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Zusammenfassung

Akkretionsscheiben um Schwarze Lécher
Quellen der Viskositat und Spuren von tber-Eddington Akkre tion

Wir untersuchen die Rolle der Konvektion in Akkretionssblea um Schwarze Loécher, ins-
besondere den Einfluss auf den Energietransport und dieidusw konvektiver Turbulenz auf
die Viskositat in der Scheibe. Wir zeigen, dass Konvektien Energietransport durch Strahlung
im Falle einer masselosen Scheibe effizient unterstitdtyevéd es im umgekehrten Fall einer
selbstgravitierenden Scheibe zu negativen Rickkoppéffekgen kommt. Obwohl konvektive
Turbulenz einen signifikanten Beitrag zur gesamten Vidko&istet, kann sie nicht alleine als
Erklarung daflr dienen.

Im zweiten Teil untersuchen wir die spektrale Energievieng von Uber-Eddington akkretie-
renden Schwarzen Lochern, basierend auf 2D strahlungstlydamischen Simulationsdaten.
Wir berechnen die Kontinuumemission und die Emission undofjtion der Eisen-K-Linien
mittels einer Ray-tracing Methode. Wir zeigen, dass naktische Beaming-Effekte fir frontal
betrachtete Scheiben zu tGber-Eddington LeuchtkrafterefiinDie Eisen-Linien erweisen sich
als guter Indikator fur den Akkretionsprozess in den inne®eheibenregionen: Es zeigt sich
eine enge Korrelation zwischen dem Verhéltnis dgflfnien zu den K, Linen und der Zentral-
masse, sowie zwischen der Linienbreite und dem Beobacéiinkel.

Abstract

Black hole accretion disks
Sources of viscosity and signatures of super-Eddington acc retion

We study the role of convection in black hole accretion floW¢e investigate the influence of
convection on the energy transport as well as the effect w¥extive turbulence on the disk’s
viscosity. The results reveal that convection supportgdldéative energy transport efficiently
in massless disks, while it can turn into a negative feedlifaaif-gravity becomes important.
Convective turbulence adds significantly to the total vestyo but cannot account for it on its
own.

In the second part, we study the spectral energy distribugfosuper-Eddington accretion
flows onto a black hole, based on 2D RHD simulation data. Weatthé continuum emission as
well as the iron K line emission and absorption features wittly-tracing radiative transfer code.
We find that mild relativistic beaming effects become impotf leading to super-Eddington
luminosities for face-on seen disks. We confirm the diago@stwer of the iron K lines on the
accretion process in the inner disk region, finding a strargetation between the central black
hole mass and the ratio of the, Ko the K; lines. We also detect a trend of line broadening for
edge-on seen disks.
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1 A small bubble in the Universe

When | began my physical studies [in Munich in 1874] and sowaglvice

from my venerable teacher Philipp von Jolly ... he portratede physics
as a highly developed, almost fully matured science ... iBlys& one or

another nook there would perhaps be a dust particle or a sindible to be
examined and classified, but the system as a whole stoodfétidyesecured,

and theoretical physics approached visibly that degreeesfgetion which,
for example, geometry has had already for centuries.

—from a 1924 lecture by Max Planck (Sci. Am, Feb 1996)

On the very day when this introduction was written (April 2808), we were celebrating the
150" birthday of Max Planck. Fortunately, Planck decided to gtpHysics despite the bleak
future for research that was presented to him. In 1901, hkghelol an article with the title “On
the Law of Distribution of Energy in the Normal Spectrum”sdebing the spectral radiance of
electromagnetic radiation at all wavelengths of a blackbatda given temperature. This was
not only the cornerstone in his career, it also paved the waynbdern physics and astronomy.
Only through Planck’s law, astronomers were able to modeletiitted spectrum of a star, a
blackbody radiator in zeroth order, without running inte thitraviolett catastrophe. Quantum
mechanics and atomic physics would not exist without thiglmental discovery.

Nowadays, more than 100 years later, we know that von Jolljdaoot have been further off
the mark. Although our understanding of the Universe broadeo an extent almost beyond
belief, it seems that with the answer of one question, at kegsothers are rising. And so it
happens that this thesis deals with two out of many open munssin one of von Jolly’s small
bubbles. And even there, we again encounter Planck’s biatykiadiation law and its offsprings
in atomic physics.

In this dissertation, we study the properties of accretimksdaround black holes. Having
called them one of von Jolly’s small bubbles, it needs to beiqo the right context. Yes, it
is certainly only one corner of physics where questions mertabe answered. At the same
time, accretion disks are ubiquitous! They can be found atregerywhere in the Universe,
from today back in time until the Cosmos was less than ondanilfears old, from sizes of
about one solar radiug({'cm) in low mass X-ray binary systems up to one pard&¢’¢m)
in active galactic nuclei, and around a wealth of objects fikotostars, white dwarfs, neutron
stars or black holes. Despite this huge variety, the driyihgsical principle, the accretion of
matter onto a central object through a disk-like structteeains the same. Understanding the
key process of accretion is therefore one of the big chadlenigut also one of the big chances of
astronomy in th@1% century. Here, we investigate two pixels of the overallyniet



1 A small bubble in the Universe

The source of viscosity in astrophysical disks Theoretical modeling of accretion disks
dates back to the year 1948, when Weizsacker publishedtiakeabout the rotation of cosmic
gas (Weizsacker, 1948). A key ingredient to describe thesion process is the origin of the
viscosity, which causes friction in the disk and an inwardioroof the material. In those early
years, it was generally believed that molecular viscositgsponsable for this effect. However,
the first observations of accretion disks in cataclysmicades, which allowed to deduce the
typical timescales of the accretion process, threw ovetireretical expectations (see, e.g.,
Prendergast & Burbidge (1968); Pringle & Rees (1972)). Tiesgaled, that the numbers mea-
sured in the lab and those needed to account for the obsmrsatiffered by about ten orders of
magnitude. The following decades saw a plethora of attetoptssolve this puzzling situation,
but none of them succeeded. Only Shakura & Sunyaev (197pppeal a parameterization, the
a-viscosity, by which all of a sudden most observations ctndditted adequately. Despite this
success, the Shakura-Sunyaev viscosity remains a purgliieah description and no physical
explanation, and it is limited to thin disks with negligildesk masses.
Among the physical theories, the most promising ones are:

e Differential rotation. Accretion disks are mostly showing a nearly Keplerian rotat
profile. An obvious candidate for the turbulence in such & disherefore differential ro-
tation. From early laboratory experiments on rotating Gm4&aylor flows (Wendt, 1933;
Taylor, 1936), this possibility was first ruled out. Howevigr recent re-investigations,
Richard & Zahn (1999) and Richard (2001) concluded thatckfftial rotation can give
rise to turbulence, despite published arguments. At theedame, Duschl et al. (2000)
formulated thes-viscosity description. Although being a parameterizatide its an-
cestor, it can actually be related to the process of diftgkrotation. Contrary to the
a-prescription, thes-viscosity accounts properly for the selfgravity of thekdisAt the
same time, it includes tha-viscosity in the case of a shock dissipation limited, non-
selfgravitating disk.

e Convection. The process of accretion is the most efficient way of prodyeimergy, out-
classing nuclear fission by a factor of at leé8d. In order to account for the transport
of these huge amounts of energy, convection is considersdgport or even dominate
in some cases over radiation. It is therefore natural torcetfee turbulence caused by
convective motion as a possible candidate for viscosityaiAgfirst (semi-)analytical in-
vestigations gave discouraging results, since they ledgely massive disks which could
not be explained, given the-viscosity description (Vila, 1981; Duschl, 1989). Rudén e
al. (1988); Ryu & Goodman (1992) studied convective inditzds in thin gaseous disks
and confirmed that angular momentum transport can be sugapbyt convective turbu-
lence. Goldman & Wandel (1995) investigated accretionsivgkere viscosity is given by
convection solely and where the energy transport is maiathby radiation and convec-
tion. They found the resulting viscosity being too low by atéa of 10 to 100, but could
not draw a final conclusion, since their disk model was ovepéified

e Magneto-rotational instability. The magneto-rotational instability (MRI) was first no-
ticed in a non-astrophysical context by Velikhov (1959)a@trasekhar (1960) when con-
sidering the stability of a Taylor-Couette flow of an ideatlihymagnetic fluid. More than

1The authors applied a one-zone approximation (c. f., S&3ti2 their models and estimated the contribution of
convection to the energy transport in an overly simple way.



30 years later, these early results were brought back twhfen Balbus & Hawley (1991)
established, that weak magnetic fields can substantiddy thle stability character of ac-
cretion disks, giving rise to a generic and efficient angmlamentum transport. Today, the
MRI is considered as the primary candidate for solving timg llasting riddle of viscosity
in disk accretion flows. Yet again, we find ourselves in oneasf Jolly’s nooks, since the
MRI basically requires two essential conditions to holds#y, the angular velocity has to
decrease with the distance from the central object. Segoadiveak) poloidal magnetic
field must be present. While the former criterium is usuallgtmm accretion disks, the
latter one can pose a severe problem. A further weak poimhagneto-rotationally stable
dead zones disks (see Sect. 3.7 for a further discussion). More fumetatal, King et al.
(2007) pointed out a discrepancy of at least one order of magmbetween the viscosities
generated by the MRI and those inferred from observations.

Thus, the question if one of these candidates, a combinafittilem, or even some other pro-
cess is responsible for generating viscosity in astrogayslisks, is very much open. In their
conclusions, Goldman & Wandel (1995) stressed the needdoneective disk model where the
vertical structure is calculated self-consistently. Wéofe their suggestion in Chapt. 3 and con-
struct a disk model where we calculate the effect of conwadt a self-consistent way by means
of the mixing-length theory. Hereby, the total viscositygisen by convection and a support-
ing (-viscosity, accounting for turbulence due to different@tiation and allowing or potential
self-gravitating effects. Beforehand, in Chapt. 2, we aisscthe limitations of thg-viscosity
as a description of subsonic turbulence, i.e., the comstraif the shock dissipation limit on
these disks. There, we also investigate a possible feedifaxnvection on the upward energy
transport, i. e., a downward motion of heat-carrying eletsid@n preparation for Chapt. 3.

Spectral energy distribution of super-Eddington flows In the second part of this the-
sis, we investigate the long standing problem of the limitl@accretion rate onto a black hole.
This topic became a matter of debate already in the 1970'gdlBean, 1978; Burger & Katz,
1980) and the final word is not yet spoken. In earlier work, Wwevged that the classical Ed-
dington limit cannot be applied in a straightforward way he eiccretion disk case (Heinzeller
& Duschl, 2007). The major difference to the stellar cas@ésdifferent geometry, which leads
to an anisotropic limit. Along with that, the accretion ratay exceed the value derived from
the classical limit significantly. This is mainly due to trect that apart from radiation, energy
can be transported efficiently by other processes such as@olv in the disk. This has not been
taken into account in the classical calculations. Howewemerous investigations have been
carried out in order to circumvent the limitations imposgdie Eddington limit (see Sect. 4.1
for a further discussion).

The final answer to this question will have a considerableaichpn our understanding of
accretion physics: over the whole range of central black Inohsses, from stellar mass black
holes with a few solar masses up to supermassive black HeMBIl) with up to one billion
solar masses, key questions about their formation and #&woltemain to be answered. Here,
we focus on one important aspect.

Ultraluminous X-ray sources. Do they contain intermediate mass black holes or not?
Recent observations of ultraluminous X-ray sources (ULeg s.g. Makishima et al. (2000);
Kubota et al. (2006)) reveal a puzzling situation for blackehaccretion theories. With a bolo-
metric luminosity exceeding0® ergs (derived from X-ray observations), at least some of
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Figure 1.1. The Seyfert 2 galaxies M51 (left) and M102 (right). Althoutife central engine in both
galaxies works in a similar way, their appearance on theskgpinpletely different. While the dense disk
blocks the emitted radiation from the core of the edge-oered M102, the face-on view on M51 allows
a close look at the central region. Credits: Hubble Heritbegm.

them show relatively low radiation temperatures (.1 keV). These systems have been sug-
gested to be intermediate mass black hole, sub-Eddingtoetamn disk systems (Miller et al.,
2003; Cropper et al., 2004). Controversially, from timeiahility observations, it seems to be
likely that these objects are instead low-mass X-ray birsgstems (Liu et al., 2002). Radio
observations show that the distribution of ULXs can as welfitied by stellar mass black holes
with mildly relativistic jets (Kording et al., 2004).

The substantial amount of observational data from X-raglk&s such ahandrg XMM-
Newtonor Suzakualso reveals that a distinct class of ULX sources exis®ygig higher tem-
peratures — sometimes exceedinkeV — than can be explained by IMBHs. Contrary, stellar
mass black holes accreting above their Eddington limit caoant for these sources (Watarai
et al., 2001; Ebisawa et al., 2003; Vierdayanti et al., 20@&jernatively, mild beaming effects
could be important (King et al., 2001). A controversial debabout the origin of ULXs is still
ongoing (see, for example, Roberts (2007) for a review).

A key point for a proper understanding and interpretatidhéscomparison with theory. Con-
siderable efforts have been made in the last decades to lad&lhole accretion disks in detail,
which are partially summarized in Sect. 4.1. Among them,u@hst al. (2005); Ohsuga (2007)
performed two-dimensional radiation-hydrodynamic siatioins (2D RHD) of super-Eddington
accretion flows onto a central black hole. We investigatespiextral energy distribution of their
results by focussing on the continuum emission featureshap€ 4. Main emphasis is thereby
the influence of the orientation of the disk relative to theexer, in order to study the conse-
quences of anisotropy and beaming effects in super-Edufirgtcretion flows. To illustrate the
impact of the orientation of such a disk relative to the obserwe display the two Seyfert 2
galaxies M51 Whirlpool Galaxy and M102 Epindle Galaxyin Fig. 1.1.

Of great interest are not only the continuum spectra of @icecredisk systems. Atomic
and molecular lines offer the chance to measure rotatioihdou velocities through red- or
blueshifted lines. They also allow to constrain tempergtpressure and density, or even strong
gravitational effects in the vicinity of a black hole fronmé profiles and strengths (relative to
each other and to the continuum). The potential diagnosiizep of discrete line emission and
absorption features, which has been attracting theonnstsoaservers for decades, is reviewed
in great detail in Miller (2007). In the high energy regimbetiron K lines are of particular
importance, not only because iron is the most abundant efeimspace (abowt% in mass of
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Figure 1.2. Prominent iron K line
' emission in Mrk 3, observed with
Energy (keV) XMM-Newton(Bianchi et al., 2005).

all metals), but also because its K lines are very strongsitians in a relatively unconfused
spectral region betwedrkeV and9 keV. Iron K line observations show a long history, with first
detections being reported from rocket observations oftipesiova remnant Cas A (Serlemitsos
etal., 1973). Soitis no wonder, that the availability ancusacy of atomic data is unique among
the heavy elements.

With the sensitivity and resolution of modern X-ray telgses, also iron line observations
in black hole accretion disks became possible in the lashdiec In particular in the case of
supermassive black holes in quasars and Seyfert galaigesficant progress has been made.
The observations vary greatly, showing strong and broadgsaom lines (e.g., in the Seyfert
2 galaxy Mrk3 (Bianchi et al., 2005), see Fig. 1.2), complesaption features with broad
and narrow emission lines (e. g., in the Seyfert 1.5 galaxYCR&L6 (Markowitz et al., 2008))
and also highly blueshifted and extremely strong emissiogsl(e. g., in the Seyfert 1 galaxy
PG1402+261 (Reeves et al., 2004)). The situation is moregboated in the case of accretion
flows around potential low mass black holes (i.e. ULXs), duéheir relative weakness. Iron
K line observations are therefore limited to a handful ofealg, such as M82 X-1 (see below).
However, the spectacular progress of each generation afyXetescopes over the last decades
gives rise to hope that this situation will change in the rieture.

In the light of the recent successes in both theory and oageny we extend our investigation
of the spectral energy distribution of super-Eddington idawards a modeling of the iron K
lines (Chapt. 5). We thereby take advantage of the existagptive transfer code from the
first stage of the project, which is fully parallelized anérifore can be run on modern cluster
computers with high efficiency. We apply the calculationgxtended data sets of the original
2D RHD simulations (Ohsuga (2007) and Ohsuga, priv.commth warying accretion rates
and different central black hole masses betwegand10® solar masses. We also extrapolate
the available sets of simulation data to the specific case8# X41 and compare our theoretical
spectra with observations I§handraandXMM-Newton(Sect. 5.6).

Remark.We choose the cgs-system as system of units in all followiandiss. If not explicitly
stated, all numbers are given/displayed in their corredpancgs-units. The physical constants
used on this work are listed in the appendix (Table A.1 on d29.
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2 The diffusion limit and convective
feedback in selfgravitating disks

2.1 Introduction

In this chapter, we present a simple accretion disk modelvestigate the influence of the tur-
bulent backcoupling on the energy transport in disks, sintd earlier work by Duschl (1983).
Since we want to investigate not only disks with negligiblasses (compared to the central ob-
ject), but also with comparable or even dominating massesamly the3-viscosity description
(Duschl et al., 2000). In standard disk theories, the visgpsramete(s is taken to be constant
and in principle only limited by an upper valug,.x < 1. However, it is well known that for a
too high value of3, a diffusion limit has to be applied (c. f., the discussiotolaeand in Duschl
et al. (2000)).

To avoid the additional introduction of a diffusion limitgairst investigate disk models where
we limit 5 by an upper valug.y but allow it to be reduced, if necessary. Subsequently, we
discuss the contribution of turbulent backcoupling to therall energy transport in Sect. 2.5.

2.2 Model setup

The principal disk geometry is displayed in Fig. 2.1 (uppet)p where we also introduce the
main geometrical variables. A cylindrical coordinate sysis the natural choice for such a sys-
tem, in particular under the general assumption of azimggrametry. We distinguish between
the 3-dimensional radiusand the planar radiusin the disk plane. In the limiting case of a thin
disk with disk heighth = h(s) < s, one gets' ~ s.

The lower two plots in Fig. 2.1 sketch two standard methodsatoulate geometrically thin
accretion disks. The simplest approximation is the scedadine-zone approximation, where the
problem reduces to a one-dimensional calculation by usnhgiotegrated values for the vertical
structure. Somewhat more sophisticated is the 1+1-diroaabkcalculation. Here, one assumes
that the vertical structure decouples from the radial orfeclvsplits the two-dimensional prob-
lem into two one-dimensional problems. This simplificatisonly possible as long as the disk
is sufficiently thin, which, for example, causes the vettgteucture to react instantaneously to
changes of the radial disk properties.

We derive the disk equations in this chapter under the follgu@ssumptions: (1) stationarity,
(2) no relativistic effects, (3) monopole approximatiom fbe disk’s gravitational potentiab,

(4) Kramer’s opacity as description of the scattering arsbgttion processes, (B}viscosity as
introduced by Duschl et al. (2000), (6) geometrically thiskd (7) one-zone approximation. In
that context, the disk equations are given as follows: tmticoity equation reduces to

M = —2msu,%, (2.1)
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: A atmosphere
rotation axis (z)

disk plane (x-y)

one-zone approximation 1+1-dim. calculation

Figure 2.1. Principal disk geometry and the two commonly used methodsifoplifying the two-
dimensional problem. The general assumption hereby iszineughal symmetry of the disk.

where) denotes the accretion raie,the radial velocity in the disk and the integrated surface
density. The momentum equation — wittbeing the angular velocity/, the mass of the central
object andMy(s) the enclosed disk mass — gets

g3

The angular momentum equation is given by

—wM = QWSVZa—w + % , (2.3)
Jds s
wherer stands for the viscosity and, is a constant of integration which remains to be set, for
example at the inner boundasgy The hydrostatic equilibrium in the monopole approximatio
becomes
M. + M, h?
p= Gt Mals))p I oo (2.4)

S 52

with the total pressurg, while the energy equation can be written as follows:

1 ow\? 2acT?

vyt = | = . 2.5

oV <8s> BT (2:5)
P 7

10



2.2 Model setup

Thus, all energy dissipated in the accretion flow is radiftenh the disk, and the internal energy
remains unchanged. We use the standard equation of stajad@nd radiation:

kgT Qrad

P = Dgas+ Prad = pMmH + ?TZL . (2.6)

The Kramer’s opacity is expressed as

el

m?
K = Kes+ ropT ™ /? = 0.4 C? + 6.4 - 102 T[K]~"/2 p[g/cm?] (2.7)

The 3-viscosity is given as usual by (for the definition of the “paeter’3, see Sect. 2.2.2):

v = fs’w. (2.8)
We further define the disk’s mass, inner disk radius and sspedd by
Mqy(s) = 27‘(‘/5 s¥ds, (2.9)
Y = 2ph (2.10)
si = 3rs= 6Cii\4c7 (2.11)
= p/p (2.12)

wherers denotes the Schwarzschild radius (we assume a non-ro&thgarzschild black hole).
For the sound speed, the pressure and density are taken limuwlisk plane as usual. With
Mqy(si) = 0(2.9), we obtain the angular velocity from (2.2) as

GM,
w(si) = wk(si) = 3 : (2.13)
i
and its derivative as
Ow 3wk (si)
o — oK 2.14
0s 2 s ( )

S=Sj

2.2.1 Boundary condition

We set the boundary condition as usual at the inner disk saglidrhe classical boundary con-
dition in thin accretion disk theories is a vanishing torquethe inner boundary of the disk,
corresponding t@; = 1 - Ms?w(s;). In this case, the angular momentum equation (2.3) be-
comes

VS = _Wj\i/as) (w(s) 1. i—iw(si)) .

The other extreme case is full Keplerian rotation at the ifv@undary, which is realized by
C1 =0 Msiw(s;) = 0, with a simple angular momentum equation of the form
Muw(s)

Y=
Y 275(0w/0s)

11
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The latter case is purely theoretical, since it implies tiat accretion process is effectively
stopped at; if there is no other mechanism to extract angular momentuimarsmall boundary
layer region. But even if there is, a significant amount ofrgpeneeds to be transferred from
the plunging region into the disk to maintain the overallrggebalance (see, e.g., Duschl &
Tscharnuter (1991) for a further discussion).

For a general treatment, we define a paramgtenith C; = y - Ms?w(s;). The angular
momentum equation (2.3) is then given by

= M 5 (s 2.15

v = 5ms(00]05) w(s)—x~?w(s,) . (2.15)
for 0 < x < 1. We will investigate the influence of this parametein Sect. 2.3. Nonetheless,
we derive a special value for it from the following idea: ttedue ofy defines which fraction of
the Keplerian angular momentum is still carried by the makerriving at the inner boundary.
For x = 0, the material circulates with the local Keplerian angulatoeity, I(si) = Ik(si),
and therefore cannot be accreted by the central black hotatr&y, y = 1 means that the
material holds no angular momentum anymore and can falyfa#o the black hole. However,
this extreme situation causes numerical problems at ther ipoundary, sinceX = 0 ats =
si. Therefore, we ask for the minimum value pfin order to allow the material to reach the
central object. In the case of a Schwarzschild black hoig cibrresponds to a Keplerian angular
momentum at the Schwarzschild raditgs= 2GM;/c*. With s; = 3rs andMy = 0 for s < s
(see (2.9)),

GMCSi ZK(Si)

lK(Ts) vV GMCT’S 3 \/§
We definey, := 1 — 1/v/3 ~ 0.423, which will be used as standard value in the following.
Although being exact in the simple model considered herey#iue ofy, will change, if, for
example, the black hole spin or the magnetic field are indudehe description of the disk’s
inner region. Fory, = 0.423, the integrated disk luminosity gets08 times the gravitational
energy released by the accretion process dows. tdhus, a small amount of energy needs to
be injected into the disk from the plunging region (betweeandrs), where twice as much
potential energy is released as in the disk (betwgeands;). There is also the fact that the
boundary layer in this disk model is assumed to be infinitehals which is of course not
realistic. An extended boundary layer can allow for enemgghange between these regions
(Duschl & Tscharnuter, 1991).

2.2.2 Adaptable viscosity parameter 3 and numerical techniques

The viscosity is given by (2.8). Usually, a diffusion lim& added in the case that the turbulent
velocity v, = /Bv,, exceeds the local sound spegd

-1
v,

o (2.16)

\/Eup > s =— UpL = 77202

with an additional parameter < 1. For turbulent velocities exceeding the local sound speed,
shock fronts would be created, leading to a shock dissipdioited regime. Up to now, no
reliable and handsome theory of supersonic turbulencésekiat covers these effects.

12



2.3 Results

In the following, we propose a different mathematical megs@ to avoid supersonic turbu-
lent velocities. Before presenting the details, we dis¢hesmain properties of our numerical
calculation: for simplicity, we adopt an explicit Euleriaosheme with logarithmic equidistant
step size. Since the calculations are quite cheap, a sufficemall step size can be chosen by
default (see below). The boundary conditions are giveneairther radius, therefore we start the
calculation at = s; and stop at, > s;. Here, we us8, = 10%s; and divide the calculation into
N,, = 5000 steps in radiis,, = s; - 10%-0006m,

We define an upper limiax Which is of the order of the usuglparameter (e.g1073). If
the conditiony/Gmaxv, > cs becomes true during the calculation, we decreblbg & Bmnax £ < 1,
and repeat the calculation for step This iteration is performed unti|/Gv, = ¢s. Thereby,
two requirements have to be fulfilled: (a) the behaviofads a function of radius has to be
sufficiently smooth, and (b) the reduction @by & Gnax has to be small, compared to the actual
value of the viscosity parameter — these conditions renteloetchecked afterwards.

The calculation starts at the inner boundayy By substitutingy with (2.8) in the angular
momentum equation (2.15) at the inner boundary and usir {@th (2.9), we get an initial
equation forx:

M
i = 3rGistwk (si) (1=x).
With the aid of the remaining disk equations and definiti@tisquantities can be calculated for
si. In detail, the equations can be reduced to a system of twdinear equations foi” andp,
which are solved by a Newtonian iterative scheme.

The numerical step — n + 1 is performed by calculating the disk’s mag&(s) from (2.9),

the angular velocity from the momentum equation (2.2) asidéfrivative from

(2.17)

Ow _w(sn) —w(sn1)
0s - Sy — Sp_1

S=Sn,

(2.18)

Then,X and all other variables can be calculated from the remaieinmtions. Again, if the tur-
bulent velocity exceeds the sound speed in ste¢he parametes is reduced and the calculation
for stepn is repeated untiby,, = cs.

2.3 Results

In this section, we present the results for our new disk modeé investigate the influence
of three parameters in the following subsections: the sictreate M/ (Sect. 2.3.1), the inner
boundary conditiory (Sect. 2.3.2) and the viscosity parameiggy (Sect. 2.3.3). In all calcula-
tions, a standard setup is used:

M, = 10M,,
si = 8.86-10°cm,

so = 10, (2.19)
N, = 5-10%,

£ = 107,

13



2 The diffusion limit and convective feedback in selfgrating disks

M/ME 1073 10-2 10-! 100 10+! Table 2.1. Radiuss, of innermosts-correction.
so/si 1.000 1.000 8.544 117.8 —

2.3.1 Influence of M

To explore the influence of the accretion rate, we get . = 0.423 and Bnax = 10f3.
Figure 2.2 shows the disk properties for varying accretates between0—*Mg and 10" Me.
The Eddington accretion rate faf, = 100, is given byMy = 1.67 - 10"g/s.

The overall expectation of an increasing height of the diskhigher accretion rates can be
recovered from the figures. The high accretion rate cases {1, 10}ME significantly violate
the thin disk approximation in the inner part of the disk. Thape of the disk heightis influenced
by the actual value of, as are the other disk quantities: while for high accretaias, the default
valuenax = 10~ is always allowed, for lower accretion rates the ligfifnaxv, = csis violated
at radiussg, which is listed in Table 2.1 and which decreases the lonentitretion rates are.

This drop ing is directly translated into smaller radial inflow velocgiand higher surface
densitiest for s £ so. This leads to an increase in densitiesnd temperatures, which results
in a rising pressurg by means of the equation of state (2.6).

For even larger radii, the viscosity “parameter’adopts a minimum value and starts to in-
crease again, whilg, p and7" are decreasing. The behaviorXfis determined mostly by the
densityp and therefore also shows a significant peaksf@r s.

Since the disk mass/y remains negligible for all accretion rates, the azimuthedowity is
identical for all accretion rates. As a first guess, this maylbe to the small extent of the disk,
so = 10%s;. We therefore repeat the calculations for the same phypa@meters, but with
so = 10%s; and N, = 5 - 105, For all accretion rates betwedf 31/ and 10/, we obtain
final disk masses betwean—8M/, and10~°M,. Thus, the disk mass remains negligible also for
extended disks.

Contrary to the azimuthal motion, the sound spegstrongly depends on/: for high ac-
cretion rates and small radii (large ratio lofs), the rotational velocity becomes subsonic, as
expected from the thin disk relatidrys = cs/v,,. Accordingly, for low accretion rateg < v,
always holds. Ats = s, the slope ot flattens. Due to the decrease/nthe viscosityv is
smaller in the diffusion limited regions. This effect beagssignificantly stronger the lower the
accretion rate is.

An interesting competition between mass supply by acaretia radial inflow velocities can
be seen in the exact profile 8fy: when the accretion rate is decreased, in a first instance the
surface density and therefore the disk mass decrease, thoafwe outlined before, the radial
inflow velocities decrease due to the down-correctiofi,afhich forces the disk mass to increase
again.

The opacityx is dominated by electron scattering as long as the temperattigh enough.
Only for large radii and small accretion rates, atomic apgon comes into play and increases
the opacity up td cm?/g. The composition of the total pressyralso depends strongly on the
accretion rate. For high?, radiation pressure dominatgswhile for low accretion rates, gas
pressure determines the local pressure throughout ail radi

14



2.3 Results
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Figure 2.2. Steady stat@-disk model forM =

s/si

{1073,1072,10"1, 1,10} ME.

15



2 The diffusion limit and convective feedback in selfgrating disks
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In this section, we investigate the effects of the boundanddion at the disk’s inner radius
with fixed accretion ratd/ = 10~ Mg andfmax = 1073, The parametey varies betweef and
0.999, which is close to the torque-free case. To avoid numeridtitualties, we usey = 0.999
as the largest, instead ofl. The results are displayed in Fig. 2.3.

The shape of the curves is now determined by two effectsiyfidsy the decrease iy at
s > s, Wheres, varies betweens; (y = 0.999) and10s; (x = 0); secondly, by the different

boundary conditions at = s;. The latter effect can only be seen in the inner part of thk, dis

s 5 30s;, due to the factos?/s? in the angular momentum equation (2.15).

In the torque-free case; = 0.999, the height of the disk decreases sharply Jor~ s;.
Contrary, fory = 0, it adopts a constant value. For standérdisks, one expects that: — 0
for y — 1 (see (2.15)), and;, — oo (see (2.1)). But here, the parametias reduced drastically
for s £ 1.3s; andy = 1, which leads to a sharp increasedirandp and to a rapid drop in;
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2.4 Comparison with the classical diffusion limited case

for the same radii. For.3s; < s < 10s;, the viscosity parameter adopts its maximum vatyg
and the disk models approach each other. Thus, the boundadjtion not only has a direct
influence on the inner disk structure, but also an indiree tnmough the onset of the shock
dissipation limit for larger values of.

Although a change iy only affects the very inner disk regions, this might be venportant:
Fukue (2000, 2004) and Heinzeller & Duschl (2007) showed the innermost disk region
is crucial for the determination of an Eddington-type liffat accretion disks. They found a
significant decrease in the maximum amount of matter thatoeaaccreted by the black hole
(i. e., the critical accretion rate).

2.3.3 Influence of Bmax

Of great importance is also the influence of the viscositapaater on the disk model. Although
the value offyax can be motivated from hydrodynamic turbulence, it remam&aal-hoc” pa-
rameter. We investigate its effects for the standard séfup- 10~ 'Mg, y = 0.423, and vary
Bmax betweenl0~* and10~2. The results are displayed in Fig. 2.4.

The disk height, the sound speed and also the disk mass altg imluenced by the maximum
viscosity parameter. FQbna < 1.4 - 1074, the conditiony/fmaxv,, < ¢s holds throughout all
radii, therefore the results fgt,, = 10~* show a disk which is not affected by our new model
for the viscosity. Foma = {1073, 1072}, the influence of our viscosity description becomes
visible, in particular for the radial velocity, the densand the surface density: in the region
where 3 drops rapidly, the density and surface density are maximhile the radial inflow
velocity decreases.

One interesting point should be mentioned here: as can befisee Fig. 2.4, the local sound
speedcs = \/]% is unaffected by the maximum viscosity parameigg,, althoughp andp
depend on its actual value. From the disk equations and tietHat the disk is in a non-
selfgravitating state for all values 6.y, We can derive the following scaling laws:

shock dissipation limit dominant pressure term scalingooingl speed

no Prad cs o 32, = const
—-1/8

no Pgas Cs X ﬁmaﬁ

yes DPrads Pgas Cs X ﬁ,?qax = const

The dependence of on the upper limitiax is (almost) zero in all cases.

2.4 Comparison with the classical diffusion limited case

One could ask for the validity of the iterative calculatidrilee viscosity parametet. We there-
fore investigate its application in comparison with thealuapplied diffusion limit introduced
in (2.16):

-1

vy,

2 2
V Bmaxty > cs = vpL = 1°Cs s

17



2 The diffusion limit and convective feedback in selfgrating disks
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Figure 2.4. Steady statg-disk model forBmax = {10~4,1073,1072}.

The weakness of (2.16) is, that it requires an additionapater, < 1, whose value may be
chosen somewhat arbitrarily in a first instance. This, h@raway lead to discontinuities of the
physical variables at the radiyg. Thus, it needs to be adjusted manually.

In the following, we discuss how this parametes related to the value gf when the condi-
tion \/Fmaxv, < csis violated. Suppose thatfmaxv, > cs. The actual value of is decreased
in small steps fronBax to a value which we may call* with

B =ci/v. (2.20)

By comparing the resulting viscosity (2.8) with the diffasilimit (2.16), we get

2 —1
2 C 2 2 o |0V
ﬁsw:SZZZ-sw:ncSa—; (2.21)
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2.4 Comparison with the classical diffusion limited case
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Figure 2.5. Diffusion limited disks (DL) withn = {2/3,1/+/2,3/4} and a disk with varying? (BV).

Solving forn? and substituting,, = sw leads to
5 1
n° = ;-|w+58w/83| . (2.22)

We discuss two concrete values for special disk cases (N@Gselfgravitating, KSG: Keplerian
selfgravitating, FSG/Mestel disk: fully selfgravitating

L NSGIKsG: g_“’ _ 3w
=4 s (2.23)
. Ow w
0 Mestel disks: v, = sw = const—=- %=
S S

Sincedw/0ds < 0V s in the disk models presented here (see (2.3)), it is autcaiBtiassured

thatn < 1. Interestingly, the ,constant* parameter may become Wi this scenario if, e. g.,
the outer regions of the diffusion limited zone are selivgeding, while the inner regions are
dominated by the gravitation of the central object. If, oa tither hand,

, A =const (2.24)

ow W
s

gZA

the diffusion limit parametey adopts a constant value — which is unique, since it is givethéy
requirement of continuity of, 3, ... at the radius,, where the viscosity parametémeeds to
be decreased for the first time. This effect is shown in Fi§ f@r the viscosity. Since the disk
remains in a non-selfgravitating state for all radii, th#udiion limited disk withn = const=
1/4/2 gives the same results as a disk with varying viscosity patars.

19



2 The diffusion limit and convective feedback in selfgrating disks

2.5 The influence of turbulence on the energy transport

In this section, we study the influence of turbulence on tlexggntransport in the sense that we
investigate its feedback on the upward energy transpodtifanits contribution to it). The latter
case will be studied in much more detail in the following deapMore precisely, we study the
following problem.

Consider an accretion disk which is stable with respect @oSbhwarzschild criterium (c.f.,
Sect. 3.7). Then, by definition, convective turbulent mot® shut down. On the other hand,
since the accretion process requires viscosity to be at,whikkimplies that therenustbe some
kind of turbulence. Since the stratification is assumed t&d®varzschild-stable, the turbulent
energy transport is formally negative and therefore caawts the radiative energy transport.

In standard disk theory, all the energy generated by fmcfice., by viscosityF, ) is radiated
locally (F). Thus, if turbulent feedback turns out to transport a neghgible amountt;, of
energy downwards into the disk, the effective cooling fligg must account for this:

Fraqg = F+ + Fuw = F_ + Fum - (2-25)

A similar investigation has been carried out by Duschl ()983he case of a non-selfgravitating
disk with ana-viscosity description. It is straightforward to adapt thethod and assumptions
to our disk model. Here, we briefly summarize the main aspddtee theory and refer the reader
to Duschl (1983) for a detailed explanation.

Based on the mixing length theory, which describes the &ffetturbulence on the energy
transport (see also Sect. 3.4.1), the author introducesjtiaatitiesr andy in the sense that

Fa¢ = 2-V, (2.26)
Fup = y- (V - V/) ) (2.27)
whereV = dlogT/dlogp denotes the average temperature gradient\&hthe temperature

gradient of a falling (or rising) element of matter, bothlwrespect to pressure. From our disk
model, the quantities andy can be calculated as follows:

S8acT?

= AF =4F, = 2.28

x + 325 ) ( )
1 1 v

y = écppTUturb = §CppTE . (2.29)

In (2.29),vum = v/h stands for the turbulent velocity. The isobaric heat cdpagigiven by

LR 3224y -39

2.30
7 272 ’ ( )

Cp

wherey = pqas/p i the ratio of the gas pressure to the total pressure. Basedraassumptions,
the radiative energy flu¥,,q has to equal or exceed the total fléx, since turbulence may
generate an energy flux in the opposite direction to the tiadiflux. The ratio is given by

1z 3 /2\°
Tt 22 (2)
Y Y

(2.31)
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2.5 The influence of turbulence on the energy transport

with the adiabatic gradient

Vg = - (2.32)

We discuss the results for a disk with a non-selfgravitatind a self-gravitating region and a
(-viscosity description. Therefore, we set the model patarses follows:

M, = 10M,,

si = 8.86-10°cm,

so = 10%2s;,

N, = 5-10°,

e _ 10 (2.33)
Bmax = 1072,

M = Mg,

X = Xx» = 1—1/V/3=0.423.

The calculations are performed for an adaptable viscostarpeter3 (BV) as presented in
Sect. 2.2.2, and for a diffusion limited disk with a real cdétion of the parametey (DL)
(Sect. 2.4). For comparison, the valuends calculated also in the non-diffusion limited part of
the disk from (2.16). Figures 2.6 and 2.7 show the resulte@talculation.

The (identical) disks BV and DL can be divided into severgioas by the radial coordinate
s, which is summarized in Table 2.2. To understand the ineréasg .4/ F_ in the outer part
of the disk, we have to take a closer look at the two figures.egnon B, a minimal increase
in Frag/ F- occurs at the radius where the diffusion limit sets in andreltlee transition from a
pressure dominated to a gas dominated disk takes placee butkr parts of the disk (regions D
and E), the radiation pressure is negligible compared tgéseressure. Thus,= 1 and

5R
p = 5; = const (2.34)
2
Va = : = const, (2.35)
2, 1z §(£)2
o _y2 4y 4\ (2.36)
x

The ratiox/y increases from0~> at the inner radius; to a value of3.5 in region B. This value
stays constant for a large part of the disk, until it finallpps again tet - 10~3 in regions D and
E, where self-gravitation comes into play. With= 1 andV 4 = 2/5, the ratio of the effective
radiative fluxFi,qis increased by a constant factorlof with respect to the cooling flux'_.
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Figure 2.6. The influence of turbulence on the energy transport in ststate 5-disks. BV corresponds
to a disk model with adaptable viscosity parameter, DL tdfaigion limited disk. For details, see text.
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2.6 Conclusions

From the study of the impact of turbulence on the overall gnéransport, we found that the
convective feedback on the upward energy flux becomes ngingitde in two cases.

1. In the region where the disk becomes shock dissipatiotdtnthe turbulence is max-
imally efficient. Hence, it is to be expected that also théuient downward motion is
increased. Our results show that this is indeed the cabeugh this effect is rather small,

increasing the effective radiative flux By1% of the cooling fluxr..

2. In the outskirts of the disk, selfgravitation sets in. égion D, the disk is in a Keplerian
selfgravitating state (KSG), which means that selfgragi#jermines the vertical structure,
but not the radial one. Contrary, in the fully selfgravitafistate (FSG) in region E, the
local gravitational attraction dominates for both direns. In these two regions, the net
motion of matter is therefore influenced by the strong gedhal attraction towards the
disk plane. Hence, the convective backcoupling has a steffegt, raising the effective

radiative flux by60% of the cooling flux.

We conclude that only in the selfgravitating regime, thevemtive feedback has to be included

in the energy transport equation.

In the first part of this study, we focused on the shock diggpdimit in the disk. Wether
a disk runs into a shock dissipation limited state or not,etieis strongly on the maximum
strength of the viscosity (i. e., on the parametgg,) and on the accretion rat&/. For lower
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2 The diffusion limit and convective feedback in selfgrating disks

Table 2.2. Radial structure of the extended disk models DL and BV. “S&riates the status of the disk
(NSG, KSG, FSG). The dominant pressure term, either gasl@tian, can be deduced from the adiabatic
gradientVaqin Fig. 2.6: forp = prag, Vad = 0.25, while for p = pgas Vag = 0.4.

Label Smin smax BV state DL state SG state  pressure

s 1.2-10%s; B = Bmax doesnotapply NSG p = prad
1.2-10%s;  4.7-10°si B < fPmax n=1/V2 NSG transition
4.7-10°s;  3.8-10%; B = fmax doesnotapply NSG p = pgas
3.8-10%; 2.4-10%si B =fmax doesnotapply KSG p = pgas

2.4 -109s; so = fmax doesnotapply FSG  p= pgas

moOw>

accretion rates, the diffusion limit applies more likelyhite it is inhibited for lower values of
Bmax Taking into account that the disks have to be geometrithaity(M < Mg), we found that
for Bmax < 10~*, the diffusion limit can be neglected in the disk models.

We also derived an analytical expression for the diffusiomtlparameter), which allows to
calculate it directly from the disk quantities rather thadétermine it iteratively. This expression
depends only on the azimuthal motion (i. e., the angularcigip

Finally, we investigated in a simple way the influence of theerr boundary condition on the
disk. In accordance with earlier work by Duschl & Tscharni991), who investigated an
extended inner boundary region around an accreting stafiouvel that the temperature and lu-
minosity is decreased for the innermost ring of such a disko & Xu (2003) studied the case
that the matter inside the marginally stable orbit of a blhole accretion disk is magnetically
connected to the disk. They found that the structure of theriredge is altered and that the
accretion efficiency can be much higher than in a standanetai-disk model. This matches
nicely with our results. In general, the discussion aboaitrimer boundary condition, in particu-
lar about the validity of the torque-free formulation, il singoing (see Gammie (1999); Krolik
(1999); Paczfiski (2000), for example).
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3 The role of convection in black hole
accretion disks

3.1 Context

We calculate accretion disk models where the viscosity hadransport of energy is supported
by convective processes, in addition to a radiative eneggsport and an underlyingviscosity.
Convection is treated in the framework of the mixing-lent&ory, the disks are assumed to be
geometrically thin in order to allow for & + 1-dimensional treatment of the equations (c.f.
Fig. 2.1). The resulting disk models will be compared to dtad -viscosity disks (Duschl
et al., 2000) with the goal of evaluating thieviscosity ansatz against a convective viscosity
description.

3.2 Set-up and nomenclature
As in the previous chapter, we use a cylindrical coordingstesn with planar radial coordinate
s = +/x?+y?, vertical coordinate: and true radius: = /s?2 + z2. The disk geometry is

determined by an inner and an outer radipands,, and the disk’s height = h(s) from the
mid-plane. Further quantities apart from the standard areslefined in Table 3.1.

Table 3.1. Physical quantities used throughout this investigation.

Symbol meaning unit
F, energy flux in vertical direction at height erg/s
F total energy flux at radius erg/s
Js acceleration due to gravitational potential in radial dilen ~ crmy/s?
g acceleration due to gravitational potential in verticaedtion cny's?
leony convective lengthscale cm

Im mixing length cm
M. mass of central object g

My disk mass within radius g

M accretion rate gls

w angular velocity of disk material 1/s
P surface density at height g/cnmy
)y total surface density g/cnmy
Vconv convective velocity cm/s
Vg radial velocity in the disk cn's
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3 The role of convection in black hole accretion disks

A turbulent viscosity, caused by convective processexneially given by

1
Veonv = chonvlconv (3.1)

when assuming isotropy. We replace the isotropy fatt8rby a factor of the order of unity
to account for non-isotropic cases. Since we apply the mg#@mgth theory for calculating
convective processes in the disk, we identify the convedewngthscalé.,, with the mixing-
lengthl,,, which will be defined later. Therefore, we get

Veonv = @WUconvim - (3.2)

We assume a permanently supporting viscosity to be praséme disk, which accounts for other

sources of viscosity, like differential rotation, ... Itparameterized in terms of the standard
viscosity, given by
vg = Bs’w, (3.3)

with 5 < 1 being the viscosity parameter. The total viscositig then given by a combination
of these two contributors,

V= Vconv "‘ I/ﬂ . (3.4)

3.3 Radial structure

For the calculation of the radial structure, we introduaadrsk’s surface density

h
E:/O pdz (3.5)

and

h
\Il:/ vpdz. (3.6)
0

Only in the special case of = const can we rewrite (3.6) & = vX.. In all other cases, we can
apply the mean value theorem to define an average valgaech that

U =Y

The individual contributorg* and>: remain unknown from the radial structure equations only.
They are determined by the vertical structure equationst(Set.1).

The radial structure is determined by the conservation afsn@omentum, angular momen-
tum and energy. The corresponding equilibrium equatioes ar

M = —dmsuX, 3.7
s _%7 (3.8)
2 = —%h(s), (3.9)
2F — —wh(s). (3.10)
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3.4 Vertical stratification

Here, f, (s) represents the disk’s boundary condition at the inner sagju

stw(si)

fx(s)=1-x : (3.11)

s2w(s)

with 0 < y < 1. The standard free-fall boundary condition, implying aighing torque at the
disk’s inner radius, is generated from settipng- 1.

Note that the momentum equation (3.8) is simplified by themgdion of Keplerian rotation.
The gravitational acceleration in radial direction is ased to be given by the monopole ap-
proximation, assuming a Pseudo-Newtonian gravitatiootdmtial (Paczgiski & Wiita, 1980):

G(Mc + My(s)) s

L= — - 3.12
I (r —rg)? r ( )
The enclosed disk mass at radiuis calculated via

My(s) = / Ars'Y ds . (3.13)

3.4 Vertical stratification

3.4.1 Structure equations

In analogy to Hofmann (2005) and Vehoff (2005), we take thergynflux F, (F, =0...F) as
the independent coordinate for the vertical integratiocesiit appears as the natural choice for
the solution of the problem. We additionally introduce the&f@ce density at height

EZ:/Zpdz, Y.(z=h)=¥%, (3.14)
0
and
w:/ZVpdz, Y(z=h)=V. (3.15)
0

Neither X nor h are knowna priori — they will be a result of the vertical integration. The
equations for the vertical structure of the disk are givefolsws:

0z

OF, pysgl(a_?) > (3.16)
6@; - pyszl(a_o;y'{‘“‘Oizgi‘@“(_i;m}a (3.17)
g?: T (1%_0;)2’ (3.18)
- =l (3.19)

OF, U2 (8_w)2
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3 The role of convection in black hole accretion disks

For the derivation of (3.19), we assumed hydrostatic eoyuuiim:
dp Op Oz 1

— L, =pg, ———— . (3.20)
OF, 0z OF, pvs2 (%)2
Using (3.17), (3.19) and the equation of state,
keT 4o
P = Pgast Prad = PTe + jT4, (3.21)
wmy 3¢
we transform (3.19) into an equation for the mass density
pmu ((p 40sB, 3
= = — T 3.22
Y
dp _ pma op  pmy £+4USBT2 o or
8Fz k’BT 8FZ k?B T2 C 8Fz
—Hm —9: p 4osgT? 3K FZ EE Q
- MaHQ'l( )+( 5t )'{—(1—0 ,03_4_( :
kgs? (a_i) T pT pc 4acT Cp

_ K™
= (%)2 N, (3.23)

We introduce

o = {-u-oprm - (2R

4acT?
(—9-) p . 4dosgT?
N = .
T * pT? * pc v

for a better reading of the lengthy expressions in the nesticses. We further introduce the
constants

(1]

4
:“}":H, arad:%, and T = (s2(0w/ds)?) 7", (3.24)
B

whereY is constant for the vertical integration at every radialipos s, to obtain the final set
of differential equations:

0z T

ST (3.25)
8812 = Z—V'p, (3.26)
g% _ %; (3.27)
;fsz - —%N. (3.28)

Additional assumptions are required to provide the necggdaysical quantities for the numer-
ical solution of the vertical stratification: the opacity= «(p,T') can be calculated either from
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3.4 Vertical stratification

tables or interpolation formulae. We provide several méshto compute its value, ranging
from fast and simple Thomson-scattering to slow, but muchenpoecise tabulated values (see
Sect. 3.4.3 for details).

Like g, in (3.12), the gravitational acceleration in vertical diien ¢, is provided by the
monopole approximation:

g, = Gt Ma(s)) 2 oo (3.29)

(r —rg)? r

In order to solve the vertical structure equations, a modethe convection must be chosen.
Here, we apply the mixing-length theory (Cox & Giuli, 1968)hich is used successfully in
stellar evolution as well as in previous accretion disk ghttons (cf., Hofmann (2005) and
Vehoff (2005)). The mixing-length theory expresses thekdficy of convective energy transport
relative to the radiative transport processes by the vigrigbwhere0 < ¢ < 1. A vanishing¢
implies no convective transport, while in the cgse 1 all energy is transported by convection.
Its value can be calculated from the cubic equation

P+ B3 4+ ayB* —ayB*=0, (3.30)

with a numerical facton, = 9/4 and further quantities defined as

A2 1/3
B = - (Vrad - Vad) )
ap
o Qen(=0.)l
288a2c2pT6
4—3
Q = —,
g
R 32 — 24y — 32
Cp — - 2 9 )
H g
y = P
p
3pApF,
Viad = W )
8 — 67y
Vad = 557 24y — 342"
p
Ap = .
P —9zp

The mixing length,,, is usually of the order of the pressure scale heighHowever, in analogy
to the stellar case, it is limited by simple geometric efedVhile in the stellar case, it usually
cannot exceed the actual radial distance from the centelodsygnmetry requirements, we adopt
as upper limit the actual height= h(s) of the disk. This overrides the symmetry of the disk
with respect to the disk plane and also the strict upper draior the convective elements (i. e.,
the disk surface), but provides a simple method of taking adcount the overshooting effects
and a more realistic, smooth transition between the disklamdtmosphere. We anticipate that
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3 The role of convection in black hole accretion disks

the results differ only slightly from the more restrictivasel,, = min(\,,2 — z), so that our
conclusions are not changed by this assumption.

From the above definitions, the cubic equation (3.30) carobed numerically. Once a value
for ( has been found, the convective viscosity can be calculateal f

(3.31)

Vconv = Cs *

Q1/2alm (vrad - vad) Y3 C1/3
227/ apA ’

wherecs denotes the sound speed at the actual coordiratein the disk. In the non-relativistic
regime, it is given by

cs=T1p/p. (3.32)

The constant’; stands for the polytropic index, which in the case of a ndatrastic, ideal
gas is given bys/3. The parametety,, relates the typical distance traveled by the convective
elements to the pressure scale height and is generally oftlez of unity (Cox & Giuli, 1968).

To be consistent with our definition of the mixing-lengthhas to be calculated from

o = m oy (3.33)

The derivation of the mixing-length theory assumes a pusalysonic motion of the convective
elements Eddie9, v.ony < ¢s. This inequality cannot be assured by the definition of the co
vective velocity in (3.31). Since there is currently no sgpaic convective theory which is as
simple and successful as the mixing-length theory, onellysiefines the sound speegas an
upper limit for the convective velocity. Thus, in the cas€381) resulting ingn > ¢s, ONE has
to setveony = ¢s, Which lowers the actual value gffrom its original value, given by (3.30), to

8v8IY 24 A

‘= QB/Qa?m(Vrad - vad) .

(3.34)

We calculate the anisotropy parametefwhich measures the ratio of the convective turbulence
in vertical direction relative to all directions) from

Vconv

Cs

<1. (3.35)

o =

This relation is based on the following idea: that the maxim@-dimensional) velocity of an
Eddie is given by the local sound speed The individual velocities in direction&,,z) are
normally not identical, since they depend on the energyignaslin their direction. We assume
for simplicity that in the convective regions, the conventior all three dimension together is
maximally efficient, i. e., that the 3-dimensional conveetvelocity of the Eddies is given hy.
We then approximate the fraction in the vertical directidnom (3.35).
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3.4 Vertical stratification

3.4.2 Boundary conditions

For the four differential equations (3.25)—(3.28), we needefine four boundary conditions at
either the disk’s midplanef{ = 0) or surface ., = F'). These are:

Zmp = 2(F,=0) = (3.36)
F

Tex = (—) (3.37)
O

Yomp = 2 (F. = =0, (3.38)

Peft = ,O(Fz = F) = Peff,input - (3.39)

The boundary condition op cannot be determined from the radial structure equatiorfior
simple geometric arguments. It requires the addition oftaroaphere above the surface of the
disk, which allows us to determine the effective densitysistently with the height, the surface
densityX and the effective temperatuiies. The model and numerical method for calculating
the atmosphere will be given in Sect. 3.4.4 and 3.5.2.

Remark.At first, it seems that (3.9) provides the missing boundarnddmn and that (3.39)
is not only dispensable, but may even be wrong. This is notdlse, since (3.9) is automatically
fulfilled for the correct solution for anyes, as the following short calculation shows.

+h
v = / vpdz
—h
+h
= 2-/ vpdz
0
F.(z=+h) T
(3.25) 2,/ vp - (_) dF,
F.(2=0) pv

1 FZ(Z=+h)
(3.24) 2_72,/ JF.
s2(0w/0s)”  JF.(z=0)

(3.10) 1 ' —Msw (0w /ds)
 $2(0w/0s)* 27
N B

= _me(S) = rhs(3.9)

fx(s)

3.4.3 Opacity &

Numerous possibilities exist to approximate the opagityhich, in general, depends on the
densityp and temperaturé’ of the medium.

Thomson scattering The easiest approximation is given by pure electron scagter

Kes= 0.4Ccm’/g. (3.40)
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3 The role of convection in black hole accretion disks

Kramer’'s opacity = The simplest approach, apart from solely assuming Thomsattesing,
is to use Kramer’s opacity description

Rkr = /{/es‘l_ ) T77/2 (3.41)
p

with ko = 6.4 - 10%2 cnPK"/?/g?. The Kramer’s opacity is only valid in the optical thick reg.

Analytic interpolation formula We allow for opacity sources other than Thomson scatter-
ing and free-free absorption by using an analytic intergpateformula (Gail, priv.comm.; for a
similar approach, see also Bell & Lin (1994)) for Rosselapdaties. Thus, this interpolation
formula is also valid only in the optically thick regions.

1/4
o 1 T,° 1 /
Kin "ii4ce T010 + T ’%i%:e, evap_'_ "iéust
1/4

1 1

+ (3.42)
[Kalust, evap Hﬁwol + /£4H, Katom + "fi—
The individual contributors; are approximated by

K1 = Koy - T ped (3.43)

and are compiled in Table 3.2. The paramé&feneeds to be set by hand under the requirement
that it is sufficiently large. An adequate value is, for exéanfl, = 3000K. Note that the
definition of the individual contributors is such that theéaldnterpolation formula fits the real
values; they cannot be used on their own as a physical déeargf the corresponding process.

Table 3.2. Interpolation of the opacity: set of parameters (in cgdg)ni

Contributor 1 Symbol K10 Klp  KIT
Dust with ice mantles Kice 20-100% 0 2
Evaporation of ice Kice, evap ~ 1.0-10'6 0 -7
Dust particles Kqust ~ 1.0-107% 0  1/2
Evaporation of dust particles Kdust evap 2.0 - 10%1 1 —24
Molecules Kmol 1.0-107% 2/3 3
Negative hydrogen ion Ky 1.0-1073%¢ 1/3 10
Bound-free and free-free-transitions katom 1.5 -10% 1 —5/2
Electron scattering Ke— 0.348 0 0

Tabulated values  Various databases exist that offer tables of numericallgutated opaci-
ties for different temperature and density ranges. Givahwle want to cover a large domain in
temperature and density, multiple sources have to be iadludour model. The presence of a
disk and an atmosphere requires not only Rosseland omadtiealso Planck opacities, which
are valid in the optical thin regime.

The selection of opacity databases is therefore restriotdubse sources offering mean Rosse-
land and Planck opacities. In the high-temperature limit, we adbt tables from the TOPS
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3.4 Vertical stratification

project (TOPS, 2008). We compile tables for Rosseland aaddRlopacities on &g T-log p
grid. For the TOPS opacitielg p andlog 7" are in the range of

logp = [—12.5...+10.5],
logT = [+4.5...+9.1].

The number of data points 4§ on an equidistant scale fosg p and41 for log 7', respectively.

In the low-temperature regime, we include the Fergusonibpag¢Ferguson et al., 2005; Fer-
guson, 2008). Contrary to the TOPS opacities, they prowates for Rosseland and Planck
opacities on dog T-log R grid. For historical reasons, in astrophysical applicgaitheR pa-
rameter is often used instead of the dengityt is defined by

R = L. p=plgenr?], Ty =T[K]/10°, (3.44)
6
logR = logp+ 18 —3logT. (3.45)

The ranges for the Ferguson opacities are

logR = [-8.0...+1.0],
logT = [+2.7...44.5].

These ranges correspond to minimum and maximum mass @snsitbe p = —17.9 and+6.5,
with a resolution ofl 9 equidistant points itbg R and&5 in log 7.

For a consistent approach, we choose identical chemicaldameces with mass fractions =
0.7,Y = 0.28, Z = 0.02, and the chemical mixture of Grevesse & Sauval (1998).

Opacity mixture  In order to get smooth transitions and a broad coverage df'theange,
we use a combination of the tabulated opacities (TOPS, Berguand the interpolation for-
mula 3.42: the transition between TOPS and Ferguson opsdidkes place dbgT = 4.5.
We therefore use a linear interpolation of the opacitiemflmth sources in the rangeg T’ =
[4.0...5.0].

At the “outer” boundaries of the TOPS- and Ferguson-opegsitive use the same kind of
linear transition in a range dflog p = 1 anddlogT = 1 between the tabulated values and the
interpolation formula 3.42. The resulting opacities arérde on alog T-log p grid with 150
data points in each direction and

logp = [-15.0...4+10.0],
logT = [+1.0...49.0],

which is sufficient for our purposes. Figures 3.1a,b showdselting opacities on thieg 7—
log p grid, while Figs. 3.1c,d display opacity curves as a funrctbbtemperature for certain fixed
densities.

3.4.4 Atmosphere

In this investigation, the only purpose of the atmosphete jsovide a value for the mass density
at the surface of the accretion disk at each radial positjavhich is consistent with the actual
effective temperature, geometrical height and surfacsitien
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3 The role of convection in black hole accretion disks
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Figure 3.1. (a) Rosseland an¢b) Planck opacities for the opacity mixture ofog T—log p grid,;
temperature dependency (@ Rosseland an(l) Planck opacities for fixed densities.

Therefore, it is sufficient to calculate a simple grey atnin@sp in the Milne-Eddington way,
where the temperature distribution is given as a functiotmefoptical depth by

T(r)* = Cl,atmTélff (7 + Caam) - (3.46)

The constants’; sm andCs am depend on the transition pointy between the atmosphere (op-
tically thin) and the disk (optically thick) and the final ual for the temperature at the “upper”
end of the atmosphere & 0). The most common values are

THr=0)=(1/2)-Ta and  7eg=2/3.

We keep the upper value for the temperature, butrtise- 1 for a simple reason: in the optical
thin atmosphere, the equation of state (3.21) has to be radditich that the radiation pressure
term tends to zero for — 0. This is necessary because the coupling between radiatidn a
matter becomes negligible by definition in the optical thegime. With the correct expression
for the radiation pressure in an optical thin medium,
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3.4 Vertical stratification

4o
Prad, atm= ?SBTTZI ) (3-47)

we get a smooth transition at the disk’s surface onlyrfgr= 1. This is consistent with the
requirements on the value ef which has to be such that it is characteristic for a tramsiti
between optically thin and optically thick domains.

The constant§’; ;m andCs am then become

1
C(1,atm = 57 C(2,atm =1. (3-48)
Therefore, the temperature in the atmosphere is given by

T(r)* = %Téﬁ (T+1). (3.49)

The remaining equations are given as follows: from the defimof the optical depth,
dr = —kpdz,

we get an expression faxz/0r. The differential expression for the surface density
d¥, = pdz

is then transformed int6%, /0r. The remaining equation for either the mass density, gas pre
sure or total pressure is derived from assuming hydrosgtidibrium (cf., (3.20)) and inserting

the temperature stratification from (3.49). We choose tlsepgassure as the fourth dependent
variable and obtain the following set of differential eqaas for the structure of the atmosphere:

% _ _piﬁ _ _El;gas, (3.50)
6@% - % | (3.51)
Z_f = Ter - <%)9/4'<T+1)_3/4, (3.52)
Do (22T (r4 ). (3:53)
The mass density in (3.50) is given as usual by = W;BH?E‘S.

Boundary conditions Again, we have to solve a set of four differential equatidhis time
with the independent variable and the dependent variables ., 7" andpgas This requires
four boundary conditions which have to be set at either tixeetdoundary (corresponding to
T = Teff = 1) Or the upper boundary (correspondingrte= i, < 1; due to numerical reasons,
it is not possible to setyi, = 0).
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3 The role of convection in black hole accretion disks

Three of these boundary conditions are provided by theisolaf the vertical disk structure:

h o= 2(F=F) = 2(7 = 7ef) | (3.54)
o= EZ(FZ:F) = EZ(T:Teﬁ)v (355)
Tt = T(F,=F) = T(r = 7ef) . (3.56)

The fourth boundary condition on the gas pressure has totlz g8e upper boundary of the at-
mosphere by the following line of argumentation: the prapsrof the disk surface will change
as a function of the radial distance from the central objé&ttparticular, the effective temper-
atures and densities will drop outwards. The first attemptctbe to set a constant minimum
value on the gas pressure at the upper boundary of the aterespthowever, since the effective
temperature and therefore also the minimum temperaturgawvill decrease with radial dis-
tance, a constantss minthen implies that the mass densgty;, at7mi, has to increase with radius.
At the same time, however, we expect the mass density at $hesdifacep. to decrease.
Another possibility is to define a constant minimum valuetf@ mass density

and to calculate the corresponding vatyg minat every radial position frorim» and pmin.

3.5 Numerical solution of the vertical stratification

To solve the set of differential equations numerically, v8e two separate methods for the disk
and the atmosphere. The disk equations are obviously monplamated to solve and as such
they are more prone to numerical issues like steep gradigatsation errors, ... Therefore,
we use a Henyey algorithm for solving the set of differerg@liations in the disk. The Henyey
method looks back on a successful history of applicatiossahar structure and evolution codes,
being able to deal with steep gradients by its relaxatiorhoehature. The atmospheric equa-
tions, however, are much easier to solve and do not requiosvanbul, yet expensive algorithm
like the Henyey method. We use a simple shooting algoritheotee the atmospheric structure
in a simple and quick way.

In Sect. 3.5.1, we present the set of discretized equatmribé vertical disk structure that is
generated by applying the Henyey method. A detailed ddsmnijpf this numerical scheme is
given in the appendix (Sect. A.2), where we also elaboratethe original differential equations
are transformed into their discretized counterparts. @hege further discuss how the set of linear
equations is stored and solved in an efficient way.

Subsequently, Sect. 3.5.2 briefly introduces the shootiathad and its implementation for
solving the atmospheric structure. In Sect. 3.5.3, we dsdwow the tabulated opacities are
incorporated in the numerical analysis of both the disk &edstmosphere.

3.5.1 Set of discretized equations

We introduce a discretization in the vertical direction @anisferring the continuous variablgs,
z,T,3,, ptodiscrete values’, ;, ... withi =1,..., N,. TherebyF,, = 0andF, y, = F. The
mean value of any quantityfor grid points; and: —1 is abbreviated withy; ;o = (z;+,-1)/2.
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3.5 Numerical solution of the vertical stratification

In the framework of the Henyey method, the set of differdrcuations (3.25)—(3.28) trans-
forms into four linear equatior@ﬁj),j =1,...,4 at every grid point. Thereby,; = 1 corre-
sponds to the differential equation for etc. Analogous, the four boundary conditions (3.36)—
(3.39) allow us to rewrite these equations partiallyfer 1 andi = N; + 1.1

We now repeat the individual differential equations for tieetical stratification (3.25)—(3.28)
and give the corresponding discretized Henyey equations.

For the geometric coordinatg we get:

0z T
oF, pv
U
GE” = (2 — Zifl)pi—1/2 Vi—172 — T(Fz,i - Fz,ifl) =0. (A.12)

The temperature stratification is given as follows:

oar Y
oF,  pv v

Y
GEQ) = (Tz‘ - ,I‘i—l)pifl/2 Vi-1/2 — T(Fz,i - Fz,i—l)@ifl/Z =0. (A.13)

The surface density equation converts to:

o, 7T
oF, v
Y
G = (8. — SimWimaje — Y(Foy — Flyy) = 0. (A.14)

Finally, the Henyey equation for the density becomes:

ap =T
Sl \
OF, v
\
G§4) = (Pi - pifl)Vi71/2 + ET<Fz,i - Fz,ifl)Nifl/Q =0. (A-15)

From the four boundary conditions (3.36)—(3.39), we get:

G =z =0, (A.16)
G =Ty, —Ter =0, (A.17)
GP=x.,=0, (A.18)
GV =pn — peri = 0. (A.19)

1The additional grid point = N; + 1 is introduced by the Henyey method for a purely numericaoeaSee the
detailed description in the appendix (Sect. A.2) for a fartkxplanation.
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3 The role of convection in black hole accretion disks

Normalization of Henyey equations Theoretically, the Henyey equations (A.12)—(A.15)
and their boundary conditions (A.16)—(A.19) can be evadaind solved directly via the matrix

inversion presented before. However, the numerical arsatgguires a proper scaling of these
equations; otherwise, they may differ by orders of magmitadd round-off errors are inevitable
when matrix manipulations are performed. We thereforeesathlequations and the correspond-
ing derivatives in the matrix to the order @, ; — F. )/ F.,; by dividing them by

TF, TF, ipi, TF. ETFE, N,
for &, G, ¢¥ G, or, in the case of the boundary conditions, by

]-7 Tef'fa 17 Peft,

1) A2 3) A4
for G{, Gg\/i)Jrl’ G, GE\Q)H-

Convergence criteria A key point in every iterative scheme is to determine if tlegation
has converged to the exact solution and to define an accepliamt for an iterative solution.
We use three different criteria to evaluate the accuracynefiterative solution.

1. The variation®z;, ..., dp; at each grid cell have to be smaller than a certain fraction of
their actual values;, . . ., p; over a given number of successive iterations. We impose an
accuracy limit of

!

0y < €1y (3.58)
for a minimum ofn;; successive iterations.

2. The absolute deviation of the solution, measured by tine suthe absolute values of
all entries inG, has to be smaller than a given numligf., over the same number of
successive iterationg;. The average minimum accuracy for one variable in one giid ce
Ui, 1S thenGmax/ (4N;).

3. The quality of the solution is also checked by the relation
+h |
U — / vpdz < eV, (3.59)
—h

which ideally is zero for the real solution of the set of edurd.

Automatic mesh refinement One problem of the numeric solution, especially when con-
vective viscosity comes into play, is that the required gesblution may vary considerably. We
therefore start each iterative run with a lower grid resotutV; 5, let the solution relax towards
the true solution and then refine the grid by checking the gésinp — which turns out to be
the crucial quantity for the solution to converge to the eorione — between adjacent grid cells.
We allow for a maximum difference gf between two grid cells of

!
|pi — pi—1| < esmin{p;,pi—1} . (3.60)
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3.5 Numerical solution of the vertical stratification

If this condition is violated, the interval is split into twiatervals. This is done recursively
until (3.60) holds otV; = N, , is reached.

A certain number of iterations are then performed to let tlat®on adjust to the new grid,
before the same type of condition is imposed on the changgsadfich measures the efficiency
of convective processes in one grid cell. Siicec ¢ < 1, an absolute limit must be given
(instead of a relative one as in the case)f

|G — Gi1 é €4 - (3.61)

Again, if this condition is violated, the interval is spléaursively into two intervals until (3.61)
holds orN; = N; . is reached.

3.5.2 Atmosphere

The structure of the atmosphere is calculated using a faksenple shooting method. The
solver for the atmosphere receives as input the valuegof h, Tur, X, et = X andper at the
disk surface from the Henyey solver. While the first threemjti@s remain unchanged for the
atmospheric calculations, the density is subject to ssboegerations until the vertical structure
of the atmosphere is solved.

Lock and load

The numerical integration of the atmosphere involves gtiastike the mass density changing
over orders of magnitude between the disk’s surface andgperiend of the atmosphere. At the
same time, the surface densMy for example increases only slightly. It is therefore adbiea
to rewrite the equations (3.50)—(3.53) and introduce libigiavic quantities.

dlogz _1plog T +1og T — log ks — log 2z — log = — 10g pgas (3.62)
Olog T ’
Olog >, _ _1010g7— —logk — logzj (3.63)
Odlog T
dlogT _ 1plogT —log4 —log(T + 1) 7 (3.64)
Odlog T
010g pyas log7 —1 —9 4osp 1
— 10087 —108Pgas. [ _J= _ TS84 Z . 3.65
dlogT K 3¢ et \7 73 (3:69)

In (3.65),9. andx are then functions dbg 7" andlog pgas

Even in logarithmic variables, shooting from the disk’sfage to the upper boundary is prob-
lematic, since tiny changes in the starting valyg erresult in highly different valueggy,s at the
upper boundary. Therefore, we reverse the integrationipatitarting from the upper boundary
with iteratively determined upper values @fax = 2(7min) aNd X, max = 2.(7min) and shoot
“downwards” to7e¢. This is repeated until the resulting values faand:, fit to the input from
the Henyey solver.

Shooting method

The course of action of one iteration follows the routst@oot of Press et al. (2001) and is
divided into three phases.
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3 The role of convection in black hole accretion disks

Phase 1: load Using the upper boundary condition pgs the known temperaturé and
two iteration values for and Y., we set up the starting values for the numerical integration
of (3.62)—(3.65).

Phase 2. target With the remaining boundary conditions (3.54), (3.55)rat= 7, the
targets of the numerical integration are defined.

Phase 3: shoot The numerical integration is performed using an expliaitrtb order Runge-
Kutta scheme with automatic step refinement (see Sect. thR details about the integration
method). Depending on the quality of the solution, eithew se&arting values for then,,x and
Y. max are derived and the shooting process is repeated, or thespomding value fopes is
returned to the Henyey solver. In Sect. 3.5.2, more detallbe given on that phase.

The shoot phase

Quality of the solution To evaluate the quality of one iteration, and by that the cigyaf

the “guessed” valuge; at the disk surface, the values of the geometrical height = z(7max)
and surface density¥, fina = X.(7max) from the numerical integration are compared with the
boundary valueses, 2. ¢ and accepted iff

|Zfinal — Zel| < €5 min{ Zfinai, Zeft } (3.66)
X, final — Zoeff| < € min{X, final, Xz e} - (3.67)

In the case of a non-acceptance, new valuesfgr, . max have to be generated. In the same
way as for the Henyey method, successive corrections acalasdd from

B Oz {k—1} Oz {k—1}
et + (%) Szbe + (#) 08 lnal =0, (3.68)
Zmax z,max
. 0%, finat\ 0%, finat
) B T i SR et L) B 3 i S (3.69)
aZmaX azz,max

where the derivatives are again determined numericallytb@dew solutions are obtained by
solving this “system of equations” and by

B = R gkt (3.70)
S = Sial+enikl (3.71)

Discretized grid and scaling The default grid is determined by logarithmic equidistant
grid pointsT; with 7y = 7e¢ andy, ., = Tmin- The standard grid resolution is the same as for
the disk calculation)V; am = N, siare The automatic refinement by the Runge-Kutta integrator is
unlimited.

Additionally to the refinement by the integration scheme,dkpendent variables are allowed
to change only for a certain fraction of their actual valubeowise the stepsize is reduced. Since
the values along the integration path are not stored, thesabion is not costly compared to the
mesh-refinement for the Henyey solver.
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3.6 Results

3.5.3 Numerical implementation of «

Depending on the description of the opacity (see Sect. 3.4.Bumerical treatment is neces-
sary. While the calculation of the opacities for Thomsoatsring, Kramer’s opacity and the
interpolation formula is straightforward, the tabulatedines have to be interpolated.

The interpolation on the reguldsg T-log R grid is done by using the cubic spline method
spl i ne from Press et al. (2001): while reading the opacity tabldb@beginning of the pro-
gram, tables of second derivatives are calculated anddstogether with the values for the
opacities. During the numerical calculation, these tablésv a fast interpolation of the re-
quired values:(p,T).

3.5.4 Agreement of disk and atmosphere solution

The solution for the vertical stratification of the disk artchasphere at one radial position is
accepted once the iteratively determined valug%cs, 3, pest at the disk’s surface solve both
systems of equations:

!
|Peff,disk - Peff,atm| < €6 - min {peff,diskypeff,atm} . (3-72)

Then, from (3.9), the average viscosity can be calculated. The disk mass is updated by the
obtained value ok and the calculation proceeds radially outwards until thielolboundary is
reached. This path of calculation is mandatory, since theapole approximation (3.12), (3.29)
requires the enclosed disk mass to be known. Obviouslyighie case priori only for s = s;
whereMy = 0.

3.6 Results

3.6.1 Parameters, simulation characteristics

The results presented below were obtained for the followetgf parameters:

Central black hole mass M. 10M,
Accretion rate M 0.1 Mg

Inner disk radius Si 3rs = 6bry
Outer disk radius So 5007g

Grid points in radial direction N, 100

Default grid points in vertical direction N, start 100
Standard3-viscosity parameter 3 107%...1077
Inner boundary condition parameter 1

Optical depth at upper end of atmospherg, 1074
Density at upper end of atmosphere  pmin 10712

Due to the free-fall inner boundary conditiop € 1), we start the radial calculation at= 6rsto
avoid numerical difficulties. From the values for the suefdensity obtained at= 2s;, we can
estimate the enclosed disk mass §pK s < 2s;. Since its contribution is more than ten orders
of magnitude smaller than the central mass in all cases, weafaly neglect the contribution to
the disk mass from this innermost ring.
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3 The role of convection in black hole accretion disks

The required accuracies for accepting the solutions aengdivthe notation of Sect. A.2.2:

Maximum variation of variables €1 0.1
Minimum number of successful iterations Nit 2
Maximum deviation from true solution Gmax 0.01-4N;
Maximum deviation of integral equation (3.59) €2 0.01
Threshold for mesh refinement for €3 0.1
Maximum mesh refinement for N;, 300
Threshold for mesh refinement for €4 0.01
Maximum mesh refinement far N;¢c 400

Required accuracy for shooting method (Sect. 3.5.2) 0.01
Maximum deviation of disk and atmosphere solutiog 0.01

3.6.2 Disk properties

Standard disk  Our main purpose is to investigate the contribution and iefficy of con-
vection in transporting energy and providing viscosity. #Merefore use a standard setup with
M, = 10M,, andM = 0.1 Mg for which we vary the3-parameter of the underlyingrviscosity.
We plot the radial structure of these disks in the followings-3.2—-3.4 as a function of radius
in units of the Schwarzschild-radiug = 2.95 - 10%cm.

Common values for the viscosity parameteare in the range of0~*...10~2 (Duschl et al.,
2000). Since we want to investigate if the turbulence calmsecdonvection can account partly
for the total viscosity, we perform disk calculations wjth= [10~"; 10~4]. We limit 3 to this
range for the following two reasons.

1. Forp > 1074, the standarg-viscosity prescription runs into the dissipation limichese
the turbulent velocitywm s = +/Bsw exceeds the sound speedIn that case, a diffusion
limit would have to be introduced. As we showed in the presichiapter, this results in an
effective decrease ¢f. In the particular example of B0/, black hole accreting ato%
of the Eddington rate, the diffusion limit sets in fér> 1.4 - 10~4.

2. For3 < 1077, hardly any solutions can be found for the required accasand the radial
range considered here. The reason for this will be given byesults presented below.

In Fig. 3.2, we display the efficiency of convection in the gyetransport, measured by the
dimensionless quantity. At each radial position; = ((s,z) is averaged vertically by

h
Cavg = h_l/ Cdz.
0

For 3 = [107%;107%], we find that a significant amount of the total energy is transa by
convection in the inner part of the disk; close to the inneskdadius,( ~ 0.98. Radiative
energy transport dominates in the outer part of these digitk,a transition zone expanding
from [10rs; 80rg] for 5 = 10~* to [10rs; 180rg] for smaller3. While the curves show a smooth
behavior for3 > 107?, this picture changes whehis decreased further: radial variations(of
of about0.1 can be seen in these cases. While the outer end of the teanadne is the same
as in thes = 107° case, the characteristic shape changes completely in tiee disk region,
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Figure 3.2. Solutions for the standard disk with= [10-7;10~4], part 1.
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Figure 3.4. Solutions for the standard disk with= [10-7;10~%], part 3.

and the maximum efficiency is decreased to alfpgit In addition to the real results, we plot
fitting curves (thin lines) to the casgs= {107¢,10~"}, which were obtained by averaging over
20 successive solutions of the vertical stratification andrboothing the curves afterwards.

For eachg, the anisotropy factotwayg = (veonv/Cs)avg @dOpts a roughly constant value in the
innermost, convective region, ranging fran (3 = 10~%) down t00.02 (8 = 10~7). Thus,
convection appears as radial drums rather than vertickllygated structures. The oscillations
in ¢ are reflected relatively weakly in the anisotropy factog(R3.2). In the non-convective outer
parts of the disk, the convective viscosity and therefoeattisotropy factor vanish by definition.

A proper explanation of the possible reasons for these ti@ng&in ¢ can be given only by
investigating further disk quantities such as the disk hieig which is plotted in units ofs in
Fig. 3.2 (thick lines). Additionally, we plot the height did¢ atmosphere by thin lines. In all
cases, the disks are geometrically thin, with a maximune ratti,/s ~ 0.25. With decreasing
G, the disk puffs up slightly. The atmosphere is negligibiytim the inner region, but expands
for larger radii. Contrary tq andcw, no instabilities can be detected for the Igicase for both
the disk and the atmosphere.

The same is true for the surface densityf the disk (Fig. 3.2). We observe smooth curves
for all values of3, with a linear increase at each radius with!. The mass contained in the
atmosphere is completely negligible in all cases.

In Fig. 3.3, we plot the vertically averaged viscosity

h
0

andfag = vavg/ V3, Wherevg is constant for the vertical stratification. For dllthe total viscosity
decreases less than linearly withwhich is due to the contribution from convective viscosity
We find that in the low3 case, the convective viscosity,,, can become twice as large as the
underlying-viscosity. It is important to note that although the corixecviscosity becomes
relatively strongerfor lower supporting viscosities, its absolute value dases as well. Thus,
the total viscosity generated in the disk becomes lower awer with decreasing. Again, in
both plots no instabilities can be detected, although tHaance of( is definitely strong. The
small peak seen ifiyq at the innermost radii is caused by the inner boundary ciomdit
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3 The role of convection in black hole accretion disks

The densityer at the disk’s surface is also shown in Fig. 3.3, together thgheffective tem-
peraturel . Since the disk mass is negligible for all disk runs (seewglthe radial structure
equations give the same results for the total flux and thexdéy the temperaturéy; at the disk
surface. Looking at the corresponding densities, we findttier values lie very close for all
solutions with a clear decreasing trend towards larger.r&dcertain irregular structure can be
seen for all results, an effect of the opacity model, whieklitis very sensitive to the densities
and temperatures in this region of the dfskhe instabilities inC are also not detectable, neither
in temperature, nor in density.

Finally, Fig. 3.4 displays the resulting disk mass in unitshe central mass. As expected,
the disk mass increases with decreasihgince the disk gets thicker and the surface density
increases. For all cases, the enclosed disk mass is comgpletgigible compared to the central
black hole mass. We estimate the equality radigswhere/y(s) = M, by extending the radial
calculation towards larger radii for the= 107 disk case. A linear fit to the outer region in the
log-log plot gives

3/2
My(s)/M, = 3-10710( —_ —1.10°¢ 3.73
d(s)/ c (103TS) ) ﬁ 3 ( )

s 3/2
M, M, = 3-107° =1-107" 3.74
d(s)/ c (103TS) ) ﬁ ) ( )
which in turn leads to

Sequ = 2.2-107rs, f=1-1079, (3.75)
Sequ = 4.8-10°rs, B=1-10"". (3.76)

Thus, self-gravity is safely negligible in our disk caldidas.

Extended parameter space  We extend the disk calculations towards varying accretion
rates and central masses in order to see how general pespanil, in particular, the instabilities
in ¢, depend on the input parameters.

In a first step, we investigate the dependence of the resultssoaccretion rate while keeping
a constany = 10~° and a constant/. = 10M,,. We perform disk calculations with accretion
rates ofM = [0.01;0.2]Mg. Higher rates are not included, since the disks become tok fibr
the thin-disk approximation to be valid: fa = 0.2, the ratioh/s reaches values larger than
0.3 in the inner disk region, while it does not exce@d3 for the lower limit A/ = 0.01, see
Fig. 3.5. The figure also shows that the disk mass and thecgudiansity scale almost linearly
with the accretion rate, as expected. The contribution n¥ective turbulence is naturally higher
the higher the accretion rate, upit@,, = 1.5v, with the convective zone reaching outwards
to 20rs for low accretion rates, anzbOrs for high accretion rates, respectively. The anisotropy
factor in the convective zones is not influenced by the aiereate (not displayed).

In Fig. 3.6, we see that the density and the temperature aligiés surface also increase
with M, although the dependence is weaker than linegroc M3 and Ty ococ MO25. The
solutions also show a clear dependency oh the accretion rate (Fig. 3.7): beside the standard
caseM = 0.1Mg, also the low accretion rate calculation produces a staddlgisn, but with

2When dropping the sophisticated opacity description amgusmple formulas like, e. g., the Kramer’s opacity,
the structure disappears and a linear decrease is found liogttog plot.
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Figure 3.6. Solutions for varying accretion rates witd, = 10M, andg = 10~°, part 2.

a significant reduction of the relative contribution fromngection. Given that both the total

energy and the angular momentum that have to be transpormah the disk depend linearly

on the accretion rate (compare (3.10), (3.33)), the stahglaiscosity is almost large enough to

account for both requirements. On the contrary, higheredicar rates lead to the same type of
instabilities of¢ as lowers-values< 10~% do for the standard setup.

Secondly, we focus on varying central masses for a congtant0~° and a constant absolute
value M such that it corresponds tb1 Mg for a 10M,, black hole. Thus, the Eddington ratio
M /Mg scales withM/;!. We limited the parameter range 3, = [5; 100]M,,, which corre-
sponds to Eddington ratios aff = [0.2; 0.01]ME. For lower central masses, the disks get too
thick (c.f., Fig. 3.8), while for higher central masses, demsity at the disk surface reaches our
boundary conditiorpmi, = 10~2g/cm® at the upper end of the atmosphere too early. This is
also why we stop théd/, = 100M,, calculation ats ~ 120rs, see Fig. 3.8. The disk height
the densityess and the effective temperatufg are all very sensitive to the Eddington ratio and
hereby to)/..

We also find that the surface densityscales withV/; ! in the outer part of the disk, while this
scaling law changes slightly in the inner part of the disk kgheonvection plays an important
role. Thus, the disk mass scales with andMy/M. = const (not displayed).

As in the previous case of varyiny/, the underlying viscosity is large enough to allow
for a significant reduction of convective processes in thyh lhass case, becauBeoc M2,
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Figure 3.7. Solutions for varying accretion rates witli. = 10M, and3 = 10~°, part 3.

U = const and/z o< M,. This is reflected irf,,q as well as in the vertically averaged convective
efficiency(avg Which shows a stable and smooth solution for the higherakemiass cases, while
instabilities occur for the low mass case (Fig. 3.9).

In a last step, we vary the mass of the central black hole imahge of M, = [1;100]M
while keeping a constart = 10~° and a constant Eddington ratid = 0.1/ for the accretion
rate. This means that the absolute value of the accretion ratg &is implicitly scaled withM/.

It turns out that both the ratib/rs and the surface density do not change for varying central
masses (not displayed). For this fact to hold, the mass yem$ias to scale with\/;!, which
is reflected very nicely in Fig. 3.10. Then, given that thékgisnass scales only witk? o 112,
the ratioMy/ M, scales with)/.. Note that the calculation for th&/, = 1000/, case terminates
ats ~ 250rs, because the densipy; decreases toward®—'2g/cm?, which is already the upper
boundary condition (i. e., the lowest value of the densitythie atmosphere.

The effective temperature, also plotted in Fig. 3.10, ¢yestrows a decrease for higher central
masses. From the energy equation (3.10), we deriveRhat M! = T < M %% and
vg < M. Thus, less energy has to be transported through the Jdeyeas, while at the same
time the supporting viscosity is increased for higher cdntrasses. We expect that the larger
the central mass, the lower the defagparameter can be before the radial variations set
in. This is confirmed by our results; the variations appedy ¢or the low mass case, while
the standard and high mass cases are stable in the innen.relgie worth mentioning that
the convective zone reaches further outwards for the higlralemass case, although radiative
processes dominate the energy transport. For completieryould like to add that neither the
ratio Bavg/ Osta, NOT the anisotropy factar are influenced significantly by a varying central mass
when the Eddington ratio is kept constant.

Radial variations in the convection efficiency ¢ Animportant point in this discussion

is the origin of the instabilities ig for certain disk solutions. We have seen that they occur
if the underlying viscosity is decreased under a threshalde; which itself depends on the
parameters central mass and accretion rate. Interestithgiye instabilities appear only (n
andw, two artificial quantities introduced for a better undemsiiag of the ongoing processes.
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Figure 3.9. Solutions for varying central masses with constaht- corresponding t6.10M /g for a
central black hole mas® = 10M, —andg3 = 10~°, part 2.

None of the physically relevant quantities such as densitgperature and pressure reflect these
instabilities, reducing the importance of the fluctuatiémsa physical interpretation of these
disks.

Nevertheless, we can understand their occurrence by takifager look on the vertical struc-
ture in the instable zone of the disk. We therefore plot théiced stratification of the pressure,
the convection efficiency and the two gradient¥,q, Vg at a radial position close to the black
hole (s = 8rg) for our standard setup disk (Fig. 3.11). Thexis is hereby given by the heat
flux F, in units of the total fluxF’, fixed by the energy equation (3.10). The data is taken from a
single solution of the vertical structure without any snioag or averaging.

Close to the black hole, radiation pressure dominates a&pessure by about one order of
magnitude. Since the two pressure contributions show smaatves for all3, p andT must
also adopt such a smooth structure. Therefore, the ingtabih  are not caused by numerical
noise in the density or temperature.

Let us now have a look at the vertical layering of the conwecsfficiency( in the instable
cases? = {1075,1077}. We detect narrow “convective cells” for small ~ 0.1F, which do not
occur for largers. These small cells are fluctuating for successive iteratiaith the vertical
layers close to the mid plane being either fully convectiv@@n-convective. On the contrary,
the vertical structure retains a stable, almost fully cetive state ford = {10*,10~°}. The
reason for these fluctuations can be found in the lower ploEsg 3.11, where we display the
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Figure 3.11. Vertical structure for the standard disk close to the cébteack hole ats = 8rs.
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two gradientsV,,q and Vo4, Which determine if convection occurs or not. The quanfitis
determined by the cubic equation (3.30), which dependaglyamon B, with ( — 0 for B — 0
and( — 1 for B — oo. The key point is thaB reflects the Schwarzschild criterium, meaning
that if the radiative gradient is less or equal to the adialate, the stratification is stabilized
and no convection occurs:

vradgvad:>B:O, CIO.

In the opposite case, even a small positive differe¥igg — Vaqis multiplied by A2 ~ 10'° and
thereforeB > 1 and( < 1. Thus, fluctuations iV 5y — Vaq, regardless of being of physical or
numerical nature, will cause fluctuations(inThese fluctuations can not be seen in the physical
quantities, because they occur only for small valueg.odnd therefore have little effect on the
total structure. For an interpretation of the overall phgsind a relation to observable quantities,
these instabilities play only a minor role and can be regldnesmoothed values. However, a
further investigation of the nature of these fluctuationsgsessary, but beyond the scope of this
work.

3.7 Conclusions

Lower limitonthe @3-parameter Inthe light of the above results, we derive that convection
alone cannot account for viscosity in accretion disks. dures an underlying viscosity, pro-
duced by some other process, which is parameterized syour model. The reason for this can
be understood by the following line of argumentation: camwm works towards establishing an
adiabatic vertical stratification of the disk. Assumingtttigere exists an additional source of
viscosity in the disk, the convective elements are decdrhy this inherent friction as well
and an equilibrium state is established where energy ispp@ted steadily by both radiation and
convection, and where the total viscosity is given by the sfithe underlying and the convec-
tive viscosity. A good example therefore is the= 10~° case in Fig. 3.11, wher€,,4 exceeds
Vag Only slightly, but in a stable manner.

If, however, the underlying viscosity is too weak, convewtis unchecked and very efficient
in building an adiabatic stratification in the disk with,q < Vag. Such a state is also called
marginally Schwarzschild-stab{€ox & Giuli, 1968). Physically, such a state means that ro en
ergy is transported and convection ceases. Thus, congdativulence and viscosity vanish. In
addition, given that the supportingviscosity is too low, the total viscosity becomes very dmal
in the vertical disk calculations. This contradicts theuiegments from the radial structure equa-
tions: that the total amount of energy, released by the fioarprocess and given by (3.10), has
to be transported away. Furthermore, viscosity must beeptes fulfill the angular momentum
transport equation (3.9). From this argumentation, thestgiohg viscosity can also be regarded
as the “driving force” for convection.

Influence of central mass and accretion rate The results and the discussion given above
show that the effects of a varying central mass with fixedetoon rate are very similar to those
of an inversely varying accretion rate with fixed central madVith increasing/ /Mg, the
required amount of energy and angular momentum which hage tivtansported through the
disk increase, leading to larger threshold values for tted tascosity. Since convection can only
partly account for the required increase, the supportiagosity needs to be larger as well.
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3.7 Conclusions

More interesting, however, is the study of an varying cémirass while the Eddington ratio
is kept constant. Here, variations 6f. have a strong influence on the resulting convective
disks, in particular on the occurrence of thevariations and the importance of self-gravity:
since we can assume that the scaling Iew/ ). holds for higher central black hole masses, the
estimated disk mass at= 500rs increases from0~!' M, to 104/, for a supermassive black
hole with10® M, and the equality radiusq, shrinks by a factof107)%/3 ~ 5-10*. Furthermore,
we demonstrated that higher central masses in principdevdbr lower supporting viscosities,
leading to relatively higher disk masses. But, as we showeld previous chapter, convection
also produces a negative feedback on the energy transpibet self-gravitating regions of the
disk. The interesting question of when and how self-gragityers the game and changes the
disk structure will be investigated in future work.

Convective turbulence, differential rotation and magneto -rotational instability: a
speculative viscosity-mixture Our results show that disk solutions do only exist if there
is viscosity produced by effects other than convection. V@otion itself can contribute sig-
nificantly to the total viscosity, but needs a driving foroeesstablish an equilibrium in energy
transport in the vertical direction.

In our investigation, we parameterize the supporting \8ggdoy a permanent-viscosity,
where the threshold value of the standgrdarameter depends on the central mass and the ac-
cretion rate. Originally, thg-viscosity was motivated by differential rotation, a ploaiinter-
pretation of friction in Keplerian disks. As we discusseatly in Chapt. 1, differential rotation
was first excluded from being a possible solution in accnatiisks, because early laboratory ex-
periments resulted in discouragingly low viscosities. tdger, Richard & Zahn (1999) showed
that differential rotation can give rise to turbulence wtitle analogue of thg-parameter being
as large ag0—".

In this work, we completely ignored the turbulence due to nedig effects, the well-known
MRI (Balbus & Hawley, 1991). This effect is regarded as thienary explanation for the high
viscosity in accretion disks, although some aspects retodne clarified (see, e. g., Begelman
& Pringle (2007); King et al. (2007)). Machida et al. (2004yestigated how the effects of
magnetic turbulence translate into the classicplarameterization in the case ot @\/, black
hole and found that the correspondings not constant, but approximately decreases linearly
with radius:

X exp { } —0.99, a — 0.01for s > rg.

2s/rs
Their results have to be used carefully since the absoldteesan the fitting formula depend
strongly on the disk corona — a high-temperature and lovsitieregion, put artificially to pre-
vent disk material to evaporate (Machida, priv. comm.).cAkhe general question if the MRI
effects can be translated into anor 3-type viscosity (as a rule of thumB,~ o2 . .. a) remains
to be answered (see, e. g., Pessah et al. (2008)).

A particular problem of the MRI are the so-callegéad zongswhere the growth rate of
magneto-rotational instabilities is strongly suppresseédr the MRI to be efficient, the mag-
netic field needs to couple to the rotating material. If th@zation of the disk material is too
low, the coupling is weak (Gammie, 1996). This affects mathke middle regions of accretion
disks, which are sufficiently cool and dense at the same time.
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3 The role of convection in black hole accretion disks

Let us assume for the moment that a parameterization iskpessid that the~! behavior
of the MRI viscosity is roughly valid. Then, we can draw thddwing picture involving dif-
ferential rotation, convection, and magnetic turbulenicethe inner disk region, we saw that
convection and differential rotation with a correspondiligarameter of- 10~° do not produce
enough viscosity for the low central mass and/or high ammatate case. However, close to
the central black hole, the magnetic turbulence is straggylting in a large viscosity due to the
magneto-rotational instability. In the intermediate diegion, a weaker MRI effect adds to con-
vection and differential rotation to account for the reqditotal viscosity. Finally, in the outer
disk region, both magnetic effects and convection becongéigiele, but differential rotation
is sufficient in generating the less demanding values ofdted viscosity. It would be of great
importance and interest to combine these three sourcesadsity in a sophisticated project in
the near future and to see if the required viscosity can bergéed for a large variety of disk
parameters.
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4 Spectral energy distribution of
super-Eddington flows | —
continuum processes

4.1 Context

Numerous theoretical investigations have shown that thgsatal Eddington limit, which has
been derived for a spherical symmetric object such as adiag not apply in accretion disks
(see also the introductory remarks in Chapt. 1). Along wittse studies, also the emerging disk
spectra of various types of accretion disk models have be@siigated widely in the past, since
a correct interpretation of observational data needs talstamparison with theoretical models.

Standard blackbody or modified blackbody spectra for sujpiead accretion disks have been
calculated (Szuszkiewicz et al., 1996; Wang & Zhou, 199%1ddhige et al., 2000; Watarai et al.,
2000). Furthermore, slim accretion disk spectra, inclgdialf-irradiation and self-occultation
for self-similar solutions have been studied by Fukue (20@0ile Watarai et al. (2005) investi-
gated the implications of geometrical effects and geneilativistic effects on the disk spectra.
Further, Kawaguchi (2003) considered Comptonizationcedfén spectral calculations, finding
significant spectral hardening occurring at large acaonetates. In these approaches, however,
anisotropy in radiation fields is not taken into accounty@ligh we naively expect mild beam-
ing effects, i. e., radiation is likely to escape predomthaim the direction perpendicular to the
disk plane. Moreover, the influence of the environment ofdis&, e. g. its atmosphere, is not
considered. Itis well known that accretion disks have edéeimtmospheres, which indeed have
a strong influence on the emerging spectra. The photoiooizat the accretion disk surface
by incident X-rays has been investigated by Reynolds etl8P9), while Dorrer et al. (1996)
calculated disk spectra for thi-disks around a Kerr black hole, surrounded by a hydrogen
atmosphere.

In this study, we focus on the question of wether superatiticcretion is not only allowed, but
also actually present in black hole accretion disks. Theegfwe calculate the spectral energy
distribution of supercritical accretion flows based on #diation hydrodynamic (RHD) simula-
tions computed by Ohsuga et al. (200Supercritical accretions often used as a synonym for
super-Eddington accretion, which means that accreticgstplace with rates above the classical
Eddington rate as it is derived from the stellar case: onaliysassumes that half of the gravita-
tional energy, released by the accretion process, goesadiation, while the other half adds to
the kinetic energy to maintain the (nearly) Keplerian riotat Assuming a non-rotating central
black hole with mass//; and equating the total disk luminosity with the classicatliadton
luminosity Lg = (M/Ms) - 1.2 - 10* erg/s, one gets

) Le _s [ M\ Mg
Mg=—=26-1 — ) =2, 4.1
e o1 (M(D) yr 1)
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4 SED of super-Eddington flows | — continuum processes

In (4.1), the dimensionless factoparameterizes the efficiency of converting gravitatiomal e
ergy into radiation and is set to unity for simplicity.

In Sect. 4.2, we describe the methods of calculation usddsnrtvestigation. Main aspects of
the subjacent simulation data will also be briefly summaribere. We then present our spectral
calculations in Sect. 4.3. Discussion will be given in Sdc4, while Sect. 4.5 is devoted to
conclusions. The results presented in this chapter have fngaished in the Monthly Notices
of the Royal Astronomical Society (Heinzeller et al., 2Q06)

4.2 Model setup

4.2.1 RHD simulations

In this study, we account for both a sophisticated disk madelthe disk’s surroundings, com-
puted in a self-consistent way within RHD simulations: welgpour calculations to the 2D
RHD simulation data from Ohsuga et al. (2005). Starting veithempty disk and continu-
ously injecting mass through the outer disk boundary, titeas simulated the structure of a
supercritical accretion flow, until it reaches the quasiasdi state. The central object is given
by a non-rotating stellar mass black holeg{ = 10M), generating a pseudo-Newtonian po-
tential (Paczjiski & Wiita, 1980). The viscosity is given by the classicaprescription with

a = 0.1. The mass input rate at the outer bound@30(s, rs: Schwarzschild radius) strongly
exceeds the Eddington limid/e, = 1000M/z. The authors considered energy transport through
radiation and advection and included relativistic effantthe radiation part. Note that photon
trapping effects were automatically incorporated in tmewations. A gray computation of the
radiative transfer in the flux limited approximation (Lenere & Pomraning, 1981) was used.

They found that the supercritical flow is composed of two gathe disk region and the
outflow regions above and below the disk. Within the disk@agicircular motion as well as
patchy density structures are observed. The mass accrateodecreases inwards (i. e. as matter
accretes), roughly in proportion to the radius, and the meimg part of the disk material leaves
the disk to form an outflow. In particular, onlp% of the inflowing material finally reaches the
inner boundarydrs), while the remaining0% gets stuck in the dense, disk-like structure around
the midplane or transforms into moderately high-velocityflows with wide opening angles.
The outflows are accelerated uptd).1c via strong radiation pressure force. Figure 4.1 displays
key quantities of the simulation data on a two-dimensiomnial i directionss = \/z2 + y? and
z, which reflect the powerful outflow from the disk with high geities, high gas temperatures
and low mass densities. By comparing gas and radiation tetyes, it can be seen that an
equilibrium between matter and the radiation field is onltakkshed in the dense, disk-like
structure close to the-y plane.

From the simulation data, the gas dengityts temperaturdy,s and its velocityv are taken
as input parameters, as well as the radiation energy denfsityrhe methods of calculating
other quantities, such as the radiation temperdiigethe source functioy, and the radiation
pressure tensd?,, will be given in the following subsections.
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Figure 4.1. Key quantities of the simulation data faf, = 10M and Meyx = 1000Mg. Upper left:
mass density; upper right: absolute velocityor; lower left: gas temperaturgy,s lower right: radiation
temperaturél}aq.

4.2.2 Equation of radiative transfer

Under the assumption of an observer being located at infilistance from the object, we cal-
culate the emerging flux/luminosity as a function of the obses inclination angle and az-
imuthal angle®. Here, © and ® refer to the spherical coordinate system that describes the
computational box.

More precisely, we adopt a parallel line of sight calculatom a two-dimensional grid on the
projected surface, seen by the observer (see Fig. 4.2 fotter bmderstanding). We start the
line of sight calculation at a sufficiently high optical dept s« from the projected surface with
initial intensity 7, = 0 and with fixed direction cosine vectbe 1(©, ). This is achieved by a

INote that the equatorial plane of the computational box fdd by the injection point of gas and its angular
momentum vector.
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4 SED of super-Eddington flows | — continuum processes

projected surface

Q
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box Figure 4.2. Sketch of the line of sight

calculation.

two-way integration. In a first step, the integration pratemwards fromr = r.z wherer, = 0,
to a positionr,, siat With 7, = 7, st During this integration, only the optical depth is caltath
while the radiative transfer equation does not need to heedoln a second step, the integration
then proceeds outwards fromst to the outer boundary of the computational box where the
radiative transfer equation is solved using an initial eadi/,, sz = 0.2

We focus on solving the radiative transfer equation nunadlyidy a Runge-Kutta algorithm,
considering hereby the relativistic corrections due tdtigé velocities of the gas. General rela-
tivistic effects such as gravitational lensing and grdioteal redshift are not taken into account.
We have to distinguish between two different coordinatdesys: we describe the system in
which the observer and the computational area are at rast/wit, . .., while the same quanti-
ties are tagged with in the frame comoving with the local gas velocity Since the gas velocity
strongly varies, the comoving frame depends on the posiitime simulation box.

In this framework, the relativistic equation of radiativarisfer is given by

V\2 3 c »
(l ' V)]V = <V_O> '{HggSSVo — Xwo Iuo + Zﬁzs/gag (Eyo + lOiZOijZg) } ) (42)
while, in the non-relativistic case, it reduces to
3 »
(1-W)I, = {nibssy —xu I, + Z@C""i (EV + lileV”) } ) (4.3)

It is important to note that all quantities on the right hamtesof (4.2) are evaluated in the
comoving frame, while those on the left hand side are givethérest frame. In the equation
of radiative transfers, denotes the source function for mattéy, the radiation energy density
and P¥ the components of the radiation pressure ter@or The total extinction is given by
Xy = KIS 4 kSR

In this first approach, we restrict ourselves to frequenggeshdent absorption coefficients for
free-free absorption processes and totally neglect béwedabsorption processeg?s = «.
This holds as a good approximation, since the gas temperatumnostly abovel0° K, and,

hence, hydrogen is fully ionized. For simplicity, we do notsider metal opacities. We adopt
the formula given in Rybicki & Lightman (1979),

2Since the starting point, siart has to be sufficiently large such that the calculations agythe starting value
I, stat€an be chosen arbitrarily without changing the results.
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4.2 Model setup

2
k=37 108T*1/2(i> 3 (1— e /M) em ! (4.4)
mMp

For the scattering processes, we only consider electrdtesog, given by

e aes(£> cm !, e = 6.652- 10 25cni. (4.5)
Mp

The relativistic transformation rules are

1

vy = VF(l—V—>, (4.6)
C
r—1

ly = Z{I—k(c _ v-l—F)X], (4.7)

y v C
_ (W)’
L, = (V> I, (4.8)

with I being the Lorentz factor.

4.2.3 Frequency-dependent radiation quantities

Special attention is needed when deriving the quantijeand F,, and, therefore, when apply-
ing the flux limited diffusion approximation (see Sect. 4)2.As the radiative transfer in the
2D RHD simulation is calculated in a gray approximation, si@ulation data provides only
frequency-integrated values for the radiation energy itlenEhe matter distribution is described
by the gas density and gas temperature. We assume localaheguilibrium for the matter

distribution and for the radiation field separately:

2h13 1
Sy — By(Tgas) = 2 : hv ) (49)
c exp(kBTgas) -1
E 1/4
Trad = (—) arag = radiation constant (4.10)
Arad
47
E, = 7BV(Trad). (4.11)

While (4.9) generally holds as a good approximation, (4a@ (4.11) have to be treated care-
fully: in a scattering dominated domain, as it is the casé@underlying simulation data here,
photons undergo multiple scattering and therefore expasgpace — accordingly, the radiation
field is diluted and the photon number decreases. This isiffiat the average photon temper-
ature will be underestimated by (4.10) and (4.11), whicH bal discussed later (Sect. 4.2.6).
Therefore, we henceforth focus our discussion on the velahanges of the flux, photon energy
and photon number due to the variations of the inclinatiaylea@®.
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4.2.4 Flux limited diffusion approximation

To calculate the radiation pressure tensor, we apply tlopigecy-dependent flux limited diffu-
sion (FLD) approximation (Levermore & Pomraning, 1981) ke tjuantities in the comoving
frame. In this context, the radiation pressure tensor caxpeessed by

7DV,O = fu EV,O ) (412)
whereF is called the Eddington-tensor. Its components are given by
1 1 o

Here,n’ denotes the normalized energy density gradient,

ni, = : (4.14)

Following Kley (1989) !, and subsequent quantities can be expressed as functidresafergy
density in the inertial frame.

To close the resulting equations, the Eddington fagiohas to be determined. From the
momentum equations, the relation betwggmand ), is given by

_[VE/|

=\, + A2R? R,
J AR v E.,

(4.15)

The flux limiter )\, itself cannot be determined from the equations of radidtaesfer, but has
to be defined manually. In order to do so, two conditions havest fulfilled. In the case of
X, — 00, the equations have to reduce to the classical diffusioi,line. A, — % In the case
of x, — 0, the flux limiter must tend towards/R, to ensuréF,| < cE,.

Naturally, there exist multiple possibilities to descrtbe flux limiter ). We adopt the com-
mon formulation from Levermore & Pomraning (1981):

24+ R,

MR, = —2 1
(%) 6+ 3R, + R2

(4.16)

4.2.5 Numerics

In this investigation, we choosesinglesnapshot of the RHD simulation data after the simula-
tion has settled down into a quasi-steady structure. Irstdium, the structure does not change
anymore in time in a significant way, giving rise to the coesalion that our results are charac-
teristic properties of such a system. The calculation ofliek spectra is performed as presented
above with and without relativistic corrections. As the slation data is symmetric with respect
to the azimuthal anglé, we compute the spectra only in terms dependent on the atidim
angleo.
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4.2 Model setup

Optical depth  We investigate the results of the computation for diffesgatting points (i. e.,
optical depths, s for the line of sight calculation. Faf, st ~ 8, the results begin to saturate,
leading to changes below one percent when starting at hagiieal depths. We useg siar = 10
throughout and validated the results with several integmatfrom higher optical depths.

The reason why such a low, st reveals the same results as higher optical depths can be
understood from the two extreme cases listed below.

1. Either the gas is dense and cool Wiffas ~ Trag and small contributions of the gas to the
total emissivity, or

2. itis diluted such that?*s < xS%@and the total emission along the line of sight is completely
dominated by the radiation field.

For all calculations it turns out that increasing gas terapuges go hand in hand with dropping
gas densities so that opacity and total emission are gosddmehe radiation field.

Discretization =~ We divide the projected surface seen by the observer in a gaoilé with
coordinatesr,y), see Fig. 4.2. Both for the radial and the polar coordinateadopt a linear
grid with N; = 100 and N, = 200 grid points. The discretization in frequency is taken to be
logarithmic with V,, = 200 frequency values betwedf'* Hz (0.5 eV) and10%? Hz (50 MeV).

Step size  During the numerical integration, the step size along thegiration path is limited
by three different requirements to ensure numerical acgura

1. The geometric distane®r must not exceed’; - rs with C; = 0.1.
2. The optical depti\7, of each step must be smaller thap= 0.1.

3. The gradient of the total extinction is limited k§y, /0r) Ar < C3 = 1cm™!. This last
requirement is necessary to enable the handling of drastinges in the optical depth
during inward integration with the explicit Runge-Kuttdheme.

For each integration step, the default step size is cakdifadom these requirements and is input
into the Runge-Kutta integrator.

Runge-Kutta method  The integration of the differential equations (4.2), (4s3performed
by a fourth order explicit Runge-Kutta algorithm with autatie step size control. We calculate
the subsequent valué** from the given intensity* and the default step siz&r in two ways:

it = Ar~((l~V)[,,) : (4.17)
positionk
1
L = —Ar-((l-vm) ,
2 positionk

1
it = —Ar-((l-V)Iy) : (4.18)
2 positionk+1/2
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4 SED of super-Eddington flows | — continuum processes

The step size\r is accepted if the difference betweg{" and/}{" is sufficiently small:

k+1 k+1
II/3 - ‘[V 1

est = 22"
15
k k
I = I 4 est,
error = [est
1073 4+ |1)3Y)
!
error < maxtol=10"°. (4.19)

The numerical constants in this error estimation are tak@n Plonka-Hoch (2004) and depend
on the order of the Runge-Kutta scheme and the requiredamcof the problem.

In the case (4.19) is not fulfilled, the stepsize is reduced factor ofl /2 and the calculation
is repeated until (4.19) holds.

Interpolation on the grid Along the line of sight integration, the physical quanstieT;,q,
Tyas - .. Need to be calculated from the grid data by an interfpoiamethod. For a 3-dimensional
problem, the best accuracy is achieved by a volume intetipalésee Fig. 4.3): given a poitk,

a physical quantity”, and surrounding grid points,, ..., Xgwith Y3, ..., Y, its value is given
by

8 8
Y:Z%Yi/zvi. (4.20)
i=1 =1

The implementation of the interpolation displayed in Fi@ & straightforward as long as the
poles of the computational boX@(= {0,7}) are not touched. Otherwise, special attention is
necessary for determining the correct surrounding grid{gsoy, . . ., Xs.

This interpolation is applied to all physical quantitiescept the energy density gradient,
which is necessary for the correct calculation of the FLDtdbation (see (4.14)). In this case,
two additional points are calculated by surface interpotain the same way as the volume
interpolation (4.20)), which in turn are used to interpeltite energy density gradient at poit
by linear interpolation (see Figs. 4.3 and 4.4 for a bettptamation).

Parallelization  Radiative transfer calculations put strong demands on atetipnal power.
For a quick computation of the continuum spectra and — evere mdor a further extension
towards line emission and absorption processes, the lisigbfintegration is parallelized using
MPI (Message Passing Interfac&NL (2008)).

Within MPI, the processes have their private memory and comeoate by sending messages
to each other. The reason for choosing MPI and not a shareaenyesystem is that the par-
allel line of sight calculation involves very little commigation, since the individual rays are
independent.

The code is parallelized like a ticketing system @y processes: one process, acting as the
server, offers single jobs (single rays for a specific coratiam of 7 and ) to N, — 1 clients.
The clients are served in a queue in a first-come-first-seineiple. After receiving a job, the
client leaves the queue, performs the calculation and qugi@gain to deliver its results and to
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4.2 Model setup

Figure 4.3. Visualisation of the volume interpolation method. Uppdit:Iéor the interpolation ofX,
the surrounding eight grid point&y, ..., Xg are considered; lower left: their relative contributioms a
determined by the volumés,, ..., Vg; upper right: the energy density gradievif £, in directiony =
{r,©,®} is interpolated linearly from two point&’, ;,X, » which are calculated by surface interpolation
from the surrounding grid point&, ..., Xs; lower right: example of the interpolationi,. E,,.

Xr,l
Arz

Figure 4.4. Visualisation of the linear interpolation for the exampleE,,.
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4 SED of super-Eddington flows | — continuum processes

get new work to do. This process is repeated until all workoise] the results are collected and
merged for the final spectral data on the server.

Starting at the innermost radial point on the projectedas@fi = 0), the line of sight cal-
culation is performed for alN,, rays before increasing the polar radius until the outermogt
(7 = 500rg) is calculated. After each radial step, the clients are bekil all N, calculations
are finished and a temporary data file is written to enable dhgpaitation to be resumed at that
radius.

This ticketing system approach also ensures the efficiehtlyegparallelization for different
clients with varying computational power. The overheadtifar parallel calculation is minimal,
consisting only of deliveringV, values for the intensity,(O,7,¢) and the client rank, and of
receiving two values andy for the subsequent step. This justifies the usage of MPI.

4.2.6 Color-corrected temperatures

As mentioned above, due to (4.10) and (4.11), the resultirtgriiperatures underestimate the
real temperature of the radiation field. Strictly speakithg, temperature of the radiation field

should be determined at ~ 1 (7* ~ v k542 and not at- ~ 1 (in a scattering dominated do-

main,r ~ k°%9. Hence, the radiation energy densify will resemble more a shifted blackbody
distribution with a color-corrected temperaturg,,

El/ ~ BI/(TCOI) V Ksca/ligbs7 (421)
rather than (4.11), wherg, ~ B, (Ts). From the requirement of energy conservation,

sca

K
E = /By(Tﬁt) dv = /BV(TCOI) /fTbst' (4.22)
To get a rough idea on how much the derived temperatures derestimated, we solve (4.22)
numerically forT,, in the main emanating region of radiation< 10).

4.3 Results

4.3.1 Overall spectral properties

Figure 4.5 shows the resulting spectruily, for inclination angle® = 0, 7/4 andr /2 with and
without relativistic corrections. The luminosity is givewg

L,(©)= 47r/ I,(©,7,¢)dA, (4.23)
A
where A denotes the projected surface of the computational araajsaseen by the observer.
For low frequencies, the spectra only weakly depend on teeivg angle. Also, relativistic
corrections are unimportant for energigs400 eV (v 5 10'7 Hz). Contrarily, for higher ener-
gies, the dependency on the viewing angle becomes stroRgehigh inclinations, i. e. for an
edge-on view of the system, relativistic corrections stithain unimportant, while they become
drastically visible for low inclinations, i.e. for a nearsice-on view of the disk. For both the
relativistic and the non-relativistic cases, an enhancemikthe peak frequency and luminosity
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Figure4.5. Disk spectravL,, for inclination angle®® = 0, 7 /4, 7/2 with and without relativistic
corrections.

le+031

is observable for small inclination angles; although, the®st is much stronger when consid-
ering relativistic corrections. Furthermore, instead ofpid drop ofv L, for high energies, a
slower decline to a plateau-like structure can be seen raaks.

Figure 4.6 illustrates again the spectrum é@r= 0. To show that the observed plateau in
Figs. 4.5 and 4.6 is a result of the thermal emissi®is, from the hot gas in the photosphere,
we calculate the spectrum without gas contribution, i.e. S&€S, 4. = 0 everywhere. As
it can be seen from the figure, the high-energy plateau desaprompletely when neglecting
the contribution from the hot gas, confirming our hypothe$i®e want to make the following
remarks.

1. This structure may be altered significantly if Comptontteeang is taken into account,
since this provides an effective cooling mechanism for thg. gHowever, the inclusion
of Compton scattering and calculation of the decreasg.inis beyond the scope of this
work.

2. Observation of this plateau is unlikely, since the ovezalission in this energy range is
considerably low and the spectrum is dominated by the peagsam.

To illustrate the influence of the disk’s environment in taed-on case in Fig. 4.6, we calculate
the spectrum for a “screened” central region (fo 100rs, we set all physical quantities to
zero) and for the core region only (for> 100rs, all physical quantities are set to zero). Here,
r denotes the radial coordinate in the spherical coordingts describing the computational
box. The former case corresponds to a system where theifoey are entirely evacuated and
SO emission, absorption and scattering processes onlyaksde the core region. Contrarily,
the latter case means that no emission, no absorption arzhtiersng takes place for> 100rs,

67



4 SED of super-Eddington flows | — continuum processes

1e+040 —— T T T T T
rel.

rel., no gas

Y rel.,» > 100rg (screened)

Y ‘\_\ rel., » <100rs (core)

1e+038 | :

1e+039

1e+037 | /7

1e+036 [

1e+035

vL,lerg/g

let034 |/ 7

y, thin disk model
1e+033  /

1e+032 slim disk model

le+031 A I I I I I I I !
1 10 100 1000 10000 100000 1e+006 1e+007

E,[eV]
Figure 4.6. Disk spectravL,, for © = 0 with relativistic corrections. Beneath the normal speactiias
in Fig. 4.5), we plot the spectra without gas contributidios,the core region only{( < 100rs) and for

a screened inner region & 100rs). Additionally, theoretical spectral shapes for thin afichsccretion
disks are sketched.

yielding an unaltered emission from the core region onlyiQlsly, the environment of the disk
has a rather strong influence on the emerging spectrum.

Furthermore, the theoretical spectral shapes for a stdnbar«-disk (Shakura & Sunyaev,
1973) and for a standard slim disk (Abramowicz et al., 1988)iadicated in Fig. 4.6, each
time without consideration for self-irradiation, atmospd, relativistic effects. If we just take
into account the surface temperatilig for these disk models and take advantage of the face-on
view (no self-occultation), the theoretical predictioms @, o v*/? for the thin disk case, and
vL, o 0 for the slim disk case (see, e.g., Kato et al. (1998, Sect583.2These shapes do
not coincide with our results, although they should be vatitbast for the peak intensity region
of the spectrum. This reveals a weak point of our investigathich is the need to assume a
spectral distribution for the emission of the radiationdiahd the gas component from the given
gray quantities (see Sect. 4.2.3).

4.3.2 Angular dependence of the luminosity

In Fig. 4.7, we show the dependency of the total luminosity

La(®) = [ L(®)dv (4.24)

on the viewing angle for both the relativistic and the nolatreistic calculation by dividing the
resulting luminosities by its edge-on valdg,(r/2). The energy boost for small inclination
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Figure 4.7. Total luminosity L, total photon numbern; and average photon energ¢lyv) as a function
of the viewing angle for the relativistic (left) and non-relativistic (rightptculation. The quantities are
normalized by their corresponding edge-on values.

angles appears in both cases, although it is stronger faethgvistic calculation. Due to rel-
ativistic effects, the gain in luminosity compared to theelativistic calculationZte!/ Lhon-e!
varies between.0 for © = 7/2 and1.9 for © = 0.

We find thatL is enhanced by a factor ef 6.4, at most, for a face-on observer, compared
with an edge-on observer. In absolute valugs,= [1.3-10%erg/s; 8.4-10%erg/s]. The increase
in total luminosity may be due either to an increase in photomber or an increase in average
photon energy. Which one is more important?

To answer this question and to outline the relativisticafanore explicitly, we also display
in Fig. 4.7 the total photon number density; and the average photon enerdy ) as a function
of the inclination angle, again normalized by their edgesalnes. From our SEDs, we calculate
the photon number density using

Tio(©) = / n,(0) dv = / L), (4.25)

hve

and from that, the average photon energy(hy)(©) = Lit(©)/(cni(©)). While relativistic
effects become more or less unimportant in the edge-on ttesecause an additional increase
both in the total number of photons originating from the egstind in the average photon energy
in the face-on case. Table 4.1 summarizes the gain in totainksity, photon number and
average photon energy compared to the edge-on case. Tka#s oan be explained physically
as follows. Starting from theon-relativisticcalculation, we find that:

e Lower densities and, therefore, less effective absor@mhscattering in the photosphere
allow a deeper look into the hotter region for the face-orecasmpared to the edge-on
case. Hence, the average photon enéfgy is increased by a factor af45.

e Photons can escape more easily through the diluted mediumg éhe polar axis, while
they get stuck in the dense disk-like structure concerdrat¢he midplane. The outflow
is therefore collimated and the number of escaping pho®rased by a factor of.35.
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At the same time, the (outflow) velocities of the gas closehtlilack hole{ < 100rs) and
around the polar axis are higher, which becomes importarth&relativistic calculation.

e The frequency of the escaping photons is shifted froto 1, > v by the relativistic
Doppler effect, increasing the average photon energy iaddity by a factor of about
1.71/1.45 = 1.18, when comparing the face-on view with the edge-on view.

e Given that the relativistic invariant i&/v2, the emerging intensity in the relativistic calcu-
lation compared to the non-relativistic case is givedgy ~ (v,/v)?. One factor ol /v
directly goes inta ) via the relativistic Doppler effect, the remaining factdr(g/v)?
applies to the emerging photon number ~ I, /(hv), raising it once more by factor of
3.74/2.35 = 1.59, when®© decreases from /2 to 0.

An observer located & = 7/2 only sees the emission from the outer part of the opticallykth
disk-like structure, which itself screens the relatidstifects in the inner region of the system.
The radial velocities and also the azimuthal velocitiesrafatively low (v, ~ 0.01c). For the
mainly contributing part to the spectrum, the azimuthabe#y is (almost) perpendicular to the
line of sight, therefore the already weak relativistic effeare not detectable for an edge-on
observer. In the face-on case, the highly relativistic flowg 0.3c) can by observed due to the
optically thin atmosphere above the disk. At the same titmeeradial velocity is pointing in the
direction of the observer, leading to strong enhancemédniteeadiative flux at low inclinations.

4.3.3 Blackbody fitting

When spectral data of black hole sources are obtained, sualuo fit them with blackbody (or
disk blackbody) spectra. We thus attempt a similar spefittialg to our theoretically calculated
spectra: we apply a non-linear least square fit to the engiigtensity/,, using a blackbody
spectrum with temperatufgy, altered by a spectral hardening factqiSoria & Puchnarewicz,
2002). The fitting function is then given by

2hv3 1
f = f(l/’ £, ﬂit) - 8_4 : 2 : ho 1 (426)
¢ () -
Note that the factor—* is introduced to ensure the same radiation energy loss:
/f(u, e, Tiw) dv = e o (eTq)* = 0T . (4.27)

Table 4.1. Gain in total luminosity, photon number and average phot@rgy compared to the edge-on
case (see text for details).

© Liot Niot (hv)
relativistic non-relativistic relativistic non-relatstic relativistic non-relativistic
77/2 1.00 1.00 1.00 1.00 1.00 1.00
7r/3 1.66 1.26 1.41 1.17 1.18 1.08
7r/4 2.40 1.59 1.86 1.39 1.29 1.14
77/6 3.63 2.14 2.53 1.72 1.43 1.24
0 6.40 3.40 3.74 2.35 1.71 1.45
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Figure 4.8. (a) fitted blackbody temperatures for the relativistic and nelativistic calculation as a
function of the viewing angl®. Additionally, mean temperaturesgt = 1 andr, = 10 are shown. All
temperatures are scaled By at© = 7 /2. (b) luminosity L, and the corresponding blackbody fits.

In order to account for stochastic fluctuations, we weighfittiag coefficients by their relative
intensity. So, the weight-function is given by

1,

w(v) = —, Lot = /Iy dv . (4.28)
Itot

Figure 4.8a shows the results for the fitting temperatizeas a function of the inclination angle.

Additionally, we plot the surface-averaged radiation tenapures

— 1
Trad = Z / TragdA (4.29)
A

at optical depths, = 1 andr, = 10. As mentioned earlier, the temperature of the radiatiod fiel
will be underestimated by (4.10) and (4.11). We thereforeceatrate on its relative changes for
different inclinations and scale all temperatures to thiméttemperaturdt; at© = /2, where

it is basically the same for the relativistic and for the mefativistic calculation.

If neglecting relativistic corrections, the fitted blacklyaemperature is given roughly by the
radiation temperature ata@nstantoptical depth betweenhand10. The blackbody temperature
rises by a factor of.3 when switching from an edge-on to a face-on case. The spedsranly
weakly hardened compared to a Planck distribution at theesamperaturds;: the spectral
hardening factor adopts an almost constant value close to unity, 1.15, for all inclinations.

When accounting for relativistic corrections, no surfateanstant optical depth can be de-
fined any more: while the fitting temperatures resemble tloadsbe non-relativistic case for
high inclinations, they differ significantly for low inclations, mirroring the above statement
of stronger relativistic effects for the face-on seen systéVhile the blackbody temperature
rises by a factor ofl .6, the hardening factor stays almost constant around 5, like in the
non-relativistic calculation.

Finally, Fig. 4.8b shows the luminosity, for the face-on view and the edge-on view and
the corresponding blackbody fits in the relativistic caseue @o the weighting function, the
peak intensity region is fitted quite well, while there amg&adeviations in the low-energy and
high-energy regions.
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4.4 Discussion

The results presented in Sect. 4.3 permit us to draw sevanalusions about the observational
appearance of supercritical accretion disk systems.

It is clearly not sufficient to consider only the disk and resglits surroundings like its hot
photosphere, outflow regions, etc. Their influence beconest important in the high-energetic
part of the spectrumi 2 4keV). We find a plateau-like structure, independent of nétic
effects and of the viewing angle, which can be ascribed thyr¢a the high gas temperature in
the corona. Therefore, neither the basic thin disk spegtnamthe basic slim disk spectrum fit
our results.

Our results also confirm that the Eddington-Barbier appnation, a common simplification
of radiative transfer calculations for stellar atmospblerannot be applied in accretion disks:
in this approximation, one generally assumes that the enéergtensity along the line of sight
is equal to the source function at constant optical depth 2/3. In our calculation, the main
contribution to the emerging flux is produced at higher aptaepthsres > 2/3; moreover, the
exact value of; depends on the inclination angle.

We observe an enhanced luminosity for more and more face®m systems, which is due
to both enhanced average photon energy and total photoneruiRblativistic effects alter the
total photon number much more significantly (almost twioe tlon-relativistic treatment) than
the average photon energy. This can be identifieahigs relativistic beaming

As outlined in Sect. 4.2.6, due to (4.10) and (4.11), theltiegpfit temperatures underestimate
the real temperature of the radiation field. The correctienved from (4.22) reveals that the fit
temperatures are underestimated by one order of magnivide.

T = [9.4-10°K ... 1.4 - 10°K] (4.30)
for © = [r/2...0], this leads to color-corrected temperatures in the range of
Teor = [9.4-10°K ... 1.4-10°K] . (4.31)

These temperatures would be consistent with the obsergtdtbmperatures of several ULX
sources (Makishima et al., 2000) that can not be explaingéerins of intermediate mass black
hole systems with sub-Eddington accretion rates. Howewerapproach is certainly too simpli-
fied to answer this “too hot accretion disk” puzzle in a satisbry way.

For our results, spectral hardening turns out to be neddigibhis may be due in parts to the
assumption of Thomson scattering: Comptonization effeicexpected to harden the spectrum
significantly (Czerny & Elvis, 1987; Ross et al., 1992; Kawelgi, 2003). Then, if only the
peak of the spectrum is observed, the absolute scale areldhrethe spectral hardening factor
remains unknown and the observed temperafiye= =7, overestimates the color temperature
Teo. Moreover, bulk motion Compton scattering is known to afieoton energies due to the
angular redistribution of the scattered photons (Psaltisagnb, 1997). Socrates et al. (2004)
showed that turbulent Comptonization produces a significantribution to the far-Uv and X-
ray emission of black hole accretion disks.

Another possible weak point in our investigation is the aion of the flux limited diffusion
approximation instead of solving the full momentum equatioin this approximation, several
terms in the equation of radiative transfer (4.2), like* (DF/Dt) with F' being the absolute
value of the flux, are dropped. These terms are of the ordey©&nd may contribute to the
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relativistic effects we find in our spectral calculationsy 8alculating the emerging spectra
under the classical diffusion limit (i. e. complete isotypp = 1/3), we find only little influence
of the FLD approximation at all. Thus, the inconsistencie®ked by applying the flux limited
diffusion approximation do not affect our results in a sfgraint way.

4.5 Conclusions

Our radiative transfer calculations, based on the 2D RHDuktion of highly accreting super-
critical disks including the photon trapping mechanisnovgithat the interpretation of observed
disk spectra is not a straightforward task. Especially, wd fnoderate beaming effects when
the system is viewed from nearly face-on, i. e., the averhgégm energy is larger by a factor of
~ 1.7 in the face-on case than in the edge-on case due mainly tol€dpgosting. Likewise, the
photon number density is larger by a factor~of3.7 because of anisotropic matter distribution
around the central black hole. Interpreting observatitis has to be done in a more sophis-
ticated way than one may expect from basic disk models: iireg a careful treatment of the
radiative transfer with consideration of the disk’s surmdings.

We assume that both the gas and the radiation field sepastaglin local thermal equilibrium.
Although the weak coupling of matter and radiationn,f < xsc5 Supports this assumption,
it remains questionable and also underestimates the tetoperof the radiation field. It is
important to note that previous investigations by Wang e(18199); Fukue (2000); Watarai et
al. (2005) also rely on this approximation; nevertheldssirtresults differ in a significant way.
Solving the crux of assuming LTE for the gas and for the maiitgribution at the present stage is
not possible, because it requires frequency-dependent stidDiations. As a general warning,
we remark that the gas temperatures of the simulation datiaigin, sometimes exceeding’ K
in the dilute photosphere of the disk. Such high temperatare usually not expected and also
not treated consistently in the RHD simulations, since ihgyly that nuclear reactions should
be considered in the energy equation.

In further steps, Compton scattering has to be included dsasdrequency-dependent ab-
sorption for both continuum (bound-free absorption mayobse relevant in the low-energetic
tail of the SED) and line processes: from the observatioidal, £ mission lines, especially the
K-shell transitions of iron, are a prominent feature in ation disk system and comprise many
details about the observed object (see Reynolds et al. {18@¥nolds (2006) and the intro-
ductory remarks in Chapt. 1). Beneath the effects on the-bigrgetic part of the spectrum
mentioned before, Compton scattering will provide an edfiticooling mechanism for the hot
gas.

As pointed out by Watarai et al. (2005), also general rakttiveffects should be considered
in the vicinity of the black hole, which will primarily afféche spectra of face-on seen systems.
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5 Spectral energy distribution of
super-Eddington flows Il — the
iron K line complex

5.1 Context

In the previous chapter, we calculated the observationa¢am@nce of supercritical accretion
flows onto stellar mass black holes (see also the publishesiove Heinzeller et al. (2006)).
Accounting for continuum processes solely, we solved tlaivestic radiative transfer equation
along the line of sight and analyzed the continuum speagtlifes, e. g., bolometric luminosi-
ties as a function of the orientation of the observer retatosthe accretion disk system. The
underlying simulation data was provided by Ohsuga et aD%20

In the case of a stellar mass black hole (ten solar massesliagcat a thousand times the clas-
sical Eddington rate, we found that the observational appea of the system depends strongly
on the inclination angle. Also, relativistic effects beammportant for small inclinations. This
is due to the lower densities in the photosphere of the diskchwallow a deeper look into the
central black hole region (see Fig. 5.1).

A
face-on|view

0=0

inclination

angle © \\
Phoy, N o
Phers @ "?E-
A:‘accrretionsdjsk [ ) = ! g
— : — I
/ %"
black hole Figure 5.1. Sketch of observer’s orientation

towards the disk.

Since 2005, Ohsuga extended his simulations towards \gaagicretion rates and central black
hole masses (Ohsuga (2007) and Ohsuga, priv. comm.). Alsbeoabservational side, there
was significant progress in the quantity and quality of akdé data. In particular, current X-ray
satellites likeChandrg XMM-NewtonandSuzakuevealed the presence of strong iron emission
and absorption lines in many black hole accretion disksnftéLXs to AGN (see Fig. 5.2 for
some illustrative examples). Because their propertieg significantly, they may illuminate the
accretion process in the vicinity of the black hole.
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Figure 5.2. Numerous observations of iron lines can be found in thedlitee. Among them, prominent
and illustrative examples are the quasar PG1211+143 (Roeinal., 2003), the Seyfert 2 galaxy Mrk3
(Awaki et al., 2007) and the ultraluminous X-ray source M82 XStrickland & Heckman, 2008). Their
masses arédl; = {4 - 10"M, 4.5 - 108M,20 — 700M, }, respectively. TheSuzakuobservation of
Mrk3 shows beautifully the advantage of observing the irolinks, which lie in a relatively unconfused
spectral region. The remarkable Fe K emission line of Mrk8 &lao been observed wikMM-Newton
which we showed earlier in Fig. 1.2.

Based on our previous work on the observational appearanseper-Eddington accretion
flows, we extend the radiative transfer calculations towdh# calculation of the iron K line
emission and absorption. To achieve this, the ionizatianliegium has to be calculated as well,
providing the number density of free electrons and the elaat pressure. As a side-effect, this
allows us to include bound-free absorption of the most abohedlements (H, He) in the radiative
transfer calculation.

Since the radiation energy density in the simulation datamsiderably high, Compton scat-
tering effects of high-energy photons may become impodantell. We start with an extension
of the simple Thomson scattering used previously in Se2t.defore we describe our model of
the bound-free absorption processes in Sect. 5.3. We mtdodde actual goal of the present
investigation, the observational appearance of the iroim&s| in Sect. 5.4.
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5.2 Compton scattering

While this project evolved, we discovered that the size ef tbmputational domain of the
RHD simulations is too small for a proper interpretationtw# fron line features. We therefore
model an extended atmosphere around the computationalidlamdect. 5.5 and discuss the
results in Sect. 5.6. There, we also try to fit our data to actioservations of the ultraluminous
X-ray source M82 X-1. Final conclusions are given in Sec. 5.

5.2 Compton scattering

A comprehensive and realistic description of Compton saaty effects is beyond the scope

of this work. We apply the Klein-Nishina correction for u@oezed radiation to the integrated
Thomson scattering coefficier¥i® = o - (p/mn):

K,/SCa . K,/SCa. 1 + z 237(]' + x)
wKN T T 3 1+ 22

1+ 3z
5 . (6.1)

—In(1 +2x)} + %ln(l +2x) — a7 20

wherexr = (hv)/(mec?) (Rybicki & Lightman, 1979). The principal effect of the KteNishina
correction is to tend towards the classical Thomson coefftdior x < 1, while it reduces its
value forz > 1 (see Fig. 5.3 for an illustration).
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E, [eV] of the incident photon energy.

5.3 Frequency-dependent bound-free absorption

To incorporate bound-free absorption in our calculati@nsmplified approach is used and then

combined with the analytic approximation formula of thechfeee absorption coefficient, taken
from Rybicki & Lightman (1979),

2
K= 3710872 (L) (1 e ) em (5.2)
Mp

In the following, we present the general definition for theibd-free absorption in Sect. 5.3.1.
The theory presented below is applied to the contributidigdrogen and helium, as these two
elements represent roughly 98% of the material when asgusoilar abundances.
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5.3.1 Bound-free absorption coefficients

In general, the bound-free absorption processes for eaaeslt A can be expressed as

b A Zin” UbfA (5.3)

=0 [=1

wherel enumerates the excitation state of the ionized stéte= 0: Al, i = 1: All, ...; Z*:
atomic number) of the atoni & 0: ground state] > 0: excited states)zﬁl the corresponding
absolute number density an@ A its bound-free absorption cross section. Their unitégvaf@ =
cm3, [o™A] = cm? and thereforés®: A] = cm 1.

In the foIIowmg,XUon denotes the ionization energy of statavhile Xf,z stands for the energy
of the excited staté¢:,/) with respect to the ground state0). To evaluate the contribution of
bound-free absorption of each element, its cross sec&iﬁrﬁ%and number densities, need to
be computed.

5.3.2 Number densities

To calculate the number density for an element with ionimatiegree and excitation level,
several quantities have to be computed: first, the partitiantion has to be evaluated. Second,
the ionization degree of the element is computed by mearteeddaha equation. Together with
the given total number density of the element, the populaticeach level is determined.

Partition functions

An approximate calculation of the partition functidii* for one ionization degreeof element

A is straightforward for hydrogen and hydrogenic atoms. idgenic atoms are elements other
than hydrogen in an ionized state with only one electron lefthis case, the partition function
is given by

> Ry h _
Wp =) 2k -exp {—(ZA)2 T (1—k 2)} : (5.4)
k=1

This is also a good approximation for more-electron systidtasHe | in high excitation states,
where inner shell electrons effectively screen the nuatbarge, so that the outermost electron
“sees” a hydrogen-like atom with an effective nuclear cbareg- i + 1.

Problems arise when calculating the partition functionhigh temperatures: a — oo, the
partition function also diverges. From a physical point igiw, the element ionizes completely
(c.f. the Saha equation below) and therefore the divergargjtipn function becomes mean-
ingless. A common approach to ensure the computability lfdemperatures reflects this fact
by treating all states above a particular (high) statg (with excitation energies close to the
ionization energy) as quasi-ionized. Formally,

1
Xgrorjon = (£°)°-Ry-h- (1—7%% H)z) < (27) 1366V, (5.5)
kmax
Ry-h
Whn | = Zzzﬁ exp{ (Z™)? kyT .(1—k2)}. (5.6)
B

78



5.3 Frequency-dependent bound-free absorption

However, this method of calculating the partition functisronly an approximation and not
applicable for more-electron systems in lower excitatitates. In particular, it cannot be used
in the case of iron, where most of the excitation levels gpoad to non-hydrogenic states. An-
other quite common approach is to use the ground states ofdhvedual ionization levels only.
Although this is a valid approach in the low ionization regint is invalid in our investigation.
The gas temperature reaches sufficiently high values satkvln iron becomes highly ionized.

We therefore refrain from these simple approaches and merdull calculation of the par-
tition functions, since this gives accurate results andcalglvn all cases: for each element, we
take into account “all” excitation states per ionizatiomele The partition functiondV are
calculated from

lmam A
Zgzlexp{ kT} i=0,....72%-1, Woa=1, (5.7)

wheregﬁl stands for the statistical weight of the excitation statdlar,; for the number of levels
incorporated in the calculation. We use the atomic data ftmNational Institute of Standards
and Technology (NIST, 2006): for each ionization leye¢he statistical Weight§Al, the energies
of the ground state and all available excitation stafgsand also the ionization energy,, are
taken from the atomic spectra database. We complle tablds/éivogen and helium, including
166 levels for HI, 187 levels for He I, and 239 levels for He Il.

lonization degree
To calculate the ionization degrees of element A, the Sabatem is used:

A A 3/2 A
iy 1Me 2Wi (27Tme) Xi,ion
= e (ke D) exp “keT [ (58)

7

The number density for ionization degreeepresents the sum over all excitation levels;' =
> nﬁl. The total number density of free electrons, couples the Saha equation for all elements
involved:

> Y ienl. (5.9)

Elements A i=1

The partition functions of fully ionized elements &€}, = 1, the spin of the free electron
is considered by the factarin the r.h.s. of (5.8). For known temperatufEsthe remaining

partition functiong¥* can be evaluated. Together with the knawtal number densities of all
elements

XA

:anz_A.L7 (5.10)
p 1% Mat

the coupled Saha equations can be solved numerically. R&ralenotes the mass fraction of

element A with atomic weight” in the gasin, the atomic mass unit. Thul, ¢iemens aX = 1.

Since hydrogen and helium provide most of the free electnotbe plasma, we simplify the
computation by assuming that the electron pressure isrdeted solely by these two elements.
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5 SED of super-Eddington flows Il — the iron K line complex

Table5.1. Solar abundances (mass fractions) of important elememis;ld & Baschek (2002, p. 203).

Z element atomic weight mass fractionX
1 H hydrogen  1.008 0.73

2 He helium 4.003 0.25

11 Na sodium 23.00 3.02-107°

12 Mg magnesium 24.31 4.61-1074

14 Si  silicon 28.09 6.77 - 1074

19 K potassium 39.10 2.54-1076

20 Ca calcium 40.08 5.85-107°

26 Fe iron 55.85 1.63-1073

This assumption can be justified easily: taking solar abnoelsi(see Table 5.1), and assuming
that all iron atoms are completely ionized, the number @ &lectrons from iron relative to those
from hydrogen and helium is

_ 26
163-107°- % 8.9.10~*

1 2
0.73 1505 + 0-25 - 1563

and thus negligible. After this preparative work, the numiensities can be calculated from

A A
i1 Xi,l
nﬁl = 'rLZA . A - exp {_k‘BT} . (5_]_]_)

(2

5.3.3 Cross-sections
Hydrogen and hydrogenic atoms

We first focus on hydrogenic atoms, as the results are ajyitiee “exact” solutions to hydrogen
and single-electron atoms and at least as an approximatiorote-electron systems like He |
in high excitation states. Following Mihalas (1970), thess section for hydrogenic atoms is
given by

SOLA 4 6474 mee!® . gﬁbf(kaV) A gﬁbf(kaV)
i,k 3\/§ch6 k51,3 k51,3

(5.12)

with the constant factoik = 2.81540 - 10 cn?s2 (in cgs-units), effective nuclear charge
z =i+ 1 and the bound-free gaunt factg,; which depends on the excitation level and on the
frequency of the radiation. The elementary charge is given$ 4.8032 - 10~1°g"/2cm?/?2 57!

(in cgs-units). For hydrogen and single-electron atome,ntiain/effective quantum numbegr
can be identified with the number of the excitation state phus,t = [ + 1. For more-electron
systems in the hydrogenic approximation, it can be caledlitom (see Traving et al. (1966))

k= {(1 + 1) ARy' h

——=a t1], |...] = floor function (5.13)
Xz‘,ion - Xz',l
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5.3 Frequency-dependent bound-free absorption

Other cases

For more-electron systems in low excitation states, theraption of effective shielding by the
remaining inner electrons becomes inaccurate. A full quantechanic calculation is very
costly and beyond the scope of this work. Therefore, apprate solutions and interpolation
formulae are taken from the literature for low excitatioatss.

Hel Beneath hydrogen, helium is the most abundant element icespleence, we expect
its contribution to the bound-free absorption to be imparta he ionization energy of neutral
heliumisx{'$),, = 24.58 eV, corresponding to temperatures2df - 10° K and photon frequencies
of 5.9 - 10 Hz, which lie both in the achievable range of our simulatiéfe apply interpolated
cross sections (c. f. Mihalas (1970)) for the inner two &iel- 1 and2 (stated = 0, ...,6inthe
NIST database) and adopt the hydrogenic approximationifirein excitation levelg > [* = 6

(k > k* = 2). The interpolated values are taken from Gingerich (1964))given in Table 5.2,
together with the statistical weighggle needed for the calculation of these low excitation states.

Table 5.2. Bound-free absorption for He l arid= 0, . . . , 4.
| State xH¢ev] g g en?]  v[s~!] at edge

0 1's 0 1 2.95.104.,7200 5.94 - 1015
1 23S 19.72 3 290-1077.p 077 1.18 - 10%°
2 2Is 20.51 1 4.47-101 .y~ 191 9.84 - 1014
9
3

345 23P 20.86 3.72-10%6 . =290 8.99 . 1014
6 2P 21.11 2.04 - 1035 . =350 8.39 - 10

Bound-free Gaunt factors

The gaunt factor is a slowly varying function of the order ofty. As a first approach, we set
ghu(l,v) = 1 for all elements, ionization states and excitation levelst a more sophisticated
calculation, these quantities have to be treated moreudbredbne possibility would be to inter-
polate them from tabulated values, e.g. given in Karzas &drgi961), or use approximation
formulae at least for the inner shells.

5.3.4 Upper limits on the contribution of excitation levels

From the number densities and cross-sections, the boeedafssorption contributior?"# of
each element A can be computed with (5.3). In the above denvave used a hydrogenic
approximation for high excitation levels> [* (kK > k£*). In the hydrogenic approximation,
the contribution of one excitation staﬁ% to the bound-free absorption depends strongly:pn
wherek is the main quantum number which corresponds to the exmitédivell:

npy oMok kTP =k

It is therefore sufficient to consider only statewith £ < ky, whereky has to be chosen
sufficiently large. From intensive parameter investigatiove found thaty; = 15 is acceptable.
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5 SED of super-Eddington flows Il — the iron K line complex

5.4 Line transitions

In the following, we discuss a simplified description of thmuhd-bound processes. The goal is
to provide a sufficiently fast and easy method to calculagditte emission from selected atoms,
like Fe K,.

In general, line emission and absorption is described bgtsp@ous emission, induced emis-
sion and absorption. It is a common way to treat induced eomsas negative absorption in
order to retain the classical structure for the emissigugition coefficients:

-cont

gvo= B

cont lines
Ky = K, +K, .

A characteristic property of heavy metals is that ionizatmergies vary extremely for differ-
ent ionization stages. As an example, consider iron. Thization energy of neutral iron is
7.9eV, while it required).3 keV to ionize hydrogenic iron. The environmental condisamour
simulation data vary considerably, depending on the cemas, accretion rate, radial distance
from the black hole and inclination angle from the verticaedtion. We therefore expect sig-
nificantly different ionization equilibria in the compuitatal domain. While in a high energy
regime, line transitions by spontaneous/induced emisamahabsorption are known to be dom-
inant, in a low energy regime they become outbalanced bynsieey effects like fluorescence
lines and radiation-less Auger transitions.

We assume LTE to be established throughout the computationaain. Thus, the ioniza-
tion equilibrium is determined by the gas temperature amgsithieonly. For an investigation of
emission and absorption line features, we therefore do ae¢ ko bother about Auger transi-
tions. Besides line emission and absorption caused bysimib, we only have to incorporate
iron fluorescence lines in our calculation:

-lines __ -collision fluorescence
jz/ - jz/ _'_ ju )
lines collision fluorescence
K, = =K, + K, .

The full equation of radiative transfer gets

(l . V)]V _ (i) . {liabs, CO”SVO + sca, conﬁ (Euo + ZOz‘ZOjP,z) _}_jlljlges

2 "o 4" 4n
bs, ; l
_ (ﬁgos cont 02 congHiVlr;es) ]VO} ' (5.14)

where the conversion rules fog, /, and/,, are given by (4.6)—(4.8). The line contribution from
collisional excitation for a transition — 7 (j > ) with line frequencyy, is generally defined by

jls(?”' = hl/()AjZ‘TLj@Z),,O and I{COII' = hl/o (sznl — sz‘nj) gbyo , (515)

vo

where the Einstein coefficients for spontaneous emissigy),(induced emissionX;;) and ab-
sorption (B;;) are related under the assumption of LTE by

A —

Jt

2 -
VB and BZ-]-:%BJ,-. (5.16)
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5.4 Line transitions

Table 5.3. Number of excitation levels per ionization degresf iron.

1= 0 1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25
Imaxs = 492 577 566 276 180 93 154 41 34 64 66 76 49 71 71 79 66 70 63 62 49 60 72 49 43 25

The line profile functions are defined such that),,dvy = [ ¢,,dvy = 1. To calculate the

bound-bound contributions, these line profile functiongehi® be computed (Sect. 5.4.4) along
with the level populations;, n;. The level populations require the computation of the parti
function (Sect. 5.4.2) and a subsequent application of #teaSquation (Sect. 5.4.3). Both
calculations are simplified using Debye’s theory (Sect.15.4n Sect. 5.4.5, we present the set
of lines considered in our computations and provide the ssang physical quantities. Finally,
in Sect. 5.4.6, we discuss the iron K-shell fluorescenceline

5.4.1 Atomic population calculations and Debye’s theory

The calculation of the number densities for metals is higityplified by the fact that the number
of free electrons, and therefore the electron pressurayéndy hydrogen and helium. This
means that we do not have to include all 26 ionization stat@é®o in the coupled system of
equations determining the number of free electrons.

However, an increasing number of free electrons leads teaBasing electron pressure which
alters the ionization equilibrium dll elements. This is taken into account in the subsequent
deduction by applying Debye’s theory (see, e. g., Traving.gtL966)), which incorporates this
effect by a reduction of the ionization energy of the indixatlionization states’,i = 0,...,Z*
of element A:

5040

Ax; =4.98-10"eV - (i + 1) ——v -
X (t+1) TondK]

Pe[erg/cni?’] 5 Pe - nekBTgas. (5.17)

5.4.2 Partition functions for metals

For calculating the partition functions, we use the samehotets for hydrogen and helium
by taking into account all available excitation states aization level. Contrary to before,
the complexity of calculating “all” internal states of iresstill a serious task. For the present
investigation, we use a comprehensive set of data, agaim KIS T (2006): like in the case of
hydrogen and helium, all relevant data is taken from the atspectra database. The number of
levels is given in Table 5.3.

The corrected partition functior$’* are now calculated from

Imaxi
— Ax;
§ g™ exp MU o022 -1, Wh=1. (518
kBT

In all cases, the ionization energies are larger than thectemh A y; due to the electron pressure.
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5 SED of super-Eddington flows Il — the iron K line complex

5.4.3 Saha equation for metals

The original Saha equation (5.8) is modified by the reduaticthe ionization energy and there-
fore becomes

A A 3/2 A Ay,
Nip1Me 2Wz+1 ) (27Tme) 3/2 _Xz,lon Xi
AT A 3 (ksT)*'* - exp T [ (5.19)

Since the electron density (pressure) is determined by rinaqusly calculated ionization de-
grees of hydrogen and helium solely,is known and constant. Combining this set of equations
with the conservation of the total number density (5.1®art easily be solved for the individual
n%. The level populations are again computed from (5.11).

5.4.4 Line profile functions

The line profile function generally consists of three déietr contributions: natural line width,
pressure/collisional broadening, Doppler broadeningc&the environmental conditions in our
simulation box (temperatures, pressure, ...) are hightying and since the transitions consid-
ered here (Fe K Ky) are very strong transitions with Einstein coefficiedts up to 10 s,
the usually neglected natural line width also has to be takEnaccount. Contrary to pres-
sure broadening, with its strong dependence on the elenmehit&ionization state, Doppler
broadening is a universal feature. In this investigatioa,assume that the profile functions for
spontaneous emission and absorption equal each gther,¢, .

Doppler broadening
The Doppler width of a spectral line of frequengyis given by

Av="21 %BAT , (5.20)
c\l m

wherem! is the ion mass. A purely Doppler broadened line can be destiy a Gaussian
profile function

D(v) = \/;AV exp {—%} , /D(u) dv=1. (5.21)

Natural line width

Due to the finite life time of excited states and the Heisemlbicertainty principle, the line is
broadened by a Lorentzian shape:

v N dy —
L) =— TR /L()d 1. (5.22)

Its only parametety = .54 (radiation damping coefficiehts given by the coefficient of sponta-
Neous emissiony,g = Aj;/2.
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5.4 Line transitions

Pressure broadening

In most cases, pressure broadening also produces a Lastzape of the profile function and
is parameterized by a damping constantanalogous to natural line broadening. An exception
to this pattern is broadening of lines by ions due to the lirftark effect, which results in a
Holtsmark profile with distinctive broad line wings. We nedl this particularity of the linear
Stark effect and assume that pressure broadening produae®mtzian profile with damping
constanty,.. A discussion of this assumption is given at the end of thiseation.

Combining pressure broadening and radiation damping s straightforward due to the ad-
ditivity of the Lorentz profile function. Itis achieved byplacing the radiation damping constant
Yrad DY @ combined damping constantwhich is the sum of the broadening mechanisms that are
involved:

Y = Yrad + Vpr- (5.23)

Similar to stellar structure calculations, main contribaos to the pressure damping term origi-
nate from Stark broadening by electrong, (Qquadratic Stark effect) for all ionization degrees of
iron and by electrons and ions,( linear Stark effect) for Fe XXVI. Finally, van der Waalse&mnt
action with neutral hydrogen and helium atoms is acting artnaéiron atoms-{yqw) (Traving et
al., 1966):

waw Fel
Yor = Y4 Fe |l-XXVI . (5.24)
Y2 Fe XXVI

Van der Waals broadening  We consider pressure broadening for low-temperatures, pre
sumably in the outer part of our simulation box, in the appration of Unséld (1955) and
Traving et al. (1966).

Van der Waals broadening acts on neutral iron atoms and seddoy the presence of neu-
tral hydrogen and helium atoms. In the temperature and presanges where,q, becomes
important, we may neglect the differences in excitationiandzation of H and He:

gHe
Tew = Tew + Neiw = e (1 + cg—H) : (5.25)
The constang is determined approximately by the polarizabilRyand atomic weight,

g = PHe 2/5 . M—H 3/10 et 1 (5 26)
PH pHe 2.4192° '

By introducing the interaction constagl, the van der Waals damping mechanisms can by
expressed as

2 7
log 7 [10%s7!] = = log C + 8.6735 + o log © + log Py, (5.27)

whereP4 is the partial pressure of neutral hydrogen atoms,

H
Ni—g

PH:XH(PgaS_ Pe)' (5.28)

nH
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5 SED of super-Eddington flows Il — the iron K line complex

We base the calculation 6f; on Unso6ld’s hydrogenic approximation (Unsold, 1955) anglyap
a correction factor for non-alkali metals (Wehrse & Lieb&880). We explicitly account for the
different polarizabilities of neutral iron and hydrogercl@eitzer et al., 1996) and get

_ corr 0
Ce = C5" xCy
Fe H 2 H
P Xo,ion Xo,ion

= 10" x =—1.01-10732(Z e+ 1)%. —
PH (Xg,?on - XS§>2 (Xg,?on - Xg,ej)z

2

. (5.29)

Here, Z™® = 26. We recall that the level energy of the upper level of iron Kelitransitions
(65 ~ _6.4 keV) is much higher t_han the ionization energy of_ hydrogﬁi\og = 136 eV) and
neutral iron ggﬁon = 7.90 eV), while the lower level energy of iron K line tran5|t|om§§ = 0.

Hence, this may be simplified to

PFE 1 E ) XOHion2
Co = ﬁ6.37- 10727+ 1) =27 (5.30)
XO,ion

We adopt the polarizabilities given in Schweitzer et al9q@QP /P ~ 12.58.

Quadratic Stark effect  Line broadening by electrons is treated in terms of the cataxdr
Stark effect caused by electrons in the present investiglathn exact treatment of the pressure
widths requires a quantum mechanical approach, involvapdnisticated calculations for each
line. Since this is unrealistic in astrophysical applicasi, previous calculations used a semi-
empirical approximation (Gonzalez et al., 1995):

L onl+ny Ne
MR ZER)? T

Here,n; andn, are the principal quantum numbers of the lower and uppeiddue = 1 and
n, € {2,3} for Ky, s transitions),Z ¢ is the charge of the ion, ands a numerical constant in
the range ot .6-10~¢ (Michaud et al., 1976) t@.0- 10~° (Cox, 1965). We adopt the latter value,
v =2.0-107%, in order to simulate sensitive iron lines.

(5.31)

Linear Stark effect ~ For highly ionized Fe XXVI, the linear Stark effect dominaiver the
guadratic one. Following Cox (1965), we consider it by ragsthe quantum numbers andn,,
to the fifth power instead of the fourth:

5 Ne

5
L n]+ny,
=_. . ) 5.32
e 2 (Zz!:e 1>2 Tgas ( )

Remark.In fact, the environmental conditions in the simulation vaxy between two extreme

ranges. For low temperatures and densities, natural lideheidominate the broadening of the
lines; for high temperatures and densities, the Dopplecefs the most important mechanism
for line broadening. Van der Waals broadening is negligibteughout the computational do-
main.

1The Stark effect produced by the corresponding ions is Idwea factor ofx~ 6 due to its higher mass (Kusch,
1957) and therefore neglected here.
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5.4 Line transitions

In all cases, pressure broadening by the quadratic Stagkta#f lower than the leading con-
tribution by 2—4 orders of magnitude. Also, the usually proant linear Stark effect is weak for
the K, and Kj transitions considered here: examining the semi-empfittag formula (5.32),
we find that the principle quantum numbersandn,, are small, while at the same time the ionic
charge is large for Fe XXVIZF® = 25.

To further justify our assumption of neglecting the Holtsknshape of lines broadened by the
linear Stark effect, we note that the ionization energieB@XXV and Fe XXVI lie very close
together 55 ,, = 8.8keV, xi¢,,, = 9.3keV), while Fe XXIV is ionized at significantly lower
temperaturesx(giion = 2.0keV). Thus, we expect that either Fe XXV is dominant with a bma
contribution of Fe XXVI, or that completely ionized iron damates over the hydrogenic iron.
Hence, the contribution of single-electron iron will be dhmaany case.

Therefore, assuming a Lorentz-shape profile is acceptalser calculations. Additionally,
since pressure broadening by the Stark and the van der Weadsgdays only a minor role, we
can safely neglect the small line shifts which are causedthéye two mechanisms.

Combined broadening mechanisms

In general, a combination of Doppler broadening and colfial/radiative broadening influences
the line shape, resulting in a Voigt profile

_ ' —vp)?
e A2 ¥

ARV V7 (R PR ERER)

In principle, the values oV (v) could be taken from tables. However, there are many methods
to evaluate the Voigt profile function more precisely. We deforth focus on a subtle approach
utilizing the complex error function (Klim, 1981).

Although the convolution (5.33) cannot be solved analyifcé can be expressed as the real
part of the complex error functiom(z) for which numerical approximations are available at
high precision:

[e.e]

V(v)

dv', /L(V) dv=1. (5.33)

_ Re[w(2)] L v+ iy .

V) Avy/T Av

(5.34)

We adopt a standard code (Poppe & Wijers, 1990) to evatu@tgquickly and precisely.

5.4.5 Standard line transition data

The prominent and strong iron K lines lie in a deserted pathefspectrum, meaning that only
few or weak transitions of other elements influence this speange. The line energy and
frequency ranges of the iron,kand K; lines are summarized in Table 5.4.

Assembling all necessary data of the iron line transiti@sat a straightforward task: re-
sults from numerical computations and experimental mesasents are spread widely over the
literature during the last decades.

FeK, Line data for neutral iron (Fel) is taken from the NIST dasbd#&NIST, 2006). A
comprehensive set of transition data for Fe [I-XXV exclgdie X is taken from the XSTAR
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Table5.4. Iron line transitions overview.

Spectralline Ao [A] vy [s7!] E;;[eV] Reference

FeK,

FelK, 1.94 1.55-10'® 6.40-10% NIST (2006)
FeXXVIK, 1.78 1.69-10'® 6.97-10% Shiraietal. (2000)
FEKﬁ

FelKs 1.76  1.70-10'® 7.04-10% NIST (2006)

FeXXVIKg 150  1.99-10'® 8.25-10° QM calculation

database (XSTAR, 2007), missing data for Fe X is added fromddea et al. (2004). Finally,
Fe XXVI data is provided by the compilation of Shirai et al0(®). In total, 1336 lines are taken
into account.

FeKg Significantly fewer data is available for the iron Kne. For the neutral state (Fe I), data
is taken again from NIST (2006). XSTAR (2007) provides a bast of data for Fe lI-XVII (176
lines). Presently, no data for Fe XVIlI-Fe XXIV can be foumdthe literature. The reason for
this lack of data is that these iron ions consist of just K- brahell electrons in the ground state.
Realistic electron densities and photon intensities avdaw to produce significant population
in the M-shellat the same timas producing a K-shell hole (Badnell, priv. comm.), minimg
the importance of (and also the interest of atomic physieareh in) the K lines of these ions.

For almost completely ionized iron, Fe XXV data can be found-uhr et al. (1988) and
Fe XXVI data can be calculated from quantum mechanic appration of hydrogenic atoms.
Altogether, 181 lines for K enter our radiative transfer calculations.

5.4.6 Fluorescence lines

The fluorescence absorption coefficient is determined bpltlogéoionization cross-section of the
iron K-shell. We use resonance-averaged photoionizatiossesections (Bautista et al., 1998),
having several advantages compared to the usage of stasrdasdsections.

Firstly, realistic cross-sections involve heavy quantm@ehanical calculations and often show
extremely narrow but strong resonance peaks, therefougrnegyvery high frequency resolution.
We avoid this demand by using resonance-averaged crossrsecAdditionally, the smearing-
out by the averaging process roughly accounts for broadegmocesses like Doppler broaden-
ing.

Secondly, the authors provide an elegant routine to caketiee resonance-averaged K-shell
photoionization cross-sections for elements< Z* < 26 and all their ionization degrees:
given an ionization staté with nuclear chargez™ and N, = ZF — i bound electrons, and
an energy of the ejected electréi = hr — Xffon in eV (notin Ry as it is stated mistakenly
in Bautista et al. (1998)), this routine calculates the I¢lgbhotoionization cross-sectioxiﬁ KA.
in Mb = 10~'8cm?. Multiplying this with the number density of the corresparglion nf®
results in the K-shell fluorescence absorption coefficient

FeK-fl. __ O_Fe K-l. nFe Fe K-fl.

—1
i,V - Yiv i i,V :

K ] =cm
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Figure 5.4. Photoionization cross-sections as function of photonggnéa) Fe I-XIII (b) Fe XIV-XXVI.

Figure 5.4 shows the K-shell photoionization-cross sechio all ionization states of iron as a
function of the incident photon energy. Having the fluoreseesabsorption coefficients at hand,
we proceed with the calculation of the total number of phat@ation events per volume and
time (for comparison, see van Teeseling et al. (1995)):

dv, [ =Hzem?3.

FekAl. _ / > i "9y (Trad) (5.35)

;i
K,i hlj
The mean intensity of the radiation field is given by the Pkafunction B, (Ty,s) in our cal-
culation, assuming isotropy and LTE for the gas and the tiatiaeparately (see Sect. 4.2.3).
Finally, the K-shell fluorescence line emission contribntfor one specific K or Kz line is
calculated from

25
jVFe KAl _ Z Y;n;:eK-ﬂ.hV by, | (5.36)

1=0

with Y; being the fluorescence yield angdthe corresponding line frequency. We take the fluo-
rescence line data, v;) from Kaastra & Mewe (1993). The line profile function is asbkted

as outlined in the previous sections. We note that naturelwidths (i. e., radiative transition
rates) could not be found or unambiguously identified forflherescence lines. However, since
pressure broadening is generally small compared to therdorhbroadening mechanisms (see
discussionin Sect. 5.4.4), we approximate the naturaldidénhs~,,q by typical values for strong
iron K lines. The data used for the K-shell fluorescence d¢afimn is summarized in Table A.3
in the appendix (page 137). We note that the fluorescencesyiet highly ionized iron are ex-
tremely small, especially for Ktransitions. This is due to strong competing effects thiitoit
iron K line emission, e. g., autoionization channels (Bstatipriv. comm.).

5.4.7 Supplement to the numerical calculation

The principal method of calculation remains the same asaiptlvious investigation of the con-
tinuum features. However, the addition of line emission ahsorption makes the calculation
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1.0

0.5

0.0

Figure5.5. lllustration of line profile calculation
for the case that Doppler broadening (Doppler
width Arp) dominates over pressure broaden-
ing (damping constant). Outside the line core
(lv — | > Avp), the standard resolution is used.
Inside the Doppler-, but outside the Lorentz-core
(Avp > |v — 1| > =), the resolution is in-
creased by a factor dof0, and inside both cores

Voigt profile

| ':L.-A%D (lv — w| < ) by a factor of100, respectively.
Cou The casey > Aup is analog.

of the opacity coefficient for absorption very costly. B&fpothe opacity contributionss., and
kaps @nd the emission coefficients were calculaaéiér the volume interpolation from the inter-
polated densitiep and temperaturesy,s 1raq. Unfortunately, this method is not practicable at
all. We therefore split the calculation into two distinass.

1. For each grid point of the simulation data, we precompiéedcattering/absorption coeffi-
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cients and the emission coefficients and store the reswudatein binary data files. This
process is parallelized in the simplest way by dividing tenber of grid points by the
number of available nodes. In fact, also this step is congpogewvo processes in order to
cope with the key problem of opacity calculations: the freaey resolution. The problem
consists of the fact that even for the high temperatures atatiies in the inner region
of our simulation data, and even more for the lower valuehienduter regions, the line
profiles of the individual lines are very narrow. This, howe\is only true for the colli-
sional (de-)excitation and not for the fluorescence linggesin the latter case resonance
averaged line profiles are used (c.f., Sect. 5.4.6).

A discretization of the frequency with a reasonable resmiudf N, < 1000 in the iron K
line ranger = [4 - 10'7; 4 - 10'®] Hz (for comparison, the total resolution in our previous
investigation wasV, = 200 for v = [104; 10*?] Hz) often leads to

o0 Ny
/ Gydv — > ¢, Av; =0,
0 i=1

since the separation of the discrete frequencies is langearthe line widths. To circumvent
this, we first calculate the line emission and absorptiorificents on a high resolution
frequency array withV, = 12000 points in the iron K line range. Even in this case, a
further refinement is necessary, which is demonstratedgn3:6. The high resolution
data is then written to the disk as binary data, requiringiat@ GB of disk space.

Next, we produce lower resolution data by downsampling thke resolution data tdv, =
600 in the line range. Again, the data is stored on the hard digkriary format, which



5.5 Atmosphere

Ionization degree Ionization degree (magnified)
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Figure5.6. Average ionization degree in the simulation dataféy = 10M, and Mey: = 1000Mg; left;
full scale from Fe I-Fe XXVII, right: magnification from Fe XM—Fe XXVII. For details, see text.

takes about 600 MB. The advantages of this two-step appraaithat different lower
resolutions can be calculated very quickly once the higblui®n data is available, and
that in general the opacity calculation needs to be doneamtg per simulation data set.

2. The real radiative transfer calculation starts with &g if the opacity data is available
for the required resolution. The frequency resolution @dglly N, = 700, where100
grid points are taken to be outside the line frequency raage§00 grid points inside the
line frequency range. The complete low resolution opaditiads then read by each node
and interpolated like all other physical quantities by vo&iinterpolation on the grid.

One may argue that this method of calculating the opacitidess accurate than a direct cal-
culation from the interpolated densities and temperatursvever, we note that the intrinsic

accuracy of the data — and therefore of the opacities — isetteithan the grid resolution from

the RHD simulations.

5.5 Atmosphere

Before we discuss the results of the numerical computatian anticipate that we will find
unusually strong emission lines and no absorption featores| the different sets of simulation
data and inclination angles. This is not wrong necesséiltyve would expect to find signatures
of absorption in some cases and generally weaker lines ihcagss. This is also supported by
the observational data presently available.

One possible explanation for finding no absorption and vepng emission lines is that the
size of the computational domain is too small. The tempeeatun particular the gas tempera-
ture, are still at such a high level that iron is almost fubyized. For illustration, see Fig. 4.1
and Fig. 5.6 for the simulation data wiff, = 10, and M = 103Mg. The latter figure de-
scribes the ionization degree of the material by color cgdavalue of) corresponds to neutral
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Figure 5.7. Simple sketch of the computational box and its surroundingpaphere.

iron, 1/26 to Fell, ..., andl to fully ionized Fe XXVII. The resulting color is then cal@aied
from the average ionization degree at the correspondirmypgint. We can see from the figure
that the dilute outflow region is completely ionized, whikeXXIlI-Fe XXIV are dominating at
lower altitudes and larger radii, reaching out to almig$t-s. There, the ionization degree drops
to lower values of abouii.5, corresponding to Fe XIII.

However, it is unnatural to assume that such a system isdtedat an outer boundarys
(see Fig. 5.7) where temperatures and densities are gstilhigh. In reality, there must be an
extended outer regiora{mospherg where densities and temperatures decrease towards outer
space values. Certainly, the emergent spectrum will beegltiey such an additional structure.

In the following, we describe our simple model for the surmdimg atmosphere. We denote
quantities at the outer radiusurfaceg of the computational box with the subscript “eff” and
quantities at the outer boundary of the atmospheutef spacgwith the subscript “out”. If not
explicitly stated otherwise, the radiugs assumed to be in the range[afy; .. Our radiative
transfer calculations require the following data for thea@$phere: mass density radiation
temperaturd o4 (or radiation energy densitf), gas temperaturéy,s (or gas energy densis),
velocity fieldv = (v, ve, vs).

Please note that in the following approach the zenithal amdwthal velocities already include
the scaling factors due to the spherical coordinate systéms, ifvg reas aNdvg e @re given in
radians, we uUseg = 7vg rea @Ndvg = 7 5in O vg rea IN UNIts of centimeters instead.

5.5.1 Basic assumption

In order to derive a simple model for an extended atmospheted the computational box, we
consider the radial profile of the mass dengity the outer part of the computational domain.
We therefore investigate one set of simulation data witligelacomputational box, whergy ~
2700rs instead ofre¢ = 500rs. The grid resolution is too low to use this data for our radeat
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transfer calculations, but it allows us to estimate thealggtiofile of the physical quantities for
r > 500rs.

In Fig. 5.8a, we plot the mass density as a function of radigHree distinct inclination
angleso betweenr/8 (face-on case) antir /8 (edge-on case). As one can see from the figure,
there exists a clear trend towards a quadratic decrease detisity with radius for larger radii
r/rs Z 500. Therefore, we get a first relation for the atmosphere:

p(r) = (@y Peft - (5.37)

r

5.5.2 Atmosphere model

The disk-like structure in the computational domains esettb a quasi-static state after a certain
time. We assume the atmosphere to be in such a quasi-sttecast well. Consider a surface
elementAq; at the outer boundary of the computational box. The outflawnfbow) mass rate

in radial direction through that surface at any time is gilgn

AM

At
Due to azimuthal symmetry and the fact that the radial mafimminates over the zenithal mo-
tion for all inclination angles except for the very edge-@se (c.f., Fig. 4.1, upper right), we
can assume that this outflow rate is the same through allcugiementst = A(r) along the
radial vector:

AM

At

= ety Aetf -

= peftVr Aet = p(r)v, (1) A(r) . (5.38)
SinceA(r) o« r?, we can solve (5.38) for the radial velocity using (5.37):
Uy = Upeff = CONSL (5.39)

This constant behavior can also be found in the radial profilthe velocities, especially for
small inclination angles (see Fig. 5.8b). The correspandadues for the zenithal velocity
(Fig. 5.8c) are slightly decreasing and can be fitted adetyuby the following expression:

1/2
Vo — (%) U@7eff. (540)
In a highly diluted atmosphere, we expect that the viscaessés vanish in the outskirts of the
system. Thus, the angular momentum is conserved and theigghvelocity should decrease
linearly with radius:

v = Mg = 1=I(r)=les = const (5.41)
.

We find such a trend in the corresponding radial profile (sge3=8d), although the curve shows
a slightly flatter decrease.

2We also performed calculations where we assumed a Kepletation @¢ o »—1/2), leading to the same results.
Given that the transversal Doppler effect is negligible um calculations, the azimuthal velocity plays only a
minor role.
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5 SED of super-Eddington flows Il — the iron K line complex

Additionally to the vanishing of the viscous stresses, titeraction between matter and the
radiation field becomes negligible, since the average ahisaropacities drop drastically. This
is true for both the free-free opaciky (Rybicki & Lightman, 1979) and the bound-free opacity
kpt (Hayashi et al., 1962) scale wif and thus with-—*. This greatly simplifies the treatment
of the gas energy density and the gas temperature: the argmergy equation for matter from
inside the computational box (equation (7) in Ohsuga e2&l0%)) reduces in our case to

V.(ev)=—pV - v. (5.42)

Again, we can take advantage of considering the outflow doneaieduce (5.42) further to

1o, 10 ,
il = _p—_——= , 4
5, evr Psg U (5.43)
The definitions of the energy density and the pressure are
kg

e = —————pTyas, 5.44

(7 _ 1>,umH:0 gas ( )
p = (7—1De, (5.45)

wherey = 5/3 is the polytropic index for a non-relativistic gas gmé- 1/2 is the mean molec-
ular weight. Using these definitions and our previous sgdbmv for the radial velocity (5.39),
we get

9 , 9 ,
3TT = _pﬁr
-_ T, = -2 T
(v — 1)pmn 6T’T Plgas T,um PLgas
0
57"2PTgas = —2r(y —1)pTgas
o /r T
@7’ <%ﬁ> Pefflgas = —27"(’)/ - 1) (iff) pefngas
0 T
O e = a2y -1
aTgas a’f’
— = 2(v-1)—,
Tons (v=1)-
and finally
ref\ 2(v—1)
Tgas: <%ﬁ> Tgas,effa (5-46)

from which we recover the expected conservation of entropy:

2,.—4/3 _ 7,,—10/3 o p5/3 ) (547)

p o< plgasox ™1™
A comparison of the scaling law (5.46) for the gas tempeeatith the radial profile in Fig. 5.8e
shows that the curve in the computational box is slightlytdlathan the scaling law predicts.

This is no surprise, since viscous stresses are still at wotke computational box. For the
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outermost part arourD00rs, the asymptotic behavior of the gas temperature tends ttathe
scaling law (5.46).

Finally, we calculate the radiation energy density (or afidn temperature) profile in the
atmosphere. If we repeat our previous argument, the eneyggtien (Ohsuga et al. (2005),
equation (8)) becomes

V- (Eyv) =0. (5.48)

For the radiation field in the outflow region of the atmosphese get:

2
0 = T—QET EQUT
9 ,
= —r°E
8TT 0
Thus,
2
Ey = (T—jﬁ> E e - (5.49)

With the definition of the radiation energy density
Ey = aradT1aa: (5.50)
we get an expression for the radiation temperature profile:

Teft

1/2
Trag = (7) Trad,eft - (5.51)

This result fits remarkably with the radial profile in the cantgtional box (Fig. 5.8f). To sum-
marize, the radial profile of the physical quantities in tha@sphere is given as follows:

2

pxXr wv.,=const wvg x r /2

. vp o< T Tyas X 7”4/3, Tradg o< r2.

The functional forms (5.37), (5.39), (5.40), (5.41), (9,4td (5.51) guarantee a steady transition
from the computational box to the atmosphere at r¢. The outer boundary,, has to be
defined manually by imposing a lower limit on either the masssity or the gas temperature,
for example. We decide to set a lower limit on the gas tempegasince we are interested in
iron absorption line features. By defining

Tgasyout: 104K é 1eV7 (5-52)

it is obvious that in the outer region of the atmosphere, isooompletely neutral (the lowest
ionization energy for iron igre; ~ 7.9 €V). The corresponding outer raditig; iS

T 1/(2v=2)
Tout = Teff - (Tgas,eff) . (5.53)
gas,ou

In Fig. 5.9, we show the resulting radial profiles for the ndesssity and the gas temperature for
both the computational box and the atmosphere. We see thdetisity at the outer boundary of
the computational box is very small, justifying the deaisio cut the atmosphereat,; = 107rs.
Note that the atmosphere is huge, compared to the compuaéhbox, and that in its inner region
(500rs < r < 5000rs) the densities still exceetd~° g/cm®. This will be relevant in Sect. 5.6.
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Figure 5.8. Radial profiles of the relevant physical quantities in thm@dphere and their corresponding
fits. The colors correspond to different inclination angl€lse fit is plotted in black.
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Figure 5.9. Radial profiles of the density and gas temperature in the atatipnal box £ < 500rg) and
in the extended atmosphere. The colors correspond toddiffénclination angles.

5.5.3 Modification of the radiative transfer equation

Our model for the atmosphere is highly simplified. Therefave do not attempt to produce
realistic continuum spectra by processing the emergernireamm radiation from the surface of
the computational box through the atmosphere.

Also, the emitted intensity from continuum processes is/ddrby assuming blackbody emis-
sion for the radiation field and the gas. While this assunmpisogenerally acceptable in the
optical thick computational box, it is clearly not viable am optical thin atmosphere. More-
over, in such an optical thin environment, the interactietwzen the radiation field and the gas
weakens by definition and therefore radiation and matteowjge.

Hence, it is sufficient to investigate the effects of line &son and absorption on the emanat-
ing spectrum from the computational box and neglect all omtions from the continuum on
the equation of radiative transfer (5.14). In the atmosphetherefore reduces to

14

- o 2 . .
- = (=) -{jﬂg%—n';gemo}. (5.54)

5.6 Results

5.6.1 Data sets

We calculate spectral energy distributions for five différeets of data. In the case of a stellar
mass black hole withl/, = 10M,, we investigate the influence of the accretion rate by con-
sidering the three caséd = {300,1000,3000} Mg. Additionally, we analyze the effect of the
central black hole mass for the IMBH casé, = 10*M,, and the SMBH casé\/, = 105M...

As a general warning, we want to outline that the RHD simategiby Ohsuga et al. (2005) and
Ohsuga (2007) were designed for the case of a stellar magshmée, focussing on the influence
of super-Eddington accretion through a disk-like strueturherefore, the resulting simulation
data for the IMBH and the SMBH cases have to be treated veefudgr. Their temperatures and
densities lie in ranges for which the RHD code has not beeigiaed and for which additional
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physical processes such as cooling terms are importanteféed the results for the higher mass
scenarios as guidelines for how the general picture chaaggbgot as resilient statements.

In our previous investigation, we intensively discussesl th- X case wherell; = 10M,
M = 10°Mg, thereby concentrating on the overall continuum featukéseping in mind the
importance of the inclination angle on the continuum eroissive concentrate on the iron K
line features in the following. As before, the input simidatdata is based on a spherical grid
with azimuthal symmetry and a resolutiondofradial and zenithal grid points in the range-of
[3; 500]rs and© = [0; 7/2]. The data is taken from the most recent RHD simulations (Gésu
(2007) and Ohsuga, priv. comm.), but the basic propertidstia@ physics remain unchanged
from the previous version (Ohsuga et al., 2005). The sinuratata is time averaged, meaning
that once the simulation reaches a quasi-steady stateath@sdsmoothed over a few steps to
reduce the numerical fluctuations. For a detailed discassithe recent RHD simulations, we
refer the reader to Ohsuga (2007). Nevertheless, we wamtéothnat a quasi-steady state of the
simulation data could only be obtained for accretion ratethe above given range. For lower
values of)M, limit cycle oscillations set in, preventing the formatiofa quasi-steady disk state.

For a better understanding of the resulting spectra, we aoenihe physical key quantities
p, Trad, Tyas vy, for the different data sets. We infer empirical scalingdear varying central
masses and accretion rates separately. These scalingnayeseéral do not reflect a physical
mechanism, but give a rough idea on how densities and tempesaevolve in thel/.-A pa-
rameter space. The comparison is done by relating the vatue&ry grid point to the reference
data set withV/, = 100/, and M = 10°Mg and by taking the arithmetic mean afterwards. The
results shown in Fig. 5.10 let us derive the following relas:

p(M) o M, p(Me) o Mg',

Trad(M) X M1/57 Trad(Mc> X M;1/47 (5 55)
Toad M) o M7V Tead M) = const, '

v (M) o M723, v (M) o M2,

The scaling law for the mass density fits nicely with our exagtaons (the higher the accretion
rate, the more material is in the disk and its surroundingd)the standard accretion disk solu-
tion, wherep o< M !. As in the previous investigation of convective accretigsks (Chapt. 3),
the radiation temperature increases with the accreti@n(tae more material that is accreted,
the higher the amount of gravitational energy which is redel. The radiation temperature de-
creases with the central mass due to the scaling of the SebeVald radius's with M, (see also
Sect. 3.6).

The reaction of the gas temperature ahand M, depends on the scaling of the gas energy
densitye and the mass densipy If, in the simplest case, the gas energy density scaledhike
radiation energy density, the gas temperature would scile Mi—'/> and should be indepen-
dent of the central mass. The actual scaling laws show atbsfifjatter decrease with/ and
a roughly constant behavior with/;. In reality, however, one would expect that the gas tem-
perature decreases with the central mass as well. As meqdt@nove, the original RHD code
was not designed for the case of higher central masses, ngeiduait important physical mecha-
nisms are not included. With the strong decrease &f M !, the coupling between matter and
radiation gets very weak and the gas cannot be cooled any. more

Finally, we discuss the dependency of the radial velocityband /.. Given that the material
in the disk and its surroundings is denser for higher acumetates, the outflow is obstructed.
The same mechanism acts vice versa in the case of higheakeatsses.
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Figure 5.10. Empirical scaling laws for varying accretion rates and dnhasses. The averaged values
are derived by relating the physical values at each gridtoid taking the average afterwards. These
scaling laws are purely empirical and do not necessarilgceéiny physical mechanism.
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5.6.2 Spectra

We present the spectra of the five different sets of simulatata in Figs. 5.11-5.16. Addition-
ally, in Table 5.5(a), we summarize the iron K line featuretha boundary of the computational
box (i. e., before processing the spectrum through the gihews) for the individual data sets:
the peak intensities of the individual contributors to theatd K; emission lines relative to the
continuum are given, as well as their ratios to each otheraM list the equivalent widths of
the integrated K and Kj lines. Key results are highlighted in red. In Table 5.5(b@, detail the
equivalent widths of the resulting absorption lines owgdite atmosphere. We do not list their
individual peaks, nor do we investigate the emission lirexe hWe believe — and also find from
our results — that our simplified atmosphere does not alloto usaw resilient conclusions on
the emission line features.

Table 5.5(c) gives the integrated quantities bolometmainosity L, photon number density
n..ot and average photon energgy) for the five data sets. The photon number density is
calculated as in (4.25). Those values are taken from the dayyrof the computational box
without considering the atmosphere. Key results are rggkdid in blue. Before we investigate
the individual spectra, it is worth having a look at thoseralleguantities: from the stellar mass
black hole cases, we can nicely examine the dependencike tdtal luminosity.

e Foragiveninclination angle, the luminosity increaseswilie accretion rate. The increase
in luminosity is roughly proportional tmg M, as predicted in Watarai et al. (2000); Fukue
(2004) for highly super-Eddington disks.

e For a given accretion rate, the luminosity is higher for lomelination angles, confirming
our previous results (Sect. 4.3).

The photon number density and the average photon energyftile same trend as the lumi-
nosity. These nice agreements disappear when looking &tigher black hole mass data: em-
pirically, one would assume that the luminosity of a supddiBgton accretion disk scales with
the central black hole mass if the Eddington ratio is unckdngincel. o«c Lg « M. (Fukue,
2004). While this assumption holds for the IMBH case, it keedown for the SMBH case,
where Liga (103 M) ~ 10 Liga(10My,). Thus, the overall luminosity is higher than expected
by a factor of 1000. An equal disagreement can be found foplia¢éon number density and the
average photon energy. Thus, we repeat our warning thaigherass data set may be far from
a realistic scenario for a SMBH accretion disk, especiatigsidering the constancy of the gas
temperature.

Standard setup  We start our analysis with the standard case of a stellar ivlask hole,
M, = 10M,, and an accretion rate af*Mg. The spectrum is shown in Fig. 5.11. The up-
per panels display the overall spectrum at the boundaryeotttmputational box (i. e., inside
the atmosphere) for a photon energy rangél6f?; 10| keV, corresponding to frequencies of
[2-10%; 2 - 10'9] Hz. The orientation of the observer is taken to be almostéac@® = 7/8) for

the panels on the left, and almost edge-©n 37/8) for the panels on the right, respectively. In
black, we plot a reference spectrum, given by a blackbodytemiith 7, = 1.3 - 10° K, altered

by a spectral hardening facter= 1.2 (compare to (4.26)). The peak intensity in the face-on
case is fitted quite well by the reference spectrum, whileetlexists a clear X-ray excess for
higher photon energies.
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Table 5.5. Ratios of the emission line strength (i. e., peak intensijgtive to the continuum for the fully resolved line, 5 : low velocity emission
from Fe I-XXIlI; &€,/5,1: high velocity emission from Fe I-XXVI. The equivalent widt (EW) for the integrated Kand Kgs lines are given in keV,
where positive values correspond to absorption lines agdtive values to emission lines, respectivél) at the boundary of the computational box;
(b) outside the atmosphers) total/mean values at the boundary of the comp. box. Key dfiemare highlighted in red and blue.

(a) at the boundary of the computational box

Data set © ga,l ga,ll 557| 557” 5a,|/5a,ll (S'BJ/(‘:@” 56/504 EWK, EW Kﬁ EW Kﬁ/EW Ka
10My,3-102Mg  «/8 61 1105 12 195 0.055 0.061  0.18  —166 —35.0 0.211
3m/8 94 875 29 115 0.11 025 013  —211 —23.9 0.113
10My,1-103Mg  «/8 47 1825 6.0 220 0.026 0.027  0.12 —314 —386 0.123
3m/8 140 2875 84 338 0.049 0.025  0.12 —696  —74.8 0.107
10My,3-103Mg ~ «/8 95 1740 11 210 0.055 0.052  0.12 —383 514 0.134
3r/8 695 4260 98 492 0.16 020 012 —1120  —117 0.104
10*Me, 1-103Mg  «/8 607 14430 27 808 0.042 0.033 0.056  —2260  —134 0.059
3r/8 358 19579 22 1147 0.018 0.019 0.059 —4300  —253 0.059
105Me,1-103Mg  «/8 10426 168100 46 3722 0.062 0.012 0.022 —28600  —549 0.019
3m/8 45520 286500 63 5310 0.159 0.010 0.019 —76600 —1250 0.016
(b) outside the atmosphere (c) total/mean quantities at the boundary of the comp. box
Data set © EWK, EWKz; EWKEWK, Dataset © Lutlerg/s nywi[l/(cms]  (h) [eV/cn?]
10Me,3-10°Mg ~ «/8 +40.034 40.106 312 10My,3-10*°Mg  7/8  4.36E+39 7.16E+38 0.42
3m/8 +0.032 +0.099 3.09 3m/8  1.23E+39 3.02E+38 0.28
10My,1-103Mg  «/8 +40.167 +40.074 0.44  10My,1-10°Mg  7/8  5.50E+39 8.52E+38 0.45
3m/8 +0.080 +0.063 0.79 3m/8  1.4TE+39 3.56E+38 0.29
10My,3-103Mg  «/8 40.258 +40.111 0.43  10My,3-10°Mg  7/8  7.07TE+39 1.00E+39 0.49
3r/8 40.131 +0.137 1.05 3m/8  2.01E+39 4.56E+38 0.31
10*Me,1-10°Mg  ©/8 +0.068 +0.127 0.54  10*Mgy,1-10°Mg  7/8  5.55E+42 4.78E+42 0.081
3r/8 +0.162  0.115 0.71 3m/8  1.63E+42 2.06E+42 0.055
105Me,1-10°Mg  «/8 40.070  40.099 118  108Mg,1-10°Mg  ©/8  6.26E+49 3.14E+49 0.14
3r/8 40.344 +0.291 0.71 3m/8  9.50E+49 5.04E+49 0.13
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Figure 5.11. Emerging spectrum fobf; = 10M,, andM = 1 - 10° M and inclination angle® = 7 /8
(face-on view, left) an® = 37 /8 (edge-on view, right). Upper panels: emanating photon rerrdensity

for continuum and lines at the boundary of the computatidwoad;, lower panels: ratio of line emission
relative to the continuum at the boundary of the computatitlox and after processing the lines through
the atmosphere as seen ®yzakiNeXTandChandra Please note that we do not consider photon count
errors (i. e., fluctuations due to the limited number of X-pdytons observed by the instrument).

The first detail we notice is that the line shapes are verguifit for the two orientations. For
high inclinations, the lines are broader, their widths @&durced for lower inclinations.

Thetypicalline of sight velocities of the gas in the outer region of tbenputational box (and
thereby in the atmosphere, singg:m = const) ared.1c in the face-on case artl01c in the
edge-on case. This corresponds to Doppler shifts and liergEs in the face-on case of:

(face-on case)
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Figure 5.12. Map of the emerging luminositiog Lioi[erg/s| at the boundary of the computational box,
seen by an observer at inclinationg8 (left) and3x /8 (right) for the standard data withl; = 10Mg,
M = 10° M. z andy denote the coordinates on the projected surfacergtite Schwarzschild radius.

The line of sight velocities vary for different positions tire projected surface, thereby reaching
maximum values 00.25¢ in the face-on case. From the temperature and velocityilalision

in Fig. 4.1 and the projected surface shown in Fig. 5.12 fah lraclinations, we conclude that
these extreme velocity and high temperature regions oconlyya very small area.

The second important detail to note is the extreme strerfgtie@mission lines and the com-
plete lack of absorption. This becomes even more evidenhwdwking at the lower panels of
Fig. 5.11, where we divide the emanating photon number tebgithe corresponding contin-
uum. In order to account for the limited instrumental resoly we convolve the emerging lines
with the resolutions oChandraand Suzaku The former one, launched in 1999, provides the
Chandra High Energy Transmission Grating (HETG) spectraneith an energy resolution of
E/AE = 1000 at E = 1keV, decreasing t&//AE = 100 at £ = 10keV. For details about
Chandraand theHETG, we refer the reader to the excellent review and summary lyz8ees
et al. (2005). From Canizares et al. (2005, Fig. 30), we firad the resolution curve can be
approximated as

AEchandra= 1073T21sEkeVI/TkeV) _ 10=3 " 10 'keV,  E =[1;10]keV.

The Japanese X-ray satellBizakylaunched in 2005, was originally equipped with KRS

a high-resolution X-ray spectrometer. TRRSused an array of X-ray micro-calorimeters and
foil mirrors to achieve an unprecedented combination ohhigsolution and large collecting
area (ISAS, 2005): its energy resolution was as low @¥ throughout the rang@.3; 12| keV
(Kelley et al., 2007). For the line widths of our simulatioata, Suzakuherefore would have
been able to provide a full resolution of the spectral fesgurUnfortunately, due to a leak in
the cooling systemSuzakuost the use of its primary instrument shortly after launalgust

7, 2005). Nevertheless, a similar instrument is plannecetorbboard the Japanese follow-up
missionNeXT (New X-ray Telescopewhich will be launched in 2011.
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5 SED of super-Eddington flows Il — the iron K line complex

Leaving aside the instrumental influence for the moment, vgé doncentrate on the appear-
ance of the lines for different inclinations and on the inflce of the atmosphere. Comparing the
fully resolved lines at the boundary of the computational bbothe left and in the right figure,
two peaks can be identified for both inclination angles artti bre K, and the K; line.

Face-on view: the lower peak£: &,/3,) corresponds to slightly blueshifted fc ~ 0.02)
line emission from Fe I-Fe XXIIl. The higher peak:( £, /5,1) is produced by stronger
blueshifted emissionu(c ~ 0.08) from the same ionization degrees, but with a small
contribution of helium- and hydrogen-like iron. The ratmfstheir relative strengths and
the corresponding equivalent widths of thg &nd K; lines are listed in Table 5.5. We find
that&,./E.n = Es,/Esn, suggesting that the temperatures in the low and high ugloci
outflows are not too different.

Edge-on view: in this case, it is harder to distinguish the two peaks, eaffgdor the K
lines. However, we still find contributions from a low velgcoutflow (£, ,5,) and a broad
line from the high velocity outflowq,5) with about the same Doppler shifts as in the
face-on case. The strength&f, is increased relatively to the other lines. This is due to
the lower temperatures in the edge-on case, where fluoresediects set in and increase
the K, emission from low ionization degrees.

Interestingly, the peak ratio of thesHine to the K, line is the same for both inclinations, but the
equivalent widths are twice as large for the edge-on case.abbolute values of the equivalent
widths are very large and exceed any line widths that have bbeerved previously. Because
of this, and because we do not see any sign of absorption abtiredary of the computational
box, we conclude that the simulation box is truncated at toallsradii.

The similarity in the line emission for both inclinationspecially the mean outflow velocities,
strengthen our conclusion that the emission is dominatetiéyot material in and around the
disk. Since the disk is cut artificially by the boundary of tteanputational box, it shows high
gas temperatures even close to the disk plane. Therefores teow inspect the influence of the
atmosphere on the lines.

In the face-on case, we find an increase in the emitted lirmesliffour peaks. Additionally,
we see a broadening of th&,(s,) emission lines towards higher photon energies. The most
interesting feature, however, is the appearance of twogtigs. They are caused by absorption
of the highest ionization degrees of iron in the violent awtflpointing towards the observer
(v/c =~ 0.1 on average). The broadening of these absorption lines igaluarying outflow
velocities on the projected surface and to the combinediborion of Fe XXIV-XXVI. Why do
we see absorption features only from the highest ionizategrees? The answer is simple: with
decreasing temperatures, the ionization degree of iropsgichanging the emission signatures
from helium- and hydrogen-like iron into absorption while IkFe XXIII can still be seen in
emissior? As temperatures and densities drop further, absorptioearission due to collisional
excitation is outclassed by fluorescence line emissionghvitself is only efficient up to Fe XXI
(see Sect. 5.4.6).

In the edge-on case, the emission lines disappear compleféd only find two deep ab-
sorption features, caused by Fe I-V. The outflow velocitreslaver and more turbulent (c.f.,
Figs. 4.1,5.8) than in the face-on case, so that no Dopplés slan be detected. For both the

3The ionization energy of Fe XXIll is onlg keV, while Fe XXIV has an ionization threshold &1 keV.
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face-on and the edge-on case, we list the absorption lineagnt widths in Table 5.5. They
are much more reasonable than those of the emission linésisTimainly due to the definition
of the equivalent width,

EW = / Md@. (5.56)
FCOht
We exclude the emission lines in the atmosphere from fudiseussion, because they are dom-
inated by fluorescence emission, which itself depends hyeanithe model of the underlying
radiation field (c.f., (5.35)). The ratio of thegKo the K, equivalent width is only slightly ex-
ceedingl0% in the computational box for the emission lines, but incega®40%—-80% in the
atmosphere for the absorption lines.

Influence of the accretion rate After this comprehensive analysis of the standard simula-
tion data, we briefly discuss the influence of varying acoretates for the same central black
hole mass. In Fig. 5.13, we plot the results for the cake- 3 - 102Me. The line strengths, line
ratios and equivalent widths are listed in Table 5.5 as leefor

From the blackbody reference, we find that the continuumtsp@cdoes not change sig-
nificantly compared to the03)Mg case. Also the principal structure of the lines at the outer
boundary of the computational box is retained. Comparetie¢standard case, the strength of
the Kz emission lines is slightly increased relative to thelies. This can be seen also in the
ratio of the equivalent width& This reflects the higher gas temperatures forth&02 )/ data.
The Doppler shift of the emission lines is nearly unchangedause the dependence of the mean
radial velocityv, on the accretion rate is weak.

The influence of the atmosphere is different than in the previcase, in particular for the
face-on case. The emanating photon number density fromaimputational box remains al-
most unchanged for the emission lines, since the densitewaer. The absorption lines are
also much weaker, but strongly blueshiftedd ~ 0.17). They show a very weak absorption
feature from low ionization K fluorescence, additionally to the absorption lines fromiumet
and hydrogen-like iron seen previously. The same threerpbso lines appear much stronger
and without being Doppler shifted in the edge-on case. Bid,like densities in the atmosphere
are too low to completely cancel the emission lines, whiet$eto absorption features overlaid
on emission lines, making it harder to disentangle the edemnt widths. While the EWs of the
Kz lines are still smaller than those of the, Kines in the computational box, this relation is
inverted by the atmosphere. Let us consider the effect ofitiieed instrumental resolution in
the case o€Chandra The strong and broad emission lines still can be resolvédlitdetail, but
the narrow absorption dips are softened significantly amtlypdisappear.

In the next step, we discuss the high accretion rate caseMith 3 - 103 Mg, whose spectra
are shown in Fig. 5.14. The first thing we note for the spedttheaboundary of the computa-
tional box is that the fully resolved spectral lines now shbvee peaks for the Klines in the
face-on case. This is due to the increase in density in th@uatational box. Also the high tem-
perature regions are dense enough to contribute to therhiss®sn. Hence, the left and middle
peaks represent the emission of the low velocity outflowoAle high velocity outflow profits

“However, we believe that the equivalent width of thg kne in the face-on calculation is overestimated. This
might be due to the fact that the RHD simulations are just atttansition between quasi-steady disks for
Mg > 3 - 102 Mg and limit cycle oscillations for lower values af, see Ohsuga (2007).
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Figure5.13. Same as Fig. 5.11, but fdi, = 10M, andM = 3 - 102 ME.

from that increase in temperature, showing a broader rigig ¥vom a stronger contribution of
Fe XXV and Fe XXVI.

An overall increase of the lines relative to the continuum loa seen not only for the face-on
case, but also for the edge-on case. Here, we find a strongnaixt the individual contributions
to the K lines. The ratio of the peak strength from ¥ K, is identical with the one from the
standard case\{ = 10°Mg). This is also true for the ratio of the equivalent widths.

Again, the atmosphere has a strong influence on the lineréssatln the face-on case, absorp-
tion from the highest ionization degrees of iron producess dips in the emission lines, which
are significantly less blueshifted than in the standardmset(r ~ 0.04 compared t@/c ~ 0.1).
The atmospheric emission lines are increased further wgpeact to the computational box val-
ues, showing an even broader wing towards higher energetheledge-on case, the density
is now even higher than in the standard setup case. Thissausemplete absorption of the
emission lines from the inner regions. The velocities amparable to the0? /e case, so no
Doppler shift can be seen in the absorption lines.
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Figure5.14. Same as Fig. 5.11, but fai; = 10M andM = 3 - 103 ME.

Varying central black hole masses We now investigate the influence of the central black
hole mass\/; on the spectral energy distribution. We keep a constantrigioin ratioM/ME =
10% and calculate the IMBHN/, = 10*M,) and SMBH (/1. = 103M,,) cases.

The results of the radiative transfer calculations aregaeesl in Table 5.5 and Figs. 5.15, 5.16.
As discussed previously, the data must be treated veryutigrgdarticularly in the SMBH case.
In order to compare the reference spectrum from the stebasrblack hole case to these spectra,
it needs to be increased by several orders of magnitude:regdyl discussed the increase in total
luminosity, which should give a factor af)? for the IMBH case, and0’ for the SMBH case,
respectively. Given that we plot the curves for the photomber density rather than for the
luminosity, an additional factor is necessary. Assumirad the mean photon energy is roughly
determined by the temperature of the radiation field andhtpkito account the scaling law
derived in Fig. 5.10, we find
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Figure5.15. Same as Fig. 5.11, but fail, = 10*M andM = 1 - 103 ME.

We first analyze the IMBH case, displayed in Fig. 5.15. Thecajisg of the reference spectrum
leads to the correct order of photon number densities. Fhanhigh resolution plots of the iron
K line region, we can see a further increase of the line strengelative to the continuum at
the boundary of the computational box, when compared to tleas mass black hole case.
Besides this overall increase, the shape and composititredf, and Ks lines do not change
significantly with respect to the stellar mass cases. Anasteng detail, however, is the fact that
the low velocity peaks show a slightly redshifted (i. e.f)l&fing for both inclinations. At the
same time, the position of the line centers do not changepaosd to the previous results. But,
since the density in the computational box decreases byt@ faic1000 on average, we can now
see a small part of the material on the far side of the comipui@tbox, pointing away from the
observer. The equivalent widths and peak ratios listed leTa.5 are unnaturally large, but they
show that the K lines become significantly weaker in relation to thg lihes. This reflects our
expectations from the lower temperatures of the gas andathation field in the simulations.
The atmospheric modeling becomes definitely questionaisli¢he IMBH case: the emis-
sion lines become even stronger for both inclination anglesrlaid by very narrow and strong
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Figure5.16. Same as Fig. 5.11, but fa, = 10°M andM = 1 - 103 ME.

absorption dips. However, the ratio of the equivalent wsdth the K; to the K, line is in a
reasonable range, suggesting that only the absolute gealnff-beat. The influence of a limited
instrumental resolution becomes crucial for such narrod @eep absorption lines, as can be
seen clearly from the lower panels of Fig. 5.15.

Finally, we consider the SMBH case. The overestimation efitliegrated luminosity and
photon number density can be found again in the upper ploEgf.16: the reference spec-
trum, although amplified by 0%, is still two orders of magnitude too small. The iron lines
are unacceptably strong, so that we definitely rule out thielitsaof this simulation data set.
However, the decreasing trend of the equivalent width r&ié K;/EW K, is continued for
the spectra at the boundary of the computational box. Theldied model of the atmosphere
breaks down completely, and so we omit a further analysis.

We conclude that the simulation data — but not the atmospineoidel — for the IMBH case
is still acceptable. At the same time, the SMBH data is defiyitejected. A proper investiga-
tion of such large scale accretion disk systems requiresdhsideration of different physical
processes such as additional cooling terms. Also, a mongratectreatment of the radiative
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5 SED of super-Eddington flows Il — the iron K line complex

transfer calculations in both the 2D RHD simulations andradiative transfer code are neces-
sary (for a discussion of the weak points of the flux limitefiugion approximation used here,
see Sect. 4.4).

Confrontation with reality — the case of M82 X-1 Finally, we want to compare our the-
oretical spectra with observational data. The situatiozoisplicated by the fact that very few
iron line detections have been made thus far for potentraht@ss ultraluminous X-ray sources.
Contrary, a lot of observational data is available for hyghatcreting systems with large cen-
tral black hole masses such as quasars and Seyfert galdkieg.show a large variety of line
features, reaching from strong and broad emission linesatmw absorption lines or signif-
icantly broadened absorption bands: for example, the tyBeyZert galaxy Mrk 3, observed
with XMM-Newtonby Bianchi et al. (2005), shows a prominent iron K emissioe liwhile the
Suzakwbservation of the Seyfert 1.5 galaxy NGC 3516 shows a congtisorption feature, and
both broad and narrow Fe K emission lines (Markowitz et &08). The remarkable emission
line of Mrk 3 has been shown in Figs. 5.2, 1.2.

As we concluded in the last section, our simulation data cabe extended that easily to
higher central masses. Thus, at present it is not possibt®ntgoare any of these observa-
tions with our theoretical spectra. We therefore concémtom one of the very few observa-
tions of iron K line emission in low mass ULXs, M82 X-1. Pattiar interest has been paid
to the starburst galaxy M82: Matsumoto et al. (2001) analyadeservational data taken with
the High-Resolution Cameran board theChandra X-Ray Observatoiip 1999 and 2000 and
detected nine X-ray sources in the ceniralkpc x 1.1 kpc region, but not in the galactic cen-
ter itself. Among them, M82 X-1 (source 7 in Matsumoto et aD(@1), see Fig 5.17), located
about170 pc off the dynamical center, is the brightest source with l@rfetric luminosity of
Lo = (2.4-16) - 10*°erg/s (Patruno et al., 2006). First iron line detections havenbreported
by Strohmayer & Mushotzky (2003) from follow-up observasowith theEuropean Photon
Imaging Camera (EPICpn boardXMM-Newtonin 2001, who also detected mHz QPO
behavior in M82 X-1. Since then, numerous investigationshseen carried out based on this
data, making M82 X-1 the prototype for the stellar-massllaole-intermediate-mass-black-
hole debate. Mass estimates are ranging fi®w0M/., (Fiorito & Titarchuk, 2004) down to
19M,, (Okajima et al., 2006), all on solid physical basis, and yeagreement could be found.
In the following, we briefly present the analysis of Okajimalk (2006) and refer the reader to
the comprising literature (e. g., Stronmayer & Mushotzk§(2); Fiorito & Titarchuk (2004);
Agrawal & Misra (2006); Dewangan et al. (2006); Okajima et(2006); Patruno et al. (2006))
for a more detailed discussion.

Okajima et al. (2006) analyzed archivdMM-Newtondata of M82 X-1 when it was in the
steady/low state (April 2001). Applying a “p-free” disk madp in 7'(r) o 7, Mineshige et
al. (1994); Kubota et al. (2006) and references thereig), taundp = 0.61*) 53 and concluded
that M82 X-1 is in an intermediate thin disk—slim disk staftus, energy is transported through
the disk partly by advection and the disk flow is radiativelgfficient. From that, they estimated
the central black hole mass to b@-321/,,, accreting aB20—-560Mg and shining at—6 times
the Eddington luminosity. In the following, we will test tindypothesis with our numerical
computations.

Before we start fitting the observed spectrum with our mgaetsmust address another detail.
It has been shown (Ohsuga et al., 2002) that the slim disk huwas not properly account for
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| | ] [ [ I T

Figure 5.17. Centrall.1kpc x 1.1 kpc region of M82;Chandraobservations from 1999 (left) and 2000
(right). The radio kinematic center is marked with a greesssy M82 X-1 corresponds to source 7. The
color scale shows the total counts per pixel. Figure takem fiMatsumoto et al. (2001).

the photon trapping effects which occur in the central negba highly accreting black hole
disk. By that effect, high energetic photons from the midplaf the disk are swallowed by
the black hole before being able to escape through the digttback disk. While the 2D RHD
simulations by Ohsuga et al. (2005); Ohsuga (2007) incatpdhis effect explicitly, Okajima
et al. (2006) based their investigation on the standard digkh model. For an accretion rate of
102 — 103 Mg, the slim disk model overestimates the disk luminosity bgaidr of2—3 (Ohsuga
et al., 2002, Fig. 1), which means that we should base our atatipn on an accretion rate of
about1000 M.

From our experiences so far, the resulting luminositiesiftoe simulation data depend on the
inclination angle between the disk’s rotation axis and theeover. The Eddington luminosity is
given asLg = (M./M,) - 1.2 - 10% erg/s. We infer from Table 5.5 that the almost face-on case
© = m/8 corresponds td./Lg =~ 5 for both the stellar mass and the intermediate mass black
hole case, whild./Lg ~ 1 for the nearly edge-on caée = 37/8. The inclination of M82 X-1
is completely undetermined (the disk cannot be resolvediatance of aboui Mpc), so we set
the inclination angle tar/8.°

Thus far, we only have simulation data sets forand 10* solar masses with accretion rates
of 103Mg. We use the scaling laws from Fig. 5.10 to extrapojaté&y.s Traq andv, from the
10M,, data to &5M,, setup. For the missing zenithal and azimuthal velocitigandwvg, which
are expressed in geometrical units rather than in radia@gssume them to be constant on the
grid. Since the grid points all scale with the radius andefae with the central mass, this is
the expected behavior for at least the azimuthal velocity:

SFor smaller inclinations, the highly relativistic, optilgethin jet region has to be considered. At present, this is
not covered properly by our radiative transfer calculation
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Figure 5.18. Zenithal velocityve (left) and azimuthal velocityq (right) for the simulation data sets
M = {10,10*,108} My, M = 103 ME.
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To see if this assumption holds fog and also forvg, we plot the radial dependency of both
velocities for® = 7/8 in Fig. 5.18. It confirms nicely our expectations by showingstant
velocities on the-/rs grid, even for the supermassive black hole case.

We further have to specify the metallicity of M82 X-1. SinceB®lis a classical starburst
galaxy, its metal abundances vary greatly. Strickland &Kktean (2008) analyzed the properties
of the diffuse hard X-ray emission from observationgdhandra ACIS-(September 1999) and
ACIS-SJune 2002), as well as B¥MM-Newton EPIGMay 2001 and April 2004). The authors
derived a metallicity of the starburst region Bfe, = 5.2Zg¢ £ 50%. In a previous inves-
tigation, Origlia et al. (2004) investigated near-infiduabsorption spectra of M82 and derived
detailed stellar abundances in the nuclear region of thexgalhey foundFe/H] = —0.35 dex,
which corresponds t@re nue = 0.43Zg¢. It is reasonable to assume that the metal abundance
in M82 X-1 is more related to this value. We therefore followgla et al. (2004) and apply the
sub-solar abundances, but we remark that these values aipgh uncertainty.

Strickland & Heckman (2008) also found6ar keV emission line from highly ionized iron
in the central region of M82 in all observations at high statal significance, in addition to
a marginally significan6.4 keV Fe K, emission line (from weakly ionized iron). Only in the
May 2001XMM-Newtonobservation did they detect significantly higher iron linexés and an
additional6.9 keV emission line. They attributed the excess to M82 X-1 p@mits high state.

We summarize the main parameters of M82 X-1 and our model lkeTa.6. The resulting
spectra are plotted in Fig. 5.19. Beside an almost perfeeeagent of the bolometric luminosity
with the slim disk model of Okajima et al. (2006), we find thabiceeds the classical Eddington
luminosity by a factor of;.2. We also recover the decreasing trend of the ratio of thevatgrit
widths with increasing black hole mass, frem?2 for M. = 10M, to 0.08 for M, = 25M.

Observational data show line widths of the order-&0 eV to —90 eV for the6.7 keV emis-
sion line of the central nuclear region (Okajima et al., 2@&t6ickland & Heckman, 2008), while

112



5.6 Results

Mg = 25My, M =1-103Mg

1e+026 T T T T
les024 | ©=7/8 :
. le+022 -
c 1e+020 1
O,
3 le+018 .
:?‘
1e+016 i
comp. box
le+014 | atmosphere--------- S
reference
le+012 . ' ' ' ' :
001 003 01 03 1 3 10 30
E, keV]
e ler006 [ Suzaku/NeXT 1 Chandra i
3 10000 + -
= 100 : -+ .
8 1 - - .,
Iy i e
X 001 fF i T ]
& 0.0001 Y 1 i
S 16.006 - | comp. box |
© 1 1 1 1 1 1 1 1 1 1 1 1 Iatmolsphelrelr
6 65 7 715 8 85 9 95 6 65 7 75 8 85 9 95
E. keV]

Figure5.19. Emerging spectrum fak/ = 25M,, M = 1-103 M and inclination angl® = /8. Upper
panels: emanating photon number density for continuum iaed at the boundary of the computational
box; the reference is generated by a blackbody spectrumtevitheraturdh, = 1.1-10°K and a spectral
hardening factoe = 1.4. Lower panels: ratio of line emission relative to the comtim at the boundary
of the computational box and after processing the lineautjinadhe atmosphere.

they are significantly smaller for th&4 keV and6.9 keV emission lines. For M82 X-1 in its
steady/low state, they are almost not detectable witl B\ = —9eV and EW, ;v = —2€V.
This is also the data on which Okajima et al. (2006) based #mailysis. In the high state, these
values are increased to EW.y = —23eV and EW, ;v = —28 eV, respectively. Thus far,
no absorption lines have been detected. We definitely owerate the strength of the emission
lines, regardless of whether we include the atmospheredrcdfculation or not. Even more,
like in the previous section, the emission lines are in@dds/ our atmospheric toy model. At
the same time, two highly blueshifted, narrow absorptigrsdire generated. Only considering
for the absorption features outside the atmosphere, we dasbnable equivalent widths (c.f.
Table 5.6). They are generated by helium- and hydrogentideeK line absorption, moving
towards the observer with/c = 0.12.

Hence, we conclude that our simulations overestimate tieesimission by almost three orders
of magnitude! Possible reasons for this are the limitedafizee computational box (resulting in
an artificial cutoff of the disk and the corona), the overdifigedl model of the atmosphere, or the
fact that the gas temperatures in the simulation data areregty high, exceeding0® K in the
disk’s surroundings. As discussed earlier, these tempesare neither expected, nor observed
thus far. They would also require to incorporate nucleactreas in the energy equation of the
RHD simulations.
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5 SED of super-Eddington flows Il — the iron K line complex

Table 5.6. Main properties of the ULX M82 X-1 from Okajima et al. (2006)daadapted to our radiative
transfer model. The line widths of our model are calculatetha boundary of the computational box
(emission lines, EW 0) and outside the atmosphere (absorption lines>EWY

Okajima et al. (2006) Our model
Central black hole mass 19-32M, 25M,
Accretion rate 320-560ME 1000 Mg
Distance 2.7Mpc 2.7Mpc

Bolometric luminosity
X-ray luminosity (3; 10] keV)
Metallicity (Origlia et al., 2004)

1.4-10%erg/s = 4-6Lg
8.4 -10%%erg/s

1.6 - 10*%erg/s = 5.2 Lg
1.5-10%erg/s
ZFe — 043ZFe7®

Inclination angle — /8
Scaling ofpos — 0.40p10
Trad,25 - 0.80Trad,10
Tyas25 — 1.007Tgas10
Ur,25 — 1.061@710
V0,25 — 1.00ve 10
Vo 25 — 1.00’[)@710
Line center K, emission 6.6 keV 7.1keV
Equivalent width K, emission —85eV —449keV
Line center K3 emission — 8.4keV
Equivalent width kg emission ~ — —37keV
EW Kjg/EW K, emission — 0.08
Line center K, absorption — 7.8keV
Equivalent width K, absorption — +160eV
Line center K absorption — 9.3keV
Equivalent width kg absorption — +77eV
EW Kg/EW K, absorption — 0.48

Another possibility is revealed by Fig. 5.20, where we corepair modeled spectra with the
observational data MM-Newtonwhen the source was in its low state (Okajima et al., 2006)
and in its high state (Strickland & Heckman, 2008). The phatnergy range in this figure is
limited to £, = [3;10] keV and the spectrum is given in countskeV), where a distance of
2.7 Mpc was assumed. Although the integrated bolometric lusitgef our model — which is
dominated by the UV peak emission — is in good agreement \weghobservations, the X-ray

continuum is not. Strickland & Heckman (2008) concluded tha X-ray excess in the galaxy

M82 is generated by the nucleus region, the ULX point souaoelsa dominating diffuse contin-

uum, which cannot be separated from each other. Thus, teswati®nal data overestimates the
X-ray continuum flux from M82 X-1. Nevertheless, the disaegy between our results and the
observations is too large to simply attribute it to the dificontinuum. Instead, we recall that
the 2D RHD simulation data provide only gray values for thdiadon energy density and the
gas density. From these, we derive blackbody temperatmct®Enckian energy distributions
for the radiation field and the gas, assuming that they areparsite local thermal equilibria.

Contrarily, a power law spectruth, « v~* is commonly use@nd usually requiredo fit the
observation of X-ray spectra. M82 X-1 shows an extremelydtaitinuum in its low state that

114
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Figure 5.20. X-ray fluxes from the simulation data (red) and from obseovest while the source was in
its low state (blue, Okajima et al. (2006)) and in its hightes{dlack, Strickland & Heckman (2008)).

can be fitted adequately by a broken power law with a tramsgitor, = 6.0 = 0.5 keV and
a- = 0.7, o~ = 2.0. Inits high state, the spectrum steepens significantly ande fitted again
by a broken power law witl&, = 6.0 0.5 keV anda. = 1.6, a~ = 2.6 (values are taken from
Strickland & Heckman (2008, Table 3)).

Increasing the continuum emission in our model by a factot (0, as suggested from
Fig. 5.20 and from the comparison of the integrated X-rayihasities in Table 5.6, would
lower the equivalent widths of the iron K emission (and apson) lines by approximately the
same factor. This would lead to much more reasonable egmivalidths EW K, = —450eV
and EW K3 = —37 eV for the emission lines and vanishing absorption featutesakes sense
to assume that the fully resolved emission lines of our sathhs are somewhat larger than
the observed ones. The observed lines are influenced byntliediinstrumental resolution and
by the contamination of the ULX emission from its host galaryparticular from the diffuse
continuum.

We want to remark that also the Doppler shift of the emissioesl in our synthetic spectrum
does not fit to the observations, which show basically na siithe line frequencies. Whether
this is due solely to our simplified atmospheric model, whbeeradial velocity stays constant,
cannot be answered within this investigation. Alterndyivine data from the underlying simula-
tions might simply show too high velocities. Also the questabout the central black hole mass
is left open, but our results confirm that a hyperaccretietiastmass black hole can account for
the observed super-Eddington luminosities.
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5.7 Conclusions

In the previous section, we presented the results for five gfesimulation data and discussed
them in detail. We also extrapolated the stellar mass stmuldata towards a5/, black hole
and compared it to the ULX M82 X-1. We found that in all six casthe computational box is
too small for a proper treatment of these highly super-Egltdimaccretion disk systems. The iron
line emission from the computational box is unusually sgronall cases, with equivalent widths
of the order of tens to hundreds of keV. No absorption lineslimdetected at the boundary of
the computational box, regardless of the orientation ofiibk relative to the observer.

Despite these doubtable absolute numbers, their relatiitees suggest that the equivalent
width ratio EW Kz /EW K, can be an indicator for the central black hole mass. Whikertitio
adopts values df.12 for M, = 10M,, it decreases steadily tb08 for M, = 25M, 0.06 for
M. = 10* M, and0.02 for M, = 108M,. The inclination angle also influences this ratio: for a
stellar mass black hole, the face-on ratio is atait larger than the edge-on ratio. For higher
black hole masses, this effect seems to weaken, but thetyalfdhe high mass simulation data
itself forbids a definitive statement. At the same time, tifeience of the accretion rate on the
EW ratio is negligibly small, so that we cannot even sepadtdtem the intrinsic errors.

The emission lines at the boundary of the computational hexganerally composed of a
complex line from the low velocity outflowv(c = 0.02) and a stronger, complex line from
the high velocity outflow{/c = 0.08) for both K, and Ks. The individual lines are generated
from a mixture of low and high ionization degrees of iron,al@iag up to Fe XXIII for the low
velocity line, and up to hydrogen-like Fe XXVI for the highleeity line. The line shifts are
almost insensitive to the accretion rate and the centraEmas

We introduced a simple atmospheric model in order to ingasti the effects of the disk’s
surroundings on the spectrum. We found that its influenderisignificantly for the face-on
case and the edge-on case. In the former case, highly biigesharrow absorption dips from
the highest ionization degrees of iron can be found for dastelass black hole, next to and
overlaid on strong emission lines. In the latter case, thsgon lines disappear completely
and broader absorption lines are generated in the stellss o@se with high accretion rates. For
higher central masses, the modeling breaks down complétedyherefore absolutely necessary
to run the simulations with a larger computational domain.

In general, we advise that the 2D RHD simulations should eogXxiended towards central
masses larger that/, ~ 10*M,. The physical assumptions and processes included in the
model are not sufficient or appropriate for the required dieissand temperatures. A further im-
provement, although unrealistic with current computatidimitations, would be to incorporate
a frequency dependent radiative transfer calculation eénsiimulations directly. Until this be-
comes possible, a rethinking of the spectral energy digich of the radiation field and the gas
emission in the computational box is necessary. Our resalparticular the underestimation of
the X-ray continuum flux in M82 X-1, suggest that a power lagtilbution is more appropriate
than a blackbody spectrum in this energy range. Howevdydingg this is not straightforward
since it requires a consistent modeling of the emission filearradiation field and the gas over
a large energy range in order to preserve the good agreemeiné dotal luminosity.

Indeed, from the bolometric luminosities, emanating phatombers and average photon en-
ergies we find an excellent agreement with the theoretiqga¢etations. For an extremely high
accretion rate ofl/ = 103 Mg, the total luminosity exceeds the Eddington limit by a facibl to
6, depending on the inclination angle, but regardless of #émeral black hole mass. The results
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5.7 Conclusions

are not only consistent with the observations of M82 X-1,dlab with the theoretical expecta-
tions for slim disk models when the photon trapping mechamssconsidered properly (Ohsuga
et al., 2002). Moreover, they also show a logarithmic depand ofLy, on the accretion rate,
which is expected from semi-analytical calculations (\Waitat al., 2000; Fukue, 2004). Also
the average photon energies drop for higher central maasespected.

From this point of view, it is quite possible that ULXs are poed by hyperaccreting stellar
mass black holes, shining at a few times the Eddington lusiiynoMild relativistic beaming
effects further influence the ratib/Leg for small inclination angles. In summary, our results
suggest to concentrate on constraining the inclinatiohegangd the ratio of the equivalent widths
by observations of known and potential low mass ULXs withlgtest X-ray observatories. We
propose a follow-up observation of M82 X-1 witkeXT to investigate the presence — and if
present, the strength — of gskemission line.
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6 Epilog

In this dissertation, we studied two different aspects atklhole accretion disks. In the first
part, we concentrated on modeling their internal structéi@m a detailed examination of the
role of convection, we found that it contributes signifidand the energy transport in the disk.
Convective turbulence also adds considerably to the taebsity, although it cannot account for
it on its own. We briefly discussed how it may act jointly witifferential rotation and magneto-
rotational instabilities. We closed the discussion byssiirey the need for a further investigation
of such a combined viscosity, especially in tteead zonesf the MRI and in the self-gravitating
regions of the disk, where convective feedback processéseoenergy transport set in.

In the second part of the thesis, we switched from the putedprietical side of the table
to an observational one. We investigated the spectral gradggribution of two-dimensional
radiation-hydrodynamic simulations of highly accretirigdi holes. We first studied their over-
all continuum features and found that the orientation ofdis& relative to the observer has a
strong influence on the emerging spectra, not least due tbreldtivistic beaming effects. In-
auspiciously, the orientation is one of the parametersithatten hard to determine from the
observations. A possible indicator, however, are linediteons. We continued the spectral anal-
ysis by studying the iron K line emission of the super-Edthingflows. Apart from the disk’s
orientation, we also investigated the influence of the egémiiass and the accretion rate on the
emanating lines. One important outcome was the dependértice relative strength of the K
lines to the K, lines on the central mass, another one the broadening ofrtée for higher
inclinations.

However, we saw that the abso- Lor025 T T T
lute strengths of the lines do not fit esopal T powertaw it
to the observations: we found equiv- Le+023L edge-on view |
alent widths which were a factor of 7 = 1eso22} ]
1000 higher than expected. During E le+021} 1
the discussion of the possible rea- < 1e+020f face-on: EWK, = +0.19keV e
sons for these inconsistencies, we ig- 1e+°19:edge_on:Eg:/,\,K,§ ey I
nored a potential bug in our radia- Levo1r EWK;s = —0.097keV
tive transfer code. This argument 0.01 0.1 1
is supported by further tests of our EylkeV]
code with the most recent simulation data by Ohsuga (pnwug, this time modeling &00 M,
black hole showing limit-cycle oscillations. The corresding accretion rates are significantly
lower, arounds5 Ve in the high state and 7/ in the low state, respectively. This system shows
quasi-periodic oscillations with duration times of abétis (high state) and0 s (low state). For
the source being in its low/hard state, we found a compleargti®n feature for the face-on case
and reasonably strong emission lines for an edge-on viewenisk. We were also able to fit
a power law to the X-ray continuum with, o E;l-g. A detailed investigation and analysis of

these data will be published elsewhere.

1le+018
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6 Epilog

To conclude, we demonstrated the potential diagnostic pofitbe iron lines for the accretion
process. Yet, we were not able to draw quantitativ conchssfoom our investigation. To do so,
we need a better description for the emission spectrum ofjélseand the radiation field in the
simulations — or, even better, frequency-dependent RHDisitions. This, however, is hardly
feasible with current computational power. On the contrary extension of the simulations
towards larger radii and towards disks around supermab$aei holes is much more realistic.
In future work, we will therefore focus on an improvementlod €mission spectra. We will also
upgrade the method of the ray-tracing radiative transfeErutation to a Monte-Carlo method.
This last step will strongly profit from the decoupling of tygacity calculations from the actual
radiative transfer scheme.
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Appendix

A.1 Physical constants in the cgs system of units

Table A.1. Fundamental physical constants in the cgs system of units.

guantity symbol value units
gravitational constant G 6.673-107%  dyncn? g2
speed of light c 2.998 - 10'° cms!

Planck constant h 6.624-107%7  ergs
elementary charge e 4.803-10710  g'/2cmP/2s! =esu
electron mass Me 9.105-1072% g

proton mass mp 1.672-10724 g

mass of hydrogen atom  mp 1.673-10"%

Rydberg frequency Ry 3.290 - 10° st

Boltzmann constant kg 1.1380 - 10716 ergK™!

gas constant (for hydrogen)R 8.314 - 107 ergk-1g!
Stefan-Boltzmann constant osg 5.671-107° ergenT?s K4
radiation constant arad = 4osg/c  7.567-1071  ergenm3K—4

Table A.2. Astronomical constants in the cgs system of units.

guantity symbol value units
solar mass M 1.983-10% g
solar radius Ro 6.953 - 1019 cm
astronomical unit AU 1.495 - 103 cm
light year ly 9.460 - 10" cm
parsec pc 3.084 -10"® cm
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Appendix
A.2 The Henyey method

A.2.1 Introduction

The Henyey method, originally introduced in 1961 for thecaddtion of stellar structure and
evolution, is a special Newton-Raphson method adapted &xtecplar problem: the solution
of a set of differential equations with real boundary coiodi$ (i. e., given values for certain
variables at one boundary, for other variables at the othentlary, in contrast to initial value
problems where all boundary conditions are set at one point)

In the following, we present a detailed description of thenetical scheme and the underlying
mathematical principles. We apply the method to our spegifiblem and derive the set of dis-
cretized equations in Sect. A.2.2. We then describe howahidting system of linear equations
is solved and stored in an efficient way (Sect. A.2.3).

Basic Newton-Raphson method Starting from the simplest case, the prototype for the
application of a Newton-Raphson solver, the equation

dy B
dr f(zy) y(1) = n (A.1)

needs to be solved in the domain= x4, ..., zy,. The discretization of the-interval divides it
into segments; withi = 1,..., N;. We call an initial guess for the solution the zeroth iterati
The left hand side of (A.1) is then given by

@ _ Yim Y (A.2)
dx i—1/2 Ty — Xi—1 ’ .

while the right hand side can be calculated from

T+ Tio1 Yi T Yie
Jicip =1 - 7y Yot (A.3)
2 2
This leads to a set a¥; differential equations for =1, ..., V;:
gi = (Yi — Yi—1) — fic1y2 - (i —2i21) = 0. (A.4)

In generalg; # 0; otherwise the correct solutiay(x) is found. An initial guesg{” (z) is im-
proved successively by Newton'’s root solver, i. e., a firsteo approximation. Given a function
g(y) = 0 and an initial guesgi®}, the first an subsequent iterations of the rgt are attained

by
y =yt 4 gyt (A.5)

with the correctiorsy*~} given by

dg {k—1} dg {k—1} dg
{k—1} ZJ {k—1} _ ZJ _ (22
g W)+ (5‘y) % 0, Where (5‘y) (5‘y)

The “correct solution” is found once (y*}) < e wheree stands for a reasonable accuracy
depending on the related problem.

(A.6)

y:y{k_l}
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A.2 The Henyey method

Extension towards the Henyey method Exactly similar to our vertical stratification cal-
culation, the classical stellar structure and evolutiarbpgm consists of a set of four differential
equations with two given values at one boundary, and twagwadues at the other boundary.

Given a functiory = ¢(y1, . . ., y4) depending o/ = 4 variablesy;, the analogue to (A.6) is

4
LN syl =0 A7
g<y1 7"'7 >+;(ayj) y] . ( )

(.

~~

—iglk}

For better reading, we drop the notation of the iterativédesl{ ¥} from the above equations
and use(j) = (1,....,4) to define the four differential equations ane- 1,...,N; to identify

the discrete grid points. Again, we usgeas the independent variable a@}(ﬂ) as the dependent
variables. The function@.(” are given by

1 1 2 2 3 3 4 4
g(j) (xuxz 173/1( )73/@( )17%( )73/@( )17yz( )73/@( )173/@( )7yz(—)> = (yz(j) yz(j—)>

j 1 1 2 2 3 3 4 4
_fl(i)l/g (%‘#Ez‘—layz( )7y'§7)17yi( )7yz( )17yz( )7%( )17yz( )7yz( )1) (:L‘z - xi—l) . (A8)

The generalization of (A.4) becomes

dgl) 4 dgl) n
)4 Z ( (Z)) Z ( u sy =0. (A.9)
r=x; -1 T=x;_1

Allin all, the 4V; equations and the four boundary conditions allow us to soivehe4(N; + 1)
variationséyi(” by a scheme first presented by Henyey et al. (1964):
1. At grid point: = 1, two boundary conditions are given. Together with the fayuagions

¢57, only two variations are left open while the remaining sixiafions can be expressed
as functions of them, for example

o = Uy + vy + i,
2 2 1 2 2 2
o’ = U+ VP i,
3 3 1 3 2 3
o’ = Uy + vy + i A 10
su® = g®g,0 V@ 5,2 W '
41 10y "+ ViToyyt 1
3 3 1 3 2 3
ogy) = Uy Vo wY
oy’ = Upoys) + ViPey? + WY

This requires to calculate numerically and stbgecoefficients.

2. Fori =2, ..., N; — 1, the procedure is as follows: with the aid of the four differal
equationSgi(i)1 and the variationéyi(g), 5yi(4) from the previous step, we have two free
variations. Thus, we can express the remaining four vanatas
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oy = UPsyh + VPl + Wi,
WP - UTRG - VRS + W

3) 3) 5. (1) 3) s (2 (3) (A.11)
5yi+1 = Ui+15yi+1 + Vz‘+153/i+1 + VI/’H—17

4 4 1 4 2 4
by = USsy + Vilieyd + Wil
This requires to calculate numerically and stb2ecoefficients per step.

3. Ati = N,, the four differential equations, the two known variatimi@é‘z), 5y§§3 and the
remaining two boundary conditions allow to solve fiy(?, 5y](\i), 5y§\}3_1 and 6y§v2i)_1
explicitly. In successive backward steps down te 1, all variations can be calculated
and added to the current solutions.

A.2.2 Derivation of the discretized equations ng)

We now apply the Henyey method to our specific problem of tHeutation of the vertical

disk stratification. We introduce a discretization in thetial direction by transferring the
continuous variable$’,, z, T, 3., p to discrete valueg’, ;, ... with: = 1,..., N,. Thereby,

F.; =0andF, y, = F. The set of differential equations (3.25)—(3.28) has toikerdtized as
well, leading to four equatior@ﬁj),j =1,...,4.

With z;_, 2, we abbreviate the mean value of a quantifpr : andi — 1: x;_1/» = (z; +x;-1)/2.
We now repeat the individual differential equations for tlegtical stratification (3.25)—(3.28)
and derive the corresponding, discretized Henyey equation

For the geometric coordinate we get:

0z T
OF. — pv
U
GE” = (2 — Zifl)pi—1/2 Vi—1/2 — T(Fz,i - Fz,ifl) = 0. (A.12)

The temperature stratification is given as follows:

oT T
or. — 'Y
Y
GZ@) = (Tz - Tifl)pi—1/2 Vi—1/2 — T<Fz,i - Fz,ifl)pi—l/Z = 0. (A-13)

The surface density equation converts to:

oL, 7T
oF, v
\
GZ(-B) = (B —Xic)Vicip =YLy —Fli) = 0. (A.14)
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A.2 The Henyey method

Finally, the Henyey equation for the density becomes:

dp =T
— _=- RN
OF, v

e

G§4) = (pi = pic1)WVic1)2 FEYX(FL; — FLim)R_12 = 0. (A.15)

The boundary conditions (3.36)—(3.39) allow to rewritestnequations partially far= 1 and
1 = N; + 1 as follows:

GV o= 2 =0, (A.16)
GO = Ty, —Ter = 0, (A.17)
AP = v, =0, (A.18)
GV = pn—per = 0. (A.19)

The Henyey method requires the computation of the dereatf G, for j = 1...4 and
1 = 1...N; with respect to all four variables, T, 3., p. Theoretically, these derivatives can
be calculated analytically and applied to the numericadwdation. However, following Press et
al. (2001), it is advisable to calculate these derivativeserically, since the analytical formulas
are a potential source of numerical problems. Generakyntimeric derivatives are given by

PEP Y _ ey N GOyl 4oy ) =GP (w2 (A.20)
o n 0] ’ '
oy, 0y,

The Henyey method couples only adjacent grid cells, whichbmaseen from the Henyey equa-
tions (A.12)—(A.15): at grid cell, only the values from grid cellsandi — 1 enter the equations.
Thus, the derivatives (A.20) vanish for &ll# {i;,i; — 1}.

In the special cases= 1 andi = N; + 1, the standard Henyey equations (A.12)—(A.15) are
replaced by the boundary equations (A.16)—(A.19).

A.2.3 Numerical solution of the system of equations
The solution of the original differential equations (3.28.28) and its boundary conditions
(3.36)—(3.39) can be obtained with the aid of the derivatipeesented above in an iterative

procedure. Initial guesses fo(F.), T'(F,), X.(F,) andp(F.) need to provided. Numerically,
the Henyey method corresponds to solving the following Eetjaations for each iteration step:

H-AG =—-G. (A.21)
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H represents thel N; x 4N;) Henyey matrix

with the special block matrice,; and’H,_, v, for the boundary conditions,

Hll

RN,

Hit 0 0 0 0
Har | Hao 0 0 0
0 0 0
0 0 0
0 0 0 Hy,Ni—1 Hn, N,
0 0 0 0 Hy41n;

DG§1)721

DG?),Zl

1 00
0 01

DG§1),T1 DG§1),EZ,1 DG§1),p1

DGﬁs),Tl DG?)’EZJ DG§3)7P1

o O

(2) (2)
DGNi+1 2N DGNi-H TN,

(4) (4)
DGNi+1 2N DGNi-H TN,

0100

0001

and the general block matrices

DGil)ij

DG

2
DAY

(3

%5

4
DAY

1
DG( ),Tj

©))

4
DG1<' )7T]'

D& paiYra;

T pGYees

(2) (2)
DGNi+1’ZZ’Ni DGNi‘Fl’pNi

4 4
DGg\]i)+1vzz,Ni DGSV;+17pNi

DGED Pj

2
DGE pj

DE i

4
DGE pj

(A.22)

The (4N; x 1)-matrix AG stands for the successive iterative corrections (“vammi) starting
from the initial guesses for the four dependent variable¥’, 3., p at each grid point =

1,...,N;:
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A.2 The Henyey method

AG = (621,0T1,6%.1,0p1 | ... |62, .., 0pi| ... | 02n,, 0T N,, 0% N, 0pn,)"

Finally, the(4N; x 1)-matrix G gives the actual deviations from the correct solutibe- 0 for
the current values of the four variables at grid points 1, ..., NV;,1:

1 3 1 2 3 4 2 4 r
G= (61,616,676 60 L 16RL. 60

To illustrate how this system of linear equations can beest@and solved efficiently, we plot the
, : M
Henyey matrix forN; = 4 with D'* = DEi iz,

1112

1z pIT pla lp
Dii Dy D}jl; D%1
3z 3T 3%, P
Dii Dyy Dyy* Dy
1z PIT L3 plp|plz HIT PlE. plp
D31 D3 D%i D31 D35 D35 D%QZ D%Q
2z M2T 2p|mM22z 2T P
D57 D3 D§1; D%l D33 D35 Dgzzz Dgz
32 P33T 135 13p| M3z P3T 13E: Ty3p
D51 Dy Dilz Dil D335 Dy, DZQZ ID4212
4z AT . olydz AT . p
D3i D31 Dyi* Dy1| D35 D5 Dyy* Dy
lz HDIT PHlE. plplplz HIT HlE 1p
D335 D35 D;zz Dgz D33 Ds3 D%%z D%:s
22 2T . Ply2z 2T . P
D33 D35 DgQZ D%Q D33 D3 Dg?,z D%:a
3z 3T 33 P 3z 3T 3%, 14
D33 D3y Dﬁ% Diz D33 D3 Dz% D23
4 z 4T P 4 z 4T P
D33 D35 D35* Dy5|D33 D53 D33 Dyj
1z PIT PHl3: plp|plz HIT PlE. plp
Dy35 Dij D%% Dg:& Dyi Dii 9342 D%4
2z 2T 14 2z 2T P
D33 Di3 Dg?{ D%:a Dii Dij Dgzg D§4
3z 3T 14 3z 3T P
Dy3 Dis 933; 933 Dyi Dya Dﬁg Dﬁzx
Lz AT . Plrydz AT . p
D43 Dy Dy3* Dy5\Dyi Dyy Dyy* Dyy
2z D2T D2 p2p
D5i D5y Diliz Di4
iz AT dp
D5; D5y D5y* Dy

The red line indicates the diagonal of th& x 16 Henyey matrix. Obviously, the matrix adopts
a band structure with only 5 entries left/below and 5 entrigist/above the diagonal not being
zero. The general definition of a band matrix with elemenjtss that

a; =0 when i>j5+m; or j>i+ms.

Thus,m; = my, = 5 in our case. A band matrix is usually stored and manipulatea $o-
called compact form, which results if the matrix is rotated45° clockwise. All non-zero
elements lie in a long, narrow matrix with/ = m; + 1 + my(= 11 in our cas¢ columns and
N(= 4N; in our casg rows. For the above example, the compact forniois denoted by,

whichis all x 16 array.
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1z 1T 13 1p
D33 1)23 3 D323 * Dy3
2T . p
Dfﬁ D333 D3y
. p
Dy5* Dyy

gl
Il
w
~
D,
" W@wov%ovw—‘
Nwa D

)
W
on

)
W
N

)
S
N Mo

n

Qo
o
N o

)
W
wn

>,
Wi
SRR

)
o
@ Moo

n

>}
o,
wo

y* Dy Dii DI Dy Dy
f D3}; DT DIy DIk
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wwn
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Already in our minimalistic example, the compact fottnis considerably smaller than the orig-
inal matrixH (176 entries against 256 entries68r75% of the original size). For serious appli-
cations, the number of grid cell§; is of the order of hundreds. Given, for examplé,= 102,
the compact form requires on#t00 entries to be stored, compared1t@0000 for the original
matrix. In other words, the original size is reduced tg400 = 2.75%.

In order to calculate and address the entrie’ afirectly, we note thaD!”, is stored in element

Ho, o, With

u, = 244-(1 —2)+1, u, = ur = uy, = u,,

v, = 4-(la—11+2)—(1-1), v, = vpr—1 = vy, -2 = v,—3
for the general casg # {1, N; + 1}. For the special case = 1,

u, = 14+(1-1)/2, U, = Ur = uy, = u,,

v, = 6—-(—-1)/2, v, = vp—1 = vy, —2 = v,—3,
and fori; = N, + 1,

T VA
v, = 4—(1-2)/2, v, = vp—1 = vy, —2 = v,—3.

z

The solutionAgG for of the set of linear equations (A.21) is calculated eéintly by a LU-
decomposition of the compact matftk with a subsequent backsubstitution using the values of
G from the current solutions faor, T, 3, andp. We apply the routinebandec andbanbks
from Press et al. (2001, p. 45-46) for these two steps.
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A.3 Iron K-shell fluorescence data

A.3 Iron K-shell fluorescence data

Table A.3. Iron K-shell fluorescence data. Fluorescence yields amddirergies are taken from Kaastra
& Mewe (1993).

ion line E[eV] Yrad[S™1] Y; ion line E[eV] Yrad[S™1] Y;
Fel Ka2 6.391FE 403 2.000F + 14 1.013E — 01
Ka1 6.405FE 4+ 03 1.000F + 14 2.026E — 01 :
Kga 7.057FE +03 1.000E + 14 0.127E — 01 FelX Kga 7.249E + 03 1.000FE + 14 0.128F — 01

Kg1 7.058F + 03 5.000F + 13 0.254F — 01 Kg1 7.251E +03 5.000E + 13 0.256E — 01
Fell Ka2 6.408FE + 03 2.000E + 14 1.014E — 01 Fe X Koz 6.522F + 03 2.000E + 14 1.046E — 01
Ko1 6.419E + 03 1.000E + 14 2.028E — 01 Ka1 6.534E +03 1.000E + 14 2.092E — 01
Kz 7.081E +03 1.000E + 14 0.127E — 01 Kge 7.273E +03 1.000E + 14 0.131E — 01
Kgi 7.083FE +03 5.000F + 13 0.255F — 01 Kg1 7.273E +03 5.000E +13 0.197E — 01
Felll Ka2 6.422F +03 2.000E + 14 1.015E — 01 Fe Xl Koz 6.536E + 03 2.000E + 14 1.074F — 01
Ka1 6.434FE + 03 1.000E + 14 2.030E — 01 Ka1 6.549E + 03 1.000E + 14 2.147E — 01
Kz 7.106E +03 1.000E + 14 0.127E — 01 Kgz 7.295E +03 1.000E + 14 0.135E — 01
K1 7.107E +03 5.000E + 13 0.255E — 01 Kg1 7.295E +03 5.000E +13 0.135E — 01
FelV Ku2 6.436E +03 2.000E + 14 1.016E — 01 FeXll Ka2 6.551E+ 03 2.000E + 14 1.102E — 01
Ka1 6.449F + 03 1.000F + 14 2.032E — 01 Ka1 6.563E +03 1.000E 4 14 2.204E — 01
Kge 7.129F +03 1.000F + 14 0.128F — 01 Kgz 7.305E +03 1.000E + 14 0.138E — 01
K1 7.132E +03 5.000E + 13 0.255E — 01 Kg1 7.305E +03 5.000F +13 0.069F — 01
FeV  Ku2 6.449E +03 2.000E + 14 1.017E — 01 FeXlll Ka2 6.563E + 03 2.000E + 14 1.132E — 01
Ka1 6.462E 4+ 03 1.000E + 14 2.034E — 01 Ka1 6.577E +03 1.000FE + 14 2.264F — 01
Kg2 7.152E + 03 1.000E + 14 0.128E — 01 Kpz2 7.325E +03 1.000E + 14 0.142F — 01
Kg1 7.153E + 03 5.000E + 13 0.255E — 01 FeXIV Kq2 6.578E +03 2.000E + 14 1.162E — 01
FeVl Kao 6.464F + 03 2.000FE + 14 1.018E — 01 Ka1 6.590E + 03 1.000E + 14 2.325E — 01
Kao1 6.477E +03 1.000E + 14 2.035E — 01 Kge 7.345E +03 1.000E + 14 0.073E — 01
Kz 7.176E +03 1.000E + 14 0.128E — 01 FeXV  Ka2 6.590E + 03 2.000E + 14 1.194F — 01
Kgi 7.180F +03 5.000F + 13 0.255F — 01 Ka1 6.602E + 03 1.000E + 14 2.389E — 01
FeVIl Ka2 6.479E + 03 2.000E + 14 1.018E — 01 FeXVl Kga2 6.602E 403 2.000E + 14 1.213E — 01
Ko1 6.492FE + 03 1.000E + 14 2.037E — 01 Ka1 6.615E +03 1.000E + 14 2.425E — 01
Kg2 7.203E + 03 1.000E + 14 0.128E — 01 FeXVIl Ka2 6.613E +03 2.000E + 14 1.231E — 01
Kg1 7.204E + 03 5.000E + 13 0.256E — 01 Ka1 6.627TE +03 1.000E + 14 2.461E — 01
FeVIll Ku2 6.494F +03 2.000E + 14 1.019E — 01 FeXVIll Ka2 6.631E + 03 2.000E + 14 1.606E — 01
Ka1 6.507FE + 03 1.000F + 14 2.038E — 01 Ka1 6.631E +03 1.000E 4 14 2.409E — 01
Kg2 7.224E + 03 1.000E + 14 0.128E — 01 FeXIX Ka2 6.631E +03 2.000F + 14 2.202E — 01
Kg1 7.228E + 03 5.000E + 13 0.256E — 01 Ka1 6.631E +03 1.000E + 14 2.202E — 01
FelX Kag2 6.509E +03 2.000E + 14 1.020E — 01 FeXX Ka2 6.605E + 03 2.000E + 14 3.258F — 01
Ka1 6.521F + 03 1.000F + 14 2.040E — 01 Ka1 6.605E +03 1.000E + 14 1.229E — 01

FeXXl Kga2 6.596F + 03 2.000FE + 14 5.521F — 01
Ka2 6.586E + 03 2.000E +14 4.903FE — 01
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