centered
at the input optical coordinates of the NSC (white cross), with the 30′′ aperture circle used
for X-ray photometry highlighted in white. In case of an X-ray detection (left column) X-ray
contours are also overlayed to the optical image (red).

PyXspec.4 We adopted a simple power-law model (zpowerlw) with absorption
fixed at the Galactic column density from HI4PI (HI4PI Collaboration et al., 2016)
and redshifted to rest-frame. We quote median and 1st and 99th percentiles from
fit posteriors for fluxes and luminosity, unless otherwise stated. For non-detections
(𝑃binom > 0.0003), we quote upper limits using the 99th percentiles of the fit posteriors,
unless otherwise stated.

Potential individual sources of contamination from within the source aperture were
treated a posteriori after visual inspection and were considered on a case by case
basis. For instance, we cross-matched our sample with the catalog from Walton
et al. (2022), which compiled ultraluminous X-ray sources (ULXs) candidates from
XMM–Newton, Swift-XRT, and Chandra data. We manually masked out a handful of
apertures with known ULX candidates and other obvious off-nuclear X-ray sources,
whose centroid lied within the source aperture. In some cases, this resulted in the NSC
being non-detected after the masking: the galaxy NGC 4559 contains a known ULX
(Walton et al., 2022) and after its masking the whole source aperture is masked-out
and no products from the NSC can be analysed. Therefore, after visual inspection, the
number of galaxies with extracted X-ray properties from the automated pipeline was
217/218. We provide in Tables 5.1 and 5.2 the properties of all 217 galaxies, derived
as explained in the next subsections, with their measured eRASS:4 X-ray luminosities.

From this sample we obtain that 18/217 targets are significantly detected. Computing

4The documentation for PyXspec can be found here: https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
python/html/index.html
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1𝜎 binomial uncertainties on this fraction from Cameron (2011), this results in a
detection fraction of 8.3+2.3

−1.5 %.
Finally, we performed stacking analysis of non-detections following the methodology

outlined in Comparat et al. (2022) and Arcodia et al. (2024b). Around each galaxy, we
retrieved a photon cube with the angular position, the physical distance to the associated
galaxy, the exposure time, the observed, and emitted energy (shifted to the rest-frame
of the galaxy) and the effective area for each photon. Detected sources in the field were
masked. The cubes were merged for the desired sub-sample of non-detected galaxies.
We took a weighted mean of all events within 10 kpc using the weight described in
Equ. 3 of Comparat et al. (2022) to obtain the surface brightness. We estimated the
background surface brightness by repeating the procedure with events located at a
distance between 15 and 50 kpc. Finally, we subtracted the background from the mean
surface brightness (within a 10 kpc radius) and converted it to a luminosity.

5.2.3 NSC and Galaxy Parameters

The imaging data from HST used to classify galaxies are inhomogeneous with different
spatial resolutions and available filters. Instead of deriving new NSC parameter
estimates from these data, we looked for available values in the literature. As a
consequence, not all nucleated galaxies of our sample have available NSC properties
(which can be seen in Figures 5.4 and 5.5 below). More specifically, we searched for
available NSC parameters for nucleated galaxies within the Local Volume (𝑑 ≲ 11 Mpc;
Seth et al., 2006; Georgiev et al., 2009a; Graham & Spitler, 2009; Baldassare et al.,
2014; Schödel et al., 2014b; Calzetti et al., 2015; Carson et al., 2015; Crnojević et al.,
2016; Nguyen et al., 2017; Baumgardt & Hilker, 2018; Nguyen et al., 2018; Bellazzini
et al., 2020; Pechetti et al., 2020; Hoyer et al., 2023a), the field environment outside the
Local Volume (Georgiev & Böker, 2014; Georgiev et al., 2016), and the Virgo galaxy
cluster (Sánchez-Janssen et al., 2019a). Nucleated galaxies in the Coma and Fornax
galaxy clusters are not part of our data set.

Galaxy stellar masses were determined as presented in the next subsection. Mor-
phological type values are adopted from HyperLEDA and for the data sample of
Sánchez-Janssen et al. (2019a) we assumed a value of −5, corresponding to elliptical
galaxies.

Galaxy Stellar Masses

To compute galaxy stellar masses, we used three different tracers: (1) the 𝐵 −𝑉 colour,
(2) the 𝑔 − 𝑟 colour, and (3) the 𝐾-band luminosity. First, we obtained the photometric
parameters and distance estimates from both the HyperLEDA and NED data bases. We
then computed the aforementioned colours and 𝐵-, 𝑔-, and 𝐾-band luminosities using
the absolute magnitude of the Sun5 (Willmer, 2018), accounting for Galactic extinction
via the re-calibrated version of the Schlegel et al. (1998) extinction maps (Schlafly
& Finkbeiner, 2011) assuming 𝑅𝑉 = 3.1 (Fitzpatrick, 1999). Internal extinction was
not taken into account. The mass-to-light ratios for the different colours and 𝐾-band
luminosity were taken from McGaugh and Schombert (2014) and Du et al. (2020),

5URL: http://mips.as.arizona.edu/∼cnaw/sun.html

88

http://mips.as.arizona.edu/~cnaw/sun.html


which give re-calibrated versions of the original relations by Bell et al. (2003), Portinari
et al. (2004), Zibetti et al. (2009), Into and Portinari (2013), and Roediger and Courteau
(2015). The uncertainties on the final stellar mass estimates were based on the ones of
the photometric parameters, the distance estimate, the absolute magnitude of the Sun
(assumed to be 0.04 mag) and the stellar mass-to-light relation (assumed to be 0.3 dex).
Usually, the latter one dominates over all other uncertainties.

For the dwarf galaxies in the Virgo cluster, we directly took the mass estimates
from Sánchez-Janssen et al. (2019a), which are based on fits to the spectral energy
distributions and overall match to the other three approaches outlined above (Hoyer
et al., 2021). Their stellar mass estimates lack an uncertainty which is why we assumed
a value of 0.3 dex.

5.2.4 Literature X-Ray Data

As pointed out in the Introduction, previous work investigated the X-ray emissivity
of NSCs in search for MBHs. Based on optical spectroscopy as well as Radio and
X-ray data (via Chandra, ROSAT , and XMM-Newton), Seth et al. (2008a) found X-ray
emission indicative of the presence of MBHs consistent with the position of NSCs in a
sample of 176 early- and late-type galaxies. Most recently, Baldassare et al. (2022)
used data from the Chandra X-ray observatory to search for such signatures in 108
nearby (𝑑 ≲ 40 Mpc) nuclei from the galaxy sample of Georgiev and Böker (2014)
which is composed of massive late-type galaxies. They classified 29 targets as having
significant X-ray emission and, thus, harbouring AGN.

Some other studies investigated the X-ray luminosity of the central region of galaxies
without taking into account their nuclear classification. Here we took into account data
from She et al. (2017) and Ohlson et al. (2023), which used archival Chandra data.

We extracted fluxes and luminosities in the 0.5-7 keV to compare with Ohlson et al.
(2023) and in the 2-10 keV to compare with Baldassare et al. (2022). We note that,
compared to Chandra, eROSITA is most sensitive in the 0.2-2.3 keV energy band
(Predehl et al., 2021). From Ohlson et al. (2023) we used their luminosity values for a
circular aperture with a radius of 3′′ to better match the PSF of eROSITA. Baldassare
et al. (2022) gives luminosities in both bands and we confirmed that the results drawn
in Section 5.3.3 remain unchanged when changing to the 0.5-7 keV band.

5.3 Analysis

5.3.1 X-Ray Contamination from Binaries

Both low- and high-mass X-ray binaries, i.e. binary stellar systems composed of a
donor and either a neutron star or stellar mass black hole, can significantly contribute to
a galaxy’s total X-ray luminosity (e.g. Iwasawa et al., 2009), sometimes rivalling active
galactic nuclei (e.g. Lehmer et al., 2010). This contribution is especially important for
our analysis given the size of eROSITA’s PSF (half-energy width of approximately
30 arcsec; Predehl et al., 2021). The formation of low-mass X-ray binaries (LMXBs)
typically takes 1-10 Gyr (Verbunt & van den Heuvel, 1995) as one requires stellar
evolution to first produce a neutron star which then has to dynamically enter into a binary

89



system with a donor. The collective X-ray luminosity of these systems in older disks and
bulges is related to the stellar mass of the galaxy (Gilfanov, 2004) via 𝐿LMXB

𝑋 = 𝛼×𝑀gal
⋆

(e.g. Colbert et al., 2004; Lehmer et al., 2010) where log10 𝛼 = 29.15+0.07
−0.06 erg s−1 M⊙−1

(Lehmer et al., 2019).
In contrast, high-mass X-ray binaries (HMXBs) require a stellar mass black hole

and their X-ray emission is related to the stellar evolution timescale of the massive
donor star, resulting in a luminous phase about 100 Myr after formation of the
binary (Verbunt & van den Heuvel, 1995). Due to the high-mass of the donor
and its short life time, the X-ray luminosity is related to the star formation rate
(SFR) of the host galaxy via 𝐿HMXB

𝑋 = 𝛽 × SFR (e.g. Grimm et al., 2003) where
log10 𝛽 = 39.73+0.15

−0.10 erg s−1 (M⊙ yr−1)−1 (Lehmer et al., 2019).
To estimate the current star formation rate of our sample, which we assume to

be constant over the last 100 Myr (i.e. no star bursts or quenching effects from tidal
interactions or bright active galactic nuclei), we used a correlation by Hao et al. (2011)
and Kennicutt and Evans (2012) relating the emission in the far-ultraviolet (𝐿FUV) with
the mid-infrared (𝐿MIR) and star formation rate via

log10 SFR = log10 (𝐿FUV + 3.89 × 𝐿MIR) − 43.35 . (5.1)

We took this approach, opposite to e.g. an estimation via X-rays (Colbert et al., 2004;
Symeonidis et al., 2011; Riccio et al., 2023), due to the availability and homogeneity
of the available luminosities: to estimate the far-ultraviolet luminosity, we used the
publicly available data from Galex (Morrissey et al., 2007). For the mid-infrared
luminosity, we use AllWISE W4 (Wright et al., 2010; Cutri et al., 2013) or Spitzer
MIPS (Rieke et al., 2004) magnitudes. For dwarf elliptical galaxies in the Virgo cluster
we assumed that no star formation occured over the last few hundred Myr and that the
expected X-ray binary contamination is solely produced by LMXBs.

After computing the galaxy stellar mass and star formation rates, we determined the
luminosities of both classes of binary systems. The expected contamination by X-ray
binary systems is the sum of the two components, 𝐿bin

𝑋 = 𝐿LMXB
𝑋 + 𝐿HMXB

𝑋 . Objects,
which were detected above this expected X-ray binary emission could indicate the
presence of an MBH (but see Section 5.4.2 for caveats).

5.3.2 Properties of X-Ray Detected Sources

We compare the expected X-ray luminosity from the binary populations in the 2-10 keV
range with the eRASS:4 data in Figure 5.2, distinguishing between X-ray detected
sources (𝑃binom ≤ 3× 10−4) and undetected sources (𝑃binom > 3× 10−4, shown as upper
limits). We also distinguish between objects only detected with eROSITA and the
ones also detected with other instruments taken from Seth et al. (2008a), She et al.
(2017), and Baldassare et al. (2022) or Ohlson et al. (2023). All significant detections
in the eRASS:4 data have measured X-ray luminosities of 𝐿2−10 keV

𝑋, obs > 1038 erg s−1 and
similarly high expected luminosities from the galaxies LMXBs and HMXBs. Only
three galaxies in our sample (NGC 2903, NGC 4212, and NGC 4639) have measured
luminosities greater than the expected values from binaries at 3𝜎 confidence. Some of
the X-ray detected sources are also measured below the expected value which may be
related to uncertainties in the estimates of the galaxy-only predictions. We will discuss
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this observation further in Section 5.4.2. Below 𝐿2−10 keV
𝑋, obs ∼ 5 × 1038 erg s−1 we find no

significant emission and can only determine upper limits.
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Figure 5.2. Expected X-ray luminosity from the combined high- and low-mass binary
population in the 2-10 keV range (𝐿2−10 keV

𝑋, bin ) versus the measurements (𝐿2−10 keV
𝑋, obs ). We show

the significantly detected galaxies (𝑃binom ≤ 0.0003) in the eRASS:4 footprint with blue squares.
For non-detections, we plot upper limits using the 99th percentile of the X-ray luminosity
(blue arrows). Additionally, we highlight the eRASS:4 luminosities of galaxies with available
literature X-ray data (see Section 5.2.4; orange circles). These include data from Seth et al.
(2008a), She et al. (2017), Baldassare et al. (2022), and Ohlson et al. (2023). Some of the
galaxies are not significantly detected in the eRASS:4 data but have secure measurements from
other instruments available in the literature (orange arrows). A more detailed comparison
between the eRASS:4 and literature data is presented in Section 5.3.3.

Some of the NSCs with X-ray upper limits in Figure 5.2 reside in dwarf elliptical
galaxies in the core of the Virgo cluster (29/117 galaxies at 𝑀gal

⋆ ≤ 109 M⊙). A lack
of photometric data in the literature makes it challenging to determine star formation
rates and we assumed that no star formation takes place for these objects. While
this assumption may be justified for the dwarf galaxy sample, the presented X-ray
luminosity from binaries remains only a lower limit.

Figure 5.3 shows the distribution of measured X-ray luminosity versus galaxy stellar
mass. To further constrain the emission in the dwarf galaxies, we stack non-detected
galaxies within bins of stellar mass of 1 dex starting at 𝑀gal

⋆ = 105.5 M⊙ until 1010.5 M⊙
(see Section 5.2.2). None of the stacked X-ray images contains signals above background
level, with upper limits of the order of 2 × 1038 erg s−1 found in each stellar mass
bin. Estimating the expected X-ray luminosity from LMXBs with these galaxy stellar
masses reveals that these upper limits are either matching or higher than the expected
values, thus, being consistent with the X-ray emission of “normal” (i.e. non AGN X-ray
dominated) galaxies.

From the low-mass towards the high-mass end in Figure 5.3 the X-ray luminosity of
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Figure 5.3. Measured X-ray luminosity in the 2-10 keV range (𝐿2−10 keV
𝑋, obs ) versus galaxy stellar

mass (log10 𝑀
gal
⋆ ). The markers, colour-coding and literature references are all the same as

in Figure 5.2. We stack non-detections (upper limits, blue and orange arrows) in mass bins
of 1 dex width starting at a galaxy mass of 105.5 M⊙ to set tighter constraints on the X-ray
emission in dwarf galaxies. Only galaxies above galaxy masses of approximately 109.3 M⊙ are
significantly detected in the eRASS:4 data.

the significant detections appears to increase, starting around 𝑀gal
⋆ ∼ 1010 M⊙. While

this increase could be related to the increasing contribution from the nuclear emission,
as seen for a few sources in Figure 5.2, most of the significantly detected sources feature
the expected luminosities from X-ray binary systems. Therefore, it appears plausible
that this increase is mostly related to the increasing strength of LMXBs and not due to
the presence of AGN.

NSC Properties

Regarding NSC properties, we show the NSC versus host galaxy stellar mass relation
(e.g. Georgiev et al., 2016; Neumayer et al., 2020; Ashok et al., 2023) in Figure 5.4.
We complement our data with the sample of Baldassare et al. (2022), which is based
on the data of Georgiev and Böker (2014). Similar to the previous observation for
galaxy masses in Figure 5.3, only the most massive NSCs are significantly detected,
above 𝑀nsc

⋆ ∼ 107 M⊙. Other lower-mass NSCs are not significantly detected, including
objects, which were detected previously with Chandra down to 𝑀nsc

⋆ ≳ 105 M⊙.
Figure 5.5 shows the NSC effective radius versus stellar mass plane. The eRASS:4

detected NSCs have both high stellar mass and large radii, as is expected from scaling
relations (Georgiev et al., 2016; Neumayer et al., 2020; Ashok et al., 2023). The average
half-mass density of these objects, 𝜌, is consistent with other significantly detected but
lower-mass NSCs in the literature, falling between 104 M⊙ pc−3 ≲ �̄� ≲ 106 M⊙ pc−3.
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Baldassare et al. (2022) also investigated the properties of their NSC sample
distinguishing between X-ray luminosities likely originating from a massive black hole
and X-ray binaries. Due to our limited sample of new detections, we refer to their study
for further discussion with NSC properties.
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Figure 5.4. Nuclear star cluster (log10 𝑀
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)
versus host galaxy stellar mass (log10 𝑀

gal
⋆ ).

We show X-ray detected NSCs with full colour,
distinguishing between sources only detected
with eROSITA (blue) and sources also detected
with other instruments (orange). A fainter
shade is used for non-detection in the eRASS:4
data. In addition, we show NSCs analysed by
Seth et al. (2008a, grey hexagons) and Baldas-
sare et al. (2022, green triangles) for NSCs with
X-ray emission outside the eRASS:4 footprint
(or with significant contamination). A lack of
literature data for NSC properties limits the
included data set.
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colour-coding and symbols are the same as in
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fewer NSCs are shown because of a lack of
measured effective radii for the dwarf galaxy
sample in the core of the Virgo cluster (Sánchez-
Janssen et al., 2019a; Ferrarese et al., 2020).
Uncertainties are omitted for clarity.

5.3.3 X-Ray Variable Sources

We compare in Figure 5.6 the X-ray luminosity of nucleated galaxies in the German
footprint of the eRASS:4 data with matches in Chandra, ROSAT , or XMM-Newton data
from Seth et al. (2008a), She et al. (2017), Baldassare et al. (2022), and Ohlson et al.
(2023), as introduced in Section 5.2.4. Given their upper limits, most of the eRASS:4
values are in agreement with the literature. However, six other galaxies (NGC 2903,
3384, 4321, 4365, 4639, and 4701) have values not in agreement with the literature.

For one galaxy, NGC 2903, there exist literature data from both Baldassare et al.
(2022) and Ohlson et al. (2023). Although the same data were analysed, they quote
fluxes differing by a factor ∼ 100, which is likely due to the difference between catalogue
fluxes (Evans et al., 2010; Ohlson et al., 2023) and those estimated through aperture
photometry (Baldassare et al., 2022). We computed the X-ray fluxes through spectral
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Figure 5.6. Comparison of literature Chandra, XMM-Newton, or ROSAT X-ray luminosity
versus eRASS:4 values. Full colour-coded symbols show X-ray detections in eRASS:4. The
dashed line gives the one-to-one values. We compare to Seth et al. (2008a), She et al. (2017)
and Baldassare et al. (2022) using the 2 to 10 keV band. Ohlson et al. (2023) give Chandra
X-ray data in the 0.5 to 7 keV band. Galaxies, which likely show some X-ray variability, are
specifically named.

analysis and obtained that the eRASS:4 spectrum is sufficiently well described by a
simple power-law with photon index 2.08 ± 0.20, although a more complex spectral
model would be most likely required with higher count statistics in the 2-10 keV band.
Based on this, we are not able to infer whether the difference between eROSITA and
Chandra values is due to intrinsic variability or differences in the flux estimate methods.

We investigate this object further by looking at the X-ray luminosity in each
eROSITA survey to find that it was significantly detected in eRASS2 (with 𝐿0.2−2.0 keV

𝑋, obs ∼
1.1× 1040 erg s−1) but not in any other individual image. This indicates that NGC 2903
likely hosts an AGN, which is variable on time scales of at least six months (i.e. the
time between all-sky scans by eROSITA).

For the other five galaxies, we find no significant signs of X-ray variability within the
eRASS:4 data. This could indicate that the inconsistency detected here, if not caused
by any differences in analysis strategy between our approach and the one of Ohlson
et al. (2023), occurs on time scales longer than six months but shorter than the time
difference between the Chandra and eROSITA observations of a few years.
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5.4 Discussion

5.4.1 Presence of Massive Black Holes?

Most of the significantly detected NSCs in eRASS:4 are in agreement with the expected
luminosity from binary systems, therefore, we are not able to unambiguously associate
it with AGN. Three NSCs (NGC 2903, NGC 4212, and NGC 4639) have emission
above the expected value and this supports the presence of an AGN.

For NGC 4212 the NSC properties are not known and no secure black hole
measurement exists. For the other two galaxies, She et al. (2017) estimates the
black hole mass using the 𝑀bh-𝜎 relation from Kormendy and Ho (2013) to find
log10 𝑀

2903
bh /M⊙ = 6.48+0.10

−0.10 and log10 𝑀
4639
bh /M⊙ = 6.65+0.09

−0.09, resulting in 𝜆2903
Edd ∼

7 × 10−5 and 𝜆4639
Edd ∼ 4 × 10−4, respectively, after taking into account a bolometric

correction from Duras et al. (2020). The NSC masses are log10 𝑀
nsc, 2903
⋆ /M⊙ ∼ 7.71

(Pechetti et al., 2020) and log10 𝑀
nsc, 4639
⋆ /M⊙ ∼ 7.05 (Georgiev et al., 2016), resulting

in mass fractions of log10(𝑀bh /𝑀nsc
⋆ ) ∼ −1.23 and −0.4, respectively. These values

compare well to other literature values, as we show in Figure 5.7.
In comparison to previous studies, our investigation also takes into account a large

sample of 111 early-type galaxies of various stellar masses. We show in Figure 5.8
the galaxy stellar mass versus Hubble morphological type plane, with additions of
Seth et al. (2008a) and Baldassare et al. (2022) for NSCs without observational data in
eRASS:4.

As previously explored, only the most massive galaxies (𝑀gal
⋆ ≳ 1010 M⊙) have

significant X-ray emission, irrespective of the host galaxy’s morphology. The focus of
Baldassare et al. (2022) on the late-type sample of Georgiev and Böker (2014) results
in detections down to galaxy masses of ∼ 108 M⊙, as explored previously. In contrast,
with the exception of one NSC (NGC 4467) from Seth et al. (2008a), no early-type
galaxy in the same mass range is significantly detected. This could imply several
points:

1. The accreting MBHs fall below the sensitivity of the cumulative data of eROSITA.
2. The black hole occupation fraction is different for galaxies of different Hubble

type resulting in fewer X-ray detections at the same host galaxy stellar mass.
3. Assuming that the massive black hole occupation fraction does not depend on

environment, this could indicate smaller black hole masses in these elliptical
galaxies assuming the same Eddington fraction.

4. Assuming the same massive black hole occupation fraction and typical black
hole masses, our results could indicate that the Eddington fraction is different
between different morphologies, likely caused by a lack of gas available for
accretion in the centres of early-type galaxies.

Regarding the first and last items, we can estimate an upper limit to the Eddington
fraction of these objects. Assuming that we can ignore the contributions of HMXBs,
the expected X-ray luminosity from binaries for a galaxy with stellar mass 𝑀gal

⋆ ∼
108.5 M⊙ is 𝐿𝑋, bin. ∼ 1037 erg s−1, which is about a factor ten below the upper limits of
eRASS:4 (see Figure 5.3). Using a bolometric correction factor of about ten (Duras
et al., 2020), the upper limit on the luminosity of a massive black hole would be
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Figure 5.7. Mass ratio of the SMBH and NSC stellar mass (log10 𝑀bh/𝑀nsc
⋆

) versus the host
galaxy stellar mass. We show the compiled data of Neumayer et al. (2020) and add to that
data for NGC 1336 (Saulder et al., 2016; Fahrion et al., 2019; Thater et al., 2023), NGC 3593
(Bertola et al., 1996; Nguyen et al., 2022), all shown with blue squares. Several galaxies from
Ashok et al. (2023) are added as orange circles. The sample of ultra-compact dwarf galaxies
(UCDs, purple triangles) include the compilation of Neumayer et al. (2020) and the additional
B023-G078, M 31’s most massive globular cluster, from Pechetti et al. (2022). We estimate
the most likely previous UCD’s host galaxy mass using the 𝑀nsc

⋆
-𝑀gal
⋆ relation of Neumayer

et al. (2020) for massive galaxies (their Equation 2). Additionally, we add nucleated galaxies
with significant X-ray excess, hinting at the existence of a massive black hole, by using a black
hole mass estimate from She et al. (2017) and NSC mass estimates from Georgiev et al. (2016),
shown with red triangles. We add to this last group the data points of NGC 2903 and NGC 4639,
which could host massive black holes based on their X-ray variability (see Figure 5.6).

𝐿bol, max ∼ 1039 erg s−1. In galaxies of this mass, we would expect to find MBHs
with 𝑀BH ∼ 105 M⊙ from observational data in early-type galaxies (Erwin & Gadotti,
2012; Reines & Volonteri, 2015; Capuzzo-Dolcetta & Tosta e Melo, 2017; Greene
et al., 2020) and 𝑀BH ∼ 106.5M⊙ from simulations (e.g. Spinoso et al., 2023). For
these MBH masses (105 M⊙, 106.5 M⊙), a Bolometric luminosity as quoted above
(𝐿bol, max ∼ 1039 erg s−1) would imply an Eddington fraction of at most 0.01 %. This
value roughly matches the values determined for NGC 2903 and NGC 4639 above,
yielding an explanation for why we most likely do not detect these low-luminosity
AGN in X-rays, if present. This also sets an upper limit to the hot gas accretion of such
systems.

Regarding the other items, current observational data indicate that MBHs in early-
type galaxies are more massive than their counterparts in late-types (see the compilation
of Greene et al., 2020) but the scaling relations are solely based on measurements in
massive galaxies and were extrapolated to the dwarf galaxy regime. The occupation
fraction of MBHs appears to be similar, according to recent X-ray and dynamical
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Figure 5.8. Galaxy stellar mass (log10 𝑀
gal
⋆ ) versus Hubble morphological type (𝑇) of the

significantly detected (solid blue) and non-detected (fainter blue points) eRASS:4 data. Galaxies,
which are part of eRASS:4 but were also detected by previous work (Seth et al., 2008a; She et al.,
2017; Baldassare et al., 2022; Ohlson et al., 2023) are shown in orange colour. In addition,
we show the data by Seth et al. (2008a) and Baldassare et al. (2022) with grey hexagons and
green triangles, respectively, for galaxies, which are not part of the eRASS:4 sample. The single
significantly detected early-type galaxies at a galaxy stellar mass of approximately 109 M⊙ is
NGC 4467, whose X-ray properties were analysed by Seth et al. (2008a) and Graham and Soria
(2019).

results (see, again, the compilation of Greene et al., 2020), making the first and last
items of the above list most likely.

MBH Occupation Fraction from X-Rays

Assuming that all significantly X-ray detected NSCs host an AGN, we can infer the
combined occupation fraction of NSCs and AGN. To gain statistical significance, we
add to the eRASS:4 data the sample of Baldassare et al. (2022). For their sample we
assume that all galaxies classified as having “diffuse” emission are non-detections.

We show the fraction of detected over the total sample as a function of galaxy and
NSC stellar mass in Figure 5.9. For comparison, we also add the sample occupation
fraction of Seth et al. (2008a) for NSCs and the AGN occupation fractions (without
information of whether an NSC is present) from Miller et al. (2015a) and Ohlson et al.
(2023) from observations and Tremmel et al. (2024) from a simulation. We find that
above 𝑀gal

⋆ ∼ 107 M⊙ the combined AGN & NSC fraction increases and reaches 100 %
around 1010 M⊙. Our data are slightly elevated compared to the data of Seth et al.
(2008a) and Ohlson et al. (2023) which could be related different selection effects
(Seth et al., 2008a, use Optical spectroscopy, Radio, and X-ray data to find evidences
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Figure 5.9. Occupation fraction of nu-
clear star clusters and active galactic
nuclei versus host galaxy stellar mass
(log10 𝑀

gal
⋆ ). We combine the eRASS:4

data with the data from Baldassare et
al. (2022) to gain statistical significance
(green line). Literature data for NSCs and
AGN come from Seth et al. (2008a, gray
line). In addition, we show the occupation
fractions of AGN from the observational
studies of Miller et al. (2015a) and Ohlson
et al. (2023, blue and purple lines, respec-
tively), and the computational results of
Tremmel et al. (2024, red line).

of the presence of an AGN) of the samples or instrument-related response functions.
Additionally, because of the big half-energy width of eROSITA’s PSF (half-energy
width of about 30 arcsec; Predehl et al., 2021), off-nuclear star forming region can
contaminate the measurements and result in a too-high estimate of the NSC and AGN
fraction. Given the uncertainties of the data it remains unclear whether the presence of
an NSC can enhance the occupation fraction of active galactic nuclei, not taking into
account an enhanced rate of tidal disruption events (Pfister et al., 2020).

5.4.2 Caveats

There exist several caveats in the analysis both related to the measured and expected
X-ray luminosities. The spatial resolution of eROSITA results in an uncertainty on
both the central position of the emission (roughly 4′′) and allows for contamination
by off-nuclear sources, thus, not guaranteeing that the emission stems from the NSC.
Instead, HMXBs or ULXs may mimic the emission of an accreting massive black
hole in NSCs. Such contaminating sources may still be present in our sample, despite
matching it with the ULX sample of Walton et al. (2022) (Section 5.2.2), thus requiring
follow-up observations with higher spatial resolution facilities like Chandra.

In low-mass galaxies, the above argument is not problematic because the circular
aperture typically contains the galaxy’s stellar body out to at least one effective radius
(cf. middle and right columns in Figure 5.1). However, there are several other challenges
in this mass range. As noted by Lehmer et al. (2019), the scaling relations to track
the contribution by HMXBs and LMXBs contain uncertainty in the low-mass regime
because of a poorly sampled X-ray luminosity function. This makes it unclear how to
interpret measured X-ray emission in dwarf galaxies in future eROSITA data releases
in case dwarf galaxies (or stacks of dwarf galaxies) become significantly detected.
Additionally, the scaling relations of Lehmer et al. (2019) apply for the expected
X-ray luminosity of the whole galaxy. However, in most cases, the aperture used to
extract the X-ray photometry only covers part of the galaxy (see Section 5.2.2), thus,

98



overestimating the contamination from binaries.
Additionally, the influence of globular clusters to the X-ray binary contamination

remains unclear. It is well-known that globular clusters efficiently produce LMXBs
(e.g. Clark, 1975; Sivakoff et al., 2007; Cheng et al., 2018) and that they can heavily
influence the X-ray properties of elliptical galaxies (e.g. Irwin, 2005; Lehmer et al.,
2014, 2020) and, to some degree, late-types as well (Pfahl et al., 2003; Peacock et al.,
2009; Hunt & Reffert, 2023). This effect is especially important in the dwarf galaxy
regime where the importance of globular clusters towards the total mass budget of the
galaxy increases, as probed by the specific globular cluster frequency (e.g. Miller &
Lotz, 2007; Liu et al., 2019; Carlsten et al., 2022).6 There also exists some scatter in the
specific frequency of dwarf galaxies (see e.g. the environmental dependence discussed
in Carlsten et al., 2022) requiring a detailed investigation of the X-ray luminosity from
globular clusters in dwarf galaxies.

Furthermore, what is not taken into account here is the X-ray contributions from
binaries within the NSC itself. This contribution may be similar to globular clusters,
especially in dwarf galaxies where the properties of both systems become similar (e.g.
Fahrion et al., 2022a; Hoyer et al., 2023a) but it remains somewhat unclear in higher-
mass NSCs. Several works found that denser globular clusters have a higher probability
of hosting X-ray binaries (e.g. Kundu et al., 2002; Jordán et al., 2007b; Sivakoff et al.,
2007; Riccio et al., 2022; Hunt & Reffert, 2023) and this probability should increase
further for NSCs, which are the densest stellar systems known (Neumayer et al., 2020),
especially in massive galaxies (Pechetti et al., 2020). The expected LMXB contribution
to the X-ray budget of NSCs is currently unknown and distinguishing them from
low-luminosity AGN requires future work.

In summary, there exist several caveats related to both the measured X-ray luminosity
and the expected value from X-ray binaries. Further studies disentangling the contribu-
tions from binaries are required for the targets with significant detections, which are
currently high-mass galaxies. The sample size may increase and extend towards the
dwarf galaxy regime if future eROSITA or Athena (Nandra et al., 2013) data are added.

5.5 Conclusions

We combined a compilation of galaxies containing a nuclear star cluster (NSC) with
eROSITA eRASS:4 data to probe X-ray signatures of an accreting massive black
hole (MBH) within them. Using a sample of more than 200 nucleated galaxies with
overlapping eRASS:4 data within the footprint of the German eROSITA Consortium,
we find 18 significant detections of which one is related to the presence of an off-nuclear
ultra-luminous X-ray source. However, compared to the expected X-ray contamination
from both low- and high-mass X-ray binaries, only three galaxies (NGC 2903, 4212,
and 4639) have measured luminosities indicative of the presence of an MBH. Another
six galaxies (NGC 2903, 3384, 4321, 4365, 4639, and 4701) have significantly different
X-ray luminosities compared to previous archival measurements, which we interpret
as indicative of a variable X-ray AGN. For NGC 4701, we find variability within

6The specific globular cluster frequency is often calculated as the total number of globular clusters
divided by the galaxy’s stellar mass, 𝑆𝑁 = 𝑁gc /𝑀

gal
⋆

.
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the eRASS:4 data set, which could be related to an intrinsic variability or changes
in obscuration. To confirm the nature of these objects, follow-up observations are
necessary.

The MBH to NSC stellar mass fraction versus host galaxy stellar mass compares
well to other known systems. By adding X-ray-based black hole mass estimates, we
can significantly expand this parameter space towards lower galaxy stellar masses,
apparently confirming a drop in the mass ratio around galaxy stellar masses of 1010 M⊙.

Assuming that all significantly detected NSCs above the expected luminosity from
X-ray binaries host AGN, we construct an NSC + AGN occupation fraction by adding
data from Baldassare et al. (2022) to gain statistical significance. The resulting curve
has higher occupation fraction than the one of Seth et al. (2008a) and the AGN only
fractions of Miller et al. (2015a) and Tremmel et al. (2024) and Ohlson et al. (2023).
The differences may be related to instrument-related response functions and the different
half-energy widths of the instruments used.

Large-scale surveys, as carried out by eROSITA or Athena in the future, offer a
unique view on X-ray emission in dwarf galaxies, covering also low-mass early-type
galaxies, whose X-ray properties were not investigated previously with respect to their
NSCs.

5.6 Appendix

We present in Tables 5.1 and 5.2 the data used in this work.

Table 5.1. Galaxy properties for the considered sample based on literature information. The
combined data table with Table 5.2 is available for download online.

Galaxy RA DEC 𝑚 − 𝑀 𝑇 log10 𝑀
gal
⋆

log10 SFR (a)

[deg] [deg] [mag] [M⊙] [M⊙ yr−1]
(1) (2) (3) (4) (5) (6) (7)

BTS 76 179.68375 27.58500 30.50 10.0 ± 2.0 7.53 ± 0.16 −3.47
DDO 084 160.67458 34.44889 29.99 9.8 ± 0.6 7.65 ± 0.35 −3.84
DDO 088 161.84292 14.07028 29.44 8.9 ± 0.3 7.88 ± 0.15 N/A
dw 1048+13 162.14917 13.06000 30.13 ± 0.12 −2.0 ± 1.0 6.71 ± 0.43 N/A
dw 1049+12b 162.35833 12.55250 30.17 ± 0.06 −2.0 ± 1.0 7.55 ± 0.06 N/A
. . . . . . . . . . . . . . . . . . . . .

Columns: (1) galaxy name; (2) Right ascension; (3) Declination; (4) Distance modulus; (5) Hubble type; (6) Galaxy stellar mass; (7) Star formation rate

(a) The star formation rate is set to zero for dwarf elliptical galaxies in the core of the Virgo cluster.
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Table 5.2. X-ray properties of the selected galaxy sample from SRG/eROSITA.

Galaxy 𝐿
2−10 keV
𝑋, median 𝐿

2−10 keV
𝑋, 1st 𝐿

2−10 keV
𝑋, 99th 𝐿

cont
𝑋

(a)
𝑡exp 𝑃binom

[erg s−1] [erg s−1] [erg s−1] [erg s−1] [s]
(1) (2) (3) (4) (5) (6) (7)

BTS 76 -- -- 3.97 × 1038 (6.2 ± 2.3) × 1036 326 0.06078
DDO 084 -- -- 1.07 × 1038 (8.1 ± 6.5) × 1036 325 0.39909
DDO 088 -- -- 6.54 × 1038 (1.37 ± 0.48) × 1037 282 0.04318
dw 1048+13 -- -- 4.25 × 1038 (9.3 ± 9.2) × 1035 297 0.40543
dw 1049+12b -- -- 1.84 × 1038 (6.37 ± 0.81) × 1036 275 0.76436
. . . . . . . . . . . . . . . . . . . . .

Columns: (1) galaxy name; (2) Median X-ray luminosity in the 2-10 keV band; (3) & (4) 1st and 99th percentiles of the X-ray luminosity; (5) Expected
X-ray luminosity due to binary systems; (6) Exposure time; (7) Binomial probability that the detection is a background fluctuation.

(a) If no star formation rate could be determined, the estimated X-ray luminosity due to binaries is a lower limit.

5.7 Chapter Summary

▹ This work combines information of NSCs (location, photometry, structure)
with accumulated SRG/eROSITA all-sky data in the X-ray regime to search for
low-luminosity AGN.▹ The analysis reveals several AGN candidates within NSCs based on X-ray
variability and a measured luminosity that exceeds expected values from binary
systems.▹ Stacked X-ray data constrain the luminosity of MBH in dwarves to 𝐿2−10 keV

X ≈
2 × 1038 erg s−1, which translates to an MBH mass of the order of 106 M⊙ when
assuming an Eddington factor of 0.01 % (or vice versa).▹ Combining X-ray detected AGN from the literature, the black hole to bulge mass
relationship, and adding our new results further constrain the MBH to NSC
mass ratio versus host galaxy mass plane. Below galaxy masses of ≈ 1010 M⊙,
𝑀SMBH/𝑀NSC ≲ 0 whereas the fraction increases up to a couple of dex for the
most massive systems.
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Chapter 6
Massive Star Clusters in Simulated
Galaxies

Declaration

The contents of this chapter were submitted to Astronomy & Astrophysics and are
published in Hoyer et al. (2025). All co-authors provided commentary that improved
the work.

Abstract

It is established that there exists a direct link between the formation history of star
cluster populations and their host galaxies, however, our lacking understanding of star
cluster assembly prohibits us to make full use of their ability to trace galaxy evolution.
In this work we introduce a new variation of the 2020 version of the semi-analytical
galaxy formation model “L-Galaxies” that includes the formation of star clusters above
104 M⊙ and probes different physical assumptions that affect their evolution over cosmic
time. We use properties of different galaxy components and localised star formation
to determine the bound fraction of star formation in disks. After randomly sampling
masses from an environmentally-dependent star cluster initial mass function, we assign
to each object a half-mass radius, metallicity, and distance from the galaxy centre. We
consider up to 2000 individual star clusters per galaxy and evolve their properties over
time taking into account stellar evolution, two-body relaxation, tidal shocks, dynamical
friction, and a re-positioning during galaxy mergers. Our simulation successfully
reproduces several observational quantities, such as the empirical relationship between
the absolute 𝑉-band magnitude of the brightest young star clusters and the host galaxy
star formation rate, the mass function of young star clusters, or mean metallicities
of the star cluster distributions versus galaxy masses. The simulation reveals great
complexity in the 𝑧 = 0 star cluster population resulting from differential destruction
channels and origins, including in-situ populations in the disk, a major merger-induced
heated component in the halo, and accreted star clusters. Model variations point out the
importance of e.g. the shape of the star cluster initial mass function or the relationship
between the sound speed of cold gas and the star formation rate. Our new model
provides new avenues to trace individual star clusters and test cluster-related physics
within a cosmological set-up in a computationally efficient manner.
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6.1 Introduction

A natural consequence of star formation in cold gas-dense and rotationally unstable
regions is the formation of bound stellar structures, ranging from few-body systems
to massive star clusters that rival in mass the baryonic components of entire (dwarf)
galaxies. The properties and survival times of these star clusters heavily depend on
their changing environment, which makes them excellent tracers of galaxy assembly.
To date, a large body of work has used the present-day star cluster population, such
as globular clusters, to constrain the evolutionary history of their current host galaxy,
including the Milky Way, M 31, and other nearby systems (e.g. Huchra et al., 1991;
Barmby et al., 2000; Perrett et al., 2002; West et al., 2004; Brodie & Strader, 2006;
Forbes & Bridges, 2010; Leaman et al., 2013; Huxor et al., 2014; Cantiello et al., 2015;
Veljanoski et al., 2015; Myeong et al., 2018; Callingham et al., 2022; Hammer et al.,
2023, 2024; Ines Ennis et al., 2024; Usher et al., 2024). However, despite the clear
link between galaxy and star cluster formation that is expressed via, for example, the
scaling relation between the number of star clusters and host galaxy mass (e.g. West
et al., 1995; Blakeslee, 1999; Peng et al., 2008; Spitler & Forbes, 2009; Hudson et al.,
2014; El-Badry et al., 2019; Bastian et al., 2020; Burkert & Forbes, 2020; Zaritsky,
2022; Le & Cooper, 2024), precise details about the formation environments and initial
properties of 𝑧 = 0 star clusters remain elusive (e.g. Forbes et al., 2018).

Constraints on the ages of globular clusters in galaxies, including the Milky Way,
suggest that they form at redshifts 𝑧 ≳ 1 (e.g. Carretta et al., 2000; Krauss & Chaboyer,
2003; Lee, 2003; Kaviraj et al., 2005; Strader et al., 2005; Correnti et al., 2016).
Studying the natal environment of clusters at these distances is challenging; however,
observations with the Very Large Telescope, the Hubble Space Telescope, and James
Webb Space Telescope, combined with strong gravitational lensing, make such observa-
tions possible (e.g. Vanzella et al., 2017, 2019; Kikuchihara et al., 2020; Mowla et al.,
2022; Claeyssens et al., 2023; Forbes & Romanowsky, 2023; Vanzella et al., 2023;
Mowla et al., 2024). Most recently, Adamo et al. (2024) discussed the properties of
young and massive star clusters in the “Cosmic Gems Arc” at redshift 𝑧 ≈ 10 (Salmon
et al., 2018; Bradley et al., 2024). Such clusters are compact (half-light radius ≤ 2 pc),
massive (stellar mass ≳ 106 M⊙), and could potentially contribute to the 𝑧 = 0 star
cluster population. Irrespective of whether they survive until 𝑧 = 0, they constitute a
significant baryonic component of high-𝑧 galaxies (≳ 30 % for the Cosmic Gems Arc;
Adamo et al., 2024) and most likely influence the host galaxy’s evolution.

Simulations are required to understand the properties of the full star cluster distribu-
tion as observations can only trace the brightest / most massive and most unobscured
star clusters. Detailed simulations of star cluster formation and evolution have now
become feasible in high-resolution hydrodynamical simulations of galaxy formation,
ranging from dwarf galaxies to Milky Way-analogues. These simulations either
include star clusters in full cosmological simulations, sometimes including adaptive
mesh-refinement or zoom-in techniques (e.g. Li et al., 2017, 2018; Li & Gnedin, 2019;
Brown & Gnedin, 2022; Reina-Campos et al., 2022a; Garcia et al., 2023; Calura et al.,
2024) or use high spatial- and temporal resolutions but evolve for less than one Gyr (e.g.
Lahén et al., 2020; Hislop et al., 2022; Lahén et al., 2023; Elmegreen & Lahén, 2024;
Lahén et al., 2024a, 2024b; Reina-Campos et al., 2024). Another approach is to add star
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cluster-related physics to existing simulations. This approach was realised by e.g. the
E-MOSAICS project (Pfeffer et al., 2018; Kruijssen et al., 2019a) that adds prescriptions
for star cluster formation in post-processing to the EAGLE simulation (Crain et al.,
2015; Schaye et al., 2015). Focussing on E-MOSAICS, their simulation can reproduce a
number of observables related to the globular clusters mass and metallicity distributions
as well as relations with properties of their host galaxy and dark matter halo (see details
in Horta et al., 2011; Hughes et al., 2019; Kruijssen et al., 2019a, 2019b; Pfeffer et al.,
2019a, 2019b; Reina-Campos et al., 2019; Bastian et al., 2020; Hughes et al., 2020;
Keller et al., 2020; Kruijssen et al., 2020a; Reina-Campos et al., 2020; Trujillo-Gomez
et al., 2021; Dolfi et al., 2022; Hughes et al., 2022; Reina-Campos et al., 2022b, 2023b;
Newton et al., 2024; Pfeffer et al., 2024a, 2024b).

All of the above mentioned simulations follow in detail the evolution of stars within
individual star clusters or of individual baryonic particles, which contain star clusters,
but are expensive to run. In contrast, semi-analytical models sacrifice resolution to
lower the computational expense and gain the ability to explore a wide parameter space
of various astrophysical mechanisms (e.g. White & Rees, 1978; White & Frenk, 1991;
Baugh, 2006; Somerville et al., 2008; Somerville & Davé, 2015). This approach has
proven to be successful in reproducing observational quantities related to, for example,
the co-evolution of galaxies and massive black holes (e.g. Kauffmann & Haehnelt,
2000; Croton, 2006; Croton et al., 2006; De Lucia & Blaizot, 2007; Monaco et al.,
2007; Bonoli et al., 2009, 2014; Izquierdo-Villalba et al., 2020; Gabrielpillai et al.,
2022; del P. Lagos et al., 2024), which allows to constrain values of free parameters of
the assumed physical models.

For star clusters in a semi-analytical galaxy formation framework specifically, most
recently De Lucia et al. (2024) added prescriptions for their formation to the GAEA
model (De Lucia et al., 2014; Hirschmann et al., 2016). The authors were able to
reproduce the empirical relationship between the total mass in globular clusters and
the parent halo mass (see also e.g. Kravtsov & Gnedin, 2005; Prieto & Gnedin, 2008;
Muratov & Gnedin, 2010; Li et al., 2017) but utilised simple prescriptions related to
mass loss and dynamical friction and relied on global star cluster population statistics.

In this first paper, we introduce an implementation of the formation and evolution
of star clusters into a public version of the semi-analytical galaxy formation model
“L-Galaxies” (Henriques et al., 2020; Yates et al., 2021). Our work differs from the
above mentioned work by De Lucia et al. (2024) in that we track the evolution of
individual clusters and use different sets of astrophysical prescriptions that make use
of the radially-resolved gas and stellar discs in the 2020 version of the code. This
effort enables us to study individual star clusters across different galaxy types, masses,
environments, and redshifts, and offers new avenues to study the formation of nuclear
star clusters and the co-evolution of black holes with star clusters in future work.

We start in Section 6.2 by detailing the governing equations of the model, starting
with galaxy components to evaluate the formation efficiency of star clusters, the initial
properties of the star clusters, and eventually the evolution of star clusters within the
evolution of their host galaxies. We then evaluate results of our model in Section 6.3
focussing on young massive star clusters in disk-dominated galaxies, and metallicity
distributions of in-situ and accreted star clusters for different galaxy morphologies, and
discuss caveats of our approach. We conclude in Section 6.4 and present an outlook for
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Formation

▹ Star formation in galaxy disks (§ 6.2.1)

▹ Star cluster formation (§ 6.2.3)→ Bound fraction of star formation

– Cold gas surface density (§ 6.2.1)

– Epicyclic frequency (§ 6.2.3)

– Toomre stability parameter (§ 6.2.3)

▹ Star cluster initial mass function (§ 6.2.4)
Power-law with upper truncation

▹ Other initial properties:

– Location within annuli (§ 6.2.4)

– Half-mass radius (§ 6.2.4)

– Tidal radius (§ 6.2.4)

– Metallicity (§ 6.2.4)

Evolution

▹ Mass loss (§ 6.2.5)

– Stellar evolution

– Two-body relaxation

– Tidal shocks

▹ Radial expansion (§ 6.2.5)

– Two-body relaxation

– Tidal shocks

▹ Dynamical friction (§ 6.2.5)

▹ Re-distribution during galaxy mergers (§ 6.2.5)

– Minor mergers: accreted clusters move to halo

– Major mergers: all clusters move to halo
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Figure 6.1. Relevant prescriptions for the assembly of star clusters implemented into a modified
version (Yates et al., 2021) of L-Galaxies 2020 (Henriques et al., 2020).

future papers in this series. Section 6.5 presents variations of key model parameters.

6.2 Model Description

Below we outline the basic principles behind our model that we summarise in Figure 6.1.
Going forward, when mentioning the term L-Galaxies we specifically refer to a modified
version of the 2020 model introduced by Yates et al. (2021). This version of the code
improves over the default model (Henriques et al., 2020) by modifying the prescriptions
for metal injection from stellar winds and supernovae into the circum-galactic medium.

6.2.1 The L-Galaxies Semi-Analytical Galaxy Formation Model

The L-Galaxies model combines merger trees from dark matter-only𝑁-body simulations
with a set of partial differential equations for the evolution of baryonic components.
It has been developed to primarily run on the Millennium (Springel et al., 2005)
and Millennium-II (Boylan-Kolchin et al., 2009) simulations with box sizes / dark
matter particle masses of 480.3 h−1 Mpc / 9.61 × 108 h−1 M⊙ and 96.1 h−1 Mpc /
7.69×106 h−1 M⊙, respectively. Dark matter (sub-)halos are identified using a “Friends-
of-Friends” (Davis et al., 1985) and the “subfind” algorithm (Springel et al., 2001;
Dolag et al., 2009) and are used as input to L-Galaxies. As discussed in the works
related to the last few major releases (Guo et al., 2011; Henriques et al., 2015, 2020),
the model can reproduce many observables of baryonic components, such as the
redshift-dependent galaxy mass function, passive galaxy fraction, and the cosmic
density of the star formation rate (SFR).

Many extensions to L-Galaxies have been developed, including those that focus
on the gas (Vijayan et al., 2019; Ayromlou et al., 2021; Yates et al., 2021; Parente
et al., 2023; Zhong et al., 2023b, 2023a; Parente et al., 2024; Yates et al., 2024), stars
(Bluck et al., 2016; Wang et al., 2018; Irodotou et al., 2019; Izquierdo-Villalba et al.,
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2019; Murphy et al., 2022; Wang & Peng, 2024), massive black holes (Bonoli et al.,
2009, 2014; Izquierdo-Villalba et al., 2020, 2022; Spinoso et al., 2023; Polkas et al.,
2024), and other components (Barrera et al., 2023; Vani et al., 2025). This shows that
L-Galaxies is a versatile utility to explore the assembly of galaxies and has the potential
to investigate the formation of star clusters as well.

One of the key features of the 2020 version of L-Galaxies that was adapted from Fu
et al. (2013) is the introduction of concentric annuli. By default, the model features
twelve such annuli that are logarithmically-spaced and act as the resolution limit for
the cold gas and stars within a galaxy’s disk and stars within a galaxy’s bulge. The
annuli’s outer radii have values of

𝑤 𝑗 / [h−1 kpc] = 0.01 × 2 𝑗 with 𝑗 ∈ [1, 12] , (6.1)

resulting in 𝑤1 ≈ 29.7 pc and 𝑤12 ≈ 60.8 kpc.
One of the affected properties of the separation into annuli is the star formation

prescription. L-Galaxies assumes that the molecular gas in each annuli collapses on a
dynamical time-scale 𝜏dyn and is transformed to stars with an efficiency 𝜖H2 (e.g. Fu
et al., 2012). Thus, in terms of surface mass density, the SFR for ring 𝑗 is

ΣSFR, 𝑗 = 𝜖H2 𝜏
−1
dyn ΣH2, 𝑗 . (6.2)

The model assumes for the dynamical time

𝜏dyn = 𝑅g / 𝑣max , (6.3)

where we introduced the disk scale-length of the cold gas and the maximum value of the
rotation velocity of the dark matter halo. The amount of molecular gas itself is derived
from the available cold gas in each ring and, in turn, is related to the gas’ metallicity
and clumping of gas clouds. Extensive discussions and recipes for computing the
molecular mass (per annuli) are presented in (Krumholz et al., 2009; Fu et al., 2010;
McKee & Krumholz, 2010; Fu et al., 2013; Henriques et al., 2020).

In this work we adopt the 2014 cosmology of Planck (Planck Collaboration, 2014)
with ΩΛ, 0 = 0.685, Ωm, 0 = 0.315 (with Ωb, 0 = 0.0487), 𝜎8 = 0.826, 𝑛s = 0.96,
and h = 0.673 throughout the paper. L-Galaxies itself utilises dark matter-only
simulations that are re-scaled (Angulo & White, 2010; Angulo & Hilbert, 2015) to
these cosmological parameters.

6.2.2 Gravitational Potential

The computation of the fraction of star formation that is bound in star clusters
(Section 6.2.3) requires knowledge of the underlying gravitational potential. We
consider the contributions of all available galaxy components that L-Galaxies considers
during the simulation, namely a central massive black hole, dark matter, a bulge,
gaseous and stellar disks, and gaseous and stellar halos.

Massive Black Hole In case a massive black hole occupies a galaxy centre, we
introduce a gravitational potential of a point mass, i.e.

ΦBH(𝑤) = −G𝑀BH

𝑤
, (6.4)
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where𝐺 is the gravitational constant, 𝑀BH the black hole mass, and𝑤 the galactocentric
distance. We assume here that the galaxy centre remains in the dark matter halo’s
centre at all times and that the massive black hole does not ‘wander’ within the galaxy
(see Izquierdo-Villalba et al., 2020; Untzaga et al., 2024, for a discussion on wandering
black holes in L-Galaxies).

Dark Matter Halo We select a classical NFW profile (Navarro et al., 1996) to describe
the distribution of dark matter. The gravitational potential is given by

ΦDM(𝑤) = −G𝑀vir

𝑤

ln(1 + 𝑐vir 𝑤/𝑅vir)
ln(1 + 𝑐vir) − 𝑐vir/(1 + 𝑐vir) , (6.5)

where we introduced the virial mass 𝑀vir and radius 𝑅vir, respectively. For the
concentration parameter, 𝑐vir, which relates the profile’s scale-radius to 𝑅vir, we assume
a relation from Dutton and Macció (2014) that connects it to 𝑀vir via

log10 𝑐vir = 𝛼(𝑧) + 𝛽(𝑧) × log10(𝑀vir / [1012 h−1 M⊙]) . (6.6)

The redshift-dependent coefficients 𝛼(𝑧) and 𝛽(𝑧) take values according to Table 3 of
Dutton and Macció (2014) with 𝛼(0) = 1.025 and 𝛽(0) = −0.097.

Galactic Bulge We model a galaxy’s bulge with a Jaffe (1983) profile of the form

ΦB(𝑤) = −G𝑀B

𝑤B
ln(1 + 𝑤B/𝑤) , (6.7)

with a scale-length 𝑤B that encloses half of the bulge’s mass 𝑀B.

Gaseous and Stellar Disks We follow the default assumption in L-Galaxies that
both the gaseous and stellar disks are well described by two-dimensional exponential
density profiles. The mid-plane gravitational potential of the two disks is expressed
with modified Bessel functions of the first and second kind, 𝐼𝜈 and 𝐾𝜈 , respectively
(e.g. Watson, 1944; Kuijken & Gilmore, 1989). The gravitational potential for disk 𝑖
reads

ΦD, 𝑖(𝑤) = −𝜋GΣD, 𝑖 𝑤 [𝐼0(𝑦𝑖)𝐾1(𝑦𝑖) − 𝐼1(𝑦𝑖)𝐾0(𝑦𝑖)] , (6.8)

where 𝑦𝑖 = 𝑤/(2 × 𝑤D, 𝑖), 𝑤D, 𝑖 a characteristic scale-length, and ΣD, 𝑖 as the central
surface mass density (Freeman, 1970; Binney & Tremaine, 2008).

Hot Gas and Stellar Haloes We assume that a galaxy’s halo contains both hot gas
that is unable to form stars and a stellar medium that originates entirely from stripped
satellite galaxies. For simplicity, we assume that an isothermal profile can describe
well both the gaseous and stellar halo, i.e.

ΦH, 𝑖(𝑤)∝ −G𝑀H, 𝑖

𝑅H, 𝑖

ln(𝑤) . (6.9)

Furthermore, we assume that all mass is enclosed within the virial radius such that
𝑅H, 𝑖 = 𝑅vir.1

1Yates et al. (2017, 2024) discuss and utilise more physically motivated profiles within L-Galaxies.
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6.2.3 Star Cluster Formation

The total mass of newly formed stars that are bound in star clusters equals the SFR
multiplied by the simulation time step and the cluster formation efficiency (Bastian,
2008). In principle, the latter must be computed considering local conditions of the
gas phase, mergers from substructures, and accretion of gas during cluster formation
(e.g. Karam & Sills, 2022, 2023) but this is not feasible with our approach.

Here, we follow the prescription outlined by Kruijssen (2012) to estimate the cluster
formation efficiency. The model relies on three quantities: (1) the cold gas surface mass
density Σg, which we compute as an annuli’s molecular mass divided by it’s area, (2)
the epicyclic frequency 𝜅, and (3) the Toomre disk stability parameter 𝑄. We compute
these values for the logarithmic mean galactocentric distance of each annuli 𝑗 , unless
stated otherwise, and assume that it is applicable to a wide range of environments and
redshifts.2 Furthermore, we assume that all star clusters form in galaxy disks, thus,
neglecting cluster formation during galaxy mergers or outside of dark matter halos at
high-𝑧 (Lake et al., 2021, 2023).

Epicyclic Frequency

Based on the combined gravitational potential of all previously introduced galaxy
components, Φtot(𝑤) = ∑𝑐Φ𝑐(𝑤), we can easily determine the epicyclic frequency
for circular orbits. For annulus 𝑗 and log-mean distance ⟨𝑤 𝑗⟩,

𝜅 𝑗 =
¿ÁÁÀ 3⟨𝑤 𝑗⟩ 𝜕Φtot

𝜕𝑤
∣
⟨𝑤 𝑗⟩

+ 𝜕2Φtot

𝜕𝑤2 ∣
⟨𝑤 𝑗⟩

. (6.10)

Note that, when evaluating this property for galaxy disks, we assume co-rotation of the
gaseous and stellar disks resulting in only a single value of these quantities per annuli.

Toomre Stability Parameter

The Toomre stability criterion (Safronov, 1960; Toomre, 1964) evaluates whether a
disk is stable against collapse considering gravity, pressure, and shear. For the gaseous
and stellar disks we determine

𝑄g, 𝑗 = 𝜅 𝑗𝜎D, g, 𝑗

𝜋GΣg, 𝑗
, (6.11a)

𝑄D, 𝑗 = 𝜅 𝑗𝜎D, s, 𝑗

3.36GΣs, 𝑗
, (6.11b)

where 𝑄 > 1 for a stable disk. Here we introduced for the gaseous and stellar disks,
respectively, the surface densities (Σg /Σs) and the velocity dispersions (𝜎D, g /𝜎D, s).

2Using the same cluster formation efficiency calculations from Kruijssen (2012), Pfeffer et al. (2024a)
recently showed that the E-MOSAICS simulation can well reproduce observed properties of star
clusters at high-𝑧.
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We follow Bottema (1993) and van der Kruit and Freeman (2011) to calculate the
velocity dispersion of the stars3 as

𝜎D, s, 𝑗 = 𝑣𝑐, 𝑗2
exp( − ⟨𝑤 𝑗⟩

2𝑤D
), (6.12)

with circular velocity

𝑣𝑐, 𝑗 =
¿ÁÁÀ⟨𝑤 𝑗⟩𝜕Φtot

𝜕𝑤
∣
⟨𝑤 𝑗⟩

. (6.13)

We assume that the velocity dispersion of the cold gas equals the speed of sound of
the interstellar medium, which correlates with the star formation surface density, i.e.

𝑐s, cold, 𝑗 = 𝛼cold + 𝛽cold × ( ΣSFR, 𝑗[M⊙ kpc−2 yr−1])
𝛾cold

, (6.14)

with free parameters 𝛼cold, 𝛽cold, and 𝛾cold. This relationship shows significant scatter
in observations across various redshifts (see e.g. Lehnert et al., 2009; Genzel et al.,
2011; Green et al., 2014; Krumholz & Burkhart, 2016; Zhou et al., 2017; Krumholz
et al., 2018; Mai et al., 2024, and references therein). In our fiducial model we
assume the parameter values 𝛼cold = 5 km s−1, 𝛽cold = 20 km s−1, and 𝛾cold = 1/3, i.e.
a turbulence-dominated energy dissipation prescription for the cold gas (Zhou et al.,
2017). We explore the impact of different values in Section 6.5.1.

It is well known that the gaseous and stellar disks interact dynamically (e.g. Lin
& Shu, 1966; Bertin & Romeo, 1988) and that, for example, the stability of a stellar
disk may be impacted by even small amounts of gas. To retain the same guidelines for
the Toomre stability parameter in the prescription provided by Kruijssen (2012) we
follow the approach by Romeo and Wiegert (2011) and compute an “effective” Toomre
parameter as

𝑄−1
eff, 𝑗 = ⎧⎪⎪⎨⎪⎪⎩

𝜓𝑄, 𝑗𝑄
−1
s, 𝑗 +𝑄−1

g, 𝑗 if 𝑄s, 𝑗 ≥ 𝑄g, 𝑗 ,

𝑄−1
s, 𝑗 + 𝜓𝑄, 𝑗𝑄

−1
g, 𝑗 otherwise ,

(6.15)

with the weighting factor

𝜓𝑄, 𝑗 = 2
𝜎D, s, 𝑗 × 𝜎D, g, 𝑗

𝜎2
D, s, 𝑗 + 𝜎2

D, g, 𝑗
. (6.16)

We show in Figure 6.2 an overview of the cold gas surface mass density, the epicyclic
frequency, and the Toomre stability parameter for disk- and bulge-dominated galaxies
from running our model on tree-files of the Millennium simulation. For comparison,
we add the position of the solar neighbourhood.

The epicyclic frequency and cold gas surface density decrease at larger galactocentric
distances. The Toomre parameter shows a more complex behaviour, typically ranging
between one and ten, except for the largest distances, where it sharply increases for
most galaxies and the centre of ellipticals, where it increases as well. The latter effect is

3Here we completely neglect the increase in velocity dispersion as a function of stellar age caused by
interactions with giant molecular clouds or spiral waves, potentially resulting in a more stable disk.
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caused by the importance of the bulge component, which is weaker in spirals. At large
radii the disks of low-mass galaxies are barely populated with gas and stars, which
drive 𝑄eff to large values. For the same reason the Toomre parameter drops for more
massive galaxies, which is reflected by an increase in the disk’s scale-length. Overall
we find good agreement between our simulated galaxies and the solar neighbourhood.

Bound Fraction of Star Formation

The bound fraction of newly formed stars in star clusters is closely related to the
cluster formation efficiency (Bastian, 2008; Goddard et al., 2010; Adamo et al., 2011;
Silva-Villa & Larsen, 2011), which takes into account its survival rate during the first
few Myr. Although important in many aspects, it is unclear how the bound fraction and
cluster formation efficiency are related to the interstellar medium and star formation
(see Andersson et al., 2024, for a recent discussion on how feedback influences the
cluster formation efficiency).

As mentioned above, we follow the model outlined by Kruijssen (2012) to estimate
the bound fraction based on its epicyclic frequency, cold gas surface density, and
Toomre stability parameter, all equated at the log-mean galactocentric distance. We
briefly highlight key aspects of the model and refer the interested reader to the original
work for a more detailed description.

Note that we do not directly determine the bound fraction during the execution of
the simulation. Instead, to reduce the computational cost, we create lookup tables for a
set of {Σg, 𝑄eff , 𝜅}. In total, we utilise 18 lookup tables with varying values of 𝑄eff
(between 0.01 and 4.0) and 500 values of Σg and 𝜅 each, resulting in 4.5 × 106 data
points. The simulation then determines the closest match in all three parameters and
extract the bound fraction from the table.

Following an extensive literature (e.g. Padoan et al., 1997; Vázquez-Semadeni et al.,
1998; Ostriker et al., 2001; Kritsuk et al., 2007; Padoan & Nordlund, 2011; Kritsuk
et al., 2017; Burkhart, 2018) we assume that the density contrast of the interstellar
medium follows a log-normal distribution of the form

d𝑝 𝑗 = 1√
2𝜋𝜍𝜌, 𝑗

exp [ − ( ln 𝛿 𝑗 − ln 𝛿 𝑗√
2𝜍𝜌, 𝑗

)2]d(ln 𝛿 𝑗) , (6.17)

with relative density 𝛿 𝑗 = 𝜌/𝜌ISM, 𝑗 , ln 𝛿 𝑗 = −0.5 𝜍2
𝜌, 𝑗 (e.g. Vazquez-Semadeni, 1994),

and standard deviation

𝜍𝜌, 𝑗 =√ln(1 + 3𝛾2
𝜌M2

cold, 𝑗) , (6.18)

where 𝛾𝜌 ≈ 0.5 (Nordlund & Padoan, 1999; Padoan & Nordlund, 2002). We determine
the density of the interstellar medium as

𝜌ISM, 𝑗 = 𝜙P

2𝜋G
( 𝜅 𝑗

𝑄eff, 𝑗
)2

, (6.19)

with 𝜙P = 3 (see Appendix A of Krumholz & McKee, 2005). The Mach number of
the cold gas is related to the cold gas surface density, the epicyclic frequency, and the
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Toomre stability parameter via

Mcold, 𝑗 =√2𝜙1/8
P, 𝑗

𝑄eff, 𝑗Σg, 𝑗

𝜅 𝑗
, (6.20)

where 𝜙P, 𝑗 is the ratio of the mean pressure of a gaseous cloud related to the pressure
at its surface (Krumholz & McKee, 2005) with typical values close to two in dense
regions (Heyer et al., 2004; Rosolowsky & Blitz, 2005; Schuster et al., 2007; Colombo
et al., 2014). Notice that the parameter 𝜙P, 𝑗 is directly related to the fraction of cold
gas contained in giant molecular clouds (GMCs) as 𝜙P, 𝑗 ≈ 10−8× 𝑓GMC, 𝑗 . We assume
that this fraction only depends on the cold gas surface density (Krumholz & McKee,
2005), i.e.

𝑓GMC, 𝑗 = [1 + 250/(Σg, 𝑗/[M⊙ pc−2])2]−1
. (6.21)

Next, we need to evaluate the minimum-value star formation efficiency. If star
formation occurs on the free-fall time scale, this efficiency can be expressed as a
combination of the specific SFR, sSFRff , and the ratio of the feedback time scale, 𝑡fb,
to the free-fall time scale, 𝑡ff , i.e.

𝜖ff, 𝑗 = sSFRff, 𝑗 × 𝑡fb, 𝑗 / 𝑡ff, 𝑗 . (6.22)

For a spherical symmetric and homogeneous mass distribution,

𝑡ff, 𝑗 =
¿ÁÁÀ 3𝜋

32G 𝜌ISM, 𝑗

. (6.23)

For the feedback time scale (Kruijssen, 2012),

𝑡fb, 𝑗 = 𝑡SN

2

⎡⎢⎢⎢⎢⎣1 +
¿ÁÁÁÀ1 + 4𝜋2G2 𝑡ff, 𝑗

𝜙fb sSFRff, 𝑗 𝑡
2
SN
× (𝑄eff, 𝑗 Σg, 𝑗

𝜅 𝑗
)2⎤⎥⎥⎥⎥⎦ , (6.24)

where 𝑡SN is the time scale for the first supernovae, which we assume to be 3 Myr,
𝜙fb = 5.28 × 102 pc2 Myr−3 (Kruijssen, 2012), and

sSFRff, 𝑗

0.13
= 1 + erf

⎡⎢⎢⎢⎢⎣
𝜍2
𝜌, 𝑗 − ln (0.68𝛼2

virM4
cold, 𝑗)

23/2𝜍𝜌, 𝑗

⎤⎥⎥⎥⎥⎦ , (6.25)

with the virial parameter of GMCs 𝛼vir (Larson, 1981). It relates the mass, size, and
velocity dispersion of a GMC and takes values between 10−1 and 101 (e.g. Myers &
Goodman, 1988; Bertoldi & McKee, 1992; Heyer et al., 2009; Dobbs et al., 2011;
Hopkins et al., 2012). We set 𝛼vir = 1.3 as proposed by McKee and Tan (2003).

In case star formation is less efficient than is assumed in Equation 6.22 we take
𝜖inc, 𝑗 = 𝜖ff, 𝑗 × 𝑡ff, 𝑗/10 Myr. If star formation is more efficient we set an upper bound
of 𝜖inc, 𝑗 = 𝜖max = 0.5 (Matzner & McKee, 2000). The resulting effective star formation
efficiency is the minimum of the above values,

𝜖 𝑗 = min(𝜖ff, 𝑗 , 𝜖inc, 𝑗 , 𝜖max) . (6.26)
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Figure 6.3. Bound fraction of star forma-
tion, evaluated for𝑄eff = 0.5, as a function
of epicyclic frequency and cold gas sur-
face density. Blue solid and dashed black
contours give the smoothed distribution
(with standard deviation of 1 dex) of all
annuli of all galaxies with 𝑄eff < 2 after
running L-Galaxies tree-files 0-9 and 40-
79 on the Millennium and Millennium-II
simulations, respectively. Contour lines
are smoothed with a Gaussian kernel with
standard deviation of 0.5 dex. The lo-
cation of the solar neighbourhood (see
Figure 6.2 for details) is marked with a
white cross.

Finally, the bound fraction of star formation can be computed by the normalised integral
of the probability density function of contrast of the interstellar medium combined
with the minimum star formation efficiency,

𝑓bound, 𝑗 = 𝜖−1
max
∫ ∞−∞ d𝛿 𝑗 𝜖2

𝑗 (𝛿 𝑗) 𝛿 𝑗(d𝑝 𝑗/d𝛿 𝑗)
∫ ∞−∞ d𝛿 𝑗 𝜖 𝑗(𝛿 𝑗) 𝛿 𝑗(d𝑝 𝑗/d𝛿 𝑗) . (6.27)

Figure 6.3 shows the bound fraction for different environments with 𝑄eff = 0.5
for the background. The 𝑧 = 0 distributions of annuli from running L-Galaxies on
halos identified in the Millennium and Millennium-II simulations that satisfy 𝑄eff < 2
are added on top and reveals a large range bound star formation that depends on the
location within the galaxy: the innermost regions feature high surface densities and
epicyclic frequencies (c.f. Figure 6.2) and have high bound fractions approaching one.
In contrast, the outermost regions of galaxies have low surface densities and epicyclic
frequencies, prohibiting the formation of bound structures. As a consequence, this
result already predicts that massive star clusters at distances a few times the disk’s
scale-length likely originate from accreted satellite galaxies, assuming that heating
processes within their host galaxy are insignificant.

While not shown in Figure 6.3, we find a decrease in bound fraction for an increasing
Toomre stability parameter value when keeping the epicyclic frequency and cold gas
surface density constant. This is related to the specific SFR, sSFRff , which decreases
for an increasing Toomre parameter as per Equations 6.20 and 6.25, and because the gas
disk becomes more stable with an increase in 𝑄eff . As a result the mid-plane density of
the interstellar medium decreases, which, in turn, decreases the star formation efficiency
and, thus, the bound fraction.

6.2.4 Initial Star Cluster Properties

Here we detail the initial properties of star clusters that form in galaxy disks. Note that
we deliberately exclude star clusters that form in the innermost ring with a radius of
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approximately 30 pc. These star clusters will either be disrupted quickly or merge to
form a nuclear star cluster, which will be the subject of future work.

Another computational limit is the number of star clusters whose properties will
be tracked over time. In this work, we focus on the most massive star clusters that
survive until 𝑧 = 0 and decide to completely ignore star clusters below 103 M⊙ (see
below). In the simulation we track the properties of the 1000 most massive star clusters
in the disk and halo, respectively, resulting in up to 2000 objects per galaxy. Although
somewhat arbitrary, these numbers compare to the total number of star clusters of M 31
(potentially more than 1000; e.g. Barmby & Huchra, 2001; Huxor et al., 2014) and
is much larger than the number of known globular clusters for the Milky Way (about
200; see e.g. Minniti et al., 2017; Garro et al., 2024, and references therein). In case a
galaxy forms less than 1000 massive star clusters above throughout its life time, all
other masses are ignored and not considered in the below analysis.

Stellar Mass

The mass of each star cluster is a random realisation of the underlying cluster initial
mass function (CIMF), which we assume to follow a classical power-law function that
is truncated at the upper mass end with an environmentally-dependent mass-scale, i.e.

𝜉 𝑗(𝑚c)∝ 𝑚𝛼CIMF
c × exp(−𝑚c /𝑚cl, max, 𝑗) . (6.28)

We assume here that 𝛼CIMF = −2, motivated by observational studies of young star
clusters in nearby galaxies (e.g. Zhang & Fall, 1999; Bik et al., 2003; Hunter et al.,
2003; McCrady & Graham, 2007; Portegies Zwart et al., 2010; Emig et al., 2020; Levy
et al., 2024). The truncation mass-scale is a product of the star formation efficiency
(𝜖cloud), the bound fraction of star formation ( 𝑓bound), the Toomre mass (𝑚T), and
the fraction of molecular gas that is critical to undergo gravitational collapse ( 𝑓coll;
Kruijssen, 2014; Reina-Campos & Kruijssen, 2017; Reina-Campos et al., 2022a), i.e.

𝑚cl, max, 𝑗 = 𝜖cloud × 𝑓bound, 𝑗 ×𝑚T, 𝑗 × 𝑓coll, 𝑗 , (6.29)

resulting in a typical value of the order of 105 M⊙ at lower redshifts and up to 109 M⊙
in extreme cases. We assume

𝑚T, 𝑗 = 4𝜋5G2 × Σ3
D, g, 𝑗 ×𝑄4

eff, 𝑗/𝜅4
𝑗 , (6.30)

and
𝑓coll, 𝑗 = min(1, 𝑡fb, 𝑗 / 𝑡ff, 2D, 𝑗)4 , (6.31)

for the Toomre mass and collapse fraction, respectively. The two-dimensional free-fall
time scale is 𝑡ff, 2D, 𝑗 =√2𝜋/𝜅 𝑗 .

In the above equations we assume a constant value of 𝜖cloud = 0.1 for star formation
within a GMC, motivated by numerical results (e.g. Oklopčić et al., 2017; Chevance
et al., 2020). Notice that this value is potentially smaller than the assumed star
formation efficiency in the determination of the bound fraction in Equation 6.26. A
higher efficiency would results in a higher upper truncation mass-scale of the CIMF
and could result in the formation of more massive star clusters. However, as we show in
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Section 6.5.3 the main results of our work do not significantly change when assuming
no upper truncation mass-scale but a pure power-law function instead.

For computational efficiency of the code, we consider only star clusters with
initial masses in the range of 104 to 108 M⊙. At the same time, we assume that the
minimum star cluster mass that could, in principle, form is 102 M⊙, meaning that we
do not fully sample the CIMF. Therefore, we only sample a total star cluster mass of
𝑓sample × 𝑓bound × SFR × 𝛿𝑡 where

𝑓sample = ∫
108 M⊙

104 M⊙
𝑚c 𝜉(𝑚c)d𝑚c

∫ 108 M⊙
102 M⊙

𝑚c 𝜉(𝑚c)d𝑚c
. (6.32)

In the case of a power-law CIMF with index −2 this ratio is two-thirds, i.e. one-
third of the total mass in star clusters is contained in objects below 104 M⊙. For
the more complex case of Equation 6.28, we pre-compute the integral numerically
for seven equally-spaced values between 103 and 109 M⊙, resulting in, for example,
𝑓sample ≈ 2.3 × 10−6 for 𝑚cl, max = 103 M⊙. Afterwards, we randomly sample the CIMF
with 𝑚cl, max that agrees best with the computed value of Equation 6.29.

Finally, to reduce computational cost we utilise lookup tables for initial star cluster
masses. For simplicity, we generated seven lookup tables for different values of
𝑚cl, max, equally spaced between 103 and 109 M⊙, with 105 data points each. Randomly
sampling data points from the lookup tables turned out to be computationally more
efficient than direct random sampling from the cluster initial mass functions as many
of the drawn star cluster masses are too low to be stored in arrays.

Initial Galactocentric Distances

For each annulus we assume that the galactocentric distribution of initial values is
uniform and independent of other star cluster parameters.

Half-Mass Radius

The physical processes that govern the distribution of the initial half-mass radius of star
clusters is still unknown, and many theoretically motivated and observational-based
prescriptions seem to fail to reproduce the distribution at 𝑧 = 0 in nearby galaxies (e.g.
Reina-Campos et al., 2023a). For that reason we adopt a simplified prescription by
using a constant initial value of 𝑟c, h = 1.0 pc for all clusters, independent of mass and
redshift of formation. We explore more complex prescriptions in Section 6.5.2.

Tidal Radius

The half-mass sizes of star clusters increase over time (c.f. Section 6.2.5) and are
limited to the tidal radius where the gravitational acceleration of the cluster equals the
tidal acceleration. The tidal field is directly related to the local gravitational potential
and the tidal radius is related to the first eigenvector of the diagonalised tidal tensor.
Assuming circular orbits and a mass concentration in the galaxy centre we apply the
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definition of King (1962), Renaud et al. (2011), and Renaud (2018) and calculate

𝑟c, 𝑡 = [ G𝑚c(Ω2 − 𝜕2Φtot/𝜕𝑤2)𝑤c

]1/3 , (6.33)

where Ω equals the angular frequency equated at the galactocentric distance of the star
cluster. More generally, for each ring 𝑗 ,

Ω 𝑗 =
¿ÁÁÀ 1⟨𝑤 𝑗⟩ 𝜕Φtot

𝜕𝑤
∣
⟨𝑤 𝑗⟩

. (6.34)

Note that this prescription ignores the tidal effect of nearby baryonic over-densities,
such as star forming regions or clouds, which may be dominant over the global galactic
field. Other works that use hydrodynamical approaches (such as Reina-Campos et al.,
2022a) determine a local tidal tensor from neighbouring cells, which is not possible in
our model. We discuss this issue in Section 6.3.5.

Metallicity

For the metallicity (and individual elemental abundances of H, He, C, N, O, Ne, Mg,
Si, S, Ca, Fe) of a star cluster we assume that it equals the metallicity of the cold gas in
the ring it forms in, 𝑍c = 𝑍g, and that this value remains constant over the star cluster’s
lifetime. The first assumption neglects any azimuthal variations of metallicity profiles
which are known to exist in some galaxies due to asymmetric structures such as bars
or spiral patters in the Milky Way (e.g. Poggio et al., 2022; Spina et al., 2022; Filion
et al., 2023; Hawkins, 2023; Hackshaw et al., 2024) and other spiral galaxies (e.g.
Sánchez-Menguiano et al., 2016; Ho et al., 2017; Sánchez-Menguiano et al., 2018;
Ho et al., 2019; Hwang et al., 2019; Metha et al., 2021, 2024) but see Kreckel et al.
(2019) for counterexamples. Nevertheless, despite lacking such an implementation we
argue in Section 6.3.4 that the metallicity distributions of our cluster populations are
reasonable.

6.2.5 Star Cluster Evolution

We detail in the next subsections the main processes that affect the evolution of star
clusters: mass loss rates, expansion of the half-mass radius, and re-location.

Mass-Loss

We consider three mechanisms for cluster mass-loss: stellar evolution, tidal stripping
due to an expanding cluster, and tidal shocks from interactions with GMCs, i.e.

d𝑚c

d𝑡
= d𝑚c

d𝑡
∣
ev
+ d𝑚c

d𝑡
∣
rlx
+ d𝑚c

d𝑡
∣
sh
. (6.35)
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Stellar Evolution To take into account cluster mass-loss from stellar evolution
we assume that cluster members represent a random realisation of a single stellar
population assuming a Chabrier IMF (Chabrier, 2003), resulting in varying expected
lifetimes. Then, for an individual 105 M⊙ star cluster we utilise the “Stochastically
Lighting Up Galaxies” library (da Silva et al., 2012, 2014; Krumholz et al., 2015) with
non-rotating “Geneva” 2013 stellar tracks (Schaller et al., 1992; Meynet et al., 1994;
Ekström et al., 2012; Georgy et al., 2013) and fit a linear relationship to the retained
mass as a function of time. The resulting mass-loss rate at time 𝑡 in [yr] is

d𝑚c

d𝑡
∣
ev
= − 0.13

ln(10) 𝑚
init
c
𝑡
, for 𝑡 ≥ 𝑡SN . (6.36)

We find that this relation holds, to first order, irrespective of cluster metallicity. Note
that the above determination does not take into account other mass-loss channels that
we introduce below, which is why we update the “initial” star cluster mass, denoted
here with 𝑚init

c , at each time-step.

Relaxation Multi-body encounters between stars within a cluster result in energy
transfer between the individual bodies and can cause stars to either orbit the star cluster’s
centre at larger radii or leave the cluster completely in case its velocity exceeds the
escape velocity. For bound stars, if the new orbit crosses the tidal radius, the star can
be stripped from the cluster, resulting in an effective mass loss.

We consider this effect by following an extensive literature (e.g. Spitzer, 1940;
Hénon, 1961; Spitzer, 1987; Lamers et al., 2005) and set

d𝑚c

d𝑡
∣
rlx
= −𝜉rlx

𝑚c

𝜏rlx
, (6.37)

with a relaxation time scale

𝜏rlx = 0.138
√
𝑁

ln(𝛾rlx𝑁)
¿ÁÁÀ 𝑟3

c, ℎ

G ⟨𝑚⋆⟩ . (6.38)

Here ⟨𝑚⋆⟩ is the average stellar mass of the star cluster, 𝑁 = 𝑚c / ⟨𝑚⋆⟩, and 0.07 ≲
𝛾rlx ≲ 0.14 (Giersz & Heggie, 1994). We assume a Chabrier (2003) initial stellar mass
function, such that ⟨𝑚⋆⟩ = 0.42 M⊙ and 𝛾rlx = 0.11. Finally, we choose 𝜉rlx = 0.08 as
suggested in the literature (e.g. Hénon, 1961; Gieles et al., 2011; Gieles & Renaud,
2016) for equal-mass cluster members, avoiding a proper treatment of the star cluster’s
direct tidal environment (Alexander & Gieles, 2012).

Tidal Shocks When a star cluster is located within the thin disk, i.e. has not been
accreted during a galaxy merger event, it frequently interacts with GMCs if the fraction
of cold gas bound within clouds is high. Depending on the impact parameter between
the interaction the GMC can inject a significant amount of energy into the star cluster
resulting in an increase in velocity dispersion and causing a fraction of the stars to
escape the cluster as their velocity exceeds the cluster’s escape velocity.
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To model this effect we approximate a cluster’s internal energy by assuming that
it follows a Plummer-like density profile (Plummer, 1911). Following the equations
outlined in Kruijssen (2012) we set

d𝑚c

d𝑡
∣
sh
= −𝑚c

𝜏sh
, (6.39)

with

𝜏sh = 3
√
𝜋

2
√

22/3 − 1
G

𝑔𝜙sh𝜙ad𝜙P 𝑓sh
× ⎡⎢⎢⎢⎢⎣

𝑄eff, 𝑗

𝜅 𝑗 𝑓
1/3
GMC

⎤⎥⎥⎥⎥⎦
3

𝑤c

𝑚c

𝑟3
c, ℎ

, (6.40)

with 𝑔 = 1.5, 𝜙sh = 2.8, 𝑓sh = 3 and 𝜙ad = exp(−0.062). We use Equation 6.21 to
equate 𝑓GMC for the annuli corresponding to the star cluster’s current galactocentric
distance.

Note that, as mentioned above, only star clusters in galaxy disks are affected by
tidal shocks due to encounters with GMCs, i.e. we set d𝑚c/d𝑡∣sh = 0 for star clusters
in a galaxy’s halo. Our implementation also does not couple the time scale of tidal
shocks to the strength of the local tidal field tensor (see e.g. Alexander et al., 2014;
Reina-Campos et al., 2022a, for details) because we do not attempt to model GMCs.
However, because L-Galaxies already separates the atomic from the molecular gas in
each annulus (see Henriques et al., 2020; Yates et al., 2021, 2024) future efforts may
implement clouds and improve on the current prescription.

Radial Expansion

Star clusters expand adiabatically due to contributions from mass-loss from two-body
interactions and tidal shocks (e.g. Reina-Campos et al., 2022a). This results in a radial
expansion of the form

d𝑟c, ℎ

d𝑡
= ⎡⎢⎢⎢⎢⎣(2 − 𝑓

−1
sh )d𝑚c

d𝑡
∣
sh
+ (2 + 𝜁𝜉−1

rlx)d𝑚c

d𝑡
∣
rlx

⎤⎥⎥⎥⎥⎦
𝑟c, ℎ

𝑚c
, (6.41)

Following Gieles and Renaud (2016) we assume that 𝑓sh = 3 and following Gieles et al.
(2011),

𝜁𝜉−1
rlx = 5

3

⎡⎢⎢⎢⎢⎣(
𝑟c, ℎ

𝑟c, 𝑗
)

1

𝑟c, 𝑗

𝑟c, ℎ

⎤⎥⎥⎥⎥⎦
3/2

≈ 0.092( 𝑟c, 𝑡

𝑟c, ℎ
)3/2

, (6.42)

where we assumed in the approximation that the Jacobi radius equals the tidal radius
and that (𝑟c, ℎ/𝑟c, 𝑗)1 ≈ 0.145 (Hénon, 1961).

Note that we neglect here any impact of stellar-mass black holes on the evolution
of the cluster, which contributes and may even dominate the dissolution of some star
clusters, depending on, among others, mass and metallicity (e.g. Giersz et al., 2019;
Gieles et al., 2021; Rostami-Shirazi et al., 2024). We discuss this issue again in
Section 6.3.5.
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Galactocentric Migration

Without any external perturbations star clusters in a galaxy’s disk and halo migrate
towards the inner regions through dynamical friction caused by interactions with
constituents of three components: (1) field stars belonging to the stellar halo and bulge,
(2) the gaseous halo, and (3) the dark matter halo. For the stellar and dark matter
components, we follow the well-known Chandrasekhar (1943) prescription and assume
an isotropic velocity distribution function of the components as well as circular orbits
of the star clusters. As a consequence, a star cluster experiences a radial acceleration of

d𝑣c

d𝑡
= −4𝜋G2𝑚c𝜌f

𝑣2
c

lnΛ[ erf(𝑋) − 2𝑋√
𝜋

exp ( − 𝑋2)] , (6.43)

where 𝑋 = 𝑣c / (2𝜎f) and 𝜌f is the density of dark matter and stars in the halo evaluated
at the position of the star cluster. The circular velocity of each object is computed via
Equation 6.13. For the Coulomb logarithm, we follow Binney and Tremaine (2008)
and assume

lnΛ = ln [ 𝑤c

max(𝑟c, ℎ ,G𝑚c / 𝑣2
typ)] , (6.44)

where we replaced the maximum impact parameter with the galactocentric distance of the
star clusters and assume for the typical velocity of the stellar disk 𝑣typ =√G𝑀D, s/𝑅D, s.
For the velocity dispersion of halo stars we assume that their orbits are dominated
by the underlying dark matter profile. Based on the Jeans equation for an isotropic
system Zentner and Bullock (2003) give the following approximation for the velocity
dispersion,

𝜎H, s = 𝑣max × 1.4393 𝑥0.354
c

1 + 1.1756 𝑥0.725
c

, (6.45)

with maximum circular velocity within the dark matter halo that we introduced in
Equation 6.3 and 𝑥c = 𝑤c/𝑅vir.

The radial acceleration caused by the hot gaseous component is slightly different
compared to Equation 6.43. Following Ostriker (1999) and Escala et al. (2004) we take

d𝑣c

d𝑡
= −4𝜋G2𝑚c𝜌H

𝑣2
c

𝑔(Mhot) , (6.46)

where 𝜌H is the density of the gaseous halo evaluated at the star clusters position and

𝑔(Mhot) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lnΩ × 𝑘(Mhot) ifMhot < 0.8 ,
3 lnΩ × 𝑘(Mhot) if 0.8 ≤Mhot ≤ 1.5 ,
ln(1 −M−2

hot) + 2 lnΛ otherwise .
(6.47)

Here Ω is the angular frequency, as introduced in Equation 6.34, evaluated at the
position of the star cluster and lnΛ the Coulomb logarithm from Equation 6.44. Finally,

𝑘(Mhot) = erf (Mhot

2
) −
√

2
𝜋
Mhot exp( −M2

hot
2
) . (6.48)
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We calculate the Mach number of a cluster within the hot gas halo asMhot = 𝑣c / 𝑐s, hot
where (Tanaka & Haiman, 2009; Choksi et al., 2017)

𝑐s, hot[km s−1] = 1.8
√

1 + 𝑧 ( 𝑀vir

107 M⊙
)1/3(ΩM, 0 h2

0.14
)1/6

. (6.49)

Re-Distribution During Galaxy Mergers

Explanations for the observed presence of star clusters in galaxy halos generally favour
(a) interactions with massive perturbers (such as other star clusters or GMCs) that heat
the object from its birth-place in a disk, (b) star cluster formation in galaxy outskirts
during tidal interactions, or (c) a direct re-distribution during galaxy mergers. The
lower tidal field and absence of tidal shocks may be an important ingredient in cluster
survival as indicated by Baumgardt and Hilker (2018) who find that the Milky Way’s
halo hosts all Galactic star clusters older than approximately five Gyr. Therefore,
re-positioning of star clusters is an essential physical ingredient in simulating star
cluster properties.

We consider two different scenarios based on the ratio of the baryonic masses of
the two galaxies. Here we follow the prescription by L-Galaxies and assume that a
major merger occurs if the mass ratio exceeds 0.1. In this case, we assume that the
disks of both galaxies are destroyed and that all star clusters from both galaxies are
contained within the halo of the successor galaxy. For minor galaxy mergers where the
mass ratio is smaller than 0.1 we assume that the star cluster population of the more
massive galaxy remains unaffected and that all accreted star clusters migrate into the
halo of their new host.

Note that we assume here that all star clusters survive the tidal shock experienced
during galaxy mergers, i.e. resulting in a “survival fraction” of unity (see Kruijssen &
Cooper, 2012; De Lucia et al., 2024, for a different approach). Furthermore, we do not
add another mass-loss term for this scenario.

Generally speaking, the resulting baryonic distribution after galaxy mergers is
sensitive to the initial conditions such as the galaxy mass ratio and their respective
positions, orientations, and velocity vectors and magnitudes to each other. Therefore,
when re-distributing star clusters from their old galactocentric distance, 𝑤old

c , to the
new galactocentric distance, 𝑤new

c , we assume the following simple relationship,

𝑤new
c = 𝐷1↔2 × ( 𝑤old

c
𝐷max

)𝛼𝑤 × exp( − 𝑤old
c

𝐷max
) . (6.50)

Here we introduced two distance measures and a free parameter 𝛼𝑤 that we set to four.
The first distance measure, 𝐷1↔2, equals the three-dimensional separation between the
two galaxy centres once the lower mass galaxy loses its dark matter halo. The other
distance measure, 𝐷max, equals either the largest galactocentric distance of the star
cluster population or three times the stellar disk’s scale length, i.e.

𝐷max =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
𝑖∈𝑁c
(𝑤old

c, 𝑖) if max
𝑖∈𝑁c
(𝑤old

c, 𝑖) ≥ 3𝑅D, s ,

3𝑅D, s otherwise .
(6.51)

121



6.3 Results

In this work we focus on basic properties of the star cluster populations at 𝑧 = 0. In the
following sections, we refer to a star cluster as young (old) if its age is 𝜏c < 0.3 Gyr
(𝜏c ≥ 8 Gyr). Disk-dominated (“spiral”4) galaxies are assumed to be the ones with a
bulge-to-total stellar mass ratio of 𝐵/𝑇 < 0.2 whereas bulge-dominated (“elliptical”)
systems have 𝐵/𝑇 ≥ 0.9.

We focus our analysis on the output of running the model on Millennium (Springel
et al., 2005) tree-files 0-9 (out of 512 total) that contain 118 558 galaxies at 𝑧 = 0
and provide us with a representative sub-sample. The model performs similarly
when running on Millennium-II (Boylan-Kolchin et al., 2009) tree-files 40-79 (a
representative sub-sample; out of 512), going down to lower galaxy stellar masses, and
we will detail a brief comparison in each subsection in case of differences.

6.3.1 𝑀𝑉 -SFR Relationship

A first test for our model is to reproduce the empirical relationship between the absolute
𝑉-band magnitude of the brightest young star cluster (local quantity within a galaxy)
versus the host galaxy’s SFR (global quantity) within disk-dominated galaxies (e.g.
Larsen, 2002; Bastian, 2008; Larsen, 2010). Since this relation is not used as input for
the simulation it serves as both a check of the models capabilities and a test to explore
secondary correlations with other third quantities.

For the simulated data, as we store star cluster masses, we need to convert to the
Johnson-Cousins 𝑉-band. We perform the conversion by using the Python version
(Johnson et al., 2023) of the “Flexible Stellar Population Synthesis” code (Conroy
et al., 2009; Conroy & Gunn, 2010, October a, 2010b; Conroy et al., 2010) that uses as
input the metallicity and age of a stellar population and yields an absolute magnitude
in selected filterbands. Furthermore, for the computation, we assume that all star
clusters are composed of a single stellar population that follows a Chabrier (2003)
stellar initial mass function. To compare to observations we compile the data from
Johnson et al. (2000), Larsen (2002), Rafelski and Zaritsky (2005), Bastian (2008),
Annibali et al. (2009), Goddard et al. (2010), Adamo et al. (2011), Annibali et al.
(2011), Pasquali et al. (2011), Silva-Villa and Larsen (2011), Cook et al. (2012), Ryon
et al. (2014), Whitmore et al. (2014), Adamo et al. (2015), Lim and Lee (2015), and
Cook et al. (2023). Additionally, we use data from Maschmann et al. (2024) and Thilker
et al. (2025, accepted), representing the results for PHANGS galaxies (see Lee et al.,
2022, 2023, for details). For that data set specifically, we use stellar mass estimates
from Emsellem et al. (2022) and SFR estimates from Sun et al. (2022). Otherwise,
galaxy stellar masses are taken from the 50 Mpc catalogue provided by Ohlson et al.
(2023).

We show the resulting parameter space for young massive star clusters in disk-
dominated galaxies in Figure 6.4. Our results show an increasing star cluster mass with
increasing SFR, in qualitative agreement with the observations, although with a slightly
steeper slope. To quantify the level of (dis-)agreement we perform a linear fit to the data

4L-Galaxies does not model any spiral-wave patterns in galaxies, which is why we prefer the term
“disk-dominated” over “spiral”
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sample and obtain uncertainties through a 10 000 Monte Carlo iterations. The resulting
slope values are 𝛼sim = −2.607+0.009

−0.009 for the simulated data and 𝛼obs = −2.02+0.09
−0.09 for

the observations. This difference becomes smaller when constraining star clusters
to younger ages (e.g. 𝛼sim ≈ −2.457 for 𝜏c ≤ 50 Myr). Nevertheless, most of our
star clusters are located in galaxies with SFRs of the order of 10−1 M⊙ yr−1 and have
absolute 𝑉-band magnitudes of 𝑀𝑉 ≈ −11, which is in excellent agreement with
observations.

When running the model on Millennium-II data we find a better agreement for the
lowest-mass (but still the most massive and young) star clusters towards lower galaxy
SFRs, which is because of the higher mass resolution offered by the simulation. We
observe that the slope values of the relationship changes: applying the same galaxy
mass cut of 109.5 M⊙ results in a slope of 𝛼sim, mrii = −2.02+0.09

−0.09, which is basically
identical to the results of the observational data.

We identify a secondary dependence on galaxy stellar mass in panel (B) where the
slope of the relationship is steeper for massive galaxies: when constraining the galaxy
sample to stellar masses above 1010 M⊙ the slope value decreases to 𝛼sim ≈ −3.64.5
This trend is mainly related to the the upper truncation mass-scale for the CIMF, which
decreases due to a decreasing Toomre mass and bound fraction. Galaxies with stellar
masses below 109.5 M⊙ have comparable 𝑄D, g values to more massive galaxies but
their 𝑄D, s values are larger because of their disk mass is dominated by gas and not
stars and 𝑄D, 𝑖 ∝ Σ−1

D, 𝑖 . As a consequence, the slope value of these low-mass galaxies
is 𝛼sim ≈ −2.63.

For the cluster formation efficiency, which equals the bound fraction introduced
in Equation 6.27 and the survival rate of star clusters during the initial few Myr (see
Kruijssen, 2012; Kruijssen & Cooper, 2012, for details on this “cruel cradle effect”),
we find an increase with SFR (panel C). This is expected given the direct relationship
between the SFR surface density and cold gas surface density (c.f. Equation 6.2) and
because 𝑓bound positively correlates with Σg (c.f. Figure 6.3). Our results are in excellent
agreement with literature data.

We conclude that this relationship is sensitive to the resolution of the simulation
and that taking into account biases in the mass range of the selected galaxy samples is
important.

6.3.2 Half-Mass Radius and Stellar Mass

We show in Figure 6.5 the one-dimensional histograms of star cluster masses and
half-mass radii. Here we do not distinguish between galaxy morphologies because
of the similar prescriptions of star cluster formation. L-Galaxies assumes that star
formation only occurs in galaxy disks and ellipticals will exhibit similar disk properties
to disk-dominated galaxies in case cold gas is accreted (see Henriques et al., 2015,
2020, for details). Therefore, given the similar disk properties the upper truncation

5Note that the secondary dependence on galaxy mass is also present in the E-MOSAICS model (Figure 10
in Pfeffer et al., 2019b), however, they only include 153 galaxies and have an additionaly 𝑦-axis offset
of 0.5 to 1 dex.
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mass of the CIMF and most star cluster properties remain comparable.6

For young star clusters we find an approximate power-law distribution of star cluster
masses down to about 104 M⊙ that equals the lowest possible mass value randomly
sampled from the CIMF (see Section 6.2.4 for details). The distribution of simulated
star clusters agree well to observational results of Brown and Gnedin (2021) who
analysed the structural properties of young star clusters in a set of nearby galaxies
from the LEGUS programme (Calzetti et al., 2015).7 The only apparent difference
exists at the high-mass end where there is a lack of massive star clusters in nearby
disk-dominated galaxies, which may be both a result of simple number statistics, as
massive and young star clusters above 106 M⊙ are rare in our simulated data as well
(≈ 0.5 %), and because our data includes galaxies with high SFRs (≳ 10 M⊙ yr−1 in
some of the most massive disk-dominated systems), resulting in higher probability to
form massive star clusters.

For old star clusters we find a broad distribution of masses. The shape of the
distribution is partly related to the origin of the objects: clusters that were never
displaced from a galaxy’s disk lost a significant amount of mass and populate the
low-mass end. In contrast, accreted clusters in a galaxy halo lose mass at lower rates
and, thus, retain a larger fraction of their birth mass over time resulting in the broad
distribution and “peak”-like structures at mass values of 105 to 106 M⊙. We presume
that clusters with masses lower than 103 M⊙ quickly dissolve and do not track their
evolution, hence the sharp truncation at this mass value.

We find some slight differences based on the host galaxies morphology. The peak of
the distribution at masses of approximately 105 M⊙ differs by a factor of a few between
disk-dominated galaxies (peak at higher-masses) and ellipticals. This difference is
related to a more diverse accretion history of ellipticals resulting in a superposition
of various cluster populations. Disk-dominated galaxies feature a higher fraction of
massive star clusters (𝑚c ≳ 106 M⊙), which is due to their elevated star formation.

The distribution of half-mass radii for young star clusters is confined to small radii
ranging between 1 and 5 pc. The lower bound is due to the constant half-mass radius
chosen in our model, thus, the range of half-mass radii displays the environmental
effect on the star clusters within the first few hundred Myr.

Our simulation fails to account for the most extended young star clusters in the
sample of Brown and Gnedin (2021) that extend to ≈ 25 pc. At the same time, their
data include a large fraction of star clusters ranging from ≈ 0.1 to a peak value of≈ 2 pc, where the distribution of the simulated clusters peaks as well. If the data
by Brown and Gnedin (2021) present a representative distribution of half-mass radii
shortly after cluster birth then they indicate that the radii are potentially constrained
by the clusters environment and may evolve quickly (see e.g. Banerjee & Kroupa,
2017, for 𝑁-body simulations). Evidence for the latter comes from hydrodynamical
simulations of Lahén et al. (2024b) that show a rapid half-mass radius evolution from≈ 0.1 pc to ≈ 1 pc over 100 Myr. We explore different prescriptions for initial half-mass

6There still remains some difference in the metallicities of newly formed star clusters between galaxies
of different morphology, as we show in Section 6.3.4.

7For the comparison we applied the same age cut to the observational sample. Star cluster ages come
from fitting the spectral energy distribution; see details in Adamo et al. (2017) and Ryon et al. (2017).
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1Figure 6.5. Left column: Mass distribution of star clusters in all galaxies (orange), disk-
(“spirals”; blue) and bulge-dominated (“ellipticals”; red) galaxies. The gray histogram gives
the data sample of Brown and Gnedin (2021) applying an age cut of 0.3 Gyr. Star clusters
are separated into young / old systems in the top / bottom row, respectively. Right column:
Distribution of half-mass radii. The colour-coding is identical to the left panel. In the bottom
panel we show the kernel density estimates for a Gaussian distribution when separating the star
cluster population into the disk (solid line) and halo (dashed lines) components.

radii in Section 6.5.2 but note that Reina-Campos et al. (2023a) found that none of their
prescriptions, including one that depends on the local environment, can recover the
𝑧 = 0 distribution of the Milky Way.

The distribution of half-mass radii for old star clusters is complex and ranges from
about 1 to ≈ 25 pc. For both galaxy morphologies the peak-structure between 5 and
10 pc is related to in-situ star clusters that still reside in a galaxy’s disk or were heated
to the halo during galaxy mergers. The peak of the distribution has similar values for
disk-dominated systems and ellipticals, which is, again, related to the properties of the
galaxy’s disk. The peak is less prominent for disk-dominated systems because of a lack
of major mergers.

In contrast, the broad distribution of half-mass radii is dominated by star clusters in
the halo. We find that the most compact star clusters are relatively old and low-mass,
approaching 13 Gyr and 2 × 103 M⊙, and that the most extended clusters are younger
and more massive, around 8 Gyr and 2 × 104 M⊙. This difference is partly caused by
different accretion histories: the more compact clusters were accreted at earlier times
and experienced fewer tidal shocks, which would increase the clusters half-mass size.
Observations may point towards a similar picture in that star clusters with different
metallicity, and potentially of different origin, show differences in half-mass radii as
well (e.g. Webb et al., 2012; Puzia et al., 2014).

Overall, we find that the properties of young star clusters are similar between galaxy
morphologies. The picture becomes more complex for the old star cluster population
due to their different evolutionary histories.

126



6.3.3 Galactocentric Distances

We show the distribution of galactocentric distances of star clusters in Figure 6.6. We
split the galaxies again into disk-dominated systems and ellipticals and into massive
(𝑀⋆ ≥ 1010 M⊙) and dwarf (𝑀⋆ < 1010 M⊙) systems. As before, star clusters are
separated into young and old populations. Furthermore, we distinguish between the
location of the star clusters into “halo” and “disk” components. Star clusters in disks
always form in-situ whereas objects in the halo are either accreted from another galaxy
(minor and major merger scenarios) or are heated from the disk to the halo (in case
of a major merger event). All star cluster galactocentric distances are normalised by
either the stellar disk scale-length for disk-dominated galaxies or the half-mass radius
for ellipticals.

Our model predicts that the most distant star clusters in galaxies are all accreted and
are typically old, irrespective of galaxy type and mass. On the other hand, towards
galaxy centres the model predicts that the cluster population is dominated by in-situ
and young clusters. We find that, when normalising the galactocentric distance by
a mass-weighted-scale, there is no significant difference in the overall shape of the
cluster distribution between different galaxy morphologies. However, when taking into
account the respective scale-lengths, star clusters in more massive systems are more
extended. Furthermore, in massive disk-dominated galaxies the star cluster distribution
is more extended than in massive ellipticals. This trend reverses in the dwarf galaxy
regime.

The old star cluster population exhibits a double-peak structure whereas the young
star clusters do not. For both galaxy types this observation is explained by different
star cluster origins: the inner peak is caused by old in-situ star clusters and the outer
peak is related to accreted clusters. For disk-dominated galaxies the double-peak
structure is not as prominent because they experience fewer major mergers, if any, than
bulge-dominated systems.

Finally, we find that disk and halo clusters contribute equally to the total populations
at relative distances of around ten. For massive disk- and bulge-dominated systems, the
absolute numbers are, therefore, ≈ 17 and ≈ 15 kpc, respectively. These values are a few
kpc larger than what is presented in Keller et al. (2020) for the E-MOSAICS simulation,
however, these authors only focus on Milky Way-analogues, which may exhibit different
scale-lengths than the typical disk-dominated galaxies in L-Galaxies. We plan to
investigate the properties of the star cluster population of Milky Way-analogues in a
future work.

6.3.4 Metallicity Distributions

Mean Cluster Metallicity

We show in Figure 6.7 the mean metallicity of a galaxy’s star cluster population, as
traced by their iron-abundances, versus galaxy stellar mass. The iron abundance values
are calculated by the galactic chemical evolution model introduced into L-Galaxies by
Yates et al. (2013) that takes into account contributions from stellar winds and (type-Ia
and -II) supernovae with different delay-time-distributions. We split the galaxies by
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1Figure 6.6. Normalised galactocentric distribution of star clusters in disk-dominated (left
column) and elliptical (right column) galaxies separated into massive (top row) and dwarf
(bottom row) systems. Star clusters are further distinguished into young and old systems as
well as their location: star clusters located in the disk are formed in-situ whereas objects in the
halo are either accreted or re-positioned their during a major galaxy merger. The normalisation
factors for disk-dominated and elliptical galaxies are the scale-length of the stellar disk and the
galaxy’s half-mass radius, respectively. Each panel gives the median and 1-𝜎 interval for the
normalisation factors and the number of major and minor mergers.
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their morphological type (disk-dominated versus elliptical; see above) and separate the
star cluster population by their age (young versus old; see above).

Irrespective of the star clusters age and galaxy morphology we find that the mean
metallicity increases as a function of galaxy mass, similar to the mass-metallicity
relationship for galaxies (as traced via oxygen-abundances; e.g. Tremonti et al., 2004;
Kewley & Ellison, 2008; Torrey et al., 2019; Sanders et al., 2021). Despite some
overlap younger star clusters have higher metallicity than their older counterparts at
fixed stellar mass for both galaxy types. This difference appears to be more significant
for disk- than for bulge-dominated galaxies, which is related to the origin of the cold
gas that forms stars: in disk-dominated systems stars are predominantly formed from
gas that has been continuously enriched by the above-mentioned stellar winds and
supernovae channels resulting in metal-rich young star clusters. In bulge-dominated
galaxies that form stars (and star clusters) a significant fraction of the cold gas comes
from accreted lower-mass systems that contain relatively metal-poor gas.
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1Figure 6.7. Mean star cluster metallicity per galaxy versus host galaxy stellar mass, separated
into disk- (left panel) and bulge-dominated (right panel) galaxies. Strong / faint contours
give the 1-, 2-, and 3-𝜎 distribution for old / young star clusters. The gray dashed line
gives the fiducial model of Pfeffer et al. (2023), which assumes, similar to our model, an
environmentally-dependent prescription for the upper truncation mass of the cluster initial
mass function and the cluster formation efficiency. The black solid line gives the empirical
relationship for ellipticals in the nearby Virgo galaxy cluster (Peng et al., 2006). Data for the
Milky Way and M 31 stem from a self-compiled data table that will be presented in future work.
Other data points come from Usher et al. (2012), Sesto et al. (2018), and Fahrion et al. (2020a).
The gray-shaded area marks the “lower-limit floor” at ⟨[Fe/H]⟩ = −2.5 of observed star cluster
metallicities in other galaxies (Beasley et al., 2019).

We compare to the E-MOSAICS simulations by showing the results of the fiducial
model of Pfeffer et al. (2023). Their model considers environmentally-dependent
prescriptions for the cluster formation efficiency and the upper truncation mass of the
cluster initial mass function, similar to what we consider for our fiducial model. The
results between both simulations are in decent agreement although our data suggest
higher mean metallicities at larger galaxy masses that are in better agreement with the
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literature. This may be a result of their poorer number statistics or different assumptions
on stellar yields, resulting in other normalisation values.

We also compare our results to observational data. For disk-dominated galaxies,
we consider the Milky Way and M 31 as they have the most robust and quantitative
measurements of globular cluster metallicities. To obtain the mean metallicity values,
we collected the cluster information from a diverse set of literature that we present in a
future paper (another table is presented in Pace, 2024). Here we find that our simulated
disk-dominated galaxies have, on average, about 0.5 dex higher median metallicity than
the observed values in the Milky Way and M 31, which might be related to a lack of
accreted dwarf galaxies that would contribute mainly low-metallicity star clusters.

For bulge-dominated galaxies we collect data from Usher et al. (2012), Sesto et al.
(2018), and Fahrion et al. (2020a) and take the empirical scaling relation from Peng
et al. (2006) that was fit to elliptical Virgo galaxy cluster members more massive than
𝑀⋆ = 109 M⊙. Our simulated star cluster populations show excellent agreement with
the observations across the whole mass scale, especially for ellipticals. A couple of
literature data points lie outside the 3-𝜎 contours, which could be related to either poor
number statistics of the or a bias in the ages of the star clusters in the observations with
respect to our simulated galaxies.

Finally, we find that a small fraction of disk- (≈ 0.3 %) and bulge-dominated (≈ 1.5 %)
galaxies host at least one star cluster that has ⟨[Fe/H]⟩ < −2.5. This threshold is often
used to indicate a “metallicity floor” due to an apparent lack of globular clusters in
nearby galaxies below this value (Beasley et al., 2019). However, the detection of a
low-metallicity stellar stream of a former massive star cluster in the Milky Way halo
(Martin et al., 2022) and the detection of a massive star cluster with [Fe/H] ≈ −2.9 in
M 31 (Larsen et al., 2020) challenge this notion. For M 31 specifically, our results agree
with the observations, assuming that the galaxy hosts a few hundred globular clusters
(Galleti et al., 2004, 2007; Huxor et al., 2008, 2014; Caldwell & Romanowsky, 2016).

Bimodality

An extensive set of literature work argues that the star cluster population of many,
perhaps all, galaxies shows a bi- or multi-modal colour or metallicity distribution (e.g.
Cohen et al., 1998; Kundu & Whitmore, 2001; Beasley et al., 2008; Blom et al.,

2012; Brodie et al., 2012; Usher et al., 2012, 2013; Escudero et al., 2015; Caldwell
& Romanowsky, 2016; Bassino & Caso, 2017; Villaume et al., 2019; Fahrion et al.,
2020a; Hixenbaugh et al., 2022; Lomelı́-Núñez et al., 2024). An often referred to
explanation is that the bi-modality is a result of different origins of clusters with the
bluer (more metal-poor) population having an ex-situ origin (e.g. Strader et al., 2005;
Brodie & Strader, 2006; Katz & Ricotti, 2013; Tonini, 2013). Numerical work has
argued that the bi- or multi-modality could be a result of either different epochs of
star cluster formation, different cluster origins, as suggested by the above literature,
or details related to cluster formation and destruction, or some combination thereof
(see e.g. Kruijssen, 2015; Choksi & Gnedin, 2019). However, as pointed out by the
observational work of Pastorello et al. (2015) and the numerical findings by Pfeffer
et al. (2023) the bimodality may only be present in a minority (≲ 50 %) of systems.

To determine the bimodality in our simulation we use an Bayesian Gaussian Mixture

130



109 1010 1011 1012

Galaxy stellar mass [M⊙]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Bi
m

od
al

m
et

al
lic

ity
fra

ct
io

n

Disk-dominated galaxies

Bulge-dominated galaxies

Simulation
L-Galaxies
E-MOSAICS
(Pfeffer+23; fiducial)

Star cluster age
τc ≥ 2 Gyr
τc ≥ 8 Gyr

1

Figure 6.8. Fraction of galaxies exhibit-
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tribution of their star cluster population
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ter population to ages 𝜏c ≥ 2 Gyr (light
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to compare the results to the ones for the
E-MOSAICS simulation from Pfeffer et al.
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Model approach with Dirichlet initial conditions for all galaxies than contain more than
30 clusters. Following Muratov and Gnedin (2010) and Pfeffer et al. (2023) we first
determine

−2 ln𝜆 = −2 ln [max(L1)
max(L2)] , (6.52)

where max(L 𝑗) is the maximum value of the likelihood function evaluated over the
metallicity distribution when considering 𝑗 number of Gaussians (either one or two).
Afterwards, we perform 100 bootstrap iterations to evaluate the probability that the
solution is bi-modal with a probability threshold of 90 %, as chosen in Pfeffer et al.
(2023).8 Finally, we calculate the weighted distance between the two Gaussians,

𝐷G = ∣𝜇1 − 𝜇2∣√
𝜎2

1 + 𝜎2
2

!≥√2 , (6.53)

where 𝜇 𝑗 and 𝜎𝑗 are the mean and standard deviations of Gaussian 𝑗 , respectively. If
𝐷G <√2, we classify the distribution as uni-modal, as adopted in Muratov and Gnedin
(2010) and Pfeffer et al. (2023).9

We show the bimodality of the star cluster distribution as a function of galaxy
stellar mass in Figure 6.8 where we split all galaxies into disk- and bulge-dominated.
Irrespective of galaxy morphology we find that the bimodal fraction (i.e. the fraction
of galaxies that exhibits a bimodal metallicity distribution) is constrained to values
ranging between ≈ 30 and ≈ 50 %.

There exist some fluctuations within the data that can, in part, be attributed to galaxy
merger events (e.g. the peak in ellipticals at approximately 5 × 109 M⊙) and we find
some slight overall trends with metallicity: as an increasing function of galaxy stellar

8We confirmed that the random sampling of initial values during bootstrapping affects the bi-modal
fractions at most by 0.05.

9Note that we do not utilise a cut on the kurtosis of the Gaussians as we find in some cases that, if there
is one dominant and another sub-dominant star cluster population in a galaxy, the kurtosis is greater
than zero, indicating a “peaked” distribution, thus, rejecting the hypothesis of a bimodal distribution.
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mass the bimodality of disk-dominated galaxies appears to slightly increase from ≈ 35
to ≈ 45 % whereas the fraction decreases for ellipticals from ≈ 45 to ≈ 40 %. These
trends are, in part, related to the accretion history of the galaxies. The accumulated
star cluster population from minor merger events typically has lower metallicity and
results in a bimodal fraction. The merger history is much richer for ellipticals where we
start to see that the accreted star cluster populations exhibit a wide range of metallicity
values. As a result the overall metallicity distribution at 𝑧 = 0 extends over a large
range and individual sub-structures or features become diffused. This effect can be
seen in observations as well, such as massive galaxies like M 87 (see Fig. 20 in Cohen
et al., 1998) or massive galaxy clusters (e.g. Harris et al., 2017).

We compare our results to the E-MOSAICS simulation where Pfeffer et al. (2023)
performed part of the metallicity analysis. When looking at the bimodal fractions
with respect to an age cut in the cluster populations, we find good agreement between
the two models. The most striking difference occurs for old clusters (𝜏c ≥ 8 Gyr) in
low-mass galaxies (𝑀⋆ ≲ 5 × 109 M⊙) where our data indicate a low bimodal fraction.
These galaxies contain only relatively few (old) star clusters and most of them formed
from gas of similar metallicity. Star cluster accretion plays a sub-dominant role because≈ 90 % of dwarf galaxies below 𝑀⋆ ∼ 5 × 109 M⊙ are disk-dominated galaxies that
have a quiet merger history.

The bimodality weakly depends on the location within a galaxy. Compared to the
average bimodal fraction of all star clusters we find similarity for the inner-most galaxy
regions, an increase at intermediate distances, and statistical fluctuations for the outer
regions, all normalised to the disk’s scale-length and half-mass radius for disk- and
bulge-dominated, respectively. This trend is a consequence of the location of accreted
star clusters as the central regions are dominated by in-situ star clusters and the outer
regions by ex-situ ones. The overall trend of the bimodal fraction with galaxy stellar
mass remains roughly unchanged.

Our results indicate a lower bimodality when compared to observations and the
general notion that a bimodal distribution appears frequently in galaxies. To test the
origin of this notion and the difference we compile a list of galaxies that were classified
as uni- or bimodal from the above-mentioned literature and bin the data by galaxy mass.
Overall we find bimodal fractions ranging between 50 and 100 %, however, galaxy
number statistics are low. It appears likely that the discrepancy between these results and
our simulations are due to differing methodologies and inhomogeneities when analysing
data. For example, several studies consider a bimodality in the colour-distribution
whereas others use iron abundances. Furthermore, taking the metallicity values of
globular cluster candidates from Beasley et al. (2008) for NGC 5128 and applying our
methodology results in a classification of uni-modal (because the weighted distance
𝐷G is smaller than

√
2) whereas the authors classify the distribution as multi-modal.

Unfortunately, the metallicities of many star clusters in galaxies are not publicly
available and do not allow us to test the effect of different methodologies further.

6.3.5 Caveats

Our semi-analytical approach to model star cluster populations comes with several
caveats. Here we summarise a few of the most important issues.
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Axisymmetric Structures of Galaxies

Several effects of non-axisymmetric features can impact star clusters, some of which
are discussed below. A thorough review is presented in Renaud (2018).

Some basic assumptions of L-Galaxies potentially break down as the gas fraction
of galaxies increases, resulting in a “clumpier” structure (e.g. Conselice et al., 2004;
Förster Schreiber et al., 2011; Shibuya et al., 2016). This raises some doubt about
whether our model captures the properties of star clusters at redshifts of about one to
two where clumpy galaxies start to make up a dominant fraction of the whole galaxy
population (e.g. Sattari et al., 2023; Huertas-Company et al., 2024) and whether the
𝑧 = 0 star cluster population evolved in a similar fashion compared to observed star
clusters. However, as argued by Ono et al. (2025) the basic principle of a disk-dominated
formation scenario for galaxies may be a reasonable assumption for redshifts of 𝑧 ≳ 9.

A related issue is that L-Galaxies does not consider non-axisymmetric components
like bars. Molecular gas can gather at tips of the bars due to orbital crowding (Kenney
& Lord, 1991) leading to collisions of GMCs, triggering the formation of stars and star
clusters (e.g. Davies et al., 2012; Fukui et al., 2014; Ramı́rez-Alegrı́a et al., 2014). A
bar can influence the dynamical evolution of star clusters as well. For instance, both
Bajkova et al. (2023) and Dillamore et al. (2024) argue that the Galactic bar directly
influences the orbit of a number of Milky Way globular clusters, possibly supporting
accelerating their radial migration to the Galactic Center. While halo star clusters are
most likely not significantly affected by the lacking implementation of bars, objects
in the galactic disk will likely be influenced, thus potentially changing the expected
galactocentric distribution discussed in Section 6.3.3.

Finally, L-Galaxies does not consider the existence of spiral arms. As argued by
Saha et al. (2010), (transient) spirals and bars can introduce additional energy sources
for tidal heating that would increase the orthogonal velocity dispersion of star clusters
compared to the orientation of the galactic disk. This effect could thus contribute
star clusters to the halo of a galaxy without invoking galaxy-galaxy interactions, as
indicated by the presence of metal-rich open clusters in the Milky Way’s halo (see
Paunzen & Netopil, 2006; Meibom et al., 2009; Brogaard et al., 2012; Heiter et al.,
2014; Önehag et al., 2014; Straižys et al., 2014; Gustafsson et al., 2016; Hunt & Reffert,
2023, for examples).

Impact of Stellar-Mass Black Holes

Over time, stellar mass black holes segregate towards the cluster’s centre and build up a
dense core, injecting energy into the stellar system of the star cluster (e.g. Merritt et al.,
2004; Mackey et al., 2008). This can result in some star clusters having relatively large
half-mass radii, such as Palomar 5 (Gieles et al., 2021), rivalling the most extended
objects we find in our simulation. However, note that we only consider star-star
interactions in the formalism of Equation 6.38, thus neglecting the effect of dynamical
heating due to black holes. One consequence of adding feedback from black holes is a
metallicity-dependent expansion rate that was already explored in the literature (e.g.
Downing, 2012; Mapelli & Bressan, 2013; Banerjee, 2017; Chattopadhyay et al., 2022;
Rostami-Shirazi et al., 2024). This may result in a change in half-mass radii of young
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star clusters between different galaxy morphologies that we do not detect in Figure 6.5.
We aim to implement this feedback channel in future versions.

Galaxy-Galaxy Interactions

Interactions between galaxies result in collisions between gas clouds and can cause
efficient star formation outside of galaxy disks, often including the formation of star
clusters (e.g. Fellhauer & Kroupa, 2005; Annibali et al., 2011; Maji et al., 2017;
Randriamanakoto et al., 2019; Rodruck et al., 2023). Such star clusters, especially
during the first passage of the accreted galaxy, can survive for significant time and could
contribute to the 𝑧 = 0 globular cluster population in the halo (e.g. Li et al., 2022).
Keller et al. (2020) find that around 20 % of globular clusters form during galaxy-galaxy
merger events. If true, this would indicate that our model approach does not explain
the origin of a significant fraction of globular clusters at 𝑧 = 0. Nevertheless, as argued
by the authors, repositioning of globular clusters from the dense inner-galactic regions
into a galaxy’s halo is important for cluster survival, which matches our results.

6.4 Conclusions

We introduced a modified version of the semi-analytical galaxy formation model “L-
Galaxies” (Henriques et al., 2020; Yates et al., 2021) that accounts for the formation of
massive (𝑚c ≥ 104 M⊙) star clusters. This implementation relies on galaxy constituents
to derive the bound fraction of star formation and the total star cluster mass via
L-Galaxies’ prescription of star formation within galaxy disks. Star cluster masses are
random realisations of an environmentally-dependent cluster initial mass function, that
is assumed to be a truncated power-law function, and are assigned initial half-mass
radii, metallicities, and galactocentric distances. We evolve the properties of up to 2000
individual star clusters per galaxy taking into account the effects of stellar evolution,
two-body relaxation, tidal shocks, dynamical friction, and a redistribution during galaxy
mergers.

Running the simulation on output merger trees from the Millennium (Springel et al.,
2005) and Millennium-II (Boylan-Kolchin et al., 2009) simulations yields the following
results.

1. The most massive and young (𝜏c < 0.3 Gyr) star clusters in disk-dominated
galaxies follow the observed empirical relationship between their absolute 𝑉-
band magnitude of the total host galaxies star formation rate. There exist
secondary dependencies on the host galaxy’s stellar mass and cluster formation
efficiency; the convolved bound fraction of star formation and initial star cluster
survival rate.

2. The star cluster mass function for young clusters exhibits a profile similar to
the observational results of nearby disk-dominated galaxies (Brown & Gnedin,
2021). At the same time, the half-mass radii evolve away from the assumed
constant initial value of 𝑟c, ℎ = 1 pc up to a few parsecs but do not reproduce well
the observed distribution that exhibits a tail up to ≈ 25 pc. Reproducing these
observations remains challenging with simulations.
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3. The mass, half-mass radius, and galactocentric distance functions of old
(𝜏c ≥ 8 Gyr) star clusters display complex shapes, which results from dif-
ferent star cluster origins (in-situ, accreted, heated during galaxy mergers),
and environmentally-dependent prescriptions that impact star cluster evolution.
Galaxy-galaxy interactions and mergers play a vital role in shaping the properties
of the 𝑧 = 0 star cluster population.

4. Our model is in excellent agreement with observations of the correlation between
a bulge-dominated galaxy’s mean star cluster metallicity, as traced by iron
abundance, and its host galaxy stellar mass over four dex. This result corroborates
the importance of taking into account metal enrichment of the circum-galactic
medium from supernovae, as introduced in Yates et al. (2021).

5. Our results predict that the presence of a bimodality in the metallicity distribution
of star clusters ranges between ≈ 30 and ≈ 50 % of the 𝑧 = 0 galaxy population and
does not approach 100 % on any galaxy mass scale. Both different methodological
approaches and the inaccessibility of a statistically significant data set of star
cluster populations do not allow for a clean comparison with observations.

6. The assumption of the relationship between the sound speed of cold gas in the
interstellar medium and the surface star formation rate directly influences the
properties of young star clusters. For example, assuming that the turbulence in
the interstellar medium is mainly related to gravity results in a slope value of the
relationship between the 𝑉-band magnitude and the star formation rate being too
shallow.

7. We find that the distribution of half-mass radii of old star clusters is insensitive
on the prescription for the initial half-mass radii.

Our simulation offers a computationally efficient and flexible approach to probe different
physical effects that influence the assembly history of star clusters across diverse galaxy
populations in mass, type, and evolution over cosmic time. In future work we plan to
look at additional aspects of the model, such as the star cluster properties of Milky Way
analogues or their evolution with redshift, and to consider the formation of nuclear
clusters as well as their interactions with (massive) black holes.

6.5 Appendix: Model Variations

We present here additional variations of model parameters that influence the assembly
history of 𝑧 = 0 star cluster populations.

6.5.1 Velocity Dispersion of the Cold Gas

One of the most crucial parameters for modelling the Toomre parameter is the velocity
dispersion of the cold gas. As discussed in e.g. Lehnert et al. (2009) and Zhou et al.
(2017) there exists substantial scatter in the relationship between the velocity dispersion
of the cold gas and the star formation rate surface density (c.f. Equation 6.14). In our
fiducial model we adopted 𝛼fid

cold = 5 km s−1, 𝛽fid
cold = 20 km s−1, and 𝛾fid

cold = 1/3 for the
offset, slope, and exponent, respectively.
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Here we explore a wider parameter range by testing a first version where we increase
the slope value to 𝛽var

cold = 100 km s−1 and a second version where we set the exponent
to 𝛾var

cold = 1/2. Additionally, we test a separate prescription based on the Jeans mass
(see e.g. Elmegreen et al., 2007) where

𝜎g, 𝑗 ∼ 𝑀1/4
J G1/2

Σ
1/4
g, 𝑗 = 4.4 pc Myr−1 × Σ0.18

SFR, 𝑗 , (6.54)

with 𝑀J as the Jeans mass, which we assume to be 109 M⊙ for the equality, and
converted from the cold gas surface density to the star formation rate density using
Equation 7 from Kennicutt (1998) with ΣD, g in units of 106 M⊙ pc−2 Myr−1. In addition,
we add a velocity floor of 5 km s−1, the same value that we used in Equation 6.14.

To probe the effect of this relationship on the properties of newly formed star clusters,
we fit linear relationships to the resulting 𝑀𝑉 -SFR parameter space, as presented in
Section 6.3.1, and present the slope values in Table 6.1.

We find that an increase of 𝛽cold results in a steeper slope value of the 𝑀𝑉 -SFR
relationship for both dwarf and massive galaxies. This change is a direct consequence
of modifications to the Toomre parameter. Since 𝑄D, g ∝ 𝑐s, cold, the Toomre parameter
of the gas increases/decreases, which then also results in an increase/decrease of
𝑄eff , albeit not as strong as 𝑄D, g due to taking a weighted average with 𝑄D, s. This
increase/decrease has a direct consequence on the star cluster masses because the upper
truncation mass in Equations 6.28 and 6.29 scales as 𝑚cl, max ∝ 𝑄4

eff , resulting in an
increased/decreased probability to randomly sample massive clusters.

When modifying the power-law index to 𝛾cold = 1/2 when find a significant increase
in the slope value for massive galaxies whereas it is less strong for dwarfs. While
the above argument is valid for this case as well, the secondary dependence comes
from the galaxy-mass to star formation rate dependency. It can be seen in panel (B) of
Figure 6.4 that more massive galaxies have, on average, higher star formation rates and
are, thus, more significantly affected from the change in 𝛾cold.

Finally, when assuming a prescription based on the Jeans mass we find significantly
shallower slopes for the same reasons outlined above. These slopes are also too shallow
compared to the observational constraints

Our simulations indicate that the slope of the relationship is steeper for more massive
galaxies irrespective of the assumed cold gas velocity dispersion versus surface star
formation rate relationship.

6.5.2 Initial Half-Mass Radius

The distribution of initial half-mass radii remains an unsolved problem. Measurements
of the half-light size of young star clusters give typical values in the range of a few
parsecs to about 0.5 pc (e.g. Bastian et al., 2012; Ryon et al., 2015; Brown & Gnedin,
2021) but the scatter at similar cluster ages is large, going up to ≈ 20 pc for W 3 in
NGC 7252 (Maraston et al., 2004; Fellhauer & Kroupa, 2005). This could indicate
that the initial half-mass radius of clusters is similar and diverges due to a different
initial evolutionary phase given the local environment, or that other parameter influence
the initial half-mass radius, such as cluster mass or the local physical conditions.
Reina-Campos et al. (2023a) tested different prescriptions of initial half-mass radii,
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Table 6.1. Slope values of the 𝑀𝑉 -SFR relationship when adjusting parameters for the
𝑐s, cold-ΣSFR relationship.

Model Slope values

high-mass low-mass

Fiducial −3.64+0.02
−0.02 −2.63+0.02

−0.01

𝛽var
cold = 100 km s−1 −3.98+0.02

−0.02 −3.27+0.02
−0.02

𝛾var
cold = 1/2 −3.73+0.02

−0.02 −2.70+0.02
−0.02

𝑐s, cold ∝ (𝑀JΣg)1/4 −2.32+0.01
−0.01 −1.31+0.02

−0.02

considering constant values, constant densities, a linear relationships from the data
provided by Brown and Gnedin (2021), and a theoretical model from Choksi and
Kruijssen (2021) that reads

𝑟c, ℎ = ( 3
10𝜋2

𝛼vir

𝜙𝑃𝜙𝑃, 𝑗

𝑚2
c

Σ2
g
)1/4

𝜖
1/2
c

2𝜖𝑐 − 1
𝑓acc

𝑄2
eff
, (6.55)

with 𝑓acc = 0.6, 𝜖𝑐 = 1.0, and environmentally-dependent parameters evaluated for each
ring.10 Reina-Campos et al. (2023a) conclude that none of the prescriptions reproduce
the size-mass relationship after evolving the cluster population for a few Gyr within the
EMP-Pathfinder simulation suite (Reina-Campos et al., 2022a).

Similar to Reina-Campos et al. (2023a) we implement different prescriptions for the
initial half-mass radius, that we outline in Table 6.2, to test their influence on the stellar
mass versus size distribution at 𝑧 = 0, as discussed in Section 6.3.2. We find that the
precise details of the initial half-mass radius clearly change the resulting distribution of
young star clusters, however, the distribution of radii of old star clusters remain largely
unchanged. The greatest differences compared to the fiducial model are for a constant
𝑟c, ℎ = 0.1 pc and the empirical relationship where 𝑟c, ℎ ∝ 𝑚0.18

c . The compact initial
size of star clusters results in the most massive star clusters to rapidly expand up to
30 pc, values that are not reached with other prescriptions. The increased half-mass
radius of the empirical relationship causes an apparent impact on the size of old star
clusters within the galactic disk as well: on average, the star clusters in a disk become
larger by two to three parsecs.

Overall, we find that the precise prescription of the initial half-mass radius does not
significantly impact the results at 𝑧 = 0.

6.5.3 Cluster Initial Mass Function

To test the effect of the upper truncation mass on the resulting star cluster populations
we re-run the model considering a pure power-law cluster initial mass function, i.e.
10The parameter 𝜖𝑐 refers to the efficiency of star formation within a giant molecular cloud and not the

average efficiency of star formation within the interstellar medium that was introduced in Section 6.2.3.
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Table 6.2. Variations in the initial half-mass radii of star clusters.

Model Prescription

Fiducial 𝑟c, ℎ = 1 pc

Compact 𝑟c, ℎ = 0.1 pc
Density 𝑟c, ℎ = 1 pc × (𝑚c/104 M⊙)0.3
Empirical(a) 𝑟c, ℎ = 2.37 pc × (𝑚c/104 M⊙)0.18

Theoretical(b) 𝑟c, ℎ ∝√𝑚c/Σg

(a) Fitting results provided by Reina-Campos et al. (2023a) for the data of Brown and
Gnedin (2021) when limiting the star cluster population to ages 1 Myr ≤ 𝜏c ≤ 10 Myr.

(b) Adopted from Choksi and Kruijssen (2021). To avoid extremely compact or
extended clusters we introduce a lower and upper boundary to a star cluster’s
half-mass radius of 0.1 and 100 pc, respectively.

𝜉(𝑚c) ∝ 𝑚𝛼
c . Similar to the fiducial model we pre-compute a list of 106 random

realisations of this mass function between 102 and 108 M⊙ and randomly sample it to
reduce computational cost.

The overall shape and distribution of the half-mass radii remain unchanged. A
significant difference occurs at the high-mass end of the mass distribution, which is
much more densely populated. This change impacts the data points on the 𝑀𝑉 -SFR
relationship by shifting them to lower absolute magnitudes, resulting in a steeper
relationship when compared to both the fiducial model and observations. The model
then also fails to account for the faintest young star clusters in galaxies above star
formation rates above ≈ 1 M⊙ yr−1.

In the E-MOSAICS simulation Pfeffer et al. (2023) find that the median metallicity
values of star clusters in dwarf galaxies is elevated by 0.2 to 0.4 dex, depending on
galaxy mass (their Figure 7). In our simulation we find a difference of about 0.2 dex
below galaxy stellar masses of 𝑀⋆ ≈ 8 × 109 M⊙, which is in excellent agreement with
the results by Pfeffer et al. (2023). At higher galaxy masses we see no change in the
distribution between the two models likely reflecting that the upper truncation mass
was high enough at typical star cluster formation redshifts (see e.g. Figure 8 in Pfeffer
et al., 2018). We will investigate the redshift-dependence of our model parameters in
future efforts.

6.6 Chapter Summary

▹ I introduced a new semi-analytical galaxy formation model that includes the
formation and evolution of massive (𝑚c ≥ 104 M⊙) star clusters.▹ The simulation successfully reproduces a number of observables, such as the
mass function of young star clusters or the mean metallicity of the star cluster
distribution as a function of galaxy mass.▹ The simulation is computationally efficient and allows to probe different model
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assumptions. For example, the scaling relationship between the sound speed of
the cold molecular gas and the surface star formation rate directly impacts the
parameter values of 𝑧 = 0 star clusters.▹ Extensions of the model towards galaxy centres will enable me to probe the
formation of nuclear star clusters.
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Chapter 7
Conclusions

7.1 Summary

This dissertation revolved around the assembly of nuclear star clusters (NSCs), which
are located in galaxy centres and form in diverse and complex ways. For my analyses I
relied on observational data sets and constructed a new semi-analytical galaxy formation
model that focusses on massive star clusters, which may contribute to the build-up of
NSCs by migrating to galaxy centres.

In Chapter 3, I used archival Hubble Space Telescope imaging data to analyse 19
newly discovered NSCs in nearby dwarf galaxies (Hoyer et al., 2023a). This data set
significantly increased the known structural properties of NSCs at the lowest-mass end
and the results make an important contribution to calculations of, for example, the tidal
disruption event rates (Hannah et al., 2024).

In this work, I found that the NSCs share similar properties to globular clusters
(GCs) in the Milky Way that were likely accreted from dwarf galaxies (e.g. Kruijssen
et al., 2020b). This similarity suggests that dwarf nuclei are simply a realisation
of the high-mass tail of the GC mass function. The data were inconclusive as to
whether the merger of multiple GCs are necessary to form an NSC. In addition, I
identified a secondary dependence of the NSC to host galaxy stellar mass relationship on
environment where, at the same galaxy mass, NSCs are more massive in denser galaxy
environments. It is unclear if this observation simply reflects an increased number
of migrating star clusters, which could be related to the environmentally-dependent
number statistics of GCs in low-mass dwarf galaxies.

In Chapter 4, I presented an analysis of the NSC in Messier 74, a nearby grand-design
spiral galaxy using archival Hubble and newly obtained James Webb Space Telescope
data, ranging from the far-ultraviolet to the mid-infrared regime (Hoyer et al., 2023b).
This marked the first study of an NSC across such a large wavelength range and enabled
the analysis of stellar populations from broad-band filters.

The analysis revealed a half-light radius of 𝑟eff ≈ 5 pc, a typical value for NSCs. The
mass of 𝑀NSC ≈ 107 M⊙ is slightly lower compared to NSCs in other spiral galaxies of
similar stellar mass alluding to a quieter assembly history. A fit to the spectral energy
distribution constrained the dominant stellar populations to an age of 𝜏 ≈ 8 Gyr and a
metallicity that is roughly solar, which compares to neighbouring stars in the bulge of
Messier 74, suggesting a common formation scenario. The results indicate a lack of
star formation within the last few Gyr, which constrains (1) the accretion history of
the massive black hole (MBH) within the NSC, if present, (2) the time scale of the
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central gas- and dust-lacking cavity that the NSC is embedded in, and (3) the merger
history of Messier 74 because minor or major mergers would have likely resulted in
in-spiral of cold gas and subsequent star formation. The mid-infrared data showed a
more extended component (about three-times the half-light radius of the NSC) that is
off-centre by about 5 pc, i.e. located at approximately the half-light radius of the NSC.
This component dominates the emission of the galaxy centre in the mid-infrared and I
tested five different scenarios for its origin, however, without success: the source of the
mid-infrared emission remains elusive.

In Chapter 5, I analysed soft X-ray (2 - 10 keV) imaging data from the SRG/eROSITA
space-based telescope that was collected over a two-year time span in search of accretion
signatures of MBHs in nearby NSCs (Hoyer et al., 2024). This work presented the first
constraints on the accretion signatures of low luminosity AGN in the dwarf galaxy
regime, taking into account NSCs. Detecting such signatures requires a comparison
between the observed X-ray flux and the expected emission from low- and high-mass
binaries, as traced by the galaxy’s stellar mass and star formation rate, respectively.

In total, 18 galaxies showed significant X-ray emission but only three targets
(NGC 2903, 4212, and 4639) have measured flux that is higher than the expected
background. For six galaxies (NGC 2903, 3384, 4321, 4365, and 4701) I detected
variable emissions values either on the baseline of the SRG/eROSITA survey (six
months) or on longer baselines when compared to literature values (predominantly
from Chandra; years). Whether this variability is due to changes in gas funnelling to
the central MBH or due to obscuration along the line-of-sight is unclear. Stacking the
non-detected galaxies in the dwarf galaxy regime resulted in an upper luminosity of
𝐿2−10 keV ≈ 2 × 1038 erg s−1, roughly constant for galaxy masses below 𝑀⋆ ≈ 1010 M⊙.

Finally, in Chapter 6, I introduced a new semi-analytical galaxy formation model
that considers the formation and evolution of massive star clusters (Hoyer et al., 2025).
Due to the computationally efficient structure of the code the simulation allowed for
various tests of star cluster-related physics at high significance for a high number of
galaxies with a diverse set of properties. The star cluster model was built on top of
the existing L-Galaxies galaxy formation model in its 2021 version (Henriques et al.,
2020; Yates et al., 2021). My model considered the formation of star clusters in twelve
concentric rings based on the Toomre stability parameter, cold gas surface density,
and epicyclic frequency—local quantities that affect the expected bound fraction of
star formation (Bastian, 2008). Afterwards, the model evolved the 2000 most massive
star clusters per galaxy, taking into consideration (1) mass loss from stellar evolution,
two-body relaxation, and tidal shocks, (2) expansion due to two-body relaxation and
tidal shocks, (3) dynamical friction due to interactions with stars, dark matter, and gas,
and (4) a re-distribution during galaxy mergers.

In a comparison to observational constraints, I found that my simulation can
reproduce well (1) the star cluster mass function for young (𝜏 ≲ 300 Myr) objects, and
(2) the empirical relationship between the absolute 𝑉-band magnitude of the brightest
(i.e. most massive) and young star cluster (local quantity) and the host galaxy’s star
formation rate (global quantity). In addition, the simulation reproduced well the
average metallicity of the star cluster populations for galaxy masses over three orders of
magnitude, matching the results of observational studies and agreeing with predictions
of other more computationally expensive hydrodynamical simulations. Regarding the
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metallicities, my simulation reinforced the notion that the bimodality of the metallicity
distribution of GCs in galaxies is not ubiquitous but is constrained to ≲ 50 % at all
galaxy masses and morphologies.

In summary, I provided new analyses of NSCs in dwarf galaxies that constrained
their relationship to GCs and MBHs. The analysis of the NSC of Messier 74 explicitly
showed that NSCs are useful tools to directly constrain the assembly history of their host
galaxy. Finally, my new semi-analytical galaxy formation model builds the foundation
for future investigations for probing the relative strength of the different formation
channels of NSCs.

7.2 Future Directions

I present here potential future directions towards improving our knowledge of NSC
assembly. These projects are separated into an observational and a numerical branch
and can be considered follow-up studies of the work presented in this dissertation.

7.2.1 Observational Efforts

I presented in this dissertation that the structural properties of NSCs in nearby dwarf
galaxies are similar to the Milky Way’s GCs. A follow-up project to the one presented
in Chapter 3 would be to analyse the GC population in the dwarf galaxies themselves
and compare their properties to the ones of the NSCs. The nearby Fornax and Virgo
galaxy clusters are ideal targets for such an analysis because they feature galaxies of
similar properties (e.g. stellar and halo masses, shape, and star formation rate). Most
of the dwarf galaxies will be ellipticals and lack star formation, which makes the
identification of GC candidates easier compared to their dwarf irregular counterparts.

Using the data one could compare the structure and mass of the different star cluster
types to determine whether NSCs are a merger product of GCs or simply the high-mass
realisation of the GC initial mass function. As mentioned in Chapter 2, one expects the
size of a cluster to increase with repeated mergers such that the NSC should have, on
average, a larger half-mass radius than the average GC. Stacking the data sets from
different galaxies of comparable stellar (and, thus, halo mass) will yield statistically
significant results.

Another extension of this analysis is to determine the galactocentric distance of the
most massive star clusters that often reside outside the galaxy centre (e.g. Poulain et al.,
2021). Dwarf elliptical galaxies are ideal targets for this analysis because they lack star
formation that could make the determination of the photometric (and, thus, likely the
kinematic) galaxy centre uncertain. As discussed in Modak et al. (2023), the migration
of massive star clusters into the galaxy’s centre can stall if the dark matter slope is too
shallow (see also Read et al., 2006; Inoue, 2009). Therefore, by analysing (stacked)
data of galaxy light distributions, GC luminosity functions, and the distribution of the
galactocentric distances of the most massive GCs (or NSCs), it is possible to constrain
the slope of the inner dark matter profile in dwarf galaxies. One potential challenge of
this analysis is to distinguish between massive GCs that form ex-situ and stall in their
migration towards the centre and a massive in-situ star cluster that wanders around
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the galaxy centre. The latter scenario was proposed for the extended and massive star
cluster in the Pegasus dwarf galaxy (Leaman et al., 2020).

A third possible project could focus at nuclear multiplicities. The presence of
multiple central star clusters was reported for both dwarf and massive galaxies in
Georgiev and Böker (2014), Poulain et al. (2021), and Voggel et al. (2022) and we may
be able to detect more such examples with already existing and future imaging data to
obtain a frequency relative to the NSC frequency presented in Section 2.1.1. Focussing
on dwarf ellipticals, it would be possible to follow-up these observations with numerical
work: after characterising the three-dimensional shape of the galaxy and the orbits of
the star clusters with observational data, the numerical study may help to constrain
the time scale for the merger as well as the properties of the emerging massive star
cluster. In addition, given the large number of known NSCs at different galaxy masses,
it is feasible to estimate the volumetric merger rate of such systems, which would
be interesting for the gravitational wave community in case the star clusters contain
MBHs.

For the above three projects one requires high-spatial resolution data, which the HST
(either via archival or new data sets) provides. Another data set is provided by Euclid
(Euclid Collaboration, 2024d, 2025b), whose imaging resolution compares to that of
the HST (0.1 arcsec pixel−1 for Euclid compared to 0.05 arcsec pixel−1 for HST in the
I-band; Euclid Collaboration, 2024e) but offers a much larger field-of-view. Several
works showed that Euclid can be used for star cluster-related science cases (Euclid
Collaboration, 2024b, 2024c, 2024f, 2025a), including NSCs (Euclid Collaboration,
2024a, 2025c). The new data sets from Euclid (1) increase the significance of the
previous HST data by simply providing more galaxies, and (2) offer the possibility to
probe different galaxy environments. The latter option may help to constrain further
the formation scenarios for NSCs in dwarf galaxies and possibly explain the different
NSC frequencies in different galaxy environments at the same galaxy stellar mass, as
mentioned in Section 2.1.1 and directly shown in Figure 2.1.

Finally, for more massive galaxies that contain an NSC, it is feasible to analyse
HST and JWST data in similar fashion as presented in Chapter 4 for Messier 74. The
PHANGS team has now collected data for 74 galaxies with HST , JWST , and ALMA, with
additional (spectral) data from e.g. MUSE for a smaller subset. This multi-wavelength
data set will allow for analyses of NSCs and the central star cluster population in the
nucleated sub-sample. With these powerful data sets will allow a comparison between
the stellar populations of NSCs with other centrally located star clusters, and the results
may possibly allude to past galaxy-wide events such as disk instabilities that may funnel
large amounts of cold gas to a galaxy’s centre resulting in star formation events that
leave an imprint in the star cluster properties.

The great variety of the properties of the different galaxies would make constraints
on the importance of other galaxy components as well. For example, it is still unclear
how the presence (and the properties of) a bar influence the assembly of NSCs. The
presence and properties of bars appear to affect central MBHs at least in the IllustrisTNG
simulations (Kataria & Vivek, 2024) but probing NSCs in that simulation suite is
impossible due to the selected mass- and spatial scales. Likewise, we still do not know
how nuclear rings and disks co-evolve (or not) with NSCs.

Overall, both archival and new data sets have the potential to evolve our current
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understanding of NSC formation and how they relate to other constituents like the
dark matter profile of the host galaxy, MBHs, and other central objects like young star
clusters, (nuclear) bars, disks, and rings.

7.2.2 Numerical Efforts

New numerical studies may focus on extending my new semi-analytical galaxy formation
model that I introduced in Chapter 6. It is interesting to extend the analysis to higher-
redshift galaxies in light of recent JWST-based observations that reveal the half-mass
radii of star clusters at 𝑧 ≲ 10 in gravitationally-lensed galaxies (Claeyssens et al., 2023;
Vanzella et al., 2023; Adamo et al., 2024; Mowla et al., 2024). Such a comparison
was already performed with the E-MOSAICS simulation (Pfeffer et al., 2024a) and
the authors find good agreement with the observed data: they find that the formation
mechanisms of star clusters at different redshifts may be similar to each other despite a
clear difference in host galaxy properties (extended and regular in the local Universe,
and compact and “clumpy” at high-redshift; e.g. Shibuya et al., 2016). It would be
interesting to test these interpretations with a much larger and more diverse galaxy
population that L-Galaxies (and my own simulation) provides.

As a first preliminary test I show in Figure 7.1 the half-mass radii and masses of
star clusters in galaxies for 1 ≲ 𝑧 ≲ 6. The star cluster model that I used for this
simulation differs from the fiducial model presented in Chapter 6 by allowing for an
environmentally-dependent initial half-mass radius, which could be lower than the
assumed value of 1 pc in the fiducial model. Other assumptions of the model, such
as the environmentally-dependent upper truncation mass of the cluster initial mass
function, remain unchanged.

The preliminary results show that, for decreasing redshift, (1) the half-mass radius
distribution becomes broader, (2) the mode increases, and (3) the distribution of
masses becomes wider. The compact half-mass radii distributions of star clusters at
high redshift is related to the properties of their hosts: galaxies are more compact
at higher redshifts (for L-Galaxies specifically, see Figure 12 in Vani et al., 2025),
directly resulting in higher gas densities and more compact initial half-mass radii of star
clusters, as per Equation 6.55 (𝑟c, ℎ ∝ Σ

−1/2
g ). Extended star clusters quickly dissolve

due to strong tidal shears, causing a sharp decrease in star cluster numbers beyond 2 pc.
Likewise, due to the harsh galaxy environments, low-mass star clusters that would be
compact (as 𝑟c, ℎ ∝ 𝑚1/2

c via Equation 6.55) dissolve more quickly than their massive
counterparts.

Galaxy mergers that re-distribute star clusters into a galaxy’s halo, where cluster
survival times increase, become more dominant at lower redshifts. This is evident
when comparing the distribution of accreted and in-situ star clusters: at 𝑧 = 5.92 the
half-mass distributions between the two star cluster populations is roughly the same,
indicating that (1) they recently moved into a galaxy’s halo, and (2) have lower number
statistics that is evident from the scatter in the stacked histogram of all galaxies.

Another possible study would be to use my semi-analytical model to study Milky
Way analogues.1 The Milky Way and Messier 31 as our most massive neighouring

1A “Milky Way analogue” is a simulated galaxy that has similar properties as our own Galaxy, such as
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Figure 7.1. One-dimensional histograms of half-mass radii (left) and stellar masses (right
panels) of star clusters in galaxies between 1.04 < 𝑧 < 5.92. Star clusters are separated by their
current location in the disk (upper) or in a galaxy’s halo (lower panels).

galaxy make good targets to compare my numerical results to because of the exquisite
knowledge about the properties of their GCs. To show a first result of the simulation, I
present in Figure 7.2 the half-mass radius and stellar mass distributions of star clusters
located in the disk and halo of Milky Way analogues. Note that all star clusters in
the disk exclusively form in-situ whereas both in-situ clusters that were heated during
major mergers and accreted systems during minor galaxy mergers contribute to the
halo population. I restrict all star clusters to 𝜏c ≥ 8 Gyr to compare to observational
data of the Milky Way and M 31 that I obtained from various literature, as presented in
Hoyer et al. (2025, in preparation).

For star clusters in the galaxies disks I find that the simulated star clusters are a
factor of a few more massive and about twice as extended compared to the Milky

the virial and stellar masses, scale-length of the galactic disk, or merger history. I present a definition
of Milky Way analogues within the scope of L-Galaxies in Figure 7.2.

146



103 104 105 106 107

Star cluster mass [M⊙]

0

5

10

15

20

St
ar

cl
us

te
rh

al
f-m

as
sr

ad
iu

s[
pc

]

Disk Observations
Milky Way
M 31

103 104 105 106 107

Star cluster mass [M⊙]

0

5

10

15

20

25

30

35

40 Halo

Milky Way analogues: 0.5 ≤ Mvir/1012M⊙ ≤ 2.0 & B/T < 0.2

Figure 7.2. Half-mass radii versus stellar masses of old (𝜏c ≥ 8 Gyr) star clusters in galaxy
disks (left) and halos (right panel) in Milky Way analogues, which I define as fulfilling
5 × 1011 M⊙ ≤ 𝑀vir ≤ 2 × 1012 M⊙, 𝐵/𝑇 < 0.2, and a quiet merger history (i.e. only minor
mergers with mass ratio up to 0.1). I compare the simulated star clusters (blue) to observations
from the Milky Way (orange) and M 31 (green) using a self-compiled literature data set, which
will be presented in Hoyer et al. (2025, in preparation).

Way sample. This indicates that the simulation does not yet capture well the exact
evolutionary histories of star clusters in Milky Way-like galaxies. However, this issue
persists across all simulations of star cluster populations. For example, the overall
successful E-MOSAICS simulation suite assumes no radial expansions of star clusters
at all, keeping their value fixed at 4 pc (Pfeffer et al., 2018).

In the case of star clusters in the halo, I find a diverse picture of star cluster properties.
The simulated star clusters are roughly separated into two groups that are accreted from
dwarf galaxies, as discussed in Section 6.3.2: the more compact star clusters are older
than their more extended counterparts and were exposed to fewer tidal interactions that
would have significantly increased their half-mass radii. Overall, when compared to
the observational data, I find that the simulated star clusters can roughly reproduce the
observed trends in that at least part of the halo population is much more extended than
their counterparts in galaxy disks.

A third research project related to my simulation is to consider the formation of NSCs.
In the current version of the simulation, all star clusters in the central ring (with radius
of approximately 30 pc) are excluded as the model does not yet consider mergers of
star clusters. Additional complications arise from the uncertain contribution of in-situ
star formation: as I showed in Figure 2.5 the in-situ fraction already shows large scatter
as a function of galaxy mass for the relatively simple model of Leaman and van de Ven
(2022). Furthermore, the presence of (stellar mass or massive) black holes influence
the evolution of star clusters: stellar mass black holes increase a star clusters half-mass
radius (e.g. Gieles & Gnedin, 2023) while more massive black holes could prevent the
migration of GCs to a galaxy’s centre (e.g. Antonini, 2013) and provide additional
feedback channels to evacuate gas from an NSC during star formation episodes.
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Finally, I add here other potential research lines related to NSCs.

▹ Follow-up work of Partmann et al. (2024). Their work considers an idealised
scenario where the NSC and MBH already exist in a dwarf galaxy and co-evolve
over time. However, the simulation does not yet consider the merger with
migrating GCs, feedback from accretion on the MBH, or the impact of galaxy
mergers. Partmann et al. (2025, in preparation) indicate that various accretion
mechanisms for the MBH always result in an evacuation of cold gas from the
galaxy, halting star formation for approximately a Hubble time (see also Petersson
et al., 2025, for the importance of stellar feedback). This indicates that our
general understanding of accretion on MBHs is still lacking. Future efforts are
clearly needed to additionally consider black hole seeding and their growth to
the intermediate-mass scale.▹ Active Galactic Nuclei (AGN) in dwarf galaxies. Some recent work suggest that
feedback mechanisms in dwarf galaxies may not only include re-ionisation and
supernovae events but also AGN (e.g. Silk, 2017; Dashyan et al., 2018; Arjona-
Gálvez et al., 2024). Additionally, these AGN must not be located in the galaxy’s
centre but could wander around the galaxy (e.g. Mezcua & Domı́nguez Sánchez,
2020). NSCs come into play because they may host these (intermediate-mass)
black holes and often wander in their host galaxy (e.g. Poulain et al., 2021).
Numerical work could investigate how NSCs seed these black holes, how they
wander within the potential of their host, and how accretion onto the black hole
shuts (or sometimes supports) star formation. Furthermore, these simulations
could probe the frequency of dwarf-dwarf mergers and the importance of NSCs
and the MBHs within them for the future evolution of the merger remnant.▹ Redshift dependence of the MBH to host galaxy mass correlation. It remains
unclear how the mass correlation between MBHs and their host galaxy evolves
with redshift with some work suggestion an evolution (e.g. Zhang et al., 2023)
while other works disagree (e.g. Sun et al., 2025). NSCs may be important
for the evolution of this relationship as they can support gas funnelling to the
MBH as well as solve the “final-parsec” problem, significantly reducing the
merger time between two MBHs. Simulations should, therefore, start to include
dense stellar cusps around MBHs and evaluate their importance for the above
mentioned correlation: are some MBHs over-massive compared to the local
relationship because of the presence of an NSC?

In total I believe that considering nuclear star clusters for future research of galaxy
evolution is essential to interpret data from new large-scale surveys. Computational
simulations of massive black holes should consider nuclear star clusters as well given
their ability to seed them and enhance their growth. Generally speaking, nuclear star
clusters provide us with an unique opportunity to gain knowledge of the universe we
live in and how galaxies, including our own Milky Way, assemble.
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É., Clénet, Y., . . . Zins, G. (2017). First Light for GRAV-
ITY: Phase referencing optical interferometry for the
Very Large Telescope Interferometer. Astronomy &
Astrophysics, 602, A94. https://doi.org/10.1051/0004-
6361/201730838
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A. C., Böker, T., Kamann, S., Leaman, R., Watkins,
L. L., & van de Ven, G. (2020). A Deep View into the
Nucleus of the Sagittarius Dwarf Spheroidal Galaxy
with MUSE. II. Kinematic Charaterization of the Stel-
lar Populations. The Astrophysical Journal, 892(1), 20.
https://doi.org/10.3847/1538-4357/ab77bb

Alfaro-Cuello, M., Kacharov, N., Neumayer, N., Lützgen-
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Crnojević, D., Sand, D. J., Zaritsky, D., Spekkens, K.,
Willman, B., & Hargis, J. R. (2016). Deep Imaging of
Eridanus II and Its Lone Star Cluster. The Astrophysical
Journal Letters, 824(1), L14. https://doi.org/10.3847/
2041-8205/824/1/L14

Croton, D. J. (2006). Evolution in the black hole mass-
bulge mass relation: a theoretical perspective. Monthly
Notices of the Royal Astronomical Society, 369(4),
1808–1812. https://doi.org/10.1111/j.1365-2966.2006.
10429.x

Croton, D. J., Springel, V., White, S. D. M., De Lucia,
G., Frenk, C. S., Gao, L., Jenkins, A., Kauffmann, G.,
Navarro, J. F., & Yoshida, N. (2006). The many lives
of active galactic nuclei: cooling flows, black holes and
the luminosities and colours of galaxies. Monthly No-
tices of the Royal Astronomical Society, 365(1), 11–28.
https://doi.org/10.1111/j.1365-2966.2005.09675.x

Cutri, R. M., Wright, E. L., Conrow, T., Fowler, J. W.,
Eisenhardt, P. R. M., Grillmair, C., Kirkpatrick, J. D.,
Masci, F., McCallon, H. L., Wheelock, S. L., Fajardo-
Acosta, S., Yan, L., benford, D., Harbut, M., Jarrett, T.,
Lake, S., Leisawitz, D., Ressler, M. E., Stanford, S. A.,
. . . Wittman, M. (2013). Explanatory Supplement to
the AllWISE Data Release Products. https://wise2.ipac.
caltech.edu/docs/release/allwise/expsup/index.html

da Silva, R. L., Fumagalli, M., & Krumholz, M. (2012).
SLUG–Stochastically Lighting Up Galaxies. I. Meth-
ods and Validating Tests. The Astrophysical Journal,
745(2), 145. https://doi.org/10.1088/0004-637X/745/
2/145

da Silva, R. L., Fumagalli, M., & Krumholz, M. (2014).
SLUG–Stochastically Lighting Up Galaxies. II. Quan-
tifying the effects of stochasticity on star formation rate
indicators. Monthly Notices of the Royal Astronomical

157

https://doi.org/10.1088/0004-637X/712/2/833
https://doi.org/10.1088/0004-637X/712/2/833
https://doi.org/10.1088/0004-637X/699/1/486
https://doi.org/10.1088/0004-637X/699/1/486
https://doi.org/10.1088/0004-637X/708/1/58
https://doi.org/10.1088/0004-637X/708/1/58
https://doi.org/10.1086/378556
https://doi.org/10.1093/mnras/sty424
https://doi.org/10.1093/mnras/stac3748
https://doi.org/10.1093/mnras/stac3748
https://doi.org/10.1088/0004-637X/751/2/100
https://doi.org/10.3847/0004-637X/823/1/18
https://doi.org/10.3847/0004-637X/823/1/18
https://doi.org/10.3847/1538-4357/ac0e93
https://doi.org/10.3847/1538-4357/ac0e93
https://doi.org/10.1086/421490
https://doi.org/10.1086/421490
https://doi.org/10.1086/504042
https://doi.org/10.1093/\mnras/stv725
https://doi.org/10.1093/\mnras/stv725
https://doi.org/10.1051/0004-6361/201730876
https://doi.org/10.1051/0004-6361/201730876
https://doi.org/10.1051/0004-6361/201014864
https://doi.org/10.3847/2041-8205/824/1/L14
https://doi.org/10.3847/2041-8205/824/1/L14
https://doi.org/10.1111/j.1365-2966.2006.10429.x
https://doi.org/10.1111/j.1365-2966.2006.10429.x
https://doi.org/10.1111/j.1365-2966.2005.09675.x
https://wise2.ipac.caltech.edu/docs/release/allwise/expsup/index.html
https://wise2.ipac.caltech.edu/docs/release/allwise/expsup/index.html
https://doi.org/10.1088/0004-637X/745/2/145
https://doi.org/10.1088/0004-637X/745/2/145


Society, 444(4), 3275–3287. https://doi.org/10.1093/
/mnras/stu1688

Dashyan, G., Silk, J., Mamon, G. A., Dubois, Y., &
Hartwig, T. (2018). AGN feedback in dwarf galaxies?
Monthly Notices of the Royal Astronomical Society,
473(4), 5698–5703. https://doi.org/10.1093/mnras/
stx2716

Davies, B., de La Fuente, D., Najarro, F., Hinton, J. A.,
Trombley, C., Figer, D. F., & Puga, E. (2012). A
newly discovered young massive star cluster at the
far end of the Galactic Bar. Monthly Notices of the
Royal Astronomical Society, 419(3), 1860–1870. https:
//doi.org/10.1111/j.1365-2966.2011.19840.x

Davis, A. B., Nierenberg, A. M., Peter, A. H. G., gar-
ling, C. T., Greco, J. P., Kochanek, C. S., Utomo, D.,
Casey, K. J., Pogge, R. W., Roberts, D. M., Sand, D. J.,
& Sardone, A. (2021). The LBT satellites of Nearby
Galaxies Survey (LBT-SONG): the satellite population
of NGC 628. Monthly Notices of the Royal Astronom-
ical Society, 500(3), 3854–3869. https://doi.org/10.
1093//mnras/staa3246

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M.
(1985). The evolution of large-scale structure in a uni-
verse dominated by cold dark matter. The Astrophysical
Journal, 292, 371–394. https://doi.org/10.1086/163168

de Grijs, R., Ma, C., Jia, S., Ho, L. C., & Anders, P. (2017).
Young star clusters in circumnuclear starburst rings.
Monthly Notices of the Royal Astronomical Society,
465(3), 2820–2832. https://doi.org/10.1093/mnras/
stw2806

De Lucia, G., & Blaizot, J. (2007). The hierarchical forma-
tion of the brightest cluster galaxies. Monthly Notices
of the Royal Astronomical Society, 375(1), 2–14. https:
//doi.org/10.1111/j.1365-2966.2006.11287.x

De Lucia, G., Kruijssen, J. M. D., Trujillo-Gomez, S.,
Hirschmann, M., & Xie, L. (2024). On the origin of
globular clusters in a hierarchical universe. Monthly
Notices of the Royal Astronomical Society, 530(3),
2760–2777. https://doi.org/10.1093/mnras/stae1006

De Lucia, G., Tornatore, L., Frenk, C. S., Helmi, A.,
Navarro, J. F., & White, S. D. M. (2014). Elemental
abundances in Milky Way-like galaxies from a hi-
erarchical galaxy formation model. Monthly Notices
of the Royal Astronomical Society, 445(1), 970–987.
https://doi.org/10.1093/mnras/stu1752

Decin, L. (2021). Evolution and Mass Loss of Cool Agein
Stars: a Daedalean Story. Annual Review of Astronomy
and Astrophysics, 59, 337–389. https://doi.org/10.
1146/annurev-astro-090120-033712

Dehnen, W. (2005). Phase-space mixing and the merging
of cusps. Monthly Notices of the Royal Astronomical So-
ciety, 360(3), 892–900. https://doi.org/10.1111/j.1365-
2966.2005.09099.x

del P. Lagos, C., Bravo, M., Tobar, R., Obreschkow,
D., Power, C., Robotham, A. S. G., Proctor, K. L.,
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A. C., Hilker, M., de Zeeuw, P. T., Kuntschner, H.,
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Kıroğlu, F., Kremer, K., Biscoveanu, S., González Pri-
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Nogueras-Lara, F., Schödel, R., & Neumayer, N. (2019).
The Nuclear Star Cluster and Nuclear Stellar Disk
of the Milky Way: Different Stellar Populations and
Star Formation Histories. The Astrophysical Journal,
920(2), 97. https://doi.org/10.3847/1538-4357/ac185e

176

https://doi.org/10.1093/\mnras/stab3568
https://doi.org/10.1093/\mnras/stab3568
https://doi.org/10.3847/2041-8213/aad7f7
https://doi.org/10.1086/166385
https://doi.org/10.1088/0004-637X/803/2/81
https://doi.org/10.48550/arXiv.1306.2307
https://doi.org/10.1093/\mnras/stac2659
https://doi.org/10.1093/\mnras/stac2659
https://doi.org/10.1086/177173
https://doi.org/10.1007/s00159-020-00125-0
https://doi.org/10.1007/s00159-020-00125-0
https://doi.org/10.1111/j.1365-2966.2011.18266.x
https://doi.org/10.48550/arXiv.2409.04516
https://doi.org/10.48550/arXiv.2409.04516
https://doi.org/10.1093/\mnras/stab3016
https://doi.org/10.3847/1538-4357/aa5cb4
https://doi.org/10.3847/1538-4357/aafe7a
https://doi.org/10.3847/1538-4357/aabe2
https://doi.org/10.1088/0004-637X/794/1/34
https://doi.org/10.1088/0004-637X/794/1/34
https://ui.adsabs.harvard.edu/abs/1982A&A...108..334N
https://ui.adsabs.harvard.edu/abs/1982A&A...108..334N
https://doi.org/10.48550/arXiv.2406.01688
https://doi.org/10.1051/0004-6361/202244411
https://doi.org/10.1051/0004-6361/202244411
https://doi.org/10.1051/0004-6361/202347421
https://doi.org/10.1051/0004-6361/202347421
https://doi.org/10.1038/s41550-019-0967-9
https://doi.org/10.3847/1538-4357/ac185e


Noll, S., Burgarella, D., Giovannoli, E., Buat, V., Mar-
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P., Ferrarese, L., Hilker, M., Lançon, A., Mieske, S.,
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Padoan, P., & Nordlund, Å. (2002). The stellar initial mass
function from turbulent fragmentation. The Astrophysi-
cal Journal, 576(2), 870–879. https://doi.org/10.1086/
341790

Padoan, P., & Nordlund, Å. (2011). The Star Forma-
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I., & Gómez, F. A. (2016). Evidence of Ongoing Ra-
dial Migration in NGC 6754: Azimuthal Variations
of the Gas Properties. The Astrophysical Journal Let-
ters, 830(2), L40. https : / / doi . org / 10 .3847 / 2041-
8205/830/2/L40

Sánchez-Menguiano, L., Sánchez, S. F., Pérez, I., Ruiz-
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