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Numerische Simulationen von Kosmischer
Strahlung und Magnetfeldern in Galaxienhaufen

Zusammenfassung

Wir untersuchen die numerische Modellierung relativistischer Protonen in einem mag-
netisierten Plasma. Dazu kombinieren wir erstmals zwei unterschiedliche Komponenten
eines kosmologischen Simulationscodes welche zuvor nur getrennt voneinander getestet
und erfolgreich eingesetzt wurden. Mit Hilfe von Stoßrohrrechnungen überprüfen wir die
physikalisch korrekte Wiedergabe eines analytisch lösbaren magnetohydrodynamischen
Riemannproblems in einem Gas mit einem konstanten Anteil relativistischer Teilchen.
Dazu leiten wir einen analytischen Ausdruck für die Ausbreitungsgeschwindigkeiten der
magnetosonischen (Schock-)Wellen her. Das Gleichungssystem welches sich aus dem Rie-
mannproblem ergibt lösen wir in einem iterativen Näherungsverfahren. Aus dem Vergleich
der analytischen mit der numerischen Lösung verschiedener Stoßrohrprobleme erhalten wir
eine realistische Abschätzung der physikalischen Genauigkeit des Simulationscodes.

Nach der erfolgreichen Testphase simulieren wir die Strukturentstehung von drei Ga-
laxienhaufen, wobei wir die Entwicklung der intergalaktischen Magnetfelder und die Erzeu-
gung relativistischer Teilchen konsistent mitbehandeln. Mit Hilfe analytischer Modelle
berechnen wir die Röntgen- und Radioemission der Galaxienhaufen und zeigen den zeit-
lichen Zusammenhang zwischen beiden Beobachtungsgrößen auf. Durch einen Vergleich
mit dem Wirkungsquerschnitt für den starken Linseneffekt belegen wir, dass die beobacht-
bare Radioemission von Galaxienhaufen mit dem Auftreten von Substrukturen korreliert
und somit durch Schocks beim Einfall großer Materieklumpen erzeugt wird.

Numerical Simulations of
Cosmic Rays and Magnetic Fields in Galaxy Clusters

Abstract

We investigate the numerical modelling of relativistic protons, so-called cosmic rays, in a
magnetised plasma. For the first time we combine two different components of a cosmolog-
ical simulation code that so far have only been tested and employed independently of each
other. By means of magnetohydrodynamic shock tube calculations in a gas that contains
a constant fraction of relativistic particles we check for the correct physical behaviour of
the combined numerical models. For this purpose we derive an analytical expression for
the magnetosonic shock and rarefaction waves in the MHD Riemann problem and solve
for the resulting system of equations using an iterative scheme. Comparing the theoretical
and numerical solutions of a number of shock tube calculations we assess the physical
correctness of the simulation.

After successful testing we simulate the structure formation of three galaxy clusters
including the consistent modelling of magnetic fields and cosmic rays. By means of an-
alytical models we compute the X-ray and radio emission of the simulated clusters and
reveal the temporal correlation between both quantities. Through a comparison with the
strong lensing cross sections we demonstrate that the observable radio emission of galaxy
clusters is directly connected to the occurrence of substructure in their dark matter halos
and is thus triggered by strong merger shocks.
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Introduction 1
Galaxy clusters are the largest bound systems in the Universe. They sit on top of a
hierarchy of objects that had time to collapse under their own gravity since the beginning
of structure formation. Because of their large extents, the closest clusters can actually be
seen as agglomerations of galaxies on photographs of the sky.

Before astronomers had a full grasp for the distances of other galaxies, clusters were
mistaken for special groups of nebulae. After the invention of the wide-field Schmidt
telescope in 1930, imaging surveys covered significant portions of the sky and quickly
revealed some of the most famous clusters of galaxies, including Virgo, Coma, and Hydra.
On the basis of vast numbers of photographic plates, catalogues of galaxies and clusters
were produced, among those the comprehensive cluster collection by Zwicky et al. (1968)
and the famous Abell catalogue (Abell 1958). Due to the reliance on the human eye these
catalogues were biased towards centrally-concentrated clusters at low redshifts (z . 0.15 ).
Moreover, they contained a number of inhomogeneities caused by photometric errors and
strong sensitivity variations of the plate material. Nevertheless, despite all deficiencies,
Abell’s catalogue remained the most cited and utilised resource for both galaxy population
and cosmological studies with clusters over the last four decades.

Modern galaxy cluster surveys are based on multi-wave band observations in the optical,
X-ray and radio frequency range. While the optical light originates from the stars in
the galaxies, the X-ray emission is most consistent with thermal bremsstrahlung from
the hot intracluster gas. In contrast, large-scale diffuse radio halos are caused by the
synchrotron emission of high energy electrons of non-thermal origin in the cluster magnetic
field. Extended radio sources have only been observed in massive and highly unrelaxed
clusters that appear to have recently undergone a merger event. The observations revealed
a strong correlation between the radio power in cluster halos and the X-ray luminosity
and temperature of clusters. This correlation might be explained if the radio emitting
electrons are injected by merger shocks and turbulent acceleration, and if the high X-ray
luminosities are due to the transient boosts which occur during mergers (Randall et al.
2002).

Detailed numerical simulations are the most important tool for the theoretical study
of the formation of galaxy clusters and the evolution of the intracluster medium. High-
performance cosmological simulation codes include detailed models of gas physics, mag-
netic fields, and relativistic particles. The numerical models allow for the analysis of the

1
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complex physical processes that take place in the interplay of the different cluster compo-
nents. Tracing the evolution of the intracluster plasma might help us to understand the
evolution of observable quantities such as X-ray and radio emission and their relation to
cluster dynamics from the beginning of cluster formation to the currently observed state.

In this thesis, we develop a method for testing the numerical modelling of shock fronts
in a magnetised plasma that contains a population of relativistic particles. On the basis
of the test results we evaluate the code performance under cosmological conditions. We
carry out numerical simulations of cluster formation and investigate the evolution of the
thermal and non-thermal cluster properties, as well as their connection to merger activity.
The outline of the thesis is as follows:

In Chapter 1 we give a short introduction to the basics of cosmology, including the
current concordance model of the Universe and the concept of distance measures.

In order to illustrate the process of structure growth from small fluctuations in the
initial density field to the large-scale matter distribution we observe today we present the
Newtonian approach to structure formation in Chapter 2.

In Chapter 3 we review some fundamental properties of galaxy clusters. After presenting
theoretical models for their internal structure, we discuss the effects of matter accretion
shocks on the intracluster medium. We furthermore give a description of the observable
quantities that will be important in the course of this work.

In Chapter 4 we give an overview of the numerical methods used in the simulation code
with the focus on the modeling of gas physics, magnetic fields and relativistic particles.

Chapter 5 addresses the problem of combining the numerical models of magnetic fields
and cosmic rays. We present a novel analytical solution to the general MHD Riemann
problem in presence of a relativistic cosmic ray component. We construct an iterative two-
fluid MHD Riemann solver which we use to check the physical accuracy of the simulation
results in a number of shock tube tests.

In Chapter 6 we present numerical simulations of three galaxy clusters including mag-
netic fields and a population of cosmic rays. We trace the evolution of the simulated
X-ray and radio luminosities over a wide range of redshifts and investigate the influence of
cluster dynamics, especially merger events on the thermal and non-thermal activity in the
intracluster medium. In a systematic comparison of the X-ray and radio luminosities and
the lensing properties we reveal the correlation between radiation and merger activity.



Cosmology 2

The term “cosmology” denotes our attempts to understand the Universe as a whole
through scientific observation and the laws of physics. Difficulties arise from the fact
that the Universe exhibits temporal evolution and is not in steady state. Due to large cos-
mic time scales and the enormous dimension of space we have a very restricted view onto
cosmic history. Most of our knowledge therefore runs in parallel with the development of
large telescopes and sensitive detectors. The great deal in the observational cosmology of
the past century was the detection of the cosmic microwave background (CMB) by Penzias
& Wilson (1965). Two decades before the CMB had been predicted as the thermal relict
of the Big Bang by Gamow, Alpher, and Herman (Alpher et al. 1948; Alpher & Herman
1949). Since then, the existence of the Big Bang is considered certain.

The aspect that distinguishes modern cosmology from previous efforts to understand
the Universe is that we have developed a consistent theoretical framework which agrees
quantitatively with the existing observational data. Furthermore, the access to computa-
tional resources has enabled the numerical study of non-linear processes. In this manner
great progress has been made in understanding the formation and distribution of matter
on large-scales. On the other hand, recent hypotheses such as the existence of dark matter
and vacuum energy are still controversial, partly due to the fact that the related research
fields are still in their infancy.

In what follows we will give a short introduction to the basics of cosmology. The first
part of the chapter deals with the aspects of homogeneous cosmology in which the Universe
is treated as a homogeneous, uniformly expanding fluid. From this simplified model the
dynamics of the overall expansion are derived and assumptions about the geometry and
energy content are made. The first section closes with the introduction of the common
cosmological distance measures. In the second part we will present the theory of struc-
ture formation which provides an explanation how the observable structure has developed
starting from small primordial inhomogeneities in the density field. The formation can be
divided into a linear and a non-linear phase and ends with the collapse of gravitationally
bound objects.

3



4 2.1. FRIEDMANN MODEL OF THE UNIVERSE

Figure 2.1: Temperature anisotropies of the cosmic microwave background from the 5-year
Wilkinson Microwave Anisotropy Probe (WMAP) data seen over the full sky
(Hinshaw et al. 2008). The colours represent the temperature fluctuations
where red regions are warmer and blue regions are colder by about 2 · 10−5 K .
The average temperature is 2.725 K .

2.1 Friedmann model of the Universe

The standard model of the Universe is based on the fundamental assumptions that, when
averaged over sufficiently large scales, there exists a mean motion of radiation and matter
and that for all fundamental observers co-moving with that mean motion, all observable
properties are isotropic. Both conditions are linked to what is called the cosmological
principle.

Observations support the idea that the Universe is both isotropic and homogeneous
on scales above ∼ 100 Mpc . The clearest modern evidence for the cosmological principle
is measurements of the cosmic microwave background (shown in Figure 2.1). The CMB
is an image of the photons emitted from the early Universe. Isotropy and homogeneity
are reflected in the smoothness of the temperature and in the random appearance of the
background radiation.

2.1.1 The metric

In the framework of general relativity, the postulate that for a fundamental observer the
Universe looks the same at any time in any direction implies that all three-dimensional
spatial hypersurfaces with t = const in space-time are homogeneous and isotropic. The
hypersurfaces can be scaled by a function a(t) which only depends on time. In cosmology
a(t) is called scale factor and denotes the factor by which the relative distance between
constant spatial coordinates is growing in the course of expansion. Aside from isotropy
and homogeneity, general relativity requires that locally (e.g. near the origin) the line
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element be invariant under Lorentz transformations:

ds2 = dt − d~x2 . (2.1)

Thus we arrive at Friedmann-Robertson Walker (FRW) metric, which is the most general
space-time metric fullfilling the cosmological principle:

ds2 = −c2dt2 + a2(t)
[

dw2 + f2
K(w)

(

dθ2 + sin2 θdφ2
)]

, (2.2)

where spherical polar coordinates (w, θ, φ) are chosen to make the symmetries of space-
time self-evident. The time coordinate t, which is the proper time as measured by a
co-moving observer (one at constant spatial coordinates), is referred to as cosmic time.
The geometry of spatial sections is determined by the radial function fK(w) which is either
trigonometric, linear, or hyperbolic in w :

fK(w) =











K−1/2 sin(K1/2w) (K > 0)

w (K = 0)

|K|−1/2 sinh(|K|1/2w) (K < 0)

, (2.3)

where K describes the constant curvature of the spatial slices. K = +1 corresponds to
positively curved spatial sections (locally isometric to 3-spheres), K = 0 corresponds to
local flatness, and K = −1 corresponds to negatively curved (locally hyperbolic) spatial
sections. Concerning the scale factor a(t) , the convention is such that a(t0) = a0 = 1
today. Hence, if the co-moving distance today is x0 , the physical distance between two
points at some earlier time t was a(t)x0 .

Another useful form of the RW metric is obtained by a change of variables in the radial
coordinate which then yields (see, e.g. Carroll 2004)

ds2 = −c2dt2 + a2(t)

[

dr2

1 − Kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

. (2.4)

2.1.2 Expansion and redshift

To quantify the rate of cosmic expansion and its relation to the energy one introduces the
Hubble parameter

H(t) ≡ da/dt

a
, (2.5)

which measures how rapidly the scale factor changes with time. The value of the Hubble
parameter at the present epoch t0 is the Hubble constant H0 . Current measurements
indicate that H0 = 70.1 ± 1.3 km s−1 Mpc−1 (Komatsu et al. 2008). Since there is some
uncertainty in this value, the Hubble constant is often parameterised as

H0 = 100h km s−1 km−1 , (2.6)

so that h ≈ 0.7 .
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Due to the uniform expansion of space any object moving with the Hubble flow is
receding from us. The light emitted from a distant object is consequently stretched out
to larger wavelengths λ according to

λobs

λemit
=

1

a
≡ 1 + z , (2.7)

where λemit and λobs are the wavelengths at the source and the observer, respectively.
The stretching factor z that was introduced in the last equation is known as the redshift.
Since the scale factor a0 at present time is set to 1 we have z0 = 0 .

2.1.3 The Friedmann equations

Since we have required isotropy and homogeneity, the dynamics of the metric is governed
by the dynamics of the scale factor a(t) . The evolution equations are derived applying
the Einstein equations

Rµν − 1

2
Rgµν =

8πG

c2
Tµν + Λgµν , (2.8)

to the RW metric, where Rµν and R are the Ricci tensor and the Ricci scalar, respectively.
Equation (2.8) also contains the cosmological constant Λ which was originally introduced
by Einstein in order to obtain a static cosmological model and which nowadays plays a
crucial role in the standard cosmological model.

Using the perfect fluid form for the energy-momentum tensor of cosmological matter,

Tµν = (ρ + p)UµUν + pgµν , (2.9)

where Uµ is the fluid four-velocity, and ρ and p are the energy density and the pressure in
the rest frame of the fluid, one arrives at the following two differential equations for the
scale factor a(t) :

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − Kc2

a2
+

Λ

3
, (2.10)

ä

a
= −4πG

3

(

ρ +
3p

c2

)

+
Λ

3
. (2.11)

The overdot denotes a derivative with respect to cosmic time t. The last two equations are
known as Friedmann’s equations and the corresponding RW metric is named Friedmann-
Lemaitre-Robertson Walker metric.

In the special case of K = 0 and Λ = 0 , which separates eternally expanding world
models from those that will re-collapse in the future, the Universe has a current density
called critical density ρcrit which can be inferred from (2.11):

ρcrit(t) =
3H(t)2

8πG
, where ρcrit,0 =

3H2
0

8πG
. (2.12)

The actual density of the Universe is then conveniently expressed in terms of the dimen-
sionless density parameter

Ω(t) =
8πG

3H(t)2
ρ(t) =

ρ(t)

ρcrit(t)
, (2.13)

which is one of the central cosmological parameters.
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2.1.4 Constituents of the Universe and the standard cosmological model

The Friedmann equation (2.10) and (2.11) can be combined to yield the adiabatic equation

d

dt
(a3ρc2) + p

d

dt
(a3) = 0 . (2.14)

The first term is proportional to the change of energy contained in a fixed co-moving
volume and thus has the meaning of an internal energy while the second term corresponds
to the pressure work. Equation (2.14) thus states the first law of thermodynamics in a
cosmological context. The energy-conservation equation can be re-written in the following
way:

ρ̇ + 3H(ρ +
p

c2
) = 0 . (2.15)

One can solve this equation for the different constituents of the Universe to determine the
evolution of the corresponding energy density with time. Within the fluid approximation
used here, the equation of state is given by pi = pi(ρi) , where i indexes all different
possible types of energy in the Universe. It is then convenient to introduce an equation of
state parameter w defined by

p = wρc2 . (2.16)

Replacing p in (2.15) the conservation of energy equation becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.17)

If w = p/ρ is a constant, this can be integrated to yield

ρ ∝ a−3(1+w) . (2.18)

A universe in which most of the energy density is in the form of radiation is known
as radiation-dominated. This was the case in our Universe at early times when the
temperature was much higher than it is today. For a gas of photons or highly relativistic
particles w = 1/3 and from equation (2.17) we have

ρr(t) = ρr,0a
−4 . (2.19)

In contrast, non-relativistic matter which is also known as dust can be approximated by
a pressure-free fluid, p = 0 . The energy density in matter then falls of as

ρm(t) = ρm,0a
−3 , (2.20)

which is simply the decrease in the number density of particles as the Universe expands.
A universe whose energy is mostly due to matter is called matter-dominated. Since
the energy density in radiation falls off slightly faster than that in matter, matter starts
dominating the cosmic expansion when ρm = ρr .

There is strong observational evidence for a third component of yet unknown nature
(Riess et al. 1998; Perlmutter et al. 1999). The so-called vacuum or dark energy also
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takes the form of a perfect fluid with an equation of state p = −ρc2 . Since its energy
density appears to be constant,

ρΛ = ρΛ,0 a0 , (2.21)

it is usually denoted by Λ , referring to Einstein’s cosmological constant. There are indi-
cations that the dark energy component started dominating around z = 1 and is since
then driving the accelerating expansion of the Universe. Several theorists claim that the
dark energy is not constant, but is evolving with time. For a comprehensive overview of
the most common dark energy models see Copeland (2007).

Analogous to equation (2.13) one defines the density parameter of the ith species,

Ωi =
ρi

ρcrit
, (2.22)

where the critical density as a function of time is given by (2.12). Summing up the density
parameters of all constituents we can rewrite the Friedmann equation (2.10) as follows:

∑

i

Ωi − 1 =
Kc2

H2a2
. (2.23)

From the knowledge of the total density parameter Ω =
∑

i Ωi one can thus infer the
global geometry of the three-dimensional spatial hypersurfaces via

Ωtot > 1 ⇐⇒ K > 0

Ωtot = 1 ⇐⇒ K = 0 (2.24)

Ωtot < 1 ⇐⇒ K < 0 .

The determination of Ω has become possible only quite recently from combined measure-
ments of the CMB, supernovae of type Ia, and the large-scale distribution of matter in
the Universe. The observations have shown that the current universe is very close to a
spatially flat geometry. Most recent values for the cosmological parameter are given in the
paper by Komatsu et al. (2008).

The current concordance model of cosmology is a spatially flat universe with a cos-
mological constant, referred to as ΛCDM. The abbreviation CDM stands for “cold dark
matter”, a collisionless form of matter that does not interact with electromagnetic radia-
tion and can therefore not be seen. The term “cold” refers to the velocity dispersion of
the dark matter particles which is negligibly small compared to the speed of sound. Dark
matter seems to account for more than 90 % of the matter content in the Universe. Its
existence has been proclaimed on the basis of galactic rotation curves and the masses of
galaxy clusters that could not be explained by the baryonic matter alone (e.g. Markevitch
et al. 2004; Clowe et al. 2006). The ΛCDM model is characterised by the parameters
Ωm = Ωdm + Ωb = 0.279 , Ωb = 0.0462 , ΩΛ = 0.721 , and h = 0.701 .

2.1.5 Distance measures

An important concept related to observational tools in an expanding background is asso-
ciated to the definition of a distance. While in Euclidian space the separation between
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two points is unambiguously defined, this is no longer the case for an arbitrary curved
space-time. Large distances in cosmology are usually expressed in terms of the redshift,
and the distance measures inferred from these redshifts differ, depending on the measuring
prescriptions.

The proper distance Dprop is the separation between events on radial null trajectories,
that is, trajectories of photons which terminate at the observer. The time required for
light to propagate from a source at zs to an observer at zo translates into an integration
over dDprop = −cdt = −cda/ȧ along the photon trajectory. This yields

Dprop(zo, zs) =
c

H0

∫ a(za)

a(zs)

da

ȧ
=

c

H0

∫ a(za)

a(zs)

da

aE(a)
, (2.25)

where we have introduced the function

E(a) ≡
√

Ωr a−4 + Ωm a−3 + ΩΛ , (K = 0) , (2.26)

which relates the Hubble parameter at earlier time to its present value

H(a) =: H0 E(a) . (2.27)

The proper distance is especially important since in the specified time interval ∆t no
information could have propagated further.

The co-moving distance is the distance on the spatial hypersurface at t = t0 between
the world-lines of a source and an observer locked into the Hubble flow. It is obtained by
integrating over dDcom(z) = −cda/aȧ :

Dcom(zo, zs) =
c

H0

∫ a(zo)

a(zs)

da

aȧ
=

c

H0

∫ a(za)

a(zs)

da

a2E(a)
:= w(zo, zs) . (2.28)

In contrast to the physical distance the co-moving distance stays constant over time for a
source and an observer co-moving with the mean cosmic flow.

A classical distance measure in cosmology is the angular diameter distance which
is defined as the ratio of an object’s physical transverse size to its angular size in radians:
D2

ang = δA/δω . It is used to convert angular separations in telescope images into proper
separations at the source. The size and solid angle of the object relate to that of the full
sphere according to

dω

4π
=

δA

4πa(zs)2f2
K[w(zo, zs)]

, (2.29)

where we have used the scaling function f2
K(w) given in (2.3). It follows that

Dang(zo, zs) =

(

δA

δω

)1/2

= a(zs)fK[w(zo, zs)] . (2.30)

For the flat Universe we obtain Dang = a(zs)w(zo, zs) = Dcom(1 + zs)
−1 . The angular

diameter distance is therefore not increasing indefinitely as z → ∞ . It turns over at
z ∼ 1 and thereafter more distant objects appear larger in angular size.
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Another way of inferring distances in cosmology is to measure the flux S from an object
of known bolometric luminosity L . The luminosity distance is then defined by

Dlum ≡
(

L

4πS

)1/2

. (2.31)

The surface brightness of a receding object is reduced by a factor [a(zs)/a(zo)]
4 and the

angular area goes down as D−2
ang . This yields

Dlum(zo, zs) =

[

a(zo)

a(zs)

]2

Dang(zo, zs) . (2.32)

All four distance-redshift relations depend on the cosmological parameters and are larger
in a universe with a cosmological constant than in one without. The fact that the Hubble
expansion rate can be determined from the luminosity distance of far-off supernovae with
common absolute magnitudes M led to the famous discovery of accelerating expansion
and dark energy (Riess et al. 1998; Perlmutter et al. 1999).

2.2 Structure formation

The homogeneity of the Universe is a reasonable assumption on large scales. However,
in the observable universe, there exists a significant degree of inhomogeneity in the form
of galaxies, clusters and large filaments (see Figure 2.2). The temperature fluctuations in
the CMB indicate that these structures have grown out of small seeds around z ≈ 1000,
possibly the quantum fluctuations of a scalar field.

The description of the different stages of structure formation from small primordial
density fluctuations to the cosmic web we observe today requires the study of the growth
of inhomogeneities in an otherwise smooth universe. As long as these inhomogeneities
are small, their growth can be studied by the linear perturbation around a background
Friedmann universe. Once the deviations from the smooth universe become large, linear
theory fails and we have to switch to a non-linear description. To ultimately understand
the late non-linear phases of structure growth we have to rely on numerical simulations.

2.2.1 Linear evolution

Jeans was the first who formulated a linear theory for the evolution of small fluctuations
in the density and velocity in a non-expanding homogeneous and isotropic “mean” fluid.
The corresponding formalism is therefore named Jeans’ Theory. Linear structure growth
in an expanding background must be treated within the framework of general relativity.
However, on scales much smaller than the Hubble radius and as long as the gravitational
fields are weak we can introduce a valid Newtonian approximation to the relativistic theory.
This implies the restriction to non-relativistic matter such as CDM and baryons.

An important quantity in the theory of linear structure formation is the density contrast
δ , defined by

δ(~r) =
δρ(~r)

ρ̄
=

ρ(~r) − ρ̄

ρ̄
, (2.33)
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Figure 2.2: Distribution of galaxies in the Two Degree Field Galaxy Redshift Survey (2dF)
drawn from a total of 141,402 galaxies (Peacock et al. 2001). The galaxy sample
probes the structure in the Universe out to z = 0.3 , corresponding to distances
up to 1000h−1 Mpc away from us (located at the centre).

where ~r = a(t)~x where ~x is the co-moving coordinate. The mean density ρ̄ drives the
Hubble expansion while a fluctuation with ρ(~r)−ρ̄ > 0 produces an additional gravitational
field that slows down the expansion in the concerned area. The density contrast will
therefore grow over time. Likewise, in an underdense region where ρ(~r) − ρ̄ < 0 the
density drops faster than the cosmic mean and δ will become more negative as time
evolves. Structure growth therefore is a self-amplifying process.

We start with a description of the initial fluctuations in the mean density, pressure,
velocity and gravitational fields by small linear perturbations to the background values

ρ(~r, t) → ρ(t) + δρ(~r, t) , (2.34)

p(~r, t) → p(t) + δp(~r, t) , (2.35)

~v(~r, t) → ~v(t) + δ~v(~r, t) , (2.36)

Φ(~r, t) → Φ(t) + δΦ(~r, t) . (2.37)

The density drops inversely proportional with the cubed scale factor a while the mean
velocity is determined by the Hubble expansion law. We can thus use the ansatz

ρ(t) = ρ0a(t)−3 , ~v =
d~r

dt
=

ȧ

a
~r = H~r , (2.38)

where ρ0 is the background density at a fixed time t = t0. The potential Φ is defined
through the Poisson equation for the Newtonian gravitational potential

∇2Φ = 4πGρ . (2.39)

Inserting the above definitions into the continuity and the Euler equation and neglecting
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all terms non-linear in δρ, δ~v, δp, and δΦ we arrive at

∂δρ

∂t
+ 3Hδρ + ~v · ∇δρ + ρ∇ · δ~v = 0 , (2.40)

∂δ~v

∂t
+ Hδ~v + (~v · ∇)δ~v = −c2

s

ρ
∇δρ −∇δΦ , (2.41)

∇2Φ = 4πGδρ , (2.42)

where we have used the definition of the sound velocity c2
s = δp/δρ. Using the total time

derivative of δρ and δ~v

δ̇ρ ≡ dδρ

dt
=

∂δρ

∂t
+ ~v0 · ∇δρ and ˙δ~v ≡ dδ~v

dt
=

∂δ~v

∂t
+ ~v0 · ∇δ~v , (2.43)

we can express the total time derivative of the density contrast δ as follows:

ρ0δ̇ ≡ ρ0
dδ

dt
= δ̇ρ + 3Hρ0δ . (2.44)

Now replacing δρ by δ in (2.40) and going from real to Fourier space

∇x =
1

a
∇r → −i

~k

a
, (2.45)

the system of equations (2.40) - (2.42) becomes

δ̇~k
− i

a
~k~v~k

= 0 , (2.46)

~̇v~k
+ H~v~k

=
i

a
c2
s
~kδ~k

+
i

a
~kΦ~k

, (2.47)

Φ~k
= −4πGρ0

k2
a2δ~k

. (2.48)

These three equations can be combined into a single partial differential equation of second
order for the density contrast:

δ̈ + 2Hδ̇ +

(

c2
sk

2

a2
− 4πGρ0

)

δ = 0 . (2.49)

The resulting equation yields the damped oscillator equation with the frequency

ω =

√

c2
sk

2

a2
− 4πGρ0 , (2.50)

provided that the oscillation frequency is much higher than the expansion rate. For a
complex ω the perturbation amplitude will grow exponentially. This applies to wave
numbers k ≥ kJ := aκJ = a

√
4πGρ0/cs from which we define the co-moving “Jeans

length”

λJ :=
2π

kJ
= 2cs

√

π

Gρ0
. (2.51)
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The Jeans length marks the length scale above which the density contrast can further
increase while smaller perturbations will oscillate. In other words, on scales larger than
λJ the infall of material happens faster than the perturbation can be mediated through
the medium. At the Jeans length the free-fall time τ ∼ 1/

√
4πGρ and sound crossing time

therefore cancel exactly. Apparently the expansion of the universe has a damping effect
on the growth of primordial density fluctuations. From the damping term 2Hδ̇ we infer
that, the faster the expansion proceeds, the slower overdensities will grow.

Equation (2.49) can be solved by Bessel functions. However, for the limiting cases of a
universe that is dominated by radiation or matter, simpler solutions can be found:

In the early Universe, during radiation domination, we can neglect the gravitational
term. Since we have H(t) = 1/(2t) , the oscillator equation then takes the form

δ̈ +
1

t
δ̇ +

c2
sk

2

a2
δ = 0 . (2.52)

For CDM we can also ignore the cs term since p ≪ ρ and thus cs ≪ 1. We then obtain

δ̈CDM +
1

t
δ̇CDM = 0 . (2.53)

A growing solution exits for δ̇CDM 6= 0. Nevertheless, perturbations can grow logarithmi-
cally:

δCDM(t) = δCDM(t0)

[

1 + a ln

(

t

t0

)]

. (2.54)

During radiation domination the background expansion is too fast to allow for the growing
of sub-horizon perturbations. Likewise, the coupling between gas and photons will suppress
the growth of the baryonic density contrast. Since the sound velocity at this epoch is given
by cs =

√

1/3 c , the Jeans length yields

λJ ∼ H−1 . (2.55)

Consequently, all sub-horizon scales are stable and baryonic density fluctuations will not
grow during radiation domination.

In the matter-dominated phase, we can assume a so-called Einstein-de Sitter universe
with H(t) = 2/(3t) and ρ0(t) = (6πGt2)−1 . Equation (2.49) then reads

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0 for k ≪ kJ . (2.56)

Using the ansatz δ(t) ∝ tn we obtain an increasing and a decaying solution:

δ+(t) = δ+(t0)

(

t

t0

)2/3

, (2.57)

δ−(t) = δ−(t0)

(

t

t0

)−1

. (2.58)
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Figure 2.3: Schematic figure showing the growth of linear perturbations in dark matter
(Padmanabhan 1999). The cosmological horizon at early times is very small
so the fluctuations on scales relevant to structure formation are outside the
horizon where they grow as a2 . As the universe expands, perturbations on
larger scales enter the Hubble radius. During the radiation dominated phase
fluctuations grow as ln a while during matter domination they grow as a .

The decaying mode quickly becomes irrelevant. The remaining solution is conventionally
called “growth factor” and denoted by D+. Since t ∝ a3/2, density perturbations in a
matter-dominated universe grow proportional to the scale factor a.

The evolution of the dark matter density contrast during the time of radiation and mat-
ter domination is sketched in Figure 2.3. While the CDM density contrast starts growing
at matter-radiation equality, baryonic structures can only form after recombination when
the gas gets decoupled from radiation and its sound velocity drops. The baryonic overden-
sities will later fall into the gravitational potential of the CDM structure that has formed
earlier.

2.2.2 Non-linear evolution

When the density contrast of a perturbation reaches δ ≈ 1 the linear description of its
evolution breaks down. The overdense regions that have formed out of the primordial seeds
will continue to grow until they collapse under their own gravity and by subsequent infall
of material evolve into the large-scale structure we observe today. The self-gravitating
objects are commonly known as “halos”.

Since the gravitational collapse of a halo is a complicated process the study of cosmolog-
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ical structure formation usually involves large scale numerical simulations. Nevertheless,
we can analyse the non-linear regime using some simple analytic approximations in order
to obtain insights into the problem. In what follows we will investigate the evolution of a
spherical “top-hat” which approximates the halo by a homogeneous overdense sphere. The
model is particularly simple for the Ωm = 1, matter dominated Einstein-de Sitter universe
that is described by the Hubble constant H = H0a

−3/2. We follow the approach presented
in Wang & Steinhardt (1998), complementary information can be found in Padmanabhan
(1993) and White (1996).

The growth of a density perturbation is slowed down due to the gravitational potential
of the local mass concentration. The radius of the overdense sphere will reach a maximum
Rta before the process of expansion is inverted and the halo starts shrinking again. In what
follows we use the radius at turn-around to parameterise the radius of the halo according
to

x :=
a

ata
, y :=

R

Rta
. (2.59)

Furthermore we have introduced the parameter y that gives the scale factor of the back-
ground expansion in units of the scale factor ata at the moment of turn-around. By defining
the scaled time

τ := Htat = H0ta
−3/2
ta , (2.60)

we can derive the following useful relations:

x′ :=
dx

dτ
=

1

Hta

ȧ

ata
=

H

Hta
x = x−1/2 , =⇒ τ =

2

3
x3/2 . (2.61)

The sphere obeys the Friedmann equation for cosmic expansion with a different effective
Ω0. Restricting ourselves to CDM with p = 0 we obtain the equation of motion

d2R

dt2
= −GM

R2
= − G

R2

4π

3
ρtaR

3
ta , (2.62)

where ρta denotes the mean density of the sphere at the time of turn-around. Defining
the overdensity of the halo relative to the background at turn-around by ζ = ρta/ρ̄(ata)
we can re-write ρta as

ρta =
3H2

ta

8πG
ζ . (2.63)

Inserting the last expression into equation (2.62) and re-arranging the terms finally gives

1

H2
ta

d2

dt2

(

R

Rta

)

= −1

2
ζ

(

R

Rta

)2

,

y′′ = −1

2

ζ

y2
. (2.64)

which is a differential equation of second order in y. Since the overdensity ceases to expand
at turn-around when x = 1, and under the additional assumption that halo formation sets
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in contemporaneously with the beginning of the cosmic expansion at x = 0, we obtain the
two boundary conditions

y|x=0 = 0 , y′|x=1 = 0 . (2.65)

Integrating equation (2.64) yields

τ =
1√
ζ

[

1

2
arcsin(2y − 1) −

√

y − y2 +
π

4

]

, (2.66)

and thus the overdensity at turn-around time τ = 2/3 is given by ζ = (3π/4)2 .
Expanding expression (2.66) to lowest order in y,

τ =
2

3
x2/3 ≈ 8

9π
y3/2

(

1 +
3y

10

)

, (2.67)

and solving for x , we obtain the linear density contrast δL of the overdense sphere

δL =

(

ρ

ρ̄

)3

ζ − 1 =

(

x

y

)3

ζ − 1 ≈ 3y

5
. (2.68)

To arrive at the second equality we have inserted the scaling relations for the background
density ρ̄ ∝ (ata/a)3 and the mean density of the halo ρ ∝ (Rta/R)3 . The density contrast
δL can then be linearly extrapolated to the time of turn-around:

δL,ta =
ata

a
δL =

δ

x
=

3y

5x
. (2.69)

Using equations (2.61) and (2.67) we can infer the numerical value:

δL,ta =
3

5

(

3π

4

)2/3

≈ 1.06 . (2.70)

Theoretically, due to the symmetry in the equations of motion, the sphere should collapse
to a single point at twice the time of turn-around when τ = τcoll = 4/3 and thus x = 22/3 .
The linear density contrast inside the halo would then be

δcoll = 22/3δta =
3

5

(

3π

2

)2/3

≈ 1.69 . (2.71)

In reality, however, during infall the particles will be scattered by small fluctuations of the
gravitational field and virialise in a process which is called “violent relaxation” (Lynden-
Bell 1967). At τcoll the halo has de facto reached virial equilibrium with Rvir = (Rmax/2)
and we obtain

ρvir

ρ̄(avir)
=

(

22/3

1/2

)3

ζ = 18π2 ≈ 178 . (2.72)

Although the assumption of spherical symmetry in this analysis is in fact inadequate, the
last result is commonly used to define the virialised region of a halo to be a sphere with a
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mean density which is about ∼ 200 times the critical density ρc at the time of the collapse.
In real halos, the time-varying gravitational potential will randomise the velocities of the
infalling particles and we would expect a non-symmetric distribution of matter. However,
it turns out that a density contrast ∼ 100 - 200 is quite successful at defining and hence
finding halos in N-body simulations (Navarro et al. 1997).

The oldest agglomerations of matter we know today are the globular clusters with masses
that roughly correspond to the estimated baryonic Jeans mass after recombination. The
ages and masses of the compact stellar clusters indicate that they were the first objects
that formed out of the collapsed overdensities (Peebles & Dicke 1968). In contrast, a large
number of the most massive gravitationally bound objects in our Universe, the clusters of
galaxies, seem not to have finished the process of relaxation yet. Observations in X-ray
and radio as well as data from gravitational lensing reveal a high level of turbulence and
asymmetry of their central parts, including the merging of sub-clumps, which suggests
that those objects are currently in the process of forming.
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Galaxy clusters 3
Clusters of galaxies are the largest gravitationally bound objects in the Universe. They
are believed to have formed in a hierarchical process during which initially small collapsed
objects have collected into galaxies, and later into clusters of galaxies. This evolution
spans a significant fraction of the age of the Universe, thereby involving many interacting
physical processes. Galaxy clusters typically have masses between 1014 M⊙ and 1015 M⊙

and spread over a region of several Mpc.
They consist of three main components: galaxies, gas, and dark matter. Although they

contain hundreds of galaxies the matter bound in stars and galaxies contribute the least,
at most a few percent, to the total mass (Sarazin 1988). About 10% to 30% of the total
mass are made up by the intracluster medium (ICM), diffuse, hot gas at densities between
10−4 and 10−2 cm−3 and temperatures of 107 to 108 K . The largest component seems to
be the collisionless, dark matter which is needed to explain the gravitational stability of
clusters.

A great advance in the systematic study of the properties of clusters occurred when Abell
(1958) compiled an extensive, statistically complete catalogue of rich clusters of galaxies.
Until today, this catalogue has been an important resource in the study of galaxy clusters.

3.1 Mass profiles

Similar to the spherical halo model which we used in the last chapter to derive the collapse
parameters, the most simple approach to the dark matter distribution of a relaxed galaxy
cluster is that of an isothermal sphere. The density profile is described by

ρDM(r) =
σ2

v

2πGr2
, (3.1)

where r is the halo radius and σ2
v is the velocity dispersion which is assumed constant and

isotropic at every point. The distribution has a singularity at r = 0 and the total mass
of the halo becomes infinite. One avoids the problem of diverging densities by defining a
constant central density ρc = 9σ2

v/(2πGrc) within a core radius rc which depends on the
object under consideration (see e.g. Shapiro et al. 1999).

Numerical simulations suggest that the CDM halo profiles of relaxed galaxy clusters are
indeed approximately isothermal over a large range of radii. Near the centre, however,

19
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the decline appears to be shallower than r−2 while close to the virial radius the density
declines more rapidly. The resulting density can be described by the generic formula

ρDM(r) =
ρDM,0

(r/rs)γ(1 + (r/rs)α)(β−γ)/α
, (3.2)

where the parameters γ and β denote the inner and outer power-law slopes and the scale
radius rs specifies the transition from shallow to steep. The width of the transition region
decreases with increasing α. This profile appears to be universal, with the same shape for
all masses and epochs. However, the exact values of the four parameters are under debate
since different groups of authors found different results for the shape of the innermost
regions of galaxies and galaxy clusters (Navarro et al. 1996; Fukushige & Makino 1997;
Moore et al. 1999). The currently most common choice for the profile of dark matter
halos of virialised galaxy clusters is the NFW profile, named after Navarro, Frenk, and
White. It has the parameters (α, β, γ) = (1, 3, 1) and a typical scale radius that ranges
between 0.1 and 0.25 rvir for simulated clusters. Lower-mass objects tend to have smaller
scaling radii because they formed earlier in time when the overall density of the universe
was larger (Bullock et al. 2001; Eke et al. 2001).

Concerning the distribution of the baryonic gas inside a galaxy cluster, historically, the
most popular description is the so-called β-model. It is based on an isothermal gas model
where the density is given in terms of three free parameters ρgas,0 , rc , and β :

ρgas(r) =
ρgas,0

(1 + (r/rc))3β/2
. (3.3)

The normalisation parameter ρgas,0 depends on the ratio of the gas mass to the virial mass
in the cluster, f = Mgas/Mvir , for which Fujita & Takahara (1999) derived the relation
f ∝ ρ−0.1

vir M0.4
vir , where ρvir = Mvir/r3

c is the characteristic density of gravitational matter
and rc is the core radius. The slope parameter β as inferred from X-ray observations
takes values in the range ∼ 0.4 - 1.0 , which means that for radii larger than rc the
density profiles range from ∝ r−1.2 to ∝ r−3 and are thus more diverse than those of dark
matter (Jones & Forman 1984, 1999).

Although the profile (3.3) is still widely used to describe the radial distribution of
the intracluster-cluster medium (ICM), the assumption of an isothermal gas is certainly
not consistent with observed temperature profiles of galaxy clusters. Non-radiative gas
dynamical simulations have shown that, in the absence of additional physics, the ICM
of relaxed clusters can be approximately described as a polytropic gas in hydrostatic
equilibrium with the gravitational potential created by the dark matter (Ascasibar et al.
2003). An analytical profile has for example been derived by Suto et al. (1998):

ρgas(r) = ρgas,0

[

T (r)

T0

]1/(γ−1)

, where
T (r)

T0
= 1 − Bf

(

r

Rs

)

. (3.4)

The scale radius Rs and the parameter B relate the temperature profile T (r) of the gas to
the underlying dark matter distribution for which we have assumed a NFW profile. Here,
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T0 is the central temperature and γ denotes the adiabatic index of the thermal gas. The
parameter B and the function f(x) are given by

B =
4πGµmp(γ − 1)ρDM,0R

2
s

γkT0
, f(x) = 1 − ln(1 + x)

x
. (3.5)

Unlike the isothermal β-model the distribution (3.4) provides a physical basis to directly
probe the shape of the dark matter halo from the observed temperature profiles of clusters
of galaxies. However, since the smooth, radially symmetric density profile is an idealised
picture, the dark matter profile might only be inferred if the galaxy cluster is in a state
of complete virial equilibrium.

Observations by Jones & Forman (1999) have shown that at least 40 % out of a sample
of 368 X-ray detected clusters of galaxies contain substantial substructure. Since the
accretion of gas and dark matter is lumpy, not smooth, those substructures are interpreted
as evidence of a nonvirialised state, indicating that many clusters are dynamically young
systems.

3.2 Evolution and dynamics

The formation process of galaxy clusters is classified according to the size and mass of
infalling substructures: The accretion of matter lumps with masses smaller than ∼5 % of
the main halo mass is considered approximately smooth. If the mass of the sub-clump
exceeds these 5 % the accretion process is called a minor merger, while for the accretion
of clumps larger than ∼ 1/3 of the main halo mass the event is termed a major merger.
Depending on the type of merger and the observer’s line of sight, the shape of the galaxy
cluster can significantly deviate from the spherical halo model and instead display a highly
irregular shape.

In a major merger event, subclusters collide at velocities of ∼ 2000 km/s, releasing
gravitational binding energies of as much as & 1064 erg (Feretti et al. 2002). The large
energy release makes the cluster mergers the most energetic events in the Universe since
the Big Bang. They have strong effects onto the cluster interior, resulting in a remarkable
change of observable properties which therefore can significantly differ from that of more
relaxed systems.

In the upcoming section, we will present the physical effects that merger events have
onto the diffuse hot gas and the intracluster particle population. In the subsequent section,
we will introduce some important cluster observables and explain how they relate to the
dynamical state of the galaxy cluster.

3.2.1 Thermal effects of mergers

The shocks caused by the accretion of matter lumps heat and compress the intracluster
medium and raise the cluster’s entropy through the dissipation of kinetic energy. Com-
pression and heating depend on the shock strength which can be seen if we re-express the
Rankine-Hugoniot jump conditions for thermodynamic shocks (Rankine 1870; Hugoniot
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1887, 1889) as functions of the Mach number M :

ρ2

ρ1
=

(γ + 1)M2

(γ − 1)M2 + 2
, (3.6)

p2

p1
=

2γM2 − (γ − 1)

γ + 1
, (3.7)

T2

T1
=

[

2γM2 − (γ − 1)
] [

(γ − 1)M2 + 2
]

(γ + 1)2M2
. (3.8)

Here, the quantities ρ , p , and T denote the density, pressure, and temperature of the
gas and the indices 1 and 2 refer to the states ahead and behind the shock front. Since
the Mach number is linked to the pre-shock state through M = v1/

√

γp/ρ , where v1 is
the pre-shock velocity relative to the shock front, the heating effect will be largest if the
clump falls into cold, low-pressure gas.

The irregular infall of plasma clumps of varying sizes will mix up the ICM in a complex
network of shocks that causes turbulence and convective motion on large scales. Since
the effectiveness of all important radiative loss mechanisms depend on the density and
temperature of the plasma, strong merger shocks will boost the emission of thermal radi-
ation in galaxy clusters (see Section 3.3.3). The observable X-ray emission can thereby be
amplified up to a factor of ∼ 10 in luminosity. Consequently, the thermal signature of a
merging galaxy cluster will not only significantly differ in its shape but also in the total
power of the emitted radiation from that of a relaxed cluster.

After the merging is completed, turbulent and convective motions in the ICM will
gradually run dry until the thermal equilibrium and convective stability are established.
A long time after the merger, the cluster is expected to approach the shape of a cluster
that has been formed by smooth accretion only. Numerical simulations of the structure
formation process have shown that, despite of the irregular infall geometries and the
complexity of the shock structure, in the end virialised clusters with nearly self-similar
entropy structures are produced (Kay 2004; Voit et al. 2005).

The term entropy used in this context is equivalent to the entropic function A(s) , which
is given by the constant of proportionality in the adiabatic equation of state p = Aργ .
The entropy is directly related to the temperature through

A ≡ kBT

µmpρ
2/3
gas

, (3.9)

where mp is the proton rest mass and µ is the mean molecular weight. We can define an
universal reference entropy for galaxy clusters of different masses if we replace ρgas in the
above expression by an approximate virial overdensity that is given by the product of the
mean density of dark matter within the scale radius R200 and the global baryon fraction
fb = Ωb/ΩM . Furthermore, we insert the characteristic halo temperature T200 within the
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Figure 3.1: Dimensionless entropy K/K200 as a function of scale radius R/R200 for 40
clusters simulated with the GADGET-code. Black squares show the me-
dian profile. The dashed line illustrates the power-law relation K/K200 =
1.32 (R/R200)

1.1 which represents the best fit within the range 0.2 . R/R200 .

1.0 (Voit et al. 2005)

same radius:

A200 =
kBT200

µmp(200fbρcr)2/3
(3.10)

=
1

2

[

2π

15

G2M200

fbH(z)

]2/3

. (3.11)

With the characteristic entropy scale A200 we can cast the entropy distribution of different
clusters into the dimensionless form A/A200 .

Figure 3.1 shows the spherically averaged entropy profiles of 40 clusters generated with
a numerical simulation of a ΛCDM cosmology including non-radiative gas physics (Voit
et al. 2005). The masses of these clusters range from 5.5·1014 h−1 M⊙ to 8.4·1014 h−1 M⊙ .
The dimensionless profiles appear to be self-similar within the range 0.2 . r/R200 . 1.0 ,
where they can to a good approximation be described by the power law A(r) ∝ r1.1 ,
depicted by the blue dashed line in the plot. Deviations from the profile appear inside
the radius 0.1 R200 . They are partly due to fact that some of the simulated clusters have
nearly isentropic cores, while others do not. Moreover, the results in the cluster cores
slightly depend on the hydrodynamical method used in the simulations.
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3.2.2 Non-thermal effects of mergers

High speed astrophysical shocks in a magnetised plasma lead to a significant production of
relativistic particles due to a mechanism that was first described by Fermi (1949). In his
original paper, he considered the encounters of charged particles with moving gas clouds
that are steeped in tightly bound turbulent magnetic fields. The latter is a reasonable as-
sumption since cosmic magnetic fields easily get stirred by stellar winds, ionisation fronts,
or supernova explosions. An energetic particle that enters a cloud gets reflected at the
magnetic irregularities through resonances between its gyro-motion and magnetohydrody-
namic waves in the plasma. By repeated scattering the particle can be accelerated to very
high energies. In the following we will present the underlying mathematical formalism for
non-relativistic cloud velocities. For a treatment of relativistic motion see Webb (1987).

First of all, we can make the simplifying assumption that the particle is already suffi-
ciently relativistic so that E ≈ pc . In the rest frame of the cloud the total particle energy
E′

1 is then given by

E′
1 = γE1(1 − β cos θ1) , (3.12)

where θ1 is the incident scattering angle, γ denotes the Lorentz factor and β = u/c is the
cloud’s velocity relative to the speed of light. Since the scattering inside the cloud is due
to the motion in the magnetic field and does not involve any collisions, we can consider it
as elastic: E′

1 = E′
2 . Transforming this energy back to the laboratory frame, we have the

energy of the particle after it has escaped the cloud,

E2 = γE′
2(1 + β cos θ′2) . (3.13)

Substituting (3.12) into (3.13) we obtain the energy change for the particular encounter
characterised by the scattering angles θ1 and θ′2 :

∆E

E
=

(1 + β cos θ′2)(1 − β cos θ1)

1 − β2
− 1 . (3.14)

The mean energy gain 〈E2−E1〉/E1 after a certain number of collisions ultimately depends
on the geometry of the scattering system. We can now distinguish between two physical
situations that result in different efficiencies of the acceleration process:

Fermi I acceleration

We consider a large plane shock front propagating at the supersonic speed ~u that separates
the gas into two regions of different flow velocities. The situation is sketched in Figure
3.2. The gas flows away from the shock with a velocity ~v2 relative to the shock front, and
|~v2| < |~v1| . Thus in the laboratory frame the gas behind the shock moves to the right
with the velocity ~u2 = −~v1 +~v2 . If we furthermore assume that the gas ahead of the front
is at rest, its velocity in the reference frame of the shock front will be given by −~v1 = ~u .
Equation (3.14) applies to this situation if we set β = |~u2|/c . To obtain the mean energy
gain we now need to average over all possible scattering angles θ1 and θ2 , such that the
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Figure 3.2: Acceleration at a plane shock front (figure from Kolanoski 2007)

particle stays inside the system:

〈cos θ1〉 =

∫ 0
−1 cos θ1d cos θ1

∫ 0
−1 d cos θ1

= −1

2
, 〈cos θ′2〉 =

∫ +1
0 cos θ′2d cos θ′2

∫ +1
0 d cos θ′2

=
1

2
. (3.15)

Inserting (3.15) into (3.14) we arrive at

〈∆E〉
E

=
(1 + 1

2β)2

1 − β2
− 1 ≈ β . (3.16)

Since in merging clusters material falls in with velocities of about 104 km/s we can safely
treat the merger shock as a strong shock for which M → ∞ . The simplifying feature of
strong shocks is that the density enhancement on crossing the shock front (3.6) yields

ρ2

ρ1
=

(γ + 1)

(γ − 1)
. (3.17)

For a fully ionised gas γ = 5/3 and hence ρ2/ρ1 = 4 . If we furthermore take into account
the equation of mass conservation over the shock surface, ρ1v1 = ρ2v2 , we infer that
u = v1 = 4v2 = 4(u + u2) . Solving for u2 we thus obtain

u2 = −3

4
u , (3.18)

and hence

β =
|~u2|
c

≈ 3

4

u

c
. (3.19)

The increase in kinetic energy thus depends linearly on the shock velocity. Observations of
radio emission from Galactic supernova remnants reveal that at least a few percent of the
shock energy is directed into the acceleration of relativistic ions and electrons. Applying
these numbers to strong merger shocks in clusters, one would expect that relativistic
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Figure 3.3: Left panel: stochastically distributed plasma clouds allowing for isotropic par-
ticle scattering; right panel: acceleration by a moving partially ionised gas
cloud (figure from Kolanoski 2007)

particles with a total energy of E ∼ 10 62 erg are produced (Sarazin 2004). Thus, merging
clusters should host huge populations of relativistic particles, so-called cosmic rays (see
Section 3.3.2).

Fermi II acceleration

The second scenario consists of a charged particle with velocity ~v that is caught up in
a system of randomly distributed magnetised gas clouds. We suppose that the clouds
are moving isotropically at velocity ~u and that the particle gets scattered several times
before escaping the system. The situation that was suggested in Fermi’s original paper is
illustrated in Figure 3.3. The probability of a collision is now proportional to the relative
velocity between the cloud and the particle,

dn

dtd cos θ1
∼ v − u cos θ1 , (3.20)

where n is the number of collisions. Averaging over incident scattering angles we have

〈cos θ1〉 =

∫ +1
−1 cos θ1(v − u cos θ1)d cos θ1

∫ +1
−1 (v − u cos θ1)d cos θ1

= − u

3v
≈ −β

3
. (3.21)

The last approximation results from the assumption that the particle is already moving
at a relativistic speed, so that v ≈ c . Due to the isotropy of scattering in the system of
clouds the average over the reflection angle θ′2 yields

〈cos θ′2〉 = 0 . (3.22)

With these two distributions we obtain for the mean energy of the scattered particle:

〈E〉
E

=
(1 + 1

3β2)

1 − β2
− 1 ≈ 4

3
β2 , (3.23)

which means that the energy gain is only of the second order in the cloud’s velocity. The
original version of Fermi’s theory is therefore known as second order Fermi acceleration
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and is a very slow process. Despite its low efficiency, magnetohydrodynamic simulations
indicate that the turbulence generated during cluster mergers may be able to drive signif-
icant cosmic ray acceleration in the ICM (Candia et al. 2002; Cassano & Brunetti 2004).

One can deduce the non-thermal energy distribution characteristic of Fermi acceleration
in a simple fashion. If we let ξ be the average increase in particle energy per collision,
E = E0ξ , and P the constant probability that the particle remains within the accelerating
region after one scattering event, then, after n encounters, there will be N = N0P

n

particles with energies E = E0ξ
n . Eliminating n between these quantities gives

ln(N/N0)

ln(E/E0)
=

lnP

ln ξ
, (3.24)

and hence
N

N0
=

(

E

E0

)−α

, with α = − lnP

ln ξ
. (3.25)

The Fermi mechanism thus leads to a power-law spectrum of cosmic ray energies. Equa-
tion (3.25) states that higher energy particles take longer to accelerate than low energy
particles. Consequently, the lifetime of the Fermi accelerator limits the maximum energy
per particle that can be produced.

3.3 Cluster observables

There is firm evidence that the ICM is a mixture of hot gas, magnetic fields, and relativistic
particles. While the hot gas results in thermal bremsstrahlung X-ray emission, relativistic
electrons and positrons generate non-thermal radio synchrotron emission and possibly
hard X-ray emission by inverse Compton processes. Observations in the corresponding
wavelengths are used thus to study the thermal and non-thermal properties of galaxy
clusters. In contrast, since there is no radiative interaction of the dark matter component,
its mass and distribution is investigated via the gravitational lensing effect.

In the next two sections we will give a short introduction to magnetic fields and cos-
mic rays which are the non-thermal constituents of galaxy clusters. Afterwards, we will
describe the physical processes that lead to bremsstrahlung and synchrotron emission.
Gravitational lensing as the main tool for inferring the shape of dark matter halos will be
treated in the last section.

3.3.1 Magnetic fields

The existence of large-scale magnetic fields in the intracluster medium of galaxy clusters
is well established through different methods of analysis. While the cosmic magnetic fields
are generally tangled chaotically with magnetic fluctuations at scales that range over orders
of magnitude, there is often a component of the field that is spatially coherent. Observed
coherence lengths of up to ∼ 0.75 Mpc in some clusters (Clarke et al. 2002) indicate that
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the magnetic fields are not associated to the galaxy population or single AGN but are
harboured by the diffuse intergalactic plasma.

A variety of observational and numerical efforts are undertaken to determine the mor-
phologies and the strengths of the cluster permeating magnetic fields and to understand
their origin. The direct method for quantifying magnetic fields on cosmic scales is the
study of the Faraday rotation effect on linearly polarised light emitted by sources be-
hind and inside the galaxy cluster. The linearly polarised light can be decomposed into a
right-handed and a left-handed circularly polarised wave that propagate at different phase
velocities within the magnetised plasma. The resulting rotation of the polarisation plane
of the electromagnetic wave is usually written in terms of the rotation measure RM :

Ψrot(λ) = λ2 RM = λ2 e3

2πm2
ec

4

∫ L

0
ne(l) ~B‖(l)dl , (3.26)

where Ψrot denotes the angle by which the polarisation plane is rotated and ~B‖ is the
magnetic field component along the line of sight. The integration is carried out along
the cluster path length L . Since the rotation measure is also a function of the electron
density ne in the ICM, the reliability of the measurement significantly depends on the
model for the intracluster gas density distribution. The field strengths inferred from high-
resolution RM maps for a galaxy cluster like Coma are of the order of ∼ 1 µG , with a
significant enhancement of the rotation measure in the central regions. The amplification
is even more pronounced in cooling core clusters where field strengths from ∼ 5 µG up
to extreme values of 40 µG were found (Carilli & Taylor 2002; Govoni & Feretti 2004),
indicating a strong scaling between the magnetic and thermal energy densities in clusters
of galaxies.

Magnetic fields are indirectly traceable by the large-scale radio emission that is produced
by the gyration of relativistic electrons around the field lines. To estimate the magnetic
field strength from the cluster’s synchrotron emission one makes use of the equiparti-
tion assumption which states that the energy contributions of the magnetic field and the
relativistic particles are approximately equal.

A different possibility is to compare the luminosities of the synchrotron and the inverse
compton (IC) emission. The IC emissivity is proportional to the energy density in the
photon field, uph, which for the CMB is ∼ 5 · 10−13 (1 + z)4 erg cm−3 , whereas the syn-
chrotron emissivity is proportional to the energy in the magnetic field, uB = B2/8π . This
leads to the simple proportionality

Lsync

LIC
=

uB

uph
, (3.27)

from which one can obtain an estimate for the energy density of the magnetic field (see
Govoni & Feretti 2004 for details). The inferred values for the magnetic energy density
lie in the range of a few percent of the thermal energy density.

The drawback of the latter two techniques is that they are only applicable to a small
sample of galaxy clusters since the large scale radio halos are not a common property of
all clusters but are only observed in a fraction of ∼10 % of all objects. For those clusters
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displaying a radio halo typical magnetic field values in the range of 0.1 µG to 1.0 µG are
derived under the assumption that the field entirely fills the radio source volume. It is
conceivable that also smaller clusters host radio halos but with surface brightnesses that
currently lie below the detection limit. However, with ongoing observational efforts they
may become accessible in the near future.

At the present, very little is known about the origin of magnetic fields and, although
many plausible explanations of how and when the fields were first generated have emerged,
no single theory became widely accepted. One class of models relies on large scale field
generation prior to recombination and subsequent field amplification by turbulence and
structure formation shocks. The hydrodynamical battery mechanism suggested by Bier-
mann is probably the most famous among those theories (Biermann 1950; Grasso & Ru-
binstein 2001). In contrast, post-recombination models usually assume a galactic origin
like the outflow of fields from active and starburst galaxies and radio jets at high redshift.
As in the primordial scenarios, an amplification of the seed fields by structure formation
is required to arrive at the observed values of today (Rees 1989; Goldshmidt & Rephaeli
1993).

The evolution of intracluster magnetic fields can be studied with numerical magneto-
hydrodynamic simulations. Dolag et al. (1999, 2002) performed simulations of the struc-
ture formation of galaxy clusters with the GADGET-2 code. Starting from seed field
values of ∼ 10−9 G at redshift 15 in a ΛCDM cosmology, they found that the amplifica-
tion by compression and shear flows during collapse and virialisation resulted in a roughly
exponential growth of the mean magnetic field strength with decreasing redshift. At z = 0
the magnetic fields had grown by a factor of ∼ 103 , displaying profiles similar to that of
the thermal gas distribution and thus confirming the existence of a close relation between
both components. Last not least, the simulations revealed that violent merger events play
a crucial role for the field amplification. In clusters undergoing one or two major mergers
the magnetic field was significantly enhanced compared to clusters that formed in a rather
smooth accretion process.

3.3.2 Cosmic rays

Cosmic Rays were discovered by Hess (1912) and Kohlhörster (1913) in the beginning of
the twentieth century through their ionising effect on airtight vessels of glass enclosing
two electrodes with a high voltage between them. Since the balloon-mounted detector
was measuring an increasing ionising effect as it climbed to higher altitudes the particles
were found to originate from outside earth. So the term Cosmic Rays was coined. Soon
afterwards their charge was detected since the Earth’s magnetic field acted differently on
particles coming from different directions.

The relative abundance of elements in the cosmic ray population are to first approxima-
tion similar to those of the interstellar medium. Relativistic protons make up the largest
part (∼90 %), followed by ionised helium (∼10 %). The rest are heavier elements includ-
ing essentially all elements in the periodic table with a tendency towards larger atomic
numbers at highest energies. Remarkably, the abundances of individual elements such
as lithium and beryllium can be up to several orders of magnitude higher compared to
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Figure 3.4: The cosmic ray all-particle spectrum observed by different experiments
(Nagano & Watson 2000). The differential flux was multiplied by E3 to project
out the steeply falling character.

those found in the interstellar medium (Wiebel-Sooth et al. 1998). Only a very small frac-
tion (∼1 %) of the cosmic ray population consists of lighter particles such as relativistic
electrons and positrons.

Cosmic rays are observed over eleven decades of energy from ∼ 109 eV to ≥ 1020 eV.
Most experiments agree that the all-particle spectrum above ∼ 1010 eV is characterised by
broken power-laws with a number of breaks while for lower energies the observed spectrum
is flat as it is affected by solar modulation. The spectrum observed by different experiments
above 1011 eV is shown in Figure 3.4. In the energy range between 1010 eV and 3 ·1015 eV
it can be fit by a power-law with slope ∼ 2.7 . The spectral index grows to ∼ 3.1 at the
“knee” around ∼ 1015 eV . The spectrum displays a second knee at ∼ 1017.5 eV where the
slope changes from ∼ 3.0 to 3.2. The upper bend is the so-called “ankle” at ∼ 1018.5 eV .
The spectrum above the ankle is not well defined, but might approximately be described
by a spectral index of ∼ 2.7 (Gaisser & Stanev 2009; Bergman & Belz 2007).

At energies around 5 · 1019 eV the interactions with the CMB should produce a strong
cutoff in the observed spectrum, called the GZK-cutoff (Greisen 1966; Zatsepin & Kuz’min
1966). The fact that this cutoff could not be seen at any energy up to the limit of data
at ≃ 3 · 1020 eV has been one of the most serious problems facing cosmic ray physics until
today. Only recently, the detection of GZK-cutoff has been reported by the Pierre Auger
Observatory (Yamamoto & for the Pierre Auger Collaboration 2007).

The power law characteristics of the cosmic energy spectrum together with its high
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particle energies rule out any conceivable thermal emission process as a source of particle
acceleration. It is for that reason that the cosmic ray population is usually referred to as
the non-thermal component of the ICM. Possible sites of primary particle acceleration are
point sources like supernova remnants, quasars or AGN, as well as large extended struc-
tures like clusters of galaxies undergoing gravitational collapse or merger shocks (Blandford
& Ostriker 1978; Kang & Jones 2002). It is generally believed that in all of those sources
energy injection is generated by first and second order Fermi processes inside the magne-
tised plasma. With the diffusive shock acceleration mechanism cosmic ray energies up to
E ≈ 1020 eV can be produced in merger shocks.

Due to their high kinetic energies, cosmic rays are essentially unaffected by gravitational
forces. The only confinement they experience is due to Lorentz force caused by the mag-
netic fields in the interstellar and intergalactic medium. At energies above ∼ 3 · 1018 eV
the gyroradii in typical galactic magnetic fields become larger than the size of the galaxy
so that the highest energy particles can diffuse into the ICM.

The transport of cosmic rays in clusters of galaxies is dominated by a variety of loss
mechanisms. Ionisation losses and spallation are mostly relevant for protons and heavier
nuclei in the lower-energy tail of the cosmic ray energy distribution and typically lead to
a cutoff at approximately 0.1 GeV . Furthermore, spallation restricts the distance heavy
nuclei can travel without being destroyed to only a few Mpc (Sigl 2006; Harari et al.
2006). Cosmic ray nuclei also interact with photons. Depending on the particle energy,
the particle-photon collisions either result in (1) pair production, (2) photoproduction of
hadrons (mostly pions), or (3) photodisintegration of the nucleus (for an overview see
Mannheim & Schlickeiser 1994).

The most important process in the context of the present work are hadronic collisions
between cosmic ray nuclei and the atoms and molecules of the thermal plasma. In this
process neutral and charged pions are produced that further decay into gamma rays and
“secondary” electrons respectively (Dennison 1980):

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ (3.28)

π0 → 2γ .

By the means of the above reaction a large population of secondary electrons can be
produced, additionally to the original cosmic ray electron population which will in the
following be labelled “primary”.

Independent of their origin, due to their small rest masses, the cosmic ray electrons
strongly suffer from radiative losses such as synchrotron and inverse compton emission.
The associated lifetimes of relativistic electrons in the ICM are thus rather short, within a
few 108 years, which limits the distances cosmic ray electrons can travel to about 1 Mpc .
Figure 3.5 shows the lifetimes of cosmic ray electrons under typical cluster conditions
calculated in an analytical model by Sarazin (1999). The combined timescale due to the
losses by IC scattering, synchrotron emission, Coulomb losses, and Bremsstrahlung reaches
a maximum of ∼ 3 ·109 yr for electrons with Lorentz factors γ ∼ 300 . This maximum loss
time scale is comparable to the Hubble time or the typical age of clusters. For relativistic
electrons with either much higher or lower energies, the loss time scale is considerably
shorter than the typical age of a cluster.
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Figure 3.5: The lifetimes of relativistic electrons as a function of γ in a cluster with an
electron density ne = 10−3 cm−3 and a magnetic field of B = 1µG (solid
curve), for a magnetic field of B = 5µG (dashed curve), and for an electron
density of ne = 10−4 cm−3 (dot-dashed curve). Figure from Sarazin (1999).

3.3.3 Radiation

X-ray emission due to thermal bremsstrahlung is a common property of galaxy clusters.
Through its X-ray emission, the ICM yields the highest-quality observational data con-
cerning a cluster’s dynamical state. In contrast, radio synchrotron emission from the ICM
is only observed in those clusters currently experiencing the largest departures from a
virialised state. By studying the X-ray and radio properties of galaxy clusters we can gain
important insight into the evolution and distribution of the large-scale structure in our
Universe.

Bremsstrahlung emission

When a charge is accelerated or decelerated it emits radiation, and bremsstrahlung or free-
free emission is the radiation emitted in electromagnetic encounters between the charge
and a nucleus of the ambient plasma. The most common situation in which a continuum
of radiation is emitted is in the collision of an electron with an atom. In the instantaneous
rest frame of the accelerated electron, the total power emitted into all angles is described
by Larmor’s formula

dE

dt
=

2e2|~̇v|
3c3

, (3.29)

where ~̇v is the proper acceleration of the electron. To obtain the spectral distribution of
the radiation we make use of Parseval’s theorem which tells us that the acceleration ~̇v(t)
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and its Fourier decomposition ~̇v(ω) are related by

∫ ∞

−∞
|~̇v(t)|2dt =

1

2π

∫ ∞

−∞
|~̇v(ω)|2dω . (3.30)

Thus, the total energy radiated in a single collision between an electron and a nucleus is
given by

∫ ∞

∞

dE

dt
dt =

2e2

6πc3

∫ ∞

−∞
|~̇v(t)|2dt =

2e2

6πc3

∫ ∞

−∞
|~̇v(ω)|2dω

=
4e2

3πc3

∫ ∞

0
|~̇v(ω)|2dω , (3.31)

By differentiation we obtain the total energy per unit frequency emitted throughout the
duration of the encounter,

dE

dω
=

2e2

3c3
|~̇v(ω)|2 . (3.32)

With these definitions we can now derive the energy radiated by an electron that moves
past an ion of charge Ze with impact parameter b . Assuming that the electron moves
rapidly enough, we can neglect the deviation of its path from a straight line. With Lar-
mor’s formula we already have an expression for the acceleration of the electron in the
electrostatic field of the ion. From (3.32) we know the frequency distribution of the radi-
ation emitted in the encounter.

To obtain the total spectrum for a medium with ion density ni and electron density ne

and for a fixed electron speed v we need to integrate over all collision parameters b :

dE

dωdV dt
= neni2πv

∫ ∞

bmin

dE(b)

dω
bdb , (3.33)

where bmin is the lower limit for the impact parameter. To a very good approximation
dE(b)/dω can be replaced by its asymptotic expression for low frequencies:

dE(b)

dω
=

8Z2e6

3πc3m2v2b2
, b ≪ v/ω . (3.34)

Integration of equation (3.33) then yields

dE

dωdV dt
=

16e2

3c3m2v
neniZ

2

∫ bmax

bmin

db

b
=

16e2

3c3m2v
neniZ

2 ln

(

bmax

bmin

)

. (3.35)

The value for bmin is derived from quantum physics. The maximum velocity acquired by
the electron is ∆v ≈ 2v and hence ∆p = 2mev . According to the Heisenberg uncertainty
principle, the uncertainty in the position is then given by ∆x ≈ ~ and thus

bmin =
~

2mev
. (3.36)

The upper limit to the impact parameter, bmax will occur when the duration of the collision
is of the same order as the period of the electron in the orbit. Thus we only integrate out
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Figure 3.6: RXJ1226.9+3332, a relaxed massive cluster at z = 0.89 . The contours of X-
ray emission detected by XXM-Newton 0.3 - 8 keV is overlaid on a Subaru
I-band image. Figure from Maughan et al. (2004).

to those values of b for which ωb/v = 1 (see e.g. Longair 1981). The result is conveniently
stated in terms of the Gaunt factor gff(v, ω) such that

dE

dωdV dt
=

16πe2

3
√

3c3m2v
neniZ

2gff(v, ω) . (3.37)

The Gaunt factor is a function of the electron energy and the frequency of the emission.
Tables and graphs of it can be found in the literature (Karzas & Latter 1961; Bressaard
& van de Hulst 1962).

In order to work out the bremsstrahlung from a gas at temperature T ,expression (3.37)
must be integrated over a Maxwellian distribution of electron velocities:

P (v)dv = Av2 exp

(

− mv2

2kBT

)

dv . (3.38)

Performing the integral and using dω = 2πdν we arrive at (Rybicki & Lightman 1979)

dE

dνdV dt
=

25πe6Z2

3mc2

√

2π

3kBm
T−1/2 ne ni e

−hν/kT ḡff(T, ν) , (3.39)

where ḡff(T, ν) is a velocity averaged Gaunt factor. Most clusters have temperatures be-
tween 2·107 K and 108 K and therefore emit in the X-ray regime. From X-ray observations,
one can thus infer the density and temperature of a galaxy cluster.

Figures 3.6 and 3.7 show the X-ray morphologies of the bremsstrahlung emission of
the two galaxy clusters RXJ1226.9+3332 and RX J0152.7-1357. The first object is a
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Figure 3.7: The merging cluster RX J0152.7-1357 at z = 0.83 . The Chandra X-ray con-
tours are overlaid on a Keck II I-band image. Figure from Maughan et al.
(2003)

massive relaxed cluster while the second object is a galaxy cluster in an early stadium of a
major merger event. A comparison of the two pictures demonstrates how clearly the ICM
distribution of a dynamically active cluster differs from that of a virialised one.

Synchrotron emission

Synchrotron radiation is generated when relativistic electrons spiral through magnetic
fields. The particles are forced on helical orbits around the magnetic field lines by the
Lorentz force. Since the force on a particle is perpendicular to the motion, the magnetic
field cannot do work on the particle, and so its speed does not change, i.e. |~v| = constant.
The relativistic form of the equation of motion of the particle in the magnetic field can
thus be written

γm
d~v

dt
=

q

c
~v × ~B , (3.40)

where q is the charge of the particle and ~B is the magnetic field vector. Separating
components along and normal to ~B we have

~v‖

dt
= 0 ,

d~v⊥
dt

=
q

mγc
~v⊥ × ~B . (3.41)

The frequency of the resulting helical motion is given by

νg =
qB

2πγmc
. (3.42)
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The total emitted power P for the relativistic particle follows from considering the power
produced in the frame of the particle (for which Larmor’s formula applies) and then trans-
forming to the laboratory frame using the Lorentz transformations (Rybicki & Lightman
1979):

P =
2q2

3c3
γ4 q2B2

γ2m2c2
v2
⊥ . (3.43)

For an isotropic distribution of velocity vectors we furthermore need to average v⊥ over all
pitch angles θ , which are the angles between the magnetic field and the velocity vector,

〈v2
⊥〉 =

v2

4π

∫ π

0
(sin θ)2dΩ =

v2

2

∫ π

0
(sin θ)3dθ =

2

3
v2 . (3.44)

The total power emitted at all frequencies may then be written as

P =
dE

dt
=

1

6π
σT cγ2β2B , (3.45)

where we have introduced the Thomson cross section σT = 8πr2
0/3 and the classical

electron radius r0 ≡ e2/mc2 .
In clusters of galaxies the synchrotron radiation from cosmic ray electrons is the dom-

inant source of non-thermal emission. The spectrum of the IC synchrotron radiation is
obtained by integrating over the distribution of cosmic ray electrons , which is approxi-
mated by a power-law over a limited range of energies:

n(E)dE = CE−αdE, E1 < E < E2 , (3.46)

where C is a normalisation constant that can vary with the electron pitch angle and the
like. The emissivity of an ultra-relativistic electron with energy E ≫ mec

2 and pitch angle
θ in the frequency range [ν, ν + dν] is given by (Longair 1981)

P (ν, E, θ)dν =

√
3e3B sin θ

mc2

νdν

νc

∫ ∞

ν/νc

K5/3(η)dη , (3.47)

where K5/3 is the Bessel function of order 5/3. Here, νc denotes the critical frequency at
which the resulting energy spectrum has a maximum:

νc =
3γ2eB sin θ

4πmec
. (3.48)

Integrating the cosmic ray distribution (3.46) times the single electron radiation formula

(3.47) over the energy range (E1, E2) , and using the substitution E = x−1/2
√

4πm3c5ν
3eB sin θ

with x = ν/νc leads to

Psync(ν, θ) =

∫ E2

E1

P (E, ν)n(E)dE =

√
3e3

2mc2

(

3e

4πm3c5

)(α−1)/2

C (B sin θ)(α+1)/2ν(1−α)/2G

(

ν

ν1
,

ν

ν2
, α

)

. (3.49)
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In the above expression, G replaces the integral

G (x1, x2, p) =

∫ x1

x2

xp−3/2 x

∫ ∞

x
K5/3(x)dx . (3.50)

For a very wide range of frequencies with ν1 → 0 and ν2 → ∞ we can approximate (3.50)
by

G (∞, 0, α) =
2(α−3)/2

3

(

3α + 7

α + 1

)

Γ

(

3α − 1

12

)

Γ

(

3α + 7

12

)

. (3.51)

For an isotropic distribution of particles and orientations of magnetic fields, the averaged
emitted power into all spatial directions is obtained by integration, using the isotropic
distribution function of the pitch angle:

1

4π

∫ π

0
(sin θ)kdΩ =

1

2

∫ π

0
(sin θ)k+1dθ =

√
π

2
Γ

(

k + 2

2

)

Γ

(

k + 3

2

)−1

. (3.52)

With these last two results (3.51) and (3.52) we finally obtain

Psync(ν) =

√
3π

32π

e3

mec2

(

3 e

2π m3
e c5 ν

)αν

×

C B(αν+1)ν−αν
αe + 7

3

αe + 1

Γ
(

3αe−1
12

)

Γ
(

3αe+7
12

)

Γ
(

αe+5
4

)

Γ
(

αe+7
4

) , (3.53)

where the spectral index of the synchrotron spectrum is defined by αν = (α − 1)/2 .
Thus we find that a power-law distribution of relativistic electrons produces a power-law
synchrotron spectrum.

Cosmic ray electrons in the ICM of galaxy clusters typically emit in the radio frequency
range. Since particle acceleration is significantly enhanced during a merger event, the
presence of extended radio sources and halos is a strong indicator for ongoing dynamical
activity. Furthermore, large scale radio halos represent a direct probe of the strength and
morphology of the intracluster magnetic field. In Figures 3.8 and 3.9 we show observations
of two different galaxy clusters in radio and X-ray. The radio contours of the first cluster,
Abell 2163, have a rather regular shape while the morphology of the bremsstrahlung
emission indicates the infall of a large sub-clump from outside the virial radius. The
second example is the cluster Abell 2256. Radio and X-ray emission suggest a major
merger in its final stage. Two sub-clumps of nearly equal size close to the centre of the
cluster can be seen in the X-ray detection. At the same time, the steep radio profile in
the north west clearly reflects the orientation of the shock front and thus reveals the infall
geometry.

3.3.4 Gravitational lensing

The term gravitational lensing denotes the deflection and time delay of light by a Newto-
nian gravitational field due to the distortion of the locally flat Minkowski space-time. The



38 3.3. CLUSTER OBSERVABLES

Figure 3.8: The cluster A2163 (z = 0.2 ) in radio and X-ray. The contours represent radio
emission at 20 cm , showing an extended radio halo. The colour-scaled image
represents the ROSAT X-ray emission. The extended irregular X-ray structure
indicates the presence of a recent cluster merger. Figure from Feretti et al.
(2004).

null-geodesics of photons that move past a spherical distribution of mass M in the weak
field limit (Φ ≪ c2) are described by the line element

ds2 =

(

1 +
2Φ

c2

)

c2dt2 −
(

1 − 2Φ

c2

)

dl2 = 0 , (3.54)

where Φ = GM/r denotes the gravitational potential and r is the distance of closest
approach between the photon and the deflecting object. Since the corrections of order
GM/rc2 are small we can, after separating terms in (3.54) and taking the square root,
expand both brackets in a power series such that

(

1 +
Φ

c2

)

cdt =

(

1 − Φ

c2

)

dl . (3.55)

The light refraction can now be expressed in terms of an effective speed of light c′ which
is defined by

c′ =
dl

dt
= c

(

1 +
Φ

c2

)

=:
c

n
, (3.56)

where

n :=

(

1 − Φ

c2

)

≥ 1 (3.57)

is the effective index of refraction defined in analogy to the concepts of geometrical optics.
The mass thus acts like a convex lens that deflects the light of a background source
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Figure 3.9: Three colour image of the radio and X-ray emission in A2256 (z = 0.0594 ).
Contours and blue emission show the 1369 MHz synchrotron emission, while
the Chandra X-ray image shown in red and yellow reveals the extended diffuse
thermal emission. The two X-ray peaks near the cluster centre indicate a
major merger event which is thought to be responsible for creating the diffuse
radio emission. Figure from Clarke & Ensslin (2006).
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towards its centre. The lensing effect becomes stronger with increasing mass M of the
lensing object and with decreasing distances r from its centre.

We can derive the deflection angle using Fermat’s principle which states that the integral
over the path of a light ray between two fixed points becomes extremal,

δ

∫

n(~x) d~x = 0 . (3.58)

From the corresponding Euler-Lagrange equations we obtain the change of the tangent
vector ~e along the light ray

d~e

dl
= − 2

c2
~∇⊥Φ , (3.59)

where the gradient is taken perpendicular to the light path. Suppose that the deflection
produced by the lens is small, the total deflection of the light ray is then given by the
angle

~̂α = −
∫

~∇⊥ndl =
2

c2

∫

~∇⊥Φdl , (3.60)

where the integral is taken along the photon trajectory. Nevertheless, since ~̂α is small, the
integration can be carried out along an unperturbed, straight light ray.

Furthermore, we can assume that the lens is infinitely thin compared to the distances
between the source and the lens and between the lens and the observer. The gravitational
lens can thus be considered to be a mass sheet lying in a plane orthogonal to the line of
sight that is called the lens plane. Projection of the lensing object along the line of sight
yields the surface mass density

Σ(~ξ) =

∫

ρ(~ξ, z) dz , (3.61)

in which the integral is taken over the photon path as before. The deflection angle at a
certain position ~ξ is then found by summing up the deflection angles of all infinitesimal
mass elements in the lens plane:

~̂α(~ξ) =
4G

c2

∫

(~ξ − ~ξ ′)Σ(~ξ ′)

|~ξ − ~ξ ′|
d~ξ ′ . (3.62)

For the simple case of a spherically symmetric lens the mass projection yields a circular
symmetric mass distribution and the deflection angle is given by

~̂α(ξ) =
4GM(ξ)

c2ξ
, where M(ξ) = 2π

∫ ξ

0
Σ(ξ ′)ξ ′dξ ′ . (3.63)

The angle α̂ thus points towards the centre of symmetry.
The great virtue of gravitational lensing comes from the fact that, in analogy to geo-

metrical optics, the angular diameters and angular-diameter distances of the lens and the
source are related by the simple laws of geometry. The optical axis of the system is defined
by the line of sight of the observer through the centre of the lens as sketched in Figure
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Figure 3.10: The geometry of gravitational lensing. The source S is lensed by a massive
object at distance Dds and produces an image I which is seen by the observer
O under the angle α (from Narayan & Bartelmann 1996).

3.10. Using the angular diameter distance between the lens and the source, Dds , and
between the lens and the observer, Ds , we can infer the reduced deflection angle which is
the angular distance on the sky between a source and its image:

~α =
Dds

Ds
~̂α . (3.64)

From the diagram we also see that

~θDs = ~βDs − ~̂αDds , (3.65)

where ~β and ~θ are the angular positions of the source and the image relative to the optical
axis. Therefore, the positions of the source and the image are related through the simple
lens equation

~β = ~θ − ~α(~θ) . (3.66)

A characteristic quantity of gravitational lensing is the critical surface mass density Σcr.
Integrating over a constant surface mass density in equation (3.63) we obtain the reduced
deflection angle

~α(~θ) =
Dds

Ds

4G

c2ξ
(Σπξ2) =

4πG Σ

c2

DdDds

Ds

~θ , (3.67)

where we have set ξ = Dd
~θ . The critical surface mass density Σcr is now defined such

that ~α(~θ) = ~θ and ~β = 0 for any ~θ :

Σcr =
c2

4πG

Ds

DdDds
. (3.68)
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This property corresponds to a perfect lens which brings all light rays to focus at a well-
defined focal length. Real gravitational lenses are related to the ideal lens via the conver-
gence κ := Σ/Σcr. Due to the rotational symmetry of the perfect lens system, a source
which lies exactly on the optical axis (~β = 0 ) is imaged as a ring if the lens is supercritical.
The corresponding ring radius is named Einstein radius θE.

It is useful to define the effective lensing potential ψ(~θ) which is a weighed projection
of the Newtonian potential,

ψ(~θ) =
Dds

DdDs

2

c2

∫

Φ(Dd
~θ, z) dz . (3.69)

The reduced deflection angle can then be written as

~∇θψ = Dd
~∇ξψ =

2

c2

Dds

Ds

∫

~∇⊥Φ dz = ~α . (3.70)

Using Poisson’s equation for the three-dimensional gravitational potential and inserting
definition (3.68), we find that the Laplacian is just twice the convergence in the two-
dimensional Poisson equation

∇2
θψ =

2

c2

DdDds

Ds

∫

∇2
ξΦ dz =

2

c2

DdDds

Ds
· 4πG Σ = 2

Σ(~θ)

Σcr
≡ 2κ(~θ) . (3.71)

Real gravitational lenses such as galaxy clusters in general do not only shift the apparent
position of a background source but also magnify its apparent luminosity. Moreover, since
galaxy clusters usually have a non-spherical shape and may show significant substructure,
the image can be strongly distorted. The local properties of the mapping of the source
plane onto the image plane are best specified by the Jacobian matrix

A ≡ ∂~β

∂~θ
=

(

δij −
∂2ψ(~θ)

∂θi∂θj

)

. (3.72)

With equation (3.71) we find that

κ =
1

2

(

∂2ψ

∂θ1∂θ1
+

∂2ψ

∂θ2∂θ2

)

. (3.73)

Another important quantity is the shear tensor γ(~θ) . Its two components are given by

γ1(~θ) =
1

2

(

∂2ψ

∂θ1∂θ1
− ∂2ψ

∂θ2∂θ2

)

≡ γ(~θ) cos
[

2φ(~θ)
]

, (3.74)

γ2(~θ) =
∂2ψ

∂θ1∂θ2
=

∂2ψ

∂θ2∂θ1
≡ γ(~θ) sin

[

2φ(~θ)
]

. (3.75)

Inserting these definitions, the transformation matrix A can be written

A =

(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)

(3.76)

= (1 − κ)

(

1 0
0 1

)

− γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

. (3.77)
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The meanings of the different terms are now clear from the above decomposition. Con-
vergence alone causes isotropic focussing of light rays, thereby leading to isotropic mag-
nification of a source. The shear terms introduce anisotropic distortions of the image. As
an example, a circular source of unit radius will be distorted to an elliptical image with
major and minor axes (1 − κ − γ)−1 and (1 − κ + γ)−1 , respectively. The magnification
is now given by

µ =
1

detA =
1

[(1 − κ)2 − γ2]
. (3.78)

So-called critical lines form at locations where 1−κ±|γ| = 0 and the mapping between
the source and image plane becomes singular. The corresponding curves in the source
plane are called caustics. Near the caustics the shape of the images gets strongly distorted,
producing near-circular giant arcs which can be very bright.

One distinguishes between the weak and strong lensing regime, depending on whether
the shape of high redshifted objects is only slightly deformed or whether the sources are
strongly distorted and amplified. In the latter case multiple images can be produced.

In observational cosmology, strong lensing is used to probe the mass distribution in the
central parts of galaxy clusters while weak lensing distortions of background galaxies are
used to trace the mass distributions in the cluster periphery. Since the images produced
by cluster lensing are usually highly complex, considerable modelling is needed to infer
the underlying mass distribution.
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Numerical Methods 4
The numerical simulations of the formation of galaxy clusters were carried out with the
GADGET-2 code, a massively parallel cosmological code designed by Volker Springel
(Springel 2005). The code is capable of following a collisionless fluid with the N-body
method, calculating the gravitational forces through the combination of a TreePM algo-
rithm and Fourier techniques. In the extended code version also gas physics is integrated.

In what follows we will present the numerical method that is used in the code for
describing the behaviour of a baryonic gas. We first introduce the concepts of smoothed
particle hydrodynamics that appears to be the method of choice for most astrophysical
applications. In the subsequent section we will demonstrate how the numerical description
is extended to yield smooth particle magnetohydrodynamics. Finally, a simplified model
for the description of cosmic ray physics is presented that self-consistently accounts for
the dynamical effects of the relativistic particles during structure formation.

4.1 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) was first implemented by Gingold & Monaghan
(1977) and Lucy (1977) as a new numerical technique for describing stellar gas dynamics.
In contrast to the conventional grid-based methods that split the computational domain
into a mesh of grid cells over which the physical variables need to be averaged (particle-
mesh, PM) or interpolated (finite difference/volume methods, (Godunov 1959; Colella
& Woodward 1984)), SPH is designed to trace the motions of individual fluid elements.
The fluid continuum is approximated by so-called SPH-particles of preassigned masses for
which the equations of motion are solved, provided the conservation of energy, momentum,
and angular momentum. Consequently, the force that acts on a single particle is the sum
of the forces exerted by all other particles.

Due to its Lagrangian nature, in situations where a high resolution inside a large-scale
system is required, SPH offers numerical advantages over the grid-based representations.
While in the Eulerian grid approach small, but dynamically important regions must be
treated by a subgrid model, the resolution in a SPH representation is naturally increased
due to the intrinsically higher number of particles in high-density regions. In astrophysics
and cosmology one often deals with systems that exhibit important features over several
orders of magnitude (e.g. turbulent motion inside galaxy clusters) or objects that change

45
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their sizes on short timescales (e.g. gravitational collapse of gas clouds). SPH is particu-
larly suited to follow the gravitational growth of structure and to automatically increase
the resolution in the central regions of galaxy clusters, which are the regions of primary
interest for the study of non-thermal radio and X-ray emission.

An important disadvantage of the SPH discretisation is that the fluid quantities can
only vary on the smallest length scale, namely the radius of a SPH particle, and disconti-
nuities such as shock fronts are therefore not resolved. To cure this problem, an artificial
viscosity is introduced which spreads out the discontinuity such that it can be resolved
and furthermore supplies the required entropy injection in non-isentropic shocks.

4.1.1 Basic concepts

The concepts of SPH are derived from the simple identity

A(~r) =

∫

R3

A(~r ′)δ(|~r − ~r ′|)d~r ′ , (4.1)

where A is any variable defined on the spatial coordinates ~r and δ is the Dirac delta
distribution. We introduce a smoothing kernel W that has the properties

lim
h→0

W (|~r − ~r ′|, h) = δ(|~r − ~r ′|) and

∫

R3

W (|~r − ~r ′|, h)d~r ′ = 1 . (4.2)

For h > 0 the integral is thus approximated by

A(~r) ≈
∫

R3

A(~r ′)W (|~r − ~r ′|, h)d~r ′ . (4.3)

To switch from the continuum description to the discretised picture, the integral is replaced
by a summation over all SPH-particles

AS(~ri) =
N

∑

j=1

mj
Aj

ρj
W (|~ri − ~rj |, hj) , (4.4)

where the volume element d~r ′ has been replaced by the volume Vj = mj/ρj of the jth
particle and the quantity AS(~ri) is now defined at the location of the ith particle. The
length hj in the argument of the kernel function is identified with the particle radius. The
essential point about (4.4) is that, by using a differentiable kernel, the derivative of the
hydrodynamic variable AS reduces to the analytic differentiation of the kernel:

∇AS(~ri) =
N

∑

j=1

mj
Aj

ρj
∇W (|~ri − ~rj |, hj) . (4.5)

In GADGET-2, instead of the Gaussian kernel that was originally proposed by Gingold
& Monaghan (1977), a spline kernel of the form (see Monaghan & Lattanzio (1985))

W (r, h) =
8

πh3
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is used. The smoothing length h is variable and in each time step adjusted such that the
total mass of the particles inside the radius of the ith particle is nearly equal to a fixed
value Msph for the the estimated density ρi and an average particle mass m̄:

4π

3
h3

i ρi = MSPH = m̄NSPH . (4.7)

Very often, in SPH calculations we use a symmetrised kernel W̄ij that is the arithmetic
average of the two kernels W (|~ri − ~rj |, hi) and W (|~rj − ~ri|, hj),

W̄ij =
1

2
[W (|~ri − ~rj |, hi) + W (|~rj − ~ri|, hj)] . (4.8)

Using this kernel together with (4.4), the density at the centre of each particle can be
expressed as

ρi =
N

∑

j=1

mjW̄ij . (4.9)

It is always instructive to rewrite the divergence of a quantity with the density placed
inside the operator. For the divergence of the velocity for instance we then get

(∇ · ~v)i =
1

ρi
[∇i · (ρ~v)i − ~vi · (∇ρ)i] =

1

ρi

N
∑

j=1

mj(~vj − ~vi) · ∇iW (|~ri − ~rj |, hi) . (4.10)

This expression will become useful later on.

4.1.2 The fluid equations

Starting from the equations of motion in Lagrangian coordinates, the discretised fluid
equations are straightforwardly derived following the formalism presented above. The
momentum equation for the ith particle in the absence of dissipation is given by

d~v

dt
= −∇p

ρ
. (4.11)

The equation can be directly translated into an SPH equation:

d~vi

dt
=

1

ρ2
i

∑

j

mj(pj − pi)∇iW (|~ri − ~rj |, hi) . (4.12)

However, in the present form, the SPH momentum equation violates the conservation
of linear and angular momenta. This can be seen when considering an isolated pair of
particles with unequal pressures. According to (4.12) both particles would experience an
acceleration of the same absolute value but with opposite signs, inducing an unphysical
drift velocity of the entire system. By re-expressing the pressure gradient according to

(∇p)

ρ
= ∇p

ρ
+

p

ρ2
∇ρ , (4.13)
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we can bring the momentum equation (4.11) into a symmetric discretised form:

d~vi

dt
= −

N
∑

j=1

mj

(

pj

ρ2
j

+
pi

ρ2
i

)

∇iW̄ij . (4.14)

The pressure gradient now produces a symmetric central force between pairs of particles
and therefore guarantees for the conservation of the linear and angular momentum. The
above symmetrised equation of motion has for example been used by Thomas & Couchman
(1992) in simulations of galaxy cluster formation. Nevertheless, infinitely many symmetric
forms of the SPH momentum equations can be constructed.

The thermal energy equation can be transformed in a similar manner:

du

dt
= −

(

p

ρ

)

∇ · ~v = −∇ ·
(

p~v

ρ

)

+ ~v · ∇
(

p

ρ

)

. (4.15)

The symmetrised SPH equivalent yields

dui

dt
=

1

2

N
∑

j=1

mj

(

pj

ρ2
j

+
pi

ρ2
i

)

(~vi − ~vj) · ∇iW̄ij . (4.16)

Integration of the two equations gives the thermodynamic state of the fluid element. In
the present form, the equations of motion adequately describe fully reversible hydrody-
namic processes. For the capturing of shocks in the simulation, we must account for the
broadening of the shock fronts and, where necessary, for the increase of entropy due to
energy dissipation. In SPH this is achieved by adding an artificial viscosity term to (4.14)
and (4.16) (see Section 4.1.4).

Hernquist (1993) showed that in the presented formulation of SPH the total energy
is well conserved while at the same time the entropy conservation is violated, even for
purely adiabatic flows. There is the possibility to switch to a different representation of
the hydrodynamic equations, but according to Hernquist (1993) and Springel & Hernquist
(2002), this will not lead to any improvement.

A fundamentally different approach was suggested by Lucy (1977), Benz & Hills (1987),
and Hernquist (1993) who formulated SPH in terms of dynamical equations for the entropy
instead of the energy. If an entropy equation is integrated then the entropy is accurately
conserved although this time, the total energy is not. However, Springel & Hernquist
(2002) accomplished to develop a SPH scheme that manifestly conserves both, energy and
entropy. They tested their “conservative entropy approach” against several alternative
implementations of SPH for a set of astrophysical problems. The authors point out that
the algorithm is particularly suited for cosmological simulations, although the total energy
is not conserved accurately for point explosions. The “conservative entropy approach” is
also used in the GADGET-2 code.
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4.1.3 The entropy equation

For an ideal gas undergoing adiabatic compression or expansion, the gas pressure and
density are related by

p = A(s)ργ , (4.17)

where γ is the adiabatic index. The thermodynamic state of a SPH particle is defined
through the entropic function A(s) which is an exclusive function of the specific entropy s
and can therefore be used as an adiabatic invariant of hydrodynamics. From the entropic
function the internal energy is inferred:

u =
A(s)

γ − 1
ργ−1 . (4.18)

Using the last expression, the Lagrangian for the system of SPH particles takes the form

L(~q, ~̇q, t) =
1

2

∑

i

mi~̇r
2
i −

1

γ − 1

∑

i

miAiρ
γ−1
i , (4.19)

where the independent variables ~q = (~r1, . . . , ~rN , hi, . . . , hN ) are the coordinates and
smoothing radii of the N particles and the thermal energy acts as the potential that
induces the particle motion. The conservative entropy approach requires that the smooth-
ing radii are constrained as stated in (4.7), giving rise to the N holonomic constraints

φi ≡
4π

3
h3

i ρi − MSPH = 0 (4.20)

on the coordinates of the Lagrangian. The corresponding 2N Euler-Lagrange equations
of the first kind are:

∂L
∂qi

− d

dt

∂L
∂q̇i

+
N

∑

j=1

λj
∂φj

∂qi
= 0 . (4.21)

The second half of these equations leads to

mi
pi

ρ2
i

(

∂ρi

∂hi

)

−
[

4πh2
i ρi +

4π

3
h3

i

(

∂ρi

∂hi

)]

λi = 0 (4.22)

and hence the Lagrange multipliers are

λi =
3

4π

mi

h3
i

pi

ρ2
i

[

1 +
3ρi

hi

(

∂ρi

∂hi

)−1
]−1

. (4.23)

Inserting the Lagrange multipliers into the first half of equations (4.21) we obtain the N
equations of motion:

mi
d~vi

dt
= −

N
∑

j=1

mj
pj

ρ2
j

[

1 −
(

1 +
3ρi

hi

∂hi

∂ρi

)−1
]

∇iρj . (4.24)
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By re-expressing the density gradient in the last equation according to

∇iρj = mi∇iW (~ri − ~rj , hj) + δij

N
∑

k=1

mk∇iW (~rk − ~ri, hi) , (4.25)

we get the equations of motion in their final form:

d~vi

dt
= −

N
∑

j=1

mj

(

fi
pi

ρ2
i

∇iW (~ri − ~rj , hi) + fj
pj

ρ2
j

∇iW (~ri − ~rj , hj)

)

. (4.26)

Here, the coefficients fi are defined by

fi =

[

1 +
hi

3ρi

∂ρi

∂hi

]−1

. (4.27)

Interestingly, the equation of motion has a intrinsically symmetric form and is very similar
to the momentum equation (4.14) derived in the last chapter. Nevertheless, energy and
entropy are only conserved when the f -factors are included.

4.1.4 Shocks and viscosity

Flows of gas easily develop discontinuities and shocks over which the pressure and density
of the medium undergo a sudden change. Under ideal conditions, the relaxation time that
the system requires to attain equilibrium on microphysical scales is infinitely small. The
system then passes through a number of quasi stationary states and the shock is said to
be isentropic. In reality however, due to the intrinsic viscosity of any fluid, the thermal
equilibrium can never be reached instantaneously. Therefore, the assumption of a quasi
stationary process generally does not hold in real gas shocks. Instead, the interactions on
microphysical scales dissipate kinetic energy and generate entropy.

The common method to mimic this non-adiabatic behaviour in SPH is to introduce
artificial viscosity. The form of the artificial viscosity term was proposed by Monaghan
& Gingold (1983) and later slightly modified by Monaghan (1997). The viscosity tensor
that is used in GADGET-2 has the form (Springel 2005):

Πij =

{

−α
2 (ci + cj − 3wij)wij/ρij , ~vij · ~rij < 0

0 , ~vij · ~rij ≥ 0
, (4.28)

where ci and cj are the sound velocities of the two particles i and j and ~vij and ~rij denote
the arithmetic means of the velocities and position vectors. wij = ~wij · ~vij/|~rij | is the
relative velocity of the particle approach projected onto the connecting line between the
particles. The parameter α is used to adjust the strength of the viscosity with typical
values in the range α ≃ 0.5 − 1.0. Consequently, the viscosity tensor has the dimension

[Π] =
[length]5

[mass][time]2
. (4.29)
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Including artificial viscosity into the momentum equation we obtain

d~vi

dt
= −

N
∑

j=1

mj

(

fj
Pj

ρ2
j

+ fi
Pi

ρ2
i

+ Πij

)

∇iW̄ij , (4.30)

where we have used the symmetrised kernel defined in equation (4.8).

In absence of external sinks and sources of heat the change in the entropic function A(s)
is solely generated by shock fronts and depends on the artificial viscosity according to

dAi

dt
=

1

2

γ − 1

ργ−1
i

N
∑

j=1

mjΠij(~vi − ~vj) · ∇iW̄ij . (4.31)

To illustrate the influence of artificial viscosity on the particle motion we define the viscous
pressure acting on the particles i and j,

pvisc ≃
1

2
ρ2

ijΠij = −α

2

[

ρijcijwij +
3

2
ρijw

2
ij

]

(4.32)

and relate it to the thermal pressure ptherm = c2
ijρij/γ. This gives

pvisc

ptherm
≃ α

2
γ

[

wij

cij
+

3

2

(

wij

cij

)2
]

. (4.33)

It appears that the relative viscous pressure grows with the value of the quantity wij/cij

which can be interpreted as the Mach number of the fluid flow. Hence, artificial viscosity
becomes most important where shocks occur and is automatically reduced elsewhere. Since
SPH simulations can still be more dissipative than necessary in certain situations (such as
shear flows), an additional viscosity switch is implemented in GADGET-2 (see e.g. Morris
& Monaghan (1997), Dolag et al. (2005)).

4.2 Smoothed particle magnetohydrodynamics (SPMHD)

The cosmic plasma can in good approximation be described as one single, ideally conduct-
ing fluid. It mainly consists of freely streaming electrons and ions that quickly straighten
out charge imbalances and thus limit the lifetime of cosmic electric fields to very short
time scales. In contrast, no free magnetic charges exist to short out cosmic magnetic fields.
Once generated through the action of electric currents, due to the quasi infinitely large
conductivity, the magnetic fields are “frozen” into the plasma where they can persist for
a long time.

The evolutionary equation for magnetic fields is the induction equation which can be
written as

d ~B

dt
= ( ~B · ∇)~v − ~B(∇ · ~v) . (4.34)
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Translating this equation into the SPH formalism, using relation (4.10), we obtain

dBk
i

dt
=

1

ρi

N
∑

j=1

mj(B
k
i (~vi − ~vj) − (~vi − ~vj)

k ~Bi) · ∇iW (|~ri − ~rj |, hi) , (4.35)

where (~vj −~vi)
k is the kth component of the relative velocity ~vj −~vi. Since the electrically

neutral but conducting gas effectively feels only the effects of magnetic forces (and the
hydrodynamic forces), we obtain for the Lorentz force density:

ρ
d~v

dt
=

1

4π
(∇× ~B) × ~B (4.36)

= − 1

8π
∇ ~B2 +

1

4π
( ~B · ∇) ~B , (4.37)

where, in the second line, we applied the formula for the expansion of the triple vector
product to obtain the two terms for the contributions of the magnetic pressure and the
magnetic tension. The right hand side of the Lorentz force density is conveniently written
as the divergence of the stress-energy tensor Mkm of the magnetic field

ρ
d~v m

dt
=

∂Mkm

∂xm
. (4.38)

The components of M are given by

Mkm =
1

4π

(

~Bk ~Bm − 1

2
~B2δkm

)

. (4.39)

The additional term ~B(∇· ~B)/ρ that appears when evaluating the divergence of the stress-
energy tensor vanishes due to ∇ · ~B = 0 . Equations (4.37) and (4.38) are therefore
analytically equivalent. Numerically, however, this is not true since in SPMHD calculations
discretisation errors cause ∇ · ~B to grow over time. The resulting unphysical force term
must explicitly be subtracted from the Lorentz force in each time step (Børve et al. 2001).

The tensor equation (4.38) has the important advantage that it conserves linear and
angular momenta exactly. A disadvantage of the conservation form is that, as shown in
calculations by Phillips & Monaghan (1985), the gas motion can become unstable in the
presence of strong magnetic fields. In such situations, (4.37) leads to better results.

Dolag et al. (1999) compared the two alternative implementations in cosmological cluster
simulations without finding significant differences in the resulting magnetic fields. The
reason for this might be that in large-scale cosmological simulations such critical values
for the magnetic field are never reached. For the GADGET-simulations we therefore
employ the conservative form of the Lorentz force density (4.38), being well aware that
difficulties may arise in shock tube tests where the magnetic pressure is comparable to the
thermal pressure (see Chapter 5).

Dividing (4.38) by ρ, we can derive the Lorentz force term and add it to the SPH
momentum equation (4.30):

d~v k
a

dt
=

N
∑

j

mj

(

Mkm
i

ρ2
i

+
Mkm

j

ρ2
j

)

· ∇m
i W (~ri − ~rj , hi) . (4.40)
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The term that must be removed afterwards to correct for the erroneous divergence of ~B
is calculated according to Børve et al. (2001)

~B(∇ · ~B)

ρ
≈ ~Bi

N
∑

j

mj

(

~Bi

ρ2
i

+
~Bj

ρ2
j

)

· ∇iW (~ri − ~rj , hi) . (4.41)

Furthermore, to be in consistency with the SPH momentum equation we need to incorpo-
rate the variable smoothing length terms ∇h into the SPMHD equations. The derivation
is presented in Price & Monaghan (2004).

As will be explained in detail in Section 5.1.2, the MHD system allows for a whole set
of different types of waves to form, among which are shock and Alfvén waves involving
discontinuous changes in the magnetic field. When modelling such waves, high frequency
oscillations may occur that are typically damped out as they propagate away from the
discontinuity where they were generated. Although the numerical noise does not affect
the stability of the simulation, it can lead to a relatively poor representation close to
the discontinuities. To counteract this effect, the magnetic field of each SPH particle is
smoothed after a fixed temporal interval. The standard smoothing technique is to calculate
a corrected magnetic field vector according to Børve et al. (2001):

〈 ~B〉i =

∑

j(mj
~Bj/ρj)Wij

∑

j(mj/ρj)Wij
, (4.42)

and to weight the old magnetic field with the new smoothed estimate:

~Bnew
i = q〈 ~B〉i + (1 − q) ~Bi . (4.43)

In GADGET-2, we set q = 1, so that the ~B-vector is completely replaced by the smoothed
magnetic field vector once every 15 time steps.

4.3 The cosmic ray model

The energy density of cosmic rays inside galaxy clusters as inferred from observations is
of about a few percent of the thermal energy density. Locally, the amount of cosmic ray
energy can vary, in regions of ongoing shock acceleration, the non-thermal fraction of the
energy density may rise to up to 20% while in quiet peripheral regions, the amount of
energy in relativistic ions and electrons is evanescent.

When including cosmic rays into cosmological SPH simulations, we assume that the
relativistic population is effectually coupled to the thermal gas by magnetic fields. The
internal energy of an SPH particle is then composed to a large part of thermal gas energy
and to a small part of relativistic energy. In consequence, the cosmic ray population
contributes to the total pressure and energy density of the fluid particle and thus influences
the dynamic behaviour of the simulation. Although the cosmic rays do not drastically
modify the physics of structure formation, their integration into cosmological simulations
can have measurable effects on observable quantities like the Sunyaev-Zel’dovich effect and



54 4.3. THE COSMIC RAY MODEL

the X-ray emission of galaxy clusters (Jubelgas et al. 2008; Pfrommer et al. 2007). It is
therefore purposive to include the cosmic ray physics consistently into the SPH formalism
rather than restricting its treatment to the post-processing as was for example done by
Miniati et al. (Miniati et al. 2001; Miniati 2002).

The cosmic ray model employed in GADGET-2 was developed by Ensslin et al. (2006) for
the purpose of describing the dynamical interplay between cosmic rays and gas dynamics
in the context of SPH. To save computational time, the physics of cosmic rays was reduced
to the aspects that are of the highest significance for the dynamics of structure formation.
Owing to the intrinsic complexity of the various processes that influence the cosmic ray
spectrum, the following simplifications were made:

• The model only traces the evolution of the dominant relativistic proton population.
Since the contribution of heavier nuclei does not significantly change the dynamical
picture, alpha particles and heavier ions are neglected. Furthermore, the population
of primary cosmic ray electrons is ignored.

• The momentum spectrum of the protons is approximated by a single power-law
with a constant spectral index of α ∈ [2, 3]. Since protons with energies below
Ekin = mpc

2 ≈ 1 GeV are assigned to the thermal population, the lower cutoff of the
momentum distribution is initially set to mpc. The steepness of the profile renders
a higher cutoff unnecessary.

• Particle acceleration and loss processes are defined in terms of analytic functions that
depend on the proton energy. The shapes of those functions are derived from the
theory of diffusive shock acceleration and radiative physics and therefore naturally
accommodate the fact that the effectiveness of most processes strongly varies with
the energy of a cosmic ray particle.

• The network of reactions between cosmic rays and thermal protons is downgraded
to single source functions for relativistic electrons and gamma rays, neglecting any
intermediate reactions such as pion production and decay.

• The model exclusively accounts for radio emission by secondary electrons.

The resulting algorithm captures the hydrodynamical effects of cosmic rays as well as all
important physical processes like the particle injection by diffusive shock acceleration, re-
acceleration by plasma waves or modified shock structures. For details, see Ensslin et al.
(2006).

4.3.1 Basic cosmic ray variables

The differential momentum spectrum of the protons is given by

f(p) =
dN

dpdV
= Cp−αΘ(p − q), α ∈ [2, 3] , (4.44)

where Θ is the Heaviside step function and the momenta p and q are expressed in dimen-
sionless form in units of mpc. Consequently, the normalisation C has the unit [length]−3.
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Since the power-law index α is fixed, the cosmic ray spectrum can only vary through
the spatial and temporal dependence of the two dynamical quantities C = C(~r, t) and
q = q(~r, t). The normalisation and the cut-off are connected to the thermodynamic state
of the SPH particle via the thermal gas density. Upon adiabatic compression or expansion
the normalisation C and the cutoff q shift according to

C(ρ) = (ρ/ρ0)
α+2

3 C0 and q(ρ) = (ρ/ρ0)
1
3 q0 , (4.45)

leaving the phase-space density of the cosmic ray population invariant. The reference
density ρ0 can be set to any reasonable value (for example to the mean cosmic density),
where C0 and q0 denote the corresponding normalisation and cut-off at this density.

From (4.44), the expressions for the cosmic ray state variables are derived. The number
density yields

nCR =

∫ ∞

0
dp f(p) =

C q1−α

α − 1
=

C0 q1−α
0

α − 1

ρ

ρ0
, (4.46)

where we have used (4.45) to obtain the second identity. Integrating over the kinetic
energy of a single relativistic proton with momentum p,

Tp(p) = (
√

1 + q2 − 1)mpc
2 , (4.47)

we get the kinetic energy density of the cosmic ray population:

ǫCR =

∫ ∞

0
dp f(p)Tp(p)

=
Cmpc

2

α − 1

[

1

2
B 1

1+q2

(

α − 2

2
,
3 − α

2

)

+ q1−α
(

√

1 + q2 − 1
)

]

, (4.48)

where Bx(a, b) denotes the incomplete beta function and α > 2 is assumed. The average
kinetic energy of a cosmic ray proton ǫCR/nCR is then defined by

TCR =

[

qα−1

2
B 1

1+q2

(

α − 2

2
,
3 − α

2

)

+
√

1 + q2 − 1

]

mpc
2. (4.49)

The cosmic ray pressure acts as an isotropic pressure component that adds to the thermal
and magnetic pressure of the SPH particle. It is given by

PCR =
mpc

2

3

∫ ∞

0
dp f(p)β p =

C mpc
2

6
B 1

1+q2

(

α − 2

2
,
3 − α

2

)

, (4.50)

where β = v/c = p/
√

1 + p2 is the dimensionless velocity of a single proton.
Since the cosmic ray spectrum covers a large range of energies, starting from barely

super-thermal energies of E ∼ 1 GeV and going up to the ultra-relativistic regime of
E ∼ 1020 GeV, the adiabatic index is not a constant but is shifting between γ = 5/3 for
an ideal thermal gas and the ultra-relativistic limit of γ = 4/3. For the local adiabatic
exponent of the cosmic ray pressure component we therefore have

γCR ≡ d log PCR

d log ρ

∣

∣

∣

∣

s

, (4.51)
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Figure 4.1: Adiabatic index of the cosmic ray population as a function of the momentum
cutoff for different spectral indices. The solid lines show the function (4.52)
while the dotted lines reflect a hypothetical polytropic gas for which the adia-
batic index is defined by γ∗

eff = 1 + PCR/ǫCR. (Ensslin et al. 2006)

where the derivative is taken at constant entropy s. Using definitions (4.45) and (4.50) we
can rewrite the last equation in the following way:

γCR =
ρ

PCR

(

∂PCR

∂C

∂C

∂ρ
+

∂PCR

∂q

∂q

∂ρ

)

=
α + 2

3
− 2

3
q2−α β(q)

[

B 1

1+q2

(

α − 2

2
,
3 − α

2

)]−1

. (4.52)

The shifting of the adiabatic index becomes obvious in Figure 4.1 where γ is plotted as
a function of q for different spectral indices α. Around the lower threshold q ≈ 1 the
adiabatic exponent takes values between 1.35 and 1.4 for α in the range 2.25 − 3.00
and adjusts to the relativistic limit for momenta q . 104. To account for the different
behaviour of the thermal gas and the cosmic ray component under compression we define
the effective adiabatic index for the compound gas inside the SPH particle:

γeff ≡ d log(Pth + PCR)

d log ρ

∣

∣

∣

∣

s

=
γth Pth + γCR PCR

Pth + PCR
. (4.53)

4.3.2 Non-adiabatic processes

Once conveniently chosen at the beginning of the cosmological simulation, the evolution of
the two adiabatically invariant parameters q0 and C0 is solely determined by the various
non-adiabatic source and sink processes that shape the CR spectrum. The induced changes
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in the particle number and kinetic energy density translate into a change of q0 and C0

according to
(

dC0

dq0

)

=

(

∂C0/∂nCR ∂C0/∂ǫCR

∂q0/∂nCR ∂q0/∂ǫCR

) (

dnCR

dǫCR

)

. (4.54)

Inserting definitions (4.46) and (4.48) the inverse of the Jacobian is given by

dC0 = C0
dǫCR − Tp(q) dnCR

ǫCR − Tp(q)nCR
, (4.55)

dq0 =
q0

α − 1

dǫCR − TCR dnCR

ǫCR − Tp(q)nCR
. (4.56)

We note that these expressions are only applicable when the changes to the cosmic ray
population are below a few percent, since otherwise the integration gets very time con-
suming. For larger changes, the variables q0 and C0 are computed by inverting equations
(4.46), (4.48), and (4.49) after applying the principles of particle and energy conservation
(see appendix A in Ensslin et al. (2006)).

The non-adiabatic processes that are covered by the cosmic ray model are

• energy injection by structure formation shocks and supernovae,

• diffusive transport,

• Fermi I re-acceleration of mildly relativistic protons,

• radiative losses due to Coulomb scattering,

• hadronic losses due to collisions between cosmic rays and thermal ions and subse-
quent gamma ray and synchrotron emission.

In what follows, we will dwell upon the description of shock acceleration and synchrotron
emission as these two effects play a key role in the presented work. A detailed description
of all the processes mentioned above is given in Ensslin et al. (2006).

Shock acceleration

Due to the Fermi II mechanism, charged particles of the thermal population can get
accelerated to very high energies when crossing a shock wave. Above the relativistic energy
threshold, the particles are injected into the non-thermal population. Consequently, at
the location of the shock front the cosmic ray population receives a growth in number and
energy density.

In the simplified cosmic ray model, this acceleration procedure is treated as an in-
stantaneous process where the particles and energy are inserted according to statistical
considerations that allow to compress the complete acceleration process into a few pa-
rameters. The presented formalism is a modification of the approach by Miniati et al.
(2001).

For a known shock strength, the temperature of the thermal gas behind the shock front,
hereafter denoted by Td, can be inferred from the Rankine-Hugoniot jump conditions. The
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thermal protons in the high-energy tail of the Maxwellian distribution can only escape back
upstream of the shock if their speeds are sufficient to allow them to avoid being trapped by
the plasma waves that moderate the shock. We therefore define the momentum threshold
qinj for the thermal protons to be accelerated to be a fixed multiple of the peak thermal
value

qinj = xinjpth = xinj

√

2 kTd

mpc2
. (4.57)

In the linear regime, the diffusely accelerated protons emerging from the shock are char-
acterised by a power law distribution that smoothly merges into the thermal distribution
at the threshold value qinj:

fCR,lin(p) = fth(qinj)

(

p

qinj

)−αinj

θ(p − qinj) . (4.58)

The spectral index αinj is determined by the shock strength

αinj =
r + 2

r − 1
, (4.59)

where r = ρd/ρu denotes the shock compression ratio. The normalisation of the proton
spectrum (4.58) is the value of the Maxwellian gas distribution at momentum qinj:

fth(qinj) = 4πnth

(

mpc
2

2πkTd

)3/2

q2
inj exp

(

−
mpc

2 q2
inj

2 kTd

)

=
4√
π

nth

(

xinj

qinj

)3

q2
inj exp(−x2

inj) , (4.60)

where the quantity nth = nd denotes the number density of particles of the thermal
distribution behind the shock front. The number density of freshly injected cosmic ray
particles is then found by integrating the spectrum of accelerated protons over the entire
momentum space:

∆nCR,lin(xinj, Td) =

∫ ∞

0
dp fCR,lin(p) =

4√
π

nth

x3
inj

αinj − 1
e−x2

inj . (4.61)

Using this expression we get the dynamically relevant injected cosmic ray energy density
in the linear regime:

∆ǫCR,lin(αinj, xinj, Td) = ∆nCR,lin(Td)TCR(αinj, qinj) , (4.62)

where TCR is the average kinetic cosmic ray proton energy defined in (4.49).
The injection constant xinj for diffusive shock acceleration in (4.57) is inferred from

theoretical studies of supernova remnants to lie in the range of 3.3 to 3.6, which typically
results in a momentum cutoff in the sub-relativistic regime. Since Coulomb cooling is
very efficient at these low energies, a large part of the newly injected cosmic rays is
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immediately re-thermalised. The model accounts for this fact by increasing the cutoff
from qinj to qCoulomb ∼ 0.03. For the effectively injected cosmic ray energy we then obtain

∆ǫCR,lin,Coulomb = ∆nCR,linTCR(αinj, qCoulomb)

(

qCoulomb

qinj

)1−αinj

. (4.63)

The post-shock temperature Td and the spectral index αinj are inferred from the shock
strength. Assuming a dominant thermal gas component, αinj can expressed in terms of
the Mach number of the shock by solving

M =

√

2 (2 + αinj)

1 + 2αinj − 3γ
. (4.64)

Since γ = 5/3, the spectral index αinj can have a maximum value of 2.
The presented analytical description applies to the regime of linear cosmic ray acceler-

ation. The theory of diffusive shock acceleration permits an upper limit of 50 % of the
shock energy to be injected into the relativistic particle population for infinitely high Mach
numbers. To extend the presented model to the non-linear regime, these saturation effects
must be taken into account. Details are presented in Ensslin et al. (2006).

Synchrotron emission

The secondary electron population is a reaction product of the hadronic collisions between
cosmic rays and thermal nuclei in the ICM. Above the kinematic threshold of qthrmpc

2 =
0.78GeV neutral or charged pions are produced that further decay into gamma rays or
electrons and protons respectively. The pion production rate and the decay into the
stable end products can be described by analytical functions that are motivated from
accelerator experiments and known reaction kinematics (Dermer (1986a), Dermer (1986b),
Mannheim & Schlickeiser (1994)). Appropriately combining the source functions for the
pion production and the pion decay we obtain a single source function for the end products
of the reaction chain.

For a power-law distribution of relativistic protons the resulting source function of sec-
ondary electrons is given by

se(~r, Ee) =
16

3
22−αpc nN(~r)C(~r)σπ

pp

1

GeV

(

8Ee

GeV

)−αp

, (4.65)

where σπ
pp ≃ 32 ·

(

0.96 + e4.4− 2.4 α
)

mbarn is the effective cross section (see Pfrommer &
Enßlin (2004)) and nN is the nucleon density of the ICM. The spectral index αp corresponds
to the power-law index of the proton spectrum introduced in Section 4.3.1. For a better
distinction in what follows we denote it with the index p.

To obtain the stationary spectrum of secondary electrons the energy losses due to the
ubiquitous cooling by synchrotron and IC emission must be taken into account:

− Ėe(~r, Ee) =
4σTc

3m2
ec

4
(ǫB + ǫCMB) . (4.66)
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Here, ǫB = B2/(8π) is the local magnetic energy density, and ǫCMB = B2
CMB/(8π) is

the energy density of the cosmic microwave background (CMB) that can be expressed by
an equivalent field strength of BCMB = 3.24 (1 + z)2µG. The steady-state spectrum of
secondary electrons can then be described by the following continuity equation:

∂

∂Ee

(

Ėe(~r, Ee), fe(~r, Ee)
)

= se(~r, Ee) . (4.67)

The equation is solved for the spectral function fe(~r, Ee) according to

fe(~r, Ee) =
1

|Ėe(~r, Ee)|

∫ ∞

Ee

dE′
ese(~r, E

′
e) . (4.68)

If we insert (4.65) and (4.66) into the above expression and carry out the integration we
arrive at

fe(~r, Ee) =
161−αp

αp − 1

σpp m2
e c4

σT GeV

nN(~r)C(~r)

ǫB + ǫph

1

GeV

(

Ee

GeV

)−(αp+1)

. (4.69)

The calculation shows that from the hadronic interactions of a power-law distribution of
cosmic ray protons with the thermal nuclei we obtain a power-law spectrum of secondary
electrons. Using Dermer’s model we set αe = αp + 1. The distribution of relativistic
electrons (above a GeV) is thus described by

fe(~r, Ee) =
Ce(~r)

GeV

(

Ee

GeV

)−αe

, (4.70)

and Ce(~r) =
162−αe

αe − 2

σpp m2
e c4

σT GeV

nN(~r)C(~r)

ǫB + ǫph

(

mpc
2

GeV

)αe−1

. (4.71)

The synchrotron emissivity jsync(ν) at frequency ν and per steradian of such a cosmic
electron population located in an isotropic distribution of magnetic fields is calculated
according to

jsync(ν) =
Psync(ν)

4π
=

1

4π

∫ E2

E1

P (E′
e, ν) fe(E

′
e)dE′

e , (4.72)

where P (Ee, ν) is the power emitted by each single electron at energy Ee and frequency
ν. If we assume an isotropic distribution of electron pitch angles the integration yields:

jsync(ν) = AEsyn(αe)Ce

[

ǫB

ǫBc

](αν+1)/2

∝ ǫCRe Bαν+1ν−αν , (4.73)

with the frequency dependent characteristic magnetic field strength

Bc =
√

8π ǫBc =
2π m3

e c5 ν

3 e GeV2 ≃ 31
( ν

GHz

)

µG, (4.74)

and the coefficient

AEsyn =

√
3π

32π

Bc e3

mec2

αe + 7
3

αe + 1

Γ
(

3αe−1
12

)

Γ
(

3αe+7
12

)

Γ
(

αe+5
4

)

Γ
(

αe+7
4

) . (4.75)

Here, Γ(a) denotes the Γ-function and αν is given by (αe − 1)/2 = αp/2.
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4.3.3 Mach number estimation

To adequately account for the gas heating due to energy dissipation and the injection of
cosmic rays in simulations of cosmological structure formation, Pfrommer et al. (2006) de-
veloped a formalism that allows for the identification of shocks and the accurate estimation
of the related Mach numbers.

In the entropy formulation of SPH, the shock strength is deduced from the jump in the
entropic function A(s) a fluid particle experiences when passing through the shock:

Ad

Au
=

Au + ∆Au

Au
, (4.76)

where the indices u and d refer to the quantities of the upstream and downstream flow.
Since shock fronts in the SPH formalism are no sharp discontinuities, the crossing of
the particle will take a finite time. The quantity ∆Au can thus be approximated by
∆Au ≃ ∆t dAu/dt, where ∆t is the time it takes the SPH particle to diffuse over the
shock. Since the shock front is spread out over a length scale comparable to the SPH
particle radius we get

∆t = fhh/vu , (4.77)

where vu is the pre-shock gas velocity in the reference frame of the shock front and fh ∼ 2
is a factor found by calibration against shock tubes. Replacing ∆t in (4.76) we thus obtain

Ad

Au
= 1 +

fhh

vuAu

dAu

dt
. (4.78)

Using the adiabatic equation (4.17) we furthermore have

Ad

Au
=

Pd

Pu

(

ρu

ρd

)γ

. (4.79)

The jump in the adiabatic function solely depends on the shock strength. Using the
Rankine-Hugoniot jump conditions for hydrodynamic shocks we can rewrite the entropy
jump as a function of the Mach number M = vu/c :

Ad

Au
=

2γM2 − (γ − 1)

γ + 1

[

(γ − 1)M2 + 2

(γ + 1)M2

]γ

≡ fA(M) . (4.80)

To obtain the Mach number of the SPH particle we therefore need to solve the equation

[fA(M) − 1]M =
fhh

c1Au

dAu

dt
, (4.81)

where we have replaced vu with Mcu . The right hand side of the equation can be calculated
from (4.31).

In the above derivation we have implicitly assumed an ideal thermal gas. Nevertheless,
the equations can be extended to allow for the Mach number detection inside a composite
of a thermal gas and a cosmic ray component. Due to the additivity of the individual
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pressure components we can define the effective entropic function of the compound gas
according to

Aeff = (Pth + PCR) ρ−γeff . (4.82)

Assuming that, because of their relativistic energies, the cosmic rays are only adiabatically
compressed over the shock front the derivative of the entropic function yields

dAeff

dt
=

dAth

dt
ργth−γeff . (4.83)

In analogy to the case of the thermal gas we thus obtain the equation for the jump in the
entropic function in a medium that is composed of a thermal gas and cosmic rays:

Aeff,d

Aeff,u

=

(

PCR,d + Pth,d

)

ρ
−γeff,d

d
(

PCR,u + Pth,u

)

ρ
−γeff,u
u

= 1 +
fhh

McuAeff,u

dAeff,u

dt
. (4.84)

The equation can be transformed via the modified Rankine-Hugoniot jump conditions to
yield a system of two equations that depend on the density and pressure jumps over the
shock front. The root is determined with a two-dimensional Newton-Raphson iteration.
From the known density jump the Mach number is calculated according to:

M =

√

(Pd − Pu)ρd/ρu

ρuc2
u(ρd/ρu − 1)

. (4.85)

In cosmological simulations, the crossing time ∆t over the shock front must be adapted to
account for the cosmic expansion. Furthermore, in the regime of strong shocks (M ≥ 3)
the shock broadening is more pronounced and fh = 2 is not valid anymore. We then use
an empirically determined formula for the Mach number (Pfrommer et al. 2006).

4.3.4 Integration into SPH

To arrange for the consistent integration of the cosmic ray model into the SPH formalism
we introduce the number of relativistic protons per unit gas mass and momentum of the
ith particle

f̂i(p) =
dNCR

dp dm
=

1

ρ(~ri)

dNCR

dp dV
=

1

ρ(~ri)
fi(p) , (4.86)

where fi(p) is the cosmic ray proton distribution given in (4.44). Consequently, the nor-
malisation constant of the re-defined spectrum yields Ĉi = Ci/ρi.

Similarly, we define the cosmic ray energy per unit mass ǫ̂CRi = ǫCRi/ρi which is incor-
porated into the discretised Lagrangian of the system of particles (4.19), yielding

L(~q, ~̇q, t) =
1

2

∑

i

mi̇~r
2
i −

∑

i

mi ǫ̂ . (4.87)

Here, we have introduced the total energy per unit mass of the ith particle, ǫ̂ = ǫ̂th,i+ ǫ̂CR,i,
where the thermal component ǫ̂thi is given by (4.18). The equations of motion are then
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found in analogy to the derivation presented in Section 4.1.3, where the constraints (4.20)
for the smoothing radii were taken into account. In the case of the compound gas this
leads to the Lagrange multipliers

λi =
3

4π

mi

h3
i

∂ǫ̂i

∂ρi

[

1 +
3ρi

hi

(

∂ρi

∂hi

)−1
]−1

. (4.88)

Using the definition for the thermodynamic pressure at constant entropy

p = −
(

∂E

∂V

)

s

, (4.89)

where s = si denotes the entropy of a SPH particle volume element of size V = Vi = ρi/mi

and internal energy E = mi ǫ̂i, we deduce the derivative of the SPH particle energy with
respect to the local density:

∂(miǫ̂i)

∂ρi
= mi

pi

ρ2
i

= mi
pth,i + pCR,i

ρ2
i

. (4.90)

The resulting equation of motion thus retains the form given in (4.26), with the only
difference that the thermal pressure has been replaced with the total pressure of the
thermal and the cosmic ray component.
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Code Testing 5

Since the release of the public versions GADGET-1 in 2000 (Springel et al. 2001) and
GADGET-2 in 2005 (Springel 2005) the code has constantly been improved and its func-
tionality has been enhanced. Additionally, a number of modules that go beyond gravity
and ordinary gas physics have been developed that are not contained in the public version.
The inclusion of extra modules describing for example the formation of stars, cooling and
feedback is important to increase our understanding of astrophysical processes and how
their interaction influences the cosmic structure we observe today.

Before a new module can be included into GADGET-2, its reliability must be verified
through standard tests. Moreover, the smooth and consistent interplay of all code sub-
components activated in a single simulation must be guaranteed, which usually requires
additional compatibility checks. So far, the SPMHD algorithm and the cosmic ray model
presented in the last chapter have only separately been tested and successfully used in
cosmological simulations. Since in our studies of the non-thermal emission of galaxy
clusters we for the first time employ both components simultaneously, we have to perform
numerical tests that are mandatory for the interpretation of our later results.

In this chapter we will introduce a standard test for MHD codes, the coplanar Riemann
shock tube problem. After some theoretical considerations we will present the algorithm
that is used to find an analytical solution to the test problems. The Riemann solver and
the performance of the GADGET-2 code will be tested by means of five different Riemann
problems with well-known solutions. After successful testing the analytical MHD Riemann
solver should provide a solid basis for the upgrade to the more complex situation of a two-
component fluid consisting of a thermal gas and a cosmic ray component. The goal is
to find an analytical solution that can serve as a benchmark for numerical shocktubes
including SPMHD and the cosmic ray module. In the second part of this chapter we will
therefore present an enhancement of the Riemann solver, which allows for the prediction
of simulation results of MHD shock tubes performed with the compound gas. In the
subsequent section the results of numerical tests are presented. Finally, problems and
implications for cluster simulations are discussed.
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66 5.1. MHD SHOCK TUBES WITH THERMAL GAS

5.1 MHD shock tubes with thermal gas

The MHD Riemann problem plays a crucial role in astrophysics where many applications
fundamentally depend on the presence of magnetic fields and an ionised, conducting char-
acter of the medium under investigation. For known analytical solutions, the shock tube
problem can be used to check the performance of MHD codes. However, due to the intrinsic
complexity of the MHD flows, finding the analytical solution is not straightforward.

5.1.1 The magnetohydrodynamic equations

The equations of magnetohydrodynamics give a continuum description of a conducting
fluid interacting with a magnetic field. Analogous to ordinary hydrodynamics they are
derived from the conservation laws of mass, energy, and momentum, additionally taking
into account Maxwell’s equations of electrodynamics. By neglecting electrostatic force,
displacement current, internal friction, and thermal conduction one obtains the following
equations of ideal MHD (see e.g. Courant & Friedrichs 1976):

∂ρ

∂t
+ ∇ · (ρ~v) = 0 , (5.1)

ρ
∂~v

∂t
+ ρ(~v · ∇)~v + ∇p − 1

µ0
(∇× ~B) × ~B = 0 , (5.2)

∂

∂t

(

ρ~v2

2
+ ρǫ +

~B2

2µ0

)

+ ∇ ·
[

ρ

(

~v2

2
+ ω

)

~v +
1

µ0
( ~B × (~v × ~B))

]

= 0 , (5.3)

∂ ~B

∂t
−∇× (~v × ~B) = 0 . (5.4)

The hydrodynamic continuity equation stays unaltered. An additional term ~j× ~B must be
added to the Euler equation (5.2) that describes the Lorentz force density on the induced
charge current ~j = c/µ0∇ × ~B. A similar extension applies to the energy conservation
(5.3) where the magnetic energy density and the Poynting vector come into play. Here, ǫ
and w are the energy and enthalpy per mass. The induction equation (5.4) determines the
transport of the magnetic field with the fluid flow. The system is closed by an equation
of state that connects p to ρ and ǫ,

p = (γ − 1)ρǫ , (5.5)

with γ = 5/3 for an ideal gas.

As in ordinary gas dynamics the above equations of magnetohydrodynamics form a
system of hyperbolic equations. If we assume that all variables depend on the time t and
only one spatial dimension x the system (5.1) - (5.4) in conservative form yields

∂

∂t
~U +

∂

∂x
~F (~U) = 0 , (5.6)
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where we defined the the state vector

~U =
(

ρ, ρvx, ρvy, ρvz, By, Bz, E
)T

(5.7)

and the flux function

~F (~U) =





















ρvx

ρv2
x + P − B2

x

ρvxvy − BxBy/µ0

ρvxvz − BxBz/µ0

Byvx − Bxvy

Bzvx − Bxvz

(E + P )vx − Bx/µ0(Bxvx + Byvy + Bzvz)





















. (5.8)

Here, the total pressure and the total energy density are given by

P = p +
1

2µ0
(B2

x + B2
y + B2

z ) , (5.9)

E =
1

2
ρ(v2

x + v2
y + v2

z) +
p

γ − 1
+

1

2µ0
(B2

x + B2
y + B2

z ) . (5.10)

Equation (5.6) can be written in the quasilinear form

∂

∂t
~U + A

∂

∂x
~U = 0 , (5.11)

where A is the 7 × 7 Jacobian matrix A(~U) = ∂ ~F/∂~U . The original flow differential
equations (5.1) - (5.4) have thus been reduced to a set of seven partial differential equations
(PDEs) of hyperbolic type. The eigenvalues of the matrix A are the velocities of the seven
families of characteristics that occur in magnetohydrodynamics (see e.g. Ryu & Jones
1995):

λ1/7 = vx ∓ cf ,

λ2/6 = vx ∓ ca,

λ3/5 = vx ∓ cs,

λ4 = vx , (5.12)

where ca =
√

B2
x/µ0ρ is the Alfvén speed and

cf =





1

2



a2 +
B2

x + B2
y + B2

z

µ0ρ
+

√

(

a2 +
B2

x + B2
y + B2

z

µ0ρ

)2

− 4a2
B2

x

µ0ρ









1/2

(5.13)

cs =





1

2



a2 +
B2

x + B2
y + B2

z

µ0ρ
−

√

(

a2 +
B2

x + B2
y + B2

z

µ0ρ

)2

− 4a2
B2

x

µ0ρ









1/2

(5.14)
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are the fast and slow magnetosonic velocities respectively. In the above definitions the
sound speed enters as a =

√

γp/ρ. The system of equations is strictly hyperbolic if the
eigenvalues of matrix A are non-degenerate. Nevertheless, some wave speeds will coincide

when either Bx or B⊥ =
√

B2
y + B2

z vanishes. The system is therefore called non-strictly

hyperbolic.

5.1.2 Waves and discontinuities

A wave in a medium is defined to be a disturbance which propagates at a finite speed.
Consequently, there must be an advancing wave front separating the region through which
the disturbance has passed from the region it is about to enter. The eigenvalues (5.12) of
the Jacobian matrix that we derived from the MHD equations in the last section can be
interpreted as the velocities of such “disturbance waves”. Corresponding to the plus or
minus sign, they are propagating forwards or backwards relative to the fluid motion.

In the above formulation of the conservation equations in differential form (5.1) - (5.4),
we implicitly assumed a steady flow, i.e. that the characteristic fields are continuously
differentiable everywhere. This steadiness can be broken when waves fronts occur. Trans-
forming into the reference frame of the wave front, the region of gas infall is called the
front side or upstream flow, the other the back side or downstream flow respectively. As
the influence of a disturbance is propagated into the medium through sound waves, the
type of jump over the wave front will depend on the ratio of the infall velocity vup to the
upstream speed of sound aup.

In the case vup < aup, the upstream gas will always “see” the disturbance before its
crossing. The singularity at the wave front is then confined to a discontinuity of the
derivatives of the solution and the front is a surface of weak discontinuity. When the
discontinuities occur in the first order derivatives of the dependent variables the solution
will experience a discontinuity in slope. If the discontinuities occur in the higher order
derivatives then the wave form appears to be smooth. The corresponding waves are called
“simple magnetohydrodynamic waves” and the variation of physical quantities across the
front is described by a set of differential equations that can be derived from the general
Riemann invariants (see, e.g. Jeffrey 1966).

If the velocity of the perturbation is growing, triggered for example by the motion of an
accelerating piston, later influences of the disturbance travel faster and tend to overtake
those sent out earlier. The wave front gets steeper and steeper and becomes vertical
above the sonic limit when vup > aup. The character of the resulting discontinuity is
similar to the breaking of a water wave that steepens as more slowly progressing parts
are overtaken by faster ones. The wave transforms into a shock front involving jumps in
all dependent variables. Shock fronts are strong discontinuities. A different type of
strong discontinuity solely arising in MHD are the Alfvén discontinuities. The associated
Alfvén waves are linear waves, involving no compression but a rotation in the transversal
magnetic field and the transversal velocity.

By looking at the eigenvalues (5.12) we can identify the different types of waves that
result from the MHD system of equations. The waves corresponding to λ3/5 and λ1/7 are
the slow and fast “magneto-sonic” waves, because they are compressible like sound waves
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in hydrodynamics. There are two Alfvén waves that are moving at vx ∓ ca. The last
eigenvalue, λ = vx relates to the entropy mode, where the density and entropy undergo
jumps when crossing the wave front. As there is no discontinuity in velocity or pressure,
no fluid particles can cross the front and the fluids on adjacent sides of the wave front
cannot mix. For this reason, these wave fronts are usually called contact discontinuities.

The mathematical treatment of strong discontinuities is conveniently done in terms of
Lagrangian mass coordinates. The Lagrangian coordinate is defined as the location of an
infinitesimal mass element dm ≡ ρdV inside an infinitesimal volume dV moving with the
fluid. Introducing the operator d

dt ≡ ∂
∂t +~v · ∇ and the specific volume 1/ρ we can rewrite

the one-dimensional MHD equations as functions of t and the mass coordinate m:

d

dt

(

1

ρ

)

− ∂

∂m
ux = 0 , (5.15)

d

dt
ux +

∂

∂m

(

P − B2
x

µ0

)

= 0 , (5.16)

d

dt
uy −

∂

∂m

(

BxBy

µ0

)

= 0 , (5.17)

d

dt
uz −

∂

∂m

(

BxBz

µ0

)

= 0 , (5.18)

d

dt

(

By

ρ

)

− ∂

∂m
(Bxuy) = 0 , (5.19)

d

dt

(

Bz

ρ

)

− ∂

∂m
(Bxuz) = 0 , (5.20)

d

dt

(

E

ρ

)

− ∂

∂m

(

vxP − Bx

µ0
(Bxyx + Byvy + Bzvz)

)

= 0 . (5.21)

Integrating the above equations over the discontinuities yields the jump conditions:

W

[

1

ρ

]

= − [vx] , (5.22)

W [vx] =

[

P − B2
x

µ0

]

, (5.23)

W [vy] = −Bx

µ0
[By] , (5.24)

W [vz] = −Bx

µ0
[Bz] , (5.25)

W

[

By

ρ

]

= −Bx [vy] , (5.26)

W

[

Bz

ρ

]

= −Bx [vz] , (5.27)
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Figure 5.1: The MHD Riemann problem at t > 0. The initial zones 1 and 8 are separated
by six intermediate states and seven waves and/or discontinuities.

W

[

E

ρ

]

= [vxP ] − Bx

µ0
[Bxvx + Byvy + Bzvz] , (5.28)

where the brackets [X] = Xd − Xu stand for the difference between the downstream and
upstream values of a quantity X, and W = ρu(vdisc. − vu) is the speed of the discontinuity
surface in Lagrangian coordinates. The wave speed is negative when the discontinuity
propagates in the negative m-direction.

5.1.3 The MHD Riemann problem

The Riemann problem is a special initial value problem consisting of two constant states
with a single discontinuity. Except for the normal component of the magnetic field, which
is subject to the divergence criterion, any field variable may vary in the absolute value as
well as the direction in the two halfspaces. Consequently, in the one-dimensional case, one
has to solve the system of hyperbolic equations (5.11) for initial conditions of the form

~U(x, 0) =

{

~UL x < x0

~UR x > x0

. (5.29)

In general, at t > 0, seven wave fronts will emerge from the initial boundary, consisting of
the four types of waves we came to know in the last section. The slow, fast, and Alfvén
waves appear in pairs, each one consisting of one wave propagating in positive, and one
wave propagating in negative x-direction relative to the fluid motion. As cf > cA > cs,
the fast waves are the outermost structures on each side, followed by the Alfvén waves
and, behind that, the slow waves. The boundary itself is identified with the structure of
the entropy mode. Consequently, the original setup is separated into eight constant states
including the original pair, as sketched in Figure 5.1.

Since the MHD equations form a non-strictly hyperbolic system, up to five out of the
seven eigenvalues of the Jacobian matrix may coincide and the system may admit non-
regular waves, like compound waves and overcompressive intermediate shocks. One exam-
ple for the occurrence of a compound wave is the Brio & Wu shock tube (Brio & Wu 1988)
which is a well-established test problem for MHD codes and will be presented in a later
section. Except for this one prominent example we will stick to the regular case of the
MHD Riemann problem and not take the special waves into account. However, in certain
cases, they might have a physical relevance. Details about the special wave phenomena
can e.g. be found in the papers by Wu (1990) and Myuong & Roe (1997a,b).
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A first analytical solution to the MHD Riemann problem was provided by Dai & Wood-
ward who solved the system of equations iteratively by Newton’s method (Dai & Wood-
ward 1994). Although they used a simplified approach in which they approximated all
waves by strong discontinuities and thus neglected the detailed structure of emerging sim-
ple waves, they computed reasonable solutions for a set of test cases. The efficiency of their
algorithm was confirmed when Ryu & Jones refined it to accurately include rarefaction
waves over which the pressure and density decrease steadily (Ryu & Jones 1995). They
only found minor differences (.1%) to the results by Dai & Woodward.

For the performance tests of the GADGET-2 code, we employ the Riemann solver by
Dai & Woodward. Since the correct description of rarefaction waves involves the inclusion
of a number of unwieldy equations while improving the exactness of the Riemann solver
by only a small factor, this simplification is justified.

5.1.4 Construction of the MHD Riemann solver

We present the key steps taken by Dai and Woodward to develop a non-linear MHD Rie-
mann solver. For a comprehensive description, see the original paper by Dai & Woodward
(1994) or the advanced approach by Ryu & Jones (1995).

Basic principles

Starting from the regular MHD Riemann problem, we can already infer the number and
types of waves we expect and in which order they will appear (see Figure 5.1). By restrict-
ing ourselves to strong discontinuities we also know that the initial setup will be split into
eight constant states consisting of the two initial zones 1 and 8 at the boundaries and six
unknown intermediate states. If we were able to predict the propagation speed of each
of the seven waves we could directly evaluate the field variables in each zone by starting
from the boundary states and piecewise calculating the variables of the adjacent zones via
the jump conditions (5.22) - (5.28). The discontinuity between the regions 4 and 5 must
then fulfil the conditions for a contact discontinuity:

vx4 = vx5 , (5.30)

vy4 = vx5 , (5.31)

vz4 = vx5 , (5.32)

p4 = p5 . (5.33)

The Riemann solver obeys the same principle. Before we can start the solving procedure
we need to derive analytical expressions for the seven wave speeds.

For simplicity, we set µ0 = 1. The entropy mode simply follows the fluid motion and
therefore vd = vx, the Alfvén velocity equals

√

B2
x/ρ. The propagation speed of the slow

and fast waves can be expressed as a function of the upstream quantities and the jump
in the tangential magnetic field components over the discontinuity, [B⊥] = B⊥d − B⊥u,

where B⊥ =
√

B2
y + B2

z . This is achieved by using equations (5.22) - (5.27) to eliminate all

downstream variables except for By and Bz and replacing them in the last jump condition
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(5.28), which then has to be solved for W . The procedure is straightforward but tedious
since it involves a lot of nested functions. The result is (Ryu & Jones 1995)

W 2
f,s =

1

2

1

1 + S0

[

(C2
s + C2

f + S1) ±
√

(C2
s + C2

f + S1)2 − 4(1 + S0)(C2
2C2

f − S2)
]

, (5.34)

where Cf = ρCf and Cs = ρCs. The upper and lower signs refer to fast and slow waves
respectively. The coefficients S0, S1, S2 are given by

S0 = −1

2
(γ − 1)

[B⊥]

B⊥
, (5.35)

S1 =
1

2

(

−(γ − 2)C2
⊥

[B⊥]

B⊥
+ 2C2

0 − (γ − 4)C2
⊥ − 2γC2

a

)

[B⊥]

B⊥
, (5.36)

S2 =
1

2

(

ρC2
a([B⊥]2) +

√
ρ(γ + 2)C⊥C2

a [B⊥] + C2
⊥C2

a(γ + 1) + (γ + 1)C4
a − 2C2

0C2
a

) [B⊥]

B⊥
.

(5.37)
If we consider the zones 1 and 8 in the Riemann problem as two pre-shock states, the
upstream quantities for the fast wave speeds are defined through the initial conditions. The
only indefinite variables left are the downstream transverse components of the magnetic
field.

Step 1

We start the solving procedure with an initial guess for one transverse magnetic field
component (e.g., y-component) By2, By4, and By7 in the regions 2, 4, and 7, and the
common orientation of the transverse part of the magnetic field ψ = arctan(Bz3/By3) in
regions 3, 4, 5, and 6.

Step 2

Inserting the upstream quantities and the guess for the corresponding downstream By-
component into equation (5.34), we can calculate the two fast shock speeds, one for the
wave moving to the right, the other for the wave moving to the left. We subsequently
apply the jump conditions (5.22) - (5.27) with these shock speeds and the values for By2

and By7 respectively to obtain the complete post-shock states in regions 2 and 7.

Step 3

States 2 and 7 now serve as the upstream states for the Alfvén waves. Since Alfvén
discontinuities are non-compressive we have

ρd = ρu , pd = pu , vxd = vxu , (5.38)
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and the Alfvén speed can directly be determined. With the initial guess for ψ we perform
the rotations according to

Byd = cos(ψ)
√

B2
yu + B2

zu , (5.39)

Bzd = sin(ψ)
√

B2
yu + B2

zu , (5.40)

uyd = uyu − Bx
√

B2
x/ρ

(Byd − Byu) , (5.41)

uzd = uzu − Bx
√

B2
x/ρ

(Bzd − Bzu) , (5.42)

to obtain the field variables in zones 3 and 6, respectively.

Step 4

We repeat the procedure in Step 2 for the slow shocks and inserting our initial guess for
By4 to get the states in 4 and 5.

Step 5

Since we only made an estimate for the quantities By2, By4, By7, and ψ, the states in
regions 4 and 5 will not satisfy the conditions for the contact discontinuity (5.30) - (5.33).
Nevertheless, for an educated guess, the deviations should be small.

To improve the guess for By2, By4, By7, and ψ, we use a Newton-Raphson scheme to
find the root of the following system of functions:

F1 = vx5(By2, By4, ψ) − vx4(By4, By7, ψ) , (5.43)

F2 = vy5(By2, By4, ψ) − vy4(By4, By7, ψ) , (5.44)

F3 = vz5(By2, By4, ψ) − vz4(By4, By7, ψ) , (5.45)

F4 = p5(By2, By4, ψ) − p4(By4, By7, ψ) . (5.46)

For the evaluation of the functions F1 - F4 we have to repeat Steps 1 - 4 for each itera-
tion. The associated Jacobian matrix is numerically approximated. If the initial guess is
reasonable, usually only a couple of iterations leads to very good convergence.

The success of the Newton-Raphson iteration sensitively depends on the initial guess
for By2, By4, By7, and ψ. In some Riemann problems, even a minor deviation in one of
the parameters will cause negative radicants in the shock speed (5.34), and the iteration
will fail. Several methods for finding an appropriate initial guess are described in Dai &
Woodward (1994) and Ryu & Jones (1995). The efficiency of a particular approach varies
with the number of emerging weak and strong discontinuities. Unfortunately, whether the
solution of a given Riemann problem only consists of strong discontinuities or also involves
compression and/or rarefactions waves is a priori not known. To avoid the difficulties, we
perform our numerical shock tube tests with some of the Riemann problems presented in
the paper by Ryu & Jones, from which we can borrow the proper values for By2, By4, Bz4,
and By7.
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5.1.5 Numerical tests

The following shock tube tests were carried out with the GADGET-2 code. The simulation
volume is an elongated box with side length ratios x : y : z = 4000 : 1 : 1. The SPH gas
particles have equal masses and were set up in an amorphous glass-like distribution that
was produced by simulating a gas of the desired density in a cubic box with gravitational
forces switched off. By the time the relative particle motion came to rest the configuration
was in hydrostatic equilibrium.

According to the required densities in the shock tube simulations, the number of parti-
cles per tube ranges between 220000 and 415400. For a visualisation of the results without
disturbing boundary effects, the edges of the boxes in x-direction are cut. The remaining
domain, x ∈ [1500, 2500], is divided into 1000 equally spaced bins and rescaled to 1. The
hydrodynamic quantities and magnetic fields from the simulation are then averaged over
the number of gas particles located in each bin.

The first Riemann problem investigated is the test problem 2a in Ryu & Jones (hereafter
R&J) and the first problem in Dai & Woodward (hereafter D&W) respectively. It is set
up with the initial states Bx = 2.0/

√
4π and

~UL = (ρ, vx, vy, vz, By, Bz, p)L = (1.08, 0.01, 0.5, 3.6/
√

4π, 2.0/
√

4π, 0.95) ,

~UR = (ρ, vx, vy, vz, By, Bz, p)R = (1.0, 0.0, 0.0, 0.0, 4.0/
√

4π, 2.0/
√

4π, 1.0) .

The iteration was primarily started with the exact values for By2, By4, By7, and Bz4 taken
from R&J. As expected in this case, the solver reports successful convergence after only
one iteration step. To check the robustness of the iteration procedure, the initial guess
was modified to deviate from the solution by 10 − 20 %. The iteration then took a few
more steps until convergence was obtained. The results are shown in Table 5.1a. The
states computed by our Riemann solver perfectly agree with the results given in Ryu &
Jones (1995). In Table 5.1b we give the associated Lagrangian velocities of the fast and
slow magnetosonic waves together with their Mach numbers. Since all four Mach numbers
are larger than 1, the magnetosonic waves are shock waves, albeit the shocks are rather
weak.

Figure 5.2 shows a snapshot of the simulation at t = 0.1. The averaged hydrodynamic
quantities and magnetic fields 〈ρ(x)〉, 〈p(x)〉, 〈vx(x)〉, 〈vy(x)〉, 〈vz(x)〉, 〈Bx(x)〉, 〈By(x)〉,
〈Bz(x)〉, as well as the Mach numbers 〈M(x)〉 are plotted as solid black lines. The initial
conditions and analytical solutions of our Riemann solver are overlaid as red dotted and
red solid lines. The overall agreement between the simulated and analytic solution is very
good, except for the Mach numbers which are by ∼10 % too large for the two fast and by
∼3 % too small for the right-facing slow magnetosonic shock.

The wrong Mach number computation in GADGET-2 is a systematic error which is
caused by the different evaluation of the Mach numbers in hydrodynamics and MHD: For
a hydrodynamic shock, the Mach number relates the shock speed to the sound speed.
In MHD however, the Mach number is defined by the ratio of the shock speed to the
characteristic wave speed. For a fast magnetosonic shock, the latter is given by the fast
wave speed cf , defined in Equation (5.13). Likewise, for a slow shock, the characteristic
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velocity is the slow wave speed cs , given by Equation (5.14). Depending on the strength
of the magnetic field, the wave speeds more or less differ from the sound speed a , and thus
lead to the overestimation of the fast, and the underestimation of the slow shock Mach
numbers by the code.

As can be seen in Figure 5.2, the characteristic SPH broadening of the wave fronts is
only weakly pronounced at the outer discontinuities whereas the resolution gets poorer at
the Alfvén discontinuities and the inner shock fronts. The overshooting in the gas pressure
at the contact discontinuity is caused by the initial conditions which are constructed by
patching two boxes with different particle densities together without additional smoothing.
The particle radii at the junction thus jump abruptly, resulting in a small unphysical
amplitude after the SPH interpolation. Since the gas pressure is a product of the two SPH
interpolated fields ρ and u, this effect is enforced in the pg-diagram. Consequently, for
larger differences in the initial densities and therefore higher jumps in the SPH smoothing
lengths, we expect the overshoot in pg to become larger. Concerning the magnetic fields,
the oscillations around the magnetic discontinuities are well suppressed by the smoothing
algorithm. In the x-component a minor deviation from the constant value Bx = 0.564 is
observable but apparently does not strongly affect the result.

The second shock tube we consider is the Riemann problem 2b in R&J. The longitudinal
magnetic field component is Bx = 3.0/

√
4π and the left and right states are given by

~UL = (1.0, 0.0, 0.0, 6.0/
√

4π, 0.0, 1.0) ,

~UR = (0.1, 0.0, 0.0, 0.0, 1.0/
√

4π, 0.0, 10.0) .

For the initial guess we took the values By2 = 3.5, By4 = 1.0, Bz4 = 0.2, and By7 = 0.2
which differ from the final values given in R&J by ∼ 10 − 20 %. The solution found
with the Riemann solver after three iteration steps is presented in Table 5.2a, with the
corresponding Mach numbers and wave velocities given in Table 5.2b. The Mach numbers
indicate that the shock tube consists of two left-facing magnetosonic shocks, the contact
discontinuity, and two right-facing rarefactions, each wave pair separated by a rotational
discontinuity. Like in the test before, the results of our iteration accurately match the
analytical solutions found by R&J.

In Figure 5.3 the result of the GADGET-2 simulation at t = 0.035 is plotted. The
rarefaction waves are displayed as shock fronts while in the simulation they are naturally
broadened. The Alfvén wave in between is significantly smoothed out, whereas all discon-
tinuities in the left halfspace are well resolved. The broadening might partly be explained
by the large jumps in the tangential velocities together with the change of sign in the
y-component which possibly also causes the strong numerical oscillations. Again, as had
to be expected, the Mach numbers are computed incorrectly. GADGET-2 found Mach
numbers of M−f ≈ 2.25 and M−s ≈ 1.25 that differ from the theoretical values in Table
5.2b by 42 % and 20 % respectively.

The third MHD Riemann problem we investigate is the problem VI in D&W which
corresponds to test 1a in R&J and has the initial states Bx = 5.0/

√
4π and

~UL = (1.0, 10.0, 0.0, 5.0/
√

4π, 0.0, 20.0) ,

~UR = (1.0,−10.0, 0.0, 0.0, 5.0/
√

4π, 0.0, 1.0) .
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Since in this set-up the magnetic field at the boundary is continuous, we know from the
beginning that the solution will not involve any rotational discontinuities. The iteration
was started with the initial guess By2 = 3.6, By4 = 4.2, Bz4 = 5.2, and By7 = 0. This time,
the initial values differ from the final solution by only ∼ 5% since any larger deviation
resulted in undefined wave speeds. With the specified parameter setting convergence was
reached within eight iteration steps. In Table 5.3a we give the final values of the fields in
the eight zones. The agreement with R&J is very good. From the Mach numbers in Table
5.3b we infer that, from left to right, the Riemann problem contains a fast shock, a slow
rarefaction, the initial contact discontinuity, a slow and a fast shock.

The simulated Mach numbers at t = 0.02 are shown in the upper right panel of Figure
5.4. The Mach number of the left shock is in accord with the theoretical one, whereas the
Mach number of the fast right-facing shock wave is overestimated by ∼ 35 %. All other
quantities are computed correctly, with minor aberrations due to numerical oscillations
and a small deviation from Bx = 1.41, caused by the non-vanishing divergence.

As a fourth test we investigate the slightly modified Riemann problem 3b in R&J.
Originally, the shock tube has a vanishing longitudinal magnetic field component. In
that case only two magnetosonic waves and a contact discontinuity occur. This specific
problem demands a particular implementation of the Riemann solver since the modified
jump conditions result in a different equation for the wave velocities (see Dai & Woodward
(1994)). To avoid a re-implementation of the algorithm we approximate the Riemann
problem by adding a small magnetic field in x-direction. The initial conditions then yield
Bx = 0.01 and

~UL = (1.0,−1.0, 0.0, 0.0, 1.0, 0.0, 1.0) ,

~UR = (1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0) .

We start the iteration with the values By2 = 0.5, By4 = 0.5, By7 = 0.5, and Bz4 = 0
that approximately correspond to the solution of the Riemann problem given in R&J.
Since we have changed the initial conditions of the Riemann problem we expect a slightly
different outcome. The solver needs two iteration steps, the results are given in Table
5.4a. Due to continuity of the magnetic field over the initial boundary the shock tube
contains no rotational discontinuities. The density drops by almost 50 % over the two
outer magnetosonic waves, while the decompression over the inner slow waves is very
weak. The corresponding wave speeds and Mach numbers are found in Table 5.4b.

Figure 5.5 shows a snapshot of the simulation at t = 0.07. As described in R&J, we
observe two strong and identical rarefactions on each side of the tube, while the additional
pair of slow rarefactions very close to the central discontinuity is generated by the inclusion
of the weak longitudinal magnetic field. Comparing the plot to Figure 3b in R&J we can
see that the fading of the Bx-component causes the slow waves to coincide with the initial
boundary. The degeneracy of the wave speeds is obvious from equations (5.12)-(5.14). The
agreement of the analytical and simulated fast wave velocities is not very accurate, leading
to slightly lower central densities and tangential magnetic fields and a higher pressure in
the simulation. Where the difference arises from is unclear, it might either be a non-unique
root of equations (5.43) - (5.46) or a numerical inaccuracy.
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The last Riemann problem is the MHD analogue of the Sod shock tube (Sod 1978).
It was first described by Brio & Wu (1988) and despite its special wave structure it is
nowadays a standard test for most astrophysical MHD codes (Dai & Woodward 1994;
Ryu & Jones 1995; Balsara 1998; Dolag et al. 1999). The Brio & Wu shock tube is the
fourth problem discussed in D&W and the test 5a in R&J respectively. It has the initial
states Bx = 0.75 and

~UL = (1.0, 0.0, 0.0, 1.0, 0.0, 1.0) ,

~UR = (0.125, 0.0, 0.0, 0.0,−1.0, 0.0, 0.1) ,

where the tangential component of the magnetic field changes sign over the discontinuity.
A configuration of that kind results in a so-called compound wave structure which consists
of a shock followed by a rarefaction wave of the same family. The existence of compound
waves in nature is contested by several authors who argue that such intermediate states
might be an artifact of restricting the geometry to one spatial dimension whilst allowing
the magnetic field to vary in two dimensions (Barmin et al. 1996; Falle & Komissarov
2001). Nevertheless, although being potentially unphysical, the Brio & Wu shock tube is
an interesting test case for our Riemann solver.

The results we found after iterating from the initial values By2 = 0.5, By4 = −0.5,
By7 = −0.8, and Bz4 = 0 are shown in Tables 5.5a and 5.5b. They compare well to the
analytical solution given in R&J with differences only in the second or third decimal places.
According to our solver this Riemann problem involves a fast rarefaction, a rotational
discontinuity, a slow shock, a contact discontinuity, a slow shock, and a fast rarefaction.

The simulation however produces a different result. As shown in Figure 5.6 at t = 0.1,
the Alfvén wave and the slow shock on the left coalesce to a single compound structure.
The difference between the analytical and the numerical solution of the Brio & Wu shock
tube is intrinsic and has been seen in all previously reported simulations (Brio & Wu
1988; Stone et al. 1992). The other waves in the plot agree with the theoretical prediction
except for a minor discrepancy in the velocity of the rightwards propagating slow shock.
The theoretical wave speed is slightly smaller than the simulated one, leading to small
errors in the subsequent state which is furthermore overlaid by numerical oscillations.
The estimated Mach number of the slow shock is rather close to the theoretical value M+s

with a relative error of only ∼ 8%. The left Mach number in the upper right panel belongs
to the compound wave and, according to GADGET-2, has the value M−comp ≈ 1.25.

5.1.6 Conclusions

Through the examination of five different MHD Riemann problems we have demonstrated
that the analytical Riemann solver works correctly and is able to reproduce the results of
four shock tube tests described by Ryu & Jones (1995). We found that for a sufficiently
accurate initial guess that deviates from the final result by 5 to 20 %, depending on the
Riemann problem, the convergence is reached within a maximum of eight iterations. The
results of three general Riemann problems agree exactly with those given in Ryu & Jones
(1995) while the Brio & Wu shock tube, which is a special case due to its compound wave
structure, can be approximated with &99 % exactness.
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Figure 5.2: Riemann problem 1 (R&J 2a) at t = 0.1 with waves from left to right: fast shock, rotational discontinuity, slow
shock, contact discontinuity, slow shock, rotational discontinuity, fast shock
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Figure 5.3: Riemann problem 2 (R&J 2b) at t = 0.035 with waves from left to right: fast shock, Alfvén wave, slow shock,
contact discontinuity, slow rarefaction, Alfvén wave, fast rarefaction
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Figure 5.4: Riemann problem 3 (R&J 1a) at t = 0.02 with waves from left to right: fast shock, slow rarefaction, contact
discontinuity, slow shock, fast shock
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Figure 5.5: Riemann problem 4 (R&J 3b) at t = 0.07 with waves from left to right: fast rarefaction, slow rarefaction, tangential
discontinuity, slow rarefaction, fast rarefaction
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Figure 5.6: Riemann problem 5 (R&J 5a) at t = 0.1 with waves from left to right: fast rarefaction, slow compound, contact
discontinuity, slow shock, fast rarefaction
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Table 5.1a: Solution of Riemann problem 1 (R&J 2a)

ρ vc vy vz By Bz p

1.0800 1.2000 0.0100 0.5000 1.0155 0.5642 0.9500
1.4903 0.6059 0.1124 0.5569 1.4383 0.7991 1.6558
1.4903 0.6059 0.2216 0.3012 1.5717 0.4870 1.6558
1.6343 0.5754 0.0476 0.2473 1.4126 0.4377 1.9317
1.4735 0.5754 0.0476 0.2473 1.4126 0.4377 1.9317
1.3090 0.5343 −0.1841 0.1756 1.6103 0.4990 1.5844
1.3090 0.5343 −0.0946 −0.0473 1.5078 0.7539 1.5844
1.0000 0.0000 0.0000 0.0000 1.1284 0.5642 1.0000

Table 5.1b: Lagrangian wave speeds and Mach numbers of Riemann problem 1

W−f W−s W+s W+f

2.33047 0.51594 0.48144 2.26379

M−f M−s M+s M+f

1.27611 1.06985 1.09121 1.22385

Table 5.2a: Solution of Riemann problem 2 (R&J 2b)

ρ vc vy vz By Bz p

1.00000 0.00000 0.00000 0.00000 1.69257 0.00000 1.00000
1.75761 −1.53351 0.33872 0.00000 3.11650 0.00000 3.03182
1.75761 −1.53351 0.29067 0.47288 3.05279 0.62693 3.03182
2.83060 −1.75055 −1.27369 0.15162 1.19260 0.24491 7.36537
0.08332 −1.75055 −1.27369 0.15162 1.19260 0.24491 7.36537
0.08825 −1.58801 2.04164 0.83247 0.24235 0.04977 8.11532
0.08825 −1.58801 2.02462 1.00000 0.24741 0.00000 8.11532
0.10000 0.00000 2.00000 1.00000 0.28210 0.00000 10.0000

Table 5.2b: Lagrangian wave speeds and Mach numbers of Riemann problem 2

W−f W−s W+s W+f

3.55765 1.00632 0.242564 1.1926

M−f M−s M+s M+f

1.58954 1.5579 0.96714 0.921488
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Table 5.3a: Solution of Riemann problem 3 (R&J 1a)

ρ vc vy vz By Bz p

1.00000 10.00000 0.00000 0.00000 1.41047 0.00000 20.00000
2.67975 0.721129 0.23138 0.00000 3.83879 0.00000 150.98000
2.67975 0.721129 0.23138 0.00000 3.83879 0.00000 150.98000
2.67132 0.723762 0.35684 0.00000 4.03790 0.00000 150.19000
3.85080 0.723762 0.35684 0.00000 4.03790 0.00000 150.19000
3.74812 0.705049 −0.38803 0.00000 5.42713 0.00000 143.56600
3.74812 0.705049 −0.38803 0.00000 5.42713 0.00000 143.56600
1.00000 −10.00000 0.00000 0.00000 1.41047 0.00000 1.00000

Table 5.3b: Lagrangian wave speeds and Mach numbers of Riemann problem 3

W−f W−s W+s W+f

14.8028 2.23848 2.63066 14.6005

M−f M−s M+s M+f

2.48652 0.997678 1.02136 6.54282

Table 5.4a: Solution of Riemann problem 4 (R&J 3b)

ρ vc vy vz By Bz p

1.00000 −1.00000 0.00000 0.00000 1.00000 0.00000 1.00000
0.51791 −0.00003 −0.00449 0.00000 0.51789 0.00000 0.29167
0.51791 −0.00003 −0.00449 0.00000 0.51789 0.00000 0.29167
0.51648 0.00000 0.00000 0.00000 0.52047 0.00000 0.29032
0.51648 0.00000 0.00000 0.00000 0.52047 0.00000 0.29032
0.51791 0.00003 0.00449 0.00000 0.51789 0.00000 0.29167
0.51791 0.00003 0.00449 0.00000 0.51789 0.00000 0.29167
1.00000 1.00000 0.00000 0.00000 1.00000 0.00000 1.00000

Table 5.4b: Lagrangian wave speeds and Mach numbers of Riemann problem 4

W−f W−s W+s W+f

1.07426 0.00576556 0.00576556 1.07426

M−f M−s M+s M+f

0.657845 0.998009 0.998009 0.657845
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Table 5.5a: Solution of Riemann problem 5 (R&J 5a)

ρ vc vy vz By Bz p

1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 1.00000
0.66045 0.66468 −0.25326 0.00000 0.56342 0.00000 0.48194
0.66045 0.66468 −1.63983 0.00000 −0.56342 0.00000 0.48194
0.67920 0.64462 −1.60187 0.00000 −0.53913 0.00000 0.50496
0.27378 0.64462 −1.60187 0.00000 −0.53913 0.00000 0.50496
0.11564 −0.27951 −0.19969 0.00000 −0.88503 0.00000 0.08767
0.11564 −0.27951 −0.19969 0.00000 −0.88503 0.00000 0.08767
0.12500 0.00000 0.00000 0.00000 −1.00000 0.00000 0.10000

Table 5.5b: Lagrangian wave speeds and Mach numbers of Riemann problem 5

W−f W−s W+s W+f

1.29287 0.479982 0.185017 0.431798

M−f M−s M+s M+f

0.758331 1.02016 2.27309 0.944193

The shock tube simulations carried out with GADGET-2 reconfirmed the high perfor-
mance of the code that was independently proven in hydrodynamic shock tubes calcula-
tions by Dolag et al. (2005) and Pfrommer et al. (2006), and by Dolag & Stasyszyn (2008)
in the MHD Riemann problem. In three general MHD Riemann problems the simulations
accurately matched the analytical prediction apart from minor numerical errors that are
intrinsic to the SPMHD implementation. In case of a tiny longitudinal magnetic field small
discrepancies in the wave speeds were detected. In the Brio & Wu shock tube problem a
single compound structure instead of two separate waves evolved which is in accord with
shock tube calculations carried out with other MHD codes.

The weak point in the MHD shock tube simulation with GADGET-2 is the prediction
of the Mach numbers. While the estimation of the shock strength via the change in the
specific entropy (see Section 4.3.3) works properly in hydrodynamical shock tubes, the
values that are found in the MHD calculations deviate from the expected Mach numbers
on average by about 5 − 15 % in both directions. In one case, the fast shock strength is
even overestimated by 42 %. The systematically false Mach number detection in presence
of magnetic fields is due to the numerical implementation which is solely construed for the
hydrodynamic case.

The determination of the shock strength is actually important for calculating the shock
injection rate of relativistic particles in cosmological simulations including a cosmic ray
component. An incorrect estimation of Mach numbers could have considerable effects on
the radio luminosity of simulated galaxy clusters since the synchrotron emissivity of the
SPH particles directly depends on the energy and density of the cosmic ray component.
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Nevertheless, in consideration of the fact that the magnetic energy of a galaxy cluster
only constitutes about 1 % of its thermal energy, with local maxima of ∼10 % under
extreme conditions (see Dolag et al. 2001 and references therein), the deviation in the
Mach numbers should be small. The inherited errors in the cosmic ray particle injection
can thus be neglected.

Concerning the validity of our cosmological simulations it is more important to check
whether the inclusion of cosmic rays allows for the correct identification of shocks fronts
and whether the post-shock states are accurately calculated. Testing those issues is subject
of the next section in which we will repeat the five shock tube calculations including a
thermal and a non-thermal gas.

5.2 MHD shock tubes for a composite of thermal gas and

cosmic rays

In an astrophysical context the assumption that the medium under investigation is a
single magnetised plasma is a strong simplification. Shock waves in the interstellar and
intracluster medium inevitably come along with particle acceleration due to the Fermi II
process (see Section 3.2.2). The charged relativistic particles accumulate in the cosmic
structure where they are bound by magnetic fields. For realistic simulations this non-
thermal gas component must be taken into account.

To check the code performance we repeat the set of MHD shock tube tests including
a fixed fraction of cosmic rays. The associated Riemann problem is analytically solved
under simplifying conditions. We will use the analytical solution to check the quality of
the simulation and thereby reveal potential weak points in the interplay of the SPMHD
and cosmic ray module.

5.2.1 Extension of the MHD Riemann solver

The following derivation of an analytical solution for the MHD Riemann problem in pres-
ence of a non-thermal cosmic ray component is based on the work by Christoph Pfrommer
who developed a two-fluid formalism for a thermal and a relativistic gas in the purely
hydrodynamic case (see Pfrommer et al. 2006).

For the analytical derivation, we have to make the fundamental assumption that no
particle acceleration takes place over the shock front. This rather unphysical simplification
is necessary since any energy transfer to the cosmic ray population inevitably affects the
properties of the downstream thermal gas. Consequently, the post-shock states of cosmic
ray-modified shocks cannot be derived from the jump conditions anymore but need to
be integrated time-dependently or calculated from nonlinear methods. This can only be
achieved numerically (see Kang & Jones 2005).

As a second simplification, we set the cosmic ray adiabatic index to the constant value
γCR = 1.38 over the shock tube. In contrast to the thermal gas, the cosmic rays do not
undergo a shock compression over supersonic wave fronts. Since relativistic particles them-
selves move at supersonic velocities, the cosmic rays are merely adiabatically compressed
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or expanded,

pCRd = pCRu

(

ρd

ρu

)γCR

, ǫCRd = ǫCRu

(

ρd

ρu

)γCR

. (5.47)

To consistently include the cosmic rays in our MHD Riemann solver, we need to replace the
pressure P and total energy density E in the jump conditions by the combined quantities
P ∗ = P + pCR and E∗ = E + ǫCR:

P ∗ = p + pCR +
1

2
(B2

x + B2
y + B2

z ) , (5.48)

E∗ =
1

2
ρ(v2

x + v2
y + v2

z) +
p

γ − 1
+ ǫCR +

1

2
(B2

x + B2
y + B2

z ) , (5.49)

where we have again set µ0 = 1.

Derivation of the magnetosonic wave speeds

With the modified jump conditions it is not any longer possible to write the fast and slow
shock speeds as functions of the upstream state and solely two downstream quantities,
namely Byd and Bzd, as we did in Section 5.1.4. Since the downstream density appears in
the exponent of the CR adiabatic equation, after replacing all downstream hydrodynamic
variables, jump condition (5.28) cannot analytically be solved for W anymore. We there-
fore retain the density jump in the terms for the downstream CR pressure and density
and arrive at the following quadratic equation in W 2:

W 4A + W 2B± + C = 0 , (5.50)

where the three coefficients A, B±, C can be written as

A = (Byd − Byu)
2γ − (By2

d − By2
u) , (5.51)

B± = ∓Byd(B
2
ydByu(γ − 2) − 2Byu

[

B2
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(
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)]

−
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2
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)

+ pu))γ + 2Byd((B
2
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]

)ρu , (5.52)

with B+ for right-facing, B− for left-facing shock waves, and

C = B2
x(B2

x(Byd − Byu)
2(1 + γ) + Byd(B

3
yd − 2Byu(B

2
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2
u . (5.53)
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For a given upstream state, equation (5.50) can be solved for W if the downstream density
and tangential magnetic field components are known. It must be individually tested which
of the two positive solutions matches the correct wave velocity. In the MHD Riemann
problem, evidence arises from the fact, that the speed of the fast wave must be larger than
the speed of the slow wave.

Iteration procedure

We can now proceed with steps 1 to 4 in section 5.1.4, with the difference that, in addition
to By2, By4, By7, and ψ, we also need to provide an initial guess for the four density jumps

r2 =
ρ2

ρ1
, r4 =

ρ4

ρ3
, r5 =

ρ5

ρ6
, r7 =

ρ7

ρ8
. (5.54)

Problems arise in step 5 when a Newton-Raphson-Iteration is used to refine the initial guess
until the states in regions 4 and 5 satisfy the jump conditions for the contact discontinuity
within a specified precision. Instead of four, the system of functions now depends on eight
independent parameters,

F1 = vx5(By2, By4, ψ, r2, r4) − vx4(By4
, By7, ψ, r5, r7) , (5.55)

F2 = vy5(By2
, By4

, ψ, r2, r4) − vy4
(By4

, By7
, ψ, r5, r7) , (5.56)

F3 = vz5(By2
, By4

, ψ, r2, r4) − vz4(By4
, By7

, ψ, r5, r7) , (5.57)

F4 = p5(By2
, By4

, ψ, r2, r4) − p4(By4
, By7

, ψ, r5, r7) , (5.58)

for which the Newton-Raphson scheme is not applicable since the resulting 4×8 Jacobian
matrix cannot be inverted. We solve the problem by temporarily fixing the four density
jumps and performing a nested iteration: Holding the initial guess for r2, r4, r5, and
r7 constant, we carry out a Newton-Raphson iteration until convergence is obtained and
re-calculate the densities in regions 2 to 6. With the resulting density jumps and final
values for By2, By4, By7, and ψ, a new Newton-Raphson iteration is started. We repeat
this procedure until the total change ∆r = |ri+1 − ri| in all four density jumps between
two Newton-iterations becomes less than 1%.

In Section 5.1.4 we already pointed out that an inappropriate initial guess leads to the
break-down of the MHD Riemann solver. We avoided the problem by constraining our
shock tube tests to the Riemann problems studied by D&W for which the final values of
By2, By4, By7, and ψ are known. To test our algorithm for the composite of a thermal and
a relativistic gas, we will study the same Riemann problems, but this time the additional
cosmic ray component will change the initial conditions for the pressure and energy density
according to (5.48). Consequently, the states given in Ryu & Jones (1995) will not match
the solution anymore and finding a good initial guess gets difficult, especially since the
two-fluid MHD Riemann solver now depends on eight parameters.

Another drawback of the presented method is that, precisely because of the high dimen-
sionality of the parameter space, the solution to the system (5.55) - (5.58) found by the
Riemann solver may not be unique. Starting from an initial guess, the algorithm converges
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Table 5.6: The sequence of iterations for the density jumps in Riemann problem 1

Iteration r2 r4 r5 r7

0 1.37991 1.09662 1.12567 1.30900
1 1.22420 1.02637 1.10186 1.34326
2 1.20369 1.00719 1.10255 1.35334
3 1.20105 1.00279 1.10367 1.35532

to the nearest root, irrespective of whether the solution is physically permitted or not. In
some Riemann problems, the co-existing solutions lie very closely to each other. With
respect to the performance tests of the GADGET-2 code, this leads to some complicacy.

5.2.2 Numerical tests

We use the same numerical set-up as in Section 5.1.5. The initial conditions for the thermal
gas are identical to the MHD Riemann problems studied before, but the pressure of the
compound gas is enhanced due to the partial pressure of the non-thermal cosmic rays
which constitutes between 30 and 200 % of the thermal gas pressure.

This time, we cannot make a theoretical prediction of the shock strengths. The deter-
mination of the Mach numbers requires the knowledge of the fast and slow wave speeds
which are to be derived from the modified MHD equations, analogous to Section 5.1.1.
It turns out that the associated system of equations cannot be analytically solved for the
two-fluid problem. We presume that the inclusion of cosmic rays will not further deterio-
rate the Mach number detection since the Mach finder algorithm already accounts for the
presence of a non-thermal component. The error in the simulated Mach numbers should
thus mainly be due to the missing magnetic pressure in the fast and slow wave speeds.
From the results we obtained in the last section we therefore expect to a deviation by 5
to 40 %.

The first Riemann problem (2a in R&J) contains a relative cosmic ray pressure of
XL = pCR/pth = 2.0 on the left side and XR = pCR/pth = 1.0 on the right side. The
initial conditions are thus Bx = 2.0/

√
4π and

~UL = (ρ, vx, vy, vz, By, Bz, p)L = (1.08, 0.01, 0.5, 3.6/
√

4π, 2.0/
√

4π, 2.85) ,

~UR = (ρ, vx, vy, vz, By, Bz, p)R = (1.0, 0.0, 0.0, 0.0, 4.0/
√

4π, 2.0/
√

4π, 2.0) .

As starting values for the four density ratios we insert the jumps that were obtained in
the thermal shock tube, r2 = 1.3799, r4 = 1.0966, r5 = 1.1257, and r7 = 1.309. We do the
same for the magnetic fields, yielding the initial guess By2 = 1.4383, By4 = 1.4126, Bz4 =
1.5078, and By7 = 0.4377. The solver needs three nested iterations until convergence is
obtained (see Table 5.6). The solution is given in Table 5.11a with the corresponding wave
speeds presented in Table 5.11b. Compared to the thermal case the left-facing fast shock
is significantly weaker while the other density jumps are approximately equal.

The result of the GADGET-2 simulation at time t = 0.1 is shown in Figure 5.7. In
the upper central panel the two partial pressure components are displayed individually as
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Table 5.7: The sequence of iterations for the density jumps in Riemann problem 2

Iteration r2 r4 r5 r7

0 1.75761 1.61000 0.94417 0.90146
1 1.89337 1.42281 0.93343 0.89808
2 1.91107 1.40204 0.92280 0.89571
3 1.91760 1.39972 0.91233 0.89422
4 1.92224 1.39956 0.90207 0.89348
5 1.92600 1.39967 0.89206 0.89339
6 1.92906 1.39981 0.88231 0.89386

black dashed and black dotted lines with the analytical solutions overlaid in green and
purple. Apparently, the simulation code behaves exactly as predicted by the Riemann
solver although the thermal pressure is slightly too small. The numerical errors seen in
the plot are explicitly described in section 5.1.5.

The second Riemann problem (2b in R&J) is endowed with a relativistic pressure com-
ponent of XL = pCR/pth = 1.0 and XR = pCR/pth = 0.5. Accordingly, the initial states
for the compound gas yield Bx = 3.0/

√
4π and

~UL = (1.0, 0.0, 0.0, 6.0/
√

4π, 0.0, 2.0) ,

~UR = (0.1, 0.0, 0.0, 0.0, 1.0/
√

4π, 0.0, 15.0) .

We start the iteration with the density jumps r2 = 1.75761, r4 = 1.61000, r5 = 0.94417,
and r7 = 0.90146. The values are again taken from the one-fluid solution whereupon
the last ratio had to be slightly increased since otherwise, taken our initial guess for the
magnetic fields, By2 = 3.1166, By4 = 1.1924, By7 = 0.24732, and Bz4 = 0.24487, the wave
speed of the right-facing fast shock is undefined. In the course of the iteration, r7 must be
adjusted upwards several times in order to prevent the Riemann solver from break-down.
A stable analytical solution is eventually found after six iteration cycles (see Table 5.7).
However, the comparison with the simulation suggests that the analytical solution is not
physical since it does not adequately predict the wave velocities. In Tables 5.12a and 5.12b
we give the states computed after two Newton-Raphson iterations when the solution is
closest to the simulation results. The numbers have to be handled with caution since the
density jumps r2, r4, and r7 have then only converged by about 2 % and r5 is even 6 %
away from the final value.

The corresponding diagrams and the simulation results at t = 0.025 are shown in Figure
5.8. At this stage of the iteration the speed of the leftwards propagating fast discontinuity
agrees well with that of the simulated shock wave whereas the rarefactions on the right
hand side significantly lag behind the GADGET-2 solution. Comparing the displayed
densities with the pressure and the fluid velocities in x-direction, the strong sensitivity of
the thermodynamic states to the density ratios becomes obvious. In the current shock tube
problem the Riemann solver missed the correct value for r7 and converged to a different
solution. This problem could certainly have been avoided with a better initial guess.



5.2. MHD SHOCK TUBES FOR A COMPOSITE OF THERMAL GAS AND
COSMIC RAYS 91

Table 5.8: The sequence of iterations for the density jumps in Riemann problem 3

Iteration r2 r4 r5 r7

0 2.67975 0.99685 1.02740 3.74812
1 2.33074 0.99420 1.02775 3.74507
2 2.27572 0.99347 1.02812 3.74670
3 2.26738 0.99332 1.02818 3.74698

The third Riemann problem (1a in R&J) has the initial states Bx = 5.0/
√

4π and

~UL = (1.0, 10.0, 0.0, 5.0/
√

4π, 0.0, 40.0) ,

~UR = (1.0,−10.0, 0.0, 0.0, 5.0/
√

4π, 0.0, 1.5) ,

where the relative cosmic ray pressures are given by XL = 1.0 and XR = 0.5. Again, we
start the iteration with the eight initial parameters taken from the solution of the thermal
shock tube: r2 = 2.67975, r4 = 0.99685, r5 = 1.02740, r7 = 3.74812, By2 = 3.8389,
By4 = 4.0380, By7 = 5.4272, and Bz4 = 0. The Riemann solver then requires three
Newton-Raphson iterations (see Table 5.8) to arrive at the solution given in Table 5.13a.
The two fast shocks are weaker than in the purely thermal case while the jumps over the
inner two wave fronts are virtually unaltered.

The comparison to the GADGET-2 snapshot at t = 0.022 in Figure 5.9 reveals a good
agreement between our theoretical prediction and the simulation results. The wave speeds
and the partial pressures of the two gas components are very accurately reproduced. We
note that the numerical oscillations in the By-component are stronger than in the thermal
shock tube.

The fourth shock tube test we perform is the modified Riemann problem 3b in Ryu &
Jones in which the relative cosmic ray pressures XL = 2.0 and XR = 1.0 are inserted.
This gives Bx = 0.01 and

~UL = (1.0,−1.0, 0.0, 0.0, 1.0, 0.0, 2.0) ,

~UR = (1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 3.0) ,

We use the approximate thermal density jumps r2 = 0.5, r4 = 1.0, r5 = 1.0, r7 = 0.5. After
some trial and error we find a good initial guess for the magnetic fields, given by By2 = 0.52,
By4 = −0.55, By7 = −0.9, and Bz4 = 0. After three nested Newton-Raphson iterations
(see Table 5.9) the states in Table 5.14a are obtained. The inhomogeneous relativistic
pressure component induces an asymmetry in the wave speeds and compression ratios
which becomes obvious in Table 5.14b. The former mirror-inverted strong rarefactions
are weakened to different extents, the inner right-facing rarefaction has turned into a very
weak shock wave.

The broken symmetry is nicely seen in Figure 5.10, where the numerical and the analyti-
cal solutions are plotted at t = 0.07. The prediction has roughly the same quality as in the
thermal shock tube. The differences in the densities, pressures and tangential magnetic
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Table 5.9: The sequence of iterations for the density jumps in Riemann problem 4

Iteration r2 r4 r5 r7

0 0.50000 1.00000 1.00000 0.50000
1 0.56145 0.98669 1.01673 0.67841
2 0.56440 0.98134 1.02285 0.69162
3 0.56446 0.97970 1.02444 0.69284

Table 5.10: The sequence of iterations for the density jumps in Riemann problem 5

Iteration r2 r4 r5 r7

0 0.58000 0.85000 1.80000 0.99500
1 0.61645 0.96111 2.24876 0.99365
2 0.61172 0.97221 2.63338 0.97826
3 0.60846 0.96914 2.95998 0.96913
4 0.60637 0.96487 3.25656 0.96325

field components are comparable. Interestingly, in the cosmic-ray modified shock tube,
the disagreement in the wave speed is less severe for the weaker rarefaction on the right.

The last Riemann problem is the Brio & Wu shock tube modified through the inclusion
of cosmic rays with the relative pressures XL = 0.5 and XR = 0.3. The left and right
initial states become Bx = 0.75 and

~UL = (1.0, 0.0, 0.0, 1.0, 0.0, 1.5) ,

~UR = (0.125, 0.0, 0.0, 0.0,−1.0, 0.0, 0.13) .

Setting the density jumps and magnetic fields to the thermal values inferred from Table
5.5a produces undefined wave speeds that cannot be restored even if we vary the initial
parameters by a few percent. A look at the simulation result in Figure 5.11 reveals
that the left-facing slow shock has turned into a rarefaction wave after going from the
purely thermal to the two-fluid Riemann problem. This implies that for the speed of the
leftwards propagating slow wave the alternative one of the two positive roots of equation
(5.50) applies.

By default, the simulation outcome serves as an aid to orientation for the choice of
initial parameters. We assume the values r2 = 0.58, r4 = 0.85, r5 = 1.8, r7 = 0.995,
By2 = 0.52, By4 = −0.55, By7 = −0.9, and Bz4 = 0. This initial guess is already a good
approximation to the numerical result. However, after the first Newton-Raphson iteration
the density jump r5 starts diverging (see Table 5.10). Even an extensive experimentation
with the initial parameters did not improve the situation. We thus have to conclude that
the algorithm is inapplicable of solving this special Riemann problem.

In Table 5.15a we give the analytical result for the eight zones of the shock tube after one
Newton-Raphson iteration. From the simulation snapshot at t = 0.07 in Figure 5.11 we
deduce that the true value of r5 must not largely deviate from 1.8, but the high sensitivity
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Table 5.11a: Solution of Riemann problem 1 (R&J 2a + cosmic rays)

ρ vc vy vz By Bz pth pCR p

1.0800 1.2000 0.0100 0.5000 1.0155 0.5642 0.9500 1.9000 2.8500
1.2971 0.7581 0.0526 0.5236 1.2306 0.6837 1.3455 2.4486 3.7941
1.2971 0.7581 0.1534 0.2869 1.3455 0.4141 1.3455 2.4486 3.7941
1.3008 0.7570 0.1464 0.2848 1.3391 0.4121 1.3460 2.4581 3.8040
1.4958 0.7569 0.1464 0.2848 1.3391 0.4121 2.0576 1.7464 3.8040
1.3553 0.7184 −0.1791 0.1846 1.6603 0.5110 1.7318 1.5235 3.2552
1.3553 0.7184 −0.0876 −0.0438 1.5538 0.7769 1.7318 1.5235 3.2552
1.0000 0.0000 0.0000 0.0000 1.1284 0.5642 1.0000 1.0000 2.0000

Table 5.11b: Lagrangian wave speeds and Mach numbers of Riemann problem 1

W−f W−s W+s W+f

2.85143 0.510749 0.556779 2.74004

to the parameters renders it difficult to find the root of equations (5.55) - (5.58). As in the
thermal case, the compound wave structure, which consists of the rotational discontinuity
and the rarefaction travelling at the same speed, appears as one single wave structure
while the analytical solution displays two separate discontinuities (see section 5.1.5). For
unknown reasons, the numerical oscillations in this Riemann problem are extremely strong.

5.2.3 Conclusions

We have derived a novel analytical solution to the MHD Riemann problem for a medium
composed of a thermal gas and a relativistic cosmic ray component from the modified jump
conditions for MHD shocks. The comparison with the numerical shock tubes performed
with GADGET-2 reveal that we have obviously chosen the right ansatz for computing the

Table 5.12a: Solution of Riemann problem 2 (R&J 2b + cosmic rays)

ρ vc vy vz By Bz pth pCR p

1.0000 0.0000 0.0000 0.0000 1.6926 0.0000 1.0000 1.0000 2.0000
1.9111 −2.0448 0.3287 0.0000 3.3586 0.0000 4.1107 2.4517 6.5624
1.9111 −2.0448 0.2807 0.4809 3.2921 0.6648 4.1107 2.4517 6.5624
2.6794 −2.2075 −1.3573 0.1501 1.1924 0.2408 7.7247 3.9145 11.6390
0.0802 −2.2075 −1.3573 0.1501 1.1924 0.2408 7.9539 3.6853 11.6390
0.0869 −1.9791 2.0409 0.8363 0.2391 0.0483 8.2846 4.1189 12.4040
0.0869 −1.9791 2.0246 1.0000 0.2439 0.0000 8.2846 4.1189 12.4040
0.1000 0.0000 2.0000 1.0000 0.2821 0.0000 10.0000 5.0000 15.0000
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Figure 5.7: Riemann problem 1 (R&J 2a + cosmic rays) at t = 0.1 with waves from left to right: fast shock, rotational
discontinuity, slow shock, contact discontinuity, slow shock, rotational discontinuity, fast shock
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Figure 5.8: Riemann problem 2 (R&J 2b + cosmic rays) at t = 0.025 with waves from left to right: fast shock, rotational
discontinuity, slow shock, contact discontinuity, slow rarefaction, rotational discontinuity, fast rarefaction
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Figure 5.9: Riemann problem 3 (R&J 1a + cosmic rays) at t = 0.022 with waves from left to right: fast shock, slow rarefaction,
contact discontinuity, slow shock, fast shock
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Figure 5.10: Riemann problem 4 (R&J 3b + cosmic rays) at t = 0.07 with waves from left to right: fast rarefaction, slow
rarefaction, contact discontinuity, slow shock, fast rarefaction
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Figure 5.11: Riemann problem 5 (R&J 5a + cosmic rays) at t = 0.07 with waves from left to right: fast rarefaction, slow
compound, contact discontinuity, slow shock, fast rarefaction
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Table 5.12b: Lagrangian wave speeds and Mach numbers of Riemann problem 2

W−f W−s W+s W+f

4.28907 1.08492 0.237414 1.31703

Table 5.13a: Solution of Riemann problem 3 (R&J 1a + cosmic rays)

ρ vc vy vz By Bz pth pCR p

1.0000 10.0000 0.0000 0.0000 1.4105 0.0000 20.0000 20.0000 40.0000
2.2674 1.3013 0.1651 0.0000 3.2320 0.0000 109.0100 62.1300 171.1400
2.2674 1.3013 0.1651 0.0000 3.2320 0.0000 109.0100 62.1300 171.1400
2.2522 1.3075 0.5175 0.0000 3.7503 0.0000 107.7650 61.5560 169.3200
3.8526 1.3075 0.5175 0.0000 3.7503 0.0000 166.0850 3.2361 169.3200
3.7470 1.2881 −0.3665 0.0000 5.4108 0.0000 158.5500 3.1140 161.6600
3.7470 1.2881 −0.3665 0.0000 5.4108 0.0000 158.5500 3.1140 161.6600
1.0000 −10.0000 0.0000 0.0000 1.4105 0.0000 1.0000 0.5000 1.5000

Table 5.13b: Lagrangian wave speeds and Mach numbers of Riemann problem 3

W−f W−s W+s W+f

15.5622 2.07397 2.64951 15.3974

Table 5.14a: Solution of Riemann problem 4 (R&J 3b + cosmic rays)

ρ vc vy vz By Bz pth pCR p

1.0000 −1.0000 0.0000 0.0000 1.0000 0.0000 1.0000 2.0000 3.0000
0.5645 0.2870 −0.0026 0.0000 0.5645 0.0000 0.2880 0.9060 1.1940
0.5645 0.2870 −0.0026 0.0000 0.5645 0.0000 0.2880 0.9060 1.1940
0.5530 0.2873 0.0892 0.0000 0.6273 0.0000 0.2760 0.8806 1.1566
0.7098 0.2873 0.0892 0.0000 0.6273 0.0000 0.5345 0.6221 1.1566
0.6928 0.2870 0.0019 0.0000 0.6928 0.0000 0.5117 0.6016 1.1133
0.6928 0.2870 0.0019 0.0000 0.6928 0.0000 0.5117 0.6016 1.1133
1.0000 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 2.0000

Table 5.14b: Lagrangian wave speeds and Mach numbers of Riemann problem 4

W−f W−s W+s W+f

1.66796 0.00683877 0.00751065 1.60825
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Table 5.15a: Solution of Riemann problem 5 (R&J 5a + cosmic rays)

ρ vc vy vz By Bz pth pCR p

1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.5000 1.5000
0.6165 0.8589 −0.2547 0.0000 0.5312 0.0000 0.4173 0.2559 0.6732
0.6165 0.8589 −1.6077 0.0000 0.5312 0.0000 0.4173 0.2559 0.6732
0.5925 0.8850 −1.6427 0.0000 −0.5497 0.0000 0.4106 0.2422 0.6528
0.2793 0.8850 −1.6427 0.0000 −0.5497 0.0000 0.5615 0.0913 0.6528
0.1242 −0.0234 −0.0157 0.0000 −0.9905 0.0000 0.0991 0.0297 0.1288
0.1242 −0.0234 −0.0157 0.0000 −0.9905 0.0000 0.0991 0.0297 0.1288
0.1250 0.0000 0.0000 0.0000 −1.0000 0.0000 0.1000 0.0300 0.1300

Table 5.15b: Lagrangian wave speeds and Mach numbers of Riemann problem 5

W−f W−s W+s W+f

1.38052 0.397042 0.203172 0.456971

wave velocities of the compound fluid.

The initial guess for the eight parameters in (5.55) - (5.58) was constructed on the
assumption that the overall structure of waves and magnetic fields is still preserved after
the inclusion of the relativistic component. If possible, the parameters were thus set to
the values found for the corresponding thermal shock tubes. Otherwise, the initial guess
had to be figured out in a numerical simulation.

In the first four shock tube tests our Riemann solver steadily converged to a stable
analytical solution within three to five nested iterations. For the first and third Riemann
problem the computed states and velocities agreed well with the numerical solution. In
the fourth test the deviations were at least in line with the accuracy of the analogous
thermal shock tube. This achievement can be seen as a strong indication of the correct
physical behaviour of the SPMHD implementation and the cosmic ray module.

Nevertheless, for the second Riemann problem, we obtained a solution that is apparently
unphysical since it significantly differed from the simulation result. As explained in section
5.2.1, this might be due to the existence of multiple roots of the system of equations (5.55)
- (5.58). It is also noticeable that five instead of three iterations for the density jumps
were required which usually is a sign of a poor initial guess. We expect to find the correct
wave speeds only if the initial guess lies sufficiently close to the physical solution.

Finally, the last Riemann problem, which is the cosmic ray-modified Brio & Wu shock
tube, turned out to be unsolvable with our algorithm. Although we had chosen an initial
guess that approximately reproduced the simulation result, one of the density jumps im-
mediately started diverging after the first Newton-Raphson iteration. The problem might
partly arise from the fact that the Brio & Wu shock tube contains a special wave feature
that cannot be theoretically described in the thermal case either.

In summary, we succeeded in precalculating three out of five simulation results. We thus



5.2. MHD SHOCK TUBES FOR A COMPOSITE OF THERMAL GAS AND
COSMIC RAYS 101

conclude that our Riemann solver can be an appropriate tool for predicting the outcome
of MHD shock tube simulations with a composite of a thermal and a relativistic gas
performed with GADGET-2, provided we have a proper initial guess. The last restriction
currently is the greatest shortcoming of the algorithm since an appropriate initial guess is
a priori not known but has to be deduced from the corresponding thermal shock tube or
the numerical result.

Most important, the fact that three of the simulation results exactly match the predicted
Riemann solutions demonstrates that the interplay between the SPMHD implementation
and the cosmic ray module results in a physically correct behaviour, even in the extreme
case of equally large thermal, relativistic and magnetic energy densities. The code should
thus properly trace the structure formation shocks in our cosmological simulations and
calculate the resulting changes in the thermal and non-thermal energy components. Since,
under the conditions given in clusters of galaxies, the contribution of the non-thermal
components to the total energy in any case will be less than 10 %, we can neglect the
errors introduced by the Mach number estimation.
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Cluster Simulations 6
The bremsstrahlung emission from the hot intracluster gas with temperatures of 106 to
108 K makes clusters of galaxies the most luminous X-ray sources in the universe, with the
exception of quasars. Thermal X-ray emission is thus a common observational property
of all galaxy clusters. Since the amount and temperature of the intracluster plasma scales
with the cluster mass, the X-ray luminosities and the masses of clusters are correlated
(Reiprich & Böhringer 2002).

In contrast, large-scale synchrotron radiation from the ICM, caused by the existence of
large scale magnetic fields and of a population of relativistic electrons, is only observed
in a minor fraction of galaxy clusters. Giovannini et al. (2002) report that, in a complete
cluster sample, 5 % of clusters have a central radio halo source and 6 % a peripheral
relic source. The detection rate of diffuse radio sources increases with the cluster X-ray
luminosity, reaching ∼ 35 % in clusters with X-ray luminosities larger than 1045 erg s−1

(in the ROSAT band).

Studies at X-ray energies provide evidence that all of these clusters are highly unrelaxed
and show signatures of recent merger events. The connection to cluster mergers, which
supply the energy to the amplification of the magnetic fields and the acceleration of the
particles would at least in part explain the relative rarity of diffuse radio sources.

In this chapter we will investigate the details of the halo-merger connection through the
comparison between the X-ray and radio emission of simulated clusters of galaxies and
their light deflecting properties. First, we will introduce the cluster sample and respond
to special features in their structure formation histories. In the subsequent section we
will present the evolution of their X-ray luminosities as a function of redshift and discuss
the morphologies of the surface brightness maps for selected merger events. Next, we
will study the non-thermal properties of the clusters on the basis of their luminosities at
a frequency of 1.4 GHz. Furthermore, we will compare X-ray and radio contour maps
of merger events and discuss the associated morphologies. By the end of the section we
will investigate the temporal correlation between enhanced X-ray and radio activity and
try to establish a connection between both signatures. Finally, we will trace the merger
history of the galaxy clusters on the basis of their strong lensing properties and search for
analogies to their thermal and non-thermal evolution.

103
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6.1 Numerical set-up

The galaxy cluster sample originates from the large cosmological simulation presented in
Yoshida et al. (2001). This simulation assumed a flat ΛCDM cosmology with a present
matter density parameter Ωm = 0.3, a baryonic fraction of ΩB = 0.039, and an energy den-
sity parameter ΩΛ = 0.7. The value of the Hubble constant in units of 100 km s−1Mpc−1

is given by h = 0.7. The model universe comprised 5123 dark matter particles, each of
mass 6.6 · 1010 h−1 M⊙, inside a cubic box of 479h−1 co-moving Mpc side length. The dis-
tribution of initial Gaussian density fluctuations was normalised to the present abundance
of galaxy clusters assuming an amplitude σ8 = 0.9 for the present day power-spectrum.

The dark matter halos in the cosmological simulation were identified as groups of parti-
cles that had the overdensity characteristic of virialised objects predicted by the spherical
collapse model around local density maxima. By selecting massive dark matter halos with
virial masses in the range ∼ 4 · 1014 to 2.4 · 1015 M⊙ , a number of suitable candidates
for galaxy clusters were found (Tormen et al. 2004). The depicted areas were cut out of
the simulation volume and re-simulated with a mass resolution of 2 · 109 M⊙ to 6 · 109 M⊙

per dark matter particle. The initial conditions for these clusters were produced using the
“Zoomed Initial Conditions” (ZIC) technique described in Tormen et al. (1997), thereby
re-sampling the initial density field and increasing the number of particles.

The newly generated initial conditions were evolved using the GADGET-2 code in-
cluding gas physics, magnetic fields and the self-consistent cosmic ray model. All cluster
simulations start at redshift z = 60 and end at z = 0 . Snapshots were written at 141
output times, equally spaced in log(1 + z) between z = 10 and z = 2.16 , and, in order to
obtain a higher time resolution, with a finer spacing between z = 2.16 and z = 0 .

6.2 The cluster sample

We study a sample of three galaxy clusters that span a mass range of 1.8 · 1014 M⊙ to
3.2 · 1015 M⊙ at z = 0 . The two smaller objects, g51 and g72, are typical representatives
of massive clusters that, besides being highly X-ray luminous, are expected to host large
radio halos as a signature of dynamical activity (for a comparison with real galaxy clusters
see e.g. Horner et al. 1999). The largest of the three objects, g8, belongs to the high-mass
end of observed galaxy clusters. Despite its rather unspectacular formation history, due
to its large amount of high-temperature thermal gas, g8 serves as a suitable test object in
the study of the correlation between merger activity and radiative processes.

The galaxy clusters are identified with the most massive halo in each of the three
simulations. The evolution of the main halo with time is traced by the means of its mass
growth and increasing virial radius. In the following we summarise the formation history
of the three galaxy clusters:

g8

The evolution of the g8 cluster is characterised by smooth accretion and a few weak minor
merger events. The smoothness of the accretion process is reflected in the evolution of
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Figure 6.1: Evolution of the virial mass (left) and the virial radius (right) of the cluster g8
in the redshift interval z = [2.13, 0.00] . Shown are the total mass (solid line),
the dark matter mass (dashed line), and the gas mass (dotted line).

the virial mass, plotted as a function of redshift in the left panel of Figure 6.1. The
mass curve increases monotonically and does not exhibit any larger jumps. Yet most
noticeable are the mass increases at z ≈ 0.8 and z ≈ 0.5 . As can be seen in the right
panel of Figure 6.1, the virial radius grows larger than 2.5 Mpc at redshifts below z = 0.5 ,
which makes the g8 cluster one of the most extended gravitationally bound objects that
are observed today. The cluster is particularly interesting because of its large mass from
which we can expect a high X-ray luminosity. Furthermore, even in the absence of major
merger events, the infall of sub-halos in the mass range of 7.6 · 1013 M⊙ to 1.9 · 1014 M⊙

involves high-impact accretion shocks that amplify the intracluster magnetic fields and
might significantly trigger the production of cosmic rays. We thus expect the appearance
of a large scale radio halo above the detection limit.

g51

The g51 cluster goes through a major merger around z ≈ 1.1 and some minor mergers
after z . 0.6 . The major merger is the prominent feature in the mass evolution curve
of Figure 6.2, where the mass grows to a maximum value of ∼ 1 · 1015 M⊙ at z ≈ 1.15
and subsequently drops by almost 10 % at z ≈ 1.3 , before it rises again around z ≈ 1.4 .
This run is characteristic for a sub-clump that traverses the main halo and, in a sort of
pendular motion, is drawn back by gravity into the centre of the main halo. In the right
panel of Figure 6.2 we see that the virial radius is only slightly affected by the merger event

and keeps monotonically increasing all the time. Since Rvir ∝ M
1/3
vir , we do not expect

to see large jumps in the evolution of the virial radius. From the merger events we can
anticipate reasonable magnetic energies and a strongly varying production of relativistic
particles. Consequently, radio emission halos of fluctuating sizes and luminosities should
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Figure 6.2: Evolution of the virial mass (left) and the virial radius (right) of the cluster
g51 in the redshift interval z = [2.13, 0.00] . Shown are the total mass (solid
line), the dark matter mass (dashed line), and the gas mass (dotted line).

be produced. With a final mass of ∼ 1.8 M⊙ and a size of ∼ 3 Mpc around z = 0.1 , the
g51 cluster is larger than the average of galaxy clusters and should thus be a bright X-ray
source.

g72

As can be seen from Figure 6.3, the g72 cluster has approximately the same final mass and
size as the g51 cluster. Nevertheless, g72 has a unique formation history due to two major
merger events, one at z . 0.8 and one in the late phase of its evolution at z . 0.3 . For
both events we observe the characteristic steepening in the slope of the mass function. The
low redshift of the second merger event makes the g72 cluster well comparable to Abell
2256, a massive galaxy cluster at redshift z ≈ 0.06 that is currently in the final stage of
a major merger. The corresponding X-ray and radio maps are presented in Section 3.3.3.
Due to the strong merger shocks in the formation history of g72, we expect to see large
increases in both, X-ray and radio emission.

6.3 X-ray emission

In the following, we will investigate how the X-ray luminosities of the simulated clusters
evolve in the course of structure formation and identify distinct features in their thermal
evolution that can be related to minor and major merger events. We will further search for
substructures and distortions in the X-ray brightness distributions that indicate sub-clump
interaction and check whether their morphologies can explain the observations.

In order to generate X-ray maps that allow for the comparison to observational data,
the gas distributions of the simulated clusters were projected onto two-dimensional arrays
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Figure 6.3: Evolution of the virial mass (left) and the virial radius (right) of the cluster
g72 in the redshift interval z = [2.13, 0.00] . Shown are the total mass (solid
line), the dark matter mass (dashed line), and the gas mass (dotted line).

of 10242 pixels by integrating over the kernel function of each SPH particle along a spec-
ified line of sight. The projection was carried out for three different directions, hereafter
specified as the x , y , and z-direction, respectively. The X-ray flux emitted by each pixel
was determined using the MEKAL emission model in the spectral fitting analysis package
XSPEC (Arnaud 1996). The model accounts for the continuum spectrum of an optically
thin plasma whose electrons have a Maxwellian energy distribution (Mewe et al. 1985,
1986; Kaastra & Mewe 1993), including Fe L emission and the line emissions from several
elements (Liedahl et al. 1995). Intergalactic absorption is described by the WABS model
on the basis of Wisconsin cross-sections (Morrison & McCammon 1983). The X-ray fluxes
were calculated for an effective bandpass of 0.6 - 20 keV, assuming a primordial hydrogen
abundance and a mean hydrogen density of 1 cm−3 . Total luminosities were obtained by
integrating over the cluster’s surface.

6.3.1 Luminosities

In Figure 6.4 we show the total X-ray luminosity of the g8 cluster as a function of redshift.
In the course of structure formation the luminosity grows by a factor of ∼9, from approx-
imately 1045 erg s−1 at z = 2.13 to about 9 · 1045 erg s−1 at z = 0.006 . This trend clearly
reflects the increasing mass and temperature of the ICM. The light curve is superimposed
by several prominent peaks that indicate sudden luminosity boosts to up to & 200 % of
the initial luminosity. This strong and fast increase in thermal emissivity together with
an equally fast decline suggests a sudden high compression of the medium as caused by a
violent accretion shock with subsequent relaxation of the cluster. Looking at the left panel
of Figure 6.1, we see that the luminosity peak around z . 0.7 indeed follows a steepening
of the halo growth function at slightly higher redshifts. The same can be observed for the
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Figure 6.4: Simulated X-ray luminosity of the g8 cluster in units of erg s−1 as a function
of redshift.

peaks at z ≈ 0.3 and z ≈ 0.15 which are apparently induced by an abrupt increase in
cluster mass.

Figure 6.5 shows the X-ray luminosity of the g51 cluster. As in the example of g8, the
luminosity increases with decreasing redshift, due to the thermal evolution of the ICM.
The X-ray luminosity at the final redshift is smaller than that of g8 by a factor of ∼ 0.4 ,
due to the smaller cluster mass. However, the relative increase in X-ray luminosity is much
stronger, about a factor of 20 between z = 2.13 and z = 0.006 . The enhanced thermal
emission is due to the higher dynamical activity of the g51 cluster. As in the case of the g8
cluster, a number of prominent peaks are superimposed to the luminosity curve in Figure
6.5. The largest peak occurs at z ≈ 0.1 where the luminosity abruptly rises by about 100
%.

The evolution of the X-ray luminosity of cluster g72 is shown in Figure 6.6. It displays
two large peaks in the wake of the major merger events around z ≈ 0.65 and z ≈ 0.2 .
The first merger leads to an increase in X-ray luminosity by a factor of 3, while during
the second major merger, the luminosity temporarily grows to about six times the initial
value before it drops again very rapidly. Over the remaining redshift range, the luminosity
curve appears rather smooth without significant variation which is due to the smooth and
sparse matter accretion at redshifts above z ≈ 1 . In total, we denote a growth in the
X-ray luminosity from 1043 erg s−1 to about 2 · 1045 erg s−1 from z = 2.13 to z = 0.006 .

6.3.2 Morphologies

Studies of the X-ray morphologies are of major importance since the thermal gas bears the
most evident signatures of cluster mergers. For the more detailed analysis of the cluster
dynamics we pick out redshift intervals in the thermal history of the clusters that appear
particularly interesting and investigate their associated X-ray morphologies.

The situation we select from the light curve of g8 corresponds to the broad peak in
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Figure 6.5: Simulated X-ray luminosity of the g51 cluster in units of erg s−1 as a function
of redshift.
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Figure 6.6: Simulated X-ray luminosity of the g72 cluster in units of erg s−1 as a function
of redshift.
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the redshift interval z = [0.416, 0.268] , where the curve displays a small bend in its slope
before reaching the maximum value. The X-ray contours are shown in Figure 6.7. The
maps were obtained from a projection along the x-axis and by plotting contour lines in
the range FX = 10−13 - 5 · 10−18 erg s−1 cm−2 in a central cutout of 1 Mpc side length.
The contour lines reveal the infall of two sub-clumps from opposite directions. One clump
appears in the upper right panel of Figure 6.7, at redshift z = 0.388 . It enters from the
left border, a little bit above the main halo and rapidly merges with the cluster, while the
second clump, already visible in the first panel, describes an orbital motion around the
main halo before it transversely enters from downside. The second infall thereby induces
the higher compression ratios since the clump propagates a long way through the low-
density gas in the outer regions where it can produce shocks with high Mach numbers.
The time-lag of the two mergers and their infall geometries could thus plausibly explain
the luminosity peak in Figure 6.4.

In Figure 6.8 we take a closer look at the inner cluster dynamics around the most
prominent X-ray peak at redshift z ≈ 0.9 in the thermal history of g51. We present the
X-ray morphologies in the redshift range z = [0.124, 0.006] , obtained by the projection
along the x-axis and for a central cutout of 1 Mpc side length. The contours show lines
of equal flux in the range FX = 10−6 - 10−12 erg s−1 cm−2. Immediately before the X-
ray luminosity reaches the overall maximum in Figure 6.5, a minor merger takes place at
z = 1.01 , visible in the upper right panel of Figure 6.8. A smaller clump falls in later
around z = 0.06 , visible in the last panel of the second row and in the first panel of the
third row of Figure 6.8. This second infall prevents the cluster from immediate relaxation
and can explain the slight broadening of the luminosity peak around half of the maximum.

In Figure 6.9 we present the X-ray contours of the thermal radiation at the time of the
first major merger. Shown is a cutout of 1Mpc2 size at the centre of the cluster and for
redshifts z = 0.731 to z = 0.550 . The line of sight is the y-axis. The g72 cluster is the
upper halo in the first panel which at this time has an approximate mass of 6.9 · 1014 M⊙ .
The smaller clump, which is approaching from below, contains almost half of the main
halo mass. The clumps hit each other with a slight offset in x-direction and thus spiral
around each other in the centre. At z = 0.630 the cluster reaches the local emission
maximum of LX ≈ 5 · 1045 erg s−1 before its core gets disrupted due to the high angular
momentum. The two sub-halos are catapulted into opposite directions, well visible in the
last four panels of Figure 6.9.

Figure 6.10 shows X-ray maps of the second major merger in a projection along the
x-axis. The infalling sub-clump comes from the upper right direction. It crosses the
centre of g72 and moves past the main halo where it gets decelerated by the cluster’s
gravitational potential. This first crossing coincides with the highest peak in Figure 6.6,
which indicates that the merger shock induces very strong compression and thus a high
release of thermal energy. After the core passage, the X-ray morphology appears strongly
distorted, displaying an elongated shape. The regression and final infall of the sub-clump
are not depicted in Figure 6.10, but from the evolution of the total luminosities we see
that it induces a second bright X-ray boost.
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Figure 6.7: X-ray flux contours of the g8 cluster obtained from the projection along
the x-axis within a region of 1 Mpc side length in the redshift interval
z = [0.416, 0.268] . Contour levels are 5 · 10−18, 10−17, 5 · 10−17, 10−16, 5 ·
10−16, 10−15, 5 · 10−15, 10−14, 5 · 10−14, 10−13 erg s−1 cm−2.
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z = 0.124 z = 0.112 z = 0.101

z = 0.090 z = 0.079 z = 0.068

z = 0.058 z = 0.047 z = 0.037

z = 0.026 z = 0.016 z = 0.006

Figure 6.8: X-ray flux contours of the g51 cluster obtained from the projection along
the x-axis within a region of 1 Mpc side length in the redshift interval
z = [0.124, 0.006] . Contour levels are 10−17, 5 · 10−17, 10−16, 5 · 10−16, 10−15, 5 ·
10−15, 10−14, 5 · 10−14, 10−13, 10−12 erg s−1 cm−2.
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z = 0.731 z = 0.714 z = 0.696

z = 0.679 z = 0.663 z = 0.646

z = 0.630 z = 0.613 z = 0.597

z = 0.581 z = 0.565 z = 0.550

Figure 6.9: X-ray flux contours of the g72 cluster obtained from the projection along
the y-axis within a region of 1 Mpc side length in the redshift interval
z = [0.731, 0.550] . Contour levels are 10−19, 5 · 10−19, 10−18, 5 · 10−18, 10−17, 5 ·
10−17, 10−16, 5 · 10−16, 10−15, 5 · 10−15, 10−14, 5 · 10−14 erg s−1 cm−2.
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z = 0.218 z = 0.205 z = 0.193

z = 0.181 z = 0.170 z = 0.158

z = 0.146 z = 0.135 z = 0.124

z = 0.112 z = 0.101 z = 0.090

Figure 6.10: X-ray flux contours of the g72 cluster obtained from the projection along
the x-axis within a region of 1 Mpc side length in the redshift interval z =
[0.268, 0.135] . Contour levels are 10−17, 5 · 10−17, 10−16, 5 · 10−16, 10−15, 5 ·
10−15, 10−14, 5 · 10−14, 10−13, 10−12 erg s−1 cm−2.
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Figure 6.11: Azimuthally averaged X-ray profiles centered on the emission maximum for
g51 and g72. Dotted lines show the profiles obtained for projections along
the x (red), y (green), z-axis (purple). The black solid line represents the
mean profile over all three projections.

6.3.3 Profiles

We reveal the different thermal characteristics of virialising and merging galaxy clusters
by means of two exemplary X-ray profiles of the simulated clusters at different stages of
their dynamical evolution.

Figure 6.11 shows the radially averaged X-ray profiles of the clusters g51 and g72 within
a radius of 1 Mpc centered on the maxima of thermal emission. The profile of g51 is taken
at z = 0.158 in a quiet phase between two minor merger events. The profile displays a
piece-wise constant slope which becomes steeper at a distance of about 0.3 Mpc away from
the centre. The small bump around r = 0.6 signals the beginning of the upcoming minor
merger at z ≈ 0.1 .

The profile of g72 is taken at the time of the first core passage during the final major
merger event. Due to the two the large sub-clumps in the centre of g72 the X-ray profile
has flattened in a core region of radius r . 02 Mpc , while for larger radii the profile falls
of with a single constant slope.

As Figure 6.11 reveals, the two clusters do not significantly differ in their peak thermal
brightness but in the size of their X-ray luminous surface area. The large bright core in
the profile of g72 is thus the reason for the strong in increase in X-ray luminosity.

6.4 Radio emission

The cosmic ray model implemented in GADGET-2 accounts for the production and ra-
diation of secondary cosmic ray electrons - electrons that are injected all over the cluster
volume due to hadronic collisions between cosmic ray nuclei and thermal ions in the ICM
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Figure 6.12: Radio synchrotron luminosity of the g8 cluster at 1.4 GHz

(see Sections 3.3.2 and 4.3). Not taken into consideration is the generation and radiation
of primary cosmic ray electrons. The latter are populations of mildly relativistic electrons
that get re-accelerated by accretion shocks and turbulence in the ICM. Primary electrons
are believed to be the main source of the so-called radio relics, small irregular and highly
polarised radio lobes observed in the cluster periphery.

Since the cosmic ray model neglects the re-acceleration of primary electrons, our sim-
ulated clusters might lack an important fraction of their synchrotron power. The syn-
chrotron emission was calculated under the assumption of an isotropic distribution of
magnetic field lines and electron pitch angles according to the formalism presented in
Section 4.3.2. The magnetic fields of g8 and g51 were evolved starting from seed values
0.9 · 10−8 G in order to obtain magnetic energies that constituted about 1 - 10 % of the
thermal energy. The seed field of g72 was 0.9 · 10−9 G and the magnetic energy had to be
scaled up retrospectively by a factor 102 in order to arrive at magnetic energies that are
typically derived for radio-luminous clusters of galaxies.

6.4.1 Luminosities

In Figure 6.12 we show the radio luminosity of the g8 cluster at 1.4 GHz as a function of
redshift. The plot displays a large number of pronounced radio peaks imposed on a regular
and very steep increase of the luminosity over three orders of magnitude between z = 2.13
and z = 0.006 . The peaks indicate boosts in the synchrotron emissivity by factors of 3
to 10, with a trend towards stronger magnification at higher redshifts. This trend may
be due to the fact that the gas densities inside the cluster are lower at higher redshifts
and therefore on average stronger shocks are produced. Comparing Figures 6.12 and 6.4,
most radio peaks seem to have an X-ray counterpart, although sometimes the X-ray peaks
appear slightly shifted towards lower redshifts. This is in accordance with the temporal
sequence of lumpy matter accretion during which the strongest shocks are produced when
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Figure 6.13: Radio synchrotron luminosity of the g51 cluster at 1.4 GHz

an infalling clump crosses the outer, low-density layers of the ICM whereas the rise in
temperature is largest when the clump has reached the centre of the cluster.

The synchrotron power emitted at 1.4 GHz of cluster g51 is shown in Figure 6.13. The
luminosity grows by four orders of magnitude from z = 2.13 and z = 0.006 . The first
crossing of the sub-clump in the major merger event induces a large broad peak around
z ≈ 1 where the radio luminosity instantaneously rises by a factor 10. After the end of the
major merger, around z ≈ 0.5 , the overall luminosity at first declines and later rises again
around z ≈ 0.1 . In this region, we observe two more large peaks due to minor mergers
events, one at z ≈ 2.3 and one around z ≈ 0.1 . The second merger triggers the emission
maximum with a total luminosity of P1.4GHz ≈ 1030erg s−1 Hz−1 .

Figure 6.14 shows the radio luminosity of the g72 cluster at 1.4 GHz for redshifts z =
2.13 to z = 0.006 . The increase in radio luminosity by about five orders of magnitude
from ∼ 4 · 1025 to 2.4 · 1030 Jy arcmin−2 is the strongest for all three clusters, and serves
as a proof of the hypothesis that merging clusters of galaxies produce the strongest radio
emission. The two major merger events around z ≈ 0.65 and z ≈ 0.2 hence trigger the
strongest release of radio emission. Remarkably, in the second major merger process, the
first and the second infall of the sub-clump produce equally large peak luminosities of
about 1031erg s−1 Hz−1 . Several other radio peaks appear in Figure 6.14 that have only
very weakly pronounced X-ray counterparts. The low X-ray and high synchrotron peaks
can be explained by the fact that the clumps that merge with the cluster at those high
redshifts cannot heat up the ICM significantly, due to their low masses. Nevertheless,
since the gas density at this time is very low, the clumps produce shocks of considerable
strength that subsequently lead to an amplification of the magnetic field and to enhanced
cosmic ray production.
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Figure 6.14: Radio synchrotron luminosity of the g72 cluster at 1.4 GHz

6.4.2 Morphologies

In order to investigate how matter accretion affects the shape of the radio halo we study
contour plots of the synchrotron flux at 1.4 GHz for the situations selected in Section
6.3.2. To allow for a direct comparison with the X-ray morphologies the radio contours
are overlaid onto the associated X-ray surface brightness maps. For a better readability,
we only show five X-ray contour levels.

In Figure 6.15 we present the radio morphologies of the minor merger event in the g8
cluster at redshifts between z = 0.416 and z = 0.268 . The synchrotron emission is seen to
be centred on the maximum of X-ray emission over the whole sequence. In the upper three
panels of the plot the radio halo exhibits a spherical shape with irregular boundaries. As
the two sub-clumps are approaching the cluster, the radio halo gets distorted and appears
slightly elongated along the direction of infall. The contour lines in front of the clump
first flatten and then arch inwards as the medium is compressed by the ram pressure of
the shock front. This effect is well visible at z = 0.374 and at z = 0.320 where the
radio luminosity ultimately reaches an emission maximum of . 1030 Jy arcmin−2 . The
radio boost is thus strongest before the clump has merged with the cluster core. This
effect explains why the radio halos of dynamically active galaxy clusters often display an
irregular shape.

The X-ray characteristics of the final merger event in the formation history of g51
were described in the last section. We take a closer look at the associated radio mor-
phologies. Figure 6.16 shows the combined radio and X-ray maps in the redshift range
z = [0.124, 0.006] . The radio halo in the second and third panel is significantly elongated
along the direction of infall. The flattening and bending of the contour lines is more pro-
nounced than in the radio maps of cluster g8. This is of course due to the stronger shocks
induced by the infall of the relatively large sub-clump. In the subsequent two panels we
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can observe how the radio halo gets back into a spherical shape as the cluster starts virial-
ising. The shapes of the radio and X-ray contours thereby evolve similarly. The relaxation
process is disrupted by the infall of smaller sub-clumps and the halo gets distorted again,
thereby increasing its overall size. In the last picture, we again see a flattening of the
outermost contour line. All in all we can conclude that the distortion of the radio halo
becomes more pronounced for the infall of larger sub-clumps. We thus expect to see an
even stronger effect in case of a major merger event.

In Figure 6.17 we show the radio and X-ray contour maps of the first major merger of
g72. Before the collision we observe two separate and faint radio halos which are centered
on the thermal emission maxima. While the clump is approaching the cluster centre the
radio emission intensifies and the two distinct halos merge into one single, elongated radio
structure. The rich substructure during the core passage between z = 0.663 and z = 0.613
suggests that the ICM is violent, filled with shocks, strong currents, and turbulence.
While the clump is running out of the cluster core, we see a finger-like structure evolving
perpendicular to the direction of outflow. Except for that particular feature, the overall
radio and X-ray morphology display a great similarity.

The radio morphologies of the second major merger event are shown in Figure 6.18.
The selected redshift interval and the line of sight are the same as for the X-ray maps
shown earlier. Again we can observe that the radio halo expands and flattens towards the
direction of infall, thereby reflecting the ram pressure caused by the motion of the sub-
clump. We see significant substructure in the radio emission which exhibits a high level
of turbulence in the ICM. At z = 0.193 the radio emission reaches the overall maximum
in surface brightness with about 5 · 1031 Jy arcmin−2 . There is an obvious analogy to
the merger geometry of Abell 2256. The shape of the central radio halo is very similar
with the one difference that our secondary cosmic ray electron model is not capable of
reproducing the rhombic radio lobe in the wake of the shock front, visible in the upper
right corner of Figure 3.9. This striking feature in the radio emission of Abell 2256 is
evidently caused by primary electrons that got re-accelerated by the turbulent motion
behind the shock front. Nevertheless, the remarkable similarity between the simulation
and the observation strongly supports the applicability of our numerical models. After
the sub-clump has crossed the centre of the main halo, the radio halo gets significantly
enlarged by the outgoing shock front. In doing so it traces the morphology of the thermal
emission. In the last six panels the radio halo has reached an approximate overall size of
about 1 Mpc which corresponds to the average size of observed radio halos.

6.4.3 Profiles

In this section we present the radio profiles of the clusters g51 and g72 in order to disclose
the differences in the non-thermal properties of relaxing and merging galaxy clusters.

Figure 6.19 shows the azimuthally averaged radio profiles of g51 and g72 at redshifts
z = 0.158 and z = 0.193 . Most remarkably, the peak brightness of the radio halo in g72 is
about a factor 7 higher than that of the radio halo in g51. Both profiles display a flattening
of the core region and similar slopes outside r ≈ 0.2 Mpc with a slightly steeper decline
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z = 0.416 z = 0.402 z = 0.388

z = 0.374 z = 0.360 z = 0.346

z = 0.333 z = 0.320 z = 0.306

z = 0.293 z = 0.280 z = 0.268

Figure 6.15: Overlay of the radio contours at S1.4GHz = [10−6, 10−5, 10−4] Jy arcmin−2 and
the X-ray surface brightness contour maps of the g8 cluster. The maps were
obtained from the projection along the x-axis within a region of 1 Mpc side
length in the redshift interval z = [0.416, 0.268] .
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z = 0.124 z = 0.112 z = 0.101

z = 0.090 z = 0.079 z = 0.068

z = 0.058 z = 0.047 z = 0.037

z = 0.026 z = 0.016 z = 0.006

Figure 6.16: Overlay of the radio contours at S1.4GHz = [10−7, 10−6, 10−5] Jy arcmin−2 and
the X-ray surface brightness contour maps of the g51 cluster. The maps were
obtained from the projection along the x-axis within a region of 1 Mpc side
length in the redshift interval z = [0.124, 0.006] .
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z = 0.731 z = 0.714 z = 0.696

z = 0.679 z = 0.663 z = 0.646

z = 0.630 z = 0.613 z = 0.597

z = 0.581 z = 0.565 z = 0.550

Figure 6.17: Overlay of the radio contours at S1.4GHz = [10−7, 10−6, 10−5] Jy arcmin−2 and
the X-ray surface brightness contour maps of the g72 cluster. The maps were
obtained from the projection along the y-axis within a region of 1 Mpc side
length in the redshift interval z = [0.731, 0.550] .
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z = 0.218 z = 0.205 z = 0.193

z = 0.181 z = 0.170 z = 0.158

z = 0.146 z = 0.135 z = 0.124

z = 0.112 z = 0.101 z = 0.090

Figure 6.18: Overlay of the radio contours at S1.4GHz = [10−6, 10−5, 10−4] Jy arcmin−2 and
the X-ray surface brightness contour maps of the g72 cluster. The maps were
obtained from the projection along the x-axis within a region of 1 Mpc side
length in the redshift interval z = [0.218, 0.090] .
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Figure 6.19: Azimuthally averaged radio profiles at 1.4 GHz centered on the emission max-
imum for g51 and g72. Dotted lines show the profiles obtained for projections
along the x (red), y (green), z-axis (purple). The black solid line represents
the mean profile over all three projections.

in the surface brightness in g72. The bumps close to the centre and in the outskirts of
the radio profile in g72 signals that the radio halo has a clumpy and very irregular shape
which is also obvious in Figure 6.18.

The high surface brightness of g72 leads to a peak in the radio luminosity which is about
a factor 15 larger than that of g51 at the specified redshifts. The faintness of the radio
halo of g51 might explain why diffuse radio emission is not detected in galaxy clusters that
do not exhibit signs of recent merger events.

6.5 Radio - X-ray comparison

So far there seems to be convincing evidence that diffuse radio sources are preferentially
associated with high X-ray luminous clusters that undergo strong mergers. In order to give
additional support to this theory we present a more systematic study of the correlation
between merger activity and radiative processes in our sample of simulated clusters.

Figures 6.20, 6.21, and 6.22 show the luminosity evolution of the g8, the g51, and the
g72 cluster respectively. Both functions are shown in logarithmic scaling. In all three
clusters the two curves exhibit striking similarities in the positions of the luminosity peaks
as well as in their relative height.

A few exceptions can be seen for example in the light curves of g51 where, around the
redshift z = 1 , two peaks appear in the X-ray emission while in the radio power only
one broad peak can be seen. Furthermore, around z ≈ 1.25 there is a small bump in the
radio distribution which has no counterpart in X-ray. The same feature can be seen in the
emission characteristics of g8 at z ≈ 1.3 and z ≈ 0.45 where we observe two distinct peaks
in the X-ray emission but only one single maximum in the radio brightness. Also, in both
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Figure 6.20: X-ray (black line) to radio (red line) comparison in the redshift interval z =
[2.13, 0.006] for the simulation of the g8 cluster.
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Figure 6.21: X-ray (black line) to radio (red line) comparison in the redshift interval z =
[2.13, 0.006] for the simulation of the g51 cluster.
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Figure 6.22: X-ray (black line) to radio (red line) comparison in the redshift interval z =
[2.13, 0.006] for the simulation of the g72 cluster.

clusters g8 and g51, the light curves appear less correlated at higher redshifts. However,
since high redshifts correspond to extremely large distances and low gas densities galaxy
clusters at those redshifts cannot be observed.

The X-ray luminosity curve of the g72 cluster is clearly dominated by the two major
merger events. The situation is more ambiguous for the radio power which displays a few
more quite prominent peaks such as the maxima at z = 1.2 and z = 0.06 . As mentioned
earlier, we assume that the much smaller X-ray boosts at early times are due to low gas
densities and temperatures, a physical fact that can also explain the pronounced radio
peaks between z = 1.2 and z = 0.8 in the rather smooth accretion history of g8. The
relatively small X-ray boost in the late formation history of g72 could be due to the fact
that the merging sub-clump has already lost a part of its mass during the first crossing
and therefore the final infall does not trigger an equally strong X-ray boost in thermal
emission. Looking back at the last panels in Figure 6.18 we see that the whole cluster core
is indeed disrupted and the final merging is split into a number of smaller mergers.

In order to further quantify the temporal correlation between the radio power and the
X-ray luminosity for each cluster we calculate the cross correlation function

ξ(τ) = 〈(P1.4GHz − 〈P1.4GHz〉)(t + τ)(LX − 〈LX〉)(t)〉 , (6.1)

which is obtained by calculating the correlation coefficients of the two signatures for a
shifting by a certain number τ of intervals in time t . Time in this respect means intervals
of constant log(z + 1) which is the time interval between two GADGET-2 snapshots.
The mean values 〈P1.4GHz〉 and 〈LX〉 were calculated by averaging over a total of nine
snapshots including the current snapshot and the four preceding and subsequent snapshots
respectively. For the four first and last snapshots the averages were accordingly calculated
with a smaller sample of luminosities. By this means we subtracted the average upgrowth
of both quantities. The cross correlation functions were computed for a shifting of 20
output times in both directions, where the minus sign refers to a shifting of the X-ray
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Figure 6.23: Cross-Correlation coefficient of the radio and X-ray luminosities of the g8
cluster as a function of shiftings in log(1 + z) . Negative values correspond to
a shifting of LX towards earlier times with respect to P1.4GHz while positive
values correspond to shifting to later times.

luminosity to earlier times with respect to the radio emission and the plus sign refers to a
shifting in the opposite direction.

Figures 6.23, 6.24, and 6.25 show the results of the calculation for each of the three
clusters. For a clearer presentation, the correlation functions are normalised to one. In
Figure 6.23 the cross correlation function of the g8 cluster yields a very clear result. The
central peak at τ = 0 dominates the function thus proving that the two observables are
correlated. The cross correlation functions of g51 and g72 are more ambiguous. The max-
ima at τ = 0 are largest, but nevertheless, some of the lateral peaks are very pronounced.
In Figure 6.24 we see four peaks that occur symmetrically at τ = ±7 and τ = ±13 and
have approximately the same height. In Figure 6.25 two large lateral maxima appear at
τ = −6 and τ = −12 and two smaller ones at τ = 7 and τ = 13 .

There is a simple explanation for these results: The two peaks at z = 1.16 and z =
1.01 in the light curves of g51 in Figure 6.24 are separated by seven output intervals
while the very pronounced peak at z = 1.46 is 13 output times away from z = 1.16 .
Consequently, the overlapping of the three peaks give large contributions to the cross-
correlation coefficient of the g51 cluster at τ = ±7 and τ = ±13 . The same effect applies
for the cross-correlation function of cluster g72 where it leads to feigned correlations for
shiftings of τ = −7,−13 and τ = 6, 12 .

The cross-correlation analysis thus provides convincing evidence that the thermal and
non-thermal components in the simulated galaxy clusters are correlated and consequently
lead to simultaneous bursts in X-ray and radio emission.
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Figure 6.24: Cross-Correlation coefficient of the radio and X-ray luminosities of the g51
cluster as a function of shiftings in log(1 + z) . Negative values correspond to
a shifting of LX towards earlier times with respect to P1.4GHz while positive
values correspond to shifting to later times.
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Figure 6.25: Cross-Correlation coefficient of the radio and X-ray luminosities of the g72
cluster as a function of shiftings in log(1 + z) . Negative values correspond to
a shifting of LX towards earlier times with respect to P1.4GHz while positive
values correspond to shifting to later times.
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6.6 Strong lensing cross sections

Galaxy clusters act as gravitational lenses on the light emitted by background sources.
Since the light deflection angles depend on the matter distribution inside the lens, the
lensing properties of the simulated clusters are strongly affected by mass accretion and
merger activity. Consequently, we expect to see a temporal correlation between the in-
crease of the radio and X-ray emission, triggered by accretion shocks and the increase of
temperature in the ICM, and the light deflecting properties of the underlying dark matter
distribution. In what follows we will introduce the strong lensing cross section σ7.5 which
will serve as a measure for the light deflecting power of the simulated clusters in the course
of their evolution.

The strong lensing cross section σ7.5 is defined by the sum of the statistical weights of
sources that produce images with L/W ≥ 7.5 . If there is more than one such image for a
source, the statistical weights are multiplied by the number of images. The corresponding
area is expressed in co-moving Mpc. The strong lensing cross section is particularly useful
for tracing the accretion history of the simulated clusters since it increases when a sub-
halo crosses the cluster core during a merger (Torri et al. 2004; Meneghetti et al. 2005).
Consequently, if there is a correlation between merger events and the boost in X-ray
and radio luminosity we must observe a simultaneous increase in the strong lensing cross
section and the radio and X-ray brightness.

The numerical routines for calculating the strong lensing cross sections were kindly
provided by Ewald Puchwein who designed the algorithm in order to investigate the impact
of gas physics on strong cluster lensing in a sample of four galaxy clusters, including g8,
g51, and g72. We will give a brief summary of the numerical method, details are found in
Puchwein et al. (2005).

The surface mass density Σ of each cluster is obtained by projecting all dark matter
particles that are located inside a sphere of co-moving radius 3 h−1 Mpc around the cluster
centre onto an equidistant grid of 40962 grid cells. From the projected mass map the
convergence κ and its Fourier transform κ̂ are calculated. In Fourier space, the Poisson
equation (3.71) takes the simple linear form

ψ̂ = − 2

k2
κ̂ , (6.2)

from which we derive the Fourier transform of the lensing potential ψ̂ and subsequently
transform it back to the real value ψ . However, due to the non-periodicity of the conver-
gence field, the discrete Fourier algorithm gives accurate results only in a narrow region
around the cluster centre. The error can be reduced by calculating the Fourier transform
of a perfectly periodic, two-dimensional array of cluster point masses with periodicity
6 h−1 Mpc , and then subtracting the same array with one point mass missing at the po-
sition of the original cluster. The remaining error can then be neglected in the central
10242 cells of the grid which serve as the lensing plane.

A number of elliptical sources with an equivalent radius of 0.5 arcsec was placed at
the source plane, which was held fixed at z = 1.5 . To obtain an adequate number of
arcs, the density of sources close to the caustics was particularly high. Statistical weights
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were assigned to the sources according to the areas represented. This method was first
introduced by Miralda-Escude (1993b,a) as a tool for the statistical analysis of lensed
images. A detailed description for non-analytic models is given in Bartelmann & Weiss
(1994) and Bartelmann et al. (1995).

Using the deflection angles calculated from the lensing potential ψ̂ , one can trace back
the path of a light ray from a grid point in the lens plane to a point in the source plane
and check whether it matches one of the specified sources. As described in Meneghetti
et al. (2000), the images are approximated by simple geometrical figures such as ellipses,
circles, rectangles or rings with a specified length-to-width ratio L/W .

Figure 6.26 shows the strong lensing cross section as a function of redshift for all three
projections of g8. Also shown as the dotted lines is the radio luminosity at 1.4 GHz. All
three cross sections display the prominent peaks around z ≈ 0.7 and z . 0.5 , as well
as several minor maxima which indicate enhanced dynamical activity. In the comparison
with the radio luminosity we see that to each maximum in the cross section we can assign
a peak in the synchrotron emission of the cluster. In the upper panel, which corresponds
to the line of sight along the x-axis, we can identify the infall of the two clumps which we
described earlier. The plot reveals that the radio maximum lies exactly between the two
sub-mergers when the shock compression is the strongest. The effect is even better visible
for the projection along the y-axis, as shown in the lower panel.

In Figure 6.27 we compare the strong lensing cross sections of the g51 cluster with its
radio luminosity at 1.4 GHz. Remarkably, the impact of matter infall on the strong lensing
cross section of g51 greatly depends on the line of sight. While the merger at z ≈ 2.3 in
the second panel leads to an increase of the cross section by more than 100 %, it leaves
no marks in the first panel. The same happens for the spike at z ≈ 0.5 in the last panel,
which is not present in the other two projections. Nevertheless, we observe a small radio
peak at the same redshift which is obviously connected to the infall. Also for the other
peaks in the cross sections, there is an obvious correlation with phases of enhanced radio
activity of the ICM in g51.

The strong lensing cross sections of the g72 cluster are very narrowly peaked around
the final major merger at z ≈ 0.19 . Furthermore visible are the two core passages of a
sub-halo around z ≈ 0.67 and z ≈ 0.48 which both times leads to a strong increase of
the cross section of the first panel, while in the other two panels only the second core
passage is pronounced. The radio luminosity follows the trend of the cross section very
accurately over the entire redshift range which is a clear proof of the connection between
merger activity and augmented synchrotron emission.

6.7 Conclusions

On the basis of numerical simulations of three different galaxy clusters we have shown that
the hierarchical evolution of galaxy clusters via mergers of sub-clumps with the main halo
produces a variety of observational signatures such as a strong increase in radiative power,
elongated and clumpy X-ray emission and extended and irregular radio synchrotron halos.
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Figure 6.26: Strong lensing cross sections for projections along the x , y , and z -axis of
the simulations of the g8 cluster. The cluster is shifted within the redshift
interval z = [0.08, 1.20] while the source is fixed at z = 1.5 . Overplotted as
the dotted lines is the radio luminosity at 1.4 GHz as a function of redshift.
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Figure 6.27: Strong lensing cross sections for projections along the x , y , and z -axis of
the simulations of the g51 cluster. The cluster is shifted within the redshift
interval z = [0.08, 1.20] while the source is fixed at z = 1.5 . Overplotted as
the dotted lines is the radio luminosity at 1.4 GHz as a function of redshift.
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Figure 6.28: Strong lensing cross sections for projections along the x , y , and z -axis of
the simulations of the g72 cluster. The cluster is shifted within the redshift
interval z = [0.08, 1.20] while the source is fixed at z = 1.5 . Overplotted as
the dotted lines is the radio luminosity at 1.4 GHz as a function of redshift.



134 6.7. CONCLUSIONS

The temporal evolution of the X-ray and radio power of the cluster sample suggests
that the presence of strong and diffuse thermal and non-thermal emission in the ICM is
related to the existence of strong minor and major merger events. Further support comes
from our study of selected X-ray and radio maps in which we discovered morphological
similarities between the thermal gas distribution and the structure of radio halos.

The direct comparison of the X-ray and radio luminosities revealed the strong correlation
between thermal and non-thermal activity of the simulated clusters over a wide range of
redshifts. Verification was obtained by calculating the cross-correlation functions of both
signatures.

Finally, through a comparison of the strong lensing cross sections with the radio lumi-
nosity functions we have demonstrated that the radio properties of the simulated galaxy
clusters are strictly connected to their structure formation histories. The presence of non-
thermal components such as relativistic particles and magnetic fields is thus found to be
related to the existence of minor and major merger events.



Summary and conclusions 7
There is strong observational evidence that the presence of diffuse, large-scale radio halos
in massive and unrelaxed clusters of galaxies correlates with a high X-ray luminosity. The
radio emission which is not associated to single galaxies but to the intracluster medium
has a synchrotron origin. According to the standard scenario, the synchrotron emission is
produced by the gyration of relativistic electrons, so-called cosmic rays, in the magnetised
plasma of the clusters. The existence of cosmic rays and magnetic fields in galaxy clusters
has been proven independently.

One goal of this thesis was to test the combined performance of the magnetic field
implementation and the self-consistent cosmic ray model in GADGET-2, a massively par-
allel tree-SPH code designed and released by Volker Springel. After successful testing, the
modules were employed in simulations of the formation of galaxy clusters. The purpose
of these simulations was to prove the existence of a correlation between the emission and
the dynamical state of the clusters.

In the first part of this thesis, amongst other things, we summarised our current knowl-
edge about intracluster magnetic fields and the origin of cosmic rays. We emphasised the
importance of cluster mergers, being the most energetic triggers of field amplification and
particle acceleration in the intracluster medium. Furthermore, we presented the radiation
mechanisms that lead to the observed large-scale radio and X-ray emission.

In the second part of this thesis we gave an introduction to smoothed particle hy-
drodynamics, the numerical method for modelling baryonic gas physics in GADGET-2.
We described its application to magnetohydrodynamics. We furthermore introduced the
self-consistent cosmic ray model developed by Ensslin, Pfrommer, and Jubelgas.

To provide the theoretical basis for the performance tests with the magnetic field im-
plementation and the cosmic ray model, we introduced the MHD Riemann problem which
serves as a standard test problem for MHD codes. As a first step we implemented the
analytical MHD Riemann solver presented by Dai and Woodward. To check its opera-
tional reliability, we reproduced five shock tube problems presented in the paper. We
furthermore checked the solutions against shock tube simulations with GADGET-2. The
tests showed an accurate agreement between the analytical and numerical solutions.

To account for the presence of cosmic rays we developed a novel analytical solution
to the MHD Riemann problem for a composite of a thermal gas and cosmic rays. We
upgraded the analytical Riemann solver to the solving of the MHD Riemann problem
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with the composite gas. We then repeated the five shock tube calculations presented
earlier, including a cosmic ray pressure component that constituted 30 - 200 % of the
thermal gas pressure. The shock tube calculations were performed with the analytical
Riemann solver and with GADGET-2. Our results are summarised in the following:

• The MHD Riemann problem in the two-fluid case involves the solution of a system
of four equations with eight unknowns. This can be done using an iterative scheme.
One needs to supply initial values for the density jumps over the four magnetosonic
wave fronts and the corresponding tangential components of the magnetic field.

• By means of the two-fluid Riemann solver we accurately predicted two out of five
simulation results. For a third Riemann problem the agreement of the theoretical
and simulated results was satisfactory. In one case, the Riemann solver converged
to a different solution, due to an unfitting initial guess for at least one of the pa-
rameters. The last Riemann problem, which was the cosmic-ray modified Brio and
Wu shocktube, could not be solved with our Riemann solver. The algorithm is not
suited for this particular Riemann problem which is known to exhibit a special wave
phenomenon.

• The successful theoretical prediction of the results of three shocktube simulations
with GADGET-2 was taken as a strong indicator for the correct physical behaviour
of the code. Since all shock tube tests included high cosmic ray pressures that were
far beyond the expected relativistic pressures in the cosmological simulations, we
suppose that the magnetic field implementation and the cosmic ray model can be
used simultaneously when modelling the formation of galaxy clusters.

• The Mach number finder in GADGET-2 does not account for the magnetic pressure
in magnetohydrodynamic shocks. In the numerical shocktube calculations we ob-
served a mean deviation of 10 - 15 % between the theoretical and simulated Mach
numbers for a purely thermal gas. Since the shock strength estimation in GADGET-
2 is suited to the inclusion of cosmic rays, the errors in the Mach numbers should
be similar for shocktube calculations in a composite of cosmic rays and a thermal
gas. In cosmological simulations, this error can be completely neglected since the
magnetic energy makes up only 1 - 10 % of the thermal energy in galaxy clusters.

After the validation through the shock tube tests, we performed simulations of the
structure formation of three different galaxy clusters, including magnetic fields and cosmic
rays. In a post-processing procedure we calculated the thermal bremsstrahlung emission
from the intracluster gas and the synchrotron energy losses of the secondary cosmic ray
electron population at a frequency of 1.4 GHz. We furthermore computed the strong
lensing cross sections of all three galaxy clusters. On the basis of these observables we
discussed the evolution of the thermal and non-thermal emission and its connection to
merger activity. We obtained the following results:

• In all three galaxy clusters we observed a strong increase in X-ray luminosity between
redshifts z = 2.13 and z = 0.006 . In one cluster with a rather smooth accretion



137

history, the X-ray brightness raised by a factor of 9 in the specified redshift range.
In contrast, the thermal luminosity of a cluster with two major mergers in the
same time grew by a factor of ∼37. In all three clusters, strong luminosity boosts
occurred during the accretion of larger sub-clumps. Depending on the relative size
of the infalling sub-clumps, the peak luminosities reached up to 200 - 300 % of the
mean value.

• In the same redshift interval, z = [2.13, 0.006], the radio luminosity at 1.4 GHz in the
cluster sample grew by three to five orders of magnitude, with the larger increases
for a higher merger activity. Locally, the radio luminosity evolution displayed strong
peaks which coincided with the occurrence of strong shocks in the intracluster gas.
The shocks induced an increase of the radio emissivity by about one order of mag-
nitude.

• We found that the X-ray and radio maps have similar morphologies and display
significant substructure during strong merger events. Furthermore, due to the ram
pressure of large shock fronts, the surface brightness and overall size of the radio
halos increased significantly. These effects are consistent with the observation and
can plausibly explain why large-scale radio emission so far has only been detected
in galaxy clusters that show signs of recent major merger events.

• In a systematic comparison of the X-ray and radio luminosities we could verify that
the X-ray and radio observables of the simulated clusters are correlated in time. A
comparison of the synchrotron luminosity and the strong lensing cross sections of the
clusters furthermore proved that the radio boosts are strictly connected to merger
activity.

Our results give strong support to the hypothesis of a correlation between large-scale
radio emission and merger activity as inferred from the observations. We note that a
secondary cosmic ray electron population can only in part explain the radio morphologies
of real galaxy clusters. We expect to obtain more realistic radio halos if the production of
primary cosmic ray electrons in the intracluster medium is taken into account as well.
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Clarke, T. E., Kronberg, P. P., Böhringer, H., & Enßlin, T. A. 2002, Highlights of Astron-
omy, 12, 537
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