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Zusammenfassung

Akkretionsscheiben um Schwarze Löcher
Quellen der Viskosität und Spuren von über-Eddington Akkre tion

Wir untersuchen die Rolle der Konvektion in Akkretionsscheiben um Schwarze Löcher, ins-
besondere den Einfluss auf den Energietransport und die Auswirkung konvektiver Turbulenz auf
die Viskosität in der Scheibe. Wir zeigen, dass Konvektion den Energietransport durch Strahlung
im Falle einer masselosen Scheibe effizient unterstützt, während es im umgekehrten Fall einer
selbstgravitierenden Scheibe zu negativen Rückkopplungseffekten kommt. Obwohl konvektive
Turbulenz einen signifikanten Beitrag zur gesamten Viskosität leistet, kann sie nicht alleine als
Erklärung dafür dienen.

Im zweiten Teil untersuchen wir die spektrale Energieverteilung von über-Eddington akkretie-
renden Schwarzen Löchern, basierend auf 2D strahlungs-hydrodynamischen Simulationsdaten.
Wir berechnen die Kontinuumemission und die Emission und Absorption der Eisen-K-Linien
mittels einer Ray-tracing Methode. Wir zeigen, dass relativistische Beaming-Effekte für frontal
betrachtete Scheiben zu über-Eddington Leuchtkräften führen. Die Eisen-Linien erweisen sich
als guter Indikator für den Akkretionsprozess in den inneren Scheibenregionen: Es zeigt sich
eine enge Korrelation zwischen dem Verhältnis der Kβ-Linien zu den Kα Linen und der Zentral-
masse, sowie zwischen der Linienbreite und dem Beobachtungswinkel.

Abstract

Black hole accretion disks
Sources of viscosity and signatures of super-Eddington acc retion

We study the role of convection in black hole accretion flows.We investigate the influence of
convection on the energy transport as well as the effect of convective turbulence on the disk’s
viscosity. The results reveal that convection supports theradiative energy transport efficiently
in massless disks, while it can turn into a negative feedbackif self-gravity becomes important.
Convective turbulence adds significantly to the total viscosity, but cannot account for it on its
own.

In the second part, we study the spectral energy distribution of super-Eddington accretion
flows onto a black hole, based on 2D RHD simulation data. We model the continuum emission as
well as the iron K line emission and absorption features witha ray-tracing radiative transfer code.
We find that mild relativistic beaming effects become important, leading to super-Eddington
luminosities for face-on seen disks. We confirm the diagnostic power of the iron K lines on the
accretion process in the inner disk region, finding a strong correlation between the central black
hole mass and the ratio of the Kα to the Kβ lines. We also detect a trend of line broadening for
edge-on seen disks.
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1 A small bubble in the Universe

When I began my physical studies [in Munich in 1874] and sought advice
from my venerable teacher Philipp von Jolly . . . he portrayedto me physics
as a highly developed, almost fully matured science . . . Possibly in one or
another nook there would perhaps be a dust particle or a smallbubble to be
examined and classified, but the system as a whole stood therefairly secured,
and theoretical physics approached visibly that degree of perfection which,
for example, geometry has had already for centuries.

– from a 1924 lecture by Max Planck (Sci. Am, Feb 1996)

On the very day when this introduction was written (April 23,2008), we were celebrating the
150th birthday of Max Planck. Fortunately, Planck decided to study physics despite the bleak
future for research that was presented to him. In 1901, he published an article with the title “On
the Law of Distribution of Energy in the Normal Spectrum”, describing the spectral radiance of
electromagnetic radiation at all wavelengths of a blackbody at a given temperature. This was
not only the cornerstone in his career, it also paved the way for modern physics and astronomy.
Only through Planck’s law, astronomers were able to model the emitted spectrum of a star, a
blackbody radiator in zeroth order, without running into the ultraviolett catastrophe. Quantum
mechanics and atomic physics would not exist without this fundamental discovery.

Nowadays, more than 100 years later, we know that von Jolly could not have been further off
the mark. Although our understanding of the Universe broadened to an extent almost beyond
belief, it seems that with the answer of one question, at least ten others are rising. And so it
happens that this thesis deals with two out of many open questions in one of von Jolly’s small
bubbles. And even there, we again encounter Planck’s blackbody radiation law and its offsprings
in atomic physics.

In this dissertation, we study the properties of accretion disks around black holes. Having
called them one of von Jolly’s small bubbles, it needs to be put into the right context. Yes, it
is certainly only one corner of physics where questions remain to be answered. At the same
time, accretion disks are ubiquitous! They can be found almost everywhere in the Universe,
from today back in time until the Cosmos was less than one million years old, from sizes of
about one solar radius (1011cm) in low mass X-ray binary systems up to one parsec (1018cm)
in active galactic nuclei, and around a wealth of objects like protostars, white dwarfs, neutron
stars or black holes. Despite this huge variety, the drivingphysical principle, the accretion of
matter onto a central object through a disk-like structure,remains the same. Understanding the
key process of accretion is therefore one of the big challenges, but also one of the big chances of
astronomy in the21st century. Here, we investigate two pixels of the overall picture.
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1 A small bubble in the Universe

The source of viscosity in astrophysical disks Theoretical modeling of accretion disks
dates back to the year 1948, when Weizsäcker published his article about the rotation of cosmic
gas (Weizsäcker, 1948). A key ingredient to describe the accretion process is the origin of the
viscosity, which causes friction in the disk and an inward motion of the material. In those early
years, it was generally believed that molecular viscosity is responsable for this effect. However,
the first observations of accretion disks in cataclysmic variables, which allowed to deduce the
typical timescales of the accretion process, threw over thetheoretical expectations (see, e. g.,
Prendergast & Burbidge (1968); Pringle & Rees (1972)). Theyrevealed, that the numbers mea-
sured in the lab and those needed to account for the observations differed by about ten orders of
magnitude. The following decades saw a plethora of attemptsto resolve this puzzling situation,
but none of them succeeded. Only Shakura & Sunyaev (1973) proposed a parameterization, the
α-viscosity, by which all of a sudden most observations couldbe fitted adequately. Despite this
success, the Shakura-Sunyaev viscosity remains a purely empirical description and no physical
explanation, and it is limited to thin disks with negligibledisk masses.

Among the physical theories, the most promising ones are:

• Differential rotation. Accretion disks are mostly showing a nearly Keplerian rotation
profile. An obvious candidate for the turbulence in such a disk is therefore differential ro-
tation. From early laboratory experiments on rotating Couette-Taylor flows (Wendt, 1933;
Taylor, 1936), this possibility was first ruled out. However, in recent re-investigations,
Richard & Zahn (1999) and Richard (2001) concluded that differential rotation can give
rise to turbulence, despite published arguments. At the same time, Duschl et al. (2000)
formulated theβ-viscosity description. Although being a parameterization like its an-
cestor, it can actually be related to the process of differential rotation. Contrary to the
α-prescription, theβ-viscosity accounts properly for the selfgravity of the disk. At the
same time, it includes theα-viscosity in the case of a shock dissipation limited, non-
selfgravitating disk.

• Convection. The process of accretion is the most efficient way of producing energy, out-
classing nuclear fission by a factor of at least100. In order to account for the transport
of these huge amounts of energy, convection is considered tosupport or even dominate
in some cases over radiation. It is therefore natural to regard the turbulence caused by
convective motion as a possible candidate for viscosity. Again, first (semi-)analytical in-
vestigations gave discouraging results, since they led to hugely massive disks which could
not be explained, given theα-viscosity description (Vila, 1981; Duschl, 1989). Ruden et
al. (1988); Ryu & Goodman (1992) studied convective instabilities in thin gaseous disks
and confirmed that angular momentum transport can be supported by convective turbu-
lence. Goldman & Wandel (1995) investigated accretion disks where viscosity is given by
convection solely and where the energy transport is maintained by radiation and convec-
tion. They found the resulting viscosity being too low by a factor of 10 to 100, but could
not draw a final conclusion, since their disk model was oversimplified.1

• Magneto-rotational instability. The magneto-rotational instability (MRI) was first no-
ticed in a non-astrophysical context by Velikhov (1959); Chandrasekhar (1960) when con-
sidering the stability of a Taylor-Couette flow of an ideal hydromagnetic fluid. More than

1The authors applied a one-zone approximation (c. f., Sect.2.1) in their models and estimated the contribution of
convection to the energy transport in an overly simple way.
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30 years later, these early results were brought back to lifewhen Balbus & Hawley (1991)
established, that weak magnetic fields can substantially alter the stability character of ac-
cretion disks, giving rise to a generic and efficient angularmomentum transport. Today, the
MRI is considered as the primary candidate for solving the long lasting riddle of viscosity
in disk accretion flows. Yet again, we find ourselves in one of von Jolly’s nooks, since the
MRI basically requires two essential conditions to hold. Firstly, the angular velocity has to
decrease with the distance from the central object. Secondly, a (weak) poloidal magnetic
field must be present. While the former criterium is usually met in accretion disks, the
latter one can pose a severe problem. A further weak point aremagneto-rotationally stable
dead zonesin disks (see Sect. 3.7 for a further discussion). More fundamental, King et al.
(2007) pointed out a discrepancy of at least one order of magnitude between the viscosities
generated by the MRI and those inferred from observations.

Thus, the question if one of these candidates, a combinationof them, or even some other pro-
cess is responsible for generating viscosity in astrophysical disks, is very much open. In their
conclusions, Goldman & Wandel (1995) stressed the need for aconvective disk model where the
vertical structure is calculated self-consistently. We follow their suggestion in Chapt. 3 and con-
struct a disk model where we calculate the effect of convection in a self-consistent way by means
of the mixing-length theory. Hereby, the total viscosity isgiven by convection and a support-
ing β-viscosity, accounting for turbulence due to differentialrotation and allowing or potential
self-gravitating effects. Beforehand, in Chapt. 2, we discuss the limitations of theβ-viscosity
as a description of subsonic turbulence, i. e., the constraints of the shock dissipation limit on
these disks. There, we also investigate a possible feedbackof convection on the upward energy
transport, i. e., a downward motion of heat-carrying elements, in preparation for Chapt. 3.

Spectral energy distribution of super-Eddington flows In the second part of this the-
sis, we investigate the long standing problem of the limit onthe accretion rate onto a black hole.
This topic became a matter of debate already in the 1970’s (Begelman, 1978; Burger & Katz,
1980) and the final word is not yet spoken. In earlier work, we showed that the classical Ed-
dington limit cannot be applied in a straightforward way to the accretion disk case (Heinzeller
& Duschl, 2007). The major difference to the stellar case is the different geometry, which leads
to an anisotropic limit. Along with that, the accretion ratemay exceed the value derived from
the classical limit significantly. This is mainly due to the fact that apart from radiation, energy
can be transported efficiently by other processes such as advection in the disk. This has not been
taken into account in the classical calculations. However,numerous investigations have been
carried out in order to circumvent the limitations imposed by the Eddington limit (see Sect. 4.1
for a further discussion).

The final answer to this question will have a considerable impact on our understanding of
accretion physics: over the whole range of central black hole masses, from stellar mass black
holes with a few solar masses up to supermassive black holes (SMBH) with up to one billion
solar masses, key questions about their formation and evolution remain to be answered. Here,
we focus on one important aspect.

Ultraluminous X-ray sources: Do they contain intermediate mass black holes or not?
Recent observations of ultraluminous X-ray sources (ULX, see e. g. Makishima et al. (2000);
Kubota et al. (2006)) reveal a puzzling situation for black hole accretion theories. With a bolo-
metric luminosity exceeding1039 erg s−1 (derived from X-ray observations), at least some of
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1 A small bubble in the Universe

Figure 1.1. The Seyfert 2 galaxies M51 (left) and M102 (right). Althoughthe central engine in both
galaxies works in a similar way, their appearance on the sky is completely different. While the dense disk
blocks the emitted radiation from the core of the edge-on oriented M102, the face-on view on M51 allows
a close look at the central region. Credits: Hubble HeritageTeam.

them show relatively low radiation temperatures (∼ 0.1 keV). These systems have been sug-
gested to be intermediate mass black hole, sub-Eddington accretion disk systems (Miller et al.,
2003; Cropper et al., 2004). Controversially, from time-variability observations, it seems to be
likely that these objects are instead low-mass X-ray binarysystems (Liu et al., 2002). Radio
observations show that the distribution of ULXs can as well be fitted by stellar mass black holes
with mildly relativistic jets (Körding et al., 2004).

The substantial amount of observational data from X-ray satellites such asChandra, XMM-
Newtonor Suzaku, also reveals that a distinct class of ULX sources exists, showing higher tem-
peratures – sometimes exceeding1 keV – than can be explained by IMBHs. Contrary, stellar
mass black holes accreting above their Eddington limit can account for these sources (Watarai
et al., 2001; Ebisawa et al., 2003; Vierdayanti et al., 2006). Alternatively, mild beaming effects
could be important (King et al., 2001). A controversial debate about the origin of ULXs is still
ongoing (see, for example, Roberts (2007) for a review).

A key point for a proper understanding and interpretation isthe comparison with theory. Con-
siderable efforts have been made in the last decades to modelblack hole accretion disks in detail,
which are partially summarized in Sect. 4.1. Among them, Ohsuga et al. (2005); Ohsuga (2007)
performed two-dimensional radiation-hydrodynamic simulations (2D RHD) of super-Eddington
accretion flows onto a central black hole. We investigate thespectral energy distribution of their
results by focussing on the continuum emission features in Chapt. 4. Main emphasis is thereby
the influence of the orientation of the disk relative to the observer, in order to study the conse-
quences of anisotropy and beaming effects in super-Eddington accretion flows. To illustrate the
impact of the orientation of such a disk relative to the observer, we display the two Seyfert 2
galaxies M51 (Whirlpool Galaxy) and M102 (Spindle Galaxy) in Fig. 1.1.

Of great interest are not only the continuum spectra of accretion disk systems. Atomic
and molecular lines offer the chance to measure rotation/outflow velocities through red- or
blueshifted lines. They also allow to constrain temperature, pressure and density, or even strong
gravitational effects in the vicinity of a black hole from line profiles and strengths (relative to
each other and to the continuum). The potential diagnostic power of discrete line emission and
absorption features, which has been attracting theorists and observers for decades, is reviewed
in great detail in Miller (2007). In the high energy regime, the iron K lines are of particular
importance, not only because iron is the most abundant element in space (about8% in mass of
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Figure 1.2. Prominent iron K line
emission in Mrk 3, observed with
XMM-Newton(Bianchi et al., 2005).

all metals), but also because its K lines are very strong transitions in a relatively unconfused
spectral region between6 keV and9 keV. Iron K line observations show a long history, with first
detections being reported from rocket observations of the supernova remnant Cas A (Serlemitsos
et al., 1973). So it is no wonder, that the availability and accuracy of atomic data is unique among
the heavy elements.

With the sensitivity and resolution of modern X-ray telescopes, also iron line observations
in black hole accretion disks became possible in the last decade. In particular in the case of
supermassive black holes in quasars and Seyfert galaxies, significant progress has been made.
The observations vary greatly, showing strong and broad emission lines (e. g., in the Seyfert
2 galaxy Mrk3 (Bianchi et al., 2005), see Fig. 1.2), complex absorption features with broad
and narrow emission lines (e. g., in the Seyfert 1.5 galaxy NGC3516 (Markowitz et al., 2008))
and also highly blueshifted and extremely strong emission lines (e. g., in the Seyfert 1 galaxy
PG1402+261 (Reeves et al., 2004)). The situation is more complicated in the case of accretion
flows around potential low mass black holes (i. e. ULXs), due to their relative weakness. Iron
K line observations are therefore limited to a handful of objects, such as M82 X-1 (see below).
However, the spectacular progress of each generation of X-ray telescopes over the last decades
gives rise to hope that this situation will change in the nearfuture.

In the light of the recent successes in both theory and observation, we extend our investigation
of the spectral energy distribution of super-Eddington flows towards a modeling of the iron K
lines (Chapt. 5). We thereby take advantage of the existing radiative transfer code from the
first stage of the project, which is fully parallelized and therefore can be run on modern cluster
computers with high efficiency. We apply the calculations toextended data sets of the original
2D RHD simulations (Ohsuga (2007) and Ohsuga, priv. comm.) with varying accretion rates
and different central black hole masses between10 and108 solar masses. We also extrapolate
the available sets of simulation data to the specific case of M82 X-1 and compare our theoretical
spectra with observations byChandraandXMM-Newton(Sect. 5.6).

Remark.We choose the cgs-system as system of units in all following studies. If not explicitly
stated, all numbers are given/displayed in their corresponding cgs-units. The physical constants
used on this work are listed in the appendix (Table A.1 on page129).
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1 A small bubble in the Universe
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2 The diffusion limit and convective
feedback in selfgravitating disks

2.1 Introduction

In this chapter, we present a simple accretion disk model to investigate the influence of the tur-
bulent backcoupling on the energy transport in disks, similar to earlier work by Duschl (1983).
Since we want to investigate not only disks with negligible masses (compared to the central ob-
ject), but also with comparable or even dominating masses, we apply theβ-viscosity description
(Duschl et al., 2000). In standard disk theories, the viscosity parameterβ is taken to be constant
and in principle only limited by an upper valueβmax ≪ 1. However, it is well known that for a
too high value ofβ, a diffusion limit has to be applied (c. f., the discussion below and in Duschl
et al. (2000)).

To avoid the additional introduction of a diffusion limit, we first investigate disk models where
we limit β by an upper valueβmax, but allow it to be reduced, if necessary. Subsequently, we
discuss the contribution of turbulent backcoupling to the overall energy transport in Sect. 2.5.

2.2 Model setup

The principal disk geometry is displayed in Fig. 2.1 (upper plot), where we also introduce the
main geometrical variables. A cylindrical coordinate system is the natural choice for such a sys-
tem, in particular under the general assumption of azimuthal symmetry. We distinguish between
the 3-dimensional radiusr and the planar radiuss in the disk plane. In the limiting case of a thin
disk with disk heighth = h(s) ≪ s, one getsr ≈ s.

The lower two plots in Fig. 2.1 sketch two standard methods tocalculate geometrically thin
accretion disks. The simplest approximation is the so-called one-zone approximation, where the
problem reduces to a one-dimensional calculation by using only integrated values for the vertical
structure. Somewhat more sophisticated is the 1+1-dimensional calculation. Here, one assumes
that the vertical structure decouples from the radial one, which splits the two-dimensional prob-
lem into two one-dimensional problems. This simplificationis only possible as long as the disk
is sufficiently thin, which, for example, causes the vertical structure to react instantaneously to
changes of the radial disk properties.

We derive the disk equations in this chapter under the following assumptions: (1) stationarity,
(2) no relativistic effects, (3) monopole approximation for the disk’s gravitational potentialΦ,
(4) Kramer’s opacity as description of the scattering and absorption processes, (5)β-viscosity as
introduced by Duschl et al. (2000), (6) geometrically thin disk, (7) one-zone approximation. In
that context, the disk equations are given as follows: the continuity equation reduces to

Ṁ = −2πsvsΣ , (2.1)
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2 The diffusion limit and convective feedback in selfgravitating disks
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one-zone approximation 1+1-dim. calculation

Figure 2.1. Principal disk geometry and the two commonly used methods for simplifying the two-
dimensional problem. The general assumption hereby is the azimuthal symmetry of the disk.

whereṀ denotes the accretion rate,vs the radial velocity in the disk andΣ the integrated surface
density. The momentum equation – withω being the angular velocity,Mc the mass of the central
object andMd(s) the enclosed disk mass – gets

ω2 =
G(Mc +Md(s))

s3
(2.2)

The angular momentum equation is given by

−ωṀ = 2πsνΣ
∂ω

∂s
+
C1

s2
, (2.3)

whereν stands for the viscosity andC1 is a constant of integration which remains to be set, for
example at the inner boundarysi. The hydrostatic equilibrium in the monopole approximation
becomes

p =
G(Mc +Md(s))ρ

s
· h

2

s2
+ πGΣ2 , (2.4)

with the total pressurep, while the energy equation can be written as follows:

1

2
νΣs2

(
∂ω

∂s

)2

︸ ︷︷ ︸

F+

=
2acT 4

3κΣ
︸ ︷︷ ︸

F-

. (2.5)
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2.2 Model setup

Thus, all energy dissipated in the accretion flow is radiatedfrom the disk, and the internal energy
remains unchanged. We use the standard equation of state forgas and radiation:

p = pgas+ prad = ρ
kBT

µmH
+
arad

3
T 4 . (2.6)

The Kramer’s opacity is expressed as

κ = κes+ κ0ρT
−7/2 = 0.4

cm2

g
+ 6.4 · 1021 T [K]−7/2 ρ[g/cm3]

cm2

g
. (2.7)

Theβ-viscosity is given as usual by (for the definition of the “parameter”β, see Sect. 2.2.2):

ν = βs2ω . (2.8)

We further define the disk’s mass, inner disk radius and soundspeed by

Md(s) = 2π

∫ s

si

sΣ ds , (2.9)

Σ = 2ρh , (2.10)

si = 3rS =
6GMc

c2
, (2.11)

c2s = p/ρ , (2.12)

whererS denotes the Schwarzschild radius (we assume a non-rotatingSchwarzschild black hole).
For the sound speed, the pressure and density are taken from the disk plane as usual. With
Md(si) = 0 (2.9), we obtain the angular velocity from (2.2) as

ω(si) = ωK(si) =
GMc

s3
i

(2.13)

and its derivative as

∂ω

∂s

∣
∣
∣
∣
s=si

= −3

2

ωK(si)

si
. (2.14)

2.2.1 Boundary condition

We set the boundary condition as usual at the inner disk radius si. The classical boundary con-
dition in thin accretion disk theories is a vanishing torqueat the inner boundary of the disk,
corresponding toC1 = 1 · Ṁs2

i ω(si). In this case, the angular momentum equation (2.3) be-
comes

νΣ = − Ṁ

2πs(∂ω/∂s)

(

ω(s) − 1 · s
2
i

s2
ω(si)

)

.

The other extreme case is full Keplerian rotation at the inner boundary, which is realized by
C1 = 0 · Ṁs2

i ω(si) = 0, with a simple angular momentum equation of the form

νΣ = − Ṁω(s)

2πs(∂ω/∂s)
.
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2 The diffusion limit and convective feedback in selfgravitating disks

The latter case is purely theoretical, since it implies thatthe accretion process is effectively
stopped atsi if there is no other mechanism to extract angular momentum inthe small boundary
layer region. But even if there is, a significant amount of energy needs to be transferred from
the plunging region into the disk to maintain the overall energy balance (see, e. g., Duschl &
Tscharnuter (1991) for a further discussion).

For a general treatment, we define a parameterχ with C1 = χ · Ṁs2
i ω(si). The angular

momentum equation (2.3) is then given by

νΣ = − Ṁ

2πs(∂ω/∂s)

(

ω(s) − χ · s
2
i

s2
ω(si)

)

. (2.15)

for 0 ≤ χ ≤ 1. We will investigate the influence of this parameterχ in Sect. 2.3. Nonetheless,
we derive a special value for it from the following idea: the value ofχ defines which fraction of
the Keplerian angular momentum is still carried by the material arriving at the inner boundary.
For χ = 0, the material circulates with the local Keplerian angular velocity, l(si) = lK(si),
and therefore cannot be accreted by the central black hole. Contrary,χ = 1 means that the
material holds no angular momentum anymore and can fall freely onto the black hole. However,
this extreme situation causes numerical problems at the inner boundary, sinceνΣ = 0 at s =
si. Therefore, we ask for the minimum value ofχ in order to allow the material to reach the
central object. In the case of a Schwarzschild black hole, this corresponds to a Keplerian angular
momentum at the Schwarzschild radiusrS = 2GMc/c

2. With si = 3rS andMd = 0 for s ≤ si

(see (2.9)),

lK(rS) =
√

GMcrS =

√

GMcsi

3
=
lK(si)√

3

We defineχ∗ := 1 − 1/
√

3 ≈ 0.423, which will be used as standard value in the following.
Although being exact in the simple model considered here, the value ofχ∗ will change, if, for
example, the black hole spin or the magnetic field are included in the description of the disk’s
inner region. Forχ∗ = 0.423, the integrated disk luminosity gets1.08 times the gravitational
energy released by the accretion process down tosi. Thus, a small amount of energy needs to
be injected into the disk from the plunging region (betweensi andrS), where twice as much
potential energy is released as in the disk (betweenso andsi). There is also the fact that the
boundary layer in this disk model is assumed to be infinitely small, which is of course not
realistic. An extended boundary layer can allow for energy exchange between these regions
(Duschl & Tscharnuter, 1991).

2.2.2 Adaptable viscosity parameter β and numerical techniques

The viscosity is given by (2.8). Usually, a diffusion limit is added in the case that the turbulent
velocityvturb ≈

√
βvϕ exceeds the local sound speedcs.

√

βvϕ > cs =⇒ νDL = η2c2s

∣
∣
∣
∣

∂vϕ

∂s

∣
∣
∣
∣

−1

(2.16)

with an additional parameterη / 1. For turbulent velocities exceeding the local sound speed,
shock fronts would be created, leading to a shock dissipation limited regime. Up to now, no
reliable and handsome theory of supersonic turbulence exists that covers these effects.
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2.3 Results

In the following, we propose a different mathematical mechanism to avoid supersonic turbu-
lent velocities. Before presenting the details, we discussthe main properties of our numerical
calculation: for simplicity, we adopt an explicit Eulerianscheme with logarithmic equidistant
step size. Since the calculations are quite cheap, a sufficiently small step size can be chosen by
default (see below). The boundary conditions are given at the inner radius, therefore we start the
calculation ats = si and stop atso ≫ si. Here, we useso = 103si and divide the calculation into
Nn = 5000 steps in radii:sn = si · 100.0006·n.

We define an upper limitβmax, which is of the order of the usualβ parameter (e. g.,10−3). If
the condition

√
βmaxvϕ > cs becomes true during the calculation, we decreaseβ by ξβmax, ξ < 1,

and repeat the calculation for stepn. This iteration is performed until
√
βvϕ = cs. Thereby,

two requirements have to be fulfilled: (a) the behavior ofβ as a function of radiuss has to be
sufficiently smooth, and (b) the reduction ofβ by ξβmax has to be small, compared to the actual
value of the viscosity parameter – these conditions remain to be checked afterwards.

The calculation starts at the inner boundarysi. By substitutingν with (2.8) in the angular
momentum equation (2.15) at the inner boundary and using (2.2) with (2.9), we get an initial
equation forΣ:

Σi =
Ṁ

3πβis2
i ωK(si)

(1 − χ) . (2.17)

With the aid of the remaining disk equations and definitions,all quantities can be calculated for
si. In detail, the equations can be reduced to a system of two non-linear equations forT andρ,
which are solved by a Newtonian iterative scheme.

The numerical stepn→ n + 1 is performed by calculating the disk’s massMd(s) from (2.9),
the angular velocity from the momentum equation (2.2) and its derivative from

∂ω

∂s

∣
∣
∣
∣
s=sn

≈ ω(sn) − ω(sn−1)

sn − sn−1
. (2.18)

Then,Σ and all other variables can be calculated from the remainingequations. Again, if the tur-
bulent velocity exceeds the sound speed in stepn, the parameterβ is reduced and the calculation
for stepn is repeated untilvturb = cs.

2.3 Results

In this section, we present the results for our new disk model. We investigate the influence
of three parameters in the following subsections: the accretion rateṀ (Sect. 2.3.1), the inner
boundary conditionχ (Sect. 2.3.2) and the viscosity parameterβmax (Sect. 2.3.3). In all calcula-
tions, a standard setup is used:

Mc = 10M⊙ ,

si = 8.86 · 106 cm,

so = 103si ,

Nn = 5 · 103 ,

ξ = 10−4 .

(2.19)
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2 The diffusion limit and convective feedback in selfgravitating disks

Ṁ/ṀE 10−3 10−2 10−1 100 10+1

s0/si 1.000 1.000 8.544 117.8 —

Table 2.1. Radiuss0 of innermostβ-correction.

2.3.1 Influence of Ṁ

To explore the influence of the accretion rate, we setχ = χ∗ = 0.423 and βmax = 10−3.
Figure 2.2 shows the disk properties for varying accretion rates between10−3ṀE and101ṀE.
The Eddington accretion rate forMc = 10M⊙ is given byṀE = 1.67 · 1019g/s.

The overall expectation of an increasing height of the disk for higher accretion rates can be
recovered from the figures. The high accretion rate casesṀ = {1, 10}ṀE significantly violate
the thin disk approximation in the inner part of the disk. Theshape of the disk height is influenced
by the actual value ofβ, as are the other disk quantities: while for high accretion rates, the default
valueβmax = 10−3 is always allowed, for lower accretion rates the limit

√
βmaxvϕ = cs is violated

at radiuss0, which is listed in Table 2.1 and which decreases the lower the accretion rates are.
This drop inβ is directly translated into smaller radial inflow velocities and higher surface

densitiesΣ for s ' s0. This leads to an increase in densitiesρ and temperaturesT , which results
in a rising pressurep by means of the equation of state (2.6).

For even larger radii, the viscosity “parameter”β adopts a minimum value and starts to in-
crease again, whileρ, p andT are decreasing. The behavior ofΣ is determined mostly by the
densityρ and therefore also shows a significant peak fors ' s0.

Since the disk massMd remains negligible for all accretion rates, the azimuthal velocity is
identical for all accretion rates. As a first guess, this may be due to the small extent of the disk,
so = 103si. We therefore repeat the calculations for the same physicalparameters, but with
so = 106si andNn = 5 · 106. For all accretion rates between10−3Ṁ and101Ṁ , we obtain
final disk masses between10−8Mc and10−5Mc. Thus, the disk mass remains negligible also for
extended disks.

Contrary to the azimuthal motion, the sound speedcs strongly depends oṅM : for high ac-
cretion rates and small radii (large ratio ofh/s), the rotational velocity becomes subsonic, as
expected from the thin disk relationh/s = cs/vϕ. Accordingly, for low accretion ratescs ≪ vϕ

always holds. Ats = s0, the slope ofcs flattens. Due to the decrease inβ, the viscosityν is
smaller in the diffusion limited regions. This effect becomes significantly stronger the lower the
accretion rate is.

An interesting competition between mass supply by accretion and radial inflow velocities can
be seen in the exact profile ofMd: when the accretion rate is decreased, in a first instance the
surface density and therefore the disk mass decrease, too. But, as we outlined before, the radial
inflow velocities decrease due to the down-correction ofβ, which forces the disk mass to increase
again.

The opacityκ is dominated by electron scattering as long as the temperature is high enough.
Only for large radii and small accretion rates, atomic absorption comes into play and increases
the opacity up to1 cm2/g. The composition of the total pressurep also depends strongly on the
accretion rate. For higḣM , radiation pressure dominatesp, while for low accretion rates, gas
pressure determines the local pressure throughout all radii.

14



2.3 Results
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Figure 2.3. Steady stateβ-disk model forχ = {0.000, 0.423, 0.999}.

2.3.2 Influence of χ

In this section, we investigate the effects of the boundary condition at the disk’s inner radiussi

with fixed accretion rateṀ = 10−1ṀE andβmax = 10−3. The parameterχ varies between0 and
0.999, which is close to the torque-free case. To avoid numerical difficulties, we useχ = 0.999
as the largestχ, instead of1. The results are displayed in Fig. 2.3.

The shape of the curves is now determined by two effects: firstly, by the decrease inβ at
s ≥ s0, wheres0 varies between5si (χ = 0.999) and10si (χ = 0); secondly, by the different
boundary conditions ats = si. The latter effect can only be seen in the inner part of the disk,
s / 30si, due to the factors2

i /s
2 in the angular momentum equation (2.15).

In the torque-free case,χ = 0.999, the height of the disk decreases sharply fors → si.
Contrary, forχ = 0, it adopts a constant value. For standardβ-disks, one expects thatνΣ → 0
for χ→ 1 (see (2.15)), andvs → ∞ (see (2.1)). But here, the parameterβ is reduced drastically
for s / 1.3si andχ = 1, which leads to a sharp increase inΣ andρ and to a rapid drop invs
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2.4 Comparison with the classical diffusion limited case

for the same radii. For1.3si ≤ s ≤ 10si, the viscosity parameter adopts its maximum valueβmax

and the disk models approach each other. Thus, the boundary condition not only has a direct
influence on the inner disk structure, but also an indirect one through the onset of the shock
dissipation limit for larger values ofχ.

Although a change inχ only affects the very inner disk regions, this might be very important:
Fukue (2000, 2004) and Heinzeller & Duschl (2007) showed that the innermost disk region
is crucial for the determination of an Eddington-type limitfor accretion disks. They found a
significant decrease in the maximum amount of matter that canbe accreted by the black hole
(i. e., the critical accretion rate).

2.3.3 Influence of βmax

Of great importance is also the influence of the viscosity parameter on the disk model. Although
the value ofβmax can be motivated from hydrodynamic turbulence, it remains an “ad-hoc” pa-
rameter. We investigate its effects for the standard setupṀ = 10−1ṀE, χ = 0.423, and vary
βmax between10−4 and10−2. The results are displayed in Fig. 2.4.

The disk height, the sound speed and also the disk mass are hardly influenced by the maximum
viscosity parameter. Forβmax ≤ 1.4 · 10−4, the condition

√
βmaxvϕ ≤ cs holds throughout all

radii, therefore the results forβmax = 10−4 show a disk which is not affected by our new model
for the viscosity. Forβmax = {10−3, 10−2}, the influence of our viscosity description becomes
visible, in particular for the radial velocity, the densityand the surface density: in the region
whereβ drops rapidly, the density and surface density are maximal,while the radial inflow
velocity decreases.

One interesting point should be mentioned here: as can be seen from Fig. 2.4, the local sound
speedcs =

√

p/ρ is unaffected by the maximum viscosity parameterβmax, althoughp andρ
depend on its actual value. From the disk equations and the fact that the disk is in a non-
selfgravitating state for all values ofβmax, we can derive the following scaling laws:

shock dissipation limit dominant pressure term scaling of sound speed

no prad cs ∝ β0
max = const

no pgas cs ∝ β
−1/8
max

yes prad, pgas cs ∝ β0
max = const

The dependence ofcs on the upper limitβmax is (almost) zero in all cases.

2.4 Comparison with the classical diffusion limited case

One could ask for the validity of the iterative calculation of the viscosity parameterβ. We there-
fore investigate its application in comparison with the usually applied diffusion limit introduced
in (2.16):

√

βmaxvϕ > cs =⇒ νDL = η2c2s

∣
∣
∣
∣

∂vϕ

∂s

∣
∣
∣
∣

−1

.
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Figure 2.4. Steady stateβ-disk model forβmax = {10−4, 10−3, 10−2}.

The weakness of (2.16) is, that it requires an additional parameterη / 1, whose value may be
chosen somewhat arbitrarily in a first instance. This, however, may lead to discontinuities of the
physical variables at the radiuss0. Thus, it needs to be adjusted manually.

In the following, we discuss how this parameterη is related to the value ofβ when the condi-
tion

√
βmaxvϕ ≤ cs is violated. Suppose that

√
βmaxvϕ > cs. The actual value ofβ is decreased

in small steps fromβmax to a value which we may callβ∗ with

β∗ = c2s/v
2
ϕ . (2.20)

By comparing the resulting viscosity (2.8) with the diffusion limit (2.16), we get

β∗s2ω =
c2s
s2ω2

· s2ω = η2c2s

∣
∣
∣
∣

∂vϕ

∂s

∣
∣
∣
∣

−1

. (2.21)
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Solving forη2 and substitutingvϕ = sω leads to

η2 =
1

ω
· |ω + s ∂ω/∂s| . (2.22)

We discuss two concrete values for special disk cases (NSG: non-selfgravitating, KSG: Keplerian
selfgravitating, FSG/Mestel disk: fully selfgravitating):

η2 =







1

2
NSG/KSG:

∂ω

∂s
= −3ω

2s

0 Mestel disks: vϕ = sω = const=⇒ ∂ω

∂s
= −ω

s

. (2.23)

Since∂ω/∂s < 0 ∀ s in the disk models presented here (see (2.3)), it is automatically assured
thatη < 1. Interestingly, the „constant“ parameter may become variable in this scenario if, e. g.,
the outer regions of the diffusion limited zone are self-gravitating, while the inner regions are
dominated by the gravitation of the central object. If, on the other hand,

∂ω

∂s
= A · ω

s
, A = const, (2.24)

the diffusion limit parameterη adopts a constant value – which is unique, since it is given bythe
requirement of continuity ofν, Σ, . . . at the radiuss0, where the viscosity parameterβ needs to
be decreased for the first time. This effect is shown in Fig. 2.5 for the viscosity. Since the disk
remains in a non-selfgravitating state for all radii, the diffusion limited disk withη = const=
1/
√

2 gives the same results as a disk with varying viscosity parameterβ.
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2 The diffusion limit and convective feedback in selfgravitating disks

2.5 The influence of turbulence on the energy transport

In this section, we study the influence of turbulence on the energy transport in the sense that we
investigate its feedback on the upward energy transport (and not its contribution to it). The latter
case will be studied in much more detail in the following chapter. More precisely, we study the
following problem.

Consider an accretion disk which is stable with respect to the Schwarzschild criterium (c. f.,
Sect. 3.7). Then, by definition, convective turbulent motion is shut down. On the other hand,
since the accretion process requires viscosity to be at work, this implies that theremustbe some
kind of turbulence. Since the stratification is assumed to beSchwarzschild-stable, the turbulent
energy transport is formally negative and therefore counteracts the radiative energy transport.

In standard disk theory, all the energy generated by friction (i. e., by viscosity;F+) is radiated
locally (F−). Thus, if turbulent feedback turns out to transport a non-negligible amountFturb of
energy downwards into the disk, the effective cooling fluxFrad must account for this:

Frad = F+ + Fturb = F− + Fturb . (2.25)

A similar investigation has been carried out by Duschl (1983) in the case of a non-selfgravitating
disk with anα-viscosity description. It is straightforward to adapt themethod and assumptions
to our disk model. Here, we briefly summarize the main aspectsof the theory and refer the reader
to Duschl (1983) for a detailed explanation.

Based on the mixing length theory, which describes the effects of turbulence on the energy
transport (see also Sect. 3.4.1), the author introduces twoquantitiesx andy in the sense that

Frad = x · ∇ , (2.26)

Fturb = y · (∇−∇′) , (2.27)

where∇ = d logT/d log p denotes the average temperature gradient and∇′ the temperature
gradient of a falling (or rising) element of matter, both with respect to pressure. From our disk
model, the quantitiesx andy can be calculated as follows:

x = 4F− = 4F+ =
8acT 4

3Σκ
, (2.28)

y =
1

2
cpρTvturb =

1

2
cpρT

ν

h
. (2.29)

In (2.29),vturb = ν/h stands for the turbulent velocity. The isobaric heat capacity is given by

cp =
R

µ
· 32 − 24γ − 3γ2

2γ2
, (2.30)

whereγ = pgas/p is the ratio of the gas pressure to the total pressure. Based on our assumptions,
the radiative energy fluxFrad has to equal or exceed the total fluxF-, since turbulence may
generate an energy flux in the opposite direction to the radiative flux. The ratio is given by

Frad

F−
= 4

∇ad +
1

4

x

y
+

3

4

(
x

y

)2

1 +
x

y
+ 3

(
x

y

)2 , (2.31)
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2.5 The influence of turbulence on the energy transport

with the adiabatic gradient

∇ad =
8 − 6γ

32 − 24γ − 3γ2 . (2.32)

We discuss the results for a disk with a non-selfgravitatingand a self-gravitating region and a
β-viscosity description. Therefore, we set the model parameters as follows:

Mc = 10M⊙ ,

si = 8.86 · 106 cm,

so = 1012si ,

Nn = 5 · 106 ,

ξ = 10−4 ,

βmax = 10−3 ,

Ṁ = ṀE ,

χ = χ∗ = 1 − 1/
√

3 = 0.423 .

(2.33)

The calculations are performed for an adaptable viscosity parameterβ (BV) as presented in
Sect. 2.2.2, and for a diffusion limited disk with a real calculation of the parameterη (DL)
(Sect. 2.4). For comparison, the value ofη is calculated also in the non-diffusion limited part of
the disk from (2.16). Figures 2.6 and 2.7 show the results of the calculation.

The (identical) disks BV and DL can be divided into several regions by the radial coordinate
s, which is summarized in Table 2.2. To understand the increase in Frad/F− in the outer part
of the disk, we have to take a closer look at the two figures. In region B, a minimal increase
in Frad/F− occurs at the radius where the diffusion limit sets in and where the transition from a
pressure dominated to a gas dominated disk takes place. In the outer parts of the disk (regions D
and E), the radiation pressure is negligible compared to thegas pressure. Thus,γ = 1 and

cp =
5

2

R

µ
= const, (2.34)

∇ad =
2

5
= const, (2.35)

Fr

F−
= 4

2

5
+

1

4

x

y
+

3

4

(
x

y

)2

1 +
x

y
+ 3

(
x

y

)2 . (2.36)

The ratiox/y increases from10−5 at the inner radiussi to a value of3.5 in region B. This value
stays constant for a large part of the disk, until it finally drops again to4 · 10−3 in regions D and
E, where self-gravitation comes into play. Withγ = 1 and∇ad = 2/5, the ratio of the effective
radiative fluxFrad is increased by a constant factor of1.6 with respect to the cooling fluxF−.
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Figure 2.6. The influence of turbulence on the energy transport in steady-stateβ-disks. BV corresponds
to a disk model with adaptable viscosity parameter, DL to a diffusion limited disk. For details, see text.
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2.6 Conclusions

From the study of the impact of turbulence on the overall energy transport, we found that the
convective feedback on the upward energy flux becomes non-negligible in two cases.

1. In the region where the disk becomes shock dissipation limited, the turbulence is max-
imally efficient. Hence, it is to be expected that also the turbulent downward motion is
increased. Our results show that this is indeed the case, although this effect is rather small,
increasing the effective radiative flux by2.4% of the cooling fluxF-.

2. In the outskirts of the disk, selfgravitation sets in. In region D, the disk is in a Keplerian
selfgravitating state (KSG), which means that selfgravitydetermines the vertical structure,
but not the radial one. Contrary, in the fully selfgravitating state (FSG) in region E, the
local gravitational attraction dominates for both directions. In these two regions, the net
motion of matter is therefore influenced by the strong gravitational attraction towards the
disk plane. Hence, the convective backcoupling has a strongeffect, raising the effective
radiative flux by60% of the cooling flux.

We conclude that only in the selfgravitating regime, the convective feedback has to be included
in the energy transport equation.

In the first part of this study, we focused on the shock dissipation limit in the disk. Wether
a disk runs into a shock dissipation limited state or not, depends strongly on the maximum
strength of the viscosity (i. e., on the parameterβmax) and on the accretion ratėM . For lower
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2 The diffusion limit and convective feedback in selfgravitating disks

Table 2.2. Radial structure of the extended disk models DL and BV. “SG” denotes the status of the disk
(NSG, KSG, FSG). The dominant pressure term, either gas or radiation, can be deduced from the adiabatic
gradient∇ad in Fig. 2.6: forp = prad, ∇ad = 0.25, while for p = pgas, ∇ad = 0.4.

Label smin smax BV state DL state SG state pressure

A si 1.2 · 102si β = βmax does not apply NSG p = prad

B 1.2 · 102si 4.7 · 105si β < βmax η = 1/
√

2 NSG transition
C 4.7 · 105si 3.8 · 109si β = βmax does not apply NSG p = pgas

D 3.8 · 109si 2.4 · 1010si β = βmax does not apply KSG p = pgas

E 2.4 · 1010si so β = βmax does not apply FSG p = pgas

accretion rates, the diffusion limit applies more likely, while it is inhibited for lower values of
βmax. Taking into account that the disks have to be geometricallythin (Ṁ < ṀE), we found that
for βmax / 10−4, the diffusion limit can be neglected in the disk models.

We also derived an analytical expression for the diffusion limit parameterη, which allows to
calculate it directly from the disk quantities rather than to determine it iteratively. This expression
depends only on the azimuthal motion (i. e., the angular velocity).

Finally, we investigated in a simple way the influence of the inner boundary condition on the
disk. In accordance with earlier work by Duschl & Tscharnuter (1991), who investigated an
extended inner boundary region around an accreting star, wefound that the temperature and lu-
minosity is decreased for the innermost ring of such a disk. Cao & Xu (2003) studied the case
that the matter inside the marginally stable orbit of a blackhole accretion disk is magnetically
connected to the disk. They found that the structure of the inner edge is altered and that the
accretion efficiency can be much higher than in a standard accretion-disk model. This matches
nicely with our results. In general, the discussion about the inner boundary condition, in particu-
lar about the validity of the torque-free formulation, is still ongoing (see Gammie (1999); Krolik
(1999); Paczýnski (2000), for example).
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3 The role of convection in black hole
accretion disks

3.1 Context

We calculate accretion disk models where the viscosity and the transport of energy is supported
by convective processes, in addition to a radiative energy transport and an underlyingβ-viscosity.
Convection is treated in the framework of the mixing-lengththeory, the disks are assumed to be
geometrically thin in order to allow for a1 + 1-dimensional treatment of the equations (c. f.
Fig. 2.1). The resulting disk models will be compared to standardβ-viscosity disks (Duschl
et al., 2000) with the goal of evaluating theβ-viscosity ansatz against a convective viscosity
description.

3.2 Set-up and nomenclature

As in the previous chapter, we use a cylindrical coordinate system with planar radial coordinate
s =

√

x2 + y2, vertical coordinatez and true radiusr =
√
s2 + z2. The disk geometry is

determined by an inner and an outer radiussi andso, and the disk’s heighth = h(s) from the
mid-plane. Further quantities apart from the standard onesare defined in Table 3.1.

Table 3.1. Physical quantities used throughout this investigation.

Symbol meaning unit
Fz energy flux in vertical direction at heightz erg/s
F total energy flux at radiuss erg/s
gs acceleration due to gravitational potential in radial direction cm/s2

gz acceleration due to gravitational potential in vertical direction cm/s2

lconv convective lengthscale cm
lm mixing length cm
Mc mass of central object g
Md disk mass within radiuss g
Ṁ accretion rate g/s
ω angular velocity of disk material 1/s
Σz surface density at heightz g/cm2

Σ total surface density g/cm2

vconv convective velocity cm/s
vs radial velocity in the disk cm/s
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3 The role of convection in black hole accretion disks

A turbulent viscosity, caused by convective processes, is generally given by

νconv =
1

3
vconvlconv (3.1)

when assuming isotropy. We replace the isotropy factor1/3 by a factor̟ of the order of unity
to account for non-isotropic cases. Since we apply the mixing-length theory for calculating
convective processes in the disk, we identify the convective lengthscalelconv with the mixing-
lengthlm, which will be defined later. Therefore, we get

νconv = ̟vconvlm . (3.2)

We assume a permanently supporting viscosity to be present in the disk, which accounts for other
sources of viscosity, like differential rotation, . . . It isparameterized in terms of the standardβ-
viscosity, given by

νβ = βs2ω , (3.3)

with β ≪ 1 being the viscosity parameter. The total viscosityν is then given by a combination
of these two contributors,

ν = νconv + νβ . (3.4)

3.3 Radial structure

For the calculation of the radial structure, we introduce the disk’s surface density

Σ =

∫ h

0

ρ dz (3.5)

and

Ψ =

∫ h

0

νρ dz . (3.6)

Only in the special case ofν = const can we rewrite (3.6) toΨ = νΣ. In all other cases, we can
apply the mean value theorem to define an average valueν⋆ such that

Ψ = ν⋆Σ

The individual contributorsν⋆ andΣ remain unknown from the radial structure equations only.
They are determined by the vertical structure equations (Sect. 3.4.1).

The radial structure is determined by the conservation of mass, momentum, angular momen-
tum and energy. The corresponding equilibrium equations are

Ṁ = −4πsvsΣ , (3.7)

ω2 = −gs

s
, (3.8)

2Ψ = − Ṁω

2πs(∂ω/∂s)
fχ(s) , (3.9)

2F = −Ṁsω(∂ω/∂s)

2π
fχ(s) . (3.10)
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3.4 Vertical stratification

Here,fχ(s) represents the disk’s boundary condition at the inner radius si,

fχ(s) = 1 − χ
s2

i ω(si)

s2ω(s)
, (3.11)

with 0 ≤ χ ≤ 1. The standard free-fall boundary condition, implying a vanishing torque at the
disk’s inner radius, is generated from settingχ = 1.

Note that the momentum equation (3.8) is simplified by the assumption of Keplerian rotation.
The gravitational acceleration in radial direction is assumed to be given by the monopole ap-
proximation, assuming a Pseudo-Newtonian gravitational potential (Paczýnski & Wiita, 1980):

gs = −G(Mc +Md(s))

(r − rg)2
· s
r
. (3.12)

The enclosed disk mass at radiuss is calculated via

Md(s) =

∫ s

si

4πs′Σ ds′ . (3.13)

3.4 Vertical stratification

3.4.1 Structure equations

In analogy to Hofmann (2005) and Vehoff (2005), we take the energy fluxFz (Fz = 0 . . . F ) as
the independent coordinate for the vertical integration since it appears as the natural choice for
the solution of the problem. We additionally introduce the surface density at heightz

Σz =

∫ z

0

ρ dz , Σz(z = h) = Σ , (3.14)

and

ψ =

∫ z

0

νρ dz , ψ(z = h) = Ψ . (3.15)

Neither Σ nor h are knownà priori – they will be a result of the vertical integration. The
equations for the vertical structure of the disk are given asfollows:

∂z

∂Fz
=

1

ρνs2
(

∂ω
∂s

)2 , (3.16)

∂T

∂Fz

=
1

ρνs2
(

∂ω
∂s

)2 ·
{

−(1 − ζ)
3κρFz

4acT 3
− ζ

(−gz)Q

cp

}

, (3.17)

∂Σz

∂Fz
=

1

νs2
(

∂ω
∂s

)2 , (3.18)

∂p

∂Fz
=

gz

νs2
(

∂ω
∂s

)2 . (3.19)
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3 The role of convection in black hole accretion disks

For the derivation of (3.19), we assumed hydrostatic equilibrium:

∂p

∂Fz
=
∂p

∂z
· ∂z
∂Fz

= ρgz ·
1

ρνs2
(

∂ω
∂s

)2 . (3.20)

Using (3.17), (3.19) and the equation of state,

p = pgas+ prad =
ρkBT

µmH
+

4σSB

3c
T 4 , (3.21)

we transform (3.19) into an equation for the mass densityρ:

ρ =
µmH

kB

(
p

T
− 4σSB

3c
T 3

)

(3.22)

⇓
∂ρ

∂Fz
=

µmH

kBT
· ∂p
∂Fz

− µmH

kB

(
p

T 2
+

4σSB

c
T 2

)

· ∂T
∂Fz

=
−µmH

kBνs2
(

∂ω
∂s

)2 ·
[
(−gz)

T
+

(
p

ρT 2
+

4σSBT
2

ρc

)

·
{

−(1 − ζ)
3κρFz

4acT 3
− ζ

(−gz)Q

cp

}]

=
−µmH

kBνs2
(

∂ω
∂s

)2 · ℵ . (3.23)

We introduce

℘ =

{

−(1 − ζ)
3κρFz

4acT 3
− ζ

(−gz)Q

cp

}

,

ℵ =
(−gz)

T
+

(
p

ρT 2
+

4σSBT
2

ρc

)

· ℘

for a better reading of the lengthy expressions in the next sections. We further introduce the
constants

Ξ =
µmH

kB
, arad =

4σSB

c
, and Υ = (s2(∂ω/∂s)2)−1 , (3.24)

whereΥ is constant for the vertical integration at every radial position s, to obtain the final set
of differential equations:

∂z

∂Fz

=
Υ

ρν
, (3.25)

∂T

∂Fz
=

Υ

ρν
· ℘ , (3.26)

∂Σz

∂Fz

=
Υ

ν
, (3.27)

∂ρ

∂Fz

= −ΞΥ

ν
· ℵ . (3.28)

Additional assumptions are required to provide the necessary physical quantities for the numer-
ical solution of the vertical stratification: the opacityκ = κ(ρ, T ) can be calculated either from
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3.4 Vertical stratification

tables or interpolation formulae. We provide several methods to compute its value, ranging
from fast and simple Thomson-scattering to slow, but much more precise tabulated values (see
Sect. 3.4.3 for details).

Like gs in (3.12), the gravitational acceleration in vertical direction gz is provided by the
monopole approximation:

gz = −G(Mc +Md(s))

(r − rg)2
· z
r
− 4πGΣz . (3.29)

In order to solve the vertical structure equations, a model for the convection must be chosen.
Here, we apply the mixing-length theory (Cox & Giuli, 1968),which is used successfully in
stellar evolution as well as in previous accretion disk calculations (cf., Hofmann (2005) and
Vehoff (2005)). The mixing-length theory expresses the efficiency of convective energy transport
relative to the radiative transport processes by the variable ζ , where0 ≤ ζ ≤ 1. A vanishingζ
implies no convective transport, while in the caseζ = 1 all energy is transported by convection.
Its value can be calculated from the cubic equation

ζ1/3 +B · ζ2/3 + a0B
2ζ − a0B

2 = 0 , (3.30)

with a numerical factora0 = 9/4 and further quantities defined as

B =

[
A2

a0
· (∇rad−∇ad)

]1/3

,

A2 =
Q(cpκ(−gz))

2ρ5l4m
288a2c2pT 6

,

Q =
4 − 3γ

γ
,

cp =
R

µ
· 32 − 24γ − 3γ2

2γ2
,

γ =
pgas

p
,

∇rad =
3κρλpFz

4acT 4
,

∇ad =
8 − 6γ

32 − 24γ − 3γ2
,

lm = min(λp,h) ,

λp =
p

−gzρ
.

The mixing lengthlm is usually of the order of the pressure scale heightλp. However, in analogy
to the stellar case, it is limited by simple geometric effects. While in the stellar case, it usually
cannot exceed the actual radial distance from the center dueto symmetry requirements, we adopt
as upper limit the actual heighth = h(s) of the disk. This overrides the symmetry of the disk
with respect to the disk plane and also the strict upper barrier for the convective elements (i. e.,
the disk surface), but provides a simple method of taking into account the overshooting effects
and a more realistic, smooth transition between the disk andthe atmosphere. We anticipate that
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3 The role of convection in black hole accretion disks

the results differ only slightly from the more restrictive caselm = min(λp,h − z), so that our
conclusions are not changed by this assumption.

From the above definitions, the cubic equation (3.30) can be solved numerically. Once a value
for ζ has been found, the convective viscosity can be calculated from

vconv = cs ·
Q1/2αlm

2
√

2Γ
1/2
1

(∇rad−∇ad

a0A

)1/3

ζ1/3 , (3.31)

wherecs denotes the sound speed at the actual coordinate(s,z) in the disk. In the non-relativistic
regime, it is given by

cs =
√

Γ1 p/ρ . (3.32)

The constantΓ1 stands for the polytropic index, which in the case of a non-relativistic, ideal
gas is given by5/3. The parameterαlm relates the typical distance traveled by the convective
elements to the pressure scale height and is generally of theorder of unity (Cox & Giuli, 1968).
To be consistent with our definition of the mixing-length, ithas to be calculated from

αlm =
lm
λp

≤ 1 . (3.33)

The derivation of the mixing-length theory assumes a purelysubsonic motion of the convective
elements (Eddies), vconv ≤ cs. This inequality cannot be assured by the definition of the con-
vective velocity in (3.31). Since there is currently no supersonic convective theory which is as
simple and successful as the mixing-length theory, one usually defines the sound speedcs as an
upper limit for the convective velocity. Thus, in the case of(3.31) resulting invconv > cs, one has
to setvconv = cs, which lowers the actual value ofζ from its original value, given by (3.30), to

ζ =
8
√

8Γ
3/2
1 a

3/2
0 A

Q3/2α3
lm

(∇rad−∇ad)
. (3.34)

We calculate the anisotropy parameter̟ (which measures the ratio of the convective turbulence
in vertical direction relative to all directions) from

̟ =
vconv

cs
≤ 1 . (3.35)

This relation is based on the following idea: that the maximum (3-dimensional) velocity of an
Eddie is given by the local sound speedcs. The individual velocities in directions(s,ϕ,z) are
normally not identical, since they depend on the energy gradients in their direction. We assume
for simplicity that in the convective regions, the convection for all three dimension together is
maximally efficient, i. e., that the 3-dimensional convective velocity of the Eddies is given bycs.
We then approximate the fraction in the vertical directionz from (3.35).
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3.4 Vertical stratification

3.4.2 Boundary conditions

For the four differential equations (3.25)–(3.28), we needto define four boundary conditions at
either the disk’s midplane (Fz = 0) or surface (Fz = F ). These are:

zmp = z(Fz = 0) = 0 , (3.36)

Teff = T (Fz = F ) =

(
F

σSB

)1/4

, (3.37)

Σz,mp = Σz(Fz = 0) = 0 , (3.38)

ρeff = ρ(Fz = F ) = ρeff,input . (3.39)

The boundary condition onρ cannot be determined from the radial structure equations orfrom
simple geometric arguments. It requires the addition of an atmosphere above the surface of the
disk, which allows us to determine the effective density consistently with the heighth, the surface
densityΣ and the effective temperatureTeff. The model and numerical method for calculating
the atmosphere will be given in Sect. 3.4.4 and 3.5.2.

Remark.At first, it seems that (3.9) provides the missing boundary condition and that (3.39)
is not only dispensable, but may even be wrong. This is not thecase, since (3.9) is automatically
fulfilled for the correct solution for anyρeff, as the following short calculation shows.

Ψ =

∫ +h

−h

νρ dz

= 2 ·
∫ +h

0

νρ dz

(3.25)
= 2 ·

∫ Fz(z=+h)

Fz(z=0)

νρ ·
(

Υ

ρν

)

dFz

(3.24)
= 2 · 1

s2 (∂ω/∂s)2 ·
∫ Fz(z=+h)

Fz(z=0)

dFz

(3.10)
=

1

s2 (∂ω/∂s)2 · −Ṁsω (∂ω/∂s)

2π
fχ(s)

= − Ṁω

2πs(∂ω/∂s)
fχ(s) ≡ rhs(3.9)

3.4.3 Opacity κ

Numerous possibilities exist to approximate the opacityκ which, in general, depends on the
densityρ and temperatureT of the medium.

Thomson scattering The easiest approximation is given by pure electron scattering,

κes = 0.4 cm2/g . (3.40)
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3 The role of convection in black hole accretion disks

Kramer’s opacity The simplest approach, apart from solely assuming Thomson scattering,
is to use Kramer’s opacity description

κkr = κes+ κ0ρT
−7/2 (3.41)

with κ0 = 6.4 · 1022 cm5K7/2/g2. The Kramer’s opacity is only valid in the optical thick regime.

Analytic interpolation formula We allow for opacity sources other than Thomson scatter-
ing and free-free absorption by using an analytic interpolation formula (Gail, priv. comm.; for a
similar approach, see also Bell & Lin (1994)) for Rosseland opacities. Thus, this interpolation
formula is also valid only in the optically thick regions.

1

κin
=

[

1

κ4
ice

+
T 10

0

T 10
0 + T 10

· 1

κ4
ice, evap+ κ4

dust

]1/4

+

[

1

κ4
dust, evap+ κ4

mol + κ4
H−

+
1

κ4
atom+ κ4

e−

]1/4

(3.42)

The individual contributorsκl are approximated by

κl = κ0,l · T κT,l · ρκρ,l (3.43)

and are compiled in Table 3.2. The parameterT0 needs to be set by hand under the requirement
that it is sufficiently large. An adequate value is, for example, T0 = 3000 K. Note that the
definition of the individual contributors is such that the total interpolation formula fits the real
values; they cannot be used on their own as a physical description of the corresponding process.

Table 3.2. Interpolation of the opacity: set of parameters (in cgs-units).
Contributor l Symbol κl,0 κl,ρ κl,T

Dust with ice mantles κice 2.0 · 10−4 0 2
Evaporation of ice κice, evap 1.0 · 1016 0 −7
Dust particles κdust 1.0 · 10−1 0 1/2
Evaporation of dust particles κdust, evap 2.0 · 1081 1 −24
Molecules κmol 1.0 · 10−8 2/3 3
Negative hydrogen ion κH− 1.0 · 10−36 1/3 10
Bound-free and free-free-transitions κatom 1.5 · 1020 1 −5/2
Electron scattering κe− 0.348 0 0

Tabulated values Various databases exist that offer tables of numerically calculated opaci-
ties for different temperature and density ranges. Given that we want to cover a large domain in
temperature and density, multiple sources have to be included in our model. The presence of a
disk and an atmosphere requires not only Rosseland opacities, but also Planck opacities, which
are valid in the optical thin regime.

The selection of opacity databases is therefore restrictedto those sources offering mean Rosse-
land and Planck opacities. In the high-temperature limit, we adopt the tables from the TOPS
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3.4 Vertical stratification

project (TOPS, 2008). We compile tables for Rosseland and Planck opacities on alogT–log ρ
grid. For the TOPS opacities,log ρ andlogT are in the range of

log ρ = [−12.5 . . .+ 10.5] ,

logT = [+4.5 . . .+ 9.1] .

The number of data points is47 on an equidistant scale forlog ρ and41 for logT , respectively.
In the low-temperature regime, we include the Ferguson opacities (Ferguson et al., 2005; Fer-

guson, 2008). Contrary to the TOPS opacities, they provide tables for Rosseland and Planck
opacities on alogT–logR grid. For historical reasons, in astrophysical applications theR pa-
rameter is often used instead of the densityρ. It is defined by

R =
ρ

T 3
6

, ρ = ρ[g cm−3], T6 = T [K]/106 , (3.44)

logR = log ρ+ 18 − 3 logT . (3.45)

The ranges for the Ferguson opacities are

logR = [−8.0 . . .+ 1.0] ,

log T = [+2.7 . . .+ 4.5] .

These ranges correspond to minimum and maximum mass densities oflog ρ = −17.9 and+6.5,
with a resolution of19 equidistant points inlogR and85 in log T .

For a consistent approach, we choose identical chemical abundances with mass fractionsX =
0.7, Y = 0.28, Z = 0.02, and the chemical mixture of Grevesse & Sauval (1998).

Opacity mixture In order to get smooth transitions and a broad coverage of theT -ρ range,
we use a combination of the tabulated opacities (TOPS, Ferguson) and the interpolation for-
mula 3.42: the transition between TOPS and Ferguson opacities takes place atlog T = 4.5.
We therefore use a linear interpolation of the opacities from both sources in the rangelogT =
[4.0 . . . 5.0].

At the “outer” boundaries of the TOPS- and Ferguson-opacities, we use the same kind of
linear transition in a range ofδ log ρ = 1 andδ log T = 1 between the tabulated values and the
interpolation formula 3.42. The resulting opacities are defined on alog T–log ρ grid with 150
data points in each direction and

log ρ = [−15.0 . . .+ 10.0] ,

logT = [+1.0 . . .+ 9.0] ,

which is sufficient for our purposes. Figures 3.1a,b show theresulting opacities on thelog T–
log ρ grid, while Figs. 3.1c,d display opacity curves as a function of temperature for certain fixed
densities.

3.4.4 Atmosphere

In this investigation, the only purpose of the atmosphere isto provide a value for the mass density
at the surface of the accretion disk at each radial positions, which is consistent with the actual
effective temperature, geometrical height and surface density.
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Figure 3.1. (a) Rosseland and(b) Planck opacities for the opacity mixture on alog T–log ρ grid;
temperature dependency of(c) Rosseland and(d) Planck opacities for fixed densities.

Therefore, it is sufficient to calculate a simple grey atmosphere in the Milne-Eddington way,
where the temperature distribution is given as a function ofthe optical depthτ by

T (τ)4 = C1,atmT
4
eff · (τ + C2,atm) . (3.46)

The constantsC1,atm andC2,atm depend on the transition pointτeff between the atmosphere (op-
tically thin) and the disk (optically thick) and the final value for the temperature at the “upper”
end of the atmosphere (τ = 0). The most common values are

T 4(τ = 0) = (1/2) · T 4
eff and τeff = 2/3 .

We keep the upper value for the temperature, but useτeff = 1 for a simple reason: in the optical
thin atmosphere, the equation of state (3.21) has to be modified such that the radiation pressure
term tends to zero forτ → 0. This is necessary because the coupling between radiation and
matter becomes negligible by definition in the optical thin regime. With the correct expression
for the radiation pressure in an optical thin medium,
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3.4 Vertical stratification

prad, atm=
4σSB

3c
τT 4 , (3.47)

we get a smooth transition at the disk’s surface only forτeff = 1. This is consistent with the
requirements on the value ofτ , which has to be such that it is characteristic for a transition
between optically thin and optically thick domains.

The constantsC1,atm andC2,atm then become

C1,atm =
1

2
, C2,atm = 1 . (3.48)

Therefore, the temperature in the atmosphere is given by

T (τ)4 =
1

2
T 4

eff · (τ + 1) . (3.49)

The remaining equations are given as follows: from the definition of the optical depth,

dτ = −κρ dz ,

we get an expression for∂z/∂τ . The differential expression for the surface density

dΣz = ρ dz

is then transformed into∂Σz/∂τ . The remaining equation for either the mass density, gas pres-
sure or total pressure is derived from assuming hydrostaticequilibrium (cf., (3.20)) and inserting
the temperature stratification from (3.49). We choose the gas pressure as the fourth dependent
variable and obtain the following set of differential equations for the structure of the atmosphere:

∂z

∂τ
= − 1

ρκ
= − T

Ξκpgas
, (3.50)

∂Σz

∂τ
= −1

κ
, (3.51)

∂T

∂τ
= Teff ·

(
1

2

)9/4

· (τ + 1)−3/4 , (3.52)

∂pgas

∂τ
=

(−gz

κ
− 4σSB

3c
T 4

eff ·
(

τ +
1

2

))

. (3.53)

The mass densityρ in (3.50) is given as usual byρ =
µmHpgas

kBT
.

Boundary conditions Again, we have to solve a set of four differential equations,this time
with the independent variableτ and the dependent variablesz, Σz, T andpgas. This requires
four boundary conditions which have to be set at either the lower boundary (corresponding to
τ = τeff = 1) or the upper boundary (corresponding toτ = τmin ≪ 1; due to numerical reasons,
it is not possible to setτmin = 0).
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3 The role of convection in black hole accretion disks

Three of these boundary conditions are provided by the solution of the vertical disk structure:

h = z(Fz = F ) = z(τ = τeff) , (3.54)

Σ = Σz(Fz = F ) = Σz(τ = τeff) , (3.55)

Teff = T (Fz = F ) = T (τ = τeff) . (3.56)

The fourth boundary condition on the gas pressure has to be set at the upper boundary of the at-
mosphere by the following line of argumentation: the properties of the disk surface will change
as a function of the radial distance from the central object.In particular, the effective temper-
atures and densities will drop outwards. The first attempt could be to set a constant minimum
value on the gas pressure at the upper boundary of the atmosphere. However, since the effective
temperature and therefore also the minimum temperature atτmin will decrease with radial dis-
tance, a constantpgas,minthen implies that the mass densityρmin atτmin has to increase with radius.
At the same time, however, we expect the mass density at the disk surfaceρeff to decrease.

Another possibility is to define a constant minimum value forthe mass density

ρmin = ρ(τ = τmin) = const (3.57)

and to calculate the corresponding valuepgas,minat every radial position fromTmin andρmin.

3.5 Numerical solution of the vertical stratification

To solve the set of differential equations numerically, we use two separate methods for the disk
and the atmosphere. The disk equations are obviously more complicated to solve and as such
they are more prone to numerical issues like steep gradients, truncation errors, . . . Therefore,
we use a Henyey algorithm for solving the set of differentialequations in the disk. The Henyey
method looks back on a successful history of applications instellar structure and evolution codes,
being able to deal with steep gradients by its relaxation method nature. The atmospheric equa-
tions, however, are much easier to solve and do not require a powerful, yet expensive algorithm
like the Henyey method. We use a simple shooting algorithm tosolve the atmospheric structure
in a simple and quick way.

In Sect. 3.5.1, we present the set of discretized equations for the vertical disk structure that is
generated by applying the Henyey method. A detailed description of this numerical scheme is
given in the appendix (Sect. A.2), where we also elaborate how the original differential equations
are transformed into their discretized counterparts. There, we further discuss how the set of linear
equations is stored and solved in an efficient way.

Subsequently, Sect. 3.5.2 briefly introduces the shooting method and its implementation for
solving the atmospheric structure. In Sect. 3.5.3, we discuss how the tabulated opacities are
incorporated in the numerical analysis of both the disk and the atmosphere.

3.5.1 Set of discretized equations

We introduce a discretization in the vertical direction by transferring the continuous variablesFz,
z, T , Σz, ρ to discrete valuesFz,i, . . . with i = 1, . . . , Ni. Thereby,Fz,1 = 0 andFz,Ni

= F . The
mean value of any quantityx for grid pointsi andi−1 is abbreviated withxi−1/2 = (xi+xi−1)/2.

36



3.5 Numerical solution of the vertical stratification

In the framework of the Henyey method, the set of differential equations (3.25)–(3.28) trans-
forms into four linear equationsG(j)

i , j = 1, . . . , 4 at every grid pointi. Thereby,j = 1 corre-
sponds to the differential equation forz, etc. Analogous, the four boundary conditions (3.36)–
(3.39) allow us to rewrite these equations partially fori = 1 andi = Ni + 1.1

We now repeat the individual differential equations for thevertical stratification (3.25)–(3.28)
and give the corresponding discretized Henyey equations.

For the geometric coordinatez, we get:

∂z

∂Fz
=

Υ

ρν

⇓
G

(1)
i = (zi − zi−1)ρi−1/2 νi−1/2 − Υ(Fz,i − Fz,i−1) = 0 . (A.12)

The temperature stratification is given as follows:

∂T

∂Fz
=

Υ

ρν
· ℘

⇓
G

(2)
i = (Ti − Ti−1)ρi−1/2 νi−1/2 − Υ(Fz,i − Fz,i−1)℘i−1/2 = 0 . (A.13)

The surface density equation converts to:

∂Σz

∂Fz
=

Υ

ν

⇓
G

(3)
i = (Σz,i − Σz,i−1)νi−1/2 − Υ(Fz,i − Fz,i−1) = 0 . (A.14)

Finally, the Henyey equation for the density becomes:

∂ρ

∂Fz
= −ΞΥ

ν
· ℵ

⇓
G

(4)
i = (ρi − ρi−1)νi−1/2 + ΞΥ(Fz,i − Fz,i−1)ℵi−1/2 = 0 . (A.15)

From the four boundary conditions (3.36)–(3.39), we get:

G
(1)
1 = z1 = 0 , (A.16)

G
(2)
Ni+1 = TNi

− Teff = 0 , (A.17)

G
(3)
1 = Σz,1 = 0 , (A.18)

G
(4)
Ni+1 = ρNi

− ρeff = 0 . (A.19)

1The additional grid pointi = Ni + 1 is introduced by the Henyey method for a purely numerical reason. See the
detailed description in the appendix (Sect. A.2) for a further explanation.
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3 The role of convection in black hole accretion disks

Normalization of Henyey equations Theoretically, the Henyey equations (A.12)–(A.15)
and their boundary conditions (A.16)–(A.19) can be evaluated and solved directly via the matrix
inversion presented before. However, the numerical analysis requires a proper scaling of these
equations; otherwise, they may differ by orders of magnitude and round-off errors are inevitable
when matrix manipulations are performed. We therefore scale all equations and the correspond-
ing derivatives in the matrix to the order of(Fz,i − Fz,i−1)/Fz,i by dividing them by

ΥFz,i, ΥFz,i℘i, ΥFz,i, ΞΥFz,iℵi,

for G(1)
i ,G(2)

i ,G(3)
i ,G(4)

i , or, in the case of the boundary conditions, by

1, Teff, 1, ρeff,

for G(1)
1 ,G(2)

Ni+1,G
(3)
1 ,G(4)

Ni+1.

Convergence criteria A key point in every iterative scheme is to determine if the iteration
has converged to the exact solution and to define an acceptance limit for an iterative solution.
We use three different criteria to evaluate the accuracy of one iterative solution.

1. The variationsδzi, . . . , δρi at each grid celli have to be smaller than a certain fraction of
their actual valueszi, . . . , ρi over a given number of successive iterations. We impose an
accuracy limit of

δyi

!

≤ ǫ1 · yi . (3.58)

for a minimum ofnit successive iterations.

2. The absolute deviation of the solution, measured by the sum of the absolute values of
all entries inG, has to be smaller than a given numberGmax over the same number of
successive iterationsnit. The average minimum accuracy for one variable in one grid cell,
yi, is thenGmax/(4Ni).

3. The quality of the solution is also checked by the relation

Ψ −
∫ +h

−h

νρ dz
!
≤ ǫ2Ψ , (3.59)

which ideally is zero for the real solution of the set of equations.

Automatic mesh refinement One problem of the numeric solution, especially when con-
vective viscosity comes into play, is that the required gridresolution may vary considerably. We
therefore start each iterative run with a lower grid resolutionNi,start, let the solution relax towards
the true solution and then refine the grid by checking the changes inρ – which turns out to be
the crucial quantity for the solution to converge to the correct one – between adjacent grid cells.
We allow for a maximum difference ofρ between two grid cells of

|ρi − ρi−1|
!
≤ ǫ3 min{ρi,ρi−1} . (3.60)
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3.5 Numerical solution of the vertical stratification

If this condition is violated, the interval is split into twointervals. This is done recursively
until (3.60) holds orNi = Ni,ρ is reached.

A certain number of iterations are then performed to let the solution adjust to the new grid,
before the same type of condition is imposed on the changes ofζ , which measures the efficiency
of convective processes in one grid cell. Since0 ≤ ζ ≤ 1, an absolute limit must be given
(instead of a relative one as in the case ofρ):

|ζi − ζi−1|
!
≤ ǫ4 . (3.61)

Again, if this condition is violated, the interval is split recursively into two intervals until (3.61)
holds orNi = Ni,ζ is reached.

3.5.2 Atmosphere

The structure of the atmosphere is calculated using a fast and simple shooting method. The
solver for the atmosphere receives as input the values ofzeff = h, Teff, Σz,eff = Σ andρeff at the
disk surface from the Henyey solver. While the first three quantities remain unchanged for the
atmospheric calculations, the density is subject to successive iterations until the vertical structure
of the atmosphere is solved.

Lock and load

The numerical integration of the atmosphere involves quantities like the mass density changing
over orders of magnitude between the disk’s surface and the upper end of the atmosphere. At the
same time, the surface densityΣz for example increases only slightly. It is therefore advisable
to rewrite the equations (3.50)–(3.53) and introduce logarithmic quantities.

∂ log z

∂ log τ
= −10log τ + log T − log κ− log z − log Ξ − log pgas, (3.62)

∂ log Σz

∂ log τ
= −10log τ − log κ− log z , (3.63)

∂ logT

∂ log τ
= 10log τ − log 4 − log(τ + 1) , (3.64)

∂ log pgas

∂ log τ
= 10log τ − log pgas ·

(−gz

κ
− 4σSB

3c
T 4

eff ·
(

τ +
1

2

))

. (3.65)

In (3.65),gz andκ are then functions oflog T andlog pgas.
Even in logarithmic variables, shooting from the disk’s surface to the upper boundary is prob-

lematic, since tiny changes in the starting valuepgas,effresult in highly different valuespgasat the
upper boundary. Therefore, we reverse the integration pathby starting from the upper boundary
with iteratively determined upper values ofzmax = z(τmin) andΣz,max = Σz(τmin) and shoot
“downwards” toτeff. This is repeated until the resulting values forz andΣz fit to the input from
the Henyey solver.

Shooting method

The course of action of one iteration follows the routineshoot of Press et al. (2001) and is
divided into three phases.
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3 The role of convection in black hole accretion disks

Phase 1: load Using the upper boundary condition onpgas, the known temperatureT and
two iteration values forz andΣz, we set up the starting values for the numerical integration
of (3.62)–(3.65).

Phase 2: target With the remaining boundary conditions (3.54), (3.55) atτ = τeff, the
targets of the numerical integration are defined.

Phase 3: shoot The numerical integration is performed using an explicit fourth order Runge-
Kutta scheme with automatic step refinement (see Sect. 4.2.5for details about the integration
method). Depending on the quality of the solution, either new starting values for thezmax and
Σz,max are derived and the shooting process is repeated, or the corresponding value forρeff is
returned to the Henyey solver. In Sect. 3.5.2, more details will be given on that phase.

The shoot phase

Quality of the solution To evaluate the quality of one iteration, and by that the veracity of
the “guessed” valueρeff at the disk surface, the values of the geometrical heightzfinal = z(τmax)
and surface densityΣz,final = Σz(τmax) from the numerical integration are compared with the
boundary valueszeff, Σz,eff and accepted iff

|zfinal − zeff| ≤ ǫ5 min{zfinal,zeff} , (3.66)

|Σz,final − Σz,eff| ≤ ǫ5 min{Σz,final,Σz,eff} . (3.67)

In the case of a non-acceptance, new values forzmax, Σz,max have to be generated. In the same
way as for the Henyey method, successive corrections are calculated from

z
{k−1}
final +

(
∂zfinal

∂zmax

){k−1}

δz{k−1}
max +

(
∂zfinal

∂Σz,max

){k−1}

δΣ{k−1}
z,max = 0 , (3.68)

Σ
{k−1}
z,final +

(
∂Σz,final

∂zmax

){k−1}

δz{k−1}
max +

(
∂Σz,final

∂Σz,max

){k−1}

δΣ{k−1}
z,max = 0 , (3.69)

where the derivatives are again determined numerically andthe new solutions are obtained by
solving this “system of equations” and by

z{k}max = z{k−1}
max + δz{k−1}

max , (3.70)

Σ{k}
z,max = Σ{k−1}

z,max + δΣ{k−1}
z,max . (3.71)

Discretized grid and scaling The default grid is determined by logarithmic equidistant
grid pointsτi with τ0 = τeff andτNi,atm = τmin. The standard grid resolution is the same as for
the disk calculation,Ni,atm = Ni,start. The automatic refinement by the Runge-Kutta integrator is
unlimited.

Additionally to the refinement by the integration scheme, the dependent variables are allowed
to change only for a certain fraction of their actual value, otherwise the stepsize is reduced. Since
the values along the integration path are not stored, this operation is not costly compared to the
mesh-refinement for the Henyey solver.
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3.6 Results

3.5.3 Numerical implementation of κ

Depending on the description of the opacity (see Sect. 3.4.3), a numerical treatment is neces-
sary. While the calculation of the opacities for Thomson-scattering, Kramer’s opacity and the
interpolation formula is straightforward, the tabulated values have to be interpolated.

The interpolation on the regularlog T–logR grid is done by using the cubic spline method
spline from Press et al. (2001): while reading the opacity tables atthe beginning of the pro-
gram, tables of second derivatives are calculated and stored together with the values for the
opacities. During the numerical calculation, these tablesallow a fast interpolation of the re-
quired valuesκ(ρ,T ).

3.5.4 Agreement of disk and atmosphere solution

The solution for the vertical stratification of the disk and atmosphere at one radial position is
accepted once the iteratively determined valuesh, Teff, Σ, ρeff at the disk’s surface solve both
systems of equations:

|ρeff,disk − ρeff,atm|
!

≤ ǫ6 · min {ρeff,disk,ρeff,atm} . (3.72)

Then, from (3.9), the average viscosityν⋆ can be calculated. The disk mass is updated by the
obtained value ofΣ and the calculation proceeds radially outwards until the outer boundary is
reached. This path of calculation is mandatory, since the monopole approximation (3.12), (3.29)
requires the enclosed disk mass to be known. Obviously, thisis the caseà priori only for s = si

whereMd = 0.

3.6 Results

3.6.1 Parameters, simulation characteristics

The results presented below were obtained for the followingset of parameters:

Central black hole mass Mc 10M⊙

Accretion rate Ṁ 0.1ṀE

Inner disk radius si 3rS = 6rg

Outer disk radius so 500rS

Grid points in radial direction Ns 100
Default grid points in vertical direction Ni,start 100
Standardβ-viscosity parameter β 10−4 . . . 10−7

Inner boundary condition parameter χ 1
Optical depth at upper end of atmosphereτmin 10−4

Density at upper end of atmosphere ρmin 10−12

Due to the free-fall inner boundary condition (χ = 1), we start the radial calculation ats = 6rS to
avoid numerical difficulties. From the values for the surface density obtained ats = 2si, we can
estimate the enclosed disk mass forsi ≤ s < 2si. Since its contribution is more than ten orders
of magnitude smaller than the central mass in all cases, we can safely neglect the contribution to
the disk mass from this innermost ring.
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3 The role of convection in black hole accretion disks

The required accuracies for accepting the solutions are given in the notation of Sect. A.2.2:

Maximum variation of variables ǫ1 0.1
Minimum number of successful iterations nit 2
Maximum deviation from true solution Gmax 0.01 · 4Ni

Maximum deviation of integral equation (3.59) ǫ2 0.01
Threshold for mesh refinement forρ ǫ3 0.1
Maximum mesh refinement forρ Ni,ρ 300
Threshold for mesh refinement forζ ǫ4 0.01
Maximum mesh refinement forζ Ni,ζ 400
Required accuracy for shooting method (Sect. 3.5.2)ǫ5 0.01
Maximum deviation of disk and atmosphere solutionǫ6 0.01

3.6.2 Disk properties

Standard disk Our main purpose is to investigate the contribution and efficiency of con-
vection in transporting energy and providing viscosity. Wetherefore use a standard setup with
Mc = 10M⊙ andṀ = 0.1ṀE for which we vary theβ-parameter of the underlyingβ-viscosity.
We plot the radial structure of these disks in the following Figs. 3.2–3.4 as a function of radius
in units of the Schwarzschild-radiusrS = 2.95 · 106cm.

Common values for the viscosity parameterβ are in the range of10−4 . . . 10−2 (Duschl et al.,
2000). Since we want to investigate if the turbulence causedby convection can account partly
for the total viscosity, we perform disk calculations withβ = [10−7; 10−4]. We limit β to this
range for the following two reasons.

1. Forβ > 10−4, the standardβ-viscosity prescription runs into the dissipation limit because
the turbulent velocityvturb,β =

√
βsω exceeds the sound speedcs. In that case, a diffusion

limit would have to be introduced. As we showed in the previous chapter, this results in an
effective decrease ofβ. In the particular example of a10M⊙ black hole accreting at10%
of the Eddington rate, the diffusion limit sets in forβ > 1.4 · 10−4.

2. Forβ < 10−7, hardly any solutions can be found for the required accuracies and the radial
range considered here. The reason for this will be given by our results presented below.

In Fig. 3.2, we display the efficiency of convection in the energy transport, measured by the
dimensionless quantityζ . At each radial position,ζ = ζ(s,z) is averaged vertically by

ζavg = h−1

∫ h

0

ζdz .

For β = [10−5; 10−4], we find that a significant amount of the total energy is transported by
convection in the inner part of the disk; close to the inner disk radius,ζ ≈ 0.98. Radiative
energy transport dominates in the outer part of these disks,with a transition zone expanding
from [10rS; 80rS] for β = 10−4 to [10rS; 180rS] for smallerβ. While the curves show a smooth
behavior forβ ≥ 10−5, this picture changes whenβ is decreased further: radial variations ofζ
of about0.1 can be seen in these cases. While the outer end of the transition zone is the same
as in theβ = 10−5 case, the characteristic shape changes completely in the inner disk region,
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Figure 3.2. Solutions for the standard disk withβ = [10−7; 10−4], part 1.
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Figure 3.4. Solutions for the standard disk withβ = [10−7; 10−4], part 3.

and the maximum efficiency is decreased to about0.8. In addition to the real results, we plot
fitting curves (thin lines) to the casesβ = {10−6,10−7}, which were obtained by averaging over
20 successive solutions of the vertical stratification and by smoothing the curves afterwards.

For eachβ, the anisotropy factor̟ avg = (vconv/cs)avg adopts a roughly constant value in the
innermost, convective region, ranging from0.1 (β = 10−4) down to0.02 (β = 10−7). Thus,
convection appears as radial drums rather than vertically elongated structures. The oscillations
in ζ are reflected relatively weakly in the anisotropy factor (Fig. 3.2). In the non-convective outer
parts of the disk, the convective viscosity and therefore the anisotropy factor vanish by definition.

A proper explanation of the possible reasons for these variations in ζ can be given only by
investigating further disk quantities such as the disk height h, which is plotted in units ofrS in
Fig. 3.2 (thick lines). Additionally, we plot the height of the atmosphere by thin lines. In all
cases, the disks are geometrically thin, with a maximum ratio of h/s ≈ 0.25. With decreasing
β, the disk puffs up slightly. The atmosphere is negligibly thin in the inner region, but expands
for larger radii. Contrary toζ and̟, no instabilities can be detected for the low-β case for both
the disk and the atmosphere.

The same is true for the surface densityΣ of the disk (Fig. 3.2). We observe smooth curves
for all values ofβ, with a linear increase at each radius withβ−1. The mass contained in the
atmosphere is completely negligible in all cases.

In Fig. 3.3, we plot the vertically averaged viscosity

νavg = h−1

∫ h

0

ν dz

andβavg = νavg/νβ, whereνβ is constant for the vertical stratification. For allβ, the total viscosity
decreases less than linearly withβ, which is due to the contribution from convective viscosity.
We find that in the low-β case, the convective viscosityνconv can become twice as large as the
underlyingβ-viscosity. It is important to note that although the convective viscosity becomes
relatively strongerfor lower supporting viscosities, its absolute value decreases as well. Thus,
the total viscosity generated in the disk becomes lower and lower with decreasingβ. Again, in
both plots no instabilities can be detected, although the influence ofζ is definitely strong. The
small peak seen inβavg at the innermost radii is caused by the inner boundary condition.
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3 The role of convection in black hole accretion disks

The densityρeff at the disk’s surface is also shown in Fig. 3.3, together withthe effective tem-
peratureTeff. Since the disk mass is negligible for all disk runs (see below), the radial structure
equations give the same results for the total flux and therefore for the temperatureTeff at the disk
surface. Looking at the corresponding densities, we find that their values lie very close for all
solutions with a clear decreasing trend towards larger radii. A certain irregular structure can be
seen for all results, an effect of the opacity model, which itself is very sensitive to the densities
and temperatures in this region of the disk.2 The instabilities inζ are also not detectable, neither
in temperature, nor in density.

Finally, Fig. 3.4 displays the resulting disk mass in units of the central mass. As expected,
the disk mass increases with decreasingβ, since the disk gets thicker and the surface density
increases. For all cases, the enclosed disk mass is completely negligible compared to the central
black hole mass. We estimate the equality radiussequ whereMd(s) = Mc by extending the radial
calculation towards larger radii for theβ = 10−6 disk case. A linear fit to the outer region in the
log-log plot gives

Md(s)/Mc = 3 · 10−10

(
s

103rS

)3/2

, β = 1 · 10−6 , (3.73)

Md(s)/Mc = 3 · 10−9

(
s

103rS

)3/2

, β = 1 · 10−7 , (3.74)

which in turn leads to

sequ = 2.2 · 109rS, β = 1 · 10−6 , (3.75)

sequ = 4.8 · 108rS, β = 1 · 10−7 . (3.76)

Thus, self-gravity is safely negligible in our disk calculations.

Extended parameter space We extend the disk calculations towards varying accretion
rates and central masses in order to see how general properties and, in particular, the instabilities
in ζ , depend on the input parameters.

In a first step, we investigate the dependence of the results on the accretion rate while keeping
a constantβ = 10−5 and a constantMc = 10M⊙. We perform disk calculations with accretion
rates ofṀ = [0.01; 0.2]ṀE. Higher rates are not included, since the disks become too thick for
the thin-disk approximation to be valid: foṙM = 0.2, the ratioh/s reaches values larger than
0.3 in the inner disk region, while it does not exceed0.03 for the lower limit Ṁ = 0.01, see
Fig. 3.5. The figure also shows that the disk mass and the surface density scale almost linearly
with the accretion rate, as expected. The contribution of convective turbulence is naturally higher
the higher the accretion rate, up toνconv = 1.5νβ, with the convective zone reaching outwards
to 20rS for low accretion rates, and250rS for high accretion rates, respectively. The anisotropy
factor in the convective zones is not influenced by the accretion rate (not displayed).

In Fig. 3.6, we see that the density and the temperature at thedisk’s surface also increase
with Ṁ , although the dependence is weaker than linear,ρeff ∝ Ṁ0.3 andTeff ∝∝ Ṁ0.25. The
solutions also show a clear dependency ofζ on the accretion rate (Fig. 3.7): beside the standard
caseṀ = 0.1ṀE, also the low accretion rate calculation produces a stable solution, but with

2When dropping the sophisticated opacity description and using simple formulas like, e. g., the Kramer’s opacity,
the structure disappears and a linear decrease is found in the log-log plot.
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Ṁ = 0.20ṀE
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a significant reduction of the relative contribution from convection. Given that both the total
energy and the angular momentum that have to be transported through the disk depend linearly
on the accretion rate (compare (3.10), (3.33)), the standard β-viscosity is almost large enough to
account for both requirements. On the contrary, higher accretion rates lead to the same type of
instabilities ofζ as lowerβ-values< 10−6 do for the standard setup.

Secondly, we focus on varying central masses for a constantβ = 10−5 and a constant absolute
valueṀ such that it corresponds to0.1ṀE for a 10M⊙ black hole.Thus, the Eddington ratio
Ṁ/ṀE scales withM−1

c . We limited the parameter range toMc = [5; 100]M⊙, which corre-
sponds to Eddington ratios oḟM = [0.2; 0.01]ṀE. For lower central masses, the disks get too
thick (c. f., Fig. 3.8), while for higher central masses, thedensity at the disk surface reaches our
boundary conditionρmin = 10−12g/cm3 at the upper end of the atmosphere too early. This is
also why we stop theMc = 100M⊙ calculation ats ≈ 120rS, see Fig. 3.8. The disk heighth,
the densityρeff and the effective temperatureTeff are all very sensitive to the Eddington ratio and
hereby toMc.

We also find that the surface densityΣ scales withM−1
c in the outer part of the disk, while this

scaling law changes slightly in the inner part of the disk where convection plays an important
role. Thus, the disk mass scales withMc andMd/Mc = const (not displayed).

As in the previous case of varyinġM , the underlying viscosity is large enough to allow
for a significant reduction of convective processes in the high mass case, becauseF ∝ M−2

c ,
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Ψ = const andνβ ∝Mc. This is reflected inβavg as well as in the vertically averaged convective
efficiencyζavg, which shows a stable and smooth solution for the higher central mass cases, while
instabilities occur for the low mass case (Fig. 3.9).

In a last step, we vary the mass of the central black hole in therange ofMc = [1; 100]M⊙

while keeping a constantβ = 10−5 and a constant Eddington ratiȯM = 0.1ṀE for the accretion
rate.This means that the absolute value of the accretion rate ing/s is implicitly scaled withMc.
It turns out that both the ratioh/rS and the surface densityΣ do not change for varying central
masses (not displayed). For this fact to hold, the mass density ρ has to scale withM−1

c , which
is reflected very nicely in Fig. 3.10. Then, given that the disk’s mass scales only withs2 ∝ M2

c ,
the ratioMd/Mc scales withMc. Note that the calculation for theMc = 100M⊙ case terminates
ats ≈ 250rS, because the densityρeff decreases towards10−12g/cm3, which is already the upper
boundary condition (i. e., the lowest value of the density) in the atmosphere.

The effective temperature, also plotted in Fig. 3.10, clearly shows a decrease for higher central
masses. From the energy equation (3.10), we derive thatF ∝ M−1

c =⇒ Teff ∝ M−0.25
c and

νβ ∝ Mc. Thus, less energy has to be transported through the vertical layers, while at the same
time the supporting viscosity is increased for higher central masses. We expect that the larger
the central mass, the lower the defaultβ-parameter can be before the radial variations inζ set
in. This is confirmed by our results; the variations appear only for the low mass case, while
the standard and high mass cases are stable in the inner region. It is worth mentioning that
the convective zone reaches further outwards for the high central mass case, although radiative
processes dominate the energy transport. For completion, we would like to add that neither the
ratioβavg/βstd, nor the anisotropy factor̟ are influenced significantly by a varying central mass
when the Eddington ratio is kept constant.

Radial variations in the convection efficiency ζ An important point in this discussion
is the origin of the instabilities inζ for certain disk solutions. We have seen that they occur
if the underlying viscosity is decreased under a threshold value, which itself depends on the
parameters central mass and accretion rate. Interestingly, these instabilities appear only inζ
and̟, two artificial quantities introduced for a better understanding of the ongoing processes.
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Mc = 100M⊙, Ṁ = 0.01ṀE
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None of the physically relevant quantities such as density,temperature and pressure reflect these
instabilities, reducing the importance of the fluctuationsfor a physical interpretation of these
disks.

Nevertheless, we can understand their occurrence by takinga closer look on the vertical struc-
ture in the instable zone of the disk. We therefore plot the vertical stratification of the pressure,
the convection efficiencyζ and the two gradients∇rad, ∇ad at a radial position close to the black
hole (s = 8rS) for our standard setup disk (Fig. 3.11). Thex-axis is hereby given by the heat
flux Fz in units of the total fluxF , fixed by the energy equation (3.10). The data is taken from a
single solution of the vertical structure without any smoothing or averaging.

Close to the black hole, radiation pressure dominates over gas pressure by about one order of
magnitude. Since the two pressure contributions show smooth curves for allβ, ρ andT must
also adopt such a smooth structure. Therefore, the instabilities in ζ are not caused by numerical
noise in the density or temperature.

Let us now have a look at the vertical layering of the convective efficiencyζ in the instable
casesβ = {10−6,10−7}. We detect narrow “convective cells” for smallFz ≈ 0.1F , which do not
occur for largerβ. These small cells are fluctuating for successive iterations, with the vertical
layers close to the mid plane being either fully convective or non-convective. On the contrary,
the vertical structure retains a stable, almost fully convective state forβ = {10−4,10−5}. The
reason for these fluctuations can be found in the lower plots of Fig. 3.11, where we display the
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3 The role of convection in black hole accretion disks

two gradients∇rad and∇ad, which determine if convection occurs or not. The quantityζ is
determined by the cubic equation (3.30), which depends strongly onB, with ζ → 0 for B → 0
andζ → 1 for B → ∞. The key point is thatB reflects the Schwarzschild criterium, meaning
that if the radiative gradient is less or equal to the adiabatic one, the stratification is stabilized
and no convection occurs:

∇rad ≤ ∇ad =⇒ B = 0, ζ = 0 .

In the opposite case, even a small positive difference∇rad−∇ad is multiplied byA2 ≈ 1010 and
thereforeB ≫ 1 andζ / 1. Thus, fluctuations in∇rad−∇ad, regardless of being of physical or
numerical nature, will cause fluctuations inζ . These fluctuations can not be seen in the physical
quantities, because they occur only for small values ofFz and therefore have little effect on the
total structure. For an interpretation of the overall physics and a relation to observable quantities,
these instabilities play only a minor role and can be replaced by smoothed values. However, a
further investigation of the nature of these fluctuations isnecessary, but beyond the scope of this
work.

3.7 Conclusions

Lower limit on the β-parameter In the light of the above results, we derive that convection
alone cannot account for viscosity in accretion disks. It requires an underlying viscosity, pro-
duced by some other process, which is parameterized byνβ in our model. The reason for this can
be understood by the following line of argumentation: convection works towards establishing an
adiabatic vertical stratification of the disk. Assuming that there exists an additional source of
viscosity in the disk, the convective elements are decelerated by this inherent friction as well
and an equilibrium state is established where energy is transported steadily by both radiation and
convection, and where the total viscosity is given by the sumof the underlying and the convec-
tive viscosity. A good example therefore is theβ = 10−5 case in Fig. 3.11, where∇rad exceeds
∇ad only slightly, but in a stable manner.

If, however, the underlying viscosity is too weak, convection is unchecked and very efficient
in building an adiabatic stratification in the disk with∇rad / ∇ad. Such a state is also called
marginally Schwarzschild-stable(Cox & Giuli, 1968). Physically, such a state means that no en-
ergy is transported and convection ceases. Thus, convective turbulence and viscosity vanish. In
addition, given that the supportingβ-viscosity is too low, the total viscosity becomes very small
in the vertical disk calculations. This contradicts the requirements from the radial structure equa-
tions: that the total amount of energy, released by the accretion process and given by (3.10), has
to be transported away. Furthermore, viscosity must be present to fulfill the angular momentum
transport equation (3.9). From this argumentation, the underlying viscosity can also be regarded
as the “driving force” for convection.

Influence of central mass and accretion rate The results and the discussion given above
show that the effects of a varying central mass with fixed accretion rate are very similar to those
of an inversely varying accretion rate with fixed central mass. With increasingṀ/ṀE, the
required amount of energy and angular momentum which have tobe transported through the
disk increase, leading to larger threshold values for the total viscosity. Since convection can only
partly account for the required increase, the supporting viscosity needs to be larger as well.
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More interesting, however, is the study of an varying central mass while the Eddington ratio
is kept constant. Here, variations ofMc have a strong influence on the resulting convective
disks, in particular on the occurrence of theζ-variations and the importance of self-gravity:
since we can assume that the scaling lawMd/Mc holds for higher central black hole masses, the
estimated disk mass ats = 500rS increases from10−11Mc to 10−4Mc for a supermassive black
hole with108M⊙, and the equality radiussequshrinks by a factor(107)2/3 ≈ 5·104. Furthermore,
we demonstrated that higher central masses in principle allow for lower supporting viscosities,
leading to relatively higher disk masses. But, as we showed in the previous chapter, convection
also produces a negative feedback on the energy transport inthe self-gravitating regions of the
disk. The interesting question of when and how self-gravityenters the game and changes the
disk structure will be investigated in future work.

Convective turbulence, differential rotation and magneto -rotational instability: a
speculative viscosity-mixture Our results show that disk solutions do only exist if there
is viscosity produced by effects other than convection. Convection itself can contribute sig-
nificantly to the total viscosity, but needs a driving force to establish an equilibrium in energy
transport in the vertical direction.

In our investigation, we parameterize the supporting viscosity by a permanentβ-viscosity,
where the threshold value of the standardβ-parameter depends on the central mass and the ac-
cretion rate. Originally, theβ-viscosity was motivated by differential rotation, a physical inter-
pretation of friction in Keplerian disks. As we discussed already in Chapt. 1, differential rotation
was first excluded from being a possible solution in accretion disks, because early laboratory ex-
periments resulted in discouragingly low viscosities. However, Richard & Zahn (1999) showed
that differential rotation can give rise to turbulence withthe analogue of theβ-parameter being
as large as10−5.

In this work, we completely ignored the turbulence due to magnetic effects, the well-known
MRI (Balbus & Hawley, 1991). This effect is regarded as the primary explanation for the high
viscosity in accretion disks, although some aspects remainto be clarified (see, e. g., Begelman
& Pringle (2007); King et al. (2007)). Machida et al. (2004) investigated how the effects of
magnetic turbulence translate into the classicalα-parameterization in the case of a10M⊙ black
hole and found that the correspondingα is not constant, but approximately decreases linearly
with radius:

α ∝ exp

{
1

2s/rS

}

− 0.99, α → 0.01 for s≫ rS .

Their results have to be used carefully since the absolute values in the fitting formula depend
strongly on the disk corona – a high-temperature and low-density region, put artificially to pre-
vent disk material to evaporate (Machida, priv. comm.). Also, the general question if the MRI
effects can be translated into anα- orβ-type viscosity (as a rule of thumb,β ≈ α2 . . . α) remains
to be answered (see, e. g., Pessah et al. (2008)).

A particular problem of the MRI are the so-calleddead zones, where the growth rate of
magneto-rotational instabilities is strongly suppressed. For the MRI to be efficient, the mag-
netic field needs to couple to the rotating material. If the ionization of the disk material is too
low, the coupling is weak (Gammie, 1996). This affects mainly the middle regions of accretion
disks, which are sufficiently cool and dense at the same time.
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Let us assume for the moment that a parameterization is possible and that thes−1 behavior
of the MRI viscosity is roughly valid. Then, we can draw the following picture involving dif-
ferential rotation, convection, and magnetic turbulence:in the inner disk region, we saw that
convection and differential rotation with a correspondingβ-parameter of∼ 10−5 do not produce
enough viscosity for the low central mass and/or high accretion rate case. However, close to
the central black hole, the magnetic turbulence is strong, resulting in a large viscosity due to the
magneto-rotational instability. In the intermediate diskregion, a weaker MRI effect adds to con-
vection and differential rotation to account for the required total viscosity. Finally, in the outer
disk region, both magnetic effects and convection become negligible, but differential rotation
is sufficient in generating the less demanding values of the total viscosity. It would be of great
importance and interest to combine these three sources of viscosity in a sophisticated project in
the near future and to see if the required viscosity can be generated for a large variety of disk
parameters.
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4 Spectral energy distribution of
super-Eddington flows I –
continuum processes

4.1 Context

Numerous theoretical investigations have shown that the classical Eddington limit, which has
been derived for a spherical symmetric object such as a star,does not apply in accretion disks
(see also the introductory remarks in Chapt. 1). Along with these studies, also the emerging disk
spectra of various types of accretion disk models have been investigated widely in the past, since
a correct interpretation of observational data needs to stand comparison with theoretical models.

Standard blackbody or modified blackbody spectra for supercritical accretion disks have been
calculated (Szuszkiewicz et al., 1996; Wang & Zhou, 1999; Mineshige et al., 2000; Watarai et al.,
2000). Furthermore, slim accretion disk spectra, including self-irradiation and self-occultation
for self-similar solutions have been studied by Fukue (2000), while Watarai et al. (2005) investi-
gated the implications of geometrical effects and general relativistic effects on the disk spectra.
Further, Kawaguchi (2003) considered Comptonization effects in spectral calculations, finding
significant spectral hardening occurring at large accretion rates. In these approaches, however,
anisotropy in radiation fields is not taken into account, although we naively expect mild beam-
ing effects, i. e., radiation is likely to escape predominantly in the direction perpendicular to the
disk plane. Moreover, the influence of the environment of thedisk, e. g. its atmosphere, is not
considered. It is well known that accretion disks have extended atmospheres, which indeed have
a strong influence on the emerging spectra. The photoionization of the accretion disk surface
by incident X-rays has been investigated by Reynolds et al. (1999), while Dörrer et al. (1996)
calculated disk spectra for thinα-disks around a Kerr black hole, surrounded by a hydrogen
atmosphere.

In this study, we focus on the question of wether supercritical accretion is not only allowed, but
also actually present in black hole accretion disks. Therefore, we calculate the spectral energy
distribution of supercritical accretion flows based on the radiation hydrodynamic (RHD) simula-
tions computed by Ohsuga et al. (2005).Supercritical accretionis often used as a synonym for
super-Eddington accretion, which means that accretion takes place with rates above the classical
Eddington rate as it is derived from the stellar case: one usually assumes that half of the gravita-
tional energy, released by the accretion process, goes intoradiation, while the other half adds to
the kinetic energy to maintain the (nearly) Keplerian rotation. Assuming a non-rotating central
black hole with massMc and equating the total disk luminosity with the classical Eddington
luminosityLE = (Mc/M⊙) · 1.2 · 1038 erg/s, one gets

ṀE =
LE

ιc2
= 2.6 · 10−8

(
Mc

M⊙

)
M⊙

yr
. (4.1)
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4 SED of super-Eddington flows I – continuum processes

In (4.1), the dimensionless factorι parameterizes the efficiency of converting gravitational en-
ergy into radiation and is set to unity for simplicity.

In Sect. 4.2, we describe the methods of calculation used in this investigation. Main aspects of
the subjacent simulation data will also be briefly summarized there. We then present our spectral
calculations in Sect. 4.3. Discussion will be given in Sect.4.4, while Sect. 4.5 is devoted to
conclusions. The results presented in this chapter have been published in the Monthly Notices
of the Royal Astronomical Society (Heinzeller et al., 2006).

4.2 Model setup

4.2.1 RHD simulations

In this study, we account for both a sophisticated disk modeland the disk’s surroundings, com-
puted in a self-consistent way within RHD simulations: we apply our calculations to the 2D
RHD simulation data from Ohsuga et al. (2005). Starting withan empty disk and continu-
ously injecting mass through the outer disk boundary, the authors simulated the structure of a
supercritical accretion flow, until it reaches the quasi-steady state. The central object is given
by a non-rotating stellar mass black hole (Mc = 10M⊙), generating a pseudo-Newtonian po-
tential (Paczýnski & Wiita, 1980). The viscosity is given by the classicalα-prescription with
α = 0.1. The mass input rate at the outer boundary (500rS, rS: Schwarzschild radius) strongly
exceeds the Eddington limit,̇Mext = 1000ṀE. The authors considered energy transport through
radiation and advection and included relativistic effectsin the radiation part. Note that photon
trapping effects were automatically incorporated in the simulations. A gray computation of the
radiative transfer in the flux limited approximation (Levermore & Pomraning, 1981) was used.

They found that the supercritical flow is composed of two parts: the disk region and the
outflow regions above and below the disk. Within the disk region, circular motion as well as
patchy density structures are observed. The mass accretionrate decreases inwards (i. e. as matter
accretes), roughly in proportion to the radius, and the remaining part of the disk material leaves
the disk to form an outflow. In particular, only10% of the inflowing material finally reaches the
inner boundary (3rS), while the remaining90% gets stuck in the dense, disk-like structure around
the midplane or transforms into moderately high-velocity outflows with wide opening angles.
The outflows are accelerated up to∼ 0.1c via strong radiation pressure force. Figure 4.1 displays
key quantities of the simulation data on a two-dimensional grid in directionss =

√

x2 + y2 and
z, which reflect the powerful outflow from the disk with high velocities, high gas temperatures
and low mass densities. By comparing gas and radiation temperatures, it can be seen that an
equilibrium between matter and the radiation field is only established in the dense, disk-like
structure close to thex-y plane.

From the simulation data, the gas densityρ, its temperatureTgas and its velocityv are taken
as input parameters, as well as the radiation energy densityE. The methods of calculating
other quantities, such as the radiation temperatureTrad, the source functionSν and the radiation
pressure tensorPν , will be given in the following subsections.
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4.2 Model setup

Figure 4.1. Key quantities of the simulation data forMc = 10M⊙ andṀext = 1000ṀE. Upper left:
mass densityρ; upper right: absolute velocityvtot; lower left: gas temperatureTgas; lower right: radiation
temperatureTrad.

4.2.2 Equation of radiative transfer

Under the assumption of an observer being located at infinitedistance from the object, we cal-
culate the emerging flux/luminosity as a function of the observer’s inclination angleΘ and az-
imuthal angleΦ. Here,Θ and Φ refer to the spherical coordinate system that describes the
computational box.1

More precisely, we adopt a parallel line of sight calculation on a two-dimensional grid on the
projected surface, seen by the observer (see Fig. 4.2 for a better understanding). We start the
line of sight calculation at a sufficiently high optical depth τν,start from the projected surface with
initial intensityIν = 0 and with fixed direction cosine vectorl = l(Θ,Φ). This is achieved by a

1Note that the equatorial plane of the computational box is defined by the injection point of gas and its angular
momentum vector.
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Figure 4.2. Sketch of the line of sight
calculation.

two-way integration. In a first step, the integration proceeds inwards fromr = reff whereτν = 0,
to a positionrν,start with τν = τν,start. During this integration, only the optical depth is calculated
while the radiative transfer equation does not need to be solved. In a second step, the integration
then proceeds outwards fromτν,start to the outer boundary of the computational box where the
radiative transfer equation is solved using an initial value of Iν,start = 0.2

We focus on solving the radiative transfer equation numerically by a Runge-Kutta algorithm,
considering hereby the relativistic corrections due to thehigh velocities of the gas. General rela-
tivistic effects such as gravitational lensing and gravitational redshift are not taken into account.
We have to distinguish between two different coordinate systems: we describe the system in
which the observer and the computational area are at rest with Iν , l, . . . , while the same quanti-
ties are tagged with0 in the frame comoving with the local gas velocityv. Since the gas velocity
strongly varies, the comoving frame depends on the positionin the simulation box.

In this framework, the relativistic equation of radiative transfer is given by

(l · ∇)Iν =
( ν

ν0

)2

·
{

κabs
ν0
Sν0 − χν0 Iν0 +

3

4
κsca

ν0

c

4π

(
Eν0 + l0il0jP

ij
ν0

)

}

, (4.2)

while, in the non-relativistic case, it reduces to

(l · ∇)Iν =

{

κabs
ν Sν − χν Iν +

3

4
κsca

ν

c

4π

(
Eν + liljP

ij
ν

)

}

. (4.3)

It is important to note that all quantities on the right hand side of (4.2) are evaluated in the
comoving frame, while those on the left hand side are given inthe rest frame. In the equation
of radiative transfer,Sν denotes the source function for matter,Eν the radiation energy density
andP ij

ν the components of the radiation pressure tensorPν . The total extinction is given by
χν = κabs

ν + κsca
ν .

In this first approach, we restrict ourselves to frequency-dependent absorption coefficients for
free-free absorption processes and totally neglect bound-free absorption processes,κabs

ν = κff
ν .

This holds as a good approximation, since the gas temperature is mostly above105 K, and,
hence, hydrogen is fully ionized. For simplicity, we do not consider metal opacities. We adopt
the formula given in Rybicki & Lightman (1979),

2Since the starting pointτν,start has to be sufficiently large such that the calculations saturate, the starting value
Iν,start can be chosen arbitrarily without changing the results.
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κff
ν = 3.7 · 108T−1/2

( ρ

mp

)2

ν−3
(
1 − e−hν/kT

)
cm−1 . (4.4)

For the scattering processes, we only consider electron scattering, given by

κsca = σes

( ρ

mp

)

cm−1, σes = 6.652 · 10−25cm2. (4.5)

The relativistic transformation rules are

ν0 = νΓ
(

1 − v · l
c

)

, (4.6)

l0 =
ν

ν0

[

l +

(

c
Γ − 1

v2
v · l − Γ

)
v

c

]

, (4.7)

Iν0 =
(ν0

ν

)3

Iν , (4.8)

with Γ being the Lorentz factor.

4.2.3 Frequency-dependent radiation quantities

Special attention is needed when deriving the quantitiesSν andEν and, therefore, when apply-
ing the flux limited diffusion approximation (see Sect. 4.2.4). As the radiative transfer in the
2D RHD simulation is calculated in a gray approximation, thesimulation data provides only
frequency-integrated values for the radiation energy density. The matter distribution is described
by the gas density and gas temperature. We assume local thermal equilibrium for the matter
distribution and for the radiation field separately:

Sν = Bν(Tgas) =
2hν3

c2
· 1

exp
(

hν
kBTgas

)
− 1

, (4.9)

Trad =

(
E

arad

)1/4

arad = radiation constant, (4.10)

Eν =
4π

c
Bν(Trad) . (4.11)

While (4.9) generally holds as a good approximation, (4.10)and (4.11) have to be treated care-
fully: in a scattering dominated domain, as it is the case in the underlying simulation data here,
photons undergo multiple scattering and therefore expand in space – accordingly, the radiation
field is diluted and the photon number decreases. This implies that the average photon temper-
ature will be underestimated by (4.10) and (4.11), which will be discussed later (Sect. 4.2.6).
Therefore, we henceforth focus our discussion on the relative changes of the flux, photon energy
and photon number due to the variations of the inclination angleΘ.
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4 SED of super-Eddington flows I – continuum processes

4.2.4 Flux limited diffusion approximation

To calculate the radiation pressure tensor, we apply the frequency-dependent flux limited diffu-
sion (FLD) approximation (Levermore & Pomraning, 1981) to the quantities in the comoving
frame. In this context, the radiation pressure tensor can beexpressed by

Pν,0 = Fν Eν,0 , (4.12)

whereF is called the Eddington-tensor. Its components are given by

F ij
ν =

1

2
(1 − fν)δ

ij +
1

2
(3fν − 1)ni

νn
j
ν . (4.13)

Here,ni denotes the normalized energy density gradient,

ni
ν =

(
∇Eν

)i

∣
∣∇Eν

∣
∣
. (4.14)

Following Kley (1989),ni
ν and subsequent quantities can be expressed as functions of the energy

density in the inertial frame.
To close the resulting equations, the Eddington factorfν has to be determined. From the

momentum equations, the relation betweenfν andλν is given by

fν = λν + λ2
νR2

ν , Rν =

∣
∣∇Eν

∣
∣

χνEν

. (4.15)

The flux limiterλν itself cannot be determined from the equations of radiativetransfer, but has
to be defined manually. In order to do so, two conditions have to be fulfilled. In the case of
χν → ∞, the equations have to reduce to the classical diffusion limit, i. e. λν → 1

3
. In the case

of χν → 0, the flux limiter must tend towards1/Rν to ensure|Fν | ≤ cEν .
Naturally, there exist multiple possibilities to describethe flux limiterλν . We adopt the com-

mon formulation from Levermore & Pomraning (1981):

λν(Rν) =
2 + Rν

6 + 3Rν + R2
ν

. (4.16)

4.2.5 Numerics

In this investigation, we choose asinglesnapshot of the RHD simulation data after the simula-
tion has settled down into a quasi-steady structure. In thisstadium, the structure does not change
anymore in time in a significant way, giving rise to the consideration that our results are charac-
teristic properties of such a system. The calculation of thedisk spectra is performed as presented
above with and without relativistic corrections. As the simulation data is symmetric with respect
to the azimuthal angleΦ, we compute the spectra only in terms dependent on the inclination
angleΘ.
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Optical depth We investigate the results of the computation for differentstarting points (i. e.,
optical depthsτν,start) for the line of sight calculation. Forτν,start ≈ 8, the results begin to saturate,
leading to changes below one percent when starting at higheroptical depths. We usedτν,start = 10
throughout and validated the results with several integrations from higher optical depths.

The reason why such a lowτν,start reveals the same results as higher optical depths can be
understood from the two extreme cases listed below.

1. Either the gas is dense and cool withTgas ≈ Trad and small contributions of the gas to the
total emissivity, or

2. it is diluted such thatκabs
ν ≪ κsca

ν and the total emission along the line of sight is completely
dominated by the radiation field.

For all calculations it turns out that increasing gas temperatures go hand in hand with dropping
gas densities so that opacity and total emission are governed by the radiation field.

Discretization We divide the projected surface seen by the observer in a polar grid with
coordinates(r̃,ϕ), see Fig. 4.2. Both for the radial and the polar coordinate, we adopt a linear
grid with Nr̃ = 100 andNϕ = 200 grid points. The discretization in frequency is taken to be
logarithmic withNν = 200 frequency values between1014 Hz (0.5 eV) and1022 Hz (50 MeV).

Step size During the numerical integration, the step size along the integration path is limited
by three different requirements to ensure numerical accuracy.

1. The geometric distance∆r must not exceedC1 · rS with C1 = 0.1.

2. The optical depth∆τν of each step must be smaller thanC2 = 0.1.

3. The gradient of the total extinction is limited by(∂χν/∂r) ∆r ≤ C3 = 1 cm−1. This last
requirement is necessary to enable the handling of drastic changes in the optical depth
during inward integration with the explicit Runge-Kutta scheme.

For each integration step, the default step size is calculated from these requirements and is input
into the Runge-Kutta integrator.

Runge-Kutta method The integration of the differential equations (4.2), (4.3)is performed
by a fourth order explicit Runge-Kutta algorithm with automatic step size control. We calculate
the subsequent valueIk+1

ν from the given intensityIk
ν and the default step size∆r in two ways:

Ik+1
ν,1 = ∆r ·

(

(l · ∇)Iν

)

positionk

, (4.17)

I
k+1/2
ν,2 =

1

2
∆r ·

(

(l · ∇)Iν

)

positionk

,

Ik+1
ν,3 =

1

2
∆r ·

(

(l · ∇)Iν

)

positionk+1/2

. (4.18)
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The step size∆r is accepted if the difference betweenIk+1
ν,1 andIk+1

ν,3 is sufficiently small:

est =
Ik+1
ν,3 − Ik+1

ν,1

15
,

Ik+1
ν,3 = Ik+1

ν,3 + est,

error =
|est|

10−3 + |Ik+1
ν,3 |

,

error
!
≤ maxtol= 10−5 . (4.19)

The numerical constants in this error estimation are taken from Plonka-Hoch (2004) and depend
on the order of the Runge-Kutta scheme and the required accuracy of the problem.

In the case (4.19) is not fulfilled, the stepsize is reduced bya factor of1/2 and the calculation
is repeated until (4.19) holds.

Interpolation on the grid Along the line of sight integration, the physical quantitiesρ, Trad,
Tgas, . . . need to be calculated from the grid data by an interpolation method. For a 3-dimensional
problem, the best accuracy is achieved by a volume interpolation (see Fig. 4.3): given a pointX,
a physical quantityY , and surrounding grid pointsX1, . . . , X8 with Y1, . . . , Y8, its value is given
by

Y =

8∑

i=1

ViYi

/ 8∑

i=1

Vi . (4.20)

The implementation of the interpolation displayed in Fig. 4.3 is straightforward as long as the
poles of the computational box (Θ = {0,π}) are not touched. Otherwise, special attention is
necessary for determining the correct surrounding grid pointsX1, . . . , X8.

This interpolation is applied to all physical quantities except the energy density gradient,
which is necessary for the correct calculation of the FLD contribution (see (4.14)). In this case,
two additional points are calculated by surface interpolation (in the same way as the volume
interpolation (4.20)), which in turn are used to interpolate the energy density gradient at pointX
by linear interpolation (see Figs. 4.3 and 4.4 for a better explanation).

Parallelization Radiative transfer calculations put strong demands on computational power.
For a quick computation of the continuum spectra and – even more – for a further extension
towards line emission and absorption processes, the line ofsight integration is parallelized using
MPI (Message Passing Interface, ANL (2008)).

Within MPI, the processes have their private memory and communicate by sending messages
to each other. The reason for choosing MPI and not a shared-memory system is that the par-
allel line of sight calculation involves very little communication, since the individual rays are
independent.

The code is parallelized like a ticketing system forNp processes: one process, acting as the
server, offers single jobs (single rays for a specific combination of r̃ andϕ) to Np − 1 clients.
The clients are served in a queue in a first-come-first-serve principle. After receiving a job, the
client leaves the queue, performs the calculation and queues up again to deliver its results and to
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Figure 4.3. Visualisation of the volume interpolation method. Upper left: for the interpolation ofX,
the surrounding eight grid pointsX1, . . . ,X8 are considered; lower left: their relative contributions are
determined by the volumesV1, . . . , V8; upper right: the energy density gradient∇yEν in directiony =
{r,Θ,Φ} is interpolated linearly from two pointsXy,1,Xy,2 which are calculated by surface interpolation
from the surrounding grid pointsX1, . . . ,X8; lower right: example of the interpolation∇rEν .
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Figure 4.4. Visualisation of the linear interpolation for the example∇rEν .
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get new work to do. This process is repeated until all work is done, the results are collected and
merged for the final spectral data on the server.

Starting at the innermost radial point on the projected surface (̃r = 0), the line of sight cal-
culation is performed for allNϕ rays before increasing the polar radius until the outermostring
(r̃ = 500rS) is calculated. After each radial step, the clients are helduntil all Nϕ calculations
are finished and a temporary data file is written to enable the computation to be resumed at that
radius.

This ticketing system approach also ensures the efficiency of the parallelization for different
clients with varying computational power. The overhead forthe parallel calculation is minimal,
consisting only of deliveringNν values for the intensityIν(Θ,r̃,ϕ) and the client rank, and of
receiving two values̃r andϕ for the subsequent step. This justifies the usage of MPI.

4.2.6 Color-corrected temperatures

As mentioned above, due to (4.10) and (4.11), the resulting fit temperatures underestimate the
real temperature of the radiation field. Strictly speaking,the temperature of the radiation field
should be determined atτ ∗ ≈ 1 (τ ∗ ∼

√
κscaκabs) and not atτ ≈ 1 (in a scattering dominated do-

main,τ ∼ κsca). Hence, the radiation energy densityEν will resemble more a shifted blackbody
distribution with a color-corrected temperatureTcol,

Eν ∼ Bν(Tcol)
√

κsca/κabs
ν , (4.21)

rather than (4.11), whereEν ∼ Bν(Tfit). From the requirement of energy conservation,

E =

∫

Bν(Tfit) dν =

∫

Bν(Tcol)

√
κsca

κabs
ν

dν . (4.22)

To get a rough idea on how much the derived temperatures are underestimated, we solve (4.22)
numerically forTcol in the main emanating region of radiation (τ ≈ 10).

4.3 Results

4.3.1 Overall spectral properties

Figure 4.5 shows the resulting spectrumνLν for inclination anglesΘ = 0, π/4 andπ/2 with and
without relativistic corrections. The luminosity is givenby

Lν(Θ) = 4π

∫

A

Iν(Θ, r̃, ϕ) dA , (4.23)

whereA denotes the projected surface of the computational area, asit is seen by the observer.
For low frequencies, the spectra only weakly depend on the viewing angle. Also, relativistic
corrections are unimportant for energies/ 400 eV (ν / 1017 Hz). Contrarily, for higher ener-
gies, the dependency on the viewing angle becomes stronger.For high inclinations, i. e. for an
edge-on view of the system, relativistic corrections stillremain unimportant, while they become
drastically visible for low inclinations, i. e. for a nearlyface-on view of the disk. For both the
relativistic and the non-relativistic cases, an enhancement of the peak frequency and luminosity
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Figure 4.5. Disk spectraνLν for inclination anglesΘ = 0, π/4, π/2 with and without relativistic
corrections.

is observable for small inclination angles; although, thisboost is much stronger when consid-
ering relativistic corrections. Furthermore, instead of arapid drop ofνLν for high energies, a
slower decline to a plateau-like structure can be seen in allcases.

Figure 4.6 illustrates again the spectrum forΘ = 0. To show that the observed plateau in
Figs. 4.5 and 4.6 is a result of the thermal emissionκabsSν from the hot gas in the photosphere,
we calculate the spectrum without gas contribution, i. e. wesetSν,gas = 0 everywhere. As
it can be seen from the figure, the high-energy plateau disappears completely when neglecting
the contribution from the hot gas, confirming our hypothesis. We want to make the following
remarks.

1. This structure may be altered significantly if Compton scattering is taken into account,
since this provides an effective cooling mechanism for the gas. However, the inclusion
of Compton scattering and calculation of the decrease inTrad is beyond the scope of this
work.

2. Observation of this plateau is unlikely, since the overall emission in this energy range is
considerably low and the spectrum is dominated by the peak emission.

To illustrate the influence of the disk’s environment in the face-on case in Fig. 4.6, we calculate
the spectrum for a “screened” central region (forr ≤ 100rS, we set all physical quantities to
zero) and for the core region only (forr ≥ 100rS, all physical quantities are set to zero). Here,
r denotes the radial coordinate in the spherical coordinate system describing the computational
box. The former case corresponds to a system where the inner100rS are entirely evacuated and
so emission, absorption and scattering processes only exist outside the core region. Contrarily,
the latter case means that no emission, no absorption and no scattering takes place forr ≥ 100rS,

67



4 SED of super-Eddington flows I – continuum processes

 1e+031

 1e+032

 1e+033

 1e+034

 1e+035

 1e+036

 1e+037

 1e+038

 1e+039

 1e+040

 1  10  100  1000  10000  100000  1e+006  1e+007

ν
L

ν
[e

rg
/s

]

Eγ [eV]

slim disk model

thin disk model

rel., no gas
rel.

rel., r≥100rS (screened)
rel., r≤100rS (core)

Figure 4.6. Disk spectraνLν for Θ = 0 with relativistic corrections. Beneath the normal spectrum (as
in Fig. 4.5), we plot the spectra without gas contributions,for the core region only (r ≤ 100rS) and for
a screened inner region (r ≥ 100rS). Additionally, theoretical spectral shapes for thin and slim accretion
disks are sketched.

yielding an unaltered emission from the core region only. Obviously, the environment of the disk
has a rather strong influence on the emerging spectrum.

Furthermore, the theoretical spectral shapes for a standard thinα-disk (Shakura & Sunyaev,
1973) and for a standard slim disk (Abramowicz et al., 1988) are indicated in Fig. 4.6, each
time without consideration for self-irradiation, atmosphere, relativistic effects. If we just take
into account the surface temperatureTeff for these disk models and take advantage of the face-on
view (no self-occultation), the theoretical predictions are νLν ∝ ν4/3 for the thin disk case, and
νLν ∝ ν0 for the slim disk case (see, e. g., Kato et al. (1998, Sect. 3.2.5)). These shapes do
not coincide with our results, although they should be validat least for the peak intensity region
of the spectrum. This reveals a weak point of our investigation, which is the need to assume a
spectral distribution for the emission of the radiation field and the gas component from the given
gray quantities (see Sect. 4.2.3).

4.3.2 Angular dependence of the luminosity

In Fig. 4.7, we show the dependency of the total luminosity

Ltot(Θ) =

∫

Lν(Θ) dν (4.24)

on the viewing angle for both the relativistic and the non-relativistic calculation by dividing the
resulting luminosities by its edge-on valueLtot(π/2). The energy boost for small inclination
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Figure 4.7. Total luminosityLtot, total photon numberntot and average photon energy〈hν〉 as a function
of the viewing angleΘ for the relativistic (left) and non-relativistic (right) calculation. The quantities are
normalized by their corresponding edge-on values.

angles appears in both cases, although it is stronger for therelativistic calculation. Due to rel-
ativistic effects, the gain in luminosity compared to the non-relativistic calculationLrel

tot/L
non-rel
tot

varies between1.0 for Θ = π/2 and1.9 for Θ = 0.
We find thatLtot is enhanced by a factor of∼ 6.4, at most, for a face-on observer, compared

with an edge-on observer. In absolute values,Ltot = [1.3·1039erg/s; 8.4·1039erg/s]. The increase
in total luminosity may be due either to an increase in photonnumber or an increase in average
photon energy. Which one is more important?

To answer this question and to outline the relativistic effects more explicitly, we also display
in Fig. 4.7 the total photon number densityntot and the average photon energy〈hν〉 as a function
of the inclination angle, again normalized by their edge-onvalues. From our SEDs, we calculate
the photon number density using

ntot(Θ) =

∫

nν(Θ) dν =

∫
Lν(Θ)

hνc
dν (4.25)

and from that, the average photon energy by〈hν〉(Θ) = Ltot(Θ)/(cntot(Θ)). While relativistic
effects become more or less unimportant in the edge-on case,they cause an additional increase
both in the total number of photons originating from the system and in the average photon energy
in the face-on case. Table 4.1 summarizes the gain in total luminosity, photon number and
average photon energy compared to the edge-on case. These results can be explained physically
as follows. Starting from thenon-relativisticcalculation, we find that:

• Lower densities and, therefore, less effective absorptionand scattering in the photosphere
allow a deeper look into the hotter region for the face-on case, compared to the edge-on
case. Hence, the average photon energy〈hν〉 is increased by a factor of1.45.

• Photons can escape more easily through the diluted medium along the polar axis, while
they get stuck in the dense disk-like structure concentrated in the midplane. The outflow
is therefore collimated and the number of escaping photons is raised by a factor of2.35.
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At the same time, the (outflow) velocities of the gas close to the black hole (r / 100rS) and
around the polar axis are higher, which becomes important for therelativisticcalculation.

• The frequency of the escaping photons is shifted fromν to ν0 ≥ ν by the relativistic
Doppler effect, increasing the average photon energy additionally by a factor of about
1.71/1.45 = 1.18, when comparing the face-on view with the edge-on view.

• Given that the relativistic invariant isI/ν3, the emerging intensity in the relativistic calcu-
lation compared to the non-relativistic case is given byI0/I ∼ (ν0/ν)

3. One factor ofν0/ν
directly goes into〈hν〉 via the relativistic Doppler effect, the remaining factor of (ν0/ν)

2

applies to the emerging photon numbernν ∼ Iν/〈hν〉, raising it once more by factor of
3.74/2.35 = 1.59, whenΘ decreases fromπ/2 to 0.

An observer located atΘ = π/2 only sees the emission from the outer part of the optically thick
disk-like structure, which itself screens the relativistic effects in the inner region of the system.
The radial velocities and also the azimuthal velocities arerelatively low (vϕ ≈ 0.01c). For the
mainly contributing part to the spectrum, the azimuthal velocity is (almost) perpendicular to the
line of sight, therefore the already weak relativistic effects are not detectable for an edge-on
observer. In the face-on case, the highly relativistic flow (vs / 0.3c) can by observed due to the
optically thin atmosphere above the disk. At the same time, the radial velocity is pointing in the
direction of the observer, leading to strong enhancements of the radiative flux at low inclinations.

4.3.3 Blackbody fitting

When spectral data of black hole sources are obtained, it is usual to fit them with blackbody (or
disk blackbody) spectra. We thus attempt a similar spectralfitting to our theoretically calculated
spectra: we apply a non-linear least square fit to the emerging intensityIν using a blackbody
spectrum with temperatureTfit, altered by a spectral hardening factorε (Soria & Puchnarewicz,
2002). The fitting function is then given by

f = f(ν, ε, Tfit) = ε−4 · 2hν3

c2
· 1

exp
(

hν
εkBTfit

)
− 1

. (4.26)

Note that the factorε−4 is introduced to ensure the same radiation energy loss:
∫

f(ν, ε, Tfit) dν = ε−4σ(εTfit)
4 = σT 4

fit . (4.27)

Table 4.1. Gain in total luminosity, photon number and average photon energy compared to the edge-on
case (see text for details).

Θ Ltot ntot 〈hν〉
relativistic non-relativistic relativistic non-relativistic relativistic non-relativistic

π/2 1.00 1.00 1.00 1.00 1.00 1.00
π/3 1.66 1.26 1.41 1.17 1.18 1.08
π/4 2.40 1.59 1.86 1.39 1.29 1.14
π/6 3.63 2.14 2.53 1.72 1.43 1.24

0 6.40 3.40 3.74 2.35 1.71 1.45
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Figure 4.8. (a) fitted blackbody temperatures for the relativistic and non-relativistic calculation as a
function of the viewing angleΘ. Additionally, mean temperatures atτν = 1 andτν = 10 are shown. All
temperatures are scaled byTfit atΘ = π/2. (b) luminosityLν and the corresponding blackbody fits.

In order to account for stochastic fluctuations, we weigh thefitting coefficients by their relative
intensity. So, the weight-function is given by

w(ν) =
Iν
Itot

, Itot =

∫

Iν dν . (4.28)

Figure 4.8a shows the results for the fitting temperaturesTfit as a function of the inclination angle.
Additionally, we plot the surface-averaged radiation temperatures

T̄rad =
1

A

∫

A

TraddA (4.29)

at optical depthsτν = 1 andτν = 10. As mentioned earlier, the temperature of the radiation field
will be underestimated by (4.10) and (4.11). We therefore concentrate on its relative changes for
different inclinations and scale all temperatures to the fitting temperatureTfit atΘ = π/2, where
it is basically the same for the relativistic and for the non-relativistic calculation.

If neglecting relativistic corrections, the fitted blackbody temperature is given roughly by the
radiation temperature at aconstantoptical depth between1 and10. The blackbody temperature
rises by a factor of1.3 when switching from an edge-on to a face-on case. The spectrum is only
weakly hardened compared to a Planck distribution at the same temperatureTfit: the spectral
hardening factorε adopts an almost constant value close to unity,ε ≈ 1.15, for all inclinations.

When accounting for relativistic corrections, no surface of constant optical depth can be de-
fined any more: while the fitting temperatures resemble thoseof the non-relativistic case for
high inclinations, they differ significantly for low inclinations, mirroring the above statement
of stronger relativistic effects for the face-on seen system. While the blackbody temperature
rises by a factor of1.6, the hardening factorε stays almost constant around1.15, like in the
non-relativistic calculation.

Finally, Fig. 4.8b shows the luminosityLν for the face-on view and the edge-on view and
the corresponding blackbody fits in the relativistic case. Due to the weighting function, the
peak intensity region is fitted quite well, while there are large deviations in the low-energy and
high-energy regions.
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4.4 Discussion

The results presented in Sect. 4.3 permit us to draw several conclusions about the observational
appearance of supercritical accretion disk systems.

It is clearly not sufficient to consider only the disk and neglect its surroundings like its hot
photosphere, outflow regions, etc. Their influence becomes most important in the high-energetic
part of the spectrum (hν ' 4 keV). We find a plateau-like structure, independent of relativistic
effects and of the viewing angle, which can be ascribed directly to the high gas temperature in
the corona. Therefore, neither the basic thin disk spectrum, nor the basic slim disk spectrum fit
our results.

Our results also confirm that the Eddington-Barbier approximation, a common simplification
of radiative transfer calculations for stellar atmospheres, cannot be applied in accretion disks:
in this approximation, one generally assumes that the emergent intensity along the line of sight
is equal to the source function at constant optical depthτ = 2/3. In our calculation, the main
contribution to the emerging flux is produced at higher optical depthsτeff > 2/3; moreover, the
exact value ofτeff depends on the inclination angle.

We observe an enhanced luminosity for more and more face-on seen systems, which is due
to both enhanced average photon energy and total photon number. Relativistic effects alter the
total photon number much more significantly (almost twice the non-relativistic treatment) than
the average photon energy. This can be identified asmild relativistic beaming.

As outlined in Sect. 4.2.6, due to (4.10) and (4.11), the resulting fit temperatures underestimate
the real temperature of the radiation field. The correction derived from (4.22) reveals that the fit
temperatures are underestimated by one order of magnitude.With

Tfit =
[
9.4 · 105K . . . 1.4 · 106K

]
(4.30)

for Θ = [π/2 . . . 0], this leads to color-corrected temperatures in the range of

Tcol =
[
9.4 · 106K . . . 1.4 · 107K

]
. (4.31)

These temperatures would be consistent with the observed high temperatures of several ULX
sources (Makishima et al., 2000) that can not be explained interms of intermediate mass black
hole systems with sub-Eddington accretion rates. However,our approach is certainly too simpli-
fied to answer this “too hot accretion disk” puzzle in a satisfactory way.

For our results, spectral hardening turns out to be negligible. This may be due in parts to the
assumption of Thomson scattering: Comptonization effectsare expected to harden the spectrum
significantly (Czerny & Elvis, 1987; Ross et al., 1992; Kawaguchi, 2003). Then, if only the
peak of the spectrum is observed, the absolute scale and therefore the spectral hardening factorε
remains unknown and the observed temperatureTobs = εTcol overestimates the color temperature
Tcol. Moreover, bulk motion Compton scattering is known to alterphoton energies due to the
angular redistribution of the scattered photons (Psaltis &Lamb, 1997). Socrates et al. (2004)
showed that turbulent Comptonization produces a significant contribution to the far-UV and X-
ray emission of black hole accretion disks.

Another possible weak point in our investigation is the application of the flux limited diffusion
approximation instead of solving the full momentum equations: in this approximation, several
terms in the equation of radiative transfer (4.2), like1/c2 (DF/Dt) with F being the absolute
value of the flux, are dropped. These terms are of the order ofv/c and may contribute to the

72



4.5 Conclusions

relativistic effects we find in our spectral calculations. By calculating the emerging spectra
under the classical diffusion limit (i. e. complete isotropy, λ = 1/3), we find only little influence
of the FLD approximation at all. Thus, the inconsistencies invoked by applying the flux limited
diffusion approximation do not affect our results in a significant way.

4.5 Conclusions

Our radiative transfer calculations, based on the 2D RHD simulation of highly accreting super-
critical disks including the photon trapping mechanism, show that the interpretation of observed
disk spectra is not a straightforward task. Especially, we find moderate beaming effects when
the system is viewed from nearly face-on, i. e., the average photon energy is larger by a factor of
∼ 1.7 in the face-on case than in the edge-on case due mainly to Doppler boosting. Likewise, the
photon number density is larger by a factor of∼ 3.7 because of anisotropic matter distribution
around the central black hole. Interpreting observations thus has to be done in a more sophis-
ticated way than one may expect from basic disk models: it requires a careful treatment of the
radiative transfer with consideration of the disk’s surroundings.

We assume that both the gas and the radiation field separatelystay in local thermal equilibrium.
Although the weak coupling of matter and radiation (κabs ≪ κsca) supports this assumption,
it remains questionable and also underestimates the temperature of the radiation field. It is
important to note that previous investigations by Wang et al. (1999); Fukue (2000); Watarai et
al. (2005) also rely on this approximation; nevertheless, their results differ in a significant way.
Solving the crux of assuming LTE for the gas and for the matterdistribution at the present stage is
not possible, because it requires frequency-dependent RHDsimulations. As a general warning,
we remark that the gas temperatures of the simulation data are high, sometimes exceeding109 K
in the dilute photosphere of the disk. Such high temperatures are usually not expected and also
not treated consistently in the RHD simulations, since theyimply that nuclear reactions should
be considered in the energy equation.

In further steps, Compton scattering has to be included as well as frequency-dependent ab-
sorption for both continuum (bound-free absorption may become relevant in the low-energetic
tail of the SED) and line processes: from the observational side, emission lines, especially the
K-shell transitions of iron, are a prominent feature in accretion disk system and comprise many
details about the observed object (see Reynolds et al. (1999); Reynolds (2006) and the intro-
ductory remarks in Chapt. 1). Beneath the effects on the high-energetic part of the spectrum
mentioned before, Compton scattering will provide an efficient cooling mechanism for the hot
gas.

As pointed out by Watarai et al. (2005), also general relativistic effects should be considered
in the vicinity of the black hole, which will primarily affect the spectra of face-on seen systems.
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5 Spectral energy distribution of
super-Eddington flows II – the
iron K line complex

5.1 Context

In the previous chapter, we calculated the observational appearance of supercritical accretion
flows onto stellar mass black holes (see also the published version: Heinzeller et al. (2006)).
Accounting for continuum processes solely, we solved the relativistic radiative transfer equation
along the line of sight and analyzed the continuum spectral features, e. g., bolometric luminosi-
ties as a function of the orientation of the observer relative to the accretion disk system. The
underlying simulation data was provided by Ohsuga et al. (2005).

In the case of a stellar mass black hole (ten solar masses) accreting at a thousand times the clas-
sical Eddington rate, we found that the observational appearance of the system depends strongly
on the inclination angle. Also, relativistic effects become important for small inclinations. This
is due to the lower densities in the photosphere of the disk, which allow a deeper look into the
central black hole region (see Fig. 5.1).
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=
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Figure 5.1. Sketch of observer’s orientation
towards the disk.

Since 2005, Ohsuga extended his simulations towards varying accretion rates and central black
hole masses (Ohsuga (2007) and Ohsuga, priv. comm.). Also onthe observational side, there
was significant progress in the quantity and quality of available data. In particular, current X-ray
satellites likeChandra, XMM-NewtonandSuzakurevealed the presence of strong iron emission
and absorption lines in many black hole accretion disks, from ULXs to AGN (see Fig. 5.2 for
some illustrative examples). Because their properties vary significantly, they may illuminate the
accretion process in the vicinity of the black hole.

75



5 SED of super-Eddington flows II – the iron K line complex

M82 X-1 (XMM-Newton)PG1211+143 (XMM-Newton)

Mrk3 (Suzaku)

Figure 5.2. Numerous observations of iron lines can be found in the literature. Among them, prominent
and illustrative examples are the quasar PG1211+143 (Pounds et al., 2003), the Seyfert 2 galaxy Mrk3
(Awaki et al., 2007) and the ultraluminous X-ray source M82 X-1 (Strickland & Heckman, 2008). Their
masses areMc = {4 · 107M⊙, 4.5 · 108M⊙, 20 − 700M⊙}, respectively. TheSuzakuobservation of
Mrk3 shows beautifully the advantage of observing the iron Klines, which lie in a relatively unconfused
spectral region. The remarkable Fe K emission line of Mrk3 has also been observed withXMM-Newton,
which we showed earlier in Fig. 1.2.

Based on our previous work on the observational appearance of super-Eddington accretion
flows, we extend the radiative transfer calculations towards the calculation of the iron K line
emission and absorption. To achieve this, the ionization equilibrium has to be calculated as well,
providing the number density of free electrons and the electronic pressure. As a side-effect, this
allows us to include bound-free absorption of the most abundant elements (H, He) in the radiative
transfer calculation.

Since the radiation energy density in the simulation data isconsiderably high, Compton scat-
tering effects of high-energy photons may become importantas well. We start with an extension
of the simple Thomson scattering used previously in Sect. 5.2, before we describe our model of
the bound-free absorption processes in Sect. 5.3. We proceed to the actual goal of the present
investigation, the observational appearance of the iron K lines, in Sect. 5.4.
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5.2 Compton scattering

While this project evolved, we discovered that the size of the computational domain of the
RHD simulations is too small for a proper interpretation of the iron line features. We therefore
model an extended atmosphere around the computational domain in Sect. 5.5 and discuss the
results in Sect. 5.6. There, we also try to fit our data to actual observations of the ultraluminous
X-ray source M82 X-1. Final conclusions are given in Sect. 5.7.

5.2 Compton scattering

A comprehensive and realistic description of Compton scattering effects is beyond the scope
of this work. We apply the Klein-Nishina correction for unpolarized radiation to the integrated
Thomson scattering coefficientκsca

Th = σTh · (ρ/mH):

κsca
ν,KN = κsca

Th ·
[
1 + x

x3

{
2x(1 + x)

1 + 2x
− ln(1 + 2x)

}

+
1

2x
ln(1 + 2x) − 1 + 3x

(1 + 2x)2

]

. (5.1)

wherex = (hν)/(mec
2) (Rybicki & Lightman, 1979). The principal effect of the Klein-Nishina

correction is to tend towards the classical Thomson coefficient forx ≪ 1, while it reduces its
value forx≫ 1 (see Fig. 5.3 for an illustration).
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Figure 5.3. κsca
ν,KN/κsca

Th as a function
of the incident photon energy.

5.3 Frequency-dependent bound-free absorption

To incorporate bound-free absorption in our calculations,a simplified approach is used and then
combined with the analytic approximation formula of the free-free absorption coefficient, taken
from Rybicki & Lightman (1979),

κff
ν = 3.7 · 108T−1/2

( ρ

mp

)2

ν−3
(
1 − e−hν/kT

)
cm−1 . (5.2)

In the following, we present the general definition for the bound-free absorption in Sect. 5.3.1.
The theory presented below is applied to the contributions of hydrogen and helium, as these two
elements represent roughly 98% of the material when assuming solar abundances.
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5 SED of super-Eddington flows II – the iron K line complex

5.3.1 Bound-free absorption coefficients

In general, the bound-free absorption processes for each element A can be expressed as

κbf, A
ν =

ZA
∑

i=0

∞∑

l=1

nA
i,l · σbf, A

i,l , (5.3)

wherel enumerates the excitation state of the ionized statei (i = 0: A I, i = 1: A II, . . . ; ZA:
atomic number) of the atom (l = 0: ground state,l > 0: excited states),nA

i,l the corresponding
absolute number density andσbf, A

i,l its bound-free absorption cross section. Their units are[nA
i,l] =

cm−3, [σbf, A
i,l ] = cm2 and therefore[κbf, A

ν ] = cm−1.
In the following,χA

i,ion denotes the ionization energy of statei, whileχA
i,l stands for the energy

of the excited state(i,l) with respect to the ground state(i,0). To evaluate the contribution of
bound-free absorption of each element, its cross sectionsσbf, A

i,l and number densitiesnA
i,l need to

be computed.

5.3.2 Number densities

To calculate the number density for an element with ionization degreei and excitation levell,
several quantities have to be computed: first, the partitionfunction has to be evaluated. Second,
the ionization degree of the element is computed by means of the Saha equation. Together with
the given total number density of the element, the population of each level is determined.

Partition functions

An approximate calculation of the partition functionW A
i for one ionization degreei of element

A is straightforward for hydrogen and hydrogenic atoms. Hydrogenic atoms are elements other
than hydrogen in an ionized state with only one electron left. In this case, the partition function
is given by

W A
Z−1 =

∞∑

k=1

2k2 · exp

{

−(ZA)2 Ry· h
kBT

·
(
1 − k−2

)
}

. (5.4)

This is also a good approximation for more-electron systemslike He I in high excitation states,
where inner shell electrons effectively screen the nuclearcharge, so that the outermost electron
“sees” a hydrogen-like atom with an effective nuclear charge z = i+ 1.

Problems arise when calculating the partition function forhigh temperatures: asT → ∞, the
partition function also diverges. From a physical point of view, the element ionizes completely
(c. f. the Saha equation below) and therefore the diverging partition function becomes mean-
ingless. A common approach to ensure the computability for all temperatures reflects this fact
by treating all states above a particular (high) statekmax (with excitation energies close to the
ionization energy) as quasi-ionized. Formally,

χA
ZA−1,ion = (ZA)2 · Ry· h ·

(

1 − 1

(kmax + 1)2

)

/ (ZA)2 · 13.6 eV , (5.5)

W A
ZA−1 =

kmax∑

k=1

2k2 · exp

{

−(ZA)2 Ry· h
kBT

·
(
1 − k−2

)
}

. (5.6)
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5.3 Frequency-dependent bound-free absorption

However, this method of calculating the partition functionis only an approximation and not
applicable for more-electron systems in lower excitation states. In particular, it cannot be used
in the case of iron, where most of the excitation levels correspond to non-hydrogenic states. An-
other quite common approach is to use the ground states of theindividual ionization levels only.
Although this is a valid approach in the low ionization regime, it is invalid in our investigation.
The gas temperature reaches sufficiently high values such that even iron becomes highly ionized.

We therefore refrain from these simple approaches and perform a full calculation of the par-
tition functions, since this gives accurate results and is valid in all cases: for each element, we
take into account “all” excitation states per ionization level. The partition functionsW A

i are
calculated from

W A
i =

lmax,i∑

l=0

gA
i,l exp

{

−
χA

i,l

kBT

}

, i = 0, . . . ,ZA − 1 , W A
ZA = 1 , (5.7)

wheregA
i,l stands for the statistical weight of the excitation state and lmax,i for the number of levels

incorporated in the calculation. We use the atomic data fromthe National Institute of Standards
and Technology (NIST, 2006): for each ionization leveli, the statistical weightsgA

i,l, the energies
of the ground state and all available excitation statesχA

i,l, and also the ionization energyχA
i,ion are

taken from the atomic spectra database. We compile tables for hydrogen and helium, including
166 levels for H I, 187 levels for He I, and 239 levels for He II.

Ionization degree

To calculate the ionization degrees of element A, the Saha equation is used:

nA
i+1ne

nA
i

=
2W A

i+1

W A
i

· (2πme)
3/2

h3
(kBT )3/2 · exp

{

−
χA

i,ion

kBT

}

. (5.8)

The number density for ionization degreei represents the sum over all excitation levelsl, nA
i =

∑

l n
A
i,l. The total number density of free electrons,ne, couples the Saha equation for all elements

involved:

ne =
∑

Elements A

ZA
∑

i=1

i · nA
i . (5.9)

The partition functions of fully ionized elements areW A
ZA = 1, the spin of the free electron

is considered by the factor2 in the r. h. s. of (5.8). For known temperaturesT , the remaining
partition functionsW A

i can be evaluated. Together with the knowntotal number densities of all
elements

nA =
∑

i

nA
i =

XA

µA
· ρ

mat
, (5.10)

the coupled Saha equations can be solved numerically. Here,XA denotes the mass fraction of
element A with atomic weightµA in the gas;mat the atomic mass unit. Thus,

∑

Elements AX
A = 1.

Since hydrogen and helium provide most of the free electronsin the plasma, we simplify the
computation by assuming that the electron pressure is determined solely by these two elements.
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5 SED of super-Eddington flows II – the iron K line complex

Table 5.1. Solar abundances (mass fractions) of important elements, Unsöld & Baschek (2002, p. 203).

Z element atomic weightµ mass fractionX

1 H hydrogen 1.008 0.73
2 He helium 4.003 0.25

11 Na sodium 23.00 3.02 · 10−5

12 Mg magnesium 24.31 4.61 · 10−4

14 Si silicon 28.09 6.77 · 10−4

19 K potassium 39.10 2.54 · 10−6

20 Ca calcium 40.08 5.85 · 10−5

26 Fe iron 55.85 1.63 · 10−3

This assumption can be justified easily: taking solar abundances (see Table 5.1), and assuming
that all iron atoms are completely ionized, the number of free electrons from iron relative to those
from hydrogen and helium is

1.63 · 10−3 · 26
55.85

0.73 · 1
1.008

+ 0.25 · 2
4.003

= 8.9 · 10−4

and thus negligible. After this preparative work, the number densities can be calculated from

nA
i,l = nA

i ·
gA

i,l

W A
i

· exp

{

−
χA

i,l

kBT

}

. (5.11)

5.3.3 Cross-sections

Hydrogen and hydrogenic atoms

We first focus on hydrogenic atoms, as the results are applicable as “exact” solutions to hydrogen
and single-electron atoms and at least as an approximation to more-electron systems like He I
in high excitation states. Following Mihalas (1970), the cross section for hydrogenic atoms is
given by

σbf, A
i,k = z4 64π4mee

10

3
√

3ch6
·
gA

i,bf(k,ν)

k5ν3
= z4K ·

gA
i,bf(k,ν)

k5ν3
(5.12)

with the constant factorK = 2.81540 · 1029 cm2 s−3 (in cgs-units), effective nuclear charge
z = i+ 1 and the bound-free gaunt factorgA

i,bf which depends on the excitation level and on the
frequency of the radiation. The elementary charge is given by e = 4.8032 · 10−10 g1/2 cm3/2 s−1

(in cgs-units). For hydrogen and single-electron atoms, the main/effective quantum numberk
can be identified with the number of the excitation state plusone,k = l + 1. For more-electron
systems in the hydrogenic approximation, it can be calculated from (see Traving et al. (1966))

k =

⌊

(1 + i)

√

Ry· h
χA

i,ion − χA
i,l

+ 1

⌋

, ⌊. . .⌋ = floor function. (5.13)
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5.3 Frequency-dependent bound-free absorption

Other cases

For more-electron systems in low excitation states, the assumption of effective shielding by the
remaining inner electrons becomes inaccurate. A full quantum mechanic calculation is very
costly and beyond the scope of this work. Therefore, approximate solutions and interpolation
formulae are taken from the literature for low excitation states.

He I Beneath hydrogen, helium is the most abundant element in space. Hence, we expect
its contribution to the bound-free absorption to be important. The ionization energy of neutral
helium isχHe I

0,ion = 24.58 eV, corresponding to temperatures of2.8 ·105 K and photon frequencies
of 5.9 · 1015 Hz, which lie both in the achievable range of our simulation.We apply interpolated
cross sections (c. f. Mihalas (1970)) for the inner two shellsk = 1 and2 (statesl = 0, . . . , 6 in the
NIST database) and adopt the hydrogenic approximation for higher excitation levelsl > l∗ = 6
(k > k∗ = 2). The interpolated values are taken from Gingerich (1964) and given in Table 5.2,
together with the statistical weightsgHe

i,l needed for the calculation of these low excitation states.

Table 5.2. Bound-free absorption for He I andl = 0, . . . , 4.

l State χHe
0,l[eV] gHe

0,l σbf, He
0,k [cm2] ν[s−1] at edge

0 11S 0 1 2.95 · 1014 · ν−2.00 5.94 · 1015

1 23S 19.72 3 2.90 · 10−7 · ν−0.775 1.18 · 1015

2 21S 20.51 1 4.47 · 1011 · ν−1.91 9.84 · 1014

3,4,5 23P 20.86 9 3.72 · 1026 · ν−2.90 8.99 · 1014

6 21P 21.11 3 2.04 · 1035 · ν−3.50 8.39 · 1014

Bound-free Gaunt factors

The gaunt factor is a slowly varying function of the order of unity. As a first approach, we set
gA

i,bf(l,ν) ≡ 1 for all elements, ionization states and excitation levels.For a more sophisticated
calculation, these quantities have to be treated more carefully: one possibility would be to inter-
polate them from tabulated values, e. g. given in Karzas & Latter (1961), or use approximation
formulae at least for the inner shells.

5.3.4 Upper limits on the contribution of excitation levels

From the number densities and cross-sections, the bound-free absorption contributionκbf, A
ν of

each element A can be computed with (5.3). In the above derivation, we used a hydrogenic
approximation for high excitation levelsl > l∗ (k > k∗). In the hydrogenic approximation,
the contribution of one excitation statenA

i,l to the bound-free absorption depends strongly onk,
wherek is the main quantum number which corresponds to the excitation levell:

nA
i,l · σbf, A

i,l ∝ k2 · k−5 = k−3 .

It is therefore sufficient to consider only statesl with k ≤ kbf, wherekbf has to be chosen
sufficiently large. From intensive parameter investigations, we found thatkbf = 15 is acceptable.
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5 SED of super-Eddington flows II – the iron K line complex

5.4 Line transitions

In the following, we discuss a simplified description of the bound-bound processes. The goal is
to provide a sufficiently fast and easy method to calculate the line emission from selected atoms,
like Fe Kα.

In general, line emission and absorption is described by spontaneous emission, induced emis-
sion and absorption. It is a common way to treat induced emission as negative absorption in
order to retain the classical structure for the emission/absorption coefficients:

jν = jcont
ν + j lines

ν ,

κν = κcont
ν + κlines

ν .

A characteristic property of heavy metals is that ionization energies vary extremely for differ-
ent ionization stages. As an example, consider iron. The ionization energy of neutral iron is
7.9 eV, while it requires9.3 keV to ionize hydrogenic iron. The environmental conditions in our
simulation data vary considerably, depending on the central mass, accretion rate, radial distance
from the black hole and inclination angle from the vertical direction. We therefore expect sig-
nificantly different ionization equilibria in the computational domain. While in a high energy
regime, line transitions by spontaneous/induced emissionand absorption are known to be dom-
inant, in a low energy regime they become outbalanced by secondary effects like fluorescence
lines and radiation-less Auger transitions.

We assume LTE to be established throughout the computational domain. Thus, the ioniza-
tion equilibrium is determined by the gas temperature and density only. For an investigation of
emission and absorption line features, we therefore do not have to bother about Auger transi-
tions. Besides line emission and absorption caused by collisions, we only have to incorporate
iron fluorescence lines in our calculation:

j lines
ν = jcollision

ν + jfluorescence
ν ,

κlines
ν = κcollision

ν + κfluorescence
ν .

The full equation of radiative transfer gets

(~l · ~∇)Iν =
( ν

ν0

)2

·
{

κabs, cont
ν0

Sν0 +
3

4
κsca, cont

ν0

c

4π

(
Eν0 + l0il0jP

ij
ν0

)
+j lines

ν0

−
(
κabs, cont

ν0
+ κsca, cont

ν0
+κlines

ν0

)
Iν0

}

. (5.14)

where the conversion rules forν0,~l0 andIν0 are given by (4.6)–(4.8). The line contribution from
collisional excitation for a transitionj → i (j > i) with line frequencyν0 is generally defined by

jcoll.
ν0

= hν0Ajinjψν0 and κcoll.
ν0

= hν0 (Bijni − Bjinj)φν0 , (5.15)

where the Einstein coefficients for spontaneous emission (Aji), induced emission (Bji) and ab-
sorption (Bij) are related under the assumption of LTE by

Aji =
2hν3

0

c2
Bji and Bij =

gj

gi
Bji . (5.16)
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5.4 Line transitions

Table 5.3. Number of excitation levels per ionization degreei of iron.

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
lmax,i = 492 577 566 276 180 93 154 41 34 64 66 76 49 71 71 79 66 70 63 62 49 60 72 49 43 25

The line profile functions are defined such that
∫

ψν0dν0 =

∫

φν0dν0 = 1. To calculate the

bound-bound contributions, these line profile functions have to be computed (Sect. 5.4.4) along
with the level populationsni, nj . The level populations require the computation of the partition
function (Sect. 5.4.2) and a subsequent application of the Saha equation (Sect. 5.4.3). Both
calculations are simplified using Debye’s theory (Sect. 5.4.1). In Sect. 5.4.5, we present the set
of lines considered in our computations and provide the necessary physical quantities. Finally,
in Sect. 5.4.6, we discuss the iron K-shell fluorescence lines.

5.4.1 Atomic population calculations and Debye’s theory

The calculation of the number densities for metals is highlysimplified by the fact that the number
of free electrons, and therefore the electron pressure, is given by hydrogen and helium. This
means that we do not have to include all 26 ionization states of iron in the coupled system of
equations determining the number of free electrons.

However, an increasing number of free electrons leads to an increasing electron pressure which
alters the ionization equilibrium ofall elements. This is taken into account in the subsequent
deduction by applying Debye’s theory (see, e. g., Traving etal. (1966)), which incorporates this
effect by a reduction of the ionization energy of the individual ionization statesnA

i , i = 0, . . . ,ZA

of element A:

∆χi = 4.98 · 104 eV · (i+ 1) · 5040

Tgas[K]
· Pe[erg/cm3] , Pe = nekBTgas. (5.17)

5.4.2 Partition functions for metals

For calculating the partition functions, we use the same method as for hydrogen and helium
by taking into account all available excitation states per ionization level. Contrary to before,
the complexity of calculating “all” internal states of ironis still a serious task. For the present
investigation, we use a comprehensive set of data, again from NIST (2006): like in the case of
hydrogen and helium, all relevant data is taken from the atomic spectra database. The number of
levels is given in Table 5.3.

The corrected partition functionsW A
i are now calculated from

W A
i =

lmax,i∑

l=0

gA
i,l exp

{

−
χA

i,l − ∆χi

kBT

}

, i = 0, . . . ,ZA − 1 , W A
ZA = 1 . (5.18)

In all cases, the ionization energies are larger than the reduction∆χi due to the electron pressure.
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5 SED of super-Eddington flows II – the iron K line complex

5.4.3 Saha equation for metals

The original Saha equation (5.8) is modified by the reductionof the ionization energy and there-
fore becomes

nA
i+1ne

nA
i

=
2W A

i+1

W A
i

· (2πme)
3/2

h3
(kBT )3/2 · exp

{

−
χA

i,ion − ∆χi

kBT

}

. (5.19)

Since the electron density (pressure) is determined by the previously calculated ionization de-
grees of hydrogen and helium solely,ne is known and constant. Combining this set of equations
with the conservation of the total number density (5.10), itcan easily be solved for the individual
nA

i . The level populations are again computed from (5.11).

5.4.4 Line profile functions

The line profile function generally consists of three different contributions: natural line width,
pressure/collisional broadening, Doppler broadening. Since the environmental conditions in our
simulation box (temperatures, pressure, . . . ) are highly varying and since the transitions consid-
ered here (Fe Kα, Kβ) are very strong transitions with Einstein coefficientsAji up to1014 s−1,
the usually neglected natural line width also has to be takeninto account. Contrary to pres-
sure broadening, with its strong dependence on the element and its ionization state, Doppler
broadening is a universal feature. In this investigation, we assume that the profile functions for
spontaneous emission and absorption equal each other,ψν = φν .

Doppler broadening

The Doppler width of a spectral line of frequencyν0 is given by

∆ν =
ν0

c

√

2kBT

mA
i

, (5.20)

wheremA
i is the ion mass. A purely Doppler broadened line can be described by a Gaussian

profile function

D(ν) =
1√
π∆ν

exp

{

−(ν − ν0)
2

∆ν2

}

,

∫

D(ν) dν = 1 . (5.21)

Natural line width

Due to the finite life time of excited states and the Heisenberg uncertainty principle, the line is
broadened by a Lorentzian shape:

L(ν) =
1

π
· γ

(ν − ν0)2 + γ2
,

∫

L(ν) dν = 1 . (5.22)

Its only parameterγ = γrad (radiation damping coefficient) is given by the coefficient of sponta-
neous emission,γrad = Aji/2.
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5.4 Line transitions

Pressure broadening

In most cases, pressure broadening also produces a Lorentzian shape of the profile function and
is parameterized by a damping constantγpr analogous to natural line broadening. An exception
to this pattern is broadening of lines by ions due to the linear Stark effect, which results in a
Holtsmark profile with distinctive broad line wings. We neglect this particularity of the linear
Stark effect and assume that pressure broadening produces aLorentzian profile with damping
constantγpr. A discussion of this assumption is given at the end of this subsection.

Combining pressure broadening and radiation damping is then straightforward due to the ad-
ditivity of the Lorentz profile function. It is achieved by replacing the radiation damping constant
γrad by a combined damping constantγ, which is the sum of the broadening mechanisms that are
involved:

γ = γrad + γpr . (5.23)

Similar to stellar structure calculations, main contributions to the pressure damping term origi-
nate from Stark broadening by electrons (γ4, quadratic Stark effect) for all ionization degrees of
iron and by electrons and ions (γ2, linear Stark effect) for Fe XXVI. Finally, van der Waals inter-
action with neutral hydrogen and helium atoms is acting on neutral iron atoms (γvdw) (Traving et
al., 1966):

γpr =







γvdw Fe I

γ4 Fe I–XXVI

γ2 Fe XXVI

. (5.24)

Van der Waals broadening We consider pressure broadening for low-temperatures, pre-
sumably in the outer part of our simulation box, in the approximation of Unsöld (1955) and
Traving et al. (1966).

Van der Waals broadening acts on neutral iron atoms and is caused by the presence of neu-
tral hydrogen and helium atoms. In the temperature and pressure ranges whereγvdw becomes
important, we may neglect the differences in excitation andionization of H and He:

γvdw = γH
vdw + γHe

vdw = γH
vdw

(

1 + ς
εHe

εH

)

. (5.25)

The constantς is determined approximately by the polarizabilityP and atomic weightµ,

ς =

(PHe

PH

)2/5

·
(
µH

µHe

)3/10

=
1

2.4192
. (5.26)

By introducing the interaction constantC6, the van der Waals damping mechanisms can by
expressed as

log γH
vdw[108 s−1] =

2

5
logC6 + 8.6735 +

7

10
log Θ + logPH , (5.27)

wherePH is the partial pressure of neutral hydrogen atoms,

PH = XH · (Pgas− Pe) ·
nH

i=0

nH
. (5.28)
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5 SED of super-Eddington flows II – the iron K line complex

We base the calculation ofC6 on Unsöld’s hydrogenic approximation (Unsöld, 1955) and apply
a correction factor for non-alkali metals (Wehrse & Liebert, 1980). We explicitly account for the
different polarizabilities of neutral iron and hydrogen (Schweitzer et al., 1996) and get

C6 = Ccorr
6 × C0

6

= 101.8 × PFe

PH
1.01 · 10−32(ZFe + 1)2 ·

[

χH
0,ion

2

(χFe
0,ion − χFe

0,i)
2
−

χH
0,ion

2

(χFe
0,ion − χFe

0,j)
2

]

. (5.29)

Here,ZFe = 26. We recall that the level energy of the upper level of iron K line transitions
(χFe

0,j ≈ 6.4 keV) is much higher than the ionization energy of hydrogen (χH
0,ion = 13.6 eV) and

neutral iron (χFe
0,ion = 7.90 eV), while the lower level energy of iron K line transitionsχFe

0,i = 0.
Hence, this may be simplified to

C6 =
PFe

PH
6.37 · 10−31(ZFe + 1)2 ·

χH
0,ion

2

χFe
0,ion

2 . (5.30)

We adopt the polarizabilities given in Schweitzer et al. (1996),PFe/PH ≈ 12.58.

Quadratic Stark effect Line broadening by electrons is treated in terms of the quadratic
Stark effect caused by electrons in the present investigation1. An exact treatment of the pressure
widths requires a quantum mechanical approach, involving sophisticated calculations for each
line. Since this is unrealistic in astrophysical applications, previous calculations used a semi-
empirical approximation (Gonzalez et al., 1995):

γ4 =
ι

2
· n4

l + n4
u

(ZFe
i + 1)2

· ne
√
Tgas

. (5.31)

Here,nl andnu are the principal quantum numbers of the lower and upper levels (nl = 1 and
nu ∈ {2,3} for K{α,β} transitions),ZFe

i is the charge of the ion, andι is a numerical constant in
the range of1.6 ·10−6 (Michaud et al., 1976) to2.0 ·10−5 (Cox, 1965). We adopt the latter value,
ι = 2.0 · 10−5, in order to simulate sensitive iron lines.

Linear Stark effect For highly ionized Fe XXVI, the linear Stark effect dominates over the
quadratic one. Following Cox (1965), we consider it by raising the quantum numbersnl andnu

to the fifth power instead of the fourth:

γ2 =
ι

2
· n5

l + n5
u

(ZFe
i + 1)2

· ne
√
Tgas

. (5.32)

Remark.In fact, the environmental conditions in the simulation boxvary between two extreme
ranges. For low temperatures and densities, natural line widths dominate the broadening of the
lines; for high temperatures and densities, the Doppler effect is the most important mechanism
for line broadening. Van der Waals broadening is negligiblethroughout the computational do-
main.

1The Stark effect produced by the corresponding ions is lowerby a factor of≈ 6 due to its higher mass (Kusch,
1957) and therefore neglected here.
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5.4 Line transitions

In all cases, pressure broadening by the quadratic Stark effect is lower than the leading con-
tribution by 2–4 orders of magnitude. Also, the usually prominent linear Stark effect is weak for
the Kα and Kβ transitions considered here: examining the semi-empirical fitting formula (5.32),
we find that the principle quantum numbersnl andnu are small, while at the same time the ionic
charge is large for Fe XXVI,ZFe

i = 25.
To further justify our assumption of neglecting the Holtsmark shape of lines broadened by the

linear Stark effect, we note that the ionization energies ofFe XXV and Fe XXVI lie very close
together (χFe

24,ion = 8.8 keV, χFe
25,ion = 9.3 keV), while Fe XXIV is ionized at significantly lower

temperatures (χFe
24,ion = 2.0 keV). Thus, we expect that either Fe XXV is dominant with a small

contribution of Fe XXVI, or that completely ionized iron dominates over the hydrogenic iron.
Hence, the contribution of single-electron iron will be small in any case.

Therefore, assuming a Lorentz-shape profile is acceptable in our calculations. Additionally,
since pressure broadening by the Stark and the van der Waals effect plays only a minor role, we
can safely neglect the small line shifts which are caused by these two mechanisms.

Combined broadening mechanisms

In general, a combination of Doppler broadening and collisional/radiative broadening influences
the line shape, resulting in a Voigt profile

V (ν) =

∫ ∞

−∞

e−
(ν′−ν0)2

∆ν2

√
π∆ν

· γ

π ((ν − ν ′ − ν0)2 + γ2)
dν ′ ,

∫

L(ν) dν = 1 . (5.33)

In principle, the values ofV (ν) could be taken from tables. However, there are many methods
to evaluate the Voigt profile function more precisely. We henceforth focus on a subtle approach
utilizing the complex error function (Klim, 1981).

Although the convolution (5.33) cannot be solved analytically, it can be expressed as the real
part of the complex error functionw(z) for which numerical approximations are available at
high precision:

V (ν) =
Re[w(z)]

∆ν
√
π

, z =
ν + iγ

∆ν
. (5.34)

We adopt a standard code (Poppe & Wijers, 1990) to evaluatew(z) quickly and precisely.

5.4.5 Standard line transition data

The prominent and strong iron K lines lie in a deserted part ofthe spectrum, meaning that only
few or weak transitions of other elements influence this spectral range. The line energy and
frequency ranges of the iron Kα and Kβ lines are summarized in Table 5.4.

Assembling all necessary data of the iron line transitions is not a straightforward task: re-
sults from numerical computations and experimental measurements are spread widely over the
literature during the last decades.

Fe Kα Line data for neutral iron (Fe I) is taken from the NIST database (NIST, 2006). A
comprehensive set of transition data for Fe II–XXV excluding Fe X is taken from the XSTAR
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5 SED of super-Eddington flows II – the iron K line complex

Table 5.4. Iron line transitions overview.

Spectral line λ0 [Å] ν0 [s−1] Eij [eV] Reference

Fe Kα

Fe I Kα 1.94 1.55 · 1018 6.40 · 103 NIST (2006)
Fe XXVI Kα 1.78 1.69 · 1018 6.97 · 103 Shirai et al. (2000)
Fe Kβ

Fe I Kβ 1.76 1.70 · 1018 7.04 · 103 NIST (2006)
Fe XXVI Kβ 1.50 1.99 · 1018 8.25 · 103 QM calculation

database (XSTAR, 2007), missing data for Fe X is added from Mendoza et al. (2004). Finally,
Fe XXVI data is provided by the compilation of Shirai et al. (2000). In total, 1336 lines are taken
into account.

Fe Kβ Significantly fewer data is available for the iron Kβ line. For the neutral state (Fe I), data
is taken again from NIST (2006). XSTAR (2007) provides a basic set of data for Fe II–XVII (176
lines). Presently, no data for Fe XVIII–Fe XXIV can be found in the literature. The reason for
this lack of data is that these iron ions consist of just K- andL-shell electrons in the ground state.
Realistic electron densities and photon intensities are too low to produce significant population
in the M-shellat the same timeas producing a K-shell hole (Badnell, priv. comm.), minimizing
the importance of (and also the interest of atomic physic research in) the Kβ lines of these ions.

For almost completely ionized iron, Fe XXV data can be found in Fuhr et al. (1988) and
Fe XXVI data can be calculated from quantum mechanic approximation of hydrogenic atoms.
Altogether, 181 lines for Kβ enter our radiative transfer calculations.

5.4.6 Fluorescence lines

The fluorescence absorption coefficient is determined by thephotoionization cross-section of the
iron K-shell. We use resonance-averaged photoionization cross-sections (Bautista et al., 1998),
having several advantages compared to the usage of standardcross-sections.

Firstly, realistic cross-sections involve heavy quantum-mechanical calculations and often show
extremely narrow but strong resonance peaks, therefore requiring very high frequency resolution.
We avoid this demand by using resonance-averaged cross-sections. Additionally, the smearing-
out by the averaging process roughly accounts for broadening processes like Doppler broaden-
ing.

Secondly, the authors provide an elegant routine to calculate the resonance-averaged K-shell
photoionization cross-sections for elements1 ≤ ZA ≤ 26 and all their ionization degrees:
given an ionization statei with nuclear chargeZFe andNe = ZFe − i bound electrons, and
an energy of the ejected electronEe = hν − χFe

i,ion in eV (not in Ry as it is stated mistakenly
in Bautista et al. (1998)), this routine calculates the K-shell photoionization cross-sectionσFe K-fl.

i,ν

in Mb = 10−18cm2. Multiplying this with the number density of the corresponding ion nFe
i

results in the K-shell fluorescence absorption coefficient

κFe K-fl.
i,ν = σFe K-fl.

i,ν · nFe
i ,

[
κFe K-fl.

i,ν

]
= cm−1.
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Figure 5.4. Photoionization cross-sections as function of photon energy. (a) Fe I-XIII (b) Fe XIV-XXVI.

Figure 5.4 shows the K-shell photoionization-cross section for all ionization states of iron as a
function of the incident photon energy. Having the fluorescence absorption coefficients at hand,
we proceed with the calculation of the total number of photoionization events per volume and
time (for comparison, see van Teeseling et al. (1995)):

ηFe K-fl.
i =

∫ ∞

νK,i

κFe K-fl.
i,ν Sν(Trad)

hν
dν , [ηFe K-fl.

i ] = Hz cm−3 . (5.35)

The mean intensity of the radiation field is given by the Planck-functionBν(Tgas) in our cal-
culation, assuming isotropy and LTE for the gas and the radiation separately (see Sect. 4.2.3).
Finally, the K-shell fluorescence line emission contribution for one specific Kα or Kβ line is
calculated from

jFe K-fl.
ν =

25∑

i=0

Yiη
Fe K-fl.
i hν ψνi

, (5.36)

with Yi being the fluorescence yield andνi the corresponding line frequency. We take the fluo-
rescence line data (Yi, νi) from Kaastra & Mewe (1993). The line profile function is calculated
as outlined in the previous sections. We note that natural line widths (i. e., radiative transition
rates) could not be found or unambiguously identified for thefluorescence lines. However, since
pressure broadening is generally small compared to the dominant broadening mechanisms (see
discussion in Sect. 5.4.4), we approximate the natural linewidthsγrad by typical values for strong
iron K lines. The data used for the K-shell fluorescence calculation is summarized in Table A.3
in the appendix (page 137). We note that the fluorescence yields for highly ionized iron are ex-
tremely small, especially for Kβ transitions. This is due to strong competing effects that inhibit
iron K line emission, e. g., autoionization channels (Bautista, priv. comm.).

5.4.7 Supplement to the numerical calculation

The principal method of calculation remains the same as in the previous investigation of the con-
tinuum features. However, the addition of line emission andabsorption makes the calculation
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1.0

0.5

0.0
n0

}

g DnD}
Voigt profile

Figure 5.5. Illustration of line profile calculation
for the case that Doppler broadening (Doppler
width ∆νD) dominates over pressure broaden-
ing (damping constantγ). Outside the line core
(|ν − ν0| > ∆νD), the standard resolution is used.
Inside the Doppler-, but outside the Lorentz-core
(∆νD ≥ |ν − ν0| > γ), the resolution is in-
creased by a factor of10, and inside both cores
(|ν − ν0| ≤ γ) by a factor of100, respectively.
The caseγ > ∆νD is analog.

of the opacity coefficient for absorption very costly. Before, the opacity contributionsκsca and
κabs and the emission coefficients were calculatedafter the volume interpolation from the inter-
polated densitiesρ and temperaturesTgas, Trad. Unfortunately, this method is not practicable at
all. We therefore split the calculation into two distinct steps.

1. For each grid point of the simulation data, we precompile the scattering/absorption coeffi-
cients and the emission coefficients and store the resultingdata in binary data files. This
process is parallelized in the simplest way by dividing the number of grid points by the
number of available nodes. In fact, also this step is composed of two processes in order to
cope with the key problem of opacity calculations: the frequency resolution. The problem
consists of the fact that even for the high temperatures and velocities in the inner region
of our simulation data, and even more for the lower values in the outer regions, the line
profiles of the individual lines are very narrow. This, however, is only true for the colli-
sional (de-)excitation and not for the fluorescence lines, since in the latter case resonance
averaged line profiles are used (c. f., Sect. 5.4.6).

A discretization of the frequency with a reasonable resolution ofNν ≤ 1000 in the iron K
line rangeν = [4 · 1017; 4 · 1018] Hz (for comparison, the total resolution in our previous
investigation wasNν = 200 for ν = [1014; 1022] Hz) often leads to

∫ ∞

0

φν dν →
Nν∑

i=1

φνi
∆νi = 0 ,

since the separation of the discrete frequencies is larger than the line widths. To circumvent
this, we first calculate the line emission and absorption coefficients on a high resolution
frequency array withNν = 12000 points in the iron K line range. Even in this case, a
further refinement is necessary, which is demonstrated in Fig. 5.5. The high resolution
data is then written to the disk as binary data, requiring about 12 GB of disk space.

Next, we produce lower resolution data by downsampling the high resolution data toNν =
600 in the line range. Again, the data is stored on the hard disk inbinary format, which
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Figure 5.6. Average ionization degree in the simulation data forMc = 10M⊙ andṀext = 1000ṀE; left:
full scale from Fe I–Fe XXVII, right: magnification from Fe XXIII–Fe XXVII. For details, see text.

takes about 600 MB. The advantages of this two-step approachare that different lower
resolutions can be calculated very quickly once the high resolution data is available, and
that in general the opacity calculation needs to be done onlyonce per simulation data set.

2. The real radiative transfer calculation starts with checking if the opacity data is available
for the required resolution. The frequency resolution is typically Nν = 700, where100
grid points are taken to be outside the line frequency range,and600 grid points inside the
line frequency range. The complete low resolution opacity data is then read by each node
and interpolated like all other physical quantities by volume interpolation on the grid.

One may argue that this method of calculating the opacities is less accurate than a direct cal-
culation from the interpolated densities and temperatures. However, we note that the intrinsic
accuracy of the data – and therefore of the opacities – is not better than the grid resolution from
the RHD simulations.

5.5 Atmosphere

Before we discuss the results of the numerical computation,we anticipate that we will find
unusually strong emission lines and no absorption featuresfor all the different sets of simulation
data and inclination angles. This is not wrong necessarily,but we would expect to find signatures
of absorption in some cases and generally weaker lines in most cases. This is also supported by
the observational data presently available.

One possible explanation for finding no absorption and very strong emission lines is that the
size of the computational domain is too small. The temperatures, in particular the gas tempera-
ture, are still at such a high level that iron is almost fully ionized. For illustration, see Fig. 4.1
and Fig. 5.6 for the simulation data withMc = 10M⊙ andṀ = 103ṀE. The latter figure de-
scribes the ionization degree of the material by color coding: a value of0 corresponds to neutral
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Figure 5.7. Simple sketch of the computational box and its surrounding atmosphere.

iron, 1/26 to Fe II, . . . , and1 to fully ionized Fe XXVII. The resulting color is then calculated
from the average ionization degree at the corresponding grid point. We can see from the figure
that the dilute outflow region is completely ionized, while Fe XXIII–Fe XXIV are dominating at
lower altitudes and larger radii, reaching out to almost500rS. There, the ionization degree drops
to lower values of about0.5, corresponding to Fe XIII.

However, it is unnatural to assume that such a system is truncated at an outer boundaryreff

(see Fig. 5.7) where temperatures and densities are still very high. In reality, there must be an
extended outer region (atmosphere), where densities and temperatures decrease towards outer-
space values. Certainly, the emergent spectrum will be altered by such an additional structure.

In the following, we describe our simple model for the surrounding atmosphere. We denote
quantities at the outer radius (surface) of the computational box with the subscript “eff” and
quantities at the outer boundary of the atmosphere (outer space) with the subscript “out”. If not
explicitly stated otherwise, the radiusr is assumed to be in the range of[reff; rout]. Our radiative
transfer calculations require the following data for the atmosphere: mass densityρ, radiation
temperatureTrad (or radiation energy densityE), gas temperatureTgas (or gas energy densitye),
velocity fieldv = (vr, vΘ, vΦ).

Please note that in the following approach the zenithal and azimuthal velocities already include
the scaling factors due to the spherical coordinate system.Thus, ifvΘ,real andvΦ,real are given in
radians, we usevΘ = rvΘ,real andvΦ = r sin Θ vΦ,real in units of centimeters instead.

5.5.1 Basic assumption

In order to derive a simple model for an extended atmosphere around the computational box, we
consider the radial profile of the mass densityρ in the outer part of the computational domain.
We therefore investigate one set of simulation data with a larger computational box, wherereff ≈
2700rS instead ofreff = 500rS. The grid resolution is too low to use this data for our radiative
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transfer calculations, but it allows us to estimate the radial profile of the physical quantities for
r > 500rS.

In Fig. 5.8a, we plot the mass density as a function of radius for three distinct inclination
anglesΘ betweenπ/8 (face-on case) and3π/8 (edge-on case). As one can see from the figure,
there exists a clear trend towards a quadratic decrease of the density with radius for larger radii
r/rS ' 500. Therefore, we get a first relation for the atmosphere:

ρ(r) =
(reff

r

)2

ρeff . (5.37)

5.5.2 Atmosphere model

The disk-like structure in the computational domains settles to a quasi-static state after a certain
time. We assume the atmosphere to be in such a quasi-static state as well. Consider a surface
elementAeff at the outer boundary of the computational box. The outflow (or inflow) mass rate
in radial direction through that surface at any time is givenby

∆M

∆t
= ρeffvrAeff .

Due to azimuthal symmetry and the fact that the radial motiondominates over the zenithal mo-
tion for all inclination angles except for the very edge-on case (c. f., Fig. 4.1, upper right), we
can assume that this outflow rate is the same through all surface elementsA = A(r) along the
radial vector:

∆M

∆t
= ρeffvrAeff = ρ(r)vr(r)A(r) . (5.38)

SinceA(r) ∝ r2, we can solve (5.38) for the radial velocityvr using (5.37):

vr = vr,eff = const. (5.39)

This constant behavior can also be found in the radial profileof the velocities, especially for
small inclination angles (see Fig. 5.8b). The corresponding values for the zenithal velocityvΘ

(Fig. 5.8c) are slightly decreasing and can be fitted adequately by the following expression:

vΘ =
(reff

r

)1/2

vΘ,eff . (5.40)

In a highly diluted atmosphere, we expect that the viscous stresses vanish in the outskirts of the
system. Thus, the angular momentum is conserved and the azimuthal velocity should decrease
linearly with radius:

vΦ =
reff

r
vΦ,eff =⇒ l = l(r) = leff = const. (5.41)

We find such a trend in the corresponding radial profile (see Fig. 5.8d), although the curve shows
a slightly flatter decrease.2

2We also performed calculations where we assumed a Keplerianrotation (vΦ ∝ r−1/2), leading to the same results.
Given that the transversal Doppler effect is negligible in our calculations, the azimuthal velocity plays only a
minor role.
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Additionally to the vanishing of the viscous stresses, the interaction between matter and the
radiation field becomes negligible, since the average absorption opacities drop drastically. This
is true for both the free-free opacityκff (Rybicki & Lightman, 1979) and the bound-free opacity
κbf (Hayashi et al., 1962) scale withρ2 and thus withr−4. This greatly simplifies the treatment
of the gas energy density and the gas temperature: the original energy equation for matter from
inside the computational box (equation (7) in Ohsuga et al. (2005)) reduces in our case to

∇ · (ev) = −p∇ · v . (5.42)

Again, we can take advantage of considering the outflow domain to reduce (5.42) further to

1

r2

∂

∂r
r2evr = −p 1

r2

∂

∂r
r2vr . (5.43)

The definitions of the energy density and the pressure are

e =
kB

(γ − 1)µmH
ρTgas, (5.44)

p = (γ − 1)e , (5.45)

whereγ = 5/3 is the polytropic index for a non-relativistic gas andµ = 1/2 is the mean molec-
ular weight. Using these definitions and our previous scaling law for the radial velocity (5.39),
we get

∂

∂r
r2e = −p ∂

∂r
r2

kB

(γ − 1)µmH

∂

∂r
r2ρTgas = −2r

kB

µmH
ρTgas

∂

∂r
r2ρTgas = −2r(γ − 1)ρTgas

∂

∂r
r
(reff

r

)2

ρeffTgas = −2r(γ − 1)
(reff

r

)

ρeffTgas

∂

∂r
Tgas = −2(γ − 1)

Tgas

r
∂Tgas

Tgas
= −2(γ − 1)

∂r

r
,

and finally

Tgas =
(reff

r

)2(γ−1)

Tgas,eff, (5.46)

from which we recover the expected conservation of entropy:

p ∝ ρTgas∝ r−2r−4/3 = r−10/3 ∝ ρ5/3 . (5.47)

A comparison of the scaling law (5.46) for the gas temperature with the radial profile in Fig. 5.8e
shows that the curve in the computational box is slightly flatter than the scaling law predicts.
This is no surprise, since viscous stresses are still at workin the computational box. For the
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outermost part around2000rS, the asymptotic behavior of the gas temperature tends towards the
scaling law (5.46).

Finally, we calculate the radiation energy density (or radiation temperature) profile in the
atmosphere. If we repeat our previous argument, the energy equation (Ohsuga et al. (2005),
equation (8)) becomes

∇ · (E0v) = 0 . (5.48)

For the radiation field in the outflow region of the atmosphere, we get:

0 =
1

r2

∂

∂r
r2E0vr

=
∂

∂r
r2E0 .

Thus,

E0 =
(reff

r

)2

E0,eff . (5.49)

With the definition of the radiation energy density

E0 = aradT
4
rad , (5.50)

we get an expression for the radiation temperature profile:

Trad =
(reff

r

)1/2

Trad,eff . (5.51)

This result fits remarkably with the radial profile in the computational box (Fig. 5.8f). To sum-
marize, the radial profile of the physical quantities in the atmosphere is given as follows:

ρ ∝ r−2, vr = const, vΘ ∝ r−1/2, vΦ ∝ r−1, Tgas∝ r−4/3, Trad ∝ r−1/2 .

The functional forms (5.37), (5.39), (5.40), (5.41), (5.46), and (5.51) guarantee a steady transition
from the computational box to the atmosphere atr = reff. The outer boundaryrout has to be
defined manually by imposing a lower limit on either the mass density or the gas temperature,
for example. We decide to set a lower limit on the gas temperature, since we are interested in
iron absorption line features. By defining

Tgas,out= 104K / 1 eV , (5.52)

it is obvious that in the outer region of the atmosphere, ironis completely neutral (the lowest
ionization energy for iron isχFe I ≈ 7.9 eV). The corresponding outer radiusrout is

rout = reff ·
(
Tgas,eff

Tgas,out

)1/(2γ−2)

. (5.53)

In Fig. 5.9, we show the resulting radial profiles for the massdensity and the gas temperature for
both the computational box and the atmosphere. We see that the density at the outer boundary of
the computational box is very small, justifying the decision to cut the atmosphere atrout = 107rS.
Note that the atmosphere is huge, compared to the computational box, and that in its inner region
(500rS < r / 5000rS) the densities still exceed10−10 g/cm3. This will be relevant in Sect. 5.6.
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Figure 5.8. Radial profiles of the relevant physical quantities in the atmosphere and their corresponding
fits. The colors correspond to different inclination angles. The fit is plotted in black.
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5.5.3 Modification of the radiative transfer equation

Our model for the atmosphere is highly simplified. Therefore, we do not attempt to produce
realistic continuum spectra by processing the emergent continuum radiation from the surface of
the computational box through the atmosphere.

Also, the emitted intensity from continuum processes is derived by assuming blackbody emis-
sion for the radiation field and the gas. While this assumption is generally acceptable in the
optical thick computational box, it is clearly not viable inan optical thin atmosphere. More-
over, in such an optical thin environment, the interaction between the radiation field and the gas
weakens by definition and therefore radiation and matter decouple.

Hence, it is sufficient to investigate the effects of line emission and absorption on the emanat-
ing spectrum from the computational box and neglect all contributions from the continuum on
the equation of radiative transfer (5.14). In the atmosphere, it therefore reduces to

(~l · ~∇)Iν =
( ν

ν0

)2

·
{

j lines
ν0

− κlines
ν0

Iν0

}

. (5.54)

5.6 Results

5.6.1 Data sets

We calculate spectral energy distributions for five different sets of data. In the case of a stellar
mass black hole withMc = 10M⊙, we investigate the influence of the accretion rate by con-
sidering the three caseṡM = {300,1000,3000}ṀE. Additionally, we analyze the effect of the
central black hole mass for the IMBH case,Mc = 104M⊙, and the SMBH case,Mc = 108M⊙.

As a general warning, we want to outline that the RHD simulations by Ohsuga et al. (2005) and
Ohsuga (2007) were designed for the case of a stellar mass black hole, focussing on the influence
of super-Eddington accretion through a disk-like structure. Therefore, the resulting simulation
data for the IMBH and the SMBH cases have to be treated very carefully. Their temperatures and
densities lie in ranges for which the RHD code has not been designed and for which additional
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5 SED of super-Eddington flows II – the iron K line complex

physical processes such as cooling terms are important. We regard the results for the higher mass
scenarios as guidelines for how the general picture changesand not as resilient statements.

In our previous investigation, we intensively discussed the ULX case whereMc = 10M⊙,
Ṁ = 103ṀE, thereby concentrating on the overall continuum features.Keeping in mind the
importance of the inclination angle on the continuum emission, we concentrate on the iron K
line features in the following. As before, the input simulation data is based on a spherical grid
with azimuthal symmetry and a resolution of96 radial and zenithal grid points in the range ofr =
[3; 500]rS andΘ = [0; π/2]. The data is taken from the most recent RHD simulations (Ohsuga
(2007) and Ohsuga, priv. comm.), but the basic properties and the physics remain unchanged
from the previous version (Ohsuga et al., 2005). The simulation data is time averaged, meaning
that once the simulation reaches a quasi-steady state, the data is smoothed over a few steps to
reduce the numerical fluctuations. For a detailed discussion of the recent RHD simulations, we
refer the reader to Ohsuga (2007). Nevertheless, we want to note that a quasi-steady state of the
simulation data could only be obtained for accretion rates in the above given range. For lower
values ofṀ , limit cycle oscillations set in, preventing the formationof a quasi-steady disk state.

For a better understanding of the resulting spectra, we compare the physical key quantities
ρ, Trad, Tgas, vr, for the different data sets. We infer empirical scaling laws for varying central
masses and accretion rates separately. These scaling laws in general do not reflect a physical
mechanism, but give a rough idea on how densities and temperatures evolve in theMc-Ṁ pa-
rameter space. The comparison is done by relating the valuesat every grid point to the reference
data set withMc = 10M⊙ andṀ = 103ṀE and by taking the arithmetic mean afterwards. The
results shown in Fig. 5.10 let us derive the following relations:

ρ(Ṁ) ∝ Ṁ , ρ(Mc) ∝ M−1
c ,

Trad(Ṁ) ∝ Ṁ1/5 , Trad(Mc) ∝ M−1/4
c ,

Tgas(Ṁ) ∝ Ṁ−1/10 , Tgas(Mc) = const,
vr(Ṁ) ∝ Ṁ−2/3 , vr(Mc) ∝ M2/30

c .

(5.55)

The scaling law for the mass density fits nicely with our expectations (the higher the accretion
rate, the more material is in the disk and its surroundings) and the standard accretion disk solu-
tion, whereρ ∝ M−1

c . As in the previous investigation of convective accretion disks (Chapt. 3),
the radiation temperature increases with the accretion rate (the more material that is accreted,
the higher the amount of gravitational energy which is released). The radiation temperature de-
creases with the central mass due to the scaling of the Schwarzschild radiusrS with Mc (see also
Sect. 3.6).

The reaction of the gas temperature onṀ andMc depends on the scaling of the gas energy
densitye and the mass densityρ. If, in the simplest case, the gas energy density scaled likethe
radiation energy density, the gas temperature would scale with Ṁ−1/5 and should be indepen-
dent of the central mass. The actual scaling laws show a slightly flatter decrease withṀ and
a roughly constant behavior withMc. In reality, however, one would expect that the gas tem-
perature decreases with the central mass as well. As mentioned above, the original RHD code
was not designed for the case of higher central masses, meaning that important physical mecha-
nisms are not included. With the strong decrease ofρ ∝ M−1

c , the coupling between matter and
radiation gets very weak and the gas cannot be cooled any more.

Finally, we discuss the dependency of the radial velocity onṀ andMc. Given that the material
in the disk and its surroundings is denser for higher accretion rates, the outflow is obstructed.
The same mechanism acts vice versa in the case of higher central masses.
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Figure 5.10. Empirical scaling laws for varying accretion rates and central masses. The averaged values
are derived by relating the physical values at each grid point and taking the average afterwards. These
scaling laws are purely empirical and do not necessarily reflect any physical mechanism.
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5 SED of super-Eddington flows II – the iron K line complex

5.6.2 Spectra

We present the spectra of the five different sets of simulation data in Figs. 5.11–5.16. Addition-
ally, in Table 5.5(a), we summarize the iron K line features at the boundary of the computational
box (i. e., before processing the spectrum through the atmosphere) for the individual data sets:
the peak intensities of the individual contributors to the Kα and Kβ emission lines relative to the
continuum are given, as well as their ratios to each other. Wealso list the equivalent widths of
the integrated Kα and Kβ lines. Key results are highlighted in red. In Table 5.5(b), we detail the
equivalent widths of the resulting absorption lines outside the atmosphere. We do not list their
individual peaks, nor do we investigate the emission lines here. We believe – and also find from
our results – that our simplified atmosphere does not allow usto draw resilient conclusions on
the emission line features.

Table 5.5(c) gives the integrated quantities bolometric luminosityLtot, photon number density
nγ,tot and average photon energy〈hν〉 for the five data sets. The photon number density is
calculated as in (4.25). Those values are taken from the boundary of the computational box
without considering the atmosphere. Key results are highlighted in blue. Before we investigate
the individual spectra, it is worth having a look at those overall quantities: from the stellar mass
black hole cases, we can nicely examine the dependencies of the total luminosity.

• For a given inclination angle, the luminosity increases with the accretion rate. The increase
in luminosity is roughly proportional tolog Ṁ , as predicted in Watarai et al. (2000); Fukue
(2004) for highly super-Eddington disks.

• For a given accretion rate, the luminosity is higher for lower inclination angles, confirming
our previous results (Sect. 4.3).

The photon number density and the average photon energy follow the same trend as the lumi-
nosity. These nice agreements disappear when looking at thehigher black hole mass data: em-
pirically, one would assume that the luminosity of a super-Eddington accretion disk scales with
the central black hole mass if the Eddington ratio is unchanged, sinceL ∝ LE ∝ Mc (Fukue,
2004). While this assumption holds for the IMBH case, it breaks down for the SMBH case,
whereLtotal(108M⊙) ≈ 1010Ltotal(10M⊙). Thus, the overall luminosity is higher than expected
by a factor of 1000. An equal disagreement can be found for thephoton number density and the
average photon energy. Thus, we repeat our warning that the high mass data set may be far from
a realistic scenario for a SMBH accretion disk, especially considering the constancy of the gas
temperature.

Standard setup We start our analysis with the standard case of a stellar massblack hole,
Mc = 10M⊙, and an accretion rate of103ṀE. The spectrum is shown in Fig. 5.11. The up-
per panels display the overall spectrum at the boundary of the computational box (i. e., inside
the atmosphere) for a photon energy range of[10−2; 102] keV, corresponding to frequencies of
[2 · 1015; 2 · 1019] Hz. The orientation of the observer is taken to be almost face-on (Θ = π/8) for
the panels on the left, and almost edge-on (Θ = 3π/8) for the panels on the right, respectively. In
black, we plot a reference spectrum, given by a blackbody emitter withTbb = 1.3 · 106 K, altered
by a spectral hardening factorε = 1.2 (compare to (4.26)). The peak intensity in the face-on
case is fitted quite well by the reference spectrum, while there exists a clear X-ray excess for
higher photon energies.
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Table 5.5. Ratios of the emission line strength (i. e., peak intensity)relative to the continuum for the fully resolved lines.Eα/β,I : low velocity emission
from Fe I–XXIII; Eα/β,II : high velocity emission from Fe I–XXVI. The equivalent widths (EW) for the integrated Kα and Kβ lines are given in keV,
where positive values correspond to absorption lines and negative values to emission lines, respectively.(a) at the boundary of the computational box;
(b) outside the atmosphere;(c) total/mean values at the boundary of the comp. box. Key quantities are highlighted in red and blue.

(a) at the boundary of the computational box

Data set Θ Eα,I Eα,II Eβ,I Eβ,II Eα,I/Eα,II Eβ,I/Eβ,II Eβ/Eα EW Kα EW Kβ EW Kβ/EW Kα

10M⊙, 3 · 102ṀE π/8 61 1105 12 195 0.055 0.061 0.18 −166 −35.0 0.211
3π/8 94 875 29 115 0.11 0.25 0.13 −211 −23.9 0.113

10M⊙, 1 · 103ṀE π/8 47 1825 6.0 220 0.026 0.027 0.12 −314 −38.6 0.123
3π/8 140 2875 8.4 338 0.049 0.025 0.12 −696 −74.8 0.107

10M⊙, 3 · 103ṀE π/8 95 1740 11 210 0.055 0.052 0.12 −383 −51.4 0.134
3π/8 695 4260 98 492 0.16 0.20 0.12 −1120 −117 0.104

104M⊙, 1 · 103ṀE π/8 607 14430 27 808 0.042 0.033 0.056 −2260 −134 0.059
3π/8 358 19579 22 1147 0.018 0.019 0.059 −4300 −253 0.059

108M⊙, 1 · 103ṀE π/8 10426 168100 46 3722 0.062 0.012 0.022 −28600 −549 0.019
3π/8 45520 286500 63 5310 0.159 0.010 0.019 −76600 −1250 0.016

(b) outside the atmosphere (c) total/mean quantities at the boundary of the comp. box

Data set Θ EW Kα EW Kβ EW Kβ/EW Kα

10M⊙, 3 · 102ṀE π/8 +0.034 +0.106 3.12
3π/8 +0.032 +0.099 3.09

10M⊙, 1 · 103ṀE π/8 +0.167 +0.074 0.44
3π/8 +0.080 +0.063 0.79

10M⊙, 3 · 103ṀE π/8 +0.258 +0.111 0.43
3π/8 +0.131 +0.137 1.05

104M⊙, 1 · 103ṀE π/8 +0.068 +0.127 0.54
3π/8 +0.162 0.115 0.71

108M⊙, 1 · 103ṀE π/8 +0.070 +0.099 1.18
3π/8 +0.344 +0.291 0.71

Dataset Θ Ltot [erg/s] nγ,tot [1/(cm s)] 〈hν〉 [eV/cm2]

10M⊙, 3 · 102ṀE π/8 4.36E+39 7.16E+38 0.42
3π/8 1.23E+39 3.02E+38 0.28

10M⊙, 1 · 103ṀE π/8 5.50E+39 8.52E+38 0.45
3π/8 1.47E+39 3.56E+38 0.29

10M⊙, 3 · 103ṀE π/8 7.07E+39 1.00E+39 0.49
3π/8 2.01E+39 4.56E+38 0.31

104M⊙, 1 · 103ṀE π/8 5.55E+42 4.78E+42 0.081
3π/8 1.63E+42 2.06E+42 0.055

108M⊙, 1 · 103ṀE π/8 6.26E+49 3.14E+49 0.14
3π/8 9.50E+49 5.04E+49 0.131

0
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Figure 5.11. Emerging spectrum forMc = 10M⊙ andṀ = 1 · 103ṀE and inclination anglesΘ = π/8
(face-on view, left) andΘ = 3π/8 (edge-on view, right). Upper panels: emanating photon number density
for continuum and lines at the boundary of the computationalbox; lower panels: ratio of line emission
relative to the continuum at the boundary of the computational box and after processing the lines through
the atmosphere as seen bySuzaku/NeXTandChandra. Please note that we do not consider photon count
errors (i. e., fluctuations due to the limited number of X-rayphotons observed by the instrument).

The first detail we notice is that the line shapes are very different for the two orientations. For
high inclinations, the lines are broader, their widths are reduced for lower inclinations.

Thetypical line of sight velocities of the gas in the outer region of the computational box (and
thereby in the atmosphere, sincevr,atm = const) are0.1c in the face-on case and0.01c in the
edge-on case. This corresponds to Doppler shifts and line energies in the face-on case of:

∆νmin,α = 0.64 keV νmin,α = 7.0 keV Fe I Kα

∆νmax,α = 0.70 keV νmax,α = 7.7 keV Fe XXVI Kα

∆νmin,β = 0.73 keV νmin,β = 7.8 keV Fe I Kβ

∆νmax,β = 0.83 keV νmax,β = 9.1 keV Fe XXVI Kβ

(face-on case)
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5.6 Results

Figure 5.12. Map of the emerging luminositylog Ltot[erg/s] at the boundary of the computational box,
seen by an observer at inclinationsπ/8 (left) and3π/8 (right) for the standard data withMc = 10M⊙,
Ṁ = 103ṀE. x andy denote the coordinates on the projected surface, andrS the Schwarzschild radius.

The line of sight velocities vary for different positions onthe projected surface, thereby reaching
maximum values of0.25c in the face-on case. From the temperature and velocity distribution
in Fig. 4.1 and the projected surface shown in Fig. 5.12 for both inclinations, we conclude that
these extreme velocity and high temperature regions occupyonly a very small area.

The second important detail to note is the extreme strength of the emission lines and the com-
plete lack of absorption. This becomes even more evident when looking at the lower panels of
Fig. 5.11, where we divide the emanating photon number density by the corresponding contin-
uum. In order to account for the limited instrumental resolution, we convolve the emerging lines
with the resolutions ofChandraandSuzaku. The former one, launched in 1999, provides the
Chandra High Energy Transmission Grating (HETG) spectrometer with an energy resolution of
E/∆E = 1000 atE = 1 keV, decreasing toE/∆E = 100 atE = 10 keV. For details about
Chandraand theHETG, we refer the reader to the excellent review and summary by Canizares
et al. (2005). From Canizares et al. (2005, Fig. 30), we find that the resolution curve can be
approximated as

∆EChandra = 10−3+2 log(E [keV]/1 keV) = 10−3 . . . 10−1 keV , E = [1; 10] keV .

The Japanese X-ray satelliteSuzaku, launched in 2005, was originally equipped with theXRS,
a high-resolution X-ray spectrometer. TheXRSused an array of X-ray micro-calorimeters and
foil mirrors to achieve an unprecedented combination of high resolution and large collecting
area (ISAS, 2005): its energy resolution was as low as7 eV throughout the range[0.3; 12] keV
(Kelley et al., 2007). For the line widths of our simulation data,Suzakutherefore would have
been able to provide a full resolution of the spectral features. Unfortunately, due to a leak in
the cooling system,Suzakulost the use of its primary instrument shortly after launch (August
7, 2005). Nevertheless, a similar instrument is planned to be on board the Japanese follow-up
missionNeXT(New X-ray Telescope), which will be launched in 2011.
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5 SED of super-Eddington flows II – the iron K line complex

Leaving aside the instrumental influence for the moment, we first concentrate on the appear-
ance of the lines for different inclinations and on the influence of the atmosphere. Comparing the
fully resolved lines at the boundary of the computational box in the left and in the right figure,
two peaks can be identified for both inclination angles and both the Kα and the Kβ line.

Face-on view: the lower peak (=: Eα/β,I) corresponds to slightly blueshifted (v/c ≈ 0.02)
line emission from Fe I–Fe XXIII. The higher peak (=: Eα/β,II ) is produced by stronger
blueshifted emission (v/c ≈ 0.08) from the same ionization degrees, but with a small
contribution of helium- and hydrogen-like iron. The ratiosof their relative strengths and
the corresponding equivalent widths of the Kα and Kβ lines are listed in Table 5.5. We find
thatEα,I/Eα,II ≈ Eβ,I/Eβ,II , suggesting that the temperatures in the low and high velocity
outflows are not too different.

Edge-on view: in this case, it is harder to distinguish the two peaks, especially for the Kβ

lines. However, we still find contributions from a low velocity outflow (Eα/β,I) and a broad
line from the high velocity outflow (Eα/β,II ) with about the same Doppler shifts as in the
face-on case. The strength ofEα,I is increased relatively to the other lines. This is due to
the lower temperatures in the edge-on case, where fluorescence effects set in and increase
the Kα emission from low ionization degrees.

Interestingly, the peak ratio of the Kβ line to the Kα line is the same for both inclinations, but the
equivalent widths are twice as large for the edge-on case. The absolute values of the equivalent
widths are very large and exceed any line widths that have been observed previously. Because
of this, and because we do not see any sign of absorption at theboundary of the computational
box, we conclude that the simulation box is truncated at too small radii.

The similarity in the line emission for both inclinations, especially the mean outflow velocities,
strengthen our conclusion that the emission is dominated bythe hot material in and around the
disk. Since the disk is cut artificially by the boundary of thecomputational box, it shows high
gas temperatures even close to the disk plane. Therefore, let us now inspect the influence of the
atmosphere on the lines.

In the face-on case, we find an increase in the emitted lines for all four peaks. Additionally,
we see a broadening of the (Eα/β,II ) emission lines towards higher photon energies. The most
interesting feature, however, is the appearance of two strong dips. They are caused by absorption
of the highest ionization degrees of iron in the violent outflow pointing towards the observer
(v/c ≈ 0.1 on average). The broadening of these absorption lines is dueto varying outflow
velocities on the projected surface and to the combined contribution of Fe XXIV–XXVI. Why do
we see absorption features only from the highest ionizationdegrees? The answer is simple: with
decreasing temperatures, the ionization degree of iron drops, changing the emission signatures
from helium- and hydrogen-like iron into absorption while Fe I–Fe XXIII can still be seen in
emission.3 As temperatures and densities drop further, absorption andemission due to collisional
excitation is outclassed by fluorescence line emission, which itself is only efficient up to Fe XXI
(see Sect. 5.4.6).

In the edge-on case, the emission lines disappear completely. We only find two deep ab-
sorption features, caused by Fe I–V. The outflow velocities are lower and more turbulent (c. f.,
Figs. 4.1,5.8) than in the face-on case, so that no Doppler shifts can be detected. For both the

3The ionization energy of Fe XXIII is only2 keV, while Fe XXIV has an ionization threshold of8.8 keV.
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face-on and the edge-on case, we list the absorption line equivalent widths in Table 5.5. They
are much more reasonable than those of the emission lines. This is mainly due to the definition
of the equivalent width,

EW =

∫
Fcont− FEγ

Fcont
dEγ . (5.56)

We exclude the emission lines in the atmosphere from furtherdiscussion, because they are dom-
inated by fluorescence emission, which itself depends heavily on the model of the underlying
radiation field (c. f., (5.35)). The ratio of the Kβ to the Kα equivalent width is only slightly ex-
ceeding10% in the computational box for the emission lines, but increased to40%–80% in the
atmosphere for the absorption lines.

Influence of the accretion rate After this comprehensive analysis of the standard simula-
tion data, we briefly discuss the influence of varying accretion rates for the same central black
hole mass. In Fig. 5.13, we plot the results for the caseṀ = 3 · 102ṀE. The line strengths, line
ratios and equivalent widths are listed in Table 5.5 as before.

From the blackbody reference, we find that the continuum spectrum does not change sig-
nificantly compared to the103ṀE case. Also the principal structure of the lines at the outer
boundary of the computational box is retained. Compared to the standard case, the strength of
the Kβ emission lines is slightly increased relative to the Kα lines. This can be seen also in the
ratio of the equivalent widths.4 This reflects the higher gas temperatures for the3 · 102ṀE data.
The Doppler shift of the emission lines is nearly unchanged,because the dependence of the mean
radial velocityvr on the accretion rate is weak.

The influence of the atmosphere is different than in the previous case, in particular for the
face-on case. The emanating photon number density from the computational box remains al-
most unchanged for the emission lines, since the densities are lower. The absorption lines are
also much weaker, but strongly blueshifted (v/c ≈ 0.17). They show a very weak absorption
feature from low ionization Kβ fluorescence, additionally to the absorption lines from helium-
and hydrogen-like iron seen previously. The same three absorption lines appear much stronger
and without being Doppler shifted in the edge-on case. But here, the densities in the atmosphere
are too low to completely cancel the emission lines, which leads to absorption features overlaid
on emission lines, making it harder to disentangle the equivalent widths. While the EWs of the
Kβ lines are still smaller than those of the Kα lines in the computational box, this relation is
inverted by the atmosphere. Let us consider the effect of thelimited instrumental resolution in
the case ofChandra. The strong and broad emission lines still can be resolved tofull detail, but
the narrow absorption dips are softened significantly and partly disappear.

In the next step, we discuss the high accretion rate case withṀ = 3 · 103ṀE, whose spectra
are shown in Fig. 5.14. The first thing we note for the spectra at the boundary of the computa-
tional box is that the fully resolved spectral lines now showthree peaks for the Kα lines in the
face-on case. This is due to the increase in density in the computational box. Also the high tem-
perature regions are dense enough to contribute to the line emission. Hence, the left and middle
peaks represent the emission of the low velocity outflow. Also the high velocity outflow profits

4However, we believe that the equivalent width of the Kα line in the face-on calculation is overestimated. This
might be due to the fact that the RHD simulations are just at the transition between quasi-steady disks for
ṀE ≥ 3 · 102ṀE and limit cycle oscillations for lower values oḟM , see Ohsuga (2007).
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Figure 5.13. Same as Fig. 5.11, but forMc = 10M⊙ andṀ = 3 · 102ṀE.

from that increase in temperature, showing a broader right wing from a stronger contribution of
Fe XXV and Fe XXVI.

An overall increase of the lines relative to the continuum can be seen not only for the face-on
case, but also for the edge-on case. Here, we find a strong mixture of the individual contributions
to the K lines. The ratio of the peak strength from Kβ to Kα is identical with the one from the
standard case (̇M = 103ṀE). This is also true for the ratio of the equivalent widths.

Again, the atmosphere has a strong influence on the line features. In the face-on case, absorp-
tion from the highest ionization degrees of iron produces strong dips in the emission lines, which
are significantly less blueshifted than in the standard setup (v/c ≈ 0.04 compared tov/c ≈ 0.1).
The atmospheric emission lines are increased further with respect to the computational box val-
ues, showing an even broader wing towards higher energies. In the edge-on case, the density
is now even higher than in the standard setup case. This causes a complete absorption of the
emission lines from the inner regions. The velocities are comparable to the103ṀE case, so no
Doppler shift can be seen in the absorption lines.
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Figure 5.14. Same as Fig. 5.11, but forMc = 10M⊙ andṀ = 3 · 103ṀE.

Varying central black hole masses We now investigate the influence of the central black
hole massMc on the spectral energy distribution. We keep a constant Eddington ratioṀ/ṀE =
103 and calculate the IMBH (Mc = 104M⊙) and SMBH (Mc = 108M⊙) cases.

The results of the radiative transfer calculations are presented in Table 5.5 and Figs. 5.15, 5.16.
As discussed previously, the data must be treated very carefully, particularly in the SMBH case.
In order to compare the reference spectrum from the stellar mass black hole case to these spectra,
it needs to be increased by several orders of magnitude: we already discussed the increase in total
luminosity, which should give a factor of103 for the IMBH case, and107 for the SMBH case,
respectively. Given that we plot the curves for the photon number density rather than for the
luminosity, an additional factor is necessary. Assuming that the mean photon energy is roughly
determined by the temperature of the radiation field and taking into account the scaling law
derived in Fig. 5.10, we find

nγ,tot ∝
Ltot

〈hν〉 ∝ Mc

M
−1/4
c

= M5/4
c .
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Figure 5.15. Same as Fig. 5.11, but forMc = 104M⊙ andṀ = 1 · 103ṀE.

We first analyze the IMBH case, displayed in Fig. 5.15. The upscaling of the reference spectrum
leads to the correct order of photon number densities. From the high resolution plots of the iron
K line region, we can see a further increase of the line strengths relative to the continuum at
the boundary of the computational box, when compared to the stellar mass black hole case.
Besides this overall increase, the shape and composition ofthe Kα and Kβ lines do not change
significantly with respect to the stellar mass cases. An interesting detail, however, is the fact that
the low velocity peaks show a slightly redshifted (i. e., left) wing for both inclinations. At the
same time, the position of the line centers do not change, compared to the previous results. But,
since the density in the computational box decreases by a factor of 1000 on average, we can now
see a small part of the material on the far side of the computational box, pointing away from the
observer. The equivalent widths and peak ratios listed in Table 5.5 are unnaturally large, but they
show that the Kβ lines become significantly weaker in relation to the Kα lines. This reflects our
expectations from the lower temperatures of the gas and the radiation field in the simulations.

The atmospheric modeling becomes definitely questionable for the IMBH case: the emis-
sion lines become even stronger for both inclination angles, overlaid by very narrow and strong
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Figure 5.16. Same as Fig. 5.11, but forMc = 108M⊙ andṀ = 1 · 103ṀE.

absorption dips. However, the ratio of the equivalent widths of the Kβ to the Kα line is in a
reasonable range, suggesting that only the absolute scaling is off-beat. The influence of a limited
instrumental resolution becomes crucial for such narrow and deep absorption lines, as can be
seen clearly from the lower panels of Fig. 5.15.

Finally, we consider the SMBH case. The overestimation of the integrated luminosity and
photon number density can be found again in the upper plots ofFig. 5.16: the reference spec-
trum, although amplified by108.75, is still two orders of magnitude too small. The iron lines
are unacceptably strong, so that we definitely rule out the validity of this simulation data set.
However, the decreasing trend of the equivalent width ratioEW Kβ/EW Kα is continued for
the spectra at the boundary of the computational box. The simplified model of the atmosphere
breaks down completely, and so we omit a further analysis.

We conclude that the simulation data – but not the atmospheric model – for the IMBH case
is still acceptable. At the same time, the SMBH data is definitely rejected. A proper investiga-
tion of such large scale accretion disk systems requires theconsideration of different physical
processes such as additional cooling terms. Also, a more accurate treatment of the radiative
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transfer calculations in both the 2D RHD simulations and ourradiative transfer code are neces-
sary (for a discussion of the weak points of the flux limited diffusion approximation used here,
see Sect. 4.4).

Confrontation with reality – the case of M82 X-1 Finally, we want to compare our the-
oretical spectra with observational data. The situation iscomplicated by the fact that very few
iron line detections have been made thus far for potential low mass ultraluminous X-ray sources.
Contrary, a lot of observational data is available for highly accreting systems with large cen-
tral black hole masses such as quasars and Seyfert galaxies.They show a large variety of line
features, reaching from strong and broad emission lines to narrow absorption lines or signif-
icantly broadened absorption bands: for example, the type 2Seyfert galaxy Mrk 3, observed
with XMM-Newtonby Bianchi et al. (2005), shows a prominent iron K emission line, while the
Suzakuobservation of the Seyfert 1.5 galaxy NGC 3516 shows a complex absorption feature, and
both broad and narrow Fe K emission lines (Markowitz et al., 2008). The remarkable emission
line of Mrk 3 has been shown in Figs. 5.2, 1.2.

As we concluded in the last section, our simulation data cannot be extended that easily to
higher central masses. Thus, at present it is not possible tocompare any of these observa-
tions with our theoretical spectra. We therefore concentrate on one of the very few observa-
tions of iron K line emission in low mass ULXs, M82 X-1. Particular interest has been paid
to the starburst galaxy M82: Matsumoto et al. (2001) analyzed observational data taken with
the High-Resolution Cameraon board theChandra X-Ray Observatoryin 1999 and 2000 and
detected nine X-ray sources in the central1.1 kpc× 1.1 kpc region, but not in the galactic cen-
ter itself. Among them, M82 X-1 (source 7 in Matsumoto et al. (2001), see Fig 5.17), located
about170 pc off the dynamical center, is the brightest source with a bolometric luminosity of
Lbol ≈ (2.4–16) · 1040erg/s (Patruno et al., 2006). First iron line detections have been reported
by Strohmayer & Mushotzky (2003) from follow-up observations with theEuropean Photon
Imaging Camera (EPIC)on boardXMM-Newtonin 2001, who also detected a54 mHz QPO
behavior in M82 X-1. Since then, numerous investigations have been carried out based on this
data, making M82 X-1 the prototype for the stellar-mass-black-hole-intermediate-mass-black-
hole debate. Mass estimates are ranging from1000M⊙ (Fiorito & Titarchuk, 2004) down to
19M⊙ (Okajima et al., 2006), all on solid physical basis, and yet no agreement could be found.
In the following, we briefly present the analysis of Okajima et al. (2006) and refer the reader to
the comprising literature (e. g., Strohmayer & Mushotzky (2003); Fiorito & Titarchuk (2004);
Agrawal & Misra (2006); Dewangan et al. (2006); Okajima et al. (2006); Patruno et al. (2006))
for a more detailed discussion.

Okajima et al. (2006) analyzed archivalXMM-Newtondata of M82 X-1 when it was in the
steady/low state (April 2001). Applying a “p-free” disk model (p in T (r) ∝ r−p, Mineshige et
al. (1994); Kubota et al. (2006) and references therein), they foundp = 0.61+0.03

−0.02 and concluded
that M82 X-1 is in an intermediate thin disk–slim disk state.Thus, energy is transported through
the disk partly by advection and the disk flow is radiatively inefficient. From that, they estimated
the central black hole mass to be19–32M⊙, accreting at320–560ṀE and shining at4–6 times
the Eddington luminosity. In the following, we will test their hypothesis with our numerical
computations.

Before we start fitting the observed spectrum with our models, we must address another detail.
It has been shown (Ohsuga et al., 2002) that the slim disk model does not properly account for
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Figure 5.17. Central1.1 kpc× 1.1 kpc region of M82;Chandraobservations from 1999 (left) and 2000
(right). The radio kinematic center is marked with a green cross, M82 X-1 corresponds to source 7. The
color scale shows the total counts per pixel. Figure taken from Matsumoto et al. (2001).

the photon trapping effects which occur in the central region of a highly accreting black hole
disk. By that effect, high energetic photons from the midplane of the disk are swallowed by
the black hole before being able to escape through the optically thick disk. While the 2D RHD
simulations by Ohsuga et al. (2005); Ohsuga (2007) incorporate this effect explicitly, Okajima
et al. (2006) based their investigation on the standard slimdisk model. For an accretion rate of
102 − 103ṀE, the slim disk model overestimates the disk luminosity by a factor of2–3 (Ohsuga
et al., 2002, Fig. 1), which means that we should base our computation on an accretion rate of
about1000ṀE.

From our experiences so far, the resulting luminosities from the simulation data depend on the
inclination angle between the disk’s rotation axis and the observer. The Eddington luminosity is
given asLE = (Mc/M⊙) · 1.2 · 1038 erg/s. We infer from Table 5.5 that the almost face-on case
Θ = π/8 corresponds toL/LE ≈ 5 for both the stellar mass and the intermediate mass black
hole case, whileL/LE ≈ 1 for the nearly edge-on caseΘ = 3π/8. The inclination of M82 X-1
is completely undetermined (the disk cannot be resolved at adistance of about3 Mpc), so we set
the inclination angle toπ/8.5

Thus far, we only have simulation data sets for10 and104 solar masses with accretion rates
of 103ṀE. We use the scaling laws from Fig. 5.10 to extrapolateρ, Tgas, Trad andvr from the
10M⊙ data to a25M⊙ setup. For the missing zenithal and azimuthal velocitiesvΘ andvΦ, which
are expressed in geometrical units rather than in radians, we assume them to be constant on the
grid. Since the grid points all scale with the radius and therefore with the central mass, this is
the expected behavior for at least the azimuthal velocity:

5For smaller inclinations, the highly relativistic, optically thin jet region has to be considered. At present, this is
not covered properly by our radiative transfer calculations.
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vΦ ∝
√

GMc

r
= const.

To see if this assumption holds forvΦ and also forvΘ, we plot the radial dependency of both
velocities forΘ = π/8 in Fig. 5.18. It confirms nicely our expectations by showing constant
velocities on ther/rS grid, even for the supermassive black hole case.

We further have to specify the metallicity of M82 X-1. Since M82 is a classical starburst
galaxy, its metal abundances vary greatly. Strickland & Heckman (2008) analyzed the properties
of the diffuse hard X-ray emission from observations byChandra ACIS-I(September 1999) and
ACIS-S(June 2002), as well as byXMM-Newton EPIC(May 2001 and April 2004). The authors
derived a metallicity of the starburst region ofZFe,⋆ = 5.2ZFe,⊙ ± 50%. In a previous inves-
tigation, Origlia et al. (2004) investigated near-infrared absorption spectra of M82 and derived
detailed stellar abundances in the nuclear region of the galaxy. They found[Fe/H] = −0.35 dex,
which corresponds toZFe, nuc = 0.43ZFe,⊙. It is reasonable to assume that the metal abundance
in M82 X-1 is more related to this value. We therefore follow Origlia et al. (2004) and apply the
sub-solar abundances, but we remark that these values implya high uncertainty.

Strickland & Heckman (2008) also found a6.7 keV emission line from highly ionized iron
in the central region of M82 in all observations at high statistical significance, in addition to
a marginally significant6.4 keV Fe Kα emission line (from weakly ionized iron). Only in the
May 2001XMM-Newtonobservation did they detect significantly higher iron line fluxes and an
additional6.9 keV emission line. They attributed the excess to M82 X-1 being in its high state.

We summarize the main parameters of M82 X-1 and our model in Table 5.6. The resulting
spectra are plotted in Fig. 5.19. Beside an almost perfect agreement of the bolometric luminosity
with the slim disk model of Okajima et al. (2006), we find that it exceeds the classical Eddington
luminosity by a factor of5.2. We also recover the decreasing trend of the ratio of the equivalent
widths with increasing black hole mass, from0.12 for Mc = 10M⊙ to 0.08 for Mc = 25M⊙.

Observational data show line widths of the order of−50 eV to−90 eV for the6.7 keV emis-
sion line of the central nuclear region (Okajima et al., 2006; Strickland & Heckman, 2008), while
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Eγ [keV]

Eγ [keV]

n
γ
,ν

[c
m
−

1
]

comp. box

comp. box

atmosphere

atmosphere
reference

Θ = π/8

n
γ
,ν

/n
co

nt
in

uu
m

γ
,ν

Suzaku/NeXT Chandra

Figure 5.19. Emerging spectrum forMc = 25M⊙, Ṁ = 1·103ṀE and inclination angleΘ = π/8. Upper
panels: emanating photon number density for continuum and lines at the boundary of the computational
box; the reference is generated by a blackbody spectrum withtemperatureTbb = 1.1 ·106K and a spectral
hardening factorε = 1.4. Lower panels: ratio of line emission relative to the continuum at the boundary
of the computational box and after processing the lines through the atmosphere.

they are significantly smaller for the6.4 keV and6.9 keV emission lines. For M82 X-1 in its
steady/low state, they are almost not detectable with EW6.4 keV = −9 eV and EW6.7 keV = −2 eV.
This is also the data on which Okajima et al. (2006) based their analysis. In the high state, these
values are increased to EW6.4 keV = −23 eV and EW6.7 keV = −28 eV, respectively. Thus far,
no absorption lines have been detected. We definitely overestimate the strength of the emission
lines, regardless of whether we include the atmosphere in the calculation or not. Even more,
like in the previous section, the emission lines are increased by our atmospheric toy model. At
the same time, two highly blueshifted, narrow absorption dips are generated. Only considering
for the absorption features outside the atmosphere, we find reasonable equivalent widths (c. f.
Table 5.6). They are generated by helium- and hydrogen-likeiron K line absorption, moving
towards the observer withv/c = 0.12.

Hence, we conclude that our simulations overestimate the line emission by almost three orders
of magnitude! Possible reasons for this are the limited sizeof the computational box (resulting in
an artificial cutoff of the disk and the corona), the oversimplified model of the atmosphere, or the
fact that the gas temperatures in the simulation data are extremely high, exceeding109 K in the
disk’s surroundings. As discussed earlier, these temperatures are neither expected, nor observed
thus far. They would also require to incorporate nuclear reactions in the energy equation of the
RHD simulations.
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Table 5.6. Main properties of the ULX M82 X-1 from Okajima et al. (2006) and adapted to our radiative
transfer model. The line widths of our model are calculated at the boundary of the computational box
(emission lines, EW< 0) and outside the atmosphere (absorption lines, EW> 0).

Okajima et al. (2006) Our model

Central black hole mass 19-32M⊙ 25M⊙

Accretion rate 320–560ṀE 1000ṀE

Distance 2.7 Mpc 2.7 Mpc
Bolometric luminosity 1.4 · 1040erg/s = 4–6LE 1.6 · 1040erg/s = 5.2LE

X-ray luminosity ([3; 10] keV) 8.4 · 1039erg/s 1.5 · 1037erg/s
Metallicity (Origlia et al., 2004) — ZFe = 0.43ZFe,⊙

Inclination angle — π/8
Scaling ofρ25 — 0.40ρ10

Trad,25 — 0.80Trad,10

Tgas,25 — 1.00Tgas,10

vr,25 — 1.06vr,10

vΘ,25 — 1.00vΘ,10

vΦ,25 — 1.00vΦ,10

Line center Kα emission 6.6 keV 7.1 keV
Equivalent width Kα emission −85 eV −449 keV
Line center Kβ emission — 8.4 keV
Equivalent width Kβ emission — −37 keV
EW Kβ/EW Kα emission — 0.08

Line center Kα absorption — 7.8 keV
Equivalent width Kα absorption — +160 eV
Line center Kβ absorption — 9.3 keV
Equivalent width Kβ absorption — +77 eV
EW Kβ/EW Kα absorption — 0.48

Another possibility is revealed by Fig. 5.20, where we compare our modeled spectra with the
observational data ofXMM-Newtonwhen the source was in its low state (Okajima et al., 2006)
and in its high state (Strickland & Heckman, 2008). The photon energy range in this figure is
limited toEγ = [3; 10] keV and the spectrum is given in counts/(s keV), where a distance of
2.7 Mpc was assumed. Although the integrated bolometric luminosity of our model – which is
dominated by the UV peak emission – is in good agreement with the observations, the X-ray
continuum is not. Strickland & Heckman (2008) concluded that the X-ray excess in the galaxy
M82 is generated by the nucleus region, the ULX point sourcesand a dominating diffuse contin-
uum, which cannot be separated from each other. Thus, the observational data overestimates the
X-ray continuum flux from M82 X-1. Nevertheless, the discrepancy between our results and the
observations is too large to simply attribute it to the diffuse continuum. Instead, we recall that
the 2D RHD simulation data provide only gray values for the radiation energy density and the
gas density. From these, we derive blackbody temperatures and Planckian energy distributions
for the radiation field and the gas, assuming that they are in separate local thermal equilibria.

Contrarily, a power law spectrumLν ∝ ν−α is commonly usedand usually requiredto fit the
observation of X-ray spectra. M82 X-1 shows an extremely flatcontinuum in its low state that
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Figure 5.20. X-ray fluxes from the simulation data (red) and from observations while the source was in
its low state (blue, Okajima et al. (2006)) and in its high state (black, Strickland & Heckman (2008)).

can be fitted adequately by a broken power law with a transition atEtr = 6.0 ± 0.5 keV and
α< = 0.7, α> = 2.0. In its high state, the spectrum steepens significantly and can be fitted again
by a broken power law withEtr = 6.0± 0.5 keV andα< = 1.6, α> = 2.6 (values are taken from
Strickland & Heckman (2008, Table 3)).

Increasing the continuum emission in our model by a factor of1000, as suggested from
Fig. 5.20 and from the comparison of the integrated X-ray luminosities in Table 5.6, would
lower the equivalent widths of the iron K emission (and absorption) lines by approximately the
same factor. This would lead to much more reasonable equivalent widths EW Kα = −450 eV
and EW Kβ = −37 eV for the emission lines and vanishing absorption features. It makes sense
to assume that the fully resolved emission lines of our simulations are somewhat larger than
the observed ones. The observed lines are influenced by the limited instrumental resolution and
by the contamination of the ULX emission from its host galaxy, in particular from the diffuse
continuum.

We want to remark that also the Doppler shift of the emission lines in our synthetic spectrum
does not fit to the observations, which show basically no shift of the line frequencies. Whether
this is due solely to our simplified atmospheric model, wherethe radial velocity stays constant,
cannot be answered within this investigation. Alternatively, the data from the underlying simula-
tions might simply show too high velocities. Also the question about the central black hole mass
is left open, but our results confirm that a hyperaccreting stellar mass black hole can account for
the observed super-Eddington luminosities.
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5.7 Conclusions

In the previous section, we presented the results for five sets of simulation data and discussed
them in detail. We also extrapolated the stellar mass simulation data towards a25M⊙ black hole
and compared it to the ULX M82 X-1. We found that in all six cases, the computational box is
too small for a proper treatment of these highly super-Eddington accretion disk systems. The iron
line emission from the computational box is unusually strong in all cases, with equivalent widths
of the order of tens to hundreds of keV. No absorption lines can be detected at the boundary of
the computational box, regardless of the orientation of thedisk relative to the observer.

Despite these doubtable absolute numbers, their relative values suggest that the equivalent
width ratio EW Kβ/EW Kα can be an indicator for the central black hole mass. While this ratio
adopts values of0.12 for Mc = 10M⊙, it decreases steadily to0.08 for Mc = 25M⊙, 0.06 for
Mc = 104M⊙ and0.02 for Mc = 108M⊙. The inclination angle also influences this ratio: for a
stellar mass black hole, the face-on ratio is about20% larger than the edge-on ratio. For higher
black hole masses, this effect seems to weaken, but the validity of the high mass simulation data
itself forbids a definitive statement. At the same time, the influence of the accretion rate on the
EW ratio is negligibly small, so that we cannot even separateit from the intrinsic errors.

The emission lines at the boundary of the computational box are generally composed of a
complex line from the low velocity outflow (v/c = 0.02) and a stronger, complex line from
the high velocity outflow(v/c = 0.08) for both Kα and Kβ . The individual lines are generated
from a mixture of low and high ionization degrees of iron, reaching up to Fe XXIII for the low
velocity line, and up to hydrogen-like Fe XXVI for the high velocity line. The line shifts are
almost insensitive to the accretion rate and the central mass.

We introduced a simple atmospheric model in order to investigate the effects of the disk’s
surroundings on the spectrum. We found that its influence differs significantly for the face-on
case and the edge-on case. In the former case, highly blueshifted narrow absorption dips from
the highest ionization degrees of iron can be found for a stellar mass black hole, next to and
overlaid on strong emission lines. In the latter case, the emission lines disappear completely
and broader absorption lines are generated in the stellar mass case with high accretion rates. For
higher central masses, the modeling breaks down completely. It is therefore absolutely necessary
to run the simulations with a larger computational domain.

In general, we advise that the 2D RHD simulations should not be extended towards central
masses larger thanMc ≈ 104M⊙. The physical assumptions and processes included in the
model are not sufficient or appropriate for the required densities and temperatures. A further im-
provement, although unrealistic with current computational limitations, would be to incorporate
a frequency dependent radiative transfer calculation in the simulations directly. Until this be-
comes possible, a rethinking of the spectral energy distribution of the radiation field and the gas
emission in the computational box is necessary. Our results, in particular the underestimation of
the X-ray continuum flux in M82 X-1, suggest that a power law distribution is more appropriate
than a blackbody spectrum in this energy range. However, including this is not straightforward
since it requires a consistent modeling of the emission fromthe radiation field and the gas over
a large energy range in order to preserve the good agreement on the total luminosity.

Indeed, from the bolometric luminosities, emanating photon numbers and average photon en-
ergies we find an excellent agreement with the theoretical expectations. For an extremely high
accretion rate ofṀ = 103ṀE, the total luminosity exceeds the Eddington limit by a factor of 1 to
6, depending on the inclination angle, but regardless of the central black hole mass. The results
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are not only consistent with the observations of M82 X-1, butalso with the theoretical expecta-
tions for slim disk models when the photon trapping mechanism is considered properly (Ohsuga
et al., 2002). Moreover, they also show a logarithmic dependence ofLbol on the accretion rate,
which is expected from semi-analytical calculations (Watarai et al., 2000; Fukue, 2004). Also
the average photon energies drop for higher central masses,as expected.

From this point of view, it is quite possible that ULXs are powered by hyperaccreting stellar
mass black holes, shining at a few times the Eddington luminosity. Mild relativistic beaming
effects further influence the ratioL/LE for small inclination angles. In summary, our results
suggest to concentrate on constraining the inclination angle and the ratio of the equivalent widths
by observations of known and potential low mass ULXs with thelatest X-ray observatories. We
propose a follow-up observation of M82 X-1 withNeXT to investigate the presence – and if
present, the strength – of a Kβ emission line.
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6 Epilog

In this dissertation, we studied two different aspects of black hole accretion disks. In the first
part, we concentrated on modeling their internal structure. From a detailed examination of the
role of convection, we found that it contributes significantly to the energy transport in the disk.
Convective turbulence also adds considerably to the total viscosity, although it cannot account for
it on its own. We briefly discussed how it may act jointly with differential rotation and magneto-
rotational instabilities. We closed the discussion by stressing the need for a further investigation
of such a combined viscosity, especially in thedead zonesof the MRI and in the self-gravitating
regions of the disk, where convective feedback processes onthe energy transport set in.

In the second part of the thesis, we switched from the purely theoretical side of the table
to an observational one. We investigated the spectral energy distribution of two-dimensional
radiation-hydrodynamic simulations of highly accreting black holes. We first studied their over-
all continuum features and found that the orientation of thedisk relative to the observer has a
strong influence on the emerging spectra, not least due to mild relativistic beaming effects. In-
auspiciously, the orientation is one of the parameters thatis often hard to determine from the
observations. A possible indicator, however, are line transitions. We continued the spectral anal-
ysis by studying the iron K line emission of the super-Eddington flows. Apart from the disk’s
orientation, we also investigated the influence of the central mass and the accretion rate on the
emanating lines. One important outcome was the dependence of the relative strength of the Kβ
lines to the Kα lines on the central mass, another one the broadening of the lines for higher
inclinations.

However, we saw that the abso-
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face-on: EW Kα = +0.19 keV
EW Kβ = +0.015 keV

edge-on: EW Kα = −0.94 keV
EW Kβ = −0.097 keV

lute strengths of the lines do not fit
to the observations: we found equiv-
alent widths which were a factor of
1000 higher than expected. During
the discussion of the possible rea-
sons for these inconsistencies, we ig-
nored a potential bug in our radia-
tive transfer code. This argument
is supported by further tests of our
code with the most recent simulation data by Ohsuga (priv.comm.), this time modeling a100M⊙

black hole showing limit-cycle oscillations. The corresponding accretion rates are significantly
lower, around65ṀE in the high state and0.7ṀE in the low state, respectively. This system shows
quasi-periodic oscillations with duration times of about40 s (high state) and60 s (low state). For
the source being in its low/hard state, we found a complex absorption feature for the face-on case
and reasonably strong emission lines for an edge-on view on the disk. We were also able to fit
a power law to the X-ray continuum withnγ ∝ E−1.8

γ . A detailed investigation and analysis of
these data will be published elsewhere.
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6 Epilog

To conclude, we demonstrated the potential diagnostic power of the iron lines for the accretion
process. Yet, we were not able to draw quantitativ conclusions from our investigation. To do so,
we need a better description for the emission spectrum of thegas and the radiation field in the
simulations – or, even better, frequency-dependent RHD simulations. This, however, is hardly
feasible with current computational power. On the contrary, an extension of the simulations
towards larger radii and towards disks around supermassiveblack holes is much more realistic.
In future work, we will therefore focus on an improvement of the emission spectra. We will also
upgrade the method of the ray-tracing radiative transfer calculation to a Monte-Carlo method.
This last step will strongly profit from the decoupling of theopacity calculations from the actual
radiative transfer scheme.

120



Acknowledgements

This dissertation would not have been possible without the help of many people. But, where to
start? Probably with Max Planck, since quite a bit of the physics used in this work would not
have been invented without him . . .

Seriously, in first place I want to thank my advisor Prof. Wolfgang Duschl and my Japanese host
and collaborator Prof. Shin Mineshige for their enduring support and guidance. Sincere thanks
to both of them for giving me the opportunity to live and work in Kyoto for part of my thesis. It
was definitely the most exciting time of my life.

Special thanks also to Dr. Ken Ohsuga for providing me his simulation data, for a fruitful colla-
boration and for supporting my visit to Tokyo. I also want to thank Prof. Atsuo Okazaki for
inviting me to Hokkaido University and guiding me through Sapporo.

I want to thank Profs. Detlef Koester, Hans-Walter Rix, Werner Tscharnuter and Rainer Wehrse
for interesting discussions and their assistance with manyquestions, and Prof. Christian Fendt
on behalf of the IMPRS Heidelberg for his great tolerance with the move from Heidelberg to
Kiel and for generous travel grants.

A big thank you to Drs. Tobias Illenseer and Hannes Horst for proofreading, and to the fleet
of native speakers for corrections of the English text and making this thesis a British-Irish-New
Zealandish-American-German coproduction: Juliet Datson, Dominic Edsall, Ronan Higgins,
Lisa Perry, Dr. Chris Rasmussen, Renée Rasmussen.

I want to thank my colleagues for the enjoyable atmosphere and for keeping the coffee club going
while I was absent. A special thank to Jan Hofmann for the comprehensive sports program that
saved me from becoming too much of a workaholic.

Many thanks to my parents Martin and Sylvia Heinzeller for their restless encouragement and for
making each trip home a real holiday; to my brother KorbinianHeinzeller and to my climbing
partners all over the world for the unforgettable memories that helped me to complete this work.

And last but not least to Daniela: it is hard enough that one ofus is complicated – I am glad you
are not. Thank you for everything!

This thesis was financially supported by the International Max Planck Research School for As-
tronomy and Cosmic Physics at the University of Heidelberg,by the Grants-in-Aid of the Min-
istry of Education, Science, Culture, and Sport (14079205,16340057 S.M.), by the Grant-in-Aid
for the 21st Century COE “Center for Diversity and Universality in Physics” from the Ministry
of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and by the Japanese
Society for the Promotion of Science (JSPS).

The numerical calculations were carried out on the Linux cluster (rzcluster) at the datacenter of
the University of Kiel and on the Altix3700 BX2 at the Yukawa Institute for Theoretical Physics
in Kyoto University.

121



122



Bibliography

Abramowicz M.A., Czerny B., Lasota J.P., Szuzkiewicz E., 1988, ApJ, 332, 646

Agrawal V.K., Misra R., 2006, ApJ, 638, L83

Argonne National Laboratory, Mathematics and Computer Science, 2008, The Message Passing
Interface (MPI) standard,http://www-unix.mcs.anl.gov/mpi

Awaki H., Anabuki N., Fukazawa Y., Gallo L., Ikeda S., Isobe N., Itoh T., Kunieda H., Maki-
shima K., Markowitz A.G., Miniutti G., Mizuno T., Okajima T., Ptak A., Reeves J.N., Taka-
hashi T., Terashima Y., Yaqoob T., 2007,http://arxiv.org/abs/0707.2425v1

Balbus S.A., Hawley J.F., 1991, ApJ, 376, 214

Bautista M., Romano P., Pradhan A.K., 1998, ApJS, 118, 259

Begelman M.C., 1978, MNRAS, 184, 53

Begelman M.C., Pringle J.E., 2007, MNRAS, 375, 1070

Bell K.R., Lin D.N.C., 1994, ApJ, 427, 987

Bianchi S., Miniutti G., Fabian A.C., Iwasawa K., 2005, MNRAS, 360, 380

Burger H.L., Katz J.I., 1980, ApJ, 236

Canizares C.R., Davis J.E., Dewey D., Flanagan K.A., GaltonE.B., Huenemoerder D.P.,
Ishibashi K., Markert T.H., Marshall H.L., McGuirk M., Schattenburg M.L., Schulz N.S.,
Smith H.I., Wise M., 2005, PASP, 117, 1144

Cao X., Xu Y.-D., 2003, PASJ, 55, 149

Czerny B., Elvis M., 1987, ApJ, 321, 305

Chandrasekhar S., 1960, PNAS, 46, 253

Cox A.N., 1965, Stellar Structure, in: Stars and Stellar Systems vol. 8 (Eds: Aller L.H.,
McLaughlin D.B.), University of Chicago Press, Chicago, p.218

Cox J.P., Giuli R.T., 1968, Principles of stellar structure, Volume 1, Physical Principles, Gordon
& Breach, New-York–London–Paris

Cropper M., Soria R., Mushotzky R.F., Wu K., Markwardt C.B.,Pakull M., 2004, MNRAS, 349,
39

123



Bibliography

Dewangan G.C., Titarchuk L., Griffiths R.E., 2006, ApJ, 637,L21

Dörrer T., Riffert H., Staubert R., Ruder H., 1996, A&A, 311,69

Duschl W.J., 1983, A&A, 121, 153

Duschl W.J., 1989, A&A, 225, 105

Duschl W.J., Tscharnuter W.M., 1991, A&A, 241, 153

Duschl W.J., Strittmatter P.A., Biermann P.L., 2000, A&A, 357, 1123

Ebisawa K., Zycki P., Kubota A., Mizuno T., Watarai K.-y., 2003, CHJAA, 3, Suppl., 415

Ferguson J.W., Alexander D.R., Allard F., Barman T., Bodnarik J.G., Hauschildt P.H., Heffner-
Wong A., Tamanai A., 2005, ApJ, 623, 585

Ferguson J.W., 2008, Research in Low Temperature Astrophysics at Wichita State University,
http://webs.wichita.edu/physics/opacity/

Fiorito R., Titarchuk L., 2004, ApJ, 614

Fuhr J.R., Martin G.A., Wiese W.L., 1988, Journal of physical and chemical reference data
17, supplement 4: Atomic transition probabilities: Iron through nickel, National Bureau of
Standards, Institute of Physics, New York, N.Y.

Fukue J., 2000, PASJ, 52, 829

Fukue J., 2004, PASJ, 56, 569

Gammie C.F., 1996, ApJ, 457, 355

Gammie C.F., 1999, ApJ, 522, L57

Gingerich O., 1964, Review of opacity calculations, Harvard Smithsonian Conference on stellar
atmospheres, S.A.0. Special Report No. 167, Cambridge, Smithsonian Astrophysical Obser-
vatory

Goldman I., Wandel A., 1995, ApJ, 443, 187

Gonzalez J.-F., LeBlanc F., Atru M.-C., Michaud G., 1995, A&A, 297, 223

Grevesse N., Sauval A.J., 1998, Space Science Reviews, 85, 161

Hayashi C., Hoshi R., Sugimoto D., 1962, Progr. Theoret. Phys. Supp., 22, 1

Heinzeller D., Mineshige S., Ohsuga K., 2006, MNRAS, 372, 1208

Heinzeller D., Duschl W.J., 2007, MNRAS, 374, 1146

Henyey L.G., Forbes J.E., Gould N.L., 1964, ApJ, 139, 306

124



Bibliography

Hofmann J., 2005, Zeitentwicklung und Vertikalstruktur protostellarer Akkretionsscheiben,
Diploma thesis, Heidelberg

ISAS/JAXA, 2008, X-ray Astronomy SUZAKU (ASTRO-EII) Mission,http://www.isas.
jaxa.jp/e/enterp/missions/suzaku/index.shtml

Kaastra J.S., Mewe R., 1993, A&AS, 97, 443

Karzas W.J., Latter R., 1961, ApJS, 6, 167K

Kato S., Fukue J., Mineshige S., 1998, Black-Hole AccretionDisks, Kyoto University Press,
Kyoto

Kawaguchi T., 2003, ApJ, 593, 69

Kelley R.L., Mitsuda K., Allen C.A., Arsenovic P., Audley M.D., Bialas T.G., Boyce K.R., Boyle
R.F., Breon S.R., Brown G.V., Cottam J., Dipirro M.J., Fujimoto R., Furusho T., Gendreau
K.C., Gochar G.G., Gonzalez O., Hirabayashi M., Holt S.S., Inoue H., Ishida M., Ishisaki
Y., Jones C.S., Keski-Kuha R., Kilbourne C.A., McCammon D.,Morita U., Moseley S.H.,
Mott B., Narasaki K., Ogawara Y., Ohashi T., Ota N., Panek J.S., Porter F.S., Serlemitsos
A., Shirron P.J., Sneiderman G.A., Szymkowiak A.E., Takei Y., Tveekrem J.L., Volz S.M.,
Yamamoto M., Yamasaki N.Y., 2007, PASJ, 59, 77

King A.R., Davies M.B., Ward M.J., Fabbiano G., Elvis M., 2001, ApJ, 552, L109

King A.R., Pringle J.E., Livio M., 2007, MNRAS, 376, 1740

Kley W., 1989, A&A, 208, 98

Klim A., 1981, Journal of Quantitative Spectroscopy and Radiative Transfer, 26, 537

Körding E., Colbert E., Falcke H., 2004, Progr. Theoret. Phys. Supp., 155, 365

Krolik J.H., 1999, ApJ, 515, L73

Kubota A., Ebisawa K., Makishima K., Nakazawa K., 2005, ApJ,631, 1062

Kusch H.J., 1958, Zeitschrift für Astrophysik, 45, 1

Levermore C.D., Pomraning G.C., 1981, ApJ, 248, 321

Liu J.-F., Bregman, J.N., Irwin J., Seitzer P., 2002, ApJ, 581, L93

Machida M., Nakamura K., Matsumoto R., 2004, PASJ, 56, 671

Makishima K., Kubota A., Mizuno T., Ohnishi T., Tashiro M., Aruga Y., Asai K., Dotani T.,
Mitsuda K., Ueda Y., Uno S.’I., Yamaoka, K., Ebisawa, K., Kohmura, Y., Okada, K., 2000,
ApJ, 535, 632

Markowitz A., Reeves J.N., Miniutti G., Serlemitsos P., Kunieda H., Yaqoob T., Fabian A.C.,
Fukazawa Y., Mushotzky R., Okajima T., Gallo L.C., Awaki H.,Griffiths R.E., 2008, PASJ,
60, S277

125



Bibliography

Matsumoto H., Tsuru T.G., Koyama K., Awaki H., Canizares C.R., Kawai N., Matsushita S.,
Kawabe, R., 2001, ApJ, 547, L25

Mendoza C., Kallman T.R., Bautista M.A., Palmeri P., 2004, A&A, 414, 377

Michaud G., Charland Y., Vauclair S., Vauclair G., 1976, ApJ, 210, 447

Mihalas D., 1970, Stellar atmospheres, W.H. Freeman and Company, San Francisco

Miller J.M., Fabbiano G., Miller, M.C., Fabian A.C., 2003, ApJ, 585, L37

Miller J.M., ARA&A, 45, 441

Mineshige S., Hirano A., Kitamoto S., Yamada T., Fukue J., 1994, ApJ, 426, 308

Mineshige S., Kawaguchi T., Takeuchi M., Hayashida K., 2000, PASJ, 52, 499

NIST Atomic Spectra Database, 2006, version 3.0,http://physics.nist.gov/
PhysRefData/ASD/index.html

Ohsuga K., Mineshige S., Mori M., Umemura M., 2002, ApJ, 574,315

Ohsuga K., Mori M., Nakamoto T., Mineshige S., 2005, ApJ, 628, 368

Ohsuga K., 2007, ApJ, 659, 205

Okajima T., Ebisawa K., Kawaguchi T., 2006, ApJ, 652, L105

Origlia L., Ranalli P., Comastri A., Maiolino R., 2004, ApJ,606, 862
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Appendix

A.1 Physical constants in the cgs system of units

Table A.1. Fundamental physical constants in the cgs system of units.

quantity symbol value units

gravitational constant G 6.673 · 10−8 dyn cm2 g−2

speed of light c 2.998 · 1010 cm s−1

Planck constant h 6.624 · 10−27 erg s
elementary charge e 4.803 · 10−10 g1/2 cm3/2 s−1 = esu
electron mass me 9.105 · 10−28 g
proton mass mp 1.672 · 10−24 g
mass of hydrogen atom mH 1.673 · 10−24 g
Rydberg frequency Ry 3.290 · 1015 s−1

Boltzmann constant kB 1.1380 · 10−16 erg K−1

gas constant (for hydrogen)R 8.314 · 107 erg K−1 g−1

Stefan-Boltzmann constant σSB 5.671 · 10−5 erg cm−2 s−1 K−4

radiation constant arad = 4σSB/c 7.567 · 10−15 erg cm−3 K−4

Table A.2. Astronomical constants in the cgs system of units.

quantity symbol value units

solar mass M⊙ 1.983 · 1033 g
solar radius R⊙ 6.953 · 1010 cm
astronomical unit AU 1.495 · 1013 cm
light year ly 9.460 · 1017 cm
parsec pc 3.084 · 1018 cm
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Appendix

A.2 The Henyey method

A.2.1 Introduction

The Henyey method, originally introduced in 1961 for the calculation of stellar structure and
evolution, is a special Newton-Raphson method adapted to a particular problem: the solution
of a set of differential equations with real boundary conditions (i. e., given values for certain
variables at one boundary, for other variables at the other boundary, in contrast to initial value
problems where all boundary conditions are set at one point).

In the following, we present a detailed description of the numerical scheme and the underlying
mathematical principles. We apply the method to our specificproblem and derive the set of dis-
cretized equations in Sect. A.2.2. We then describe how the resulting system of linear equations
is solved and stored in an efficient way (Sect. A.2.3).

Basic Newton-Raphson method Starting from the simplest case, the prototype for the
application of a Newton-Raphson solver, the equation

dy

dx
= f(x,y) y(x1) = y1 (A.1)

needs to be solved in the domainx = x1, . . . , xNi
. The discretization of thex-interval divides it

into segmentsxi with i = 1, . . . , Ni. We call an initial guess for the solution the zeroth iteration.
The left hand side of (A.1) is then given by

(
dy

dx

)

i−1/2

=
yi − yi−1

xi − xi−1

, (A.2)

while the right hand side can be calculated from

fi−1/2 = f

(
xi + xi−1

2
,
yi + yi−1

2

)

. (A.3)

This leads to a set ofNi differential equations fori = 1, . . . , Ni:

gi := (yi − yi−1) − fi−1/2 · (xi − xi−1) = 0 . (A.4)

In general,gi 6= 0; otherwise the correct solutiony(x) is found. An initial guessy{0}(x) is im-
proved successively by Newton’s root solver, i. e., a first-order approximation. Given a function
g(y) = 0 and an initial guessy{0}, the first an subsequent iterations of the rooty{k} are attained
by

y{k} = y{k−1} + δy{k−1} , (A.5)

with the correctionδy{k−1} given by

g
(
y{k−1}

)
+

(
∂g

∂y

){k−1}

δy{k−1} = 0 , where

(
∂g

∂y

){k−1}

=

(
∂g

∂y

)∣
∣
∣
∣
y=y{k−1}

. (A.6)

The “correct solution” is found onceg
(
y{k}

)
< ε whereε stands for a reasonable accuracy

depending on the related problem.
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A.2 The Henyey method

Extension towards the Henyey method Exactly similar to our vertical stratification cal-
culation, the classical stellar structure and evolution problem consists of a set of four differential
equations with two given values at one boundary, and two given values at the other boundary.

Given a functiong = g(y1, . . . , y4) depending onJ = 4 variablesyj, the analogue to (A.6) is

g
(

y
{k}
1 , . . . ,y

{k}
4

)

︸ ︷︷ ︸

=:g{k}

+

4∑

j=1

(
∂g

∂yj

){k}

δy
{k}
j = 0 . (A.7)

For better reading, we drop the notation of the iterative indices{k} from the above equations
and use(j) = (1, . . . ,4) to define the four differential equations andi = 1, . . . ,Ni to identify
the discrete grid points. Again, we usexi as the independent variable andy(j)

i as the dependent
variables. The functionsg(j)

i are given by

g
(j)
i

(

xi,xi−1,y
(1)
i ,y

(1)
i−1,y

(2)
i ,y

(2)
i−1,y

(3)
i ,y

(3)
i−1, y

(4)
i ,y

(4)
i−1

)

=
(

y
(j)
i − y

(j)
i−1

)

−f (j)
i−1/2

(

xi,xi−1,y
(1)
i ,y

(1)
i−1,y

(2)
i ,y

(2)
i−1,y

(3)
i ,y

(3)
i−1, y

(4)
i ,y

(4)
i−1

)

· (xi − xi−1) . (A.8)

The generalization of (A.4) becomes

g
(j)
i +

4∑

l=1

(
∂g(j)

∂y(l)

)

x=xi

δy
(l)
i +

4∑

l=1

(
∂g(j)

∂y(l)

)

x=xi−1

δy
(l)
i−1 = 0 . (A.9)

All in all, the 4Ni equations and the four boundary conditions allow us to solvefor the4(Ni +1)

variationsδy(j)
i by a scheme first presented by Henyey et al. (1964):

1. At grid pointi = 1, two boundary conditions are given. Together with the four equations
g

(j)
2 , only two variations are left open while the remaining six variations can be expressed

as functions of them, for example

δy
(1)
1 = U

(1)
1 δy

(1)
2 + V

(1)
1 δy

(2)
2 + W

(1)
1 ,

δy
(2)
1 = U

(2)
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2 + V

(2)
1 δy
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1 ,
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2 + V
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1 δy

(2)
2 + W

(4)
1 ,

δy
(3)
2 = U

(3)
2 δy
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2 δy
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2 ,

δy
(4)
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2 δy
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2 + V
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2 δy

(2)
2 + W

(4)
2 .

(A.10)

This requires to calculate numerically and store18 coefficients.

2. For i = 2, . . . , Ni − 1, the procedure is as follows: with the aid of the four differential
equationsg(j)

i+1 and the variationsδy(3)
i , δy(4)

i from the previous step, we have two free
variations. Thus, we can express the remaining four variations as
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δy
(1)
i = U

(1)
i δy

(1)
i+1 + V

(1)
i δy

(2)
i+1 + W

(1)
i ,

δy
(2)
i = U

(2)
i δy

(1)
i+1 + V

(2)
i δy

(2)
i+1 + W

(2)
i ,

δy
(3)
i+1 = U

(3)
i+1δy

(1)
i+1 + V

(3)
i+1δy

(2)
i+1 + W

(3)
i+1 ,

δy
(4)
i+1 = U

(4)
i+1δy

(1)
i+1 + V

(4)
i+1δy

(2)
i+1 + W

(4)
i+1 .

(A.11)

This requires to calculate numerically and store12 coefficients per step.

3. At i = Ni, the four differential equations, the two known variationsδy
(3)
Ni

, δy(4)
Ni

and the

remaining two boundary conditions allow to solve forδy(1)
Ni

, δy(2)
Ni

, δy(1)
Ni−1 and δy(2)

Ni−1

explicitly. In successive backward steps down toi = 1, all variations can be calculated
and added to the current solutions.

A.2.2 Derivation of the discretized equations G
(j)
i

We now apply the Henyey method to our specific problem of the calculation of the vertical
disk stratification. We introduce a discretization in the vertical direction by transferring the
continuous variablesFz, z, T , Σz, ρ to discrete valuesFz,i, . . . with i = 1, . . . , Ni. Thereby,
Fz,1 = 0 andFz,Ni

= F . The set of differential equations (3.25)–(3.28) has to be discretized as
well, leading to four equationsG(j)

i , j = 1, . . . , 4.

With xi−1/2, we abbreviate the mean value of a quantityx for i andi−1: xi−1/2 = (xi +xi−1)/2.
We now repeat the individual differential equations for thevertical stratification (3.25)–(3.28)
and derive the corresponding, discretized Henyey equations.

For the geometric coordinatez, we get:

∂z

∂Fz
=

Υ

ρν
⇓

G
(1)
i = (zi − zi−1)ρi−1/2 νi−1/2 − Υ(Fz,i − Fz,i−1) = 0 . (A.12)

The temperature stratification is given as follows:

∂T

∂Fz
=

Υ

ρν
· ℘

⇓
G

(2)
i = (Ti − Ti−1)ρi−1/2 νi−1/2 − Υ(Fz,i − Fz,i−1)℘i−1/2 = 0 . (A.13)

The surface density equation converts to:

∂Σz

∂Fz
=

Υ

ν
⇓

G
(3)
i = (Σz,i − Σz,i−1)νi−1/2 − Υ(Fz,i − Fz,i−1) = 0 . (A.14)
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Finally, the Henyey equation for the density becomes:

∂ρ

∂Fz

= −ΞΥ

ν
· ℵ

⇓
G

(4)
i = (ρi − ρi−1)νi−1/2 + ΞΥ(Fz,i − Fz,i−1)ℵi−1/2 = 0 . (A.15)

The boundary conditions (3.36)–(3.39) allow to rewrite these equations partially fori = 1 and
i = Ni + 1 as follows:

G
(1)
1 = z1 = 0 , (A.16)

G
(2)
Ni+1 = TNi

− Teff = 0 , (A.17)

G
(3)
1 = Σz,1 = 0 , (A.18)

G
(4)
Ni+1 = ρNi

− ρeff = 0 . (A.19)

The Henyey method requires the computation of the derivatives ofGj,i for j = 1 . . . 4 and
i = 1 . . .Ni with respect to all four variablesz, T , Σz, ρ. Theoretically, these derivatives can
be calculated analytically and applied to the numerical calculation. However, following Press et
al. (2001), it is advisable to calculate these derivatives numerically, since the analytical formulas
are a potential source of numerical problems. Generally, the numeric derivatives are given by

DG
(j)
i1

,y
(l)
i2 =

∂G
(j)
i1

∂y
(l)
i2

≈ G
(j)
i1

(
. . . ,y

(l)
i2

+ δy
(l)
i2
, . . .

)
−G

(j)
i1

(
. . . ,y

(l)
i2
, . . .

)

δy
(l)
i2

. (A.20)

The Henyey method couples only adjacent grid cells, which can be seen from the Henyey equa-
tions (A.12)–(A.15): at grid celli, only the values from grid cellsi andi− 1 enter the equations.
Thus, the derivatives (A.20) vanish for alli2 6= {i1, i1 − 1}.

In the special casesi = 1 and i = Ni + 1, the standard Henyey equations (A.12)–(A.15) are
replaced by the boundary equations (A.16)–(A.19).

A.2.3 Numerical solution of the system of equations

The solution of the original differential equations (3.25)–(3.28) and its boundary conditions
(3.36)–(3.39) can be obtained with the aid of the derivatives presented above in an iterative
procedure. Initial guesses forz(Fz), T (Fz), Σz(Fz) andρ(Fz) need to provided. Numerically,
the Henyey method corresponds to solving the following set of equations for each iteration step:

H · ∆G = −G . (A.21)
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H represents the(4Ni × 4Ni) Henyey matrix

H =



























H11 0 0 0 0

H21 H22 0 0 0

0
. . . . . . 0 0

0 0
. . . . . . 0

0 0 0 HNiNi−1 HNiNi

0 0 0 0 HNi+1 Ni



























(A.22)

with the special block matricesH11 andHNi+1Ni
for the boundary conditions,

H11 =





DG
(1)
1 ,z1 DG

(1)
1 ,T1 DG

(1)
1 ,Σz,1 DG

(1)
1 ,ρ1

DG
(3)
1 ,z1 DG

(3)
1 ,T1 DG

(3)
1 ,Σz,1 DG

(3)
1 ,ρ1





=





1 0 0 0

0 0 1 0



 ,

HNi+1 Ni
=






D
G

(2)
Ni+1,zNi D

G
(2)
Ni+1,TNi D

G
(2)
Ni+1,Σz,Ni D

G
(2)
Ni+1,ρNi

DG
(4)
Ni+1,zNi DG

(4)
Ni+1,TNi DG

(4)
Ni+1,Σz,Ni DG

(4)
Ni+1,ρNi






=





0 1 0 0

0 0 0 1



 ,

and the general block matrices

Hij =












DG
(1)
i ,zj DG

(1)
i ,Tj DG

(1)
i ,Σz,j DG

(1)
i ,ρj

DG
(2)
i ,zj DG

(2)
i ,Tj DG

(2)
i ,Σz,j DG

(2)
i ,ρj

DG
(3)
i ,zj DG

(3)
i ,Tj DG

(3)
i ,Σz,j DG

(3)
i ,ρj

DG
(4)
i ,zj DG

(4)
i ,Tj DG

(4)
i ,Σz,j DG

(4)
i ,ρj












.

The (4Ni × 1)-matrix ∆G stands for the successive iterative corrections (“variations”) starting
from the initial guesses for the four dependent variablesz, T , Σz, ρ at each grid pointi =
1, . . . , Ni:
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∆G = (δz1, δT1, δΣz,1, δρ1 | . . . | δzi, . . . , δρi | . . . | δzNi
, δTNi

, δΣz,Ni
, δρNi

)tr .

Finally, the(4Ni × 1)-matrixG gives the actual deviations from the correct solutionG = 0 for
the current values of the four variables at grid pointsi = 1, . . . , Ni+1:

G =
(

G
(1)
1 , G

(3)
1 | . . . |G(1)

i , G
(2)
i , G

(3)
i , G

(4)
i | . . . |G(2)

Ni+1, G
(4)
Ni+1

)tr
.

To illustrate how this system of linear equations can be stored and solved efficiently, we plot the

Henyey matrix forNi = 4 with Dl x
i1 i2 ≡ DG

(l)
i1

,xi2 .

H =




































D1 z
1 1 D1 T

1 1 D1 Σz

1 1
D1 ρ

1 1

D3 z
1 1 D3 T

1 1 D3 Σz

1 1
D3 ρ

1 1

D1 z
2 1 D1 T

2 1 D1 Σz

2 1
D1 ρ

2 1
D1 z

2 2 D1 T
2 2 D1 Σz

2 2
D1 ρ

2 2

D2 z
2 1 D2 T

2 1 D2 Σz

2 1
D2 ρ

2 1
D2 z

2 2 D2 T
2 2 D2 Σz

2 2
D2 ρ

2 2

D3 z
2 1 D3 T

2 1 D3 Σz

2 1
D3 ρ

2 1
D3 z

2 2 D3 T
2 2 D3 Σz

2 2
D3 ρ

2 2

D4 z
2 1 D4 T

2 1 D4 Σz

2 1
D4 ρ

2 1
D4 z

2 2 D4 T
2 2 D4 Σz

2 2
D4 ρ

2 2

D1 z
3 2 D1 T

3 2 D1 Σz

3 2
D1 ρ

3 2
D1 z

3 3 D1 T
3 3 D1 Σz

3 3
D1 ρ

3 3

D2 z
3 2 D2 T

3 2 D2 Σz

3 2
D2 ρ

3 2
D2 z

3 3 D2 T
3 3 D2 Σz

3 3
D2 ρ

3 3

D3 z
3 2 D3 T

3 2 D3 Σz

3 2
D3 ρ

3 2
D3 z

3 3 D3 T
3 3 D3 Σz

3 3
D3 ρ

3 3

D4 z
3 2 D4 T

3 2 D4 Σz

3 2
D4 ρ

3 2
D4 z

3 3 D4 T
3 3 D4 Σz

3 3
D4 ρ

3 3

D1 z
4 3 D1 T

4 3 D1 Σz

4 3
D1 ρ

4 3
D1 z

4 4 D1 T
4 4 D1 Σz

4 4
D1 ρ

4 4

D2 z
4 3 D2 T

4 3 D2 Σz

4 3
D2 ρ

4 3
D2 z

4 4 D2 T
4 4 D2 Σz

4 4
D2 ρ

4 4

D3 z
4 3 D3 T

4 3 D3 Σz

4 3
D3 ρ

4 3
D3 z

4 4 D3 T
4 4 D3 Σz

4 4
D3 ρ

4 4

D4 z
4 3 D4 T

4 3 D4 Σz

4 3
D4 ρ

4 3
D4 z

4 4 D4 T
4 4 D4 Σz

4 4
D4 ρ

4 4

D2 z
5 4 D2 T

5 4 D2 Σz

5 4
D2 ρ

5 4

D4 z
5 4 D4 T

5 4 D4 Σz

5 4
D4 ρ

5 4




































The red line indicates the diagonal of the16 × 16 Henyey matrix. Obviously, the matrix adopts
a band structure with only 5 entries left/below and 5 entriesright/above the diagonal not being
zero. The general definition of a band matrix with elementsaij is that

aij = 0 when i > j +m1 or j > i+m2 .

Thus,m1 = m2 = 5 in our case. A band matrix is usually stored and manipulated in a so-
called compact form, which results if the matrix is rotated by 45◦ clockwise. All non-zero
elements lie in a long, narrow matrix withM = m1 + 1 + m2(= 11 in our case) columns and
N(= 4Ni in our case) rows. For the above example, the compact form ofH is denoted byH̃,
which is a11 × 16 array.
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H̃ =




































D1 z
1 1 D1 T

1 1 D1 Σz

1 1
D1 ρ

1 1

D3 z
1 1 D3 T

1 1 D3Σz

1 1
D3 ρ

1 1

D1 z
2 1 D1 T

2 1 D1 Σz

2 1
D1 ρ

2 1
D1 z

2 2 D1 T
2 2 D1 Σz

2 2
D1 ρ

2 2

D2 z
2 1 D2 T

2 1 D2 Σz

2 1
D2 ρ

2 1
D2 z

2 2 D2 T
2 2 D2 Σz

2 2
D2 ρ

2 2

D3 z
2 1 D3 T

2 1 D3 Σz

2 1
D3 ρ

2 1
D3 z

2 2 D3 T
2 2 D3 Σz

2 2
D3 ρ

2 2

D4 z
2 1 D4 T

2 1 D4 Σz

2 1
D4 ρ

2 1
D4 z

2 2 D4 T
2 2 D4Σz

2 2
D4 ρ

2 2

D1 z
3 2 D1 T

3 2 D1 Σz

3 2
D1 ρ

3 2
D1 z

3 3 D1 T
3 3 D1 Σz

3 3
D1 ρ

3 3

D2 z
3 2 D2 T

3 2 D2 Σz

3 2
D2 ρ

3 2
D2 z

3 3 D2 T
3 3 D2 Σz

3 3
D2 ρ

3 3

D3 z
3 2 D3 T

3 2 D3 Σz

3 2
D3 ρ

3 2
D3 z

3 3 D3 T
3 3 D3 Σz

3 3
D3 ρ

3 3

D4 z
3 2 D4 T

3 2 D4 Σz

3 2
D4 ρ

3 2
D4 z

3 3 D4 T
3 3 D4Σz

3 3
D4 ρ

3 3

D1 z
4 3 D1 T

4 3 D1 Σz

4 3
D1 ρ

4 3
D1 z

4 4 D1 T
4 4 D1 Σz

4 4
D1 ρ

4 4

D2 z
4 3 D2 T

4 3 D2 Σz

4 3
D2 ρ

4 3
D2 z

4 4 D2 T
4 4 D2 Σz

4 4
D2 ρ

4 4

D3 z
4 3 D3 T

4 3 D3 Σz

4 3
D3 ρ

4 3
D3 z

4 4 D3 T
4 4 D3 Σz

4 4
D3 ρ

4 4

D4 z
4 3 D4 T

4 3 D4 Σz

4 3
D4 ρ

4 3
D4 z

4 4 D4 T
4 4 D4Σz

4 4
D4 ρ

4 4

D2 z
5 4 D2 T

5 4 D2 Σz

5 4
D2 ρ

5 4

D4 z
5 4 D4 T

5 4 D4 Σz

5 4
D4 ρ

5 4




































Already in our minimalistic example, the compact form̃H is considerably smaller than the orig-
inal matrixH (176 entries against 256 entries, or68.75% of the original size). For serious appli-
cations, the number of grid cellsNi is of the order of hundreds. Given, for example,Ni = 102,
the compact form requires only4400 entries to be stored, compared to160000 for the original
matrix. In other words, the original size is reduced to11/400 = 2.75%.

In order to calculate and address the entries ofH̃ directly, we note thatDl x
i1 i2

is stored in element
H̃ux vx

with

uz = 2 + 4 · (i1 − 2) + l , uz = uT = uΣz
= uρ ,

vz = 4 · (i2 − i1 + 2) − (l − 1) , vz = vT − 1 = vΣz
− 2 = vρ − 3

for the general casei1 6= {1, Ni + 1}. For the special casei1 = 1,

uz = 1 + (l − 1)/2 , uz = uT = uΣz
= uρ ,

vz = 6 − (l − 1)/2 , vz = vT − 1 = vΣz
− 2 = vρ − 3 ,

and fori1 = Ni + 1,

uz = 2 + 4 · (i1 − 2) + l/2 , uz = uT = uΣz
= uρ ,

vz = 4 − (l − 2)/2 , vz = vT − 1 = vΣz
− 2 = vρ − 3 .

The solution∆G for of the set of linear equations (A.21) is calculated efficiently by a LU-
decomposition of the compact matrix̃H with a subsequent backsubstitution using the values of
G from the current solutions forz, T , Σz andρ. We apply the routinesbandec andbanbks
from Press et al. (2001, p. 45–46) for these two steps.
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A.3 Iron K-shell fluorescence data

Table A.3. Iron K-shell fluorescence data. Fluorescence yields and line energies are taken from Kaastra
& Mewe (1993).

ion line E [eV] γrad [s−1] Yi

Fe I Kα2 6.391E + 03 2.000E + 14 1.013E − 01
Kα1 6.405E + 03 1.000E + 14 2.026E − 01
Kβ2 7.057E + 03 1.000E + 14 0.127E − 01
Kβ1 7.058E + 03 5.000E + 13 0.254E − 01

Fe II Kα2 6.408E + 03 2.000E + 14 1.014E − 01
Kα1 6.419E + 03 1.000E + 14 2.028E − 01
Kβ2 7.081E + 03 1.000E + 14 0.127E − 01
Kβ1 7.083E + 03 5.000E + 13 0.255E − 01

Fe III Kα2 6.422E + 03 2.000E + 14 1.015E − 01
Kα1 6.434E + 03 1.000E + 14 2.030E − 01
Kβ2 7.106E + 03 1.000E + 14 0.127E − 01
Kβ1 7.107E + 03 5.000E + 13 0.255E − 01

Fe IV Kα2 6.436E + 03 2.000E + 14 1.016E − 01
Kα1 6.449E + 03 1.000E + 14 2.032E − 01
Kβ2 7.129E + 03 1.000E + 14 0.128E − 01
Kβ1 7.132E + 03 5.000E + 13 0.255E − 01

Fe V Kα2 6.449E + 03 2.000E + 14 1.017E − 01
Kα1 6.462E + 03 1.000E + 14 2.034E − 01
Kβ2 7.152E + 03 1.000E + 14 0.128E − 01
Kβ1 7.153E + 03 5.000E + 13 0.255E − 01

Fe VI Kα2 6.464E + 03 2.000E + 14 1.018E − 01
Kα1 6.477E + 03 1.000E + 14 2.035E − 01
Kβ2 7.176E + 03 1.000E + 14 0.128E − 01
Kβ1 7.180E + 03 5.000E + 13 0.255E − 01

Fe VII Kα2 6.479E + 03 2.000E + 14 1.018E − 01
Kα1 6.492E + 03 1.000E + 14 2.037E − 01
Kβ2 7.203E + 03 1.000E + 14 0.128E − 01
Kβ1 7.204E + 03 5.000E + 13 0.256E − 01

Fe VIII Kα2 6.494E + 03 2.000E + 14 1.019E − 01
Kα1 6.507E + 03 1.000E + 14 2.038E − 01
Kβ2 7.224E + 03 1.000E + 14 0.128E − 01
Kβ1 7.228E + 03 5.000E + 13 0.256E − 01

Fe IX Kα2 6.509E + 03 2.000E + 14 1.020E − 01
Kα1 6.521E + 03 1.000E + 14 2.040E − 01

...

ion line E [eV] γrad [s−1] Yi

...
Fe IX Kβ2 7.249E + 03 1.000E + 14 0.128E − 01

Kβ1 7.251E + 03 5.000E + 13 0.256E − 01
Fe X Kα2 6.522E + 03 2.000E + 14 1.046E − 01

Kα1 6.534E + 03 1.000E + 14 2.092E − 01
Kβ2 7.273E + 03 1.000E + 14 0.131E − 01
Kβ1 7.273E + 03 5.000E + 13 0.197E − 01

Fe XI Kα2 6.536E + 03 2.000E + 14 1.074E − 01
Kα1 6.549E + 03 1.000E + 14 2.147E − 01
Kβ2 7.295E + 03 1.000E + 14 0.135E − 01
Kβ1 7.295E + 03 5.000E + 13 0.135E − 01

Fe XII Kα2 6.551E + 03 2.000E + 14 1.102E − 01
Kα1 6.563E + 03 1.000E + 14 2.204E − 01
Kβ2 7.305E + 03 1.000E + 14 0.138E − 01
Kβ1 7.305E + 03 5.000E + 13 0.069E − 01

Fe XIII Kα2 6.563E + 03 2.000E + 14 1.132E − 01
Kα1 6.577E + 03 1.000E + 14 2.264E − 01
Kβ2 7.325E + 03 1.000E + 14 0.142E − 01

Fe XIV Kα2 6.578E + 03 2.000E + 14 1.162E − 01
Kα1 6.590E + 03 1.000E + 14 2.325E − 01
Kβ2 7.345E + 03 1.000E + 14 0.073E − 01

Fe XV Kα2 6.590E + 03 2.000E + 14 1.194E − 01
Kα1 6.602E + 03 1.000E + 14 2.389E − 01

Fe XVI Kα2 6.602E + 03 2.000E + 14 1.213E − 01
Kα1 6.615E + 03 1.000E + 14 2.425E − 01

Fe XVII Kα2 6.613E + 03 2.000E + 14 1.231E − 01
Kα1 6.627E + 03 1.000E + 14 2.461E − 01

Fe XVIII K α2 6.631E + 03 2.000E + 14 1.606E − 01
Kα1 6.631E + 03 1.000E + 14 2.409E − 01

Fe XIX Kα2 6.631E + 03 2.000E + 14 2.202E − 01
Kα1 6.631E + 03 1.000E + 14 2.202E − 01

Fe XX Kα2 6.605E + 03 2.000E + 14 3.258E − 01
Kα1 6.605E + 03 1.000E + 14 1.229E − 01

Fe XXI Kα2 6.596E + 03 2.000E + 14 5.521E − 01
Kα2 6.586E + 03 2.000E + 14 4.903E − 01
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